
iRMX 86™EXTENDED 1/0
SYSTEM REFERENCE MANUAL

Manual Number: 143308-001

"

Copyright © 1981, Intel Corporation
r Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 5/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appearin this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megachassis
Micromap
Multibus
Multimodule
PROMPT
Promware
RMX/SO
System 2000
UPI
pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

ii I A369/681/4K DD I

PREFACE

This manual documents the Extended I/O System, one of the subsystems
available with the iRMX 86- Operating System. Although it contains some
introductory and overview material, it is intended primarily to be a
quick reference, to system calls, providing detailed desc,riptions of those
system calls avaliable to application programmers. Other system calls,
which are reserved for system programmers, are discussed only generally.
For more detail regarding the reserved system calls, refer to the
iRMX 86- SYSTEM PROGRAMMER'S REFERENCE MANUAL.

READER LEVEL

This manual is written for application programmers who are already
familiar with:

• The concepts and terminology introduced 1n the iRMX 86- NUCLEUS
REFERENCE MANUAL.

• The PL/M-86 programming language.

Readers need not be familiar with the iRMX 86- Basic I/O System.

CONVENTIONS

This manual uses a generic shorthand to refer to system calls. For
example, S$CREATE$FILE means RQSCREATE$FILE. The actual PL/M-86
external procedure names used to invoke these system calls are shown only
in Chapter 8, which lists the detailed calling sequences.

Although Chapter 8 lists only the PL/M-86 calling sequences, you can
invoke the system calls from assembly language. If you need to use
assembly language invocation, refer to the iRMX 86- PROGRAMMING
TECHNIQUES manual.

RELATED PUBLICATIONS

In several places, this manual refers to other Intel documentation.
Whenever such references occur, this manual lists only the title of the
document to which reference is being made. The following list provides
the document numbers.

iii

Manual

Introduction to the iRMX 861M Operating System

iRMX 861M Nucleus Reference Manual

iRMX 861M Basic I/O System Reference Manual

iRMX 861M System Programmer's Reference Manual

iRMX 861M Configuration Guide

iRMX 86 1M Installation Guide

iRMX 861M Programming Techniques

iRMX 86 Human Interface Reference Manual

Guide to Writing Device Drivers for the
iRMX 86 1M Operating System

PL/M-86 Programming Manual for 8080/808S-Based
Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

PL/M-86 Compiler Operating Instructions for
8080/808S-Based Dev.e1opment Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/808S-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/808S-Based Development Systems

iv

Number

9803124

9803122

9803123

142721

9803126

9803125

142982

9803202

142926

9800466

121636

9800478

121627

121623

121628

121624

CONTENTS

CHAPTER 1
ORGANIZATION OF THIS MANUAL.

CHAPTER 2
CHOOSING BETWEEN BASIC I/O AND EXTENDED I/O
Reason for Having Two I/O Systems •••••••••

Basic I/O System ••••••••••••••• · .••••••••••
Extended I/O Syst em •••••••••••••••.•••••••

Making the Decision "
Memory Requirement s. • • • • • • • • • • • • • • • • • •••••••••••••••••••••••
Per forma nee.' ..

Example s•.......•......•.•.....•..•.•..
Application Systems Using Little I/O •••••••••••••••••••••••••••••
Application Systems Using Only Sequential I/O ••••••••••••••••••••
High Performance Applications Using Random I/O •••••••••••••••••••

Summa ry 0* ••••••••••••••••••••••••••••••

CHAPTER 3
FEATURES OF THE EXTENDED I/O SYSTEM
Support for Many Kinds of Devices •••••••
Device Independence ••
Three Distinct Kinds of Files ••••••••••••••••••••••••••••••••••••••

N arne d F i 1 e s •.•
Physical Files ••••••••••••
Stream Files •••••••••••••• .

Fi Ie Independence•..
Separation of File Lookup and File Open Operations •••••••••••••••••
File Sharing and Access Control ••••••••••••••••••••••••••••••••••••

Fi Ie Sharing .. .
Access Control .. .

Buffering With Overlapped 1/ 0 ••
Advantages of Using Buffers ••••••••••••••••••••••••••••••••••••••
Bu f fer S i z e • • • . . . • . • • . .'. . . . • . . . • • . . • • • • . . • . . • • •

Logical Names for Files and Devices ••••••••••••••••••••••••••••••••
Automatic Reattachment to Removed Media ••••••••••••••••••••••••••••

CHAPTER 4
EXTENDED I/O SYSTEM TERMINOLOGY
System Programmers •••
Devices
Vo 1 ume s ••
Files "
Connections ••

Device Connections •••
Fi Ie Conne c t ions •••

Lo gica I Name s ••
Logical Name s for ·Device Connections •••••••••••••••••••••••••••••

v

Page

1-1

2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-5

3-1
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-7
3-8

4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4

CONTENTS (continued)

CHAPTER 4 (continued)
Logical Names for File Connections •••••••••••••••••••••••••••••••
Syntax for Logical Names •••
Interpretation of Logical Names ••••••••••••••••••••••••••••••••••

110 Job s •••••••••••••••••••••••.•••••••••••••• • •• • • • .• • • • • • • • • • • • • · ·
Creating I/O Jobs ~ •••••••••••

Creating An I/O Job By Using CREATEIOJOB •••••••••••••••••••••
Creating An I/O Job During Configuration of Your System ••••••••

System Calls Relating to I/O Jobs ••••••••••••••••••••••••••••••••
Path$ptr Parameters and Default Prefixes •••••••••••••••••••••••••••

Path$ptr Parameters ••
De faul t Pre fix•..•.......................

CHAPTER 5
NAMED FILES
Multiple Files on A Single Device ••••••••••••••••••••••••••••••••••
Hierarchical Naming of Files •••••••••••••••••••••••••••••••••••••••

System Calls Requiring Connections ••••••••••••••••••• , •••••••••••
System Calls Requiring Paths ••••••••••••••••••••••••••••••••

Prefixes
Subpaths•.•.................•.....•..••..•..............
Using Prefixes in Conjunction With Subpaths ••••••••••••••••••••
Specifying Paths in System Calls •••••••••••••••••••••••••••••••
Path Syntax .. .

Users and Access Rights ••
Users and User Objects •••

Concept of User ••
Concept of Group •..•...............•.•.••••..•.....•...........
Concept 0 f Wor Id .••••.••••..••••••••••••••••••••••.••••.•..•••.
User Objects .. e-e •••
Creating, Deleting, and Inspecting User Objects ••••••••••••••••
De faul t Users •..........•........•.......•..•..................

Access Right s •..................•..•.•.•..•.••..•.....•..........
Comput ing Acce s s •••
Time At Which Access Is Computed •••••••••••••••••••••••••••••••
Granting Access to Other Users •••••••••••••••••••••••••••••••••

Extended I/O System Calls for Named Files ••••••••••••••••••••••••••
Obtaining and Deleting Connections •••••••••••••••••••••••••••••••
Manipulating Data••.•....•••••...................
Obtaining Status•..............................
Deleting and Renaming Files ••••••••••••••••••••••••••••••••••••••
Changing Access••.............................
Performing Special Functions •••••••••••••••••••••••••••••••••••••
Deleting Connections ••••••••• ~ •••••••••••••••••••••••••••••••••••
Using Logical Names ••
Creating and Deleting I/O Jobs •••••••••••••••••••••••••••••••••••

Basic I/O and Nucleus System Calls •••••••••••••••••••••••••••••••••
User Objects ••....•.........•............ .. _
Default Prefixes •••

vi

PAGE

4-5
4-5
4-5
4-6
4-6
4-7
4~7

4-7
4-7
4-7
4~8

5-1
5-1
5-3
5":'4
5-4
5-4
5-5
5-5
5-5
5-7
5-7
5-7
5-7
5-8
5-8
5-9
5-9
5-10
5-11
5-12
5-12
5-13
5-13
5-14
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-19

CONTENTS (continued)

CHAPTER 5 (continued)
Chronological Overview of Named Files ••••••••••••••••••••••••••••••

Calls Relating to User Objects •••••••••••••••••••••••••••••••••••
Calls Relating to Prefixes •••••••••••••••••••••••••••••••••••••••
Calls Relating to Status •••
Calls Relating to Changing Access ••••••••••••••••••••••••••••••••
Calls for Performing Device-Sensitive Functions ••••••••••••••••••
Calls for Renaming Files •••
Most Frequently Used System Calls ••••••••••••••••••••••••••••••••
Suggestion for Maintaining File Independence •••••••••••••••••••••

CHAPTER 6
PHYSICAL FILES
Situations Requiring Physical Files.
Connections and Physical Files •••••••••••••••••••••••••••••••••••••
Suggestion for Maintaining File Independence •••••••••••••••••••••••
Using Physica I Fi Ie s •••••••••••••••••••••• ' •••••••••••••••••••••••••

CHAPTER 7
STREAM FILES
Suggestion for Maintaining File Independence •••••••••••••••••••••••
Stream File Protocols ••

Protocol for the Creating Task •••••••••••••••••••••••••••••••••••
Protocol for the Writing Task ••••••••••••••••••••••••••••••••••••
Protocol for the Reading Task ••••••••••••••••••••••••••••••••••••

CHAPTER 8
SYSTEM CALLS
Condition Codes •••••••••••••••••••••••••
System Call Dictionary •••
System Calls for I/O Jobs ••
System Calls Relating to Logical Names •••••••••••••••••••••••••••••
System Calls for Creating Files and Connections ••••••••••••••••••••
System Calls for Changing Access and Renaming ••••••••••••••••••••••
System Calls to Manipulate Data in Files •••••••••••••••••••••••••••
System Call Relating Directly to Devices •••••••••••••••••••••••••••
System Calls for Obtaining Status ••••••••••••••••••••••••••••••••••
System Calls to Delete Files and Connections •••••••••••••••••••••••
CREATE$ IO$JOB ••
EXI T$ IO$JOB ••
S$ATTACH$FILE ••
S$CATALOG$CONNECTION •••
S$CHA.NGE$ACCESS ••
S$ CLOSE ••
S$ CREATE$ DIRECTORY •••
S$ C REATE $ FILE ••••••••••••••••••••••••••••••••.•••••••••••••••••••••
S$ DELETE$ CONNECTION •• , •

vii

PAGE

5-20
5-20
5-20
5-20
5-20
5-20
5-21
5-21
5-22

6-1
6-1
6-2
6-2

7-1
7-1
7-2
7-2
7-3

8-1
8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-3

'8-4
8-12
8-15
8-20
8-23
8-30
8-33
8-38
8-45

CONTENTS (continued)

CHAPTER 8 (continued)
S$ DELETE$ FILE _ ••
SGET CONNECTION$ STATUS •• _ ••••
S$ GET$ FILE$ STATUS ••
S$LOOK$UP$CONNECTION •••
S$ OPEN "
S$ READ $ MOVE. • • • • • • • • • • .. • • • • • • • • .• • • • • • • • • • ••• -. • • • • • • • • .• • • • • •••••••••
S $ REN.AME $ FI LE. • • • • • • • • • . • • • • • • • • • • • • • .. • • • • • • • • • • • . • . • • • • • . • • • • • • • • •
S$ SEEK ••••••• ' e" " •••••••

S$SPECIAL •.•••. " ... >

S$TRUNCATE$ FILE ••••••••••••••••••••••••••••••••••••.••••••••••••••••
S$ UNCATALOG$CONNECTION •••
S$WRITE$MOVE .. .

APPENDIX A
DATA TYPES •• . ~

APPENDIX B
OBJECT TYPES AND RESOURCE REQUIREMENTS
Ram Requirement s •••

Attaching a Logical Device •••••••••••••••••••••••••••••••••••••••
Creating an I/O Job ••• ~ ••••
Openi ng a Connec t ion •••
Other Ram Requirement s •••

Object Counts ••..••.•.••..••.••.•.••••••...•....•.••...•.••••.......

APPENDIX C
CONDITION CODES
Norma I Condi t ion Code ••••••••••••••••••••••••••••••• · •••••••••••••••
Programming Exception Codes ••
Environmental Exception Codes ••••••••••••••••••••••••••••••••••••••

APPENDIX D
USE OF OBJECT DIRECTORIES BY THE EXTENDED I/O SySTEM •••••••••••••••

APPENDIX E
COMPATIBILITIES BETWEEN THE TWO SySTEMS ••••••••••••••••••••••••••••

5-1.
5-2.

FIGURES

Example of a Named-File Tree •••••••••••••••••••••••••••••••
Chronology of Frequently Used System Calls for Named Files.

viii

PAGE

8-48
8-53
8-57
8-66
8-69
8-73
8-77
8-83
8-87
8-96
8-99
8-101

A-I

B-1
B-1
B-2
B-2
B-2
B-3

C-1
C-1
C-2

D-1

E-1

5-2
5-21

CHAPTER 1. ORGANIZATION OF THIS MANUAL

This manual is divided into eight chapters and five appendixes. Some of
the chapters contain introductory material which you do not need if you
are already familiar with the Extended I/O System or if you have used
this manual before. One chapter contains reference material to which you
will refer as you write your application tasks. The appendixes contain
technical information that is of interest to only a few readers.

The manual organization is as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5
through

Chapter 7

Chapter 8

Appendix A

This chapter describes the organization of the
manual. You should read this chapter if you are going
through the manual for the first time.

This chapter describes the differences between the
Basic I/O System and the Extended I/O System. You
should read this chapter if you are not certain which
I/O system best meets your requirements.

This chapter describes the primary features of the
Extended I/O System. You will find this chapter
particularly useful if you have not used the Extended
I/O System until now.

This chapter explains some basic terminology
associated with the Extended I/O System, including the
concepts of system programmer, device, volume, file,
and connection. You should read this chapter if you
are looking through the manual for the first time or
if you are unfamiliar with the Extended I/O System.

These chapters describe named, physical, and stream
files and how to use them. You should read one or
more of these chapters, depending on the kinds of
files your application uses.

This chapter contains detailed descriptions of the
system calls provided by the Extended I/O System. The
calls are listed in alphabetical order. When writing
your application tasks, you can refer to this chapter
for specific information about the format and
parameters of each system call.

This appendix defines the format.s of the data types
used by the Extended I/O System. For example, it
explains the format of an iRMX 86 STRING.

1-1

Appendix B

Appendix C

Appendix D

Appendix E

ORGANIZATION OF THIS MANUAL

This appendix provides a list of the types of objects
created by the Extended I/O System. It also discusses
the resource requirements of the Extended I/O System.

This appendix contains a list of all the condition
codes that the Extended I/O System can return. The
codes are listed in alphabetical order, and each entry
in the list includes the classification of the code
(programmer error or environmental condition) and the
numeric value of the code.

The Extended I/O System uses object directories
extensively. This appendix tells which entries are
used by the Extended I/O System. It also tells you
which entries you can change and which entries you
can r t.

This appendix explains the incompatibilities between
the system calls of the Basic I/O System and the
system calls of the Extended I/O System.

1-2

CHAPTER 2. CHOOSING BETWEEN BASIC I/O AND EXTENDED I/O

The iRMX 86 Operating System provides you with a choice of two I/O
systems. One of these, the Extended I/O System, is described in this
manual. The other, the Basic I/O System, is described in the iRMX 86
BASIC I/O SYSTEM REFERENCE MANUAL.

The purpose of this chapter is to explain the reason for having two I/O
systems and to briefly describe the differences between them. After
reading this chapter, you should be able to decide whether your
application requires system calls from both systems or from just one.
And if one is sufficient, you should be able to decide which one.

As you read this chapter, bear in mind that the Extended I/O System is
built upon the Basic I/O System. In other words, if you choose the
Extended I/O System, you must also include the Basic I/O System in your
product.

REASON FOR HAVING TWO I/O SYStEMS

The iRMX 86 Operating System is designed to provide Original Equipment
Manufacturers (OEMs) with a variety of features that are useful in
building application systems. Many of these features are useful in most,
but not all applications. This is especially true of features relating
to input and output.

Most applications communicate with external devices such as line
printers, terminals, disk drives, bubble memories, or even robots. Even
so, not all applications have the same requirements. The iRMX 86
Operating System provides two I/O systems to allow you to choose the one
that best satisfies the requirements of your application system. And, in
the event that both systems would prove useful in one application, the
iRMX 86 Operating System allows you to use them both.

BASIC I/O SYSTEM

The Basic I/O System is the more flexible of the two I/O systems. It
provides very powerful capabilities, and it makes few assumptions about
the requirements of your application. The following features illustrate
the flexibility of the Basic I/O System:

2-1

CHOOSING BETWEEN BASIC I/O AND EXTENDED I/O

• ALLOWS YOU TO DESIGN YOUR OWN BUFFERING ALGORITHM

Although many applications require buffered I/O, the Basic I/O
System does not automatically provide it. Rather than force one
particular approach to buffered I/O on all applications, the
Basic I/O System allows you to design and implement your own
buffering.

• SUPPLIES ASYNCHRONOUS SYSTEM CALLS

Rather than making assumptions about whether (and how) you wish
to overlap your I/O operations, the Basic I/O System allows you
explicitly control the synchronization of the system calls.

• GIVES YOUR TASK CONTROL OF DETAILS

The system calls of the Basic I/O System involve many
parameters. Using these parameters, your tasks can closely
tailor the behavior of each system call to match the requirements
of your application system.

As these features show, the Basic I/O System emphasizes flexibility
rather than ease of use. By preserving flexibility, the Basic I/O System
provides I/O features that are useful in a broad range of applications.

Clearly, the Basic I/O System does have drawbacks. Many applications
that perform I/O do not need the control of details afforded by the Basic
I/O System. For many applications, the amount of time required to
develop the application system is more critical than the ability to
finely tune its performance. For these applications, the iRMX 86
Operating System provides the Extended I/O System.

EXTENDED I/O SYSTEM

The Extended I/O System is designed to be easier to use than the Basic
I/O System. The following features of the Extended I/O System help make
it easier to use:

• AUTOMATIC BUFFERING OF I/O OPERATIONS

The Extended I/O System provides you with automatic buffering of
all I/O operations. Aside from specifying how many buffers the
Extended I/O System is to use, your tasks need not become
involved with buffering. Furthermore, if your application system
does not require buffering, your tasks can tell the Extended I/O
System to use no buff~rs.

• SYNCHRONOUS SYSTEM CALLS

The Extended I/O System provides system calls that are
synchronous. By freeing your application software from the
burden of explicitly synchronizing system calls, the Extended I/O
System reduces the complexity of your application system. This,
in turn helps reduce development costs.

2-2

CHOOSING BETWEEN BASIC I/O AND EXTENDED I/O

Although the system calls of the Extended I/O System are
synchronous, your application system can still use overlapped I/O
operations. To do so, your tasks need only tell the Extended I/O
System to use buffers, and the Extended I/O System will
automatically overlap your I/O operations.

• FREES YOUR TASKS OF TEDIOUS DETAILS

The system calls of the Extended I/O System require fewer
parameters than do those of the Basic I/O System. This
simplifies your application system and reduces development costs.

MAKING THE DECISION

You are faced with a choice of three alternatives. Should you use the
Basic I/O System, the Extended I/O System, or both? In order to make
this decision, you must decide if your application system requires the
flexiblity and fine tuning of the Basic I/O System, the ease of use of
the Extended I/O System, or a combination of both. Before you make the
final decision, consider these two factors:

MEMORY REQUIREMENTS

The Basic I/O System software is roughly 12K bytes smaller than the
software of the Extended I/O System. So if your application system is
pressed for memory and does not require the ease of use provided by the
Extended I/O System, consider using the Basic I/O System.

However, if your decide to use the Basic I/O System even though your
application system needs the features of the Extended I/O System (such as
buffering), you might end up using the entire 12K bytes of memory (along
with a lot of valuable engineering time) implementing these very same
features on top of the Basic I/O System.

Be aware that using both the Basic I/O and Extended I/O Systems requires
no more memory than using the Extended I/O System alone.

PERFORMANCE

Because the Basic I/O System gives your application system control of
many details, you can probably tune your application system to run faster
with the Basic I/O System than with the Extended I/O System. So if
performance is more important than reduced development costs, you should
consider using the Basic I/O System.

2-3

CHOOSING BETWEEN BASIC I/O AND EXTENDED I/O

EXAMPLES

The following examples illustrate the advantages of each of the I/O
systems. The analysis in each example is based on the assumptio~ that
many copies of the application system are to be produced. This
assumption makes memory conservation somewhat more important than it
would be if only a few application systems were being built.

APPLICATION SYSTEMS USING LITTLE I/O

Suppose that your application system performs very little I/O. For
instance, suppose that its only I/O activity is to occasionally log
information to a flexible disk.

Because this application system involves very few I/O-related system
calls, the Basic I/O System is preferable to the Extended I/O System.
The ease of use provided by the Extended I/O System can save you very
little manpower (hence money and time) during development because the
I/O-related part of your system requires so few man-hours to develop.
This marginal benefit is of less use to your application system than is
the 12K bytes of memory saved by using the Basic I/O System.

APPLICATION SYSTEMS USING ONLY SEQUENTIAL I/O

Suppose that your application system requires a substantial amount of
sequential I/O. In this type of system, arlarge amount of your
development resources will be expended in support of I/O. This factor
should make you consider using the Extended I/O System to reduce your
manpower requirements while developing the application system.

A second factor should also steer you toward the Extended I/O System
the sequential I/O. The buffering scheme used by the Extended I/O System
is particularly efficient while performing sequential I/O because it
incorporates read-ahead and write-behind algorithms to overlap I/O
operations and processing.

These two factors, the amount of manpower required to implement I/O and
the sequential nature of the I/O, combine to make the Extended I/O System
the best choice for this application system.

HIGH PERFORMANCE APPLICATIONS USING RANDOM I/O

Now suppose that your system performs a large amount of random-access
I/O, and suppose that performance is a critical consideration that
overrides concerns about conserving memory. You should consider the
Extended I/O System because, in this application system, it can
substantially reduce your development costs. However, two other factors
combine to make the Basic I/O System another reasonable choice.

2-4

CHOOSING BETWEEN BASIC I/O AND EXTENDED I/O

The first factor is the random nature of the I/O. The read-ahead and
write-behind algorithm provided by the Extended I/O System is not
particularly efficient in random-access I/O operations.

The second factor is the requirement for performance. Using the Basic
I/O System as a foundation, you can build an I/O facility that takes
advantage of your application system's knowledge of the organization of
data in the files. Although such a facility might be expensive to
implement, it should run faster than the Extended I/O System in this
application.

So in this case, you must weigh the cost of development against the
benefit of better performance. If development costs are more important,
you should use the Extended I/O System. If performance is more
important, you should use the Basic I/O System. Also, don't ignore the
option of using the Extended I/O System to create a prototype application
system and then later replacing the Extended I/O System with your custom
I/O facility.

SUMMARY

In general, you should consider the Basic I/O System for applications
that require very little I/O, or for applications requiring finely tuned
performance while doing random-access I/O. In contrast, you should
consider the Extended I/O System when development costs are critical,
especially in applications that use sequential I/O.

Finally, remember that there are circumstances where you should use both
1/0 systems. One such situation occurs when your application system uses
I/O for several purposes, some of which are best accomplished by the
Basic I/O System, and others by the Extended I/O System.

2-5

CHAPTER 3. FEATURES OF THE EXTENDED I/O SYSTEM

Because the iRMX 86 Extended I/O System is designed primarily for use by
Original Equipment Manufacturers (OEMs), it provides a large number of
features -- including some that are not generally found in operating
systems aimed at end users. These features include:-

• Support for Many Kinds of Devices

• Device Independence

• Three Distinct Kinds of Files

• File Independence

• Separation of File Lookup and File Open Operations

• File Sharing and Access Control

• Buffering with Overlapped I/O

• Logical Names for Files and Devices

• Automatic Detection of Removed Media

The first six of these features are also provided by the Basic I/O
System, but the balance of the features a~e available only with the
Extended I/O System.

The purpose of this chapter is to briefly explain each of these features.

SUPPORT FOR MANY KINDS OF DEVICES .

The iRMX 86 Extended I/O System supports a wide variety of devices. In
order to connect a particular device to the Extended I/O System, you must
have a device driver (a collection of software procedures) for the device
being connected.

The iRMX 86 Operating System provides you with drivers for the following
devices:

• iSBC 204 Single Density Flexible Disk Controller

• iSBC 206 Hard Disk Controller

• iSBC 215 Winchester Hard Disk Controller

• iSBC 218 Multimodule Flexible Disk Controller

3-1

FEATURES OF THE EXTENDED I/O SYSTEM

• iSBC 220 SMD Disk Controller

• iSBC 254 Bubble Memory Board

• Byte Bucket (A pseudo device to which information can only be
written. Any attempt to read information from this device will
result in zero bytes being returned.)

• RS232-Based Terminal or Teletypewriter

If you want to use any of these drivers in your application, refer to the
iRMX 86 CONFIGURATION GUIDE. It contains detailed instructions for
including specific drivers in your application system.

If you need drivers for other devices, you must write the drivers. For
specific instructions refer to the GUIDE TO WRITING DEVICE DRIVERS FOR THE
iRMX 86 I/O SYSTEM.

If you want more specific information about the relationship between
devices, device drivers, and the iRMX 86 I/O Systems, refer to the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

DEVICE INDEPENDENCE

The iRMX 86 Extended I/O System provides you with one set of system calls
that can be used with any collection of devices. For instance, rather
than using a TYPE system call for output to a terminal and a PRINT system
call for output to a line printer, you may use a WRITE system call for
output to any device.

This notion of one set of system calls for I/O to any collection of
devices is called device independence, and it provides your application
with a lot of flexibility. For example, suppose that your application
logs events as they occur. The device independence of the Extended I/O
System allows you to create an application that can log the events on any
device rather than on just one. When the application is running and
circumstances force an operator to reroute logging from the
teletypewriter to the line printer or disk, your application can easily
comply.

For a more detailed explanation of device independence, refer to the
INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM.

THREE DISTINCT KINDS OF FILES

Although all files provided by the iRMX 86 Extended I/O System are byte
(as opposed to record) oriented, the System provides three different
kinds of files.

3-2

FEATURES OF THE EXTENDED I/O SYSTEM

NAMED FILES

Named files are intended for use with random-access, secondary-storage
devices such as disks, diskettes, and bubble memories. Named files allow
your application to organize its files into a tree-like, hierarchical
structure that reflects the relationships between the files and the
application. Furthermore, only named files allow your application to
store more than one file on a device, and only named files provide your
application with access control. Named files also provide you with a
good foundation for building custom access methods such as ISAM (indexed
sequential access method).

For more detailed information regarding named files, read the Chapter 5
of this manual.

PHYSICAL FILES

Physical files differ from named files in that physical files allow your
application more direct control over a device. Each physical file
occupies an entire device, and applications can deal with the file as
though it were a string of bytes. However, physical files do not provide
access control.

This more-basic relationship with a device provides your application with
flexibility. For example, your application can use a physical file to
interpret volumes created on other systems.

Physical files also provide your application with the ability to
communicate with devices that do not need the power of named files.
Several examples of such devices are line printers, display tubes,
plotters, and robots.

For more detailed information about physical files, read Chapter 6 of
this manual.

STREAM FILES

Stream files provide a means for two tasks to communicate with each other.
One task writes into the file while the other task concurrently reads
from it. Stream files use no devices and provide no access control.

For more detailed information about stream files, read Chapter 7 of this
manual.

FILE INDEPENDENCE

Although the Extended I/O System does support three kinds of files,
almost all of the reading and writing system. calls are independent of the
kind of file. This allows you to create tasks and applications that can
be readily switched from one kind of file to another.

3-3

FEATURES OFTRE EXTENDED I/O SYSTEM

For example, y.our application might involve two tasks that must
c'Omntunicate by using a stream file. In the proc~3's of developing the
application system, you might implement the writing task before you
implement the reading task. For the purpose of debugging the writing
task, you can use .a named file on a disk so you can examine the
information being written. Later,after you implement the reading task,
you can route the information to the stream file rather than the disk.
This change does not require modifying any code in the writing task.

SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste valuable time by looking up a file whenever
an application tries to open one. The iRMX 86 Extended I/O System avoids
this by using a special type of iRMX86 .object (called a file connection)
to represent the bond between the file and an application program.

Whenever your application software creates a file, the iRMX 86 Extended
r/o System returns a file connection. Your application can then use the
connection to open the file without suffering the expense of having the
Extended I/O System look up the file. Even when your application opens
an existing file, the application can present the file connection and
bypass the file-lookup process.

File connections provide a second benefit, one that relates to access
control. Any connection to a named file embodies the access rights to
the file. This me,ans that the Extended I/O System computes access only
once (when the file connection is created), rather than each time the
file is opened.

Yet another benefit of file connections is that several of them can
simultaneously exist for the same file. This allows several tasks to
concurrently access different locations in the file. This is possible
because each file connection maintains a pointer to keep track of the
location within the file where the task is reading or writing.

The process of obtaining a file connection is discussed in each of
Chapters 5, 6, and 7 of this manual.

FILE SHARING AND ACCESS CONTROL

The iRMX 86 Extended I/O System provides your application with the
ability to share files and, in the case of named files, to control access
to files.

FILE SHARING

In a multitasking system, it is often useful to have several tasks
manipulating a file simultaneously. For example, consider a transaction
processing system in which a large number of operators concurrently

3-4

FEATURES OF THE EXTENDED I/O SYSTEM

manipulate a common data base. If each terminal is driv.en by a distinct
task, the only way to implement an efficient transaction system is to
have the tasks share access to the data-base file. The iRMX 86 Extended
I/O system allows multiple tasks to concurrently access the same file.

For more detailed information about sharing files, refer to the Chapters
5, 6, and 7 of this manual.

ACCESS CONTROL

ALso useful in a multitasking system is the ability to control access to
a file. For instance, suppose that several engineering departments share
a computer. An engineer in one department may want to controla"ccess to
her files as follows:

• Allow herself the ability to read, write, and delete her files.

• Allow other engineers in her department to read and write the
files, but deny them permission to delete the files.

• Allow engineers of other departments to only read the files.

Named files provide your applic~tion with precisely this kind of access
control.

For more detailed information regarding access control, read Chapter 5 of
this manual.

BUFFERING WITH OVERLAPPED I/O

The iRMX 86 Extended I/O System provides buffering and overlapping of I/O
operations.

ADVANTAGES OF USING BUFFERS

Whenever one of your application programs opens a connection, the program
must specify the number of buffers to be provided by the Extended I/O
System. The number of buffers that your program requests directly
affects the behavior of the Extended I/O System as it reads and writes
information through the connection. Specifically:

• Zero Buffers

The Extended I/O System will actually access the file each time
your application invokes a read system call or a write system
call. For example, if your application code asks the Extended
I/O System to read 30 bytes, the Extended I/O System will access
the file and read exactly 30 bytes. If the file resides on a
physical device, such as a disk, the Extended I/O System will
access the file for each read or write request.

3-5

FEATURES OF THE EXTENDED I/O SYSTEM

• One Buffer

The Extended I/O System will read and write information one
buffer at a time. For instance, when your application program
asks the Extended I/O System to read 30 bytes, the System will
instead read enough information to fill the entire buffer. Using
this method, the Extended I/O System might be able to satisfy
several additional requests without actually reading the file.

This method of transferring a full buffer at a time is called
blockin~. Blocking can significantly improve the performance of
an app11cation system by reducing the number of times that the
Extended I/O System must actually transfer information to or from
a file on a device. In general, blocking is more valuable in
sequential I/O than in random I/O.

• Two or More Buffers

If your application requests two or more buffers, the Extended
I/O System can use blocking and can overlap I/O operations by
using read-ahead and write-behind algorithms. Reading ahead and
writing behind are techniques for allowing tasks of your
application system to continue running while the Extended I/O
System is transferring information to or from devices.

Reading ahead is particularly useful when your application is
performing sequential (rather than random-access) I/O. This
arises from the Extended I/O System's ability to more accurately
predict during sequential reading the location of the next data
to be required by the application.

Writing behind is also more suited to sequential I/O than to
random-access I/O.

BUFFER SIZE

If you are responsible for configuring your application system, you
should be aware that buffer sizes are, at least partially, a function of
Some parameters that you set during the configuration process. The next
few paragraphs discuss these parameters. However, if you are not
involved with configuration of your system, you can skip over these
paragraphs without missing any crucial information.

When your application requests one or more buffers, the Extended I/O
System computes the size of the buffers as a function of two
configuration parameters -- the granularity of the device, and the
suggested buffer size for the device. The granularity is a Basic I/O
System configuration parameter, and the suggested buffer size is an
Extended I/O System configuration parameter. Refer to the iRMX 86
CONFIGURATION GUIDE for detailed information about these two parameters.

3-6

FEATURES OF THE EXTENDED I/O SYSTEM

When your application program opens a connection-, the Extended I/O System
creates buffers equal to the largest integral multiple of the device
granularity that does not exceed the suggested buffer size. There are
two exceptions to this rule:

• If the device granularity is zero, the Extended I/O System will
create buffers equal to the suggested buffer size.

• If the device granularity is greater than the suggested buffer
size, the Extended I/O System will create buffers equal to the
suggested buffer size.

LOGICAL NAMES FOR FILES AND DEVICES

The Extended I/O System allows your application program to use logical
names to refer to files and devices. A logical name is a string of
characters that the Extended I/O System associates with a particular file
connection or device connection. (A device connection relates to devices
in the same way that a file connection relates to files. Refer to the
Chapter 4 of this manual for a precise definition.)

The Extended I/O System implements logical names by using object
directories to catalog a connection under the associated logical name.
But rather than using a single object directory and consequently
restricting the scope of the logical name to one job, the Extended I/O
System uses three object directories to supply a choice of three scopes:

• A task can catalog a logical name 1n the directory of its own
job. The scope of the logical name is then restricted to the
tasks contained in the same job.

• A task can catalog a logical name in the directory of the
system's root job. This provides a universal scope because any
task in the system can lookup a logical name defined in the root
job's object directory.

• A task can catalog a logical name in a third object directory
that has more scope than the local job, but less than the root
job. The job owning this third object directory is called the
global job. (To specify a specific job as being the global job
for your application job, use the object directory of your
application job. Catalog a token for the global job under the
logical name RQGLOBAL.)

Whenever one of your tasks asks the Extended I/O System to lookup a
logical name, the System will first search the object directory of the
local job. If the logical name is not defined there, the Extended I/O
System will search the object directory of the global job and, if
necessary, the root job. As soon as the Extended I/O System finds a
definition for the logical name, the system will stop searching and
return the connection found.

3-7

FEATURES OF THE EXTENDED I/O SYSTEM

By p'roviding this progressively more global search, the Extended I/O
System allows you to take advantage of the three degrees of scope that
you can provide your logical names: .

• If you wish to share connections with tasks only in the local
job, catalog the logical name in the local object directory.

• If you wish to share a connection with all tasks in the system,
catalog the logical name in the root job's directory.

• If you wish to allow tasks of several specific jobs to share
logical names, designate one global job for all of the jobs, and
catalog the logical names in the object directory of the global
job.

AUTOMATIC REATTACHMENT TO REMOVED MEDIA

If your application uses the Extended I/O System, and an operator remOves
media {such as disks or diskettes} from a device, the Extended I/O System
monitors the status of the device. When the operator replaces the
removed media, the Extended I/O System automatically reattaches the
device as soon as it is accessed, making it available to the tasks of
your application system.

3-8

CHAPTER 4. EXTENDED I/O SYSTEM TERMINOLOGY

There are several concepts that you must understand if you wish to use the
iRMX 86 Extended I/O System. These concepts are:

• system programmers

• devices

• volumes

• files

• connections

• logical names

• I/O jobs

• path$ptr parameters and default prefixes

The following sections explain these concepts.

SYSTEM PROGRAMMERS

There are two programming roles associated with the iRMX 86 Operating
System. One role involves using system calls and objects that affect only
your own job, while the other role involves manipulating system resources
and characteristics. These two roles are called application programming
and system programming.

Although the roles have different names, separate people are not
required. One individual can perform both roles. The reason for the
distinction is that the actions of the system programmer affect the
performance and security of the entire system, whereas the actions of the
application programmer have a more limited effect.

At several locations in this manual you will find mention of programs
written by system programmers. Because of the broad effect of these
programs, they are only briefly described in this manual. For more
detailed information you must refer to the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.

4-1

EXTENDED I/O SYSTEM TERMINOLOGY

DEVICES

The iRMX 86 notion of a device probably corresponds to what you are
familiar with. Flexible diskette drives, line printers, magnetic tape
drives~ and hard disk drives are all examples of devices.

However, there are two situations where the iRMX 86 notion of device may
differ from yours:

• Several Machines on One Controller

Even if several machines are governed by one controller, the
Extended I/O System considers each machine to be a distinct device.

• Several Platters on One Spindle

VOLUMES

Generally, when several platters reside on a single spindle, the
Extended I/O System considers the entire spindle to be one
device. The exception to this arises when one platter is
removable and the others are fixed. In such cases the removable
platter is deemed a different device than the fixed platters, and
the fixed platters all constitute one device.

A volume is the actual medium used to store the device's information. If
the device is a flexible disk drive, the volume is a diskette. If the
device is a magnetic tape drive, the volume is the reel of tape. If the
device is a multiplatter hard disk drive, the volume is the disk pack.

FILES

Some operating systems consider a file to be a device, while others
consider a file to be the information stored on a device. The Extended
I/O System considers a file to be information.

The Extended I/O System provides three kinds of files, each of which have
characteristics making it unique. These characteristics are described in
general terms in Chapter 3 and in detailed terms in Chapters 5, 6, and 7.

Regardless of the kind of file, the Extended I/O System presents
information to applications in the form of a byte string rather than in
records.

4-2

EXTENDED I/O SYSTEM TERMINOLOGY

CONNECTIONS

A connection is an iRMX 86 object that can represent either of two things:

• The bond between iRMX 86 jobs and devices

• The bond between iRMX 86 jobs and files

DEVICE CONNECTIONS

Before the tasks of your application can manipulate files on a particular
device, the device must be attached. (Because this process is typically
performed by system programmers rather than application programmers, it is
discussed in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.) When a
program successfully attaches a device, the Extended I/O System creates a
connection (a type of iRMX 86 object) that includes information describing
the attached device. Such connections are called device connections.

Tasks typically obtain device connections by invoking a system program
written by your system programmer. The system program attaches the device
and catalogs the connection under a logical name in the object directory
of the root job. Then your application program can use the logical name
when invoking other system calls.

FILE CONNECTIONS

NOTE

A device cannot be multiply attached. In
other words, at anyone time no more
than one device connection can exist for
each device. However, once a device is
detached, it can be reattached.

Whenever your application creates or attaches .a file, the Extended I/O
System returns a connection that represents the bond between the
application (iRMX 86 job) and the file. This kind of connection is called
a file connection.

NOTE

Files can be multiply attached. In
other words., more than one connection
can exist simultaneously for any file.

The reason for distinguishing between the file and the file-to-application
bond is so several tasks can concurrently use the file. To support this
sharing of files, file connections provide the Extended I/O System with
information describing the bond. This information includes:

4-3

EXTENDED I/O SYSTEM TERMINOLOGY

• a file pointer

This is a number that tells the Extended I/O System where within
the file to read, write, or truncate. The Extended I/O System
automatically maintains this pointer as your task reads and writes
sequentially. However, if your task must use random access, the
task can modify this number by using the S$SEEK system call.

• an open-mode indicator

The Extended I/O System sets this variable when your task calls
the S$OPEN system call to open this connection to the file. The
open-mode indicator tells the Extended I/O System how your task is
going to use the connection. This variable can assume any of four
values: open for read, open for write, open for read and write,
and not open.

LOGICAL NAHES

NOTE

There is one restriction regarding the
sharing of file connections. If a task
in one job obtains a file connection
that was created in a different job,
the task cannot successfully use the
connection to perform I/O operations.
However, the task can catalog the
connection under a logical name, and
use the logical name in the ATTACH$FILE
system call to obtain a second
connection that can be used without
restriction.

The Extended I/O System allows your tasks to use symbolic names for file
and device connections. These symbolic names are known as logical names.

LOGICAL NAMES FOR DEVICE CONNECTIONS

Whenever a task uses the Extended I/O System to attach a device, the task
can specify a logical name. After generating the device connection, the
Extended I/O System automatically catalogs it (under the logical name
provided by the task) in the object directory of the root job. Then any
task in the system can obtain the devi~e connection by looking up the
logical name or by using the logical name in the path$ptr parameter of a
system call.

4-4

EXTENDED I/O SYSTEM TERMINOLOGY

LOGICAL NAMES FOR FILE CONNECTIONS

Similarly, when one of your tasks obtains a connection to file, the task
(rather than the Extended I/O System) can catalog the connection in an
object directory under a logical name, such as DATABASE. Once the file
connection has been cataloged, other tasks in the system can can use it in
either of two ways. They can use the LOOKUPCONNECTION system call to
obtain the connection, or they can use the logical name in the path$ptr
parameter of a system call.

SYNTAX FOR LOGICAL NAMES

To define a logical name you must use an iRMX 86 STRING (see Appendix A of
this manual for a definition of iRMX 86 STRING). The STRING must contain
12 or fewer ASCII characters that obey the following rules:

• The hexadecimal representation of each character must be between
020h and 07Fh.

• None of the characters may be a colon (:), slash (/), an up-arrow
. (~) , or a circumflex (~).

INTERPRETATION OF LOGICAL NAMES

The Extended I/O System adheres to the following three rules when
interpreting logical names:

• No distinction is made between uppercase letters and lowercase
letters. For example, xyz and XYZ are considered to be the same
logical name.

• Leading and embedded blanks are significant. For example, if the
STRING used to define a logical name contains a leading blank
followed by two Xs, the logical name is ~ simply two Xs. Rather
it is a blank followed by two Xs.

• When the Extended I/O System looks up a logical name, it chec~s as
many as three object directories. As soon as the Extended I/O
System finds a definition for the logical name, the System
terminates the search and uses the connection associated with the
logical name.

The three object directories examined by the Extended I/O System
are (in order of checfing):

The object directory of the local job. The local job
is the job that contains the task that caused the
Extended I/O System to lookup the logical name.

4-5

I/O JOBS

EXTENDED I/O SYSTEM TERMINOLOGY

The object directory of the global job. The notion of
a global job is closely related to the notion of an I/O
job. Refer to the "I/O Jobs" section of this chapter
for a definition of global job.

The object directory of the root job. The root job is
the job that is created when your system is first
started. For a detailed definition, refer to the
iRMX 86 CONFIGURATION GUIDE.

Any job using the system calls provided by the Extended I/O System must
conform to certain requirements. Any job that meets these requirements is
called an I/O job. These requirements include (but are not limited to):

• Cataloging an entry in the job's object directory under the name
RQGLOBAL. This entry, which must refer to a job, tells the
Extended I/O System which job to use as the global job. The
notion of global job relates to the process of looking up logical
names. Refer to Chapter 3 of this manual for more information
regarding global jobs.

• Cataloging an entry in the job's object directory under the name
$. This entry, which must refer to a device connection or a file
connection, specifies the default prefix for the I/O job. The
notion of default prefix is discussed in the "Path$ptr Parameters
and Prefixes" section of this ·chapter.

• Cataloging an entry in the job's object directory under the name
R?USER. This entry, which must refer to a user object, specifes
the default user for the I/O job. The notions of users and
default users are thoroughly discussed in Chapter 5 of this manual.

The purpose of an I/O job (as opposed to a non-I/O job) is to provide an
environment in which tasks can invoke the system calls provided by the
Extended I/O System. In fact, if a task that is not in an I/O job
attempts to invoke a system call provided by the Extended I/O System, the
result is very likely to be an exception code.

CREATING I/O JOBS

There are two ways to create an I/O job. One way involves using the
CREATEIOJOB system call provided by the Extended I/O System. And the
other way is to tell the Extended I/O System, during the process of
configuration~ to create one for you.

4-6

EXTENDED I/O SYSTEM TERMINOLOGY

Creating an I/O Job by Using CREATEIOJOB

If you use the CREATEIOJOB system call to create an I/O job, the
Extended I/O System ensures that the resultant job meets all the
requirements of an I/O job. The Extended I/O System automatically
initializes the new job's object directory to provide the environment
required to invoke system calls of the Extended I/O System.

However, there is one restriction. The task that invokes the
CREATEIOJOB system call must be running within an I/O job. This
restriction leads to an obvious question. How is the first I/O job
created? The answer is to create the first I/O job during the
configuration of your application system.

Creating an I/O Job During Configuration of Your System

During the process of configuring your application system, you can ask the
Extended I/O System to create an I/O job. The actual creation of the job
will not .take place until the root job initializes the system. For more
information about this technique, refer to the chapter of the iRMX 86
CONFIGURATION GUIDE that describes the configuration of the Extended I/O
System.

SYSTEM CALLS RELATING TO I/O JOBS

There are two system calls that relate to ~/O jobs. The CREATEIOJOB and
EXITIOJOB system calls are both described in Chapter 8 of this manual.

PATH$PTR PARAMETERS AND DEFAULT PREFIXES

Some of the system calls provided by the Extended I/O System refer to
files rather than to connections. All such calls require a path$ptr
parameter to identify the file to be attached, created, or otherwise
manipulated. And, depending upon the value of the path$ptr parameters,
these system calls can also use the default prefix of the calling task's
job to determine which file to manipulate.

PATH$PTR PARAMETERS

The complete interpretation of the path$ptr parameter depends upon the
kind of file (named, physical, or stream) being manipulated.
Consequently, the detailed interpretation of this parameter is discussed
in Chapter 5 for named files, Chapter 6 for physical files, Chapter 7 for
stream files, and in Chapter 8 for each system call that requires a
path$ptr parameter.

4-7

EXTENDED I/O SYSTEM TERMINOLOGY

However, one aspect of the path$ptr parameter applies to all three kinds
of files. If the parameter is set to zero, or if it points to a null
STRING (an iRMX 86 STRING containing zero characters), the Extended I/O
System will manipulate the file indicated by the default prefix of the
calling task's job.

DEFAULT PREFIX

The default prefix is an attribute of an I/O job. Specifically, it is a
connection (either a device connection or a file connection) that is
cataloged under the name $ in the object directory of the job. Whenever
any task of the job invokes a system call but fails to specify which file
is to be manipulated, the Extended I/O System looks up the default prefix
and manipulates the associated connection.

4-8

CHAPTER 5. NAMED FILES

Named files are intended for use with random-access, secondary storage
devices such as disks, diskettes, and bubble memories. Named files
provide several features that are not provided by physical or stream
files. These features include:

• Multiple Files on a Single Device

• Hierarchical Naming of Files

• Access Control

These features combine to make named files extremely useful in systems
that support more than one application and in applications that require
more than one file.

MULTIPLE FILES ON A SINGLE DEVICE

As shown in Figure 5-1, your application can use named files to implement
more than one file on a single device. This can be very useful in
applications requiring more than one operator, such as transaction
processing systems.

HIERARCHICAL NAMING OF FILES

The iRMX 86 named files feature allows your application to organize its
files into a number of tree-like structures as depicted in Figure 5-1.
Each such structure, called a file tree, must be contained on a single
device, and no two file trees can share a device. In other words, if a
device contains any named files, the device contains exactly one file
tree. Also, named file trees must fit on a single volume.

Each file tree consists of two categories of files -- data files and
directories. Data files (shown as triangles in Figure 5-1) contain the
information that your application manipulates, such as inventories,
accounts payable, transactions, text, source code, or object code. In
contrast, 'directory files (shown as rectangles) contain only pointers to
other files. The purpose of the directory files is to provide you with a
large degree of flexibility in organizing your file structure.

To illustrate this flexibility, take a close look at Figure 5-1. This
figure shows how named files can be useful in multi-user systems. The
figure is based on a collection of hypothetical engineers who work for
three departments (Departments 1, 2 and 3). Each engineer is responsible
for his own files.

5-1

NAMED FILES

SIM-SOURCE SIM-OBJECT TEST-OBJECT

'--___ ~I = DIRECTORY

= DATA FILE

BATCH-1 BATCH-2

Figure 5-1. Example of a Named-File Tree

This multiperson organization is reflected in the file tree. The
uppermost directory (called the device's root directory) points to three
"department directories. 1f Each department directory points to several
"engineer's directories. 1I The engineers can organize their files as they
wish by using their own directories.

Each file (directory or data) has a unique shortest path connecting it to
the root directory of the device. For instance, in Figure 5-1, the file
called SIM SOURCE has the path DEPT l/BILL/SIM SOURCE, where the slash
(/) is used to separate the components of the the path. This notion of
"path" reflects the hierarchical nature of the named-file tree.

5-2

NAMED FILES

Another characteristic of hierarchical file naming is that there is less
chance for duplicate file names. For example, note that Figure 5-1
contains directories for two individuals named Bill. (These directories
are on the extreme left and right of the third level of the figure.)
Even if the rightmost Bill had a data file with the file name of
SIM OBJECT, its path would differ from that leftmost Bill's SIM OBJECT.
Specifically, the leftmost SIM OBJECT is identified by

whereas the rightmost SIM OBJECT would be identified by

Now that you know what a named file is, let's look at how the tasks of
your application tell the Extended I/O System which named file to
manipulate.

SYSTEM CALLS REQUIRING CONNECTIONS

Once you have a file connection for a particular named file, you can use
a token for the connection as the connection parameter of any of the
following system calls to perform I/O through the connection:

S$CLOSE
S$DELETE$CONNECTION
SGETCONNECTION$STATUS
S$OPEN
S$READ$MOVE
S$SEEK
S$SPECIAL
S$TRUNCATE
S$WRITE$MOVE

However, if the connection was created by a task in a different job, your
task should not use the connection in any of these system calls. Rather,
your task should first obtain a new connection to the same file by
performing the following steps:

1. Catalog the current connection in the object directory of your
task's job. This establishes a logical name for the current
connection.

2. Using the newly defined logical name, invoke the S$ATTACH$FILE
system call to obtain another connection to the same file. Your
task can use this second connection to invoke any of the system
calls listed above.

If your task does attempt to use a connection created in another job, the
Extended I/O System will return an exception code rather than performing
the requested function.

5-3

NAMED FILES

SYSTEM CALLS REQUIRING PATHS

In .order t.o use any .of the f.ollowing system calls, yQur tasks must use an
Extended I/O System path, rather than a c.onnectiQn~ t.o tell the Extended
I/O System which file YQU w1shtQ manipulate:

S$ATTACH$FILE
S$CHANGE$ACCESS
S$ CREATE $ DIRE CTORY
S$CREATE$FILE
S$DELETE$FILE
SGETFILE$STATUS
S$RENAME$FILE

FQr named files, an Extended I/O System path has tWQ cQmpQnents. The
first cQmpQnent is called a prefix, and the secQnd is called the
subpath. Let's examine these cQmpQnents .one at a time.

Prefixes

A prefix is a lQgical name fQr a cQnnectiQn tQ either a device, a named
directQry file; .or a named data file. The purpose .of the prefix is tQ
tell the Extended I/O System where to begin interpreting the subpath.
Let's lQQk at each .of the PQssible interpretatiQns that the Extended I/O
System can derive frQm a prefix:

• If the prefix is a cQnnectiQn tQ a device, the Extended I/O
System will begin scanning the subpath at the rQQt directQry .of
the device.

• If the prefix is a cQnnectiQn tQ a named directQr file, the
Extended I 0 System will begin scanning the subpath at the
specified directQry.

• If the prefix is a cQnnectiQn tQ a named data file, the Extended
I/O System will check tQ see if the subpath is null. If it is,
the Extended I/O System will manipulate the file indicated by the
prefix. If the subpath is not null, the Extended I/O System will
return an exceptiQn cQde indicating that yQur application prQgram
is attempting tQ use a data file as thQugh it were a directory
file.

Subpaths

A subpath is a sequence .of directQry names .or a sequence .of directQry
names fQllQwed by the name .of a data file. FQr instance, referring tQ
Figure 5-1, TOM/TEST DATA/BATCH 1 is a subpath that leads frQm the DEPT 1
directQry tQ the data file named BATCH 1. AnQther example frQm the same
figure is TOM, which is a subpath that-leads frQm the directQry named
DEPT 1 tQ the directQry named TOM.

5-4

NAMED FILES

Using Prefixes in Conjunction with Subpaths

The tasks of your application system can use a prefix in conjunction with
a subpath to create a complete path for a named file. The prefix
generally refers to a directory and the subpath generally refers to a
directory or data file that is a descendant of the directory indicated by
the prefix.

Specifying Paths in System Calls

Those system calls that require paths have a path$ptr parameter. The
tasks of your application system can use this path$ptr parameter along
with the default prefix to specify the file to be manipulated.

Path Syntax

When your application tasks invoke a system call that requires a path,
the tasks must provide a path$ptr parameter. When dealing with named
files, this parameter is a POINTER to a STRING (see Appendix A for a
definition of STRING) that must be in one of the following four forms:

• NULL STRING

If the STRING is zero characters long, the Extended I/O System
will act on the file indicated by. the default prefix of the
calling task's job.

• LOGICAL NAME ONLY

If the STRING consists only of a logical name enclosed in colons,
the Extended I/O System will look up the logical name and obtain
the associated connection. Then, because the subpath is empty,
the Extended I/O System will act on the data file or directory
file indicated by the connection.

• SUBPATH ONLY

The STRING can consist of a subpath without a prefix. The
Extended I/O System interprets such subpaths by starting at the
directory indicated by the default prefix of the calling task's
job. Then the Extended I/O System follows the subpath from
directory to directory until it reaches the final component of
the subpath. This final component is the file on which Extended
I/O System will act.

Be aware that whenever the STRING contains a subpath without a
logical name, the default prefix must be a connection to a device
or to a named directory file. If, instead, the default prefix is
a connection to a named data file, the Extended I/O System will
return an exception code indicating that your task is attempting
to use a data file as a directory.

5-5

NAMED FILES

The following subpath is an example of the most common form:

A/B/C/D

where A, B, and C are the names of directory files, and D is the
name of either a directory or data file. This example causes the
Extended I/O System to start at the default directory and descend
to Directories A, B, and C in order. Then it acts on D.

An example of a less common form of subpath is:

t A/B/C/D

where the up-arrow (t) or circumflex (A) tells the Extended I/O
System to ascend one level in the heirarchy of files. In other
words, the Extended I/O System would read this example as: "Start
with the directory indicated by the default prefix and ascend to
its parent. Then descend to directories A, B, and C in order.
Then act on File D."

The Extended I/O System can also accept consecutive up-arrows.
For example,

f l' A/B/C

would cause the Extended I/O System to start with the directory
indicated by the default prefix and ascend two levels before
interpreting the remainder of the subpath.

Another possiblity is for the subpath to begin with a slash (/).
For example,

/A/B/C

Whenever the Extended I/O System detects a slash at the beginning
of a subpath, the Extended I/O System will start interpreting the
remainder of the subpath at the root directory of the device
indicated by the prefix.

• LOGICAL NAME FOLLOWED BY SUBPATH

Your application code can use a STRING consisting of a logical
name (enclosed in colons) followed immediately by a subpath. For
example,

:FO:A/B/C/D

The Extended I/O System interprets this example as follows.
First, it looks up the logical name FO in the object directory of
the local job, or if necessary, the global or root job. Then it
follows the subpath from the directory associated with the
connection. So in the example, the Extended I/O System would
find the directory associated with FO, and it would step through
Directories A, B, and C. Finally, the Extended I/O System would
act on File D.

5-6

NAMED FILES

USERS AND ACCESS RIGHTS

Named files provide the tasks of your application with the ability to
control access to files. This ability is based on the concept of users
and the concept of access rights.

USERS AND USER OBJECTS

The iRMX 86 Extended I/O System implements an iRMX 86 object type called
a user object. Before you can find user objects useful, you must
understand the concepts of user, group, and World.

Concept of User

The concept of user correlates file access to people or to iRMX 86 jobs,
but the precise definition depends upon the nature of your application.
For instance, if your application interfaces with several people who
manipulate a data base, you might want to consider each person (or small
groups of persons) a user. This would allow each individual (or small
group) to maintain access different from other individuals (or other
small groups).

Alternatively, if your application interfaces with only one (or even no)
person, then you might wish to consider each iRMX 86 job as a user. This
would allow your application to control which job accesses which file.

In more general terms, the set of entities that manipulate named files in
your system is the set of all users. If you want all of these entities
to be able to access any file, you can consider them to be a single
user. However, if you want to distribute different access to different
collections of these entities, you must divide the entities into subsets,
and each of these subsets is a user.

Now let's look at an example derived from Figure 5-1. As mentioned
earlier, each engineer in the figure is responsible for his own files.
If an engineer wants to have unique access to his files, access different
than anybody else's, the engineer is a user. On the other hand, if all
engineers are willing to give uniform access to each member of his
department (including himself) then the departments are the users.

Concept of Group

Closely related to the concept of user is the concept of group. A group
is a collection of users who share some access. For example, suppose
that each engineer in Figure 5-1 wishes to reserve for himself certain
access to his own files, while allowing members of the same department
different access to the same file. This can be accomplished by
considering each engineer as a user, and each department as a group that
includes all of the engineers in the department. By doing this, an
engineer can assign himself one kind of access and his department another.

5-7

NAMED FILES

Concept of World

The concepts of user and group can be used to ass,ign various kinds of
access to different collections of users~ but once'in a while it is
'useful to a·ssign one kind of access to all users. In order to do this~
your application must employ a special group, called World, that includes
all users. For example, one of the engineers in Figure 5-1 could use the
World group to allow all of the other engineers to access a file.

User Objects

The Extended I/O System supports an iRMX 86 object type, called a user
object, that lets you bind users to groups, including the special group
called World. Whenever an application (in the form of a task within an
I/O job) attempts to gain access to or create a named file, the Extended
I/O System examines the application's user object to compute the kind of
access permitted the application.

In effect, user objects serve a purpose analogous to that of
cards that allow people to deal with automated bank tellers.
don't have a valid plastic card, you can't use the automated
Similarly, if your application doesn't have the correct user
can't access certain named files.

the plastic
If you

teller.
object, it

User objects consist of a collection of identity codes (id's) that are
assigned by your application software. The first id is the id of the
user whom the obj,ect represents, and any additional id' s specify groups
to which the user belongs. For example, the id list of a user object
might look like this:

0231
A4D5
FFFF

(All numbers in the list are hexadecimal.)

Suppose that this is the id list for the user object of Harry in Figure
5-1. Harry's id is 0231, and the other id's represent groups to which
Harry belongs. For example, A4D5 could be the id representing Department
2. A group does not need a user object unless the group (rather than the
users in the group) is going to create or access files.

Take a special note of the third id on the list. By convention, FFFF is
the id used for the World. If you wish to take advantage of this useful
convention, you must ensure that every user is considered to be part of
the world. In other words, whenever you create any user object, you
should include FFFF as a group to which the user belongs.

Futhermore, if you wish to allow the World to create and access files,
you must create a user object for the world. The id list of the World's
user object should contain a single id, FFFF. The use of this special
user object is described later in this chapter, in the "Granting Access
to Other Users" section.

5-8

NAMED FILES

The Extended I/O System computes access based on user objects and a
file's access list. This computation is fully explained in the "Access
Rights" section of this chapter.

Creating, Deleting, and Inspecting User Objects

The process of creating and deleting user objects is generally performed
by system programs rather than by application programs. For example,
application programs requiring user objects can invoke a system program
that creates the object and passes it back to the application program
through a mailbox. Another alternative that is particularly useful in
systems that interact with more than one person is to create a log-on
facility that creates user objects as operators enter a password.

The Basic I/O System (rather than the Extended I/O System) provides three
system calls for creating, deleting and inspecting user objects. These
calls, which are described in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL, are:

CREATE$USER
DELETE$USER
INSPECT$USER

Default Users

Generally, most of the I/O operations performed within a particular
iRMX 86 I/O job are performed on behalf of one user object. Recognizing
this, the Extended I/O System allows your application to designate one
default user per I/O job. Whenever your application invokes an Extended
I/O System call that requires access checking, the Extended I/O System
will verify that the default user for the I/O job has the required access.

The notion of a default user provides two benefits. First, it allows you
to avoid some repetitive coding. Second, and more significantly, it
allows your application to easily parameterize the user for whom I/O is
being performed. For example, if your application includes an I/O job
that modifies a named file on behalf of other jobs in the system, the
invoking job can set the default user of the I/O job to a specific user
object. Then, all of the I/O system calls will be performed on behalf of
the default user.

To establish, de-establish, or ascertain the default user of a specific
job, you can use two system calls provided by the Basic I/O System
(rather than the Extended I/OjSystem). The GET$DEFAULT$USER and
SET$DEFAULT$USER calls are both described in the system call chapter of
the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL.

5-9

NAMED FILES

ACCESS RIGHTS

For each named file (directory or data file), the Extended I/O System
maintains a list of ordered pairs having the form (id, access rights).
The id portion is the identity code for a user or a group. The access
rights portion is encoded as a hexadecimal number that indicates all the
access rights for the associated ide The list of pairs is called the
file's access list, and the I/O System supports as many as three entries
for each named file.

The kinds of access rights that a user or group can have depend on
whether the file is a data file or a directory file. The kinds of access
rights available for data files are:

Delete

Read

Append

Update

The ability to delete the file with S$DELETE$FILE and
rename the file with S$RENAME$FILE.

The ability to read the file with S$READ$MOVE.

The ability to add information to the end of the file
with S$WRITE$MOVE.

The ability to change information in the file with
S$WRITE$MOVE or drop information from the end of the
file with S$TRUNCATE$FILE.

The kinds of access rights available for directory files are:

Delete

Display

Add Entry

Change Entry

The ability to delete the directory file with
S$DELETE$FILE. Also allows changing the name of the
directory by using S$RENAME$FILE.

The ability to obtain the contents of directory files
with S$READ$MOVE.

The ability to add files to the directory with
S$CREATE$FILE, S$CREATE$DlRECTORY, or S$RENAME$FILE.
This does not include permission to change existing
entries.

The ability to change the access rights of the files
in the directory with S$CHANGE$ACCESS. This does not
include permission to add new entries.

The numeric values associated with the access rights are explained in the
descriptions of S$CREATE$FILE and S$CREATE$DIRECTORY in the system call
chapter of this manual.

When an application task creates a named file, the task uses the
S$CREATE$FILE or S$CREATE$DlRECTORY system call. When the Extended I/O
System actually builds the file, it initializes the access list with a
single entry consisting of the id of the default user for the task's I/O
job. The Extended I/O System grants this user full access to the file.

5-10

NAMED FILES

(Full access for directory files is delete, display, add entry, and
change entry. For data files, full access is delete, read, append, and
update.) The user who creates a file is called the owner of the file.

Computing Access

NOTE

The owner of a file has only one
advantage over other users who can
access the file, but the advantage is
an important one. Only a file's owner
can use the S$CHANGE$ACCESS system call
to modify the file's access list
without being granted explicit
permission to do so.

Whenever an application task attempts to create a connection to an
existing named file, the Extended I/O System examines the access
associated with the default user object for the calling task's I/O job.
The Extended I/O System then scans the access list oJ the file and finds
all entries that match any id's (user or group) in the id list of the
user object. Finally, the Extended I/O System computes the access by
"or"ing together the access of each matching entry.

Consider an example. Suppose that an application task attempts to
establish a connection to a file having the following access list:

(D556, OF)
(8B01, 05)
(FFFF, 02)

Now suppose that the default user object for the I/O job of the
application task has an id list of

042A
8B01
FFFF

The Extended I/O System would find that the user object has two id's that
match entries in the file's access list. The id's are 8B01 and FFFF, and
the corresponding access rights are 05 and 02. So the Extended I/O
System would compute access by "or"ing together 05 and 02, yielding
access of 07. The precise interpretation of this access depends upon
whether the file is a directory or a data file, as explained previously.

5-11

NAMED FILES

Time at Which Access is Computed

The iRMX 86 Extended I/O System computes access only under two
circumstances. The first circumstance is the creation of a connection.
Whenever an application task creates a connection to a named file (by
using the S$CREATE$FILE, S$CREATE$DIRECTORY, or S$ATTACH$FILE system
calls), the Extended I/O System examines the default user object of the
task's I/O jobe The System uses this object and the access list of the
named file to compute the access, and it embeds this access in the
connection object that is returned to the application.

Later, when the application task attempts to manipulate the file via the
connection, the Extended I/O System uses the connection's embedded access
to decide what kind of manipulation is permitted. Even if an application
changes the access list of the file or the id list of the user object,
the change will have absolutely no effect on the access previously
embedded in the connection.

The second circumstance under which the Extended I/O System computes
access arises when an application uses either the S$DELETE$FILE or the
S$CHANGE$ACCESS system calls. If the system call invocation contains any
subpath other than the null subpath, the Extended I/O System will compute
access to the target file before performing the desired function. If
access is not granted, the Extended I/O System will deny the user the
ability to delete the file or change access.

If an invocation of S$DELETE$FILE or S$CHANGE$ACCESS does contain the
null subpath, the I/O System will use the access associated with the
prefix (whether default prefix or explicit logical name) to decide
whether or not to perform the function requested in the system call.

NOTE

If a system call invocation contains a
subpath other than the null subpath,
the Extended I/O System checks the
access only to the last file in the
path and to the parent directory of the
last file. It does not check the
access to any other directory files
specified in the path.

Granting Access to Other Users

When an application task initially creates a named file (either data file
or directory) access to the file is restricted to the creating user (the
owner). However, there are two ways for the owner to allow other users
to access the file.

The first technique is performed after the creation of the file. The
owner of the file is always entitled to change the access to the file.
So by using the S$CHANGE$ACCESS system call, the owner can provide other
users access.

5-12

NAMED FILES

The second technique involves a group user object (discussed earlier
under the heading of "User Objects"). If, when your application task
creates'a file, the default user for the task's job is a group user, the
group is the owner of the file. Consequently, any user in the group can
use the S$CHANGE$ACCESS system call to modify the file's access list.
This means that any user in the group can grant himself access to the
file.

EXTENDED I/O SYSTEM CALLS FOR NAMED FILES

The Extended I/O System provides a number of system calls that relate to
named files. The following sections briefly explain the purpose of each
of these system calls. The descriptions are grouped by function rather
than alphabetically. These descriptions are very brief. Chapter 8 of
this manual contains descriptions of most of the calls, and the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL contains descriptions of the
others. If any of the following descriptions do not explicitly refer to
a more detailed description, you can find such a description in Chapter 8.

OBTAINING AND DELETING CONNECTIONS

The Extended I/O System provides six system calls that relate to
obtaining and deleting connections.

• S$CREATE$FILE

This call applies only to data files. Your application software
must use this call to create a new data file. When an
application task invokes this call, the Extended I/O System
automatically adds an entry in the parent directory for this new
file.

• S$CREATE$DIRECTORY

This call applies only to directory files. When your application
software needs to create a directory, the software must use this
system call. The call cannot be used to obtain a connection to
an existing directory. The Extended I/O System automatically
adds an entry in the parent directory for this new directory.

• S$ATTACH$FILE

This call applies to poth data and directory files. Your
application tasks can use this call to obtain a connection to an
existing data file or directory.

5-13

NAMED FILES

• S $DELETE$ CONNECTION

This call applies to both data and directory files. Your
application tasks can use this call to delete a connection to
either kind of named file. This call cannot be used to delete a
device connection.

e LOGICAL$ATTACH$DEVICE

This call does not directly apply to either data or directory
files. Your application software uses this call to obtain a
connection to a device and to catalog the logical name for the
device in the object directory of the root job. Even though this
connection is a device connection, it can be used as the prefix
for the root directory of the device. This call is explained 1n
detail in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

• LOGICAL$DETACH$DEVICE

This call does not directly apply to either data or directory
files. Your application software uses this call to delete a
connection to a device and remove the logical name of the device
from the object directory of the root job. This system call is
explained in detail in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL.

MANIPULATING DATA

There are six system calls that allow tasks of your application to
manipulate the data that forms a file. All six can be used with data
files, while only four apply to directory files. All of the calls are
described in Chapter 8 of this manual. The system calls are:

• S$OPEN

This call applies to both data and directory files. Before your
application software can use any other system calls to manipulate
file data, the software must open a connection to the file. This
system call is the only way to open a connection.

• S$CLOSE

This call applies to both data and directory files. After your
application software has finished manipulating a file, the
application can use this system call to close the file
connection. Your application can elect to leave the file open,
letting the Extended I/O System close it when the connection is
deleted, but there are two advantages to closing connections when
they are not being used.

The first advantage is that closing a connection releases the
memory associated with the connection's buffers. Once released,
this memory can again be used by the Operating System.

5-14

NAMED FILES

The second advantage derives from the fact that, when a file is
shared between two or more application tasks, some of the tasks
can place restrictions on the manner of sharing. For instance, a
task can specify sharing with writers only. By closing a
connection, your application task drops any such restrictions,
improving the likelihood that the file can be used by other
application tasks.

• S$SEEK

This system call applies to both data and directory files.
Whenever your application software reads, writes, or truncates a
file, the requested action takes place at the location specified
by the connection's file pointer. The application can tell the
Extended I/O System where the operation is to take place. To do
this, your application task uses the S$SEEK system call to
position the file pointer of the file connection. The S$SEEK
system call requires thBt the file connection be open.

• S$READ$MOVE

This system call applies to both data and directory files. Your
application tasks can use this system call to read file data from
the location indicated by the file pointer. Before using
thissystem call, your application software can use the S$SEEK
system call to position the file pointer. The S$READ$MOVE system
call requires that the file connection be open.

The outcome of this system call depends upon whether a data file
or a directory is being read. If your application task reads a
data file, the application will receive data that makes up the
file. If the application reads from a directory, the application
will receive data that represents the entries of the directory.

Each entry in a directory consists of 16 bytes. The first two
bytes contain a 16-bit file-descriptor number corresponding to
the file descriptor number associated with the SGETFILE$STATQS
system call in Chapter 8. The remaining 14 bytes are the ASCII
characters making up the name of the file to which the directory
entry points. (A file's name is the last component of a path.)

• S$WRITE$MOVE

This system call applies only to data files. Your application
software uses this system call to put new information in the
file. Before usi.ng this call, an application task can use S$SEEK
to position the file pointer to the location within the file to
receive the information. The S$WRITE$MOVE system call also
requires that the file ·connection be open.

5-15

NAMED FILES

• S$TRUNCATE$FILE

This system call can be used only on data files. Your
application software can use this call to trim information from
the end of the file. To do so, the application task first can
use S$SEEK to position the file pointer to the first byte to be
dropped. Then the application invokes the S$TRUNCATE$FILE call
to drop any bytes at or beyond the file pointer. The
S$TRUNCATE$FILE system call requires that the file connection be
open.

OBTAINING STATUS

There are two status-related system calls, one for connections and one
for files. The calls are SGETFILE$STATUS and S$GET$CONNECTION$STATUS.
Both of these calls can be used with data files and directory files.
Both of these calls are described in Chapter 8.

DELETING AND RENAMING FILES

The Extended I/O System provides one system call for deleting files, and
another for renaming files. Both of these calls can be used with data
files and directory files. The calls are:

• S$DELETE$FILE

Your application tasks can use this system call to delete data
files and directory files. However, any attempt to delete a'
directory that is not empty will result in an exceptional
condition.

• S$RENAME$FILE

Your application tasks can use this system call to rename both
data files and directory files. In renaming a file, an
application task can move the file to any directory in the same
named file tree. For example, you can rename A/B/C to be A/X/C.
In effect, this example simply moves File C from Directory B to
Directory X. This means that the application task can change
every component of a file's path name.

CHANGING ACCESS

The Extended I/O System provides one system call to let the tasks of your
application change a file's access list. This call is S$CHANGE$ACCESS,
and it applies to both data files and directories. One rule governs the
use of S$CHANGE$ACCESS -- only the owner of a file or a user with change
entry access to the directory containing the file can change the file's
access list.

'5-16

NAMED FILES

PERFORMING SPECIAL FUNCTIONS

The Extended I/O System provides the S$SPECIAL ~ystem call to allow your
application software to perform functions that are peculiar to a
particular device. Formatting a disk is an example of such a function.
For more information, refer to the S$SPECIAL section of Chapter 8.

DELETING CONNECTIONS

The Extended I/O System provides one system call to delete connections to
files. This is the S$DELETE$CONNECTION system call, and it is described
in Chapter 8.

USING LOGICAL NAMES

The Extended I/O System provides three system calls that relate to
logical names. All three of these system calls are discussed in detail
in Chapter 8 of this manual.

• S$CATALOG$CONNECTION

This system call allows your application tasks to create a
logical name by cataloging a connection in the object directory
of any job that your tasks choose.

• S$LOOKUP$CONNECTION

This system call accepts a logical name from an application task,
looks up the name in the object directories of the local, global,
and root jobs, and returns a token for the first connection
found. In other words, this is the system call that your
application software uses to go from a logical name to a
connection.

• S$UNCATALOG$CONNECTION

This system call allows your application software to delete a
logical name from the object directory of any specific job.

CREATING AND DELETING I/O JOBS

The Extended I/O System provides two system calls that relate to the
creation and deletion of I/O jobs. Both of these system calls are
described in Chapter 8 of this manual.

5-17

NAMED FILES

• CREATEIOJOB

This system call creates an I/O job. Aside from using this
system call, the only way to create an I/O job is to request
(during configuration of the Extended I/O System) that the
Extended I/O System create one for you. The primary distinction
between these two techniques is that the system call allows your
application tasks to create I/O jobs white the system is
running. The configuration-time alternative does not.

• EXITIOJOB

This system call provides your application tasks with a
convenient method for terminating an I/O job and informing the
parent job of the termination.

BASIC I/O AND NUCLEUS SYSTEM CALLS

Although the purpose of this manual is to describe the Extended I/O
System, there are several system calls provided by the Basic I/O System
and the Nucleus that warrant discussion here. These calls relate to user
objects and to default prefixes.

USER OBJECTS

The Basic I/O System provides five calls directly related to user
objects. The calls are:

• CREATE$USER

This call is used to create a user object. Since this call is
generally invoked only by system programs, it is described in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

• DELETE$USER

This call is used to delete a user object. Since this call is
generally invoked only by system programs, it is described in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

• INSPECT$USER

This call is used to ascertain a user object's id and to find out
to which groups the user belongs. Since this call is generally
invoked only by system programs, it is described in the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

5-18

NAMED FILES

• SET$DEFAULT$USER

Your application software can use this call to establish a
default user for an iRMX 86 I/O job. This call is described in
the System Call Chapter of the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL.

• GET$DEFAULT$USER

Your application software can use this call to ascertain the
default user for an iRMX 86 I/O job. This call is described in
System Call Chapter of the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL.

The iRMX 86 Nucleus also provides three system calls that relate to
default users. These calls are the CATALOG$OBJECT, UNCATALOG$OBJECT, and
LOOKUP$OBJECT system calls. The default user for each I/O job is defined
in the job's object directory under the name R?USER, and you can use
these Nucleus system calls to change the object associated with this
name. However, before using these system calls, refer to Appendix D of
this manual. Also, if you need a description of the Nucleus system
calls, refer to the iRMX 86 NUCLEUS REFERENCE MANUAL.

DEFAULT PREFIXES

The Basic I/O System provides two system calls that relate to default
prefixes. Both of these calls are described in detail in the System
Calls Chapter of the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL.

• SET$DEFAULT$PREFIX

Your application software can use this call to set the default
prefix for any iRMX 86 job.

• GET$DEFAULT$PREFIX

Your application software can use this call to ascertain the
default prefix for any iRMX 86 job.

The iRMX 86 Nucleus also provides three system calls that relate to
default prefixes. These calls are the CATALOG$OBJECT, UNCATALOG$OBJECT,
and LOOKUP$OBJECT system calls. The default prefix for each I/O job is
defined in the job's object directory under the name $, and you can use
these Nucleus system calls to change the object associated with this
name. However, before using these system calls, refer to Appendix D of
this manual. Also, if you need a description of the Nucleus system
calls, refer to the iRMX 86 NUCLEUS REFERENCE MANUAL.

5-19

NAMED FILES

CHRONOLOGICAL OVERVIEW OF NAMED FILES

Although many system calls can be used with named files; the system calls
cannot be used in arbitrary order. This section provides you with a
sense of how the calls relate to one another.

CALLS RELATING TO USER OBJECTS

With one exception, the system calls relating to user objects are
completely independent of other I/O System calls. The one exception is
that your application must have a user object before it can use any
system call requiring a user object.

There are five system calls relating to user objects. Of the five,
GET$DEFAULT$USER and CREATE$USER can be invoked any time. The others,
DELETE$USER, INSPECT$USER, and SET$DEFAULT$USER, can be invoked only
after user objects exist.

CALLS RELATING TO PREFIXES

The GET$DEFAULT$PREFIX: system call can be invoked at any time. In
contrast, the SET$DEFAULT$PREFIX requires that a file or device
connection exist.

CALLS RELATING TO STATUS

The Extended I/O System provides two system calls relating to status.
The SGETFILE$STATUS system call can be used anytime after the file has
been created. The SGETCONNECTION$STATUS system call can be used
whenever your task has a connection to the file. The connection need not
be open.

CALLS RELATING TO CHANGING ACCESS

The only system call related to changing access, S$CHANGE$ACCESS, can be
invoked whenever your application's I/O job has a connection to a file or
has both a default user object and a path to a file.

CALLS FOR PERFORMING DEVICE-SENSITIVE FUNCTIONS

There is only one system call that lets your application software perform
I/O operations particular to a specific device, the S$SPECIAL system
call. Your application's tasks can use this call any time after your
application's I/O job has a device connection.

5-20

NAMED FILES

CALLS FOR RENAMING FILES

The one call for renaming a file, S$RENAME$FILE, can be used whenever
your application's I/O job has a path to the file to be renamed, a user
object, and a path that is to become the new path.

MOST FREQUENTLY USED SYSTEM CALLS

Figure 5-2 shows the chronological relationships between most frequently
used I/O System calls. To use the figure, start with the leftmost box
and follow the arrows. Any path that you can trace is a legitimate
sequence of system calls. However, there are also sequences not
represented in the figure.

Remember that an I/O job must have a default user object before any of
its tasks can successfully use any system calls that check access.

r--- CREATE

rL FILE

Ur
-OPEN

~ r ATTACH
FILE

-. DI~~~~1~Y """ ~ OPEN -
C

rrK

'---+
ATTACH .J

FILE

READ
WRITE
SEEK - CLOSE

or
TRUNCATE l

DATA FILES
DIRECTORIES

SEEK
or r---+ CLOSE

READ

~

GET
DIRECTORY

ENTRY

0
~

DELETE
FILE

~

~

~~~ 

l - DELETE l CONNECTION 

DELETE 
FILE 

L 

DETACH 
DEVICE 

DELETE 1 FONNECTION~ 

Figure'5-2. Chronology of Frequently Used System Calls for Named Files 

5-21 



NAMED FILES 

SUGGESTION FOR MAINTAINING FILE INDEPENDENCE 

If you would like the tasks of your application to be able to use any 
kind of file rather than only named files, you should separate the 
creation of the connection from the use of the connection. For instance, 
if your application performs I/O to a file, you should consider using two 
distinct tasks rather than one. The first task would be responsible for 
obtaining a connection, and the second task would use the connection to 
perform I/O. By doing this, you can design the second task to work with 
any kind of file. 

5-22 



CHAPTER 6. PHYSICAL FILES 

The iRMX 86 Extended I/O System provides physical files to allow your 
applications to read (or write) strings of bytes from (or to) a device. 
In other words, a physical file occupies an entire device, and the 
Extended I/O System provides your applications with the ability to 
directly access the driver of the device. 

SITUATIONS REQUIRING PHYSICAL FILES 

The close relationship between a device and a physical file is 
particularly useful when your application system uses sequential 
devices. For example, you should use physical files to communicate with 
line printers, display tubes, plotters, magnetic tape units, and robots. 

There are even some instances where you should use physical files to 
communicate with random devices such as disks, diskettes, and bubble 
memories. For instance: 

• Formatting Volumes 

Whenever you create an application task to format a disk or 
diskette, the task must have access to every byte on the volume. 
Only physical files provide this kind of access. 

• Using Volumes in Formats Required by Other Systems 

If your application tasks must read or write volumes that have 
been formatted for systems other than the iRMX 86 Operating 
System, you must use physical files. Your tasks will have to 
interpret information such as labels and file structures, but a 
physical file can provide your tasks with access to the raw 
information. 

• Implementing Your Own File Format 

Suppose that your application system requires a less 
sophisticated file structure than that provided by iRMX 86 named 
files. You can build a custom file structure using a physical 
file as a foundation. 

CONNECTIONS AND PHYSICAL FILES 

Although there is a one-to-one correspondence between the bytes on a 
device and the bytes of a physical file, the device connection is dif
f~rent from the file connection. The Extended I/O System maintains this 
distinction to remain consistent with named files and stream files. This 
consistency helps you develop applications -that can use any kind of file. 

6-1 



PHYSICAL FILES 

SUGGESTION FOR MAINTAINING FILE INDEPENDENCE 

If you would like the tasks of your application to be able to use any 
kind of file rather than only physical files, you 'should separate the 
creation of the connection from the use of the connection. For instance, 
if your application performs I/O to a file, you should consider using two 
distinct tasks rather than one. The first task would be responsible for 
obtaining a connection to the file, and the second task would use the 
connection to perform I/O. By maintaining this separation, you can 
design the second task to work with any kind of file. 

If you choose to use this two-task approach, be sure that both tasks are 
in the same job. This will eliminate the difficulties associated with 
passing a file connection from one job to another. 

USING PHYSICAL FILES 

Several system calls can be used with physical files, but the order in 
which they are used is not arbitrary. The following list provides a 
brief description (in chronological order) of what an application must do 
to use a physical file. 

1. Obtain a device connection. 

This is necessary for two reasons. When your task creates the 
physical file, the device connection tells the Extended I/O 
System which device is to contain the file and that the file must 
be a physical file. 

Since the process of attaching a device is restricted to system 
programs, you must create a system program. This program must 
use the LOGICAL$ATTACH$DEVICE system call to obtain the device 
connection. When issuing this call, the system program must use 
the device name that was assigned to the device during system 
configuration. For instructions as to how to assign names to 
devices, refer to the iRMX 86 CONFIGURATION GUIDE. 

Because devices cannot be multiply attached, your system program 
must pe written so as to call LOGICAL$ATTACH$DEVICE only once. 
The LOGICAL$ATTACH$DEVICE system call obtains a device connection 
and catalogs the connection under the logical name provided by 
the system program. Other tasks wishing to use the device 
connection can then lookup the connection by using the device's 
logical name. 

The LOGICAL$ATTACH$DEVICE system call is described in the iRMX 86 
SYSTEM PROGRAMMER'S REFERENCE MANUAL. 

2. Obtain a file connection. 

In order to obtain a file connection, your application task 
should use one of the following two system ca11s--S$CREATE$FILE, 
or S$ATTACH$FILE. The decision as to which system call to use 
depends upon your task's awareness of the existence of the file. 

6-2 



PHYSICAL FILES 

There are two circumstances under which your task should use the 
S$CREATE$FILE system call to obtain a connection. The first 
circumstance is when your task does not know whether the file 
already exists, and the second is when your task knows that the 
file does not yet exist. 

When invoking the S$CREATE$FILE system call, set the path$ptr 
parameter to point to a STRING containing the logical name of the 
device (enclosed in colons, as in :FO:). This will tell the 
Extended I/O System which device you want as your physical file. 

If, on the other hand, your task is certain that the file already 
exists, use the S$ATTACH$FILE system call to obtain the file 
connection. Your task can do this in either of two ways: 

• It can set the path$ptr parameter of the call to point to a 
STRING containing the device's logical name surrounded by 
colons (as in :FO:). 

• If the task knows a logical name for a connection to the 
file, it can set the path$ptr parameter of the call to point 
to a STRING containing the connection's logical name 
surrounded by colons (as in :DATABASE:). 

Either way, the Extended I/O System will return a connection to 
the physical file. 

This careful distinction between the S$CREATE$FILE and the 
S$ATTACH$FILE system calls is necessary to be consistent with 
named files. If you want your application to work with any kind 
of file, you must maintain this consistency. 

3. Open the file connection. 

Use the S$OPEN system call to open the connection. When opening 
the connection, your task must specify whether the task plans to 
read, write, or do both using the connection. The task must also 
specify how many buffers the Extended I/O System is to use when 
reading from or writing to the file. Chapter 8 of this manual 
explains how to do this. 

4. Manipulate the file. 

There are four system calls that can be used to read, write, or 
otherwise manipulate your physical file: 

• The S$READ$MOVE and S$WRITE$MOVE are used to read and write 
information from;( to) the physical file. 

• The S$SEEK system call can be used to manipulate the file 
connection's file pointer if the device is a random device 
such as disk, diskette, or bubble. (If you are writing a 
device driver for a magnetic tape unit, you can design it to 
support S$SEEK. Refer to the GUIDE TO WRITING DEVICE DRIVERS 
FOR THE iRMX 86 I/O SYSTEM.) 

6-3 



PHYSICAL FILES 

• The S$SPECIAL system call can be used to request device 
dependent functions from the device driver. For example, 
your tasks can use the S$SPECIAL system call to have the 
Extended I/O System format a disk for use with the iRMX 86 
Operating System. Be aware that use of special functions 
generally prevent a task from being device independent. 

All four of these system calls are described in Chpater 8 of this 
manual. 

5. Close the file connection. 

Use the S$CLOSE system call to close the connection. Note that 
your application can repeat steps 2, 3, and 4 any number of 
times. The S$CLOSE system call is described in Chapter' 8 of this 
manual. 

6. Delete the connection. 

Use the S$DELETE$CONNECTION system call to delete the 
connection. This is only necessary if the tasks of your 
application are completely finished using the file. This system 
call is described in Chapter 8 of this manual. 

7. Request that the device be detached. 

Let the system program know when your task no longer needs the 
device. The system program should keep track of the number of 
tasks using the device and should avoid detaching it until it is 
no longer being used by any task. Only then should the system 
program use the LOGICAL$DETACB$DEVICE system call to detach the 
device. 

The LOGICAL$DETACH$DEVICE system call is described in the iRMX 86 
SYSTEM PROGRAMMER'S REFERENCE MANUAL. 

6-4 



CHAPTER 7. STREAM FILES 

Stream files provide a means for one task to send large amounts of 
information to a second task~ even when the two tasks are in different 
jobs. Be aware that stream files are only one of several techniques for 
job-to-job communication. If you are not familiar with other techniques, 
refer to the iRMX 86 PROG~NG TECHNIQUES manual. 

The aspect of stream files that makes them very useful is that they allow 
a task to communicate with a second task as though the second task were a 
device. This extends the notion of device independence to include tasks. 

Since two tasks (called the reading task and the writing task) are 
involved in using each stream file, the tasks must cooperate. There are 
a large number of protocols that work, but the ones provided later in 
this chapter serve as good illustrations. 

SUGGESTION FOR MAINTAINING FILE INDEPENDENCE 

If you would like your reading and writing tasks to be able to use named 
files or physical files rather than only stream files, you should 
incorporate a third task into the protocol. The purpose of this third 
task is to perform the one part of the protocol that depends on the kind 
of file being used--the creation of the file. 

STREAM FILE PROTOCOLS 

The interaction between the tasks is divided into three protoco1s--one 
each for the creating, writing, and reading tasks. If you choose to 
avoid using a separate task to create the file, you can have the writing 
task perform the creating protocol before it performs the writing 
protocol. However, by eliminating the creating task, you force the 
writing task to require that only stream files be used. In order to 
allow both the reading and writing tasks to be independent of the kind of 
file being used, you should use a separate creating task. 

The following protocols will work even if the three tasks are in 
different jobs. They will also work regardless of the order in which 
they are executed. 

7-1 



STREAM FILES 

PROTOCOL FOR THE CREATING TASK 

The creating task is responsible for obtaining a device connection for 
the stream file pseudo device, and for creating the stream file. It also 
must catalog the file connection under a logical name so the reading and 
writing tasks can attach the file. Remember that this task is not device 
independent--it works only for stream files. This protocol involves two 
steps: 

1. Creating a stream file. 

During the process of configuring the Extended I/O System, one of 
the configuration parameters that must be entered is a logical 
name for the stream file device. During the process of starting 
up the system, the Extended I/O System attaches the stream file 
pseudo device and catalogs the device connection under the 
logical name. Your tasks can then use this logical name to 
obtain the device connection. 

For the purpose of understanding this protocol, assume that the 
logical name is STREAM. However, be aware of the possiblility 
that, in your system, the logical name might be something other 
than STREAM. To ascertain the locical name for your system, 
consult the person(s) responsible for configuring your system. 

In order to cteate a stream file, the creating task need only 
invoke the S$CREATE$FILE system call using a path$ptr parameter 
pointing to a STRING of the following form: 

: STREAM: 

where STREAM is the logical name for the stream file device 
connection. The S$CREATE$FILE system call, which is described in 
Chapter 8 of this manual, returns a connection to the newly 
created stream file. 

2. Catalog the file connection under a logical name. 

The creating task should invoke the S$CATALOG$CONNECTION system 
call to establish a unique logical name (for example, SF23) for 
each specific stream file. The reading and writing tasks can 
then use the logical name to attach the file. The 
S$CATALOG$CONNECTION system call is described in Chapter 8 of 
this manual. 

PROTOCOL FOR THE WRITING TASK 

The writing task must perform five steps in order to ensure that it 
establishes communication with the reading task. The steps are: 

1. Obtain a connection to the stream file. 

The writing task should use the logical name of the file 
connection (for example SF23) and invoke the S$ATTACH$FILE 

7-2 



STREAM FILES 

system call (which is described in Chapter 8 of this manual) to 
obtain the file connection. To do this, the task should set the 
path$ptr parameter of the system call to point to a STRING 
containing the file connection's logical name enclosed in colons 
(as in :SF23:). 

2. Open the file connection for writing. 

Use the S$OPEN system call to open the file connection for 
writing. Set the connection parameter to the token for the file 
connection, and set the mode parameter to write. The S$OPEN 
system call is described in Chapter 8 of this manual. 

3. Write information to the stream file. 

Use the S$WRITE$MOVE system call as often as desired to write 
information to the stream file. Use the token for the file 
connection as the connection parameter. The S$WRITE$MOVE system 
call is described in Chapter 8 of this manual •. 

4. Close the connection. 

When finished writing to the stream file, use the S$CLOSE system 
call to close the connection. Note that after this step, the 
writing task can repeat steps 2, 3, and 4. The S$CLOSE system 
call is described in Chapter 8 of this manual. 

5. Delete the connection. 

Use the S$DELETE$CONNECTION system call to delete the connection 
to the stream file. The S$DELETE$CONNECTION system call is 
described in Chapter 8 of this manual. 

PROTOCOL FOR THE READING TASK 

The reading task must perform the following seven steps to successfully 
read the information written by the writing task: 

1. Obtain the file connection for the stream file. 

The reading task should use the file's logical name (for example, 
SF23) and invoke the S$ATTACH$FILE system call to obtain the file 
connection. To do this, the task should set the path$ptr 
parameter of the system call to point to a STRING conta1n1ng the 
file connection's logical name enclosed in colons (as in :SF23:). 

2. Open the file connection for reading. 

The task should use the S$OPEN system call to open the file 
connection for reading. Set the connection parameter to the 
token for the file connection, and set the mode parameter to 
read. The S$OPEN system call is described in Chapter 8 of this 
manual. 

7-3 



STREAM FILES 

3. Read information from the stream file. 

The task should use the S$READ$MOVE system call as often as 
needed to read information from the stream file. Use the token 
for the file connection as the connection parameter. The 
S$READ$MOVE system call is described in Chapter 8 of this manual. 

4. Close the connection. 

When finished reading from the stream file, the task should use 
the S$CLOSE system call to close the connection. Note that after 
this step» the reading task can repeat steps 2, 3, and 4. The 
S$CLOSE system call is described in Chapter 8 of this manual. 

5. Delete the connection. 

The task should use the S$DELETE$CONNECTION system call to delete 
the connection to the stream file. The S$DELETE$CONNECTION 
system call is described in Chapter 8 of this manual. 

6. Delete the file's logical name created by the creating task. 

The task should use the S$UNCATALOG$CONNECTION system call (which 
is described in Chapter 8 of this manual) to delete the logical 
name for the file. In our example, this logical name is SF23. 
Do not delete the logical name for the stream file device. 

7. Delete the file connection created by the creating task. 

The reading task should use the S$DELETE$CONNECTION system call 
to delete the file connection that the creating task obtained. 
Once this connection is deleted, the Extended I/O System will 
automatically delete the stream file. 

7-4 



CHAPTER 8. SYSTEM CALLS 

This chapter describes the PL/M-86 calling sequences for the system calls 
provided by the Extended I/O System. The list is limited to the calls 
that can be invoked from application programs. Several system calls 
provided by the Extended I/O System are reserved for use by system 
programmers and, consequently, are described in the iRMX 86 SYSTEM 
PROGRAMMER'S REFERENCE MANUAL. 

In this chapter, the system calls are listed alphabetically according to 
the same shorthand notation used throughout this manual.. For example, 
S$CREATE$FILE precedes S$WRITE$MOVE. This notation is language 
independent and should not be confused with the actual form of the 
PL/M-86 call. The precise format of each call is spelled out as part of 
the detailed description. 

Be aware that iRMX 86 system calls are declared as typed or untyped 
external procedures in the PL/M-86 language. When you write a program in 
PL/M-86, you can use these procedures to invoke the system calls provided 
by the Extended I/O System. 

CONDITION CODES 

The Extended I/O System returns a condition code whenever a system call 
is invoked._ If the call executes without error, the Extended I/O System 
returns the code E$OK. In contrast, when an error is encountered by the 
Extended I/O System, the System returns an exceptional condition code. 
If you are unfamiliar with the purpose of condition codes, refer to the 
iRMX 86 NUCLEUS REFERENCE MANUAL. 

In each description of a system call, you will find a list of possible 
condition codes. This list is intended to help you debug your 
application system. However, it is possible for the Extended I/O System 
to return condition codes that are not listed. And it is also possible 
for the Extended I/O System to return the listed codes for reasons that 
are not listed. To find the numeric value that the Extended I/O System 
uses to indicate a particular condition code, refer to Appendix C of this 
manual. 

SYSTEM CALL DICTIONARY 

The system call dictionary, which is on the next few pages, lists the 
system calls by function rather than alphabetically. Along with the name 
of each system call, you will find three pieces of information: 

• An extremely brief statement of the purpose of the call. 

8-1 



SYSTEM CALLS 

• A list of the kinds of files on which the call can be used. The 
abbreviations in this list are as follows: 

PF means physical file. 
SF means stream file. 
NF means named data file. \ 
ND means named directory file. 

• The number of the page on which you can find the detailed 
description of the system call. 

SYSTEM CALLS FOR I/O JOBS 

C REATE $ IO$JOB 

EXIT$IO$JOB 

Creates an I/O job containing one task. 

Sends a message to a previously 
designated mailbox and deletes the 
calling task. 

SYSTEM CALLS RELATING TO LOGICAL NAMES 

S$CATALOG$CON
NECTION 

S$LOOK$UP$CON
NECTION 

S$UNCATALOG$CON
NECTION 

Creates a logical name for a connection 
by cataloging the connection in the 
object directory of a specific job. 

Searches through an I/O job's local, 
global, and root object directories to 
find the connection associated with 
a logical name. 

Deletes a logical name from the 
object directory of a specific job. 

SYSTEM CALLS FOR CREATING FILES AND CONNECTIONS 

S$ATTACH$FILE Creates a connection to an existing 
file. 

S$CREATE$DlRECTORY Creates a new directory file. 

S$CREATE$FILE Creates a new physical, stream, or 
named data file. It cannot create 
a named directory file. 

SYSTEM CALLS FOR CHANGING ACCESS AND RENAMING 

S$CHANGE$ACCESS Changes the access list for a named 
file. 

8-2 

PF SF 
ND NF 

ND 

PF SF 
NF 

ND NF 

8-4 

8-12 

8-20 

8-66 

8-99 

8-15 

8-33 

8-38 

8-23 



S$RENAME$FILE 

SYSTEM CALLS 

Changes the path of a named file. 
It cannot be used for stream or 
physical files. 

SYSTEM CALLS TO MANIPULATE DATA IN FILES 

S$CLOSE 

S$OPEN 

S$READ$MOVE 

S$SEEK 

S$TRUNCATE$FILE 

S$WRITE$MOVE 

Closes an open connection to a named, 
physical or stream file. 

Opens a connection. to a named, 
physical, or stream file. 

Reads a number of bytes from a file 
to a buffer. 

Moves the file pointer. 

Removes information from the end of a 
named data file. 

Writes a collection of bytes from a 
buffer to a file. 

SYSTEM CALL RELATING DIRECTLY TO DEVICES 

S$SPECIAL Allows your task to perform functions 
that are peculiar to a specific device. 

SYSTEM CALLS FOR OBTAINING STATUS 

S$GET$CON
NECTION$STATUS 

S$GET$FILE$STATUS 

Provides status information about 
file and device connections. 

Allows a task to obtain information 
about a physical, stream, or named 
file. 

SYSTEM CALLS TO DELETE FILES AND CONNECTIONS 

S$DELETE$CON
NECTION 

S$DELETE$FILE 

Deletes a file connection. It cannot 
delete a device connection. 

Deletes a stream, physical, or named 
file. 

8-3 

ND NF 

PF SF 
ND NF 

PF SF 
ND NF 

PF SF 
ND NF 

PF 
ND NF 

NF 

PF SF 
ND NF 

PF SF 

PF SF 
ND NF 

PF SF 
ND NF 

PF SF 
ND NF 

PF SF 
ND NF 

8-77 

8-30 

8-69 

8-73 

8-83 

8-96 

8-101 

8-87 

8-53 

8-57 

8-45 

8-48 



SYSTEM CALLS 

CREATE$IO$JOB 

CREATE$IO$JOB creates an I/O job containing one task. 

job RQ$CREATE$IO$JOB{pool$min, pool$max, except$handler, job$flags, 
task$priority, start$address, data$seg, 
stack$ptr, stack$size, task$flags, msg$mbox, 
except$ptr); . 

INPUT PARAMETERS 

pool$min 

pool$max 

A WORD containing the minimum allowable size of the 
new job's pool, in 16-byte paragraphs. For 
example, a value of 35 indicates thirty-five 
16-byte paragraphs. The Extended I/O System also 
uses this parameter as the initial size of the 
memory pool for the new job. 

You must not assign pool$min a value less than 32. 
Furthermore, if the base of the stack$ptr parameter 
is equal to zero, you should ensure that pool$min 
is no less than 32 + (number of 16-byte paragraphs 
required to contain the stack). If you set 
pool$min to a value smaller than these m1n1mums, 
the Extended I/O System will return an E$PARAM 
exceptional condition. 

The purpose of the pool$min parameter in this 
system call is identical to the purpose of the 
pool$min parameter of the CREATE$JOB system call 
provided by the Nucleus. For information regarding 
memory pools, refer to the iRMX 86 NUCLEUS 
REFERENCE MANUAL. 

A WORD containing the maximum allowable size of the 
new job's pool, in 16-byte paragraphs. For 
example, a value of 40 indicates forty 16-byte 
paragraphs. 

You must set pool$max to a value no less than 
pool$min, or the Extended I/O System will return an 
E$PARAM exceptional condition. 

The purpose of the pool$max parameter in this 
system call is identical to the purpose of the 
pool$max parameter of the CREATE$JOB system call 
provided by the iRMX 86 Nucleus. For more 
information about memory pools, refer to the 
iRMX 86 NUCLEUS REFERENCE MANUAL. 

8-4 



SYSTEM CALLS 

CREATE$IO$JOB (continued) 

INPUT PARAMETERS (continued) 

except$handler 

job$flags 

A POINTER to a structure of the following form: 

STRUCTURE ( 
exception$handler$ptr 
exception$mode 

POINTER, 
BYTE) 

The Extended I/O System expects you to designate 
one exception handler to be used both for the new 
task and for the new job's default exception 
handler. If you wish to designate the system 
default exception handler, you can do so by setting 
the base of the exception$handler$ptr to zero. If 
you set the base to any other value, then the 
Extended I/O System assumes that the POINTER 
indicates the first instruction of the exception 
handler. 

Set the exception$mode to tell the Extended I/O 
System when to pass control to the new task's 
exception handler. Encode the mode as follows: 

Value 

o 
1 
2 
3 

When Control Passes 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

For more information regarding exception handlers 
and the exception mode, refer to the iRMX 86 
NUCLEUS REFERENCE MANUAL. 

A WORD that tells the Nucleus whether to check the 
validity of objects used as parameters in system 
calls. If bit 1 (the bit next to the rightmost) is 
zero, the Nucleus will validate objects. All bits 
other than bit 1 must be set to zero. This 
parameter serves precisely the same purpose as the 
job$flags parameter of the CREATE$JOB system call 
provided by the Nucleus. Refer to the iRMX 86 
NUCLEUS REFERENCE MANUAL for more information. 

8-5 



SYSTEM CALLS 

CREATE$IO$JOB (continued) 

INPUT PARAMETERS (continued) 

task$priority 

start$address 

data$seg 

stack$ptr 

A BYTE which, 

• if equal to zero, indicates that the new 
job's initial task is to have a priority 
equal to the the maximum priority of the 
initial job of the Extended I/O System. For 
more information about the initial job of the 
Extended I/O System, refer to the chapter of 
the iRMX CONFIGURATION GUIDE relating to the 
Extended I/O System. 

• if not equal to zero, contains the priority 
of the initial task of the new job. If this 
priority is higher than (numerically less 
than) the maximum priority of the initial job 
of the Extended I/O System, an E$PARAM error 
occurs. 

A POINTER to the first instruction of the code 
segment for the new job's initial task. This code 
segment can be, but is not required to be, be an 
iRMX 86 segment. 

A WORD which, 

• if zero, indicates one of two things. Either 
the new job's initial task uses no data 
segment, or it creates one for itself. Tasks 
can create their own data segments only under 
special circumstances. To find out more 
about the circumstances, refer to the iRMX 86 
CONFIGURATION GUIDE. 

• if not zero, contains the base address of the 
data segment of the new job's initial task. 
This data segment can be, but is not required 
to be, an iRMX 86 segment. 

A POINTER which, 

• if the base portion is zero indicates that 
the Nucleus should allocate a stack for the 
new job's initial task. The length of the 
allocated stack is determined by the 
stack$size parameter of this system call. Be 
aware that this stack is not an iRMX 86 
segment. 

8-6 



INPUT PARAMETERS 
stack$ptr (continued) 

stack$size 

task$flags 

msg$mbox 

SYSTEM CALLS 

CREATE$IO$JOB (continued) 

• if the base portion is not equal to zero, 
points to the base of the stack for the new 
job's initial task. Because the Nucleus does 
not allocate this stack, you must allocate it 
during the configuration process, or your 
application code must allocate it while the 
system is running. Refer to the iRMX 86 
CONFIGURATION MANUAL for more information 
regarding stack allocation. 

A WORn containing the size, in bytes, of the stack 
for the new job's initial task. You must set this 
parameter to 16 or greater, but 200 is the minimum 
value that you should enter. For information 
regarding the amount of stack to allocate, refer to 
the chapter of the iRMX 86 PROGRAMMING TECHNIQUES 
manual that discusses stack sizes. 

If you are allocating the stack during 
configuration, or if the application code is 
allocating the stack while the system is running, 
the value of this parameter will be the precise 
amount of stack that the system can use. However, 
if the Nucleus is allocating the stack for you, it 
might allocate as many as 15 additional bytes in 
order to make the stack occupy whole 16-byte 
paragraphs. 

A'WORD in which all bits except the rightmost are 
zero. Use the rightmost bit (bit 0) to tell the 
iRMX 86 Operating System whether the new job's 
initial task uses floating point instructions. A 
value of 1 indicates the presence of floating point 
instructions, while a zero indicates the absence of 
floating point instructions. 

A WORD containing a token for a mailbox. When a 
task in the I/O job invokes the EXIT$IO$JOB system 
call, the Extended I/O System will send a message 
to this mailbox. If you desire no such message, 
assign msg$mbox a value of zero. 

The format of the message is as follows: 

STRUCTURE ( 
termination$code 
user$fault$code 
job$token 
return$data$len 
return$data(*) 

8-7 

WORD, 
WORD, 
WORD, 
BYTE, 
BYTE) 



REATE 
o JOB SYSTEM CALLS 

CREATE$IO$JOB (continued) 

INPUT PARAMETERS 
msg$mbox (continued) 

where: 

termina
tion$code 

user$
fault$code 

job$token 

A WORD that indicates the nature 
of the termination of the new job. 
Use the following table to ascertain 
the cause for termination. 

CODE MEANING 

o Some task within the new job 
invoked the EXIT$IO$JOB system 
call. The invoking task did not 
indicate that any problems caused 
the termination. The job has not 
yet been deleted, and some of its 
tasks might still be ready. 

1 The job was deleted because some 
task invoked the DELETE$JOB 
system call. 

2 Some task within the new job 
invoked the EXIT$IO$JOB system 
call and indicated that the job 
was terminated because some 
problem occurred. The job has 
not yet been deleted and some of 
its tasks might still be ready. 
The task that invoked the 
EXIT$IO$JOB system call is known 
as the terminating task. 

A WORD that contains an encoded 
reason for the termination of the new 
job. Whenever the termination$code 
has a value of 2, this parameter 
contains an error code (not an 
exception code) that the terminating 
task specified when invoking the 
EXIT$IO$JOB system call. The precise 
meaning of this code is provided by 
the terminating task, not by the 
iRMX 86 Operating System. 

A WORD containing the token of the job 
that was terminated. 

8-8 



SYSTEM CALLS 

CREATE$IO$JOB (continued) 

INPUT PARAMETERS (continued) 

return$
data$len 

return$data 

A BYTE that specifies the length (in 
bytes) of the return$data parameter 
described below. The maximum length 
is 89 (decimal) bytes. 

A sequence of BYTEs that contain data 
specified by the terminating task when 
it invoked the EXIT$IO$JOB system call. 

OUTPUT PARAMETERS 

job A WORD in which the Extended I/O System will place 
a token for the newly created job. This token is 
valid only if the Extended I/O System returns an 
E$OK condition code. 

except$ptr A POINTER to a WORD in which the Extended I/O 
System will place the condition code. 

DESCRIPTION 

The purpose of this system call is to create a job whose tasks can invoke 
the system calls provided by the Extended I/O System. Such jobs are 
called I/O jobs, and they differ from other jobp in three ways: 

1. NOTIFICATION OF TERMINATION OF THE NEW JOB 

The CREATE$IO$JOB system call provides a mechanism for notifying 
the parent job of the termination of the newly created I/O job. 
The Extended I/O System implements this mechanism by sending a 
termination message toa mailbox of your choice whenever a task 
in the I/O job invokes the EXIT$IO$JOB system call. You specify 
the mailbox by using the msg$mbox parameter of this system call. 

2. CONVENIENT DEFAULTS FOR JOB CREATION PARAMETERS 

Many of the job creation parameters required by the Nucleus's 
CREATE$JOB system call are not required by the CREATE$IO$JOB 
system call. These parameters include: 

directory$size 
param.$object 
max$objects 
max$tasks 
max$priority 

8-9 

JO JOB 



10 JOB SYSTEM CALLS 

CREATE$IO$JOB (continued) 

DESCRIPTION (continued) 

The Extended I/O System allows you to specify values for some of 
these parameters during the system initialization process. The 
precise instructions for defining these values are provided in 
the iRMX 86 CONFIGURATION GUIDE. 

3. CONVENIENT DEFAULTS FOR I/O-RELATED PARAMETERS 

The CREATE$IO$JOB system call provides default values for the 
following I/O job parameters: 

global job 
default user 
default prefix 

The values for these parameters are passed from parent job to 
child job. For instance, if Job A uses the CREATE$IO$JOB system 
call to spawn Job B, then the Extended I/O System will copy the 
values of tge Job A parameters into the Job B parameters. Be 
aware that if you change the Job A parameters after Job B has 
been crea'ted, the changed values will not be copied into Job B. 

You can set the values for these parameters for the "first 
parent" job during the process of configuring your system. For 
instructions as to how to set these values, refer to the iRMX 86 
CONFIGURATION GUIDE. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$MEM 

E$NOT$CON
FIGURED 

No exceptional conditions. 

The calling task's job is not an I/O job. 

Indicative of any of the following problems: 

• The token cataloged under the name RQGLOBAL 
in the directory of the calling task's job 
does not refer to an existing job. This 
token is supposed to refer to the global job. 

• The value assigned to the msg$mbox parameter 
is not a token for an existing mailbox. 

Either the calling task's job or the job being 
created has insufficient memory. 

At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

8-10 



SYSTEM CALLS 

CREATE$IO$JOB (continued) 

CONDITION CODES (continued) 
E$NOT$CONFIGURED (continued) 

E$NOUSER 

E$PARAM 

E$TIME 

CATALOG$OBJECT (Nucleus) 
CREATE$COMPOSITE (Nucleus) 
CREATE$IO$JOB (Extended I/O) 
CREATE$JOB (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$JOB (Nucleus) 
DELETE$MAILBOX (Nucleus) 
DELETE$SEGMENT (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$DEFAULT$USER (Basic I/O) 
GET$TASK$TOKENS (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
SET$DEFAULT$PREFIX (Basic I/O) 
SET$DEFAULT$USER (Basic I/O) 
UNCATALOG$OBJECT (Nucleus) 

The calling task's job does not have a default 
user, or the object cataloged under the logical 
name R?USER is not a user object. 

One or more of the following conditions exist: 

• The value assigned to the pool$min pa,ameter 
is too small or is greater than the value 
assigned to the pool$max parameter. 

• The value assigned to the stack$size 
parameter is less than 16. 

• The value assigned to the pool$max parameter 
is zero. 

• The value assigned to the exception$mode 
parameter is outside the range 0 - 3, 
inclusive. 

The calling task's job is not an I/O job. 

8-11 



SYSTEM CALLS 

EXIT$IO$JOB 

EXIT$IO$JOB sends a message to a previously designated mailbox and 
deletes the calling task. 

CALL RQ$EXIT$IO$JOB(user$fault$code, return$data$ptr, except$ptr); 

INPUT PARAMETERS 

user$fault$code 

return$data$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing the encoded reason for 
termination of the job. If the job is being 
terminated under normal circumstances, you should 
enter a value of zero. However, if the job is 
being terminated because of some problem, you 
should enter a value that identifies the problem. 
Whatever value you enter will be passed to the task 
that invoked the CREATE$IO$JOB system call. 

A POINTER to a STRING containing data (provided by 
the calling task) to be returned to the message 
mailbox specified in the CREATE$IO$JOB system 
call. If you enter a value of zero, no data will 
be returned. If the string is longer than 89 
(decimal) bytes, only the first 89 bytes will be 
returned. 

A POINTER to a WORD where the Extended I/O System 
will return the condition code. 

The EXIT$IO$JOB system call is designed to complement the CREATE$IO$JOB 
system call. Using the EXIT$IO$JOB system call, you can have a task 
delete itself, and have the Extended I/O System notify the parent job of 
the deletion. 

When a task in an I/O job (a job created by the CREATE$IO$JOB system 
call) invokes the EXIT$IO$JOB system call, two things happen: 

• The Extended I/O System deletes the task that invoked the 
EXIT$IO$JOB system call. 

• The Extended I/O System sends a termination message to the 
mailbox specified in the CREATE$IO$JOB system call. 

8-12 



SYSTEM CALLS 

EXIT$IO$JOB (continued) 

DESCRIPTION (continued) 

Your application code can use this system call to bring about an orderly 
deletion of an I/O job. To do this, have a task within the I/O job 
invoke this system call. Then have a task in the parent job receive the 
message and delete the I/O job. 

SPECIAL CIRCUMSTANCES 

Under certain circumstances, this system call does not delete the calling 
task or does not send a termination message. 

Calling Task Not Deleted 

Because the EXIT$IO$JOB system call generally deletes the calling task, 
you must be aware of the circumstances under which this deletion will not 
occur. There are three: 

• If the EXIT$IO$JOB system call or the DELETE$TASK system call has 
not been configured into the system, the calling task will not be 
deleted. 

• If the DELETE$TASK system call (which is called by the Extended 
I/O System) returns an exception code to the Extended I/O System, 
your task will not be deleted. 

• If the calling task is an interrupt task, it will not be deleted. 

If any of these circumstances arise, the Extended I/O System returns 
control to the calling task and uses an exceptional condition code to 
indicate the nature of the problem. Under any other circumstances, the 
calling task will be deleted. 

Also, be aware that even if it fails to delete the task, the Extended I/O 
System will send the termination message if one has been requested. 

Message Not Sent 

There are three circumstances under which the Extended I/O System will 
not send a termination message. These are: 

• If, during the process of configuring your system, any of the 
following system calls were not incorporated, the Extended I/O 
System will delete the calling task but will not send a 
termination message: 

8-13 



EXIT$IO$JOB (continued) 

LOOKUP $ OBJECT 
RECEIVE$CONTROL 
SEND$CONTROL 
SEND$MESSAGE 

SYSTEM CALLS 

• If the msg$mbox pa.rameter of the CREATE$IO$JOB was set to zero. 

• If the mailbox specified in the msg$mbox parameter of the 
CREATE$IO$JOB system call no longer exists. 

None of these three circumstances will cause the Extended I/O System to 
return a.n exceptional condition. 

CONDITION CODES 

E$CONTEXT The task invoking the EXIT$IO$JOB system call is an 
interrupt task. 

E$NOT$CONFIGURED When the system was configured, at least one of the 
following system calls was not incorporated into 
the system: 

DELETE$TASK (Nucleus) 
EXIT$IO$JOB (Extended I/O) 

8-14 



SYSTEM CALLS 

S$ATTACH$FILE 

The S$ATTACH$FILE system call creates a connection to an existing file. 

connection = RQ$S$ATTACH$FILE{path$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETERS 

connection 

except$ptr 

DESCRIPTION 

A POINTER to a STRING containing the Extended I/O 
System path for the file to be attached. 

A WORD in which the Extended I/O System will place 
a token for the connection to the file. 

A POINTER to a WORD where the Extended I/O System 
will place the condition code. 

This system call allows a task to obtain a connection to any named, 
physical, or stream file. 

The Extended I/O System allows any task to attach any file. However, if 
the file being attached is a named file, the Extended I/O System will 
compute access rights for the connection. These access rights are based 
on the file's access list and the id of the default user of the calling 
task's job. (Refer to the Chapter 5 for more information.) If the 
file's access list allows no access for the default user, the connection 
will be created, but it will allow no access. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No eXQeptional conditions. 

This exception can be indicative of any of the 
following situations: 

• The device containing the specified file is 
in the process of being detached • 

• The calling task's job is not an I/O job. 

8-15 

S ATTACH 
FILE 



FILE SYSTEM CALLS 

S$ATTACH$FILE (continued) 

CONDITION CODES 
E$CONTEXT (continued) 

E$DEVFD 

E$FNEXIST 

E$FTYPE 

E$ILLVOL 

E$IO 

E$IOMEM 

• The Extended I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System found that the device and the device driver 
specified in the logical attachment were 
incompatible. 

This code is indicative of one of the following 
circumstances: 

• Either some file in the specified path, or 
the target file itself, is marked for 
deletion. 

• Either some file in the specified path, or 
the target file itself, does not exist. 

The specified path is attempting to use a data file 
as a directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended I/O System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

8-16 



SYSTEM CALLS 

S$ATTACH$FILE (continued) 

CONDITION CODES (continued) 

E$LIMIT This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
call, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

• During the process of configuring your 
application system, someone assigned the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 86 CONFIGURATION GUIDE for 
information regarding the BIOS maximum 
priority. Refer to the GUIDE TO WRITING 
DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
DEVINFO. 

• Either the user object or the calling task's 
job is curreQtly involved with more than 255 
(decimal) I/O operations. 

• The calling task's job is not an I/O job. 

E$LOG$NAME$NEXIST The specified path contains an explicit logical 
name, but the Extended I/O System was unable to 
find this name in the object directories of the 
local job, the global job, and the root job. 

E$MEDIA 

E$MEM 

E$NO$PREFIX 

The device containing the specified file is not 
online. 

The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

The specified path contains no' explicit prefix (no 
logical name), so the Extended I/O System attempted 
to use the default prefix. However, the default 
prefix is either undefined, or it is not a valid 
device connection or file connection. 

8-17 



SYSTEM CALLS 

S$ATTACH$FILE (continued) 

CONDITION CODES (continued) 

E$NOT$CONFIGURED There are two possible conditions that can cause 
the Extended I/O System to return this code: 

E$NOT$PREFIX 

E$NO$USER 

E$PARAM 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical attachment referred to 
a file driver (named, physical, or stream) 
that was not configured into your system. 

• At least one of the following system calls 
was left out of the system during the 
configuration process: 

A$ATTACH$FILE (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECElVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$ATTACH$FILE (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
SET$INTERRUPT (Nucleus) 
WAIT$INTERRUPT (Nucleus) 

The specified path contains a logical name that 
refers to an object that is neither a device 
connection nor a file connection. 

The calling task's job does not have a default 
user, or its default user is not a user object. 

This code can indicate either of the following 
conditions: 

• The specified path contains a logical name 
that is either longer than 12 characters or 
contains invalid characters. 

8-18 



SYSTEM CALLS 

S$ATTACH$FILE (continued) 

CONDITION CODES 
E$PARAM (continued) 

E$PREFIX$SYNTAX 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical attachment referred to 
a file driver (named, physical, or stream) 
that is not configured into your system. 
Hence the physical attachment is not possible. 

The specified path starts with a colon (:), 
indicating that it contains a logical name. But 
the Extended I/O System was unable to find a second 
colon to terminate the logical name. 

8-19 



SYSTEM CALLS 

S$CATALOG$CONNECTION 

The S$CATALOG$CONNECTION system call creates a logical name for a 
connection by cataloging the connection in the object directory of a 
specific job. The calling task specifies the connection, the logical 
name, and the job. 

CALL RQ$S$CATALOG$CONNECTION(job, connection, log$name$ptr, 
except$ptr); 

INPUT PARAMETERS 

connection 

job 

log$name$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a token for the connection to be 
assigned the logical name. If the value of this 
parameter is zero, the Extended I/O System will 
obtain the connection by looking up the name in the 
object directory of the calling task's job. 

A WORD containing a token for the job in whose 
object directory the logica~ name is to be 
cataloged. If the value of this parameter is zero, 
the Extended I/O System will catalog the connection 
in the object directory of the calling task's job. 

A POINTER to a STRING of 12 or fewer characters 
that are to become the logical name. These ASCII 
characters must be between 020h and 07Fh with the 
exception of colon (:), slash (/), or up arrow 
(,). Upper-case letters are considered to be 
identical to lower-case letters. Any failure to 
adhere to these specifications will cause the . 
Extended I/O System to return an E$PARAM exception 
code. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

The Extended I/O System converts the contents of the STRING to upper case 
and catalogs the connection in the object directory of the specified 

8-20 



SYSTEM CALLS 

S$CATALOG$CONNECTION (continued) 

DESCRIPTION (continued) 

job. However, there are two special situations that can change the 
behavior of this system call: 

• If the job's object directory already contains the logical name, 
the new connection will replace the existing object in the 
directory. The Extended I/O System considers this to be a normal 
circumstance and, consequently, does not return an exception code. 

• If your task sets the connection parameter to 0, the Extended I/O 
System will look up the logical name in the object directory of 
the calling task's job. The system will then copy the logical 
name and its definition into the object directory of the 
specified job. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$LIMIT 

E$LOG$NAME$
NEXIST 

E$MEM 

No exceptional conditions. 

This exception code can be caused by any of the 
following circumstances: 

• The job in which your task is attempting to 
catalog the connection has an object 
directory that is zero bytes long. 

• The UNCATLOG$OBJECT system call was not 
incorporated into your system during the 
configuration process. 

The job parameter does not refer to an existing 
object. 

The Extended I/O System returns this condition code 
whenever either of the following circumstances are 
detected: 

• The object directory for the specified job is 
already full. 

• The calling task's job is not an I/O job. 

The Extended I/O System was unable to find the 
specified logical name in the object directory of 
the calling task's job. 

The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

8-21 



COHNECTmN SYSTEM CALLS 

S$CATALOG$CONNECTION (continued) 

CONDITION CODES (continued) 

E$NOT$CON
FIGURED 

One or more of the following system calls was not 
incorporated into the System during the process of 
configuration: 

CATALOG$OBJECT (Nucleus) 
CREATE$SEGMENT (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
S$CATALOG$CONNECTION (Extended I/O) 

E$NOT$CONNECTION This condition code can be indicative of any of the 
following circumstances: 

E$PARAM 

E$TYPE 

• The connection parameter does not refer to a 
connection. 

• The Extended I/O System looked up the 
specified logical name and found that it did 
not refer to a connection. 

The STRING specified by the log$name$ptr fails to 
meet the syntax rules for a logical name. It is 
either too short (zero characters), too long (more 
than twelve characters), or it contains invalid 
characters. 

The job parameter refers to an object that is not a 
job. 

8-22 



SYSTEM CALLS 

S$CHANGE$ACCESS 

The S$CHANGE$ACCESS system call changes the access list for a named 
file. This system call can be used for either data or directory files. 

CALL RQ$S$CHANGE$ACCESS(path$ptr, id, access, except$ptr); 

INPUT PARAMETERS 

path$ptr 

id 

access 

A POINTER to a STRING that contains a path to the 
file whose access is to be changed. 

A WORD containing the ID of the user whose access 
to the file is to be changed. This value can 
differ from the ID of the default user of the 
calling task's job. The Extended I/O System will 
add (or remove) this ID to (from) the access list 
of the file unless (if) the ID is already on the 
list. Whether the ID is added or deleted also 
depends upon the value of the access parameter. 

A BYTE defining the new access rights to be 
assigned to the specified ID. If the entire BYTE 
is set to zero, the Extended I/O System will remove 
the specified ID from the access list of the 
specified file. If the BYTE is nonzero, the 
meaning of the various bit settings depend upon 
whether the file is a data file or a directory 
file. The following two tables show the 
correlation between the bit position (bit 0 is 
rightmost) and the kind of access. If the bit is 
set to 1, access is to be granted. If the bit is 
set to 0, access is to be denied. 

DATA FILE ACCESS RIGHTS 

Bit Access 

o Delete permission to delete the 
entire file by using the A$DELETE$FILE 
or S$DELETE$FILE system calls. Also 
allows changing the name of the file by 
using the A$RENAME$FILE or 
S$RENAME$FILE system calls. 

1 Read -- permission to read data from 
the file by using the A$READ or 
S$READ$MOVE system calls. 

8-23 



S$CHANGE$ACCESS (continued) 

INPUT PARAMETERS 
access (continued) 

SYSTEM CALLS 

Bit Access 

2 Append permission to write 
information only at the end of the file 
by using the A$WRITE or S$WRITE$MOVE 
system calls. This does not include 
permission to write over information 
already in the file or permission to 
truncate the file. 

3 Update -- permission to write over any 
information in the file by using the 
A$WRITE or S$WRITE$MOVE system calls, 
and permission to truncate the file by 
using the A$TRUNCATE or S$TRUNCATE$FILE 
system calls. This does not include 
permission to add information to the 
end of the file. 

4-7 Reserved. You should ensure that these 
bits remain set to zero. 

DIRECTORY ACCESS RIGHTS 

Bits Access 

o Delete permission to delete the 
directory by using the A$DELETE$FILE or 
S$DELETE$FILE system calls. Also 
allows changing the name of the 
directory by using the A$RENAME$FILE or 
S$RENAME$FILE system calls. 

I Display -- permission to read 
information from the directory by using 
the A$READ or S$READ$MOVE system calls. 

2 Add entry -- permission to add files to 
the directory by using the 
A$CREATE$FILE, A$CREATE$DIRECTORY, 
A$ RENAME $ FILE , S$CREATE$FILE, 
S$CREATE$DIRECTORY, or S$RENAME$FILE 
system calls. This does not include 
permission to change existing entries. 

8-24 



INPUT PARAMTERS 
access (continued) 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

SYSTEM CALLS 

S$CHANGE$ACCESS (continued) 

Bit Access 

3 Change entry --permission to change 
the access list associated with a file 
contained in the directory. In other 
words permission to use the 
A$CHANGE$ACCESS or S$CHANGE$ACCESS 
system calls. This does not include 
permission add new entries. 

4-7 Reserved. You should ensure that these 
bits remain set to zero. 

A POINTER to a WORD where the Extended I/O System 
is to place the condition code. 

The purpose of the S$CHANGE$ACCESS system call is to allow a task to 
change the access rights associated with named data files or named 
directory files. This system call can be used on any named files, 
including those created by the Basic I/O System. 

In order for a task to be able to change the access rights associated 
with a file, the task's job must meet at least one of the following three 
criteria: 

• The job's default user is the owner of the file. 

• The owner of the file is a group, and the job's default user is a 
member of that group. 

• The job's default user has change-entry access to the parent 
directory of the file. 

If the job containing the task meets none of these criteria, the task 
will not be able to change the access associated with the file. 
(For more information about owners, groups, and default users, refer to 
Chapter 5 of this manual.) 

8-25 

ACCESS 



S CHANGE 
ACCESS 

\. 

SYSTEM CALLS 

S$CHANGE$ACCESS (continued) 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$DEVFD. 

E$FACCESS 

E$FNEXIST 

E$FTY'PE 

No exceptional conditions. 

This exception can be indicative of any of the 
following situations: 

• The device containing the specified file is 
in the process of being detached. 

• The calling taskts job is not an I/O job. 

• The Extended I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

When your task invoked this system call, it forced 
the Extend.ed I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System found that the device and the device driver 
specified in the logical attachment were 
incompatible. 

The job containing the calling task meets none of 
the three prerequisites for using this system 
call. The job's default user is neither the owner 
of the file nor a member of the owning group, nor 
does it have It change entry" access to the parent 
directory of the file. 

This code 1S indicative of one of the following 
circumstances: 

• Either some file in the specified path, or 
the target file itself, is marked for 
deletion • 

• ' Either some file in. the specified path, or 
the target file itself, does not exist. 

The specified path is attempting to use a data file 
as a directory._ 

8-26 



SYSTEM GALLS 

S$CHANGE$ACCESS (continued) 

CONDITION CODES (continued) 

E$ILLVOL 

E$IO 

E$IOMEM 

E$LIMIT 

When your task invoked this system call, it forced 
the Extended I/O System to attemp,t, the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended I/O System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
call, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

• During the process o£ configuring your 
application system, someone assigned, the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 86 CONFIGURATION GUIDE for 
information regarding the BIOS maximum 
priority. Refer to the GUIDE TO WRITING 
DEVICE, DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
DEVINFO. 

• Either the user object or the calling task's 
job is currently involved with more than 255 
~decimal) I/O operations. 

• The calling task's job is not an I/O job. 

E$LOG$NAME$NEXIST The specified path contains an explicit logical 
name, but the Extended I/O System was unable to 
find this name in the object directories of the 
local job, the global job, and the root job. 

8-27 



S CHANGE 
ACCESS SYSTEM CALLS 

S$CHANGE$ACCESS (continued) 

CONDITION CODES (continued) 

E$MEDIA 

E$MEM 

E$NO$PREFIX 

The device containing the specified file is not on 
line. 

The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

The specified path contains no logical name, so the 
Extended I/O System attempted to use the default 
prefix. However, the default prefix is either 
undefined, or it is not a valid device connection 
or file connection. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out of the system during the configuration process: 

E$NOT$PREFIX 

E$NO$USER 

E$PARAM 

A$CHANGE$ACCESS (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$CHANGE$ACCESS (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 

The specified path contains a logical name that 
refers to an object that is neither a device 
connection nor a file connection. 

The calling task's job does not have a default 
user, or its default user is not a user object. 

This code can indicate either of the following 
conditions: 

• The specified path contains a logical name 
that is eithe-r longer than 12 characters or 
contains invalid characters. 

8-28 



SYSTEM CALLS 

S$CHANGE$ACCESS (continued) 

CONDITION CODES 
E$PARAM (continued) 

E$PREFIX$SYNTAX 

E$SUPPORT 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical attachment referred to 
a file driver (named, physical, or stream) 
that is not configured into your system. 
Hence the physical attachment is not possible. 

The specified path starts with a colon (:), 
indicating that it contains a logical name. But 
the Extended I/O System was unable to find a second 
colon to terminate the logical name. 

This exception code is indicative of either of the 
following circumstances: 

• Your task is attempting to change access for 
a file other than a named file. 

• Your task is attempting to add another user 
id to the file's access list, but the 11st 
already contains three entries. Your task 
must delete one entry before it can add 
another. 

8-29 

S CHANGE 
ACCESS 

/ 



SYSTEM CALLS 

S$CLOSE 

The S$CLOSE system call closes an open connection to a named, physical, 
or stream file. 

CALL RQ$S$CLOSE(connection, except$ptr); 

INPUT PARAMETER 

connection 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a token for a file connection 
'that is currently open and was opened by the S$OPEN 
system call. 

A POINTER to the WORD in which the Extended I/O 
System will place the condition code. 

The S$CLOSE system call closes a connection that has been opened by the 
S$OPEN system call. It performs the following steps: 

1. It waits until all currently running I/O operations for the file 
are completed. 

2. It ensures that any information in a partially filled output 
buffer is written to the file. 

3. It releases any buffers associated with the file. 

4. It closes the connection to the file, deleting neither the file 
nor the connection. 

Access Control 

The Extended I/O System performs no access checking before closing the 
connection. 

8-30 



SYSTEM CALLS 

S$CLOSE {continued 

DESCRIPTION (continued) 

Basic I/O System Incompatibility 

The S$CLOSE system call cannot be used to close connections that were 
opened by the A$OPEN system call. If your task attempts to do this, the 
Extended I/O System will return an E$CONTEXT exception code. Refer to 
Appendix E for more information about compatibility between the Extended 
and Basic I/O Systems. 

CONDITION CODES 

E$OK 

E$CANNOT$CLOSE 

E$CONTEXT 

E$FLUSHING 

E$IO 

E$LIMIT 

E$MEM 

E$NOT$CON
FIGURED 

No exceptional conditions. 

This system call forced the Extended I/O System to 
write information remaining in the buffers to the 
output device. While attempting to write this 
information,the Extended I/O System encountered an 
error. 

Either the connection is not open, or it was opened 
by A$OPEN rather than S$OPEN. 

The Extended I/O System terminated the closing 
operation because the device containing the file is 
being detached. 

The Extended I/O System encountered an I/O error. 

This code can be indicative of any of the following 
circumstances: 

• The calling task's job is not an I/O job • 

• The calling task's job is currently involved 
in more than 255 (decimal) I/O operations. 

The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

At leasf one of the following system calls was not 
incorporated into the system during the 
configuration process: 

8-31 



SYSTEM CALLS 

S$CLOSE (continued) 

CONDITION CODES 
E$NOT$CONFIGURED (continued) 

A$CLOSE (Basic I/O) 
A$WRITE (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$CLOSE (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 

E$NOT$CONNECTION The connection parameter refers to an object that 
is not a connection. 

E$SPACE 

E$SUPPORT 

In order to successfully execute this system call, 
the Extended I/O System had to write to the device 
containing the file. While this writing operation 
was only par~ially complete, the device became 
full, preventing the Extended I/O System from 
completing the writing operation. 

The connection parameter refers to a connection 
that was not created within the calling task's job. 

8-32 



SYSTEM CALLS 

S$CREATE$DIRECTORY 

The S$CREATE$DIRECTORY system call creates a new directory file. 

connection = RQ$S$CREATE$DIRECTORY(path$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETERS 

connection 

except$ptr 

DESCRIPTION 

A POINTER to a STRING containing the path that 
specifies the location of the new directory in the 
named file structure. 

A WORD in which the Extended I/O System will place 
a connection for the new directory. 

A POINTER to a WORD where the Extended I/O System 
will place a condition code. 

A task invokes this system call to create a new named-file directory. 
After creation, the new directory will contain no entries. The new 
directory is in all ways compatible with directories created by the Basic 
I/O System. The difference between this system call and the 
A$CREATE$DIRECTORY system call of the Basic I/O System is that this call 
is synchronous, requires less explicit parameters, and uses an Extended 
I/O path to specify the file. 

Positioning the Directory 

The calling task must use the path$ptr parameter to specify the location 
of the new directory within the named file structure. The location 
indicated by the path must not be occupied. In other words, this system 
call can be used only to obtain connections to new, rather than existing, 
directories. 

8-33 



SYSTEM CALLS 

S$CREATE$DIRECTORY (continued) 

DESCRIPTION (continued) 

Access Control 

The current default user for the calling task's job must have add-entry 
access to the parent of the new directory. If the creation is 
successful,. the job's defaul t user becomes the owner a f the fi Ie. 

One by-product of this system call is that the Extended I/O System will 
automatically add a new entry to the parent directory. This new entry, 
which re.presents the newly created directory, provides the owner of the 
new directory with full access (the ability to delete, display, change, 
and add entries) to the new directory. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$DEVFD 

E$FEXIST 

E$FNEXIST 

No exceptional conditions. 

This excep.tion can be indicative of any of the 
following situations: 

• The device containing the specified file is 
in the process of being detached. 

• The calling task's job is not an I/O job. 

• The Extende.d I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System foun.d that the device and the device driver 
specified in the. logical attachment were 
incompatible. 

The file already exists., 

This cod.e is indicative of one of the following 
ci rCums tances: 

• Either some file in the specified path, or 
the target file itself, is marked for 
deletion. 

• Some file in the specified path does. not 
exist. 

8.-34 



SYSTEM CALLS 

S$CREATE$DlRECTORY (continued) 

CONDITION CODES (continued) 

E$FTYPE 

E$ILLVOL 

E$IO 

E$IOMEM 

E$LIMIT 

The specified path is attempting to use a data file 
as a directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached., In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended I/O System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
call, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

• During the process of configuring your 
application system, someone assigned the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 86 CONFIGU~TION GUIDE for 
information regarding the BIOS maximum 
priority. Refer to the GUIDE TO WRITING 
DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
DEVINFO. 

• Either the user object or the calling task's 
job is currently involved with more than 255 
(decimal) I/O operations. 

• The calling task's job is not an I/O job. 

8-35 



IRECTORY SYSTEM CALLS 

S$CREATE$DIRECTORY (continued) 

CONDITION CODES (continued) 

E$LOG$NAME
$NEXIST 

E$MEDIA 

E$MEM 

E$NO$PREFIX 

E$NOT$CON-
FIGURED 

E$NOT$PREFIX 

E$NO$USER 

E$PARAM 

The specified path contains an explicit logical 
name, but the Extended I/O System was unable to 
find this name in the object directories of the 
local job, the glob~l job, and the root job. 

The device containing the specified file is not 
online. 

The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

The specified path contains no explicit prefix (no 
logical name), so the Extended I/O System attempted 
to use the default prefix. However, the default 
prefix is either undefined, or it is not a valid 
device connection or file connection. 

At least one of the following system calls was left 
out of the system during the configuration process: 

A$CREATE$DlRECTORY (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$CREATE$DlRECTORY (Extended I/O) 
SET$INTERRUPT (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
WAIT$INTERRUPT (Nucleus) 

The specified path contains a logical name that 
refers to an object that is neither a device 
connection nor a file connection. 

The calling task's job does not have a default 
user, or its default user is not a user object. 

This code can indicate either of the following 
conditions: 

8-36 



SYSTEM CALLS 

S$CREATE$DIRECTORY (continued) 

CONDITION CODES 
E$PARAM (continued) 

E$PREFIX$SYNTAX 

E$SPACE 

• The specified path contains a logical name 
that is either longer than 12 characters or 
contains invalid characters. 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical' attachment referred to 
a file driver (named, physical, or stream) 
that is not configured into your system. 
Hence the physical attachment is not possible. 

The specified path starts with a colon (:), 
indicating that it contains a logical name. But 
the Extended I/O System was unable to find a second 
colon to terminate the logica\l name. 

This code can indicate any of the following 
circumstances: 

• There is no more space on the volume. 

• The Extended I/O System has run out of fnodes 
on the volume. Refer to the iRMX 86 
CONFIGURATION GUIDE to see how to put more 
fnodes on a volume. 

8-37 

S CREATE 
DIRECTORY 



SYSTEM CALLS 

S$CREATE$FILE 

The S$CREATE$FILE system call creates a new physical, stream, or named 
data file. It cannot create a named directory file. 

connection = RQ$S$CREATE$FILE(path$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETERS 

connection 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the path of 
the file to be created. The format of this path 
depends on the kind of file being created. Refer 
to Chapter 5 for a discussion of named file paths, 
Chapter 6 for physical file paths, and Chapter 7 
for stream file paths. 

A WORD in which the Extended I/O System will place 
a connection to the newly created file. 

A POINTER to a WORD where the Extended I/O System 
will place a condition code. 

A task invokes this system call to create a physical, stream, or named 
data file, or to attach an existing file. This system call cannot be 
used to create or attach a directory. (The Extended I/O System provides 
the S$CREATE$DIRECTORY system call for that purpose.) The file created 
by this system call is in all ways compatible with the files created by 
the Basic I/O System. The primary differences between this system call 
and the A$CREATE$FILE system call of the Basic I/O System is that this 
system call is synchronous and requires fewer explicit parameters. 

Creating Data Files that Already Exist 

If the specified file already exists, the Extended I/O System will 
attempt to,remove all information from "the file and return a connection 
to the empty file. This attempt will be successful only if both of the 
following conditions exist at the time the system call is invoked: 

8-38 



SYSTEM CALLS 

S$CREATE$FILE (continued) 

DESCRIPTION (continued) 

• All connections to the file that are currently open allow sharing 
with writers. 

• If the file is a named file, the default user of the calling 
task's job has updat~ access to the existing file. 

If you wish to prevent this loss of information from happening, use the 
S$ATTACH$FILE system call to find out if the file exists before using the 
S$CREATE$FILE system call. 

Specifying the Kind of File to Be Created 

The path$ptr parameter does more than simply provide the path of the file 
being created. It also tells the Extended I/O System what kind of file 
(stream, physical, or named data) to create. The correlation between 
file paths and the kinds of files is discussed in detail in Chapters 5, 
6, and 7. 

Special Considerations for Named Files 

There are three special considerations that relate to named files: 

• Positioning a Named File 

Your task must tell the Extended I/O System which directory is to 
be the parent of the new named file. 

• Access Control 

Several aspects of access control relate to the creation of named 
files. They are: 

Ability to Create the File 

In order to create a named file, the default user for the 
calling task's job must have add-entry access for the 
parent directory. 

Ownership 

The default user for the calling task's job becomes the 
owner of the new file. 

8-39 



CREATE 
IlE SYSTEM CALLS 

S$CREATE$FILE (continued) 

DESCRIPTION 
Special Considerations for Named Files (continued) 

Initial Access Rights 

The new file is created with full access for the owner. 
In other words, the owner can delete, read, append, and 
update the file. If the owner is a group, the members of 
the group can also access the file. However, if the 
owner is not a group, no other users can access the new 
file until the owner explicitly changes the file's access 
list. 

• Temporary Files 

If your task invokes this system call with the path of an 
existing directory file, the Extended I/O System will create a 
temporary named data file on the device that contains the 
directory file. This temporary file differs from other named 
data files in two ways. First, -the file is automatically marked 
for deletion, so that Extended I/O System will delete the file as 
soon as your application code deletes all connections to the 
file. Second, the file is created without a path, so it can be 
accessed only through a connection. 

There are two access considerations that pertain to temporary 
files. First, any task can create a temporary file by referring 
to any directory. This is true because the temporary files are 
not listed as ordinary entries in the directory, so no add-entry 
access is required. 

The second access consideration is that the owner of the 
temporary file (the default user of the calling task's job) has 
full access to the file. 

Device Considerations 

Every file, regardless of kind, has an associated device. Even stream 
files, which have no physical devices, use the device connection to the 
stream file pseudo-device. Before any file can be created, its 
associated device must be attached to the system. 

There are two means of attaching devices to the system. One method is to 
specify the attachment during configuration. This process is described 
in the iRMX 86 CONFIGURATION GUIDE. 

The second method is to attach a device while the system is running. 
This method requires the use of the LOGICAL$ATTACH$DEVICE system call. 
Because the process of attaching devices is generally performed by system 
programs, the LOGICAL$ATTACH$DEVICE system call is described in the 
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL. 

8-40 



SYSTEM CALLS 

S$CREATE$FILE (continued) 

DESCRIPTION (continued) 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$DEVFD 

E$FACCESS 

E$FNEXIST 

No exceptional conditions. 

This exception can be indicative of any of the 
following situations: 

• The device containing the specified file is 
in the process of being detached. 

• The calling task's job is not an I/O job. 

• The Extended I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System found that the device and the device driver 
specified in the logical attachment were 
incompatible. 

This code can be indicative of any of the following 
circumstances: 

• The default user of the calling task's job 
does not have add-entry access to the parent 
directory. 

• The default user of the calling task's job 
does not have update access for an existing 
file. 

This code is indicative of one of the following 
circumstances: 

• Either some file in the specified path, or 
the target file itself, is marked for 
deletion. 

• Some file in the specified path does not 
exist. 

8-41 

FILE 

I 



SYSTEM CALLS 

S$CREATE$FILE (continued) 

CONDITION CODES (continued) 

E$FTYPE 

E$ILLVOL 

E$IO 

E$IOMEM 

E$LIMlT 

The specified path is attempting to use a data file 
as a directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended I/O System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
call, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

• During the process of configuring your 
application system, someone assigned the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 86 CONFIGURATION GUIDE for 
information regarding the BIOS maximum 
priority. Refer to the GUIDE TO WRITING 
DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
DEVINFO. 

• Either the user object or the calling task's 
job is currently involved with more than 255 
(decimal) I/O operations. 

• The calling task's job is not an I/O job. 

8-42 



SYSTEM CALLS 

S$CREATE$FILE (continued) 

CONDITION CODES (continued) 

E$LOG$NAME$NEXIST The specified path contains an explicit logical 
name but the Extended I/O System was unable to find 
this name in the object directories of the local 
job, the global job, and ~he root job. 

E$MEDIA The device containing the specified file is not on 
line. 

E$MEM The memory pool of the calling task': s job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

E$NO$PREFIX The specified path contains no explicit prefix (no 
logical name), so the Extended I/O System attempted 
to use the default prefix. However, the default 
prefix is either undefined, or it is not a valid 
device connection or file connection. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out of the system during the configuration process: 

E$NOT$PREFIX 

E$NO$USER 

A$CREATE$FILE (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$TYPE (Nucleus) 
LOOK$UP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$CREATE$FILE (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
SET$INTERRUPT (Nucleus) 
WAIT$INTERRUP'!' (Nucleus) 

The specified path contains a logical name that 
refers to an object that is neither a device 
connection nor a file· connection. 

The. calling task' s. jo.b does not have a default 
user, or its default USer is not a user object. 

8-43 



SYSTEM CALLS 

S$CREATE$FILE (continued) 

CONDITION CODES (continued) 

E$PARAM 

E$PREFIX$SYNTAX 

E$SHARE 

E$SPACE 

E$SUPPORT 

This code can indicate either of the following 
conditions: 

• The specified path contains a logical name 
that is either longer than 12 characters or 
contains invalid characters. 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical attachment referred to 
a file driver (named, physical, or stream) 
that is not configured into your system. 
Hence the physical attachment is not possible. 

The specified path starts with a colon (:), 
indicating that it contains a logical name. But 
the Extended I/O System was unable to find a second 
colon to terminate the logical name. 

Your task is attempting to create a file that 
already exists. Censequently, the Extended I/O 
System must truncate the file to zero length. 
However, the Extended I/O System cannot do this 
because, when the file was initially created, the 
owner specified that it could not be shared with 
writers. 

This code can indicate any of the following 
circumstances: 

• There is no more space on the volume. 

• The Extended I/O System has run out of fnodes 
on the volume. Refer to the format command 
in the iRMX 86 HUMAN INTERFACE REFERENCE 
MANUAL. 

Your task is attempting to create an existing 
file. Consequently, the Extended I/O System must 
change the file's access list. However, the access 
list is already full. 

8-44 



SYSTEM CALLS 

S$DELETE$CONNECTION 

The S$DELETE$CONNECTION system call deletes a file connection. It cannot 
delete a device connection. 

CALL RQ$S$DELETE$CONNECTION(connection, except$ptr); 

INPUT PARAMETER 

connection A WORD containing a token for the file connection 
to be deleted. 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a WORD in which the Extended I/O 
System is to place the condition code. 

This system call deletes a file connection , but it cannot delete a 
device connection. If the connection is open, the S$DELETE$CONNECTION 
system call will automatically close it before deleting it. 

Conditions Under Which the File is Also Deleted 

The Extended I/O System will delete the file that is associated with the 
connection only when both of the following conditions are met: 

• The connection being deleted is the only connection to the file. 

• The file is marked for deletion. A file is marked for deletion 
only if both of the following events have already occurred: 

Some task attempted to delete the file by invoking the 
S$DELETE$FILE system call or the A$DELETE$FILE system 
call. (The A$DELETE$FILE system call is provided by the 
Basic I/O System.) 

The iRMX 86 Operating System postponed the deletion 
because one or more connections still referred to the 
file. This implies that some other tasks were still using 
the file. 

8-45 



SYSTEM CALLS 

S$DELETE$CONNECTION (continued) 

DESCRIPTION (continued) 

If both of these conditions are met, the Extended I/O System will delete 
the file. 

Access Control 

The Extended I/O System does not check access before deleting a 
connection. 

Compatibility with Basic I/O System 

The S$DELETE$CONNECTION system call can be used with connections that 
were created by the Basic I/O System as long as the connections meet the 
requirements discussed in Appendix E. Failure to adhere to the 
restrictions of Appendix E will cause the Extended I/O System to return 
an E$CONTEXT condition code. 

CONDITION CODES 

E$OK 

E$ CANNOT $ CLOSE 

E$FLUSHING 

E$IO 

E$LIMIT 

No exceptional conditions. 

This system call forced the Extended I/O System to 
write information remaining in the buffers to the 
output device. While attempting to write this 
information, the Extended I/O System encountered an 
error. 

The Extended I/O System had to close the connection 
before it could delete it. However, the Extended 
I/O System was unable to close the connection 
because the device containing the file was being 
detached. 

The Extended I/O System encountered an I/O error. 

This code can be indicative of any of the following 
circumstances: 

• The associated job or the job's default user 
object is currently involved with more than 
255 (decimal) I/O operations • 

• The calling task's job is not an I/O job. 

8-46 



SYSTEM CALLS 

S$DELETE$CONNECTION (continued) 

CONDITION CODES (continued) 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$DELETE$CONNECTION (Basic I/O) 
A$WRITE (Basic I/O) 
CREATE $ MAl LB OX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DELETE$MAILBOX (Nucleus) 
DELETE$REGION (Nucleus) 
DELETE$SEGMENT (Nucleus) 
DELETE$TASK (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECElVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$DELETE$CONNECTION (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 

E$NOT$CONNECTION The connection parameter is not a connection. 

E$SPACE In order to successfully execute this system call, 
the Extended I/O System had to write to the device 
containing the file. While this writing operation 
was only partially complete, the device became 
full, preventing the Extended I/O System from 
completing the writing operation. 

E$SUPPORT Your task is attempting to delete a connection that 
was created by a task in a different job. 

8-47 



SYSTEM CALLS 

S$DELETE$FILE 

A task can invoke this system call to request that the Extended I/O 
System delete a stream, named data, or named directory file. This system 
call cannot delete a physical file. 

CALL RQ$S$DELETE$FILE(path$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the path for 
the file to be deleted. The form of the path 
depends upon the kind of file. Refer to Chapters 5 
and 7 for path syntax. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

A task can use this system call whenever the task needs to delete a 
stream, named data, or named directory file. This system call will mark 
the specified file for deletion, but the Extended I/O System will 
actually postpone deletion until the following conditions are met: 

• For stream and named data files, there is only one condition. 
The deletion will occur as soon as there are no longer any 
connections referring to the file. Your tasks can use the 
S$DELETE$CONNECTION system call to delete connections. 

• For named directories there are two conditions. The directory 
must be empty, and there can be no connections referring to the 
directory. The Extended I/O System will delete marked 
directories as soon as both of these conditions are met. 

Compatibility with Basic I/O System 

This system call can delete files created by the Basic I/O System as well 
as those created by the Extended I/O System. Refer to Appendix E for a 
more general discussion of compatibility between the Extended and Basic 
I/O Systems. 

8-48 



SYSTEM CALLS 

S$DELETE$FILE (continued) 

DESCRIPTION (continued) 

Access Considerations 

If the task is attempting to delete a named data or directory file, the 
task must satisfy one access requirement before the Extended I/O System 
can mark the file for deletion. The default user of the task's job must 
have deletion access to the file. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$DEVFD 

E$FACCESS 

E$FNEXIST 

No exceptional conditions. 

This exception can be indicative of any of the 
following situations: 

• The device containing the specified file is 
in the process of being detached. 

• The calling task's job is not an I/O job. 

• The Extended I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

• Your task is attempting to delete a directory 
that is either a root directory or is not 
empty. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System found that the device and the device driver 
specified in the logical attachment were 
incompatible. 

The default user of the calling task's job does not 
have delete access for specified file. 

This code is indicative of one of the following 
circumstances: 

• Some file in the specified path is marked for 
deletion. 

• Either some file in the specified path, or 
the target file itself, does not exist. 

8-49 



SYSTEM CALLS 

S$DELETE$FILE (continued)- -

CONDITION CODES (continued) 

E$FTYPE 

E$ILLVOL 

E$IO 

E$IOMEM 

E$LIMIT 

The specified path is attempting to use a data file 
as a directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended I/O System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
call, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

• During the process of configuring your 
application system, someone assigned the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 86 CONFIGURATION GUIDE for 
information regarding the BIOS maximum 
prio,rity. Refer to the GUIDE TO WRITING 
DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
PEVINFO. 

• Either the 1Jse.r object or the calling task's 
job is cur1;'elltly involved with more than 255 
(dec ima.,l), 1/ Q (),pera,ti ons • 

• The c; al ling,: tl;l~k IS' Job is not an' I/O job,. 

8-50 



SYSTEM CALLS 

S$DELETE$FILE (continued) 

CONDITION CODES (continued) 

E$LOG$NAME$
NEXIST 

E$MEDIA 

The specified path contains an explicit logical 
name, but the Extended I/O System was unable to 
find this name in the object directories of the 
local job, the global job, and the root job. 

The device containing the specified file is not on 
line. 

E$MEM The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

E$NO$PREFIX The specified path contains no explicit prefix (no 
logical name), so the Extended I/O System attempted 
to use the default prefix. However, the default 
prefix is either undefined, or it is not a valid 
device connection or file connection. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out of the system during the configuration process: 

E$NOT$PREFIX 

E$NO$USER 

A$DELETE$FILE (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$DELETE$FILE (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
SET$INTERRUPT (Nucleus) 
WAIT$INTERRUPT (Nucleus) 

The specified path contains a logical name that 
refers' to an object that is neither a device 
connection nor a file connection. 

The calling task's job does not have a default 
user, or its default user is not a user object. 

8-51 



DEI. l'E 
ILE SYSTEM CALLS 

S$DELETE$FILE (continued) 

CONDITION CODES (continued) 

E$PARAM 

E$PREFIX$SYNTAX 

E$SUPPORT 

This code can indicate either of the following 
conditions: 

• The specified path contains a logical name 
that is either longer than 12 characters or 
contains invalid characters. 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. The 
Extended I/O System found that the logical 
attachment referred to a file driver (named, 
physical, or stream) that is not configured 
into your system. Hence the physical 
attachment is not possible. 

The specified path starts with a colon (:), 
indicating that it contains a logical name. But 
the Extended I/O System was unable to find a second 
colon to terminate the logical name. 

Your task is attempting to delete a physical file. 

8-52 



SYSTEM CALLS 

S$GET$CONNECTION$STATUS 

The S$GET$CONNECTION$STATUS system call provides status information about 
file and device connections. 

CALL RQ$S$GET$CONNECTION$STATUS(connection, info$ptr, except$ptr); 

INPUT PARAMETER 

connection 

OUTPUT PARAMETERS 

except$ptr 

info$ptr 

A WORD containing a token for the connection whose 
status is desired. 

A POINTER to a WORD in which the Extended I/O 
System will place the condition code. 

A POINTER to a structure in which the Extended I/O 
System will place the status information. You must 
provide the memory for this structure by requesting 
an iRMX 86 segment. The structure must have the 
following form: 

connection$info 
file$driver 
flags 
open$mode 
share$mode 
low$file$pointer 
high$file$pointer 
access 
num$buf 
buf$size 
seek 

where: 

STRUCTURE ( 
BYTE, 
BYTE, 
BYTE, 
BYTE, 
WORD, 
WORD, 
BYTE, 
BYTE, 
WORD, 
BOOLEAN) 

file$driver Identifies the kind of file 
associated with the connection. 

1 means physical file 
2 means stream file 
3 means named file 

8-53 



SYSTEM CALLS 

S$GET$CONNECTION$STATUS (continued) 

OUTPUT PARAMETERS 
info$ptr (continued) 

flags 

open$mode 

share$mode 

Uses individual bits to indicate 
what kind of connection this is. 
If Bit 1 (next to rightmost) is 
set to one, the connection is 
capable of being opened. If Bit 2 
is set to one, the connection is a 
device connection. 

Indicates the purpose for which 
the connection was opened. This 
applies only to file connections. 

0 means closed. 
1 means open fur reading only. 
2 means open fur writing only. 
3 means open for both reading and 

writing. 

Indicates who may share the 
connection. Applies to both 
device and file connections. 

o means cannot be shared. 
1 means share with readers only. 
2 means share with writers only. 
3 means share with anybody. 

file$pointer These two words form a 32-bit 
POINTER to the information in the 
file. This POINTER shows where 
the next I/O operation will be 
performed. 

access This byte specifies the access 
rights that were computed when the 
connection was opened. This 
information applies only to 
connections for named files, and 
the interpretation of the 
information depends upon whether 
the file is a data file or a 
directory. Access is represented 
as a bit mask. In the following 
tables Bit 0 is the rightmost, and 
access is granted if a bit is set 
to one. 

8-54 



OUTPUT PARAMETERS 
info$ptr (continued) 

DESCRIPTION 

SYSTEM CALLS 

num$buf 

buf$size 

seek 

S$GET$CONNECTION$STATUS (continued) 

Bit Data File Director~ 

0 Delete Delete 
1 Read Display 
2 Append Add Entry 
3 Update Change Entry 

4-7 Reserved Reserved 

The number of buffers to be used 
with this connection. This 
applies only to file connections. 

Contains the size, in bytes, of 
each buffer. 

Tells whether or not the SEEK 
function can be used with this 
connection. Zero means no, and 
OFFh means yes. 

The S$GET$CONNECTION$STATUS system call allows a task to obtain status 
information about file connections and device connections that were 
created by either the Basic I/O System or the Extended I/O System. The 
nature of the returned information depends upon whether the connection is 
for a file or a device. Some of the information is also dependent upon 
the kind of file associated with the connection. So be aware that by 
using this system call, you might lock your application into a specific 
kind of file. 

Access Control 

The Extended I/O System does not check access before returning status 
information. 

Incompatibility with Basic I/O System 

Although you can use this system call with connections created by the 
Basic I/O System, you must adhere to the restrictions described in 
Appendix E. Failure to adhere to these restrictions will cause the 
Extended I/O System to return an E$CONTEXT condition code. 

8-55 



SYSTEM CALLS 

S$GET$CONNECTION$STATUS (continued) 

CONDITION CODES 

E$OK 

E$LIMIT 

No exceptional conditions. 

This code can be indicative of any of the following 
circumstances: 

• Either the calling task's job, or the job's 
default user object, is currently involved in 
more than 255 (decimal) I/O operations • 

• The calling task's job is not an I/O job. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$GET$FILE$STATUS (Basic I/O) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELET10N (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
S$GET$CONNECTION$STATUS (Extended I/O) 

E$NOT$CONNECTION The connection parameter is not a connection. 

8-56 



SYSTEM CALLS 

S$GET$FILE$STATUS 

The S$GET$FILE$STATUS system call allows a task to obtain information 
about a physical, stream, or named file. 

CALL RQ$S$GET$FILE$STATUS(path$ptr, info$ptr, except$ptr); 

INPUT PARAMETER 

path$ptr 

OUTPUT PARAMETERS 

except$ptr 

info$ptr 

A POINTER to a STRING that contains the path for 
the file. The format of this path varies from one 
kind of file to another. Refer to Chapters 5, 6, 
or 7 for path syntax. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

A POINTER to a structure in which the Extended I/O 
System will return·the status information. You 
must allocate this memory as an iRMX 86 segment. 
The structure has the following form: 

file$info 
device$share 
file$conn 
file$reader 
file$writer 
share 
extended 
dev$name(14) 
file$drivers 
functs 
dev$gran 
low$dev$size 
high$dev$size 
dev$con 
file$id 
file$type 
file$gran 
owner$id 
low$creation$time 
high$creation$time 
low$access$time 
high$access$time 

8-57 

STRUCTURE ( 
WORD, 
WORD, 
WORD, 
WORD, 
BYTE, 
BOOLEAN, 
BYTE, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
BYTE, 
BYTE, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 



SYSTEM CALLS 

S$GET$FILE$STATUS (continued) 

OUTPUT PARAMETERS 
info$ptr (continued) 

low$modify$time 
high$modify$time 
low$file$size 
high$ fi le$ size 
low$file$blocks 
high$fi1e$blocks 
vol$name( 6) 
vol$gran 
low$vol$size 
high$vo1$size 
accessor$count 
owner$access 

where: 

WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
BYTE, 
WORD, 
WORD, 
WORD, 
WORD, 
BYTE) 

device$share indicates whether or not the 
device can be shared. Currently, 
this word is always set to 1, 
indicating that all devices are 
sharable. 

file$conn is the number of connections to 
the file. 

file$reader is the number of connections 
currently opened for reading this 
file. 

file$writer is the number of connections 
currently open for writing to the 
file. 

share is the current shared state of 
the file. The Extended I/O 
System always allows the file to 
be shared by both readers and 
writers. 

extended 

8-58 

tells whether this structure 
contains any information beyond 
the dev$conn field. FFh means 
yes and 0 means no. 



OUTPUT PARAMETERS 
info$ptr (continued) 

SYSTEM CALLS 

S$GET$FILE$STATUS (continued) 

dev$name is the name of the physical 
device associated with this 
file. The name is padded with 
ASCII blanks. For information 
about device names, refer to the 
chapter in the iRMX 86 
CONFIGURATION GUIDE that refers 
to the Basic I/O System. 

file$drivers 1S a bit mask that tells what 
kinds of files can reside on this 
device. To interpret this mask, 
use the following table. If the 
bit is set to 1, the device can 
contain the corresponding kind of 
file. Bit 0 is the rightmost. 

functs 

dev$gran 

8-59 

Bit Kind of File 

o Physical file 
1 Stream file 
2 Reserved 
3 Named file 

4-15 Reserved 

is a bit ~ap that tells what 
functions can be used with the 
device associated with the 
specified file. Bit 0 is the 
rightmost. If a bit is set to 
1, the corresponding function 
can be used on the device. 

Bit Function 

0 Read 
1 Write 
2 Seek 
3 Special 
4 Attach Device 
5 Detach Device 
6 Open 
7 Close 

8-15 Reserved 

is the granularity, in bytes, of 
the device on which the file 
resides. 



SYSTEM CALLS 

S$GET$FILE$STATUS (continued) 

OUTPUT PARAMETERS 
info$ptr (continued) 

low$dev$size 
and 

high$dev$size 

dev$conn 

file$id 

file$gran 

owner$id 

low$creation$time 
and 

high$creation$time 

low$access$time 
and 

high$access$time 

low$modify$time 
and 

high$modify$time 

8-60 

combine to form a 32-bit integer 
that contains the storage 
capacity, in bytes, for the 
device on which the file resides. 

The number of connections (both 
file and device connections) to 
the device on which the file 
resides. 

is a number that distinguishes 
this file from all other files 
on the same device. 

specifies the granularity of the 
file in multiples of the 
vol$gran. For example, if 
file$gran is 2, and vol$gran is 
256, then the file's granularity 
is 2 * 256. 

is the id of the user object 
that was presented to the System 
when the file was created. 

combine to form a 32-bit integer 
that contains the time of the 
creation of the file. The 
maintenance of this field is an 
option that you can select 
during the configuration of the 
Basic I/O System. 

combine to form a 32-bit integer 
containing the time at which this 
file was la~t accessed. 
Maintenance of this information 
is an option that you can select 
during the configuration of the 
Basic ° 1/ 0 System. 

combine to form a 32-bit integer 
containing the time at which this 
file was last modified. 
Maintenance of this information 
is an option that you can select 
during the configuration of the 
Basic I/O System. 



SYSTEM CALLS 

OUTPUT PARAMETERS 
info$ptr (continued) 

low$file$size 
and 

high$fi1e$size 

low$file$b1ocks 
and 

high$fi1e$b1ocks 

vo1$name 

vo1$gran 

low$vo1$size 
and 

high$vo1$size 

accessor$count 

owner$access 

8-61 

S$GET$FILE$STATUS (continued) 

combine to form a 32-bit integer 
containing the current size of 
the file. 

combine to form a 32-bit integer 
containing the number of volume 
blocks allocated to this file. 
A volume block is a contiguous 
chunk of storage that can 
contain vo1$gran bytes of 
information. 

is the six-character ASCII name 
of the volume containing this 
file. 

is the size, in bytes, of each 
volume block for the volume 
containing this file. 

combine to form a 32-bit integer 
that contains the storage 
capacity, in bytes, of the 
volume on which this file is 
stored. 

contains the number of user id's 
(not counting the owner of the 
file) that have access to this 
file. This information is 
meaningful only for named files. 

contains the access rights to 
this file that are currently 
held by the owner. This 
information is meaningful only 
for named files. The access 
rights are encoded in a bit mask 
that you can interpret by using 
the following table. Remember 
that Bit 0 is the rightmost bit, 
and that access is granted if 
the corresponding bit is set to 
1. 



S$GET$FILE$STATUS (continued) 

OUTPUT PARAMETERS 
info$ptr (continued) 

DESCRIPTION 

SYSTEM CALLS 

Bit 

0 
1 
2 
3 

4-7 

Data File Directorl 

Delete Delete 
Read Display 
Append Add Entry 
Update Change Entry 
reserved reserved 

This 'system call provides the calling task with information about the 
status of a file. All fields through the dev$conn field are always 
returned. Fields following the dev$conn field are returned only when the 
contents of the extended field are FFh. 

Incompatibility with Basic I/O System 

This system call can be used with any file, including those created by 
the Basic I/O System. However, because of the asynchronous nature of 
some of the system calls provided by the Basic I/O System, there is some 
chance that the returned information may be inaccurate. For instance, if 
your application code invokes the S$GET$FILE$STATUS system call while the 
Basic I/O System is processing an A$WRITE for the same file, the values 
returned in the file size fields might be incorrect. Refer to Appendix E 
for a more general discussion of compatibility between the Extended and 
Basic I/O Systems. 

Access Control 

The Extended I/O System does not check access before returning file 
status information. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

This exception can be indicative of any of the 
following situations: 

8-62 



SYSTEM CALLS 

S$GET$FILE$STATUS (continued) 

CONDITION CODES 
E$CONTEXT (continued) 

E$DEVFD 

E$FNEXIST 

E$FTYPE 

E$ILLVOL 

E$IO 

E$IOMEM 

• The device containing the specified file is 
in the process of being detached. 

• The calling task's job is not an I/O job. 

• The Extended I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System found that the device and the device driver 
specified in the logical attachment were 
incompatible. 

This code is indicative of one of the following 
circumstances: 

• Either some file in the specified path is 
marked for deletion. 

• Either some file in the specified path, or 
the target file itself; does not exist. 

The specified path is attempting to use a data file 
as a directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended 110 System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

8-63 



SYSTEM CALLS 

S$GET$FILE$STATUS (continued) 

CONDITION CODES (continued) 

E$LIMIT This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
call, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

• During the process of configuring your 
application system, someone assigned the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 86 CONFIGURATION GUIDE for 
information regarding the BIOS maximum 
priority. Refer to the GUIDE TO WRITING 
DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
DEVINFO. 

• Either the user object or the calling task's 
job is currently involved with more than 255 
(decimal) I/O operations. 

• The calling task's job is not an I/O job. 

E$LOG$NAME$NEXIST The specified path contains an explicit logical 
name, but the Extended I/O System was unable to 
find this name in the object directories of the 
local job, the global job, and the root job. 

E$MEDIA The device containing the specified file is not 
online. 

E$MEM The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

E$NO$PREFIX The specified path contains no explicit prefix (no 
logical name), so the Extended I/O System attempted 
to use the default prefix. However, the default 
prefix is either undefined, or it is not a valid 
device connection or file connection. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out of the system during the configuration process: 

8-64 



SYSTEM CALLS 

S$GET$FILE$STATUS (continued) 

CONDITION CODES 
E$NOT$CONFIGURED (continued) 

E$NOT$PREFIX 

E$NO$USER 

E$PARAM 

A$ATTACH$FILE (Basic I/O) 
A$GET$FILE$STATUS (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECElVE$CONTROL (Nucleus) 
RECElVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
SET$INTERRUPT (Nucleus) 
S$GET$FILE$STATUS (Extended I/O) 
WAIT$INTERRUPT (Nucleus) 

The specified path contains a logical name that 
refers to an object, that is neither a device 
connection nor a file connection. 

The calling task's job does not have a default 
user, or its default user is not a user object. 

This code can indicate either of the following 
conditions: 

• The specified path contains a logical name 
that is either longer than 12 characters or 
contains invalid characters • 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical attachment referred to 
a file driver (named, physical, or stream) 
that is not configured into your system. 
Hence the physical attachment is not possible. 

E$PREFIX$SYNTAX The specified path starts with a colon (:), 
indicating that it contains a logical name. But 
the Extended I/O System was unable to find a second 
colon to terminate the logical name. 

8-65 



ONNECTION SYSTEM CALLS 

S$LOOK$UP$CONNECTION 

The S$LOOK$UP$CONNECTION system call accepts a logical name from the 
calling task and returns the connection associated with the logical name. 

connection 

INPUT PARAMETER 

log$name $ptr 

OUTPUT PARAMETERS 

connection 

except$ptr 

DESCRIPTION 

RQ$S$LOOK$UP$CONNECTION(log$name$ptr, except$ptr); 

A POINTER to a STRING containing the logical name 
under which the connection is cataloged. This 
string can contain as many as 12 ASCII characters 
that lie between 020h and 07Fh. However, the 
Extended I/O System will convert all lower-case 
letters to upper case before looking up the 
connection. 

A WORD in which the Extended I/O System will place 
the token for the connection associated with the 
logical name. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

This system call is performed in two steps. The first step is 
translation, and the second step is looking up the connection. 

Translation 

Before looking up the connection, the Extended I/O System converts any 
lower-case letters in the logical name to upper case. 

8-66 



SYSTEM CALLS 

S$LOOK$UP$CONNECTION (continued) 

DESCRIPTION (continued) 

Looking up the Connection 

After the translation, the Extended I/O System tries to find the logical 
name in the object directories of as many as three jobs. First the 
Extended I/O System checks the object directory of the local job, then 
the global job, and finally the root job. After the first successful 
lookup, the Extended I/O System ceases checking any other object 
directories, and returns the token for the connection. 

Local Job. A task's local job is the job that owns the task. 

Global Job. A task's global job can be found by looking up the logical 
name RQGLOBAL in the object directory of the local job. If there is no 
such entry, or if the associated object is not a job, then th~ task has 
no global job. If there is a job cataloged under RQGLOBAL, it is task's 
global job. 

Whenever a job is created by the CREATE$IO$JOB system call, the new job 
inherits the parent's global job. This happens because the CREATE$IO$JOB 
system call copies the RQGLOBAL entry from the parent to the offspring. 

Currently, the iRMX 86 Human Interface requrires that the RQGLOBAL entry 
of every I/O job be set to a specific value. Consequently, if your 
system uses the Human Interface, your tasks must no-t modify the RQGLOBAL 
entry. 

Root Job. The iRMX 86 System has one root job. This job is discussed in 
the iRMX 86 CONFIGURATION GUIDE. If you wish to catalog objects in the 
object directory of the root job, refer to the iRMX 86 PROGRAMMING 
TECHNIQUES manual, particularly the chapter that deals with communication 
between tasks and jobs. 

Compatibility with Nucleus 

Your tasks can invoke this sy~tem call to look up logical names created 
by the CATALOG$OBJECT system call provided by the Nucleus. However, the 
Nucleus system call does not translate from lower to upper case and does 
not verify that the ASCII codes for the characters lie between 20h and 
7Fh •• So if you desire compatibility, restrict your alphabetic 
characters when you use the CATALOG$OBJECT system call. 

8-67 



SYSTEM CALLS 

S$LOOK$UP$CONNECTION (continued) 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The calling task's job is not an I/O job. 

E$LIMIT The calling task's job is not an I/O job. 

E$LOG$NAME$NEXIST The Extended I/O System checked the object 
directories of the local, global, and root jobs and 
was unable to find the specified logical name. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

CREATE$SEGMENT (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
S$LOOK$UP$CONNECTION 

E$NOT$CONNECTION The Extended I/O System found the logical name, but 
the name does not refer to a connection. 

E$PARAM This code indicates that the specified logical name 
is syntactically incorrect. Anyone of the 
following problems can cause this error: 

• The logical name contains zero characters. 
This can only happen if there are no 
characters between the two colons (:). 

• The logical name contains more than 12 
characters. 

• The logical name contains contains invalid 
character s. 

8-68 



SYSTEM CALLS 

S$OPEN 

The S$OPEN system ~all opens a connection so that your tasks can access 
the file through the connection. 

CALL RQ$S$OPEN(connection, mode, num$buf, except$ptr); 

INPUT PARAMETERS 

connection 

mode 

num$buf 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a token for the file connection 
to be opened. 

A BYTE telling how your task is going to use the 
connection. You should set the BYTE as follows: 

Value How Connection is Used 

1 For reading only. 
2 For writing only. 
3 For both reading and writing. 

A BYTE containing the number of buffers that you 
want the Extended I/O System to allocate for this 
connection. This number must be between 0 and 255 
(decimal) • 

A POINTER to a WORD in which the Extended I/O 
System will place the condition code. 

This system call performs four functions: 

1. It creates the number of buffers requested. 

2. It sets the connection's file pointer to zero. This is the 
pointer that t~lls the Extended I/O System where in the file to 
perform an operation. 

3. It makes the Basic I/O System become ready to accept instructions 
from the Extended I/O System. 

8-69 



SYSTEM CALLS 

S$OPEN (continued) 

DESCRIPTION (continued) 

4. It starts reading ahead if the the number of buffers is greater 
than zero and the mode parameter includes reading. 

Access Rights and Selecting a Mode 

When you specify the mode, you must be accurate or err on the side of 
generosity. The Extended I/O System will not allow your tasks to read 
using a connection open for writing only. Nor will the Extended I/O 
System allow your tasks to write using a connection open for reading 
only. If you are not certain how the connection will be used, specify 
both reading and writing. 

In the case of named files, the mode that you specify must match the 
access rights of the connection. (These are the access rights that the 
Extended I/O System assigned the connection when the connection was 
created.) For example, if your task attempts to open for reading a 
connection that has access for writing only, the Extended I/O System will 
return an exceptional condition code. 

Selecting the Number of Buffers 

The process of deciding how many buffers to allocate is based on three 
considerations -- the kind of file, memory, and performance. If your 
task is opening a connection to a stream file, the Extended I/O System 
always allocates zero buffers, regardless of the number of buffers you 
specify. However, if the connection is to a physical or named file, the 
Extended I/O System will allocate the number of buffers that you specify 
in the num$buf parameter. 

The amount of memory used for buffers is directly proportional to the 
number of buffers. So you can save memory by using fewer buffers. 

The performance consideration is more complex. Up to a certain point, 
the more buffers you allocate, the faster your task can run. The actual 
break-even point, the point where more buffers don't improve performance, 
depends on many variables. Be aware that in order to overlap I/O with 
computation, you must specify at least two buffers. 

If performance is important, and you have no idea how many buffers to 
specify, start with two. Once your task is running successfully, you can 
experiment empirically, adding or removing buffers until you have found 
the smallest number of buffers that allow your application to run as fast 
as possible. 

8-70 



SYSTEM CALLS 

S$OPEN (continued) 

DESCRIPTION (continued) 

Alternatively, if performance is not at all important and memory is, use 
zero buffers. 

Obtaining the Connection 

The connection is subject to three constraints: 

• It must already exist. The S$OPEN system call does not create a 
connection. 

• It must be a file connection. You cannot open a device 
connection. 

• The connection must have been created in the calling task's job. 
If the connection was created in a different job, use the 
S$ATTACH$FILE system call to obtain a new connection to the same 
file, and then open the new connection. If you attempt to use a 
file connection in a job other than that in which it was created, 
the Extended I/O System will return an E$SUPPORT condition code. 

Compatibility with Basic I/O System 

Refer to Appendix E to find out when you can use this system call in 
conjunction with the system calls of the Basic I/O System. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$FACCESS 

E$LIMIT 

No exceptional conditions. 

Either the connection is a device connection, or 
the connection is already open. 

The access rights embedded in the connection 
prohibit you from opening the file in the mode you 
have specified. This exceptional condition can 
arise only when the connection refers to a named 
data file or directory. 

This code can be indicative of any of the following 
circumstances: 

8-71 



SYSTEM CALLS 

S$OPEN (continued) 

CONDITION CODES 
E$LIMIT (continued) 

• The calling task's job is not an I/O job. 

• The calling task's job, or the job's default 
user, is currently involved in more than 255 
(decimal) I/O operations. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$GET$FILE$STATUS (Basic I/O) 
A$OPEN (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nuc1~us) 
SEND$MESSAGE (Nucleus) 
S$OPEN (Extended I/O) 

E$NOT$CONNECTION The connection parameter does not refer to a 
connection. 

E$PARAM 

E$SHARE 

E$SUPPORT 

The mode parameter 1S set to a value other than 1, 
2, or 3. 

This code can be indicative of any of the following 
circumstances: 

• Your task attempted to open a directory for 
writing only. 

• Some task in your system is using the Basic 
I/O System to manipulate the file through 
another connection. That task requested that 
the Basic I/O System restrict the sharing of 
the file to certain modes. Your task is 
using a mode that precludes sharing the file. 

The specified connection was not created by a task 
in the calling task's job. 

8-72 



SYSTEM CALLS 

S$READ$MOVE 

The S$READ$MOVE reads a number of bytes from a file to a buffer. Your 
calling task must specify the connection, the number of bytes, and the 
buffer to receive the information. 

bytes$read 

INPUT PARAMETERS 

bytes$desired 

connection 

OUTPUT PARAMETERS 

buf$ptr 

bytes$read 

except$ptr 

DESCRIPTION 

RQ$S$READ$MOVE(connection, buf$ptr, bytes$desired, 
except$ptr); 

A WORD containing the maximum number of bytes you 
want to read from the file. 

A WORD containing a token for the connection to the 
file. This connection must be open for reading or 
for both reading and writing, and the file pointer 
of the connection must point to the first byte to 
be read. 

A POINTER to a buffer that will receive the 
information that the Extended I/O System reads from 
the file. 

A WORD containing the actual number of bytes that 
the Extended I/O System has read from the file. 
This number will always be equal to or less than 
the number of bytes desired. If it is less than 
the number of desired bytes, an end of file was 
encountered during the reading process. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

This system call reads a collection of contiguous bytes from the file 
associated with the connection. These bytes are placed in a buffer 
specified by the calling task. 

8-73 



SYSTEM CALLS 

S$READ$MOVE (continued) 

DESCRIPTION (continued) 

Creating the Buffer 

The buf$ptr parameter tells the Extended I/O System where to place the 
bytes after they are read. Be aware of the following two stipulations 
relating to the buffer: 

• You must create this buffer because the Extended I/O System does 
not. To create the buffer, use the CREATE$SEGMENT system call to 
obtain an iRMX 86 segment. This system call is discussed in the 
iRMX 86 NUCLEUS REFERENCE MANUAL. Alternatively, you can create a 
buffer during the compilation of your program. 

• You must ensure that the buffer is long enough. If your task 
attempts to read more bytes than the buffer is capable of holding, 
the information immediately following the buffer could be 
overwritten. The Extended I/O System cannot sense when 
overwriting. occurs, and consequently cannot advise your task when 
it does occur. 

Number of Bytes Read 

The number of bytes that your task requests is the maX1mum number of bytes 
that the Extended I/O System will place in the buffer. However, there are 
two circumstances under which the System will read fewer bytes. 

• First, if the Extended I/O System detects an end of file before 
reading the number of bytes requested, it will return only those 
bytes preceding the end of file. The bytes$read parameter can be 
less than the bytes$desired parameter, and no exceptional 
condition will be indicated. 

• Second, if an exceptional condition does occur during the reading 
operation, information in the buffer and the value of the 
bytes$read parameter are meaningless. 

Access Control 

If the connection is not opened for reading or both reading and writing, 
the Extended I/O System will return an exceptional condition. Also, if 
the connection was not created within the calling task's job, the Extended 
I/O System returns an E$SUPPORT exceptional condition. 

8-74 



SYSTEM CALLS 

S$READ$MOVE (continued) 

DESCRIPTION (continued) 

Specifying which Bytes Are Read 

If your task is reading from a random-access file, your task must tell 
the Extended I/O System which bytes to read from the file. To do this, 
your task must position the connection's file pointer to the first of the 
bytes that you want to read. Use the S$SEEK system call to position the 
file pointer before your task invokes the S$READ$MOVE system call. 

In contrast, if your task is reading from a sequential file, the Extended 
I/O System will maintain the connection's file pointer automatically. 

Effects of Priority 

The priority of the task invoking this system call can greatly affect the 
performance of the application system. For better performance, the 
priority of the invoking task should be lower than (numerically greater 
than) the priority of the Basic I/O System task that services the device 
containing the file. (To find out how to set priorities for application 
tasks, refer to the iRMX 86 NUCLEUS REFERENCE MANUAL. To find out how to 
set priorities for Basic I/O System tasks, refer to the iRMX 86 
CONFIGURATION GUIDE.) If the priority of the calling task is not lower 
than that of the Basic I/O System task, the I/O operation performed by 
this system call cannot be overlapped with computation or with other I/O 
operations. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$IO 

No exceptional conditions. 

This exception code can be caused by any of the 
following events: 

• The connection is not open for reading or for 
both reading and writing. 

• The connection is closed. 

• The connection was opened by the A$OPEN 
~system call rather than the S$OPEN system 
call. 

An I/O error occurred during the reading operation. 

8-75 



MOlE SYSTEM CALLS 

S$READ$MOVE (continued) 

CONDITION CODES (continued) 

E$LIMIT This code can be indicative of any of the following 
circumstances: 

• Either the calling task's job, or the job's 
default user, are currently involved 1n more 
than 255 (decimal) I/O operations • 

• The calling task's job is not an I/O job. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED One or more of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$READ (Basic I/O) 
A$WRITE (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
S$READ$MOVE (Extended I/O) 

E$NOT$CONNECTION The connection parameter does not refer to a 
connection. 

E$SPACE 

E$SUPPORT 

One or more tasks of your application system are 
using the specified connection for both reading and 
wr1t1ng. When this happens, the same buffers are 
used to accommodate both reading and writing. 
Consequently, before a task can use the buffer for 
reading, the Extended I/O System must ensure that 
the buffer is empty. 

This error was caused by full volume that prevented 
the Extended I/O System from emptying a writing 
buffer to the disk before your task's reading 
operation began. 

The connection parameter refers to a connection 
that was created by a task outside of the calling 
task's job. 

8-76 



SYSTEM CALLS 

S$RENAME$FILE 

The S$RENAME$FILE system call changes the name of a named file. It 
cannot be used for stream or physical files. 

CALL RQ$S$RENAME$FILE(path$ptr, new$path$ptr, except$ptr); 

INPUT PARAMETERS 

path$ptr 

new$path$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the path for 
the file to be renamed. The syntax of this path is 
described in Chapter 5 of this manual. This path 
must refer to an existing file. 

A POINTER to a STRING that specifies the new path 
for the file. This path must comply with the 
syntax and semantics of paths for named files as 
discussed in Chapter 5. Furthermore, this path 
cannot refer to an existing file. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

This system call, which can be used only with named files, allows your 
tasks to change the path for a file. You can rename directory files as 
well as data files. 

Directory Files 

Be aware that when you rename a directory, you are changing the paths for 
all files contained in the directory. 

Restriction 

If your task is renaming a file, the task can change any aspect of the 
file's path so long as the file remains on the same volume. 

8-77 



SYSTEM CALLS 

S$RENAME$FILE (continued) 

DESCRIPTION (continued) 

Access Control 

In order to be able to rename a file, the default user of the calling 
task's job must have two kinds of access: 

• Deletion access for the original file. 

• Add-entry access for the file's new parent direct~ry. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$DEVFD 

E$FACESS 

No exceptional conditions. 

This exception can be indicative of any of the 
following situations: 

• The device containing the specified file is 
in the process of being detached. 

• The calling task's job is not an I/O job. 

• The Extended I/O System is unable to attach 
the device containing the file because the 
Basic I/O System has already attached the 
device. 

• The two paths refer to different devices. 

• The calling task is attempting to rename a 
root directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System found that the device and the device driver 
specified in the logical attachment were 
incompatible. 

This code can be returned under any of the 
following circumstances: 

• The default user of the calling task's job 
does not have add-entry access to the parent 
directory in the new$path$ptr parameter. 

8-78 



SYSTEM CALLS 

S$RENAME$FILE (continued) 

CONDITION CODES 
E$FACCESS (continued) 

E$FEXIST 

E$FNEXIST 

E$FTYPE 

E$ILLVOL 

E$IO 

E$IOMEM 

E$LIMIT 

• The default user of the calling task's job 
does not have delete access for the file to 
be renamed. 

The new$path$ptr parameter refers to a file that 
already exists. 

This code is indicative of one of the following 
circumstances: 

• Either some file in one of the specified 
paths, or the file being renamed, is marked 
for deletion. 

• Some file in the specified path, or the file 
being, renamed does not exist. 

The specified path is attempting to use a data file 
as a directory. 

When your task invoked this system call, it forced 
the Extended I/O System to attempt the physical 
attachment of a device that had formerly been only 
logically attached. In the process of attempting 
to physically attach the device, the Extended I/O 
System examined the volume label and found that the 
volume does not contain named files. This 
prevented the Extended I/O System from completing 
physical attachment because the named file driver 
was requested during logical attachment. 

An I/O error occurred. 

The Basic I/O System job does not currently have a 
block of memory large enough to allow this system 
call to run to completion. 

This can be caused by any of the following 
conditions: 

• While attempting to complete this system 
~all, the Extended I/O System created enough 
objects to exceed the object limit of the 
Basic I/O System job. Refer to the chapter 
of the iRMX 86 CONFIGURATION GUIDE that 
discusses the Basic I/O System. 

8-79 



SYSTEM CALLS 

S$RENAME$FILE (continued) 

CONDITION CODES 
E$LIMIT (continued) 

• During the process of configuring your 
application system, someone assigned the 
Basic I/O System job a maximum priority that 
is too low. Specifically, the BIOS maximum 
priority is lower than either the DUIB 
priority or the DEVINFO priority. Refer to 
the iRMX 8'6 CONFIGURATION GUIDE for 
information regarding the BIOS maximum 
priority. Refer to the GUIDE TO WRITING 
DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEMS 
for information regarding the DUIB and 
DEVINFO. 

• Either the user object or the calling task's 
job is currently involved with more than 255 
(decimal) I/O operations. 

• The calling task's job is not an I/O job. 

E$LOG$NAME$NEXIST At least one of the specified paths contains an 
explicit logical name, but the Extended I/O System 
was unable to find this name in the object 
directories of the local job, the global job, and 
the root job. 

E$MEDIA 

E$MEM 

E$NO$PREFIX 

The device containing the specified file is not on 
line. 

The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

At least one of the specified paths contains no 
explicit prefix (no logical name), so the Extended 
I/O System attempted to use the default prefix. 
However, the default prefix is either undefined, or 
it is not a valid device connection or file 
connection. 

E$NOT$CONFIGURED At least one of the following system calls was left 
out of the system during the configuration process: 

A$ATTACH$FILE (Basic I/O) 
A$PHYSICAL$ATTACH$DEVICE (Basic I/O) 
A$RENAME$FILE (Basic I/O) 
A$SPECIAL (Basic I/O) 
CREATE$COMPOSITE (Nucleus) 
CREATE$MAILBOX (Nucleus) 

8-80 



SYSTEM CALLS 

S$RENAME$FILE (continued) 

CONDITION CODES 
E$NOT$CONFIGURED (continued) 

E$NOT$PREFIX 

E$NO$USER 

E$PARAM 

E$PREFIX$SYNTAX 

E$SPACE 

CREATE$SEGMENT (Nucleus) 
DELETE$COMPOSITE (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$DEFAULT$PREFIX (Basic I/O) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$ATTACH$FILE (Extended I/O) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
SET$INTERRUPT (Nucleus) 
S$RENAME$FILE (Extended I/O) 
WAIT$INTERRUPT (Nucleus) 

At least one of the specified paths contains a 
logical name that refers to an object that is 
neither a device connection nor a file connection. 

The calling task's job does not have a default 
user, or its default user is not a user object. 

This code can indicate either of the following 
conditions: 

• At least one of the specified paths contains 
a logical name that is either longer than 12 
characters or contains invalid characters • 

• When your task invoked this system call, it 
forced the Extended I/O System to attempt the 
physical attachment of a device that had 
formerly been only logically attached. In 
the process of attempting to physically 
attach the device, the Extended I/O System 
found that the logical attachment referred to 
a file driver (named, physical, or stream) 
that is not configured into your system. 
Hence the physical attachment is not possible. 

At least one of the specified paths starts with a 
colon (:), indicating that it contains a logical 
name. But the Extended I/O System was unable to 
find a second colon to terminate the logical name. 

The volume is too full to allow the Extended I/O 
System to complete this operation. 

8-81 



SYSTEM CALLS 

S$RENAME$FILE (continued) 

CONDITION CODES (continued) 

E$SUPPORT The calling task ~s attempting to rename a physical 
or stream file. 

8-82 



SYSTEM CALLS 

S$SEEK 

Using the S$SEEK system call, your tasks can move the file pointer for 
any open physical- or named-file connection. This system call cannot be 
used with stream files. 

CALL RQ$S$SEEK(connection, mode, hi$move$count, lo$move$count, 
except$ptr); 

INPUT PARAMETERS 

connection 

hi$move$count 
lo$move$count 

mode 

A word containing a token for an open connection 
whose file pointer you wish to move. 

These two WORDS combine to form a 32-bit integer 
that tells the Extended I/O System how, in bytes, 
to move the pointer. 

A BYTE containing a value that controls the nature 
of the movement of the file pointer. Any of the 
following values are valid: 

Mode Meaning 

1 Move the pointer backward by the specified 
amount. If the move count is large enough to 
position the pointer past the beginning of 
the file, the pointer will be set to the 
first byte (position zero). 

2 Set the pointer to the position specified by 
the move count. Position zero is the first 
position in the file. Moving the pointer 
beyond the end of the file is valid. 

3 Move the file pointer forward by the 
specified amount. Moving the pointer beyond 
the end of file is valid. 

4 First move the pointer to the end of the file 
,and then move it backward by the specified 
amount. If the specified move count would 
position the pointer beyond the front of the 
file, the pointer will be set to the first 
byte in the file (position zero). 

8-83 



SYSTEM CALLS 

S$SEEK (continued) 

OUTPUT PARAMETER 

except$ptr A POINTER to the WORD 1n which the Extended I/O 
System will place the condition code. 

DESCRIPTION 

When performing random I/O, your tasks must use this system call to 
position the file pointer before using the S$READ$MOVE, S $TRUNCATE$ FILE , 
or S$WRITE$MOVE system calls. The location of the file pointer tells the 
Extended I/O System where in the file to begin reading, truncating, or 
writing information. 

In contrast, if your tasks are performing sequential I/O on a file, they 
do not need to use this system call. 

Access Control 

There are two requirements that relate to access control. First, the 
connection must be open for reading only, writing only, or both reading 
and writing. If this is not the case, your task can use the S$OPEN 
system call to open the file. 

The second access requirement is that the connection must have been 
created by a task within the calling task's job. If this is not the 
case, use the existing connection as a prefix, and have the calling 
obtain a new connection by invoking the S$ATTACH$FILE system call. 
newly created connection will satisfy the second requirement. 

Special Considerations 

task 
This 

As mentioned above, it is legitimate to position the file pointer beyond 
the end of file. If your task does this and then invokes the S$READ$MOVE 
system call, the Extended I/O System will behave as though the reading 
operation began at the end of file. 

Also, it is possible to invoke the S$WRITE$MOVE system call with the file 
pointer beyond the end of the file. If your task does this, the Extended 
I/O System will attempt to expand the file. Be aware that, if the \ 
Extended I/O System does expand your file in this manner, the expanded 
portion of the file will contain random information. 

8-84 



CONDITION CODES 

E$OK 

E$CONTEXT 

E$IFDR 

E$IO 

E$LIMIT 

SYSTEM CALLS 

S$SEEK (continued) 

No exceptional conditions. 

Either the connection parameter is not open, or it 
was opened by an A$OPEN rather than an S$OPEN. 

Your task is attempting to seek on a stream file. 
The S$SEEK system call can be used only with named 
and physical files. 

An I/O error occurred on the device containing the 
connection's file. 

This code can be returned for any of the following 
reasons: 

• Either the calling task's job, or the job's 
default user, is currently involved with more 
than 255 (decimal) I/O operations • 

• The calling task's job is not an I/O job. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$SEEK (Basic I/O) 
A$WRITE (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECE'IVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
S$SEEK (Extended I/O) 

E$NOT$CONNECTION The connection parameter does not refer to a, 
connection. 

E$PARAM This code can be returned for any of the following 
reasons: 

8-85 



SYSTEM CALLS 

S$SEEK (continued) 

CONDITION" CODES 
E$PARAM (continued) 

E$SPACE 

E$SUPPORT 

• The value of the mode parameter is not 1, 2, 
3, or 4. 

• The calling task was attempting to seek past 
the end of a physical file. 

This seek operation forced the Extended I/O System 
to attempt to empty the connection's buffer(s) by 
writing their contents to the volume. However, the 
volume was full and the Extended I/O System was 
unable to successfully empty the buffer(s). 

The connection parameter refers to a connection 
that was created by a task outside of the calling 
task's job. 

8-86 



SYSTEM CALLS 

S$SPECIAL 

The S$SPECIAL system call allows your tasks to perform functions that are 
peculiar to a specific device. 

CALL RQ$S$SPECIAL(connection, function, data$ptr, iors$ptr, 
except$ptr); 

INPUT PARAMETERS 

connection 

data$ptr 

function 

A WORD containing a token for a connection to the 
file for which the special function is to be 
performed. 

A POINTER to a parameter block that your task uses 
to supply the Extended I/O System with 
information. The contents and form of the 
parameter block depend upon the function being 
requested, so the form of the parameter block is 
described below, under the "DESCRIPTION" heading. 
If the function requires no parameter block, set 
the data$ptr to zero. 

A WORD that specifies the special function being 
requested. Each function is described in detail 
under the "DESCRIPTION" heading, but the following 
table summarizes the values to be:, assigned to this 
parameter. 

Kind of 
Value Connection Function 

0 physical format track 
file on disk 

0 stream query 
file 

1 stream satisfy 
file 

Note that each function can be used with only 
certain kinds of files. 

8-87 



S$SPECIAL (continued) 

OUTPUT PARAMETERS 

except$ptr 

iors$ptr 

SYSTEM CALLS 

A POINTER to a WORD in which the Extended I/O 
System will place the condition code. 

A POINTER to a structure of the form described 
below. The Extended I/O System uses this structure 
to return information that might be of use to the 
calling task. If you set this POINTER to zero, the 
Extended I/O System will not return the 
information. Be aware that this is relatively 
obscure information that most applications will not 
need. 

iors$data STRUCTURE( 

where: 

actual 
actual$fi 11 
device 
unit 
funct 
subfunct 
lo$dev$loc 
hi$dev$loc 
buf$ptr 
count 
count$fill 
aux$ptr 

WORD, 
WORD, 
WORD, 
BYTE, 
BYTE, 
WORD, 
WORD, 
WORD, 
POINTER, 
WORD, 
WORD, 
POINTER) 

actual is the number of bytes that were 
actually transferred during the 
special function. 

actual$fill is reserved for use in future 
versions of the Extended I/O System. 

device is the device number identifying 
the device. For an explanation of 
device numbers, refer to the 

unit 

iRMX 86 CONFIGURATION GUIDE. 

is the number of the unit that 
contains the file on which the 
special function is being 
performed. For information on unit 
numbers, refer to the iRMX 86 
CONFIGURATION GUIDE. 

8-88 



OUTPUT PARAMETERS 
iors$ptr (continued) 

DESCRIPTION 

SYSTEM CALLS 

funct 

subfunct 

lo$dev$loc 
and 

hi$dev$loc 

buf$ptr 

count 

count$fill 

aux$ptr 

S$SPECIAL (continued) 

is the function code indicating 
what operation was performed. In 
order to interpret this code, you 
must be intimately familiar with 
the device driver for the device 
containing the file on which the 
special function is being performed. 

is, in effect, an extension of the 
funct code. 

The location on the device where 
the operation was performed. 

1S the POINTER to the buffer used 
for this operation. 

is the number of bytes that were 
transferred. 

is reserved for future use. 

is a 'POINTER to a data structure 
that contains information that you 
are not likely to need. If you 
really want to pursue this 
information, refer to the 
description of I/O Result Segments 
in the iRMX 86 CONFIGURATION GUIDE. 

This system call allows your tasks to perform functions that are closely 
dependent upon the kinds of devices your system uses. For this very 
reason, use of this system call will greatly reduce the degree of device 
independence supplied by the Extended I/O System. In other words, use 
this system call only if you must! 

This system call allows your task to perform any of three special 
functions. The Extended I/O System decides which function to perform by 
examining the function parameter and the kind of connection provided in 
the connection parameter. The following table shows which function is 
performed for each combination of function code and kind of connection. 

8-89 



SYSTEM CALLS 

S$SPECIAL (continued) 

DESCRIPTION (continued) 

Function 
Parameter 

o 

o 

1 

Kind of 
Connection 

physical 
file on disk 

stream 
file 

stream 
file 

Function Performed 
by the Extended I/O System 

Formats a track. 

Provides information about stream file 
operations. 

Artificially satisfies a stream file 
transaction. 

The following three sections of this chapter explain each of these 
functions in detail. 

Formatting a Track 

In order to use the S$SPECIAL system call to format a track on a flexible 
diskette, the calling task must supply the following information: 

connection 

function 

data$ptr 

This parameter must contain a token for a connection to 
a physical file. This connection must be open for 
reading, writing or both. 

Mus~ be set to zero. 

Must point to a STRUCTURE of the following form: 

track$formatter 
track$number 
interleave 
track$offset 

where: 

STRUCTURE( 
WORD, 
WORD, 
WORD) 

track$number contains the number of the track 
to be formatted. This value must 
lie between 0 and 76 decimal. 

interleave sets the interleaving factor for 
the track. The interleaving 
factor controls the number of 
physical sectors between 
consecutive logical sectors. If 
the interleave factor is 1, no 
physical sectors will be skipped. 

8-90 



DESCRIPTION (continued) 

SYSTEM CALLS 

S$SPECIAL (continued) 

If it is 2, one sector will be 
skipped, and so on. Whatever 
value is provided in this 
parameter will be divided by the 
number of sectors per track, and 
the remainder will govern the 
number of physcial sectors to 
skip. An interleave factor of 
zero, or a factor that yields a 
remainder of zero, will produce 
unpredictable results. 

track$offset contains the number of physical 
sectors to skip between the index 
mark and the first logical sector. 

Formatting a track on a hard disk involves the same technique as is used 
for flexible diskettes. The only difference is that the track$formatter 
STRUCTURE looks like this: 

track$formatter 
track$number 
interleave 
track$offset 
fill$char 

where: 

STRUCTURE ( 
WORD, 
WORD, 
WORD, 
WORD) 

track$number is the number of the track to be formatted. 
The Extended I/O System will accept values 
between 0 and 799 decimal. 

interleave sets the interleaving factor for the track. 
The interleaving factor controls the number of 
physical sectors between consecutive logical 
sectors. If the interleave factor is 1, no 
physical sectors will be skipped. If it is 2, 
one sector will be skipped, and so on. 
Whatever value is provided in this parameter 
will be divided by the number of sectors per 
track, and the remainder will govern the 
number of physcial sectors to skip. An 
interleaving factor of zero, or a factor that 
yields a remainder of zero, will produce 
undefined results. 

8-91 



SYSTEM CALLS 

S$SPECIAL (continued) 

DESCRIPTION (continued) 

track$offset the number of physical sectors to skip between 
the index mark and the first logical sector. 

fill$char the value that the device driver is to write 
into every byte of each sector. This applies 
only to iSBC 206 controllers. 

Obtaining Information About Stream File Operations 

Occasionally, a task using a stream file 
requested by another task using the same 
task reading a stream file might need to 
sent by a task writing to the same file. 
information by calling S$SPECIAL with the 

must find out what is being 
stream file. For example, the 
know how many bytes are being 

Tasks can obtain this kind of 
following information: 

connection 

function 

data$ptr 

A connection to the stream file. 

Zero. 

Any value whatsoever. This parameter is not used 
in performing this special function. 

If a read request or a write request is queued at the file, the Extended 
I/O System will return information using the structure to which iors$ptr 
points. The following three fields contain valid information: 

actual 

count 

buf$ptr 

funct 

the number of bytes already transferred toward satisfying 
the queued request. 

number of bytes remainig to be transferred in satisfying 
the queued request. 

a POINTER to the memory location to be used for the next 
byte to be transferred. 

contains a value that indicates the purpose of the queued 
request. The value is 0 for read requests and 1 for write 
requests. 

If no request is queued at the file, the Extended I/O System will queue 
the S$SPECIAL request for information at the file. This request will 
remain queued until a read or write request is issued. If, before a read 
or write request is issued, another S$SPECIAL request arrives, the 
Extended I/O System will cancel both S$SPECIAL requests and will return 
an E$CONTEXT exceptional condition code to the tasks that issued the call. 

8-92 



SYSTEM CALLS 

S$SPECIAL (continued) 

DESCRIPTION (continued) 

Satisfying Stream File Transactions 

As explained in Chapter 7 of this manual, stream files provide two tasks 
with the ability to communicate. When one task tries to read or write to 
a stream file, the task will not run again until the complementary task 
issues a matching request. 

For example, suppose that Task A wants to read 512 bytes, but Task B 
wants to write only 256 bytes. Task A will stop running until Task B 
issues one or more requests which supply at least 256 bytes. 

The S$SPECIAL system call provides tasks with the ability to force the 
Extended I/O System to consider a stream file transaction to be complete, 
even if the number of bytes written do not match the number of bytes 
read. To force this completion, a task must invoke the S$SPECIAL system 
call with the parameters set as follows: 

connection 

function 

data$ptr 

Must be a connection the stream file. This 
connection must be open for the operation that has 
not satisfied the matching requirement. For 
example, if the reading task wants to force the 
Extended I/O System to consider the transaction 
completed, the connection must be open for reading. 

One. 

Any value whatsoever. The Extended I/O System 
ignores this parameter for this special function. 

After using the satisfy function of the S$SPECIAL system call, the only 
information that your task can obtain is the condition code returned by 
the Extended I/O System. If the task invoking S$SPECIAL system call has, 
in fact, already satisfied the transaction, the Extended I/O System will 
return an E$CONTEXT condition code. 

Compatibility with Basic I/O System 

Your application can use this system call to perform special functions on 
connections obtained from the Basic I/O System. Refer to Appendix E for 
a more general discussion of compatibility between the Extended and Basic 
I/O Systems. 

8-93 



S$SPECIAL (continued) 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$IDDR 

E$IFDR 

E$IO 

E$LIMIT 

SYSTEM CALLS 

No exceptional conditions. 

The Extended I/O System can return this code for 
any of the following reasons: 

• Either the connection is not open, or it was 
opened by an A$OPEN rather than an S$OPEN. 

• The calling task is attempting to satisfy a 
stream file request, but there is no request 
queued at the stream file. 

• The calling- task is querying a stream file, 
but the only request queued at the file is 
another query. The Extended I/O System 
removes both queries from the queue and 
returns this exception code. 

The function requested by the calling task is not 
supported for the device containing the specified 
file. 

The Extended I/O System does not support the 
requested function for the kind of file associated 
with the connection. 

An I/O error occurred while the Extended I/O System 
was attempting to perform the requested function. 

The Extended I/O System can return this code for 
any of the following reasons: 

• Either the calling task's job or the job's 
default user is currently involved with more 
than 255 (decimal) I/O jobs. 

• The calling task's job is not an I/O job. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$SPECIAL (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 

8-94 



SYSTEM CALLS 

S$SPECIAL (continued) 

CONDITION CODES 
E$NOT$CONFIGURED (continued) 

LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
S$SPECIAL (Extended I/O) 

E$NOT$CONNECTION The connection parameter does not refer to a 
connection. 

E$SPACE 

E$SUPPORT 

During a formating operation, an attempt was made 
to seek past the end of a volume. 

The connection parameter refers to a connection 
that was created by a t'ask outside 0 f the calling 
task's job. 

8-95 



SYSTEM CALLS 

S$TRUNCATE$FILE 

The S$TRUNCATE$FILE system call removes information from the end of a 
named data file. This system call can be used only with named files. 

CALL RQ$S$TRUNCATE$FILE(connection, except$ptr); 

INPUT PARAMETER 

connection 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a token for a connection to the 
named data file that is to be truncated. The file 
pointer of this connection tells the Extended I/O 
System where to truncate the file. The BYTE 
indicated by the pointer is the first byte to be 
dropped from the file. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

This system call applies to named data files only. When called, it 
truncates a file at the current setting of the file pointer and frees all 
space beyond the pointer. 

End-of-File Considerations 

If the pointer is at or beyond the end of file, no truncation will be 
performed. 

Positioning the Pointer 

Unless the file pointer is already where you want it, your task should 
use the S$SEEK system call to position the pointer before using the 
S$TRUNCATE$FILE system call. 

8-96 



SYSTEM CALLS 

S$TRUNCATE$FILE (continued) 

DESCRIPTION (continued) 

Interaction with Other Connections 

The truncation will occur immediately, regardless of the status of other 
connections to the same file. 

Access Requirements 

There are three access requirements that relate to this system call. 
First the connection must be open for writing only or for both reading 
and writing. If this is not the case, your task can use the S$OPEN 
system call to open the connection. 

Second, the connection must have update access for the file. Recall that 
the Extended I/O System computes a connection's access when the 
connection is created. 

The third access requirement is that the connection must have been 
created by a task within the calling task's job. If this is not the 
case, use the existing connection as a prefix, and have the calling task 
invoke the S$ATTACH$FILE system call. 

Compatibility with the Basic I/O System 

Your tasks can use this system call in conjunction with files 
connections created by the Basic I/O System. However, you can only use 
this system call if the connection was opened by means of the S$OPEN (as 
opposed to A$OPEN) system call. Refer to Appendix E of this manual for a 
more general discussion of compatibility between the Extended and Basic 
I/O Systems. 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

The Extended I/O System can return this code for 
any of the following reasons: 

• The connection is open in the wrong mode. It 
must be open for writing or for both reading 
and writing. 

• The connection is not open. 

• The connection was opened by an A$OPEN rather 
than an S$OPEN. 

8-97 



SYSTEM CALLS 

S$TRUNCATE$FILE (continued) 

CONDITION CODES (continued) 

E$IFDR 

E$IO 

E$LIMIT 

Your task is attempting to truncate a stream or 
physical file. The S$TRUNCATE$FILE system call can 
be used only on named files. 

An I/O error occurred on the device containing the 
file. 

The Extended I/O System can return this code for any 
of the following reasons: 

• The calling task's job is not an I/O job • 

• Either the calling task's job, or the job's 
default user, is currently involved in more 
than 255 (decimal) I/O operations. 

E$MEM The memory pool of the calling task's job does not 
currently have a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$SEEK (Basic I/O) 
A$TRUNCATE$FILE (Basic I/O) 
A$WRITE (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOKUP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
S$TRUNCATE$FILE (Extended I/O) 

E$NOT$CONNECTION The connection parameter does not refer to a 
connection. 

E$SPACE 

E$SUPPORT 

Before performing the truncation, the Extended I/O 
System must empty any buffers associated with the 
file. It can only empty these buffers by writing 
their contents to the file. However, the volume was 
full, so the Extended I/O System was unable to empty 
the buffers. This, in turn, prevented the Extended 
I/O System from truncating the file. 

The connection paramater refers to a connection that 
was created by a task outside the calling task's job. 

8-98 



SYSTEM CALLS 

S$UNCATALOG$CONNECTION 

The S$UNCATALOG$CONNECTION deletes a logical name from the object 
directory of a job. The task that invokes this system call must specify 
the logical name and the job. 

CALL RQ$S$UNCATALOG$CONNECTION(job, log$name$ptr, except$ptr); 

INPUT PARAMETERS 

job 

log$name$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a token for a job. The Extended 
I/O System will delete the logical name from this 
job's object directory. If this parameter is set 
to zero, the Extended I/O System will remove the 
logical name from the object directory of the 
calling task's job. 

A POINTER to a STRING that contains the logical 
name under which the connection is cataloged. The 
STRING can contain upper or lower case characters, 
but the Extended I/O System will convert them to 
upper case before looking up the logical name. The 
STRING should not contain any colons. 

A POINTER to a WORD in which the Extended I/O 
System will place the condition code. 

Your tasks should invoke this system call to undo the work of the 
S$CATALOG$CONNECTION system call. If the object directory of the 
specified job does not contain the specified logical name, the Extended 
I/O System will return an E$LOG$NAME$NEXIST exception code. 

CONDITION CODES 

E$OK 

E$EXIST 

No exceptional conditions. 

The job parameter refers to an object that does not 
exist. 

8-99 



ONREOTION SYSTEM CALLS 

S$UNCATALOG$CONNECTION (continued) 

CONDITION CODES (continued) 

E$LIMIT The calling task's job is not an I/O job. 

E$LOG$NAME$NEXIST The Extended I/O System was not able to find the 
specified logical name. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

E$PARAM 

E$TYPE 

CREATE$SEGMENT (Nucleus) 
UNCATALOG$CONNECTION (Extended I/O) 
UNCATALOG$OBJECT (Nucleus) 

The Extended I/O System detected a problem in the 
specified logical name. Any of the following 
circumstances can cause this condition code to be 
returned: 

• The STRING contains zero characters. 

• The STRING contains more than 12 characters. 

• The STRING contains characters that are not 
allowed within a logical name. 

The job parameter refers to an object other than 8 

job. 

8-100 



SYSTEM CALLS 

S$WRITE$MOVE 

The S$WRITE$MOVE system call writes a collection of bytes from a buffer 
to a file. Your task must specify the location of the buffer, the 
connection to the file, and the number of bytes to be written. 

bytes$written 

INPUT PARAMETERS 

buf$ptr 

connection 

count 

OUTPUT PARAMETERS 

bytes$written 

except$ptr 

DESCRIPTION 

RQ$S$WRITE$MOVE(connection, buf$ptr, count, 
except$ptr); 

A POINTER to a collection of contiguous bytes that 
are to be written to the specified file. 

A WORD containing a token for the connection to the 
file in which the information is 'to be written. 

A WORD containing the number of bytes to be written 
from the buffer to the file. 

A WORD containing the number of bytes that were 
actually written to the file. This number will 
always be equal to or less than the number 
specified in the count parameter. 

A POINTER to a WORD in which the Extended I/O 
System will place a condition code. 

This system call causes the Extended I/O System to write the specified 
number of bytes from the buffer to the file. 

Access Control 

In order to write information into a file, the connection parameter must 
satisfy the following two requirements: 

8-101 



SYSTEM CALLS 

S$WRITE$MOVE (continued) 

DESCRIPTION (continued) 

• The connection must have been created by a task within the 
calling task's job. If this is not the case, the Extended I/O 
System will return an E$SUPPORT exception code. 

• The connection must be open for writing or for both reading and 
writing. 

Furthermore, if the file is a named data file, the access rights assigned 
to the connection must permit the kind of writing being performed. As 
far as bhe iRMX 86 System is concerned, there are two kinds of writing: 

• Appending 

Appending is writing information only to the end of the file. 
The file becomes longer as more information is written. Whenever 
your task attempt to write information beyond the end of file via 
a connection that does not have append access, the Extended I/O 
System will return an exception code and will not write any data 
to the file. 

• Updating 

Updating is wr1t1ng over information already in the file. The 
length of the file is not changed because no new information can 
be added to the end of the file. Whenever your task attempts to 
write over information in a file via a connection that does not 
have update access, the Extended I/O System will not write any 
data to the file but will return an exception code. 

The connection can have access rights for updating, appending, or both. 
For information regarding the process of assigning access to a 
connection, see the descriptions for the S$ATTACH$FILE and S$CREATE$FILE 
system calls. 

Number of Bytes Acually Written 

Occasionally, the Extended I/O System will actually write fewer bytes 
than requested by the calling task. This happens only under two 
circumstances. The first circumstance is when the Extended I/O System 
encounters an I/O error. Your task will be informed of this circumstance 
because the Extended I/O System will return an E$IO exception code. 

The second circumstance is When the volume to which your task is writing 
becomes full. The Extended I/O System will inform your task of this 
condition by returning an E$SPACE exception code. 

8-102 



SYSTEM CALLS 

S$WRITE$MOVE (continued) 

DESCRIPTION (continued) 

Where the Bytes Are Written 

The Extended I/O System writes the bytes starting at the location 
specified by the connection's file pointer. (The pointer indicates where 
the first byte is to be written.) As the Extended I/O System writes the 
bytes, it also updates the poiriter. After writing operatign is 
completed, the file pointer points to the byte immediately following the 
last byte written. 

If your task must reposition the file pointer before writing, it can do 
so by using the S$SEEK system call. 

If your task is using a connection that has append access, the task can 
start a writing operation beyond (rather than at) the end of file. The 
Extended I/O System will extend the file and perform the writing 
operation. Be aware that if your file is extended, the bytes in the 
extended section of the file contain random information until your task 
explicitly writes information into them. For example, if the end of file 
is at location 200 and your task positions the file pointer at 250 and 
begins writing, locations 200 through 249 contain undetermined 
information. 

Effects of Priority 

The priority of the task invoking this system call can greatly affect the 
performance of the application system. For better performance, the 
priority of the invoking task should be lower than (numerically greater 
than) the priority of the Basic I/O System task that services the device 
containing the file. (To find out how to set priorities for application 
tasks, refer to the iRMX 86 NUCLEUS REFERENCE MANUAL. To find out how to 
set priorities for Basic I/O System tasks, refer to the iRMX 86 
CONFIGURATION GUIDE.) If the priority of the calling task is not lower 
than that of the Basic I/O System task, the I/O operation performed by 
this system call cannot be overlapped with computation or with other I/O 
operations. 

CONDITON CODES 

E$OK No exc~ptional conditions. 

E$CONTEXT This condition can be caused by any of the 
following situations: 

• The connection is not open for writing. 

• The connection is not open. 

8-103 



MOR 
SYSTEM CALLS 

~ 

S$WRITE$MOVE (continued) 

CONDITION CODES 
E$CONTEXT (continued) 

E$IO 

E$LIMIT 

• The connection was opened with A$OPEN rather 
than with S$OPEN. 

An I/O error occurred during the operation, and the 
Extended I/O System was unable to recover. 

The Extended I/O System can return this exception 
code for any of the following reasons: 

• The calling task's job is not an I/O job. 

• The calling task's job, or the job's default 
user object, is currently involved 1n more 
than 255 (decimal) I/O operations. 

E$MEM The memory pool of the calling task's job does not 
currently contain a block of memory large enough to 
allow this system call to run to completion. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

A$SEEK (Basic I/O) 
A$WRITE (Basic I/O) 
CREATE$SEGMENT (Nucleus) 
DISABLE$DELETION (Nucleus) 
ENABLE$DELETION (Nucleus) 
GET$TYPE (Nucleus) 
LOOK$UP$OBJECT (Nucleus) 
RECEIVE$CONTROL (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
SEND$CONTROL (Nucleus) 
SEND$MESSAGE (Nucleus) 
S$WRITE$MOVE (Extended I/O) 

E$NOT$CONNECTION The connection parameter does not refer to an 
existing connection. 

E$PARAM The calling task is attempting to write beyond the 
end of a physical file. 

E$SPACE The volume is full, and the Extended I/O System is 
unable to complete the requested writing operation. 

E$SUPPORT The connection paramter refers to a connection that 
was created by a task outside of the calling task's 
job. 

8-104 



APPENDIX A. DATA TYPES 

The following data types are recognized by the iRMX 86 Operating System: 

BYTE 

WORD 

INTEGER 

OFFSET 

TOKEN 

POINTER 

STRING 

An unsigned, eight-bit binary number. 

An unsigned, two-byte, binary number. 

A signed, two-byte, binary number. Negative numbers are 
stored 'in two's-complement form. 

A word whose value represents the distance form the base 
of a segment 

A word whose value identifies an object. 

Two consecutive words containing the base of a segment 
and an offset into the segment. The offset must be in 
the word having the lower address. 

A sequence of consecutive bytes. The value contained in 
the first byte is the number of bytes that follow it in 
the string. 

A-I 





APPENDIX B. OBJECT TYPES AND RESOURCE REQUIREMENTS 

Each iRMX 86 object type is known within the iRMX 86 system by means of a 
number called a type code. To allow you to refer to these codes 
symbolically, each code has a mnemonic name. The following list 
correlates the type of object, the mnemonic, and the type code: 

OBJECT MNEMONIC TYPE 
TYPE NAME CODE 

Job T$JOB lh 

Task T$TASK 2h 

Mailbox T$MAILBOX 3h 

Semaphore T$SEMAPHORE 4h 

Segment T$SEGMENT 6h 

User T$USER 100h 

Connection T$CONNECTION 101h 

Logical T$LOG$DEV 301h 
Device 

RAM REQUIREMENTS 

The fo11owing information 1S provided to help you estimate the amount of 
RAM that you will need in order to use the Extended I/O System. The 
discriptions that follow state explicitly from which pool the RAM is 
taken. You should use this information when deciding how large to make 
the memory pools of the jobs in your application. Be aware that this 
information applies only to the current release of the iRMX 86 Operating 
System and may shrink or grow in future releases. 

ATTACHING A LOGICAL DEVICE 

Each time one of your tasks uses the LOGICAL$ATTACH$DEVICE system call, 
the Extended I/O System uses 112 bytes of RAM from your job's pool and 
100 bytes of RAM from the pool of the Extended I/O System job created 
during the configuration process. This RAM is in addition to the RAM 
required by the Basic I/O System for a device connection. 

B-1 



OBJECT TYPES AND RESOURCE REQUIREMENTS 

Both quantities of RAM are eventually returned to the memory pools from 
which they originated, but they are returned at different times. The 
memory taken from the Extended I/O System pool is returned only when the 
device is detached. In contrast, the memory taken from your job's pool 
is returned as soon the LOGICAL$ATTACH$DEVICE system call is finished 
running. 

CREATING AN I/O JOB 

Whenever one of your tasks creates an I/O job, the Extended I/O System 
uses 200 bytes of RAM from the pool of the I/O job being created. This 
RAM is in addition to the RAM used by the Nucleus to create the job. All 
of this memory will be returned to the pool of the parent job after the 
I/O job has been deleted. 

In addition to the memory requirement, the CREATE$IO$JOB also requires 
five entries in the object directory of the I/O job being created. Refer 
to Appendix D to see how these entries are used. 

OPENING A CONNECTION 

Whenever one of your tasks uses the S$OPEN system call to open a file 
connection, the Extended I/O System uses some RAM from the pool of the 
calling job to create objects. The precise amount of RAM required 
depends upon whether the connection is opened for buffered I/O or 
nonbuffered I/O. If the connection is not buffered, the Extended I/O 
System uses 150 bytes of RAM. On the other hand, if the connection is 
buffered, you must use the following expression to compute the amount of 
RAM used as a function of the buffer size (S) and the number of buffers 
(N) : 

number of bytes = 150 + N(S + 80) 

Regardless of whether the connection is buffered, all RAM is returned to 
the-memory pool when the connection is closed or deleted. 

OTHER RAM REQUIREMENTS 

For system calls other than those discussed above, the Extended I/O 
System has varying memory requirements. However, you can safely assume 
that the Extended I/O System will use no more than 300 bytes of your 
job's RAM during each system~call. This RAM will be returned to your 
job's pool as soon as each/system calL finishes running. 

B-2 



OBJECT TYPES AND RESOURCE REQUIREMENTS 

OBJECT COUNTS 

Because each job has a maximum number of objects that it can own, you 
should be aware of the number of objects that the Extended I/O System 
creates while executing system calls. You can assume that the Extended 
I/O System creates no more than 10 objects during the execution of any 
system call. 

Furthermore, except in a few cases, all of these objects are deleted 
before the system call has finished running. The few exceptions are the 
system calls that explicitly create objects at the request of your 
application tasks. Two examples of system calls that explicitly create 
objects are the S$ATTACH$FILE system call (which creates a device 
connection) and the LOGICAL$ATTACH$DEVICE system call (which creates a 
device connection). 

B-3 





APPENDIX C. CONDITION CODES 

The iRMX 86 Extended I/O System uses condition codes to inform your tasks 
of any problems that occur during the execution of a system call. If no 
problems occur and the system call runs to completion, the Extended I/O 
System returns an E$OK condition code. Otherwise, the Extended I/O 
System returns an exceptional condition code. 

The meaning of a specific exceptional condition code depends upon the 
system call that returns the code. For this reason, this appendix does 
not list any interpretations. 

The purpose of this appendix is to provide you with the numeric value 
associated with each condition code that the Extended I/O System can 
return. To use the exception code values in a symbolic manner, you can 
assign (using the PL/M-86 "literally" statement) a meaningful name to 
each of the codes. 

The following list correlates the name of the condition code (as 
described in Chapter 8 of this manual) to the value that is actually 
returned by the Extended I/O System. The list is divided into three 
parts; one for normal condition codes, one for exception codes indicative 
of a programming error, and one for exception codes indicative of an 
environmental error. 

NORMAL CONDITION CODE 

NAME OF CONDITION 

E$OK 

PROGRAMMING EXCEPTION CODES 

NAME OF CONDITION 

E$IFDR 
E$NOPREFIX 
E$NOT$CONNECTION 
E$NOT$DEVICE 
E$NOT$PREFIX 
E$NOT$SUPPORTED 
E$NOUSER 
E$OVERFLOW 
E$PARAM 
E$TYPE 
E$ZERO$DIVIDE 

HEXADECIMAL VALUE 

Oh 

HEXADECIMAL VALUE 

8020h 
8022h 
8042h 
8041h 
8040h 
8005h 
8021h 
8001h 
8004h 
8002h 
8000h 

C-l 



ENVIRONMENTAL EXCEPTION CODES 

NAME OF CONDITION 
-

E$BUSY 
E$CANNOT$CLOSE 
E$CONTEXT 
E$DEVFD 
E$DIR$END 
E$EMPTY$ENTRY 
E$EXIST 
E$FACCESS 
E$FEXIST 
E$FLUSHING 
E$FNEXIST 
E$FTYPE 
E$IDDR 
E$IO 
E$IOMEM 
E$LIMIT 
E$LOG$NAME$NEXIST 
E$MEDIA 
E$MEM 
E$NOT$CONFIGURED 
E$PREFIX$SYNTAX 
E$SHARE 
E$SPACE 
E$STATE 
E$SUPPORT 
E$TIME 

CONDITION CODES 

HEXADECIMAL VALUE 

3h 
41h 
5h 
22h 
25h 
24h 
6h 
26h 
20h 
2Ch 
21h 
27h 
2Ah 
2Bh 
42h 
4h 
45h 
44h 
2h 
8h 
40h 
28h 
29h 
7h 
23h 
Ih 

C-2 



APPENDIX D. USE OF OBJECT DIRECTORIES BY THE EXTENDED I/O SYSTEM 

The Extended I/O System catalogs entries in the object directory of each 
I/O job and in the object directory of the system's root job_ This 
appendix provides a list of the names that the Extended I/O System uses. 
The reason for providing this list is to allow you to ensure that you do 
not accidentally redefine any of these names. 

RQGLOBAL 

R?IOJOB 

R?MESSAGE 

R?USER 

$ 

The Extended I/O System uses this name to identify 
the global job for each I/O job. Whenever you 
create an I/O job, the Extended I/O System 
automatically catalogs the token for the global job 
in the object directory of the I/O job. If you 
wish to redefine this name, you may. But be aware 
that doing so may alter the interpretation of any 
logical names that are cataloged in the object 
directory of your job's global job. 

Whenever you create an I/O job, the Extended I/O 
System catalogs an object under this name in the 
object directory of the I/O job. Do not redefine 
this name! 

Whenever you create an I/O job, the Extended I/O 
System catalogs an object under this name in the 
object directory of the I/O job. Do not redefine 
this name! 

The Extended I/O System uses this name to catalog 
the default user for each I/O job. Be aware that 
if you use the CATALOG$OBJECT system call to alter 
the definition associated with this name, you will 
change your job's default user. Furthermore, if 
you catalog an object other than a user object 
under this name, the Extended I/O System will 
generate exceptional conditions codes whenever your 
tasks attempt to access a named file. 

The Extended I/O System uses this name to catalog 
the default prefix for each I/O job. If you modify 
the definition associated with this name by 
invoking the CATALOG$OBJECT system call, you will 
be changing the job's default prefix. Furthermore, 
if you catalog an object other than a device 
connection or a file connection under this name, 
the Extended I/O System will generate an 
exceptional condition code whenever you attempt to 
use the default prefix. 

D-l 



USE OF OBJECT DIRECTORIES BY THE EXTENDED I/O SYSTEM 

With the exception of RQGLOBAL and $, you should not use the 
CATALOG$OBJECT system call to modify any of the definitions described 
above. If you do change any of them, you may cause the Extended I/O 
System to behave in an unexpected, unpredictable, and undesirable manner. 

The Extended I/O System uses object directories for two other purposes: 

• Whenever you use the CATALOG$CONNECTION system call to define a 
logical name for a connection, the Extended I/O System catalogs 
the connection in the object directory of the job that you 
specify. 

• Whenever you use the LOGICAL$ATTACH$DEVICE system call, the 
Extended I/O System catalogs the device connection in the object 
directory of the system's root job. 

D-2 



APPENDIX E. COMPATIBILITIES BETWEEN THE TWO SYSTEMS 

Many of the system calls in one I/O System have counterparts in the other 
I/O System. For example, the A$CREATE$FILE system call of the Basic I/O 
System performs a function analogous to the S$CREATE$FILE system call of 
the Extended I/O System. So it is reasonable to ask if connections 
created by one system can be used by the other. 

The answer is yes, unless the connection is open. For example, your 
application system can use the S$CREATE$FILE system call of the Extended 
I/O System to create a file and obtain a connection to the file. Because 
the connection is not open, your application system can use the 
connection with any system call of the Basic I/O System that does not 
require an open connection. For instance, the connection can be used 
with A$RENAME$FILE or with A$GET$FILE$STATUS because neither of these 
system calls require that the connection be open. However, the 
connection cannot be used with A$READ or A$WRITE because both of these 
system calls require that the connection be open. 

The same restriction applies if the connection is created using the Basic 
I/O System. The connection can be used with any system call of the 
Extended I/O System so long as the system call does not require an open 
connection. 

In general, you can create, delete, check status, or attach using either 
kind of system call. But once you have opened the connection, you must 
use a read, write, truncate, or special-function system call provided by 
the I/O System that you used to open the connection. Then, once you have 
closed the connection, you can again use system calls from either I/O 
System. 

~l 





INDEX 

For most topics with multiple-pa.ge references, the primary reference is 
underscored. 

$ 4-6, 4-8, 5-19, D-l 

access control 3-4, 3-5, 5-1 
access list 5-10 
asynchronous system calls 2-2 

Basic I/O System 2-1, 5-18, E-l 
blocking 3-6 
buffer size 3-6 
buffering 2-2, 3-5 
BYTE A-I 

condition codes 8-1, C-l 
connection 3-4, 4-3, 5-3, 6-1 
CATALOG $ OBJECT 5-19, D-2 
CREATE $ IO$JOB 4-7, 5-18, 8-4 
CREATE$USER 5-9 5-18 5-ZO-, , 

data types A-I 
data files 5-1 
default prefix 4-6, 4-8 
default user 4-6, 5-9 
DELETE$USER 5-9, 5-18, 5-20 
device connection 4-3, 6-1 
device independence~-2 
devices 3-1, 4-2 
directories 5=r-

EXIT$IO$JOB 4-7, 5-18, 8-12 
Extended I/O System 2-1~1 

file connection 3-4, 4-3, 5-3, 6-1 
file independence 5-2~6-2, 7-1 
file sharing 3-4, 4-3 
file pointer 3-4, 4-3 
files 3-2, 4-2 

named files 3-3, 5-1 
physical files 3-3, 6-1 
stream files 3-3, 7-1 

GET$DE~AULT$PREFIX 5-19, 5-20 
GET$DEFAULT$USER 5-9, 5-19, 5-20 
global job 3-7, 4-6 
group 5-7 --

Index-l 



INDEX <continued} 

I/O job 4-6 
ID list 5-8 
INSPECT$USER 5-9, 5-18, 5-20 
INTEGER A-I 
intertask communication 3-3 

local job 4-5 
LOGICAL$ATTACH$DEVICE 5-14, 6-2 
LOGICAL$DETACH$DEVICE 5-14, 6-4 
logical names 3-7, 4-4, 5-3, 5-17 

interpretation 4-5 
syntax 4-5 

LOOKUP$OBJECT 5-19 
LOOK$UP$CONNECTION 4-5 

memory requirements 2-3, B-1 

named files 3-3, 5-1 
data files 5--1-
directories 5-1 

Nucleus 5-18 

object directories 3-7, 4-4, D-l 
object counts B-1 
object types B-1 
OFFSET A-I 
organization of manual 1-1 

path 5-2, 5-4 
syntax for named files 5-5 

path$ptr parameter 4-4, 4-7 
performance 2-3 
physical files 3-3, 6-1 
POINTER A-I 
prefix 5-4 

R?USER 4-6, 5-19, D-l 
root directory 5-2--
root job 3-7,4-44-"6 
RQGLOBAL 3-7, 4-6, D-l 

S$ATTACH$FILE 4-4, 5-3, 5-4, 5-12, 5-13, 6-2, 7-2, 7-3, 8-15 
S$CATALOG$CONNECTION 5-17, 7-2, 8-20 
S$CHANGE$ACCESS 5-4, 5-10, 5-12, 5-16, 5-20, 8-23 
S$CLOSE 5-3 5-14 6-4 7-3 7-4 8-30 --, , , , , --
S$CREATE$DIRECTORY 5-4, 5-10, 5-12, 5-13, 8-33 
S$CREATE$FILE 5-4, 5-10, 5-12, 5-13, 6-2, 7-2, 8-38 
S$DELETE$CONNECTION 5-3, 5~13, 5-17, 6-4, 7-3, 7-4, 8-45 
S$DELETE$FILE 5-4, 5-10, 5-12, 5-16, 8-48 
S$GET$CONNECTION$STATUS 5-3, 5-16, 5-~8-53 
S$GET$FILE$STATUS 5-4, 5-15, 5-16, 5-20, 8-57 
S$LOOKUP$CONNECTION 5-17, 8-66 --
S$OPEN 4-4 5-3 5-14 6-3--r=3 8-69 , , , , , --
S$READ$MOVE 5-3, 5-10, 5-15, 6-3, 7-4, 8-73 
S$ RENAME $ FILE 5-4, 5-10, 5-16, 5-21, 8-~ 

Index-2 



INDEX (continued) 

S$SEEK 4-4, 5-3, 5-15, 6-3, 8-83 
S$SPECIAL 5-3, 5-17, 5-20, 6~8-87 
S$TRUNCATE$FILE 5-3, 5-10, 5-16, 8-96 
S$UNCATALOG$CONNECTION 5-17, 7-4, 8-99 
S$WRITE$MOVE 5-3, 5-10, 5-15, 6-3, 7-3, 8-101 
SET$DEFAULT$PREFIX 5-19, 5-20 
SET$DEFAULT$USER 5-9, 5-19, 5-20 
STRING A-I 
stream files 3-3, 7-1 
subpath 5-4 
synchronous system calls 2-2 
system call dictionary 8-1 
system calls 8-1 
system programmer 4-1 

TOKEN A-I 

UNCATALOG$OBJECT 5-19 
user 5-7 
user object 5-8, 5-18 

volume 4-2, 5-1, 6-1 

World 5-8 
WORD A-I 

Index-3 





REQUEST FOR READER'S COMMENTS 

iRMX 86™ 
Extended I/O System 

Reference Manual 
143308-001 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with -10 being the best rating. _____ _ 

NAME __________________________________________________ DATE ____________ _ 

TITLE 

COMPANY NAME/DEPARTMENT ____ ~ ________________________________________ ~_ 

ADDRESS _________________________________________________________________ _ 

CITY --_______________________ STATE ___ ZIP CODE ___ __ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this 
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

I ntel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

O.M.S. Technical Publications 

""" 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


