
RMX/86™ I/O SYSTEM
REFERENCE MANUAL

Manual Order Number: 9803123-01

Copyright © 1980 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-1D4.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel
products:

BXP Intellec Multibus
i iSBC Multimodule
ICE iSBX PROMPT
iCS Library Manager Promware
Insite MCS RMX
Intel Megachassis UPI
Intelevision Micromap tlScope

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A206/0580/1K FL

· Pre face

PURPOSE AND SCOPE OF MANUAL

The RMX/86 Operating System provides software support for
Intel's iSBC 86/12 single-board computer. It consists of a
nucleus, terminal handler, debugger and input/output system.
Each user can configure the operating system to include only
the features he needs.

The lOS reference manual is one of four manuals furnishing an
overview of the RMX/86 Operating System and reference material
for each of its components. The four manuals ideally should be
read in the following sequence:

An Introduction to the RMX/86m Operating System 9803124
RMX/8eMNucleus, Terminal Handler, and Debugger

Re ference Manual 9803122
RMX/86m I/0 System Reference Manual 9803123
RMX/86™System Programmer's Reference Manual 142721

This manual assumes familiarity with concepts and terminology
introduced in the Nucleus reference manual and wi th the PL/M
programming language. It is intended primarily as a quick
reference to the system calls available in the I/O system. Only
PL/M calling sequences are shown here.

Detailed descriptions of I/O system calls are limited to those
available to applications programmers. Some calls reserved for
system programmers are discussed generally, but only to give an
overview of I/O system operation. The latter are described in
detail in the RMX/86 System Programmer's Reference Manual.

In the first seven chapters of this manual, system calls are
named using a generic shorthand (such as CREATE$FILE) or a more
specific form (such as A$CREATE$FILE for the asynchronous
version of this call). The actual PL/M external-procedure names
used to invoke these I/O operations are shown only in Chapter
8, where the detailed PL/M calling sequences are listed.

NOTE
Information in this manual relating to

stream files, job creation and termination,
loading jobs, and hybrid/synchronous processing

describes software that is not included
in the first release and as such is only

preliminary and subject to change.

CONTENTS

PAGE

PREFACE•...................................
Purpose And Scope of Manual

CHAPTER 1
INTRODUCTION TO THE RMX/86 I/O SYSTEM
File Connections ... 1-1
Devices .. 1-1
Files .. 1-3

Physical Fi les .. 1-3
stream Files .. 1-3
Named Files ' 1-4
Directory Tree ... 1-4
Accessing Named Files 1-4
File-Access Protection 1-6

Three Levels of System Calls 1-6
Manual Organization .. 1-8

CHAPTER 2
ASYNCHRONOUS INPUT/OUTPUT
Calls That Create File Connections 2-1
Calls That Modify File Connections 2-1
Calls That Obtain File Information 2-2
Calls That Perform File 1/0 2-3
A Call To Peform a Device-Level Function 2-4
Calls That Delete Information, Files, and Connections 2-4

CHAPTER 3
HYBRID INPUT/OUTPUT
Calls that Create File Connections 3-1
Calls That Modify File Attributes 3-2
Calls That Obtain File Information•............ 3-2
Calls That Delete Files and Connections 3-2
Asynchronous Calls Used At the Hybrid Level 3-3

CHAPTER 4
SYNCHRONOUS INPUT/OUTPUT
Calls That Create File Connections 4-1
Calls That Modify File Attributes 4-2
Calls That Obtain File Information 4-2
Calls That Perform File 1/0 4-3
A Call To Perform Device-Level Function 4-4
Calls That Delete Files and Connections 4-4

iii

CONTENTS (continued)

CHAPTER 5
JOB ENVIRONMENT
Creating and Terminating Jobs
Defau1 t User
Default Prefix.

CHAPTER 6

PAGE

. 5-1
... 5-1

. .5-2

TIME AND DATE FUNCTIONS•............................ 6-1

CHAPTER 7
RMX/86 LOADER
Loader Operation ..
Creating A Job ..
Package Object ...

CHAPTER 8
INVOKING liD SYSTEM CALLS IN PLIM
Syntax Notation
Input Parameter Specification .. .
Condition Codes .. .
System Calls

A$Attach$Fi1e ..
A$Change$Access.
A$Close
A$Create$Directory.
A$Create$Fi1e
A$Delete$Connection .. .
A$Delete$Fi1e
AGetConnection$Status.
AGetDirectory$Entry ..
AGetFile$Status
AGetPath$Component •.
A$Open
A$Read
A$Rename$Fi1e.
A$Seek
A$Specia1 ..
A$Truncate ..
A$Write
CreateIOJob.
Delete$Package .. .
ExitIOJob

. ·0 •••

iv

. .. 7-1

. .. 7-1
.7-1

. .. 8-1
.8-2

· .8-6
. ... 8 - 7
. ... 8-8

.8-10
· .8-12
.8-13
.8-15

. .. 8-18
. 8 -19

.8-21

.8-23

.8-25

.8-30

.8-31

.8-33
· .8-35

. •.. 8-37
. 8-38

. .. 8-40
. ... 8-41

.8-43

.8-47

.8-48

CONTENTS (continued)

Get$Default$Prefix
Get$Default$User.
Get$Time
Get$Time$String.
H$Attach$File
H$Change$Access ..
H$Create$Directory ..
H$Create$F ile
H$Delete$Connection ..
H$Delete$File
HGetFile$Status
H$Look$Up$Connection.
H$Rename$File ...
Inspect$Package.
S$Attach$File
S$Change$Access .. .
S$Close
S$Create$Directory ..
S$Create$File
S$Delete$Connection.
S$Delete$File
Set$Default$Prefix ..
Set$Default$User
SGetConnection$Status.
SGetFile$Status
S$Load
S$Look$Up$Connection ...
S$Open
S$Read$Locate.
S$Read$Move
S$Rename$File.
S$Seek
S$Special
S$Truncate$File ..
S$Write$Move ...
S$Write$Update.

APPENDIX A
SUMMARY OF I/O SYSTEM CALLS
Job-Level System Calls
Get Time/Pate System Calls ..
Load File/Task System Call.
Create-File-Connection System Calls ..
File Modification System Calls
File Input/Output System Calls
Device-Level Function System Calls ..
Get Status/Attribute System Calls ...
Delete Connection/File System Calls.

v

PAGE

... 8-51
· .8-52
· .8-53
· .8-54
· .8-55
· .8-56
· .8-58

· 8- 60
· .8-62
.8-63

· .8-64
. ... 8-69

.8-70

.8-71

.8-72
· .8-74
.8-76

· 8- 77
.8-79
.8-81
.8-82

· 8-83
.8-84

· 8-85
.8-88
.8-93

..... 8-98
.8-99
.8-101

· .8-103
.8-104

· .8-105
.. 8-106
.8-108

· .8-109
.8-110

. A-I

...... . A-I
.A-2
.A-2
.A-2
.A-3

• • A-4
• ••• A-4

.A-5

CONTENTS (continued)

PAGE

APPENDIX B
PL/M EXTERNAL PROCEDURES•... B-l

APPENDIX C
I/O REQUEST/RESULT SEGMENT
Segment Structure .. C-l
status Codes ... C-2

APPENDIX 0
EXCEPTIONAL-CONDITION CODES
Programming Errors•...........•.......................... 0-1
Environmental Conditions•............................ 0-2
Loader Condition Codes D-3

GLOSSARY •••••••.•.••••••.••.•••.••.•••••••••••.••.••..•••..• Gl-3

FIGURE
1-1

1-2

8-1

8-2

TABLE OF FIGURES

TITLE
Task-File Communication For Traffic
Monitoring Application
Directory Tree for Auto Dealership
Application
Sample Directory Tree (Asynchronous
Call)
Sample Directory Tree (Synchronous Call)

vi

PAGE

1-2

1-5

8-3
8-5

Chapter 1. INTRODUCTION TO THE RMX/86 I/O SYSTEM

The RMX/86 input/output system allows tasks to communicate with
one another and with the outside world. The I/O system is built
around the concept of file manipulation, where a "file" can be:

• a physical device (physical file),
• a data "stream" or pipeline between two or more tasks

(stream file), or
• data or directory information residing on a random

access device (named file).

Figure 1-1 shows part of a traffic-control application using
all three kinds of files. This broad interpretation of file
types makes the RMX/86 I/O system truly device-independent.

Tasks access the I/O system through various system calls. These
calls provide numerous file-processing functions, but their
main roles are:

• to create, attach, and delete files;
• to read and write files once they are established.

other system calls modify file attributes, obtain file status
information, and perform special device-level functions. Still
other calls provide auxiliary functions like creating and
terminating jobs, setting or inspecting job-level default
parameters, accessing time and date information, and loading
object files.

FILE CONNECTIONS

When a file is created or attached, a connection to that file
is also established. A file connection is an RMX/86 object that
contains the means to access the file, a file pointer (in cases
where the file has been opened for reading or writin~), and, in
some instances, input/output buffers.

When a task issues a CREATE$FILE, ATTACH$FILE, or
CREATE$DIRECTORY system call, it recei ves the token for a file
connection in return. The task can then supply this token to
the I/O system to gain access to the file in subsequent
operations. A file connection, once established, remains valid
through any number of I/O operations until it is deleted. This
saves the task considerable overhead; the file does not have to
be located again each time it is opened or otherwise accessed.

DEVICES

A device might be anyone of a broad spectrum of physical
uni ts, such as an I/O terminal, serial input or output uni t
(e.g., paper-tape unit or line printer), or random-access
storage (e. g., floppy or hard-disk uni t). A dev ice might also
be a thermistor in an oven or a traffic sensor embedded in a
roadway.

1-1

INTRODUCTION TO THE RMX/86 I/O SYSTEM

TASK
A

JOB 2

TASK
B

JOB 3

TASK TASK
o E

TASK
C

Figure 1-1. Task-File Intercommunication For
Traffic-Monitoring Application

1-2

INTRODUCTION TO THE RMX/86 liD SYSTEM

In the case of a random-access device, such as a disk drive,
the device also includes a "volume." A volume is simply the
physical storage medium used by the particular device (such as
a diskette or hard disk platter).

Before a file can be created on a device, the device must be
attached. When a device is attached, a token for a device
connection is returned to the caller (normally a system pro
gram). This token is used later by applications programs
creating files on the device.

FILES

PHYSICAL FILES

Some tasks deal directly wi th physical devices; in fact, some
tasks deal ~ wi th physical dev ices. For example, a task
might moni tor a sensor continuously and print a message each
time an event occurs.

To read the sensor data and write the output message, the task
must establish physical-file connections to the sensor and
printer devices. First, the devices must be attached, as men
tioned above. The device connections returned are then used as
parameters in CREATE$FILE system calls. Each call returns a
physical-file connection to its respective device.

Using the tokens for these file connections
task can now issue calls to OPEN the two
nections, READ from the input connection,
output connection. When all liD opera tions
file connections can be CLOSED and DELETED.

STREAM FILES

as parameters, the
physical-file con
and WRITE to the

are completed, the

Stream files provide a mechanism for intertask communication
without the use of external devices or media. A stream file is
useful only when there are both a writer and a reader of the
stream file, as when the output of one task is connected to the
input of another.

To establish a stream-file communication link, the following
steps are generally required (al though the exact protocol can
vary).

• Call CREATE$FILE to create the stream file and a con
nection to the file.

• Call ATTACH$FILE to create an addi tional connection to
the file.

• Give one connection to the writing task and the other to
the reading task; The tasks can then OPEN the con
nections for liD.

1-3

INTRODUCTION TO THE RMX/86 I/O SYSTEM

Multiple readers and/or writers can use the same stream file by
creating the appropriate set of connections. A read of a stream
file is a destructi ve read, however, and such mul tiple oper
ations must be carefully synchronized.

NAMED FILES

A named file is a sequence of bytes residing on a random-access
device. Named files can be either data files or directory
files. A directory file is a file whose entries are pointers to
other (data or directory) files. A directory file can also be
empty.

Directory Tree

Each random-access volume supports a tree of directories. Named
files are components in these hierarchical trees (Figure 1-2).
A named file is accessed by identi fy ing the dev ice where it
resides and a path through the tree to which it belongs. As
Figure 1-2 illustrates, the root of a directory tree is called
the root directory. The tree's internal nodes are directories;
its leaves are data files or empty directories.

The file names shown in this figure are completely arbi trary.
When a named data or directory file is created, the name speci
fied by the creator is automatically cataloged by the I/O
system in the directory that points to the file. That directory
is known as the file's parent directory. For example, the
information needed to access file TUNE SCHED is cataloged in
its parent directory, TUNEUPS. The information needed to locate
TUNEUPS is cataloged in directory SERVICE.

Accessing Named Files

A named file is accessed by specifying its directory-tree path
in an I/O system call.

A directory-tree path has two parts. The first part, or prefix,
designates the file in the directory tree where the path search
is to begin. The second part, or subpath, describes the rest of
the route through the tree to the desired file. The subpath is
a list of directory names, ending wi th the name of the file
being accessed. In Figure 1-2, for example, if the prefix
designates directory SERVICE, the subpath to file 80 PART LIST
is

TUNEUPS/PARTS/80 PART LIST

A subpath can also be null, in which case the prefix i tsel f
designates the target file.

The exact syntax for prefix, sub path , and file-name speci fi
cation is described in Chapter 8, where calling sequences are
covered in detail.

1-4

INTRODUCTION TO THE RMX/86 1/0 SYSTEM

O NAMED
DIRECTORY
FILE

DATA
FILE GAMED

Figure 1-2.

TUNE-SCHED

PARTS

TUNE UPS

BODY

RECALLS

79-PART-LiST

80-PART-LiST

SERVICE

SALES .-----.-----

ROOT
DIRECTORY

REC-SCHED

EMPTY
DIRECTORY

EMPTY
DIRECTORY

Directory Tree For Auto Dealership Application

1-5

INTRODUCTION TO THE RMX/86 I/O SYSTEM

File-Access Protection

The creator of a named file can limit access rights to the file
for himsel f and other users. The I/O system provides file
access protection by combining the concepts of a user object
and an access list.

Each user of the I/O system is associated with a user object
that identi fies not only that user, but also all groups to
which he belongs (engineering team, quality assurance com
mittee, etc.). These objects are designated in I/O system calls
by a token or, in the H$CHANGE$ACCESS and S$CHANGE$ACCESS
calls, by the logical name "WORLD," which signi fies all. users
of the system.

The specific access rights allowable are:

Named Data Files
Delete
Read
Append
Update

Named Directory Files
Delete
Display
Add Entry
Change Entry

When a named file is created by an A$CREATE$FILE or
A$CREATE$DIRECTORY system call, the creator specifies the token
for his user object and a byte mask describing the (combination
of) access right(s) to be granted. The access mask may later be
changed or more users granted access by calling A$CHANGE$ACCESS
(up to a total of three "user/access" pairs per file). When the
file is subsequently accessed, the I/O system compares the
specified user-id value with the user/access list for the file
to see if that value is present and has the requested access
privilege.

When a named file is created by a call to H$CREATE$FILE,
H$CREATE$DIRECTORY, S$CREATE$FILE, or S$CREATE$DIRECTORY, the
global user "WORLD" is assumed and full access rights are
granted automatically. The rights can be limi ted by subsequent
calls to H$CHANGE$ACCESS or S$CHANGE$ACCESS, but the user
object is still "WORLD."

As this discussion of file protection indicates, the I/O system
frequently offers several system calls to perform the same
function. The following section describes these options in more
detail.

THREE LEVELS OF SYSTEM CALLS

At the beginning of this chapter, the distinction was made
between file-related system calls (that create, modify, delete,
inspect, or perform I/O on files) and auxiliary system calls

1-6

INTRODUCTION TO THE RMX/86 liD SYSTEM

(that create jobs, set job defaults, access timeldate
information, and load object files). In the case of file
related system calls, the liD system provides three levels of
operation.

• asynchronous
• hybrid (partially asynchronous, partially synchronous)
• synchronous

In a real-time environment, the events that trigger system
response usually happen at unpredictable times and in an unpre
dictable sequence. That is, they happen asynchronously. The
controller of the system is responsible for synchronizing these
events.

At the asynchronous level of liD operation, the controller of
the system is the applications programmer. The programmer must
be familiar wi th techniques for synchronizing his liD oper
ations, primarily using mailboxes (as described in the RMX/86
Nucleus, Terminal Handler and Debugger Reference Manual). The
advantages of this most basic level of liD operation are that
it requires the least system memory of the three options, it
gives the programmer the greatest flexibility in specifying
system call parameters, and it allows the programmer to perform
other operations in parallel with the asynchronous liD oper
ations.

At the hybrid level, many operations are synchronized auto
matically, simpli fying the programmer's role. System calls are
simp Ii fied also, as defaul ts are assumed for some parameters
and response mailboxes are not needed. Where they are required,
user objects and file-connection objects can be given logical
names that can be specified instead of 16-bit tokens in system
call parameters. The file connections created at this level are
fully compatible with those created asynchronously, allowing
the hybrid level to perform liD on established data-file con
nections using asynchronous calls, and thus retain some of the
flexibility of the asynchronous level.

At the synchronous level, all operations are synchronized
automatically by the liD system, relieving the programmer of
this burden completely. System calls are simpli fied, as at the
hybrid level, and the logical-naming capability exists at the
synchronous level also. In addition, liD buffers built into
data-file connections allow automatic overlapping of liD oper
ations, making this level particularly efficient for processing
sequential data. The automatic buffering' also provides blocking
and deblocking of liD data, usually resulting in increased
device throughput. The expense of this programming convenience
is the greater system memory required for the synchronous
level, and the inabili ty to speci fy arbi trary buffering and
synchronizing.

1-7

INTRODUCTION TO THE RMX/86 I/O SYSTEM

MANUAL ORGANIZATION

Chapters 2-4 describe these three levels of file operations in
more detail and summarize the system calls available at each
level. Chapters 5-7 summarize the system calls available for
performing auxiliary functions. Chapter 8 provides the detailed
PL/M calling sequences for every I/O system call available to
the applications programmer.

1-8

Chapter 2. ASYNCHRONOUS INPUT/OUTPUT

Asynchronous operations represent the most basic level of
RMX/86 I/O. While this level provides fewer features than the
hybrid and synchronous levels, it does allow the programmer
greater flexibility in specifying parameters and in performing
multiple I/O operations simultaneously. The programmer must
synchronize these operations himself, using result segments
returned to mailboxes designated in asynchronous system calls.
Asynchronous I/O processing also requires the least system
memory of these three levels.

This chapter provides an overview of
The detailed PL/M calling sequences
calls can be found in Chapter 8.
applicable for every kind of file,
lowing summaries.

CALLS THAT CREATE FILE CONNECTIONS

asynchronous system calls.
and descriptions of these
Not every system call is
as indicated in the fol-

Three system calls are available for creating connections at
the asynchronous level:

• A$CREATE$FILE
., A$ATTACH$FILE
• A$CREATE$DIRECTORY

CREATING A DATA FILE CONNECTION

The A$CREATE$FILE system call returns a connection to a physi
cal, stream, or named data file. I f the file does not yet
exist, this call also creates the file. I f the file already
exists, several options are available to the caller, as
detailed in Chapter 8.

ATTACHING A FILE

The A$ATTACH$FILE system call creates a connection to an ex
isting file. Once the connection is formed, it remains in
existence until it is deleted, or until the creating task is
deleted.

CREATING A DIRECTORY FILE

The A$CREATE$DIRECTORY system call applies to named directory
files only. This call creates a new directory file and returns
a connection to that file.

CALLS THAT MODIFY FILE CONNECTIONS

The asychronous level has two calls that modi fy file
connections:

• A$CHANGE$ACCESS
• A$RENAME$FILE

2-1

ASYNCHRONOUS INPUT/OUTPUT

CHANGING FILE ACCESS RIGHTS

The A$CHANGE$ACCESS system call applies to named files only. It
is called to change the access rights to a named data or direc
tory file.

RENAMING A FILE

The A$RENAME$FILE system call applies to named files only. It
is called to change the name of a file. A renamed data file can
also be recataloged in a different parent directory, so long as
that directory is on the same volume as the file's original
parent, but a directory file can only be renamed wi thin its
parent directory.

CALLS THAT OBTAIN FILE INFORMATION

The asynchronous level has four calls that obtain status and
attribute information about files and their connections:

o AGETCONNECTION$STATUS
a AGETFILE$STATUS
e AGETDIRECTORY$ENTRY
• AGETPATH$COMPONENT

GETTING CONNECTION STATUS DATA

The AGETCONNECTION$STATUS system call returns information on
the current status of one specific connection to a file.

GETTING FILE STATUS DATA

The AGETFILE$STATUS system call returns status and attribute
information about a specific file and its connections. The form
of the information differs for physical, stream, and named
files.

GETTING DIRECTORY CONTENTS

The AGETDIRECTORY$ENTRY system call applies to named files
only.

Entries in a directory are numbered sequentially starting from
zero. By specifying an entry number in a call to
AGETDIRECTORY$ENTRY, the caller can obtain the name of the
file associated with that entry.

GETTING A PATH COMPONENT

The AGETPATH$COMPONENT system call is meaningful for named
files only. The user who knows the token for a file connection
can specify this token to AGETPATH$COMPONENT and receive the
name of the file. This is the name by which it is cataloged in
its 'parent directory.

2-2

ASYNCHRONOUS INPUT/OUTPUT

I f the speci fied token belongs to the root directory 0 f a
directory tree, a null string is returned because a root direc
tory has no parent. A null string is also returned if the token
for a physical or stream file is specified.

CALLS THAT PERFORM FILE I/O

Calls that perform file I/O are valid only for data files (not
for directory file connections). Five such calls are available
at the asynchronous level.

(9 A$OPEN
II A$SEEK
a) A$READ
II A$WRITE
II A$CLOSE

Buffers used in read/write operations must be in a segment
allocated by the free-space manager of the RMX/86 nucleus (that
is, the segment must be allocated dynamically).

OPENING A DAJA-FILE CONNECTION

The A$OPEN system call opens a file connection for input/output
and specifies who, if anyone, may share the connection
(readers, wri ters, or both). Opening a file connection also
establishes a file pointer set to byte posi tion zero. A$SEEK,
A$READ, and A$WRITE all move this pointer.

MOVING THE FILE POINTER

The A$SE~K system call applies to physical and named data files
only. It is called to move the file pointer for an open con
nection, thus allowing file data to be accessed randomly. The
file pointer can be placed at any byte position in the file.

READING A FILE

The A$Read sytem call initiates reading via an open file con
nection. The connection is read as a string of bytes, and any
number of bytes can be requested. The bytes are read starting
at the current setting of the file pointer. Following the read
operation, the file pointer is positioned just past the last
byte read.

WRITING A FILE

The A$WRITE system call initiates a write operation from a user
buffer into a connected file. The data is written beginning at
the current setting of the file pointer. Following the wri te
operation, the file pointer is posi tioned just a fter the last
byte written.

2-3

ASYNCHRONOUS INPUT/OUTPUT

CLOSING A DATA-FILE CONNECTION

The A$CLOSE system call is invoked to close an open connection
when I/O operations are completed. A closed connection can be
reopened without attaching the file again.

A CALL TO PERFORM A DEVICE-LEVEL FUNCTION

The asynchronous level includes an A$SPECIAL system call to
perform special device-level functions. This call applies to
physical files only.

The I/O system supports a number of functions at the device
level (namely read, wri te, seek, at tach dev ice, detach dev ice,
open, and close). The A$SPECIAL system call allows the user to
perform additional device-driver functions. For example, a
rewind function would be desirable for a magnetic tape driver
or a track formatting function for a random-access device.

CALLS THAT DELETE INFORMATION, FILES, AND CONNECTIONS

The asynchronous level has three calls that delete files (or
part of a file) and connections.

() A$DELETE$FILE
G A$TRUNCATE
o ~$DELETE$CONNECTION

DELETING A FILE

The A$DELETE$FILE system call applies to stream and named files
only. When called , it marks the designated file for deletion.
The file is not actually deleted, however, until all con
nections to the file have been severed. Directory files cannot
be deleted unless they are empty.

TRUNCATING A FILE

The A$TRUNCATE system call applies to named data files only. It
truncates a file by freeing all allocated bytes beyond the
current setting of the file pointer. A seek operation can be
used to posi tion the file pointer before the call to
A$TRUNCATE. Truncation is performed immediately. I f the file
pointer is positioned at or beyond the end-of-file, no oper
ation is performed.

DELETING A CONNECTION

The A$DELETE$CONNECTION system call severs a file connection
established by A$CREATE$FILE, A$ATTACH$FILE , or A$CREATE$
DIRECTORY. I f a connection is open when this call is made, the
connection is closed before being severed.

A$DELETE$CONNECTION also deletes the file associated with the
speci fied connection if the file is both marked for deletion
(by a previous call to A$DELETE$FILE) and the speci fied con
nection is the last remaining connection to the file.

2-4

Chapter 3. HYBRID INPUT/OUTPUT

The hybrid level of I/O system calls is an extension of the
asynchronous level described in Chapter 2. At this level, calls
that create and delete files and connections, calls that modify
file attributes, and certain status calls have synchronous
interfaces. This means the programmer does not have to syn
chronize these operations himsel f. The calling sequences are
simplified also. Logical names can be specified for path
prefixes, default user objects are assumed, and no response
mailbox need be specified since the programmer does no
synchronizing. These synchronous system calls require more
system memory than their asynchronous counterparts, however.

File connections created at the hybrid level are fully compat
ible with those created by asynchronous system calls. This
allows the hybrid-level user to invoke asynchronous calls for
file I/O and related operations, thereby retaining most of the
flexibility of asynchronous input/output.

This chapter provides an overview of hybrid system calls. The
detailed PL/M calling sequences and descriptions of these calls
can be found in Chapter 8. Not every system call is applicable
for every kind of file, as indicated in the following summaries.

CALLS THAT CREATE FILE CONNECTIONS

Three system calls are available for creating file connections
at the hybrid level:

• H$CREATE$FILE
II H$ATTACH$FILE
5 H$CREATE$DIRECTORY

CREATING A DATA FILE CONNECTION

The H$CREATE$FILE system call returns a connection to a phys
ical, stream, or named data file. The connection can also be
given a logical name, under which it is cataloged in the job's
logical-name directory.

I f the file does not yet exist, this call also creates a new
file. If the file already exists, several options are available
to the caller, as detailed in Chapter 8.

ATTACHING A FILE

The H$ATTACH$FILE system call creates a connection to an exist
ing file. The connection can also be given a logical name,
under which it is cataloged in the job's logical-name directory.

CREATING A DIRECTORY FILE

The H$CREATE$DIRECTORY system call applies to named directory
files only. This call creates a new directory file and returns

3-1

HYBRID INPUT/OUTPUT

a connection to that file. The connection can also be given a
logical name, under which it is cataloged in the job's logical
name directory.

CALLS THAT MODIFY FILE ATTRIBUTES

The hybrid level has two calls that modify file attributes:

ID H$CHANGE$ACCESS
~ H$RENAME$FILE

CHANGING FILE ACCESS RIGHTS

The H$CHANGE$ACCESS system call applies to named files only. It
is called to change the access rights to a named data or direc
tory file.

RENAMING A FILE

The H$RENAME$FILE system call applies to nq.med files only. It
is called to change the name of a file. The name changed is. the
subpath name cataloged in the file's parent directory, not the
logical name cataloged in the job's logical-name directory.

A renamed data file can be recataloged in a different parent
directory, so long as that directory is on the same volume as
the file's original parent. A directory file can only be re
named within its parent directory.

CALLS THAT OBTAIN FILE INFORMATION

The hybrid levei has two calls that obtain status and attribute
information about files and their connections:

o HGETFILE$STATUS
8 H$LOOK$UP$CONNECTION

GETTING FILE STATUS DATA

The HGETFILE$STATUS system call returns status and attribute
information about a specific file and its connections. The form
of the information differs for physical, stream, and named
files.

GETTING THE TOKEN FOR A CONNECTION

The H$LOOK$UP$CONNECTION system call returns the token for the
file connection associated with a specified logical name.

CALLS THAT DELETE FILES AND CONNECTIONS

The hybrid level has two system calls that delete files and
connections:

G H$DELETE$FILE
~ H$DELETE$CONNECTION

3-2

HYBRID INPUT/OUTPUT

DELETING A FILE

The H$DELETE$FILE system call applies to stream and named files
only. When called, it marks the designated file for deletion.
The file is not actually deleted, however, until all con
nections to the file have been severed. Directory files cannot
be deleted unless they are empty.

DELETING A CONNECTION

The H$DELETE$CONNECTION system call severs a file connection
established by H$CREATE$FILE, H$ATTACH$FILE, or H$CREATE$
D IRE C TOR Y. I f the connect i on i s open when t his call is made,
the connection is closed before being severed. The logical name
for the connection, if one exists, is removed from the job's
logical-name dir~ctory.

H$DELETE$CONNECTION also deletes the file associated with the
speci fied connection if the file is both marked for deletion
(by a previous call to H$DELETE$FILE) and the speci fied con
nection is the last remaining connection to the file.

ASYNCHRONOUS CALLS USED AT THE HYBRID LEVEL

The hybrid level uses many of the asynchronous system calls
described in Chapter 2. The calls operate on established file
connections to perform file 110, obtain connection status or
attribute information, or perform special device-level
functions.

Ten asynchronous calls are supported at the hybrid level:

• A$OPEN
,. A$CLOSE
• A$SEEK
• A$READ
II A$WRITE
(I A$TRUNCATE
a A$SPECIAL
s AGETDIRECTORY$ENTRY
c AGETPATH$COMPONENT
u AGETCONNECTION$STATUS

These calls perform the same operations described in Chapter 2
(and in detail in Chapter 8).

3-3

Chapter 4. SYNCHRONOUS INPUT/OUTPUT

Synchronous operations represent the highest level of RMX/86
I/O. All calls at this level are synchronized automatically.
PL/M calling sequences are simplified compared to asynchronous
calls. Logical names can be speci fied for path prefixes, de
faul t user objects are assumed, and no response mailboxes need
be specified since the programmer does no synchronizing.

Synchronous calls that create or open a data-file connection
can also specify up to two buffers as part of that connection.
These synchronous I/O system (SIOS) buffers allow overlapping
of read and write operations. Data can be read into a buffer in
anticipation of task requirements, or can be written from a
buffer while the task is preparing additional output. When two
SIOS buffers are used, the I/O system can begin the next read
before processing on the current buffer is completed; sim
ilarly, it can begin writing out a full buffer while the other
buffer is being filled. This makes the synchronous level
especially efficient at processing sequential data.

As these features indicate, the synchronous level provides the
most convenient tool for I/O processing of the three levels
available, but it also requires the most system memory.

This chapter provides an overview of synchronous system calls.
The detailed PL/M calling sequences and descriptions of these
calls can be found in Chapter 8. Not every system call is
applicable to every kind of file, as indicated in the following
summaries.

CALLS THAT CREATE FILE CONNECTIONS

Three system calls are available for creating file connections
at the synchronous level:

• 5$CREATE$FILE
• 5$ATTACH$FILE
• 5$CREATE$DIRECTORY

CREATING A DATA FILE CONNECTION

The 5$CREATE$FILE system call returns a connection to a phys
ical, stream, or named data file. This composi te connection
includes any 5105 buffers requested in the call. The buffer
size speci fied in this call is the defaul t buffer size, which
can be overridden by 5$OPEN when the connection is opened. The
connection returned by S$CREATE$FILE can also be given a
logical name and cataloged in the job's logical-name directory
under this name.

If the designated file does not yet exist, this call also
creates the file. I f the file already exists, several options
are available to the caller, as detailed in Chapter 8.

4-1

SYNCHRONOUS INPUT/OUTPUT

ATTACHING A FILE

The S$ATTACH$FILE system call creates a connection to an
existing file, including any desired SIOS buffers. As with
S$CREATE$FILE, the buffer size specified is the default size,
which can be overridden by S$OPEN.

The connection returned by this call can also be given a
logical name, under which it is cataloged in the job's logical
name directory.

CREATING A DIRECTORY FILE

The S$CREATE$DIRECTORY system call applies to named directory
files only. This call creates a new directory file and returns
a connection to that file. The connection can also be given a
logical name, under which it is cataloged in the job's logical
name directory.

CALLS THAT MODIFY FILE ATTRIBUTES

The synchronous level has two calls that modify file attributes:

• S$CHANGE$ACCESS
18 S$RENAME$FILE

CHANGING FILE ACCESS RIGHTS

The S$CHANGE$ACCESS system call applies to named files only. It
is called to change the access rights to a named data or direc
tory file.

RENAMING A FILE

The S$RENAME$FILE system call applies to named files only. It
is called to change the name of a file. The name changed is the
subpath name cataloged in the file's parent directory, not the
logical name cataloged in the job's logical-name directory.

A renamed data file can also be recataloged in a di fferent
parent directory, so long as that directory is on the same
volume as the file's original parent, but a directory file can
only be renamed within its parent directory.

CALLS THAT OBTAIN FILE INFORMATION

The synchronous level has three calls that obtain status and
attribute information about files and their connections.

• SGETCONNECTION$STATUS
• SGETFILE$STATUS
• S$LOOK$UP$CONNECTION

4-2

SYNCHRONOUS INPUT/OUTPUT

GETTING CONNECTION STATUS DATA

The SGETCONNECTION$STATUS system call returns information on
the current status of one specific connection to a file.

GETTING FILE STATUS DATA

The SGETFILE$STATUS system call returns status and attribute
information about a specific file and its connections. The form
of the information differs for physical, stream, and named
files.

GETTING THE TOKEN FOR A CONNECTION

The S$LOOK$UP$CONNECTION system call returns the token for the
file connection associated with a specified logical name.

CALLS THAT PERFORM FILE I/O

Calls that perform file I/O are valid only for data files (not
for directory file connections). Seven such calls are available
at the synchronous level:

e S$OPEN
fD S$SEEK
CIll S$READ$MOVE
ID S$READ$LOCATE
III S$WRITE$UPDATE
e S$CLOSE

OPENING A DATA-FILE CONNECTION

The S$OPEN system call opens a file connection for input/output
and speci fies who may share the connection (readers, wri ters,
or both). Opening a file also establishes a file pointer set to
byte posi tion zero and, if the file is being opened for read
ing, initiates the first read operation.

S$OPEN can also request up to two SIOS buffers for the open
connection and speci fy their size, if the size di ffers from
that specified when the connection was created.

MOVING THE FILE POINTER

The S$SEEK system call applies to physical and named data files
only. It is called to move the file pointer for an open con
nection, thus allowing file data to be accessed randomly. The
file pointer can be placed at any byte position in the file.

READING TO A CALLER BUFFER

The S$READ$MOVE system call moves a collection of bytes from a
file to a specified caller buffer.

4-3

SYNCHRONOUS INPUT/OUTPUT

Reading to an SIOS Buffer

The S$READ$LOC~tE system call reads a collection of bytes from
a designated file to an SIOS bu ffer. When the read operation
has been completed, S$READ$LOCATE returns the location of the
buffer.

WRITING FROM A CALLER BUFFER

The S$WRITE$MOVE system call writes a collection of bytes from
a designated caller buffer to a file.

UPDATING A FILE

As mentioned above, S$READ$LOCATE returns the location of the
data it reads (that is, a pointer to an SIOS buffer). The
S$WRITE$UPDATE system call references this po~nter to write the
data back to its original location after it has been updated. A
call to S$READ$LOCATE must be the most recent operation on the
connection addressed by S$WRITE$UPDATE.

CLOSING A DATA-FILE CONNECTION

The S$CLOSE system call closes an open connection. Before
closing the connection, this call waits for all I/O operations
in progress on the file to be completed, makes sure that all
data in the buffer of an output file is written, and releases
the SIOS buffers created by S$OPEN.

A CALL TO PERFORM A DEVICE-LEVEL FUNCTION

The synchronous level includes an S$SPECIAL
perform special device-level functions. This
physical files only.

system call to
call applies to

The I/O system supports a number of functions at the device
level (namely read, write, seek, attach device, detach device,
open, and close). The S$SPECIAL system call allows the user to
perform additional device-driver functions. For example, a
rewind function would be desirable for a magnetic tape driver
or a track .formatting function for a random-access device.

CALLS THAT DELETE FILES AND CONNECTIONS

The synchronous level has three calls that delete files (or
part of a file) and connections:

• S$DELETE$FILE
• S$TRUNCATE$FILE
• S$DELETE$CONNECTION

DELETING A FILE

The S$DELETE$FILE system call applies to stream and named files
only. When called , it marks the designated file for deletion.
The file is not actually deleted, however, until all connections

4-4

SYNCHRONOUS INPUT/OUTPUT

to the file have been severed. Directory files cannot be de
leted unless they are empty.

TRUNCATING A FILE

The S$TRUN"CATE$FILE system call applies to named data files
only. It truncates a file by freeing all allocated bytes beyond
the current setting of the file pointer. A seek operation can
be used to posi tion the file pointer before the call to the
S$TRUNCATE$FILE. Truncation is performed immediately. I f the
file pointer is positioned at or beyond the end-of-file, no
operation is performed.

DELETING A DATA-FILE CONNECTION

The S$DELETE$CONNECTION ~ystem call severs a file connection
established by S$CREATE$FILE or S$ATTACH$FILE. If the con
nection is open when S$DELETE$CONNECTION is called, it is
closed before being severed. The logical name for the con
nection, if one exists, is removed from the job's logical name
directory.

S$DELETE$CONNECTION also deletes the file associated wi th the
speci fied connection if the file is both marked for deletion
(by a previous call to S$DELETE$FILE) and the specified con
nection is the last remaining connection to the file.

4-5

Chapter 5. THE JOB ENVIRONMENT

A job is an environment for tasks. It includes not only the
task (s) to be executed, but also the resources needed by the
tasks(s). These include:

• memory
• exchanges (mailboxes and semaphores)
II directories
• other objects, such as connections

Each of these job components is described in the RMX/86
Nucleus, Terminal Handler, and Debugger Reference Manual.

The six job-related system calls described in this chapter fall
into two categories:

• system calls that create or terminate jobs
• system calls that set or inspect the default user and

prefix for a job

CREATING AND TERMINATING JOBS

Once a job exists, its tasks can create other jobs. These jobs
become the children of the creating (parent) job.

In the I/O system, jobs are created by invoking the
CREATEIOJOB system call. This call creates both a job and its
first task. It also includes several parameters useful for I/O
processing. These parameters can specify a default user, a
de fa u 1 t pat h. pre fix, and a poi n t e r to ali s t 0 flo g i cal n a m e s
to be used by the job. CREATEIOJOB also speci fies a mailbox
to be used for parent-child job communication.

The EXITIOJOB system call causes the calling task to term
inate and notifies the parent job through the mailbox
established by CREATEIOJOB.

EXITIOJOB performs the following operations:

• deletes all connections and detaches all logical devices
attached by the job;

• creates a segment containing the exit message;
II sends the exit message to the mailbox provided by the

parent job;
• deletes the calling task.

The parent job can then delete the current job, if it wishes to
do so.

DEFAULT USER

When a named file is created, its creator is identified as the
owner of the file.

5-1

THE JOB ENVIRONMENT

The token for the owner's user object is a required parameter
in many asynchronous system calls. The programmer can specify a
default user for the entire job, however, simplifying parameter
speci fication considerably. Once the defaul t has been estab
lished asynchronous calls merely specify a zero wherever the
user parameter is required. Hybrid and synchronous system calls
simplify user specification even further by always assuming the
default user.

We mentioned above that CREATEIOJOB can be used to specify a
default user at the time a job is created. The SET$DEFAULT$USER
system call can be invoked to establish a default user for the
current job, or another job that already exists.

A given job's default user can be determined at any time by
calling GET$DEFAULT$USER.

DEFAULT PREFIX

Many of the system calls described in Chapters 2-4 require a
path prefix as a parameter (even if a subpath is not needed).
Asynchronous calls require the token for a device connection or
a file connection as a prefix. Hybrid and synchronous calls
accept a logical name as the prefix designator.

Prefix speci fication can be simpli fied by establishing a de
fault prefix for the job. Once the default is established,
asynchronous calls need only speci fy a zero to designate the
prefix parameter. Hybrid and synchronous calls can omi t the
path prefix entirely, in which case the default is assumed.

Setting a default prefix also locates a job within a directory
tree. Subsequent references to files used by the job occur
relative to the default directory associated with the job.

When a job is created, the de faul t prefix can be set by a
parameter of the CREATEIOJOB system call. The
SET$DEFAULT$PREFIX system call can be invoked to establish the
default prefix for the current job, or for another job that
already exists.

A gi ven job's defaul t prefix can be determined at any time by
calling GET$DEFAULT$PREFIX.

5-2

Chapter 6. TIME AND DATE FUNCTIONS

The time and date funct5.ons are part of the I/O system, but
they are also separately configurable, for applications that
may want to use them wi tt"lout the I/O sy stem.

The time/date is maintained as a 32-bit counter containing the
number of seconds since midnight, January 1, 1978. The I/O
system supports two system calls for accessing this counter:

., GET$TIME
• GET$TIME$STRING

GET$TIME returns the time/date value as it is stored internally
(that is, as the total seconds since January 1, 1978).

GET$TIME$STRING returns this information in more readable form.
The time is returned in the format.

HH:MM:SS (hour:minute:second)

and the date in the format

MM/DD/YY (month/day/year)

6-1

Chapter 7. RMX/86 LOADER

The RMX/86 loader utility is called to load an object file into
memory.

The loader can also be instructed to create a new job and in
addition, can create a task to execute the code from the object
file once loading is complete.

Object files must be located by LOC86 before they can be
loaded. That is, load addresses must be speci fied as absolute
memory addresses.

LOADER OPERATION

The system call invoked to load object files is S$LOAD (Syn
chronous load). This call can perform any of the following
function combinations:

@ Create a job, load a file, and create a task;
~ Create a job and load a file;
~ Load a file and create a task;
IB Load a file.

CREATING A JOB

When a caller asks the loader to create a job, the loader
invokes the CREATEIOJOB system call (described in Chapter 5).
This gives the loaded task the ability to call EXITIOJOB to
terminate itself when finished.

By creating a job for the loaded task, the caller can control
the minimum and maximum memory used by tasks in the job. These
two parameters are specified as part of the call to the loader.

PACKAGE. OBJECT

The loader creates a special package object to simplify passing
resul ts returned by the load call. The package object allows
several other objects' tokens to be "packaged" and returned as
a single object, the token for the package.

To expand the contents of a package object, the user must
specify its token to the INSPECT$PACKAGE system call. This call
returns a set of tokens for the package object.

The DELETE$PACKAGE system call can be invoked to delete a
package object.

7-1

Chapter 8. INVOKING I/O SYSTEM CALLS IN PL/M

This chapter describes the PL/M calling ~equences to RMX/86 I/O
system calls. The list'is limited to calls that can be invoked
from application programs. I/O-related calls reserved for
system programmers (that is, calls that can affect an entire
system) are described in the RMX/86 System Programmer's
Reference Manual.

The system calls are listed here alphabetically by the same
shorthand notation used throughout this manual. For example,
S$DELETE$FILE refers to the synchronous-level delete-file
system call and appears alphabetically before
SET$DEFAUL T$PREFIX. This notation is language independent and
should not be confused with the actual form of the PL/M call.
The precise format of each call is spelled out as part of its
detailed description.

SYNTAX NOTATION

RMX/86 I/O operations are declared as typed or untyped external
procedures by PL/M. These procedure declarations are shown in
Appendix B. PL/M performs I/O operations by issuing external
procedure calls.

Certain conventions are used in this chapter to describe the
PL/M calling sequences. Calls can be entered using either
upper-cased or lower-cased characters, but in this chapter PL/M
reserved words (such as CALL) and procedure names (such as
RQAREAD) are shown in capital letters. Lower-cased items
represent input parameters to be replaced with actual values
when the I/O procedure is called. Input parameters are sep
arated by commas and the entire parameter list is enclosed in
parentheses. A lower-cased item to the left of an equal (=)
sign in a typed procedure call represents a value returned by
the call. Procedure calls are terminated by a semicolon.

EXAMPLES

1. connection = RQHCREATE$FILE (log$name, path):

This sequence calls the
procedure, speci fying as
for the connection being
file. The call returns
caller.

hybrid-level create-file typed
input parameters a logical name
created and the path to the new
a new file connection to the_

2. CALL RQSTRUNCATE$FILE (connection):

This sequence calls the synchronous-level truncate-file
untyped procedure, speci fying a connection to the file
being truncated as its input parameter.

8-1

INVOKING I/O SYSTEM CALLS IN PL/M

INPUT PARAMETER SPECIFICATION

USER PARAMETER

This parameter is specified only in asynchronous sytem calls.
It contains a 16-bit token designating the caller's user
object. A zero specification designates the default user.
Hybrid and synchronous system calls always assume the default
user.

LOGICAL-NAME PARAMETER

This parameter is specified only in hybrid and synchronous
system calls. It designates the logical name under which a new
file connection is to be cataloged in the job's logical-name
directory. A logical name can be 1-12 ASCII characters,
including any printable ASCII character except the colon (:),
slash (/), and up-arrow (+) or cirumflex ("). This parameter
can also be speci fied as a zero, in which case the new file
connection is not cataloged in the logical-name directory.

FILE-PATH PARAMETER(S)

Files are designated in system calls by specifying their patb,
that is, their prefix and subpath. For named files, the prefIx
designates the starting point in a directory-tree scan and the
subpath describes the rest of the route through the tree to the
desired file. Since physical and stream files are not nodes in
a directory tree, the subpath parameter has no meaning for
them. The prefix designates the desired connection directly for
these files.

Path Specification in ~synchronous Calls.

Asynchronous system calls specify paths using two parameters.
The prefix parameter is a token designating an existing device
connection or file connection. I f this parameter is zero, the
default prefix is assumed.

For named files, the subpath parameter is a pointer to an ASCII
string. The form of this string is described below. The subpath
c a.n a 1 sob e z e roo rca n poi n t to a null s t r i n g, i n w hie h cas e
the prefix points directly to the desired connection. For
physical and stream files, the subpath parameter is always
specified as zero.

Asynchronous system calls can specify paths in the following
forms:

Prefix
o

Token
Token

Token

Subpath
o
o

Pointer to
Null String
Pointer to
ASCII String

Meaning
Default prefix is desired connection.
Token points to desired connection.
Token points to desired connection.

Token plus ASCII string lead to
desired connection.

8-2

INVOKING I/O SYSTEM CALLS IN PL/M

The subpath ASCII string is a list of file names separated by
slashes, terminating wi th the desired file. A file name can be
1-14 ASCII characters, including any printable ASCII character
except the slash (/) and up-arrow (t) or circumflex ("'). In
Figure 8-1, for example, if the prefix is the token for direc
tory OBSTETRICS and we wish to reference file OUT PATIENT, the
subpath parameter must point to the string -

DELIVERY/POST PARTUM/OUT PATIENT

I f the ASCI I string begins wi th a slash, the prefix merely
designates the tree and the subpath is assumed to start at the
root directory of the tree associated with the prefix. For
example, if the prefix designates directory GYNECOLOGY in
Figure 8-1, the subpath to OUT$PATIENT is

/OBSTETRICS/DELIVERY/POST PARTUM/OUT PATIENT

IN-LABOR

POST-PARTUM

PRENATAL

DELIVERY

IN-PATIENT

OUT-PATIENT

OBSTETRICS

GYNECOLOGY

ROOT
DIRECTORY

EMPTY
-DIRECTORY

EMPTY
DIRECTORY

Figure 8-1. Sample Directory Tree (Asynchronous Call)

8-3

INVOKING I/O SYSTEM CALLS IN PL/M

Files can also be addressed relative to other files in the
tree, using "t" as a path component. The "+" refers to the
parent directory of the current file in the path scan. For
example, now that we have a connection to OUT PATIENT in Figure
8-1, we can use that connection to speci fy- a subpath to IN
PATIENT. Wi th the token for the OUT PATIENT connection as our
prefix, the subpath string would be

tIN PATIENT
Note that no slash follows the "t" in this example; "t" itself
can be a separator.

Of course an even simpler approach would be to designate direc
tory POST PAR TUM as the prefix, in which case the ASCII string
becomes -

IN PATIENT

Path Specifications in Hybrid/Synchronous Calls

Hybrid and synchronous system calls specify the path as a
single parameter, a pointer to an ASCII string. The ASCII
string encompasses both the prefix and subpath.

The prefix can be specified using the logical name of the
designated connection. The logical name must be enclosed in
colons when it appears in the path string. If no name is speci
fied, the default prefix is assumed.

The subpath is a list of file names separated by slashes, as
defined for asynchronous calls above. A slash at the beginning
of this list designates the root directory associated with the
prefix. The up arrow (t) character can be used to designate the
parent directory of the current file in the scan.

The ASCII string addressed in hybrid and synchronous system
calls can take any of the following forms:

ASCII String
null
:log-name:
subpath
/subpath

:log$name:/subpath

:log$name:subpath

Meaning
Default prefix is desired connection.
Name designates desired connection.
Tree scan starts at default prefix.
Tree scan starts at root directory
associated with default prefix.
Tree scan starts at root directory
associated with file designated by
logical name.
Tree scan starts at file designated
by logical name.

Figure 8-2 is the same as Figure 8-1, except that logical names
(shown enclosed in colons) have been added for each directory
and data file. Referring to this figure, file OUT PATIENT might
be addressed by any of the following strings (assuming
OBSTETRICS as the default prefix):

8-4

INVOKING I/O SYSTEM CALLS IN PL/M

:HOME: (assuming this connection already exists)
DELIVERY/POST PARTUM/OUT PATIENT
/OBSTETRICS/DELIVERY/POST PARTUM/OUT PATIENT
:GYN:/OBSTETRICS/DELIVERy7pOST PARTUM/OUT PATIENT
:POST:OUT PATIENT -
:HOSP: tOUT_PATIENT

RESPONSE MAILBOX PARAMETER

This parameter is specified only in asynchronous system calls.
It contains a token designating the mailbox that is to receive
the result of the call. This information is provided by tasks
to synchronize parallel operations. The I/O result segment
returned to this mailbox is described in Appendix C.

NOTE

Result information should be deleted once it is no longer
needed. Otherwise, it will consume available memory.

IN-LABOR

POST-PARTUM

:DELlV:

PRENATAL

DELIVERY

:OBS:

IN-PATIENT

OUT-PATIENT

:POST:

OBSTETRICS

GYNECOLOGY

:GYN:

Figure 8-2. Sample Directory Tree (Synchronous Call)

8-5

INVOKING I/O SYSTEM CALLS IN PL/M

SPECIAL OBJECTS AND DATA TYPES

Each system- call explains in detail the expected contents of
its input parameters. These explanations frequently refer to
the following PL/M data types and RMX/86 special objects.

BYTE is an 8-bi t unsigned binary number ranging from 0 to 255
and occupying one byte of memory.

BOOLEAN is a single-BYTE quantity taking the value TRUE (0FFH)
or FALSE (00H).

STRING is a sequence of BYTES, the first of which contains the
number of BYTES in the sequence (not including the first, or
length, BYTE). A length of zero specifies a null string.

WORD is a 16-bit unsigned binary number ranging from 0 to 65535
and occupying two contiguous BYTES of memory (with the loworder
BYTE first).

TOKEN is two contiguous BYTES of memory whose contents are
specified to obtain an RMX/86 object.

CONNECTION is a TOKEN for a connection object.

USER is a TOKEN for a user object.

POINTER is two WORDS of memory containing an OFFSET WORD and a
segment TOKEN (base), respectively.

CONDITION CODES

The I/O system ~ssues a condition code when a system call is
in v 0 ked. 1ft h e call ex e cut e s nor mall y, the I /0 s y s t em ret urn s
the code "E$OK." I f an error is encountered, an exceptional
condition occurs.

When an exceptional condition occurs, the system issues a
condition code describing the error, then either returns to the
calling task or passes control to an exception handler. See the
RMX/86 Nucleus, Terminal Handler and Debugger Reference Manual
for a detailed description of exception handling.

Exceptional condi tions can be programming errors, meaning they
can be corrected by recoding, or environmental conditions,
meaning they can occur even after a program has been completely
debugged. These exceptional conditions are detected syn
chronously wi th system call invocation (for example, detection
of an invalid parameter). The condition code is returned to the
location addressed by the "excep$ptr" field of the external
procedure declaration associated with each system call (see
Appendix B).

8-6

INVOKING I/O SYSTEM CALLS IN PL/M

At the asynchronous level, exceptional condi tions can also be
detected asynchronously (for example, when the I/O system
cannot know if a file exists before trying to attach it).
Condi tion codes describing asynchronous exceptional conditions
are returned in the "status" field of the I/O result segment
(Appendix C). The I/O result segment is then sent to the mail
box designated by the "resp$mbox" parameter in asynchronous
calls.

Each of the system call descriptions in this chapter lists the
condi tion codes liable to resul t from invoking that call. An
explanation of each exceptional-condition code and the probable
reasons for its occurrence can be found in Appendix D. Asyn
chronous exceptional-condition codes are explained in Appendix
C.

SYSTEM CALLS

The following pages provide a detailed description of each I/O
system call, listed alphabetically. Appendix A provides a
summary of these calls,' grouped by function and correlated to
the file types to which they apply. That summary also acts as a
cross-reference to the following detailed descriptions.

8-7

INVOKING 1/0 SYSTEM CALLS IN PLIM

A$ATTACH$FILE

ASYNCHRONOUS ATTACH$FILE SYSTEM CALL

The A$ATTACH$FILE system call creates a connection to an exist
ing file. Once the connection is established, it remains in
effect until it is detached (see A$DELETE$CONNECTION), or until
the creating job is deleted (see EXITIOJOB). Once attached,
the file may be opened, closed, read, wr i t ten, etc., as many
times as desired. .

NOTE

Any task invoking this call must have a
priority of 32 or greater.

CALL RQAATTACH$FILE(user, prefix, subpath,
resp$mbox, excep$ptr);

INPUT PARAMETERS

user

prefix

subpath

resp$mbox

excep$ptr

RESULT SEGMENT

result

is a token for the user object to be in
spected in any access checking that takes
place. A zero specifies the default user for
the job. This parameter is ignored for
physical and stream files.

is a token for the connection object to be
used as the path prefix. Normally, this will
be a connection to an existing file (fol
lowed by a null subpath). A zero speci fies
the default prefix for the job.

is a pointer to the string containing the
subpath of the file to be attached. A null
string indicates that the new connection is
the file designated by the prefix: the new
connection will not be open, regardless of
the open state of the prefix.

is a token for the mailbox that receives the
result of the call.

is a pointer to the location that receives
the condition code resulting from this call.

is a token for the new connection
call succeeded; an 1/0 resul t
(Appendix C) is returned otherwise.

8-8

if the
segment

lNVOKING I/O SYSTEM CALLS IN PL/M

A$ATTACH$FILE (continued)

CONDITION CODES

EOK, EBAD$CALL. ~$CONJEXT, E$EXIST, E$FNEXIST, E$FTYPE, E$IO,
E$LIMIT, E$MEM, E$NOPREFIX, E$NOT$CONFIGURED, E$NOUSER,
E$PARAM, E$TYPE.

8-9

INVOKING I/O SYSTEM CALLS IN PL/M

A$CHANGE$ACCESS

ASYNCHRONOUS CHANGE$ACCESS SYSTEM CALL

A$CHANGE$ACCESS system call applies to named files only. It is
called to change the access rights to a named data or directory
file. Depending on the contents of the "id" and "access"
parameters speci fied in the system call, users may be added to
or deleted from the files's ID-access list, or the access
privileges granted to a particular user may be changed.

NOTE

Any task invoking this call must have
a priority of 32 or greater.

CALL RQACHANGE$ACCESS(user, prefix, subpath, id,
access, resp$mbox, excep$ptr);

INPUT PARAMETERS

user

prefix

subpath

id

access

is a token for the user object to be in
spected in access checking. A value of zero
specifies the default user for the job.

is a token for the connection to be used as
the pat h pre fix. T y pi call y, t his w ou 1 d be a
connection to the file whose access is being
changed (followed by a null subpath). A zero
specifies the default prefix for the job.

is a pointer to the string giving the sub
path from the prefix to the file whose
access is to be changed. A null string
indicates the connection is to the file
designated by the prefix. In this case, the
user parameter is not used, since access
rights are already frozen into the
connection.

is a
whose
does
list,
total

word giving the 10 number of the user
access is to be changed. I f this 10

not already exist in the ID-access
it is added. This list may contain a
of three ID-aGcess pairs.

is a byte mask giving the new access rights
for the 10. I f a bit is set to one, the
corresponding access is granted.' For a named
data file, the possible bit settings are:

8-10

INVOKING I/O SYSTEM CALLS IN PL/M

A$CHANGE$ACCESS (continued)

INPUT PARAMETER
access (continued)

resp$mbox

excep$ptr

RESULT SEGMENT

result

Bit
-0-

1
2
3

4-7

Meaning
Delete
Read
Append
Update
Reserved

For a named directory file, the possible bit
settings are:

Bit
-0-

1
2
3

4-7

Meaning
Delete
Display
Add Entry
Change Entry
Reserved

If zero is specified for the
parameter (that is, no access),
specified in the ID parameter is
from the file's ID-access list.

access
the ID
deleted

is a token for the mailbox that receives an
I/O result segment indicating completion of
the access change. A zero value for this
parameter indicates that no response is
wanted.

is a pointer to the location that receives
the condition code resulting from this call.

is an I/O result segment indicating comple
tion of the access change. See Appendix C.

FILE ACCESS REQUIREMENTS

The caller must be the owner of the file or must have change
entry access to the file's parent directory.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FLUSHING,
E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM, E$NOPREFIX,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$TYPE.

8-11

INVOKING I/O SYSTEM CALLS IN PL/M

A$CLOSE

ASYNCHRONOUS CLOSE SYSTEM CALL

The A$CLOSE system call closes an open file connection. It is
called between uses of a file. A file connection must also be
closed· if the user wishes to change the open mode or shared
status of the connection.

CALL RQACLOSE(connection, resp$mbox, excep$ptr);

INPUT PARAMETERS

connection

resp$mbox

excep$ptr

RESULT SEGMENT

result

CONDITION CODES

is a token for a file connection to be
closed.

is a token for a mailbox that receives an
I/O result segment indicating completion of
the operation. A zero value for 41> this
parameter indicates that no response is
wanted.

is a pointer to the location that receives
the condition code resulting from this call.

is an I/O result segment (Appendix C) indi
cating completion of the close operation.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FLUSHING, E$LIMI T ,
EMEM, ENOT$CONFIGURED, E$TYPE.

8-12

INVOKING 1/0 SYSTEM CALLS IN PLIM

A$CREATE$DIRECTORY

ASYNCHRONOUS CREATE$DIRECTORY SYSTEM CALL

The A$CREATE$DIRECTORY system call is applicable to named
directory files only. When called, it creates a new directory
file and returns a token for the new file, connection. This
system call cannot be used to create a connection to an exist
ing directory.

NOTE

Any task invoking this call must have
a priority of 32 or greater.

CALL RQACREATE$DIRECTORY(user, prefix, subpath, access,
. resp$mbox, excep$ptr);

INPUT PARAMETERS

user

prefix

subpath

access

resp$mbox

excep$ptr

'is a token for the user object of the new
directory's owner. It is also inspected to
make sure the caller has proper access to
the new directory's parent. If zero is
specified, the default user for the job is
assumed.

is a token for the connection to be used as
the path prefix. A zero specifies the de
fault prefix for the job.

is a pointer to the string giving the sub
path of the directory to be created. The
sub path string must not be null, and must
point to a location in the directory tree
where a file has not yet been defined.

is a byte mask gIvIng the owner's initial
access rights to the directory. For each bit
in the mask, a one grants access and a zero
denies it. The possible bit settings are:

Bit
-0-

1
2
3

4-7

Meaning
Delete
Display
Add Entry
Change Entry
Reserved

is a token for the mailbox that receives the
result of this call.

is a pointer to the location that receives
the condition code resulting from this call.

8-13

INVOKING I/O SYSTEM CALLS IN PL/M

A$CREATE$DIRECTORY (continued)

RESULT SEGMENT

result is a token for the directory file connection
if the call succeeded; otherwise, an I/O
result segment (Appendix C) is returned.

FILE ACCESS REQUIREMENT

The caller must have add-entry access to the parent of the new
directory.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM, E$NOPREFIX,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$SPACE, E$TYPE.

8-14

INVOKING I/O SYSTEM CALLS IN PL/M
A$CREATE$FILE

ASYNCHRONOUS CREATE$FILE SYSTEM CALL

The A$CREATE$FILE system call creates a physical, stream, or
named data file and returns a token for the new file con
nection. If a named file designated by the prefix and subeath
parameters already exists, one of the following situatIons
occurs:

o If the "must$create" parameter is TRUE, an error con
dition code (E$FEXIST) is returned.

o If the "must$create" parameter is FALSE and the path
designates a data file, a new connection to that file is
returned (that is, A$CREATE$FILE acts like
A $ AT T A C H $ F I L E). . In t his cas e, the f i 1 e is t run c ate d to
zero length after being attached and any data in the
file is lost. If the "size" parameter is nonzero, the
requested space is subsequently allocated.

o If the "must$create" parameter is FALSE and
designates a device" or directory, an unamed
created on the corresponding device. This
deleted automatically when the last connection
deleted.

the path
file is
file is
to it is

Many of the parameters specified in the A$CREATE$FILE call do
not a p ply top h Y sic a 1 and s t rea m f i 1 e s . I nth e sec a s e s, t.h e
parameter is ignored.

NOTE

Any task invoking this call must have
a priority of 32 or greater.

CALL RQACREATE$FILE(user, prefix, subpath, access,
granularity, high$size low$size,
must$create, resp$mbox, excep$ptr);

INPUT PARAMETERS

user

prefix

applies to named files only and is a token
for the user object of the file's owner. It
also furnishes the user 10" for any access
checking that might occur. A zero specifies
the default user for the job. This parameter
is ignored for physical and stream files.

i sat 0 ken fo r a de vic e 0 r f i 1 e con n e c t ion.
By implication, this parameter indicates the
type of file (physical, stream, named) being
created. For a stream file, the prefix is a
device connection. In the case of a named
file, the prefix acts as the starting point
in a directory tree scan. A zero speci fies
the default prefix for the job.

8-15

INVOKING I/O SYSTEM CALLS IN PL/M

A$CREATE$FILE (continued)

INPUT PARAMETERS (continued)

subpath

access

granularity

high$size
low$size

must$create

applies to named files only and is a pointer
to the string gIvIng the subpath for the
file being created.

applies to named files only and is a byte
mas k 9 1 V In g the 0 w n e r ' sin i t i a 1 a c c e s s
rights to the new file. For each bi t, a one
grants access and a zero denies it. The
possible bit settings are:

Bit
-0-

1
2
3

4-7

Meaning
Delete
Read
Append
Update
Reserved

applies to named files only and is a word
gIvIng the granularity of the file being
created. This is the size (in bytes) of each
logical block to be allocated to the file.
The value specified in this parameter is
rounded up to a multiple of the volume
granularity. Note that a contiguous file can
be extended into a noncontiguous file by
writing past the contiguous extents.

The granularity parameter can have the
following values:

f2J
f2JFFFFH
other

Same as volume granularity
Contiguous
Number of bytes/allocation

When a contiguous file is extended, space is
allocated in volume-granularity units. If
"other" is specified, a multiple of 1024
bytes is recommended.

This parameter is isgnored for physical and
stream files

is applicable to stream and named files only
and is a word pair giving the number of
bytes initially reserved for the file.

is applicable to named files only and is a
boolean whose TRUE or FALSE setting deter
mines the handling of input paths desig
nating an existing file.

8-16

INVOKING I/O SYSTEM CALLS IN PL/M

A$CREATE$FILE (continued)

INPUT PARAMETERS (continued)

resp$mbox

excep$ptr

RESULT SEGMENT

result

is a token for the mailbox that receives the
result of this call.

i sap 0 i n t e r tot h e 1 0 cat ion th at r e c e i v e s
the condition code resulting from this call.

is the token for a new file connection if
the call succeeded; otherwise, an I/O resul t
segment (Appendix C) is returned.

FILE ACCESS REQUIREMENT

The caller must have add-entry access to the parent directory
of the new named file.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FNEXIST,E$FTYPE, EIO, ELIMIT, EMEM, ENOPREFIX,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$SPACE, E$TYPE.

8-17

INVOKING I/O SYSTEM CALLS IN PL/M

A$DELETE$CONNECTION

ASYNCHRONOUS DELETE$CONNECTION SYSTEM CALL

The A$DELETE$CONNECTION system call severs the file connection
established by A$CREATE$FILE, A$CREATE$DIRECTORY, or
A$ATTACH$FILE. It frees the file connection object, and also
deletes the associated file if the file is already marked for
deletion (by a previous A$DELETE$FILE call), and if the speci
fied connection is the last remaining connection to the file.
If a connection is open when A$DELETE$CONNECTION is called, it
is closed before being severed.

NOTE

Connections should be deleted when no longer
needed to avoid exceeding a job's object limit.

CALL RQADELETE$CONNECTION(connection, resp$mbox, excep$ptr);

INPUT PARAMETERS

connection

resp$mbox

excep$ptr

RESULT SEGMENT

result

CONDITION CODES

is a token for the file connection to be
severed.

is a token for the mailbox that receives an
I/O result segment indicating compl~tion of
the operation. A zero indicates that no
response is wanted.

is a pointer to the location that receives
the condition code resulting from this call.

is an I/O result segment (Appendix C) indi
cating the connection has been deleted.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$IO, E$LIMIT, E$MEM,
ENOTCONFIGURED, E$TYPE.

8-18

INVOKING I/O SYSTEM CALLS IN PL/M

A$DELETE$FILE

ASYNCHRONOUS DELETE$FILE SYSTEM CALL

The A$DELETE$FILE system call applies to stream and named files
only. When called, it marks the designated file for deletion.
The file is not actually deleted, however, until all con
nections to the file have been severed (by A$DELETE$CONNECTION
calls). Directory files cannot be deleted unless they are empty.

Some of the parameters specified above do not apply to stream
files.

NOTES

The "prefix/subpath" parameters must specify an
existing connection.

Any task invoking this call using a path that
is not null must have a priority of 32 or greater.

If the path is null,
the task can have any priority.

CALL RQADELETE$FILE(user, prefix, subpath, resp$mbox);

INPUT PARAMETERS

user

prefix

subpath

resp$mbox

excep$ptr

applies to r)amed files only and is a token
for the user object to be inspected in
access checking. A zero speci fies the
default user for the job.

is a token for a connection. In the case of
a named file, this prefix acts as the
starting point in a directory tree scan. A
zero specifies the default prefix for the
job.

applies to named files only and is a pointer
to a string giving the subpath for the file
being deleted. A null string indicates that
the prefix itself designates the desired
file. In this instance, the user parameter
is not used since the caller's access (or
lack of access) is built into the connection
addressed by the prefix parameter.

is a token for a mailbox that receives an
I/O result segment indicating the file is
marked for deletion. A zero specification
for this parameter indicates that no res
ponse is wanted.

is a pointer to the location that receives
the condition code resulting from this call.

8-19

INVOKING I/O SYSTEM CALLS IN PL/M

A$DELETE$FILE (continued)

RESULT SEGMENT

result is an I/O result segment (Appendix C) indi
cating completion of this operation. The
resul t is returned when the file is marked
for deletion, rather than when the file is
actually deleted.

FILE ACCESS REQUIREMENT

The caller must have delete access to the file.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS,
E$FTYPE, E$IFDR, EIO, ELIMIT, E$MEM,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$TYPE.

8-20

E$FNEXIST,
E$NOPREFIX,

INVOKING I/O SYSTEM CALLS IN PL/M

AGETCONNECTION$STATUS

ASYNCHRONOUS GET$CONNECTION$STATUS SYSTEM CALL

The AGETCONNECTION$STATUS system call returns information
about a designated file connection.

CALL RQAGET$CONNECTION$STATUS(connection, resp$mbox
excep$ptr);

INPUT PARAMETERS

connection

resp$mbox

excep$ptr

RETURN STRUCTURE

status

is a token for the file connection whose
status is desired.

is a token for the mailbox that receives the
connection-status information.

is a pointer to the location that receives
the condition code resulting from this call.

is the connection-status information
returned to the specified mailbox. This
information is structured as follows:

DECLARE

) ;

conn$status
status
file$driver
flags
open$mode
open$share
file$pointer
access

STRUCTURE(
WORD,
BYTE,
BYTE,
BYTE,
BYTE,
DWORD,
BYTE

These fields are interpreted as follows:

status

file$driver

is a condi tion code indicating
how the status-fetch operation
completed. I f this code is not
E$OK, the remaining fields must
be considered invalid.

tells the
to which
attached.
are:

type of file driver
this connection is
Possible bit values

1 Physical files
2 Stream files
4 Named files

8-21

INVOKING I/O SYSTEM CALLS IN PL/M

AGETCONNECTION$STATUS (continued)

RETURN STRUCTURE (continued)

CONDITION CODES

flags contains two flag bits. If bit 1
is set to one, this connection is
acti ve and can be opened. If bi t
2 is set, this connection is a
device connection.

open$mode is the mode established when this
connection was opened. Possible
values are:

o Connection is closed
1 Open for reading
2 Open for writing
3 Open for reading and

writing

open$share is the current shared status
established when this connection
was opened. Possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

The open mode
are initially
call.

and shared state
set by the A$OPEN

file$pointer is the current setting of the
file pointer for this con
nection, by byte location.

access gives the access rights for
this connection. For each bit
set to one, the corresponding
access is granted. Bi t values
are:

Bit
-0-

1
2
3

4-7

Data File
Delete
Read
Append
Update
Reserved

Directory
Delete
Display
Add Entry
Change Entry
Reserved

EOK, EBAD$CALL, E$EXIST, E$FLUSHING, E$LIMIT, E$MEM,
ENOTCONFIGURED, E$TYPE.

8-22

INVOKING 1/0 SYSTEM CALLS IN PLIM

AGETDIRECTORY$ENTRY

ASYNCHRONOUS GET$DIRECTORY$ENTRY.SYSTEM CALL

The AGETDIRECTORY$ENTRY system call applies to named files
only. When called, it returns the file name associated wi th a
speci fled directory entry. This name is a single subpath com
ponent for a file whose parent is the designated directory.

CALL RQAGET$DIRECTORY$ENTRY(connection, entry$num,
resp$mbox, excep$ptr);

INPUT PARAMETERS

connection

entry$num

resp$mbox

excep$ptr

RETURN STRUCTURE

dir$entry

is a token for the directory file containing
the desired entry.

is a word giving the entry number of the
desired file name. Entries within a
directory are numbered sequentially starting
from zero. An E$EMPTY$ENTRY condi tion code
may be issued if a file has been deleted and
the 1/0 system has not reissued the entry to
another file.

is a token for the mailbox that receives the
file name.

is a pointer to the location that receives
the condition code resulting from this call.

is the directory-entry information returned
to the mailbox, structured as follows:

DECLARE
dir$entry$info

status
STRUCTURE(

WORD,
BYTE

) ;

status

name

name (14)

indicates how the
completed.
E$EMPTY$ENTRY, and
condition codes all
successful completion.

operation
E$OK,

EDIREND
indicate

is the file name contained in
the designated entry, null
padded. This field is valid
only if status = E$OK.

8-23

INVOKING I/O SYSTEM CALLS IN PL/M

AGETDIRECTORY$ENTRY (continued)

FILE ACCESS REQUIREMENT

The caller must have display access to the designated directory.

CONDITION CODES

EOK, EBAD$CALL, E$DIREND, EEMPTY$ENTRY, E$EXIST, E$FACCESS,
E$FLUSHING, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM,
ENOTCONFIGURED, E$TYPE.

8-24

INVOKING I/O SYSTEM CALLS IN PL/M

AGETFILE$STATUS

ASYNCHRONOUS GET$FILE$STATUS SYSTEM CALL

The AGETFILE$STATUS system call returns status and attribute
information about the designated file. Certain common infor
mation is returned regardless of the file driver type (phys
ical, stream, or named). Additional information is returned for
named files.

Note that this call returns some device-dependent information,
and its use may cause an application to become device dependent.

CALL RQAGET$FILE$STATUS(connection, resp$mbox, excep$ptr);

INPUT PARAMETERS

connection

resp$mbox

excep$ptr

RESULT SEGEMENT

common$info

is a token for a connection to the file
whose status is sought.

is a token for the mailbox that receives the
common (and named file) status information.

is a pointer to the location that receives
the condition code resulting from this call.

is the common file-status information
returned to the designated mailbox. This
information is structured as follows:

DECLARE
STRUCTURE(

WORD,
WORD,
WORD,
WORD,
BTYE,

common$info
status
num$conn
num$reader
num$writer
open$share
named$file
dev$name (14)
file$drivers
functs
dev$gran
dev$size
dev$conn

) ;

BYTE,
BYTE,
WORD,
WORD,
WORD,
DWORD,
WORD

These fields are interpreted as follows:

status is a condi tion code indicating
how the status-fetch operation
completed. I f this code is not
E$OK, the remaining fields must
be considered invalid.

8-25

INVOKING I/O SYSTEM CALLS IN PL/M

AGETFILE$STATUS (continued)

RESULT SEGMENTS (continued)

num$conn

num$reader

num$writer

open$share

named$file

dev$name

is the number of connections to
the file.

is the number of connections
currently open for reading.

is the number of connections
currently open for writing.

is the current shared status of
the file. Possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

specifies whether the file is a
named file and, therefore,
whether the mailbox will con
tain named-file, as well as
common information. A value of
0FFH indicates the additional
information is present.

is the name of the device where
this file resides, null padded.

file$drivers indicates which file drivers

functs

can be used with the file. If
bi t n is on, then file dri ver
n+l can be used. Bi ts are
numbered right to left starting
with zero.

Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 reserved
3 4 Named file

describes the functions sup
ported by the device where this
file resides. Each bi t set to
one indicates the corresponding
function is supported.

8-26

INVOKING I/O SYSTEM CALLS IN PL/M

AGETFILE$STATUS (continued)

RESULT SEGMENTS
functs (continued)

named$file$info

Bit Function
-121- F$READ

1 F$WRITE
2 F$SEEK
3 F$SPECIAL
4 F$ATTACH$DEV
5 F$DETACH$DEV
6 F$OPEN
7 F$CLOSE

8-15 Reserved

dev$gran is the device granularity, in
bytes.

dev$size is the size of the device, in
bytes.

dev$conn is the number of connections to
the device.

is the additional information
ret urn e d i f the des i gnat e d f i 1 e
is a named file. This
information is structured as
follows:

DECLARE

) ;

named$file$info
fdesc$num
file$type
file$gran
owner
create$time
access$time
mod$time
file$size
file$blocks
vol$name (6)
vol$gran
vol$size
id$count
accessor (*)
access
id

8-27

STRUCTURE(
WORD,
BYTE,
BYTE,
WORD,
DWORD,
DWORD,
DWORD,
DWORD,
DWORD,
BYTE,
WORD,
DWORD,
WORD,
STRUCTURE(
BYTE,
WORD)

INVOKING I/O SYSTEM CALLS IN PL/M

AGETFILE$STATUS (continued)

RESULT SEGMENTS (continued)

These fields are interpreted as follows:

fdesc$num

file$type

file$gran

owner

create$time

access$time

mod$time

file$size

file$blocks

vol$name

vol$gran

vol$size

8-28

is the number of
file descriptor.
descriptor is an
data structure
file attribute
data.

the file's
The file

I/O system
containing,~~~

and status

indicates the type of the
file. A file wi th type other
than FT$OATA (data file,
type=8) may only be accessed
from within the I/O system.

specifies
ularity.

the file gran-

is the user 10 number of the
file's owner.

is the time and date when
the file was created.

is the time and date when
the file was last accessed.

is the time and date when
the file was last modified.

is the total size, in bytes,
of the data in the file.

is the number of volume
blocks allocated to this
file.

is. the ASCII name for the
volume containing this file.

is the volume granularity,
in bytes.

is the size of the volume,
in bytes.

INVOKING I/O SYSTEM CALLS IN PL/M

AGETFILE$STATUS (continued)

RESULT SEGMENTS (continued)

id$count

accessor

CONDITION CODES

EOK, EBAD$CALL, E$EXIST,
ENOTCONFIGURED, E$TYPE.

is the number of access/
user-ID pairs declared for
this file. These pairs are
detailed in the structure
that follows.

is a list of up to three
access/user-ID pairs.

E$FLUSHING, E$LIMIT, E$MEM,

8-29

INVOKING 1/0 SYSTEM CALLS IN PL/M
AGETPATH$COMPONENT

ASYNCHRONOUS GET$PATH$COMPONENT SYSTEM CALL

AGETPATH$COMPONENT can be called no matter what type of file
is supported, but if a connection to a physical or stream file
is specified, the call simply returns a null string.

A caller who knows the token for a connection to a file can
specify the token to this system call and receive the name of
the file in return. This is the name by which the file is

---------IG--a-t--a-l~G--g-€-d~i-+l~Lt-s~pE-r-en-t~diLe-cl-DLy-.~LLt-b-e-c 0 nne c t ion i s tot h e
root directory of a volume (that is, if no parent directory
exists), a null string is returned. A null string is also
returned if the file is marked for deletion.

CALL RQAGET$PATH$COMPONENT(connection, resp$mbox,
excep$ptr);

INPUT PARAMETERS

connection

resp$mbox

excep$ptr

RESULT SEGMENT

file$name

CONDITION CODES

EOK, EBAD$CALL,
ENOTCONFIGURED,

is a token for the file connection whose
name is sought.

is a token for the mailbox that receives the
result segment containing the file name
associated with the designated connection.

is a pointer to the location that receives
the condition code resulting from this call.

is a result segment giving the name of the
file. This segment should be structured as
follows:

DECLARE FILE$NAME
file$name STRUCTURE(

STATUS WORD,
name BYTE

) ;

These fields are interpreted as follows:

status

name

is a condition code indicating
how the operation completed.

is an ASCII string giving the
desired file name. This name is
the same as the last item in
the subpath string specified
when the file was created or
renamed.

E$EXIST, E$FLUSHING, EIO, ELIMIT, E$MEM,
E$TYPE.

8-30

INVOKING I/O SYSTEM CALLS IN PL/M

A$OPEN

ASYNCHRONOUS OPEN SYSTEM CALL

The A$OPEN system call opens a connection for I/O operations.
The connection must be opened before such operations as reading
and writing can be performed.

A$OPEN checks the current shared status of the connected file,
and returns an error message if the requested mode is incon
sistent with the sharing permitted. Open requests are not
queued. '

A$OPEN also initializes the file pointer to byte position zero.
Subsequent I/O system calls (A$SEEK, A$READ, and A$WRITE) will
move this pointer.

If the file is attached by multiple connections, the file might
be open for reading by some connections and open for writing by
others at the same time. Any modification of the file by a
writer will be seen by the reader, if a reader subsequently
reads the modified part of the file.

Note also that access to a file may be denied due to
mode/shared-state incompatibility. No deadlock occurs, however,
since open calls are not queued. The system does not noti fy
callers when the shared status of the connection changes. If
such notification is important, users of the file should
arrange a proper protocol.

CALL RQAOPEN(connection, mode, share, resp$mbox, excep$ptr);

INPUT PARAMETERS

connection

mode

share

is a token for the connection to be opened.

is a byte giving the mode desired for the
open connection. Possible values are:

1 Open for reading
2 Open for writing
3 Open for both reading and writing

is a byte specifying the kind of sharinq
desired for this connection. Possible values
are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

8-31

INVOKING I/O SYSTEM CALLS IN PL/M

A$OPEN (continued)

INPUT PARAMETERS (continued)

resp$mbox

excep$ptr

RESULT SEGMENT

result

is a token for the mailbox that receives the
I/O result segment indicating completion of
this operation. A zero value for this
parameter indicates that no response is
wanted.

is a pointer to the location that receives
the condition code resulting from this call.

is an I/O result segment (Appendix C) indi
cating that the open operation has been
completed.

FILE ACCESS REQUIREMENT

The mode parameter must be compatible wi th the current shared
state of the connected file.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FLUSHING,
E$LIMIT, E$MEM, ENOTCONFIGURED, E$PARAM, E$SHARE, E$TYPE.

8-32

INVOKING liD SYSTEM CALLS IN PLIM

A$READ

ASYNCHRONOUS READ SYSTEM CALL

The A$READ system call initiates a read operation from an open
connection. The connection is read as a string of bytes,
starting at the current file pointer, and any number of bytes
can be requested. Some efficiency may be gained by starting
reads on device block boundaries. After the read operation is
finished, the file pointer points just past the last byte read.

The buffer specified by the "buff$ptr" parameter must be in a
segment allocated by the free-space manager of the RMX/86
nucleus executive (that is, the segment must be allocated
dynamically).

CALL RQAREAD(connection, buff$ptr, count, resp$mbox,
excep$ptr);

INPUT PARAMETERS

connection

buff$ptr

count

resp$mbox

excep$ptr

RESULT SEGMENT

result

is a token for the open file connection to
be read.

is a pointer to the buffer that receives the
data read.

is a word giving the number of bytes to be
read.

is a token for the mailbox that receives the
liD result segment after the read is com
plete. A zero value for this parameter
indicates that no response is wanted.

is a pointer to the location that receives
the condition code resulting from this call.

is an liD result segment (Appendix C) indi
cating completion of the read operation. It
also contains the actual number of bytes
read.

If a read operation is requested with the
file pointer set at or beyond the end of the
file, an actual-bytes-read count of zero is
returned in the liD result segment.

If all the connections to a stream file are
r e que s tin g rea d 0 per a ti 0 n s, a n act u a 1-b y t e s -
read count of zero is returned in the liD
result segment.

8-33

INVOKING I/O SYSTEM CALLS IN PL/M

A$READ (continued)

FILE ACCESS REQUIREMENT

The mode of the open connection must permit reading (see
A$OPEN) .

CONDITION CODES

------1-E $-B-~ , E $-B-A~-$-€-AI=-t: , [$-£--B-N"FE-X-T~,-~E~$-f-X---I--&+--.-,----f~-Id-£-~I--N-G-,,~-EI;;-.$-I-Q-,--
E$LIMIT, E$MEM, ENOTCONFIGURED, E$TYPE.

8-34

INVOKING I/O SYSTEM CALLS IN PL/M

A$RENAME$FILE

ASYNCHRONOUS RENAME$FILE SYSTEM CALL

The A$RENAME$FILE system call applies to named files only. It
is called to change the name of a file.

A renamed data file can be recataloged in a di fferent parent
directory, so long as that directory is on the same volume as
the file's original parent. Renamed directory files must keep
the same parent, however.

CALL RQARENAME$FILE(connection, user, prefix, subpath,
resp$mbox, excep$ptr);

INPUT PARAMETERS

connection

user

prefix

subpath

resp$mbox

excep$ptr

RESULT SEGMENT

result

is a token for a connection to the file
being renamed. This connection and all other
connections to the file will remain in
effect after the file is renamed.

is a token for the user object to be in
spected in access checking. A zero specifies
the default user for the job.

is a token for the connection to be used as
the starting point in a path scan. A zero
specifies the default prefix for the job.

is a pointer to the string giving the new
subpath for the file. Prefix and subpath
must lead to a nonexistent file. The string
pointed to by the sub path parameter cannot
be a null string.

For a data file, prefix and subpath may
speci fy a di fferent directory from the
original parent, but it must be on the same
volume. A directory file can only be renamed
within its parent directory, however.

is a token for the mailbox that receives an
I/O result segment indicating completion of
the rename. A zero value for this parameter
indicates that no response is wanted.

is a pointer to the location that receives
the condition code resulting from this call.

is an I/O result segment (Appendix C) indi
cating that the rename operation is finished.

8-35

INVOKING I/O SYSTEM CALLS IN PL/M

A$RENAME$FILE (continued)

FILE ACCESS REQUIREMENTS

The caller must have delete access to the original file and
must have add-entry access to the file's parent directory.

CONDITION CODES

~~~~------t:~~H~, ~~8-A-g~AU~ $-GQ-N+~X--+ , E $~X--I---S-"f-,-~A-C~£--~E-X-I-S-+----, -
E$FLUSHING, E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM, 
E$NOPREFIX, E$NOT$CONFIGURED, E$NOUSER, E$PARAM, E$SUPPORT, 
E$TYPE. 

8-36 



INVOKING I/O SYSTEM CALLS IN PL/M 

A$SEEK 
ASYNCHRONOUS SEEK SYSTEM CALL 

The A$SEEK system call applies to physical and named files 
only. This call moves the file pointer for an open connection, 
thus allowing file contents to be accessed randomly. The file 
pointer can be moved to any byte position in the file. 

CALL RQ$A$SEEK(connection, mode, hi$ptr$move, low$ptr$move, 
resp$mbox, excep$ptr); 

INPUT PARAMETERS 

connection 

mode 

hi$ptr$move 
low$ptr$move 

resp$mbox 

excep$ptr 

RESULT SEGMENT 

result 

CONDITION CODES 

is a token for the open file connection 
whose file pointer is to be moved. 

is a byte describing the movement of the 
file pointer. Possible values are: 

I Move pointer back by "ptr$move" 
amount. I f this action moves the 
pointer past the beginning of the 
file, the pointer is set to zero. 

2 Set the pointer to the location 
specified by "ptr$move." 

3 Move the file pointer forward by 
"ptr$move" amount. 

4 Move the pointer to the end of the 
file, minus the "ptr$move" 
specified. 

is a word pair giving the number of bytes 
involved in the seek. The interpretation of 
"ptr$move" depends on the mode setting, as 
explained above. 

is a token for the mailbox that receives an 
I/O result segment when the seek is 
completed. A zero value for this parameter 
indicates that no response is wanted. 

is a pointer to the location that receives 
the condition code resulting from this call. 

is an I/O result segment (Appendix C) indi
cating that the seek operation has been 
completed. 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$FLUSHING, E$IFDR, E$IO, 
E$LIMIT, E$MEM, E$NOT$CONFIGURED, E$PARAM, E$TYPE. 

8-37 



INVOKING I/O SYSTEM CALLS IN PL/M 

A$SPECIAL 

ASYNCHRONOUS SPECIAL SYSTEM CALL 

The A$SPECIAL system call applies to physical files only. It 
lets the caller perform special device-level functions. 

The special function to be done can be speci fied using ei ther 
of two methods. If the function requires little supporting 
information (such as a function to rewind a magnetic tape), its 

-----G-OO~-a_f"l---be~S_p_ec-ij~1-ed----diLe~-±~a-s~ h e~R e c $ fun c " par am e t e r in 
the system call. 

Where additional information is needed, the user must create an 
I/O parameter block as described below. The special function is 
speci fied indirectly, as a field in this parameter block. The 
block is then addressed by the "ioparm$ptr" in the system call. 

If only 
special 
zero. 

the "spec$func" parameter is used 
function, the "ioparm$ptr" parameter 

to 
is 

specify the 
speci fied as 

CALL RQ$A$SPECIAL(connection, spec$func, ioparm$ptr, 
resp$mbox, excep$ptr); 

INPUT PARAMETERS 

connection 

spec$func 

ioparm$ptr 

resp$mbox 

excep$ptr 

is a token 
where the 
performed. 

for a connection to the file 
special function is to be 

is a word (code) that allows the user to 
pass a special function to a file driver 
without being required to set up a parameter 
block. 

is a pointer to a parameter block. The 
contents of the parameter block depends upon 
the requirements of the file driver being 
used to implement the special function. If 
the file driver requires no parameters for 
the function being requested, then 
ioparm$ptr can be zero. If the function does 
require parameters, you must build the 
parameter block to satisfy the requirements 
of the specific file driver. 

is a token for the mailbox that receives an 
I/O result segment indicating that the 
special function has been completed. A zero 
value in this parameter indicates that no 
result is wanted. 

is a pointer to the location that receives 
the condition code resulting from this call. 

8-38 



RESULT SEGMENT 

result 

CONDITION CODES 

INVOKING 1/0 SYSTEM CALLS IN PL/M 

A$SPECIAL (continued) 

is an 1/0 result segment (Appendix C) indi
cating that the special function has been 
completed. 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$FLUSHING, E$IDDR, 
E$IFDR, E$IO, E$LIMIT, E$MEM, E$NOT$CONFIGURED, E$TYPE. 

8-39 



INVOKING I/O SYSTEM CALLS IN PL/M 

A$TRUNCATE 

ASYNCHRONOUS TRUNCATE SYSTEM CALL 

The A$TRUNCATE system call applies to named "files only. This 
call truncates a file at the current setting of the file 
pointer, freeing all allocated space beyond the pointer. A$SEEK 
can be called to position the pointer before A$TRUNCATE is 
called. If the file pointer is at or beyond the end-of-file, no 
operation is performed. 

Truncation is performed immediately, rather than waiting until 
connections to the file are deleted. 

CALL RQ$A$TRUNCATE(connection, resp$mbox, excep$ptr); 

INPUT PARAMETERS 

connection 

resp$mbox 

excep$ptr 

RESULT SEGMENT 

result 

is a token for an open connection to the 
file being truncated. 

is a token for the mailbox that receives an 
I/O result segment indicating the truncation 
has been completed. A zero value for this 
parameter indicates that no response is 
wanted. 

is a pointer to the location that receives 
the condition code resulting from this call. 

is an I/O result segment (Appendix C) indi
cating completion of this operation. 

FILE ACCESS REQUIREMENT 

The designated file connection must be open for writing. 

CONDITION CODES 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FLUSHING, 
E$IFDR, E$IO, E$LIMIT, E$MEM, E$NOT$CONFIGURED, E$TYPE. 

8-40 



INVOKING I/O SYSTEM CALLS IN PL/M 

A$WRITE 

ASYNCHRONOUS WRITE SYSTEM CALL 

The A$WRITE call writes data from the caller's buffer to a 
connected file. The data is written starting at the current 
file pointer. After the wri te, the file pointer is posi tioned 
just after the last byte written. Some efficiency may be gained 
by starting writes on device block boundaries. 

NOTE 

The buffer supplying the data to be written 
should not be modified until the write request 
has been acknowledged at the response mailbox. 

This buffer must reside in a segment 
allocated by the RMX/86 nucleus' free-space 

manager (that is, the segment must be 
allocated dynamically). 

CALL RQ$A$WRITE(connection, buff$ptr, count, resp$mbox, 
excep$ptr); 

INPUT PARAMETERS 

connection 

buff$ptr 

count 

resp$mbox 

excep$ptr 

RESULT SEGMENT 

result 

is a token for the open connection to be 
written. 

is a pointer to the buffer that supplies the 
data to be written. 

is a word giving the number of bytes to be 
written. 

is a token for the mailbox that receives the 
I/O result segment indicating the write is 
complete. A zero value in this parameter 
indicates that no response is wanted. 

is a pointer to the location that receives 
the condition code resulting from this call. 

is an I/O result segment (Appendix C) indi
cating that the write operation has been 
completed. It also contains the actual 
number of bytes written. 

I f all the connections to a stream file are 
requesting write operations, an actual-bytes 
written count of zero is returned. 

8-41 



INVOKING lID SYSTEM CALLS IN PL/M 

A$WRITE (continued) 

FILE ACCESS REQUIREMENTS 

The designated file connection must be open for wri ting, and 
the caller must have append or update access to the connection. 

CONDITION CODES 

~~~~I~Q-K,-~~~A-g~~G-A~b-b , ~$-G-G~N-T--E*T , E-$~E~x-I~S-T , E $Ftl:J5~H-}N G , E-$-I 8f-:-, ~~ 
E$LIMIT, E$MEM, ENOTCONFIGURED, E$SPACE, E$SUPPORT, E$TYPE.

8-42

INVOKING I/O SYSTEM CALLS IN PL/M

CREATEIOJOB

CREATE I/O JOB SYSTEM CALL

The CREATEIOJOB system call creates a job and one task within
the job. In doing so, it invokes the nucleus' CREATE$JOB call,
requiring the caller to define the parameters needed by this
call. The CREATEIOJOB call also includes several parameters
useful for I/O processing and creates a mailbox for commun
ication between the new job and its parent.

job = RQ$CREATE$IO$JOB(job$data$ptr, prefix$ptr,
lognamptr, task$flags,
task$prior, task$start$addr,
data$token, stack$ptr,
stack$size, excep$ptr);

job$data$ptr

prefix$ptr

lognamptr

task$flags

task$prior

is a pointer to a job parameter structure
as defined below.

is a pointer to a string that gives the
default prefix for the job (specified as a
logical name). A null string or zero
pointer speci fies that the calling job's
default prefix is to be used.

is a pointer to a contiguous set of
string/ token pairs, each giving a logical
name to be inherited by the new job from
its creator. A zero token associates its
corresponding string with the parent job's
token for the same string. The list is
ended by a null string. A zero indicates
that no logical names are to be) inheri ted
by the new job.

is a word containing information about the
initial task in the new job.

is a byte specifying the priority of the
new task. This priority must be lower
(higher numerically) or equal to the
parent job's maximum priority. A zero
specifies that the task has the highest
priority allowed by its job.

task$start$addr is a pointer to the entry point of the
task to be created within the new job.

data$token is a token to which the initial task's OS
and ES registers will be ini tialized. If
zero, OS and ES are initialized to the
value of the new job's CS register.

8-43

INVOKING I/O SYSTEM CALLS IN PL/M

CREATEIOJOB (continued)

INPUT PARAMETERS (continued)

stack$ptr

stack$size

excep$ptr

is a pointer to the stack of the task
being created within the new job. If the
base of this address is zero, the system
allocates a stack segment equal in size to
the "stack$size" parameter described below.

is a word containing the size of the stack
for the new job's initial task.

is a pointer to the location that receives
the condition code resulting from this
call.

The job$param$ptr parameter points to a predefined job pa
rameter structure declared as follows:

where:

dir$size

param$obj

pool$min

DECLARE
job$data

dir$size
param$obj
pool$min

STRUCTURE(
WORD,
TOKEN,
WORD,
WORD,
WORD,
WORD,

pool$max
max$objects
max$tasks
max$prior
excep$hdler$offset
excep$hdler$base
excep$mode
job$flags
global$job
user
msg$mbox

) ;

BYTE,
WORD,
WORD,
BYTE,
WORD,
TOKEN,
TOKEN,
TOKEN

contains the maximum number of entries
allowed in the new job's object directory.

designates the new job's parameter object.
A zero specifies that the job does not
have a parameter object.

contains the minimum
pages, of the created
This figure is also
size.

8-44

size, in 16-byte
job's memory pool.

the pool's initial

INVOKING I/O SYSTEM CALLS IN PL/M

INPUT PARAMETERS
where: (continued)

pool$max

max$objects

max$tasks

max$prior

excep$hdler$offset
excep$hdler$base

excep$mode

job$flags

global$job

CREATEIOJOB (continued)

contains the maximum size, in 16-byte
pages, of the created job's memory
pool. This figure must be greater than
or equal pool$min.

contains the maximum number of objects
that the new job can contain simultan
eously. 0FFFFH specifies an unlimited
number.

contains the maximum number of tasks
that can exist simultaneously within
the new job. 0FFFFH speci fies an
unlimited number.

is the maximum priority of any task in
the new job from 1 (high) to 255 (low).
A zero specifies that the highest
priority is the same as that of the
parent job's tasks.

form a pointer to the exception handler
for the new job. A zero speci fies the
system default exception handler to be
used.

specifies if and when control should be
passed to the job's exception handler.
Possible values are:

o No exceptions recognized.
1 Recognize programming errors

only.
2 Recognize environmental condi

tions only.
3 Recognize all exceptions.

contains job information needed by the
RMX/86 nucleus. If any tasks in the job
use the 8087 component, the low-order
bit should be set to one.

speci fies the job whose object direc
tory is to be used as the global
logical-name directory for the job
being created. A zero specifies that
the caller's global job is to be used.

8-45

INVOKING liD SYSTEM CALLS IN PL/M

CREATEIOJOB (continued)

where (continued)

user

msg$mbox

speci fies the default user object for
the new job. A zero speci fies that the
calling job's default is to be used.

is a token for the mailbox through
~~~~~~~~~~~~~~~~~w-R-i-&R---------aA-y-e-x--i-t----m-e-s-s-a-€fe-w-i-I-1-8-e-s-e--A--t----t---e~~ 

the parent job. A zero speci fies that 

RETURN VALUE 

job 

CONDITION CODES 

no message is wanted. (See EXIT$IO$JOB). 

is a token for the new job created by 
this call. 

E$OK, E$LIMIT, E$LOG$NAME$NEXIST, E$MEM, E$NHUSER, E$NOPREFIX, 
E$NOUSER, E$PREFIX$STRING$NEXIST. 

8-46 



INVOKING I/O SYSTEM CALLS IN PL/M 

DELETE$PACKAGE 

DELETE$PACKAGE SYSTEM CALL 

DELETE$PACKAGE is called to delete a package object previously 
created by the loader, or other source. 

CALL RQ$DELETE$PACKAGE(package, excep$ptr); 

INPUT PARAMETERS 

package 

excep$ptr 

is a token for the package object to be 
deleted. 

is a pointer to the location that receives 
the condition code resulting from this 
call. 

8-47 



INVOKING I/O SYSTEM CALLS IN PL/M' 

EXIT$IO$JOB 

EXIT I/O JOB SYSTEM CALL 

The EXIT$IO$JOB system call causes the calling task to be 
deleted. EXIT$IO$JOB performs the following operations: 

B deletes all connections and detaches all logical devices 
attached by the job; 

f.J) sends the exit message to the mailbox provided by the 
parent job when the exiting job was created.; 

m deletes the calling task. 

The parent of the exiting job can then delete it, if it wishes 
to do so. 

NOTES 

A job whose last task has been deleted will not 
exit automatically. 

No other tasks in a job can be in the ready state 
when a task in the job calls EXIT$IO$JOB. 

Tasks that call EXIT$IO$JOB must use hybrid or 
synchronous file system calls to create 

aonnections. Otherwise, a system failure may occur 
when a child job is deleted after being exited. 

CALL RQ$EXIT$IO$JOB(user$excep$code, return$data, 
return$data$len, excep$ptr); 

INPUT PARAMETERS 

user$excep$code is a word giving a user exception code. If 
this code is zero, the exi t is considered 
normal and the exit message contains zeros 
in its return$code and exception$code 
fields. If user$excep$code is nonzero, an 
abnormal exit is assumed and the exit 
message contains a two in its return$code 
field. The exception$code field has the 
same value as user$excep$code. 

return$data is a pointer to the data to be returned to 
the parent job. If the pointer is zeto, no 
data is returned. Otherwise, the number of 
bytes specified by the following parameter 
is copied into the return$data field of 
the exit message segment. 

8-48 



INVOKING 1/0 SYSTEM CALLS IN PL/M 

EXIT$IO$JOB (continued) 

INPUT PARAMETERS (continued) 

return$data$len 

excep$ptr 

RESULT SEGMENT 

exit$msg 

where: 

return$code 

exception$code 

is a word gIvIng the number of bytes to 
be copied into the exit message segment. 

is a pointer to the 
receives the condition 
from this call. 

location that 
code resulting 

is the exit message returned to the 
mailbox established by the parent job 
when the exiting job was created. It has 
the following structure: 

DECLARE 
STRUCTURE( 

WORD, 
WORD, 
WORD, 
WORD, 
BYTE 

exit$message 
return$code 
exception$code 
job$token 
return$data$len 
return$data(*) 

) ; 

explains the returning condition. 
Possible values for this field are: 

o Normal exit; job terminated 
successfully. EXIT$IO$JOB was 
called with user$excep$code 
parameter set to zero. 

1 Job exited due to a system
related error. The 1/0 system 
caused the job to exit. 

2 Job exited due to a user
related error. EXIT$IO$JOB was 
called with a nonzero 
user$excep$code paramater. 

gives the exception code, which is 
influenced by the return$code field's 
contents. If return$code is zero, this 
field is zero. If return$code is one 
(system-detected error), this field 
contains an 110 system condi tion code. 
If return$code is two (user-related 
error), this field has the same code as 
the user$excep$code input parameter. 

8-49 



INVOKING liD SYSTEM CALLS IN PL/M 

EXIT$IO$JOB (continued) 

RESULT SEGMENT 
where: (continued) 

job$token 

return$data$len 

is a word glvlng the exited job's token 
relative to the parent job. 

gives the length (in bytes) of the 
~~~~~~~~~~~~~~~~~I' e-tw--fT$-e-a t a 13-r-e-v-i---El-8-e w-i t; A t; he~-

return$data

CONDITION CODES

EOK, ENOT$CONFIGURED

EXITIOJOB call.

is a sequence of bytes containing the
return$data provided with the
EXITIOJOB call.

8-50

INVOKING I/O SYSTEM CALLS IN PL/M

GET$DEFAULT$PREFIX

GET$DEFAULT$PREFIX SYSTEM CALL

The GET$DEFAUL T$PREFIX system call allows the caller to de
termine the default prefix for the specified job.

connection = RQGETDEFAULT$PREFIX(job, excep$ptr);

INPUT PARAMETERS

job

excep$ptr

RETURN VALUE

connection

CONDITION CODES

is a token for the job whose default
prefix is sought. A zero specifies the
calling job.

is a pointer to the
receives the condition
from this call.

location that
code resulting

is a token for the connection object
which is the default prefix for the
designated job.

EOK, EBAD$CALL, E$EXIST, E$NOPREFIX, E$NOT$CONFIGURED, E$TYPE.

8-51

INVOKING I/O SYSTEM CALLS IN PL/M

GET$DEFAULT$USER

GET$DEFAULT$USER SYSTEM CALL

The GET$DEFAUL T$USER system call allows the calling task to
determine the de faul t· user object associated wi th the desig
nated job.

user$id = RQ$GET$DEFAULT$USER(job, excep$ptr);

job

excep$ptr

RETURN VALUE

user$id

CONDITION CODES

is a token for the job whose default
user object is sought. A zero speci fies
~he calling job.

is a pointer to the
receives the condition
from this call.

location that
code resulting

is a token for the user object which is
the default user for the designated job.

EOK, EBAD$CALL, E$EXIST, ENOTCONFIGURED, E$NOUSER, E$TYPE.

8-52

INVOKING I/O SYSTEM CALLS IN PL/M

GET$TIME

GET$TIME SYSTEM CALL

The GET$TIME system call returns the date/time value from its
doubleword counter.

INPUT PARAMETER

excep$ptr

RESULT SEGEMENT

date$time

CONDITION CODES

date$time = RQ$GET$TIME(excep$ptr);

is a pointer to the location that receives
the condition code resulting from this
call.

is a doubleword date/time value expressed
as the number of seconds since midnight,
January 1, 1978.

EOK, EBAD$CALL, E$NOT$CONFIGURED.

8-53

INVOKING I/O SYSTEM CALLS IN PL/M

GET$TIME$STRING

GET$TIME$STRING SYSTEM CALL

The GET$TIME$STRING system call returns the current date and
time.

CALL RQGETTIME$STRING(dt$ptr, excep$ptr);

INPUT PARAMETERS

dt$ptr

excep$ptr

RESULT SEGMENT

date

time

CONDITION CODES

is a pointer to the location where the
date and time values are returned.

is a pointer to the location that receives
the condition code resulting from this
call.

is a series of ASCII characters giving
today's date in the form:

where:

MM/DD/YY

"MM" is the month (r2l1 - 12)
"DO" is the day (r2l1 - 31)
"YY" is the year (r2lr2l - 99)

is a series of ASCII characters giving the
current time in the form:

where:

HH:MM:SS

"HH" is the hour (r2lr2l - 24)
"MM" is the minute (r2lQl 59)
"SS" is the second (QIQI - 59)

EOK, EBAD$CALL, E$EXIST, ENOTCONFIGURED, E$PARAM, E$TYPE.

8-54

INVOKING I/O SYSTEM CALLS IN PL/M

H$ATTACH$FILE

HYBRID ATTACH$FILE SYSTEM CALL

The H$ATTACH$FILE system call creates a connection to an exist
ing file. The new connection can also be given a logical name
and cataloged in the job's logical-name directory. The caller
is assumed to be the default user for the job.

NOTE

Any task invoking this call must have a
priority of 32 or greater.

connection = RQHATTACH$FILE(log$name, path, exceplptr);

INPUT PARAMETERS

log$name

path

excep$ptr

RETURN VALUE

connection

CONDITON CODES

is a pointer to the string giving the
logical name under which the new con
nection is to be cataloged in the job's
logical-name directory. A zero in this
parameter or a null string indicates the
connection will not have a logical name.

is a pointer to the string containing the
prefix and subpath to the file being
attached.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the new connection to the
file designated by the path parameter.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FNEXIST, EIO, ELIMIT,
EMEM, ENOPREFIX, ENOTCONFIGURED, E$NOUSER, E$PARAM, E$TYPE.

8-55

INVOKING I/O SYSTEM CALLS IN PL/M

H$CHANGE$ACCESS

HYBRID CHANGE$ACCESS SYSTEM CALL

The H$CHANGE$ACCESS system call applies to named files only. It
is called to change the access rights to a named data or direc
tory file. The caller is assumed to be the default user.

NOTE

----------,GtJ-r----I'-e-A-t-±--y~,~a-±J~ld--s~r-S----M-¥-@-~s-£--t~G--1-1--Li~1~e~s------
at the hybrid level. The new access rights
specified in this call apply to all users,

including the caller.

CALL RQHCHANGE$ACCESS(path, mode, name, access, excep$ptr);

INPUT PARAMETERS

path

mode

name

access

is a pointer to the string giving the
prefix and subpath to the file whose
access rights are to be changed.

is a byte value, currently ignored.

is a pointer to the string giving the name
of the accessor whose rights are being
added, deleted, or changed. Currently, the
string must be "WORLD," which includes all
users.

is a byte mask giving the new access
rights for the speci fied accessor. I f a
bit is set to one, the corresponding
access is granted. For a named data file,
the possible bit settings are:

Bit Meaning
-0- Delete

1 Read
2 Append
3 Update

4-7 Reserved

For a named directory file, the possible
bit settings are:

Bit Meaning
-0- Delete

1 Display
2 Add Entry
3 Change Entry

4-7 Reserved

8-56

INVOKING I/O SYSTEM CALLS IN PL/M

H$CHANGE$ACCESS (continued)

INPUT PARAMETERS (continued)

excep$ptr is a pointer to the location that receives
the condition code resulting from this
call.

FILE ACCESS REQUIREMENTS

The caller must be the owner of the file or must have change
entry access to the file's parent directory.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS,
E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$TYPE.

8-57

E$FLUSHING,
E$NOPREFIX,

INVOKING I/O SYSTEM CALLS IN PL/M

H$CREATE$DIRECTORY

HYBRID CREATE$DIRECTORY SYSTEM CALL

The H$CREATE$DIRECTORY system call is applicable to named
directory files only. When called, it creates a new directory,
file and returns a token for the connection to the new file.
The new connection can also be cataloged under a specified
logical name in the calling job's logical-name directory.

l-he----ecrl-l-e-r~i-s--a~sslj-rn_eel___t_e~b-e~'ttl_e_____el_e_f_atrH___tt_s_e_I'~fe-I'~t-A-e~j_e-B---.----F-l:1-±--1-

owner access to the directory is assumed; that is, bi ts 0-3 in
the access byte mask are all set to one.

Bit
-0-

I
2
3

4-7

Meaning
Delete
Display
Add Entry
Change Entry
Reserved

NOTE

Any task invoking this call
must have a priority of 32 or greater.

connection = RQHCREATE$DIRECTORY(log$name, path, excep$ptr);

INPUT PARAMETERS

log$name

path

excep$ptr

RETURN VALUE

connection

is a pointer to the string gIvIng the
logical name under which the new con
nection is to be cataloged in the calling
job's logical-name directory. A zero in
this parameter or a null string specifies
that the connection is not to be given a
logical name.

is a pointer to the string containing the
prefix and subpath to the directory being
created. This string cannot be null, and
the directory ~ame cannot exist already.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the connection to the new
directory file.

FILE ACCESS REQUIREMENT

The caller must have add-entry access to the parent of the new
directory.

8-58

CONDITION CODES

INVOKING I/O SYSTEM CALLS IN PL/M

H$CREATE$DIRECTORY (continued)

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMI T, E$MEM, E$NOPREF IX,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$SPACE, E$TYPE.

8-59

INVOKING I/O SYSTEM CALLS IN PL/M

H$CREATE$FILE

HYBRID CREATE$FILE SYSTEM CALL

The H$CREATE$FILE system call creates a new physical, stream,
or named data file and returns a token for the new file con
nection. The connection can also be given a logical name and
cataloged in the job's logical-name directory. The owner of the
file is assumed to be the job's default user. Full owner access
is assumed for the file, meaning bits 0-3 of the access byte

----------ma~-~~~~~n~.----------______________________________________ ___

Bit
-0-

1
2
3

4-7

Meaning
Delete
Read
Append
Update
Reserved

The H$CREATE$FILE call also assumes the file granularity is the
same as the volume granularity and the file size (pre
allocation) is zero bytes.

If a named file designated by the path parameter already
exists, one of the following situations occurs:

o I f the "must$create" parameter is TRUE, an error con
dition code (E$FEXIST) is returned.

• If the "must$create" parameter is FALSE and the path
designates a data file, a new connection to that file is
returned (that is, H$CREATE$FILE acts like
H$ATTACH$FILE).

• If the "must$create" parameter is FALSE and
designates a device or dire·ctory, an unnamed
created on the corresponding device. This
deleted automatically when the last connection
deleted.

NOTE

Any task invoking this call must have
a priority of 32 or greater~

the path
file is
file is
to 'it is

connection = RQHCREATE$FILE(log$name, path, must$create,
excep$ptr);

INPUT PARAMETERS

log$name is a pointer to the string gIvIng the
logical name under which the new con
nection will be cataloged in the job's
logical-name directory. A zero in this
parameter or. a null string speci fies the
connection will not be given a logical
name.

8-60

INVOKING I/O SYSTEM CALLS INPL/M

H$CREATE$FILE (continued)

INPUT PARAMETERS (continued)

path

must$create

excep$ptr

RETURN VALUE

connection

CONDITION CODES

is a pointer to the string
prefix and subpath for the
created.

giving the
file being

is a boolean whose TRUE or FALSE setting
determines the handling of input paths
designating an existing named file.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the connection to the newly
created file.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FNEXIST, E$FTYPE, EIO, ELIMIT, EMEM, ENOPREFIX,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$SPACE, E$TYPE.

8-61

INVOKING I/O SYSTEM CALLS IN PL/M

H$DELETE$CONNECTION

HYBRID DELETE$CONNECTION SYSTEM CALL

The H$DELETE$CONNECTION system call severs the file connection
established by H$CREATE$FILE, H$CREATE$DIRECTORY, or
H$ATTACH$FILE. It frees the connection object and also deletes
the associated file if the file is already marked for deletion
and if the deleted connection was the last remaining connection
to the file. I f a connection is open when H$DELETE$CONNECTION

~~~~~i s--c-a~--t~eU~-t-j-s~ci.-o-seLt-trefnT-e--Uern-g---s-e-\1-er-e-dI-.~~~~~~~~~~~ 

CALL RQ$H$DELETE$CONNECTION(connection, excep$ptr); 

INPUT PARAMETERS 

connection 

excep$ptr 

CONDITION CODES 

is a token for the connection to be 
deleted. 

is a pointer to the location that receives 
the condition code resulting from this 
call. 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$IO, E$LIMIT, E$MEM, 
E$NOT$CONFIGURED. 

8-62 



INVOKING 1/0 SYSTEM CALLS IN PL/M 

H$DELETE$FILE 

HYBRID DELETE$FILE SYSTEM CALL 

The H$DELETE$FILE system call applies to stream and named files 
only. When called, it marks the designated file for deletion. 
The file will not actually be deleted, however, until all 
connections to the file have been severed (by calls to 
H$DELETE$CONNECTION). Directory files cannot be deleted unless 
they are empty. 

The caller is assumed to be the default user for the job. 

CALL RQ$H$DELETE$FILE(path, excep$ptr); 

INPUT PARAMETERS 

path is a pointer to the string 
prefix and subpath to the 
deleted. 

giving the 
file being 

excep$ptr is a pointer to the location that receives 
the condition code resulting from this 
call. 

FILE ACCESS REQUIREMENT 

The caller must have delete access to the file. 

CONDITION CODES 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, 
E$FTYPE,E$IFDR, E$IO, E$LIMIT, E$MEM, 
E$NOT$CONFIGURED, E$NOUSER, E$PARAM, E$TYPE. 

8-63 

E$FNEXIST, 
E$NOPREFIX, 



INVOKING I/O SYSTEM CALLS IN PL/M 

H$GET$FILE$STATUS 

HYBRID GET$FILE$STATUS SYSTEM CALL 

The H$GET$FILE$STATUS system call returns status and attribute 
information about the designated file. Certain common infor
mation is returned regardless of the file driver type (physi
cal, stream, or named). Addi tional information is returned for 
named files. 

------IN 0 t e t l=t-a-t----t-tt4.---S----G~-l~-I'-dlJ~I'_ns_--s_O_m e de vic e~e-p-eD1ient~fnrJILat~Lo n'--'--J-' __ _ 
and its use may cause an application to become device dependent. 

I. CALL RQ$H$GET$FILE$STATUS(path, file$info$ptr, excep$ptr)j 

INPUT PARAMETERS 

path 

file$info$ptr 

excep$ptr 

RETURN STRUCTURES 

common$info 

is a pointer to the string giving the 
prefix and subpath to the file whose 
status is sought. 

is a pointer to the location that receives 
the common (and named file) status infor
mation. 

is a pointer to the location that receives 
the condition code resulting from this 
call. 

is the common file-status information 
returned. This information is structured 
as follows: 

DECLARE 

) ; 

common$info 
dev$share 
num$conn 
num$reader 
num$writer 
open$share 
named$file 
dev$name (14) 
file$drivers 
functs 
dev$gran 
dev$size 
dev$conn 

8-64 

STRUCTURE ( 
. BYTE, 

WORD, 
WORD, 
WORD, 
BYTE, 
BYTE, 
BYTE, 
WORD, 
WORD, 
WORD, 
DWORD, 
WORD 



INVOKING I/O SYSTEM CALLS IN PL/M 

H$GET$FILE$STATUS (continued) 

RETURN STRUCTURES 
common$info (continued) 

These fields are interpreted as follows: 

dev$share 

num$conn 

num$reader 

num$writer 

open$share 

named$file 

dev$name 

indicates whether the device 
where this file resides is 
sharable or nonsharable. 
Possible values are: 

o Sharable device 
1 Nonsharable device 

is the number of connections 
to the file. 

is the number of connections 
currently open for reading. 

is the number of connections 
currently open for writing. 

is the current shared status 
of the file. Possible values 
are: 

o Private use only 
1 Share with readers only 
2 Share with writers only 
3 Share with all users 

speci fies whether the file is 
a named file and, therefore, 
whether file$info$ptr wil 
contain named-file, as well 
as common information. A 
value of 0FFH indicates the 
additional information is 
present. 

is the name of the device 
where this file resides, null 
padded. 

file$drivers indicates which file drivers 
can be used wi th the file. If 
bi t n is on, then file dri ver 
n+l can be used. Bits are 
numbered right to left 
starting with zero. 

8-65 



INVOKING I/O SYSTEM CALLS IN PL/M 

H$GET$FILE$STATUS (continued) 

RETURN STRUCTURES 
common$info (continued) 

functs 

dev$gran 

dev$size 

dev$conn 

Bit 
-0-

Driver No. 
r 

Driver 
Physical file 
Stream file 
reserved 
Named file 

1 2 
2 3 
3 4 

describes the functions 
supported by the device where 
this file resides. Each bit 
set to one indicates the 
corresponding function is 
supported. 

Bit Function 
-0- F$READ 

1 F$WRITE 
2 F$SEEK 
3 F$SPECIAL 
4 F$ATTACH$DEV 
5 F$DETACH$DEV' 
6 F$OPEN 
7 F$CLOSE 

8-15 Reserved 

is the device granularity, in 
bytes. 

is the size of the device, in 
bytes. 

is the number of connections 
to the device. 

named$file$info is the additional information returned if 
the designated file is a named file. This 
informatio~ is structured as follows: 

DECLARE 
named$file$info 

fdesc$num 
file$type 
file$gran 
owner (14) 
create$time (16) 
access$time (16) 
mod$time (16) 
file$size 
file$blocks 
vol$name (16) 
vol$gran 
vol$size 
id$count 

8-66 

STRUCTURE( 
WORD, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
DWORD, 
DWORD, 
BYTE, 
WORD, 
DWORD, 
WORD, 



INVOKING 1/0 SYSTEM CALLS IN PL/M 

H$GET$FILE$STATUS (continued) 

RETURN STRUCTURES 
named$file$info (continued) 

accessor (*) 
access 

STRUCTURE( 
BYTE, 
WORD) id 

) ; 

These fields are interpreted as follows: 

fdesc$num 

file$type 

file$gran 

owner 

is the number of 
file descriptor. 
descriptor is an 
data structure 
file attribute 
data. 

the file's 
The file 

1/0 system 
containing 

and status 

indicates the type of the 
file. A file wi th type other 
than FT$DATA (data file, 
type=8) may only be accessed 
from within the 1/0 system. 

specifies 
granularity. 

the file 

is the ASCII name of the 
file's owner. 

create$time is the time and date when the 
file was created. 

access$time is the time and date when the 
file was last accessed. 

mod$time is the time and date when the 
file was last modified. 

file$size is the total size, in bytes, 
of the data in the file. 

file$blocks is the number of volume 
blocks allocated to this file. 

vol$name is the ASCII name for the 
volume containing this file. 

vol$gran is the volume granulari ty, in 
bytes. 

vol$size is the size of the volume, in 
bytes. 

8-67 



INVOKING I/O SYSTEM CALLS IN PL/M 

H$GET$FILE$STATUS (continued) 

RETURN STRUCTURES 
named$file$info (continued) 

id$count is the number of access/ 
user-ID pairs declared for 
this file. These pairs are 
detailed in the structure 

~~~~~~~~~~~~~~~~~~~~~~th~t~olLQ~s~~~~~~~~~~~~ 

accessor

CONDITION CODES

EOK, EBAD$CALL, E$EXIST,
ENOTCONFIGURED, E$TYPE.

is a list of up to three
access/user-ID pairs.

E$FLUSHING, E$LIMIT, E$MEM,

8-68

INVOKING IIO SYSTEM CALLS IN PL/M

H$LOOK$UP$CONNECTION

HYBRID LOOKUPCONNECTION SYSTEM CALL

The H$LOOK$UP$CONNECTION system call returns information about
a file connection to the caller. The caller can speci fy a
conection's logical name to this system call and recei ve the
token associated with that connection in return. The IIO system
looks for the name first in the job's logical-name directory.
If the name is not found, it then looks in the global directory
for the job, and finally in the system's logical-name direc
tory. I f the name does not reside in ei ther directory, an
exception code is returned.

connection = RQHLOOKUPCONNECTION(log$name, excep$ptr);

INPUT PARAMETERS

log$name

excep$ptr

RETURN VALUE

connection

CONDITION CODES

EOK, EBAD$CALL,
E$PARAM, E$TYPE.

is a pointer to the string gIvIng the
logical file name to be looked up.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the connection associated
with the specified logical name.

E$CONTEXT, E$EXIST, ENOTCONFIGURED,

8-69

INVOKING I/O SYSTEM CALLS IN PL/M

H$RENAME$FILE

HYBRID RENAME$FILE SYSTEM CALL

The H$RENAME$FILE system call applies to named files only. It
is called to change the name of a file (that is, the name by
which it is cataloged in its parent directory). A renamed data
file can also be recataloged in a di fferent parent directory,
so long as that directory is on the same volume as the file's
original parent. A directory file can only be renamed within
its parent director~, however.

~~~~~~~~~~~~~~~~~~~~~~~---

The caller is assumed to be the default user for the job. 

CALL RQ$H$RENAME$FILE(old$path, new$path, excep$ptr); 

INPUT PARAMETERS 

old$path 

new$path 

excep$ptr 

is a pointer to the string 
prefix and subpath to the 
renamed. 

gIvIng the 
file being 

is a pointer to the string giving a new 
prefix and subpath for the file. This 
parameter must specify a nonexistent file. 
For a data file, it may speci fy a di f
ferent directory than the original parent, 
but the new parent must be on the same 
volume. For a directory file, however, the 
original parent must be retained. 

is a pointer to the location that receives 
the condition code resulting from this 
call. 

FILE ACCESS REQUIREMENTS 

The caller must have delete access to the original file and 
must have add-entry access to the file's parent directory. 

CONDITION CODES 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST, 
E$FLUSHING, E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM, 
E$NOPREFIX, E$NOT$CONFIGURED, E$NOUSER, E$PARAM, E$SUPPORT, 
E$TYPE. 

8-70 



INVOKING I/O SYSTEM CALLS IN PL/M 

INSPECT$PACKAGE 

INSPECT$PACKAGE SYSTEM CALL 

INSPECT$PACKAGE is called to expand the contents of a package 
object previously created by the loader or other source. 

CALL RQ$INSPECT$PACKAGE(package, tok$list$ptr, excep$ptr); 

INPUT PARAMETERS 

package 

tok$list$ptr 

excep$ptr 

is a token for the package to be inspected. 

is the structure that lists the tokens 
contained in the package object. This 
information is returned in the following 
form: 

DECLARE 
token$list 

num$slots 
num$tokens 
tokens (*) 

) ; 

STRUCTURE( 
WORD, 
WORD, 
WORD 

These fields are interpreted as follows: 

num$slots 

num$tokens 

tokens 

contains the number of 
tokens slots in the list. 

is the actual number of 
tokens contained in the 
package object. 
INSPECT$PACKAGE will never 
store more tokens than the 
space alotted in num$slots. 

is a contiguous series of 
words, each containing one 
of the tokens making up the 
package object. 

is a pointer to the location that receives 
the condition code resulting from this 
call. 

8-71 



INVOKING I/O SYSTEM CALLS IN PL/M 

S$ATTACH$FILE 

SYNCHRONOUS ATTACH$FILE SYSTEM CALL 

The S$ATTACH$FILE system call creates a composite connection to 
an existing file, including buffers needed for synchronous I/O 
operations on the connection. The composi te connection formed 
can be given a logical name and cataloged in the calling job's 
logical-name directory. 

~~~_-------,--T-,-,-h~e _" b~~Lf$_siLe~~a-r-amet-e-I'---s-p%C--i-f--be~s-t-A-e---ee-f'-atJ-1-t-----b--tt-f-fer---S+z-e-;-----A-
di fferent, actual buffer size can be speci fied by S$OPEN when
the connection is opened.

The caller is assumed to be the default user for the job.

NOTE

Any task invoking this call must have a
priority of 32 or greater.

connection = RQSATTACH$FILE(log$name, path, buff$size,
num$buff, excep$ptr);

INPUT PARAMETERS

log$name

path

buff$size

num$buff

excep$ptr

RETURN VALUE

connection

is a pointer to the string giving the
logical name under which the composite
object (high-level connection) is to be
cataloged in the job's logical-name direc
tory. A zero in this parameter or a null
string indicates that the object should
not be cataloged.

is a pointer to the string
prefix and subpath of the
attached.

giving
file to

the
be

is a word giving the default SIOS (or
user) buffer size (in bytes). A zero
indicates that the buffer size should be
the same as the file granularity.

is a byte giving the default number of
SIOS buffers to be used. The maximum
allowed is two.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the composite object (high
level connection) attached to the file.

8-72

INVOKING I/O SYSTEM CALLS IN PL/M

S$ATTACH$FILE (continued)

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FNEXIST, E$FTYPE, E$IO,
E$LIMIT, E$MEM, E$NOBUFF, E$NOPREFIX, ENOTCONFIGURED,
E$NOUSER, E$NUMBUFF, E$PARAM, E$TYPE,.

8-73

INVOKING I/O SYSTEM CALLS IN PL/M

S$CHANGE$ACCESS

SYNCHRONOUS CHANGE$ACCESS SYSTEM CALL

The S$CHANGE$ACCESS system call applies to named files only. It
is called to change the access rights to a named data or direc
tory file. The caller is assumed to be the default user.

NOTE

~~~~~~~~~-------lG~re-R-U-y-,--a 11 U S-B-I'--5----R-a-V-e---aG-G-8 s--s---t-G-a--l--l-f'--i-l~8 S,~~~~~~
at the synchronous level. The new access rights 
specified in this call will apply to all users, 

including the caller. 

CALL RQ$S$CHANGE$ACCESS(path, mode, name, access, excep$ptr); 

INPUT PARAMETERS 

path 

mode 

name 

access 

is a pointer to the string giving the 
prefix and subpath to the file whose 
access rights are to be changed. 

is a byte value, currently ignored. 

is a pointer to the string giving the name 
of the accessor whose rights are being 
added, deleted, or changed. Currently, 
this string must be "WORLD," which 
includes all users. 

is a BYTE mask giving the new access 
rights for the speci fied accessor. I f a 
bit is set to one, the corresponding 
access is granted. For a named data file, 
the possible bit settings are: 

Bit 
-0-

1 
2 
3 

4-7 

Meaning 
Delete 
Read 
Append 
Update 
Reserved 

For a named directory file, the possible 
bit settings are: 

Bit 
-0-

1 
2 
3 

4-7 

8-74 

Meaning 
Delete 
Display 
Add Entry 
Change Entry 
Reserved 



INVOKING I/O SYSTEM CALLS IN PL/M 

S$CHANGE$ACCESS (continued) 

INPUT PARAMETERS (continued) 

excep$ptr is a pointer to the location that receives 
the condition code resulting from this 
call. 

FILE ACCESS REQUIREMENTS 

The caller must be the owner of the file or must have change
entry access to the file's parent directory. 

CONDITION CODES 

E$OK, E$BAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FLUSHING, 
E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM, E$NOPREFIX, 
E$NOT$CONFIGURED, E$NOUSER, E$PARAM, E$TYPE. 

8-75 



INVOKING I/O SYSTEM CALLS IN PL/M 

S$CLOSE 

SYNCHRONOUS CLOSE SYSTEM CALL 

The S$CLOSE system call closes an open composi te connection, 
including the buffers associated with that connection. It 
performs the following steps: 

• waits for I/O operations in progress to be completed. 

~~~~~~ ____ • _____ lnake_s~s_LLLe~tJlat~al~l~d_at_a~i nth e b u f f e r 0 fan 0 u t R u t f i Ie 
is completely written if the buffer is partially filled.

• releases the buffer(s) created by S$OPEN.

• closes the file connection.

CALL RQSCLOSE(connection, excep$ptr);

INPUT PARAMETERS

connection is a token for the open composite con
nection to be closed.

excep$ptr

CONDITION CODES

is a pointer to the location that receives
the condition code resulting from this
call.

EOK, EBAD$CALL, E$CANNOT$CLOSE, E$CONTEXT, E$EXIST,
E$FLUSHING, E$LIMIT, EMEM, ENOT$CONFIGURED, E$TYPE.

8-76

INVOKING I/O SYSTEM CALLS IN PL/M

S$CREATE$DIRECTORY

SYNCHRONOUS CREATE$DIRECTORY SYSTEM CALL

The S$CREATE$DIRECTORY system call applies to named directory
f i 1 e son 1 y. W hen call ed, i t c rea t e s. a new d ire c tor y f i 1 e . The
new connection can also be cataloged under a specified logical
name in the job's logical-name directory.

The caller is assumed to be the default user for the job. Full
owner access to the directory is assumed; that is, bi ts 0-3 in
the access byte mask are all set to one.

Bit
-0-

1
2
3

4-7

NOTE

Meaning
Delete
Display
Add Entry
Change Entry
Reserved

Any task invoking this call must have
a priority of 32 or greater.

connection = RQSCREATE$DIRECTORY(log$name, path, excep$ptr);

INPUT PARAMETERS

log$name

path

excep$ptr

RETURN VALUE

connection

is a pointer to the string gIvIng the
logical name under which the new con
nection is to be cataloged in the job's
logical-name directory. A zero in this
parameter or a null string specifies that
the connection is not to be given a
logical name.

is a pointer to the string containing the
prefix and subpath to the directory being
created. This string cannot be null, and
the directory name cannot exist already.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the connection to the new
directory file.

FILE ACCESS REQUIREMENT

The caIler must have add-entry access to the parent of the new
directory.

8-77

INVOKING I/O SYSTEM CALLS IN PL/M

S$CREATE$DIRECTORY (continued)

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FNEXIST, E$FTYPE, E$IFDR, E$IO, E$LIMIT, E$MEM, E$NOPREFIX,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$SPACE, E$TYPE.

8-78

INVOKING I/O SYSTEM CALLS IN PL/M

S$CREATE$FILE

SYNCHRONOUS CREATE$FILE SYSTEM CALL

The S$CREATE$FILE system call creates a new physical, stream or
named data file. It also creates a composi te connection to the
file including a token from a segment giving the number and
size of SIOS buffers to be used in I/O operations on the file.
The token for this connection is returned by the S$CREATE$FILE
call. The connection can also be given a· logical name and
cataloged in the job's logical-name directory.

The owner of the file is assumed to be the job's default user.
Full owner access is assumed, meaning bi ts 0-3 of the access
byte mask are set to one.

Bit
-0-

1
2
3

4-7

Meaning
Delete
Read
Append
Update
Reserved

The S$CREATE$FILE calls also assumes the file granularity is
the same as the volume granularity and the file size (pre
allocation) is zero bytes.

If a named file designated by the path parameter already
exists, one of the following situations occurs:

a If the "must$create" parameter is TRUE, an error con
dition code (E$FEXIST) is returned.

(I If the "must$create" parameter is FALSE and the path
designates a data file, a new connection to that file is
returned (that is, S$CREATE$FILE acts like
S$ATTACH$FILE) and the file is truncated to zero length.

If the "must$create" parameter is FALSE and
designates a device or directory, an unnamed
created on' the corresponding device. This
deleted automatically when the last connection
deleted.

NOTE

Any task invoking this call must have a
priority of 32 or greater.

the path
file is
file is
to it is

connection = RQSCREATE$FILE(log$name, path, buff$size,
num$buff, must$create,
excep$ptr);

8-79

INVOKING I/O SYSTEM CALLS IN PL/M

S$CREATE$FILE (continued)

INPUT PARAMETERS

log$name is a pointer to the string gIvIng the
logical name under which the new con
nection is to be cataloged in the job's
logical-name directory. A zero in this
par a m et e r 0 ran u 11 s t r i n g s p e c i fie s t hat

---------------~t ~c-oone-ctio-o i s nQL-t_~_e___Qi\Le~a,~~

path

buff$size

num$buff

must$create

excep$ptr

RETURN VALUE

connection

CONDITION CODES

logical name.

is a pointer to the string
prefix and subpath for the
created.

gIvIng the
file being

is a word giving the default size (in
bytes) of any SIOS buffers created. A zero
indicates that the buffer size is the same
as the file granulari ty for a named file,
the device granularity for a physical
file, and the folume granularity for a
stream file.

is a byte giving the default number of
SIOS buffers to be used. The maximum
allowed is two.

is a boolean whose TRUE or FALSE setting
determines the handling of input paths
designating an existing named file.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the composite object (high
level connection) for the newly created
file.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FNEXIST, E$FTYPE, EIO, ELIMIT, EMEM, ENOBUFF, E$NOPREFIX,
ENOTCONFIGURED, E$NOUSER, E$NUMBUFF, E$PARAM, E$SPACE, E$TYPE.

8-80

INVOKING I/O SYSTEM CALLS IN PL/M

S$DELETE$CONNECTION

SYNCHRONOUS DELETE$CONNECTION SYSTEM CALL

The S$DELETE$CONNECTION system call severs the composi te file
connection created by S$CREATE$FILE or S$ATTACH$FILE. It frees
the composite connection object. It also deletes the file if
the file is already marked for deletion, and if the speci fied
connection is the last remaining connection to the file. If the
connection is open when S$DELETE$CONNECTION is called, it is
closed before being severed.

CALL RQSDELETE$CONNECTION(connection, excep$ptr);

INPUT PARAMETERS

connection

excep$ptr

CONDITION CODES

is a token for the composi te connection
object to be severed.

is a pointer to the location that receives
the condition code resulting from this
call.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$IO, E$LIMIT, E$MEM,
ENOTCONFIGURED, E$TYPE.

8-81

INVOKING 1/0 SYSTEM CALLS IN PL/M

S$DELETE$FILE

SYNCHRONOUS DELETE$FILE SYSTEM CALL

The S$DELETE$FILE system call applies to stream and named files
only. When called, it marks the designated file for deletion.
The file will not actually be deleted, however, until all
connections to the file have been severed (by calls to
S$DELETE$CONNECTION). Directory files cannot be deleted unless
they are empty.

The caller is assumed to be the default user for the job.

CALL RQSDELETE$FILE(path, excep$ptr);

INPUT PARAMETERS

path is a pointer to the string giving the
prefix and subpath to the file being
deleted.

excep$ptr is a pointer to the location that receives
the condition code resulting from this
call.

FILE ACCESS REQUIREMENT

The caller must have delete access to the file.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS,
E$FTYPE, E$IFDR, EIO, ELIMIT, E$MEM,
ENOTCONFIGURED, E$NOUSER, E$PARAM, E$TYPE.

8-82

E$FNEXIST,
E$NOPREFIX,

INVOKING I/O SYSTEM CALLS IN PL/M

SET$DEFALULT$PREFIX

SET$DEFAULT$PREFIX SYSTEM CALL

The SET$DEFAULT$PREFIX system call sets the default prefix for
an existing job. A job created by calling CREATEIOJOB can
have its default prefix set at the time it is created.

CALL RQSETDEFAULT$PREFIX(job, prefix, excep$ptr);

INPUT PARAMETERS

job

prefix

excep$ptr

CONDITION CODES

is a token for the job whose default
prefix is to be set. A zero speci fies the
current job.

is a token for the connection that is to
become the default prefix.

is a pointer to the location that receives
the condition code resulting from this
call.

EOK, EBAD$CALL, E$EXIST, E$LIMIT, E$MEM, ENOTCONFIGURED,
E$TYPE.

8-83

INVOKING I/O SYSTEM CALLS IN PL/M

SET$DEFAULT$USER

SET$DEFAULT$USER SYSTEM CALL

The SET$DEFAUL T$USER system call sets the defaul t user for an
existing job. A job created by calling CREATEIOJOB can have
its default user set at the time it is created.

I CALL RQSETDEFAULT$USER(job, user, excep$ptr);

----~ __ ~I~U~B~~E~T~E~R~S __ ~ __ ~~~~~ __ ~~ __ ~ ____ ~ ____ ~ __ ~~ __ ~~ __

job

user

excep$ptr

CONDITION CODES

is a token for the job whose default user
object is to be set. A zero designates the
current job.

is a token for the user object that is to
become the default user.

is a pointer to the location that receives
the condition code resulting from this
call.

EOK, EBAD$CALL, E$EXIST, E$LIMIT, E$MEM, ENOTCONFIGURED,
E$TYPE.

8-84

INVOKING I/O SYSTEM CALLS IN PL/M

SGETCONNECTION$STATUS

SYNCHRONOUS GET$CONNECTION$STATUS SYSTEM CALL

SGETCONNECTION$STATUS is called to obtain status information
associated with the designated connection.

CALL RQSGET$CONNECTION$STATUS(connection, conn$info$ptr,
excep$ptr);

INPUT PARAMETERS

connection

conn$info$ptr

excep$ptr

RESULT SEGMENT

conn$info

is a token for the connection whose status
is sought.

is a pointer to the location that receives
the status information.

is a pointer to the location that receives
the condition code resulting from this
call.

is the desired status
structured as follows:

DECLARE
conn$info

flags
open$mode
open$share
file$pointer
access
num$buff
buff$size
seek

) ;

STRUCTURE
BYTE,
BYTE,
BYTE,
DWORD,
BYTE,
BYTE,
WORD,
BOOLEAN

information,

These fields are interpreted as follows:

flags

open mode

8-85

contains two flag bits. If
bit I is set to one, this is
an active connection and can
be opened. If bit 2 is set,
this is a device or direc
tory file connection.

is the mode established when
this connection was opened.
Possible values are:

INVOKING I/O SYSTEM CALLS IN PL/M

SGETCONNECTION$STATUS (continued)

RESULT SEGEMENT
conn$info (continued)

o Connection is closed
1 Open for reading only
2 Open for writing only
3 Open for reading and

~~~~~~~~~~~~~~~~~~~~~~~~~~w~t~g~~~~~~~~~~ __ 

open$share is the shared status estab
lished when this connection 
was opened. Possible values 
are: 

o Private use only 
1 Share with readers only 
2 Share with writers only 
3 Share with all users 

file$pointer gives the pointer's current 
byte location in the file. 

access 

num$buff 

buff$s-ize 

seek 

8-86 

gives the access 
this connection. 
settings of the 
are: 

Bit Access 
-0- Delete 

1 Read 
2 Append 
3 Update 

rights for 
Possible 

byte mask 

4-7 Reserved 

is the number of buffers 
specified for read and write 
operations on this con
nection. 

is the size 
the buffers. 
buffer size 
specified 
S$CREATE$FILE 

(in bytes) of 
The default 

is the size 
in the 

S$ATTACH$FILE call 
or 

that 
created this connection. 

if TRUE, indicates the SEEK 
function is supported; If 
FALSE, indicates the SEEK 
function is not supported. 



INVOKING I/O SYSTEM CALLS IN PL/M 

S$GET$CONNECTION$STATUS (continued) 

CONDITON CODES 

E$OK, E$BAD$CALL, E$E XI ST , E$FLUSHING, E$LIMIT, E$MEM, 
E$NOT$CONFIGURED, E$TYPE. 

8-87 



INVOKING 1/0 SYSTEM CALLS IN PLIM 

S$GET$FILE$STATUS 

SYNCHRONOUS GET$FILE$STATUS SYSTEM CALL 

The S$GET$FILE$STATUS system call returns status and attribute 
information about the designated file. Certain common in
formation is returned regardless of the file driver type 
(physical, stream or named). Additional information is returned 
for named files. 

Not e t hat t his c_a~l~~~urns __ -S01D~e_cieJJie e - de p e ndenLi-r+f--O-X-m-a-ti-G+l-.~, ~~ 
and its use may cause an application to become device dependent. 

CALL RQ$S$GET$FILE$STATUS(path, file$info$ptr, excep$ptr); 

INPUT PARAMETERS 

path 

file$info$ptr 

excep$ptr 

RETURN STRUCTURES 

common$info 

is a pointer to the string giving the 
prefix and subpath to the file whose 
status is sought. 

is a pointer to the location that receives 
the common (and named file) status in
formation. 

is a pointer to the location that receives 
the condition code resulting from this 
call. 

is the common file-status information 
returned. This information is structured 
as follows: 

DECLARE 
common$in fo 

dev$share 
num$conn 
num$reader 
num$writer 
open$share 
named$file 
dev$name (14) 
file$drivers 
functs 
dev$gran 
dev$size 
dev$conn 

) ; 

STRUCTURE( 
BYTE, 
WORD, 
WORD, 
WORD, 
BYTE, 
BYTE, 
BYTE, 
WORD, 
WORD, 
WORD, 
DWORD, 
WORD 

These fields are interpreted as follows: 

dev$share 

8-88 

indicates whether the device 
where this file resides is 
sharable or nonsharable. 
Possible values are: 



INVOKING I/O SYSTEM CALLS IN PL/M 

S$GET$FILE$STATUS (continued) 

RETURN STRUCTURES 
common$info (continued) 

num$conn 

num$reader 

num$writer 

open$share 

named$file 

dev$name 

o Sharable device 
1 Nonsharable device 

is the number of connections 
to the file. 

is the number of connections 
currently open for reading. 

is the number of connections 
currently open for writing. 

is the current shared status 
of the file. Possible values 
are: 

o Private use only 
1 Share with readers only 
2 Share with writers only 
3 Share with all users 

specifies whether the file 
is a named file and, there
fore, whether file$info$ptr 
will contain named-file, as 
well as common information. 
A value of 0FFH indicates 
the addi tional information 
is present. 

is the name 
where this 
null padded. 

of the device 
file resides, 

file$drivers indicates which file drivers 
can be used wi th the file. 
If bit is on, then file 
driver n+l can be used. Bits 
are numbered right to left 
starting with zero. 

Bit Driver No. Drivers 
-0- 1 Physical file 

1 2 Stream file 
2 3 reserved 

3 4 Named file 

functs describes the functions 

8-89 

supported by the device 
where this file resides. 
Each bit set to one indi
cates the corresponding 
function is supported. 



INVOKING 1/0 SYSTEM CALLS IN PL/M 

$GET$FILE$STATUS (continued) 

RETURN STRUCTURES 
common$info 
functs (continued) 

Bit Function 
-(2) - F$READ 
1 F$WRITE 

~~~~~~~~~~~~~~~~~~~~~~~~2 ~~SEE~~--~~~~~~ 

3 F$SPECIAL
4 F$ATTACH$DEV
5 F$DETACH$DEV
6 F$OPEN
7 F$CLOSE

8-15 Reserved

dev$gran is the device granularity,
in bytes.

dev$size is the size of the device,
in bytes.

dev$conn is the number of connections
to the device.

named$file$info is the addi tional information returned if
the des i 9 nat e d f i 1 e is a n a me d f i 1 e. T his
information is structured as follows:

DECLARE
named$file$info

fdesc$num
file$type
file$gran

) ;

owner (14)
create$time (16)
access$time (16)
mod$time (16)
file$size
file$blocks
vol$name (6)
vol$gran
vol$size
id$count
accessor (*)

access
id

STRUCTURE(
WORD,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
DWORD,
DWORD,
BYTE,
WORD,
DWORD,
WORD,
STRUCTURE(

BYTE,
WORD)

These fields are interpreted as follows:

8-90

INVOKING liD SYSTEM CALLS IN PL/M

SGETFILE$STATUS (continued)

RETURN STRUCTURES
named$file$info (continued)

fdesc$num

file$type

file$gran

owner

create$time

access$time

mod$time

file$size

file$blocks

vol$name

vol$size

id$count

accessor

8-91

is the number of
file descriptor.
descriptor is an
data structure
file attribute
data.

the file's
The file

liD system
containing

and status

indicates the type of the
file. A file with type other
than FT$DATA (data file,
type=8) may only be accessed
from within the liD system.

speci fies the file granu
larity.

is the ASCII nme of the
file's owner.

is the time and date when
the file was created.

is the time and date when
the file was last accessed.

is the time and date when
the file was last modified.

is the total size, in bytes,
of the data in the file.

is the number of volume
blocks allocated to this
file.

is the ASCII name for the
volume containing this file.

is the size of the volume,
in bytes.

is the number of accessl
user-ID pairs declared .for
this file. These pairs are
detailed in the structure
that follows.

is currently
"WORLD".

limited to

INVOKING I/O SYSTEM CALLS IN PL/M

SGETFILE$STATUS (continued)

CONDITION CODES

EOK, EBAD$CALL, E$EXIST,
ENOTCONFIGURED, E$TYPE.

E$FLUSHING, E$LIMIT,

8-92

E$MEM,

INVOKING I/O SYSTEM CALLS IN PL/M

S$LOAD

SYNCHRONOUS LOAD SYSTEM CALL

S$LOAD is called to load an 8086 object file into memory during
job execution. ObJect files must be located by LOC86 before
they can be loaded. The user must be certain that all absolute
address assignments are in a space he has reserved for this
purpose during system configuration.

S$LOAD can also create a new job for the object file being
loaded, as well as a new task for executing the file. If no new
task is created, S$LOAD returns register ini tialization values
for the loaded task.

job = RQSLOAD(job$data$ptr, prefixptr, lognames$ptr,
task$flags, task$prior, load$function,
path, return$data$ptr, excep$ptr);

INPUT PARAMETERS

job$data$ptr

prefix$ptr

log$names$ptr

task$flags

task$prior

load$function

is a pointer to the job data structure
defined below. This structure is used only
if a new job is to be created and is
ignored otherwise.

is a pointer to a string giving
default prefix for the job (specified
logical name). A null string or
pointer specifies that the calling
default prefix is to be used.

the
as a
zero

job~s

is a pointer to a contiguous set of
string/token pairs, each giving a logical
name to be inheri ted by the new job from
its creator. A zero token assoicates its
corresponding string with the parent job's
token for the same string.

is a word containing information about the
initial task in the new job.

is a byte specifying the priority of the
new task. This priority must be lower
(higher numerically) or equal to the
parent job's maximum priority. A zero
speci fies that the task has the highest
priority allowed by its job.

is a byte speci fying the function to be
done:

o Create new job and initi~l task
1 Load into calling job and create task
2 Load into calling job and return

register initialization values

8-93

INVOKING I/O SYSTEM CALLS IN PL/M

S$LOAD (continued)

INPUT PARAMETERS (continued)

path is a pointer to the string gIvIng the
prefix and subpath of the object file to
be loaded.

return$data$ptr is a pointer to the buffer that receives a
-------------------------------r~~~-t_se~wben~$LD~-i5--fin-~rred~.~-------

excep$ptr is a pointer to the location that receives
the condition code resulting from this
call.

The job$data$ptr parameter must point to a previously-defined
structure of the following form:

where:

dir$size

param$obj

minjobsize

maxjobsize

DECLARE
job$data STRUCTURE(

WORD,
TOKEN,
WORD,
WORD,
WORD,
WORD,

) ;

dir$size
param$obj
minjobsize
maxjobsize
max$objects
max$tasks
max$prior
excep$hdler$offset
excep$hdler$base
excep$mode
job$flags
global$job
user
msg$mbox

BYTE,
WORD,
WORD,
BYTE,
WORD,
TOKEN,
TOKEN,
TOKEN

is a word containing the maximum number of
entries in the created job's object
directory.

is the token for the created job's
parameter object. A zero specifies that
the job does not' have a parameter object.

is the minimum size, in 16-byte pages, of
the newly-created job's memory pool. It is
also the initial size of the pool.

is the maximum pool size, in 16-byte
pages, allowed for the new job.

8-94

INVOKING I/O SYSTEM CALLS IN PL/M

INPUT PARAMETERS
where: (continued)

max$objects

max$tasks

max$prior

excep$hdler$offset
excep$hdler$base

job$flags

global$job

user

msg$mbox

RETURN VALUE

job

S$LOAD (continued)

is a word containing the maximum number
of objects that this job can contain
simultaneously. ~FFFFH specifies an
unlimited number.

is a word containing the maximum number
of tasks that can exist simultaneously
within this job. ~FFFFH specifies an
unlimited number.

is a byte specifying this job's maximum
task priority from ~ (high) to 255
(low). A zero speci fies that the max
imum priori ty equals the maximum task
priority of the calling job.

point to the first instruction of the
job's defaul t exception handler. Zeros
speci fy that the system defaul t excep
tion handler is to be used.

contains job information needed by the
RMX/86 nucleus. If any tasks in the job
use the 8087 component, the low-order
bit should be set to one.

is a token for a job whose object
directory is to be used as the global
logical-name directory for the job
being created. A zero specifies that
the caller's global job is to be used.

is a token for ,the job's de faul t user
object. A zero specifies that the
calling job's defaul t user is the new
job's default also.

is a token for the mailbox that will
receive the exit message when this job
is exited. A zero specifies that no
message is desired. (See EXITIOJOB
for exit message formats.

is a token for the job created by the
loader, or zero if no job was created.

8-95

INVOKING I/O SYSTEM CALLS IN PL/M

S$LOAD (continued)

RESULT SEGMENT

result$seg is the result segment returned to the
location designated by return$data$ptr. The
format of the result segment varies
depending on the load function selected.

---------------l--e-a-e.$-f'-tJ-A-e-t-i-e-A QI-----------------

where:

status

DECLARE
STRUCTURE(result$seg

status
error$displace
errorrectype
num$undef$refs
mem$req
mem$received

WORD,
DWORD,
BYTE,
WORD,
WORD,
WORD

) ;

load$function = I
DECLARE

STRUCTURE(result$seg
status
error$displace
errorrectype
num$undef$refs
task$token

WORD,
DWORD,
BYTE,
WORD,
TOKEN,

) ;

load$function = 2

DECLARE
result$seg
status
error$displace
errorrectype
num$undef$refs
init$CS
init$IP
init$SS
stack$offset
stack$size
init$DS

) ;

STRUCTURE(
WORD,
DWORD,
BYTE,
WORD,
TOKEN,
WORD,
TOKEN,
WORD,
WORD,
TOKEN

indicates- whether the load operation
terminated normally (E$OK) or due to an
error (E$IO).

8-96

INVOKING I/O SYSTEM CALLS IN PL/M

RESULT SEGMENT
where: (continued)

S$LOAD (continued)

error$displace if nonzero, defines the displacement within
the file of an erroneous object record.

errorrectype if nonzero, gi ves the record type 0 f the
erroneous object record. .

num$undef$refs is the number of undefined external ref
erences encountered during the load.

mem$req

mem$received

task$token

init$CS

init$IP

init$SS

stack$offset

stack$size

init$DS

CONDITION CODES

is the desired maximum memory size.

is the number of 16-byte pages actually
allocated to the new job.

is the token for the newly-created task.

is the ini tial value of the loaded task's
CS register. It is zero if the register is
not initialized in the object file.

gives the initial value of the loaded
task's IP register. It is zero if not
initialized in the object file.

is a token used to initialize the loaded
task's SS register. It is zero if the
register is not initialized in the object
file.

gives the location of the bottom of the
stack relative to SSe It is zero if not
initialized.

gives the size of the stack. The loaded
task's stack pointer should be ini tialized
to the sum of stack$offset and stack$size.
This field is zero if not initialized.

is a token used to initialize the task's OS
register. It is zero if not ini tialized in
the object file.

EOK, EABS$ADDRESS, E$BADGRP, EBADHDR, EBAD$SEG,
E$CHECKSUM, E$EOF, E$F I XUP, E$LFUNC, ENOLMEM, ENOMEM,
ERECFMT, ERECLENGTH, ERECTYPE, EREGINIT, ESEGALLOC.

8-97

INVOKING 1/0 SYSTEM CALLS IN PL/M

S$LOOK$UP$CONNECTION

SYNCHRONOUS LOOKUPCONNECTION SYSTEM CALL

The S$LOOK$UP$CONNECTION system call returns information about
a file conection to the caller. The caller can speci fy a con
nection's logical name to this system call and receive the
token associated with that connection in return. The 1/0 system
looks for the name first in the job's logical-name directory.
If the name is not found, it then looks in the global directory

-----f~---\"o.h.Lr _ __I.._t he J-Clb-,-RO d f iDa 1 1 Y ; n the s y s_t_e~s 10 Q i c a 1- n a m e
directory. I f the name does not reside in ei ther directory, an
exception code is returned.

connection = RQSLOOKUPCONNECTION(log$name, excep$ptr);

INPUT PARAMETERS

log$name

excep$ptr

RETURN VALUE

connection

CONDITION CODES

EOK, EBAD$CALL,
E$PARAM, E$TYPE.

is a pointer to the string glvlnq the
logical file name to be looked up.

is a pointer to the location that receives
the condition code resulting from this
call.

is a token for the connection associated
with the specified logical name.

E$CONTEXT, E$EXIST, ENOTCONFIGURED,

8-98

INVOKING lID SYSTEM CALLS IN PLIM

S$OPEN

SYNCHRONOUS OPEN SYSTEM CALL

The S$OPEN system call opens a composi te file connection for
110. The connection must be opened before 1/0 operations such
as reading and wri ting can be performed. S$OPEN also ini tial
izes the connection for a particular mode of shared access. The
following steps are performed:

~ create and initialize lID buffer(s);

• initialize the file pointer to zero;

G open the connection;

• check the current shared state of the connected file and
return a condition code of this state conflicts with the
mode of the open request;

18 initiate the first read if the open is requested for
reading and if at least one buffer has been created;

o check for stream file driver; if present, assume
"num$buff" is zero.

CALL RQSOPEN(connection, mode, share, buff$size,
num$buff, excep$ptr);

INPUT PARAMETERS

connection

mode

share

buff$size

is a token for the composite connection to
be opened.

is a byte giving the mode of the open
request. Possible values are:

1 Read only
2 Write only
3 Read and write (update)

is a byte specifying the kind of sharing
desired. Possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

is a word giving the size (in bytes) of
the buffer(s) to be used by the 1/0
system. A zero indicates the default
buffer size is to be used. The default
size is the size specified in the
S$CREATE$FILE or S$ATTACH$FILE call that
created this connection.

8-99

INVOKIN~ I/O SYSTEM CALLS IN PL/M

S$OPEN (continued)

INPUT PARAMETERS (continued)

num$buff

excep$ptr

is a byte specifying the numbei of buffers
to be used for multiple buffering. For
locate mode, at least one buffer is
needed. For move mode, zero or more can be
specified. The maximum allowed is two
buffers. If two buffers are specified,
multiple buffering is implied and read
ahead and write-ahead will be performed.

The default value for this parameter is
the number of buffers specified in the
S$CREATE$FILE or S$ATTACH$FILE call that
created this connection. The default is
indicated by specifying 0FFH for this
parameter.

is a pointer to the location that receives
the condition code resulting from this
call.

FILE ACCESS REQUIREMENT

The current shared status of the file must be comp~tible with
the requested mode of open.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FLUSHING,
E$LIMIT, E$MEM, E$NOBUFF, E$NOT$CONFIGURED, E$NUMBUFF, E$PARAM,
E$SHARE, E$TYPE.

8-100

INVOKING I/O SYSTEM CALLS IN PL/M

S$READ$LOCATE

SYNCHRONOUS READ$LOCATE SYSTEM CALL

The S$READ$LOCATE system call reads a collection of bytes from
a file designated by the caller. After this call has been
completed, the location addressed by the "data$ptr" parameter
contains a pointer to the SIOS buffer containing the bytes that
were read.

The actual number of bytes read is always less than or equal to
the number of bytes requested in the system call unless an
exceptional condition occurred. A zero is returned when an
end-of-file was encountered and nothing was read. This is a
normal condition and E$OK is the condition code returned.

NOTE

If the number of bytes being read spans two SIOS
buffers, only the bytes in the currently active
buffer are read. The other buffer can be read by

issuing a second S$READ$LOCATE call.

S$READ$LOCATE is often used in conjunction with the
S$WRITE$UPDATE system call to update files. See the description
of S$WRITE$UPDATE for further details.

bytes$read = RQ$S$READ$LOCATE(connection, data$ptr, count,
excep$ptr);

INPUT PARAMETERS

connection

data$ptr

count

excep$ptr

RETURN VALUE

bytes$read

is a token for the open connection to be
read.

is a pointer to the SIOS buffer to receive
the data being read.

is a word giving the number of bytes to be
read.

is a pointer to the location that receives
the condition code resulting from this
call.

is a word giving the actual number of
bytes read. A zero indicates the end-of
file was reached with no bytes being read.

FILE ACCESS REQUIREMENT

The spcified connection must be open for reading.

8-101

INVOKING I/O SYSTEM CALLS IN PL/M

S$READ$LOCATE (continued)

CONDITION CODES

EOK, EBADBLK, EBADCALL, E$CONTEXT, E$DEVNR, E$EXIST,
E$FATALHW, E$FLUSHING, EIO, ELIMIT, EMEM, EMIXREADMODE,
E$NOBUFF, E$NOT$CONFIGURED, E$NUMBUFF, E$PARITY, E$TYPE.

8-102

INVOKING I/O SYSTEM CALLS IN PL/M

S$READ$MOVE

SYNCHRONOUS READ$MOVE SYSTEM CALL

The S$READ$MOVE call reads a collection of bytes from a file to
the specified caller buffer.

The actual number of bytes read is always less than or equal to
the number of bytes requested in the system call, unless an
exceptional condition occurred. A zero is returned if an
end-of-file is encountered and no bytes were read. This is a
normal condition and returns an E$OK condition code.

byte$read = RQ$S$READ$MOVE(connection, buff$ptr, count,
excep$ptr);

INPUT PARAMETERS

connection

buff$ptr

count

excep$ptr

RETURN VALUE

bytes$read

is a token for the open connection to be
read.

is a pointer to the user buffer that is to
receive the data read.

is a word giving the number of bytes to be
read.

is a pointer to the location that receives
the condition code resulting from this
call.

is a word giving the actual number of
bytes read.

FILE ACCESS REQUIREMENT

The specified connection must be open for reading.

CONDITION CODES

EOK, EBADBLK, EBADCALL, E$CONTEXT, E$DEVNR, E$EXIST,
E$FATALHW, E$FLUSHING, EIO, ELIMIT, EMEM, EMIXREADMODE,
E$NOBUFF, E$NOT$CONFIGURED, E$NUM$BUFF, E$PARITY, E$TYPE.

8-103

INVOKING I/O SYSTEM CALLS IN PL/M

S$RENAME$FILE

SYNCHRONOUS RENAME$FILE SYSTEM CALL

The S$RENAME$FILE system call applies to named files only. It
is called to change the name of a file (that is, the name by
which it is cataloged in its parent directory). A renamed data
file can be recataloged in a di fferent parent directory, so
long as that directory is on the same volume as the file's
original parent. Renamed directory files must keep the same
parent, however.

The caller is assumed to be the default user for the job.

I CALL RQSRENAME$FILE(old$path, new$path, excep$ptr);

INPUT PARAMETERS

old$path

new$path

excep$ptr

is a pointer to the string
prefix and subpath to the
renamed.

giving the
file being

is a pointer to the string giving a new
prefix and subpath for the file. This
parameter must specify a nonexistent file.
For a data file, it may speci fy a di f
ferent directory than the original parent,
but the new parent must be on the same
volume. A directory file can only be
renamed within its parent directory,
however.

is a pointer to the location that receives
the condition code resulting from this
call.

FILE ACCESS REQUIREMENTS

The caller must have delete access to the original file and
must have add-entry access to the file's parent directory.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FEXIST,
E$FLUSHING, E$FNEXIST, E$FTYPE, E$IFDR, EIO, ELIMI T, E$MEM,
E$NOPREF IX, E$NOT$CONF IGURED, E$NOUSER, E$PARAM, E$SUPPORT,
E$TYPE.

8-104

INVOKING I/O SYSTEM CALLS IN PL/M

S$SEEK

SYNCHRONOUS SEEK SYSTEM CALL

The S$SEEK system call applies to physical and named files
only. It moves the file pointer to the specified byte position
in the file. The designated connection must be open at the time
S$SEEK is called.

CALL RQSSEEK(connection, mode, hiptrmove, lowptrmove,
excep$ptr);

INPUT PARAMETERS

connection

mode

hiptrmove
lowptrmove

excep$ptr

CONDITION CODES

is a token for the open connection file
whose file pointer is to be moved.

is a byte describing the movement of the
file pointer. Possible values are:

1 Move pointer back by "ptr$move"
amount. If this action moves the
pointer past the beginning of the
file, the pointer is set to byte
position zero.

2 Set the pointer to the location
specified by "ptr$move."

3 Move the file pointer forward by
"ptr$move" amount.

4 Move the pointer to the end of the
file, minus the "ptr$move" specified.

is a word pair giving the position in the
file to which the file pointer is to be
moved. The interpretation of "ptr$move
depends on the mode setting, as explained
above.

is a pointer to the location that receives
the condition code resulting from this
call.

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FLUSHING, E$IFDR, E$IO,
E$LIMIT, E$MEM, ENOTCONFIGURED, E$PARAM, E$TYPE.

8-105

INVOKING I/O SYSTEM CALLS IN PL/M

S$SPECIAL

SYNCHRONOUS SPECIAL SYSTEM CALL

The S$SPECIAL system call applies to physical files only. It
lets the caller perform special device-level functions.

The special function to be done can be speci fied using ei ther
of two methods. If the function requires little supporting
information (such as a function to rewind a magnetic tape), its
code can be speci fied directly as the "spec$func" parameter in
the system call.

Where additional information is needed, the user must create an
I/O parameter block as described below. The special function is
speci fied indirectly, as a field in this parameter block. The
block is then addressed by the "ioparm$ptr" in the system call.

If only the "spec$func" parameter is used
special function, the "ioparm$ptr" parameter
zero.

to specify the
is speci fied as

CALL RQSSPECIAL(connection, spec$func, ioparm$ptr,
, ioresp$ptr, excep$ptr);

INPUT PARAMETERS

connection

spec$func

ioparm$ptr

ioresp$ptr

excep$ptr

is a token
where the
performed.

for a connection to the file
special function is to be

is a word (code) that allows the user to
pass a special function to a file driver
wi thout being required to set up a
parameter block.

is a pointer to a parameter block. The
contents of the parameter block depends on
the requirements of the file driver being
used to implement the special ~function. If
the file driver requires no parameter for
the function being requested, then the
ioparm$ptr can be zero. If the function
does require parameters, you must build
the parameter block to satisfy the
requirements of the specific file driver.

is a pointer to the location that receives
an I/O resul t segment indication that the
special function has been completed (see
Appendix C). A zero indicates that no
result is wanted.

is a pointer to the location that receives
the condition code resulting from this
call.

8-106

INVOKING I/O SYSTEM CALLS IN PL/M

S$SPECIAL (continued)

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FLUSHING, E$IDDR,
E$IFDR, E$IO, E$LIMIT, E$MEM, ENOTCONFIGURED, E$TYPE.

8-107

INVOKING I/O SYSTEM CALLS IN PL/M

S$TRUNCATE$FILE

SYNCHRONOUS TRUNCATE$FILE SYSTEM CALL

The S$TRUNCATE$FILE system call applies to named files only.
When called, it truncates a file at the current setting of the
file pointer and frees all allocated space beyond the pointer.
S$SEEK can be called to position the file pointer before
calling S$TRUNCATE$FILE. I f the pointer is at or beyond the
end-of-file, no operation is performed.

Truncation takes effect immediately and differs from
S$DELETE$FILE in this respect. A file cannot be deleted until
all connections to the file have been severed.

CALL RQSTRUNCATE$FILE(connection, excep$ptr);

INPUT PARAMETER

connection

excep$ptr

is a token for an open connection to the
file being truncated.

is a pointer to the location that receives
the condition code resulting from this
call.

FILE ACCESS REQUIREMENT

The file to be truncated must be open for writing.

CONDITION CODES

EOK, EBAD$CALL, E$CONTEXT, E$EXIST, E$FACCESS, E$FLUSHING,
E$IFDR, E$IO, E$LIMIT, E$MEM, ENOTCONFIGURED, E$TYPE.

8-108

INVOKING I/O SYSTEM CALLS IN PL/M

S$WRITE$MOVE

SYNCHRONOUS WRITE$MOVE SYSTEM CALL

The S$WRITE$MOVE system call writes a collection of bytes from
a user buffer to a designated file. The byte count returned
equals the number of bytes requested unless an exceptional
condition occurs.

bytes$written = RQ$S$WRITE$MOVE(connection, buff$ptr,
count, excep$ptr);

INPUT PARAMETERS

connection

buff$ptr

count

excep$ptr

RETURN VALUE

bytes$written

is a token for the open connection to be
written.

is a pointer to the user buffer containing
the data to be written.

is a word giving the number of bytes to be
written.

is a pointer to the location that receives
the condition code resulting from this
call.

is a word giving the actual number of
bytes written.

FILE ACCESS REQUIREMENTS

The caller m~st have update access to the file. The speci fied
file must be open for writing.

CONDITION CODES

EOK, EBADBLK, EBADCALL,
E$FATALHW, E$FLUSHING, E$IO,
E$NOBUFF, E$NOT$CONFIGURED,
E$SUPPORT, E$TYPE.

E$CONTEXT, E$DEVNR, E$EXIST,
E$LIMIT, E$MEM, E$MIXWRITEMODE,
E$NUMBUFF, E$PARITY, E$SPACE,

8-109

INVOKING I/O SYSTEM CALLS IN PL/M

S$WRITE$UPDATE

SYNCHRONOUS WRITE$UPDATE SYSTEM CALL

The S$WRITE$UPDATE system call writes data from a speci fied
SIOS bu ffer to an open composi te connection. This call can be
combined wi th a call to S$READ$LOCATE to update file
information.

A file update is initiated when S$READ$LOCATE reads data from a
designated connection to the SIOS buffer specified by its
"data$ptr" parameter S$READ$LOCATE. The data in the buffer can
then be modified as necessary. Finally, S$WRITE$UPDATE is
invoked to write data from the same SIOS buffer back to the
same open connection.

When the write operation has been completed, this call returns
the actual number of bytes written. Normally, this count equals
the number 0 f bytes requested. The number 0 f bytes requested,
in turn, should be less than or equal to the number of bytes
read by the preceding S$READ$LOCATE call.

bytes$written = RQ$S$WRITE$UPDATE(connection, count,
data$ptr, excep$ptr);

INPUT PARAMETERS

connection

count

excep$ptr

RETURN VALUE

is a token for the open connection to be
written. An S$READ$LOCATE call must have
been the most recent operation on this
connection.

is a w 0 r d g i v i n g the n um b e r 0 f by t est 0 be
written. This value must be less than or
equal to the value returned by the pre
ceding S$READ$LOCATE call.

is a pointer to the location that receives
the condition code resulting from this call.

bytes$written is a word giving the actual number of bytes
written.

FILE ACCESS REQUIREMENTS

The caller must have update access to the speci fied file. The
file must be open for reading and writing.

CONDITION CODES

EOK, EBADBLK, EBADCALL, E$CONTEXT,
E$FATAHW, E$FLUSHING, EIO, ELIMIT,
ENOTCONFIGURED, E$NREADLOCATE, E$NUMBUFF,
E$SUPPORT, E$TYPE.

8-110

E$DEVNR, E$EXIST,
EMEM, ENOBUFF,
E$PARITY, E$SPACE,

APPENDIX A

SUMMARY OF I/O SYSTEM CALLS

This appendix summarizes RMX/86 I/O system calls by function
and, where applicable, indicates the file types to which they
apply:

PF .
SF
NF
NO

Physical file
Stream file
Named data file
Named directory file

The page reference listed with each call points to the PL/M
calling sequence and detailed description for the call.

JOB-LEVEL SYSTEM CALLS

System Call

CREATEIOJOB

EXITIOJOB

SET$DEFAULT$PREFIX

GET$DEFAULT$PREFIX

SET$DEFAULT$USER

GET$DEFAULT$USER

GET TIME/DATE SYSTEM CALLS

System Call

GET$TIME

GET$TIME$STRING

Function Pag~

Create job & initial task. 8-43

Terminate job. 8-48

Set default prefix for job. 8-83

Inspect default prefix. 8-51

Set default user for job. 8-84

Inspect default user. 8-52

Function

Get date/time value in
internally-stored format.

Get date/time value in
user-oriented format.

A-I

Page

8-53

8-54

APPENDIX A

LOAD FILE/TASK SYSTEM CALL

System Call Function

S$LOAD Synchronous load.

CREATE-FILE-CONNECTION SYSTEM CALLS

System Call

A$CREATE$FILE

H$CREATE$FILE

S$CREATE$FILE

A$ATTACH$FILE

H$ATTACH$FILE

S$ATTACH$FILE

A$CREATE$DIRECTORY

H$CREATE$DIRECTORY

S$CREATE$DIRECTORY

FILE MODIFICATION SYSTEM

System Call

A$CHANGE$ACCESS

Function

Asynchronous data
file creation.

Hybrid data-file
creation.

Synchronous data-
file creation.

Asynchronous attach
file.

Hybrid attach file.

Synchronous attach
file.

Asynchronous create
directory.

Hybrid create
directory.

Synchronous create
directory.

CALLS

Function

Asynchronous change
access rights to
file.

Appendix A-2

Page

8-93

P S N N, Page
F F F 0 F

* * * 8-15

* * * 8-60

* * * 8-79

* * * * 8-8

* * * * 8-55

* * * * 8-72

* 8-13

* 8-58

* 8-77

P S N N Page
F F F D

* * 8-10

APPENDIX A

FILE MODIFICATION SYSTEM CALLS (continued)
P S N N Page
F F F D

H$CHANGE$ACCESS Hybrid change access * * 8-56
rights to file.

S$CHANGE$ACCESS Synchronous change * * 8-74
access rights to
file.

A$RENAME$FILE Asynchronous rename * * 8-35
file.

H$RENAME$FILE Hybrid rename file. * * 8-70

S$RENAME$FILE Synchronous rename * * 8-104

FILE INPUT/OUTPUT SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$OPEN Asynchronous open * * * 8-31
file.

S$OPEN Synchronous open * * * 8-99
file.

A$SEEK Asynchronous move * * 8-37
file pointer.

S$SEEK Synchronous move * * 8-105
file pointer.

A$READ Asynchronous read * * * 8-33
file.

S$READ$LOCATE Synchronous read * * * 8-101
to SIOS buffer.

S$READ$MOVE Synchronous read to * * * 8-103
caller buffer.

A$WRITE Asynchronous write * * * 8-41
file.

S$WRITE$MOVE Synchronous write * * * 8-109
from caller buffer.

Appendix A-3

APPENDIX A

FILE INPUT/OUTPUT SYSTEM CALLS (continued)

P S N N Page
F F F D

S$WRITE$UPDATE Synchronous write * * * 8-110
from SIOS buffer
used by S$READ$-
LOCATE.

A$CLOSE Asynchronous close * * * 8-11
file.

S$CLOSE Synchronous close * * * 8-76
file.

DEVICE-LEVEL FUNCTION SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$SPECIAL Asynchronous perform * 8-38
device-level function.

S$SPECIAL Synchronous perform * 8-106
device-level function.

GET STATUS/ATTRIBUTE SYSTEM CALLS

System Call Function P S N N Page
F F F D

AGETCONNECTION$STATUS Asynchronous get * * * * 8-21
connection status.

SGETCONNECTION$STATUS Synchronous get * * * 8-85
connection status.

AGETFILE$STATUS Asynchronous get * * * * 8-25
file status.

HGETFILE$STATUS Hybrid get file * * * * 8-64
status.

SGETFILE$STATUS Synchronous get * * * * 8-88
file status.

Appendix A-4

APPENDIX A

GET STATUS/ATTRIBUTE SYSTEM CALLS (continued)
P S N N Page
F F F D

AGETDIRECTORY$ENTRY Asynchronous * 8-23
inspect directory
entry.

AGETPATH$COMPONENT Asynchronous * * 8-30
obtain path name
from connection
token.

H$LOOK$UP$CONNECTION Hybrid obtain * * * * 8-69
connection token
from logical name.

S$LOOK$UP$CONNECTION Synchronous * * * * 8-98
obtain connection
token from logical
name.

DELETE CONNECTION/FILE SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$DELETE$CONNECTION Asynchronous delete * * * * 8-18
file connection.

H$DELETE$CONNECTION Hybrid delete file * * * * 8-62
connection.

S$DELETE$CONNECTION Synchronous delete * * * 8-81
high-level file
connection.

A$TRUNCATE Asynchronous * 8-40
truncate file.

S$TRUNCATE$FILE Synchronous * 8-108
truncate file.

A$DELETE$FILE Asynchronous * * * 8-19
delete file.

H$DELETE$FILE Hybrid delete * * * 8-63
file.

S$DELETE$FILE Synchronous delete * * * 8-82
file.

Appendix A-5

APPENDIX B

PL/M EXTERNAL PROCEDURES

This appendix lists the PL/M external procedures declared for
the I/O system calls described in this manual. The procedures
are listed in the same sequence as the system call descriptions
in Chapte.r 8.

rqaattach$file: PROCEDURE(user, prefix, path$p, resp$mbox,
excep$p) EXTERNAL;

DECLARE
user
prefix
path$p
resp$mbox
excep$p

END rqaattach$file;

WORD,
WORD,
POINTER,
WORD,
POINTER:

rqachange$access: PROCUEDURE(user, prefix, path$p, id,
access, resp$mbox, excep$p)
EXTERNAL;

DECLARE
user
prefix
path$p
id
access
resp$mbox
excep$p

END rqachange$access;

WORD,
WORD,
POINTER,
WORD,
BYTE,
WORD,
POINTER:

rqaclose: PROCEDURE(conn, resp$mbox, excep$p) EXTERNAL;
DECLARE

conn
resp$mbox
excep$p

END rqaclose;

WORD,
WORD,
POINTER;

rqacreate$directory: PROCEDURE(user, prefix, path$p,
owner$access, resp$mbox,
excep$p) EXTERNAL;

DECLARE
user
prefix
path$p
owner$access
resp$mbox
excep$p

END rqacreate$directory;

WORD,
WORD,
POINTER,
BYTE,
WORD,
POINTER;

8-1

APPENDIX B

rqacreate$file: PROCEDURE(user, prefix, path$p, owner$access,
gran, high$size, low$size,
must$create, resp$mbox, excep$p)
EXTERNAL;

DECLARE
user
prefix
path$p
owner$access
gran
high$size
low$size
must$create
resp$mbox
excep$p

WORD,
WORD,
POINTER,
BYTE,
WORD,
WORD,
WORD,
BYTE,
WORD,
POINTER;

END rqacreate$file;

rqadelete$connection: PROCEDURE(conn, resp$mbox, excep$p)
EXTERNAL;

END

DECLARE
conn
resp$mbox
excep$p

rqadelete$connection;

WORD,
WORD,
POINTER;

rqadelete$file: PROCEDURE(user, prefix, path$p, resp$mbox,
excep$p) EXTERNAL;

DECLARE
user
prefix
path$p
resp$mbox
excep$p

WORD,
WORD,
POINTER,
WORD,
POINTER;

END rqadelete$file;

rqaconnection$status: PROCEDURE(conn, resp$mbox, excep$p)
EXTERNAL;

END

DECLARE
conn
resp$mbox
excep$p

rqaconnection$status;

WORD,
WORD,
POINTER;

rqaget$directory$entry: PROCEDURE(conn, entry$num, resp$mbox,
excep$p) EXTERNAL;

DECLARE
conn WORD,
entry$num WORD,
resp$mbox WORD,
excep$p POINTER;

END rqaget$directory$entry;

APPENDIX B-2

APPENDIX B

rqaget$file$status: PROCEDURE(conn, resp$mbox, excep$p)
EXTERNAL;

DECLARE
conn
resp$mbox
excep$p

END rqaget$file$status;

WORD,
WORD,
POINTER;

rqaget$path$component: PROCEDURE(conn, resp$mbox, excep$p)
EXTERNAL;

DECLARE
conn WORD,
resp$mbox WORD,
excep$p POINTER;

END rqaget$path$component;

rqaopen: PROCEDURE(conn, mode, share, resp$mbox, excep$p)
EXTERNAL;

DECLARE
conn
mode
share
resp$mbox
excep$p

END rqaopen;

WORD,
BYTE,
BYTE,
WORD,
POINTER;

rqaspecial$: PROCEDURE(conn, spec$func,parms$p,resp$mbox,
excep$p) EXTERNAL;

DECLARE
conn
spec$func
parms$p
resp$mbox
excep$p

END rqaspecial$;

WORD,
WORD,
POINTER,
WORD,
POINTER;

rqaread: PROCEDURE(conn, buff$p, count, resp$mbox, excep$p)
EXTERNAL;

DECLARE
count
conn
buff$p
resp$mbox
excep$p

END rqaread;

WORD,
WORD,
POINTER,
WORD,
POINTER;

APPENDIX B-3

APPENDIX B

rqarename$file: PROCEDURE(conn, user, prefix, path$p,
resp$mbox, excep$p) EXTERNAL;

DECLARE
conn
user
prefix
path$p
resp$mbox
excep$p

END rqarename$file;

WORD,
WORD,
WORD,
POINTER,
WORD,
POINTER;

rqaseek: PROCEDURE(conn, mode, hiptrmove, lowptrmove,
resp$mbox, excep$p) EXTERNAL;

DECLARE
conn
mode
hiptrmove
lowptrmove
resp$mbox
excep$p

END rqaseek;

WORD,
BYTE,
WORD,
WORD,
WORD,
POINTER;

rqatruncate$: PROCEDURE(conn, resp$mbox, excep$p) EXTERNAL;
DECLARE

conn
resp$mbox
excep$p

END rqatruncate$file;

WORD,
WORD,
POINTER;

rqawrite: PROCEDURE(conn, buff$p, count, resp$mbox, excep$p)
EXTERNAL;

DECLARE
conn
buff$p
count
resp$mbox
excep$p

END rqawrite;

WORD,
POINTER,
WORD,
WORD,
POINTER;

rq$create$IO$job: PROCEDURE(job$p, task$addr, stack$p,
prefixp, lognamep, msgmbox,
excep$p) WORD EXTERNAL;

DECLARE
job$p
task$addr
stack$p
prefix$p
log$name$p
msg$mbox
excep$p

END rq$create$IO$job;

POINTER,
POINTER,
POINTER,
POINTER,
POINTER,
WORD,
POINTER;

APPENDIX B-4

APPENDIX 8

rq$delete$package: PROCEDURE (package, excep$p) EXTERNAL;
DECLARE

package WORD,
excep$p POINTER;

END rq$delete$package;

rq$exit$IO$job: PROCEDURE(user$exception$code, return$data,
return$data$len, excep$p) EXTERNAL;

DECLARE
user$exception$code
return$data
return$data$len
excep$p

END rq$exit$IO$job;

WORD,
POINTER,
WORD,
POINTER;

rqgetdefault$prefix: PROCEDURE(job$t, excep$p) WORD EXTERNAL;
DECLARE

job$t WORD,
excep$p POINTER;

END rqgetdefault$prefix;

rqgetdefault$user: PROCEDURE(job$t, excep$p) WORD EXTERNAL;
DECLARE

job$t
excep$p

END rqgetdefault$user;

WORD,
POINTER;

rqgettime: PROCEDURE (excep$p) DWORD EXTERNAL;
DECLARE

excep$p POINTER;
END rqgettime;

rqgettime$string: PROCEDURE(dt$p, excep$p) EXTERNAL;
DECLARE

dt$p
excep$p

END rqgettime$string;

POINTER,
POINTER;

rqhattach$file: PROCEDURE(l$name, path, excep$p) WORD
EXTERNAL;

DECLARE
l$name
path
excep$p

END rqhattach$file;

POINTER,
POINTER,
POINTER;

APPENDIX 8-5

APPENDIX B

rqhchange$access: PROCEDURE(path, mode, name, access, excep$p)
EXTERNAL;

DECLARE
path
mode
name
access
excep$p

END rqhchange$access;

POINTER,
BYTE,
POINTER,
BYTE,
POINTER;

rqhcreate$directory: PROCEDURE(l$name, path, excep$p) WORD
EXTERNAL;

DECLARE
l$name
path
excep$p

END rqhcreate$directory;

POINTER,
POINTER,
POINTER;

rqhcreate$file: PROCEDURE(l$name, path, excep$p) WORD
EXTERNAL;

DECLARE
l$name
path
excep$p

END rqhcreate$file;

POINTER,
POINTER,
POINTER;

rqhdelete$connection: PROCEDURE(conn, excep$p) EXTERNAL;
DECLARE

END

conn
excep$p

rqhdelete$connection;

WORD,
POINTER;

rqhdelete$file: PROCEDURE(path, excep$p) EXTERNAL;
DECLARE

path
excep$p

END rqhdelete$file;

POINTER,
POINTER;

rqhget$file$status: PROCEDURE(path, file$info$p, excep$p)
EXTERNAL;

DECLARE
path
file$info$p
excep$p

END rqhget$file$status;

POINTER,
POINTER,
POINTER;

APPENDIX B-6

APPENDIX B

rqhlookupconnection: PROCEDURE(l$name, excep$p) WORD
EXTERNAL;

DECLARE
l$name POINTER,
excep$p POINTER;

END rqhlookupconnection;

rqhrename$file: PROCEDURE(old$path, new$path, excep$p)
EXTERNAL;

DECLARE
old$path
new$path
excep$p

END rqhrename$file;

POINTER,
POINTER,
POINTER;

rq$inspect$package: PROCEDURE(package, tok$list$p, excep$p)
EXTERNAL;

DECLARE
package
tok$list$p
excep$p

END rq$inspect$package;

WORD,
POINTER,
POINTER;

rqsattach$file: PROCEDURE(l$name, path, buff$size, num$buff,
excep$p) WORD EXTERNAL;

DECLARE
l$name
path
buff$size
num$buff
excep$p

END rqsattach$file;

POINTER,
POINTER,
WORD,
BYTE,
POINTER;

rqschange$access: PROCEDURE(path, mode, name, access, excep$p)
EXTERNAL;

DECLARE
path
mode
name
access
excep$p

END rqschange$access;

POINTER,
BYTE,
POINTER,
BYTE,
POINTER;

rqsclose: PROCEDURE(conn, excep$p) EXTERNAL;
DECLARE

conn
excep$p

END rqsclose;

WORD,
POINTER;

APPENDIX B-7

APPENDIX B

rqscreate$directory: PROCEDURE(l$name, path, excep$p)
, WORD EXTERNAL;

DECLARE
l$name
path
excep$p

END rqscreate$directory

POINTER,
POINTER,
POINTER;

rqscreate$file: PROCEDURE(l$name, path, buff$size, num$buff,
excep$p) WORD EXTERNAL;

DECLARE
l$name
path
buff$size
num$buff
excep$p

END rqscreate$file;

POINTER,
POINTER,
WORD,
BYTE,
POINTER;

rqsdelete$connection: PROCEDURE(conn, excep$p) EXTERNAL;
DECLARE

END

conn
excep$p

rqsdelete$connection;

WORD,
POINTER;

rqsdelete$file: PROCEDURE(path, excep$p) EXTERNAL;
DECLARE

path
excxep$p

END rqsdelete$file;

POINTER,
POINTER;

rqsetdefault$prefix: PROCEDURE(job$t, prefix, excep$p)
EXTERNAL;

DECLARE
JobSt
prefix
excep$p

END rqsetdefault$prefix;

WORD,
WORD,
POINTER;

rqsetdefault$user: PROCEDURE(job$t, user, excep$p) EXTERNAL;

END

DECLARE
JobSt
user
excep$p

rqsetdefault$user;

WORD,
WORD,
POINTER;

APPENDIX B-8

APPENDIX B

rqsget$connection$status: PROCEDURE(conn, conn$info$p,
excep$p) EXTERNAL;

DECLARE
conn WORD,
conn$info$p POINTER,
excep$p POINTER;

END rqsget$connection$status;

rqsget$file$status: PROCEDURE(path, file$info$p, escep$p)
EXTERNAL;

DECLARE
path
file$info$p
excep$p

END rqsget$file$status;

POINTER,
POINTER,
POINTER;

rqsload: PROCEDURE(path, load$func, job$datap, regval$p,
excep$p) WORD EXTERNAL;

DECLARE
path
load$func
job$data$p
regvalp
excep$p

END rqsload;

POINTER,
BYTE,
POINTER,
POINTER,
POINTER;

rqslookupconnection: PROCEDURE (l$name, excep$p) WORD
EXTERNAL;

DECLARE
l$name POINTER,
excep$p POINTER;

END rqslookupconnection;

rqsopen: PROCEDURE(conn, mode, share, buff$size, num$buff,
excep$p) EXTERNAL;

DECLARE
conn
mode
share
buff$size
num$buff
excep$p

END rqsopen;

WORD,
BYTE,
BYTE,
WORD,
BYTE,
POINTER;

APPENDIX B-9

APPENDIX B

rqsread$locate: PROCEDURE(conn, data$p, count, excep$p) WORD
EXTERNAL;

DECLARE
conn
data$p
count
excep$p

END rqsread$locate;

WORD,
POINTER,
WORD,
POINTER;

rqsread$move: PROCEDURE(conn, buff$p, count, excep$p) WORD
EXTERNAL;

DECLARE
conn,
buff$p
count
excep$p

END rqsread$move;

WORD,
POINTER,
WORD,
POINTER;

rqsrename$fi1e: PROCEDURE(old$path, new$path, excep$p)
EXTERNAL;

DECLARE
old$path
new$path
excep$p

END rqsrename$fi1e;

POINTER,
POINTER,
POINTER;

rqsseek: PROCEDURE(conn, mode, hiptrmove, lowptrmove,
excep$p) EXTERNAL;

DECLARE
conn
mode
hiptrmove
lowptrmove
excep$p

END rqsseek;

WORD,
BYTE,
WORD,
WORD,
POINTER;

rqsspecia1: PROCEDURE(conn, spec$func, parms$p, ioresp$p,
excep$p) EXTERNAL;

DECLARE
conn
spec$func
parms$p
ioresp$p
excep$p

END rqsspecia1;

WORD,
WORD,
POINTER,
POINTER,
POINTER;

rqstruncate$fi1e: PROCEDURE(conn, excep$p) EXTERNAL;
DECLARE

END

conn
excep$p

WORD,
POINTER;

APPENDIX B-10

rqstruncate$fi1e;

APPENDIX B

rqswrite$move: PROCEDURE(conn, buff$p, count, excep$p) WORD
EXTERNAL;

DECLARE
conn
buff$p
count
excep$p

END rqswrite$move;

WORD,
POINTER,
WORD,
POINTER;

rqswrite$update: PROCEDURE(conn, count, excep$p) WORD
EXTERNAL;

DECLARE
conn
count
excep$p

END rqswrite$update;

WORD,
WORD,
POINTER;

APPENDIX B-11

APPENDIX C

I/O REQUEST/RESULT SEGMENT

An I/O request/result segment is a data structure used to
request I/O from a device driver and to indicate completion of
an asynchronous I/O system call. Only the designer of a device
driver needs to be concerned with the interpretation of this
structure beyond its first three fields. Consequently, only the
first three fields are defined below.

When a task makes an asynchronous system call, it expects a
connection or an I/O result segment to be returned to the
mailbox speci fied by the "resp$mbox" parameter. The I/O resul t
segment includes a status field containing "E$OK" if the call
was completed successfully, or an asynchronous exceptional
condi tion code if an error occurred. The resul t segment also
contains the actual number of bytes read or written, if
appropriate.

SEGMENT STRUCTURE

The I/O request/result segment is structured as follows:

DECLARE

) ;

iors STRUCTURE(
status
unit$status
actual
actual$fill
device
unit
func
spec$func
dev$loc
buff$ptr
count
aux$ptr
link$for
link$back
resp$mbox
done

SEGMENT STRUCTURE (continued)
where:

WORD,
WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
WORD,
DWORD,
POINTER,
DWORD,
POINTER,
POINTER,
POINTER,
WORD,
BYTE

status indicates how the operation completed.
"E$OK" indicates successful completion;
"E$IO" indicates an error condition.,

C-l

APPENDIX C

SEGMENT STRUCTURE (continued)
where:

unit$status

actual

STATUS CODES

contains device-dependent error code infor
mation and is valid only if status = E$IO.
The codes that can be returned to this field
are listed in the next section of this
appendix.

is the actual number of bytes transferred.

The following table lists the asynchronous exceptionalcondition
codes returned in the status field of the I/O resul t segment.
The table lists the condition codes, their hexadecimal equiv
alents, and their interpretations.

Condition Code

E$OK

E$CONTEXT

E$DEVFD

E$DIR$$END

E$EMPTY$ENTRY

E$FACCESS

E$FEXIST

E$FLUSHING

E$FNEXIST

E$FTYPE

E$IDDR

E$IO

E$LIMIT

E$MEM

E$SHARE

E$SPACE

E$SUPPORT

Hex

OOOOH

0005H

0022H

0025H

0024H

0026H

0020H

002CH

002lH

0027H

002AH

002BH

0004H

0002H

0028H

0029H

0023H

Interpretation

System call was completed successfully.

System call invoked in illegal context.

Device and file driver incompatibility.

End of directory.

Empty directory entry.

Access to file not granted.

File already exists.

Connection is flushing requests.

File qoes not exist.

Incompatible file type.

Illegal Device Driver Request.

I/O error.

Object limit reached.

Insufficient memory.

Improper file sharing requested.

No space left.

Unsupported request.

APPENDIX C-2

APPENDIX D

EXCEPTIONAL-CONDITION CODES

The liD system checks for exceptional conditions when a system
call is invoked. When an exceptional condition occurs, the
system issues a condition code describing the error, then
either returns to the caller or passes control to an exception
handler.

Exceptional-condition codes returned asynchronously (that is,
returned in an liD result segment) are listed in Appendix C.
This appendix lists the codes for the exceptional condi tions
detected synchronously with system call invocation. These codes
are returned to the location addressed by the "excep$ptr" field
of the external-procedure declaration associated with each call
(see Appendix B). The codes are listed below with the hexa
decimal equivalents and their interpretations.

PROGRAMMING ERRORS

Condition Code Hex

EBAOCALL 8005H

E$IFOR 8020H

E$JNEXIT 0040H

E$MIXREAOMODE 80454

EMIXWRITE$MOOE 8046H

E$NHUSER

E$NOBUFF 0045H

E$NOPREFIX 8022H

E$NOUSER 8021H

E$NREAOLOCATE 0049H

E$NUMBUFF 0046H

Interpretation

Call invoked illegally.

Illegal file driver request.

Job containing other jobs tried
to exit.

REAO$LOCATE and REAO$MOVE on
same connection.

WRITE$MOVE and WRITE$UPDATE on
same connection.

Not high-level user object.

No SIOS buffers specified.

No default prefix.

No default user.

WRITE$UPDATE not preceded by
READ$ LOCATE.

Too many SIOS buffers specified.

0-1

APPENDIX 0

PROGRAMMING ERRORS (continued)

Condition Code Hex

E$PARAM 8004H

E$PREFIX$SYNTAX 804BH

D$NAME$USED 804CH

ENOTDEV$NAME 8040H

ENOTCONN$NAME 804EH

E$TYPE 8002H

ENVIRONMENTAL CONDITIONS

E$CANNOT$CLOSE

E$CONTEXT

E$EXIST

E$FACCESS

E$FEXIST

E$FNEXIST

E$FTYPE

E$LIMIT

E$MEM

ENOTCONFIGURED

E$SPACE

E$SUPPORT

0044H

0005H

0006H

0026H

0020H

002lH

0027H

0004H

0002H

0008H

0029H

0023H

Interpretation

Illegal parameter.

Illegal prefix syntax.

Name already in use.

Not a valid device name.

Not a valid ~onnection name.

Specified object is wrong type.

Asynchronous I/O error while
closing file.

Call invoked in illegal context.

Object referenced by token does
not exist.

File access not granted.

File already exists.

File does not exist.

Incompatible- file type.

Calling job or system
reached object limit.

Insufficient memory.

No space left.

has

Combination of parameters not
supported.

APPENDIX 0-2

APPENDIX 0

LOADER CONDITION CODES

The following condition codes are unique to the loader and are
returned by calls S$LOAD.

Condition Code

EABSADDRESS

EBADGRP

EBADHDR

EBADSEG

E$CHECKSUM

E$EOF

E$FIXUP

E$LFUNC

ENOLMEM

ENOMEM

ERECFMT

ERECLENGTH

ERECTYPE

EREGINIT

ESEGALLOC

Hex

0060H

006lH

0062H

0063H

0064H

0065H

0066H

0067H

0068H

0069H

006AH

006BH

006CH

006DH

006EH

Interpretation

Invalid absolute load address.

Invalid group definition record.

Invalid header record in object
file.

Invalid segment definition record.

Checksum error.

Unexpected end of file.

Invalid fixup.

Invalid load function requested.

Insufficient memory to run loader.

Insufficient memory to load and
run task.

Unspecified
record.

error in

Ivalid record length.

Invalid object-record type.

object

Uninitialized register detected;
task is not created.

Segment allocation error.

APPENDIX 0-3

GLOSSARY

ACCESS MASK. A byte specifying the access rights to a file.
Each bi t set to one permi ts the corresponding access. Possible
values are:

Bit
-0-

I
2
3

4-7

Named Data Files
Delete
Read
Append
Update
Reserved

Named Directory Files
Delete
Display
Add Entry
Change Entry
Reserved

CONDITION CODE. A code returned when a system call is issued.
"E$OK" indicates successful completion of the call. All other
codes indicate exceptional or error conditions.

CONNECTION. An RMX/86 object established when a device is
attached (device connection) or a file is created or attached
(file connection). A connection contains information needed to
access the device or file, or to perform I/O on the file.

DE F AU L T PRE F I X • A use r - s p e c i fie d par a.m e t e r (to ken for a con -
nection) which can serve as the "prefix" parameter in system
calls issued within the job where the default prefix is
specified.

DEFAUL T USER. A user-speci fied parameter (token for a user
object) which can serve as the "user" parameter in system calls
issued within the job where the default user is specified.

DEVICE. Any of a broad spectrum
tradi tional physical uni ts, such
thermistor.

of traditional and non-
as a line printer or

DIRECTORY FILE. A named file whose entries include the names
of other directories or named data files and information for
accessing these files.

EXCEPTIONAL CONDITION. A condition indicating a result other
than successful completion of a system call. The I/O system
flags this situation by issuing an exceptional-condition code.

FILE-ACCESS PROTECTION. The I/O system mechanism that limits
access to named files to certain speci fied users. The speci fic
access rights granted to these users can be limi ted also. (see
ACCESS MASK).

FILE DESCRIPTOR. An I/O system internal structure containing
information about named files.

GLOSSARY-l

GLOSSARY

FILE GRANULARITY. The size (in bytes) of each logical block to
be allocated to a file (for any allocations after its ini tial
preallocation).

FILE NAME. A 1-14 ASClI-characater name used to designate a
named file. This is the last name in the subpath string speci
fied when the file is created. The file name is cataloged in
the file's parent directory.

JOB. An operating environment and resource bank for tasks.

LOGICAL NAME. A 1-12 ASCII-character symbolic name assigned to
a connection object or user object at the hybrid or synchronous
levels of I/O operation. This name can be used instead of a
token to refer to these objects in subsequent system calls.

LOGICAL-NAME DIRECTORY. A job-level directory used to catalog
logical names.

NAMED FILE. A collection of bytes residing on a random-access
storage device. A named file can be ei ther a data file or a
directory file.

PARAMETER. An item in a PL/M system call syntax description,
to be replaced with an acutal value when the call is issued.

PARENT DIRECTORY. That directory containing the file name and
access information for a given file.

PATH. The parameter(s) specified to locate a named file within
a directory tree. It consists of PREFIX and a SUBPATH .

PHYSICAL FILE. A file associated with a physical device other
than a random-access storage device.

PREFIX. A parameter containing a token for a connection or the
logical name for such a token. In the case of a physical or
stream file, or where the SUBPATH parameter is null in a ref
erence to a named file, the prefix specifies a file being
accessed. If the SUBPATH is not null, the prefix indicates the
starting point in a directory tree search for the named file
being accessed. (See SUBPATH).

RESPONSE MAILBOX. A mailbox used at the asynchronous level to
synchronize I/O operations. The result of an asynchronous
system call is returned to a response mailbox designated by the
caller.

RESULT SEGMENT. A status segment returned to a designated
RESPONSE MAILBOX when an asynchronous system call has completed
operation.

GLOSSARY-2

GLOSSARY

ROOT DIRECTORY. The base directory in a hierarchical directory
tree.

STREAM FILE. A file mechanism allowing tasks to communicate
wi th one another wi thout the intervention of external devices
or media.

SUBPATH. A parameter that points to a string describing the
route from the starting point in a directory tree (designated
by a PREFIX parameter) to the named file being sought. If
subpath points to a null string, the PREFIX i tsel f designates
the desired file. (See PATH and PREFIX).

SYSTEM CALL. The means by which the applications programmer
accesses the facilities of the RMX/86 I/O system.

TASK. The active principle within a job that performs the
operations required of the job.

TOKEN. A 16-bit item used to designate an RMX/86 object. Users
exchange tokens in system calls to gain access to these
objects. (See CONNECTION and USER OBJECT).

USER OBJECT. An RMX/86 object that includes not only the
identification of a given user, but also identifies all groups
to which he belongs.

VOLUME. The physical storage medium used by a random-access
storage device, such as a diskette or hard-disk platter.

VOLUME LABEL. A record on a volume containing information
needed to support hierarchical directory trees and named files.
This label is used internally by the I/O system.

GLOSSARY-3

INDEX

A$ATTACH$FILE, 2-1, 2-4, 8-8
A$CHANGE$ACCESS, 1-6, 2-1, 2-2, 8-10
A$CLOSE, 2-3, 3-3, 8-12
A$CREATE$OIRECTORY, 1-6, 2-1, 2-4, 8-13
A$CREATE$FILE, 1-6, 2-1, 2-4, 8-15
A$OELETE$CONNECTION, 2-4, 8-18
A$OELETE$FILE, 2-4, 8-19
AGETCONNECTION$STATUS, 2-2, 3-3, 8-21
AGETOIRECTORY$ENTRY, 2-2, 3-3, 8-23
AGETFILE$STATUS, 2-2, 8-25
AGETPATH$COMPONENT, 2-2, 3-3, 8-30
A$OPEN, 2-3, 3-3, 8-31
A$REAO, 2-3, 3-3, 8-32
A$RENAME$FILE, 2-1, 2-2, 8-35
A$SEEK, 2-3, 3-3, 8-37
A$SPECIAL, 2-4, 3-3, 8-38
A$TRUNCATE, 2-4, 3-3, 8-40
A$WRITE, 2-3, 3-3, 8-41
BOOLEAN, 8-6
BYTE, 8-6
CONNECTION, 8-6
CREATEIOJOB, 5-1, 5-2, 7-1, 8-43
OELETE$PACKAGE, 7-1, 8-47
EABSAOORESS, 0-3
EBAOCALL, 0-1
EBAOGRP, 0-3
EBAOHOR, 0-3
EBAOSEG, 0-3
E$CANNOT$CLOSE, 0-2
E$CHEKSUM, 0-3
E$CONTEXT, C-2, 0-2
E$OEVFO, C-2
EOIRENO, C-2
E$EMPTY$ENTRY, C-2
E$EOF, 0-3
E$EXIST, 0-2
E$FACESS, C-2, 0-2
E$FEXIST, C-2, 0-2
E$FIXUP, 0-3
E$FLUSHING, C-2
E$FNEXIST, C-2, 0-2
E$FTYPE, C-2, 0-2
E$IOOR, C-2
E$IFOR, 0-1
E$IO, C-2
E$JNEXIT, 0-1
E$LFUNC, 0-3

INDEX-l

E$LIMIT, C-2, 0-2
E$MEM, C-2, 0-2
EMIXREAO$MOOE, 0-1
EMIXWRITE$MOOE, 0-1
E$NAME$USEO, 0-2
E$NHUSER, 0-1
ENOLMEM, 0-3
ENOMEM, 0-3
E$NOBUFF, 0-1
E$NOPREFIX, 0-1
ENOTCONFIGUREO, 0-2
ENOTCONN$NAME, 0-2
ENOTOEV$NAME, 0-2
E$NOUSER, 0-1
E$NREAOLOCATE, 0-1
E$NUMBUFF, 0-1
E$OK, 8-6, C-2
E$PARAM, 0-2
E$PREFIX$SYNTAX, 0-2
ERECFMT, 0-3
ERECLENGTH, 0-3
ERECTYPE, 0-3
EREGINIT, 0-3
ESEGALLOC, 0-3
E$SHARE, C-2
E$SPACE. C-2, 0-2
E$SUPPORT, C-2, 0-2
E$TYPE, 0-2
EXITIOJOB, 5-1, 7-1, 8-48
GET$OEFAULT$PREFIX, 5-2, 8-51
GET$OEFAULT$USER, 5-2, 8-52
GET$TIME, 6-1, 8-53
GET$TIME$STRING, 6-1, 8-54
H$ATTACH$FILE, 3-1, 3-3, 8-55
H$CHANGE$ACCESS, 1-6, 3-2, 8-56
H$CREATE$OIRECTORY, 1-6, 3-1, 3-3, 8-6
H$CREATE$FILE, 1-6, 3-1, 3-3, 8-60
H$OELETE$CONNECTION, 3-2, 3-3, 8-62
H$DELETE$FILE, 3-2, 3-3, 8-63
HGETFILE$STATUS, 3-2, 8-64
H$LOOK$UP$CONNECTION, 3-2, 8-69
H$RENAME$FILE, 3-2, 8-70
liD request segment, C-l
liD result segment, 8-7, C-l
INSPECT$PACKAGE, 7-1, 8-71
LOC86, 7-1
PL/M data types, 8-6
PL/M external procedures, B-1 to B-l1
PL/M interface, 8-1 to 8-110
POINTER, 8-6

INDEX-2

RMX/86 objects, 8-6
S$ATTACH$FILE, 4-1, 4-2, 4-5, 8-72
S$CHANGE$ACCESS, 1-6, 4-2, 8-74
S$CLOSE, 4-3, 4-4, 8-76
S$CREATE$DIRECTORY, 1-6, 4-1, 4-2, 8-77
S$CREATE$FILE, 1-6, 4-1, 4-2, 4-5, 8-79
S$DELETE$CONNECTION, 4-4, 4~5, 8-81
S$DELETE$FILE, 4-4, 4-5, 8-82
SGETCONNECTION$STATUS, 4-2, 4-3, 8-5
SGETFILE$STATUS, 4-2, 4-3, 8-88
S$LOAD, 7-1, 8-93
S$LOOK$UP$CONNECTION, 4-2, 4-3, 8-98
S$OPEN, 4-1, 4-2, 4-4, 8-99
S$READ$LOCATE, 4-3, 4-4, 8-101
S$READ$MOVE, 4-3, 8-103
S$RENAME$FILE, 4-2, 8-104
S$SEEK, 4-3, 8-105
S$SPECIAL, 4-4, 8-106
S$TRUNCATE$FILE, 4-4, 4-5, 8-108
S$WRITE$MOVE, 8-109
S$WRITE$UPDATE, 4-3, 4-4, 8-110
SET$DEFAULT$PREFIX, 5-2, 8-83
SET$DEFAULT$USER, 5-2, 8-84
STRING, 8-6
TOKEN, 8-6
USER, 8-6
WORD, 8-6
WORLD, 1-6
access list, 1-6
access protection, 1-6
access rights, 1-6, 2-2, 3-2, 4-2
applications programmer, 1-7
asynchronous system calls, 1-7, 2-1 to 2-4, 3-3, 5-2, 8-2, 8-7
attach$file, 1-1
attaching a device, 1-3
blocking, 1-7
buffers, 1-7, 2-3, 4-1, 4-4
children jobs, 5-1
closing a connection, 1-3, 2-3, 2-4, 4-3, 4-4, 4-5
condition code, 8-6
configuration, 6-1
connection, 1-1, 2-1, 2-2, 3-2, 4-3
create$directory, 1-1
create$file, 1-1
creating connections

to data files, 2-1, 3-1, 4-1, 4-2, A-2
to directory files, 2-1, 3-1, 4-2, A-2

creating jobs, 5-1
date, 6-1, A-I
deblocking, 1-7

INDEX-3

default buffer size, 4-1, 4-2
default path prefix, 5-1, 5-2, 8-2, 8-4
default user objects, 3-1, 4-1, 5-1, 5-2, 8-2
deleting, 2-4, 3-2, 3-3, 4-4, 4-5, 5-1
deleting a connection, 1-3, 2-4, 3-2, 3-3, 4-5, 5-1
deleting a file, 2-4, 3-2, 3-3, 4-4, 4-5
deletion system calls, A-5
device, 1-1, 1-4
device connection, 8-2
device-level system calls, A-4
directory entries, 2-2
directory tree, 1-4, 2-3, 8-2
directory-tree path, 1-4
end of file, 2-4, 4-5
file liD system calls, A-3
file access protection, 1-6
file connection, 1-1, 3-1, 8-2
file connection status, 2-2, 3-2, 4-2, 4-3
file names, 1-4, 2-2, 8-2
file pointer, 2-3, 2-4, 4-3, 4-5
file status, 2-2, 3-2, 4-2, 4-3
files, 1-1, 2-2, 3-2
files marked for deletion, 2-4, 3-3
groups of users, 1-6
hybrid system calls, 1-7, 3-1 to 3-3, 5-2, 8-2, 8-4
job oriented system calls, 5-1, 5-2, A-I
jobs, 5-1, 5-2
levels of system calls, 1-6
loader, 7-1, A-2
logical name directory, 3-1 to 3-3, 4-1, 4-2, 4-5, 8-2
logical names, 1-7, 3-1 to 3-3, 4-1 to 4-3, 4-5, 5-1, 8~2, 8-4
mailboxes, 1-7, 2-1, 3-1, 4-1, 5-1, 8-4, 8-7
named data files, 1-4, 2-1 to 2-4, 3-1 to 3-3, 4-1 to 4-3, 4-5
named directory files, 1-4, 2-1, 2-2, 2-4, 3-1 to 3-3, 4-2, 4-5
named files, 1-1, 1-4, 2-1 to 2-4, 3-1 to 3-3, 4-1 to 4-4, 4-5
null subpath, 1-4
object file, 7-1
opening a connection, 1-3, 2-3, 4-3
overlapped operations, 4-1
owner of a file, 5-1
package object, 7-1
parent directory, 1-4, 2-2, 2-3, 3-2, 4-2, 8-4
parent jobs, 5-1
path, 1-4, 3-1, 4-1, 5-1, 5-2, 8-2
path syntax, 8-2 to 8-4
physical devices, 1-3
physical files, 1-1, 1-3, 2-1 to 2-4, 3-1, 3-2,

4-1, 4-3, 4-4, 8-2
prefix, 1-4, 3-1, 4-1, 5-1, 5-2, 8-2
random access, 2-3, 4-3

INDEX-4

random access device, 1-3, 1-4,
random access volume, 1-4
reading, 2-3, 4-3, 4-4
renaming files, 2-2, 3-2, 4-2
result segments, 2-1, C-l
root directory, 1-4, 2-3, 8-3, 8-4
rqaattach$file, 8-1
rqachange$access, 8-1
rqaclose, 8-1
rqaconnection$status, 8-2
rqacreate$directory, 8-1
rqacreate$file, 8-2
rqadelete$connection, 8-2
rqadelete$file, 8-2
rqaget$directory$entry, 8-2
rqaget$file$status, 8-3
rqaget$path$component, 8-3
rqaopen, 8-3
rqaread, 8-3
rqarename$file, 8-4
rqaseek, 8-4
rqaspecial, 8-3
rqatruncate, 8-4
rqawrite, 8-4
rq$create$IO$job, 8-4
rq$delete$package, 8-5
rq$exit$IO$job, 8-5
rqgetdefault$prefix, 8-5
rqgetdefault$user, 8-5
rqgettime, 8-5
rqgettime$string, 8-5
rqhattach$file, 8-5
rqhchange$access, 8-6
rqhcreate$directory, 8-6
rqhcreate$file, 8-6
rqhdelete$connection, 8-6
rqhdelete$file, 8-6
rqhget$file$status, 8-6
rqhlookupconnection, 8-7
rqhrename$file, 8-7
rq$inspect$package, 8-7
rqsattach$file, 8-7
rqschange$access, 8-7
rqsclose, 8-7
rqscreate$directory, 8-8
rqscreate$file, 8-8
rqsdelete$connection, 8-8
rqsdelete$file, 8-8
rqsget$connection$status, 8-9
rqsget$file$status, 8-9

INDEX-S

rqsload, 8-9
rqslookupconnection, 8-9
rqsopen, 8-9
rqsread$locate, 8-10
rqsread$move, 8-10
rqsrename$file, 8-10
rqsseek, 8-10
rqsspecial, 8-10
rqstruncate, 8-10
rqswrite$move, 8-11
rqswrite$update, 8-11
rqsetdefault$prefix, 8-8
rqsetdefault$user, 8-8
seeking, 2-3, 4-3
stream file, 1-1, 1-3, 1-4, 2-1 to 2-4, 3-1 to 3-3,

4-1, 4-3, 8-2
subpath, 1-4, 3-2, 4-2, 5-2, 8-2
synchronous system calls, 1-7, 4-1 to 4-5, 5-2, 8-2, 8-4
system calls, 1-1
time, 6-1, A-I
tokens, 1-3, 3-2, 4-3
tree of directories, 1-4
truncating, 2-4, 4-5
updating, 4-4
user, 1-6, 5-1
user object, 1-6, 1-7, 3-1, 4-1, 5-2, 8-2
user-id, 1-6
user/access list, 1-6
volume, 1-3, 3-2, 4-2
writing, 2-3, 4-4

INDEX-6

REQUEST FOR READER'S COMMENTS

RMX/86 I/O System
Reference Manual

9803123-01

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ___________________________ DATE ______ _

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS __ _

CITY --___________________ STATE _____ ZJP CODE_~ __ _

Please check here .t you require a written repty. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRSTCLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY AoDHc::;~U::_

I ntel Corporation
Attn: Technical Publications
3065 Bowers Avenue
Santa Clara, CA 95051

I " III NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

