
1

iRMX 86™ NUCLEUS
REFERENCE MANUAL

Manual Order No.: 9803122-03

Copyright @ 1980, 1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [

REV. REVISION HISTORY PRINT
DATE

-01 Original Issue 4/80

-02 Adds ENTER$INTERRUPT system call, 11/80
corrects various technical and typographical
errors, and documents Release 2 of the
iRMX 86 Operating System.

-03 Describes high performance mailbox queues, 5/81
8087 NDP, cascaded interrupts, and enhanced
interrupt processing; corrects various techni-
cal and typographical errors; and documents
Release 3 of the iRMX 86 Operating System.
Debugger and Terminal Handler informa-
tion has been moved to separate manuals.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megachll88is
Micromap
Multibus
Multimodule
PROMPT
Promware
RMXIBO
System 2000
UPI
,&ope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

I A354/581/6K DD I

•

PREFACE

iRMX 86 provides an operating system for Intel iAPX 86-based
microcomputers, including the iSBC 86/12A single board computer. It
consists of a Nucleus, a Terminal Handler, a Debugger, a basic
input/output system (BIOS), an extended input/output system (EIOS), an
Application Loader, and a Human Interface. This manual describes the
central portion of the Operating System, the Nucleus.

READER LEVEL

This manual is intended for both application and system programmers. It
describes the basic features of the Nucleus and thoroughly documents the
portion of the Nucleus that both application and system programmers
require. It does not contain detailed information about the features and
system calls reserved for system programmers. The iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL contains this information.

Th~s manual is intended primarily as a source of Nucleus reference
materials; it is only secondarily for instruction. If you are unfamiliar
with the iRMX 86 Operating System, you should read the INTRODUCTION TO
THE iRMX 86 OPERATING SYSTEM prior to reading this manual.

CONVENTIONS

Throughout this manual, the following convention is used:

Reserved bits which should be set to zero.

Whenever this term is used, it means that the designated bits are not
currently checked by the Nucleus. However, Intel reserves the right to
establish meanings for these bits in future releases of the iRMX 86
Operating System. To ensure that your current system runs unchanged
under future releases, you should set these bits to zero.

iii

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to readers of this manual.

Manual

Introduction to the iRMX 86 Operating System

iRMX 86 Installation Guide

iRMX 86 Terminal Handler Reference Manual

iRMX 86 Debugger Reference Manu~l

iRMX 86 Basic I/O System Reference Manual

iRMX 86 Extended I/O System Reference Manual

iRMX 86 Loader Reference Manual

iRMX 86 System Programmer's Reference Manual

iRMX 86 Configuration Guide

Guide to Writing Device Drivers for the iRMX 86 I/O System

iRMX 86 Programming Techniques

iRMX 86 Pocket Reference

iSBC 86/12A Hardware Reference Manual

ISIS-II User's Guide

PL/M-86 Programming Manual

PL/M-86 Compiler Operating Introduction for 8080/8085 Based
Development Systems

The 8086 Family User's Manual

iv

Number

9803124

9803125

143324

143323

9803123

143308

143381

142721

9803126

142926

142982

142861

9803074

9800306

9800466

9800478

9800722

CONTENTS

PAGE
PREFACE ••• iii I

CHAPTER 1
OVERVIEW
Ob j e c t s•....••............•...............•..•....•.. "•.. . 1-2

Tasks•.............•.. 1-3
Jobs ... 1-4
Segment s•.•..........................•.... e· ••••••••••••••••••• • 1-5
Mailboxes ..•......... 1-5
Semaphores ... 1-5

Handlers•..................................... 1-5
Exception Handlers ••• 1-6
Interrupt Handlers.~ ••• 1-6

CHAPTER 2
JOB MANAGEMENT
Job Tree and Resource Sharing ••• 2-1
Job Creation .. 2-3
Job Deletion .. " 2-3
System Calls for Jobs ••• 2-4

CHAPTER 3
TASK MANAGEMENT
Priority .. 3-1 I
Task States .. 3-1

The Asleep State •.........•...•...................................... 3-1
The Suspended State •••••••••••••• 0 •••••••••• 0' ••••••••••••••••••••••••• 3-2
The Asleep-Suspended State ••• 3-2
The Ready and Running States ••• 3-2

Task State Transitions •• 3-2
Additional Task Attributes •• 3-5
Task Resources •• 3-5
System Calls for Tasks •• 3-5

CHAPTER 4
EXCHANGE MANAGEMENT
Mailboxes•......•.............................•........ 4-1

Mai I box Queue s ••• 4-1
Mailbox Mechanics •• 4-1
High Performance Object Queue •• 4-2 •
System Calls for Mailboxes ••• 4-3

Semaphore s ..•.•..........•.•...•.•.••.•••....•••••..••.....• . '•.•• • 4-3
Serna phore Queue .. 4·~ 3
Semaphore Mechanics •• 4-3
System Calls for Semaphores .. 4-5

v

I

CONTENTS (continued)

PAGE
CHAPTER 5
MEMORY MANAGEMENT
Se gme n t s. 5 - 1
Memory POQ 1 s ••••••••••..••.••••••••••.••••••••••.••.••••••.•.•••.••••. 5-1
Controlling Pool Size •••••••••••••••••••.••••••••••••••••••••••••••••• 5-2
Movement 0 f Memory Between Jobs ••••••••••••••••••••••••••••••••••••••. 5-3
Memory Allocat ion ... 5-3
System Calls for Segments ••• 5-4

CHAPTER 6
OBJECT MANAGEMENT
Inquiring About Object Types ••••••••••••••••.•...••.•••.••..•.•••••••• 6-1
Using 6bject Directories •••. 6-1
System Calls for Any Objects •••••••••••..•.••••••.••••...•...••.•••••• 6-2

CHAPTER 7
EXCEPTIONAL CONDITION MANAGEMENT
Types of Exceptional Conditions •••••••••.••..•.•••••••••••..••••••.••. 7-1
Exception Handlers .. 7-1
Assigning an Exception Handler ••••••••••..••••••••.••.•.•..•••.•••.•.• 7-2
Invoking an Exception Handler •••••••••••..•••••.•••.••••••.•••.•.••.•. 7-2
Handling Exceptions In-Line ••••••••••••••••.••••.••••••••••••••••••.•• 7-3
System Calls for Exception Handlers •••••••••••••••••••••••••••••.••••• 7-3

CHAPTER 8
INTERRUPT MANAGEMENT
Interru pt Mechanisms •••••••••••••••••••••••••••.••••••••••••••••.••••• 8-1

• The Interrupt Vector Table ••• 8-1
Interrupt Levels ... 8-2
Disabling Interrupts ••• 8-2

Interrupt Handlers and Interrupt Tasks •••••••••••••••••••.•••••••••••• 8-6
Setting Up an Interrupt Handler •••••••••••••••••••••••••••••••••••••• 8-7
Using an Interrupt Handler ••• 8-7
Using an Interrupt Task •••••••••••••••••••••••••••••••••.•••••••.•••• 8-8
Using Multiple Buffers to Service Interrupts •.••••••••••••••••••••••• 8-11

Sing Ie Buffer Example -e •••••••••••••••••••••••••••••••• • 8-13
MUltiple Buffer Example ••••••••••••••••••••••••.•••••••••••••••••••• 8-14
Specifying the Count Limit •• 8-15
Enabling Interrupt Levels From Within a Task •.•..•.•••.•••.••••••.•• 8-18

Handling Spurious Interrupts •••••••••••••••••••••••••••••••••••••••..• 8-19
Calling GET$LEVEL. •••••••••••••••••••••....••.•••.•••. . ••••.••.• 8-20
Judicious Selection of Interrupt Levels •••••••••••••••••••••••••••••• 8-20
Examining the In-Service Register............ • •••••••.••••••••••••• 8-20

Examples 0 f Interrupt Servicing ••••••••••••••••••••••••••••••••••••••• 8-21
System Calls for Interrupts •••••••••••••.•••••.•••••••••••••.••••••••• 8-25

vi

CONTENTS (continued)

PAGE
CHAPTER 9
NUCLEUS SYSTEM CALLS
COIIlIIla nd Di c tiona ry •.•••••••..•••••••••••••..•..••••••••••••••••••...•. 9 - 2

Catalog$Ob jec t ... 9-5
Create$Job ... 9-7
Create$Mailbox .•.•.•••••.•.•••.••••••••••••••••••••••••••••••••••.••• 9-13
Create $Segrnent •..•••••.•.••••...•••.•........••.•.••..••••••••••.•... 9-15
'Create$Sernaphore •••••.••.•..••...•••••••.•.••••••••••••••••••••••..•. 9-17
Create$Task ••••••••••••••••••••••••..•.•.•.••••••••••••••••••••••..•• 9-19
Delete$Job ... 9-22
De lete $Mai lbox ••••••••.••••••••.•••••.••.•.•••••••••••••••••••••••••• 9-24
Delete$Segrnent .. 9-25
De lete $Sernaphore •••..•.•••.•••..••.•.•.•.•.••...•.•••••••••••••••••.. 9-26
De lete$Task ••••••••••.••••.••••.••••.•••••.•••••••••••••••••••••.•.•• 9-27
Disable .•.•••••.•••••••••••.••..••.•••..•......•••.•••.••••••••••••.. 9-29
Enable ... 9-31
Enter$Interrupt •••••••••••••••.••••••.•••••.•••.•.•••••••..••••••..•. 9-33
Exit$Interrupt ••••• " •..•••••..•.••••.•.•••.••.••••••••••••••••••••.•. 9-35
Get$Exception$Handler ••...••••..••.•.•.•.....•..•....•...•..••••..... 9-37
Get$Level ..•.•.•.•.••....•••.•.•....•.•.•.•.•..••••••.•••••••••••••..• 9-39
Get$Pool$Attrib •.•.•..•..•••••.•••..••........•.•..•.....••••••...... 9-41
Get$Priority •.•.••••..•••••••••.••••••••••••.••••••••••••••••••.••.•. 9-43
Get$Size ..•.••••••.•••.•..•...••••••.•.•...••..........••.•••••...•.• 9-44
Get $Task$Tokens •••.••..•••.••..•••••.•.•.•••••••••••••••••••••••••..• 9-45
Get$Type •.••...•••.•••..••..•....•...•.................•..•.•.•.•.... 9-46
LookUpOb jec t •••.•••.••.••••.•.••••.•.••...•.••••••••••••••••••.••.• 9-47
Of f spring ••.••••.•••••••••••...•••.•...•.••••••••.••.•.•..••••••••.•. 9-49
Re c e i v e $ Me s s ag e. • • • • • • • . • • • • • • . • • • • • • • . • • • . • • • • • • • • • . • • • • • • • • • • • • • • • • 9 - 51
Re c e i v e $ Un its. • • • • • • • • • • . • • • • • . • • • • • • • . . . • • . • . • • 9 - 5 4
Reset$Interrupt •••••••••••••••.•••••••.•••••••••••••••••••••••••••••• 9-56
Re surne $ Task •••••••••••.•.•••••••••••••••.••••••.••••.••••••••••••.••• 9-58
Send$Message ••••••••••••••••••••.••••••••••••••.••••••••••••••••••••. 9-59
Send$Units ••••••••••.•.••••••••.••••••.•..•••..••••••.•••••••.••••.•• 9-61
Set$Exception$Handler .••••••••••••.•.•.••.•.••••••••••••••••••••••••. 9-62
Se t $ Interrupt ••••••.••••.••••••.••••••.•••.••••.•••..•.••••••••••••.. 9-64
Se t $Poo 1 $Mi n .. 9-68
Signal $ Interrupt ••••••••••.•••..••••••••••••.••••.••.••••.•••• , •••..•• 9-69
Sleep ' 9-71
Suspend$Task ••••••••••••••••••••• ' •••••.•••.••.•.••••••••••••••••••.•• 9-73
Uncatalog$Object ••• 9-74
Wait$Interrupt ••••••••.••••••••••• ' .••••••.•.••••••••••••••••••••••.•• 9-76

APPENDIX A
IRMX 86 DATA TyPES •••••••••••••••••.•••..•.•.•••..••.•.•••...••••.•••• A-1

APPENDIX B
iRMX 86 TYPE CODES •••••••••••••.•.•••••••...••.•.•...••••••.••••••.... B-1

vii

I

I

•

•
I

I

APPENDIX C
Nucleus Memory Usage ••••••••••••••.••••..••••.•.•••••••••••••••••••.•• C-l

1-1
2-1
3-1
5-1
5-2
8-1
8-2
8-3
8-4
B-1

FIGURES
PAGE

Initial Job Tree ... 1-4
A Job .. 2-2
Task State Transition Diagram ••••••••••••••••••••••••••••.••••••• 3-4
Comparison of Job and Memory Hierarchies•••••.••.•••••••••••. 5-2
Memory Movement Diagram ••••••••••••.••••.••••••••••••••••••••.••• 5-4
8259 Cascaded Interrupt Leve Is •.•••....•..•••••••••..•••••.••..•• 8-3
Flow Chart 0 f Interrupt Handling ••••••••••••••••••••••••••••..••. 8-11
Single-Buffer Interrupt Servi cing ••..•.....•••.•••••••••••.•.•••. 8-12
Multiple-Buffer Interrupt Servicing .•••••.••••••••••••.•••••.•••• 8-13
Type Codes •••••••••••••••••••••••••.•••..•.••.••.•••••••••••••••• B-1

TABLES

7-1 Conditions and Their Codes •••...•••. ~•...•.•.......•••...•• 7-4
8-1 Interrupt Levels Disabled For Running Task .••••••••••.••.•••..... 8-5
8-2 The Relationship Between External Levels and Internal

8-3
8-4
8-5
8-6

Task Priorities .•••••••••••••••••.••••••.•••••••••••••••••••.•• 8-10
Handler and Task Interaction Through Time •••••••••••••••..••••.•• 8-l6
Servicing Interrupts with an Interrupt Handler ••••••.•••••••••.•. 8-21
Servicing Interrupts with an Interrupt Task •.•.•••••••••••••.•••• 8-22
Servicing Interrupts with an Interrupt Handler, an

Interrupt Task, and Multiple Buffering ••••••••.•••••••.•••••.•• 8-24

viii

CHAPTER 1. OVERVIEW

The iRMX 86 Nucleus is the core of every iRMX 86 application system.
Among the activities of the Nucleus are. the following:

• Supplying scheduling functions

• Controlling access to system resources

• Providing for communication between individual processes

• Enabling the system to respond to external events

The Nucleus provides the building blocks from which the other subsystems
(Basic I/O System, Extended I/O System, Application Loader, and Human
Interface) and application systems are constructed. These building
blocks are called objects and are classified into the following
categories called object types:

• Tasks

• Jobs

• Segments

• Mailboxes

• Semaphores

• Regions

• Extension objects

• Composite objects

The following simplistic generalizations can be made regarding these
types:

• Tasks are the active objects in a system. They do the work of
the system.

• Jobs are the environments in which tasks do their work. An
environment consists of tasks, the objects that tasks use, a
directory where tasks can catalog objects so as to make them
available to other tasks, and a pool of memory.

1-1

I

NUCLEUS OVERVIEW

• Segments are pieces of memory, the medium that tasks use for
communicating and for storing data.

• Mailboxes are the objects to which tasks go to send or receive
other objects.

• Semaphores enable tasks to send signals to other tasks.

• Regions are objects that guard a specific collection of shared
data.

• Extension objects are objects which designate new types of
objects.

• Composite objects are objects of the new types designated by
extension objects.

The last three object types (regions, extension objects, and composite
objects) are reserved for use by system programmers, and thus are not
described in this manual. Refer to the iRMX 86 SYSTEM PROGRAMMER's
REFERENCE MANUAL for detailed descriptions of regions, extension objects,
and composite objects.

The Nucleus does extensive record-keeping of objects. It keeps track of
each object by means of a 16-bit value called a token. The Nucleus
provides a number of operators, called system calls, that tasks use to
manipulate objects.

When using a system call, a task supplies parameter values, such as
tokens, names, or other values, depending on the requirements~f the
system call. Some of the functions that tasks can perform with system
calls are the following:

• Create objects

• Delete objects

• Send messages to other tasks

• Receive messages from other tasks

• Obtain information about objects

• Catalog objects with descriptive names

• Delete objects from catalogs

OBJECTS

Each of the five object types discussed in this manual has unique
characteristics. These characteristics are discussed in detail in the
following sections.

1-2

NUCLEUS OVERVIEW

TASKS

A ~ has two goals:

• Its primary goal 1S to do a specific piece of work.

• Its secondary goal is to obtain exclusive control of the
processor so that it can progress toward its primary goal.

One of the main activities of the Nucleus is to arbitrate the competition
that results when several tasks each want exclusive control over the
processor. The Nucleus does this by maintaining, for each task, an
execution state and a priority. The execution state for each task is, at
any given time, either running, ready, asleep, suspended, or
asleep-suspended. The running state is a special case of the ready
state. The priority for each task is an integer value between 0 and 255,
inclusive, with 0 being the highest priority.

The arbitration algorithm that the Nucleus uses is that the running task
is the ready task with the highest (numerically lowest) priority.

As viewed by the Nucleus, a task is merely a context consisting of
values, some of which are the following:

• The task1s priority

• The task1s execution state

• A token for the job that contains the task

When a task becomes the running task, the following events occur, 1n
order:

• The context of the previously running task is saved by the Nucleus

• The Nucleus sets the new running task1s context

• The new task begins executing

The task continues to run until one of the following events occurs:

• The task removes itself from the ready state. For example, the
task can suspend or delete itself; the task can attempt to
receive an object that has not yet been sent, in which case it
might elect to wait (in the asleep state).

• The task (task A) is preempted when a higher priority task (task
B) becomes ready. An example of how this could happen is that
task B might previously have gone into the asleep state for a
specific period of time. When the time period has passed, task B
becomes ready again. Because it is then the highest priority
ready task, task B becomes the running task.

1-3

NUCLEUS OVERVIEW

JOBS

A job consists of tasks and the resources they need.

The jobs in a system form a family tree, with each job, except the root
job, obtaining its resources from its parent. The tasks in the user jobs
can create additional objects. If they create additional jobs, this
enlarges the job tree.

The job tree, right after the initializaton of a system, is shown 1n
• Figure 1-1.

I

I

I ROOT JOB I
I

I I I
USER JOB USER JOB USER JOB

#1 #2 #N

I TASK I . . . I TASK I I TASK I

Figure 1-1. Initial Job Tree

Associated with each job is an object directory. Objects are known to
the Nucleus by their respective tokens, but often, in the code that is
executed by tasks, the objects are known by symbolic names. The object
directory for a job is a place in memory where a task can catalog an
object under a name. Other tasks that know the name can then use the
directory to access the object.

Also associated with each job is a memory pool. This is an amount of
memory which is allocated to the job and its descendents. All memory
needed to create objects in the job comes from the memory pool.

1-4

NUCLEUS OVERVIEW

SEGMENTS

A fundamental resource that tasks need is memory. Memory is allocated to
tasks in the form of segments. A task needing memory requests a segment
of whatever size it requires. The Nucleus attempts to create a segment
from the memory pool given to the task's job when the job was created.

If there is not enough memory available, the Nucleus will try to borrow
the needed memory from ancestors of the job. In this respect, the
tree-structured hierarchy of jobs is instrumental in resource
distribution.

MAILBOXES

A mailbox is one of two types of objects that can be used for intertask
communication. When task A wants to send an object to task B, task A
must send the object to the mailbox, and task B must visit the mailbox,
where, if an object isn't there, it has the option of waiting for any
desired length of time. Sending an object in this manner can achieve
various purposes. The object might be a segment that contains data
needed by the waiting task. On the other hand, the segment might be
blank, and sending it might constitute a signal to the waiting task.
An~ther reason to send an object might be to point out the object to the
receiving task.

SEMAPHORES

A semaphore is a custodian of abstract "units". It dispenses units to
tasks that request them, and it accepts units from tasks.

An example of typical semaphore use is mutual exclusion. Suppose your
application system contains one I/O device which is being used for output
by multiple tasks. To ensure that only one of these tasks can use the
device at a given time, you can establish a semaphore which has one unit
and require that tasks obtain the unit before using the device. A task
wanting to use the device would request the unit from the semaphore.
When it gets the unit, it can use the device and then return the unit to
the semaphore. Because the semaphore has no units while the task is
using the device, other tasks are effectively excluded from using the
device.

HANDLERS

Two kinds of events can be handled specially: exceptional conditions and
interrupts. The remainder of this chapter describes the handlers for
these events.

1-5

I

NUCLEUS OVERVIEW

EXCEPTION HANDLERS

Tasks occasionally make errors. If an error occurs during an iRMX 86
system call, it causes an exceptional condition. The occurrence of an
exceptional condition can, if desired, cause a transfer of control to the
exception handler associated with the current task. The exception
handler is a procedure that typically deals with the problem by one of
the following methods:

• Correcting the cause of the problem and trying again

• Merely logging the error

• Deleting or suspending the task that caused the error

In regard to exception handlers, the designer of an iRMX 86-based system
has two kinds of decisions to make for each task. The first decision
concerns the choice of exception handlers. The task can have its own
custom exception handler, it can use the exception handler for the job to
which it belongs, or it can use the Intel-provided System Exception
Handler. Second, there are two categories of exceptional conditions:
programmer errors and environmental conditions. Each task can be set up
so that control goes to an exception handler in one of the following
cases:

• Only when programmer errors occur

• Only when environmental conditions occur

• In both cases

• Never

If control is not directed to an exception handler, the responsibility
for handling the exception.falls upon the task.

INTERRUPT HANDLERS

To function effectively as a real-time system, an iRMX 86 application
system,must be responsive to external events. An interrupt handler,
which is required for each source of external events, is a procedure that
is invoked by hardware or software for the purpose of responding to an
asynchronous event. The handler takes control immediately and services
the interrupt. When the interrupt handler is finished servicing the
interrupt, it surrenders the processor, which returns to the interrupted
procedure.

As part of its servicing, the interrupt handler can invoke a task to
further process the interrupt. An interrupt handler invokes an interrupt
task if the processing of an interrupt requires large amounts of time or
if the processing requires those Nucleus system calls that interrupt
handlers are prohibited from using.

1-6

CHAPTER 2. JOB MANAGEMENT

A job is an environment in which iRMX 86 objects such as tasks,
mailboxes, semaphores, segments, and (offspring) jobs reside. In
addition, a job has an object directory and a pool of memory. The job's
memory pool provides the raw material from which objects can be created
by the tasks in the job. Figure 2-1 illustrates the elements of a job.

Applications consist of one or more jobs. Jobs are independent but they
may share resources. Each job has its own tasks and may have its own
object directory. Objects may be shared between jobs, although each
object is contained in only one job.

The programmer must decide whether tasks belong in the same job. In
general, you should place tasks in the same job if:

• They have similar or related purposes

• They share many resources

• They have similar 1ifespans

JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tree. The root is a
job that is provided by the Nucleus. The remaining jobs, including jobs
that are created dynamically while the system runs, are descendents of
the root job. A job containing tasks that create other jobs is a parent
job. A newly created job is a child of the job whose task created it.

Associated with each job is a set of limits. The limits of a job are as
follows:

• Maximum allowable size of its object directory

• Maximum and minimum allowable sizes of its memory pool

• Maximum allowable number of simultaneously existing objects that
it can contain

• Maximum allowable number of simultaneously existing tasks that it
can contain

• Highest allowable priority of any task contained in it

2-1

OBJECT DIRECTORY

NAME OBJECT

JOB MANAGEMENT

TASKS: D D D··· D
OBJECTS CREATED BY THE TASKS IN THE JOB:

SEGMENTS: •••

MAILBOXES: •••

SEMAPHORES: ~~~ ••• ~

Figure 2-1. A Job

2-.2

JOB MANAGEMENT

You must specify these limits whenever you create a job. These limits, I
with the exception of object directory size, apply collectively to the
job and all of its descendent jobs.

For example, suppose job A creates job B. When this happens:

• Sufficient memory to meet job B's minimum memory pool
requirements is transferred from job A's memory pool to that of
job B.

• The memory for job B and job B's object directory is taken from
job A's memory pool.

• The numbers of tasks and total objects that job A can contain are
reduced by the corresponding values specified for job B.

• The specified maximum priority for tasks in job B cannot exceed
the maximum priority for tasks in job A~

If job B is later deleted, its resources are returu~d to job A.

JOB CREATION

A job is created with one task. The functions of this task include doing
some initializing for the new job. Initializing activities can include
housekeeping and creating other objects in the new job.

When a task creates a job, it has the option of passing a token for a
parameter object to the newly created job. The parameter object can be
of any type and it can be used for any purpose. For example, the
parameter object might be a segment containing data, arranged in a
predefined format, needed by tasks in· the new job. Tasks in the new job
can obtain a token for the job's parameter object by means of the
GET$TASK$TOKENS system call, described in Chapter 9.

JOB DELETION

Before a job can be deleted, all of its extension objects (see the I
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL) and descendent jobs must be
deleted. By using the OFFSPRING system call, the deleting task can probe
down the job tree and find all of the descendents. Then it can delete
them, beginning with descendents that have no children and working up the
tree. After all of the descendents have been deleted, the task can
delete the target job.

2-3

JOB MANAGEMENT

SYSTEM CALLS FOR JOBS

The following system calls manipulate jobs:

• CREATE$JOB --- creates a job with a task and returns a token for
the job; resources for the new job are drawn from the resources
of the job to which the invoking task belongs.

• DELETE$JOB --- deletes a childless job that contains no extension
objects and returns the job's resources to its parent.

• OFFSPRING --- provides a segment containing tokens of the child
jobs of the specified job.

2-4

CHAPTER 3. TASK MANAGEMENT

Tasks are the active objects in an iRMX 86 system. Each task is part of
a job and is restricted to the resources that its job provides. Tasks
should be written as PL/M-86 procedures, not as main modules.

The iRMX 86 Nucleus maintains a set of attributes for each task. Among
these attributes are the priority and execution state of the task.

PRIORITY

A task's priority is an integer value between 0 and 255, inclusive. The
lower the priority number, the higher the priority of the task. A high
priority task has favored status as it competes with other tasks for the
CPU.

Unless a task is involved in processing interrupts (see Chapter 8), its
priority should be between 129 and 255. When a task having a priority in
the range 0 to 128 is running, certain external interrupt levels are
disabled, depending on the priority.

Also, if a task's code includes instructions that execute on the 8087 NDP
(Numeric Data Processor), that task should not have a priority high
enough to mask the interrupt level of the NDP or a deadlock situation
will result. The interrupt level of the 8087 NDP is configurable; refer
to the iRMX 86 CONFIGURATION GUIDE for further information. Refer to
Chapter 8 of this manual for a correlation between priorities and
interrupt levels.

TASK STATES

A task is always in one of five execution states. The states are asleep,
suspended, asleep-suspended, ready, and running.

THE ASLEEP STATE

A task is in the asleep state when it is waiting for a request to be
granted. Also, a task can put itself to sleep for a specified amount of
time by using the SLEEP system call.

3-1

TASK MANAGEMENT

THE SUSPENDED STATE

A task enters the suspended state when it is placed. there by another task
or when it suspends itself. Associated with each task is a suspension
depth, which reflects the number of "suspends" outstanding against it.
Each suspend operation must be countered with a resume. operation before
the task can leave the suspended state.

THE ASLEEP-SUSPENDED STATE

When a sleeping task is suspended, it enters the asleep-suspended state.
In effect, it is then in both the asleep and suspended states. While
asleep-suspended, the taskfs sleeping time might expire, putting it in
the suspended state.

THE READY AND RUNNING STATES

A task is ready if it is not asleep, suspended, or asleep-suspended. For
a task to become the running (executing) task, it must be the highest
priority task in the ready state •

. TASK STATE TRANSITIONS

The Nucleus does not allocate the processor to tasks in a time-slicing
manner. Instead, as an iRMX 86 application system runs, events occur
which cause tasks to pass from state to state. The iRMX 86 Operating
System is, therefore, event-driven. Figure 3-1 shows the paths of
transition between states.

The following list describes, by number, the events that cause the
transitions in Figure 3-1. In the list, the migrating task is called
lit he task t1

:

(1) The task goes from non-existence to the ready state when it is
created.

(2) The task goes from the ready state to the running state when one
of the following occurs:

• The task has just become ready and has higher priority
than does any other ready task.

• The task is ready, no other ready task has higher
priority, no other task of equal priority has been ready
for a longer time, and the previously running task has
just left the running state by (4), (6), or (10).

3-2

TASK MANAGEMENT

(3) The task goes from the running state to the ready state when the
task is preempted by a higher priority task that has just become
ready.

(4) The task goes from the running state to the asleep state when one
of the following occurs:

• the task puts itself to sleep (by the SLEEP system call.)

• The task makes a request (by the RECEIVE$MESSAGE,
RECEIVE$UNITS, or LOOKUP$OBJECT system call) that cannot
be granted immediately and expresses, in the request, its
willingness to wait.

(5) The task goes from the asleep state to the ready state or from
the asleep-suspended state to the suspended state when one of the
following occurs:

• The task's designated waiting period expires without its
request being granted.

• The task's request 'is granted (because another task
called either the SEND$MESSAGE, SEND$UNITS"or
CATALOG$OBJECT system call; these calls correspond to
those mentioned in (4), above).

(6) The task goes from the running state to the suspended state when
the task suspends itself (by the SUSPEND$TASK system call).

(7) The task goes from the ready state to the suspended state or from
the asleep state to the asleep-suspended when the task is
suspended by another task (by the SUSPEND$TASK system call).

(8) The task remains in the suspended state or the asleep-suspended
state when one of the following occurs:

• (same as (7») or

• The ,task has a suspension depth greater than one and the
task is resumed by another task (by the RESUME$TASK
system call). ,

(9) The task goes from the suspended state to the ready state or from
the asleep-suspended state to the asleep state when the task has
a suspension depth of one and the task is resumed by another task
(by the RESUME$TASK system call).

(10) The task goes from any state to non-existence when it is deleted I
(by the DELETE$TASK, DELETE$JOB, or RESET$INTERRUPT system call).

3-3

TASK MANAGEMENT

(NON-EXISTENT)

t(1)

READY

(2) (3)

I ASLEEP 1 t----(4-}-- R_U_N_N_IN_G ___ {6_} __ ~~ I SUSPENDED) ::J

J (10)

(NON-EXISTENT)

Figure 3-1. Task State Transition Diagram

ADDITIONAL TASK ATTRIBUTES

(8)

In addition to priority, execution state, and suspension depth, the
Nucleus maintains current values of the following attributes for each
existing task: containing job, its PL/M-86 register context, starting
address of its exception handler (see Chapter 7), its exception mode (see
Chapter 7), and whether or not it is an interrupt task (see Chapter 8).

3-4

TASK MANAGEMENT

TASK RESOURCES

When a task is created, the Nucleus takes any resources that it needs at
that time (such as memory for a stack) from the task's containing job.
If the task is subsequently deleted, those resources are returned to the
job. The task's code, however, is not a resource in this sense. It does
not come from nor does it return to the task's containing job.

SYSTEM CALLS FOR TASKS

The following system calls are provided for task manipulation:

•
•
•

•

•

•

•

CREATE$TASK creates a task and returns a token for it.

DELETE$TASK deletes a task from the system.

SUSPEND$TASK --- increases a task's suspension depth by one;
suspends the task if it is not already suspended.

RESUME$TASK --- decreases a task's su~pension depth by one; if
the depth becomes zero and the task wls suspended, it then
becomes ready; if the depth becomes zero and the task was
asleep-suspended, then it goes into the asleep state.

SLEEP --- places the calling task in the asleep state for a
specified amount of time.

GET$TASK$TOKENS --- returns to the calling task a token for
either itself, its job, its job's parameter object, or the root
job, depending on which option is specified in the call.

GET$PRIORITY --- returns the priority of the specified task.

3-5

I

CHAPTER 4. EXCHANGE MANAGEMENT

The iRMX 86 Nucleus provides exchanges to facilitate intertask
communication, synchronization, and mutual exclusion. When a task uses
an exchange, it is always acting either as a sender or as a receiver.
There are two kinds of exchanges: mailboxes and semaphores. If the
exchange is a mailbox, one task will send an object to the mailbox;
another task will go to the mailbox to receive the object. If the
exchange is a semaphore, either a task is receiving units from the
semaphore, or it is sending units to the semaphore.

MAILBOXES

The principal function of mailboxes is to support intertask
communication. A sending task uses a mailbox to pass an object to

'another task. For example, the object might be thac of a segment
containing data needed by the receiving task.

MAILBOX QUEUES

Each mailbox has two queues, one for tasks that are waiting to receive
objects, the other for objects that have been sent by tasks but have not
yet been received. The Nucleus sees that waiting tasks receive objects
as soon as they are available, so, at any given time, at least one of the
mailbox's queues is empty.

MAILBOX MECHANICS

When a task sends a token to a mailbox, using the SEND$MESSAGE system
call, one of two things happens. If no tasks are waiting at the mailbox,
the object is placed at the rear of the object queue (which might be
empty). Object queues are processed in a first-in/first-out manner, so
the object remains in the queue until it makes its way to the front and
is given to a task.

If, on the other hand, there are tasks waiting, the receiving task, which
has been asleep, goes either from the asleep state to the ready state or
from the asleep-suspended state to the suspended state.

NOTE

If the receiving task has a higher
priority than the sending task, then
the receiving task preempts the sender
and becomes the running task.

4-1

EXCHANGE MANAGEMENT

When a task attempts to receive an object from a mailbox V1a the
RECEIVE$MESSAGE system call, and the object queue at the mailbox is not
empty, the task receives the object immediately and remains ready.
However, if there are no objects at the mailbox there are two
possibilities:

• If the task, in its request, elects to wait, it is placed in the
mailbox's task queue and is put to sleep. If the designated
waiting period elapses before the task gets an object, the task
is made ready and receives an E$TIME exceptional condition (see
Chapter 7).

• If the task is not willing to wait, it remains ready and receives
an E$TIME exceptional condition.

A task has the option, when using the SEND$MESSAGE system call, of
specifying that it wants acknowledgment from the receiving task. Thus,
any task using the RECEIVE$MESSAGE system call should check to see if an
acknowledgment has been requested. For details, see the description of
the RECEIVE$MESSAGE system call in Chapter 9.

As stated earlier, the object queue for a mailbox is processed in a
first-in/first-out manner. However, the task queue of a mailbox can be
either first-in/first-out or priority-based, with higher-priority tasks
toward the front of the queue. The queueing method to be used is
specified for each mailbox at the time of its creation.

HIGH PERFORMANCE OBJECT QUEUE

Directly associated with each mailbox is a high performance object
queue. A task, when creating a mailbox with CREATE$MAILBOX, can specify
the number of objects this queue can hold, from 4 to 60. By using this
high performance object queue, the task can greatly improve the
performance of SEND$MESSAGE and RECEIVE$MESSAGE when these calls actually
get or place objects on the queue (it has no effect when tasks are
already waiting at the task queue). When more objects than the high
performance queue can hold are queued at a mailbox, the objects overflow
into a slower queue whose size is limited only by the amount of memory in
the job containing the mailbox.

The high performance queue obtains its high speed because the Nucleus
allocates memory space for it as soon as the mailbox is created. This
memory space is permanently allocated to the mailbox, even if no objects
are queued there. No space is allocated for the overflow portion of the
queue until the space is needed to contain objects. Thus the overflow
portion of the queue is slower.

The user must weigh performance against size when deciding how large to
make the high performance queue. Specifying a high performance queue
that is too large results in a waste of memory. Conversely, a smaller
queue that is constantly overflowing does not realize all possible
performance benefits. Appendix C lists the memory usage algorithm for
high performance queues.

4-2

EXCHANGE MANAGEMENT

SYSTEM CALLS FOR MAILBOXES

The following system calls manipulate mailboxes:

• CREATE$MAILBOX creates a mailbox and returns a token for it.

• DELETE$MAILBOX deletes a mailbox from the system.

• SEND$MESSAGE --- sends an object to a mailbox.

• RECEIVE$MESSAGE --- sends the calling task to a mailbox for an
object; the task has the option of waiting if no objects are
present.

SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a semaphore
either by requesting a specific number of units from it via the
RECEIVE$UNITS system call or by releasing a specific number of units to
it via the SEND$UNITS system call. Although these ope~ations do not
support communication of data, they facilitate mutual exclusion,
synchronization, and resource allocation.

SEMAPHORE QUEUE

Semaphores have only one queue - a task queue. As is the case with
mailboxes, the task queue is either first-in/first-out or priority
based. The queueing scheme to be used is specified for each semaphore at
the time of its creation.

SEMAPHORE MECHANICS

A semaphore might simultaneously have both tasks in its queue and units
in its custody. The allocation scheme used by semaphores is the reason
for this. That scheme is best understood by imagining that the semaphore
is trying, at all times, to satisfy the request of the task which is at
the front of the semaphore's task queue. Only when it can provide as
many units as the task requested does it award units, and then it does so
immediately.

When a task uses the CREATE$SEMAPHORE system call, it must supply two
values. One value specifies the initial number of units to be in the new
semaphore's custody. The other value sets an upper limit on the number
of units that the semaphore is allowed to keep at any given time. The
lower limit is automatically zero.

4-3

•

EXCHANGE MANAGEMENT

When a task requests units from a semaphore via the RECEIVE$UNITS system
call, the request must be within the specified maximum for that
semaphore; otherwise, the request is invalid and causes an E$LIMIT
exceptional condition. If a task's request for units is valid and both

• the size of the request is within the semaphore's current supply
of units and

• the task is - or would be if queued - at the front of the
semaphore's task queue,

then the request is granted innnediately and the task remains ready.
Otherwise, one of the following applies:

• The task, in its request, elects to wait. It is placed in the
semaphore's task queue and i.s put to sleep. If the designated
waiting period elapses before the task gets its requested units,
the task is made ready and receives an E$TIME exceptional
condition.

• The task is not w~lling to wait. It remains ready and receives
anE$TIME exceptional condition.

Suppose, for example, that two tasks, A and B, are waiting at a
semaphore, with A at the front of the queue. The semaphore has no units,
A wants 3 units, and B wants 1 unit. The following three separate cases
illustrate the mechanics of the semaphore:

• If the semaphore is sent 2 units, both A and B remain asleep in
the semaphore's queue. Note that B's modest request is not
satisfied because A is ahead of B in the queue.

• If, instead, the semaphore is sent 3 units, A receives the units
and awakens, while B remains asleep in the queue.

• If, instead, the semaphore is sent 4 units, A and B both receive
their requested units and are awakened. A is awakened first.

When a task sends units to a semaphore, the task remains ready. Sending
units to a semaphore causes an E$LIMIT exceptional condition if it pushes
the semaphore's supply above the designated maximum. The number of units
in the custody of the semaphore remains unchanged.

NOTE

It is possible that a task sending
units to a semaphore can be preempted
by a higher priority task becoming
ready as a result of getting its
requested units.

4-4

EXCHANGE MANAGEMENT

SYSTEM CALLS FOR SEMAPHORES

The following system calls manipulate semaphores:

• CREATE$SEMAPHORE --- creates a semaphore and returns a token for
it.

• DELETE$SEMAPHORE --- deletes a semaphore from the system.

• SEND$UNITS --- adds a specific number of units to the supply of a
semaphore.

• RECEIVE$UNITS --- asks for a specific number of units from a
semaphore.

4-5

CHAPTER 5. MEMORY MANAGEMENT

Occasionally a task needs additional memory, that is, memory not yet
allocated in its job. By using Nucleus system calls for allocating and
deallocating memory, tasks can usually satisfy their memory needs.

SEGMENTS

Allocated memory is treated as a collection of segments. A segment is a
contiguous sequence of 16-byte paragraphs, with its starting (base)
address evenly divisible by 16. The base address functions as the token
for the segment. The Nucleus maintains, as attributes, the base address
and the length in bytes of each segment.

When a task needs a segment, it can request one of the desired length via
the CREATE$SEGMENT system call. If enough memory is available, the
Nucleus returns a token for the segment.

MEMORY POOLS

NOTE

The token of a segment can be used as
the base portion of a pointer to the
segment. Thus, the token can be used
as a base address (as when writing a
message in the segment) or as an
object reference (as when sending the
segment-with-message to a mailbox).

A memory pool is the amount of memory available to a job and its
descendents. Each job has a memory pool. When a job is created, the
memory for its pool is allocated from the pool of its parent job. Thus,
there is effectively a tree-structured hierarchy of memory pools,
identical in structure to the hierarchy of jobs. Memory that a job
borrows from its parent remains in the pool of the parent as well as
being in the pool of the child. Such memory, however, is available for
use only by tasks in the child job, and not by tasks in the parent job.
Figure 5-1 illustrates the relationship between the job and memory
hierarchies. In the figure, the pool sizes shown are actually the
maximum sizes of those pools.

5-1

I

MEMORY MANAGEMENT

JOB A

/~
JOB B JOB C

/
JOB 0

Figure 5-1. Comparison of Job and Memory Hierarchies

CONTROLLING POOL SIZE

Two parameters, pool$min and pool$max, of the CREATE$JOB system call,
dictate the range of sizes (in 16-byte paragraphs) of a new job's memory
pool. Initially, the pool size is equal to pool$min, the pool minimum.
Memory allocated to tasks in the job is still considered to be in the
job's pool. A task needing to know about its job's pool may use the
GET$POOL$ATTRIB system call to obtain pool$min, pool$max, the initial
pool size, the number of paragraphs currently available, and the number
of paragraphs currently allocated.

A task may alter the pool minimum attribute for its job by means of the
SET$POOL$MIN system call; pool$min must lie in the range from 0 to
pool$max, the pool maximum. If a subsequent call to SET$POOL$MIN
increases the pool's minimum size, and the current pool size is less than
the new minimum, no memory is borrowed immediately from the parent job.
Rather, memory is automatically borrowed as it is requested by tasks in
the job, until the new minimum is reached. At that time, the new value
of the pool minimum attribute becomes a lower bound for the job's pool
size.

5-2

MEMORY MANAGEMENT

MOVEMENT OF MEMORY BETWEEN JOBS

When a task tries to create a segment, and the unallocated part of its
job's pool is not sufficient to satisfy the request, the Nucleus tries to
borrow more memory from the job's parent (and then, if necessary, from
its parent's parent, and so on). Such borrowing increases the pool size
of the borrowing job and is thus restricted by the pool maximum attribute
of the borrowing job.

When a job is deleted, the memory in its pool becomes unallocated, and
access to it is given back to the parent job. The smallest contiguous
piece of memory that a job may borrow from its parent is a configuration
parameter. The subject of configuration is covered in the iRMX 86
CONFIGURATION GUIDE.

Observe that, if a job has equal pool minimum and pool maximum
attributes, then its pool is fixed at that common value. This means
that, once it has this amount, the job may not borrow memory from its
parent.

MEMORY ALLOCATION

The memory pool of a job consists of two classes of memory: allocated
and unallocated. Memory in a job is allocated if it has been requested
by tasks in the job or if it is on loan to a child job. Otherwise, it is
unallocated.

The Nucleus borrows small amounts of memory from a job's pool each time a
task in that job creates an object. This memory is needed for bookkeeping
purposes. When the object is deleted, the borrowed memory is returned to
the pool. Appendix C lists these memory requirements. •

When a task no longer needs a segment, it can return the segment to the
unallocated part of the job's pool by using the DELETE$SEGMENT system
call. Figure 5-2 shows how memory "moves."

5-3

~

I

MEMORY MANAGEMENT

PARENT JOB'S POOL

CREATE$- ~ DELETE$JOB CREATE$-
JOB SEGMENT

(BORROWING)

CREATE$SEGMENT
,It

(NORMAL) ... ,

UNALLOCATED ALLOCATED
MEMORY DELETE$SEGMENT MEMORY

.....

CHILD JOB'S POOL

)I'DELETE$- ,
JOB

DEL ETE$SEGMENT
ORROWING) (B

'\
-

J

Figure 5-2. Memory Movement Diagram

SYSTEM CALLS FOR SEGMENTS

The following system calls manipulate segments:

•
•

CREATE $ SEGMENT

DELETE$SEGMENT
was allocated.

creates a segment and returns a token for it.

returns a segment to the pool from which it

• GET$SIZE --- returns the size, in bytes, of a segment.

• SET$POOL$MIN enables a task to change the pool minimum
attribute of its job's pool.

• GET$POOL$ATTRIB --- returns the following memory pool attributes
of the calling task's job: pool minimum, pool maximum, initial
size, number of allocated paragraphs, and number of available
paragraphs.

5-4

CHAPTER 6. OBJECT MANAGEMENT

A few iRMX 86 Nucleus system calls apply to all objects. These system
calls allbw tasks to inquire about an object's type and to use object
directories.

INQUIRING ABOUT OBJECT TYPES

The GET$TYPE system call enables a task to present a token to the Nucleus
and get an object's type code in return. (Type codes for Nucleus objects
are listed in Appendix B.) This is useful, for example, when a task is
expecting to receive objects of several different types. With the
object's type code, the task can use the appropriate system calls for the
objec t.

USING OBJECT DIRECTORIES

Each job has its own object directory. An entry in an object directory
consists of a token for an object and the object name. The name contains
from one to twelve characters, where a character is a one-byte value
(from 0 to OFFH). Such a feature is often needed because some tasks
might only know some objects by their associated names.

By using the LOOKUP$OBJECT system call, a task can present the name of an
object to the Nucleus. The Nucleus consults the object directory
corresponding to the specified job and, if the object has been cataloged
there, returns the token.

NOTE

In object directories, upper and lower
case alphabetic characters are treated
as being different. The Nucleus sees
the name as just a string of bytes. It
does not interpret these bytes as ASCII
characters.

If the object has not yet been cataloged, and the task is not willing to
wait, the task remains ready and receives an E$TlME exceptional
condition. However, if the task is willing to wait, it is put to sleep;
there are two possibilities:

• If the designated waiting period elapses before the task gets its
requested token, the task is made ready and receives an E$TlME
exceptional condition (see Chapter 7).

6 ... 1

I

I

OBJECT MANAGEMENT

• If the task gets its requested token within the designated
waiting period, it is made ready with no exceptional condition.
This case is possible because another task can, while the
requesting task is waiting, catalog the appropriate entry in the
specified object directory.

When a task wants to share an object with the other tasks in a job (not
necessarily its own job), it can use the CATALOG$OBJECT system call to
put the object in that job's object directory. Typically, this is done
by the creator of the object. Likewise, entries can be removed from a
directory by the UNCATALOG$OBJECT system call.

What is required, when using an object directory, is the token of the job
whose directory is to be used. The root job's object directory, called
the root object directory, is special in that its token is easily
accessible. Any task can call the GET$TASK$TOKENS system call to obtain
the token of the root job.

SYSTEM CALLS FOR ANY OBJECTS

The following system calls manipulate objects:

• CATALOG$OBJECT --- places an object in an object directory.

• UNCATALOG$OBJECT --- removes an object from an object directory.

• LOOKUP$OBJECT --- accepts a cataloged name of an object and
returns a token for it.

• GET$TYPE --- accepts a token for an object and returns its type
code.

6-2

CHAPTER 7. EXCEPTIONAL CONDITION MANAGEMENT

When a task invokes an iRMX 86 system call, the results are sometimes not
what the task is trying to achieve. For example, suppose a task requests
memory that is not available or uses an invalid token as a parameter. In
such cases, the system must inform the task that an error occurred.
Whenever a task makes a system call, the means of communicating the
success or failure of the call is the condition code.

TYPES OF EXCEPTIONAL CONDITIONS

Table 7-1 is a list of Nucleus conditions and their codes. The
conditions that represent failure are called exceptional and are
classified as programmer errors or environmental conditions. An
exceptional condition that is preventable by the calling task is a
programmer error. In contrast, exceptional conditions due to
environmental circumstances of which the task could have no awareness are
considered environmental conditions.

Table 7-1 lists the possible conditions, with their associated numeric
codes and mnemonics. Values not used as numeric codes are reserved.

EXCEPTION HANDLERS

The iRMX 86 Nucleus supports exception handlers. Their purpose is to
deal with the errors that tasks encounter in making system calls. How an
exception handler deals with an exceptional condition is a matter of
programmer discretion. In general, a handler performs one of the
following actions:

• Logs the error.

• Deletes or suspends the task that erred.

• Ignores the error. If this option is taken, the system continues
as if no error had occurred. Continuing under such circumstances
is generally unwise, however.

An exception handler is written as a procedure with four parameters
passed in the following order:

• The condition code (WORD).

• A code (BYTE) indicating which parameter, if any, was faulty in
the call (1 for first, 2 for second, etc., 0 if none).

7-1

I

I

I

EXCEPTIONAL CONDITION MANAGEMENT

• A reserved (WORD) parameter.

• A second reserved (WORD) parameter.

ASSIGNING AN EXCEPTION HANDLER

A task may use the SET$EXCEPTION$HANDLER system call to declare its own
exception handler. Otherwise, the task inherits the exception handler of
its job. A job can receive its own exception handler at the time of its
creation. If it doesn't, the job inherits the system exception handler.
Thus, the Nucleus can always find an exception handler for the running
task.

A system exception handler is provided as part of the iRMX 86 Operating
System. Depending on a configuration option, it either deletes or
suspends any task on whose behalf it is invoked. The iRMX 86
CONFIGURATION GUIDE describes this configuration option.

Users wanting to write their own exception handlers should compile them
under the PL/M-86 LARGE control.

Any task can have the Debugger as its exception handler; see the
description in Chapter 9 of the SET$EXCEPTION$HANDLER system call for
instructions on how to dynamically make such an assignment.
Alternatively, the Debugger or any other routine can be made the system
exception handler statically; see the iRMX 86 CONFIGURATION GUIDE for
information on how to do this.

INVOKING AN EXCEPTION HANDLER

An exception handler normally receives control when an exceptional
condition occurs. However, when a task encounters an exceptional
condition, it need ~ot always have control passed to its exception
handler. The factor that determines whether control passes to the
exception handler is the task's exception mode. This attribute has four
possible values, each of which specifies the circumstances under which
the exception handler is to get control in the event of an exceptional
condition. These circumstances are:

• Programmer errors only.

• Environmental conditions only.

• All exceptional conditions.

• No exceptional conditions.

When the Nucleus detects that a task has caused an exceptional condition
in making a system call, it compares the type of the condition with the
calling task's exception mode. If a transfer of control is indicated,
the Nucleus passes control to the exception handler on behalf of the

7-2

EXCEPTIONAL CONDITION MANAGEMENT

task. The exception handler then deals with the problem, after which
control returns to the task, unless the exception handler deleted the
task. While the exception handler is executing, the errant task is still
regarded by the Nucleus to be the running task.

When a task is created, its exception mode is set to its job's default
exception mode. The task can change its exception handler and exception
mode attributes by using the SET$EXCEPTION$HANDLER system call.

HANDLING EXCEPTIONS IN-LINE

If a task's exception mode attribute does not direct the Nucleus to
transfer control to the task's exception handler, the responsibility for
dealing with an error falls upon the task.

Each system call has as its last parameter a POINTER to a WORD. After a
system call, the Nucleus returns the resulting condition code to this
WORD. By checking this WORD after each system call, a task can ascertain
whether the call was successful. (See Table 7-1 for condition codes.)
If the call was not successful, the task can learn which exceptional
condition it caused. This information can sometimes enable the task to
recover. In other cases more information is needed.

If a system call returns an exception code to indicate an unsuccessful I
call, all other output parameters of that system call are undefined.

NOTE

If an exceptional condition is caused
by an invalid parameter, an exception
handler, which is passed the parameter
number of the first invalid parameter,
should handle the condition.

7-3

CATEGORY/
MNEMONIC

Normal

E$OK

Exceptional

Environmental
Conditions

E$TIME

E$MEM

E$LIMIT

E$CONTEXT

E$EXIST

E$STATE

ENOTCON
FIGURED

E$INTER
RUPT$SAT
URATION

E$INTER
RUPT$OV
ERFLOW

EXCEPTIONAL CONDITION MANAGEMENT

Table 7-1. Conditions and Their Codes

NUMERIC CODE

MEANING HEX DECIMAL

The most recent system call was
successful.

A time limit (possibly a limit of
zero time) expired without a task's

OH

request being satisfied. IH

There is not sufficient memory avail-
able to satisfy a task's request. 2H

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit. 4H

A system call was issued out of context.
or the Nucleus was asked to perform an
impossible operation. 5H

A token parameter has a value which is
not the token of an existing object. 6H

A task attempted an operation which
would have caused an impossible
transition of a task's state. 7H

The system call being attempted is not
not part of the present software
configuration. 8H

An interrupt task has accumulated the
maximum allowable amount of SIGNAL$IN-
TERRUPT requests. 9H

An interrupt task has accumulated more
than the maximum allowable amount of
SIGNAL$INTERRUPT requests. OAR

7-4

o

1

2

4

5

6

7

8

9

10

EXCEPTIONAL CONDITION MANAGEMENT

Table]-1. Conditions and Their Codes (continued)

NUMERI G CODE
CATEGORY/
MNEMONIC

Programmer
Errors

. E$ZERO$
DIVIDE

E$OVERFLOW

E$TYPE

E$PARAM

EBADCALL

MEANING

A task attempted to divide by zero.

An overflow interrupt occurred.

A token parameter referred to an
existing object that is not of the
required type.

A parameter which is neither a token
nor an offset has an illegal value.

A task wrote over the interface
library or attempted a restricted
software interrupt.

SYSTEM CALLS FOR EXCEPTION HANDLERS

The following system calls manipulate exception handlers:

HEX

8000H

8001H

8002H

8004H

8005H

• SET$EXCEPTION$HANDLER --- sets the exception handler and
exception mode attributes of the calling task.

DECIMAL

32768

32769

32770

32772

32773

• GET$EXCEPTION$HANDLER --- returns to the calling task the current
values of its exception handler and exception mode attributes.

7-5

I

CHAPTER 8. INTERRUPT MANAGEMENT

Interrupts and interrupt processing are central to real-time computing.
External events occur asynchronously with respect to the internal
workings of an iRMX 86 application system. An interrupt, signalling the
occurrence of an external event, triggers an implicit "call" to a
location specified in a section of memory known as the interrupt vector
table. From there, control is redirected to an interrupt procedure
called an interrupt handler. At this point, one of two things happens.
If handling the interrupt takes little time and requires no system calls,
other than certain interrupt-related system calls, the interrupt handler
processes the interrupt. Otherwise, the interrupt handler invokes an
interrupt task which deals with the interrupt. After the interrupt has
been serviced, control returns to the ready application task with highest
priority. '

INTERRUPT MECHANISMS

There are three major concepts in interrupt processing: the interrupt
vector table, interrupt levels, and disabling interrupt levels.

THE INTERRUPT VECTOR TABLE

The interrupt vector table is composed of 256 vectors. The vectors are
numbered 0 to 255. A number of the interrupt vectors are reserved and
therefore are not available to be defined by user tasks. The vectors are
allocated as follows:

o
1
2
3

4
5

6-31
32

33-55
56-63
64-127:

128-183
184-190

191
192-223
224-255

divide by zero
single step (used by the iSBC 957A package)
non-maskable interrupt (used by the iSBC 957A package)
one byte interrupt instruction (used by the iRMX 86

Debugger and the iSBC 957A package)
interrupt on overflow (used by the hardware)
runtime array bounds error (used by compilers and

assembler)
reserved
reserved for iRMX 86 Nucleus
reserved
reserved for external interrupts (8259A master levels)
reserved for external interrupts (8259A slave levels)
unused (available to users)
reserved for the Nucleus
reserved for the iRMX 86 Debugger
reserved
described in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL

8-1

I

INTERRUPTMANAGEM:ENT

INTERRUPT LEVELS

External interrupts are funneled through hardware interrupt controllers
(s·uchasthe8259APIC). An individual 8259APIC can manage interrupts
from as many as eight external sources. However, the iRMX86 operating
system also supports an expanded (or cascaded) environment in which up to
seven input lines of one 8259APIC {the master) are connected to other
8259APIGs (the slaves). The eighth input line from the master 8259A PIC
must be connected directly ,to the system clock. .Since each of the slaves
cantnanage eight interrupts, this allows the operating .system to manage
interrupts from as many as 56 external sources plus the system clock.

The interrupt lines of the mas.ter8259APIC and the int.errupt lines of
the slave 8259A,PICs are associated with interrupt levels as shown in
FigureS-I. The master interrupt levels, numberedMO .throughM7,
correspond to interrupt ve.ctors 56 through '63, respective ly. The slave
interrupt levels, numbered xOto x7 (where x ranges from 0 to 7)
correspond to interrupt vectors 64 through 127, respectively.

There are two restrictions you must obeyWben assigning interrupt levels
to external sources. They are:

• You must assign the system clock toa master interrupt level.
The level number is a .configuration option and is described in
the iRMX 86 CONFIGURATION GUIDE..

• You cannot connect a slave PIC to master levelMO if an
interrupting device connects directly to any other master level.
Thus, if you assign the system clock to an interrupt level other
than MO, you can connect at most six slavePICs to your master
PIC. If you assign the system clock to level MO, you can ,connect
seven slave PICs.

Regardless of the master level chosen for the system clock, the ·slave
levels that correspond to that master level cannot be used. They do not
correspond to any 8259A PIC interrupt lines. (IngeneralJ.._when any
interrupt line of the master 8259A PIC connects directly to an
interrupting device instead of to a slavePIC,themaster interrupt level
is used. The associated slave levels do not correspond to any interrupt
lines.)

DISABLING INTERRUPTS

Occasionally you want to prevent interrupt signals from causing an
immediate interrupt. For example, it is desirable to prevent low
priority interrupts from interfering with the servicing ·of a high
priority interrupt. In the iRMX 86 Operating System, each interrupt
level can be disabled. In some circumstances, described later, the
Nucleus disables levels. Tasks can also disable and enable levels by
means of the DISABLE and ENABLE system calls. The master level that you
reserve for the system clock should not be disabled or enabled.

8-2

INTERRUPT MANAGEMENT

I
I

I
I ,

I
I ,

I
I
I ,

I

MASTER
8259A PIC

MO
M1

"
I

/

I
I

I

M2 -r--__

M3

M4

M5

M6

M7

/
I

f

/
" /'

SLAVE 1
8259APIC

levels
10-.17

SLAVE 2
8259A PIC

levels
20-27

• • •
SLAVE '1

8259A PIC

levels
70-77

Figure 8-1. 8259A PIC Cascaded Interrupt Levels

8-3

INTERRUPT MANAGEMENT

If an interrupt signal arrives at a level that is enabled, the interrupt
is recognized by the processor and control goes immediately to the
interrupt handler for that level. Otherwise, the level is disabled and
the interrupt signal is blocked until the level is enabled, at which time
the signal is recognized by the CPU. However, if the signal is no longer
emanating from its source, it is not recognized and the interrupt is not
handled.

There are four ways 1n which an interrupt level can be disabled.

• A task can mask the level by using the DISABLE system call; later
the task can unmask the level by using the ENABLE system call.

• The Nucleus disables certain interrupt levels, depending on the
priority of the running task. The relationship between task
priorities and disabled levels is given in Table 8-1.

• When a task makes a SET$INTERRUPT system call and designates
itself as an interrupt task for a particular level, it can
specify a queueing limit for unserviced interrupts. The
interrupt level is disabled when the limit is reached.

• When a task makes a RESET$INTERRUPT system call to cancel the
assignment of an interrupt handler to a specified level, the
interrupt level is disabled.

NOTE

A task should never use the PL/M-86
DISABLE statement to disable processor
interrupts. The Nucleus does not
guarantee that a level so disabled will
still be disabled after the task makes
a Nucleus system call.

8-4

INTERRUPT MANAGEMENT

Table 8-1. Interrupt Levels Disabled for Running Task

Task Priority

0-2
3-4
5-6
7-8
9-10

11-12
13-14
15-16
17-18
19-20
21-22
23-24
25-26
27-28
29-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53-54
55-56
57-58
59-60
61-62
63-64
65-66
67-68
69-70
71-72
73-74
75-76
77-78
79-80
81-82
83-84
85-86

Disabled Levels

Slave Levels

8-5

00 - 77
01 - 77
02 - 77
03 - 77
04 - 77
05 - 77
06 - 77
07 - 77
10 - 77
11 - 77
12 - 77
13 - 77
14 - 77
15 - 77
16 - 77
17 - 77
20 - 77
21 - 77
22 - 77
23 - 77
24 - 77
25 - 77
26 - 77
27 - 77
30 - 77
31 - 77
32 - 77
33 - 77
34 - 77
35 - 77
36 - 77
37 - 77
40 - 77
41 - 77
42 - 77
43 - 77
44 - 77
45 - 77
46 - 77
47 - 77
50 - 77
51 - 77
52 - 77

Master Levels

MO - M7
Ml - M7
Ml - M7
Ml - M7
Ml - M7
Ml - M7
Ml - M7
Ml - M7
Ml - M7
M2 - M7
M2 - M7
M2 - M7
M2 - M7
M2 - M7
M2 - M7
M2 - M7
M3 - M7
M3 - M7
M3 - M7
M3 - M7
M3 - M7
M3 - M7
M3 - M7
M3 - M7
M4 - M7
M4 - M7
M4 - M7
M4 - M7
M4 - M7
M4 - M7
M4 - M7
M4 - M7
M5 - M7
M5 - M7
MS - M7
M5 - M7
MS - M7
M5 - M7
MS - M7
M5 - M7
M6 - M7
M6 - M7
M6 - M7

INTERRUPT MANAGEMENT

Table 8-1. Interrupt Levels Disabled for Running Task (continued)

I,

Task Priority Di sabled Level s

Slave Levels Master Levels

87-88 51 - 77 M6 M7
89-90 54 - 71 M6' - M7
91 ... 92 55 - 77 M6 - M7
93"'94 56 - 77 M6 - M7
95-96 57 - 77 M'6 - M7
97-98 60 - 77 M6 - M7
99-100 61 - 77 M7

101-10,2 62 - 77 M7'
103-104 63 - 77 M7
10,5-106 64 - 77 M7'
107-108 65 - 77 M7
109-110 66 - 77 M7
111-112 67 - 77 M7
113-114 70 - 77 M7
115-116 7'1 - 77 None
117-118 72 - 77 None
119-120 73 - 77 None
121-122 74 - 77 None
123-124 75 - 77 None
12'5-126 76 - 77 None
127-128 77 None
I29~255 None None

INTERRUPT HANDLERS AND INTERRUPT TASKS

Whether an interrupt handler services an interrupt level by itself or
invokes an interrupt task to service the interrupt depends on two factors:

• the kinds of system calls needed

• the amount of time required

Regarding the first factor, interrupt handlers can make only the
• ENTER$ INTERRUPT , EXIT$INTERRUPT, GET$LEVEL, DISABLE and SIGNAL$INTERRUPT

system calls. If the handler needs other system calls in order to
service the interrupt" it must invoke an interrupt task.

Regarding the second factor, an interrupt handler 'should always invoke an
interrupt task unless the handler can service interrupts quickly. This
is because an interrupt signal disables all interrupts, and they remain
disabled until the interrupt handler either services the interrupt or
invokes an interrupt task. Invoking an interrupt task allows higher

• priority interrupts (and in some cases, the same priority interrupts) to
be accepted.

8-6

INTERRUPT MANAGEMENT

SETTING UP AN INTERRUPT HANDLER

Interrupt handlers are generally written as PL/M-86 interrupt procedures,
but can be written in assembly language. If an interrupt handler is
written 1n assembly language, it must save and restore all register
values, as noted later.

The SET$INTERRUPT system call binds an interrupt handler and, optionally,
an interrupt task to an interrupt level. It does this as follows:

• One of the SET$INTERRUPT parameters, the interrupt$handler
parameter, specifies the starting address of the interrupt
handler. SET$INTERRUPT binds the handler to a level by placing
this starting address into the interrupt vector table at the
position that corresponds to the level. When an interrupt of
that level occurs, control automatically transfers through the
vector table to the handler.

• Another parameter in SET$INTERRUPT, the interrupt$task$flag
parameter, determines whether an interrupt task is associated
with the level. If the interrupt$task$flab parameter is set to
zero, there is no interrupt task for the specified level.
Otherwise, the calling task becomes the interrupt task for the
level.

Any desired value can be specified as the data segment base address for
an interrupt handler by means of the interrupt$handler$ds parameter in
SET$INTERRUPT. The interrupt handler can later cause this value to be
loaded into the DS register by calling ENTER$INTERRUPT. This feature
allows an interrupt handler and an interrupt task to share data areas.

When an iRMX 86 application system starts up, all interrupt levels are
disabled. When SET$INTERRUPT binds an interrupt handler but not an
interrupt task to a level, the level is enabled. If, instead, there is
an interrupt task, the level is not enabled until that task makes a
WAIT$INTERRUPT system call (described later.) An interrupt task should
not enable its own level before making its first call to WAIT$INTERRUPT.

A RESET$INTERRUPT system call cancels the bond between an interrupt level
and its interrupt handler. The call also disables the specified level.
If there is an interrupt task for the level, RESET$INTERRUPT deletes it.
DELETE$TASK does not delete interrupt tasks.

USING AN INTERRUPT HANDLER

If an interrupt handler is to service interrupts for a given level
without invoking an interrupt task, the handler must assume one of two
forms, depending on whether it needs to have the Nucleus set up its data
segment base address.

8-7

I

I

I

I

I
I

INTERRUPT MANAGEMENT

If the interrupt handler does not need to access the data segment or if
it contains its data segment base address in its code, then it should
perform the following functions in the following order:

If in assembly language, save all register contents
Service the interrupt
Call EXIT$INTERRUPT
If in assembly language, restore all register contents
Return

The call to EXIT$INTERRUPT sends an end-of-interrupt signal to the
hardware.

If the interrupt handler wants the Nucleus to load a data segment base
address (as specified in an earlier call to SET$INTERRUPT) into the DS
register, then it should perform the following functions in the following
order:

If in assembly language, save all register contents
Optionally, do some interrupt servicing
Call ENTER$INTERRUPT
Complete interrupt servicing
Call EXIT$INTERRUPT
If in assembly language, restore all register contents
Return

The call to ENTER$INTERRUPT tells the Nucleus to load the interrupt
handler's data segment base address into the DS register. Because
PL/M-86 makes use of the data segment, as specified by the contents of
the DS register, loading a new value into this register serves to protect
the data segment of the interrupted task.

USING AN INTERRUPT TASK

If there is both an interrupt handler and an interrupt task associated
with a level, the interrupt handler invokes the interrupt task by making
a SIGNAL$INTERRUPT system call. If a level has only an interrupt
handler, however, the handler may not call SIGNAL$INTERRUPT.

If an interrupt handler invokes an interrupt' task, the handler must
perform the following functions in the following order:

If in assembly language, save the register contents.
Optionally, call ENTERINTERRUPT.
Optionally, begin servicing the interrupt without system

calls.
Call SIGNAL$INTERRUPT.
If in assembly language, restore the register contents.
Return

The call to SIGNAL$INTERRUPT starts up the interrupt task and enables
higher (and possibly equal) priority interrupts.

8-8

INTERRUPT MANAGEMENT

If used, the call to ENTER$INTERRUPT sets up a new DS value for the
interrupt handler. If you want the interrupt handler to have the same DS
value as that used by the interrupt task, so the handler can pass data to
the task, follow the advice given in the description of the
interrupt$handler$ds parameter of SET$INTERRUPT in Chapter 9.

An interrupt handler executes in the environment of the interrupted
task. The interrupt task, however, like any other task, has its own
environment.

An interrupt task must perform the following functions in the following
order, although the first two functions may be interchanged:

Call SET$INTERRUPT.
Do initialization.
Do forever;

Call WAIT$INTERRUPT.
Service the interrupt (system calls allowed).

End;

An interrupt task, once initialized, is always in one of two modes.
Either it is servicing an interrupt or it is waiting for notification of
an interrupt.

When a task becomes an interrupt task by calling SET$INTERRUPT, the
Nucleus assigns a priority to it, according to the level that the task is
to service. Table 8-2 shows the relationship between levels and
interrupt task priorities.

NOTES

The priority that the Nucleus assigns
to an interrupt task might exceed the
maximum priority attribute of the job
that contains that task. If this
occurs, you get an exceptional
condition. You should make sure this
problem doesn't occur by creating the
job with an appropriately high maximum
priority attribute.

Because the automatic filling of the
interrupt vector is overridden by the
Nucleus, the NOINTVECTOR control should
be used when compiling the interrupt
handler.

8-9

I

LEVEL

MO
M1
M2
M3
M4
M5
M6
M7
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

INTERRUPT MANAGEMENT

Table 8-2-. The Relationship Between External Levels and
Internal Task Priorities

INTERRUPT INTERRUPT INTERRUPT
TASK TASK TASK
PRIORITY LEVEL PRIORITY LEVEL PRIORITY

18 20 36 50 84
34 21 38 51 86
50 22 40 52 88
66 23 42 53 90
82 24 44 54 92
98 25 46 55 94

114 26 48 56 96
130 27 50 57 98

4 30 52 60 100
6 31 54 61 102
8 ! 32 56 62 104

10 33 58 63 106
12 34 60 64 108
14 35 62 65 110
16 36 64 66 112
18 37 66 67 114
20 40 68 70 116
22 41 70 71 118
24 42 72 72 120
26 43 74 73 122
28 44 76 74 124
30 45 78 75 126
32 46 80 76 128
34 47 82 77 130

Figure 8-2 illustrates the two interrupt servicing patterns and their
relationships.

8-10

INTERRUPT MANAGEMENT

CONTROL RETURNS TO AN
APPLICATION TASK

Figure 8-2. Flow Chart of Interrupt Handling

Note that an interrupt handler might call an interrupt task sometimes yet
not call it at other times. An example is an interrupt handler that puts
characters entered at a terminal into a buffer. Whenever a character is
received, the interrupt handler is invoked and puts the character in the
line buffer. If the characater is an end-of-line character, or if the
character count maintained by the interrupt handler indicates that the
buffer is full, the interrupt handler calls its interrupt task to process
the contents of the buffer. Otherwise, the interrupt handler calls
EXIT$INTERRUPT and then returns control to application tasks. The next
section discusses this kind of interrupt servicing in more detail.

USING MULTIPLE BUFFERS TO SERVICE INTERRUPTS

In certain instances, as illustrated in Figure 8-2, both an interrupt
handler and an interrupt task are involved in servicing interrupts. The
handler performs the simple, less time-consuming functions and then
signals an interrupt task to perform more complicated functions. In

8-11

INTERRUPT MANAGEMENT

doing this, the handler and the task usually exchange information by
sharing data buffers. The handler places information into the buffers
and the task uses that information. The number of buffers used
determines when and how interrupts should be disabled.

Many users require only single buffering in their interrupt servicing
routines. These users do not have to read the remaining paragraphs in
this section. They should just ensure that their interrupt tasks specify
a value of 1 for the interrupt$task$flag parameter in the call to
SET$INTERRUPT. However, users who require mUltiple buffering for their
interrupt servicing routines should continue reading this section.

Single Buffer Example

An example of a single buffer interrupt service mechanism is an interrupt
handler that reads data from an external device character by character
and places the characters into a buffer. When the buffer gets full, the
handler calls SIGNAL$INTERRUPT to signal an interrupt task to further
process the data. Since there is only one buffer for the data, the
interrupt level associated with the interrupt task must be disabled while
the task is processing. This prevents the interrupt handler from
destroying the contents of the buffer by continuing to place data into an
already full buffer. Figure 8-3 illustrates this situation.

G) PLACES DATA
INTO BUFFER

@WHEN BUFFER IS FULL,
HANDLER CALLS

SIGNAL$INTERRUPT
TO START TASK

@UPON COMPLETION,
TASK CALLS

. WAIT$INTERRUPT

Figure 8-3. Single-Buffer Interrupt Servicing

8-12

INTERRUPT MANAGEMENT

Multiple Buffer Example

Now suppose that the interrupt handler and the interrupt task provide the
same functions as in the first example, but use multiple buffers. In
this case, the interrupt level associated with the task does not always
have to be disabled while the task runs. Instead, the task can process a
full buffer while the handler continues to accept interrupts. When the
handler fills a buffer, it calls SIGNAL$INTERRUPT to start the interrupt
task, as in the first example. However, because there are multiple
buffers, the interrupt level is not disabled. Instead, the handler
continues to accept interrupts, placing the data into the next empty
buffer.

While this is going on, the interrupt task processes the full buffer.
When the task completes the processing, it calls WAIT$INTERRUPT, to
indicate that it is ready to accept another SIGNAL$INTERRUPT request
(another full buffer) and to indicate that the huffer it just finished
processing is available for reuse by the handler. Figure 8-4 illustrates
this multiple buffer situation.

BUFFERS

~/
/

~/

, ,
I ,

I \ m~MU"
j INTERRUPT I / SIGNALS
~ TASK ,

\ I "-
..... " -_.... '\

\("'"

_-1
" / ,

" © CALLS I INTERRUPT I ® PROCESSES
WAIT$INTERRUPT' TASK I FULL BUFFER
TO WAIT FOR NEXT\, I
FULL BUFFER ".. / r -~- \ '--~

Figure 8-4. Multiple-Buffer Interrupt Servicing

8-13

INTERRUPT MANAGEMENT

Because the handler and the task are running somewhat independently, the
handler may fill a buffer and call SIGNAL$INTERRUPT before the task has
finished processing the previous buffer. To prevent the SIGNAL$INTERRUPT
request from becoming lost, the oper~ting system maintains a count of
these requests. Each time the handler calls SIGNAL$INTERRUPT, the count
is incremented by one. Each time the task calls WAIT$INTERRUPT, the
count is decremented by one.

If the count is still greater than zero after the interrupt task calls
WAIT$INTERRUPT, the task does not wait for the next SIGNAL$INTERRUPT to
occur before resuming execution. Instead, it realizes that outstanding
requests exist and immediately starts processing the next request (the
next full buffer). Thus, with proper tuning, neither the interrupt task
nor the interrupt handler has to wait for the other. The interrupt
handler can continually respond to interrupts without having the task
disable the interrupt level. The interrupt task can continually process
full buffers of data without waiting for the handler to call
SIGNAL$INTERRUPT.

Specifying the Count Limit

The interrupt task, when it initially calls SET$INTERRUPT, puts a limit
on the maximum number of outstanding SIGNAL$INTERRUPT requests. The
interrupt$task$flag parameter specifies this limit. When the interrupt
handler calls SIGNAL$INTERRUPT and increments the count to the limit, two
things happen. They are:

• The interrupt level is disabled, preventing the handler from
accepting further interrupts until the interrupt task makes its
next WAIT$INTERRUPT call.

• The E$INTERRUPT$SATURATION condition code is returned by
SIGNAL$INTERRUPT to the handler, to indicate that the limit has
been reached. This is an informative message only.

When the task calls WAIT$INTERRUPT and decrements the count below the
limit, the interrupt level is enabled, allowing the handler to resume
accepting interrupts.

The task should always set the limit equal to the number of buffers that
the task and handler use. If the task sets the limit larger than the
number of buffers, the handler will accept interrupts when no buffers are
available and data will be lost. If the task sets the limit smaller than
the number of buffers, there will always be empty buffers and space will
be wasted.

For example, if one buffer is used, the task should set the limit to
one. In this case, the interrupt level is always disabled while the task
is processing the buffer. If two buffers ar~ used, the task should set
the limit to two. Then, the handler can filL one buffer while the task
is processing the other. Additional buffers require correspondingly
higher limits. However, if the task sets the limit to zero, the
interrupt handler operates without an interrupt task.

8-14

INTERRUPT MANAGEMENT

NOTE

When an interrupt task sets the count
limit to one, SIGNAL$INTERRUPT will
not return the E$INTERRUPT$SATURATION
condition code.

Table 8-3 illustrates the situation described in this section. It shows
the actions of the handler and the task illustrated in Figure 8-3. The
table is broken up into three parts: actions of the interrupt handler,
actions of the interrupt task, and SIGNAL$INTERRUPT count. The count
limit is set to two. The table shows the actions of both the handler and
the task through time, and the change in value of the count.

Table 8-3 documents two extreme conditions, labeled "A" and "B". At
position "A", the interrupt handler fills its last available buffer and
calls SIGNAL$INTERRUPT to notify the task. However, at this point the
task is not finished processing the first buffer. The count is
incremented to the limit and interrupts are disabled until the task
finishes with the first buffer and calls WAIT$INTEKRUPT.

At position "B", the opposite case exists. The task finishes processing
its buffer and calls WAIT$INTERRUPT. However, the handler has not
processed enough interrupts to fill a buffer. The task must wait until
the handler calls SIGNAL$INTERRUPT.

Table 8-3. Handler and Task Interraction through Time

Time

Intrpt

Interrupt
Handler

~ Process interrupt,
start filling first
buffer.

Intrpt
~ Process interrupt,

continue filling
first buffer.

Interrupt
Task

Call SET$INTERRUPT to estab
lish handler and task for
level, setting count limit to 2.

SIGNAL$
INTERRUPT

Count

o

Call WAIT$INTERRUPT to wait 0
for first request from handler.

8-15

INTERRUPT MANAGEMENT

Table 8-3. Handler and Task Interraction through Time (continued)

Intrpt
~

Intrpt

Interrupt
Handler

Process interrupt.
Buffer is full. Call

Interrupt
Task

SIGNAL$INTERRUPT. ~ Start processing first full
buffer.

~ Process interrupt.

Intrpt
~

@

Intrpt

Start filling next
buffer.

Process interrupt.
Buffer is full. Call
SIGNAL$INTERRUPT. ~
Count is at limit.
Interrupt level is
disabled.

Call WAIT$INTERRUPT. Task
starts processing next
full buffer immediately
and returns empty buffer.
Interrupt level is enabled.

~ Process interrupt.

Intrpt

Start filling next
buffer.

Call WAIT$INTERRUPT. No full
buffers are available. Task
waits for next request.

~ Process interrupt.
Buffer is full. Call
SIGNAL$INTERRUPT. ~ Start processing

next full buffer.

8-16

SIGNAL$
INTERRUPT

Count

1

2

1

o

I

INTERRUPT MANAGEMENT

Enabling Interrupt Levels From Within a Task

In certain cases, an interrupt task may finish with a buffer of data
before it finishes its actual processing. An example of this is a task
that processes a buffer and then waits at a mailbox, possibly for a
message from a user terminal, before calling WAIT$INTERRUPT. If there
are other buffers of data available to the handler (i.e. the count of
outstanding SIGNAL$INTERRUPT requests has not reached the limit), this
does not present a problem. The handler can continue accepting
interrrupts and filling empty buffers. However, if the interrupt task is
processing the last available buffer (i.e. the count limit has been
reached), the interrupt handler cannot accept further interrupts, because
the interrupt level is disabled. This may be an undesirable situation if
the interrupt task takes a long time before calling WAIT$INTERRUPT.

To prevent this situation, the interrupt task can invoke the ENABLE
system call immediately after it finishes with the buffer, to enable its
associated interrupt level. This means that while the task engages in
its time-consuming activities the interrupt handler can accept further
interrupts and place the data into the buffer just released by the task.

However, if the interrupt handler fills the buffer and calls
SIGNAL$INTERRUPT before the task calls WAIT$INTERRUPT, the following
things occur:

• The count of outstanding SIGNAL$INTERRUPT requests is
incremented, causing it to exceed the user-specified limit.

• An exception code, E$INTERRUPT$OVERFLOW, is returned to the
interrupt handler to indicate this overflow.

• The interrupt level is again disabled. It cannot be enabled
again until the count falls to or below the limit.

If the interrupt task calls ENABLE when the interrupt level is enabled or
when the count is equal to the limit, nothing happens and no exception
code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limit, the ENABLE
system call returns the E$CONTEXT exception code.

If a task other than an interrupt task tries to enable the level, one of
three things can happen:

• If the level is already enabled, the ENABLE system call returns
the E$CONTEXT condition code.

• If the non-interrupt task tries to enable the level (presumably
following a DISABLE) and the interrupt task is not running (that
is, the interrupt task has called WAIT$INTERRUPT and is waiting
for a service request), the level is enabled immediately.

• If the interrupt task is running, the enable does not take effect
until the interrupt task next invokes WAIT$INTERRUPT.

8-17

INTERRUPT MANAGEMENT

HANDLING SPURIOUS INTERRUPTS

When an 8259A PIC receives a signal from an interrupting device, it
informs the processor of the interrupt level. If the interrupting device
sends interrupt signals of short duration (that is, the input line is
active for very short periods), the interrupt signal might be gone when
the PIC tries to determine the interrupt level. If this happens, the PIC
cannot determine the interrupt level and thus treats the interrupt as a
spurious interrupt.

Each time the PIC detects a spurious interrupt, it responds as if a level
7 interrupt had occurred. So, if a master PIC detects a spurious
interrupt, it responds as if the interrupt occurred on level M7. If a
slave PIC detects a spurious interrupt (for example, a slave connected to
master level M3), it responds as if the corresponding level 7 interrupt
occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt
signal but was unable to determine the level. Every application system
should provide some means of isolating spurious interrupts so as to
prevent further damage (such as falsely responding to a level 7
interrupt). This involves judiciously selecting interrupt levels and
adding code to all level 7 interrupt handlers (handlers that service
master level M7 or slave levels x7, where x ranges from 0 through 7).
Once the spurious interrupt has been isolated, the level 7 interrupt
handler can do one of two things:

• It can attempt to correct the problem.

• It can ignore the spurious interrupt and resume system processing.

In either case, before the handler returns control it should call
EXIT$INTERRUPT to clear the hardware.

The following sections describe several options for isolating spurious
interrupts.

CALLING GET$LEVEL

One way that a level 7 interrupt handler can check for spurious
interrupts is by invoking the GET$LEVEL system call as soon as the
handler starts running. GET$LEVEL returns the level of the highest
priority interrupt which a handler has started but not yet finished
processing. If the level returned is not the level associated with the
interrupt handler, the interrupt is spurious.

This method is simple to implement, but it is a viable solution only for
those handlers that can afford to spend the time required to execute
GET$LEVEL. Some handlers may have speed requirements that prohibit the
use of GET$LEVEL.

8-18.

INTERRUPT MANAGEMENT

JUDICIOUS SELECTION OF INTERRUPT LEVELS

Another way to isolate spurious interrupts is to avoid connecting devices
to level 7 interrupts (master level M7 and slave levels x7, where x
ranges from 0 to 7). If you have no devices connected to these levels,
and thus no handlers servicing them, spurious interrupts will not affect
your system operation. Instead, each time a spurious interrupt occurs
the PIC reacts as if a level 7 interrupt had occurred, sending control to
interrupt vector table entry associated with the level 7 interrupt. But,
because no handler is associate with that level, the vector table entry
contains a pointer to the default handler, which returns control to the
highest priority ready task.

EXAMINING THE IN-SERVICE REGISTER

Another way that a level 7 interrupt handler can check for spurious
interrupts is by immediately reading the ISR (In-Service Register) of the
PIC corresponding to the level. If the BYTE value obtained from that
register does not have a 1 in the high-order bit, the interrupt is
spurious. In order to read the value, the handler must know the port
address of the ISR. In PL/M-86, the following lines perform this check
when placed at the beginning of the interrupt handler:

IF «INPUT (port address of ISR» AND 80H) = 0

THEN interrupt is spurious

This method of isolating spurious interrupts should be used only as a
last resort. It requires that the handler knows the address of the ISR
(which may vary from system to system).

EXAMPLES OF INTERRUPT SERVICING

To help you understand the major points already described, Tables 8-4,
8-S, and 8-6 are provided. Each table outlines the turning points in a
scenario where an interrupt handler is assigned to a level, an interrupt
arrives at that level and is serviced, and finally the assignment of an
interrupt handler is cancelled. Table 8-4 shows a case where the
interrupt handler deals with the interrupt. Table 8-S treats the case
where the interrupt handler calls an interrupt task, either immediately
or after filling a single buffer of data. Table 8-6 treats the case
where an interrupt handler and an interrupt task use mUltiple buffers to
service interrupts. Tables 8-4 and 8-S assign the handler to master
level 4. Table 8-6 assigns the handler to slave level 3S.

In the right-hand column of each of tables 8-4, 8-S and 8-6, the phrase
"interrupt levels necessarily disabled" alludes to the fact that the
events of the example cause certain levels to be enabled or disabled.
Other events, outside the scope of the example, might cause other levels
to be disabled as well.

8-19

STEP

1

2

3

4

5

6

7

INTERRUPT MANAGEMENT

Table 8-4. Servicing Interrupts with an Interrupt Handler

EVENTS

RQSETINTERRUPT
(LEVEL$4,0, ..•);

Level 4 device
interrupts

RQ$EXIT$INTERRUPT
(LEVEL$4, ••.) ;

Interrupt handler
returns

RQ$RESET$INTERRUPT
(LEVEL$4, ••.);

EXPLANATION

No interrupt handler
assigned to level M4.

A task assigns an
interrupt handler to
level M4.

An interrupt arrives
at level M4.

The interrupt is
serviced by the
interrupt handler.

Interrupt hardware
reset by the
interrupt handler.

Interrupts are
re-enabled.

A task cancels the
assignment of an
interrupt handler to
level M4.

8-20

INTERRUPT
LEVELS

NECESSARILY
DISABLED

M4

NONE

MO-M7, 00-77

MO-M7, 00-77

MO-M7, 00-77

NONE

M4

STEP

1

2

3

4

5

6

7

INTERRUPT MANAGEMENT

Table 8-5. Servicing Interrupts with an Interrupt Task

EVENTS

RQSETINTERRUPT
(LEVEL$4, 1, ...);

RQ$WAIT$INTERRUPT
(LEVEL$4, ..•);

Level 4 device
interrupts

RQ$SIGNAL$INTERRUPT
(LEVEL$4, ...);

RQ$WAIT$INTERRUPT
(LEVEL$4, •..);

EXPLANATION

No interrupt handler
assigned to level M4.

A task assigns an interrupt
handler to level M4 and it
assigns itself to be the
interrupt task for that level.
It specifies that one
SIGNAL$INTERRUPT request can

INTERRUPT
LEVELS
NECESSARILY
DISABLED

M4

be outstanding. M4

The interrupt task begins
to wait for an interrupt.

An interrupt arrives at
level M4. The interrupt
handler gets control and
optionally, does some
servicing. The handler may
service several interrupts
by performing steps 4
through 6 of Figure 8-4.

The interrupt handler
invokes the interrupt task.

The interrupt is
serviced by the
interrupt task.

The interrupt task finishes
and begins to wait for
another level M4 interrupt.
Control passes back to the
interrupt handler and then
back to an application task.

8-21

NONE

MO-M7, 00-77

M4-M7, 50-77

M4-M7, 50-57

NONE

STEP

1

2

3

4

5

6

•

INTERRUPT MANAGEMENT

Table 8-6. Servicing Interrupts with an Interrupt Handler,
an Interrupt Task, and Multiple Buffering

EVENTS

RQSETINTERRUPT
(LEVEL$35, 2, •.•);

RQ$WAIT$INTERRUPT
(LEVEL$35, ...);

Level 35 device
interrupts

RQ$ SIGNAL$ INTERRUPT
(LEVEL$35, ..•);

EXPLANATION

No interrupt handler
assigned to level 35.

A task assigns an
interrupt handler to
level 35 and assigns
itself to be the
interrupt task for
that leve 1. It
specifies that two
SIGNAL$INTERRUPT
requests can be
outstanding (double
buffering) .

The interrupt task
begins to wait for
an interrupt.

An interrupt arrives
at level 35. The
interrupt handler gets
control and does some
servicing.

The handler services
all interrupts, as
described in steps
4 through 6 of Table
8-4, until the first
buffer is full.

The interrupt handler
invokes the interrupt
task.

8-22

INTERRUPT
LEVELS
NECESSARILY
DISABLED

35

35

NONE

MO-M7, 00-77

M4-M7, 36-77

INTERRUPT MANAGEMENT

Table 8-6. Servicing Interrupts with an Interrupt Handler,
an Interrupt Task, and Multiple Buffering

(continued)

INTERRUPT
LEVELS

STEP EVENTS EXPLANATION NECESSARILY
DISABLED

7 The interrupt task . processes the full
. buffer . Meanwhile,

the interrupt handler
services interrupts,
as described in steps
4 through 6 of Table
8-4, until the next
buffer is full. M4-M7, 36-77

8 RQ$WAIT$INTERRUPT The interrupt task
(LEVEL$35, ...); finishes and begins

to wait for another
signal from the
interrupt handler.
Control passes back to
the interrupt handler
and then back to an
application task. NONE

SYSTEM CALLS FOR INTERRUPTS

The following system calls manipulate interrupts:

• SET$INTERRUPT --- assigns an interrupt handler and, if desired,
an interrupt task to an interrupt level.

• RESET$INTERRUPT --- cancels the assignment made to a level by
SET$INTERRUPT and, if applicable, deletes the interrupt task for
that level.

• EXIT$INTERRUPT --- used by interrupt handlers to send an
end-of-interrupt signal to hardware.

• SIGNAL$INTERRUPT ---used by interrupt handlers to invoke
interrupt tasks.

• WAIT$INTERRUPT suspends the calling interrupt task until it
is called into service by an interrupt handler.

8-23

INTERRUPT MANAGEMENT

• ENABLE --- enables an external interrupt level.

• DISABLE --- disables an external interrupt level.

• GET$LEVEL --- returns the interrupt level of highest priority for
which an interrupt handler has started but has not' yet finished
processing.

• ENTER$INTERRUPT --- sets up a previously designated data segment
base address for the calling interrupt handler.

8-24

CHAPTER 9. NUCLEUS SYSTEM CALLS

This chapter contains the calling sequences and other information about
the system calls to the Nucleus. The system calls are listed in
alphabetical order. Names of the calls are written in white on a dark
background in the upper outside corner of each page. The calling
sequence for each call is that for the PL/M-86 interface. The
information for each system call is organized into the following
categories, in the following order:

• A brief sketch of the effects of the call.

• The format of the call.

• Definitions of the input parameters, if any.

• Definitions of the output parameters, if any.

• A complete description of the effects of the calI.

• The condition codes that can result from using ,the call, with a
description of the possible causes of each condition.

Throughout the chapter, PL/M-86 and iRMX 86 data types, such as BYTE and
STRING are used. They are always capitalized and their definitions are
found in Appendix A.

Between this introduction and the details of the system calls is a
command dictionary, in which the calls are grouped according to type.
This dictionary, which includes short descriptions and page numbers of
the complete descriptions in this chapter, is provided as an alternate
way of indexing the system calls.

9-1

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY

CALLS FOR JOBS PAGE

CREATE$JOB ~- Creates a job wLth a task and returns
4 token for the job~.~~~ ••• .o ••••••••••••••• ~ •••••••••••••••••••••• 9-7

DELETE$JOB -- Deletes a, childless job tbat contains
no extensionobject.s {extension objects .are described
in the iRMX 86 SYSTEMPROG~RS REFERENCE MANUAL) ••••••••••••••• 9-22

OFFSPRING -- Provides a segment contcdning tokens of
the child johsof the specified job ..••.• e •••••••••••• e' •••••••••• 9-49

CALLS FOR TASKS

CREATE$T,ASK -- Creates a task and returns a token for it •............. 9-19

DELETE$'rASK -- Deletes a ta.sk that is not an interrupt task •.•..•.•••. 9-27

SUSPEND$TASK - Increases a: task's s\.lspension depth by .one;
suspends the task if it is not ,alreadysu.spended •.•••••••••••..•••• 9-73

RESUME$TASK-- Decreases a task's suspension. depth by one;
resumes (ullsuspends) the task if the suspension .
depth be,C.ome s .~ero ' •.••• " " .•••••. ' ••• ~ •.• ;' .e' •••••. ' '.' •••••. ' .••••• , •••••.• '.' ,9-,58

SLEEP -- Places the calling task in the asleep state for a
s'pec i f ied amou.n t ,of time... ••• . • . • • • •.. . •. ~ 9-71

GET$tASK$TOI<.ENS -,- Returns to the caller a token for either
itself, its job, its)ob's pa'rameter object, or the root job •...... 9-45

GET$PRIORITY -- Returns the priority of a task ••••••••••••••••.•••.• ~.9-43

CALLS FOR MAILBOXES

CREATE$MAILBOX-- Creates a mailbox and returns a token for it•• 9-13

DELETE$MAILBOX ,...- Deletes a mailbox •••••••••••••••••••••••.••.•••••••.• 9-24

SEND$MESSAGE -- Sends an object to amailbox •...••...•..............•• 9-59

RECEIVE$MESSAGE -- Sends the calling task to a maLlbox for an
object; the task has the option of waiting if Iloobjects
a-re present. ," . ' ~ , ~ _ ~ ~ . _ ... ~ , _ 9-51

9-2

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR SEMAPHORES PAGE

CREATE$SEMAPHORE -- Creates a semaphore and returns a
token for it•... 9 17

DELETE$SEMAPHORE -- Deletes a semaphore •.•.....................•...... 9-26

SEND$UNITS -- Adds a specific number of units to the
supply of a semaphore ..•.••..•.•..•....•...•.•...•...... " 9-61

RECEIVE$UNITS -- Asks for a specific number of units
from a semaphore .. 9-54

CALLS FOR SEGMENTS AND MEMORY POOLS

CREATE$SEGMENT -- Creates a segment and returns a token
f o·r it..·.. ~ t!' ,. 9 -15

DELETE$SEGMENT -- Returns a segment to the memory pool
from which it was allocated•....•...............•......... 9-25

GET$SIZE -- returns the size, in bytes, of a segment .•.•.......•...... 9-44

SET$POOL$MIN -- Changes the pool minimum attribute
of the memory poo 1 of the caller's job•.............. 9-68

GET.$POOL$ATTRIBUTES -- Returns the following memory pool
attributes of the caller's job: pool minimum, pool
maximum, initial size, number of allocated 16-byte
paragraphs, number of available 16-byte paragraphs ...•............ 9-41

CALLS FOR ALL OBJECTS

CATALOG$OBJECT --Places an Qbjectin anabjectdirectory 9-5

UNCATALOG$OBJECT -- Removes an object from an object ••••.•.••.•.•.•... 9 ... 74

LOOKUP$OBJECT -- Accepts a cataloged name of an object
and returns a t,ok.en for it •..••...•...••.••.•.•..•.••...•........... 9-47

GET$TYPE -- Accepts a token for an object and returns
i-t ~ type c·o.d.e ,e ' ' ". " ' .. !It ' " -9 """!"",46

9-3

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR EXCEPTION HANDLERS PAGE

SET$EXCEPTION$HANDLER -- Sets the exception handler and
exception mode attribures of the caller •.•.•........•.......•...•. 9-62

GET$EXCEPTION$HANDLER -- Returns the current values of the
caller's exception handler and exception mode attributes 9-37

CALLS FOR INTERRUPT HANDLERS, TASKS, AND LEVELS

• (* indicates the system calls that an interrupt handler can make)

SET$INTERRUPT -- Assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level •................. 9-64

RESET$INTERRUPT -- Cancels the assignment of an interrupt
handler to a level and, if applicable, deletes the
interrupt task for that level •••••••••••••••.•..•.....•••.•.•...•. 9-56

*ENTER$INTERRUPT -- Sets up a previously designated data
segment base address for the calling interrupt handler ..•..•.•.•.. 9-33

*EXIT$INTERRUPT -- Used by interrupt handlers to send an
end-of-interrupt signal to hardware •.•••.••••••••...•.••.......... 9-35

*SIGNAL$INTERRUPT -- Used by interrupt handlers to invoke
interrupt tasks ••••.....••••••.••••••.••••..•••.••....•.••....•... 9-69

WAIT$INTERRUPT -- Puts the calling interrupt task to sleep
until it is called into service by an interrupt handler ..•••.•...• 9-76

ENABLE -- Enables an external interrupt level •........................ 9-3l

I
*DISABLE -- Disables an internal interrupt level .•..•••.••••..•.••••.. 9-29

*GET$LEVEL -- Returns the interrupt level of highest priority
for which an interrupt handler has started but has not
yet finished processing •.•••••••••••...•••..•.......... ~• 9-39

•
9-4

NUCLEUS SYSTEM CALLS

THE SYSTEM CALLS

CATALOG$OBJECT

CATALOG$OBJECT places an entry for an object in an object directory.

CALL RQ$CATALOG$OBJECT (job, object, name, except$ptr);

INPUT PARAMETERS

job

object

name

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if zero, indicates that the object is to be
cataloged in the object directory of the job to
·which the calling task belongs.

• if not zero, contains the token for the job in
whose object directory the object is to be
cataloged.

A WORn containing a token for the object to be
cataloged. A zero for this parameter indicates
that a null token is being cataloged.

A POINTER to a STRING containing the name under
which the object is to be cataloged. The name
itself must not exceed 12 characters in length.
Each character can be a byte consisting of any
value from 0 to OFFH.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The CATALOG$OBJECT system call places an entry for an object in the
object directory of a specific job. The entry consists of both a name
and a token for the object. There may be several such entries for a
single object in a directory, because the object may have several names.
(However, in a given object directory, only one object may be cataloged
under a given name.) If another task is waiting, via the LOOKUP$OBJECT
system call, for the object to be cataloged, that task is awakened when
the entry is cataloged.

9-5

I

I

NUCLEUS SYSTEM CALLS

CATALOG$OBJECT (continued)

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$PARAM

E$TYPE

No exceptional conditions.

At least one of the following is true:

• The name being cataloged is already in the
designated object'directory •

• The directory's maximum allowable size is o.

Either the job parameter (which is not zero) or the
object parameter is not a token for an existing
object.

The designated object directory is full.

This system call is not part of the present
configuration.

The first BYTE of the STRING pointed to by the name
parameter contains a value gr~ater than 12 or a
value of O.

The job parameter is a token for an object Which is
not a job.

9-6

NUCLEUS SYSTEM CALLS

CREATE$JOB

CREATE$JOB creates a job with a single task.

job = RQ$CREATE$JOB (directory$size, param$obj, pool$min, pool $max ,
max$objects, max$tasks, max$priority, except$handler,
job$flags, task$priority, start$address, data$seg, stack$ptr,
stack$size, task$flags, except$ptr);

INPUT PARAMETERS

directory$size

param$obj

pool$min

pool$max

max$objects

max$tasks

A WORD specifying the maximum allowable number of
entries a job can have in its object directory.
The value zero is permitted, for the case where no
object directory is desired. The maximum value for
this parameter is OFFOH.

A WORD which,

• if zero, indicates that the new job has no
parameter object.

• if not zero, contains a valid token for the new
job's parameter object.

A WORD which contains the minimum allowable size of
the new job's pool, in 16 byte paragraphs. The
pool$min parameter is also the initial size of the
new job's pool. If the stack$ptr parameter has a
base value of 0, pool$min should be at least 32
plus the value of stack$size in 16 byte paragraphs.
Otherwise, pool$min should be at least 32.

A WORD which contains the maximum allowable S1ze of
the new job's memory in 16 byte paragraphs. If
pool$max is smaller than pool$min, an E$PARAM error
occurs.

A WORD which,

• if not OFFFFH, contains the maximum number of
objects, created by tasks in the new job, that
can exist simultaneously.

• if OFFFFH, indicates that there is no limit to
the number of objects that tasks in the·new job
can create.

A WORD which,

• if not OFFFFH, contains the maximum number of
tasks that can exist simultaneously in the new
job.

9-7

I

I

CREATE$JOB (continued)

INPUT PARAMETERS
max$tasks (continued)

max$priority

except$handler

job$flags

NUCLEUS SYSTEM CALLS

• if OFFFFH, indicates that there is no limit to
the number of tasks that tasks in the new job
can create.

A BYTE which,

• if not zero, contains the maximum allowable
priority of tasks in the new job. If
max$priority exceeds the maximum priority of the
parent job, an E$LIMIT error occurs.

• if zero, indicates that the new job is to
inherit the maximum priority attribute of its
parent job.

A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$HANDLER$PTR
EXCEPTION$MODE

POINTER,
BYTE);

If exception$handler$ptr is not zero, then it is a
POINTER to the first instruction of the new job's
own exception handler. If exception$handler$ptr is
zero, the new job's exception handler is the system
default exception handler. In both cases, the
exception handler for the new task is the default
exception handler for the job. The exception$mode
indicates when control is to be passed to the new
task's exception handler. It is encoded as follows:

Value

o
1
2
3

When Control Pass~s
To Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

A WORD containing information that the Nucleus
needs to create and maintain the job. The bits
(where bit 15 is the high-order bit) have the
following meanings:

bit meaning

15-2 reserved.

9-8

INPUT PARAMETERS
job$flags (continued)

task$priority

start$address

data$seg

stack$ptr

NUCLEUS SYSTEM CALLS

CREATE$JOB (continued)

bit meaning

1 If 0, then whenever a task in the new job
or any of its descendent jobs makes a
Nucleus system call, the Nucleus will
check the parameters for validity.

If 1, the Nucleus will not check the
parameters of Nucleus system calls made
by tasks in the new job. However, if any
ancestor of the new job has been created
with this bit set to 0, there will be
parameter checking for the new job.

° reserved.

A BYTE which,

• if not zero, contains the priority of the new
job's initial task. If the task$priority
parameter is greater (numerically smaller) than
the new job's maximum priority attribute, an
E$PARAM error occurs.

• if zero, indicates that the new job's initial
task is to have a priority equal to the new
job's maximum priority attribute.

A POINTER to the first instruction of the new job's
initial task (the task created with the job).

A WORD which,

• if not zero, contains the base address of the
data segment of the new job's initial task.

• if zero, indicates that the new job's initial
task assigns its own data segment. Refer to the
iRMX 86 CONFIGURATION GUIDE for more information
about data segment allocation.

A POINTER which,

• if the base portion is not zero, points to the
base of the user-provided stack of the new job's
initial task.

9-9

I

CREATE$JOB (continued)

INPUT PARAMETERS
stack$ptr (continued)

stack$size

task$flags

OUTPUT PARAMETERS

job

except$ptr

NUCLEUS SYSTEM CALLS

• if the base portion is zero, indicates that the
Nucleus should allocate a stack for the new
job's initial task. The length of the allocated
segment is equal to the value of the stack$size
parameter.

A WORD containing the size, in bytes, of the stack
of the new job's initial task. This size must be
at least 16 bytes. The Nucleus increases specified
values that are not multiples of 16 up to the next
higher multiple of 16.

The stack size should be at least 300 bytes if the
new task is going to make Nucleus system calls.
Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual
for further information on estimating stack sizes.

A WORD containing information that the Nucleus
needs to create and maintain the job's initial
task. The bits (where bit 15 is the high order
bit) have the following meanings:

bit meaning

15-1 Reserved bits which should be set to zero.

o If one, the initial task contains
floating-point instructions. These
instructions require the 8087 component
for execution.

If zero, the initial task does not
contain floating-point instructions.

A WORD containing a token for the new job.

A POINTER to a WORD to which the condition code for
the call is to be returned.

9-10

NUCLEUS SYSTEM CALLS

CREATE$JOB (continued)

DESCRIPTION

The CREATE$JOB system call creates a job with an initial task and returns
a token for the job. The new job's parent is the calling task's job.
The new job counts as one against the parent job's object limit. The new
task counts as one against the new job's object and task limits. The new •
job's resources come from the parent job, as described in the chapter on
job management. In particular, the max$task and max$objects values are
deducted from the creating job's maximum task and maximum objects
attributes, respectively.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

No exceptional conditions.

The job containing the calling task is 1n the
process of being deleted.

The param$obj. parameter is not zero and is not a
token for an existing object.

At least on~ of the following is true:

• max$objects is larger than the unused portion of
the object allotment in the calling task's job.

• max$tasks is larger than the unused portion of
the task allotment in the calling task's job.

• max$priority is greater (numerically smaller)
than the maximum allowable task priority in the
calling task's job.

• directory$size is larger than OFFOH.

• The new task would exceed the object limit in
the new job (that is, 'the max$objects parameter
is set to zero).

• The new task would exceed the task limit in the
new job (that is, the max$tasks parameter is set
to zero).

At least one of the following is true:

• The memory available to the new job is not
sufficient to create the job descriptor and the
object directory.

• The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

9-11

•

•

CREATE$JOB (continued)

CONDITION CODES
E$MEM (continued)

E$PARAM

NUCLEUS SYSTEM CALLS

• The memory available to the new job is not
sufficient to create the task as specified.

At least one of the following is true:

• poo1$min is less than 16 + (number of paragraphs
needed for the initial task and any system
allocated stack) + 5 (if the task uses the 8087
component).

• poo1$min is greater than poo1$max.

• task$priority is unequal to zero and greater
(numerically smaller) than max$priority.

• stack$size is less than 16.

• poo1$max is specified as zero.

• the exception handler mode is not valid.

9-12

NUCLEUS SYSTEM CALLS

CREATE$MAILBOX

CREATE$MAILBOX creates a mailbox.

mailbox RQ$CREATE$MAILBOX (mailbox$flags, except$ptr);

INPUT PARAMETERS

mailbox$flags

OUTPUT PARAMETERS

mailbox

except$ptr

A WORD containing information about the new
mailbox. The bits (where bit 15 is the high-order
bit) have the following meanings:

bit

15-5

meaning

Reserved bits which should be set to
zero.

4-1 A value that, when multiplied by four,
specifies the number of objects that
can be queued on the high performance
object queue. Additional objects are
queued on the slower, overflow queue.
Four is the minimum size for the high
performance queue; that is, specifying
zero or one in these bits results in a
high performance queue that holds four
objects.

o A bit that determines the queuing
scheme for the task queue of the new
mailbox, as follows:

value queueing scheme

o First-in/first-out

1 Priority based

A WORD containing a token for the new mailbox.

A POINTER to a WORD to which the condition code for
the call is returned.

9-13

•
•

• : I

NUCLEUS SYSTEM CALLS

CREATE$MAILBOX {continued}

DESCRIPTION

The CREATE$MAILBOX system call creates a mailbox and returns a token for
it. The new mailbox counts as one against the object limit of the
calling task's job.

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

No exception conditons.

The requested mailbox would exceed the job object
limi t.

The memory available to the calling task's job is
not sufficient to create a mailbox.

This system call is not part of the present
configuration.

9-14

NUCLEUS SYSTEM CALLS

CREATE $ SEGMENT

CREATE$SEGMENT creates a segment.

segment = RQ$CREATE$SEGMENT (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

segment

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains the size, in bytes, of the
requested segment. If the size parameter is not
a mUltiple of 16, it will be rounded up to the
nearest higher multiple of 16 before the request
is processed by the Nucleus.

• if zero, indicates that the size of the request
1S 65536 (64K) bytes.

A WORD which contai~s a token for the new segment.

A POINTER to a WORD to which the condition code for
the call is returned.

The CREATE$SEGMENT system call creates a segment and returns the token
for it. The memory for the segment is taken from the free portion of the
memory pool of the calling task's job, unless borrowing from the parent
job is both necessary and possible. The new segment counts as one
against the object limit of the calling task's job.

CONDITION CODES

E$OK

E$LIMIT

E$MEM

No exceptional conditions.

The requested segment would exceed the job object
limit.

The memory available to the calling task's job is
not sufficient to create the specified segment.

9-15

•

•
NUCLEUS SYSTEM CALLS

CREATE$SEGMENT (continued)

CONDITION CODES (continued)

ENOTCON
FIGURED

This system call is not part of the present
configuration.

9-16

NUCLEUS SYSTEM CALLS

CREATE $ SEMAPHORE

CREATE $ SEMAPHORE creates a semaphore.

semaphore = RQCREATE$SEMAPHORE (initial$value, max$value,
semaphore$flags, except$ptr);

INPUT PARAMETERS

initial$value

max$value

semaphore$flags

OUTPUT PARAMETERS

semaphore

except$ptr

DESCRIPTION

A WORD containing the initial number of units to be
in the custody of the new semaphore.

A WORD containing the maximum number of units over
which the new semaphore is to have custody at any
given time. If max$value is zero, an E$PARAM error
occurs.

A WORD containing information about, the new
semaphore. The low-order bit determines the
queueing scheme for the new semaphore's task queue:

Value Queueing Scheme

o First-in/first-out

1 Priority based

The remaining bits in semaphore$flags are reserved
for future use and should be set to zero.

A WORD containing a token for the new semaphore.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The CREATE$SEMAPHORE system call creates a semaphore and returns a token
for it. The semaphore thus created counts as one against the object
limit of the calling task's job.

9-17

NUCLEUS SYSTEM CALLS

CREATE$SEMAPHORE (continued)

CONDITION CODES

E$OK

E$LIMIT

E$MEM

E$PARAM

ENOTCON
FIGURED

No exceptional conditions.

The requested semaphore would exceed the job object
limit.

The memory available to the calling task's job is
not sufficient to create a semaphore.

At least one of the following is true:

• The initial$value parameter is larger than the
maximum$value parameter.

• The maximum$value pa~ameter is o.

This system call is not part of the present
confi guration.

9-18

NUCLEUS SYSTEM CALLS

CREATE$TASK

CREATE$TASK creates a task.

task = RQ$CREATE$TASK (priority, start$address, data$seg, stack$ptr,
stack$size, task$f1ags, except$ptr);

INPUT PARAMETERS

priority

start$address

data$seg

stack$ptr

stack$size

A BYTE which,

• if not zero, contains the priority of the new
task. The priority parameter must not exceed
the maximum allowable priority of the calling
task's job. If it does, an E$PARAM error occurs.

• if zero, indicates that the new task's priority
is to equal the maximum allowable priority of
the calling task's job.

A POINTER to the first instruction of the new task.

A WORD which,

• if not zero, contains the base address of the
new task's data segment.

• if zero, indicates that the new task assigns its
own data segment. Refer to the iRMX 86
CONFIGURATION GUIDE for further information on
data segment allocation.

A POINTER which,

• if the base portion is not zero, points to the
base of the new task's stack.

• if the base portion is zero, indicates that the
Nucleus should allocate a stack to the new
task. The length of the stack is equal to the
value of the stack$size parameter.

A WORD containing the size, in bytes, of the new
task's stack segment. The stack size must be at
least 16 bytes. The Nucleus increases specified
values that are not mUltiples of 16 up to the next
higher mUltiple of 16.

9-19

I

NUCLEUS SYSTEM CALLS

CREATE$TASK (continued)

INPUT PARAMETERS
stack$size (continued)

task$flags

OUTPUT PARAMETERS

task

except$ptr

DESCRIPTION

The stack size should be at least 300 bytes if the
new task is going to make Nucleus system calls.
Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual
for further information on assigning stack sizes.

A WORD containing information that the Nucleus
needs to create and maintain the task. The bits
(where bit 15 is the high-order bit) have the
following meanings:

bit meaning

15-1 Reserved bits which should be set to
zero.

o If one, the task contains
floating-point instructions. These
instructions require the 8087
component for execution.

If zero, the task does not contain
floating-point instructions.

A WORD containing a token for the new task.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The CREATE$TASK system call creates a task and returns a token for it.
The new task counts as one against the object and task limits of the
calling task's job. Attributes of the new task are initialized upon
creation as follows:

• priority: as specified in the call.

• execution state: ready.

• suspension depth: O.

• containing job: the job which contains the calling task.

9-20

NUCLEUS SYSTEM CALLS

CREATE$TASK (continued)

DESCRIPTION (continued)

• exception handler: the exception handler of the containing
job.

• exception mode: the exception mode of the containing job.

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

At least one of the following is true:

• The new task would exceed the object limit or
the task limit of the calling task's job.

• The priority parameter is nonzero and greater
(numerically smaller) than the maximum allowable
priority for tasks in the calling task's job.

The memory available to the calling task's job is
not sufficient to create a task as specified (task
descriptor, stack, and possibly 8087 area).

This system call is not part of the present
configuration.

The stack$size parameter is less than 16.

9-21

•

I

I

NUCLEUS SYSTEM CALLS

DELETE$JOB

DELETE$JOB deletes a job.

CALL RQ$DELETE$JOB (job, except$ptr);

INPUT PARAMETER

job

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

A WORD containing a token for the job to be
deleted. A value of zero specifies the calling
task's job.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The DELETE$JOB system call deletes from the system the specified job, as
well as all objects created by tasks in it. Exceptions are that jobs and
extension objects (see the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL)
created by tasks in the target job must be deleted prior to the call to
DELETE$JOB. Information concerning the descendents of a job is obtained
via the OFFSPRING system call. During deletion, all resources that the
target job had borrowed from its parent are returned.

Deleting a job causes a credit of one toward the object total of the
parent job. Also, the maximum tasks and maximum objects attributes of
the deleted job are credited to the current tasks and current objects
attributes, respectively, of the parent job.

CONDITION CODES

E$OK

E$CONTEXT

No exceptional conditions.

At least one of the following is true:

• There are undeleted jobs, or extension objects
(see the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL) which have been created by tasks in the
target job.

9-22

CONDITION CODES
E$CONTEXT (continued)

E$EXIST

E$MEM

ENOTCON
FIGURED

E$TYPE

NUCLEUS SYSTEM CALLS

DELETE$JOB (continued)

• The deleting task has access to a region I
contained in the job to be deleted. (Refer to
the iRMX SYSTEM PROGRAMMER'S REFERENCE MANUAL
for information concerning regions.)

The job parameter is not a token for an existing
object.

The job to be deleted contains undeleted composite
objects (see the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL), and there is not sufficient
memory for the Nucleus to send deletion messages to
the appropriate deletion mailboxes.

This system call is not part 0: the present
configuration.

The job parameter is a token for an object that is
not a job.

9-23

I

NUCLEUS SYSTEM CALLS

DELETE$MAILBOX

DELETE$MAILBOX deletes a mailbox.

CALL RQ$DELETE$MAILBOX (mailbox, except$ptr);

INPUT PARAMETER

mailbox

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

A WORD containing a token for the mailbox to be
deleted.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The DELETE$MAILBOX system call deletes the specified mailbox from the
system. If any tasks are queued at the mailbox at the moment of
deletion, they are awakened with an E$EXIST exceptional condition. If
there is a queue of object tokens at the moment of deletion, the queue is
discarded. Deleting the mailbox counts as a credit of one toward the
object total of the containing job.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

Either the mailbox parameter is not a token for an
existing object or it represents a mailbox whose
job is in the process of being deleted.

This system call is not part of the present
configuration.

The mailbox parameter is a token for an object
which is not a mailbox.

9-24

NUCLEUS SYSTEM CALLS

DELETE $ SEGMENT

DELETE$SEGMENT deletes a segment.

CALL RQ$DELETE$SEGMENT (segment, except$ptr);

INPUT PARAMETER

segment

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the segment that is
to be deleted.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The DELETE$SEGMENT system call returns the specified segment to the
memory pool from which it was allocated. The deleted segment counts as a
credit of one toward the object total of the containing job.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

Either the segment parameter is not a token for an
existing object or it represents a segment whose
job is in the process of being deleted.

This system call is not part of the present
configuration.

The segment parameter is a token for an object that
is not a segment.

9-25

II

I

I

NUCLEUS SYSTEM CALLS

DELETE$SEMAPHORE

DELETE$SEMAPHORE deletes a semaphore.

CALL RQ$DELETE$SEMAPHORE (semaphore, except$ptr);

INPUT PARAMETER

semaphore

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the semaphore that is
to be deleted.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The DELETE$SEMAPHORE system call deletes the specified semaphore. If
there are tasks in the semaphore's queue at the moment of deletion, they
are awakened with an E$EXIST exceptional condition. The deleted
semaphore counts as a credit of one toward the object total of the
containing job.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

Either the semaphore parameter is not a token
for an existing object or it represents a semaphore
whose job is in the process of being deleted.

This system call is not part of the present
configuration.

The semaphore parameter is a token for an object
that is not a semaphore.

9-26

NUCLEUS SYSTEM CALLS

DELETE$TASK

DELETE$TASK deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains a token for the task that
is to be deleted.

• if zero, indicates that the calling task is to
be deleted.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The DELETE$TASK system call deletes the specified task from the system
and from any queues in which the task was waiting. Deleting the task
counts as a credit of one toward the object total of the containing job.
It also counts as a credit of one toward the containing job's task total.

Interrupt tasks cannot be deleted by DELETE$TASK; instead, interrupt
tasks are deleted by RESET$INTERRUPT.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

No exceptional conditions.

The task parameter is a token for an interrupt task.

Either the task parameter is not a token for an
existing object or it represents a task whose job
is in the process of being deleted.

9-27

I

I

NUCLEUS SYSTEM CALLS

DELETE$TASK (continued)

CONDITION CODES (continued)

ENOTCON
FIGURED

E$TYPE

This system call is not part of the present
configuration.

The task parameter is a token for an object which
is not a task.

9-28

NUCLEUS SYSTEM CALLS

DISABLE
DISABLE disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does
not pass to an exception handler.

The DISABLE system call disables the specified interrupt level. It has

I

no effect on other levels. The level must have an interrupt handler I
assigned to it. The level reserved for the system clock should not be
disabled. This level is determined during system configuration (refer to
the iRMX 86 CONFIGURATION GUIDE).

CONDITION CODES

E$OK

E$CONTEXT

No exceptional conditions.

The level indicated by the level parameter is
already disabled.

9-29

NUCLEUS SYSTEM CALLS

DISABLE (continued)

CONDITION CODES (continued)

ENOTCON
FIGURED

E$PARAM

This system call is not part of the present
configuration.

The level parameter is invalid.

9-30

NUCLEUS SYSTEM CALLS

ENABLE

ENABLE enables an interrupt level.

CALL RQ$ENABLE (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be returned.

The ENABLE system call enables the specified interrupt level. The level
must have an interrupt handler assigned to it. A task must not enable
the level associated with the system clock.

CONDITION CODES

E$OK No exceptional conditions.

9-31

I

NUCLEUS SYSTEM CALLS

ENABLE (continued)

CONDITION CODES (continued)

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

At least one of the following is true:

• A non-interrupt task tried to enable a level
that was already enabled.

• There is not an interrupt handler assigned to
the specified level.

• There -has been an interrupt overflow on the
specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-32

NUCLEUS SYSTEM CALLS

ENTER$INTERRUPT

ENTER$INTERRUPT is used by interrupt handlers to load a previously
specified segment base address into the DS register.

CALL RQ$ENTER$INTERRUPT(level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits

15-7

6-4

3

Value

o

first digit of the interrupt level (0-7)

if one, the level is a'master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does
not pass to an exception handler.

ENTER$INTERRUPT, on behalf of the calling interrupt handler, loads a base
address value into the DS register. The value is What was specified when
the interrupt handler was set up by an earlier call to SET$INTERRUPT.

One purpose of loading a new value into the DS register is to protect the
contents of the interrupted task's data segment. Another purpose, if the
handler is going to call an interrupt task, is that ENTER$INTERRUPT
enables the handler to place data in the iAPX 86 data segment that will
be used by the interrupt task. This provides a mechanism for the
interrupt handler to pass data to the interrupt task.

9-33

•

I

NUCLEUS SYSTEM CALLS

ENTER$INTERRUPT (continued)

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

No value had previously been specified in the call
to SET$INTERRUPT.

This system call is not included ~n the
present configuration.

The level parameter is invalid.

9-34

NUCLEUS SYSTEM CALLS

EXIT$INTERRUPT

EXIT$INTERRUPT is used by interrupt handlers when they don't invoke
interrupt tasks; this call sends an end-of-interrupt signal to the
hardware.

CALL RQ$EXIT$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

except$ptr

DESCRIPTION

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does
not pass to an exception handler.

The EXIT$INTERRUPT system call sends an end-of-interrupt signal to the
hardware. This sets the stage for re-enabling interrupts. The
re-enabling actually occurs when control passes from the interrupt
handler to an application task.

9-35

•

I

•
I

NUCLEUS SYSTEM CALLS

EXIT$INTERRUPT (continued)

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

No SET$INTERRUPT system call/has been made for the
specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-36

NUCLEUS SYSTEM CALLS

GET$EXCEPTION$HANDLER

GET$EXCEPTION$HANDLER returns information about the calling task's
exception handler.

CALL RQGETEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

OUTPUT PARAMETERS

exception$info$ptr A POINTER to a structure of the following form:

except$ptr

DESCRIPTION

STRUCTURE (
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

WORD,
WORD,
BYTE);

where, after the call,

• exception$handler$offset contains the offset of
the first instruction of the exception handler.

• exception$handler$base contains a base for the
segment containing the first instruction of the
exception handler. If exception$handler$base
and exception$handler$offset are both zero, the
calling task's exception handler is the system
default exception handler.

• exception$mode contains an encoded indication
of the calling task's current exception mode.
The value is interpreted as follows:

Value

o
1
2
3

When to Pass Control
to Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditons

A POINTER to a WORD to which the condition code
for the call is to be returned.

The GET$EXCEPTION$HANDLER system call returns both the address of the
calling task's exception handler and the current value of the task's
exception mode.

9-37

NUCLEUS SYSTEM CALLS

GET$EXCEPTION$HANDLER (continued)

CONDITION CODES

E$OK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

9-38

NUCLEUS SYSTEM CALLS

GET$LEVEL

GET$LEVEL returns the number of the level of the interrupt being serviced.

level = RQGETLEVEL (except$ptr);

INPUT PARAMETERS

none

OUTPUT PARAMETERS

level

except$ptr

DESCRIPTION

A WORD whose value is interpreted as follows (bit
15 is the high-order bit):

Bits

15-8

7

Value

undefined

if zero, some level is being serviced
and bits 6-0 are significant

if one, no level is being serviced
and bits 6-0 are not significant

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORn to which the condition code for
the call is to be retured. All exceptional
conditions must be processed in-line. Control does
not pass to an exceptional handler.

The GET$LEVEL system call returns to the calling task the highest
(numerically lowest) level which an interrupt handler has started
serv1c1ng but has not yet finished. To strip away unwanted one bits,
logically AND the returned value with OOFFH.

9-39

I

I

GET$LEVEL (continued)

CONDITION CODES

E$OK

ENOTCON
FIGURED

NUCLEUS SYSTEM CALLS

No exceptional conditions.

This system call is not part of the present
configuration.

9-40

NUCLEUS SYSTEM CALLS

GET$POOL$ATTRIB

GET$POOL$ATTRIB returns information about the memory pool of the calling
task's job.

CALL RQGETPOOL$ATTRIB (attrib$ptr, except$ptr);

INPUT PARAMETER

attrib$ptr

OUTPUT PARAMETER

except$ptr

A POINTER to a data structure of the following form:

STRUCTURE (
POOL$MAX
POOL$MIN
INITIAL$SIZE
ALLOCATED
AVAILABLE

where, after the call,

WORD,
WORD,
WORD,
WORD,
WORD) ;

• POOL$MAX contains the maximum allowable size of
the memory pool of the calling task's job.

• POOL$MIN contains the minimum allowable size of
the memory pool of the calling task's job.

• INITIAL$SIZE contains the original value of the
pool$min attribute.

• ALLOCATED contains the number of 16-byte
paragraphs currently allocated from the memory
pool of the calling task's job.

• AVAILABLE contains the number of 16-byte
paragraphs currently available in the memory
pool of the calling task's job. It does not I
include memory that could be borrowed from the
parent job. The memory indicated in AVAILABLE
may be fragmented and thus not allocatable as a
single segment.

A POINTER to a WORD to which the condition code for
the call is to be returned.

9-41

NUCLEUS SYSTEM CALLS

GET$POOL$ATTRIB (continued)

DESCRIPTION

The GET$POOL$ATTRIB system call returns information regarding the memory
pool of the calling task's job. The data returned comprises the
allocated and available portions of the pool, as well as its initial,
minimum, and maximum sizes.

CONDITION CODES

E$OK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

9-42

NUCLEUS SYSTEM CALLS

GET$PRIORITY

GET$PRIORITY returns the priority of a task.

priority = RQGETPRIORITY (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETERS

priority

except$ptr

DESCRIPTION

A WORD which,

• if not zero, contains a token for the task
whose priority is being requested.

• if zero, indicates that the calling task is
asking for its own priority.

A BYTE containing the priority of the task
indicated by the task parameter.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The GET$PRIORITY system call returns the priority of the specified task.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The task parameter is not a token for an existing
object.

This system call fs not part of the present
configuration.

The task parameter is a token for an object that is
not a task.

9-43

NUCLEUS SYSTEM CALLS

GET$SIZE

GET$SIZE returns the size, in bytes, of a segment.

size = RQGETSIZE (segment, except$ptr);

INPUT PARAMETER

segment

OUTPUT PARAMETERS

size

except$ptr

DESCRIPTION

A WORD containing a token for a segment.

A WORD which,

• if not zero, contains the size, .in bytes, of
the segment indicated by the segment parameter.

• if zero, indicates that the size of the segment
is 65536 (64K) bytes.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The GET$SIZE system call returns the size, in bytes, of a segment.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditons.

The segment parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The segment parameter is a token for an object that
is not a segment.

9-44

NUCLEUS SYSTEM CALLS

GET$TASK$TOKENS

GET$TASK$TOKENS returns the token requested by the calling task.

token = RQGETTASK$TOKENS (selection, except$ptr);

INPUT PARAMETER

selection

OUTPUT PARAMETERS

token

except$ptr

DESCRIPTION

A BYTE containing the request, encoded as follows:

Value Object for which a Token is Requested

0 The calling task.

1 The calling task's job.

2 The parameter object of the calling task's
job.

3 The root job.

A WORD containing the requested token.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The GET$TASK$TOKENS system call returns a token for either the calling .
task, the calling task's job, the parameter object of the calling task's
job, or the root job, depending on the encoded request.

CONDITION CODES

E$OK

E$PARAM

No exceptional conditions.

The selection paraketer is greater than 3.

9-45

I

•

NUCLEUS SYSTEM CALLS

GET$TYPE

GET$TYPE returns the encoded type of an object.

type$code = RQ$GET$TYPE (object, except$ptr);

INPUT PARAMETER

object

OUTPUT PARAMETERS

type$code

except$ptr

DESCRIPTION

A WORD containing the token for an object.

A WORD which contains the encoded type of the
specified object. The types for Nucleus objects
are encoded as follows:

Value ~

1 job
2 task
3 mailbox
4 semaphore
5 region
6 segment
7 extension
8 composite

Regions, extensions, and composites are described
in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

A POINTER to a WORD to which the condition code for
the call is returned.

The GET$TYPE system call returns the type code for an object.

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

No exceptional conditions.

The object parameter is not a token for an existing
object.

This system call is not part of the present
configuration.

9-46

NUCLEUS SYSTEM CALLS

LOOKUP$OBJECT

LOOKUP$OBJECT returns a token for a cataloged object.

object = RQ$LOOKUP$OBJECT (job, name, time$limit, except$ptr);

INPUT PARAMETERS

job

name

time$limit

OUTPUT PARAMETERS

object

except$ptr

A WORD which,

• if not zero, contains a token for the job whose
object directo~y is to be searched.

• if zero, indicates that the object directory to
be searched is that of the calling task's job.

A POINTER to a STRING which contains the name under
which the object is cataloged. During the lookup
operation, upper and lower case letters are treated
as being different.

A WORD which,

•

•

•

if zero, indicates that the calling task is not
willing to wait.

if OFFFFH, indicates that the task will wait as
long as is necessary.

if between o and OFFFFH, indicates the number
of clock intervals that the task is willing to
wait. The length of a clock interval is a
configuration option. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

A WORD containing the requested token.

A POINTER to a WORD to which the condition code for
the call is to be returned.

9-47

III. I:

I

NUCLEUS SYSTEM CALLS

LOOKUP$OBJECT (continued)

DESCRIPTION

The LOOKUP$OBJECT system call returns the token for the specified object
after searching for its name in the specified object directory. Because
it is possible that the object is not cataloged at the time of the call,
the calling task has the option of waiting, either indefinitely or for a
specific period of time, for another task to catalog the object.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$PARAM

E$TIME

E$TYPE

No exceptional conditions.

The specified job has an object directory of size O.

One of the following is true:

• The specified job was deleted while the task
was waiting.

• The job parameter (which is not zero) is not a
token for an existing object.

• The name was found, but the cataloged object
has a null token (i.e. 0).

The specified object directory is full.

This system call is not part of the present
configuration.

The first byte of the string pointed to by the name
parameter contains a value greater than 12 or equal
to zero.

Either:

• The calling task indicated its willingness to
wait a certain amount of time, then waited
without satisfaction.

• The task was not willing to wait, and the entry
indicated by the name parameter is not in the
specified object directory.

The job parameter is a token for an object that is
not a job.

9-48

NUCLEUS SYSTEM CALLS

OFFSPRING

OFFSPRING returns a token for each child (job) of a job.

token$list = RQ$OFFSPRING (job, except$ptr);

INPUT PARAMETER

job

OUTPUT PARAMETER

token$list

except$ptr

DESCRIPTION

A WORD containing a token for the job whose
offspring are desired. A value of zero specifies
the calling task's job.

A WORD which,

• if not zero, contains a token for a segment.
The first word in the segment contains the
number of words in the remainder of the
segment. Subsequent words contain the tokens
for jobs which are the immediate children of
the specified job.

• if zero, indicates that the specified job has
no children.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The OFFSPRING system call returns the token for a segment. The segment
contains a token for each child of the specified job. By repeated use of
this call, tokens can be obtained for all descendents of a job; this
information is needed by a task which is attempting to delete a job that
has child jobs.

CONDITION CODES

E$OK

E$EXIST

No exceptional conditions.

The job parameter is not a token for an existing
object.

9-49

NUCLEUS SYSTEM CALLS

OFFSPRING (continued)

CONDITION CODES (continued)

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$TYPE

The required segment, if allocated, would exceed
the job object limit.

There is not sufficient memory available to create
the required segment.

This system call is not part of the present
configuration.

The job parameter is a token for an object that is
not a job.

9-50

NUCLEUS SYSTEM CALLS

RECEIVE$MESSAGE

RECEIVE$MESSAGE delivers the calling task to a mailbox, where it can wait
for an object token to be returned.

object = RQ$RECEIVE$MESSAGE (mailbox, time$limit, response$ptr,
except$ptr);

INPUT PARAMETERS

mailbox

time$limit

OUTPUT PARAMETERS

object

response$ptr

A WORD containing a token for the mailbox at which
the calling task expects to receive an object token.

A WORD which,

• if zero, indicates that the calling task is not
willing to wait.

• if OFFFFH, indicates that the task will wait as
long as is necessary.

• if between 0 and OFFFFH, indicates the number
of clock intervals that the task is willing to
wait. The length of a clock interval is
configurable. Refer to the iRMX 86
CONFIGURATION GUIDE FOR for further
information.

A WORD containing the token for the object being
received.

A POINTER to a WORD in which the system returns a
value. The returned word,

• if not zero, contains a token for the exchange
to which the receiving task is to send a
response.

• if zero, indicates that no response has been
requested by the sending task.

9-51

•

I

I

NUCLEUS SYSTEM CALLS

RECEIVE$MESSAGE (continued)

OUTPUT PARAMETERS (continued)

except$ptr

DESCRIPTION

CAUTION

Response$ptr points to a location for
the sending task to use. If you
specify a constant value for
response$ptr, be careful to ensure
that the value does not conflict with
system requirements.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The RECEIVE$MESSAGE system call causes the calling task either to get the
token for an object or to wait for the token in the task queue of the
specified mailbox. If the object queue at the mailbox is not empty, then
the calling task immediately gets the token at the head of the queue and
remains ready. Otherwise, the calling task goes into the- task queue of
the mailbox and goes to sleep, unless the task is not willing to wait.
In the latter case, or if the task's waiting period elapses without a
token arriving, the task is awakened with an E$TIME exceptional condition.

It is possible that the token returned by RECEIVE$MESSAGE is a token for
an object that has already been deleted. To verify that the token is
valid, the receiving task can call GET$TYPE. However, tasks can avoid
this situation by adhering to proper programming practices. One such
practice is for the sending task to request a response from the receiving
task and not delete the object until it gets a response. If the sending
task requests a response, the response$ptr parameter of RECEIVE$MESSAGE
points to a token for a response exchange (either a mailbox or a
semaphore). When the receiving task finishes with the object, it sends a
response, the nature of which must be determined by the writers of the
two tasks, to the response mailbox. When the sending task gets this
response, it can then delete the original object, if it so desires.

CONDITION CODES

E$OK

E$EXIST

No exceptional conditions.

Either:

• The mailbox parameter is not a token for an
existing object.

9-52

CONDITION CODES
E$EXIST (continued)

ENOTCON
FIGURED

E$TIME

E$TYPE

NUCLEUS SYSTEM CALLS

RECEIVE$MESSAGE (continued)

• The mailbox was deleted while the task was
waiting.

This system call is not part of the present
configuration.

Either:

• The calling task was not willing to wait and
there was not a token available.

• The task waited in the task queue and its
designated waiting period elapsed before the
task got the desired token.

The mailbox parameter is a token for an object that
is not a mailbox.

9-53

•
I

NUCLEUS SYSTEM CALLS

RECElVE$UNITS

RECEIVE$UNITS delivers the calling task to a semaphore, where it waits
for units.

value = RQ$RECEIVE$UNITS (semaphore, units, time$limit, except$ptr);

INPUT PARAMETERS

semaphore

units

time$limit

OUTPUT PARAMETERS

value

except$ptr

A WORD containing a token for the semaphore from
which the calling task hopes to receive units.

A WORD containing the number of units that the
calling task is requesting.

A WORD which,

• if zero, indicates that the calling task is not
willing to wait.

• if OFFFFH, indicates that the task will wait as
long as is necessary.

• if between 0 and OFFFFH, indicates the number of
clock intervals that the task is willing to
wait. The length of a clock interval is
configurable. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

A WORD containing the number of units rema1n1ng in
the custody of the semaphore after the calling
task's request is satisfied.

A POINTER to a WORD to which the condition code for
the call is to be returned.

9-54

NUCLEUS SYSTEM CALLS

RECEIVE$UNITS (continued)

DESCRIPTION

The RECEIVE$UNITS system call causes the calling task either to get the
units that it is requesting or to wait for them in the semaphore's task
queue. If the units are available and the task is at the front of the
queue, then the task receives them and remains ready. Otherwise, the
task is placed in the semaphore's task queue and goes to sleep, unless
the task is not willing to wait. In the latter case, or if the task's
waiting period elapses before the requested units are available, the task
is awakened with an E$TIME exceptional condition.

CONDITION CODES

E$OK

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$TIME

E$TYPE

No exceptional conditions.

Either:

• The semaphore parameter is not a token for an
existing object.

• The semaphore was deleted while the task was
waiting.

The units parameter is greater than the maximum
value that had been specified for the semaphore
when it was created.

This system call is not part of the present
configuration.

Either:

• The calling task was not willing to wait and the
requested units were not available.

• The task waited in the task queue and its
designated waiting period elapsed before the
requested units were available.

The semaphore parameter is a token for an object
that is not a semaphore.

9-55

•

I

NUCLEUS SYSTEM CALLS

RESET$INTERRUPT

RESET$INTERRUPT cancels the assignment of an interrupt handler to a level.

CALL RQ$RESET$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level which is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be returned.

The RESET$INTERRUPT system call cancels the assignment of the current
interrupt handler to the specified interrupt level. If an interrupt task
had also been assigned to the level, the interrupt task is deleted.
RESET$INTERRUPT also disables the level.

The level reserved for the system clock should not be reset and is
considered invalid. This level is a configuration option (refer to the
iRMX 86 CONFIGURATION GUIDE for further information).

9-56

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

NUCLEUS SYSTEM CALLS

RESET$INTERRUPT (continued)

No exceptional conditions.

There is not an interrupt handler assigned to the
specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-57

•

NUCLEUS SYSTEM CALLS

RESUME$TASK

RESUME$TASK decreases by one the suspension depth of a task.

CALL RQ$RESUME$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the task whose
suspension depth is to be decremented.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The RESUME$TASK system call decreases by one the suspension depth of the
specified non-interrupt task. The task should be in either the suspended
or asleep-suspended state, so its suspension depth should be at least
one. If the suspension depth is still positive after being decremented,
the state of the task is not changed. If the depth becomes zero, and the
task is in the suspended state, then it is placed in the ready state. If
the depth becomes zero, and the task is in the asleep-suspended state,
then it is placed in the asleep state.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$STATE

E$TYPE

No exceptional conditions.

The task indicated by the task parameter is an
interrupt task.

The task parameter is not a token for an existing
object.

The task indicated by the task parameter was not
suspended when the call was made.

The task parameter is a token for an object that is
not a task.

9-58

NUCLEUS SYSTEM CALLS

SEND$MESSAGE

SEND$MESSAGE sends an object token to a mailbox.

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr);

INPUT PARAMETERS

mailbox

object

response

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the mailbox to which
an object token is to be sent.

A WORD containing an object token which is to be
sent.

A WORD which,

• if not zero, contains a token for the desired
response mailbox or semaphore.

• if zero, indicates that no response is requested.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The SEND$MESSAGE system call sends the specified object token to the
specified mailbox. If there are tasks in the task queue at that mailbox,
the task at the head of the queue is awakened and is given the token.
Otherwise, the object token is placed at the tail of the object queue of
the mailbox. The sending task has the option of specifying a mailbox or
semaphore at which it will wait for a response from the task that
receives the object. The nature of the response must be agreed upon by
the writers of the two tasks.

CONDITION CODES

E$OK

E$EXIST

No exceptional conditions.

One or more of the input 'parameters is not a token
for an existing object.

9-59

•

I

NUCLEUS SYSTEM CALLS

SEND$MESSAGE (continued)

CONDITION CODES (continued)

E$MEM

ENOTCON-
FIGURED

E$TYPE

The high performance queue is full and there is not
sufficient memory in the job containing the mailbox
for the Nucleus to do the housekeeping that
supports a send message operation.

This system call is not part of the present
configuration.

Either:

• The mailbox parameter is a token for an object
that is not a mailbox.

• The response parameter is a token for an object
that is neither a mailbox nor a semaphore.

9-60

NUCLEUS SYSTEM CALLS

SEND$UNITS

SEND$UNITS sends units to a semaphore.

CALL RQ$SEND$UNITS (semaphore, units, except$ptr);

INPUT PARAMETERS

semaphore

units

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing a token for the semaphore to
which the units are to be sent.

A WORD containing the number of units to be sent.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The SEND$UNITS system call sends the specified number of units to the
specified semaphore. If the transmission would cause the semaphore's
supply of units to exceed its maximum allowawble supply, then an E$LIMIT
exceptional condition occurs. Otherwise, the transmission is successful
and the Nucleus attempts to satisfy the requests of the tasks in the
semaphore's task queue, beginning at the head of the queue.

CONDITION CODES

E$OK

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$TYPE

No exceptional conditons.

The semaphore parameter is not a token for an
existing object.

The number of units that the calling task is trying
to send would cause the semaphore's supply of units
to exceed its maximum allowable supply.

This system call is not part of the present
configuration.

The semaphore parameter is a token for an object
that is not a semaphore.

9-61

I

I

NUCLEUS SYSTEM CALLS

SET$EXCEPTION$HANDLER

SET$EXCEPTION$HANDLER.assigns an exception handler to the calling task.

CALL RQSETEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

INPUT PARAMETER

exception$info$ptr A POINTER to a structure of the following form:

OUTPUT PARAMETER

except$ptr

STRUCTURE (
EXCEPTION$HANDLER$OFFSET
EXCEPTION$HANDLER$BASE
EXCEPTION$MODE

WORD,
WORD,
BYTE);

where:

• exception$handler$offset contains the offset of
the first instruction of the exception handler.

• exception$handler$base contains the base of the
iAPX 86 segment containing the first instruction
of the exception handler.

• exception$mode contains an encoded indication of
the calling task's intended exception mode. The
value is interpreted as follows:

Value

o
1
2
3

When to Pass Control
To Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional

conditions

If exception$handler$offset and
exception$handler$base both contain zeros, the
exception handler of the calling task's parent job
is assigned.

A POINTER to a WORD to which the condition code for
the catl is to be returned.

9-62

NUCLEUS SYSTEM CALLS

SET$EXCEPTION$HANDLER (continued)

DESCRIPTION

The SET$EXCEPTION$HANDLER system call enables a task to set its exception
handler and exception mode attributes. If you want to designate the
Debugger as the exception handler to interactively examine system objects
and lists, the following code sets up the needed structure in PL/M-86:

DECLARE x STRUCTURE (OFFSET
BASE
MODE

WORD,
WORD,
BYTE) ;

DECLARE Y POINTER AT (@X);

DECLARE EXCEPTION WORD;

Y = @RQDEBUGGEREX;
X.MODE = ZEROONETWOORTHREE;
CALL RQSETEXCEPTION$HANDL~R (@X, @EXCEPTION);

CONDITION CODES

E$OK

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

This system call is not part of the present
configuration.

The exception$mode parameter is greater than 3.

9-63

NUCLEUS SYSTEM CALLS

SET$INTERRUPT

SET$INTERRUPT assigns an interrupt handler to an interrupt level and,
optionally, makes the calling task the interrupt task for the level.

CALL RQSETINTERRUPT (level, interrupt$task$flag, interrupt$handler.
interrupt$handler$ds, except$ptr);

INPUT PARAMETERS

level

interrupt$task$flag

A WORD containing an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits

15-7

6-4

3

Value

o

first digit of the interrupt level (0-7)

if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A BYTE which,

• if zero, indicates that no interrupt task is to
be asso~iated with the special level and that
the new interrupt handler will not call SIGNAL
INTERRUPT.

• if unequal to zero, indicates that the calling
task is to be the interrupt task that will be
invoked by the interrupt handler being set. The
priority of the calling task is adjusted by the
Nucleus according to the interrupt level being
serviced. Table 8-2 lists the levels and the
corresponding interrupt task priorities. Be
certain that priorities set in this manner do
not violate the max$priority attribute of the
containing job.

·9-64

NUCLEUS SYSTEM CALLS

INPUT PARAMETERS
interrupt$task$flag (continued)

SET$INTERRUPT (continued)

The value of this parameter indicates the number of
outstanding SIGNAL$INTERRUPT requests that can
exist. When this limit is reached, the associated
interrupt level is disabled. The maximum value for
this parameter is 255 decimal. Chapter 8 describes
this feature in more detail.

interrupt$handler A POINTER to the first instruction of the interrupt
handler. To obtain the proper start address for
interrupt handlers written in PL/M-86, place the
following instruction before the call to
SET$INTERRUPT:

interrupt$handler
= interrupt$ptr (inter);

where interrupt$ptr is a PL/M-86 built-in
procedure and inter is the name'" of your
interrupt handling procedure.

interrupt$handler$ds A WORD which,

• if not zero, contains the base address of the
interrupt handler's data segment. See the
description of ENTER$INTERRUPT in this chapter
for information concerning the significance of
this parameter.

It is often desirable for an interrupt handler
to pass information to the interrupt task that
it calls. The following PL/M-86 ,statem~nts, when
included in the interrupt task's code (with the
first statement listed here being the first
statement in the task's code), will extract the
DS register valu~ used by the interrupt task and
make it available to the interrupt handler,
which in turn can access it by calling
ENTER$INTERRUPT:

, .
DECLARE BEGIN WORD; /* A'DUMMY VARIABLE */ I

DECLARE DATA$PTR POINTER;

DECLARE DATA$ADDRESS STRUCTURE (

OFFSET WORD,

BASE WORD) AT (@DATA$PTR); /* THIS MAKES
ACCESSIBLE THE TWO HALVES OF THE
POINTER DATA$PTR */

9-65

•

I

I

NUCLEUS SYSTEM CALLS

SET$INTERRUPT (continued)

INPUT PARAMETERS
interrupt$hander$ds (continued)

OUTPUT PARAMETER

except$ptr

DESCRIPTION

DATA$PTR = @BEGIN; /* PUTS THE WHOLE
ADDRESS OF THE DATA SEGMENT INTO
DATA$PTR AND DATA$ADDRESS */

DS$BASE = DATA$ADDRESS.BASE;

CALL RQSETINTERRUPT (•.. ,DS$BASE);

• if zero, indicates that the interrupt handler
will use the data segment of the interrupted
task and may not call ENTER$INTERRUPT.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The SET$INTERRUPT system call is used to inform the Nucleus that the
specified interrupt handler is to service interrupts which come in at the
specified level. In a call to SET$INTERRUPT, a task must indicate
whether the interrupt handler will invoke an interrupt task and whether
the interrupt handler has its own data segment. If the handler is to
invoke an interrupt task, the call to SET$INTERRUPT also specifies the
number of outstanding SIGNAL$INTERRUPT requests that the handler can make
before the associated interrupt level is disabled. This number generally
corresponds to the number of buffers used by the handler and interrupt
task. Refer to Chapter 8 for further information.

If there is to be an interrupt task, the calling task is that interrupt
task. If there is no interrupt task, SET$INTERRUPT also enables the
specified level, which must be disabled at the time of the call.

CONDITION CODES

E$OK No exceptional conditions.

E$CONTEXT One of the following is true:

• The task is already an interrupt task.

9-66

CONDITION CODES
E$CONTEXT (continued)

ENOTCON
FIGURED

E$PARAM

NUCLEUS SYSTEM CALLS

SET$INTERRUPT (continued)

• The specified level already has an interrupt
handler assigned to it.

• The job containing the calling task or the •
calling task itself is in the process of being
deleted.

This system call is not part of the present
configuration.

One of the following is true:

• The level parameter is invalid or would cause
the task to have a priority not allowed by its
job.

• The PIC corresponding to the specified level is •
not configured.

9-67

•

NUCLEUS SYSTEM CALLS

SET$POOL$MIN

SET$POOL$MIN sets a job's pool$min attribute.

CALL RQSETPOOL$MIN (new$min, except$ptr);

INPUT PARAMETER

new$min

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if OFFFFH, indicates that the pool$min attribute
of the calling task's job is to be set equal to
that job's pool$max attribute.

• if less than OFFFFH, contains the new value of
the pool$min attribute of the calling task's
job. This new value must not exceed that job's
pool$max attribute.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The SET$POOL$MIN system call sets the pool$min attribute of the calling
task's job. The new value must not exceed that job's pool$max
attribute. When the pool$min attribute is made larger than the current
pool size, the pool is not enlarged until the additional memory is needed.

CONDITION CODES

E$OK

E$LIMIT

ENOTCON
FIGURED

No exceptional conditions.

The new$min parameter is not OFFFFH, yet is greater
than the pool$max attribute of the calling task's
job.

This system call is not part of the present
configuration.

9-68

NUCLEUS SYSTEM CALLS

S IGNAL$ INTERRUPT

SIGNAL$INTERRUPT is used by an interrupt handler to activate an interrupt
task.

CALL RQ$SIGNAL$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level which is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be returned. All exceptional
conditions must be processed in-line. Control does
not pass to an exceptional handler. I

An interrupt handler uses SIGNAL$INTERRUPT to start up its associated
interrupt task. The interrupt task runs in its own environment with
higher (and possibly the same) level interrupts enabled, whereas the I
interrupt handler runs in the environment of the interrupted task with
all interrupts disabled. The interrupt task can also make use of
exception handlers, whereas the interrupt handler always receives
exceptions in-line.

9-69

NUCLEUS SYSTEM CALLS

SIGNAL$INTERRUPT (continued)

CONDITION CODES

E$OK

E$CONTEXT

E$INTERRUPT$
SATURATION

E$INTERRUPT$
OVERFLOW

E$LIMI·T

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

There is not an interrupt task assigned to the
speci fied leve 1.

The interrupt task has accumulated the maximum
allowable number of SIGNAL$INTERRUPT requests.
This is an informative message only. It does not
indicate an error.

The interrupt task has accumulated more than the
maximum allowable number of SIGNAL$INTERRUPT
requests. It had reached its saturation point and
then called ENABLE to allow the handler to receive
further interrupt signals. It subsequently
received an additional SIGNAL$INTERRUPT request
before calling WAIT$INTERRUPT.

An overflow.has occurred because the interrupt task
has received more than 255 SIGNAL$INTERRUPT
requests.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-70

NUCLEUS SYSTEM CALLS

SLEEP

SLEEP puts the calling task to sleep.

CALL RQ$SLEEP (time$limit, except$ptr);

INPUT PARAMETER

time$limit

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if not zero and not OFFFFH, causes the calling
task to go to sleep for that many clock
intervals, after which it will be awakened. The
length of a clock interval is configurab1e.
Refer to the iRMX 86 CONFIGURATION GUIDE for
further information.

• if zero, causes the calling task to be placed on
the list of ready tasks, immediately behind all
tasks of the same priority. If there are no
such tasks, there is no effect.

• if OFFFFH, is invalid.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The SLEEP system call has two uses. One use places the calling task in
the asleep state for a specific amount of time. The other use allows the
calling task to defer to the other ready tasks with the same priority.
When a task defers in this way it is placed on the list of ready tasks,
immediately behind those other tasks of equal priority.

CONDITION CODES

E$OK No exceptional conditions.

9-71

I

NUCLEUS SYSTEM CALLS

SLEEP (continued)

CONDITION CODES (continued)

ENOTCON
FIGURED

E$PARAM

This system call is not part of the present
configuration.

The time$limit parameter contains the invalid value
OFFFFH.

9-72

NUCLEUS SYSTEM CALLS

SUSPEND$TASK

SUSPEND$TASK increases by one the suspension depth of a task.

CALL RQ$SUSPEND$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTIONS

A WORD which,

• if not zero, contains a token for the task whose
suspension depth is to be incremented.

• if zero, indicates that the calling task 1S

suspending itself.

A POINTER to a WORD to which the c·ondition code for
the call is to be returned.

The SUSPEND$TASK system call increases by one the suspension depth of the
specified task. If the task is already in either the suspended or
asleep-suspended state, its state is not changed. If the task is in the
ready or running state, it enters the suspended state. If the task is in
the asleep state, it enters the asleep-suspended state.

SUSPEND$TASK cannot be used to suspend interrupt tasks.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$TYPE

No exceptional conditions.

The task indicated by the task parameter is an
interrupt task.

The task parameter is not a token for an existing
object.

The suspension depth for the specified task is
already at the maximum of 255.

The task parameter is a token for an object that is
not a task.

9-73

NUCLEUS SYSTEM CALLS

UNCATALOG$OBJECT

UNCATALOG$OBJECT removes an entry for an object from an object directory.

CALL RQ$UNCATALOG$OBJECT (job, name, except$ptr);

INPUT PARAMETERS

job

name

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD which,

• if not zero, is a token for the job from whose
object directory the specified entry is to be
deleted.

• if zero, indicates that the entry is to be
deleted from the object directory of the calling
task's job.

A POiNTER to a STRING containing the name of the
object whose entry is to be deleted.

A POINTER to a WORD to which the condition code for
the call is to be returned.

The UNCATALOG$OBJECT system call deletes an entry from the object
directory of the specified job.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

No exceptional conditions.

The specified object directory does not contain an
entry with the designated name.

The job parameter is neither zero nor a token for
an existing object.

9-74

NUCLEUS SYSTEM CALLS

UNCATALOG$OBJECT (continued)

CONDITION CODES (continued)

ENOTCON
FIGURED

E$PARAM

E$TYPE

This system call is not part of the present
configuration.

The first byte of the STRING pointed to by the name
parameter contains a value greater than 12 or equal
to O.

The job parameter is a token for an object that is
not a job.

9-75

NUCLEUS SYSTEM CALLS

WAIT$INTERRUPT

WAIT$INTERRUPT is used by an interrupt task to signal its readiness to
service an interrupt.

CALL RQ$WAIT$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD containing an interrupt level which is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt. level (0~7)'

3 if one, the level is a master . level arid· .' ,:. '.
bits 6-4 specify the entire level number

if zero, the level isa slave level.)lIiq
bits 2-0 specify the sec6nd .. digit· .

2-0 second digit of the interrupt level
(0-7), if bit 3 is zerQ

A POINTER to a WORD to which the condition code for
the call is to be returned.

The WAIT$INTERRUPT system call is used by interrupt tasks immed1ately
after initializing and immediately after servicing interrupts. 'Such a
call suspends an interrupt task until the interrupt handler for the same
level resumes it by calling SIGNAL$INTERRUPT.

9-76

NUCLEUS SYSTEM CALLS

WAIT$INTERRUPT (continued)

While the interrupt task is processing, all lower level interrupts are
disabled. The associated interrupt level is either disabled or enabled,
depending on the option originally specified with the SET$INTERRUPT
system call. If the associated interrupt level is enabled, all
SIGNAL$INTERRUPT calls that the handler makes (up to the limit specified
with SET$INTERRUPT) are logged. If this count of SIGNAL$INTERRUPT calls
is greater than zero when the interrupt task calls WAIT$INTERRUPT, the
task is not suspended. Instead it continues processing the next
SIGNAL$INTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is
running and the number of outstanding SIGNAL$INTERRUPT requests is less
than the user-specified limit, the call to WAIT$INTERRUPT enables that
level.

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

The calling task is not the interrupt task for the
given level.

This system call is not part of the present
configuration.

The level parameter is invalid.

9-77

•

APPENDIX A. iRMX 86m DATA TYPES

The following are the data types that are recognized by the iRMX 86
Operating System:

BYTE

WORD

INTEGER-

OFFSET -

TOKEN

POINTER-

STRING -

An unsigned, 8-bit, binary number.

An unsigned, two byte, binary number.

A signed, two byte, binary number that is stored 1n two's
complement form.

A word whose value represents the distance from the base
of a segment.

A word whose value identifies an object.

Two words containing the base of a segment and an offset,
in the reverse order.

A sequence of consecutive bytes. The first byte contains
the number (not to exceed 12) of bytes that follow it in
the string.

A-I

APPENDIX B. iRMX 86m TYPE CODES

Each iRMX 86 object type is known within iRMX 86 systems by means of
a numeric code. For each code, there is a mnemonic name that can be
substituted for the code. Table B-1 lists the types with their codes
and associated mnemonics.

Table B-1. Type Codes

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE

Job T$JOB 1

Task T$TASK 2

Mailbox T$MAILBOX 3

Semaphore T$SEMAPRORE 4

Region T$REGION 5

Segment T$SEGMENT 6

Extension T$EXTENSION 7

Composite T$COMPOSITE varies from
8000R to OFFFFH
depending on
the value spec.J
ified in
CREATE$EXTEN-
SION

B-1

I

APPENDIX C. NUCLEUS MEMORY USAGE

This appendix lists the amount of memory the Nucleus requires for object
creation and memory borrowing. The Nucleus obtains this memory from the
calling job's memory pool when creating the specified object or
implementing the memory borrowing. The values listed in this appendix
reflect Release 3 of the iRMX 86 Operating System. These values are
subject to change in future releases.

The Nucleus uses the following amounts of memory when it creates objects:

object

job

object directory

task

mailbox

semaphore

region

segment

extension

composite

number of 16-byte paragraphs
required by the Nucleus

3

1 per entry in the directory

5
+ 6 (if the task uses the 8087 NDP)
+ stacksize/16 (if the Nucleus allocates the

stack)

2
+ size of high performance queue/4

2

2

1

2

3
+ number of positions available for components/8

When a job borrows memory from its parent, the Nucleus uses three l6-byte
paragraphs in addition to the amount it uses for object creation. The
Nucleus obtains this memory from the parent job.

C-l

INDEX

The primary reference of each multiple-page topic is underscored.

8087 NDP 9-20
8259A PIC 8-2, 8-18

allocation of memory 1-5, 4-2, 5-1, 5-3
asleep state 1-3, 3-1
asleep-suspended st~ 1-3,3-2'

buffers 8-11
multiple 8-13
single 8-12

cascaded interrupts 8-2
CATALOG$OBJECT 3-3, 6-2, 9-5
child job 2-1, 5-3
command dictionary 9-2
communication between tasks 4-1
composite objects 1-1, 8-3
condition code 7-1, 7-4
count limit 8-1~9-64
CREATE$JOB 2-4, 9-7
CREATE$MAILBOX 4-~9-13
CREATE$SEGMENT 5-1, 5-4, 9-15
CREATE$SEMAPHORE 4-3, 4-5:-9=17
CREATE$TASK 3-5, 2.::.!2.

data types A-I
Debugger 7-2
DELETE$JOB 2-4, 9-22
DELETE$MAILBOX 4~9-24
DELETE$SEGMENT 5-3, 5-4, 9-25
DELETE$SEMAPHORE 4-5, 9-2-6-
DELETE$TASK 3-3, 3-4, 8-7, 9-27
dictionary of commands 9-2---
DISABLE 8-2, 8-4, 8-6, 8-24, 9-29
disabling interrupts 8-2, 8-4, 8-6, 8-24, 9-29

ENABLE 8-2, 8-4, 8-17, 8-24, 9-31
enabling interrupts 8-2, 8-4, 8-17, 8-24, 9-29
ENTER$INTERRUPT 8-6,-s.:7, 8-8, 8-9, 8-24, 9-33
environmental condition 7-1, 7-4
exception handler 1-6, 3-5, 7-1, 9-37, 9-62
exception mode 3-5, 7-2

Index-l

INDEX

exceptional conditions 1-6, 7-1, 7-4
programmer error 1-6, 7-1, 7-5
environmental condition--r-6, 7-1, 7-4

exchange 4-1
mailbox 4-1
semaphore 4-3

execution state 1-3, 3-1
asleep 1-3, 3-1
asleep-suspended 1-3, 3-2
ready 1-3, 3-2
running 1-3:-3-2
suspended 1-3:-3-2
transitions between states 3-2

EXIT$INTERRUPT 8-6, 8-8, 8-11, 8-18, 8-23, 9-35
extension objects 1-1

GET$EXCEPTION$HANDLER 7-5, 9-37
GET$LEVEL 8-6, 8-18, 9-39 -
GET$POOL$ATTRIB 5-2, 5-4, 9-41
GET$PRIORITY 3-5, 9-43
GET$S IZE 5-4, 9-44-
GET$TASK$TOKENS~3, 3-5, 6-2, 9-45
GET$TYPE 6-1, 6-2, ~

handler
exception 1-6, 3-5, 7-1, 9-37, 9-62
interrupt 1-6, 8-6, 8-11, 8-18, 8-19, 9-33, 9-35, 9-56, 9-64, 9-69, 9-76

high performance object queue 4-2, 9-13

in-service register 8-19
interrupt 8-1
cascaded 8-2, 8-3
controller 8-2
handler 1-6, 8-6, 8-11, 8-18, 8-19, 9-33, 9-35, 9-56, 9-64, 9-69, 9-76
level 8-2, 8-a:-8-10, 8-12, 8-14, 8-17, 8-18, 8-19, 8-24, 9-29, 9-31, 9-39
task 1-6, 8-6, 8-8, 8-11, 8-19, 8-21, 8-23, 9-56, 9-64, 9-76
vector 8-1--
vector table 8-1

job 1-1, 1-4, 2-1, 9-7, 9-22, 9-49
child 2-1
memory pool 2-1, 2-3, 5-1, 5-2, 5-3
object directory 1-4, H , 6-1
object limit 2-1
parameter object 2-3, 3-5
parent 2-1
pool size 2-1, 5-1, 5-2, 9-7
task limit 2-1
tree 1-4, 2-1

Index-2

INDEX

level 8-2, 8-7, 8-8, 8-17, 8-18, 8-19, 9-29, 9-31, 9-39
level 7 interrupts 8-18
LOOKUP$OBJECT 3-3, 6-1, 6-2, 9-47

mailbox 1-1, 1-5, 4-1, 9-13, 9-24, 9-51, 9-59
master levels 8-2---
memory' 1-5, 2-1, 2-3, 5-1, 9-15, 9-25, 9-41, 9-44, 9-68

allocating 1-5, 4-2, 5-3, 9-15, 9-25
available 5-2 ---
borrowing 2-3, 5-3, 9-15
maximum pool size--5-2
minimum pool size 5-2, 9-68

multiple buffers 8-11, 8-13
mutual exclusion 1-5, 4-3

Nucleus 1-1

object 1-1, 6-1, 9-5, 9-46, 9-47, 9-74
job 1-~1-4, 2-1
mailbox 1-1, 1-5, 4-1
segment 1-1, 1-5, 5-1
semaphore 1-1, 1 5:-4'-3
task 1-1, 1-3, 3-1 ---

object directory 1'=4, 2-1, 2-3, 6-1, 9-5, 9 47, 9-74
object queue 4-1
object type 1~1, 6 1
OFFSPRING 2-~2-4, ~

parameter object 2-3, 3-5, 9-7, 9-45
parent job 2-1 -
PIC 8-2, 8-18
pool ~e 2-1, 5-1, ~
priority 1-3, 3-1, 3-2, 4-1, 4-3, 8-4,8-5, 8-8,8-9,8-10, 9 8, 9-19, 9-43
programmable inte;rupt controller 8 2, 8-18
progratnmererror 2:.!., 7-5

q1.leue4-1, 4-2,4 3
first-in/first-out4~1, 4 2, 4-3
priority .4:-1, 4-2, '4-3

ready state 1-3, 3-2
RECEIVE$MESSAGE 3-=3, 4-2, 9 51
RECEIVE$UNITS 3 3,4 ... ~9-54
regions 1-1 ---
request count 8 14, 9-64
RESET$INTERRUPT 8 4, 8 7, 8 23, 9-56
RESUME$TASK 3-3, 3 5,9-.58
root job 1-:4, 2--1, 3-5-:-&=2, 9-45
running state 2-2,4-2

se.gment 1-1, 1-5,?-1, 9-15, 9-25, 9-41, 9-44, 9 68
selecting interruptlevels 8-19
semliphore 1-1, 1-.5,4-3, 9-17, 9 26, 9-54, 9-61
:semaphore limit 4-3,9-17, 9-61

Index-3

INDEX

SEND$MESSAGE 3-3, 4-2, 9-59
SEND$UNITS 3-3, 4-3, 9-~
SET$EXCEPTION$HANDLER~, 7-5, 9-62
SET$INTERRUPT 8-4, 8-7, 8-8, 8-9:-&:12, 8-14, 8-21, 8-22, 8-23, 9-64
SET$POOL$MIN 5-2, 5-4, 9-68
SIGNAL$INTERRUPT 8-6, 8-8, 8-12, 8-13, 8-15, 8-16, 8-17, 8-21, 8-22, 8-23, 9-69
single buffer 8-12
slave levels 8-2
SLEEP 3-5, 9-71
spurious interrupts 8-18
stack 9-9, 9-19
SUSPEND$TASK 3-3, 3-5, 9-73
suspended state 1-3, 3-~
suspension depth 3-2--
synchronization 4-1, 4-3
system call 1~1---
system clock 8-2
system exception handler 7-2

task 1-1, 1-3, 3-1, 9-19, 9-27, 9-43, 9-45, 9-58, 9-71, 9-73
arbitration algorithm 1-3, 3-2
communication 4-1 ---
exception handler 1-6, 3-5, 7-1
interrupt 1-6, 8-6, 8-8, 8-1r:-8-17
limit 2-1
Nucleus' view 173
priority 1-3, 3-1, 3-2, 4-1, 4-3, 8-4, 8-5, 8-9, 8-10, 9-8, 9-19, 9-43
states 1-3, 3-r:-3-2
suspension depth 4-2

task queue 4-1, 4-2, 4-3
token 1-1, s=r
tree of jobs 1-4, 2-1
type 1-1, 6-1, A-1:-B-l
type code 6-1, B-1

UNCATALOG$OBJECT 6-2, 9-74

vector table, interrupt 8-1

WAIT$INTERRUPT 8-7, 8-9, 8-13, 8-14, 8-15, 8-16, 8-17, 8-21, 8-22, 8-23, 9-76

Index-4

BEQUEST FOR READER'S COMMENTS

iRMX 86T11 Nucleus
Reference Manual

9803122-03

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME __ DATE ______________ __

TITLE __ __

COMPANY NAME/DEPARTMENT __ _

ADDRESS __ __

CITY __________________________________ STATE ___ ZIP CODE __________ ____

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully review~d by the responsible
person. All comments and· suggestions become the property of Intel Corpora1ion.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

11111' I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

