
iRMX 86™ NUCLEUS, TERMINAL
HANDLER, AND DEBUGGER

REFERENCE MANUAL

Manual Number 9803122-02

Copyright © 1980 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-1 04. 9(a)(9).

No part of this document may be copied or reproduced in any fonn or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel
products:

BXP
CREDIT
i
iCE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megachassis
Micromap
Multibus
MULTIMODULE
PROMPT
Promware
RMX/80
UPI
pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, or MCS and a numerical suffix.

ii I A273/1180/3K DD I

PREFACE

iRMX 86 provides an operating system for Intel's iSBC 86/12
single board computers. It consists of a Nucleus, a Terminal
Handler, a Debugger, and an input/output system (IDS).

The Nucleus, Terminal Handler, and Debugger Reference Manual is
one of eight manuals supporting the iRMX 86 Operating System.
The other manuals are:

Introduction to the iRMX 86 Operating System
iRMX 86 Installatlon GUlde for ISIS-II Users
iRMX 86 I/O System Reference Manual
iRMX 86 System Programmer's Reference Manual
iRMX 86 Configuration Guide for ISIS-II Users
Guide to Writing Device Drivers for the iRMX 86

I/O System
iRMX 86 Programming Techniques

9803124
9803125
9803123

142721
9803126

142926
142982

This manual is intended primarily as a source of Nucleus,
Terminal Handler, and Debugger reference materials; it is only
secondarily for instruction. We recommend reading the
introductory manual prior to reading this manual.

The iRMX 86 manual set is aimed at two classes of readers:
application programmers and system programmers. Accordingly,
reference information is separated by class. In particular,
this manual and the I/O system manual are for application
programmers, while systems-oriented features in both the
Nucleus and the I/O System are described in the System
Programmer's manual.

The following manuals provide valuable background information:

iSBC 86/12A Hardware Reference Manual
ISIS-II User's Guide
PL/M-86 Programming Manual
ISIS-II PL/M-86 Compiler Operator's Manual
The 8086 Family User's Manual

iii

9803074
9800306
9800466
9800478
9800722

CONTENTS

PREFACE

CHAPTER 1
OVERVIEW
Nucleus ..•.....•.
Terminal Handler.
Debugger

CHAPTER 2
NUCLEUS OVERVIEW
Introduction.
Objects.

Tasks •.
Jobs
Segments.
Mailboxes.
Semaphores ..

Handlers
Exception Handlers ..
Interrupt Handlers •.

CHAPTER 3
JOB MANAGEMENT
Job Tree and Resource Sharing.
Job Creation
Job Deletion•.•.
System Calls For Jobs ..

CHAPTER 4
TASK MANAGEMENT
Task States

The Asleep State.
The Suspended State ...
The Asleep-Suspended State.
The Ready and Running State ..

Task State Transitions ..•..
Additional Task Attributes.
Task Resources•..
System Calls for Tasks.

CHAPTER 5
EXCHANGE MANAGEMENT
Mailboxes

Mailbox Queues
Mailbox Mechanics.
System Calls for Mailboxes.

Semaphores
Semaphore Queue
Semaphore Mechanics.
System Calls for Sempahores ..

iv

PAGE
.iii

.1-1

.1-1
. .. 1-1

.2-1

.2-2
• •••••••• 2 - 2

.2-3

.2-4

.2-4

.2-4

.2-5
. 2-5

.2-5

. ... 3-1
.3-3
.3-3
.3-3

· .4-1
.4-1

. .. 4-1
.4-1
.4-2
.4-2

. .. 4-4
.4-4

. .. 4-4

. ... 5-1
.5-1
.5-1

· .5-2
· .5-3
.5-3

. .. 5-3
.5-4

CONTENTS (continued)

PAGE
CHAPTER 6
MEMORY MANAGEMENT
Segments .. 6-1
Memory Pools•................ 6-1
Controlling Pool Size•..•................ 6-2
Movement of Memory Between Jobs•.•............. 6-2
Memory Allocation ... 6-3
System Calls for Segments•................ 6-4

CHAPTER 7
OBJECT MANAGEMENT ... 7-l
System Calls for Any Objects•............ 7-2

CHAPTER 8
EXCEPTIONAL CONDITION MANAGEMENT
Types of Exceptional Conditions•....... 8-1
Exception Handlers•.........•........•....... 8-1
Assigning An Exception Handler 8-2
Invoking An Exception Handler ..•.......................... 8-2
Handling Exceptions In-Line•................ 8-4
System Calls For Exception Handlers•................ 8-4

CHAPTER 9
INTERRUPT MANAGEMENT
Interrupt Mechanisms•....•........... 9-1

The Interrupt Vector Table 9-l
Interrupt Levels•..................... 9-1
Disabling Interrupts•.......................... 9-2

Interrupt Handlers and Interrupt Tasks 9-3
Setting Up An Interrupt Handler•................ 9-3
Using an Interrupt Handler 9-4
Using and Interrupt Task•............ 9-4

Handling Level 7 Interrupts•................ 9-7
Examples of Interrupt Servicing 9-7
System Calls for Interrupts 9-l0

CHAPTER 10
NUCLEUS SYSTEM CALLS lO-l
Command Directory•........... 10-2
Calls for Jobs ... 10-2
Calls for Tasks .. 10-2
Calls for Mailboxes 10-2
Calls for Semaphores .•.................................... lO-3
Calls for Segments and Memory Pools 10-3
Calls for All Objects•.......................... 10-3
Calls for Exception Handlers ..•.......................... lO-4
Calls for Interrupt Handlers, Tasks, and Levels lO-4

The. System Calls .. 10-5
Catalog Object ... 10-5
Create Job ... 10-7
Create Mailbox ... 10-13
Create Segment ... 10-14
Create Semaphore•.................. 10-15
Create Task .. 10-17

v

CHAPTER
Delete
Delete
Delete
Delete

10 (continued)
Job
Mailbox ..
Segment ..
Semaphore.

Delete Task ..
Disable•.
Enable
Enter Interrupt.
Exit Interrupt ..

CONTENTS (continued)

Get Exception Handler.
Get Level•.
Get Pool Attrib.
Get Priority
Get Size•.
Get Task Tokens.
Get Type ...•..
Lookup Object.
Offspring
Receive Message.
Receive Units ...
Reset Interrupt ..
Resume Task ••.

-Send Message.
Send Units •..
Set Exception Handler.
Set Interrupt .•..•
Set Pool Minimum.
Signal Interrupt.
Sleep
Suspend Task •.....
Uncatalog Object.
Wait Interrupt.

CHAPTER 11
TERMINAL HANDLER
General Information

PAGE

..... 10-20
. .. 10~22
..10-23
.10-24
.10-25

. .. 10-26
..10-27
..10-28

.10-30

.10-31

.10-33

.10-34
. ... 10-36

..10-37
. .. 10-38

.10-39
..10-40

... 1 0-42~
.10-43
.10-45

..10-47
.10-48

. ... 10-49
. 10-51

..10-52

..10-54

..10-58
. 10-59

. 10-60
. ... 10-61

. 10-62
· .10-63

.11-1

Using A Terminal With the iRMX 86 Operating System.
. ... 11-1

.11-1
..11-2
..11-2

. ...• 11-3
..11-3

. ... 11-3
· .11-4

. .. 11-4

. .• 11-4

How Normal Characters are Handled .•.........
How Special Characters are Handled

Rubbing Out a Previously-Typed Character ..
Displaying the Current Line ..
Deleting the Current Line ..
Sending an Empty Message
Signalling the End of a Line of Input ..

Output Control •..•.
Suspending Output.
Resuming Output
Deleting or Restarting Output •.

Program Control•...................
Calling a User-written Procedure Manually•..

Setting A Baud Rate ...•.•..
Programming Considerations.

Output .•••••.
Input •.

vi

· .11-4
· .11-5
.11-5

.• 11-5
. 11-5

..11-5
. 11-6

..11-7
. .. 11-8

CHAPTER 12
DEBUGGER

CONTENTS (continued)

PAGE

General Infor~ation .•............•...............•...••.•. 12-1
Debugger Capabilities•......•.......••...••.•. 12~1
Debugging Capabilities in the ICE-86 Emulator .•.•..•.•... 12-2
Debugging Capabilities in the iSBC 86/12A Monitor ..•...•. 12-2
Invoking the Debugger•....•.•........•....•.•. 12-2
Debugger Input and Output•.............••..•••.•. 12-3
Syntax of Debugger Commands•..•.•... 12-4
Pictorial Representation of Syntax•.....•... 12-4
Special Symbols for the Debugger •..............••..••.... 12-5

Debugger Commands •.......•.....•.................•...••..• 12-8
Breakpoint Control•.•...•...........•..•.•..• 12-8
Establishing a Breakpoint•................•...• 12-11
Changing a Breakpoint•....•..• 12-13
Deleting a Breakpoint•..• 12-14
Examining a Breakpoint•..........•..........• 12-15
Viewing the Breakpoint List •.....•...............•..•..• 12-16
Viewing the Breakpoint Parameters .•...............•..... 12-17
Removing a Task from the Breakpoint List•.••.•..• 12-19
Establishing the Breakpoint Task•... 12-19
Inquiring as to the Breakpoint Task•.......•..• 12-20
Viewing the Breakpoint Task's Registers•........... 12-21
Altering the Breakpoint Task's Registers•..••.• 12-23

Observation and Manipulation Commands 12-24
Examining or Modi fying Memory •..••.....•....•...•...•..• 12-25
Examining System Objects .•.•.....•.....................• 12-33
Viewing iRMX 86 System Lists •....•.•............••...•.• 12-40
Exiting the Debugger •.....•••...••........•.....•••....• 12-44

Using Symbolic Names While Debugging•........••..••.• 12-44
Defining a Numeric Variable •........•..•.••.....••.•••.• 12-45
Changing a Numeric Variable••.....•.•..•...••.•.•.• 12-45
Deleting a Numeric Variable .•..........•.•......••..•••• 12-46
Viewing Numeric Variables ..•....•...•....•....•.•....••• 12-46

APPENDIX A
iRMX 86 Data Types•.••••.•.••••..•..••••..•••••••.•.•• A-I

APPENDIX B
iRMX 86 Type Codes•....•••.•.•..•..•..••.••••.•••• B-l

vii

TABLES

PAGE

8-1 Conditions and their Codes •...••..................... 8-3
9-1 Interrupt Levels Disabled For Running Task 9-2
9-2 The Relationship between External Levels and

Internal Task Priorities•.........•..... 9-7
9-3 An Example of Interrupt Handling Without an

Interrupt Task•...••....................• 9-8
9-4 An Example of Interrupt Handling with an

Interrupt Task•....•..........•.......... 9-9
11-1 Special Character Summary•..... 11-2

ILLUSTRATIONS

3-1 A Job .. 3-2
4-1 Task State Transi tion Diagram•................ 4-3
6-1 Comparison of Job and Memory Hierarchies 6-2
6-2 Memory Movement Diagram ..•......... ~ •.............•.. 6-3
9-1 Flow Chart of Interrupt Handling•...•.......... 9-6
11-1 Input and Output Mailbox Interfaces 11-6
11-2 Request Message Format .•........•.•.......•.......... 11-7
12-1 Syntax Diagrams for Term and Expression 12-7
12-2 Syntax Diagram for Item•.•.•.•..•......•........ 12-7
12-3 Syntax Diagram for Establishing a Breakpoint 12-12
12-4 Syntax Diagram for Changing a Breakpoint 12-13
12-5 Syntax Diagram for Deleting a Breakpoint 12-14
12-6 Syntax Diagram for Examining a Breakpoint 12-15
12-7 Syntax Diagram for Viewing the Breakpoint List 12-16
12-8 Syntax Diagram for Viewing the Breakpoint

Parameters•..... 12-1 7
12-9 Syntax Diagram for Removing a Task From the

Breakpoint List•.............•.......... 12-19
12-10 Syntax Diagram for Establishing the Breakpoint

Task•.................................... 12-20
12-11 Syntax Diagram for Inquiring as to the Breakpoint

Task ... 12-20
12-12 Syntax Diagram for Viewing the Breakpoint Task's

Registers•...•....••.................... 12-22
12-13 Syntax Diagram for Altering the Breakpoint Task's

Registers •...••......................•...•... 12-23
12-14 Syntax Diagram for Examining or Modifying Memory 12-26
12-15 Syntax Diagram for Examining System Objects ..•....... 12-33
12-16 An iRMX 86 Job Report .•..•........................... 12-34
12-17 An iRMX 86 Task Report•.........•............. 12-36
12-18 An iRMX 86 Mailbox Report 12-38
12-19 An iRMX 86 Semaphore Report 12-39
12-20 An iRMX 86 Segment Report•....................... 12-40
12-21 Syntax Diagram for Viewing iRMX 86 System Lists 12-41
12-22 Syntax Diagram for Exiting the Debugger 12-44
12-23 Syntax Diagram for Defining a Numeric Variable 12-45
12-24 Syntax Diagram for Changing a Numeric Variable•.. 12-45
12-25 Syntax Diagram for Deleting a Numeric Variable ...•... 12-46
12-26 Syntax Diagram for Viewing Numeric Variables .•....•.. 12-46

viii

CHAPTER 1. OVERVIEW

The iRMX 86 Nucleus, Terminal Handler, and Debugger constitute
a useful set of iRMX 86 features for development purposes. The
Nucleus is required in every application system. The Terminal
Handler and Debugger are helpful during development but are
frequently omitted thereafter.

NUCLEUS

The Nucleus is the core of every iRMX 86 application system.
Among the activities of the Nucleus are the following:

• Supplying scheduling functions.

• Controlling access of tasks to system resources.

• Providing for communication between tasks.

• Enabling the system to respond to external events.

TERMINAL HANDLER

The Terminal Handler provides a real-time, asynchronous
interface between your terminal and tasks running under the
supervisinn of the Nucleus. The Terminal Handler provides the
following features:

• Line-editing.

• Control characters for suspending and resuming output at
the terminal.

• A means of awakening the Debugger.

DEBUGGER

The Debugger is designed specifically for debugging and
monitoring systems running under the supervision of the
Nucleus. A spacial debugger is very helpful in debugging such
systems, because their real-time and multi-tasking
characteristics re er inadequate many ordinary debugging
techniques. The iRM 86 Debugger is sensitive to the data
structures used by the Nucleus, and it can give "snapshots" of
tasks at critical moments, while interfering minimally with the
activities of the system being tested. It can also be used to
alter the contents of memory.

1-1

OVERVIEW

If desired, the Debugger can be included in a debugged
application system for troubleshooting in the field. If it is
included, the Debugger requires only the support of the Nucleus.

1-2

CHAPTER 2. NUCLEUS OVERVIEW

INTRODUCTION

The iRMX 86 Nucleus is one of two major software components of
the iRMX 86 Operating System. The other major component, the
lID System, is optional. The Nucleus, however, is required
because it is the heart of the system.

The Nucleus provides the building blocks from which the lID
System and application systems are constructed. These building
blocks are called objects and are classified into the following
five categories called object types:

• Tasks

• Jobs

• Segments

• Mailboxes

• Semaphores

The following simplistic generalizations can be made regarding
these types:

• Tasks are the active objects in a system. They do the
. work of the system.

• Jobs are the environments in which tasks do their work.
An environment consists of tasks, the objects that tasks
use, and a directory where tasks can catalog objects so
as to make them available to other tasks.

• Segments are pieces of memory, the medium that tasks use
for communicating.

• Mailboxes are the objects to which tasks go to send or
receive segments containing data.

• Semaphores enable tasks to send signals to other tasks.

The Nucleus does extensive record-keeping of objects. It keeps
track of each object by means of one or more l6-bit values
called tokens. The Nucleus provides a number of operators,
called system calls, that tasks use to manipulate objects.

2-1

NUCLEUS OVERVIEW

When using a system call, a task supplies parameter values,
such as tokens, names, or other values, depending on the
requirements of the system call. Some of the functions that
tasks can perform with system calls are the following:

• Create objects.

• Delete objects.

• Send messages to other tasks.

• Receive messages from other tasks.

• Obtain information about objects.

• Catalog objects with descriptive names.

• Delete objects from catalogs.

OBJECTS

Each of the five object types has unique characteristics.
These characteristics are discussed in detail in the following
paragraphs.

TASKS

A task has two goals:

• Its primary goal is to do a specific piece of work.

• Its secondary goal is to obtain exclusive control of the
processor so that it can progress toward its primary goal.

One of the main activities of the Nucleus is to arbitrate the
competition that results when several tasks each want exclusive
control over the processor. The Nucleus does this by
maintaining, for each task, an execution state and a priority.
The execution state for each task is, at any given time, either
running, ready, asleep, suspended, or asleep-suspended. The
running state is a special case of the ready state. The
priority for each task is an integer value between 0 and 255,
inclusive, with 0 being the highest priority.

The arbitration algorithm that the Nucleus uses is that the
running task is the ready task with the highest (numerically
lowest) priority.

As viewed by the Nucleus, a task is merely a set of values,
some of which are the following:

2-2

NUCLEUS OVERVIEW

• The task's priority.

• The task's execution state.

• A token for the job that contains the task.

When a task becomes the running task, the following events
occur, in order:

• The values of the previously running task are saved by
the Nucleus.

• The Nucleus sets the new running task's values.

• The new task begins executing.

The task continues to run until one of the following events
occurs:

JOBS

• The task removes itself from the ready state. For
example, the task can suspend or delete itself; the task
can attempt to receive an object that has not yet been
sent, in which case it might elect to wait (in the asleep
state).

• The task (task A) is preempted when a higher priority
task (task B) becomes ready. An example of how this
could happen is that task B might previously have gone
into the asleep state for a specific period of time.
When the time period has passed, task B becomes ready
again. Because it is then the highest priority ready
task, task B becomes the running task.

A job consists of tasks and the resources they need.

The jobs in a system form a family tree, with each job, except
the root job, obtaining its resources from its parent. The
tasks in the user jobs can create additional objects. If they
create additional jobs, this enlarges the job tree.

The job tree, right after the initializaton of a system, is as
follows:

IROOT JOBI

I
1 I I

USER JOB USER JOB USER JOB
#1 #2 #N

I TASK I I TASK I I TASK I

2-3

NUCLEUS OVERVIEW

Associated with each job is an object directory. Objects are
known to the Nucleus by their respective tokens, but often, in
the code that is executed by tasks, the objects are known by
symbolic names. The object directory for a job is a place in
memory where a task can catalog an object under a name. Other
tasks that know the name can then use the directory to access
the object.

SEGMENTS

A fundamental resource that tasks need is memory. Memory is
allocated to tasks in the form of segments. A task needing
memory requests a segment of whatever Slze it requires. The
Nucleus attempts to create a segment from the memory pool given
to the task's job when the job was created.

If there is not enough memory available, the Nucleus will try
to get the needed memory from ancestors of the job. In this
respect, the tree-structured hierarchy of jobs is instrumental
in resource distribution.

MAILBOXES

A mailbox is one of two types of objects that can be used for
intertask communication. When task A wants to send an object
to task B, task A must send the object to the mailbox, and task
B must visit the mailbox, where it has the option of waiting
for any desired length of time. Sending an object in this
manner can achieve various purposes. It might be a segment
that contains data needed by the waiting task. On the other
hand, the segment might be blank, and sending it might
constitute a signal to the waiting task. Another reason to
send an object might be to point out the object to the
receiving task.

SEMAPHORES

A semaphore is a custodian of abstract "units". It dispenses
units to tasks that request them, and it accepts units from
ta"sks. .',

An example of typical semaphore use is mutual exclusion.
Suppose your application system contains one I/O device which
is being used for output by multiple tasks. To ensure that
only one of these tasks can use the device at a given time, you
can establish a semaphore which has one unit and require that
tasks obtain the unit before using the device. A task wanting
to use the device would request the unit from the semaphore.
When it gets the unit, it can use the device and then return
the unit to the semaphore. Because the semaphore has ~o units
while the task is using the device, other tasks are effectively
excluded from using the device.

2-4

NUCLEUS OVERVIEW

HANDLERS

Two kinds of events can be handled specially. The remainder of
this chapter describes the handlers for these events.

EXCEPTION HANDLERS

Tasks occasionally make errors. If an error occurs during an
iRMX 86 system call, it causes an exceptional condition. The
occurrence of an exceptional condition can, if desired, cause a
transfer of control to the exception handler associated with
the current task. The exception handler is a procedure that
typically deals with the problem by one of the following
methods:

• Correcting the cause of the problem and trying again.

• Merely logging the error.

• Deleting the task that caused the error.

In regard to exception handlers, the designer of an
iRMX 86-based system has two kinds of decisions that must be
made for each task. The first decision concerns the choice of
exception handlers. The task can have its own custom exception
handler, it can use the exception handler for the job to which
it belongs, or it can use the Intel-provided System Exception
Handler. Second, there are two categories of exceptional
conditions, programmer errors and environmental conditions.
Each task can be set up so that control goes to an exception
handler in case of

• programmer errors only,

• environmental conditions only,

• in both cases, or

• never.

If control is not directed to an exception handler, the
responsibility for handling the exception falls upon the task.

INTERRUPT HANDLERS

To function effectively as a real-time system, an iRMX 86
application system must be responsive to external events. An
interrupt handler, one of which is required for each source of
external events, is a procedure that is invoked by hardware or
software for the purpose of responding to an asynchronous
event. The handler takes control immediately and services the
interrupt. When the interrupt handler is finished servicing
the interrupt, it surrenders the processor, which returns to
the interrupted procedure.

2-5

CHAPTER 3. JOB MANAGEMENT

A job is an environment in which iRMX 86 objects such as tasks,
mailboxes, semaphores, segments, and (offspring) jobs reside.
In addition, a job has an object directory and a pool of
memory. The job's memory pool provides the raw material from
which objects can be created by the tasks in the job. Figure
3-1 illustrates the elements of a job.

Applications consist of one or more jobs. Jobs are independent
but they may share resources. Each job has its own tasks and
may have its own object directory. Objects may be shared
between jobs, although each object is contained in only one job.

The programmer must decide whether tasks belong in the same
job. In general, you should place tasks in the same job if:

• they have similar or related purposes

• they share many resources

• they have similar lifespans

JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tree. The
root is a job that is provided by the Nucleus. The remaining
jobs, including jobs that are created dynamically while the
system runs, are descendents of the root job. A job containing
tasks that create other jobs is a parent job. A newly created
job is a child of the job whose tasks created it.

Associated with each job is a set of limits. The limits of a
job are as follows:

• the maximum allowable size of its object directory.

• the maximum and minimum allowable sizes of its memory
pool.

• the maximum allowable number of simultaneously existing
tasks that it can contain.

• the maximum allowable number of simultaneously existing
objects that it can contain.

• the highest allowable priority of any task contained in
it.

3-1

JOB MANAGEMENT

OBJECT DIRECTORY

NAME OBJECT

TASKS: D D D··· D
OBJECTS CREATED BY THE TASKS IN THE JOB:

SEGMENTS: •••

MAILBOXES: •••

SEMAPHORES: ~~~ ••• ~

Figure 3-1. A Job

3-2

JOB MANAGEMENT

You must specify these limits whenever you create a job and the
limits apply collectively to the job and all of its descendenr
jobs.

When job A creates job 8:

• Sufficient memory to meet job 8's minimum memory pool
requirements is transferred from job A's memory pool to
that of job B.

• The memory for job 8's object directory is taken from job
A's memory pool.

• The numbers of tasks and total objects that job A can
contain are reduced by the corresponding values specified
for job B.

• The specified maximum priority for tasks in job B cannot
exceed the maximum priority for tasks in job A.

If job B is later deleted, its resources are returned to job A.

JOB CREATION

A job is created with one task. The functions of this task
include doing some initializing for the new job. Initializing
activities can include housekeeping and creating other objects
in the new job.

When a task creates a job, it has the option of passing a token
for a parameter object to the newly created job. The parameter
object can be of any type and it can be used for any purpose.
For example, the parameter object might be a segment containing
data - arranged in a predefined format - needed by tasks in the
new job. Tasks in the new job can obtain a token for the job's
parameter object by means of the GET$TASK$TOKENS system call,
described in Chapter 10.

JOB DELETION

Before a job can be deleted, all of its interrupt tasks (see
Chapter 9), extension objects (see the iRMX 86 System
Programmer's Reference Manual, number 142721) and descendent
jobs must be deleted. By using the OFFSPRING system call, the
deleting task can probe down the job tree and find all of the
descendents. Then it can delete them, beginning with
descendents that have no children and working up the tree.
After all of the descendents have been deleted, the task can
delete the target job.

3-3

JOB MANAGEMENT

SYSTEM CALLS FOR JOBS

The following system calls manipulate jobs:

• CREATE$JOB --- creates a job with a task and returns a
token for the job; resources for the new job are drawn
from the resources of the job to which the invoking task
belongs.

• DELETE$JOB --- deletes a childless job that contains no
interrupt tasks or extension objects and returns the
job's resources to its parent.

• OFFSPRING --- provides a segment containing tokens of the
child jobs of the specified job.

3-4

CHAPTER 4. TASK MANAGEMENT

Tasks are the active objects in an iRMX 86 system. Each task
is part of a job and is restricted to the resources that its

.job provides. Tasks are written as PL/M-86 procedures, not as
main modules.

The iRMX 86 Nucleus maintains a set of attributes for each
task. Among these attributes are the priority and execution
state of the task. A task's priority is an integer value
between a and 255, inclusive. The lower the priority number,
the higher the priority of the task. A high priority task has
favored status as it competes with other tasks fo~ the cpu.

Unless a task is involved in processing interrupts (see Chapter
9), its priority should be between 129 and 255. When a task
having a priority in the range 0 to 128 i~ running, certain
external interrupt levels are disabled, depending on the
priority.

TASK STATES

A task is always in one of five execution states. T;he states
are asleep, suspended, asleep-suspended, ready, and running.

THE ASLEEP STATE

A task is in the asleep state when it is waiting for a request
to be granted. Also, a task can put itself to sleep for a
specified amount of time by using the SLEEP system call.

THE SUSPENDED STATE

A task enters the suspended state when it is placed there by
another task or when it suspends itself. Associated with each
task is a suspension depth, which reflects the number of
"suspends" outstanding against it. Each suspend operation must
be countered with a resume operation before the task can leave
the suspended state.

THE ASLEEP-SUSPENDED STATE

When a sleeping task is suspended, it enters the
asleep-suspended state. In effect, it is then in both the
asleep and suspended states. While asleep-suspended, the
task's sleeping time might expire, putting it in the suspended
state.

4-1

TASK MANAGEMENT

THE READY AND RUNNING STATES

A task is ready if it is not asleep, suspended, or
asleep-suspended. For a task to become the running (executing)
task, it must be the highest priority task in the ready state.

TASK STATE TRANSITIONS

The Nucleus does not allocate the processor to tasks in a
time-slicing manner. Instead, as an iRMX 86 application system
runs, events occur which cause tasks to pass from state to
state. The iRMX 86 Operating System is, therefore,
event-driven. Figute 4-1 shows the paths of transition between
states.

The following list describes, by number, the events that cause
the transitions in Figure 4-1. In the list, the migrating task
is called "the task":

(1) The task goes from non-existence to the ready state
when it is created.

(2) The task goes from the ready state to the running
state when one of the following occurs:

• The task has just become ready and has higher
priority than does any other ready task.

• The task is ready, no other ready task has higher
priority, no other task of equal priority has been
ready for a longer time, and the previously running
task has just left the running state by (4), (6), or
(10).

(3) The task goes from the running state to the ready
state when the task is preempted by a higher priority
task that has just become ready.

(4) The task goes from the running state to the asleep
state when one of the following occurs:

• the task puts itself to sleep (by the SLEEP system
call.)

• The task makes a request (by the RECEIVE$MESSAGE,
RECEIVE$UNITS, or LOOKUP$OBJECT system call) that
cannot be granted immediately and expresses, in the
request, its willingness to wait.

(5) The task goes from the asleep state to the ready state
or from the asleep-suspended state to the suspended
state when one of the following occurs:

4-2

TASK MANAGEMENT

• The task's designated waiting period expires without
its request being granted .

• The task's request is granted (because another task
called either the SEND$MESSAGE, SEND$UNITS, or
CATALOG$OBJECT system call; these calls correspond
to those mentioned in (4), above.)

(6) The task goes from the running state to the suspended
state when the task suspends itself (by the SUSPEND$
TASK system call).

(NON-EXISTENT)

t(1)

I READY I

(2) (3)

I ASLEEP 1 1----(-4)--1 RUNNING I __:...(6...;...) -----.;~~ I SUSPENDED I :J
(8)

~ (10)

(NON-EXISTENT)

Figure 4-1. Task State Transition Diagram.

4-3

TASK MANAGEMENT

(7) The task goes from the ready state to the suspended
state or from the asleep state to the asleep-suspended
when the task is suspended by another task (by the
SUSPEND$TASK system call).

(8) The task remains in the suspended state or the
asleep-suspended state when one of the following
occurs:

• (same as (7» or

• The task has a suspension depth greater than one and
the task is resumed by another task (by the RESUME$
TASK system call).

(9) The task goes from the suspended state to the ready
state or from the asleep-suspended state to the asleep
state when the task has a suspension depth of one and
the task is resumed by another task (by the RESUME$
TASK system call).

(10) The task goes from any state to non-existence when it
is deleted (by the DELETE$TASK or DELETE$JOB system
call).

ADDITIONAL TASK ATTRIBUTES

In addition to priority, execution state, and suspension depth,
the Nucleus maintains current values of the following
attributes for each existing task: containing job, its PL/M-86
register context, starting address of its exception handler
(see Chapter 8), and exception mode (see Chapter 8).

TASK RESOURCES

When a task is created, the Nucleus takes any resources that it
needs at that time (such as a stack segment) from the task's
containing job. If the task is subsequently deleted, those
resources are returned to the job. The task's code, however,
is not a resource in this sense and is not returned.

SYSTEM CALLS FOR TASKS

The following system calls are provided for task manipulation:

• CREATE$TASK creates a task and returns a token for it.

• DELETE$TASK deletes a task from the system.

• SUSPEND$TASK --- increases a task's suspension depth by
one; suspends the task if it is not already suspended.

4-4

TASK MANAGEMENT

• RESUME$TASK --- decreases a task's suspension depth by
one; if the depth becomes zero and the task was
suspended, it then becomes ready; if the depth becomes
zero and the task was asleep-suspended, then it goes into
the asleep state.

• SLEEP --- places the calling task in the asleep state for
a specified amount of time.

• GET$TASK$TOKENS --- returns to the calling task a token
for either itself, its job, its job's parameter object,
or the root job, depending on which option is specified
in the call.

• GET$PRIORITY
task.

returns the priority of the specified

4-5

CHAPTER 5. EXCHANGE MANAGEMENT

The iRMX 86 Nucleus provides exchanges to facilitate intertask
communication, synchronization, and mutual exclusion. When a
task uses an exchange, it is always acting either as a sender
or as a receiver. There are two kinds of exchanges: mailboxes
and semaphores. If the exchange is a mailbox, one task will
send an object to the mailbox; another task will go to the
mailbox to receive the object. If the exchange is a semaphore,
either a task is receiving units from the semaphore, or it is
sending units to the semaphore.

MAILBOXES

The principal function of mailboxes is to support intertask
communication. A sending task uses a mailbox to pass an object
to another task. For example, the object might be that of a
segment containing data needed by the receiving task.

MAILBOX QUEUES

Each mailbox has two queues, one for tasks that are waiting to
receive objects, the other for objects that have been sent by
tasks but have not yet been received. The Nucleus sees that
waiting tasks receive objects as soon as they are available,
so, at any given time, at least one of the mailbox's queues is
empty.

MAILBOX MECHANICS

When a,task sends a token to a mailbox, using the SEND$MESSAGE
system call, one of two things happens. If no tasks are
waiting at the mailbox, the object is placed at the rear of the
object queue (which might be empty). Object queues are
processed in a first-in-first-out manner, so the object remains
in the queue until it makes its way to the front and is given
to a task.

If, on the other hand, there are tasks waiting, the recelvlng
task, which has been asleep, goes either from the asleep state
to the ready state or from the asleep-suspended state to the
suspended state.

5-1

EXCHANGE MANAGEMENT

NOTE

If the receiving task has a higher
priority than the sending task,
then the receiving task preempts
the sender and becomes the running
task.

When a task attempts to receive an object from a mailbox via
the RECEIVE$MESSAGE system call, and the object queue at the
mailbox is not empty, the task receives the object immediately
and remains ready. However, if there are no objects at the
mailbox there are two possibilities:

• If the task, in its request, elects to wait, it is
placed in the mailbox's task queue and is put to
sleep. If the designated waiting period elapses before
the task gets an object, the task is made ready and
receives an E$TIME exceptional condition (see Chapter
8).

• If the task is not willing to wait, it remains ready
and receives an E$TIME exceptional condition.

A task has the option, when using the SEND$MESSAGE system call,
of specifying that it wants acknowledgment from the recei'ving
task. Thus, any task using the RECEIVE$MESSAGE system call
should check to see if an acknowledgment has been requested.
For details, see the description of the RECEIVE$MESSAGE system
call in Chapter 10.

As stated earlier, the object queue for a mailbox is processed
in a first-in-first-out manner. However, the task queue of a
mailbox can be either first-in-first-out or priority-based,
with higher-priority tasks toward the front of the queue. The
queueing method to be used is specified for each mailbox at the
time of its creation.

SYSTEM CALLS FOR MAILBOXES

The following system calls manipulate mailboxes:

• CREATE$MAILBOX
token for it.

creates a mailbox and returns a

• DELETE$MAILBOX --- deletes a mailbox from the system.

• SEND$MESSAGE --- sends an object to a mailbox.

• RECEIVE$MESSAGE --- sends the calling task to a mailbox
for an object; the task has the option of waiting if no
objects are present.

5-2

EXCHANGE MANAGEMENT

SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a
semaphore either by requesting a specific number of units from
it via the RECEIVE$UNITS system call or by releasing a specific
number of units to it via the SEND$UNITS system call. Although
these operations do not support communication of data, they
facilitate mutual exclusion, synchronization, and resource
allocation.

SEMAPHORE QUEUE

Semaphores have only one queue - a task queue. As is the case
with mailboxes, the task queue is either first-in-first-out or
priority based. The queueing scheme to be used is specified
for each semaphore at the time of its creation.

SEMAPHORE MECHANICS

A semaphore might simultaneously have both tasks in its queue
and units in its custody. The allocation scheme used by
semaphores is the reason for this. That scheme is best
understood by imagining that the semaphore is trying, at all
times, to satisfy the request of the task which is at the front
of the semaphore's task queue. Only when it can provide as
many units as the task requested does it award units, and then
it does so immediately.

When a task uses the CREATE$SEMAPHORE system call, it must
supply two values. One value specifies the initial number of
units to be in the new semaphore's custody. The other value
sets an upper limit on the number of units that the semaphore
is allowed to keep at any given time. The lower limit is
automatically zero.

When a task requests units from a semaphore via the RECEIVE$
UNITS system call, the request must be within the specified
maximum for that semaphore; otherwise, the request is invalid
and causes an E$LIMIT exceptional condition. If a task's
request for units is valid and both

• the size of the request is within the semaphore's
current supply of units and

• the task is - or would be if queued - at the front of
the semaphore's task queue,

then the request is granted immediately and the task remains
ready. Otherwise, one of the following applies:

5-3

EXCHANGE MANAGEMENT

• The task, in its request, elects to wait. It is placed
in the semaphore's task queue and is put to sleep. If
the designated waiting period elapses before the task
gets its requested.units, the task is made ready and
receives an E$TIME exceptional condition.

• The task is not willing to wait. It remains ready and
receives an E$TIME exceptional condition.

Suppose, for example, that two tasks, A and B, are waiting at a
semaphore, with A at the front of the queue. The semaphore has
no units, A wants 3 units, and B wants 1 unit. The following
three separate cases illustrate the mechanics of the semaphore:

• If the semaphore is sent 2 units, both A and 8 remain
asleep in the semaphore's queue. Note that B's modest
request is not satisfied because A is ahead of B in the
queue.

• If, instead, the semaphore is sent 3 units, A receives
the units and awakens, while 8 remains asleep in the
queue.

• If, instead, the semaphore is sent 4 units, A and B both
receive their requested units and are awakened.

When a task sends units to a semaphore, the task remains
ready. Sending units to a semaphore causes an E$LIMIT
exceptional condition if it pushes the semaphore's supply above
the designated maximum. The number of units in the custody of
the semaphore remains unchanged.

NOTE

It is possible that a task sending
units to a semaphore can be preempted
by a higher priority task becoming
ready as a result of getting its
requested units.

SYSTEM CALLS FOR SEMAPHORES

The following system calls manipulate semaphores:

• CREATE$SEMAPHORE --- creates a semaphore and returns a
token for it.

• DELETE$SEMAPHORE
system.

deletes a semaphore from the

• SEND$UNITS --- adds a specific number of units to the
supply of a semaphore.

• RECEIVE$UNITS --- asks for a specific number of units
from a semaphore.

5-4

CHAPTER 6. MEMORY MANAGEMENT

Occasionally a task needs additional memory, that is, memory
not yet allocated to its job. By using Nucleus system calls
for allocating and deallocating memory, tasks can usually
satisfy their memory needs.

SEGMENTS

Allocated memory is treated as a collection of segments. A
segment is a contiguous sequence of 16 byte paragraphs, with
its starting (base) ,address evenly divisible by 16. The
Nucleus maintains, as attributes, the base address and the
length in bytes of each segment.

When a task needs a segment, it can request one of the desired
length via the CREATE$SEGMENT system call. If enough memory is
available, the Nucleus returns a token for the segment.

MEMORY POOLS

NOTE

The token of a segment can be used
as the base portion of a pointer to
the segment. Thus, the token can
be used as a base address (as when
writing a message in the segment)
or as an object reference (as when
sending the segment-with-message to
a mailbox).

A memory pool is the amount of memory available to a job and
its descendents. Each job has a memory pool. When a job Is
created, the memory for its pool is borrowed from the pool of
its parent job. Thus, there is effectively a tree-structured
hierarchy of memory pools, identical in structure to the
hierarchy of jobs. Memory that a job borrows from its parent
remains in the pool of the parent as well as being in the pool
of the child. Such memory, however, is available for use by
tasks in the child job, but not by tasks in the parent job.
Figure ,6-1 i] lllst rates the relationship between the job and
memory hierarchies. In the figure, the pool sizes shown are
actually the maximum sizes of those pools.

6-1

MEMORY MANAGEMENT

CONTROLLING POOL SIZE

Two parameters, pool minimum and pool maximum, of the CREATE$
JOB system call, dictate the range of sizes (in paragraphs) of
a new job's memory pool. Initially, the pool size is equal to
pool minimum. Memory allocated to tasks in the job is still
considered to be in the job's pool. A task needing to know

JOB A

/~
JOB B JOB C

/
JOB 0

Figure 6-1. Comparison of Job and Memory Hierarchies

about its job's pool may use the GET$POOL$ATTRIB system call to
obtain pool minimum, pool maximum, initial pool size, number of
bytes currently available, and number of bytes currently
allocated.

A task may alter the pool minimum attribute for its job by
means of the SET$POOL$MINIMUM system call; pool minimum must
lie in the range from 0 to pool maximum. If a subsequent call
to SET$POOL$MINIMUM increases the pool's minimum size, and the
current pool size is less than the new minimum, no memory is
borrowed immediately from the parent job. Rather, memory is
automatically borrowed as it is requested by tasks in the job,
until the new minimum is reached. At that time, the new value
of the pool minimum attribute becomes a lower bound for the
job's pool size.

MOVEMENT OF MEMORY BETWEEN JOBS

When a task tries to create a segment, and the unallocated part
of its job's pool is not sufficient to satisfy the request, the
Nucleus tries to borrow more memory from the job's parent (and

6-2

MEMORY MANAGEMENT

then, if necessary, from its parent's parent, and so on). Such
borrowing increases the pool size of the borrowing job and is
thus restricted by the pool maximum attribute of the borrowing
job.

When a job is deleted, the memory in its pool becomes
unallocated, and access to it is given back to the parent job.
The smallest contiguous piece of memory that a job may borrow
from its parent is a configuration parameter. The subject of
configuration is covered in the iRMX 86 Configuration Guide For
ISIS-II Users.

Observe that, if a job has equal pool minimum and pool maximum
attributes, then its pool is fixed at that common value. This
means that, once it has this amount, the job may not borrow
memory from its parent. A task in the job may, however, create
a new job.

MEMORY ALLOCATION

The memory pool of a job consists of two classes of memory:
allocated and unallocated. Memory in a job is allocated if it
has been requested by tasks in the job or if it is on loan to a
child job. Otherwise, it is unallocated.

The Nucleus borrows small amounts of memory from a job's pool
each time a task in that job creates an object. This memory is
needed for bookkeeping purposes. When the object is deleted,
the borrowed memory is returned to the pool.

When a task no longer needs a segment, it can return the
segment to the unallocated part of the job's pool by using the
DELETE$SEGMENT system call. Figure 6-2 shows how memory
"moves."

(PARENT POOL)

jCREATE$-JOELETE$-
JOB JOB j~;~~~~~ JOELETE$-

(OCCASIONALL Y) JOB

...... -------... CREATE$SEGMENT -------..
(NORMAL CASE)

UNALLOCATED
MEMORY

~

DELETE$SEGMENT
~

ALLOCATED
MEMORY

Figure 6-2. Memory Movement Diagram

6-3

MEMORY MANAGEMENT

SYSTEM CALLS FOR SEGMENTS

The following system calls manipulate segments:

• CREATE$SEGMENT
for it.

creates a segment and returns a token

• DELETE$SEGMENT --- returns a segment to the pool from
which it was allocated.

• GET$SIZE --- returns the size, in bytes, of a segment.

• SET$POOL$MINIMUM --- enables a task to change the pool
minimum attribute of its job's pool.

• GET$POOL$ATTRIB --- returns the following memory pool
attributes of the calling task's job: pool minimum, pool
maximum, initial size, number of allocated bytes, and
number of available bytes.

6-4

CHAPTER 7. OBJECT MANAGEMENT

A few iRMX 86 Nucleus system calls apply to all object types.
One of these, the GET$TYPE system call, enables a task to
present a token to the Nucleus and get an object's type code in
return. (Type codes are listed in Appendix B.) This is useful,
for example, when a task is expecting to receive objects of
several different types. With the object's type code, the task
can use the appropriate system calls for the object.

Other type-independent system calls have to do with object
directories. Each job has its own object directory. An entry
in an object directory consists of an object with an ASCII
name. Such a feature is often needed because some tasks might
only know some objects by their associated names.

By using the LOOKUP$OBJECT system call, a task can present the
name of an object to the Nucleus. The Nucleus consults the
object directory corresponding to the specified job and, if the
object has been cataloged there, returns the token.

NOTE

In object directory lookups,
upper and lower case alphabetic
characters are treated as being
different.

If the object has not yet been cataloged, and the task is not
willing to wait, the task remains ready and receives an E$TIME
exceptional condition. However, if the task is willing to
wait, it is put to sleep; there are two possibilities:

• If the designated waiting period elapses before the task
gets its requested token, the task is made ready and
receives an E$TIME exceptional condition (see Chapter 8) .

• If the task gets its requested token within the
designated waiting period, it is made ready with no
exceptional condition. This case is possible because
another task can, while the requesting task is waiting,
catalog the appropriate entry in the specified object
directory.

7-1

OBJECT MANAGEMENT

The tasks in a job must maintain the job's object directory.
When a task wants to share an object with the other tasks in a
job (not necessarily its own job), it can use the CATALOG$
OBJECT system call to put the object in that job's object
directory. Typically, this is done by the creator of the
object. Likewise, entries can be removed from a directory by
the UNCATALOG$OBJECT system call.

What is required, when using an object directory, is the token
of the job whose directory is to be used. The root job's
object directory, called the root object directory, is special
in that any task can use it. Any task can call the GET$TASK$
TOKENS system call to obtain the token of the root job.

SYSTEM CALLS FOR ANY OBJECTS

The following system calls manipulate objects:

• CATALOG$OBJECT
directory.

places an object in an object

• UNCATALOG$OBJECT --- removes an object from an object
directory.

• LOOKUP$OBJECT --- accepts a cataloged name of an object
and returns a token for it.

• GET$TYPE --- accepts a token for an object and returns
its type code.

7-2

CHAPTER 8. EXCEPTIONAL CONDITION MANAGEMENT

When a task invokes an iRMX 86 system call, the results are
sometimes not what the task is trying to achieve. For example,
maybe the task requests memory that is not available, or it
might use an invalid token as a parameter. In such cases, the
system must inform the task that an error occurred. Whenever a
task makes a system call, the means of communicating the
success or failure of the call is the condition code.

TYPES OF EXCEPTIONAL CONDITIONS

Table 8-1 is a list of Nucleus conditions and their codes. The
conditions that represent failure are called exceptional and
are classified as programmer errors or environmental
conditions. An exceptional condition that is preventable by
the calling task is a programmer error. In contrast,
exceptional conditions due to environmental circumstances of
which the task could have no awareness are considered
environmental conditions.

Table 8-1 lists the possible conditions, with their associated
numeric codes and mnemonics. Values not used as numeric codes
are reserved.

EXCEPTION HANDLERS

The iRMX 86 Nucleus supports exception handlers. Their purpose
is to deal with the errors that tasks make in making system
calls. How an exception handler deals with an exceptional
condition is a matter of programmer discretion. In general, a
handler performs one of the following actions:

• Logs the error.

• Deletes the task that erred.

• Simply ignores the error. If this option is taken, the
system continues as if no error had occurred. Continuing
under such circumstances is generally unwise, however.

An exception handler is written as a procedure with four
parameters passed in the following order:

• the condition code (WORD).

• a code (BYTE) indicating which parameter, if any, was
faulty in the call (1 for first, 2 for second, etc., G if
none).

8-1

EXCEPTIONAL CONDITION MANAGEMENT

• a reserved (WORD) parameter .

• a second reserved (WORD) parameter.

ASSIGNING AN EXCEPTION HANDLER

A task may use the SET$EXCEPTION$HANDLER system call to declare
its own exception handler. Otherwise, the task inherits the
exception handler of its job. A job can receive its own
exception handler at the time of its creation. If it doesn't,
the job inherits the system exception handler. Thus, the
Nucleus can always find an exception handler for the running
task.

A system exception handler is provided as part of the iRMX 86
Operating System and deletes any task on whose behalf it is
invoked.

Users wanting to write their own exception handlers should
compile them under the PL/M-86 LARGE control.

Any task can have the Debugger as its exception handler; see
the description in Chapter 10 of the SET$EXCEPTION$HANDLER
system call for instructions on how to dynamically make such an
assignment. Alternatively, the Debugger or any other routine
can be made the system exception handler statically; see the
iRMX 86 Configuration Guide for ISIS-II Users, number 9803126,
for information on how to do this.

INVOKING AN EXCEPTION HANDLER

When a task causes an exceptional condition, it need not have
control passed to its exception handler. The factor that
determines whether control passes to the exception handler is
the task's exception mode. This attribute has four possible
values, each of which specifies the circumstances under which
the exception handler is to get control in the event of an
exceptional condition. These circumstances are:

• Programmer errors only.

• Environmental conditions only.

• All exceptional conditions.

• No exceptional conditions.

When the Nucleus detects that a task has caused an exceptional
condition in making a system call, it compares the type of the
condition with the calling task's exception mode. If a
transfer of control is indicated, the Nucleus passes control to
the exception handler on behalf of the task. The exception

8-2

EXCEPTIONAL CONDITION MANAGEMENT

Table 8-1. Conditions and Their Codes
NUMERIC CODE CATEGORY/

MNEMONIC MEANING HEX DECIMAL

Normal

E$OK

Exceptional

The most recent system call was
successful.

Environmental
Conditions

E$TIME

E$MEM

E$LIMIT

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

There is not sufficient memory avail
able to satisfy a task's request.

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

OH o

lH 1

2H 2

4H 4

E$CONTEXT A system call was issued out of context. 5H 5

E$EXIST

E$STATE

A token parameter has a value which is
not the token of an existing object.

A task attempted an operation which
would have caused an impossible
transition of a task's state.

ENOTCON- The system call being attempted is not
FIGURED not part of the present software

configuration.

Programmer
Errors

E$ZERO$
DIVIDE

A task attempted to divide by zero.

E$OVERFLOW An overflow interrupt occurred.

E$TYPE

E$PARAM

A token parameter referred to an
existing object that is not Of the
required type.

A parameter which is neither a token
nor an offset has an illegal value.

EBADCALL A task attempted a software interrupt
to level 184.

8-3

6H 6

7H 7

8H 8

8000H 32768

800lH 32769

8002H 32770

8004H 32772

8005H 32773

EXCEPTIONAL CONDITION MANAGEMENT

handler then deals with the problem, after which control
returns to the task, unless the exception handler deleted the
task. While the exception handler is executing, the errant
task is still regarded by the Nucleus to be the running task.

When a task is created, its exception mode is set to its job's
default exception mode. The task can change its exception
handler and exception mode attributes by using the SET$
EXCEPTION$HANDLER system call.

HANDLING EXCEPTIONS IN-LINE

If a task's exception mode attribute does not direct the
Nucleus to transfer control to the task's exception handler,
the responsibility for dealing with an error falls upon the
task.

Each system call has as its last parameter a pointer to a
WORD. After a system call, the Nucleus returns the resulting
condition code to this WORD. By checking this WORD after each
system call, a task can ascertain whether the call is
successful. (See Table 8-1 for condition codes.) If the call
is not successful, the task can learn which exceptional
condition it caused. This information can sometimes enable the
task to recover. In other cases more information is needed.

NOTE

If an exceptional condition is
caused by an invalid parameter, an
exception handler, which is passed
the parameter number of the first
invalid parameter, should handle the
condition.

SYSTEM CALLS FOR EXCEPTION HANDLERS

The following system calls manipulate exception handlers:

• SET$EXCEPTION$HANDLER --- sets the exception handler
and exception mode attributes of the calling task.

• GET$EXCEPTION$HANDLER --- returns to the calling task
the current values of its exception handler and
exception mode attributes.

8-4

CHAPTER 9. INTERRUPT MANAGEMENT

Interrupts and interrupt processing are central to real-time
computing. External ~vents occur asynchronously with respect
to the internal worki~gs of a iRMX 86 application system.' An
-interrupt, signalling\the occurrence of an external event,
triggers an implicit "call" to a specific location in a section
of memory known as the interrupt vector table. From there,
control is redirected to a PL/M-86 interrupt procedure called
an interrupt handler. At this point, one of two things
happens. If handling the interrupt takes little time and
requires no system calls, other than certain interrupt-related
system calls, the interrupt handler processes the interrupt.
Otherwise, the interrupt handler invokes an interrupt task
which deals with the interrupt. After the interrupt has been
serviced, control returns to the ready application task with
highest priority.

INTERRUPT MECHANISMS

There are three major concepts in interrupt processing: the
interrupt vector table, interrupt levels, and disabling
interrupt levels.

THE INTERRUPT VECTOR TABLE

The interrupt vector table is composed of 256 vectors. The
vectors are numbered 0 to 255. A number of the interrupt
vectors are reserved and therefore are not available to be
defined by user tasks. The vectors are allocated as follows:

0- 55:
56~ 63:
64-223:

224-255:

reserved
available for external interrupts
reserved
described in the iRMX 86 System Programmer's
Reference Manual.

INTERRUPT LEVELS

External interrupts are funneled through hardware which can
manage interrupts from up to eight external sources. The eight
sources are associated with eight interrupt levels.

9-1

INTERRUPT MANAGEMENT

The interrupt levels, numbered 0 to 7, correspond to interrupt
vectors 56 to 63, respectively. Interrupt levels with low
numbers have high priority. As a rule, all levels except level
2 are available for user devices. Level 2 is reserved for the
system clock.

DISABLING INTERRUPTS

Occasionally you want to prevent interrupt signals from causing
an immediate interrupt. For example, it is desirable to
prevent low priority interrupts from interfering with the
servicing of a high priority interrupt. In the iRMX 86
Operating System, each interrupt level can be disabled. In
some circumstances, described later, the Nucleus disables
levels. Tasks can also disable and enable levels by means of
the DISABLE and ENABLE system calls. Level 2, which is
reserved for the system clock, should not be disabled.

If an interrupt signal arrives at a level that is enabled, the
interrupt is recognized by the processor and control goes
immediately to the interrupt handler for that level.
Otherwise, the level is disabled and the interrupt signal is
blocked until the level is enabled, at which time the signal is
recognized by the CPU. However, if the signal is no longer
emanating from its source, it is not recognized and the
interrupt is not handled.

There are two ways in which an interrupt level can be
disabled. A task can mask a level by using the DISABLE system
call; later the level can be unmasked by the ENABLE system
call. The second disabling agent is the Nucleus itself. When
the running task is of high priority, the Nucleus disables
certain interrupt levels. The relationship between task
priorities and disabled levels is given in Table 9-1.

Table 9-1. Interrupt Levels Disabled For Running Task

Task Priority Disabled Levels

0-16 0-7
17-32 1-7
33-48 2-7
49-64 3-7
65-80 4-7
81-96 5-7
97-112 6-7

113-128 7
129-255 None

9-2

INTERRUPT MANAGEMENT

INTERRUPT HANDLERS AND INTERRUPT TASKS

Whether an interrupt level is to be serviced by an interrupt
handler alone or by having an interrupt handler invoke an
interrupt task depends on two conditions. First, interrupt
handlers cannot make most system calls. Only ENTER$INTERRUPT,
EXIT$INTERRUPT, GET$LEVEL, and SIGNAL$INTERRUPT can be called
from an interrupt handler. If other system calls are required,
they must be made by an interrupt task. Second, an interrupt
handler should call an interrupt task unless it can service
interrupts quickly because an interrupt signal disables all
interrupts, and interrupts remain disabled until the interrupt
handler is finished processing. Invoking an interrupt task, on
the other hand, allows higher priority interrupts to be
accepted.

SETTING UP AN INTERRUPT HANDLER

Interrupt handlers are generally written as PL/M-86 interrupt
procedures, but can be written in assembly language. If an
interrupt handler is written in assembly language, it must save
and restore all register values, as noted later.

An interrupt handler and, optionally, an interrupt task, are
bound to an interrupt level by means of a SET$INTERRUPT system
call. SET$INTERRUPT places the starting address of an
interrupt handler in the interrupt vector table. If the
interrupt$task$flag parameter in SET$INTERRUPT is set to 1, the
calling task becomes the interrupt task for the specified
level. Otherwise, interrupt$task$flag is 0 and there is no
interrupt task for the level.

Any desired value can be specified as the data segment base
address for an interrupt handler by means of the
interrupt$handler$ds parameter in SET$INTERRUPT. The interrupt
handler can later cause this value to be loaded into the OS
register by calling ENTER$INTERRUPT.

When an iRMX 86 application system starts up, all interrupt
levels are disabled. When SET$INTERRUPT binds an interrupt
handler but not an interrupt task to a level, the level is
enabled. If, instead, there is an interrupt task, the level is
not enabled until that task makes a WAIT$INTERRUPT system call
(described later.) An interrupt task should not enable its own
level before making its first call to WAIT$INTERRUPT.

A RESET$INTERRUPT system call cancels the bond between an
interrupt level and its interrupt handler. The call also
disables the specified level. If there is an interrupt task
for the level, RESET$INTERRUPT deletes it. DELETE$TASK and
DELETE$JOB do not delete interrupt tasks.

9-3

INTERRUPT MANAGEMENT

USING AN INTERRUPT HANDLER

If an interrupt handler is to service interrupts for a given
level without invoking an interrupt task, the handler must
assume one of two forms, depending on whether it needs to have
the Nucleus set up its data segment base address.

If the interrupt handler can use the data segment base address
of the interrupted task or if it contains its data segment base
address in its code, then it should perform the following
functions in the following order:

If in assembly language, save all register contents
Service the interrupt
Call EXIT$INTERRUPT
If in assembly language, restore all register contents

The call to EXIT$INTERRUPT sends an end-of-interrupt signal to
the hardware.

If the interrupt handler wants the Nucleus to load a data
segment base address (as specified in an earlier call to
SET$INTERRUPT) into the OS register, then it should perform the
following functions in the following order:

If in assembly language, save all register contents
Optionally, do some interrupt servicing
Call ENTER$INTERRUPT
Complete interrupt servicing
Call EXIT$INTERRUPT
If in assembly language, restore all register contents

The call to ENTER$INTERRUPT tells the Nucleus to load the
interrupt handler's data segment base address into the OS
register. Because PL/M-86 makes use of the data segment, as
specified by the contents of the OS register, loading a new
value into this register serves to protect the data segment of
the interrupted task.

USING AN INTERRUPT TASK

If there is both an interrupt handler and an interrupt task
associated with a level, the interrupt handler invokes the
interrupt task by making a SIGNAL$INTERRUPT system call. If a
level has only an interrupt handler, however, the handler may
not call SIGNAL$INTERRUPT.

If an interrupt handler calls an interrupt task, the handler
must perform the following functions in the following order:

9-4

INTERRUPT MANAGEMENT

If in assembly language, save the register contents.
Optionally, call ENTERINTERRUPT.
Optionally, begin servicing the interrupt without system

calls.
Call SIGNAL$INTERRUPT.
If in assembly language, restore the register contents.

The call to SIGNAL$INTERRUPT starts up the interrupt task and
enables interrupts.

If used, the call to ENTER$INTERRUPT sets up a new OS value for
the interrupt handler. If you want the interrupt handler to
have the same OS value as that used by the interrupt task, so
the handler can pass data to the task, follow the advice given
in the description of the interrupt$handler$ds parameter of
SET$INTERRUPT in Chapter 10.

An interrupt handler executes in the environment (except
possibly for the OS register value) of the interrupted task.
The interrupt task, however, like any other task, has its own
environment.

An interrupt task must perform the following functions in the
following order, although the first two functions may be
interchanged:

Call SET$INTERRUPT.
00 initialization.
00 forever;

Call WAIT$INTERRUPT.
Service the interrupt (system calls allowed).

End;

An interrupt task, once initialized, is always in one of two
modes. Either it is servicing an interrupt or it is waiting
for notification of an interrupt.

When a task becomes an interrupt task by calling SET$INTERRUPT,
the Nucleus assigns a priority to it, according to the level
that the task is to service. Table 9-2 shows the relationship
between levels and interrupt task priorities.

NOTES

The priority that the Nucleus
assigns to an interrupt task might
exceed the maximum priority
attribute of the job that contains
that task. If this occurs, you get
an exceptional condition. To
overcome this problem, recreate the
job with a higher maximum priority
attribute.

9-5

INTERRUPT MANAGEMENT

Because the automatic filling of the
interrupt vector is overridden by
SET$INTERRUPT, the NOINTVECTOR
control should be used when
compiling the interrupt handler.

Figure 9-1 illustrates the two interrupt servicing patterns and
their relationships.

NO

CALL
ENTER$INTERRUPT

INTERRUPT TASK
COMPLETES
INTERRUPT
SERVICING

CONTROL RETURNS TO AN
APPLICATION TASK

Figure 9-1. Flow Chart of Interrupt Handling

Note that an interrupt handler might call an interrupt task
sometimes yet not call it at other times. An example is an
interrupt handler that puts characters into a buffer for a line
printer. Whenever a character is received, the interrupt
handler is invoked and puts the character in the line buffer.
If the characater is an end-of-line character, or if the
character count maintained by the interrupt handler indicates
that the buffer is full, the interrupt handler calls its
interrupt task, which outputs the contents of the buffer.
Otherwise, the interrupt handler calls EXIT$INTERRUPT and then
returns control to application tasks.

9-6

INTERRUPT MANAGEMENT

Table 9-2. The Relationship Between External Levels
and Internal Task Priorities

LEVEL INTERRUPT TASK PRIORITY

o 18
1 34
2 50
3 66
4 82
5 98
6 114
7 130

HANDLING LEVEL 7 INTERRUPTS

Occasionally, spurious signals can trigger a level 7
interrupt. An interrupt handler for level 7 should begin by
sampling port co. If the BYTE value obtained there does not
have a 1 in the high-order bit, then the interrupt is a false
alarm and should not be handled. In PL/M-86, the following
lines perform this check when placed at the beginning of the
interrupt handler:

OUTPUT (OCOH) = OBH;

IF «INPUT (OCOH» AND 80H) = 0

THEN RETURN;

EXAMPLES OF INTERRUPT SERVICING

To help you understand the major points already described,
tables 9-3 and 9-4 are provided. Each table outlines the
turning points in a scenario where an interrupt handler is
assigned to level 4, an interrupt arrives at that level and is
serviced, and finally the assignment of an interrupt handler is
cancelled. Table 9-3 shows a case where the interrupt handler
deals with the interrupt. Table 9-4 treats the case where the
interrupt handler calls an interrupt task.

In the right-hand column of each of tables 9-3 and 9-4, the
phrase "interrupt levels necessarily disabled" alludes to the
fact that the events of the example cause certain levels to be
enabled or disabled. Other events, outside the scope of the
example, might cause other levels to be disabled as well.

9-7

INTERRUPT MANAGEMENT

Table 9-3. An Example Of Interrupt Handling
Without An Interrupt Task

EVENTS
IN SEQUENCE

RQSETINTERRUPT
(L EVEL$4, 0, ...) ;

Level 4 device
interrupts

RQ$EXIT$INTERRUPT
(LEVEL$4, ...);

Interrupt handler
returns

RQ$RESET$INTERRUPT
(LEVEL$4, ...);

EXPLANATION

No interrupt handler
assigned to level 4.

A task assigns an
interrupt handler to
level 4.

An interrupt arrives
at level 4.

The interrupt is
serviced by the
interrupt handler.

Interrupt hardware
reset by the
interrupt handler.

Interrupts are
re-enabled.

A task cancels the
assignment of an
interrupt handler to
level 4.

9-8

INTERRUPT
LEVELS

NECESSARILY
DISABLED

4

NONE

0-7

0-7

0-7

NONE

4

INTERRUPT MANAGEMENT

Table 9-4. An Example Of Interrupt Handling
With An Interrupt Task

EVENTS
IN SEQUENCE

RQSETINTERRUPT
(LEVEL$4, 1, .•.);

RQ$WAIT$INTERRUPT
(LEVEL$4, ...);

Level 4 device
interrupts

RQ$SIGNAL$INTERRUPT
(L EVEL$4, ...) ;

RQ$WAIT$INTERRUPT
(LEVEL$4, ...);

EXPLANATION
INTERRUPT LEVELS

NECESSARILY
DISABLED

No interrupt handler
assigned to level 4.

A task assigns an
interrupt handler to level
4 and it assigns itself to
be the interrupt task for
that level.

The interrupt task
begins to wait for
an interrupt.

An interrupt arrives
at level 4. The
interrupt handler gets
control and optionally,
does some servicing.

The interrupt handler
invokes the interrupt
task.

The interrupt is
serviced by the interrupt
task.

The interrupt task
finishes and begins
to wait for another
level 4 interrupt.
Control passes back to
the interrupt handler
and then back to an
application task.

9-9

4

4

NONE

0-7

4-7

4-7

NONE

INTERRUPT MANAGEMENT

SYSTEM CALLS FOR INTERRUPTS

The following system calls manipulate interrupts:

• SET$INTERRUPT --- assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level.

• RESET$INTERRUPT --- cancels the assignment made to a
level by SET$INTERRUPT and, if applicable, deletes the
interrupt task for that level.

• EXIT$INTERRUPT --- used by interrupt handlers to send an
end-of-interrupt signal to hardware.

• SIGNAL$INTERRUPT ---used by interrupt handlers to invoke
interrupt tasks.

• WAIT$INTERRUPT --- puts the calling interrupt task to
sleep until it is called into service by an interrupt
handler.

• ENABLE --- enables an external interrupt level.

• DISABLE --- disables an external interrupt level.

• GET$LEVEL --- returns the interrupt level of highest
priority for which an interrupt handler has started but
has not yet finished processing.

• ENTER$INTERRUPT --- sets up a previously designated data
segment base address for the calling interrupt handler.

9-10

CHAPTER 10. NUCLEUS SYSTEM CALLS

This chapter contains the calling sequences and other
information about the system calls to the Nucleus. The system
calls are listed in alphabetical order. Names of the calls are
written in white on a dark background in the upper outside
corner of each page. The calling sequence for each call is
that for the PL/M-86 interface. The information for each
system call is organized into the following categories, in the
following order:

• A brief sketch of the effects of the call.

• The format of the call.

• Definitions of the input parameters, if any.

• Definitions of the output parameters, if any.

• A complete description of the effects of the call.

• The condition codes that can result from using the call,
with a description of the possible causes of each condition.

Throughout the chapter, iRMX 86 data types, such as BYTE,
STRING are used. They are always capitalized and their
definitions are found in Appendix A.

Between this introduction and the details of the system calls
is a command dictionary, in which the calls are grouped
according to type. This dictionary, which includes short
descriptions and page numbers of the complete descriptions in
this chapter, is provided as an alternate way of indexing the
system calls.

10-1

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY

CALLS FOR JOBS

CREATE$JOB -- Creates a job with a task and returns
a token for the job 10-7

DELETE$JOB -- Deletes a childless job that contains
no interrupt tasks or extension objects 10-20

OFFSPRING -- Provides a segment containing tokens of
the child jobs of the specified job 10-42

CALLS FOR TASKS

CREATE$TASK

DELETE$TASK

Creates a task and returns a token for it 10-17

Deletes a task 10-25

SUSPEND$TASK -- Increases a task's suspension depth by
one; suspends the task if it is not already suspended. 10-61

RESUME$TASK -- Decreases a task's suspension depth by
one; resumes (unsuspends) the task if the suspension
depth becomes zero 10-48

SLEEP -- Places the calling task in the asleep state
for a specified amount of time 10-60

GET$TASK$TOKENS -- Returns to the caller a token for
either itself, its job, its job's parameter object,
or the root job , 10-38

GET$PRIORITY -- Returns the priority of a task 10-36

CALLS FOR MAILBOXES

CREATE$MAILBOX -- Creates a mailbox and returns a token
for it .. 10-13

OELETE$MAILBOX -- Deletes a mailbox 10-22

SEND$MESSAGE -- Sends an object to a mailbox 10-49

RECEIVE$MESSAGE -- Sends the calling task to a mailbox
for an object; the task has the option of waiting
if no objects are present w ••••••••••••••• 10-43

10-2

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR SEMAPHORES

CREATE$SEMAPHORE -- Creates a semaphore and returns
a token for it....................................... 10-15

DELETE$SEMAPHORE -- Deletes a semaphore 10-24

SEND$UNITS -- Adds a specific number of units to the
supply of a semaphore 10-51

RECEIVE$UNITS -- Asks for a specific number of units
from a semaphore 10-45

CALLS FOR SEGMENTS AND MEMORY POOLS

CREATE$SEGMENT -- Creates a segment and returns a token
for it .. 10-14

DELETE$SEGMENT -- Returns a segment to the memory pool
from which it was allocated 10-23

GET$SIZE -- returns the size, in bytes, of a segment 10-37

SET$POOL$MINIMUM -- Changes the pool minimum attribute
of the memory pool a f the caller's job 10-58

GET$POOL$ATTRIBUTES -- Returns the following memory pool
attributes of the caller's job: pool minimum, pool
maximum, initial size, number of allocated bytes,
number of available bytes 10-34

CALLS FOR ALL OBJECTS

CATALOG$OBJECT -- Places an object in an object
directory ... 10-5

UNCATALOG$OBJECT -- Removes an object from an object
directory ... 10-62

LOOKUP$OBJECT -- Accepts a cataloged name of an object
and returns a token for it 10-40

GET$TYPE -- Accepts a token for an object and returns
its type code ... 10-39

10-3

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR EXCEPTION HANDLERS

SET$EXCEPTION$HANDLER -- Sets the exception handler and
exception mode attribures of the caller 10-52

GET$EXCEPTION$HANDLER -- Returns the current values of
the caller's exception handler and exception mode
attributes .. 10-31

CALLS FOR INTERRUPT HANDLERS, TASKS, AND LEVELS

SET$INTERRUPT -- Assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level 10-54

RESET$INTERRUPT -- Cancels the assignment of an
interrupt handler to a level and, if applicable,
deletes the interrupt task for that level 10-47

ENTER$INTERRUPT -- Sets up a previously designated
data segment base address for the calling interrupt
handler .. 10-28

EXIT$INTERRUPT -- Used by interrupt handlers to send
an end-of-interrupt signal to hardware 10-30

SIGNAL$INTERRUPT -- Used by interrupt handlers to
invoke interrupt tasks ...•.......•.................... 10-59

WAIT$INTERRUPT -- Puts the calling interrupt task
to sleep until it is called into service by an
interrupt handler 10-63

ENABLE -- Enables an external interrupt level•...•.. 10-27

DISABLE -- Disables an internal interrupt level ...•..•.. 10-26

GET$LEVEL -- Returns the interrupt level of highest
priority for which an interrupt handler has started
but has not yet finished processing•..••..•.. 10-33

10-4

NUCLEUS SYSTEM CALLS

THE SYSTEM CALLS

CATALOG OBJECT

CATALOG$OBJECT places an entry for an object in an object
directory.

CALL RQ$CATALOG$OBJECT (job, object, name, except$ptr);

INPUT PARAMETERS

job

object

name

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if zero, indicates that the object is to
be cataloged in the object directory of
the job to which the calling task belongs .

• if not zero, contains the token for the
job in whose object directory the object
is to be cataloged.

A WORD containing a token for the object to
be cataloged.

A POINTER to a STRING containing the ASCII
name under which the object is to be
cataloged. The name itself must not exceed
12 ASCII characters in length.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The CATALOG$OBJECT system call places an entry for an
object in the object directory of a specific job. The
entry consists of both an ASCII name and the object. There
may be several such entries for a single object in a
directory, because the object may have several ASCII
names. (However, in a given object directory, only one
object may be cataloged under a given name.) If another
task is waiting, via the LOOKUP$OBJECT system call, for the
object to be cataloged, that task is awakened when the
entry is cataloged.

CONDITION CODES

E$OK No exceptional conditions.

10-5

NUCLEUS SYSTEM CALLS

CATALOG OBJECT (continued)

CONDITION CODES (continued)

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$PARAM

E$TYPE

At least one of the following is true:
• The name being cataloged is already in

the designated object directory .
• The directory's maximum allowable size

is O.

Either the job parameter (which is not zero)
or the object parameter is not a token for
an existing object.

The designated object directory is full.

This system call is not part of the present
configuration.

The first BYTE of the STRING pointed to by
the name parameter contains a value greater
than 12 or a value of o.

The job parameter is a token for an object
which is not a job.

10-6

NUCLEUS SYSTEM CALLS

CREATE JOB

CREATE$JOB creates a job with a single task.

job = RQ$CREATE$JOB (directory$size, param$obj, pool$min,
poolmax, maxobjects, max$tasks, max$priority,
except$handler, job$flags, task$priority, start$
address, data$seg, stack$ptr, stack$size, task$flags,
except$ptr);

INPUT PARAMETERS

directory$size

param$obj

pool$min

pool$max

max$objects

A WORD containing the maximum allowable
number of entries in the created job's
object directory. The value zero is
permitted, for the case where no object
directory is desired.

A WORD which,

• if zero, indicates that the new job has
no parameter object.

• if not zero, contains a token for the
new job's parameter object.

A WORD which contains the minimum
allowable size of the new job's pool, in
16 byte paragraphs. The pool$min
parameter is also the initial size of the
new job's pool. If the stack$ptr
parameter has a base value of 0, pool$min
should be at least 32 plus the value of
stack$size in 16 byte paragraphs.
Otherwise, pool$min should be at least
32. If pool$min is less than 32, an
E$PARAM exceptional condition occurs.

A WORD which contains the maximum
allowable size of the new job's memory in
16 byte paragraphs. If pool$max is zero
or smaller than pool$min, an E$PARAM error
occurs.

A WORD which,

• if not OFFFFH, contains the maximum
number of objects, created by tasks in
the new job, that can exist
simultaneously.

• if OFFFFH, indicates that there is no
limit to the number of objects that
tasks in the new job can create.

10-7

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)
INPUT PARAMETERS (continued)

max$tasks

max$priority

except$handler

A WORD which,

• if not OFFFFH, contains the maximum
number of tasks that can exist
simultaneously in the new job.

• if OFFFFH, indicates that there is no
limit to the number of tasks that tasks
in the new job can create.

A BYTE which,

• if not zero, contains the maximum
allowable priority of tasks in the new
job. If max$priority exceeds the
maximum priority of the parent job, an
E$LIMIT error occurs.

• if zero, indicates that the new job is
to inherit the maximum priority
attribute of the job to which the
calling task belongs.

A POINTER to a structure of the following
form:

STRUCTURE(
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

WORD,
WORD,
BYTE);

If exception$handler$base is not zero,
then it and exception$handler$offset form
a POINTER to the first instruction of the
new job's own exception handler. If
exception$handler$base is zero, the new
job's exception handler is the system
default exception handler. In both cases,
the exception handler for the new task is
the default exception handler for the
job. Exception$mode indicates when
control is to be passed to the new task's
exception handler. It is encoded as
follows:

Value

o
I
2
3

When Control Passes
To Exception Handler

Never
On programmer errors only

On environmental conditions only
On all exceptional conditions

10-8

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)

INPUT PARAMETERS (continued)

job$flags

task$priority

start$address

data$seg

A WORD containing information that the
Nucleus needs to create and maintain the
job. The bits (where bit 15 is the
high-order bit) have the following
meanings:

bit meaning

15-2 reserved.

I

a
A BYTE which,

If 1, then whenever a task in
the new job or any of the
descendent jobs makes a
system call, the Nucleus will
check the parameters for
validity.

If 0, system calls by tasks
in the new job will not be
checked for validity.
However, if any ancestor of
the new job has been created
with this bit set to 1, there
will be parameter checking
for the new job.

reserved.

• if not zero, contains the priority of
the new job's initial task. If the
task$priority parameter is greater
(numerically smaller) than the new
job's maximum priority attribute, an
E$PARAM error occurs.

• if zero, indicates that the new job's
initial task is to have a priority
equal to the new job's maximum priority
attribute.

A POINTER to the first instruction of the
new job's initial task.

A WORD which,

• if not zero, contains the base address
of the data segment of the new job's
initial task.

10-9

NUCLEUS SYSTEM CALLS

Create Job (continued)

Input Parameters
data segment (continued)

stack$ptr

stack$size

task$flags

OUTPUT PARAMETERS

job

except$ptr

DESCRIPTION

• if zero, indicates that the new job's
initial task has no data segment.

A POINTER which,

• if the base portion is not zero, points
to the base of the user-provided stack
of the new job's initial task.

• if the base portion is zero, indicates
that the Nucleus should allocate a
stack segment to the new job's initial
task. The length of the allocated
segment is equal to the value of the
stack$size parameter.

A WORD containing the size, in bytes, of
the stack segment of the new job's initial
task. Stack$size must specify at least 16
bytes. The Nucleus increases specified
values that are not multiples of 16 up to
the next higher multiple of 16.

Stack$size should be at least 512 bytes if
the new task is going to make system calls.

A WORD reserved for future use. It should
be set to o.

A WORD containing a token for the new job.

A POINTER to a WORD to which the condi
tion code for the call is to be returned.

The CREATE$JOB system call creates a job with an
initializing task and returns a token for the job. The new
job's parent is the calling task's job. The new job counts
as one against the parent job's object limit. The new task
counts as one against the new job's object and task
limits. If a stack segment is created for the new task, it
counts as one against the new job's object limit. The new
job's resources corne from the parent job, as described in
the chapter on job management. In particular, the max$task
and max$objects values are deducted from the creating job's
maximum task and maximum objects attributes, respectively.

10-10

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

NUCLEUS SYSTEM CALLS

CREATE JOB (continued)

No exceptional conditions.

The job containing the calling task is in
the process of being deleted.

Param$obj is not zero and is not a token
for an existing object.

At least one of the following is true:

• pool$min is larger than the available
memory space in the memory pool of the
calling task's job.

• max$objects is larger than the unused
portion of the object allotment in the
calling task's job.

• max$tasks is larger than the unused
portion of the task allotment in the
calling task's job.

• max$priority is larger than the maximum
allowable task priority in the calling
task's job.

5 the new job and tasks would exceed the
object limit in the calling task's job.

• the new task would exceed the object
limit in the new job.

• the new task would exceed the task
limit in the calling task's job.

At least one of the following is true:

• the memory available to the new job is
not sufficient to create a task.

• the token part of the stack$ptr
parameter is zero, and the memory
available to the new job is not
sufficient to create a segment of the
size indicated by the stack$size
parameter.

10-11

CREATE JOB (continued)

CONDITION CODES

E$PARAM

NUCLEUS SYSTEM CALLS

At least one of the following is true:

• pool$min is less than 32.

• pool$min is greater than pool$max.

• task$priority is greater
(numerically smaller) than
max$priority.

• stack$size is less than 16.

10-12

NUCLEUS SYSTEM CALLS

CREATE MAILBOX

CREATE$MAILBOX creates a mailbox.

mailbox = ~Q$CREATE$MAILBOX (mailbox$flags, except$ptr);

INPUT PARAMETERS

mailbox$flags

OUTPUT PARAMETERS

mailbox

except$ptr

DESCRIPTION

A WORD containing information about the
new mailbox. The low-order bit determines
the queueing scheme for the new mailbox's
task queue:

Value

o

1

Queueing Scheme

First-in-first-out

Priority Based

The remaInIng bits in mailbox$flags are
reserved for future use and should be set
to o.

A WORD containing a token for the new
mailbox.

A POINTER to a WORD to which the condition
code for the call is returned.

The CREATE$MAILBOX system call creates a mailbox and
returns a token for it. The new mailbox counts as one
against the object limit of the calling task's job.

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

No exception conditons.

The requested mailbox would exceed the job
object limit.

The memory available to the calling task's
job is not sufficient to create a mailbox.

This system call is not part of the present
configuration.

10-13

NUCLEUS SYSTEM CALLS

CREATE SEGMENT

CREATE$SEGMENT creates a segment.

segment = RQ$CREATE$SEGMENT (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

segment

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains the size, in
bytes, of the requested segment. If
the size parameter is not a multiple of
16, it will be rounded up to the
nearest higher multiple of 16 before
the request is processed by the Nucleus.

• if zero, indicates that the size of the.
request is 65536 (64K) bytes.

A WORD which contains a token for the new
segment.

A POINTER to a WORD to which the condition
code for the call is returned.

The CREATE$SEGMENT system call creates a segment and
returns the token for it. The memory for the segment is
taken from the free portion of the memory pool of the
calling task's job, unless borrowing from the parent job is
both necessary and possible. The new segment counts as one
against the object limit of the calling task's job.

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

No exceptional conditions.

The requested segment would exceed the job
object limit.

The memory available to the calling task's
job is not sufficient to create a segment.

This system call is not part of the present
configuration.

10-14

NUCLEUS SYSTEM CALLS

CREATE SEMAPHORE

CREATE$SEMAPHORE creates a semaphore.

semaphore = RQCREATE$SEMAPHORE (initial$value, max$value,
semaphore$flags, except$ptr);

INPUT PARAMETERS

initial$value A WORD containing the initial number of
units to be in the custody of the new
semaphore.

max$value A WORD containing the maximum number of
units over which the new semaphore is to
have custody at any given time. If
max$value is zero, an E$PARAM error occurs.

semaphore$flags A WORD containing information about the
new semaphore. The low-order bit
determines the queueing scheme for the new
semaphore's task queue:

OUTPUT PARAMETERS

semaphore

except$ptr

DESCRIPTION

Value

a

1

Queueing Scheme

First-in-first-out

Priority based

The remalnlng bits in semaphore$flags are
reserved for future use and should be set
to o.

A WORD containing a token for the new
semaphore.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The CREATE$SEMAPHORE system call creates a semaphore and
returns a token for it. The semaphore thus created counts
as one against the object limit of the calling task's job.

10-15

NUCLEUS SYSTEM CALLS

CREATE SEMAPHORE (continued)

CONDITION CODES

E$OK

E$LIMIT

E$MEM

E$PARAM

ENOTCON
FIGURED

No exceptional conditions.

The reque$ted semaphore would exceed the
job object limit.

The memory available to the calling task's
job is not sufficient to create a
semaphore.

At least one of the following is true:

• the initial$value parameter is larger
than the maximum$value parameter or

• the maximum$value.parameter is O.

This system call is not part of the present
configuration.

10-16

NUCLEUS SYSTEM CALLS

CREATE TASK

CREATE$TASK creates a task.

task = RQ$CREATE$TASK (priority, start$address, data$seg,
stack$ptr, stack$size, task$flags, except$ptr);

INPUT PARAMETERS

priority

start$address

data$seg

stack$ptr

stack$size

A BYTE which,

• if not zero, contains the priority of
the new task. The priority parameter
must not exceed the maximum allowable
priority of the calling task's job. If
it does, an E$PARAM error occurs.

• if zero, indicates that the new task's
priority is to equal the maximum
allowable priority of the calling
task's job.

A POINTER to the first instruction of the
new task.

A WORD which,
it

• if not zero, contains the base address
of the new task's data segment.

• if zero, indicates that the new task
has no data segment.

A POINTER which,

• if the base portion is not zero, points
to the base of the new task's stack.

• if the base portion is zero, indicates
that the Nucleus should allocate a
stack segment to the new task. The
length of the allocated segment is
equal to the value of the stack$size
parameter.

A WORD containing the size, in bytes, of
the new task's stack segment. Stack$size
must specify at least 16 bytes. The
Nucleus increases specified values that
are not multiples of 16 up to the next
higher multiple of 16.

10-17

NUCLEUS SYSTEM CALLS

CREATE TASK (continued)

INPUT PARAMETERS
stack$size (continued)

task$flags

OUTPUT PARAMETERS

task

except$ptr

DESCRIPTION

Stack$size should be at least 512 bytes if
the new task is going to make system calls.

A WORD reserved for future use. It should
be set to o.

A WORD containing a token for the new task.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The CREATE$TASK system call creates a task and returns a
token for it. The new task counts as one against the
object and task limits of the calling task's job.
Attributes of the new task are initialized upon creation as
follows:

CONDITION CODES

E$OK

E$LIMIT

• priority: as specified in the call.

• execution state: ready.

• suspension depth: o.
• containing job: the job which contains

the calling task.

• exception handler: the exception
handler of the containing job.

• exception mode: the exception mode of
the containing job.

No exceptional conditions.

The new task would exceed the object limit
or the task limit of the calling task's
job.

10-18

NUCLEUS SYSTEM CALLS

CREATE TASK (continued)

CONDITION CODES (continued)

E$MEM

ENOTCON
FIGURED

E$PARAM

At least one of the following is the case:

• The memory available to the calling
task's job is not sufficient to create a
task.

• The base part of the stack$ptr parameter
is zero, and the memory available to the
calling task's job is not sufficient to
create a segment of the size indicated
by the stack$size parameter.

This system call is not part of the present
configuration.

At least one of the following is the case:

• The priority parameter is greater
(numerically smaller) than the maximum
allowable priority for tasks in the
calling task's job.

• The stack$size parameter is less than 16.

10-19

NUCLEUS SYSTEM CALLS

DELETE JOB

DELETE$JOB deletes a job.

CALL RQ$DELETE$JOB (job, except$ptr);

INPUT PARAMETER

job

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

A WORD containing a token for the job to be
deleted. A value of zero specifies the
calling task's job.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The DELETE$JOB system call deletes from the system the
specified job, as well as all objects created by tasks in
it. Exceptions are that jobs, interrupt tasks, and
extension objects (see the iRMX 86 System Programmer's
Reference Manual) created by tasks in the target job must
be deleted prior to the call to DELETE$JOB. Information
concerning the descendents of a job is obtained via the
OFFSPRING system call. During deletion, all resources that
the target job had borrowed from its parent are returned.

Deleting a job causes a credit of one toward the object
total of the parent job. Also, the maximum tasks and
maximum objects attributes of the deleted job are
subtracted from the current tasks and current objects
attributes, respectively, of the parent job.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

No exceptional conditions.

There are undeleted jobs, interrupt tasks,
or extension objects (see the iRMX 86 System
Programmer's Reference Manual) which have
been created by tasks in the target job.

The job parameter is not a token for an
existing object.

10-20

NUCLEUS SYSTEM CALLS

, -

DELETE JOB (continued)-

CONDITION CODES (continued)

E$MEM

ENOTCON
FIGURED

E$TYPE

The job'to be deleted contains uhdeleted
composite objects (see the iRMX 86 System
Programmer's Reference Manual), and there is
not sufficient memory for the Nucleus to
send deletion messages to the appropriate
deletion mailboxes.

This system call is not part of the present
configuration.

The job parameter is a token for an object
that is not a job.

10-21

NUCLEUS SYSTEM CALLS

DELETE MAILBOX

DELETE$MAILBOX deletes a mailbox.

CALL RQ$DElETE$MAILBOX (mailbox, except$ptr);

INPUT PARAMETER

mailbox

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

A WORD containin9 a token for the mailbox to
be deleted.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The DELETE$MAILBOX system call deletes the specified
mailbox from the system. If any tasks are queued at the
mailbOX at the moment of deletion, they are awakened with
an E$EXIST exceptional condition. If there is a queue of
object tokens at the moment of deletion, the queue is
discarded. Deleting the mailbox counts as a credit of one
toward the object total of the containing job.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The mailbox parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The mailbox parameter is a token for an
object which is not a mailbox.

10-22

NUCLEUS SYSTEM CALLS

DELETE SEGMENT

DELETE$SEGMENT deletes a segment.

CALL RQ$DELETE$SEGMENT (seriment, except$ptr);

INPUT PARAMETER

segment

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the segment
that is to be deleted.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The DELETE$SEGMENT system call returns the specified
segment to the memory pool from which it was allocated.
The deleted segment counts as a credit of one toward the
object total of the containing job.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The segment parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The segment parameter is a token for an
object that is not a segment.

10-23

NUCLEUS SYSTEM CALLS

DELETE SEMAPHORE

DELETE$SEMAPHORE deletes a semaphore.

CALL RQ$DELETE$SEMAPHORE (semaphore, except$ptr);

INPUT PARAMETER

semaphore

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the semaphore
that is to be deleted.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The DELETE$SEMAPHORE system call deletes the specified
semaphore. If there are tasks in the semaphore's queue at
the moment of deletion, they are awakened with an E$EXIST
exceptional condition. The deleted semaphore counts as a
credit of o~e toward the object total of the containing job.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The semaphore parameter is not a token for
an existing object.

This system call is not part of the present
configuration.

The semaphore parameter is a token for an
object that is not a semaphore.

10-24

NUCLEUS SYSTEM CALLS

DELETE TASK

DELETE$TASK deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains a token for the task
that is to be deleted .

• if zero, indicates that the calling task
is to be deleted.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The DELETE$TASK system call deletes the specified task from
the system and from any queues in which the task was
waiting. Deleting the task counts as a credit of one
toward the object total of the containing job. It also
counts as a credit of one toward the containing job's task
total. If the task's stack segment was allocated by the
system, it also is deleted.

Interrupt tasks cannot be deleted by DELETE$TASK; instead,
interrupt tasks are deleted by RESET$INTERRUPT.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The task parameter is a token for an
interrupt task.

The task parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The task parameter is a token for an object
which is not a task.

10-25

NUCLEUS SYSTEM CALLS

DISABLE

DISABLE disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order
bit):

Bits Value

15-7 0

6-4 The interrupt level (0-7)

3 1

2-0 0

A POINTER to a WORD to which the condition
code for the call is to be returned.

The DISABLE system call disables the specified interrupt
level. It has no effect on other levels. Level 2, which
is reserved for the system clock, should not be disabled.

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

The level indicated by the level parameter
is' already disabled.

This system call is not part of the present
configuration.

The level parameter is invalid.

10-26

NUCLEUS SYSTEM CALLS

ENABLE

ENABLE enables an interrupt level.

CALL RQ$ENABLE (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order
bit):

Bits Value

15-7 o

6-4 the interrupt level (0-7)

3 1

2-0 o

A POINTER to a WORD to which the condition
code for the call is to be returned.

The ENABLE system call enables the specified interrupt
level. The level must have an interrupt handler assigned
to it.

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

At least one of the following is true:

• The level indicated by the level
parameter is already disabled.

• There is not an interrupt handler
assigned to the specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

10-27

NUCLEUS SYSTEM CALLS

ENTER INTERRUPT

ENTER$INTERRUPT is used by interrupt handlers to load a
previously specified segment base address into the OS register.

CALL RQ$ENTER$INTERRUPT(level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order
bit):

Bits Value

15-7 o

6-4 the interrupt level (0-7)

3 I

2-0 o

A POINTER to a WORD to which the condition
code for the call is to be returned.

ENTER$INTERRUPT, on behalf of the calling interrupt
handler, loads a base address value into the OS register.
The value is what was specified when the interrupt handler
was set up by an earlier call to SET$INTERRUPT.

One purpose of loading a new value into the OS register is
to protect the contents of the interrupted task's data
segment. Another purpose, if the handler is going to call
an interrupt task, is that ENTER$INTERRUPT enables the
handler to place data in the iAPX 86 data segment that will
be used by the interrupt task. This provides a mechanism
for the interrupt handler to pass data to the interrupt
task.

10-28

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

NUCLEUS SYSTEM CALLS

ENTER INTERRUPT (continued)

No exceptional conditions.

No value had previously been specified in
the call to SET$INTERRUPT.

This system call is not included in the
present configuration.

The level parameter is invalid.

10-29

NUCLEUS SYSTEM CALLS

EXIT INTERRUPT

EXIT$INTERRUPT is used by interrupt handlers when they don't
call interrupt tasks; this call sends an end-of-interrupt
signal to hardware.

CALL RQ$EXIT$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order
bit):

Bits Value

15-7 0

6-4 the interrupt level (0-7)

3 1

2-0 0

A POINTER to a WORD to which the condition
code for the call is to be returned.

The EXIT$INTERRUPT system call sends an end-of-interrupt
signal to hardware. This sets the stage for re-enabling
interrupts. The re-enabling actually occurs when control
passes from the interrupt handler to an application task.

CONDITION CODES

E$OK

ENOTCON
FIGURED

E$PARAM

No exceptional c6nditions.

This system call is not part of the present
configuration.

The level parameter is invalid.

10-30

NUCLEUS SYSTEM CALLS

GET EXCEPTION HANDLER

GET$EXCEPTION$HANDLER returns information about the calling
task 1 s exception handler.

CALL RQGETEXCEPTION$HANDLEH (exception$info$ptr, except$ptr);

OUTPUT PARAMETERS

exception$info$ptr A POINTER to a structure of the
following form:

except$ptr

STRUCTURE (
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

where, after the call,

WORD,
WORD,
BYTE);

• exception$handler$offset contains the
offset of the first instruction of
the exception handler.

• exception$handler$base contains a
base for the segment containing the
first instruction of the exception
handler. If exception$handler$base
and exception$handler$object are both
zero, the calling task's exception
handler is the system default
exception handler.

• exception$mode contains an encoded
indication of the calling task's
current exception mode. The value is
interpreted as follows:

When to Pass Control
Value to Exception Handler

o Never
1 On programmer errors only
2 On environment-al conditions only
3 On all exceptional condltons

A POINTER toa WORD to wh~ch the
condition code for the call is to be
ret-urned.

10-31

GE.l
EXCEPTiO

HANDl.E

NUCLEUS SYSTEM CALLS

GET EXCEPTION HANDLER (continued)

DESCRIPTION

The GET$EXCEPTION$HANDLER system call returns both the
address of the calling task's exception- handler and the
current value of the task's exception mode.

CONDITION CODE

E$OK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

10-32

NUCLEUS SYSTEM CALLS

GET LEVEL

GET$LEVEL returns the number of the level of the interrupt
being serviced.

level = RQGETLEVEL (except$ptr);

INPUT PARAMETERS

none

OUTPUT PARAMETERS

level

except$ptr

DESCRIPTION

A WORD whose value is interpreted as follows
(bit 15 is the high-order bit):

Bits Value/Interpretation

15-8 undefined

7

6-4

3-0

o some level is being serviced
and bits 6-4 are significant

1 no level is being serviced
and bits 6-4 are not
significant

an interrupt level (0-7)

undefined

A POINTER to a WORD to which the condition
code for the call is to be retured.

The GET$LEVEL system call returns to the calling task the
highest (numerically lowest) level which an interrupt
handler has started servicing but has not yet finished. To
strip away unwanted one bits, logically AND the returned
value with OOFOH.

CONDITION CODES

E$DK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

10-33

NUCLEUS SYSTEM CALLS

GET POOL ATTRIB

GET$POOL$ATTRIB returns information about the memory pool of
the calling task's job.

CALL RQGETPOOL$ATTRIB (attrib$ptr, except$ptr);

INPUT PARAMETER

attrib$ptr A POINTER to a data structure of the following
form:

OUTPUT PARAMETER

STRUCTURE(
POOL$MAX
POOL$MIN
INITIAL$SIZE
ALLOCATED
AVAILABLE

where, after the call,

WORD,
WORD,
WORD,
WORD,
WORD) ;

• pool$max contains the maximum allowable size
of the memory pool of the calling task's job.

• pool$min contains the minimum allowable size
of the memory pool of the calling task's job.

• initial$size contains the original value of
the pool$min attribute.

• allocated contains the number of bytes
currently allocated from the memory pool of
the calling task's job.

• available contains the number of bytes
currently available in the memory pool of
the calling task's job.

except$ptr A POINTER to a WORD to which the condition code
for the call is to be returned.

DESCRIPTION

The GET$POOL$ATTRIB system call returns information
regarding the memory pool of the calling task's job.. The
data returned comprises the allocated and available
portions of the pool, as well as its initial, minimum, and
maximum sizes.

10-34

CONDITION CODE

E$OK

ENOTCON
FIGURED

NUCLEUS SYSTEM CALLS

GET POOL ATTRIB (continued)

No exceptional conditions.

This system call is not part of the present
configuration.

10-35

NUCLEUS SYSTEM CALLS

GET PRIORITY

GET$PRIORITY returns the priority of a task.

priority = RQGETPRIORITY (task, exc~pt$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETERS

priority

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains a token for the
task whose priority is being requested.

• if zero, indicates that the calling
task is asking for its own priority.

A BYTE containing the priority of the task
indicated by the task parameter.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The GET$PRIORITY system call returns the priority of the
specified task.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The task parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The task parameter is a token for an object
that is not a task.

10-36

NUCLEUS SYSTEM CALLS

GET SIZE

GET$SIZE returns the size, in bytes, of a segment.

size.= RQGETSIZE (segment, except$ptr);

INPUT PARAMETER

segment

OUTPUT PARAMETERS

size

except$ptr

DESCRIPTION

A WORD containing a token for a segment.

A WORD which,

• if not zero, contains the size, in
bytes, of the segment indicated by the
segment parameter.

• if zero, indicates that the size of the
segment is 65536 (64K) bytes.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The GET$SIZE system call returns the size, in bytes, of a
segment.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditons.

The segment parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The segment parameter is a token for an
object that is not a segment.

10-37

NUCLEUS SYSTEM CALLS

GET TASK TOKENS

GET$TASK$TOKENS returns the token requested by the calling task.

token = RQGETTASK$TOKENS (selection, except$ptr);

INPUT PARAMETER

selection

OUTPUT PARAMETERS

token

except$ptr

DESCRIPTION

A BYTE containing the request, encoded
as follows:

Value Object for which a Token is
Requested

o The calling task.

I The calling task's job.

2 The parameter object of the
calling task's job.

3 The root job.

A WORD containing the requested token.

A POINTER to a WORD to which the
condition code for the call is to be
returned.

The GET$TASK$TOKENS system call returns a token for either
the calling task, the calling task's job, the calling
task's parameter object, or the root job, depending on the
encoded request.

CONDITION CODES

E$DK

E$PARAM

No exceptional conditions.

The selection parameter is greater than
3.

10-38

NUCLEUS SYSTEM CALLS

GET TYPE

GET$TYPE returns the encoded type of an object.

type$code = RQ$GET$TYPE (object, except$ptr);

INPUT PARAMETER

object

OUTPUT PARAMETERS

type$code

except$ptr

DESCRIPTION

A WORD containing the token for an object.

A WORD which contains the encoded type of
the specified object. The types are encoded
as follows:

Value

I
2
3
4
6

~

job
task
mailbox
semaphore
segment

A POINTER to a WORD to which the condition
code for the call is returned.

The GET$TYPE system call returns a type code for an object.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

No exceptional conditions.

The object parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

10-39

NUCLEUS SYSTEM CALLS

LOOKUP OBJECT

LOOKUP$OBJECT returns a token for a cataloged object~

object = RQ$LO()KUP$OBJECT (job "nam~, time$l imi t, ' e.~cept$pt r) ;

INPUT PARAMETERS

job

name

time$limit

OUTPUT PARAMETERS

object

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains a token for the job
whose object directory is tob~ searched.

• if zero, indicates that the object
directory to be s~arched is that of the
calling task'sjo~.

A POINTER to a STRING ~hich contains the
ASCII name under which the object is
cataloged. During the lookup operation,
upper and lower case letters are treated as
being different.

A WORD which,

• if zero, indicates that the calling ,task
is not willing to wait. .

• if OFFFFH, indicates that the task will
wait as long as is necessary.

• if between 0 and OFFFFH, indicates that
th~ task is willing to wait only that "many
1/100 second time units.

~ WORD containing the requested token.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The LOOKUP$OBJECT system call returns the token for the
specified object after searching for its ASCII name in the
specified object directory. Because it is possible that
the object is not cataloged at the time of the call, the
calling task has the option of waiting, either indefinitely
or for a specific period of time, for another task to
catalog the object.

10-40

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$PARAM

E$TIME

E$TYPE

NUCLEUS SYSTEM CALLS

LOOKUP OBJECT (continued)

No exceptional conditions.

The specified job has an object directory of
size o.

The job parameter (which is not zero) is not
a token for an existing object.

The specified object directory is full.

This system call is not part of the present
configuration.

The first byte of the string pointed to by
the name parameter contains a value greater
than 12 or equal to zero.

Either

• the calling task indicated its willingness
to wait a certain amount of time, then
waited without satisfaction or

• the task.was not willing to wait, and the
entry indicated by the name parameter is
not in the specified object directory.

The job parameter is a token for an object
that is not a job.

10-41

NUCLEUS SYSTEM CALLS

OFFSPRING

OFFSPRING returns a token for each child (job) of a job.

taken$list = RQ$OFFSPRING (job, except$ptr);

INPUT PARAMETER

job

OUTPUT PARAMETER

token$list

except$ptr

DESCRIPTION

A WORD containing a token for the job whose
offspring are desired. A value of zero
specifies the calling task's job.

A WORD which,

• if not zero, contains a token for a
segment. The first word in the segment
contains the number of words in the
remainder of the segment. Subsequent
words contain the tokens for jobs which
are the children of the specified job.

• if zero, indicates that the specified
job has no children.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The OFFSPRING system call returns the token for a segment.
The segment contains a token for each child of the
specified job. By repeated use of this call, tokens can be
obtained for all descendents of a job; this information is
needed by a task which is attempting to delete a job that
has child jobs.

CONDITION CODES

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The job parameter is not a token for an
existing object.

The required segment, if allocated, would
exceed the job object limit.

There is not sufficient memory available to
create the required segment.

This system call is not part of the present
configuration.

The job parameter is a token for an object
that is not a job.

10-42

NUCLEUS SYSTEM CALLS

RECEIVE MESSAGE

RECEIVE$MESSAGE delivers the calling task to a mailbox, where
it waits for an object token to be returned.

object = RQ$RECEIVE$MESSAGE (mailbox, time$limit,
response$ptr, except$ptr);

INPUT PARAMETERS

mailbox

time$limit

A WORD containing a token for the mailbox at
which the calling task expects to receive an
object token.

A WORD which,

• if zero, indicates that the calling
task is not willing to wait.

• if OFFFFH, indicates that the task will
wait as long as is necessary.

• if between 0 and OFFFFH, indicates that
the task is willing to wait only that
many 1/100 second time units.

OUTPUT PARAMETERS

object

response$ptr

A WORD containing the token for the object
being received.

A POINTER to a WORD in which the system
returns a value. The returned word,

• if not zero, contains a token for the
exchange to which the receiving task is
to send a response.

• if zero, indicates that no response has
been requested by the sending task.

CAUTION

Response$ptr points to a location for
the sending task to use. If you
specify a constant value for
response$ptr, be careful to ensure
that the value does not conflict with
system requirements. In particular, a
value of zero for response$ptr will
normally cause unpredictable system
behavior.

10-43

NUCLEUS SYSTEM CALLS

RECEIVE MESSAGE (continued)

OUTPUT PARAMETERS (continued)

except$ptr

DESCRIPTION

A POINTER to a WORD to which the condition
code for the call is to be returned.

The RECEIVE$MESSAGE system call causes the calling task
either to get the token for an object or to wait for the
token in the task queue of the specified mailbox. If the
object queue at the mailbox is not empty, then the calling
task immediately gets the token at the head of the queue
and remains ready. Otherwise, the calling task goes into
the task queue of £he mailbox and goes to sleep, unless the
task is not willing to wait. In the latter case, or if the
task's waiting period elapses without a token arriving, the
task is awakened with an E$TIME exceptional condition.

If the sending task needs a response from the receiving
task, a token for the requested response exchange is
returned in the word to which the response$ptr parameter is
pointing. The nature of the respOnse must be agreed upon
by the writers of the two tasks.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TIME

E$TYPE

No exceptional conditions.

The mailbox parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

Either

• the calling task was not willing to
wait and there was not a token
available, or

• the task waited in the task queue an,d
its designated waiting period elapsed
before the task got the desired token.

The mailbox parameter is a token for an
object that is not a mailbox.

10-44

NUCLEUS SYSTEM CALLS

RECEIVE UNITS

RECEIVE$UNITS delivers the calling task to a semaphore, where
it waits. for units.

value = RQ$RECEIVE$UNITS (semaphore, units, time$limit,
except$ptr);

INPUT PARAMETERS

semaphore

units

time$limit

OUTPUT PARAMETERS

value

except$ptr

DESCRIPTION

A WORD containing a token for the semaphore
from which the calling task hopes to receive
units.

A WORD containing the number of units that
the calling task is requesting.

A WORD which,

• if zero, indicates that the calling
task is not willing to wait.

• if OFFFFH, indicates that the task will
wait as long as is necessary.

• if between 0 and OFFFFH, indicates that
the task is willing to wait only that
many 1/100 second time units.

A WORD containing the number of units
remaining in the custody of the semaphore
after the calling task's request is
satisfied.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The RECEIVE$UNITS system call causes the calling task
either to get the units that it is requesting or to wait
for them in the semaphore's task queue. If the units are
available and the task is at the front of the queue, then
the task receives them and remains ready. Otherwise, the
task is placed in the semaphore's task Queue and goes to
sleep, unless the task is not willing to wait. In the
latter case, or if the task's waiting period elapses before
the requested units are available, the task is awakened
with an E$TIME exceptional condition.

10-45

NUCLEUS SYSTEM CALLS

RECEIVE UNITS (continued)

CONDITION CODES

E$OK

E$EXIST

E$lIMIT

ENOTCON
FIGURED

E$TIME

E$TYPE

No exceptional conditions.

The sem.aphore parameter is not a token for
an existing object.

The units parameter is greater than the
maximum value that had been specified for
the semaphore when it was created.

This system call is not part of the present
configuration.

Either

• the calling task was not willing to
wait and the requested units were not
available or

• the task waited in the task queue and
its designated waiting period elapsed
before the requested units were
available.

The semaphore parameter is a token for an
object that is not a semaphore.

10-46

NUCLEUS SYSTEM CALLS

RESET INTERRUPT

RESET$INTERRUPT cancels the assignment of an interrupt handler
to a level.

CALL RQ$RESET$INTERRUPT (level, except$ptr);

'INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level which
is encoded as follows (bit 15 is the
high-order bit):

Bits Value

15-7 0

6-4 the interrupt level (0-7)

3 1

2-0 0

A POINTER to a WORD to which the condition
code for the call is to be returned.

The RESET$INTERRUPT system call cancels the assignment of
the current interrupt handler to the specified interrupt
level. If an interrupt task had also been assigned to the
level, the interrupt task is deleted. RESET$INTERRUPT also
disables the level.

Level 2 should not be reset and is considered invalid.

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

There is not an interrupt handler assigned
to the specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

10-47

NUCLEUS SYSTEM CALLS

RESUME TASK

RESUME$TASK decreases by one the suspension depth of a task.

CALL RQ$RESUME$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the task whose
suspension depth is to be decremented.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The RESUME$TASK system call decreases by one the suspension
depth of the specif~ed non-interrupt task. The task should
be in either the suspended or asleep-suspended state, so
its suspension depth should be at least one. If the
suspension depth is still positive after being decremented,
the state of the task is not changed. If the depth becomes
zero, and the task is in the suspended state,then it is
placed in the ready state. If the depth becomes zero, and
the task is in the asleep-suspended state, then it is
placed in the asleep state.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$STATE

E$TYPE

No exceptional conditions.

The task indicated by the task parameter is
an interrup task.

The task parameter is not a token for an
existing object.

The task indicated by the task parameter was
not suspended when the call was made.

The task parameter is a token for an object
that is not a task.

10-48

NUCLEUS SYSTEM CALLS

SEND MESSAGE

SEND$MESSAGE sends an object token to a mailbox.

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr);

INPUT PARAMETERS

mailbox

object

response

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the mailbox to
which an object token is to be sent.

A WORD containing an object token which is to
be sent.

A WORD which,

• if not zero, contains a token for the
desired response mailbox or semaphore.

• if zero, indicates that no response is
requested.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The SEND$MESSAGE system call sends the specified object
token to the specified mailbox. If there are tasks in the
task queue at that mailbox, the task at the head of the
queue is awakened and is given the token. Otherwise, the
obj'ect token is placed at the tail of the object queue of
the mailbox. The sending task has the option of specifying
a mailbox or semaphore at which it will wait for a response
from the task that receives the object. The nature of the
response must be agreed upon by the writers of the two tasks.

CONDITION CODES

E$OK

E$EXIST

E$MEM

No exceptional conditions.

One or more of the input parameters is not a
token for an existing object.

There is not sufficient memory for the
Nucleus to do the housekeeping that supports
a send message operation.

10-49

NUCLEUS SYSTEM CALLS

SEND MESSAGE (continued)

CONDITION CODES (continued)

ENOTCON
FIGURED

E$TYPE

This system call is not part of the present
configuration.

Either

• the mailbox parameter is a token for an
object that is not a mailbox or

• the response parameter is a token for an
object that is neither a mailbox nor a
semaphore.

10-50

NUCLEUS SYSTEM CALLS

SEND UNITS

SEND$UNITS sends units to a semaphore.

CALL RQ$SEND$UNITS (semaphore, units, except$ptr);

INPUT PARAMETERS

semaphore

units

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the semaphore
to which the units are to be sent.

A WO~D containing the number of units to be
sent.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The SEND$UNITS system call sends the specified number of
units to the specified semaphore. If the transmission
would cause the semaphore's supply of units to exceed its
maximum allowawble supply, then an E$LIMIT exceptional
condition occurs. Otherwise, the transmission is
successful and the Nucleus attempts to satisfy the requests
of the tasks in the semaphore's task queue, beginning at
the head of the Queue.

CONDITION CODES

E$OK

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$TYPE

No exceptional conditons.

The semaphore parameter is not a token for
an existing object.

The number of units that the calling task is
trying to send would cause the semaphore's
supply of units to exceed its maximum
allowable supply.

This system call is not part of the present
configuration.

The semaphore parameter is a token for an
object that is not a semaphore.

10-51

NUCLEUS SYSTEM CALLS

SET EXCEPTION HANDLER

SET$EXCEPTION$HANDLER assigns an exception handler to the
calling task.

CALL RQSETEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

INPUT PARAMETER

exception$info$ptr A POINTER to a structure of the
following form:

OUTPUT PARAMETER

except$ptr

STRUCTURE(
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

where

WORD,
WORD,
BYTE);

• exception$handler$offset contains the
offset of the first instruction of
the exception handler.

• exception$handler$base contains a
token for the segment containing the
first instruction of the exception
handler.

• exception$mode contains an encoded
-indication of the calling task's
intended exception mode. The value
is interpreted as follows:

When to Pass Control
Value To Exception Handler

a Never
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

A POINTER to a WORD to which the
condition code for the call is to be
returned.

10-52

NUCLEUS SYSTEM CALLS

SET EXCEPTION HANDLER (continued)

DESCRIPTION

The SET$EXCEPTION$HANDLER system call enables a task to set
its exception handler and exception mode attributes. If
you want to designate the Debugger as the exception handler
to interactively examine system objects and lists, the
following code sets up the needed structure in PL/M-86:

DECLARE X

DECLARE Y

STRUCTURE (OFFSET
BASE
MODE

POINTER AT (@X);

WORD,
WORD,
BYTE) ;

DECLARE EXCEPTION WORD;

Y = @RQDEBUGGEREX;
X.MODE = ZEROONETWOORTHREE;
CALL RQSETEXCEPTION$HANDLER (@X, @EXCEPTION);

CONDITION CODES

E$OK

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

This system call is not part of the present
configuration.

The exception$mode parameter is greater than
3.

10-53

SE
EXCEPTIO

HANDLE

NUCLEUS SYSTEM CALLS

SET INTERRUPT

SET$INTERRUPT assigns an interrupt handler to an interrupt
level and, optionally, makes the calling task the interrupt
task for the level.

CALL RQSETINTERRUPT (level, interrupt$task$flag,
interrupt$handler, interrupt$handler$ds, except$ptr);

INPUT PARAMETERS

level

interrupt$task$flag

A WORD containing an interrupt level
that is encoded as follows (bit 15 is
the high-order bit):

Bits Value

15-7 0

6-4 the interrupt level (0-7)

3 1

2-0 0

A BYTE which,

• if one, indicates that the calling
task is to be the interrupt task
that will be invoked by the
interrupt handler being set. The
priority of the calling task is set
by the Nucleus. The priority is
derived from the level, according
to the following table:

Level

a
1
2
3
4
5
6
7

Priority

18
34
50
66
82
98

114
130

Be certain that priorities set in
this manner do not violate the
max$priority attribute of the
containing job.

10-54

interrupt$handler

NUCLEUS SYSTEM CALLS

SET INTERRUPT (continued)

• if zero, indicates that no interrupt
task is to be associated with the
special level and that the new
interrupt handler will not call
SIGNAL INTERRUPT.

• if greater than one, causes an
E$PARAM exceptional condition.

A POINTER to the first instruction of
the interrupt handler. To obtain the
proper start address for interrupt
handlers written in PL/M-86, place the
following instruction before the call
to SET$INTERRUPT:

I

interrupt$handler
= interrupt$ptr (inter);

where interrupt$ptr is a PL/M-86
built-in procedure and inter is the
name of your interrupt handling
procedure.

interrupt$handler$ds A WORD which,

• if not zero, contains the base
address of the interrupt handler's
data segment. See the description
of ENTER$INTERRUPT in this chapter
for information concerning the
significance of this parameter.

It is often desirable for an
interrupt handler to pass
information to the interrupt task
that it calls. The following PL/M-86
statements, when included in the
interrupt task's code (with the
first statement listed here being
the first statement in the task's
code), will extract the OS register
value used by the interrupt task and
make it available to the interrupt
handler, which in turn can access it
by calling ENTER$INTERRUPT:

10-55

NUCLEUS SYSTEM CALLS

INTERRUPT(continued)

INPUT PARAMETERS
interrupt$hander$ds (continued)

OUTPUT PARAMETER

except$ptr

DECLARE BEGIN WORD; 1* A DUMMY
VARIABLE WHICH
IS THE FIRST
DECLARED
VARIABLE */

DECLARE DATA$PTR POINTER;

DECLARE DATA$ADDRESS STRUCTURE (

OFFSET WORD,

BASE WORD) AT (@DATA$PTR);

DATA$PTR = @BEGIN;

1* THIS MAKES
ACCESSIBLE THE
TWO HALVES OF
THE POINTER
DATA$PTR *1

1* PUTS THE
WHOLE ADDRESS
OF THE DATA
SEGMENT INTO
DATA$PTR AND
DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;

CALL RQSETINTERRUPT (... ,DS$BASE);

• if zero, indicates that the
interrupt handler will use the data
segment of the interrupted task and
may not call ENTER$INTERRUPT.

A POINTER to a WORD to which the
condition code for the call is to be
returned.

10-56

NUCLEUS SYSTEM CALLS

SET INTERRUPT (continued)

DESCRIPTION

The SET$INTERRUPT system call is used to inform the Nucleus
that the specified interrupt handler is to service inter
rupts which come in at the specified level. In a call to
SET$INTERRUPT, a task must indicate whether the interrupt
handler will invoke an interrupt task and whether the
interrupt handler has its own data segment. If there is to
be an interrupt task, the calling task is that interrupt
task. If there is no interrupt task, SET$INTERRUPT also
enables the specified level, which must be disabled at the
time of the call.

CONDITION CODES

ESOK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

Either

• the specified level already has an
interrupt handler assigned to it or

• the job containing the calling task
is in the process of being deleted.

This system call is not part of the present
configuration.

Either

• the level parameter is invalid or
would cause the task to have a
priority not allowed by its job.

• the interrupt$task$flag parameter is
greater than one.

10-57

NUCLEUS SYSTEM CALLS

SET POOL MINIMUM

SET$POOL$MINIMUM sets a job's pool$min attribute.

CALL RQSETPOOL$MINIMUM (new$min, except$ptr);

INPUT PARAMETER

new$min

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if OFFFFH, indicates that the pool$min
attribute of the calling task's job is to
be set equal to that job's pool$max
attribute .

• if less than OFFFFH, contains the new
value of the pool$min attribute of the
calling task's job. This new value must
not exceed that job's pool$max attribute.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The SET$POOL$MINIMUM system call sets the pool$min
attribute of the calling task's job. The new value must
not exceed that job's pool$max attribute. When the
pool$min attribute is made larger than the current pool
size, the pool is not enlarged until the additional memory
is needed.

CONDITION CODES

E$OK

E$LIMIT

ENOTCON
FIGURED

No exceptional conditions.

The new$min parameter is not OFFFFH, yet is
greater than the pool$max attribute of the
calling task's job.

This system call is not part of the present
configuration.

10-58

NUCLEUS SYSTEM CALLS

SIGNAL INTERRUPT

SIGNAL$INTERRUPT is used by an interrupt handler to activate an
interrupt task.

CALL RQ$SIGNAL$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level which
is encoded as follows (bit 15 is the
high-order bit):

Bits Value

15-7 o

6-4 the interrupt level (0-7)

3 1

2-0 o

A POINTER to a WORD to which the condition
code for the call is to be returned.

An interrupt handler uses SIGNAL$INTERRUPT to start up its
associated interrupt task. The interrupt task runs in its
own environment with higher level interrupts enabled,
whereas the interrupt handler runs in the environment of the
interrupted task with all interrupts disabled.

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

There is not an interrupt task assigned to
the specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

la-59

NUCLEUS SYSTEM CALLS

SLEEP

SLEEP puts the calling task to sleep.

CALL RQ$SLEEP (time$limit, except$ptr);

INPUT PARAMETER

time$limit

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if not zero and not OFFFFH, causes the
calling task to go to sleep for that many
1/100 second time units, after which it
will be awakened.

• if zero, causes the calling task to be
placed on the list of ready tasks,
immediately behind all tasks of the same
priority. If there are no such tasks,
there is no effect.

• if OFFFFH, is invalid.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The SLEEP system call has two uses. One use places the
calling task in the asleep state for a specific amount of
time. The other use allows the calling task to defer to
the other ready tasks with the same priority. When a task
defers in this way it is placed on the list of ready tasks,
immediately behind those other tasks of equal priority.

CONDITION CODES

E$OK

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

This system call is not part of the present
configuration.

The time$limit parameter contains the
invalid value OFFFFH.

10-60

NUCLEUS SYSTEM CALLS

SUSPEND TASK

SUSPEND$TASK increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTIONS

A WORD which,

• if not zero, contains a token for the task
whose suspension depth is to be
incremented .

• if zero, indicates that the calling task
is suspending itself.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The SUSPEND$TASK system call increases by one the
suspension depth of the specified task. If the task is
already in either the suspended or asleep-suspended state,
its state is not changed. If the task is in the ready or
running state, it enters the suspended state. If the task
is in the asleep state, it enters the asleep-suspended
state.

SUSPEND$TASK cannot be used to suspend interrupt tasks.

CONDITION CODES

.E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$TYPE

No exceptional conditions.

The task indicated by the task parameter is
an interrupt task.

The.task parameter is not a token for an
existing object.

The suspension depth for the specified task
is already at the maximum of 255.

The task parameter is a token for an object
that is not a task.

10-61

NUCLEUS SYSTEM CALLS

UNCATALOG OBJECT

UNCATALOG$OBJECT removes an entry for an object from an object
directory.

CALL RQ$UNCATALOG$OBJECT (job, name, except$ptr);

INPUT PARAMETERS

job

name

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if not zero, is a token for the job from
whose object directory the specified entry
is to be deleted .

• if zero, indicates that the entry is to be
deleted from the object directory of the
calling task's job.

A POINTER to a STRING containing the ASCII
name of the object whose entry is to be
deleted.

A POINTER to a WORD to which the condition
code for the call is to be returned.

The UNCATALOG$OBJECT system call deletes an entry from the
object directory of the specified job.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

ENOTCON
FIGURED

E$PARAM

E$TYPE

No exceptional conditions.

The specified object directory does not
contain an entry with the designated name.

The job parameter is neither zero nor a
token for an existing object.

This system call is not part of the present
configuration.

The first byte of the STRING pointed to by
the name parameter contains a value greater
than 12 or equal to O.

The job parameter is a token for an object
that is not a job.

10-62

NUCLEUS SYSTEM CALLS

WAIT INTERRUPT

WAIT$INTERRUPl is used by an interrupt task to signal its
readiness to service an interrupt.

CALL RQ$WAIT$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level which
is encoded as follows (bit 15 is the
high-order bit):

Bits Value

15-7 0

6-4 the interrupt level (0-7)

3 I

2-0 0

A POINTER to a WORD to which the condition
code for the call is to be returned.

The WAIT$INTERRUPT system call is used by interrupt tasks
immediately after initializing and immediately after
servicing interrupts. Such a call places an interrupt task
in the asleep state until reawakened by the interrupt
handler for the same level. Each call that an interrupt
task makes to WAIT$INTERRUPT enables the given level.

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

The calling task is not the interrupt task
for the given level.

This system call is not part of the present
configuration.

The level parameter is invalid.
10-63

CHAPTER 11. TERMINAL HANDLER

GENERAL INFORMATION

The Terminal Handler supports real-time, asynchronous I/O
between an operator's terminal and tasks running under the
iRMX 86 Nucleus. It is intended for use in applications which
require only limited I/O through a terminal, and it generally
is used in applications that do not include the iRMX 86 I/O
System. The features of the Terminal Handler include the
following:

• Line editing capabilities.

• Keystroke control over output, including output
suspension and resumption, and deletion of data being
sent by tasks to the terminal.

• Echoing of characters as they are entered into the
Terminal Handler's line buffer.

An output-only version of the Terminal Handler is available for
use in applications in which tasks send output to a terminal
but do not receive input from the terminal.

The remainder of this chapter is divided into two parts. The
first part, Using a Terminal with the iRMX 86 Operating System,
provides the information that is needed by an operator of the
terminal. The second part, Programming Considerations,
contains the information that a programmer needs to write tasks
that send data to, or receive data from, the terminal. In the
first part, there are a few references to the mailboxes that
tasks use to communicate with the terminal. If you are puzzled
by such a reference, look in the second part for an explanation.

USING A TERMINAL WITH THE iRMX 86 OPERATING SYSTEM

While using a terminal that is under control of the Terminal
Handler, an operator either reads an output message from the
terminal's display or enters characters by striking keys on the
terminal's keyboard. Normal input characters are destined for
input messages that are sent to tasks. Special input
characters direct the Terminal Handler to take special actions.
The special characters are RUBOUT, Carriage Return, Line Feed,
ESCape, control-C, control-O, control-O, control-Q, control-R,
control-S, control-X, and control-Z. The output-only version
of the Terminal Handler does not support any of the special

11-1

TERMINAL HANDLER

characters. In the remainder of this section, the handling of
these two types is discussed, and the significance of each of
the special characters is explained.

HOW NORMAL CHARACTERS ARE HANDLED

The destination of a normal character, when entered, depends on
whether there is an input request message at the Terminal
Handler's input request mailbox. If there is an input request
message, the character is echoed to the terminal's display and
goes into the input request message. If there is not an input
request message, the character is deleted.

HOW SPECIAL CHARACTERS ARE HANDLED

Table 11-1 lists the special characters and summarizes the
effects of each of them. The following text comprises complete
descriptions of the effects of the special characters. In
these descriptions, there are several references to "the
current line." The current line is the contents of the MESSAGE
CONTENT field of the input request message currently being
processed.

Table 11-1. Special Character Summary

SPECIAL
CHARACTER EFFECT

RUBOUT

Carriage
Return

Line Feed

ESCape

control-C

control-O

control-Q

control-R

control-S

control-X

control-Z

Deletes previously entered character.

Signals end of line.

Signals end of line.

Signals end of line.

Calls an application program.

Kills or restarts output.

Resumes suspended qutput.

Displays current line with editing.

Suspends output.

Deletes the current line.

Sends empty message.

11-2

TERMINAL HANDLER

The following descriptions concern the special characters
needed when entering data at the terminal. Most of these
characters are for line-editing. Each description is divided
into two parts: internal effects and external effects. The
difference is that external effects are immediately shown on
the terminal's display, whereas internal effects are those that
are not directly visible.

Rubbing Out a Previously-Typed Character (RUBOUT)

Internal Effects: Causes the most recently entered but not yet
deleted character to be deleted from the current
line. If the current line is empty, there is no
internal effect.

External Effects: If the current line is empty, the BEL
character (07H) is sent to the terminal.
Otherwise, the character is "rubbed out" in
accordance with one of two available rubout modes.
In the copying mode, the character being deleted
from the current line is re-echoed to the display.
For example, entering "CAT" and then striking
RUBOUT three times results in the display
"CATTAC". In the blanking mode, the deleted
character is replaced on the CRT screen with the
blanking character. For example, entering "CAT"
and then striking RUBOUT three times deletes all
three characters from the display. The copy mode
is the default mode. The default blanking
character for the blanking mode is a space (20H).
If you wish to change either of these defaults,
refer to the iRMX 86 Configuration Guide for
ISIS-II Users (Manual order number 9803126) or talk
to someone who knows about configuration.

Displaying the Current Line (control-R)

Internal Effects: None.

External Effects: Sends a carriage return and line
terminal, followed by the current line.
current line is empty, the previous line
the display, where it can be line edited
submitted as a new input message.

Deleting the Current Line (control-X)

Internal Effects: Empties the current line.

feed to the
If the
is sent to
and

External Effects: Causes the sequence (I, Carriage Return,
Line Feed) to be sent to the terminal.

11-3

TERMINAL HANDLER

Sending an Empty Message (control-Z)

Internal Effects: Puts a zero in the ACTUAL field of the input
request message currently being processed. The
message is then sent to the appropriate response
mailbox.

External Effects: None.

of a Line of Input (Carria e Return Line

Internal Effects: Puts either the ASCII end-of-transmission
character (OAH in the case of Carriage Return or
Line Feed) or the ESCape character (ISH) in the
current line. Each of these characters signals the
end of a message, so the input request message
currently being constructed is sent to the
appropriate response mailbox.

External Effects: If the end-of-line indicator is either
Carriage Return or Line Feed, both Carriage Return
and Line Feed are sent to the terminal. If the
indicator is ESCape, however, there is no effect on
the display.

OUTPUT CONTROL

Output request messages that are sent to output mailbox
RQTHNORMOUT can be processed in three ways:

• They can be output as described later under
Programming Considerations.

• They can be queued at RQTHNORMOUT where they
remain until an operator at the terminal takes
action to permit processing of the messages.

• They can be discarded.

In the descriptions that follow, these methods of dealing with
normal output requests are called the normal mode, the queueing
mode, and the suppression mode, respectively. Initially,
output is in the normal mode.

Suspending Output (control-S)

Puts normal output in the Queueing mode.

11-4

TERMINAL HANDLER

Resuming Output (control-Q)

Negates the effects of control-Sby allowing output
requests that are queued at RQTHNORMOUT to be
di$played.

Deleting or Restarting Output (control-D)

If output is in the normal mode, control-O puts it
in the suppression mode. If output is in the
suppression mode, control-O restores it to the
normal mode. If output is in the queueing mode,
control-O has no effect.

PROGRAM CONTROL

Calling a User-written Procedure Manually (control-C)

Control-C invokes a user-written procedure called
RQ$ABORT$AP. This procedure c~n perform any
actions that suit the application. However,
control-C is normally used to abort an
application. Control-C also causes the effects
produced by control-Z; that is, it returns the
current input request message with its ACTUAL field
set to zero.

SETTING A BAUD RATE

The Terminal Handler can be set to operate at any of the
following baud rates:

110
150
300
600

1200
2400
4800
9600

19200

The rate is set during software configuration, when an iRMX 86
system variable, RQRATE, is assigned one of the previously
mentioned baud rate values.

11-5

TERMINAL HANDLER

PROVIDED
BY USER

USER
TASKS

__-__ ~TERMINA
HANDLER

IN iRMX 86

PROVIDED
BY USER

USER
TASKS

---__ M TERMINAL
HANDLER

IN iRMX 86

Figure 11-1. Input and Output Mailbox Interfaces.

PROGRAMMING CONSIDERATIONS

The iRMX 86 Terminal Handler supports terminal input and output
by providing mailbox interfaces. Figure 11-1 shows the
mailboxes that are used typically. In the figure, an arrow
pointing from a task to a mailbox represents a SEND$MESSAGE
system call. An arrow pointing from a mailbox to a task
indicates a RECEIVE$MESSAGE system call.

The protocol that tasks observe is much the same for input and
output. In each case, the task initiates I/O by sending a
request message to a mailbox. An input request mailbox,
RQTHNORMIN, and an output request mailbox, RQTHNORMOUT, are
provided. The Terminal Handler processes the request and then
sends a response message back to the requesting task. The task
waits at a response mailbox for the message. Thus, when a task
does either input or output, it sends and then receives. The
full details of the input and output protocols are described
later in this section.

£O~,b~!h j~~~and output, the medium is tbe message segment
$ent by a i;sk to the Terminal Handler. The format of a
request message is depicted in Flgurell-2. The numbers in
that figure are offsets, in bytes, from the beginning of the
segment. The field names have different meanings for input and
for output. For both input and output, the first four fields
are WORD values. The MESSAGE CONTENT field can be up to 132
bytes in length for input and up to 65527 bytes in length for
output.

11-6

TERMINAL HANDLER

OFFSET REQUEST MESSAGE

o FUNcnON

2 COUNT

4 EXCEPTION CODE

6 ACTUAL

8

MESSAGE
CONTENT

· · ·

Figure 11-2. Request Message Format.

In the follow in g dis c u s s ion s, tha---O.a.me-s--_£$..W R llC--&A-B-F-$-RE-A-B-
literal names for the particular WORD values 5 and 1, re spec t i vel y --: __ n _______ •• ______ • -- •• ---.----- --••

------ -----------~ -- ---'-

OUTPUT

The first thing a task does when transmitting output is prepare
an output request message. The task must fill in the following
fields prior to sending the message:

FUNCTION --- F$WRITE. j

COUNT --- the number of bytes (not to exceed 65527) in the
MESSAGE CONTENT field.

MESSAGE CONTENT --- the bytes that are to be output.

Having prepared the message segment, the task must send it to
the output request mailbox RQTHNORMOUT. Messages sent to this
mailbox are processed in a first-in-first-out manner.
Processing a message involves sending the characters in the
MESSAGE CONTENT field to the terminal until a total of COUNT
characters have been sent. There is one excep-ti-OfT;---~ the
r::minal ~-~}].dJ_e-r--enc.oun.t~.£~_~he end-o f -transmis~-~Qn~ __ c.bgtr...§~e.r
~ ... __,_H.......-.l,~Ls.e_nds .. ,- .. a--"eaT<ri-'8"§€.~.,Ref.iIF..n:~""n_d_2._l~ .. B_~_g_iJLthe--
terminal.
~"""--"'D;'-'

When sending the output request message, the task specifies a
user-supplied response mailbox. If no response mailbox is
specified, the Terminal Handler will delete the segment that
contained the message. In addition to transmitting.the message

11-7

TERMINAL HANDLER

to the terminal, the Terminal Handler fills in the remalnlng
fields in the output request message. The requesting task can
wait at the response mailbox (that is, it can call the
RECEIVE$MESSAGE system call with a time limit of OFFFFH)
immediately after sending the output request. By observing
this protocol, the task can learn of the success or failure of
the output attempt. The fields that provide this information
are the following:

• EXCEPTION CODE
operation:

the encoded result of the output

E$OK --- the operation was successful.

E$PARAM --- the FUNCTION field in the message did not
contain F$WRITE.

E$BOUNDS --- the COUNT field in the message is too big
for the segment, that is, COUNT + 8 is greater than
the length of the segment containing the message.

• ACTUAL --- the actual number of bytes output.

In summary, the protocol observed by tasks doing output is as
follows:

• Prepare the output request message segment, filling in
the FUNCTION, COUNT, and MESSAGE CONTENT fields.

• Send the segment, via the SEND$MESSAGE system call, to
RQTHNORMOUT. It is advisable, but not necessary, to
specify a r~sponse mailbox in the system call.

• Wait indefinitely, via the RECEIVE$MESSAGE system call,
at the response mailbox. When received, the message
contains the results of the transmission in the EXCEPTION
CODE and ACTUAL fields.

INPUT

The protocol for obtaining input is much the same as that for
outputting. A message is prepared and sent to a request
mailbox, then the message is received at a response mailbox.
There is a significant difference, however. The input is
contained in the message segment at the responsemailbox.so
designating a response mailbox and then waiting there is
required.

CAUTION

When multiple tasks use the same
mailbox for input from the terminal,
there is a chance that a task will
get input that is intended for
another task.

11-8

TERMINAL HANDLER

The first thing a task needing input does is prepare an input
request message. It mllst fill j n the FUNCTIQ~I and COliN! fiQlds
RIior to sendj~its reques~ The FUNCTION field must contain
F$READ. The COUNT field reflects the maximum possible number
of input characters in the input message. Tb_e_-,Y.a..L~ of COUtiI.
must not ex~ 132; moreover, COUNT + 8 must not exceed the
length of the input request message segment.

When sending the input request message, the task mtJst s-pe-ci 4L
the response maj Ibox.j,n its call to tbe SFND$MFSSACE system
call. The Terminal Handler obtains characters from the
terminal and places them in the MESSAGE CONTENT field. The
message is terJ!L.!Jlltte,Q.by an·.end _Q.f __ J._.t!J.~ __ character (Carriage
Return, Line Feed, or ESCape). The lone exceptionl-s---w"1len the
end:':-6Y":'Tfne"'cllaracter has been "normalized" by being preceded
by a control-P; then the end-of-line character is treated as a
normal character.

NOTE

If more than COUNT characters are
entered prior to the end-of-line
character, the extra characters are
ignored, and the terminal beeps at
the operator.

After the message is complete, the Terminal Handler fills in
the EXCEPTION CODE and ACTUAL fields as follows:

• EXCEPTION CODE --- the encoded result of the input
operation, which is one of the following:

E$OK --- the operation was successful.

E$PARAM --- either the FUNCTION field in the message
did not contain F$READ or the COUNT field was greater
than 132.

E$BOUNDS --- COUNT + 8 is greater than the length of
the message segment.

• ACTUAL --- the number of bytes actually entered and
placed in the MESSAGE CONTENT field.

The requesting task (m-~~--t-~~i ti (that is , it must make a
RECEIVE$OBJECT system'--ca"Tl--W-lth a time limit of OFFFFH) at the
designated response mailbox immediately after sending the input
request.

In summary, the input protocol is as follows:

• Prepare the input request message segment, filling in the
FUNCTION and COUNT fields.

11-9

TERMINAL HANDLER

• Send the segment, via the SEND$MESSAGE system call, to
RQTHNORM$IN. In the call, specify a response mailbox .

• Wait indefinitely, via the RECEIVE$MESSAGE system call,
at the response mailbox. When received, the message
segment will contain the results of the input operation
in the MESSAGE CONTENT, EXCEPTION CODE, and ACTUAL fields.

11-10

CHAPTER 12. DEBUGGER

GENERAL INFORMATION

The development of almost every software application requires
debugging. To aid in the development of iRMX 86 application
systems, Intel provides three debugging tools. One, the
iRMX 86 Debugger, is a powerful tool which is sensitive to the
data structures that the Nucleus maintains. The other
debugging tools are the ICE-86 In-Circuit Emulator and the
monitor in the iSBC 86/12A Single Board Computer.

The e lies i t.5-.O.WD..~ro.inal Handler, which incluQas,
a of the capabilities described in Chapter 11. If your
application -iri"cTuOes-E"FleDe-6iJgger, then youfnUST use its
Terminal Handler, rather than linking in the Terminal Handler
module.

DEBUGGER CAPABILITIES

The iRMX 86 Debugger enables you to do the following:

• View iRMX 86 system lists, including the lists of the
jobs, the tasks, the ready tasks, the suspended tasks,
the task queues at exchanges, the object queues at
mailboxes, the exchanges, and the iRMX 86 segments.

• Inspect jobs, tasks, exchanges, and segments.

• Examine and/or alter the contents of absolute memory
locations.

• Set, change, view, and delete breakpoints.

• View the list of tasks that have incurred breakpoints and
remove tasks from it.

• Declare a task to be the breakpoint task.

• Examine and/or alter the breakpoint task's register
values.

• Set, change, view, and delete special variables for
debugging.

• View the list of special debugging variables.

• Deactivate the Debugger.

12-1

DEBUGGER

DEBUGGING CAPABILITIES IN THE ICE-86 EMULATOR

The ICE-86 In-Circuit Emulator provides several debugging
capabilities. In particular, an ICE-86 emulator lets you:

• Get closer to the hardware level by examining the
contents of input pins and input ports. You can also
change the values at output ports.

• Set breakpoints.

• Use memory in your Intel Microcomputer Development System
as if it were on your prototype board.

• Look at the most recent 80 to 150 assembly language
instructions executed.

To learn more about the ICE-86 Emulator, consult the ICE-86
In-Circuit Emulator Operating Instructions for ISIS-II Users,
manual order number 9800714.

DEBUGGING CAPABILITIES IN THE iSBC 86/12A MONITOR

The iSBC 86/12A monitor has several capabilities that can aid
you in debugging. With the monitor, you can do the following:

• Examine and modify the contents of iAPX 86 registers and
absolute memory locations.

• Set breakpoints.

• Single step program execution.

• Do I/O to and from ports.

• Move or compare blocks of memory.

INVOKING THE DEBUGGER

I he A e bug ge~_;r._,1$~w.tn.YJ~~.~ q w:.~, ~~~_" __ X. '!.Y ~.i~.E.~_! ,~. r. c, <?!1 t A-Q1:J1_ a t t,h~
terminar7 The Debugger responds with its sign-on message,
"iRMX 86 DEBUGGER V2.0", and its prompt character, an asterisk.

In addition to the functions the Debugger can perform when it
has been invoked, there are two services it can perform at any
time, eyen when not invoked. Firs t, if a task encounters ~
breakRoint, the Debugger responds as aescribed later in this
chapter.

Sec 0 n d, if_ . .a-~t.a sk has the 0 e bug 9 e.r--9..§..~ i t s.-e.x.~ e Q.tion,,-ha n dIe k--an d
the task causes an ~xcept io.oJil~_.c.ondi.ti.o..o-1 then the Debugger
displays a message to that effect at the terminal. A task gets

12-2

DEBUGGER

the Debugger as its exception handler either by using the
SET$EXCEPTION$HANDLER system call or when the task is created
by means of either CREATE$TASK or CREATE$JOB. An example of
code setting up one of these calls is the following:

DECLARE EXCEPT$BLOCK STRUCTURE (
EXCEPT$PROC POINTER,
EXCEPT$MODE BYTE);

EXCEPT$BLOCK.EXCEPT$PROC = @RQ$DEBUGGER$EX;
EXCEPT$BLOCK.EXCEPT$MODE = ZEROONETWOORTHREE;

RQ$CREATE$JOB(... ,@EXCEPT$BLOCK, ...);
or

RQ$CREATE$TASK(... ,@EXCEPT$BLOCK, ...);

DEBUGGER INPUT AND OUTPUT

The D er obtains Inp.ut_ Doe 1 j ne at a-J:.j_m e.._.1.I am j t5 J_e..-rJD j nal
Han dIe r . Ih e~ n d -0 f -:lJ;:.D.e.,.indl.c.aJQI2. __ .§,J:.!t_.c a ~_~~ e t urn, Li n e _
Ceed, and ESCa De e. When ei ther Carriage Return or Line Feed is
entered, the current input line is sent to the Debugger; when
ESCape is entered, the current input line is discarded and a
prompt is displayed.

The Debugger generates display at the terminal by sending
output messages to its Terminal Handler. To suppress output
from application tasks during a debugging session, type
control-S. If control-S is not entered, any output from tasks
is interspersed with output from the Debugger. To allow
resumption of output from tasks, type control-Q. Control-S and
control-Q have no effect on output from the Debugger.

Certain Debugger comannd responses are lengthy and can roll off
the screen. To freeze the top part of such a display before it
disappears, enter control-O. This diverts all output including
Debugger prompts from the terminal tn the bit bucket until you
enter another control-O.

Occasionally you will want to terminate a Debugger memory
command function response before it is finished. For example,
if you asked for a display of memory locations OOOOH to OFFFFH,
it would be natural to change your mind. To abort the display
and regain the Debugger prompt, enter control-D.

Note that control-O affects the display only, whereas control-D
stops the function entirely.

12-3

DEBUGGER

SYNTAX OF DEBUGGER COMMANDS

When using the iRMX 86 Debugger, you sit at a terminal and type
commands. This section describes the syntactical standards for
commands to the Debugger, and it introduces notational
conventions that are used throughout this chapter.

Debugger commands fall into families. The syntax for each
family is described in detail later in this chapter.

The first one or two characters of a command constitute a key
sequence for the command:

• Most Debugger commands are specified by one or two
letters. The key letters or pairs of letters are Bl, BT,
0, DB, G, I, l, M, Q, R, V, and Z.

• In a few cases, a command is specified by beginning the
command with a name. A name, for the Debugger, must
consist of a period followed by a variable name of the
PL/M-86 variety.

After the key initial sequence, a command may be followed by
one or more parameters or additional specifiers. Blanks are
used as delimiters between elements of a command; they are
mandatory except

• immediately after a command key that is not a name and

• between a letter or digit and a non-letter, non-digit.
The legal characters of the latter type are the
following: @ = / \ () * +

PICTORIAL REPRESENTATION OF SYNTAX

In this chapter, a schematic device illustrates the syntax of
commands. The schematic consists of what looks like an aerial
view of a model railroad setup, with syntactic entities
scattered along the track. Imagine that a train enters the
system at the upper left, .drives around as much as it can or
wants to (sharp turns and backing up are not allowed), and
finally departs at the lower right. The command it generates
in so doing consists, in order, of the syntactic entities that
it encounters on its journey. For example, a string of A's and
Bls, in any order, would be depicted as

12-4

DEBUGGER

If such a string has to begin with an A, the schematic could be
drawn as

-(B I---l_

In the second drawing, it is necessary to represent the letter
A twice because A is playing two roles: It is the first symbol
(necessarily) and it is a symbol that may (optionally) be used
after the first symbol. Note that a train could avoid the
second A but cannot avoid the first A. The arrows are not
necessary and henceforth are omitted.

SPECIAL SYMBOLS FOR THE DEBUGGER

The entities that will be used in the remainder of this
chapter, as A and B were used in the previous paragraph, are
the following:

• CONSTANT. Constants are always hexadecimal. Unlike such
constants in PL/M-86, they do not require an H as the
last character. H's may be used if desired. Leading
zeroes are not necessary unless they help to distinguish
between constants and other things. For example, AH is a
register in the iAPX 86, but OAH is a constant.

12-5

DEBUGGER

NOTE
If more than four hexadecimal digits
compose a constant, only the low
order four digits are used. Binary,
octal, and decimal constants are not
understood by the Debugger .

• NAME. A name is a period followed by up to 31 alphabetic
or numeric characters, the first of which must be
alphabetic.

Examples:

.task

.mailbox7

• EXPRESSION. As in algebra, an expression is either a
term or is the result of adding and subtracting terms.
Also as in algebra, a term is a product; each factor in
the product is either a constant, a name, a parenthetical
expression, or one of the registers AX, BX, ex, DX, OS,
ES, SS, CS, IP, FL, SI, DI, BP, and SP. Graphically,
term and expression are shown in Figure 12-1:

NOTE

If the computed value of an
expression is too large to fit into
four hexadecimal digits, then only
the low order four digits are used.

12-6

DEBUGGER

TERM: - ~-----.....(

EXPRESSION:

figure 12-1. Syntax Diagrams for Term and Expression

Figure 12-2. Syntax Diagram for Item

12-7

DEBUGGER

• ITEM. An item is either an expression or one of the
segment registers of the iAPX 86 microprocessor. The
values of items are used variously as tokens and as
offsets in Debugger commands. Graphically, an item is
defined in Figure 12-2.

DEBUGGER COMMANDS

This section presents the details of the Debugger commands.
The commands fall into two groups, those relating to
breakpoints and those that enable you to observe or change the
contents of memory.

BREAKPOINT CONTROL

The Debugger provides you with the ability to set, change,
view, or delete breakpoints. You set a breakpoint by defining
an act which a task can perform. When a task performs the act,
it incurs the breakpoint. The Debugger supports three kinds of
breakpoints:

• Execution breakpriint. A task incurs an execution
breakpoint when it executes an instruction that is at a
designated location in memory.

• Exchange breakpoint. A task incurs an exchange
breakpoint when it performs a designated type of
operation (send or receive) at a designated exchange.

• Exception breakpoint. A task incurs an exception
breakpoint if its exception handler has been declared to
be the Debugger and the task causes an exceptional
condition of the type that invokes its exception handler.

When a task incurs a breakpoint (of any type), three things
occur automatically:

• The task is placed in a pseudostate called "broken".
Moreover, depending on the breakpoint, the tasks in the
containing job might be suspended.

• The broken task (and suspended tasks, if any) is (are)
placed on a Debugger-maintained list called the
breakpoint list. You can resume a task on the breakpoint
list or you can remove it from the list.

• At the terminal, a display informs you that a breakpoint
has been incurred. It also provides information about
the event.

12-8

DEBUGGER

Each task on the breakpoint list is assigned a breakpoint
state, which reflects the kind of breakpoint last incurred by
the task. The states are as follows:

X The task incurred an execution breakpoint.

E The task incurred an exchange breakpoint.

Z The task incurred an exception breakpoint.

N The task was placed on the breakpoint list by the
BT command (described later), rather than by
incurring a breakpoint. Another way in which a
task can enter the N (for null) state is when
another task in the same job incurs a breakpoint
which had been set with the DB command (also
described later) using the J option.

You set an execution or exchange breakpoint with the DB command
by defining a breakpoint variable and assigning it a breakpoint
request. The request specifies to the Debugger the nature of
the breakpoint, and the variable provides you with a convenient
means of , talking to the Debugger about the breakpoint. Using
the breakpoint variable, you can cancel the breakpoint or
replace it with a new one.

The Debugger displays information when a task incurs a
breakpoint. The format of the display depends on the kind of
breakpoint incurred:

• The display format for an execution breakpoint is

bp-var: E, TASK=jjjjJ/ttttq, CS=cccc, IP=iiii

where

bp-var

jjjj

tttt

q

cccc

iiii

The name of the breakpoint variable.

A token for the task's job.

'A token for the task.

Either T (for task) or * (indicating
that the task has overflowed its stack).

The base of the segment in which the
breakpoint was set.

The offset of the breakpoint within its
segment .

• The display format for an exchange breakpoint is

bp-var: a, EXCH=jjjjJ/xxxxe, TASK=jjjjJ/ttttq, ITEM=item

12-9

where

bp-var

a

jjjj

xxxx

e

tttt

item

DEBUGGER

The name of the breakpoint variable.

Indicates which kind of operation (S
for send or R for receive) caused the
breakpoint to be incurred.

A token for the job containing the
exchange or task whose token follows.

A token for the exchange.

Indicates the type of the exchange (M
for mailbox, S for semaphore).

A token for the task.

One of the following:

A pair of tokens, jjjjJ/oooot, with
0000 being a token for the object being
sent or received, t indicating the type
of the object (J for job, T for task, M
for mailbox, S for semaphore, and G for
segment), and jjjj being a token for
the object's containing job, if the
exchange is a mailbox. If the kind of
operation was receive, but no object
was there to be received, item is 0000.

The number of units held by the
exchange, if it is a semaphore .

• The display format for an exception breakpoint is

EXCEPTION: jjjjJ/ttttT, CS=cccc, IP=iiii, TYPE=wwww, PARAM=vv\

where

jjjj A token for the job which contains the
task that caused the exception
condition.

tttt A token for the task that caused the
exceptional conditon.

cccc and iiii Respectively, the contents of the
iAPX 86 CS and IP registers when the
exceptional condition occurred.

12-10

wwww

vvvv

DEBUGGER

The numerical value of the exception
code; reflects the nature of the
exceptional condition. Chapter 8
contains the mnemonic condition codes
and their numerical equivalents.

The number (0001 for first, 0002 for
second, etc.) of the parameter that
caused the exceptional condition. If
no parameter was at fault, vvvv is 0000.

Exception breakpoints differ from execution and exchange
breakpoints in several respects:

• It is not possible to set, change, view, or delete
exception breakpoints by using the commands of the
Debugger. Instead, each task can set an exception
breakpoint by declaring the Debugger to be its exception
handler. The task can subsequently delete the breakpoint
by declaring a different exception handler.

• An exception breakpoint is set for a particular task.
Execution and exchange breakpoints are set for no
particular task; any task can incur such a breakpoint.

• Exception breakpoints are set for a "kind" of event,
namely the occurrence of an exceptional condition when
the task that set the breakpoint makes a system call. An
execution or exchange breakpoint, on the other hand, is
set at a "place."

• An exception breakpoint is not known to the Debugger by a
breakpoint variable name.

If you want to monitor a particular task, you can designate it
to be the breakpoint task. If the task is not already on the
breakpoint list when you do this, it is suspended and is placed
on the breakpoint list with a null breakpoint state. After
designating a breakpoint task, you can examine some of its
registers but not alter them. You can also ascertain the
breakpoint state of the task. When ready, you can easily
resume the task and remove it from the breakpoint list.

The handling of exception breakpoints is significantly
different from that of execution and exchange breakpoints. For
example, exception breakpoints cannot be viewed, but the other
breakpoints can be. Wherever this distinction applies, this
chapter points it out.

Establishing a Breakpoint --- The DB Command

Syntax

The syntax for the DB command is given in figure 12-3.

12-11

DEBUGGER

Figure 12-3. Syntax Diagram for Establishing a Breakpoint

Explanation of Syntax

BREAKPOINT VARIABLE A Debugger name. If the Debugger's
symbol table already contains this
name, an error message will appear on
the terminal's display.

ITEM

Sand R

T and J

If followed by n:" and an EXPRESSION,
you are setting an execution
breakpoint, and ITEM must contain a
token for a segment, while EXPRESSION
must contain an offset. Otherwise, you
are setting an exchange breakpoint, and
ITEM must contain a token for an
exchange.

To be used only when setting an
exchange breakpoint. S means that the
exchange breakpoint is for senders
only, while R means that it is for
receivers only. If you want to set an
exchange breakpoint for both senders
and receivers, omit both Sand R, as
well as both ":" and EXPRESSION.

Indicate which tasks are to be put on
the breakpoint list when a breakpoint
is incurred. T indicates only the task
that incurred the breakpoint, while J
indicates all of the tasks in that
task's job. The default is T.

12-12

C

o

Effects

DEBUGGER

Directs the Debugger not to "break"
tasks that incur the breakpoint, and
not to put them on the breakpoint list.

Directs the Debugger to delete the
breakpoint when it is first incurred by
a task. The 0 option does not suppress
the display that results when a task
incurs a breakpoint.

The DB command sets a breakpoint of the type indicated in the
remainder of the command line. The name designated as the
breakpoint variable can be used to alter or delete the
breakpoint.

Changing a Breakpoint

Syntax

The syntax for this command is given in Figure 12-4.

Figure 12-4. Syntax Diagram for Changing a Breakpoint

Explanation of Syntax

BREAKPOINT VARIABLE A Debugger name. If the Debugger's
symbol table does not already contain
this name, an error message will appear
on the terminal's display.

12-13

ITEM

Sand R

T and J

C

D

Effects

DEBUGGER

If followed by It:" and an EXPRESSION,
you are setting an execution
breakpoint, and ITEM must contain a
token for a segment, while EXPRESSION
must contain an offset. Otherwise, you
are setting an exchange breakpoint, and
ITEM must contain a token for an
exchange.

To be used only when setting an
exchange breakpoint. S means that the
exchange breakpoint is for senders
only, while R means that it is for
receivers only. If you want to set an
exchange breakpoint for both senders
and receivers, omit both Sand R, as
well as both ":" and EXPRESSION.

Indicate which tasks are to be put on
the breakpoint list when a breakpoint
is incurred. T indicates only the task
that incurred the breakpoint, while J
indicates all of the tasks in that
task's job. If neither T nor J is
present, T is assumed.

Directs the Debugger not to "break"
tasks that incur the breakpoint, and
not to put them on the breakpoint list.

Directs the Debugger to delete the
breakpoint when it is first incurred by
a task. The D option does not suppress
the display that results when a task
incurs a breakpoint.

This command deletes the breakpoint that was associated with
the breakpoint variable name and replaces it with a new
breakpoint, as specified in 'the command. The breakpoint
variable name can be used to delete or change the breakpoint.

Deleting a Breakpoint The Z Command

Syntax

The syntax for the Z command is given in Figure 12-5.

Figure 12-5. Syntax Diagram for Deleting a Breakpoint

12-14

DEBUGGER

Explanation of Syntax

BREAKPOINT VARIABLE A Debugger name. If the Debugger's
symbol table does not contain the name,
or if it does contain the name but the
name is not stored as a breakpoint
variable, an error message is displayed.

Effects

The Z command deletes the specified breakpoint and removes the
breakpoint variable name from the Debugger's symbol table.

Examining a Breakpoint

Syntax

The syntax for this command is given in Figure 12-6.

Figure 12-6. Syntax Diagram for Examining a Breakpoint
Explanation of Syntax

BREAKPOINT VARIABLE The name of the breakpoint to be
examined.

Effects

If the designated breakpoint is an execution breakpoint, the
following display is sent to the terminal:

where

bp-var

xxxx

yyyy

z

bp-var=xxxx:yyyy zaps

The name of the breakpoint variable.

The base of the segment containing the
instruction at which the breakpoint is
set.

The offset of the instruction within
the segment.

Indicates whether a task (T) is to be
"broken" and placed on the breakpoint
list or all tasks in a job (J) are to
be suspended and placed on the
breakpoint list, when the breakpoint is
incurred.

12-15

ops

DEBUGGER

If any are present, can be C (for
Continue task) and/or D (for
Delete breakpoint).

If the breakpoint is an exchange breakpoint, the following
display is sent to the terminal:

where

bp var

xxxx

a

z

ops

bp-var=xxxx a z ops

The name of the breakpoint variable.

A token for the exchange at which the
breakpoint is set.

Indicates the kind of breakpoint
activity at the exchange, either S (for
send), R (for receive), or SR (for
both) .

Indicates whether a task (T) is to be
"broken" and placed on the breakpoint
list or all tasks in a job (J) are to
be suspended and placed on the
breakpoint list, when the breakpoint is
incurred.

If any are present, can be C (for
continue task) and/or D (for delete
breakpoint).

You cannot examine an exception breakpoint.

Viewing the Breakpoint List --- The BL Command

Syntax

The syntax for the BL command is given in Figure 12-7.

Figure 12-7. Syntax Diagram for Viewing the Breakpoint List.

Effects

The OebuggeI responds to this command by displaying the entire
breakpoint list as follows:

BL=jjjjJ/ttttT(s) jjjjJ/ttttT(s) ... jjjjJ/ttttT(s)

12-16

where

jjjj

tttt

s

DEBUGGER

A token for the job containing the task
whose token follows.

A token for a task.

The breakpoint state of a task.
Possible values are X (for execution),
E (for exchange), Z (for exception),
and N (for nUll).

Viewing the Breakpoint Parameters --- The 8 Command

Syntax

The syntax for the B command is given in Figure 12-8.

Figure 12-8. Syntax Diagram for Viewing the Breakpoint
Parameters

Effects

The B command has three separate effects. The first is to
display the breakpoint list as

where

BL=jjjjJ/ttttT(s) jjjjJ/ttttT(s) ... jjjjJ/ttttT(s)

jjjj

tttt

s

A token for the job containing the task
whose token follows.

A token for a task.

The breakpoint state of a task.
Possible values are X (for execution),
E (for exchange), Z (for exception),
and N (for nUll).

The second effect of the 8 command is to display the breakpoint
task as

where

jjjj

BT=jjjjJ/ttttT(s)

A token for the job containing the
breakpoint task.

12-17

tttt

s

DEBUGGER

A token for the breakpoint task.

The breakpoint state of the breakpoint
task. Possible values are X (for
execute), E (for exchange), Z (for
exception), and N (for null).

If there is no breakpoint task, the display is

BT=O

The third and final effect of the B command is to display the
breakpoint variables intermixed in either of two formats.
Execution breakpoints are displayed as

where~

bp-var

xxxx

yyyy

z

ops

bp-var = xxxx:yyyy zaps

The name of the breakpoint variable.

The base of the segment containing the
instruction at which the breakpoint is set.

The offset of the instruction within the segment.

Indicates whether a task (T) or all the tasks in
a job (J) are to be suspended and placed on the
breakpoint list when the breakpoint is incurred.

If any are present, can be a C (for Continue
task) and/or D (for Delete breakpoint).

Exchange breakpoints are displayed as

where

bp-var

xxxx

a

z

ops

bp-var = xxxx a zaps

The name of the breakpoint variable.

A token for the exchange at which the breakpoint
is set.

Indicates the kind of breakpoint activity at the
exchange, either S (for Send), R (for Receive),
or SR (for both).

Indicates whether a task (T) or all the tasks in
a job (J) are to be suspended and placed on the
breakpoint list when the breakpoint is incurred.

If any are present, can be C (for Continue task)
and/or D (for Delete breakpoint).

12-18

DEBUGGER

Removing a Task from the Breakpoint List --- The G Command

Syntax

The syntax for the G command is given in Figure 12-9.

---0~r:=::---"'1
~_.a. __

Figure 12-9. Syntax Diagram for Removing a Task
from the Breakpoint List

Explanation of Syntax

ITEM

Effects

A token for a task on the breakpoint
list. If the given token is not for a
task on the breakpoint list, an error
message will be displayed.

The G command applies to the breakpoint task if ITEM is not
present. Otherwise, it applies to the task on the breakpoint
list whose token is represented by ITEM.

The G command removes the designated task from the breakpoint
list. If the task is in the broken state, it is made ready.
If it is in the suspended state, its suspension depth is
decreased by one.

If the G command is invoked without ITEM when there is no
breakpoint task, an error message is displayed at the terminal.

Establishing the Breakpoint Task --- The BT Command

Syntax

The syntax for this command is given in Figure 12-10.

12-19

DEBUGGER

Figure 12-10. Syntax Diagram for Establishing the
Breakpoint Task

Explanation of Syntax

ITEM A token for an existing task.

Effects

The task designated by ITEM becomes the breakpoint task. If it
is not already on the breakpoint list, it is suspended and
placed on the breakpoint list.

Inquiring as to the Breakpoint Task --- The BT Command

Syntax

The syntax for this command is given in Figure 12-10.

Figure 12-11. Syntax Diagram for Inquiring as to
the Breakpoint Task

This command causes the following to be displayed at the
terminal:

where

jjjj

tttt

s

BT=jjjjJ/ttttT(s)

A token for the job containing the
breakpoint task.

A token for the breakpoint task.

The breakpoint state of the breakpoint
task. Possible values are X (for
execute), E (for exchange), Z (for
exception), and N (for null).

12-20

DEBUGGER

If there is no breakpoint task, the display is

BT=O

Viewing the Breakpoint Task's Registers --- The R Command

Syntax

The syntax for this command is given in Figure 12-12.

Explanation of Syntax

R

Ryy

Effects

The command key letter. By itself, it
represents a request for the display of
all the breakpoint task's iAPX 86
register values.

Represents a request for the display of
only the breakpoint task's yy register
value.

If the command is simply "R", then all of the breakpoint task's
registers are displayed, in the following format:

RAX=xxxx
RBX=xxxx
RCX=xxxx
RDX=xxxx

RSI=xxxx
RDI=xxxx
RBP=xxxx
RSP=xxxx

RCS=xxxx
RDS=xxxx
RSS=xxxx
RES=xxxx

RIP=xxxx
RFL=xxxx

If the command has the form Ryy, then the contents of the
breakpoint task's register are displayed, either as

Ryy=xxxx

or as

Ryy=xx,

depending on whether yy is a byte-size register (like AH) or a
word-size register (like AX).

If the breakpoint task is in the null breakpoint state, only
its BP, SP, CS, OS, SS, IP, and FL register contents are
displayed. The remaining register displays consist of question
marks.

12-21

DEBUGGER

Figure 12-12. Syntax Diagram for Viewing
the Breakpoint Task's Registers

12-22

DEBUGGER

Altering the Breakpoint Task's Registers --- The R Command

Syntax

The syntax for this command is given in Figure 12-13.

Figure 12-13. Syntax Diagram for Altering
the Breakpoint Task's Registers

12-23

Explanation of Syntax

Ryy

Effects

DEBUGGER

Signals a request that the contents of
the breakpoint task's yy register are
to be changed.

This command requests that the breakpoint task's register, as
specified in the command request, be updated with the value of
the EXPRESSION. However, if the breakpoint task is in the null
breakpoint state, its register values cannot be altered by the
R command.

OBSERVATION AND MANIPULATION COMMANDS

The commands in this section enable you to inspect or modify
the contents of absolute memory locations, to view the iRMX 86
system lists, and to inspect tasks, jobs, exchanges, and
segments.

In the descriptions of the commands for examining and modifying
memory locations, frequent mention is made of the current
display mode, the current segment base, the current offset, the
current address, and the display of memory locations. This
terminology is defined as follows:

• The current displa¥ mode determines the manner in which
memory values are lnterpreted for display purposes. The
possible modes are designated by the letters 8, W, P, and
A, and they stand, respectively, for byte, word, pointer,
and ASCII. The effects of these modes are best explained
in the context of an example. Suppose that memory
locations 0428 through 042E contain, respectively, the
values 25, F3, 67, and 4C. If you ask for the display of
the memory at location 042B, then the effects, which
depend on the current display mode, are as follows:

Current Display Mode

8
W
P
A

Display

25
F325

4C67:F325
%

Observe that words and pointers are displayed from
high-order (high address) to low-order (low address).

If a location contains a value which does not represent a
printable ASCII character, and the current display mode
is A, then the Debugger prints a period. The initial
current display mode is B.

12-24

DEBUGGER

• The value of the current segment base is always the value
of the most recently used segment base. The initial
value of the current segment base is o.

• The current offset is a value the Debugger maintains and
uses when reference is made to a memory location without
explicitly citing an offset value. Except when the
current offset has been modified by certain options of
the M command, the current offset is always the value of
the most recently used offset. The initial value of the
current offset is o.

• The current address is the iAPX 86 memory address
computed from the combination of the current segment base
and the current offset.

• When memory locations are displayed, the format is as
follows:

xxxx:yyyy=value

where xxxx and yyyy are the current segment base and
current offset, respectively, and value is a byte, word,
pointer, or ASCII character, depending on the current
display mode. In case several contiguous memory
locations are being requested in a single request, each
line of display is as follows:

xxxx:yyyy=value value value ... value

where xxxx, yyyy, and value are as previously described,
and xxxx:yyyy represent the address of the first value on
that line.

The first such line begins with the first address in the
request and continues to the end of that (16 byte)
paragraph. If additional lines are required to satisfy
the request, each of them begins at an offset which is a
multiple of 16 (10 hexadecimal).

Examining or Modifying Memory --- The M Command

Syntax

The syntax for the M command is given in Figure 12-14.

Explanation of the M Command Options

The options in the M command fall into three categories:

• If an option begins with "!", then it is a request to
redefine the current display mode.

12-25

DEBUGGER

Figure 12-14. Syntax Diagram for Examining or Modifying Memory

• If an option begins with "=", it is a request to alter memory

• The remaining options are requests for display of memory.

In what follows, the options of the M command are described with
examples. As much as possible, effects are described separately
for each option. When combinations of options produce special
effects, these effects are described.

As the syntax diagram reveals, it is permissible to make multiple
requests in the same command line. The Debugger treats multiple
requests as if they had been submitted one at a time. For example,
Mill is treated as three MI requests. In the following
descriptions, it is assumed that each command line consists of only
one request.

You must separate the elements in a command with a space. An
exception is that ITEM, colon, and EXPRESSION may be contiguous,
like 4C67:F325.

NOTE

When using the M command, be aware
of the following hazards:

12-26

DEBUGGER

• It is possible for you to modify
memory within iRMX 86 components,
such as the Nucleus and Debugger.
Doing so can jeopardize the
integrity of your application
system, and should therefore be
avoided.

• It is possible to request that
non-RAM memory locations be
modified. If you attempt to
modify a location that is in ROM,
an "attempt to modify non-RAM
location" message appears on the
display. If you attempt to read
or write to a non-existent
location, nothing happens to
memory and the displays indicate
that the specified locations
contain zeros.

• A memory request might cross
segment boundaries. In processing
such a request, the Debugger
ignores such boundaries, so don't
assume that a boundary will
terminate a request.

Each description is followed by an example in which the request
and resulting display are shown exactly as they would appear at
the terminal. Assume, for each example request, that the
following circumstances exist when the request is made:

• The following memory locations contain the indicated
values:

base:0300 21 47 E2 CB 31

offset: 2643 2644 2645 2646 2647

base:0400 01 02 03 OF 10

offset: 0000 0001 0002 OOOE OOOF

• The current address is 0400:000B, that is, the current
segment base is 0400 and the current offset is OOOB.

• The current display mode is byte.

12-27

16

OA09

DEBUGGER

Options for Setting the Current Display Mode

M!B This option sets the current display mode to byte.

M!W This option sets the current display mode to word.

M!P This option sets the current display mode to
pointer.

M!A --- This option sets the current display mode to ASCII.

None of these requests results in an immediate display.

Options for Displaying Memory

The options in this section all enable you to ascertain the
contents of memory without disturbing those contents. Be
aware, however, that all of these options change the current
offset, and some of them change the current segment base. None
changes the current display mode.

M/ --- This option increments the current offset
according to the current display mode: by one for
byte or ASCII, by two for word, or by four for
pointer. Then it displays the contents of the new
current address.

Example: M/
0400:0009 OA

M\ --- This option is just like M/, except that the
current offset is decremented.

Example: M\
0400:0007 08

M --- When used by itself, M is an abbreviated way of
specifying M/ or M\, whichever was used most
recently. If neither has been used in the current
Debugging session, M is interpreted as an M/ request.

Example: M
0400:0007 08
M
0400:0006 07

M@ --- This option sets the current offset equal to the
value at the current address. Then the value at the
adjusted current address is displayed.

Example: M@
0400:0A09 16

12-28

DEBUGGER

M EXPRESSION --- This option sets the current offset
equal to the value of the EXPRESSION and displays the
value at the new current address.

Example: M 3
0400:0003 04

M ITEM:EXPRESSION ~-- This option is just like M EXPRESSION,
except that ITEM is used as the base in the address
calculation, and after the operation ITEM is the new
current segment base.

Example: M 300:2644
0300:2644 47

M EXPRESSION TO EXPRESSION --- This option displays the
values in a series of consecutive locations. The
expressions determine the beginning and ending
offsets, respectively. The current segment base is
used as a base. After the display is output, the
current offset is set to the value of the second
expression. If the specified range of locations is
incompatible with the current display mode --- for
example, an odd number of locations is not compatible
with the word or pointer modes --- then all words or
pointers that lie partially or totally inside the
range are displayed.

Examples: (1) M 4 TO 6
0400:0004 05 06 07

(2) M!W
M 4 TO 6
0400:0004 0605 0807

Options for Altering Memory

The options in this section enable you to change the contents
of designated RAM locations.

CAUTION

Because the Debugger is generally
used during system development,
while your tasks 1 the Nucleus 1 the
Debugger, and possibly other iRMX 86
components are in RAM, you should
use these Mcommand options with
extreme care.

Unlike the displaying nptions of the previous section, the
modifying bptions do not affect either the current segment base
or the current offset.

12-29

DEBUGGER

When executing the options of this section, the Debugger
displays the contents of the designated locations, then updates
the contents, and finally displays the new contents. Thus, if
you inadvertently destroy some important data, the information
you need to restore it is available.

The options of this section copy data in the byte mode. The
current display mode is not affected by these copying options.

Some M command lines have the form M<destination>=M<source>,
where both <source> and <destination> have the following syntax:

\ E3>~ ------.......
~

In the descriptions that follow, occasional references are made
to options of this form because, when used, they can affect the
results of the next invocation of an option for altering memory.

For convenience, we use the phrase "the previous option has a
destination field" as an abbreviation for

"The following conditions are both true:

• The previous option used was of the
M<destination>=M<source> variety .

• <destination> specifies a range of at least two
addresses."

M=EXPRESSION --- This option can be used only if the
current display mode is byte or word. M=EXPRESSION
copies the value represented by EXPRESSION into the
byte or word at the current address. However, if the
previous option had a destination field, this option
instead copies the value of EXPRESSION into each byte
or word in destination.

Examples:

(1) When the previous option did not have a
destination field:

M = 4C
0400:0008 09
0400:0008 4C

(2) When the previous option had a
destination field:

M 1 TO 4 = M 5 TO 8

12-30

DEBUGGER

0400:0001 02 03 04 05
0400:0001 06 07 08 09
M = 4C
0400:0001 06 07 08 09
0400:0001 4C 4C 4C 4C

M=M EXPRESSION --- This option uses the current segment
base and the offset indicated by the value of
EXPRESSION to compute an address. It copies the value
at that computed address into the location specified
by the current address. However, if the previous
option had a destination field, the value at the
computed address is instead copied to the locations in
the destination field.

Examples:

(1) When the previous option did not have a
destination field:

M = M 4
0400:0008 09
0400:0008 05

(2) When the previous option had a
destination field:

M 1 TO 3 = M 5 TO 7
0400:0001 02 03 04
0400:0001 06 07 08
M = M 4
0400:0001 06 07 08
0400:0001 05 05 05

M=M ITEM:EXPRESSION --- This option uses ITEM and
EXPRESSION as base and offset, respectively, to
compute an address. M=M ITEM:EXPRESSION copies the
value at that computed address intc the location
specified by the current address. However, if the
previous option had a destination field, the value at
the computed address is instead copied to the
locations in the destination field.

Examples:

(1) When the previous option did not have a
destination field:

M = M 300:2643
0400:0008 09
0400:0008 21

12-31

DEBUGGER

(2) When the previous option had a
destination field:

M 1 TO 4 = M 5 TO 8
0400:0001 02 03 04 05
0400:0001 06 07 08 09
M = M 300:2643
0400:0001 06 07 08 09
0400:0001 21 21 21 21

M=M EXPRESSION TO EXPRESSION --- This option uses the
current segment base and, in order, the offsets
indicated by the EXPRESSIONs, to compute a beginning
address and an ending address. M=M EXPRESSION TO
EXPRESSION copies the sequence of values bounded by
the computed addresses to the sequence of locations
that begin at the current address. However, if the
previous option had a destination field, the sequence
of values bounded by the computed addresses is copied
to the destination field, with the source values being
truncated or repeated as required.

Examples:

(l)

(2)

When the previous option
destination field:

M = M A TO C
0400:0008 09 OA OB
0400:0008 OB OC 00

When the previous option
destination field:

M 1 TO 4 = M 5 TO 8
0400:0001 02 03 04 05
0400:0001 06 07 08 09
M = M A TO C
0400:0001 06 07 08 09
0400:0001 OB OC 00 OB

did not have a

had a

(first value
repeated)

M=M ITEM:EXPRESSION TO EXPRESSION --- This option uses
ITEM as a base and the EXPRESSIONs as offsets to
compute a beginning and an ending address. The
sequence of values bounded by the computed addresses
is copied to the sequence of locations beginning at
the current address. However, if the previous option
had a destination field, the sequence of values
bounded by the computed addresses is copied to the
destination field, with the source values being
truncated or repeated as required.

12-32

DEBUGGER

(1) When the previous option did not have a
destination field:

M = M 300:2643 TO 2647
0400:0008 09 OA OB DC 00
0400:0008 21 47 E2 C8 31

(2) When the previous option has a
destination field:

M 1 TO 4 = M 5 to 8
0400:0001 02 03 04 05
0400:0001 06 07 08 09
M = M 300:2643 TO 2647
0400:0001 06 07 08 09
0400:0001 21 47 E2 C8 (last value

Examining System Objects --- The I Command

Syntax

truncated)

The syntax for the I command is given in Figure 12-15.

Figure 12-15. Syntax Diagram for Examining System Objects

Explanation of I Command Options

J --- This option lists the principal attributes of the
job whose token is represented by ITEM. If the 0
option is included, the object directory for the
job is listed as well. In case there is a large
number of entries in the object directory, the
display might roll off the screen. To deal with
this, use control-O, which works as described in
Chapter 11. The form of the display is depicted
in Figure 12-16.

12-33

DEBUGGER

REPORT -----
JOB TOKEN PARENT JOB

----- iRMX86 JOB
bbbb
cccc POOL MAXIMUM

CURRENT ALLOCATED
CURRENT # OBJECTS
MAXIMUM # OBJECTS
CURRENT # CHILDREN
EXCEPTION MODE
MAXIMUM PRIORITY

dddd
eeee
ffff

JOBS gggg
hhhh
iiii

POOL MINIMUM
CURRENT UNALLOCATED
CURRENT II TASKS
MAXIMUM II TASKS
DELETION PENDING
EXCEPTION HANDLER

jjjj
kkkk
1111
mmmm
nnnn

ppp
QQQq:rrrr

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa~aaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

----- OBJECT DIRECTORY -----
MAXIMUM SIZE uuuu VALID ENTRIES vvvv
NAME TOKEN
ssssssssssss tttt

NAME TOKEN NAME TOKEN
ssssssssssss tttt ssssssssssss tttt

Figure 12-16. An iRMX 86™ Job Report

The following describes the fields in Figure 12-16:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

ffff

gggg

hhhh

Meaning

Each such field can contain a name under which
the job is cataloged in the object directory
of either the job's parent job or the root
job. If the job is not cataloged in either
directory, "NONE FOUND" is printed here.

This is a hexadecimal token for the job.

This is the maximum number, in hexadecimal, of
16-byte paragraphs that the job's pool can
contain.

This is the number of paragraphs that have
been either allocated to tasks in the job or
lent to child jobs.

This is the number, in hexadecimal, of
existing objects in job bbbb.

This is the maximum number, in hexadecimal, of
objects that can exist simultaneously in job
bbbb.

This is the number, in hexadecimal, of
existing jobs that are offspring of job bbbb.

This is the exception mode for the job's
default exception handler. Possible values
are as follows:

12-34

iiii

jjjj

kkkk

1111

mmmm

nnnn

ppp

qqqq

rrrr

ssssssssssss

tttt

uuuu

Value

o
1
2
3

DEBUGGER

When to Pass Control
To Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

This is a hexadecimal value that indicates the
maximum (numerically lowest) allowable priority
for tasks in the job.

This is a hexadecimal token for the parent of
job bbbb. If job bbbb is the root job,
however, jjjj is "ROOT".

This is the minimum number, in hexadecimal, of
l6-byte paragraphs that the job's pool can
contain.

This is the number, in hexadecimal, of unused
l6-byte paragraphs in the job's initial pool.

This is the number, in hexadecimal, of tasks
currently in the job.

This is the maximum number, in hexadecimal, of
tasks that can exist simultaneously in job bbbb.

This tells whether a task has attempted to
delete the job but was unsuccessful because the
job has obtained protection from the DISABLE
DELETION system call (which is described in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL).
The possible values of ppp are YES and NO.

This is the base, in hexadecimal, of the start
address of the job's default exception handler.

This is the hexadecimal offset, relative to
qqqq, of the start address of the job's default
exception handler.

Each such field contains the name under which
an object is cataloged in the job's object
directory. If there are no entries in the
object directory, these fields are blank.

Each such field contains a token, in
hexadecimal, of the object whose name (in the
directory) appears next to it.

This is the maximum allowable number, in
hexadecimal, of entries in the job's object
directory.

12-35

DEBUGGER

Field Meaning

vvvv This is the number, in hexadecimal, of entries
currently in the job's object directory.

T --- This option displays the principal attributes of
the task whose token is represented by ITEM. The
form of the display is depicted in Figure 12-17.

----- iRMX86 TASK REPORT -----
TASK TOKEN bbbb CONTAINING JOB
STACK SEGMENT BASE cccc STACK SEGMENT OFFSET
STACK SEGMENT SIZE dddd STACK SEGMENT LEFT
CODE SEGMENT BASE eeee DATA SEGMENT BASE

jjjj
kkkk
1111
mmmm

INSTRUCTION POINTER ffff TASK STATE nnnnnnnn
STATIC PRIORITY gggg DYNAMIC PRIORITY pppp
SUSPENSION DEPTH hhhh SLEEP UNITS REQUESTED qqqq
EXCEPTION MODE iiii EXCEPTION HANDLER rrrr:ssss

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 12-17. An iRMX 86™ Task Report

The following describes the fields in Figure 12-17:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

ffff

gggg

Meaning

Each such field can contain a name under which
the task is cataloged in the object directory
of either the task's containing job or the
root job. If the job is not cataloged in
either directory, "NONE FOUND" is printed here.

This is a hexadecimal token for the task.

This is the base address, in hexadecimal, of
the task's stack segment.

This is the size, in bytes, of the task's
stack segment.

This is the base address, in hexadecimal, of
the task's code segment.

This is the current value, in hexadecimal, of
the task's instruction pointer.

This is the hexad~cimal priority, as described
in chapter 4, of the task.

12-36

Field

hhhh

iiii

jjjj

kkkk

1111

mmmm

nnnnnnnn

pppp

qqqq

rrrr

ssss

E

DEBUGGER

Meaning

This is the current number, in hexadecimal, of
"suspends" against the task. Before the task can
be made ready, each "suspend" must be countered
with a "resume".

This is the exception mode for the task's
exception handler. Possible values are as follows:

Value

a
1
2
3

When to Pass Control
To Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

This is a hexadecimal token for the task's
containing job.

This is the hexadecimal offset, relative to cccc,
of the task's stack segment.

This is the hexadecimal number of bytes currently
available in the task's stack.

This is the base address, in hexadecimal, of the
task's data segment.

This is the task's current execution state.
Possible values are "READY", "ASLEEP",
"SUSPENDED", "ASLEEP/SUSP", and "BROKEN".

This is a temporary, hexadecimal priority that is
sometimes assigned to the task by the Nucleus.
This is done to improve system performance.

If the task is asleep or asleep/suspended, this is
the number of 1/100 second sleep units that the
task requested just prior to going to sleep. If
the task is ready or suspended, qqqq is 0000.

This is the base, in hexadecimal, of the start
address of the task's exception handler.

This is the hexadecimal offset, relative to rrrr,
of the start address of the task's exception
handler.

This option displays the principal attributes of
the exchange whose token is represented by ITEM.
The form of the display is as depicted in Figure
12-18 or 12-19, depending upon the type of the
exchange.

12-37

DEBUGGER

----- iRMX86 MAILBOX REPORT -----
MAILBOX TOKEN bbbb CONTAINING JOB
I TASKS WAITING cccc # OBJECTS WAITING
FIRST WAITING ddddJ/eeeef QUEUE DISCIPLINE

gggg
hhhh

iiiiiiii

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 12-18. An iRMX 86™ Mailbox Report

The following describes the fields in Figure 12-18:

Field Meaning

aaaaaaaaaaaa Each such field can contain a name under which
the mailbox is cataloged in the object directory
of either the mailbox's containing job or the
root job. If the mailbox is not cataloged in
either directory, "NONE FOUND" is printed here.

bbbb This is a hexadecimal token for the mailbox.

cccc This is the number, in hexadecimal, of tasks in
the mailbox's task queue.

dddd This is a token for the containing job of either
the first task waiting in the task queue or the
first object waiting in the object queue.
Because at least one of these queues is empty,
dddd is not ambiguous. If both queues are empty,
dddd is absent.

eeee This is a token for either the first task waiting
in the task queue or the first object waiting in
the object queue. Because at least one of these
queues is empty, eeee is not ambiguous. If both
queues are empty, eeee is 0000.

f This is a single letter that indicates the type
of the first task waiting in the task queue or
the first object waiting in the object queue.
Because at least one of these queues is empty, f
is not ambiguous. If both queues are empty, f is
blank. Otherwise, f has one of the following
values:

C composite
G segment
J job
M mailbox
R region
S semaphore
T task
X extension

12-38

Field

gggg

hhhh

iiiiiiii

DEBUGGER

Meaning

This is a hexadecimal token for the job
containing the mailbox8

This is the number, in hexadecimal, of objects in
the mailbox's object queue.

This describes the manner in which waiting tasks
are queued in the mailbox's task queue. The
possible values are FIFO and PRIORITY.

----- iRMX86 SEMAPHORE REPORT -----
SEMAPHORE TOKEN bbbb CONTAINING JOB gggg
CURRENT VALUE cccc MAXIMUM VALUE hhhh
TASKS WAITING dddd QUEUE DISCIPLINE iiiiiiii
FIRST WAITING eeeeJ/ffffT

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 12-19. An iRMX 86™ Semaphore Report

The following describes the fields in Figure 12-19:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

ffff

gggg

Meaning

Each such field can contain a name under which
the semaphore is cataloged in the object
directory of either the semaphore's containing
job or the root job. If the semaphore is not
cataloged in either directory, "NONE FOUND" is
printed here.

This is a hexadecimal token for the semaphore.

This is the number, in hexadecimal, of units
currently in the custody of the semaphore.

This is the number, in hexadecimal, of tasks
waiting in the queue.

This is a hexadecimal token for the containing
job of the first waiting task. It is absent if
no tasks are waiting.

This is a hexadecimal token for the first
waiting task. It is 0000 if no tasks are
waiting.

This is a hexadecimal token for the semaphore's
containing job.

12-39

DEBUGGER

Field Meaning

hhhh This is the maximum allowable number, in
hexadecimal, of units that the semaphore may have
in its custody.

iiiiiiii This describes the manner in which waiting tasks
are queued in the semaphore's task queue. The
p,ossible values are FIFO and PR IORI TV.

G --- This option displays the principal attributes of
the segment whose token is represented by ITEM.
The form of the display is depicted in Figure
12-20.

SEGMENT TOKEN
SEGMENT BASE

----- iRMX86 SEGMENT REPORT -----
bbbb CONTAINING JOB
cccc SEGMENT LENGTH

dddd
eeee

NAME(S) aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa

Figure 12-20. An iRMX 86™ Segment Report

The following describes the fields in Figure 12-20:

Field

aaaaaaaaaaaa

bbbb

cccc

dddd

eeee

Meaning

Each such field can contain a name under which
the segment is cataloged in the object
directory of either the segment's containing
job or the root job. If the segment is not
cataloged in either directory, "NONE FOUND" is
printed here.

This is a hexadecimal token for the segment.

This is the base address of the segment.

This is a hexadecimal token for the job that
contains the segment.

This is the number, in hexadecimal, of bytes in
the segment.

Viewing iRMX 86 System Lists --- The V Command

Syntax

The syntax for the V command is given in Figure 12-21.

12-40

DEBUGGER

Figure 12-21. Syntax Diagram for Viewing
iRMX 86TM System Lists

Explanation of V Command Options

where

where

J --- This option lists all jobs as

jjjj

pppp

JL = ppppJ/jjjjJ ppppJ/jjjjJ ... ppppJ/jjjjJ

A job token.

A token of its parent job. If the
optional ITEM is included in the
command and it contains a job token,
then tokens of all of that job's
children are listed. If the job
designated by jjjj is the root job,
then "ROOT" replaces "ppppJ".

T --- This option lists all tasks as

tttt

jjjj

TL = jjjjJ/ttttT jjjjJ/ttttT •.. jjjjJ/ttttT

A task token.

A token for the job that contains the
task. If the optional ITEM is included
in the command and it contains a job
token, then tokens of all the tasks in
that job are listed. An asterisk
following a task token indicates that
the task has overflowed its stack.

12-41

where

where

where

DEBUGGER

R --- This option lists all ready tasks as

tttt

jjjj

RL = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

A token of a ready task.

A token for the job containing the
task. If the optional ITEM is included
in the command and it contains a job
token, then tokens of all the ready
tasks in that job are listed. An
asterisk following a task token
indicates that the task has overflowed
its stack.

5 --- This option lists all suspended tasks as

tttt

jjjj

SL = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

A token of a suspended task.

A token for the job containing the
task. If the optional ITEM is included
in the command and it contains a job
token, then tokens of all the suspended
tasks in that job are listed. An
asterisk following a task token
indicates that the task has overflowed
its stack.

E --- This option lists all exchanges as

xxxx

t

jjjj

EL = jjjjJ/xxxxt jjjjJ/xxxxt ... jjjjJ/xxxxt

A token for an exchange.

The type of the exchange (M for mailbox
or 5 for semaphore).

A token for the job containing the
exchange. If the optional ITEM is
included in the command and it contains
a job token, then tokens of all the
exchanges in that job are listed.

W --- This option lists the task queues at exchanges as

12-42

~here

where

DEBUGGER

WL jjjjJ/xxxxt = jjjjJ/ttttT jjjjJ/ttttT
WL jjjjJ/xxxxt = jjjjJ/ttttT jjjjJ/ttttT

jjjjJ/ttttT
jjjjJ/ttttT

WL jjjjJ/xxxxt = jjjjJ/ttttT jjjjJ/ttttT ... jjjjJ/ttttT

xxxx A token for an exchange

t The type of the exchange (M for mailbox, S for
semaphore).

tttt A token for a task which is queued at that
exchange.

jjjj A token for the job containing the task. If
the optional ITEM is included in the command
and it contains the token for an exchange, then
tokens for the tasks in that exchange's task
queue are listed. An asterisk indicates that
the task has overflowed its stack.

M --- This option lists the object queues at mailboxes as

ML jjjjJ/mmmmM = jjjjJ/oooot jjjjJ/oooot jjjjJ/oooot
ML jjjjJ/mmmmM = jjjjJ/oooot jjjjJ/oooot •.. jjjjJ/oooot

ML jjjjJ/mmmmM = jjjjJ/oooot jjjjJ/oooot ... jjjjJ/oooot

mmmm A token for a mailbox.

0000 A token for an object in that exchange's object
queue.

t The type of the object (J for job, T for task,
M for mailbox,S for semaphore, and G for
segment).

jjjj A token for the job containing the exchange or
object. If the optional ITEM is included in
the command and it contains the token for a
mailbox, then tokens for the objects in that
mailbox's object queue are listed.

12-43

where

DEBUGGER

G --- This option lists the segments as

gggg

jjjj

GL = jjjjJ/ggggG jjjjJ/ggggG jjjjJ/ggggG

A token for a segment.

A token for the job containing the
segment. If the optional ITEM is
included in the command and it contains
the token for a job, then tokens for
the segments in that job are listed.

Exiting the Debugger --- The Q Command

Syntax

The syntax for the Q command is given in Figure 12-22.

--0-
Figure 12-22. Syntax Diagram for Exiting the Debugger

Effects

This command deactivates the Debugger. When a debugging
session is terminated, the tables and lists the Debugger
maintains are not destroyed. Q also causes the message "EXIT
iRMX 86 DEBUGGER" to be displayed.

USING SYMBOLIC NAMES WHILE DEBUGGING

For your convenience during debugging, the Debugger supports
the use of alphanumeric variable names that stand for numerical
quantities. The names and their associated values can be
accessed by the Debugger from any of the following sources:

• A Debugger-maintained symbol table. The table contains
name/value pairs that have been cataloged by the Debugger
as numeric variables. Commands for defining, changing,
listing, and deleting numeric variables are described
later in this section.

• The object directory of the current job. The current job
is defined to be the job that contains the breakpoint
task. If there is no breakpoint task, the current job is
the root job.

• The object directory of the root job.

12-44

DEBUGGER

When you use a symbolic name that is not the name of a
breakpoint variable, the Debugger searches these sources in the
order just listed.

Suppose that you want to refer to a particular task by means of
the name .TASKQD1. If the task is cataloged in the object
directory of either the root job or the current job, then the
Debugger will go to the appropriate directory and fetch a token
for the task whenever the name .TASKDQl is used in a Debugger
command. If the task is not so cataloged, you can use VJ (view
job), IJ (inspect job), VT (view task), and IT (inspect task)
commands to deduce a token for the task. Then you can define
.TASKDDl to be a numeric variable whose value is that token.

Defining a Numeric Variable --- The D Command

Syntax

The syntax for the D command is given in Figure 12-23.

Figure 12-23. Syntax Diagram for Defining a Numeric Variable

Effects

This command puts the NAME and the value of ITEM in the
Debugger's symbol table.

Changing a Numeric Variable

Syntax

The syntax for this command is given in Figure 12-24.

Figure 12-24. Syntax Diagram for Changing a Numeric Variable

Effects

This command removes from the Debugger symbol table the value
originally associated with NAME, and replaces it with the value
of ITEM.

12-45

DEBUGGER

Deleting a Numeric Variable --- The Z Command

Syntax

The syntax for the Z command is given in Figure 12-25.

Figure 12-25. Syntax Diagram for Deleting a Numeric Variable

Effects

This command removes the NAME and associated value from the
Debugger's symbol table.

Viewing Numeric Variables --- The L Command

Syntax

The syntax for the L command is given in Figure 12-26.

Figure 12-26. Syntax Diagram for Viewing Numeric Variables

Effects

The L command causes all numeric variable names and their
associated values to be listed. If only NAME is specified,
only one pair is listed. In either case, one pair is listed
per line in the format

NAME=xxxx

where xxxx is the associated value.

12-46

APPENDIX A. iRMX 86™ DATA TYPES

The following are the data types that are recognized by the
iRMX 86 Operating System:

BYTE An unsigned, one byte, binary number.

WORD An unsigned, two byte, binary number.

INTEGER- A signed, two byte, binary number that is stored
in two's complement form.

OFFSET - A word whose value represents the distance from
the base of a segment.

TOKEN A word whose value identifies an object.

POINTER- Two words containing the base of a segment and an
offset, in the reverse order.

STRING - A sequence of consecutive bytes. The first byte
contains the number (not to exceed 12) of bytes
that follow it in the string.

A-I

APPENDIX B. iRMX 86™ TYPE CODES

Each iRMX 86 object type is known within iRMX 86 systems by
means of a numeric code. For each code, there is a
mnemonic name that can be substituted for the code. The
following lists the types with their codes and associated
mnemonics.

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE

Job T$JOB 1

Task T$TASK 2

Mailbox T$MAILBOX 3

Semaphore T$SEMAPHORE 4

Segment T$SEGMENT 6

8-1

allocation of memory 6-1, 6~2
asleep state 2-2, 4-1---

INDEX

asleep-suspended state 2-2, 4-1
baud rate 11-5
breakpoint 12-7

exception 12-8, 12-10
exchange 12-8, 12-9
execution 12-8, 12-9

breakpoint list 12-8, 12-19
breakpoint request 12-9
breakpoint state 12-9
breakpoint task 12-11, 12-17, 12-19, 12-20, 12-21, 12-23
breakpoint variable 12-9
carriage return character 11-2, 11-4, 12-3
CATALOG$OBJECT 4-3, 7-2, 10-5
child job 3-1, 6-3 ----
Command DiCtIonary 10-2
communication between tasks 5-1
condition code 8-1, 8-3
constant in Debugger 12-5
control-C command 11-2, 11-5
control-D command 12-2
control-0 command 11-2, 11-5
control-Q command 11-2, rr=5, 12-3
control-R command 11-2, II=3
control-S command 11-2, rr=4, 12-3
control-X command 11-2, 11-3
control-Z command 11-2, 11-4
CREATE$JOB 3-3, 3-4, 10--7-
CREATE$MAILBOX 5-2, 10=I3
CREATE$SEGMENT 6-1, 6-4, 10-14
CREATE$SEMAPHORE 5-4, 10-15
CREATE$TASK 4-4, 10-17
current address 12-25
current display mode 12-24
current line 11-2, 12-3
current offset 12-25
current segment base 12-25
data types A-I
Debugger 1-1, 12-1

as exception handler 8-2, 10-53, 12-2
constant 12-5
exiting 12-44
expression 12-5
invoking 12-2
item 12-8
name 12-5
symbolic names 12-44
syntax 12-4

Index-I,

DELETE$JOB 3-4, 9-3, 10-20
DELETE$MAILBOX 5-2, 10-22
DELETE$SEGMENT 6-3, 6-4, 10-23
DELETE$SEMAPHORE 5-4, 10-24
DELETE$TASK 4-4, 9-3, 10-25
destination field 12-28
DISABLE 9-2, 9-10, 10-26

INDEX

disabling interrupts 9-2, 9-10, 10-26
ENABLE 9-2, 9-10, 10-~
enabling interrupts 9-2, 9-10, 10-27
ENTER$INTERRUPT 9-3,~4, 9-5, 9-6, 10-28
environmental condition 8-1,8-3
escape (ESC) character 11-2, 11-4, 12-3
exception handler 2-5, 4-4, 8~8-2, 10-29, 10-49
exception mode 4-4, 8-2 ---
exceptional conditions-2-5, 8-1, 8-3

programmer error 2-5, 8-1,-S=3
environmental condition-2-5, 8-1, 8-3

exchange 5-1 ---
mailbox 5-1
semaphore 5-3

execution state 2-2, 4-1
asleep 2-2, 4-1
asleep-suspended 2-2, 4-1
ready 2-2, 4-2
running 2-2~-2
suspended 2-2~-1
transitions between states 4-2

EXIT$INTERRUPT 9-3, 9-4, 9-6, 9-10, 10-30
expression in Debugger 12-5
GET$EXCEPTION$HANDLER 8-4, 10-31
GET$LEVEL 9-3, 9-10, 10-33
GET$POOL$ATTRIB 6-2, 6-4, 10-34
GET$PRIORITY 4-5, 10-36
GET$SIZE 6-4, 10-3-7-
GET$TASK$TOKENS 3-3, 4-5, 7-2, 10-38
GET$TYPE 7-1,7-2, 10-39
ICE-86 In-circuit Emulator 12-1, 12-2
input request mailbox 11-6 ----
input request message 11-7, 11-8, 11-9
interrupt 9-1 ------

handler 2-5, 9-3, 9-4, 9-5, 9-8, 9-9, 10-28,
10-30~0-47, 10-54, 10-59, 10-63

level 9-1, 9-2, 9-5, 9-7, 9-10, 10-26, 10-27, 10-33
task 9-3, 9-4, 9-5, 9-8, 9-10, 10-47, 10-54, 10-63
vector9'-l
vector table 9-1

invoking the Debugger 12-2
I/O System 2-1, 11-1
iSBC 86/12A~nitor 12-1
item in Debugger 12-8

Index-2

INDEX

job 2-1, 2-3, 3-1, 10-7, 10-20, 10-42
child 3-1 --
memory pool 3-1, 3-2, 3-3, 6-1, 6-2, 6-3
object directory 2-4, 3-1, 7-1
object limit 3-1
parameter object 3-3, 4-5
parent 3-1
pool size 3-3, 6-1, 6-2
task limit 3-1 --
tree 2-3, 3-1

level 9-1, 9-2, 9-5, 9-7, 9-10, 10-26, 10-27, 10-33
level ~nterrupts 9-7
line feed character 11-2, 11-4, 12-3
LOOKUP$OBJECT 4-2, 7-1, 7-~0-40
mailbox 2-1, 2-4, 5-1, 10-L3, 10-22, 10-43, 10-49
memory 2-4, 3-1, 3-3, 6-1, 10-14, 10-25, 10-34, 10-37, 10-58

allocating 2-4, 6-3,-rG-14, 10-23
available 6-2 --
borrowing 3-3, 6-2, 10-14
maximum pool size-6-2
minimum pool size 6-2, 10-54

mutual exclusion 2-4~-3
name in Debugger 12-5 -
normal character 11-1, 11-2
normal mode 11-4 --
Nucleus 1-1, 2-1
object 2-1, 7~ 10-5, 10-39, 10-40, 10-62

job 2~ 2-3, 3-1
mailbox 2-1, 2-4, 5-1
segment 2-1, 2-4, ~
semaphore 2-1, 2-4~-3
task 2-1, 2-2, 4-1

object directory 2-4, 3-1, 3-3, 7-1, 10-5, 10-40, 10-62
object queue 5-1
object type 2-1, 7-1
OFFSPRING 3-~3-4, 10-42
output request mailbox 11-6
output request message 11-7
output-only Terminal Handler 11-1
parameter object 3-3, 4-5, 10-7, 10-38
parent job 3-1 --
priority 2-2, 4-1, 4-2, 5-2, 5-3, 9-2, 9-5, 9-7, 10-36
programmer error 8-1, 8-3
queue 5-1, 5-2, 5-=3

first=rn-first-out 5-1, 5-2, 5-3
priority 5-1, 5-2, 5-3

queueing mo~11-4

Index-3

INDEX

ready state 2-2, 4-2
RECEIVE$MESSAGE 4-2, 5-2, 10-43
RECEIVE$UNITS 4-2, 5-~10-45
request message 11-'-
RESET$INTERRUPT 9-3, 9-10, 10-47
RESUME$TASK 4-4,~5, 10-48
RMX/86 Operating System 1-1
root job 2-3, 3-1, 4-5, 7-2, 10-38
RQNORMIN II=6, 11-10
RQNORMOUT 11-4, 11~5, 11-6, 11-7
RQRATE 11-5 --
RQ$ABORT$AP 11-5
rubout 11-2, 11-3
running state 2-~, 4-2
segment 2-1, 2-4, 6=I; 10-14, 10-23, 10-34, 10-37, 10-58
semaphore 2-1, 2-4~-3, 10-15, 10-24, 10-45, 10-51
semaphore limit 5-3,-rD-15, 10-51
SEND$MESSAGE 4-3~-2, 10-49
SEND$UNITS 4-3, 5-~10-51
SET$EXCEPTION$HANDLER 8-2, 8-4, 10-52
SET$INTERRUPT 9-3, 9-4~-5, 9-10, 10-54
SET$POOL$MINIMUM 6-2, 6-4, 10-58
SIGNAL$INTERRUPT 9-3, 9-4, 9-5, 9-10, 10-59
SLEEP 4-5, 10-60 ---
special character 11-1, 11-2
suppression mode 11-4
SUSPEND$TASK 4-3, 4-4, 10-61
suspended state 2-2, 4-1
suspension depth 4-1 ---
symbolic names for debugging 12-44
synchronization 5-1, 5-3
syntax in Debugger-commands 12-4
system call 2-1
system clock 9-2
system exception handler 8-2
task 2-1, 2-2, 4-1, 10-17, 10-25, 10-36, 10-38, 10-48, 10-60,

10-61 -
arbitration algorithm 2-2, 4-2
exception handler 2-5,~4, 8-2
interrupt 9-3, 9-4, 9-6, 9-8---
limit 3-1 ---
Nucleus' view 2-2
priority 2-2, 4-1, 4-2, 5-2, 5-3, 9-2, 9-5, 9-7, 10-36
states 2-2, 4-~4-2
suspension depth 4-1

task queue 5-1, 5-2, 5-3
Terminal Handler 1-1, 11-1
token 2-1, 6-1 ----
tree of jobs 2-3, 3-1
type 2-1, 7-1, A-l:-B-l
type COde 7-1, B-1
UNCATALOG$OBJECr-J-2, 10-62
WAIT$INTERRUPT 9-~9-5, 9-10, 10-63

Index-4

iRMX 8ST
.. Nucleus, Terminal Handler, and Debugger

Reference Manual
9803122-02

REQUEST FOR READER'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficul.ty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME __ DATE ____________ _

TITLE
COMPANY NAM~DEPARTMENT __ __
ADDRESS ____________________________________ _

CITY ____________________ STATE ___ ZIP CODE ___ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

rhis document is one of a series describing Intel products. Your comments on the back of this form
Nill help us produce better manuals. Each reply will be carefully reviewed by the responsible
)erson. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
3585 S.W. 198th
Aloha, Oregon 97005

O.M.S. Technical Publications

I II II I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I

I

inter
INTEL CORPORATION, 3065 Bowers Avenue, S8nta Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

