
iRMX 86™ 
LOADER REFERENCE MANUAL 

Manual Number: 143318-001 

Copyright © 1981, Intel Corporation 
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I 



-
PRINT REV. REVISION HISTORY 
DATE 

-001 Original Issue - Reflects Release 3.0 of the 5/81 
iRMX 86 Operating System. This manual 
contains some information that formerly 
was in the iRMX 86 1/0 System and Loader 
Reference Manual. 

Additional copies of this manual or other Intel literature may be obtained from: 

Literature Department 
Intel Corporation 
3065 Bowers Avenue 
Santa Clara, CA 95051 

The information in this document is subject to change without notice. 

Intel Corporation makes no warranty of any kind with regard to this material, including, but 
not limited to, the implied warranties of merchantability and.fitness for a particular purpose. 
Intel Corporation assumes no responsibility for any errors that may appear in this document. 
Intel Corporation makes no commitment to update nor to keep current the information 
contained in this document. 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry 
embodied in an Intel product. No other circuit patent licenses are implied. 

Intel software products are copyrighted by and shall remain the property of Intel 
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software 
license, or as defined in ASPR 7-104.9(a)(9). . 

No part of this document may be copied or reproduced in any form or by any means without 
the prior written consent of Intel Corporation. 

The following are trademarks of Intel Corporation and its affiliates and may be used only to 
identify Intel products: 

BXP 
CREDIT 
i 
ICE 
iCS 
im 
Insite 
Intel 

Intel 
Intelevision 
Intellec 
iRMX 
iSBC 
iSBX 
Library Manager 
MCS 

Megachassis 
Micromap 
Multibus 
Multimodule 
PROMPT 
Promware 
RMX/80 
System 2000 
UPI 
tJScope 

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix. 

11 IA548/282/3.5 K Dol 



PREFACE 

This manual documents the iRMX 86 Bootstrap and Application Loaders. It 
contains some introductory and overview material, as well as detailed 
descriptions of the system calls of the Application Loader. The system 
calls described in this manual can be used by application programmers. 
Other system calls, reserved for s'ystem programmers, are descri bed in the 
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL. 

READER LEVEL 

This manual is written for application programmers who are already 
familiar with: 

• The concepts and terminology introduced in the iRMX 86 NUCLEUS 
REFERENCE MANUAL. 

• The PL/M-86 programming language. 

• The concepts and terminology introduced in the iRMX 86 BASIC I/O 
SYSTEM REFERENCE MANUAL. 

• The concepts and terminology introduced in the iRMX 86 EXTENDED 
I/O SYSTEM REFERENCE MANUAL. 

• The LINK86 and LOC86 commands and their controls, as described in 
the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED 
DEVELOPMENT SYSTEMS and in the 8086 FAMILY UTILITIES USER'S GUIDE 
FOR 8080/808S-BASED DEVELOPMENT SYSTEMS. 

CONVENTIONS 

This manual uses a generic shorthand to refer to system calls. For 
example, A$LOAD is used to refer to RQ$A$LOAD. The actual PL/M-86 
external procedure names are shown only in Chapter 7, which describes the 
system calls of the Application Loader. 

Although Chapter 7 lists only the PL/M-86 calling sequences, you can 
invoke the system calls from programs written in assembly language. If 
you need to use assembly language invocation, refer to the iRMX 86 
PROGRAMMING TECHNIQUES manual. 

iii 



RELATED PUBLICATIONS 

In several places, this manual refers to other Intel documentation. 
Wherever such references occur, this manual lists only the title of the 
document to which reference is being made. The following list provides 
the document numbers. 

Manual 

Introduction to the iRMX 86 111 Operating System 

iRMX 86111 Nucleus Reference Manual 

iRMX 86111 Basic I/O System Reference Hanual 

iRMX 86111 Extended I/O System Reference Manual 

iRMX 86 111 System Programmer's Reference Manual 

iRMX 86111 Configuration Guide 

iRMX 86 111 Installation Guide 

Guide to Writing Device Drivers for the iRMX 86 111 I/O System 

iRMX 86 111 Programming Techniques 

iRMX 86111 Human Interface Reference Manual 

iAPX 86,88 Family Utilities User's Guide for 
8086-Based Development Systems 

8086 Family Utilities User's Guide for 
8080/808S-Based Development Systems 

PL/M-86 User's Guide for 8086-Based Development Systems 

PL/M-86 Compiler Operating Instructions 
for 8080/808S-Based Development Systems 

iv 

Number 

9803124 

9803122 

9803123 

143308 

142721 

9803126 

9803125 

142~26 

142982 

9803202 

121616 

9800639 

121636 

9800478 



CONTENTS 

CHAPTER 1 
ORGANIZATION OF THIS MANUAL •.••.•••.••••.•••••.•••.•••.•......••.•. 

CHAPTER 2 
INTRODUCTION 
Introduction to the Bootstrap Loader •..••••••..•••. 

Bootstrap Loader and Simplified ~~intenance •••••• 
Bootstrap Loader and Options in Your Product ••. 

Introduction to the Application Loader •••••••••••• 
Summa. ry .......................................... . 

CHAPTER 3 
USING THE BOOTSTRAP LOADER 
Terminology of the Bootstrap Loader •••••••••••.•••••••.•••••••••••• 

First and Second Stages •••••••••••••••••••••••••••••••••••••••••• 
Device Drivers •••••••••••• 
File to be Loaded ••••••••• 
End Use r ••••••••••••••••••••••••••••.•••••••.••.••••••••.•••••.•. 

Options of the First Stage ••••••••••••••••••••••••••••••••••••••••• 
Location of the First Stage •••••••••••••••••.•••••••••••••••••••• 
Location of the Second Stage in RAM •••••••••••••••••••••••••••••• 
Method to be Used for Selecting the Device ••••••••••••••••••••••• 

No Selection ••••••••••••• 
Automatic Selection. 
Manual Selection .............................................. . 

Method to be Used for Selecting the File to be Loaded •.••••.•.••. 
Requirements of the File to be Loaded •••••••••••••••••••••••••• 
Loading a Default File ••.•••••••••••••••••.•.•.•••••.•••.••••.. 
Allowing the End User to Specify a File ••••• 

Putting the Second Stage on the Volume ••••••••.• 
Invoking the Bootstrap Loader................... • ••••••••••••• 

Automatic Invocation Upon Request •••••••••••••...•••..••..••••••. 
Invocation Under Program Control ••••••••••••••••••••••••••••••••• 

How the First Stage Communicates with a Terminal ••••••••••.•••••••• 
Error Processing ••••••••••••••••••••••••••••••••••••••••••••••••••• 

CHAPTER 4 
DEVICE DRIVERS FOR THE BOOTSTRAP LOADER 
DEVICE$INIT Procedure •••••••••••••••••••••••••••••••••••••••••••••. 
DEVICE$READ Procedure •••••••••••••••••••••••••••••••••••••••••••••. 

v 

PAGE 

1-1 

2-1 
2-1 
2-2 
2-2 
2-2 

3-1 
3-1 
3-2 
3-3 
3-3 
3-3 
3-4 
3-4 
3-5 
3-5 
3-5 
3-6 
3-6 
3-7 
3-7 
3-8 
3-10 
3-10 
3-10 
3-11 
3-11 
3-11 

4-2 
4-2 



CONTENTS (continued) 

CHAPTER 5 
USING TijE APPLICATION LOADER 
Loader Terminology •••••••••••••••••••••••••••••.••••••••••••••••••• 

Object Code •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Object Module •••••••••••••••••••••••••••••••••••••••••••••••••••• 
Object File ......•........•...........•.......................... 
Synchronous Sys tem Call •••••••••••••••••••••••••••••••••••••••••• 
Asynchronous System Call ••••••••••••••••••••••••••••••••••••••••• 
Absolu te Code ................................................... . 
Position Independent Code (PIC) •••••••••••••••••••••••••••••••••• 
Load-Time Locatable (LTL) Code ••••••••••••••••••••••••••••••••••• 
F ixu p •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
I/O Job ..........•............................................... 
Overlay ......................................................... . 
Root Module and Overlay Modules •••••••••••••••••••••••••••••••••• 

Loader Features •••••••••••••••••••••••••••••••••••••••••••••••••••• 
Device Independence •••••••••••••••••••••••••••••••••••••••••••••• 
Ability to Load Three Kinds of Code •••••••••••••••••••••••••••••• 
Choice of Loading Methods ••••••••••••••••••••••••••••••••.••••.••• 

Preparing Code for Loading ••••••••••••••••••••••••••••••••••••••••• 
Development Systems ••••••••••••••••••••••••••••••••••••.•.••••••• 
PL/M-86 Models of Computation •••••••••••••••••••••••••••••••••••• 

PL/M-86 Small Model .....•.....•................................ 
PL/M-86 Medium and Large Models •••••••••••••••••••••••••••••••• 
PL/M-86 Compact· Model ••••••••••••••••••.••••••••••.•.• ~ •••••••• 

Invoking iRMX 86 System Calls •••••••••••••••••••••••••••••••••••• 
Entry Points and Stack Sizes •••••••••••••••••••••••••••.••••••••• 

Using a Main Module •••••••••••••••••••••••••••••••••••••••••••• 
Using a Procedure •••••••••••••••••••••••••••••••••••••••••••••• 

CHAPTER 6 
ASYNCHRONOUS SYSTEM CALLS •••••••••••••••••••••••••••••••••••••••••• 

CHAPTER 7 
SYSTEM CALLS OF THE APPLICATION LOADER 
Response Mailbox Parameter ••••••••••••••••••••••••••••••••••••••••• 
Condition Codes •••••••••••••••••••••••••••••••••••••••••••••••••••• 

Condition Codes for Synchronous System Calls ••••••••••••••••••••• 
Condition Codes for Asynchronous System Calls •••••••••••••••••••• 

Sequential Condition Codes ••••••••••••••••••••••••••••••••••••• 
oncurren t on t on 0 es ••••••••••••••••••••••••••••••••••••• 

A$LOAD ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
A$LO.AD$IO$JOB •••••••••••••••••••••••••••••••••••••••..••.•••••••• 
S $LOAD$IO$JOB ••••• e .•••••••••••••••••••••••••••••••••••••••••••••• 

S$OVERLAY ••••••••••••••••••••••••••.• ••••••••••••••••••••••.•••••• 

vi 

PAGE 

5-1 
5-2 
5-2 
5-2 
5-2 
5-2 
§-3 
5-3 
5-3 
5-3 
5-4 
5-4 
5-4 
5-5 
5-5 
5-6 
5-7 
5-7 
5-8 
5-8 
5-9 
5-9 
5-9 
5-10 
5-10 
5-10 
5-12 

6-1 

7-1 
7-2 
7-2 
7-2 
7-2 
-2 

7-3 
7-13 
7-24 
7-31 



CONTENTS (continued) 

PAGE 
APPENDIX A 
DATA TypES......................................................... A-I 

APPENDIX B 
CONDITION CODES 
Normal Condition Code.......... •• •• •• ••• • •••••• .• •• •• • •• •• •. ••• •• •• B-1 
Programming Exception Codes........................................ B-2 
Environmental Exception Codes...................................... B-2 

FIGURE 

6-1. Concurrent Behavior of an Asynchronous System Call ••••••••• 6-2 

TABLE 

3-1. Postmortum Analysis of Bootrap Loader Failure •••••••••••••• 3-12 

vii 





CHAPTER 1. ORAGNIZATION OF THIS MANUAL 

This manual is divided into seven chapters. Some of the chapters contain 
introductory and instructional information, while others contain 
reference information. The following list will help you decide which 
chapters to read. 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

This chapter describes the organization of the manual. You 
should read this chapter if you are using the manual for the 
first time. 

This chapter describes the differences between the Bootstrap 
Loader and the ·Application Loader. It also gives examples of 
applications that could advantageously use the loaders. 

This chapter discusses the features of the Bootstrap Loader. 
Because the Bootstrap Loader has no system calls, this is the 
chapter to which you should refer when you have questions 
aqout the capabilities of the Bootstrap Loader. 

This chapter provides guidance for writing a device driver to 
be used with the Bootstap Loader. You should refer to this 
chapter only if your system must bootstrap load from a device 
other than those for which Intel has supplied drivers. 

This chapter describes the features of the Application 
Loader. You should read this chapter before you refer to 
Chapter 7 for the first time. 

This chapter explains how you can advantageously use the 
asynchronous system calls of the Application Loader. 

This chapter describes the system calls of the Application 
Loader. 

1-1 





CHAPTER 2. INTRODUCTION 

The iRMX 86 Operating System provides two loaders: the Bootstrap Loader, 
and the Application Loader. This chapter briefly describes the 
differences between the two. 

INTRODUCTION TO THE BOOTSTRAP LOADER 

The purpose of the Bootstrap Loader is to provid~ a means of loading part 
or all of your application system from secondary storage into RAM 
(random-access memory) whenever the iAPX 86 processor is reset. Although 
this purpose -seems remarkably simple, the Bootstrap Loader can provide 
your application system with a significant amount of flexibility. Let's 
look at two examples, both of which sholv how the Bootstrap Loader can 
reduce your expenses-

BOOTSTRAP LOADER AND SIMPLIFIED MAINTENANCE 

After you have developed and manufactured your product (your application 
system), you distribute the product to "the field." If you are an OEM 
(original equipment manufacturer) you sell the product to customers, and 
if you are a VEU (volume end user) you provide the product to your 
employees or subsidiaries. 

In either case, you must be concerned with maintenance. Suppose that 
after the product has been in use for several years, you find a means of 
improving it. If your product does not include the Bootstrap Loader, 
your application software resides in ROM (read-only memory). This means 
that to make changes to the systems in the field, you must produce new 
ROM chips that contain the changed software, and you must install the 
chips in the systems. This is a relatively expensive process because it 
involves sending engineers to your customers to upgrade the product. 

In contrast, if your product does incorporate the Bootstrap Loader, you 
need not manufacture and install new ROM chips. Instead, you can place 
the revised software on flexible diskettes and mail the diskettes to your 
customers (if you are an OEM) or employees (if you are a VEU). They 
simply replace the old diskettes with the new diskettes. Then, whenever 
they start up the system, the Bootstrap Loader reads the updated software 
into RAM (random-access memory). 

This example shows how the Bootstrap Loader can simplify the process of 
updating the application system by: 

• reducing the number of customer visits you must make. 

• eliminating the need to manufacture new ROM chips-

You can use the same technique to distribute corrected software to your 
customers whenever you correct a bug in your application software. 

2-1 



INTRODUCTION 

BOOTSTRAP LOADER AND OPTIONS IN YOUR PRODUCT 

Suppose that the hardware of your product can be used for several 
purposes or applications. For instance, suppose your product consists of 
one or more flexible diskette drives, a printer, a terminal, and a box 
containing the iAPX 86 microprocessor, related memory boards, and 
interface boards. This collection of hardware can be used to construct a 
word processor, a data base system, a payroll system, a reprogrammable 
computer, or other application systems. The only difference between all 
these applications is the software included in the system. 

When your customers have the Bootstrap Loader, you can place the 
application software on a flexible diskette rather than in the system's 
ROM. Then the only difference between all these systems is the kind of 
diskette that you sell the customer. If your customers need a word 
processor, sell them the word processing diskette. If they need a data 
base system, sell them the data base diskette. If they need both, sell 
them both diskettes. 

INTRODUCTION TO THE APPLICATION LOADER 

The purpose of the Application Loader is similar to that of the Bootstrap 
Loader in that both load code from secondary storage into RAM. The 
difference' is that the Application Loader allows your tasks to control 
the loading operation. 

By allowing your tasks to load programs from secondary storage, the 
iRMX 86 Application Loader reduces the amount of memory required. 
Programs that are used only intermittently can remain on secondary 
storage until they are required. Then one of your tasks can load them 
and start them running. After a loaded program has finished running, the 
memory it occupied can be used for other purposes. 

Also, the Application Loader allows you to implement large programs by 
using overlays. For example, suppose that your application system 
includes a large compiler. By dividing the compiler into several parts, 
you can avoid keeping the entire compiler in RAM at one time. One of the 
parts, called the root, remains in RAM as long as the compiler is running 
and uses the Application Loader to load the other parts, called overlays. 

SUMMARY 

The iRMX 86 Operating System provides two kinds of loaders -- a Bootstrap 
Loader, and an Application Loader: 

• The Bootstrap Loader is generally invoked only when the 
application system starts running. Consequently the Bootstrap 
Loader does not provide any system calls. 

2-2 



INTRODUCTION 

• The Application Loader, which does provide system calls, allows 
your tasks to load programs from secondary storage into memory. 
This loader allows large programs to run in systems that haven't 
enough memory to accommodate the entire program-at one time, and 
it allows programs that are seldom used to reside on secondary 
storage rather than in primary memory. 

If you are interested in obtaining more information about the Bootstrap 
Loader, refer to Chapter 3. For additional information about the 
Application Loader, refer to Chapter 5. 

2-3 





CHAPTER 3. USING THE BOOTSTRAP LOADER 

The iRMX 86 Bootstrap Loader exists for one purpose. It allows you to 
store your application software and the large majority of the iRMX 86 
software on secondary storage rather than in ROM (read-only memory). 
Whenever the iAPX 86 microprocessor is reset, the Bootstrap Loader loads 
the Operating System and the application software into RAM (random-access 
memory) and transfers control to the Operating System. 

In spite of its straightforward reason for existence, the Bootstrap 
Loader does have a number of features, some of which 'are optional. You, 
the OEM or VEU, can decide which of these features are useful for your 
product. Then, during process of configuring your application system, 
you can include the features you want and exclude the features you don't 
want. 

TERMINOLOGY OF THE BOOTSTRAP LOADER 

The following terms are used frequently in this chapter: 

• first and second stage 

• device drivers 

• file to be loaded 

• end user 

You must become familiar with these terms in order to understand the rest 
of this chapter. The following few paragraphs define the terms. 

FIRST AND SECOND STAGES 

The Bootstrap Loader consists of two parts -- the first stage and the 
second stage. Only the first stage resides in ROM. It starts running 
whenever the iAPX 86 microprocessor is reset. The purpose of the first 
stage is threefold: 

• First, it ascertains which secondary storage device contains the 
file to be loaded. 

• Second, it ascertains which file is to be loaded. 

• Third, it loads and passes control to part of the second stage-

3-1 



USING THE BOOTSTRAP LOADER 

The second stage resides on secondary storage. Specifically, it resides 
on the device from which the Bootstrap Loader loads your software. The 
purpose of the second stage is to complete the bootstrapping process by 
performing the following steps: 

• First, it finishes reading itself into main memory. 

• Second, it finds the file to be loaded (the file containing the 
Operating System and application software). 

• Third, it loads the file into main memory. 

• Fourth, it transfers control to the loaded file. 

The details of the first and second stages are discussed later in this 
chapter. 

DEVICE DRIVERS 

The Bootstrap Loader can be used with any kind of secondary storage 
device. Disks, flexible diskettes, bubble memories, magnetic tapes 
the Bootstrap, Loader will work with any of them. However, for each 
device with which you wish to use the Bootstrap Loader, you must have a 
device driver. 

A device driver is a collection of procedures that allows the Bootstrap 
Loader to communicate with the device that contains the file to be 
loaded. Device drivers for the Bootstrap Loader differ from the drivers 
required by the Basic I/O and Extended I/O Systems. Because of this 
difference, Chapter 4 of this manual contains instructions for writing 
device drivers for the Bootstrap Loader. 

However, there is an excellent chance that you will not need to write a 
device driver. The iRMX 86 product includes device drivers for all of 
the following random-access devices: 

• iSBC 204 Flexible Diskette Controller 

• iSBC 206 Flexible Diskette Controller 

• iSBC 215 Winchester Disk Controller 

• iSBX 218 Multimodule Flexible Diskette Controller (single density 
only) when used with the iSBC 215 controller 

• iSBC 254 Bubble Memory Controller 

Since these drivers are part of the iRMX 86 product, you need only attach 
the driver or drivers that you want to the Bootstrap Loader. The method 
for doing this is discussed in the iRMX 86 CONFIGURATION GUIDE. 

3-2 



USING THE BOOTSTRAP LOADER 

FILE TO BE LOADED 

The iRMX 86 Bootstrap Loader loads one file from a secondary storage 
device. This file (which is called the "file to be loaded") must be a 
named file. (For a description of named files, refer to either the 
iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL or the iRMX 86 EXTENDED I/O 
SYSTEM REFERENCE MANUAL.) For information about the creation of this 
file, refer to the section of this chapter entitled "Requirements of the 
File to Be Loaded." 

END USER 

An end user is a person who will be using the application system that you 
are creating. For instance, if you are building equipment for use in 
hospitals, your end users are the doctors, nurses, or technicians who 
will be running the equipment. Throughout this chapter, you will find 
explanations that correlate your actions during configuration to features 
provided to your end users. 

OPTIONS OF THE FIRST STAGE 

The first stage of the Bootstrap Loader consists of two parts. One part 
is device driver software and the other is the software that loads the 
second stage. Both parts must reside in ROM. 

The amount of memory needed by the device drivers depends upon how many 
device drivers you choose to include in the Bootstrap Loader. Each 
driver requires between 300 and 500 (decimal) bytes of ROM with the 
precise number depending upon the device. The process of writing a 
device driver for the Bootstrap Loader is discussed in Chapter 4 of this 
manual. The process of incorporating a device driver into the Bootstrap 
Loader is discussed in the iRMX 86 CONFIGURATION GUIDE. 

The heart of the first stage, the part that loads the second stage, 
requires between 100 and 500 bytes of ROM, with the exact amount being a 
function of the options that you choose to include in the Bootstrap 
Loader. The first stage provides you with four options: 

• the location (in ROM) of the first stage 

• the location (in RAM) at which the first stage is to load the 
second stage 

• the method to be used for selecting the device containing the 
file to be loaded 

• the method to be used for selecting the file to be loaded 

3-3 



USING THE BOOTSTRAP LOADER 

The following sections describe your options in each of these areas. You 
must specify your choices during the process of configuring the system. 
For detailed information as to how to configure the first stage of the 
Bootstrap Loader, refer to the Bootstrap Loader chapter of the iRMX 86 
CONFIGURATION GUIDE. 

LOCATION OF THE FIRST STAGE 

You must decide where in memory you wish to place the first stage. The 
only restriction is that the first stage must be in ROM. And, if you 
wish to have the first stage run whenever the iAPX 86 microprocessor is 
reset, you must use the BOOTSTRAP switch in the LOC86 command when you 
locate the first stage. 

For more details regarding the LOC86 command, refer one of the following 
manuals: 

• If you are using a development system that incorporates an 
iAPX 86 microprocessor (for example, a Series III development 
system), refer to the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE 
FOR 8086-BASED DEVELOPMENT SYSTEMS. 

• If you are using a development system that incorporates only an 
8080 or an 8085 microprocessor (for example, a Series II 
development system), refer to the 8086 FAMILY UTILITIES USER'S 
GUIDE FOR BOBO/8085-BASED DEVELOPMENT SYSTEMS. 

LOCATION OF THE SECOND STAGE IN RAM 

The first stage of the Bootstrap Loader loads the second stage from 
secondary storage into RAM. When you configure the first stage, you must 
specify where in RAM you want it to load the second stage. There are two 
points you must consider when you select the location. First, the second 
stage can be loaded only into RAM that can be accessed by the controller 
o~ the Eootstrap device. Second, you must avoid a conflict between the 
memory of the second stage and the memory required to contain the 
information from the file to be loaded. The reason for the second point 
is that the second stage" is required until the loading process is 
completed. If the file being loaded overlays the second stage during the 
loading process, the loading process will not complete successfully. 

Be aware that the second stage is no longer needed once the bootstrap 
loading process has been completed. This means that the memory occupied 
by the second stage (6144 bytes decimal) can become part of the memory 
pool for your application system. 

In summary, when you specify the location of the second stage during the 
configuration process, heed the following two rules: 

3-4 



USING THE BOOTSTRAP LOADER 

• Place the second stage in RAM locations that are not to be 
occupied by any information in the file to be loaded. If you 
fail to heed this rule, the bootstrap loading process will not be 
successful. 

• During the process of configuration, do not reserve the memory 
occupied by the second stage of the bootstrap loader. By heeding 
this rule, you will ensure that the memory occupied by the second 
stage becomes part of the memory pool of your application system. 

METHOD TO BE USED FOR SELECTING THE DEVICE 

One of the functions performed by the first stage of the Bootstrap Loader 
is the selection of the device from which the information is to be 
loaded. The first stage can use any of three methods for selecting the 
device. During the process of configuring your application system, you 
must tell the Bootstrap Loader which of the three options to use. The 
three options are: 

• no selection 

• automatic selection 

• manual selection 

The following sections discuss each of these methods. 

No Selection 

This option means that during the configuration process, you must specify 
the name of the device from which the file is to be loaded. 

From the point of view of your end user, this option means that the 
bootstrap loading operation always uses a particular device- Whenever 
your end user attempts to bootstrap load, the Bootstrap Loader will check 
to see if the device is ready. If it is ready, the loading operation 
begins. If the device is not ready, the loading operation terminates. 

Automatic Selection 

This option means that, during the configuration process, you must 
specify a list of devices that- can be used for bootstrap loading. Then, 
when the Bootstrap Loader is running, it will cycle through the list 
repeatedly until one of the devices becomes ready. The first ready 
device that the Bootstrap Loader finds is the device to be used in the 
bootstrap loading operation. 

3-5 



USING THE BOOTSTRAP LOADER 

From the point of view of your end user, this option means that bootstrap 
loading can involve any of a collection of devices. To select the 
device, your end user ensures that only one device is ready. Then when 
the user invokes the Bootstrap Loader, it will load from the sole ready 
device. 

Be aware that if you configure your Bootstrap Loader for automatic 
selection and you provide a list of only one device, the behavior of the 
Bootstrap Loader will not be the same as under the no-selection option. 
The difference is that with the no-selection option the Bootstrap Loader 
tests the device once. If the device is not ready, the Bootstrap Loader 
halts. In contrast, with the automatic-selection option, the Bootstrap 
Loader will test the device repeatedly until the device becomes ready. 

Manual Selection 

If you select this option, you must still enter a list of devices during 
the configuration process. The bootstrap loader will use a terminal to 
find out which device your end user wants to load from. If the end user 
specifies no device, or if the end user specifies a device not included 
in your list, the Bootstrap Loader will switch to automatic selection. 

From the point of view of your end users, this option means that the 
Bootstrap Loader will prompt for a device name. The Bootstrap Loader 
will indicate that it is ready to accept a device name by displaying an 
asterisk (*) on the terminal. 

Once your end users see the asterisk, they can enter the device name 
surrounded by colons. For example, to select device FO, your end users 
must enter :FO:. 

After your end user enters the device name, the Bootstrap Loader compares 
the name to the entries in your list of devices. This comparison does 
not differentiate between upper case letters and lower case letters. For 
example, if your list includes the device MTO, and your end user enters 
:mtO:, the Bootstrap Loader would find the device in your list. 

In order to use the manual-selection option you (or your end user) must 
incorporate a terminal in the system. The terminal requires software. 
To ascertain your options regarding this software, refer to the "How the 
First Stage Communicates With a Terminal" section of this chapter. 

METHOD TO BE USED FOR SELECTING THE FILE TO BE LOADED 

One of the functions performed by the first stage of the Bootstrap Loader 
is the selection of the file from which the information is to be loaded. 
The first stage can use either of two methods for selecting the file. 

3-6 



USING THE BOOTSTRAP LOADER 

During the process of configuring your application system, you must tell 
the Bootstrap Loader which of the two options to use. The two options 
are: 

• loading a default file 

• allowing the end user to specify the file 

We will examine each of these options shortly. But before we do, let's 
look at the requirements of the file to be loaded. 

Requirements of the File to Be Loaded 

The iRMX 86 Bootstrap Loader loads information from one named data file. 
If you are unfamiliar with named data files, refer to the iRMX 86 BASIC 
I/O SYSTEM REFERENCE MANUAL or to the iRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL. 

The information in the file must be object code in absolute form. 
However, it can consist of more than one module. For example, it can 
consist of your application software and the software of the iRMX 86 
Operating System. 

To combine .several absolute modules into a single file you must use the 
LIB86 command. For information regarding this command, refer to one of 
the following manuals: 

o If your development system is based on the iAPX 86 microprocessor 
(as is the Series III development system), refer to the 
iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED 
DEVELOPMENT SYSTEMS. 

• If your development system is based on an 8080 or 8085 
microprocessor (as is the Series II development system), refer to 
the 8086 FAMILY UTILITIES USER'S GUIDE FOR 8080/808S-BASED 
DEVELOPMENT SYSTEMS. 

Once the Bootstrap Loader has loaded your file, the Loader will transfer 
control to the start address of. th@... main module in the fil~. When_ 
build! our file be absolutely certain that it includes only one main 
module. If it includes several main modules, t e ootstrap ~ 

-likely to fail.~ally, the start address of the main module is the 
entry point for the iRMX 86 initialization code. 

Now that we have examined the requirements of the file to be loaded,
let's examine the two options that can be used to select the file. 

Loading A Default File 

Unless you specifically configure the Bootstrap Loader to accept the file 
name from the terminal, it will load a default file. The name of the 
default file is /SYSTEM/RMX86. In other words, if you choose to use the 

3-7 



USING THE BOOTSTRAP LOADER 

default-file option, the Bootstrap Loader will start at the root 
directory of the selected device, find a subordinate directory named 
SYSTEM, and then find a data file named RMX86. The Bootstrap Loader will 
then load the data file. 

If the default file does not exist on the bootstrap device, the Bootstrap 
Loader will-halt. 

Allowing the End User to Specify a File 

You can configure the Bootstrap Loader to accept a file name from the 
terminal. If you elect to use this option, the Bootstrap Loader will 
prompt your end user for a file name. The Bootstrap Loader uses an 
asterisk (*) as a prompt character. 

Examples. Be aware that this option can be used either with or without 
manual device selection. However, if you choose to use both this feature 
and manual device selection, your end users have several options: 

• They can enter both a device name and a file name. For example, 

:FO:/wordprocessing 

This example causes the Bootstrap Loader to select device FO and 
the named data file called wordprocessing located in the root 
directory of the device. Because the Bootstrap Loader does not 
distinguish between upper and lower case letters, 
"wordprocessing" could be replaced with "WORDPROCESSING" and the 
result would be the same. 

• They can enter a device name and default the file name. For 
instance, 

:FO: 

This example causes the Bootstrap Loader to load file 
/SYSTEM/RMX86 from :FO:. 

• They can enter a file name but default the device name. For 
example, 

/DATABASE 

This example causes the Bootstrap Loader to use automatic device 
selection. Once the device is selected, the Bootstrap Loader 
examines the root directory of the device, looking for the data 
file called "DATABASE". 

• They can default both the device name and the file name by 
entering only a carriage return. This will cause the Bootstrap 
Loader to use automatic device selection and to load from the 
file named /SYSTEM/RMX86. 

3-8 



USING THE BOOTSTRAP LOADER 

Syntax of File Names. The syntax of the file name is, with one 
exception, identical to the syntax of a subpath in the Basic I/O System. 
The excep~ion relates to the up-arrow (t) character or, as it appears on 
some terminals, the circumflex (~) character. The Bootstrap Loader deems 
invalid any file name containing this character. 

Interpretation of File Names. With one exception, the Bootstrap Loader 
interprets the file name in the same manner that the Basic I/O· System 
interprets subpath parameters for named files. The one exception occurs 
when the file name begins with a character other than a slash (/). 

If your end user enters a file name that does not begin with a slash, the 
Bootstrap Loader will place /SYSTEM/ at the front of the file name 
provided by your end user. For example, if your end user enters the name 

DATABASE 

the Bootstrap Loader will behave as though the end user had entered 

/SYSTEM/DATABASE 

This rule also applies when your end user enters both a device name and a 
file name. For instance, if the end user enters 

:FO:wordprocessing 

the Bootstrap Loader will behave as though the end user had entered 

:FO:/SYSTEM/wordprocessing 

Interpretation of Combinations of Devices and Files. If you configure 
the Bootstrap Loader to use manual device selection and to allow the end 
user to select the file to be loaded, the following rules govern the 
interpretation of the information entered by the end user: 

Q The Bootstrap Loader examines the first character entered. If 
it is a colon (:) the Bootstrap Loader attempts to parse a 
device name. Once it has the device name, it attempts to find 
the device in your device table. If it is unable to find the 
device, it changes from manual device selection to automatic 
device selection, and it reprocesses all of the information 
(including the colon) as though it were simply a file name. 

o If the first character entered is not a colon, the Bootstrap 
Loader switches to automatic device selection and attempts to 
interpret as a file name all of the information entered through 
the terminal. 

3-9 



USING THE BOOTSTRAP LOADER 

Processing Accorded Invalid File Names. If your end user enters a file 
name that is invalid (for instance, one containing an up-arrow), the 
Bootstrap Loader will halt. 

Processing Accorded Files Not on the Device. If the Bootstrap Loader is 
not able to find the file on the bootstrap device, the Bootstrap Loader 
will halt. 

PUTTING THE SECOND STAGE ON THE VOLUME 

Because second stage is read from the bootstrap device into RAM, the 
second stage must somehow be placed on the volume contained by the 
bootstrap device. If you are using Release 2 or a more recent version of 
the iRMX 86 Operatin this placement occurs without an s ecia1 
ffort on rt. Whenever you ormat a volume for use with the 

i 86 Operating System, the formatting process will place the 
stage on the volume. 

~---------------------------------------_/ 

INVOKING THE BOOTSTRAP LOADER 

There are two ways to invoke the Bootstrap Loader. They are: 

• automatic invocation upon reset 

• invocation under program control 

You can provide your user with either or both methods depending upon your 
actions during configuration of your system. The following paragraphs 
describe ·the methods of invocation and the actions that you must take to 
provide your end user with each method. 

AUTOMATIC INVOCATION UPON RESET 

If you choose to provide automatic invocation of the Bootstrap Loader, 
you must use the BOOTSTRAP switch of the LOC86 command when you locate 
the first stage. For details regarding the LOC86 command, refer one of 
the following manuals: 

• If you are using a development system that incorporates an 
iAPX 86 microprocessor (for example, a Series III development 
system), refer to the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE 
FOR 8086-BASED DEVELOPMENT SYSTEMS. 

• If you are using a development system that incorporates only an 
8080 or an 8085 microprocessor (for example, a Series II 
development system), refer to the 8086 FAMILY UTILITIES USER'S 
GUIDE FOR 8080/808S-BASED DEVELOPMENT SYSTEMS. 

3-10 



USING THE BOOTSTRAP LOADER 

From the point of view of your end user, automatic invocation means that 
whenever an operator or the software triggers the RESET signal for the 
iAPX 86 microprocessor, the Bootstrap Loader will start running. For 
instance, if you build a RESET button into your hardware and wire it to 
the RESET signal of the iAPX 86, your end user can invoke the Bootstrap 
Loader by pressing the RESET button. 

~-.·-~----mvOCATION UNDER PROGRAM CONTROL 

You can invoke the Bootstrap Loader from software. To do this, you need 
only jump to the entry point of the Bootstrap Loader which is called 
BOOTSTRAP (a PUBLIC symbol). In other words, just code a jump to 
BOOTSTRAP and define BOOTSTRAP as an EXTERNAL symbol in your module. 
Later, when linking your application software, be sure to link the first 
stage of the Bootstrap Loader. To find the name of the file containing 
the first stage of the Bootstrap Loader, refer to the iRHX 86 
CO~IGURATION GUIDE. 

HOW THE FIRST STAGE COMMUNICATES WITH A TERMINAL 

If you configure the first stage of the Bootstrap Loader to use manual 
device selection or end-user file selection, you must include a terminal 
in your system. Furthermore, because the Terminal Handler is generally 
not in memory when the Bootstrap Loader runs, you must add software to 
allow the Bootstrap Loader to communicate with the terminal. 

There are three ways in which you c?n provide this software: 

• First, you can use the CO (console output) and CI (console input) 
procedures provided by the iSBC 957A package. This option is 
only feasible if your system will always incorporate the 
iSBC 957A package. 

• Second, you can use the Intel-provided source code for CO and 
CI. This source code is provided as part of the iRMX 86 product. 

• Third, you can write your own CO and CI procedures. 

For guidance in implementing your choice, refer to the Bootstrap Loader 
chapter of the iRMX 86 CONFIGURATION GUIDE. 

ERROR PROCESSING 

Some systems using the Bootstrap Loader do not include a terminal. 
Consequently, the Loader does not display error messages when it 
encounters a problem that prevents it from successfully loading your 
software. 

3-11 



USING THE BOOTSTRAP LOADER 

Even so, by noting the behavior of the Bootstrap Loader when it fails to 
successfully load, you can find out the cause of failure and take steps 
to eliminate it. Table 3-1 shows the correlation between the behavior of 
the Bootstrap Loa,der and the possible causes of its failure. 

TABLE 3-1. Postmortum Analysis of Bootstrap Loader Failure 

BEHAVIOR OF LOADER 

Bootstrap Loader halts 
in first stage. 

Bootstrap Loader halts 
in second stage. 

Bootstrap Loader loops 
in first stage. 

Bootstrap Loader loops 
in second stage. 

POSSIBLE CAUSES 

If you are using no device 
selection, your device is not 
ready. 

An I/O error occurred during the 
loading operation. 

The syntax of the file or device 
name is incorrect. 

A checksum error occurred during 
the loading operation. 

The Bootstrap Loader was not able 
to find the specified file on the 
bootstrap device. 

You have configured the Bootstrap 
Loader to use automatic or manual 
device selection, but you have not 
readied the device. 

The Bootstrap Loader is 
attempting to load the system on 
top of the second stage. 

The Bootstrap Loader is attempting 
to load the system into 
nonexistent memory. 

3-12 



CHAPTER 4. DEVICE DRIVERS FOR THE BOOTSTRAP LOADER 

As discussed in Chapter 3, the iRMX 86 Bootstrap Loader can be configured 
to run with many kinds of devices. If you wish to use one of the devices 
for which Intel supplies a device driver, you do not need to read this 
chapter. 

On the other hand, if you wish to use the Bootstrap Loader with a device 
other than those supported by Intel, you must write your own device 
driver. The purpose of this chapter is to provide you with guidelines 
for writing a customized driver. 

A device driver for the Bootstrap Loader must consist of two procedures. 
The Bootstrap Loader calls one of these, the initialization procedure, to 
initialize the bootstrap device before the Loader begins reading from the 
device. The Bootstrap Loader calls the other procedure, the reading 
procedure, to load information from the device. 

For simplified notation, the remainder of this chapter refers to the two 
procedures as DEVICE$INIT, and DEVICE$READ. However, you can actually 
provide them with any name you wish during the process of configuring the 
system. 

Both of the procedures must obey the Large model of the PL/M-86 
programming language. This means that the procedures must be FAR (as 
opposed to NEAR) and all pointers must be 32 bits. For more information 
regarding the PL/M-86 Large model of computation, refer to one of the 
following two manuals: 

• If your development system includes an iAPX 86 microprocessor (as 
in the Series III), refer to the PL/M-86 USER'S GUIDE FOR 
8086-BASED DEVELOPMENT SYSTEMS. 

• If your development system does not include an iAPX 86 
microprocessor (as in the Series II), refer to the PL/M-86 
COMPILER OPERATING INSTRUCTIONS FOR 8080/808S-BASED DEVELOPMENT 
SYSTEMS. 

Be aware that you can write the procedures in assembly language. But if 
you do, you must adhere to the requirements of a PL/M-86 Large procedure. 

4-1 



DEVICE DRIVERS FOR THE BOOTSTRAP LOADER 

DEVICE$INIT PROCEDURE 

The DEVICE$INIT procedure must present the following PL/M-86 interface to 
the Bootstrap Loader: 

DEVICE$INIT: PROCEDURE (UNIT) WORD; 

DECLARE UNIT WORD; 

where UNIT is the device's unit number as defined during configuratlon of 
the Bootstrap Loader. Refer to the iRMX 86 CONFIGURATION GUIDE for more 
information about device unit information. 

The WORD value that is returned by the procedure must be the device 
granularity in bytes. 

The follOWing outline shows the steps that the DEVICE$INIT procedure must 
perform to be compatible with the Bootstrap Loader: 

1) Test to see if the device is present. If it is not, return the 
value zero. 

2) Initialize the device for reading. This is a highly 
device-dependent operation. For guidance in initializing the 
device, refer to the hardware reference manual for the device. 

3) Test to see if device initialization was successful. If it was 
not, return with a value of zero. If initialization was 
successful, continue on to Step 4. 

4) Obtain the device granularity. For some devices, only one 
granularity is possible while, for others, several granularities 
are possible. This is a device-dependent issue that is 
explained in the hardware reference manual for your device. 

5) Return to the caller with the device granularity. 

DEVICE$READ PROCEDURE 

The DEVICE$READ procedure must present the following PL/M-86 interface to 
the Bootstrap Loader: 

DEVICE$READ: 

where 

PROCEDURE (UNIT, BLK$NUM$HI, BLK$NUM$LO, BUF$PTR); 

DECLARE UNIT WORD, 
BLK$NUM$HI WORD, 
BLK$NUM$LO WORD, 
BUF$PTR POINTER; 

4-2 



UNIT 

BLK$NUM$HI 

BLK$NUM$LO 

BUF$PTR 

DEVICE DRIVERS FOR THE BOOTSTRAP LOADER 

is the device-unit number as defined during the 
process of configuring the Bootstrap Loader. Refer to 
the iRMX 86 CONFIGURATION GUIDE for more information. 

is a 16-bit number that provides the Bootstrap Loader 
with the most significant 16 bits of the number of the 
block to be read. 

is a 16-bit number that provides the Bootstrap Loader 
with the least significant 16 bits of the number of 
the block to be read. 

is a 32-bit POINTER to the buffer that is to receive 
the information from the secondary storage device. 

The DEVICE$READ procedure does not return a value to the caller. 

The following outline shows the steps that the DEVICE$READ procedure must 
perform to be compatible with the Bootstrap Loader: 

1. Read the block specified by the BLK$NUM parameters from the 
bootstrap device specified by the UNIT parameter into the memory 
location ppecffied by the BUF$PTR parameter. 

2. Check for I/O errors. If one occurred, halt. Otherwise, return 
to' the caller. 

4-3 





CHPATER 5. USING THE APPLICATION LOADER 

The Application Loader is a powerful tool that provides your tasks with 
the means of loading code from secondary storage into RAM. This chapter 
is designed to help you understand the capabilities of the Loader by 
providing you with background information. The chapter consists of four 
major parts: 

• Loader Terminology 

• Loader Features 

• Configuration Options 

• Preparing Code for Loading 

After reading this chapter and Chapter 6, you should be able to 
understand the system calls in Chapter 7. 

LOADER TERMINOLOGY 

Before attempting to read about the system calls of the Application 
Loader, you must become familiar with the terminology used to describe 
them. The following terms are used fairly frequently in describing the 
system calls: 

• object code 

• object module 

• object file 

• synchronous system call 

• asynchronous system call 

• absolute code 

• position-independent code (PIC) 

• load-time locatable code (LTL) 

• fixup 

• I/O job 

• overlay 

• root module 

• overlay module 

5-1 



USING THE APPLICATION LOADER 

The following sections define these terms or refer you to documents in 
which you can find definitions. 

OBJECT CODE 

The term "object code" is used to distinguish between the program that 
goes into a translator (compiler or an assembler) and the program that 
comes out of a translator. However, in this manual, object code refers 
to the following three categories of code: 

• output of a translator 

• output of the LINK86 command 

• output of the LOC86 command 

OBJECT MODULE 

An object module is the output of a single compilation, a single 
assembly, or a single invocation of the LI~OC86 or LOC86 commands. 

OBJECT FILE 

An object file is a named file in secondary storage. The file contains 
object code in one or more modules. 

SYNCHRONOUS SYSTEM CALL 

A synchronous system call is one in which the calling task cannot 
continue running while the invoked system call is running. For instance, 
if a task invokes a synchronous Loader system call, the calling task will 
resume running only after the loading operation has either failed or 
succeeded. 

ASYNCHRONOUS SYSTEM CALL 

An asynchronous system call is one in which the calling task can run 
concurrently with the invoked system call. For a detailed explanation of 
the behavior of asynchronous system calls, read Chapter 6. 

5-2 



USING THE APPLICATION LOADER 

ABSOLUTE CODE 

Absolute code is one of three forms in 
absolute object module is one that has 
only at a specific location in memory. 
Loader loads an absolute object module 
that the module must occupy. 

POSITION INDEPENDENT CODE (PIC) 

which object code can appear. An 
been processed by LOC86 to run 
Consequently, the Application 

only into the specific location 

Position independent code (commonly referred to as PIC) is one of three 
forms in which object code can appear. PIC differs from absolute code in 
that PIC can be loaded into any memory location. Consequently, when the 
Application Loader is requested to load PIC, the Loader obtains iRMX 86 
segments and loads the PIC into the segments. 

The advantage of PIC over absolute code is that PIC does not require you 
to reserve a specific block of memory. When the loading operation 
begins, the Loader obtains memory from the pool of the job in which the 
loader runs. 

LOAD-TIME LOCATABLE (LTL) CODE 

Load-time locatable code (commonly referred to as LTL code) is the third 
form in which object code can appear. LTL code is similar to PIC in that 
LTL code can be loaded anywhere in memory. The difference is that LTL 
code can be used by tasks having more than one code segment or more than 
one data segment. In contrast, PIC is restricted to tasks having one 
code segment and one data segment. 

The techniques used to generate absolute, PIC, and LTL code are discussed 
later in this chapter. 

FIXUP 

mlen the Application Loader loads an LTL program, the Loader must adjust 
some of the code. This adjustment is known as a fixup, or more 
accurately as a base fixup. 

The reason for this adjustment is that the pointers used in the LTL code 
must be independent of the contents of the registers in the 
microprocessor. While loading the LTL code, the Application Loader 
changes the base portion of the pointers as needed, providing this 
independence. Without this adjustment, the 'Loader could not support 
tasks having multiple code segments or data segments. 

5-3 



USING THE APPLICATION LOADER 

I/O JOB 

An I/O job is a special environment for tasks that perform I/O using the 
Extended I/O System. In fact, if a task is not in an I/O job, it cannot 
successfully use all of the system calls in the Extended I/O System-

The notion of an +/0 job relates to the Application Loader because some 
of the system calls provided by the Application Loader use the Extended 
I/O System. Specifically, the A$LOAD$IO$JOB and the S$LOAD$IO$JOB system 
calls can be invoked only by tasks running in an I/O job. 

If you are unfamiliar with I/O jobs, refer to the iRMX 86 EXTENDED I/O 
SYSTEM REFERENCE MANUAL for a. definition. 

OVERLAY 

The term "overlay," when used as a verb, refers to the process of loading 
object code that generally resides in RAM for only for short periods of 
time. For example, suppose that you are building a compiler that is very 
large. You can design the compiler in either of the following ways: 

o As a monolithic program that occupies a large amount of RAM 
whenever the: compiler is running. 

G As an overlayed structure in which pieces of the compiler reside 
in RAM only when they are being used. 

As a monolithic program the compiler can reside on secondary storage 
until it is needed, but once needed, the entire collection of object code 
must be loaded into RAM.· In contrast, as an overlayed program, the 
pieces (called overlays) of the compiler all reside on secondary storage, 
and individual overlays are loaded as they are needed. 

In order to implement an overlayed program using the Application Loader, 
you must divide the program into two kinds of modules -- a root module, 
and one or more overlay modules. 

ROOT MODULE AND OVERLAY MODULES 

A root module is an object module that controls the loading of overlays. 
Let's again use an overlayed compiler as an example. Suppose that you 
are developing an application system on which your customers will compile 
programs. When your customer invokes the compiler, your application 
system should use one of the A$LOAD, A$LOAD$IO$JOB, or S$LOAD$IO$JOB 
system calls to load the root module of the compiler. The root module 
should then use the S$OVERLAY system call to load the overlay modules as 
they are needed. 

For more information regarding the notion of overlays, root module, and 
overlay module, refer to the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 
8086-BASED DEVELOPMENT SYSTEMS. 

5-4 



USING THE APPLICATION LOADER 

LOADER FEATURES 

The iRMX 86 Application Loader provides a number of features that make it 
valuable in any application system that loads programs from secondary 
storage into RAM. Some of these features are: 

• Device Independence 

• Ability to Load Three Kinds of Code 

• Synchronous and Asynchronous System Calls 

• Support for Overlayed Programs 

• Configurability 

The following sections briefly discuss each of these features. 

DEVICE INDEPENDENCE 

The Application Loader can load object code from any .. device that supports 
i~ 86 named files. Your iRMX 86 Operating System is delivered with 
device drivers that support named files on any of the ;following devices: 

o iSBC 204 Single Density Flexible Disk Controller 

• iSBC 206 Hard Disk Controller 

• iSBC 215 Winchester Hard Disk Controller 

o .iSBC 218 Multimodule Flexible Disk Controller 

• iSBC 220 SMD Hard Disk Controller 

• iSBC 254 Bubble Memory Board 

Furthermore, if you wish to load from a device for which Intel does not 
yet supply a device driver, you can write your own device driver. Refer 
to the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEM for 
directions. 

5-5 



USING THE APPLICATION LOADER 

ABILITY TO LOAD THREE KINDS OF CODE 

The iRMX 86 Application Loader can load absolute code, PIC, and LTL code. 

SYNCHRONOUS AND ASYNCHRONOUS SYSTEM CALLS 

The Application Loader provides you with both synchronous system calls 
and asynchronous system calls. If you want your tasks to explicitly 
control the overlapping of processing with loading operations, you can 
use asynchronous system calls. On the other hand, if you prefer ease of 
use to explicit control, you can use synchronous system calls. 

SUPPORT FOR 'OVERLAYED PROGRAMS 

The Application Loader contains a system call that is explicitly designed 
to simplify the process of loading overlay modules. By using the 
S$OVERLAY system call, your root module can easily load overlay modules 
contained in the same object file as the root module. 

CONFIGURABILITY 

The Application Loader is configurable. During the process of 
configuring the rest of the iRMX 86 Operating System, you can select the 
features of the Application Loader that your application system needs. 
If you don't need all of the capabilities of the Loader, you can leave 
out some options and use a smaller, faster version of the Loader. 

CONFIGURATION OPTIONS 

The Application Loader has two kinds of configuration options. You can 
specify the kind of code you wish to be able to load, and you can specify 
the system calls that you want included in your application. 

The following sections discuss the options from which you can choose when 
you configure the Loader, but they do not tell you how to specify your 
choices. To find out how to specify your choices, refer to the iRMX 86 
CONFIGURATION GUIDE. 

CHOICE OF LOADING CAPABILITIES 

During configuration, you can provide your application system with the 
ability to perform any of the following loading operations: 

• The ability to load absolute code only. This ,is the smallest and 
fastest option. So, if memory and performance considerations are 
more important to you than the ability to load code into iRMX 86 
segments, you should consider this option. 

5-6 



USING THE APPLICATION LOADER 

• The ability to load both PIC and absolute code. This option 
provides you with a larger Loader than does the absolute-only 
option. However, this is the smallest configuration that enables 
the Loader to create iRMX 86 segments into which it can load your 
code. 

• The ability to load LTL code, PIC, and absolute code. This 
combination is only slightly larger than the 
PIC-and-absolute-code configuration, but it provides the ability 
to load code for tasks that require more than one code segment or 
more than one data segment. 

• The ability to load overlays, LTL code, PIC, and absolute. This 
is the most powerful Loader configuration in that it provides 
your application system with the ability to perform all loading 
operations. This option provides the S$OVERLAY system call. 

CHOICE OF LOADING METHODS 

While configuring the Loader, you can select one of the following loading 
methods: 

• The ability to load code without creating an I/O job. This 
option provides the A$LOAD system call. 

• The ability to load code asynchronously with or without creating 
an I/O job. This option provides both the A$LOAD and the 
A$LOAD$IO$JOB system calls. 

• The ability to load code synchronously or asynchronously by 
creating an I/O job, and the ability to load code asynchronously 
without creating an I/O job. This option provides the A$LOAD, 
A$LOAD$IO$JOB, and S$LOAD$IO$JOB system calls. 

PREPARING CODE FOR LOADING 

There are three factors that govern the methods you must use to prepare 
code for loading. They are: 

• The kind of development system you are using. 

• The PL/M-86 model of computation to which you are adhering. 

• Whether or not you want the loaded calls to be able to invoke 
iRMX 86 system calls. 

In addition to these three factors, you must ensure that the object code 
specifies an entry point and deals with stack size. The following 
sections address these issues. 

5-7 



USING THE APPLICATION LOADER 

DEVELOPMENT SYSTEMS 

Because you use a development system to prepare the object code that you 
plan to load, the kind of development system(s) that you use 
significantly affects your capabilities. Be aware of the following two 
facts: 

• If you use a development system that is based on an 8080 or 8085 
microprocessor (a Series II, for example), you can only generate 
absolute code for loading. You cannot successfully generate PIC 
or LTL code. Furthermore, you cannot use the S$OVERLAY system 
call provided by the Application Loader. 

In contrast, if you use a development system that· is based on an 
iAPX 86 or an iAPX 88 microprocessor (Series III for example), 
you can generate any of the three kinds of object code, and you 
can use the S$OVERLAY system call. 

• You should not use a combination of development systems to 
generate object files. For example, suppose that you compile 
your source file using a Series II development system, and then 
you link the code using a Series III. The utilities on the two 
systems .do not generate identical object records. Consequently, 
there is a reasonable chance that the resultant object code can 
no.t be loaded by the Application Loader. 

For the·balance of this chapter , all information is based on the 
a·ssumptionthat you are compiling, linking, and locating on one 
kind of development system. 

PL/M-86 MODELS OF COMPUTATION 

When you compile your source code" you 'must (explicitly or implicitly) 
select a PL/M-86 model of computation. (This is also known as a size 
control.) The mode~ you select can greatly .affect the kind of object 
code generated. The purpose of this section is to correlate the model of 
computation with the kind of code generated. 

The PL/M-86 programming language provides four models of computation. 
They are SMALL, MEDIUM, LARGE, and COMPACT. For more information 
regarding these models and their effect on the iRMX 86 Operating System, 
refer to the iRMX 86 PROGRAMMING TECHNIQUES manual. 

When you compile the code that you plan to load, you specify (either 
explicitly or by default) one of these four models. The following three 
sections explain the effect of your choice on the object code. 

5-8 



USING THE APPLICATION LOADER 

PL/M-B6 Small Model 

The iRMX B6 Operating System does not support the PL/M-B6 SMALL model of 
computation. Do not use it to generate any code that you plan to load 
with the Application Loader. 

PL/M-B6 Medium and Large Models 

If you use the MEDIUM or LARGE model of PL/M-B6, you cannot generate 
PIC. This means that you must choose between absolute code and LTL code. 

If you use both LINKB6 and LOCB6 to process the output of the PL/M-B6 
compiler, you will obtain absolute code. This is true for both 
BOBO/BOB5-based development systems and for BOB6-based development 
systems. 

If you use only LINKB6 (with' the BIND control) to process the output of 
the compiler, you will obtain LTL code. This is true only for BOB6-based 
development systems. If your system is an BOBO/BOB5-based development 
system, you cannot load the output generated by the LINKB6 command. 

PL/M-B6 Compact Model 

If you use the COMPACT model of PL/M-B6, and if you have an BOB6-based 
development system, you generate absolute code, PIC, and LTL code. On 
the other hand, if you have an BOBO/BOB5-based development system, you 
can generate only absolute code. 

If you use both LINKB6 and LOCB6 to process the output of the PL/M-B6 
compiler, you will obtain absolute code. This is true for both 
BOBO/BOB5-based development systems and for B086-based development 
systems. 

If you use only LINKB6 (with the BIND control) to process the output of 
the compiler, you can obtain PIC by adhering to the following guidelines 
When creating your source code: 

~ Do not use an INITIAL statement or a DATA state~nt to initialize 
a POINTER. 

• Do not use the INTVEC control for any interrupt procedures. Be 
aware that INTVEC is the default control. This means that you 
must invoke the NOINTVEC control for any interrupt procedures. 

Failure to adhere to these guidelines will cause the object module to be 
LTL code rather than PIC. 

5-9 



USING THE APPLICATION LOADER 

INVOKING iRMX 86 SYSTEM CALLS 

If you want your loadable code to invoke iRMX 86 system calls, you must 
use the LINK86 command to link the loadable object modules to the iRMX 86 
interface procedures. Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual 
for details. 

ENTRY POINTS AND STACK SIZES 

Generally, When your tasks invoke the Application Loader, the Loader must 
be able to ascertain the entry point for the loaded object code. (The 
entry point is the location at which execution is to begin.) The Loader 
uses this information when creating a job in which the loaded code is to 
run as a task. 

There is one circumstance in which the Loader does not require an entry 
point. If your task implicitly knows the entry point (for instance, if 
the entry point is at a reserved location in memory) and if your task 
uses the A$LOAD system call to load the code, then the object file need 
not specify an entry point. 

You can use either of the following techniques to ensure that your object 
file specifies an entry point: 

• Write your source code as a main module. This will automatically 
ensure that the object module contains a start address. You can 
use this technique for absolute code, PIC, or LTL code. 

• Write your source code as a procedure rather than as a main 
module. Later, when using LOC86 to convert your object code to 
absolute code, use the START control to designate the entry 
point~ Because this technique requires that you use LOC86, you 
cannot use this technique for PIC or LTL code. 

The following two sections provide more information about these 
techniques. 

Using a Main Module 

If you are loading PIC orLTL code, you must write your source code as a 
main module. If you are loading absolute code that was generated on an 
8086-based development system (such as Series III) you should write your 
source code as a main module. And, if you are loading code generated on 
an 8080/8085-based development system, you can write your source code as 
a main module. To prepare your main module~erform the following two 
steps: 

5-10 



USING THE APPLICATION LOADER 

1) When linking (using the LINK86 command) or locating (using the 
LOC86 command) your code, you must use the SEGSIZE(STACK( ••• )) 
control of the command to assign an appropiate stack size. If 
you are using an 8086-based development system, you can assign 
the stack size with either the LINK86 or LOC86 command. However, 
if you are using an 8080/8085-based development system, you can 
assign the stack size only with the LOC86 command. You can find 
a description for this control in the iAPX 86,88 FAMILY USER'S 
GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS or in the 8086 FAMILY 
UTILITIES USER'S GUIDE FOR 8080/8085-BASED DEVELOPMENT SYSTEMS. 
To find out how much stack to assign, refer to the iRMX 86 
PROGRAMMING TECHNIQUES manual. 

2) If you are using the A$LOAD system call and you plan to run the 
loaded code as a task, you must take one of the following courses 
of action: 

• If you are loading PIC, LTL code, or if you are loading 
absolute code that was generated on an 8086-based 
development system with the NOINITCODE control of the 
LOC86 command, then the Loader will tell the calling task 
what parameters to use when invoking the CREATE$TASK or 
CREATE$JOB system call. These parameters include the 
entry point and the stack size for the new task. The 
Loader uses the Loader Result Segment to return this 
information to the calling task. Refer to the 
description of the A$LOAD system call in Chapter 7 for 
more information. 

• If your object code is absolute code that was created on 
an 8080/80B5-based development system, or if it is 
absolute code that was created on an B086-based system 
without the NOINITCODE control of the LOC86 command, you 
must allow the iRMX 86 Nucleus to create a stack for 
you. To do this, you must specify a 0:0 for the stack 
pointer parameter of the CREATE$TASK or the CREATE$JOB 
system call. 

This action causes the Nucleus to create a stack on 
behalf of the loaded code. However, because the loaded 
code contains a main module, it also contains code that 
switches the stack register values soOthe the 
Nucleus-created stack is ignored. This stack switching 
allows the loaded code to use the stack allocated by the 
SEGSIZE control. 

In order to minimize the amount of memory wasted by this 
stack switching operation, you should specify a small 
stack size (128 decimal bytes) in the CREATE$TASK system 
call or the CREATE$JOB system call. This 
Nucleus-allocated stack need not be large because it is 
only used if the task is interrupted before it switches 
stacks. 

5-11 



USING THE APPLICATION LOADER 

Be aware that the stack switching technique has one 
less-than-desirable side effect. If you use the iRMX 86 
Debugger, it will always indicate that the stack for the 
loaded code has overflowed. This overflow indication is 
caused by the main module switching stacks, rather than 
by an actual overflow. Although you can generally ignore 
this overflow indication, you should be aware that a real 
overlow can occur and, if it does, the Debugger can not 
advise you of it. If you find this side effect to be 
unacceptable, you can eliminate it by writing your source 
code as a procedure. 

For more information about the CREATE$TASK or the CREATE$JOB 
system calls refer to the iRMX 86 NUCLEUS REFERENCE MANUAL. For 
information about the iRMX 86 Debugger, refer to the iRMX 86 
DEBUGGER REFERENCE MANUAL. 

Using a Procedure 

It is to your advantage to write your source code as a procedure only if 
the following three statements are true: 

• You are loading absolute object code that was generated on an 
8086-based development system without using the NOINITCODE 
control of "the LOC86 command, or you are loading absolute object 
code that was generated on an 8080/8085-based development system. 

• You are using the A$LOAD system call to load the code. 

• You are going to run the object code as a task after the loading 
operation is completed. 

If any of these statements is not true, you should write the source code 
as a main module rather than as a procedure. 

The process of loading a procedure is more restrictive than that of 
loading a main module, but it does have one advantage. You can avoid the 
stack-switching side effect. In other words, you can load absolute code 
and create a task without losing the Debugger's ability to detect stack 
overflow. You also avoid wasting memory by avoiding stack switching. 

In order to successfully load code that is written as a procedure, you 
must adhere to the following four rules: 

• The code must adhere to the PL/M-86 LARGE model of computation. 
This means that you must either compile the procedure using the 
LARGE control, or you must follow the calling conventions" of the 
LARGE model. Refer to one of the following manuals for 
information about the PL/M-86 LARGE model of computation: 

PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS 

PL/M-86 COMPILER OPERATING INSTRUCTIONS FOR 
8080/8085-BASED DEVELOPMENT SYSTEMS 

5-12 



USING THE APPLICATION LOADER 

• When you invoke the LOC86 command to assign absolute addresses to 
your object code, use the START control to select one of the 
PUBLIC symbols in your procedure as an entry point. Also specify 
SEGSIZE(STACK(O» to set the stack to zero length. For more 
information about the START and SEGSIZE controls, refer to one of 
the following manuals: 

iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR 8086-BASED 
DEVELOPMENT SYSTEMS 

8086 FAMILY UTILITIES USER'S GUIDE FOR 8080/808S-BASED 
DEVELOPMENT SYSTEMS 

• When you invoke the CREATE$TASK system call or the CREATE$JOB 
system call, allow the Nucleus to dynamically allocate a stack 
for the new task. Do this by setting the stack pointer parameter 
to 0:0. However, be certain that you specify a stack size 
parameter that is large enough to accommodate the task. For 
guidelines in determining stack sizes, refer to the iRMX 86 
PROGRAMMING TECHNIQUES manual. 

• When you invoke the CREATE$TASK system call or the CREATE$JOB 
system call, set the data segment base parameter to O. The 
reason for this is that a procedure adhering to the LARGE model 
of computation always initializes its own data segment. 

5-13 





CHAPTER 6. ASYNCHRONOUS SYSTEM CALLS 

Each asynchronous system call has two parts -- one sequential, and one 
concurrent. As you read the descriptions of the two parts, refer to 
Figure 6-1 to see how the parts relate. 

• the sequential part 

The sequential part behaves in much the same way as the fully 
synchronous system calls. Its purpose is to verify parameters, 
check conditions, and prepare the concurrent part of the system 
call. Also, it returns a condition code. The sequential part 
then returns control to your application. 

• the concurrent part 

The concurrent part runs as an iRMX 86 task. The task is made 
ready by the sequential part of the call, and it runs only when 
the priority-based scheduling of the iRMX 86 Operating System 
gives it control of the processor. The concurrent part also 
returns a condition code. 

The reason for splitting the asynchronous calls into two parts is 
performance. The functions performed by these calls are somewhat time
consuming because they involve mechanical devices such as disk drives. 
By performing these functions concurrently with other work, the 
Application Loader allows your application to run while the Loader waits 
for the mechanical devices to respond to your application's request. 

Let's look at a brief example showing how your application can use 
asynchronous calls. Suppose your application must load a program that is 
stored on disk. The application issues the A$LOAD system call to have 
the Application Loader load the program into memory. Let's trace the 
action one step at a time: 

1. Your application issues the A$LOAD system call. This call 
requires, as do all asynchronous calls, that your application 
specify a response mailbox for communication with the concurrent 
part of the system call. 

2. The sequential part of the A$LOAD call begins to run. This part 
checks the parameters for validity. 

3. If the sequential part of the call detects a problem, it places a 
sequential exception code in the word to which your except$ptr 
parameter points. It then returns control to your application. 
It does not make ready the Application Loader task to perform the 
loading function. 

6-1 



ASYNCHRONOUS SYSTEM CALLS 

APPLICATION CODE APPLICATION LOADER CODE 

INVOKE 
A$LOAD 

Figure 6-1. 

RETURN WITH 
E$OK 

Concurrent Behavior of an Asynchronous System Call 

6-2 



ASYNCHRONOUS SYSTEM CALLS 

4. Your application receives control. Its behavior at this point 
depends on the condition code returned (to the word specified by 
the except$ptr parameter) by the sequential part of the system 
call. Therefore, the application tests the sequential condition 
code. If the code is E$OK, the application continues running 
until it must use the program loaded from the disk. It is at 
this point that your application can take advantqge of the 
asynchronous and concurrent behavior of the Application Loader. 

For example, your application can use this overlapping processing 
to perform computations. The point is that you can decide what 
you want your application to do while the asynchronous system 
call is running. 

On the other hand, if your application finds that the sequential 
condition code is other than E$OK, the application can assume 
that the Application Loader did not make ready a task to perform 
the function. 

For the balance of this example, we will assume that the 
sequential part of the system call returned an E$OK sequential 
condition code. 

5. Your application now must use the loaded program. Before doing 
so, your application must verify that the concurrent part of the 
A$LOAD system call ran successfully. The application issues a 
RECEIVE$MESSAGE system call to check the response mailbox that 
the application specified when it invoked the A$LOAD system call. 

By using the RECEIVE$MESSAGE system call, the application obtains 
a segment that contains, among other things, a concurrent 
condition code for the concurrent part of the A$LOAD system 
call. If this condition code is E$OK, then the loading operation 
was successful, and the application can use the loaded program. 
On the other hand, if the code is not E$OK, the application 
should analyze the code and attempt to determine why the loading 
operation was not successful. 

In the foregoing example, we used a specific system call (A$LOAD) to show 
how asynchronous calls allow your application to run concurrently with 
loading operations. Now let's look at some generalities about 
asynchronous calls. 

• All of the asynchronous system calls consist of two parts -- one 
sequential and one concurrent. The Application Loader will 
activate the concurrent part only if the sequential part runs 
successfully (returns E$OK). 

• Every asynchronous system call requires that your application 
designate a response mailbox for communication with the 
concurrent part of the system call. 

6-3 



ASYNCHRONOUS SYSTEM CALLS 

• Whenever the sequential part of an asynchronous system call 
returns a condition code other than E$OK, your application should 
not attempt to receive a message from the response mailbox. 
There can be no message because the Application Loader cannot run 
the concurrent part of the system call. 

• Whenever the sequential part of an asynchronous system call runs 
successfully (E$OK), your application can count on the 
Application Loader running the concurrent part of the system 
call. Your application can take advantage of the concurrency by 
doing some processing before receiving the message from the 
response mailbox. 

• Whenever the concurrent part of a system call runs, the 
Application Loader signals its completion by sending an object to 
the response mailbox. The precise nature of the object depends 
upon which system call your application invoked. You can find 
out what kind of object comes back from a particular system call 
by looking up the call in Chapter 7 of this manual. 

• Whenever the Application Loader returns a segment to your 
application's response mailbox, your application must delete the 
segment when it is no longer needed. The Application Loader uses 
memory for such segments, so if your application fails to delete 
the segment, your application system may run short of memory. 

6-4 



CHAPTER 7. SYSTEM CALLS OF THE APPLICATION LOADER 

This chapter describes the PL/M-86 calling sequences for the system calls 
provided by the Application Loader. In this chapter, the system calls 
are listed alphabetically according to the same shorthand notation used 
throughout this manual. For example, A$LOAD precedes A$LOAD$IO$JOB. 
This shorthand notation is language independent and should not be 
confused with the actual form of the PL/M-86 call. The precise format of 
each call is spelled out as part of the detailed description. 

Be aware that iRMX 86 system calls are declared as typed or untyped 
external procedures in the PL/M-8fr language. When you write a program in 
PL/M-86, you can use these procedures to invoke the system calls provided 
by the Application Loader. 

Although the system calls are described as PL/M-86 procedures, your tasks 
can invoke these system calls from assembly language. Refer to the 
iRMX 86 PROGRAMMING TECHNIQUES manual for information regarding using 
system calls from assembly language. 

RESPONSE MAILBOX PARAMETER 

Two of the system calls described in this chapter are asynchronous. 
These are the A$LOAD and the A$LOAD$IO$JOB system calls. 

As explained in Chapter 6, your task must specify a mailbox whenever the 
task invokes an asynchronous system call. The purpose of this mailbox is 
to receive information describing the result of the asynchronous 
operation. 

When you examine the detailed descriptions of the A$LOAD and the 
A$LOAD$IO$JOB system calls, you will find a parameter called 
response$mbox. Your tasks must use this parameter to tell the 
Application Loader where to send the Loader Result Segment that describes 
the outcome of the operation. 

The format of the Loader Result Segment depends upon which system call 
was invoked. Consequently, this manual describes the format of the 
Loader Result Segment in the detailed descriptions of the system calls. 

You must be aware of a potential problem associated with the use of 
response mailboxes. If your task uses the same response mailboxes for 
several invocations of asynchronous system calls, it is possible for the 
Application Loader to return the Loader Result Segments in an order 
different than the order of invocation. Your tasks can avoid this 
problem by using a different mailbox for each invocation of an 
asynchronous system call. 

7-1 



SYSTEM CALLS OF THE APPLICATION LOADER 

CONDITION CODES 

The Application Loader returns a condition code whenever a system call is 
invoked. If the call executes without error, the Application Loader 
returns the E$OK code. If an error occurs, the Application Loader 
returns an exceptional condition code. 

CONDITION CODES FOR SYNCHRONOUS SYSTEM CALLS 

For those system calls that are strictly synchronous (S$LOAD$IO$JOB and 
S$OVERLAY), the Application Loader returns only one condition code. Your 
task can deal with this code by using the techniques described in the 
iRMX 86 NUCLEUS REFERENCE MANUAL. 

CONDITION CODES FOR ASYNCHRONOUS SYSTEM CALLS 

For the system calls that are asynchronous (A$LOAD and A$LOAD$IO$JOB), 
the Application Loader can return two condition codes. One code is 
returned after the sequential part of the system call is executed, and 
the other is returned after the concurrent part of the call is executed. 
(Refer to Chapter 6 for a discussion of the sequential and concurrent 
parts of an asynchronous system call.) Your task must process each of 
these two condition codes in a different manner. 

Sequential Condition Codes 

The Application Loader returns the-sequential condition code in the WORD 
indicated by the except$ptr parameter. Your task can deal with this 
condition code by using the techniques described in the iRMX 86 NUCLEUS 
REFERENCE MANUAL. 

Concurrent Condition Codes 

The Application Loader returns the concurrent condition code in the 
Loader Result Segment that it sends to the response mailbox. Your task 
must explicitly examine this condition code. If the code is E$OK, the 
asynchronous loading operation ran successfully. If the code is other 
than E$OK, a problem occurred during the asynchronous loading operation, 
and your task must decide what to do about the problem. Your task cannot 
use the techniques provided by the Nucleus for processing the concurrent 
condition code. 

7-2 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD 

The A$LOAD system call loads an object file from secondary storage into 
memory. 

CALL RQ$A$LOAD(connection, response$mbox, except$ptr); 

INPUT PARAMETERS 

connection 

response$mbox 

OUTPUT PARAMETERS 

except$ptr 

is a WORD containing a token for a connection to 
the file that the Application Loader will load. 
The connection must satisfy four requirements: 

• It must have been created in the calljng 
task's job. 

• It must be a connection for a named file. 

• It must have READ access to the file. 

o It must be closed. 

If the connection does not satisfy all four of 
these requirements, the Application Loader will 
return an exceptional condition. 

is a WORD containing a token for the mailbox to 
which the Application Loader will send the Loader 
Result Segment after the concurrent part of the 
system call has finished running. The format of 
the Loader Result Segment is described later in 
this description. 

is a POINTER to a WORD in which the Application 
Loader will place the condition code generated by 
the sequential part of the system call. 

7-3 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD (continued) 

DESCRIPTION 

The purpose of this system call is to allow your task to load programs 
from secondary storage into main memory. This system call does not cause 
the program to be made part of a job or a task, nor does it place the 
program into execution. If you wish to execute the program or make it 
part of a task or a job, the calling task must explicitly do this. 

Asynchronous Behavior 

This system call is asynchronous. It allows the calling task to continue 
running while the loading operation is in progress. When the loading 
operation is finished, the Application Loader will send a Loader Result 
Segment to the mailbox designated by the response$mbox parameter. Refer 
to Chapter 6 for a detailed description of asynchronous behavior. 

File Sharing 

The Application Loader does not expect exclusive access to the file. 
However, if another task is also using the file, the file sharing must 
obey the following two guidelines: 

• Other tasks can use the file only through other connections. 
Your task should not attempt to share the connection passed to 
the Application Loader. 

• If other tasks use the file, they should use it only for 
reading. The Application Loader marks the file as being 
sharable with readers only. 

Considerations Relating to Code Type 

If the file being loaded is absolute code, the Loader will not create 
segments to accept the code. Rather, it will simply load the program 
into the memory locations that the object file is designed to occupy- To 
exclude the possibility of loading over existing information, you should 
avoid including these memory locations in any memory pools- Refer to the 
iR~~ 86 CONFIGURATION GUIDE to see how to reserve memory locations. 
Also, you must ensure that the code is not loaded over the Operating 
System. 

In contrast, if the file being loaded is position-independent code (PIC) 
or load-time locatable (LTL) code, the Application Loader will create the 
segments required to contain the loaded program. Be aware that, once 
your task no longer needs the loaded program, your task should delete 
these segments. The Application Loader does not delete them. 

7-4 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD (continued) 

DESCRIPTION (continued) 

Effects of Model of Computation 

If the program being loaded adheres to the PL/H-86 COMPACT model of 
computation, the Application Loader will return (in the Loader Result 
Segment) tokens for the stack, code, and data segments. On the other 
hand, if the program adheres to the LARGE or MEDIUM models of 
computation, the Application Loader cannot return this information. 

This means that, if the program is LARGE or MEDIUM, the calling task 
cannot know the location of the loaded program's stack, code or data 
segments. Consequently, the calling task cannot delete any of the stack, 
data or code segments. 

You can avoid this issue in either of two ways. Either be certain that 
the program being loaded adheres to the COMPACT model of computation, or 
use the A$LOAD$IO$JOB or S$LOAD$IO$JOB system calls instead of the A$LOAD 
system call. 

Deleting Loader Result Segments 

The Application Loader uses memory from the pool of the calling task's 
job to create the Loader Result Segment for this system call. If'the 
calling task does not delete the segment after it is no longer needed, 
the segment will occupy memory that could be used for other purposes. In 
fact, if the calling task performs repeated loading operations, failure 
to delete the Loader Result Segments could lead to E$MEH exception codes. 

Format of the Loader Result Segment 

The Loader Result Segment has the following form: 

STRUCTURE ( 
except$code 
record$count 
error$rec$type 
num$undefined$refs 
init$ip 
code$seg$base 
stack$offset 
stack$seg$base 
stack$size 
data$seg$base 

7-5 

WORD, 
WORD, 
BYTE, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD, 
WORD) 



n ... un .. 

SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD (continued) 

DESCRIPTION (continued) 

where: 

except$code This is the condition code for the concurrent part 
of the system call. If the value is other than 
E$OK, some problem occurred during the loading 
operation •. 

record$count This contains the number of object records read by 
the Application Loader on behalf of this invocation 
of the A$LOAD system call. If the except$code 
indicates that the loading operation terminated 
before completion, record$count contains the number 
of the last record that was read. 

error$rec$type This identifies the type of record that caused the 
loading operation to fail. If the loading 
operation is successful (that is, if except$code is 
E$OK) , this BYTE will be zero. 

num$undefined$refs An external fixup usually (but not always) 
indicates an error during the linking process. The 
Loader will continue to run even if an object file 
contains external fixups. The purpose of this 
num$undefined~refs depends upon the kind of code 
that your Application Loa~er is configured to load: 

init$ip 

• If the Loader is configured for LTL code, 
this WORD contains the number of external 
fixups that the Loader detected during the 
loading operation. 

• If the Loader is configured to load PIC or 
absolute code, the Loader will set this WORD 
to 1 or O. If the Loader found no external 
fixups during the loading operation, this 
WORD will be set to O. If external ftxups 
were found, this WORD will be set to 1. 

This WORD contains the initial value for the loaded 
program's instruction pointer (IP register). The 
calling task can use this information in either of 
two ways: 

• It can use it to invoke the CREATE$TASK 
system call. 

• It can jump to this location within the code 
segment of the loaded program. 

7-6 



SYSTEM CALLS OF THE APPLICATION LOADER 

DESCRIPTION 
init$ip (continued) 

code$seg$base 

stack$offset 

stack$seg$base 

stack$size 

A$LOAD (continued) 

The Loader sets this variable to zero jf the file 
does not specify an initial value for the 
instruction pointer. This can only. happen when the 
file contains only procedures and no main module. 

This is the base for the code segment that contains 
the entry point for the loaded code. If the loaded 
program does not contain a main module, the Loader 
cannot ascertain this information, so the Loader 
will place a value of zero in this variable. 

Be aware that code$seg$base can be used in 
conjunction with init$ip as a POINTER to the entry 
point of the loaded program. 

This WORD contains the offset of the bottom of the 
stack relative to the beginning of the stack 
segment. The calling task can use the sum of this 
value and the stack$size to initialize the SP 
(stack pointer) register. 

The Loader sets this variable to zero under two 
circumstances. First, if there is no main module, 
the object file does not specify the stack offset, 
and the Loader will set this variable to zero. 
Second, if you have a main module, but the Loader 
still sets this variable and the stack$seg$base to 
zero anyway, then the loaded code dynamically 
initializes the SP and SS registers. 

This is the base for the stack segment for the 
loaded program. The calling task can use this 
value to initialize the SS (stack segment) register. 

The Loader sets this variable to zero under two 
circumstances. First, if there is no main module, 
the object file does not specify the stack base, 
and the Loader will set this variable to zero. 
Second, if you have a main module, but the Loader 
still sets this variable and the stack$offset to 
zero anyway, then the loaded code dynamically 
initializes the SP and SS registers. 

The Loader sets this WORD to the number of bytes 
required for the loaded program's stack. The 
calling task can initialize the stack pointer (SP 
register) to the sum of stack$offset and 
stack$size. The calling task can do this by 
invoking the CREATE$TASK or the CREATE$JOB system 
call. 

7-7 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD (continued) 

DESCRIPTION 
stack$size (continued) 

init$ds 

CONDITION CODES 

The Loader will set this value to zero whenever 
both the stack$offset and stack$seg$base are zero. 
When all three stack-related parameters are zero 
and the object file contains a main module, the 
loaded code dynamically sets the SP (stack pointer) 
and SS (stack segment) registers. 

This is the value that your task should use to 
initialize the DS (data segment) register. The 
Loader will set this value to zero if the object 
file contains no main module. If the object file 
contains a main mudule and the Loader still sets 
this value to zero, then the loaded code 
dynamically sets the DS register. 

This system call can return condition codes at two different times. 
Codes returned to the calling task immediately after the invocation of 
the system call are considered sequential condition codes. Codes 
returned after the concurrent part of the system call has finished 
running are considered concurrent condition codes. The following list is 
divided into two parts -- one for sequential codes, arid one for 
concurrent codes. 

Sequential Condition Codes 

The Application Loader can return any of the following condition codes to 
the WORD specified by the except$ptr parameter of this system call. 

E$OK 

E$BAD$HEADER 

. E$CHECKSUM 

E$CONTEXT 

No exceptional conditions. 

The object file being loaded does not begin with a 
header record for a loadable object module • 

The header record of the object file contains a 
checksum error. 

This exception code can be caused by any of the 
following circumstances: 

• The calling task specified a connection that 
was already open. 

7-8 



SYSTEM CALLS OF THE APPLICATION LOADER 

CONDITION CODES 
E$CONTEXT (continued) 

E$EXIST 

E$FACCESS 

E$FLUSHING 

E$IO 

E$LIMIT 

A$LOAD (continued) 

• The calling task specified a connection for 
a device rather than for a named file. 

• The Loader opened the connection but some 
other task closed the connection before the 
loading operation was begun. 

The calling task specified a connection that has 
been deleted or is in the process of being deleted. 

The calling task specified a connection that does 
not have READ access to the object file. 

The device containing the file to be loaded is 
being detached. 

An I/O error occurred. 

This exception code can be caused by any of the 
following circumstances: 

• The job containing the calling task has 
reached its object limit. 

• Either the calling task's job, or the job's 
default user object, is currently involved 
in more than 255 (decimal) I/O operations. 

E$LOADER$SUPPORT The object file requires capabilities not 
configured into the Application Loader. For 
example, you might be attempting to load PIC with a 
Loader configured only for absolute code. 

E$MEM This exception code can be caused by any of the 
following circumstances: 

• The memory pool of the calling task's job 
does not currently have a block of memory 
large enough to allow this system call to 
run to completion. 

• The memory pool of the Basic I/O System's 
job does not currently have a block of 
memory large enough to allow this system 
call to run to completion. 

E$NOT$CONFIGURED One or more of the following system calls was not 
incorporated into the system during the 
configuration process: 

7-9 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD (continued) 

CONDITION CODES 
E$NOT$CONFIGURED (continued) 

E$SHARE 

E$SUPPORT 

E$TYPE 

A$CLOSE (Basic I/O System) 
A$LOAD (Application Loader) 
A$OPEN (Basic I/O System) 
A$READ (Basic I/O System) 
CREATE$MAILBOX (Nucleus) 
CREATE$SEGMENT (Nucleus) 
CREATE$TASK (Nucleus) 
GET$TYPE (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 

The calling task specified a connection for a file 
that is already being used by some other task, and 
the Application Loader is unable to share the file. 

The calling task specified a connection that was 
not created in the calling task's job. 

The connection parameter refers to an object that 
is not a connection. 

Concurrent Condition Codes 

Once the Application Loader has actually begun the loading operation, it 
returns condition codes through the except$code field of the Loader 
Result Segment. The Loader can return the following condition codes in 
this manner. 

E$ BAD $ GROUP 

E$BAD$SEGMENT 

E$ CHECKS UM 

E$EOF 

E$EXIST 

The object file being loaded contains an invalid 
group definition record. . 

The object file being loaded contains an invalid 
segment definition record. 

At least one record of the file being loaded 
contains a checksum error. 

The Application Loader encountered an unexpected 
end of file. 

This exception code can be caused by any of the 
following circumstances: 

• The mailbox specified in the response$mbox 
parameter was deleted before the loading 
operation was completed. 

7-10 



SYSTEM CALLS OF THE APPLICATION LOADER 

CONDITION CODES 
E$EXIST (continued) 

E$FIXUP 

E$FLUSHING 

E$IO 

E$LIMIT 

E$NO$LOADER$MEM 

E$NO$MEM 

A$LOAD (continued) 

• The device containing the file to be ioaded 
was detached before the loading operation 
'-las completed. 

The object file contains an invalid fixup record. 

The device containing the file to be loaded is 
being detached. 

An I/O error occurred during the loading operation. 

The job containing the calling task has reached its 
object limit. 

This exception code can be caused by any of the 
following circumstances: 

• The memory pool of the calling task's job 
does not currently have a block of memory 
large enough to allow the Application Loader 
to run. 

• The memory pool of the Basic I/O System's 
job does not currently have a block of 
memory large enough to allow the Application 
Loader to run. 

The Application Loader is attempting to load PIC or 
LTL groups or segments, but the memory pool of the 
calling task's job does not currently contain a 
block of memory large enough to accommodate these 
groups or segments. 

E$NOSTART The object file does not specify the entry point 
for the p~ogram being loaded. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

E$PARAM 

A$ATTACH$FILE (Basic I/O System) 
A$SEEK (Basic I/O System) 
CREATE$TASK (Nucleus) 
DELETE$TASK (Nucleus) 
EXIT$IO$JOB (Extended I/O System) 

The object file being loaded has a stack smaller 
than 16 bytes. 

7-11 



1\ LUI\U 

SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD (continued) 

CONDITION CODES (continued) 

E$REC$FORMAT 

E$REC$LENGTH 

E$REC$TYPE 

At least one record in the file being loaded 
contains a format error. 

The file being loaded contains a record that is 
longer than the Loader's internal buffer. The 
Loader's buffer length is a parameter specified 
during the configuration of the Loader. 

This exception code can be caused by any of the 
following circumstances: 

• At least one record in the file being loaded 
is of a type that the Loader cannot process. 

• The Loader has encountered records in a 
sequence that the it cannot process. 

When the A$LOAD system call is used, the concurrent part of the system 
call can fail without returning an exception code. This can happen only 
when the SET$EXCEPTION$HANDLER system call was not incorporated into the 
system during the configuration process. 

7-12 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB 

The A$LOAD$IO$JOB system call creates an I/O job and creates a task 
within the job. This system call asynchronously loads the code for the 
task from secondary storage. 

job RQ$A$LOAD$IO$JOB(connection, pool$lower$bound, pool$upper$bound, 
except$handler, job$flags, task$priority, 
task$flags, msg$mbox, except$ptr); 

INPUT PARAMETERS 

connection is a WORD containing a token for a connection to 
the file that the Application Loader will load. 
The connection must satisfy four requirements: 

• It must be a connection for a named file. 

• It must be closed. 

• It must have READ access. 

• It must have been created in the calling 
task's job. 

pool$lower$bound is a WORD containing a value that the Loader uses 
to compute the pool size for the new I/O job. See 
the following description for details. 

pool$upper$bound is a WORD containing a value that the Loader uses 
to compute the pool size for the new I/O job. See 
the following de.scription for details. 

except$handler is a POINTER to a structure that specifies the new 
job's exception handler. Refer to the description 
of the CREATE$IO$JOB system call in the iRMX 86 
EXTENDED I/O SYSTEM REFERENCE MANUAL for more 
information. 

job$flags is a WORD that tells the Nucleus whether to check 
the validity of objects used as parameters in 
system calls. Refer to the description of the 
CREATE$IO$JOB system call in the iRMX 86 EXTENDED 
I/O SYSTEM REFERENCE'MANUAL for more information. 

task$priority is a BYTE that specifies the priority of the loaded 
task in the new job. Refer to the description of 
the CREATE$IO$JOB system call in the iRMX 86 
EXTENDED I/O SYSTEM REFERENCE MANUAL for. more 
information. 

7-13 

10 JOB 



10 JOB 
SYSTEM CALLS OF THE APPLICATION LOADER 

~LOAD$IO$JOB (continued) 

INPUT PARAMETERS (continued) 

task$flags 

msg$mbox 

OUTPUT PARAMETERS 

except$ptr 

job 

DESCRIPTION 

is a WORD that tells the Nucleus of any special 
capabilities that should be accorded tasks in the 
'new I/O job. Refer to the description of the 
CREATE$IO$JOB system call in the iRMX 86 EXTENDED 
I/O SYSTEM REFERENCE MANUAL for more information. 

is a WORD containing a token for a mailbox that 
serves two purposes. The first purpose is to 
receive the Loader Result Segment after the loading 
operation is completed. The format of the Loader 
Result Segment is provided later in this 
description. 

The second purpose is to receive a message from the 
newly created I/O job. Refer to the description of 
the CREATE$IO$JOB system call in the iRMX 86 
EXTENDED I/O SYSTEM REFERENCE MANUAL for more 
information about the second purpose. 

is a POINTER to a WORD in which the Application 
Loader will place the condition code generated by 
the sequential part of the system call. 

is a WORD in which the Application Loader will 
place the token for the newly created I/O job. 
This token is valid only if the Application Loader 
returns an E$OK condition code to the WORD 
specified by the except$ptr parameter. 

This system call operates in two phases. The first phase occurs during 
the sequential part of this system call. (Refer to Chapter 6 for a 
discussion of the sequential and concurrent parts of an asynchronous 
system call.) During this first phase, the Application Loader 
accomplishes three things: 

1. It creates an I/O job. Refer to the iRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL for a definition of I/O jobs. 

2. It validates the header record of the object file. 

3. It returns a condition code that reflects the success or failure 
of the first phase. The Application Loader places this condition 
code in the WORD to which the except$ptr parameter points. 

7-14 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

DESCRIPTION (continued) 

The second phase occurs during the concurrent part of the system call. 
It accomplishes three things: 

1. It loads the file designated by the connection parameter. 

2. It places the loaded program into execution as a task in the new 
job. 

3. It sends a Loader Result Segment to the mailbox specified by the 
msg$mbox parameter. This segment contains, among other things, a 
condition code that indicates the success or failure of the 
second phase. 

Pool Size for the New Job 

The Application Loader uses four pieces of information to compute the 
size of the memory pool for the new I/O job: 

• pool$lower$bound parameter. 

• pool$upper$bound parameter. 

• an Application Loader configuration parameter that specifies the 
default dynamic memory requirements. The name of this parameter 
is L$DEFAULT$MEMPOOL, and it is explained in detail in the 
chapter of the iRMX 86 CONFIGURATION GUIDE that describes the 
process of configuring the Application Loader. 

• memory requirements specified in the object file. 

The Loader allows you three options for setting the size of the I/O job's 
memory pool: 

1. You can set both pool$lower$bound and pool$upper$bound to zero. 
If you do this, the Loader will decide how large a pool to 
allocate to the new I/O job. The Loader uses the requriements of 
the object file and L$DEFAULT$MEMPOOL to make this decision. . 

2. You can set pool$upper$bound to FFFFh. If you do this, the 
Loader will allow the new I/O job to borrow memory from the 
calling task's job, and the size of the memory pool will be as in 
Option 1. 

3. You can use either or both of the bound parameters to override 
the Loader's decision on pool size. If the Loader's decision 
lies outside the bound(s) that you specify, the Loader will 
readjust it to comply with your bounds. 

7-15 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

DESCRIPTION (continued) 

Be aware that if you select options 1 or 3, the Loader will create an I/O 
job with min$pool$size equal to max$pool$size. This means that the new 
I/O job will not be able to borrow memory from the calling task's job. 
If you want the I/O job to be able to borrow memory, select Option 2. 

Asynchronous Behavior 

This system call is asynchronous. It allows the calling task to continue 
running while the loading operation is in progress. When the loading 
operation is finished, the Application Loader will send a Loader Result 
Segment to the mailbox designated by the msg$mbox parameter. Refer to 
Chapter 6 for a detailed description of asynchronous behavior. 

File Sharing 

The. Application Loader does not expect exclusive access to the file. 
However, if another task is also using the file, that task must access 
the file only for reading. 

Format of the Loader Result Segment 

The Loader Result Segment has the following form: 

STRUCTURE 

where: 

(termination$code 
except$code 
job$token 
return$data$len 
record$count 
error$rec$type 
num$undefined$refs 
mem$requested 
mem$received 

WORD, 
WORD, 
WORD, 
BYTE, 
WORD, 
BYTE, 
WORD, 
WORD, 
WORD) 

termination$code is a WORD in which the Application Loader places 
one of two values. A value of 100h indicates that 
the loading operation was successful. A value of 2 
indicates that the loading operation was a failure. 

In case of failure, you must delete the newly 
created I/O job because the Loader does not. 

7-16 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

DESCRIPTION (continued) 

except$code 

job$token 

return$data$len 

record$count 

error$rec$type 

is a WORD in which the Application Loader will 
place the concurrent condition code. Possible 
values and interpretations are provided later in 
this description. 

is a WORD in which the Application Loader will 
place the token for the newly created I/O job. 

is a BYTE that is always set to 9. 

is a WORD containing the number of object records 
read by the Application Loader. If the loading 
operation terminates, this value will indicate the 
last record read. 

is a BYTE that identifies the type of record 
causing termination of the loading operation. A 
value of zero means that no record caused 
termination. 

num$undefined$refs An external fixup usually (but not always) 
indicates an error during the linking process. The 
Loader will continue to run even if an object file 
contains external fixups. The purpose of this 
num$undefined$refs depends upon the kind of code 
that your Application Loader is configured to load: 

mem$requested 

mem$received 

• If the Loader is configured for LTL code, 
this WORD contains the number of external 
fixups that the loader detected during the 
loading operation. 

• If the Loader is configured to load PIC or 
absolute code, the Loader will set this WORD 
to 1 or O. If the Loader found no external 
fixups during the loading operation, this 
WORD will be set to O. If external fixups 
were found, this WORD will be set to 1. 

is a WORD whose value indicates the number of 
16-byte paragraphs that the object file requested 
for the new job. This request included the memory 
needed for all segments and for the job's memory 
pool. 

is a WORD whose value indicates th~ number of 
16-byte pages actually allocated to the new job. 

7-17 

n .. un .... 

10 JOB 



I:J SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

DESCRIPTION (continued) 

Restriction 

This system call should only be invoked by tasks running within I/O 
jobs. Failure to heed this restriction causes a sequential exception 
code. 

CONDITION CODES 

This system call can return condition codes at two different times. 
Codes returned to the calling task immediately after the invocation of 
the system call are considered sequential condition codes. Codes 
returned after the concurrent part of the system call has finished 
running are considered concurrent condition codes. The following list is 
divided into two parts -- one for sequential codes, and one for 
concurrent codes. 

Sequential Condition Codes 

The Application Loader can return any of the following condition codes to 
the WORD specified by the except$ptr parameter of this system call: 

E$OK 

E$BAD$HEADER 

E$CHECKSUM ' 

E$CONTEXT 

No exceptional conditions. 

-The object fi1e being loaded does not begin with a 
header record for a loadable object module. 

The header record of the object file contains a 
checksum error. 

This exception code can be caused by any of the 
following circumstances: 

• The calling task specified a connection that was 
already open. 

• The calling task specified a connection for a 
device rather than for a named file. 

• The Loader opened the connection but some other 
task closed the connection before the loading 
operation was begun. 

• The calling task's job is not an I/O job.' 

7-18 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$EXIST 

E$FACCESS 

E$FLUSHING 

E$IO 

E$JOB$PARAM 

E$JOB$SIZE 

E$LIMIT 

This exception code can be caused by any of the 
following circumstances: 

• The calling task specified a connection that 
has been deleted or is in the process of 
being deleted. 

• The calling task's job has no global job. 
Refer to the iRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL for a definition of global 
job. 

• The msg$mbox parameter does not refer to an 
existing object. 

The connection supplied by the calling task does 
not have READ access to the object file. 

The device containing the object file is being 
detached. 

An I/O error occurred. 

The pool$upper$bound parameter is both nonzero and 
smaller than the pool$lower$bound parameter. 

The pool$upper$bound parameter is nonzero and too 
small for the object file to be loaded. 

This exception code can.be caused by any of the 
following circumstances: 

o The object limit of the Basic I/O System's 
job has been reached. This limit is set 
during the configuration process. 

• Either the newly created I/O job or its 
default user object is involved in more than 
255 (decimal) I/O operations. 

• The calling task's job is not an I/O job. 

E$LOADER$SUPPORT The object file requires capabilities not 
configured into the Application Loader. For 
example, you might" be attempting to load PIC code 
with a loader configured only for absolute code. 

7-19 

A LOAD 
10 JOB 



"LJ'o"; I 
~ 

SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$MEM This exception code can be caused by any of the 
following circumstances: 

• The memory pool of the calling task's job 
does not currently have a block of memory 
large enough to allow the creation of the 
new I/O job. 

• The memory pool of the newly created I/O job 
does not currently have a block of memory 
large enough to allow the initial task to 
start running. 

• The memory pool of the Basic I/O System job 
does not currently have a block of memory 
large enough to allow the object file to be 
loaded. 

E$NO$LOADER$MEM The memory pool of the newly created I/O job does 
not currently have a block of memory large enough 
to allow the loader to run. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the 
configuration process: 

E$PARAM 

. E$SHARE 

E$SUPPORT 

A$CLOSE (Basic I/O System) 
A$LOAD$IO$JOB (Application Loader) 
A$OPEN (Basic I/O System) 
A$READ (Basic I/O System) 
CATALOG$OBJECT (Nucleus) 
CREATE$IO$JOB (Extended I/O Job) 
CREA~E$MAILBOX(Nucleus) 
CREATE$SEGMENT (Nucleus) 
GET$TYPE (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 

The value of the except$mode field within the 
except$handler structure lies outside the range of 
o - 3, inclusive • 

The calling task specified a connection for a file 
that is already being used by some other task, and 
the Application Loader is unable to share the file. 

The calling task specified a connection that was 
not created in the calling task's job. 

7-20 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$TIME 

E$TYPE 

The calling task's job is not an I/O job. 

The connection parameter does not refer to a 
connection object. 

Concurrent Condition Codes 

Once the Application Loader has actually begun the loading operation, it 
returns condition codes through the except$code field of the Loader 
Result Segment. The Loader can return the following condition codes in 
this manner. 

E$BAD$GROUP 

E$BAD$SEGMENT 

E$CHECKSUM 

E$EOF 

E$EXIST 

E$FACCESS 

E$FIXUP 

E$FLUSHING 

E$IO 

The object file being loaded contains an invalid 
group definition record. 

The object file being loaded contains an invalid 
segment definition record. 

At least one record of the file being loaded 
contains a checksum error. 

The Application Loader encountered an unexpected 
end of file. 

This exception code can be caused by any of the 
following circumstances: 

• The mailbox specified in the msg$mbox 
parameter was deleted before the loading 
operation was completed. 

• The device containing the file to be loaded 
was detached before the loading operation 
was completed. 

The default user of the newly created I/O job does 
not have READ access to the object file. 

The object file contains an invalid fixup record. 

The device containing the file to be loaded is 
being detached. 

An I/O error occurred during the loading operation. 

7-21 

A LOAD 
10 JOB 



A LOAD 
10 JOB SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$LIMIT 

E$NO$LOADER$MEM 

E$NO$MEM 

This exception code can be caused by any of the 
following circumstances: 

• The job containing the calling task is not 
an I/O job~ 

• The Basic I/O System's job has reached its 
object limit. This object limit was 
specified during the configuration of the 
Basic I/O System. Refer to the iRMX 86 
CONFIGURATION GUIDE for more information. 

• The value of the task$priority parameter is 
greater than the newly created I/O job's 
maximum priority. This maximum priority was 
specified during the configuration of the 
Extended I/O System. Refer to the iRMX 86 
CONFIGURATION GUIDE for more information. 

• The object directory of the newly created 
I/O job is full. The size of this object 
directory was specified during the 
configuration of the Extended I/O System. 
Refer to the iRMX 86 CONFIGURATION GUIDE for 
more information. 

• Either ,the newly created I/O job, or its 
default user, is currently involved in more 
than 255 (decimal) I/O operations. 

This exception code can be caused by any of the 
following circumstances: 

• The memory pool of the newly created I/O job 
does not currently have a block of memory 
large enough to allow the Application Loader 
to run. 

• The memory pool of the Basic I/O System's 
job does not currently have a block of 
memory large enough to allow the Application 
Loader to run. 

The Application Loader is attempting to load PIC or 
LTL groups or segments, but the memory pool of the 
newly created I/O job does not currently contain a 
block of memory large enough to accommodate these 
groups or segments. 

7-22 



SYSTEM CALLS OF THE APPLICATION LOADER 

A$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$NOSTART The object file does not specify the entry point 
for the program being loaded. 

E$NOT$CONFIGURED At least one of the following syst~m calls was not 
incorporated into the system during the 
configuration process: 

E$PARAM 

E$REC$FORMAT 

E$REC$LENGTH 

E$REC$TYPE 

A$ATTACH$FILE (Basic I/O System) 
A$SEEK (Basic I/O System) 
CATALOG$OBJECT (Nucleus) 
CREAT.E$TASK (Nucleus) 
DELETE$TASK (Nucleus) 
EXIT$IO$JOB (Extended I/O System) 
UNCATALOG$OBJECT (Nucleus) 

The object file being loaded has a stack smaller 
than 16 bytes. 

At least one record in the file being loaded 
contains a format error. 

The file being loaded contains a record that is 
longer than the Loader's maximum record length. 
The Loader's maximum record length is a parameter 
specified during the configuration of the Loader. 
Refer to the iRMX 86 CONFIGURATION GUIDE for 
details. 

This exception code can be caused by any of the 
following circumstances: 

• At least one record in the file being loaded 
is of a type that the Loader cannot process. 

• The Loader has encountered records in a 
sequence that it cannot process. 

When the A$LOAD$IO$JOB system call is used, the concurrent part of the 
system call can fail without returning an exception code. This can 
happen only when the SET$EXCEPTION$HANDLER system call was not 
incorporated into the system during the configuration process. 

7-23 

" ~u ... u 

10 JOB 



10 JOB SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB 

The S$LOAD$IO$JOB system call creates an I/O job containing one task. 
The code for the task is a program loaded from secondary storage. 

job RQ$S$LOAD$IO$JOB(path$ptr, pool$lower$bound, pool$upper$bound, 
except$handler, job$flags, task$priority, 
task$flags, msg$mbox, except$ptr); 

INPUT PARAMETERS 

path$ptr is a POINTER to a STRING containing a path name for 
the named file that contains the object code to be 
loaded. This path name must conform to the 
Extended I/O System path syntax for named files. 
If you are unfamiliar with the path syntax, refer 
to the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL. 

pool$lower$bound is a WORD containing a value that the Loader uses 
to compute the pool size for the new I/O job. See 
the following description for details. 

pool$upper$bound is a WORD containing a value that the Loader uses 
to compute the pool size for the new I/O job. See 
the foliowing description for details. 

except$handler is a POINTER to a structure that specifies the new 
job's exception handler. Refer to the description 
of the CREATE$IO$JOB system call in the iRMX 86 
EXTENDED I/O SYSTEM REFERENCE MANUAL for more 
information. 

job$flags 

task$priority 

task$flags 

is a WORD that tells the Nucleus whether to check 
the validity of objects used as parameters in 
system calls. Refer to the description of the 
CREATE$IO$JOB system call in the iRMX 86 EXTENDED 
I/O SYSTEM REFERENCE MANUAL for more information. 

is a BYTE that specifies the priority of the loaded 
task in the new job. Refer to the description of 
the CREATE$IO$JOB system call in the iRMX 86 
EXTENDED I/O SYSTEM REFERENCE MANUAL for more 
information. 

is a WORD that tells the Nucleus of any special 
capabilities that should be accorded tasks in the 
new I/O job. Refer to the description of the 
CREATE$IO$JOB system call in the iRMX 86 EXTENDED 
I/O SYSTEM REFERENCE MANUAL for more information. 

7-24 



SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB (continued) 

INPUT PARAMETERS (continued) 

msg$mbox 

OUTPUT PARAMETERS 

except$ptr 

job 

DESCRIPTION 

is a WORD containing a token for a mailbox that is 
to receive a termination message from the newly 
creat~d I/O job. Refer to the description of the 
CREATE$IO$JOB system call in the iRMX 86 EXTENDED 
I/O SYSTEM REFERENCE MANUAL for more information 
about the second purpose. 

is a POINTER to a WORD in which the Application 
Loader will place a condition code. 

is a WORD in which the Application Loader will 
place the token for the newly created I/O job. 
This token is valid only if the Application Loader 
returns an E$OK condition code to the WORD 
specified by the except$ptr parameter. 

This system call creates an I/O job, loads the specified file, and places 
the loaded code into execution as a task within the new I/O job. 

Synchronous Behavior 

This sys.tem call is synchronous. The calling task resumes running only 
after the system call has succeeded or failed. in its attempt to create a 
task that uses the code from the specified file. 

File Sharing 

The Application Loader does not expect exclusive access to the file. 
However, if another task is also using the file, that task must access 
the file only for reading. 

Pool Size for the New Job 

The Application Loader uses four pieces of information to compute the 
size of the memory pool for the new I/O job: 

7-25 

~ LUHU 

10 JOB 



itJOB I 
~ 

SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB (continued) 

DESCRIPTION (continued) 

• pool$lower$bound parameter. 

• pool$upper$bound parameter. 

• an Application Loader configuration parameter that specifies the 
default dynamic memory requirements. The name of this parameter 
is L$DEFAULT$MEMPOOL, and it is explained in detail in the 
chapter of the iRMX 86 CONFIGURATION GUIDE that describes the 
process of configuring the Application Loader. 

• memory requirements specified in the object file. 

The Loader allows you three options for setting the size of the I/O job's 
memory pool: 

1. You can set both pool$lower$bound and pool$upper$bound to zero. 
If you do this, the Loader will decide how large a pool to 
allocate to the new I/O job. The Loader uses the requriements of 
the object file and L$DEFAULT$MEMPOOL to make this decision. 

2. You can set pool$upper$bound to FFFFh. If you do this, the 
Loader will allow the new I/O job to borrow memory from the 
calling task's job, and the size of the memory pool will be as in 
Option 1. 

3. You can use either or both of the bound parameters to override 
the Loader's decision on pool size. If the Loader's decision 
lies outside the bound(s) that you specify, the Loader will 
readjust it to comply with your bounds. 

Be aware that if you select options 1 or 3, the Loader will create an I/O 
job with min$pool$size equal to max$pool$size. This means that the new 
I/O job will not be able to borrow memory from the calling task's job. 
If you want the I/O job to be able to borrow memory, select Option 2. 

Restriction 

This system call should only be invoked by tasks running within I/O 
jobs. Failure to heed this rest~iction causes the Loader to return an 
exception code. 

CONDITION CODES 

The Application Loader can return any of the following condition codes to 
the WORD s,pecified by the except$ptr parameter of this system call. 

7-26 



SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$OK 

E$BAD$GROUP 

E$BAD$HEADER 

E$BAD$SEGMENT 

E$CHECKSUM 

E$CONTEXT 

E$EOF 

E$EXIST 

E$FACCESS 

E$FlXUP 

E$FNEXIST 

No exceptional conditions. 

The object file being loaded contains an invalid 
group definition record. 

The object file being loaded does not begin with a 
header record for a loadable object module. 

The object file being loaded contains an invalid 
segment definition record. 

At least one object record in the file being loaded 
contains a checksum error. 

The calling task's job is not an I/O job. 

The Application Loader encountered an unexpected 
end of file. 

This exception code can be caused by any of the 
following circumstances: 

• The mailbox specified by the msg$mbox 
parameter was deleted while the system call 
was running. 

• The calling taek's job has no global job. 
Refer to the iRMX 86 EXTEND.ED I/O SYSTEM 
REFERENCE MANUAL for a definition of global 
job. 

• The msg$mbox parameter does not refer to an 
existing object. 

• The device containing the object file was 
detached. 

The default user object for the new I/O job does 
not have READ access to the specified file. This 
user object is specified during the process of 
configuring the Extended I/O System. Refer to the 
iRMX 86 CONFIGURATION GUIDE for more information. 

The object file contains an invalid fixup record. 

This exception code can be caused by any of the 
following circumstances: 

7-27 

" Lunu 
10 JOB 



~ LUKU 

10 JOB SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB (continued) 

CONDITION CODES 
E$FNEXIST (continued) 

E$FLUSHING 

E$IO 

E$JOB$PARAM 

E$JOB$SIZE 

E$LIMIT 

• Either the specified object file, or some 
file in the specified path, does not exist. 

• Either the specified object file, or some 
file in the specified path, is marked for 
deletion. 

The device containing the object file is being 
detached. 

An I/O error occurred. 

The pool$upper$bound parameter is both nonzero and 
smaller than the pool$lower$bound parameter. 

The pool$upper$bound parameter is nonzero and too 
small for the object file to be loaded. 

This exception code can be caused by any of the 
following circumstances: 

• The calling task's job is not an I/O job. 

• The object limit of the Basic I/O System's 
job has been reached. This limit is set 
during the process of configuring the Basic 
I/O System. Refer to the iRMX 86 
CONFIGURATION GUIDE for more information. 

• The value of the task$priority parameter is 
greater than the new I/O job's maximum 
priority. This maximum priority is set 
during the process of configuring the 
Extended I/O System. Refer to the iRMX 86 
CONFIGURATION GUIDE for more information. 

• The object directory of the new I/O job is 
full. The size of this object directory is 
set during the process of configuring the 
Extended I/O System. Refer to the iRMX 86 
CONFIGURATION GUIDE for more information. 

• Either the newly created I/O job or its 
default user object is involved in more than 
255 (decimal) I/O operations. 

• The calling task's job is not an I/O job. 

7-28 



SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB (continued) 

CONDITION CODES (continued) 

E$LOADER$SUPPORT The object file requires capabilities that are not 
configured into the Application Loader. For 
example, you might be attempting to load PIC with a 
loader configured only for absolute code. 

E$MEM This exception code can be caused by any of the 
following circumstances: 

• The memory pool of the calling task's job 
does not currently have a block of memory 
large enough to allow the creation of the 
new I/O job. 

• The memory pool of the newly created I/O job 
does not currently have a block of memory 
large enough to allow the initial task to 
start running. 

• The memory pool of the Basic I/O System job 
does not currently have a block of memory 
large enough to allow the object file to be 
loaded. 

E$NO$LOADER$MEM This exception code can be caused by any of the 
following circumstances: 

• The memory pool of the newly created I/O job 
does not currently have a block of memory 
large enough to allow the Loader to run. 

• The memory pool of the Basic I/O Job does 
not currently have a block of memory large 
enough to allow the Loader to run. 

E$NOMEM The object file contains either PIC segments or 
groups, or LTL segments or groups. In any case, 
the memory pool of the new I/O job does not have a 
block of memory large enough to allow the 
Application Loader to load these records. 

E$NOSTART The object file does not specify the entry point 
for the program being loaded. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during· the 
configuration process: 

7-29 

\) LUI\U 
10 JOB 



" LUftU 
10 JOB SYSTEM CALLS OF THE APPLICATION LOADER 

S$LOAD$IO$JOB (continued) 

CONDITION CODES 
E$NOT$CONFIGURED (continued) 

E$PARAM 

E$REC$FORMAT 

E$REC$LENGTH 

E$REC$TYPE 

E$TIME 

A$ATTACH$FILE (Basic I/O System) 
A$CLOSE (Basic I/O System) 
A$OPEN (Basic I/O System) 
A$READ (Basic I/O System) 
A$SEEK (Basic I/O System) 
CATALOG$OBJECT (Nucleus) 
CREATE$IO$JOB (Extended I/O Job) 
CREATE$MAILBOX (Nucleus) 
CREATE $ SEGMENT (Nucleus) 
CREATE$TASK (Nucleus) 
DELETE$TASK (Nucleus) 
EXIT$IO$JOB (Extended I/O System) 
GET$TYPE (Nucleus) 
RECEIVE$MESSAGE (Nucleus) 
S$ATTACH$FILE (Extended I/O System) 
S$LOAD$IO$JOB (Application Loader) 
UNCATALOG$OBJECT (Nucleus) 

This exception code can be caused by any of the 
following circumstances: 

• The value of the except$mode field within 
the except$handler structure lies outside 
the range of 0 - 3, inclusive. 

• The object file being loaded requested a 
stack s~aller than 16 bytes. 

At least one record in the file being loaded 
contains a format error. 

The file being loaded contains a record that is 
longer than the Loader's maximum record length. 
The Loader's maximum record length is a parameter 
specified during the configuration of the Loader. 
Refer to the iRMX 86 CONFIGURATION GUIDE for 
details. 

This exception code can be caused by any of the 
following circumstances: 

• At least one record in the file being loaded 
is of a type that the Loader cannot process. 

• The Loader has encountered records in a 
sequence that the Loader cannot process. 

The calling task's job is not an I/O job. 

7-30 



SYSTEM CALLS OF THE APPLICATION LOADER 

S$OVERLAY 

The S$OVERLAY system call is invoked by a root module to load an overlay 
module. 

CALL RQ$S$OVERLAY(name$ptr, except$ptr); 

INPUT PARAMETER 

name$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

is a POINTER to a STRING that contains the name of 
an overlay. Refer to Chapter 5 for an explanation 
of overlays. 

is a POINTER to a WORD in which the Application 
Loader will place an exception code. 

This system call is invoked by a root module whenever the root module 
wishes to load an overlay module. 

Synchronous Behavior 

This system call is synchronous. The calling task resumes running only 
after the system call has succeeded or failed in its attempt to load the 
overlay. 

File Sharing 

The Application Loader does not expect exclusive access to the file 
containing the overlay module. However, if another task is ,also using 
the file, the task must access the file only for reading. 

CONDITION CODES 

The Application Loader can return any of the following condition codes to 
the WORD specified by the except$ptr parameter of this sys~em call. 

7-31 



SYSTEM CALLS OF THE APPLICATION LOADER 

S$OVERLAY (continued) 

CONDITION CODES (continued) 

E$OK 

E$CHECKSUM 

E$EOF 

E$EXIST 

E$FIXUP 

E$FLUSHING 

E$IO 

E$LIMIT 

No exceptional conditions. 

At least one object record in the overlay being 
loaded contains a checksum error. 

The Application Loader encountered an unexpected 
end of file. 

The device containing the object file. was detached 
during the loading operation. 

The object file contains an 'invalid fixup record. 

The device containing the object file is being 
detached. 

An I/O error occurred during the loading operation. 

This exception code can be caused by any of the 
following circumstances: 

• The calling task's job is not an I/O job. 

• Either the calling task's job, or its 
default user object, is currently involved 
in more than 255 (decimal) I/O operations. 

E$NOMEM The overlay module contains either PIC segments or 
groups, or LTL segments or groups.. In any case, 
the memory pool of the new I/O job does not have a 
block of memory large enough to allow the 
Application Loader to load the overlay module. 

E$NOT$CONFIGURED At least one of the following system calls was not 
incorporated into the system during the process of 
configuration: 

E$REC$FORMAT 

E$REC$LENGTH 

LOOKUP$OBJECT (Nucleus) 
S$OVERLAY (Application Loader) 

At least one record in the overlay being loaded 
contains a format error. 

The overlay being loaded contains a record that is 
longer than the Loader's maximum record length. 
The Loader's maximum record length is a parameter 
specified during the configuration of the Loader. 
Refer to the iRMX 86 CONFIGURATION GUIDE for 
details. 

7-32 



SYSTEM CALLS OF THE APPLICATION LOADER 

S$OVERLAY (continued) 

CONDITION CODES (continued) 

E$REC$TYPE 

E$OVERLAY 

This exception code can be caused by any of the 
following circumstances: 

• At least one record in the overlay being 
loaded is of a type that the Loader cannot 
process. 

The Loader has encountered records in a 
sequence that it cannot process. 

The overlay name indicated by the name$ptr 
parameter is not defined in the root module. 

7-33 

~ UVtnLHT 





The following data 

BYTE 

WORD 

INTEGER 

OFFSET 

TOKEN 

POINTER 

STRING 

APPENDIX A. DATA TYPES 

types are recognized by the iRMX 86 Operating System: 

An unsigned, eight~bit binary number. 

An unsigned, two-byte binary number. 

.A signed, two-byte, binary number. Negative numbers 
are stored in two's-complement form. 

A word whose value represents the distance (in bytes) 
from the base of a segment. 

A word whose value identifies an object. 

Two consecutive words containing the base of a segment 
and an offset into the segment. The offset must be in 
the word having the lower address. 

A sequence of consecutive bytes. The value contained 
in the first byte is the number of bytes that follow 
it in the string. Each of the bytes except for the 
first contains an ASCII-encoded character. 

A-I 





APPENDIX B. CONDITION CODES 

The iRMX 86 Application Loader uses two kinds of condition codes to 
inform your tasks of any problems that occur during the execution of a 
system call -- sequential condition codes and concurrent condition 
codes. The distinguishing feature between the two kinds of codes is the 
method that the Application Loader uses to return the code to the calling 
task. For a discussion of the difference between these kinds of codes, 
refer to Chapter 7. 

The meaning of a specific condition code depends upon the system call 
that returns the code. For this reason, this appendix does not list 
interpretations. Refer to Chapter 7 if you want to interpret the codes. 

The purpose of this appendix is to provide you with the numeric value 
associated with each condition code that the Application Loader can 
return. To use the condition code values in a symbolic manner, you can 
assign (using the PL/M-86 literally statement) a meaningful name to each 
of the codes. 

The following list correlates the name of a condition code with the value 
that is actually returned by the Extended I/O System. The list is 
divided into three parts: one for normal condition codes, one for 
exception codes that indicate a programming error, and one for exception 
codes that indicate an environmental error. No distinction is drawn 
between sequential and concurrent errors because most of the codes can be 
returned as either. 

Be aware that this list is not complete. Any exception codes not 
included in this list can be found in the apendixes of one of the 
following manuals: 

• iRMX 86 NUCLEUS REFERENCE MANUAL 

• iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL 

• iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL 

NORMAL CONDITION CODE 

NAME OF CONDITION HEXADECIMAL VALUE 

E$OK Oh 

B-1 



PROGRAMMING EXCEPTION CODES 

NAME OF CONDITION 

E$JOB$PARAM 

ENVIRONMENTAL EXCEPTION CODES 

E$ABS$ADDRESS 
E$BAD$GROUP 
E$BAD$HEADER 
E$BAD$SEGDEF 
E$CHECKSUM 
E$EOF 
E$FIXUP 
E$JOB$SIZE 
E$LOADER$SUPPORT 
E$NO$LOADER$MEM· 
E$NO$MEM 
E$NO$START 
E$NOT$CONFIGURED 
E$OVERLAY 
E$REC$FORMAT 
E$REC$LENGTH 
E$REC$TYPE 

CONDITION CODES 

HEXADECIMAL VALUE 

8060h 

60h 
61h 
62h 
63h 
64h 
65h 
66h 
6Dh 
6Fh 
67h 
68h 
6Ch 
8h 
6Eh 
69h 
6Ah 
6Bh 

B-2 



INDEX 

Underscored entries are primary references. 

A$LOAD 7-3 
A$LOAD$IO$JOB 7-13 
absolute code 5-3 
Application Loader 

configuration options 5-6 
development systems 5-8 
entry points in loaded code 5-10 
example 2-2 
features 5-5 
introduction 2-2 
invoking system calls from loaded code 5-10 
kinds of code 5-6 
PL/M-86 models of computation 5-8 
preparing code for loading 5-7 
stack size for loaded code 5-10 
terminology 5-1 
writing loaded code as a main module 5-10 
writing loaded code as a procedure 5-10 

asynchronous condition codes 7-2, B-1 
asynchronous system calls 5-2, 5-6, 6-1 

Bootstrap Loader 
communicating with a terminal 3-11 
device drivers 3-2, 4-1 
device selection 3-5 
end user 3-3 
error processing 3-11 
examples 2-1 
file to be loaded 3-3, 3-6 
first stage 3-1, 3-3, 3-11 
introduction to the--2-1, 3-1 
invoking the Bootstrap Loader 3-10 
response mailbox parameter 7-1 
second stage 3-2, 3-4, 3-10 
terminology 3-1 

BYTE A-I 

concurrent part of an asynchronous system call 6-1 
concurrent condition codes 7-2, B-1 
condition codes 7-2, B-1 

device independence 5-5 
devices 

for Application Loader 5-5 
for Bootstrap Loader 3-2 

Index-l 



INDEX 

first stage of Bootstrap Loader 3-1 
fixup 5-3 

I/O job 5-4, 7-13, 7-24 
INTEGER A-I 

load-time locatable code 5-3 
LTL code 5-3 

object code 
object fiie 
object module 
OFFSET A-I 

5-2 
5-2 

5-2 

organization of the manual 1-1 
overlay 2-2, 5-4, 5-6, 7-31 
overlay module--S-4 

PIC 5-3 
POINTER A-I 
position independent code 5-3 

root 2-2· 
root module 5-4 

S$LOAD$IO$JOB 7-24 
S$OVERLAY 7-31 
second stage of Bootstrap Loader 3-2 
sequential condition codes 7-2, B-1 
sequential part of an asynchronous system call 6-1 
STRING A-I 
synchronous system calls 5-2, 5-6 
system calls 2-2, 7-1 

TOKEN A-I 

WORD A-I 

Index-2 



inter 
REQUEST FOR READER'S COMMENTS 

IMMA 00 

Loader Reference Manual 
143318-001 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify' by page any errors you found in'this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are' 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

NAME _______________________________________________________________________________________________________________________________ DATE ______________________________ _ 

TITLE 

COMPANY NAME/DEPARTMENT _______________________________________________________________ _ 

ADDRESS ____________________________________________________ ~ __________ _ 

CITY _________________________________________ ---'-___________________________________________________ S TAT E ___________ ZIP COD E ___ _ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this 
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

O.M.S. Technical Publications 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





inter 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 . ' 

Printed in U.S.A. 


