
iRMX 86™ BASIC 1/0 SYSTEM
REFERENCE MANUAL

Order Number: 9803123-04

Copyright © 1981, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

REV. REVISION HISTORY PRINT
DATE

-01 Original Issue 4/80

-02 Application Loader added and unimple- 11/80
mented system calls removed.

-03 Application Loader information removed. 5/81
Changes made to reflect Release 3 of the
iRMX 86 Operating System.

-04 Exception codes updated. 10/81
Changes reflect Release 4 of iRMX 86.
Change bars mark technical changes.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intell
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-1D4.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following al'e trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel pJ'Oducts:

BXP
CREDIT
i
ICE
iCS
im
INSITE
Intel
Intel

Intelevi8ion
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS
Megacha88i8
Micromainframe

Micromap
Multibu8
Multimodule
Plug-A-Bubble
PROMPT
Promware
RMX/80
SY8tem 2000
UPI
pScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

ii

PREFACE

This manual documents the Basic I/O System» one of the subsystems
available with the iRMX 86 Operating System. Although it contains some
introductory and overview material» it is intended primarily as a quick
reference to system calls, providing detailed descriptions of those system
calls available to application programmers. Other system calls» which are
reserved for system programmers» are discussed generally» but only to give
an overview of Basic I/O System operation. The reserved system calls are
discussed in detail in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

READER LEVEL

This manual is intended for application programmers who are familiar with
the concepts and terminology introduced in the iRMX 86 NUCLEUS REFERENCE
MANUAL and with the PL/M-86 programming language.

CONVENTIONS

Throughout this manual» system calls are named using a generic shorthand
(such as CREATE$FILE instead of RQ$A$CREATE$FILE). The actual PL/M-86
external-procedure names used to invoke these operations are shown only in
Chapter 8» which lists the detailed calling sequences.

Chapter 8 of this manual» which contains detailed descriptions of the
system calls» lists only the PL/M-86 calling sequences. The system calls
can be invoked from assembly language, but in order to do so» you must
obey the PL/M-86 calling conventions» which are discussed in the iRMX 86
PROGRAMMING TECHNIQUES manual.

iii

PREFACE (continued)

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information.

Manual

Introduction to the iRMXm 86 Operating System

iRMXm 86 Nucleus Reference Manual

iRMXm 86 Debugger Reference Manual

iRMXm 86 Terminal Handler Reference Manual

iRMXm 86 System Programmer's Reference Manual

iRMXm 86 Programming Techniques Manual

Guide to Writing Device Drivers for the iRl'ixm 86 I/O System

iRMXm 86 Extended I/O System Reference l1anual

iRMXm 86 Configuration Guide

PL/M-86 Programming Manual for 8080/808S-Based
Development Systems

PL/M-86 User's Guide for 8086-Based Development Systems

PL/M-86 Compiler Operating Instructions for 8080/808S-Based
Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8086-Based Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual
for 8080/808S-Based Development Systems

8086/8087/8088 Macro Assembler Operating Inst-ructions
for 8086-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8080/808S-Based Development Systems

iv

Number

98031.24

9803122

143323

143324

142721

142982

142926

143308

9803126

9800466

121636

9803478

121627

121623

121628

121624

CONTENTS

CHAPTER 1
ORGANIZATION ••••••••••••••••••••

CHAPTER 2
FEATURES OF THE I/O SYSTEM
Asynchronous Operation ••••••••••••••••••
Device Independence ••
Support for Many Kinds of Devices ••••••••••••••••••••••••••••••••••
Three Distinct Kinds of Files ••••••••••••••••••••••••••••••••••••••

Named Files .••..........•........•..••..••....•.••.......••....•.
Physical Files .. .
S t re am F i 1 e s •••

File Sharing and Access Control ••••••••••••••••••••••••••••••••••••
Fi Ie Sharing•.•.•.•.............••..•••.......•.••.......•
Access Control •••

Separ~tion of File Lookup and File Open Operations •••••••••••••••••
Control Over Fragmentation of Files ••••••••••••••••••••••••••••••••

CHAPTER 3
BASIC TERMINOLOGY
System Programmers •••
Device s ...••.•...........................•.•..•.....•••..••......•.
Volumes .•.•.••..••••••••.••.•...•.....•..•••••••••••••••••••...•••.
Files
Connec t ions ••

Device Connections •••
File Connections •••

CHAPTER 4
ASYNCHRONOUS SYSTEM CALLS ••

CHAPTER 5
NAMED FILES
Multiple Files on a Single Device ••••••••••••••••••••••••••••••••••
Hierarchical Naming of Files •••••••••••••••••••••••••••••••••••••••

Connec tions ••
Pa t hs ••
Prefix and Subpath •••
Default Prefix •••

Users and Access Rights ••
Users and User Objects •••

Concept of User ••

v

PAGE

1-1

2-1
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-5

3-1
3-1
3-2
3-2
3-2
3-3
3-3

4-1

5-1
5-1
5-3
5-3
5-3
5-4
5-4
5-5
5-5

CONTENTS (continued)

CHAPTER 5 (continued)
Concept of Group •••
Concept of World •••
User Objects •••
Creating t Deleting t and Inspecting User Objects ••••••••••••••••
Default Users ••

Ac~cess Rights ••
Computing Ac cess •••••• ' •••
Time at Whicn Access is Computed •••••••••••••••••••••••••••••••
Access at Tilne of Creation •••••••••••••••••••••••••••••••••••••
Granting Acc;ess to Other Users •••••••••••••••••••••••••••••••••

System Calls for Named Files •••••••••••••••••••••••••••••••••••••••
Obtaining and Deleting Connections •••••••••••••••••••••••••••••••
User Objects •••
Default Prefixes •••
~fanipulating D.-lta ••
Obtaining Status •••
Reading Directory Entries ••
Deleting and Renaming Files ••••••••••••••••••••••••••••••••••••••
Changi ng Ac ces s ••
Ascertaining a File's Name ••••••••••••••••••••••••••••••••••••• ~.
Manipulating Extension Data •••••••••••••••••••••••••••••••••••• ~.
Detecting Changes in Device Status •••••••••••••••••••••••••••••••

Chronological Overview of Named Files •••••••••••••••••••••••••••• ~.
Most Frequently Used System Calls •••••••••••••••••••••••••••••• ~.
Calls Relating to User Objects ••••••••••••••••••••••••••••••••• ~.
Calls Relating to Prefixes •••••••••••••••••••••••••••••••••••••••
Calls Relating to Status ••••••••••••••••••••••••••••••••••••••• ~.
Calls Relating to Changing Access ••••••••••••••••••••••••••••••••
Calls for Monitoring Device Readiness •••••••••••••••••••••••••• ~o
Calls Relating to Extension Data •••••••••••••••••••••••••••••••••
Calls for Renarrlng Files •••
Calls for Ascertaining File Names

CHAPTER 6
PHYSICAL FILES
Situations Requiring Physical Files ••••••••••••••••••••••••••••••••
Connections and l)hysical Files •••••••••••••••••••••••••••••••••••••
Using Physical Files •••

CHAPTER 7
STREAM FILES
Actions Required of the Writing Task •••••••••••••••••••••••••••••••
Actions Required of the Reading Task •••••••••••••••••••••••••••••••

vi

PAGE

5-5
5-6
5-6
5-7
5-7
5--7
5-9
5-9
5-10
5-10
5-11
5-11
5-12
5-13
5-13
5-15
5-15
5-15
5-16
5-16
5-16
5--16
5-17
5-17
5-18
5-18
5-18
5-18
5-18
5-18
5-19
5-19

6-1
6-1
6-2

7-1
7-3

CHAPTER 8
SYSTEM CALLS

CONTENTS (continued)

Input Parameter Specification ••••••••••••••••••••••••••••••••••••••
User Parameter •••
File-Path Parameter(s) for Named Files •••••••••••••••••••••••••••
Response Mailbox Parameter •••••••••••••••••••••••••••••••••••••••
I/O Buffers ••

Exception Codes ••
System Calls •••
System Call Dictionary •••

Job-Level System Calls •••
Get Time/Date System Calls •••••••••••••••••••••••••••••••••••••••
Create-File-Connection System Calls ••••••••••••••••••••••••••••••
File Modification System Calls •••••••••••••••••••••••••••••••••••
File Input/Output System Calls •••••••••••••••••••••••••••••••••••
Device-Level Function System Call ••••••••••••••••••••••••••••••••
Get Status/Attribute System Calls ••••••••••••••••••••••••••••••••
Delete Connection/File System Calls ••••••••••••••••••••••••••••••
System Programmer Calls (Calling Sequence Only) ••••••••••••••••••
A$ATTACH$FILE ••
A$CHANGE$ACCESS •••.••••.•••.•••••••••••••••••••••••••••••••••••••
A$CLOSE ••
A$CREATE$DlRECTORY •••
A$CREATE$FILE ••
A$DELETE$CONNECTION ••• , •••••
A$DELETE$FILE ••
AGETCONNECTION$STATUS ••
AGETDIRECTORY$ENTRY ••
AGETEXTENSION$DATA •••
AGETFILE$STATUS ••
AGETPATH$COMPONENT •••
A$OPEN •••
A$PHYSICAL$ATTACH$DEVICE •••••••••••••••••••••••••••• G ••••••••••••

A$PHYSICAL$DETACH$DEVICE •••
A$READ •••••••••••• t: •••

A$RENAME$FILE •••••••••••••••••• • ' •••••••••••••••••••••••••••••••••
A$SEEK •••
ASETEXTENSION$DATA •••
A$SPECIAL ••
A$TRUNCATE •••
A$WRITE ••
CREAT$USER ••• • ' •••••••
DELETE$USER ••
GET$DEFAULT$PREFIX •••
GET$DEFAULT$USER •••
GE T $TIl1:E ••••••••••••••••••••••••••••••••••• • •••••••••••••• • •• • •• •
INSPECT$USER •••.•••
SET$DEFAULT$PREFIX •••
SET$DEFAULT$USER ••• g •••

SET$TlME •• •

vii

PAGE

8-1
8-1
8-1
8-4
8-4
8-S
8-S
8-6
8-6
8-6
8-7
8-7
8-7
8-7
8-8
8-8
8-8
8-9
8-14
8-20
8-23
8-29
8-36
8-39
8-44
8-48
8-S2
8-S3
8-60
8-63
8-67
8-68
8-69
8-73
8-79
8-82
8-83
8-90
8-93
8-97
8-98
8-99
8-101
8-103
8-104
8-10S
8-107
8-109

CONTENTS (continued)

APPENDIX A
iRl1X 86 DATA TYP.ES •••

APPENDIX B
iR~ 86 TYPE CODES •••

APPENDIX C
I/O RESULT SEGMENT
Structure of I/O Result Segment •••••••••••••••••••••••••••••••••• ~.
Unit Status, for Specific Devices •••••••••••••••••••••••••••••••••••

iSBC 204 and iSBC 206 Controllers •••••••••••••••••••••••••••••• ~.
iSBC 215 Controller •• ~.
iSBC 208 Controller ••

APPENDIX D
EXCEPTION CODES
Synchronous (Environmental) Exception Codes ••••••••••••••••••••••••
Sequential (Programmer Error) Exception Codes ••••••••••••••••••••••
Concurrent Exception Codes •••

APPENDIX E
LOGICAL DEVICES AND THE BASIC I/O SySTEM •••••••••••••••••••••••••••

4-1.
5-1.
5-2.
8-1.

FIGURES

Concurrent Behavior of an Asynchronous System Call •••••••••
Example of a Named-File Tree •••••••••••••••••••••••••••••••
Chronology of Frequently Used System Calls for Named Files.
Sample Named File Tree ••••••••••••••••••••••••••••••••••••• \

viii

PAGE

A-I

B-1

C-l
C-2
C-2
C-3
C-3

D-l
D-l
D-2

E-l

4-2
5-2
5-17
8-3

CHAPTER 1. ORGANIZATION

This manual lS divided into eight chapters. Some of the chapters contain
introductory or overview material which you do not need to read if you
are already familiar with the subsystems or if you have used this manual
before. Other chapters contain reference material which you will refer
to as you write your application tasks. You can use this chapter to
determine which of the other chapters you need to read. The manual
organization is as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5
through

Chapter 7

Chapter 8

This chapter describes the organization of the
manual. You should read this chapter if you are going
through the manual for the first time.

This chapter describes the features of the Basic I/O
System. You should read this chapter if you are going
through the manual for the first time or if you have
had very little previous exposure to the Basic I/O
System.

This chapter explains some basic terminology
associated with the Basic I/O System, including the
concepts of system programmer, device, volume, file,
and connection. You should read this chapter if you
are looking through the manual for the first time or
if you are unfamiliar with the Basic I/O System.

This chapter describes how to use the asynchronous
system calls that are included in the Basic I/O
System. You should read this chapter before you write
tasks that make asynchronous system calls.

These chapters describe named, physical, and stream
files and how to use them. You should read one or
more of these chapters, depending on the kinds of
files your application uses.

This chapter contains detailed descriptions of the
system calls of the Basic I/O System, in alphabetical
order. When writing your application tasks, you
should refer to this chapter for specific information
about the format and parameters of the system calls.

1-1

CHAPTER 2. FEATURES OF THE BASIC I/O SYSTEM

Because the iRMX 86 Operating System is designed for use by Original
Equipment Manufacturers (OEMs), it provides a large number of features
including some that are not generally found in operating systems aimed at
end users. These features include:

• Asynchronous Operation

• Device Independence

• Support for Many Kinds of Devices

• Three Distinct Kinds of Files

• File Sharing and Access Control

• Separation of File Lookup and File Open Operations

• Control over Fragmentation of Files

The purpose of this chapter is to briefly explain each of these features
and to familiarize you with the terminology of the Basic I/O System.

ASYNCHRONOUS OPERATION

When you examine the system call chapter of this manual, you will find
that the system calls can be divided into two categories according to
their names. The first category consists of system calls having the
names of the form:

RQ$XXXXX

where XXXXX is a brief description of what the system call does. The
second category consists of system calls having names of the form:

RQAXXXXX

System calls of the first category, without the A, are synchronous
calls. They begin running as soon as your application invokes them, and
continue running until they detect an error or accomplish everything they
must do. Then they return control to your application. In other words,
synchronous calls act like subroutines.

System calls of the second category (those with the A) are called
?synchronous because they accomplish their objectives by using tasks that
run concurrently with your application. This allows your application to
accomplish some work while the Basic I/O System deals with mechanical
devicesa

2-1

FEATURES OF THE BASIC I/O SYSTEM

For more detail on the behavior of asynchronous system calls, refer to
Chapter 4.

DEVICE INDEPENDENCE

The Basic I/O System provides you with one set of system calls that can be
used with any collection of devices. For instance, rather than using a
TYPE system call for output to a terminal and a PRINT system call for
output to a line printer, you can use a WRITE system call for output to
any device.

This notion of one set of system calls for I/O to any collection of
devices is called device independence, and it provides your application
with a lot of flexibility. For example, suppose that your application
logs events as they occur. The device independence of the Basic I/O
System allows you to create an application that can log the events on any
device rather than just one. When the event application is running and
circumstances force an operator to reroute logging from, for instance, the
teletypewriter to the line printer, your application can easily comply.

For a more detailed explanation of device independence, refer to the
INTRODUCTION TO TIlE iRMX 86 OPERATING SYSTEM.

SUPPORT FOR MANY KINDS OF DEVICES

Although your application can be device independent, the Basic I/O System
must be able to communicate with a wide variety of devices. In order to
connect a particular device to the Basic I/O System, you must have a
device driver (a collection of software procedures) designed especially
for the device being connected.

The Basic I/O System currently provides drivers for the following devices:

• iSBC 204 Single Density Flexible Disk Controller

• iSBC 206 Hard Disk Controller

• iSBC 254 Bubble Memory

• iSBC 215 Winchester Hard Disk Controller

• iSBC 218 Multimodule Flexible Disk Controller

• Byte Bucket

• Terminal or Teletypewriter

If you want to use any of these drivers in your application, refer to the
iRMX 86 CONFIGURATION GUIDE. It contains detailed instructions for
including specific drivers in your application system.

2-2

FEATURES OF THE BASIC I/O SYSTEM

If you need drivers for other devices, you must write the drivers. Refer
to the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 I/O SYSTEM.

If you want more specific information about the relationship between
devices, device drivers, and the Basic I/O System, refer to the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

THREE DISTINCT KINDS OF FILES

Although all files in the Basic I/O System are byte (as opposed to record)
oriented, the System provides you with three kind of files:

NAMED FILES

Named files are intended for use with random-access, secondary storage
devices such as disks, diskettes, and bubble memories. They allow your
application to organize its files into a tree-like, hierarchical structure
that reflects the relationships between the files and the application.
Furthermore, only named files allow your application to store more than
one file on a device, and only named files provide your application with
access control. Named files also provide a good starting place for
building custom access methods such as ISAM (indexed sequential access
method).

For more detailed information regarding named files, refer to Chapter 5.

PHYSICAL FILES

Physical files differ from named files in that physical files allow your
application more direct control over a device. Each physical file
occupies an entire device, and applications can deal with it as though it
were a string of bytese Also, physical files do not provide access
control.

This more basic relationship with a device provides your application with
flexibility. For example, your application can interpret volumes created
on other systems by using physical files.

Physical files also provide your application with the ability to
communicate with devices that do not need the power of named files.
Several examples of such devices are line printers, display tubes,
plotters, and robots.

For more detailed information about physical files, see Chapter 6.

2-3

FEATURES OF THE BASIC I/O SYSTEM

STREAM FILES

Stream files provide a means for two tasks to communicate with each
other. One task writes into the file while the other task concurrently
reads from it. Stream files use no devices and provide no access control.

For more detailed information about stream files, see Chapter 7.

FILE SHARING AND ACCESS CONTROL

The Basic I/O System provides your application with the ability to share
files and, in the case of named files, to control access to the files.

FILE SHARING

In a multitasking system it is often useful to have several tasks
manipulating a file simultaneously. Consider, for example, a transaction
processing system in which a large number of operators concurrently
manipulate a common data base. If each terminal is driven by a distinct
task, the only way to implement an efficient transaction system is to have
the tasks share access to the data base file. The iRMX 86 Operating
System allows multiple tasks to concurrently access the same file.

For more detailed information about sharing files, see Chapters 5, 6, and
7.

ACCESS CONTROL

Also useful in a multitasking system is the ability to control access to a
file. For instance, suppose that several engineering departments share a
computer. An engineer in one department may want to reserve to himself
the ability to delete his" files, while allowing people in his department
to write and read his file, and people in other departments to only read
the files. The Basic I/O named files provide your applications with this
kind of access control.

For more detailed information regarding access control, refer to Chapter 5.

SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste valuable time by looking up a file whenever
an application tries to open one. The Basic I/O System avoids this by
using a special type of object (called a connection) to represent the bond
between the file and a program.

2-4

FEATURES OF THE BASIC I/O SYSTEM

Whenever your application software creates a file, the Basic I/O System
returns a connection. Your application can then use the connection to
open the file without suffering the expense of having the Basic I/O System
lookup the file. Even when your application wants to open an existing
file, the application can present the connection and bypass the file
lookup process.

There are several other benefits associated with connection objects. In
the case of named files, connections embody the access rights to the
file. This means that access need only be computed once (when the
connection is created) rather than each time the file is opened.

A second benefit of connections is that several connections can
simultaneously exist for the same file. This allows several tasks to
concurrently access different locations in the file. This is possible
because each connection maintains a file pointer to keep track of the
location, within the file, where the task is reading or writing.

The process of obtaining a connection to a file is discussed in each of
Chapters 5, 6, and 7.

CONTROL OVER FRAGMENTATION OF FILES

The Basic I/O System allows your application to specify the granularity of
each mass storage file. This lets you trade faster I/O for more efficient
use of space on the mass storage device.

When information is stored on a mass storage device, space is allocated in
ehunks rather than one byte at a time. These chunks (called granules) can
be large or small, but all granules within one file must be of the same
size. This size is called the file granularity. The Basic I/O System
allows your application to specify the granularity of each file that it
creates.

For a detailed explanation of the benefits of control over file
fragmentation, see the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM.

2-5

CHAPTER 3. BASIC TERMINOLOGY

There are f:Lve concepts that you must understand if you wish to use the
Basic I/O System. These concepts are:

• system programmers

• device~

• volumes

• files

• connections

The following sections explain these concepts.

SYSTEM PROGRAMMERS

There are two programming roles associated with the iRMX 86 Operating
System. One role involves using system calls and objects that affect
only your own job, while the other role involes manipulating system
resources and characteristics. These two roles are called application
programming and system programming.

Although the roles have different names, separate people are not
required. One individual can perform both roles. The reason for the
distinction is that the actions of the system programmer affect the
performance and security of the entire system, whereas the actions of the
application programmer have a more limited effect.

At several locations in this manual you will find actions to be performed
by system programs written by system programmers. Because of the broad
effect of these functions, they are only briefly described in this
manual. For more detailed information you must refer to the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

DEVICES

The iRMX 86 notion of a device probably corresponds to what you are
familiar with. Flexible diskette drives, line printers, magnetic tape
drives, and hard disk drives are all examples of devices.

3-1

BASIC TERMINOLOGY

However, there are two situations where the iRMX 86 notion of device may
differ from yours:

• Several Machines on One Controller

Even if several machines are governed by one controller, the
Basic I/O System considers each machine to be a distinct device.

• Several Platters on One Spindle

VOLUMES

Generally, when several platters reside on a single spindle, the
Basic I/O System considers the entire spindle to be one device.
The exception to this arises when one platter is removable and
the others are fixed. In such cases the removable platter is a
different device than the fixed platters, and the fixed platters
all constitute one device.

A volume is the actual medium used to store the device's information. If
the device is a flexible disk drive, the volume is a diskette. If the
device is a magnetic tape drive, the volume is the reel of tape. If the
device is a multiplatter hard disk drive, the volume is the disk pack.

FILES

Some operating systems consider a file to be a device, while others
consider a file to be the information stored on a device. The Basic I/O
System considers a file to be information.

The Basic I/O System provides three kinds of files, each of which have
characteristics mnking it unique. These characteristics are described in
general terms in Chapter 2 and in detailed terms in Chapters 5, 6, and 7.

Regardless of the kind of file, the Basic I/O System presents information
to applications in the form of a byte string rather than in record~.

CONNECTIONS

A connection is an iRMX 86 object that can represent either of two things:

• The bond between iRMX 86 jobs and devices

• The bond between iRMX 86 jobs and files

3-2

BASIC TERMINOLOGY

DEVICE CONNECTIONS

Before your application can manipulate files on a particular device, the
device must be attached. (Because this process is typically performed by
system programmers rather than application programmers, it is discussed in
the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.) When a program
successfully attaches a device, the Basic I/O System creates a connection
(a type of iRMX 86 object) that includes information describing the
attached device. Such connections are called device connections.

Applications typically obtain device connections by invoking a system
program written by your system programmer. This program passes the
connection for the desired device to the calling application program.

Once the device has been attached, the only way to refer to the device is
by the connection. If your application catalogs the device connection in
your job's object directory under the name of the device, all of the tasks
in the job will be able to refer to the device. This is one of several
ways of making the device connection available to tasks.

FILE CONNECTIONS

NOTE

A device cannot be multiply attached.
In other words, at anyone time no more
than one device connection can exist
for each device. However, once a
device is detached, it can be
reattached.

Whenever your application creates or attaches a file, the Basic I/O System
returns a connection that represents the bond between the application
(iRMX 86 job) and the file. This kind of connection is called a file
connection.

NOTE

Files can be multiply attached. In
other words, more than one connection
can exist simultaneously for any file.

The reason for distinguishing between the file and the file-to-application
bond is so several tasks can concurrently use the file. To support this
sharing of files, file connections provide the Basic I/O System with
information describing the bond. This information includes:

3-3

BASIC TERMINOLOGY

a file pointer

This is a number that tells the Basic I/O System where within the
file to read or write. The Basic I/O System automatically
maintains this pointer as your application reads and writes
sequentially. However, if your application must use randotn
access, it can modify this number by using the A$SEEK system call.

an open-mode indicator

The Basic I/O System sets this variable when your application
calls the A$OPEN system call to open this connection to the file.
The open-mode indicator tells the Basic I/O System how your
application is going to use the connection. This variable can
assume any of four values: open for read, open for write, open for
read and write, and not open.

a share-mode indicator

The Basic I/O System sets this variable when your application
calls the A$OPEN system call. The share-mode indicator controls
how other connections can share the file with the connection being
opened. l~is variable can take on any of four values: no sharing
whatsoever, share with readers only, share with writers only,
share with readers or writers.

3-4

CHAPTER 4. ASYNCHRONOUS SYSTEM CALLS

Each asynchronous system call has two parts -- one sequential, and one
concurrent. As you read the descriptions of the two parts, refer to
Figure 4-1 to see how the parts relate.

• the sequential part

The sequential part behaves in much the same way as the fully
synchronous system calls in Chapter 2. Its purpose is to verify
parameters, check conditions, and prepare the concurrent part of
the system call. The sequential part then returns control to
your application.

• the concurrent part

The concurrent part runs as an iRMX 86 task. The task is made
ready by the sequential part of the call, and it runs only when
the priority-based scheduling of the iRMX 86 Operating System
gives it the processor.

The reason for splitting the asynchronous calls into two parts is
performance. The functions performed by these calls are somewhat time
consuming because they usually involve mechanical devices. By performing
these functions concurrently with other work, the Basic I/O System allows
your application to run while the Basic I/O System waits for the
mechanical devices to respond to your application's request.

Let's look at a brief example showing how your application can use
asynchronous calls. Suppose your application requires some information
that is stored on disk. The application issues the A$READ system call to
have the Basic I/O System read the information into memory. Let's trace
the action one step at a time:

1. Your application issues the A$READ system call. This call
requires, as do all asynchronous calls, that your application
specify a response mailbox for communication with the concurrent
part of the system call.

2. The sequential part of the A$READ call begins to run. This part
checks the parameters for validity.

3. If the sequential part of the call detects a problem, it signals
an exception and returns control to your application. It does
not make ready the Basic I/O System task to perform the reading
function.

4-1

ASYNCHRONOUS SYSTEM CALLS

----------_._------------------_._---_._------------"---

INVOKE
A$READ

APPLICATION CODE

L.--..r---]I4--: _.

1/0 SYSTEM CODE

RETURN WITH
E$OK

Figure 4-1. Concurrent Behavior of an Asynchronous System Call

4-2

ASYNCHRONOUS SYSTEM CALLS

4. Your application receives control. Its behavior at this point
depends on the condition code returned by the sequential part of
the system call. Therefore, the application tests the condition
code. If the code is E$OK, the application continues running
until it must have the information from the disk. It is at this
point that your application can take advantage of the
asynchronous and concurrent behavior of the Basic I/O System.

For example, your application can implement double (or multiple)
buffering by issuing another (or several) A$READ system call(s)
while waiting for the first call to complete running.
Alternatively, your application can use this overlapping
processing to perform computations. The point is that you can
decide what you want your application to do while the
asynchronous system call is running.

On the other hand, if your application finds that the condition
code returned from the sequential part of the system call is
other than E$OK, the application can assume that the Basic I/O
System did not make ready a task to perform the function.

For the balance of this example, we will assume that the
sequential part of the system call returned an E$OK completion
code.

5. Your application now must have the information. Before taking
the information from the buffer, you application must verify that
the concurrent part of the A$READ system call ran successfully.
The application issues a RECEIVE$MESSAGE system call to check the
response mailbox that the application specified when it invoked
the A$READ system call.

By using the RECElVE$MESSAGE system call, the application obtains
a segment that contains, among other things, a completion code
for the concurrent part of the A$READ system call. If this
completion code is E$OK, then the reading operation was
successful, and the application can get the data from the
buffer. On the other hand, if the code is not E$OK, the
application should analyze the code and attempt to determine why
the reading operation was not successful.

In the foregoing example, we used a specific system call (A$READ) to show
how asynchronous calls allow your application to run concurrently with
I/O operations. Now let's look at some generalities about asynchronous
calls.

• All of the asynchronous system calls consist of two parts -- one
sequential and one concurrent. The Basic I/O System will
activate the concurrent part only if the sequential part runs
successfully (returns E$OK).

• Every asynchronous system call requires that your application
designate a response mailbox for communication with the
concurrent part of the system call.

4-3

ASYNCHRONOUS SYSTEM CALLS

• Whenever the sequential part of an asynchronous system call
returns a condition code 9ther t~a~ E$OK, your application should
not attempt to receive a message from the response mailbox.
There can be no message because the Basic I/O System cannot run
the concurrent part of the system call.

• Whenever the sequential part of an asynchronous system call runs
successfully (E$OK), your application can count on the Basic I/O
System running the concurrent part of the system call. Your
application can take advantage of the concurrency by doing some
processing before receiving the message from the response mailbox.

• Whenever the concurrent part of a system call runs, the Basic I/O
System signals its completion by sending an object to the
response mailbox. The precise nature of the object depends upon
which system call your application invoked. You can find out
what kind of object comes back from a particular system call by
looking up the call in Chapter 8 of this manual.

• Whenever the Basic I/O System returns a segment to your
application's response mailbox, your application must delete the
segment when it is no longer needed. The Basic I/O System draws
memory for such segments from your job's memory pool, so if your
application fails to delete the segment, your job may run short
of memory.

4-4

CHAPTER 5. NAt-lED FILES

Named files are intended for use with random-access, secondary storage
devices such as disks, diskettes, and bubble memories. Named files
provide several features that are not provided by physical or stream
files. These features include:

• Multiple Files on a Single Device

• Hierarchical Naming of Files

• Access Control

These features combine to make named files extremely useful in systems
that support more than one application and in applications that require
more than one file.

MULTIPLE FILES ON A SINGLE DEVICE

As shown in Figure 5-1, your application can use named files to implement
more than one file on a single device. This can be very useful in
applications requiring more than one operator, such as transaction
processing systems.

HIERARCHICAL NAMING OF FILES

The iRMX 86 named files feature allows your application to organize its
files into a number of tree-like structures as depicted in Figure 5-1.
Each such structure, called a file tree, must be contained on a single
device, and no two file trees can share a device. In other words, if a
device contains any named files, the device contains exactly one file
tree. Named file trees also must fit on a single volume.

Each file tree consists of two categories of files -- data files and
directories. Data files (which are shown as triangles in Figure 5-1)
contain the information that your application manipulates, such as
inventories, accounts payable, transactions, text, source code, or object
code. In contrast, directory files (shown as rectangles) contain only
pointers to other files. The purpose of the directory files is to
provide you with a large degree of flexibility in organizing your file
structure.

To illustrate this flexibility, take a close look at Figure 5-1. This
figure shows how named files can be useful in multi-user systems. Figure
.5-1 is based on a collection of hypothetical engineers who work for three
departments (Departments 1, 2 and 3). Each engineer is responsible for
his own files.

5-1

NAMED FILES

DEPT2

c5 H_A_R_Ry __

SIM-SOURCE SIM·,OBJECT TEST -OBJECT

_____ ---', = DIRECTORY

= DATA FILE

BATCH-1 BATCH-Z

Figure 5-1. Example of a Named-File Tree

This multiperson organization is reflected in the file tree. The
uppermost directory (called the device's root directory) points to three
"department directories." Each department directory points to several
"engineer's directories." And the engineers can organize their files as
they wish by using their own directories.

Each file (directory or data) has a unique shortest path connecting it to
the root directory of the device. For instance, in Figure 5-1, the file
called SIM SOURCE has the path DEPT 1/BILL/SIM SOURCE. This notion of
"path" reflects the hierarchical nature of the-named-file tree.

Another characteristic of hierarchical file naming is that there is less
chance for duplicate file names. For example, note that Figure 5-1
contains directories for two individuals named Bill. {These directories

5-2

NAMED FILES

are on the extreme left and right of the third level of the figure.)
Even if the rightmost Bill had a data file with the file name of
SIM_OBJECT, its path would differ from that leftmost Bill's S1M OBJECT.
Specifically, the leftmost SIM OBJECT is identified by

whereas the rightmost SIM OBJECT would be identified by

DEPT 3/BILL/SIM OBJECT

Whenever your application manipulates either kind of named file, the
application must tell the Basic I/O System which file is to be
manipulated. There are several ways to specify a particular named file
to the Basic I/O System, all of which involve connections and paths.

CONNECTIONS

Once you have a connection to a particular named file, you can use the
connection as the PREFIX parameter of any system call. If, in the same
call, you set the SUBPATH parameter to zero, the Basic I/O System will
ignore the SUBPATH and use only the PREFIX to find the file.

PATHS

If you do not have a connection to the file you can specify the file by
using its path. To do this, build an iRMX 86 string of the form
described in the opening pages of Chapter 8. (An iRMX 86 string is a
representation of a character string. To represent a string of n
characters, you must use n+l consecutive bytes. The first byte contains
the character count, n. The following n bytes contain the ASCII codes
for the characters in the same order as the string.) This string is
called a path name. Then use a pointer to this path name as the SUBPATH
parameter in the system call, and use the device connection as the PREFIX
parameter in the system call.

:For example, if your named file tree is on Drive 1, and it has the path
name DEPT_2/HARRY/TEST_RESULTS, you can specify the file by using the
device connection for Drive 1 as 'the PREFIX parameter and a pointer to
the path name as the SUBPATH parameter.

PREFIX AND SUBPATH

Once your application has obtained a connection to a directory file
within a named file tree, the application can use that connection as a
basis for reaching all files that descend from the directory.

5-3

NAMED FILES

For example, referring again to Figure 5-1, suppose your application has
a connection to Directory DEPT I/TOM. The application can refer to Data
File BATCH 1 by using both the-PREFIX and the SUBPATH parameters. The
application should use the connection to Directory DEPT I/TOM as the
PREFIX, and it should use a pointer to a subpath name as the SUBPATH.
The subpath name is a string that connects Directory DEPT I/TOM to Data
File BATCH 1. For this example, the subpath name is TEST DATA/BATCH_I.

DEFAULT PREFIX

Within one iRMX 86 job, most references to a named file tree are
generally confined to one branch of the tree. For example, in Figure
5-1, Tom will usually access the files in his directory more frequently
than files outside of his directory. Recognizing this clustering t the
Basic I/O System provides the notion of default prefix.

The Basic I/O System allows your application to specify one default
prefix for each iRMX 86 job. A default prefix is a connection to a
directory at the head of the most commonly used branch in your named file
tree. For instance, in Figure 5-1, Tom's application would probably use
a connection to Directory DEPT I/TOM as the default prefix. To use the
default prefix, the application sets the PREFIX parameter to zero.

A default prefix provides a job with two advantages. First, by providing
a reference point within a named file tree, it allows your application
to use subpath names instead of path names. If your tree is several
levels deep, this can save coding time during development. Second, and
more significantly, a default prefix provides a means of writing
generalized application code that can work at any of several locat:ions
within a tree.

Consider an example. Suppose that an assembler (implemented as an
iRMX 86 job) uses a default prefix to find a location in a named file
tree. The assembler could then use a subpath name of TEMP to find or
create a temporary work file. Before an application invokes the
assembler, it sets the default prefix of the assembler job to a directory
in the application's named file tree. This allows more than one job to
invoke the assembler concurrently without the risk of sharing temporary
files.

The Basic I/O System keeps track of a job's default prefix by using the
job's object directory. Whenever your tasks use the SET$DEFAULT$PREFIX
system call to specify a connection as being the default, the Basic I/O
System catalogs the connection under the name $ in the job's object
directory.

USERS AND ACCESS RIGHTS

Named files provide your application with the ability to control access
to files. This ability is based on the concept of users and the concept
of access rights.

5-4

NAMED FILES

USERS AND USER OBJECTS

The Basic I/O System implements an iRMX 86 object type called a user
object, but before you can find user objects useful, you must understand
the concepts of user, group, and World.

Concept of User

The concept of user correlates file access to people or to iRMX 86 jobs,
but the precise definition depends upon the nature of your application.
For instance, if your application interfaces with several people who
enter information, you might want to consider each person (or small
groups of persons) a user. This would allow each individual (or small
group) to maintain access different from other individuals (or other
small groups).

Alternatively, if your application interfaces with only one (or even no)
person, then you might wish to consider each iRMX 86 job as a user. This
would allow your application to control which job accesses which file.

In more general terms, the set of entities that manipulate named files in
your system is the set of all users. If you want all of these entities
to be able to access any file, you can consider them to be a single
user. However, if you want to distribute different access to different
collections of these entities, you must divide the entities into subsets,
and each of these subsets is a user.

Now let's look at an example derived from Figure 5-1. As mentioned
earlier, each engineer in the figure is responsible for his own files.
If an engineer wants to have unique access to his files, access different
than anybody else's, the engineer is a user. On the other hand, if all
engineers are willing to give uniform access to each member of his
department (including himself) then the departments are the users.

Concept of Group

Closely related to the concept of user is the concept of group. A group
is a collection of users who share some access. For example, suppose
that each engineer in Figure 5-1 wishes to reserve for himself certain
access to his own files, while allowing members of the same department
different access to the same file. This can be accomplished by
considering each engineer as a user, and each department as a group that
:lncludes all of its members. By doing this, an engineer can assign
himself one kind of access and his department another.

5-5

NAMED FILES

Concept of World

The concepts of user and group can be used to assign various kinds of
access to different collections of users, but once in a while it is
useful to assign one kind of access to all users. To do this, your
application must employ a special group, called World, that includes all
users.

User Objects

The Basic I/O System supports an iRMX 86 object type, called a user
object, that lets you bind users to groups, including the special group
called World. Whenever an application attempts to gain access to or
create a named file, the application must present a user object to the
Basic I/O System. The Basic I/O System then uses this object to compute
the kind of access permitted the application.

In effect, user objects serve a purpose analogous to that of the plastic
cards that allow people to deal with automatic bank tellers. If you
don't have a vali .. d plastic card, you can't use the automated teller.
Similarly, if your application doesn't have the correct user object, it
can't access certain named files.

User objects consist of a collection of identity codes (id's). The first
id is the id of the user whom the object represents, and any additional
id's specify groups to which the user belongs. For example, the id list
of a user object might look like this:

0231
A4D5
FFFF

(All numbers in the list are hexadec.:f.mal.)

Suppose that this is the id list for the user object of Harry in Figure
5-1. Harry's id is 0231, and the other id's represent groups to which
Harry belongs. For example, A4D5 could be the id representing Department
2. A group does not need a user object unless the group (rather than the
users in the group) is going to create or access files.

Take a special note of the third id on the list. By convention, FFFF is
the id used for the World. If you wish to take advantage of this useful
convention, you must ensure that every user is considered to be part of
the world. In other words, whenever you create any user object, you
should include FFFF as a group to which the user belongs.

Futhermore, if you wish to allow the World to create and access files,
you must create a user object for the world. The id list of the World's
user object should contain a single id, FFFF. The use of this special
user object is described later in this chapter, in the "Granting Access
to Other Users" section.

The Basic I/O System computes access based on user objects and a file's
access list. This computation is fully explained in the "Access Rights"
section of this chapter.

5-6

NAMED FILES

Creating, Deleting, and Inspecting User Objects

The process of creating and deleting user objects is generally performed
by system programs rather than by application programs. For example,
application programs requiring user objects can invoke a system program
to create the object and pass it back to the application program through
a mailbox. Another alternative, that is particularly useful in systems
that interact with more than one person, is to create a log-on facility
that creates user objects as operators enter a password.

The Basic I/O System provides three system calls for creating, deleting
and inspecting user objects. These calls are described in the iRMX 86
SYSTEM PROGRAMHER'S REFERENCE MANUAL.

Default Users

Generally, most of the I/O operations performed within a particular
iRMX_86 job are performed on behalf of one user object. Recognizing
this, the Basic I/O System allows your application to design~te one
default user per job. Whenever your application invokes a Basic I/O
System calIon behalf of the default user, the application can use zero
as the token for the USER parameter. The Basic I/O System will recognize
the zero as referring to the default user.

The notion of a default user provides two benefits. First, it allows you
to avoid some repetitive coding. Second, and more significantly, it
allows your application to easily parameterize the user for whom I/O is
being performed. For example, if your application includes a job that
modifies a named file on behalf of other jobs in the system, the invoking
job can set the default user of the I/O job to a specific user object.
Ihen, all of the Basic I/O System calls having a zero user object will be
performed on behalf of the default user.

Ibe Basic I/O System provides two system calls to manipulate a job's
default user. The GET$DEFAULT$USER and SET$DEFAULT$USER calls are both
d.escribed in the system call chapter of this manual.

The Basic I/O System uses the job's object directory to keep track of the
job's default user. Whenever one of your tasks sets or gets a default
user, the Basic I/O either catalogs or looks up the default user entry in
the object directory. The Basic I/O System uses the name R?USER to refer
to the default user. To prevent problems, you should consider R?USER to
be a reserved name, and you should avoid using it.

ACCESS RIGHTS

F'or each named file (directory or data file), the Basic I/O System
maintains a list of ordered pairs having the form (id, access rights).
The id portion is the identity code for a user or a group. The access
rights portion is an encoded hexadecimal number that indicates all the

5-7

NAMED FILES

access rights for the associated ide The list of pairs is called the
file's access list, and the Basic I/O System supports as many as three
entries for each named file.

The kinds of access rights that a user or group can have depend on
whether the file is a data file or a directory file. The kinds of access
rights available for data files are:

Delete

Read

Append

Update

The ability to delete the file with A$DELETE$FILE
and rename the file with A$RENAME$FILE.

The ability to read the file with A$READ.

The ability to add information to the end of the
file with A$WRITE.

The ability to change information in the file with
A$WRITE or drop information with A$TRUNCATE.

The kinds of access rights available for directory files are:

Delete

Display

Add Entry

Change Entry

The ability to delete the directory file with
A$DELETE$FILE.

The ability to obtain the contents of directory
files with A$READ or A$GET$DIRECTORY$ENTRY.

The ability to add files to the directory with
A$CREATE$FILE, A$CREATE$DIRECTORY, or A$RENAME$FILE.

The ability to change the access rights of the files
in the directory with A$CHANGE$ACCESS.

The numeric values associated with the access rights are explained in the
descriptions of A$CREATE$FILE and A$CREATE$DIRECTORY in the system call
chapter of this manual.

When an application creates a named file, the application uses the I

A$CREATE$FILE system call. Two of the parameters of this call are USER
and ACCESS. When the Basic I/O System actually builds the file, it
initializes the access list with a single entry consisting of the id of
the user who invoked A$CREATE$FILE and the access he specified in the
call. The user who creates a file is called the owner of the file.

NOTE

The owner of a file has only one advan
tage over other users who can access the
file, but the advantage is an important
one. Only a file's owner can use the
A$CHANGE$ACCESS system call to modify
the file's access list without being
granted explicit permission to do so.

5-8

NAMED FILES

Computing Access

Whenever an application attempts to access a named file, the application
must supply t~'·~ Basic I/O System with a user object. The Basic I/O
System then S ens the access list of the file and finds all entries that
match any id's (user or group) in the id list of the user object.
Finally, the Basic I/O System computes the access by "or"ing together the
access of each matching entry.

Consider an example. Suppose that an application attempts to establish a
connection to a file having the following access list:

(D556, OF)
(8BO!, 05)
(FFFF, 02)

Now suppose that the application presents a user object having an id list
of

042A
8BO!
FFFF

The Basic I/O System would find that the user object has two id's that
match entries in the file's access list. The id's are 8BO! and FFFF, and
the corresponding access rights are 05 and 02. So the Basic I/O System
would compute access by "or"ing together 05 and 02, yielding access of
07. The precise interpretation of this access depends upon whether the

. file is a directory or a data file, as explained previously.

Time at Which Access is Computed

The Basic I/O System computes access only under two circumstances. The
first circumstance is the creation of a connection. Whenever an
application creates a connection (by using the A$CREATE$FILE,
A$CREATE$DIRECTORY, or A$ATTACH$FILE system calls), the application
presents a user object to the Basic I/O System. The System uses this
object and the access list of the named file to compute the access, and
it embeds this access in the connection object that is returned to the
application.

Later, when the application attempts to manipulate the file via the
connection, the Basic I/O System uses the connection's embedded access to
decide what kind of manipulation is permitted. Even if an application
changes the access list of the file or the id list of the user object,
the change will have absolutely no effect on the access embedded in the
connection.

5-9

NAMED FILES

The second circumstance under which the Basic I/O System computes access
arises when an application uses either the A$DELETE$FILE or the
A$CHANGE$ACCESS system calls. If the system call invocation contains any
subpath other than the null subpath, the Basic I/O System will compute
access to the target file before performing the desired function. If
access is not granted, the Basic I/O System will deny the user the
ability to delete the file or change access.

If an invocation of A$DELETE$FILE or A$CHANGE$ACCESS does contain the
null subpath, the Basic I/O System will use the access associated with
the PREFIX to decide whether or not to perform the function requested in
the system call.

NOTE

If a system call invocation contains a
subpath parameter other than the null
subpath, the Basic I/O System checks
the access only to the last file in the
path and to the parent directory of the
last file. It does not check the
access to any other directory files
specified in the path.

Access at Time of Creation

Whenever your application creates a named file (either data or
directory), the application presents two access-related parameters to the
Basic I/O System. One of the parameters is a user object. The Basic I/O
System uses this object to "brand" the file as being owned by a specific
user.

The second access-related parameter is called ACCESS. This parameter
governs the owner's access rights. The kinds of access from which the
application can choose depend upon whether a data file or a directory is
being created. These rights are discussed in the "Access Rights" section
of this chapter.

Granting Access to Other Users

When an application initially creates a named file (either data file or
directory) access to the file is restricted to the creating user (the
owner). However, there are two ways for the owner to allow other users
to access the file.

The first technique is performed after the creation of the file. The
owner of the file is always entitled to change the access to the file.
So by using the A$CHANGE$ACCESS system call, the owner can provide other
users access.

5-10

NAMED FILES

The second technique involves a group user object (discussed earlier
under the heading of "User Objects"). If,. when your application creates
a file, it uses a group's user object rather than its own user object,
the group is the owner of the file. Using A$CHANGE$ACCESS, any user in
the group can change the kind of access granted to the group, or the kind
of access granted to any other accessor of the file.

SYSTEM CALLS FOR NAMED FILES

There are 31 system calls that relate to iRMX 86 named files. Some of
these calls are useful for both data and directory files, some only for
one kind of file, and some (such as CREATE$USER) don't relate to either
kind of file.

The following sections briefly explain the purpose of each of the 31
system calls. TIle descriptions are grouped by function rather than
alphabetically. These descriptions are very brief. Chapter 8 of this
manual contains descriptions of most of the calls, and the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL contains descriptions of the others. If
any of the following descriptions do not explicitly refer to a more
detailed description, you can find such a description in Chapter 8.

OBTAINING AND DELETING CONNECTIONS

There are six system calls that relate to obtaining and deleting
connections.

• A$CREATE$FILE

This call applies only to data files. Your application must use
this call to create a new data file, and it can use this call to
obtain a connection to an existing data file. If the application
uses this call to create a new file, the Basic I/O System
automatically adds an entry in the parent directory for this new
file.

• A$CREATE$DlRECTORY

This call applies only to directory files. Your application must
use this call to create a new directory file. The call cannot be
used to obtain a connection to an existing directory. The Basic
I/O System automatically adds an entry in the parent directory
for this new directory.

• A$ATTACH$FILE

This call applies to both data and directory files. Your
application can use this call to obtain a connection to an
existing data file or directory.

5-11

NAMED FILES

• A$DELETE$CONNECTION

This call applies to both data and directory files. Your
application can use this call to delete a connection to either
kind of named file. This call cannot be used to delete a device
connection.

• A$ATTACH$DEVICE

This call does not directly apply to either data or directory
files. Your application uses this call to obtain a connection to
a device. Even though this connection is a device connection, it
can be used as the prefix for the root directory of the device.
This call is explained in detail in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL.

• A$DETACH$DEVICE

This call does not directly apply to either data or directory
files. Your application uses this call to delete a connection to
a device. This system call is explained in detail in the iRMX 86
SYSTEM PROG~1ER'S REFERENCE MANUAL.

USER OBJECTS

There are five calls directly related to user objects. None of these
calls is specifically related to data or directory files. The calls are:

• CREATE$USER

This call is used to create a user object. Since this call is
generally invoked only by system program, it is described in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

• DELETE$USER

This call is used to delete a user object. Since this call is
generally invoked only by system programs, it is described. in the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

• INSPECT$USER

This call is used to ascertain a user object's id and to find out
to which groups the user belongs. Since this call is general~
invoked only by system programs, it is described in the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL.

• SET$DEFAULT$USER

Your application can use this call to establish a default user
for any iRMX 86 job. This call is described in Chapter 8 of this
manual.

5-12

NAMED FILES

• GET$DEFAULT$USER

Your application can use this call to ascertain the default user
for any iRMX 86 job. This call is described in Chapter 8 of this
manual.

DEFAULT PREFIXES

There are two calls that relate to default prefixes, and both are
described in detail in Chapter 8 of this manual. Neither of these calls
relates directly to data files or directory files. The calls are:

• SET$DEFAULT$PREFIX

Your application can use this call to set the default prefix for
any iRMX 86 job.

• GET$DEFAULT$PREFIX

Your application can use this call to ascertain the default
prefix for any iRMX 86 job.

MANIPULATING DATA

There are six system calls that allow you to manipulate the data that
forms a file. All six can be used with data files, while only four apply
to directory files. All of the calls are described in Chapter 8 of this
manual. The system calls are:

• A$OPEN

This call applies to both data and directory files. Before your
application can use any other system calls to manipulate file
data, the application must open a connection to the file. This
system call is the only way to open a connection.

• A$CLOSE

This call applies to both data and directory files. After your
application has finished manipulating a file, the application can
use this system call to close the file connection. Your
application can elect to leave the file open, letting the Basic
I/O System close it when the connection is deleted, but there is
an advantage to closing connections when they are not being used.

This advantage derives from the fact that, when a connection is
shared between two or more applications, some of the applications
can place restrictions on the manner of sharing. For instance,
an application can specify sharing with writers only. By closing
connections, your application can improve the likelihood that the
connections can be used by other applications.

5-13

NAMED FILES

• A$SEEK

This system call applies to both data and directory files ..
Whenever your application reads, writes, or truncates a file, the
application must tell the Basic I/O System the location in the
file where the operation is to take place. To do this, your
application uses the A$SEEK system call to position the file
pointer of the file connection. The A$SEEK system call requires
that the file connection be open.

• A$READ

This system call applies to both data and directory fileso Your
application can use this system call to read file data from the
location indicated by the file pointer. Before using this system
call, your application can use the A$SEEK system call to position
the file pointer. The A$READ system call requires that the file
connection be open.

The outcome of this system call depends upon w'hether a data file
or a directory is being read. If your application reads a data
file, the application will receive data that makes up the file.
If the application reads from a directory, the application will
receive data that represents the entries of the directory_

Each entry in a directory consists of 16 bytes. The first two
bytes contain a 16-bit file descriptor number corresponding to
the file descriptor number associated with the AGETFILE$STATUS
system call in Chapter 8. The remaining 14 bytes are the ASCII
characters making up the name of the file to which the directory
entry points. (A file's name is the last component of a path
name.) lbe advantage of using the A$READ system call to read a
directory is that your application can obtain several entries
with one operation.

• A$WRITE

This system call applies only to data files. Your application
uses this system call to put new information in the file. Before
using this call, the application can use A$SEEK to position the
file pointer to the location within the file to receive the
information. The A$WRITE system call also requires that the file
connection be open.

• A$TRUNCATE

This system call can be used only on data files. Your
application can use this call to trim information from the end of
the file. To do so, the application first must use A$SEEK to
position the file pointer to the first byte to be dropped. Then
the application invokes the A$TRUNCATE call to drop the specified
byte and any bytes located after the specified byte. The
A$TRUNCATE system call requires that the file connection be open.

5-14

NAMED FILES

OBTAINING STATUS

There are two status-related system calls, one for connections and one
for files. The calls are AGETFILE$STATUS and A$GET$CONNECTION$STATUS.
Both of these calls can be used with data files and directory files.

READING DIRECTORY ENTRIES

There are two system calls that your application can use to read entries
from a directory. The A$READ system call (which can also be used to read
a data file) was discussed earlier, under the heading "Manipulating
Data." The second system call is AGETDlRECTORY$ENTRY. This systE~m
call can be used only on directory files, and can be used without opening
a connection. The AGETDlRECTORY$ENTRY system call is fully described
in Chapter 8 of this manual.

DELETING AND RENAHING FILES

l~e Basic I/O System provides one system call for deleting files, and
another for renaming files. Both of these calls can be used with data
files and directory files. The calls are:

• A$DELETE$FILE

Your aplication can use this system call to delete data filE~s and
directory files. However, any attempt to delete a directory that
is not empty will result in an exceptional condition.

The process of deleting a file involves two stages- First, the
application must call A$DELETE$FILE. This causes the file to be
marked for deletion. The second stage, which is performed by the
Basic I/O System, involves deciding when to delete the fileu The
Basic I/O System deletes marked files only after all connections
to the file have been deleted. Refer to the A$DELETE$CONNEGTION
system call to see how to delete connections.

• A$RENAME$FILE

Your application can use this system call to rename both data
files and directory files. In renaming a file, your application
can move the file to any directory in the same named file tree.
For example, you can rename A/B/C to be A/X/C. In effect, this
example simply moves File C from Directory B to Directory X.
This means that your application can change every component of a
file's path name.

5-15

NAMED FILES

CHANGING ACCESS

The Basic I/O System provides one system call to let your application
change a file's access list. This call is A$CHANGE$ACCESS, and it
applies to both data files and directories. One rule governs the use of
A$CHANGE$ACCESS -- only the owner of a file or a user with change entry
access to the directory containing the file can change the file's access
list.

ASCERTAINING A FILE'S NAME

The Basic I/O System provides a system call to let your application find
out the last component of a file's path name when the application has a
connection to the file. The system call is AGETPATH$COMPONENT, and you
can use it on data files and directories. Note that your application can
use this system call repeatedly to obtain the entire path name for a file.

MANIPULATING EXTENSION DATA

When you format a volume to accommodate named files, you have the option
of allowing each file to carry extension data. The Basic I/O System
provides two system calls that allow you to get and set extension data.
These calls apply to both data and directory files, and both are
described in the iRMX 86 SYSTEM PROG~mR'S REFERENCE MANUAL.

• ASETEXTENSION$DATA

This call provides a means of writing extension data.
ASETEXTENSION$DATA can be used even if the file connection is
not open.

• AGETEXTENSION$DATA

This call provides a means of reading extension data.
AGETEXTENSION$DATA can be used even if the file connection is
not open.

DETECTING CHANGES IN DEVICE STATUS

The Basic I/O System provides the A$SPECIAL system call to allow your
application to detect a change in the status of the device containing
your named file tree. Specifically, your application can use the
"notify" function of the A$SPECIAL system call to establish a mechanism
for finding out if the device ceases to be ready. For more information,
refer to the A$SPECIAL section of Chapter 8.

5-16

NAMED FILES

CHRONOLOGICAL OVERVIEW OF NAMED FILES

Although 31 sYEtem calls can be used with named files, the system calls
cannot be used in arbitrary order. This section provides you with a
sense of how 1 he calls relate to one another.

MOST FREQUENTLY USED SYSTEM CALLS

Figure 5-2 shows the chronological relationships between most frequently
used Basic I/O System calls. To use the figure, start with the leftmost
box and follow the arrows. Any path that you can trace is a legitimate
sequence of system calls. However, there are also sequences not
represented in the figure.

ATTACH
DEVICE

,..--.. CREATE

rL FILE

fr
OPEN

~
ATTACH

FILE

~ DI~~g1ERY, ~ OPEN

>-...--<
"-+

ATTACH ..,.J
FILE

READ

f---+
WRITE

f---+ SEEK CLOSE
or

r TRUNCATE I)

DATA FILES
DIRECTORIES

--+-
SEEK

r--+ or CLOSE
READ

C I)

GET
DIRECTORY

ENTRY

J
~

DELETE
FILE

l

~

>- -+--

l
f----+ DELETE r[~ONNECTIO.

DELETE
FILE

~

DETACH
DEVICE

DELETE
~ ~ONNECTIO' f--'

Figure 5-2. Chronology of Frequently Used System Calls for Named Files

5-17

NAMED FILES

CALLS RELATING TO USER OBJECTS

With one exception, the system calls relating to user objects are
completely independent of other Basic I/O System calls. The one
exception is that your application must have a user object before it can
use any system call requiring a user object.

There are five system calls relating to user objects. Of the five,
GET$DEFAULT$USER and CREATE$USER can be invoked any time. Two others,
DELETE$USER and INSPECT$USER, can be invoked only after user objects
exist. The remaining call, SET$DEFAULT$USER requires that both a job and
a user object exist.

CALLS RELATING TO PREFIXES

The GET$DEFAULT$PREFIX system call can be invoked whenever a job exists.
However, the SET$DEFAULT$PREFIX requires both a job and a user object.

CALLS RELATING TO STATUS

Both of the status-related system calls, AGETFILE$STATUS and
AGETCONNECTION$STATUS, can be invoked whenever your application has a
file connection.

CALLS RELATING TO CHANGING ACCESS

The only system call related to changing access, A$CHANGE$ACCESS, can be
invoked whenever your application has both a user object and a path or
connection to a file.

CALLS FOR MONITORING DEVICE READINESS

There is only one system call that lets your application monitor the
readiness of a device, the A$SPECIAL system call. Your application can
use the "notify" function of this call any time after your appication has
obtained a device connection.

CALLS RELATING TO EXTENSION DATA

The two system calls relating to extension data, AGETEXTENSION$DATA and
ASETEXTENSION$DATA, can be invoked whenever your application has a
connection to a file.

5-18

NAMED FILES

CALLS FOR RENAMING FILES

The one call for renaming a file, A$RENAME$FILE, can be used whenever
your application has a connection to the file to be renamed, a user
object, and a path that is to become the new pathname.

CALLS FOR ASCERTAINING FILE NAMES

There is only one system call for finding out a file's name,
AGETPATH$COMPONENT. Your application can use this call whenever the
application has a connection to the file.

5-19

CHAPTER 6. PHYSICAL FILES

The Basic I/O System provides physical files to allow your applications
to read (or write) strings of bytes from (or to) a device. In other
words, a physical file occupies an entire device, and the Basic I/O
System provides your applications with the ability to directly access the
driver of the device.

SITUATIONS REQUIRING PHYSICAL FILES

The close relationship between a device and a physical file is
particularly useful when your application uses sequential devices. For
example, you should use' physical files to communicate with line printers,
display tubes, plotters, magnetic tape units, and robots.

There are even some instances where you should use physical files to
communicate with random, devices such as disks, diskettes, and bubble
memories. For instance:

• Formatting Volumes

Whenever you create an application to format a disk or diskette,
the application must have access to every byte on the volume.
Only physical files provide this kind of access.

• Volumes in Formats Required by Other Systems

If your application must read or write volumes that have been
formatted for systems other than the Basic I/O System, you must
use physical files. Your application will have to interpret such
information as labels and file structures, but a physical file
can provide your application with access to the raw information.

• Implementing Your Own File Format

Suppose that your application requires a less sophisticated file
structure than that provided by iRMX 86 named files. You can
build a custom file structure using a physical file as a
foundation.

CONNECTIONS AND PHYSICAL FILES

Although there is a one-to-one correspondence between the bytes on a
device and the bytes of a physical file, the device connection is
different from the file connection. The Basic I/O System maintains this
distinction to remain consistent with named files and stream files. This
consistency helps you develop applications that can use any kind of file.

6-1

PHYSICAL FILES

USING PHYSICAL FILES

Several system calls can be used with physical files, but the order in
which they are used is not arbitrary. The following list provides a
brief description (in chronological order) of what an application must do
to use a physical file.

1. Obtain a device connection.

This is necessary for two reasons. When your application creates
the physical file, the device connection tells the Basic I/O
System which device is to contain the file and that the file must
be a physical file.

Since the process of attaching a device is restricted to system
programs, you must create a system program. This program must
use the A$PHYSICAL$ATTACH$DEVICE system call to obtain the device
connection. When issuing this call, the system program must use
the name that was assigned to the device during system
configuration. For instructions as to how to assign names to
devices, refer to the iRMX 86 CONFIGURATION GUIDE.

Because devices cannot be multiply attached, your system program
must be written so as to call A$PHYSICAL$ATTACH$DEVICE only
once. The program can then save the- device connection and pass
it to any application program that requests it.

2. Obtain a file connection.

If your application knows that the file has not yet been created,
it should use the A$CREATE$FILE system call to obtain a file
connection. This will work even though the physical file has
already been created. When invoking the system call, set the
USER, SUBPATH, ACCESS, MUST$CREATE, GRANULARITY, and SIZE
parameters to zero, as these parameters are meaningless when
creating a physical fileG Use the token of the device connection
as the PREFIX parameter in order to tell the Basic I/O System
which device you want as your physical file.

If, on the other hand, your application is certain that the file
has alre.ady been created, use the A$ATTACH$FILE system call to
obtain the file connection. To do this, your application should
first obtain a connection to the device or an existing connection
to the file and then use it as the PREFIX parameter in the system
call. The application should set the USER and SUBPATH parameters
to zero, as they have no meaning for physical files.

This careful distinction between the A$CREATE$FILE and the
A$ATTACH$FILE system calls is necessary to be consistent with
named files. If you want your application to work with any kind
of file, you must maintain this consistency.

6-2

PHYSICAL FILES

3. Open the file connection.

Use the A$OPEN system call to open the connection. When opening
the connection, your application must specify how the file can be
shared and how the application uses the connection. The system
call chapter of this manual explains how to do this.

4. Manipulate the file.

There are four system calls that can be used to read, write, or
otherwise manipulate your physical file:

• The A$READ and A$WRITE system calls are straightforward and
are fully described in the system call chapter of this manual.

• The A$SEEK system call can be used to manipulate the file
connection's file pointer if the device is a random device
such as disk, diskette, or bubble. (If you are writing a
device driver for a magnetic tape unit, you can design it to
support A$SEEK. Refer to the GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX 86 OPERATING SYSTEM.)

• The A$SPECIAL system call can be used to request device
dependent functions from the device driver. The precise
nature of these functions depends upon the kind of device and
the number of special functions supported by the device
driver. Be aware that use of special functions can prevent
an application from being device independent.

5. Close the file connection.

Use the A$CLOSE system call to close the connection. This is
particularly important if the share mode of the connection
restricts the use of the file through other connections. Note
that your application can repeat steps 2, 3, and 4 any number of
times.

6. Delete the connection.

Use the A$DELETE$CONNECTION system call to delete the
connection. This is only necessary if your application is
completely finished using the file.

7. Request that the device be detached.

Let the system program know when your application is certain it
no longer needs the device. The system program should keep track
of the number of applications using the device and should avoid
detaching it until it is no longer being used by any
application. Only then should the system program use the
A$PHYSICAL$DETACH$DEVICE system call to detach the device.

6-3

CHAPTER 7. STREAM FILES

Stream files provide a means for one task to send large amounts of
information to another task in a different job. Be aware that this is
one of several techniques for job-to-job communication. If you are not
familiar with other techniques, refer to the iRMX 86 PROG~lING
TECHNIQUES manual.

The aspect of stream files that makes them very useful is that they allow
a task to communicate with a second task as though the second task were a
device. This extends the notion of device independence to include tasks.

Since two tasks are involved in using each stream file, each task must
perform one half of a protocol. There are a large number of protocols
that work, but the following one is typical and serves as a good
:lllustration. Note that the two halves of the protocol can be performed
in either order or concurrently.

ACTIONS REQUIRED OF THE WRITING TASK

The writing task must perform seven steps in its half of the protocol to
ensure that it has established communication with the reading task. The
steps are:

1. Obtain a connection to the stream file device.

Although stream files do not actually require a physical device,
your application must obtain a device connection before creating
a stream file. This is necessary because, when your application
invokes the A$CREATE$FILE system call, the device connection
tells the Basic I/O System what kind of file to create.

Since the process of attaching a device is restricted to system
programs, you must create a system program that obtains the
connection. This program must use the A$PHYSICAL$ATTACH$DEVICE
system call to obtain the device connection.

The A$PHYSICAL$ATTACH$DEVICE system call requires a parameter
that identifies the device to be attached. For stream files,
there is only one device, and its name is specified during the
process of configuring the system. Intel recomends the name
:stream:, but is is possible that the person responsible for
configuring your system changed this name. For the remainder of
this discussion, this manual assumes that the name of your
system's stream file device is :stream:. For more information
regarding the configuration process, refer the the iRMX 86
CONFIGURATION GUIDE.

7-1

STREAM FILES

As with other devices, : stream: cannot be multiply attached, so
the system program should be written so as to call
A$PHYSICAL$ATTACH$DEVICE only once. The program can then save
the device connection and pass it to any application program that
requests it.

2. Create the stream file.

Use the A$CREATE$FILE system call to create the stream file.
When invoking the system call, set the USER, SUBPATH, ACCESS,
MUST$CREATE, SIZE, and GRANULARITY parameters to zero because
these parameters have no meaning when creating a stream file.
Use the token for the device connection as the PREFIX parameter
in order to tell the Basic I/O System to create a stream f.ile.
If this system call runs successfully, the Basic I/O System will
return a token for a file connection to the stream file.

3. Pass the file connection to the reading task.

There are a number of ways of doing this, including object
directories and mailboxes. For explicit instructions, refer to
the iRMX 86 PROGRAMMING TECHNIQUES manual.

4. Open the file for writing.

Use the A$OPEN system call to open the file connection for
writing. Set the CONNECTION parameter to the token for the file
connection. Set the MODE parameter to write. And set the SHARE
parameter to allow sharing only with readers.

5. Write information to the stream file.

Use the A$WRITE system call as often as needed to write
information to the stream file. Use the token for the file
connection as the CONNECTION parameter.

The Basic I/O System uses the concurrent part of the A$WRITE
system call to synchronize the writing and reading tasks on a
call-by-call basis. The Basic I/O System does this by sending a
response to each invocation of A$WRITE only after the read~ng
task has finished reading all information that was written by the
A$WRITE call.

6. Close the connection.

When finished writing to the stream file, use the A$CLOSE system
call to close the connection. Note that· after this step, the
writing task can repeat steps 4, 5, and 6.

7. De.lete the connection.

Use the A$DELETE$CONNECTION system call to delete the connection
to the stream file.

7-2

STREAM FILES

~CTIONS REQUIRED OF THE READING TASK

The reading task must perform the following six steps in its half of the
protocol to successfully read the information written by the writing task.

1. Get the file connection for the stream file.

The technique used to accomplish this depends on how the writing
task passed the file connection.

2. Create a second file connection for the stream file.

There are two reasons for doing this. First, the reading task
must have a different file pointer than the writing task.
Second, the Basic I/O System rejects any connections created in
one job but used by another to manipulate a file.

Obtain this new connection by using the A$ATTACH$FILE system
call. Set the USER and SUBPATH parameters to zero, and set the
PREFIX parameter to the token for the original file connection.

NOTE
The reading task can also use the
A$CREATE$FILE system call to obtain the
new connection to the same stream
file. The reason for this is that the
Basic I/O System examines the nature of
the PREFIX parameter in the
A$CREATE$FILE system call. If the
value provided is a device connection,
the Basic I/O System will create a new
file and return a connection for it.
On the other hand, if the value
provided is a file connection, the
Basic I/O System will just create
another connection to the same file.

However, a careful distinction between
the A$CREATE$FILE and the A$ATTACH$FILE
system calls is necessary to be
consistent with named and physical
files. If you want your application to
work with any kind of file, you must
maintain this consistency.

3. Open the new file connection for reading.

Use the A$OPEN system call to open the connection for reading.
Set the CONNECTION parameter to the token for the new
connection. Set the MODE parameter to read, and set the SHARE
parameter to allow sharing with all connections to the file.

7-3

STREAM FILES

4. Commence reading.

Use the A$READ system call to read the file until reading is no
longer necessary or until an end-of-file condition is detected by
the Basic I/O System.

5. Close the new file connection.

Use the A$CLOSE system call to close the new file connection.
Note that after this step, the reading task can repeat steps 3,
4, and 5.

6. Delete the new file connection.

Use the A$DELETE$CONNECTION system call to delete the new
connection to the stream file. The old connection is deleted by
the writing task, and the stream file is deleted by the Basic I/O
System as soon as both connections have been deleted.

7-4

CHAPTER 8. SYSTEM CALLS

This chapter describes the PL/M calling sequences to Basic I/O System
calls. The system calls are listed here alphabetically by the same
shorthand notation used throughout this manual. For example,
A$DELETE$FILE refers to the asynchronous-level delete-file system call
and appears alphabetically before SET$DEFAULT$PREFIX. This notation is
language independent and should not be confused with the actual form of
the PL/M call. The precise format of each call is spelled out as part of
its detailed description.

For those I/O related calls which are invoked by system programmers, only
the format of the call is described. Detailed descriptions of these
calls are in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

Basic I/O operations are declared as typed or untyped external procedures
for PL/M. PL/M programs perform I/O operations by issuing external
procedure calls.

INPUT PARAMETER SPECIFICATION

The following paragraphs explain special properties of certain input
parameters to Basic I/O System calls.

USER PARAMETER

This parameter is specified in some asynchronous system calls. It
contains a token designating the caller's user object. A zero
specification designates the default user. The Basic I/O System ignores
this parameter for physical and stream files.

FILE-PATH PARAMETER(S) FOR NAMED FILES

Named files are designated in system calls by specifying their path, that
is, their prefix and subpath. The prefix parameter can be a token
designating an existing device connection or file connection. If this
parameter is zero, the default prefix for the calling task's job is
assumed.

For named files, the subpath parameter is a pointer to an ASCII string.
The form of this string is described in the following paragraph. The
subpath can also be zero or can point to a null string, in which case a
prefix indicates the desired connection. For physical and stream files,
the subpath parameter is always ignored.

8-1

SYSTEM CALLS

System calls referring to named files can specify paths in the following
forms:

Prefix

o

o

token

token

Subpath

o or a pointer
to a null string

Pointer to
ASCII string

o or a pointer
to a null string

Pointer to
ASCII string

Designated Connection

Connection whose token is
the default prefix.

ASCII string defines a path
from the connection whose
token is the default prefix to
the target connection.

Connection whose token is
contained in the prefix
connection.

Prefix parameter contains a
token for a connection. ASCII
string defines a path from
that connection to the target
connection.

The subpath ASCII string is a list of file names separated by slashes,
terminating with the desired file. A file name can be 1-14 ASCII
characters, including any printable ASCII character except the slash (I)
and up-arrow (t) or circumflex (-'). In Figure 8-1, for example, if the
prefix is the tok~n for directory OBSTETRICS and we wish to reference file
OUT_PATIENT, the subpath parameter must point to the string

If the ASCII string begins with a slash, the prefix merely designates the
tree and the subpath is assumed to start at the root directory of the tree
associated with the prefix. For example, if the prefix designates
directory GYNECOLOGY in Figure 8-1, the subpath to OUT_yATIENT is

/OBSTETRICS/DELIVERY/POST_PARTUM/OUT_PATIENT

Named files can also be addressed relative to other files in the tree)
using "til as a pat:h component. The nt"" refers to the parent directory of
the current file in the path scan. For example, now that we have a
connection to OUT_yATIENT in Figure 8-1, we can use that connection to
specify a subpath to IN_PATIENT. With the token for the OUT PATIENT
connection as our prefix, the subpath string would be

Note that no slash follows the .. t .. in this example.

8-2

SYSTEM CALLS

Of course an even simpler approach would be to designate directory
POST PARTUM as the prefix, in which case the ASCII string becomes:

IN-LABOR

POST-PARTUM

IN PATIENT

PRENATAL

DELIVERY

IN-PATIENT

OUT-PATIENT

OBSTETRICS

GYNECOLOGY

ROOT
DIRECTORY

EMPTY
·DIRECTORY

Figure 8-1. Sample Named File Tree

8-3

EMPTY
DIRECTORY

SYSTEM CALLS

RESPONSE MAILBOX PARAMETER

This parameter is specified only in asynchronous system calls. It
contains a token designating the mailbox that is to receive the result of
the call. This information is provided by tasks to synchronize parallel
operations. To receive the result of the call, a task must wait at the
designated mailbox. Be aware that if several calls share the same
mailbox, the results may be received out of order.

Most asynchronous system calls return only an I/O result segment to the
response mailbox. This segment contains an exception code and other
information about the operation. Appendix C describes the I/O result
segment. Other system calls, the create-file-connection system calls,
return to the mailbox a token for a connection if the system call
completes sucessfully or an I/O result segment otherwise. After making
one of these system calls, a task should perform a GET$TYPE system call
to determine the type of object returned to the response mailbox. The
iRMX 86 NUCLEUS REFERENCE MANUAL describes the GET$TYPE system call in
detail.

I/O BUFFERS

NOTE

Result information segments should be
deleted once they are no longer
needed. Otherwise, they will consume
available memory.

The A$READ and A$WRITE system calls each require a buffer while
performing I/O. When you create these buffers, bear in mind the
following restrictions:

• Once the I/O operation has been invoked, the tasks of your
application should avoid changing the contents of the buffer
until the Basic I/O System completes the operation.

• If you use an iRMX 86 segment as a buffer, be sure that the
buffer is not deleted while an I/O operation is in progress.

• If you choose to use an iRMX 86 segment as a buffer, you should
ensure that the segment is in the same job as the task performing
the I/O operation. Using segments from one job as buffers for
I/O operations in a different job can lead to a problem. For
instance, suppose that Job A owns an iRMX 86 segment, and that
Job B uses this segment as a buffer for I/O. If Job A is
deleted, the iRMX 86 Operating System automatically deletes the
buffer even if I/O is in progress.

8-4

SYSTEM CALLS

EXCEPTION CODES

The Basic I/O System returns an exception code when a system call is
invoked. If !~e call executes without error, the Basic I/O System
returns the .le "E$OK." If an error is encountered, some other code is
returned.

For those system calls that do not require a response mailbox parameter,
the Basic I/O System returns the exception code to the word pointed to by
the except$ptr parameter. If an exceptional condition occurs, the Basic
I/O System can then either return control to the calling task or pass
control to an exception handler. See the iRMX 86 NUCLEUS REFERENCE
MANUAL for a detailed description of exception handling.

For those system calls that do require a response mailbox parameter (the
asynchronous calls), the Basic I/O System returns an exception code for
the sequential portion of the call to the word pointed to by the
except$ptr parameter and an exception code for the concurrent portion of
the call to the status field of the I/O result segment (see Appendix C).
If a sequential exceptional condition occurs, the Basic I/O System either
returns control to the calling task or passes control to an exception
handler. It does not process the asynchronous portion of the call. If a
concurrent exceptional condition occurs, the calling task must signal the
exception handler or process the exceptional condition in line.

SYSTEM CALLS

The following pages provide a detailed description of each Basic I/O
System call, listed alphabetically. The system call dictionary, which
appears first, provides a summary of these calls, grouped by function and
correlated to the file types to which they apply. That system call
dictionary also acts as a cross-reference to the detailed descriptions.

8-5

SYSTEM CALLS

SYSTEM CALL DICTIONARY

This section summarizes the Basic I/O System calls by function and, where
applicable, indicates the file types to which they apply:

PF Physical file
SF Stream file
NF Named data file
ND Named directory file

The page reference listed with each call points to the detailed
description for the call.

JOB-LEVEL SYSTEM CALLS

System Call

SET$DEFAULT$PREFIX

GET$DEFAULT$PREFIX

SET$DEFAULT$USER

GET$DEFAULT$USER

GET TIME/DATE SYSTEM CALLS

System Call

GET$TIME

Function

Set default prefix for job.

Inspect default prefix.

Set default user for job.

Inspect default user.

Function

Get date/time value in
internally-stored format.

8-6

Page

8-105

8-99

8-107

8-101

Page

8-103

SYSTEM CALLS

CREATE-FILE-CONNECTION SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$CREATE$FILE Asynchronous data * * * 8-29
file creation.

A$ATTACH$FILE Asynchronous attach * * * * 8-9
file.

A$CREATE$DIRECTORY Asynchronous create * 8-23
directory.

FILE MODIFICATION SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$CHANGE$ACCESS Asynchronous change * * 8-14
access rights to file.

A$RENAME$FILE Asynchronous rename * * 8-73
file.

FILE INPUT/OUTPUT SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$OPEN Asynchronous open file. * * * * 8-63

A$SEEK Asynchronous move file * * * 8-79
pointer.

A$READ Asynchronous read file. * * * * 8-69

A$WRITE Asynchronous write file. * * * 8-93

A$CLOSE Asynchronous close file. * * * * 8-20

DEVICE-LEVEL FUNCTION SYSTEM CALL

System Call Function P S N N Page
F F F D

A$SPECIAL Asynchronous perform * * * 8-83
device-level function.

8-7

SYSTEM CALLS

GET STATUS/ATTRIBUTE SYSTEM CALLS

System Call Function P S N N Page
F F F D

AGETCON- Asynchronous get * * * * 8-44
NECTION$STATUS connection status.

AGETFILE$STATUS Asynchronous get file * * * * 8-53
status.

AGETDIRECTORY$ENTRY Asynchronous inspect * 8-48
directory entry.

AGETPATH$COMPONENT Asynchronous obtain * * 8-60
path name from
connection token.

DELETE CONNECTION/FILE SYSTEM CALLS

System Call Function P S N N Page
F F F D

A$DELETE$CONNECTION Asynchronous delete * * * * 8-36
file connection.

A$TRUNCATE Asynchronous truncate * 8-90
file.

A$DELETE$FILE Asynchronous delete * * * 8-39
file.

SYSTEM PROGRAMMER CALLS (Calling Sequences Only)

System Call Page

A$GE T$EXTENS ION$DATA

A$PHYSICAL$ATTACH$DEVICE

A$PHYSCIAL$DETACH$DEVICE

ASETEXTENSION$DATA

CREATE$USER

DELETE$USER

INSPECT$USER

SET$TIME

8-52

8-67

8-68

8-82

8-97

8-98

8-104

8-109

8-8

A$ATTACH$FILE

SYSTEM CALLS

A$ATTACH$FILE

A$ATTACH$FILE creates a connection to an existing file.

l CALL RQAATTACH$FILE(user, prefix, subpath, resp$mbox, ex::Pt$Ptr~~

INPUT PARAMETERS

user

prefix

subpath

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the user object to
be inspected in any access checking that takes
place; a zero specifies the default user for the
calling task's job; this parameter is ignored when
attaching physical or stream files; access
checking does occur for named files.

a WORD containing a token for the connection
object to be used as the path prefix; normally,
this will be a connection to an existing file
(followed by a null subpath); a zero specifies the
default prefix for the calling task's job.

a POINTER to a string containing the subpath of
the file to be attached; a null string indicates
that the new connection is to the file designated
by the prefix; the new connection will not be
open, regardless of the open state of the prefix.

a WORD containing a token for the mailbox that
receives the result object of the call; this
result object is a new connection if the call
succeeds or an I/O result segment otherwise (see
Appendix C). To determine the type of object
returned, use the Nucleus system call RQGETTYPE.

If the object received is an I/O result segment, I
the calling task should issue RQ$DELETE$SEGMENT to
delete the segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-9

A$ATTACH$FILE

SYSTEM CALLS

DESCRIPTION

A$ATTACH$FILE creates a connection to an existing file. Once the
connection is established, it remains in effect until the connection
object is deleted, or until the creating job is deleted. Once attached,
the file may be opened, closed, read, written, etc., as many times as
desired.

EXCEPTION CODES

A$ATTACH$FILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

E$EXIST

NORMAL CODE. No exceptional conditions.

The prefix parameter in this system call refers to
a logical connection. Either:

• The device is offline, or

• The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The prefix parameter

• The response mailbox parameter

• The user parameter.

2. The prefix connection is being deleted.

8-10

A$ATTACH$FILE
SYSTEM CALLS

EXCEPTION CODES (continued)

E$LIMIT

E$MEM

ENOPREFIX

ENOUSER

Processing this call caused one of these limits to
be exceeded:

• The maximum number of objects allowed for this
job (specified when the job was created).

• The number of I/O operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of I/O operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion-

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

8-11

A$ATT ACH$FILE

SYSTEM CALLS

EXCEPTION CODES (continued)

ENOTCONFIGURED

E$PARAM

E$TYPE

One or more of the following system calls was not
included when the system was configured:

A$ATTACH$FILE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)
DISABLE$DELETION (Nucleus)
CREATE$COMPOSITE (Nucleus)

The path name specified contains invalid
characters.

One of two conditions caused this exception:

• The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE HANUAL.)

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$CONTEXT

E$FNEXIST

E$FTYPE

E$IO

The file specified is on a device which the system
is detaching.

This indicates one of the following circumstances:

• Either a file in the specified path, or ~he
target file itself, does not exist.

• Either a file in the specified path, or the
target file itself, is marked for deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/O error occurred during the operation.

8-12

A$ATT ACH$FILE

SYSTEM CALLS

EXCEPTION CODES (continued)

E$LIMIT

E$MEM

E$SUPPORT

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at 'one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Your system is configured incorrectly. The entry
point associated with A$ATTACH$FILE is not
included in the "I/O System part" of the file
driver table (named, physical, or stream file).
The corresponding entry point in the "Request
part" is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-13

A$CHANGE$ACCESS

SYSTEM CALLS

A$CHANGE$ACCESS

A$CHANGE$ACCESS changes the access rights to a named data or directory
file.

[:L RQACHANGE$ACCESS(user, prefix, subpath, id,
except$ptr);

access, reSP$mbOX'1

INPUT PARAMETERS

user

prefix

subpath

id

access

a WORD containing a token for the user object to
be inspected in access checking; a value of zero
specifies the default user for the calling task's
job.

a WORD containing a token for the connection to be
used as the path prefix; typically, this would be
a connection to the file whose access is being
changed (followed by a null subpath); a zero
specifies the default prefix for the calling
task's job.

a POINTER to the STRING giving the subpath from
the prefix to the file whose access is to be
changed; a null string indicates that the prefix
itself designates the desired file; in this case,
the user parameter is ignored, since access
checking was already performed when the file was
attached.

a WORD giving the ID number of the user whose
access is to be changed; if this ID does not
already exist in the ID-access list, it is added;
this list may contain a total of three ID-ac~ess
pairs.

a BYTE mask giving the new access rights for the
ID; if a bit is set to one, the corresponding
access is granted; for a named data file, the
possible bit settings are:

Bit
o
1
2
3

4-7

8-14

Meaning
Delete
Read
Append
Update
Reserved (set to 0)

A$CHANGE$ACCESS

SYSTEM CALLS

INPUT PARAMETERS

access (continued)

OUTPUT PARAMETERS

resp$mbox

except$ptr

DESCRIPTION

For a named directory file, the possible bit
settings are:

Bit
o
1
2
3

4-7

Meaning
Delete
Display
Add Entry
Change Entry
Reserved (set to 0)

If zero is specified for the access parameter
(that is, no access), the ID specified in the id
parameter is deleted from the file's ID-access
list.

a WORD containing a token for the mailbox that
receives an I/O result segment indicating
completion of the access change (see Appendix C).
A value of zero means that you do not want to
receive an I/O result segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

A$CHANGE$ACCESS system call applies to named files only. It is called to
change the access rights to a named data or directory file. Depending on
the contents of the "id" and "access" parameters specified in the system
call, users may be added to or deleted from the files's ID-access list,
or the access privileges granted to a particular user may be changed.

NOTE

The caller must be the owner of the
file or must have change entry access
to the file's parent directory. If the
owner is '"wORLD", that is, OFFFFH, then
any task may change the access mask of
the file.

8-15

I

A$CHANGE$ACCESS
SYSTEM CALLS

EXCEPTION CODES

A$CHANGE$ACCESS can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

E$EXIST

E$IFDR

E$LIMIT

NORMAL CODE. No exceptional conditions.

The prefix parameter in this system call refers to
a logical connection. Either:

• The device is offline, or

• The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The prefix parameter

• The response mailbox parameter

• The user parameter.

2. The prefix connection is being deleted.

This system call applies only to named files, but
the prefix and subpath parameters specify some
other type of file.

Processing this call caused one of these limits to
be exceeded:

• The maximum number of objects allowed for this
job (specified when the job was created).

8-16

EXCEPTION CODES

E$LIMIT (continued)

E$MEM

ENOPREFIX

ENOUSER

A$CHANGE$ACCESS
SYSTEM CALLS

• The number of I/O operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of I/O operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix parameter
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

8-17

A$CHANGE$ACCESS

SYSTEM CALLS

EXCEPTION CODES (continued)

ENOTCONFIGURED

E$PARAM

E$SUPPORT

E$TYPE

One or more of the following system calls was not
included when the system was configured:

CHANGE $ACCES S
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)
DISABLE$DELETION (Nucleus)
CREATE$COMPOSITE (Nucleus)

The path name specified contains invalid
characters.

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$FNEXIST

NORMAL CODE. No exceptional conditions.

The file specified is on a device which the system
is detaching.

The user object in the parameter list is not
qualified for "change entry access" for the parent
directory, and is not the owner of the file.

This indicates one of the following circumstances:

• Either a file in the specified path, or the
target file itself, does not exist.

• Either a file in the specified path, or the
target file itself, is marked for deletion.

8-18

A$CHANG E$ACCESS

SYSTEM CALLS

EXCEPTION CODES (continued)

E$FTYPE

E$IO

E$LIMIT

E$MEM

E$SUPPORT

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/O error occurred during the operation.

To service this call, the Basic I/O System had to
create some objectse The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Either of two problems can generate this exception
code:

1. Your system is configured incorrectly. The
entry point associated with A$CHANGE$ACCESS is
not included in the "I/O System part" of the
named file driver table. The corresponding
entry point in the "Request part" is included.
Refer to the iRMX 86 CONFIGURATION GUIDE for
further information.

2. The call attempted to add another access 10 to
the list of access ID's. The access list
already contains the limit of three such lOts.

8-19

A$CLOSE

I

SYSTEM CALLS

A$CLOSE

A$CLOSE closes an open file connection.

CALL RQACLOSE(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

except$ptr

DESCRIPTION

a WORD containing a token for the file connection
to be closed.

a WORD containing a token for a mailbox that is to
receive an I/O result segment indicating the
result of the operation (see Appendix C). A value
of zero means that you do not want to receive an
I/O result segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

The A$CLOSE system call closes an open file connection. It is called
between uses of a file. A file connection must also be closed if the
user wishes to change the open mode or shared status of the connection.
The Basic I/O System will not close the connection until all existing I/O
requests for the connection have been satisfied, and the Basic I/O system
will not send a response to the resp$mbox until the file is closed.

EXCEPTION CODES

A$CLOSE can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

8-20

SYSTEM CALLS

EXCEPTION CODES (continued)

The following list is divided into two parts -- one for sequential codes,
and one for f ~urrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

E$SUPPORT

E$TYPE

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

A$CLOSE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

8-21

A$CLOSE

A$CLOSE

SYSTEM CALLS

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The connection you are trying to close is not open.

Your system is configured incorrectly. The entry
point associated with A$CLOSE is not included in
the "I/O System part" of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part" is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-22

A$CREATE$DIRECTORY
SYSTEM CALLS

A$CREATE$DlRECTORY

A$CREATE$DlRECTORY creates a directory file.

CALL RQACREATE$DIRECTORY(user, prefix, subpath, access, resp$mbox,
except$ptr);

INPUT PARAMETERS

user

prefix

subpath

access

OUTPUT PARAMETERS

resp$mbox

a WORD containing a token for the user object of
the new directory's owner; the user object is
inspected to make sure the caller has proper
access to the new directory's parent; a zero
specifies the default user for the calling task's
job.

a WORD containing a token for the connection to be
used as the path prefix; a zero specifies the
default prefix for the calling task's job.

a POINTER to a STRING containing the subpath of
the directory to be created; the subpath string
must not be null, and must point to an unused
location in the directory tree.

a BYTE mask giving the owner's initial access
rights to the directory: for each bit in the mask,
a one grants access and a zero denies it; the
possible bit settings are:

Bit
o
1
2
3

4-7

Meaning
Delete
Display
Add Entry
Change Entry
Reserved (set to 0)

a WORD containing a token for the mailbox that
receives the result object of this call; this
result object is a directory file connection if
the call succeeded or an I/O result segment
othe~wise (see Appendix C). To determine the type
of object returned, use the Nucleus system call
GET$TYPE (Nucleus).

8-23

A$CREATE$DIRECTORY

I

SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

except$ptr

DESCRIPTION

If the object received is an I/O result segment,
the calling task should issue DELETE$SEGMENT to
delete the segment.

a POINTER to a WORD where the sequential exception
code will be returned.

The A$CREATE$DIRECTORY system call is applicable to named directory files
only. When called, it creates a new directory file and returns a token
for the new file connection. This system call cannot be used to create a
connection to an existing directory.

EXCEPTION CODES

NOTE

The caller must have add-entry access
to the parent of the new directory.

A$CREATE$DIRECTORY can return exception codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

NORMAL CODE. No exceptional conditions.

The prefix parameter in this system call refers to
a logical connection. Either:

• The device is offline, or

• The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

8-24

A$CREATE$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES (continued)

E$EXIST

E$IFDR

E$LIMIT

E$MEM

ENOPREFIX

ENOUSER

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The prefix parameter

• The response mailbox parameter

• The user parameter.

2. The prefix connection is being deleted.

This system call applies only to named files, but
the prefix and subpath parameters specify some
other type of file.

Processing this call caused one of these limits to
be exceeded:

• The maximum number of objects allowed for this
job (specified when the job was created).

• The number of I/O operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of I/O operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

8-25

A$CREATE$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES

ENOUSER (continued)

ENOTCONFIGURED

E$PARAM

E$TYPE

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included when the system was configured:

A$CREATE$DIRECTORY
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)
DISABLE$DELETION (Nucleus)
CREATE$COMPOSITE (Nucleus)

The path name contains invalid characters.

One of two conditions caused this exception:

• The prefix parameter is not a valid object
type. It must be either a connection object, or
a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$CONTEXT The file specified is on a device which the system
is detaching.

8-26

A$CREATE$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES (continued)

E$FACCESS

E$FEXIST

E$FNEXIST

E$FTYPE

E$IO

E$LIMIT

E$MEM

E$SPACE

E$SUPPORT

The user object in the parameter list is not
qualified for "add-entry" access to the parent
directory.

The file you are trying to create already exists.

This indicates one of the following circumstances:

• A file in the specified path does not exist.

• A file in the specified path is marked for
deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/O error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Either:

• The volume has no more space, or

• No more named files or directories can be
created on this volume. The maximum number of
files or directories which can be created on a
particular volume is set when that volume is
formatted. (See the description of the FORMAT
Command in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL.)

This code is caused by a conflict between the
service being requested by the A$CREATE$DlRECTORY
call and the way the Basic I/O System is
configured. One of these conditions exists:

• The entry point associated with
A$CREATE$DlRECTORY is not included in the "1/0
System part" of the named file driver table.
The corresponding entry point in the "Request
part" is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-27

A$CREATE$DIRECTORY
SYSTEM CALLS

EXCEPTION CODES

E$SUPPORT (continued)

• The call is attempting to allocate file space,
but the Basic I/O System was configured with an
option which prevents allocation of file space.

8-28

A$CREATE$FILE
SYSTEM CALLS

A$CREATE$FILE

A$CREATE$FILE creates a physical, stream, or named file.

CALL RQACREATE$FILE(user, prefix, subpath, access, granularity,
high$size, low$size, must$create, resp$mbox,
except$ptr);

INPUT PARAMETERS

user

prefix

subpath

access

applies to named files only and is a WORD
containing a token for the user object of the
file's owner; it also furnishes the user ID for
any access checking that might occur; a zero
specifies the default user for the job; this
parameter is ignored for physical and stream files.

a WORD containing a token for a device or file
connection; by implication, this parameter
indicates the type of file (physical, stream,
named) being created; for stream files, if the
prefix is a device connection, a new stream file
is created, and if the prefix is a file
connection, a new file connection to the same
stream file is created; for named files, the
prefix acts as the starting point in a directory
tree scan; a zero specifies the default prefix for
the job.

applies to named files only and is a POINTER to a
STRING containing the subpath for the file being
created.

applies to named files only and is a BYTE mask
giving the owner's initial access rights to the
new file; for each bit, a one grants access and a
zero denies it; the possible bit settings are:

Bit
o
1
2
3

4-7

8-29

Meaning
Delete
Read
Append
Update
Reserved (set to 0)

A$CREATE$FILE

SYSTEM CALLS

INPUT PARAMETERS (continued)

granularity

high$size
low$size

must$create

OUTPUT PARAMETERS

resp$mbox

applies to named files only and is a WORD giving
the granularity of the file being created; this is
the size (in bytes) of each logical block to be
allocated to the file; the value specified in this
parameter is rounded up, if necessary, to a
multiple of the volume granularity; note that a
contiguous file can be expanded into a
noncontiguous file by writing past the contiguous
boundaries.

The granularity parameter can have the following
values:

o
OFFFFH
other

Same as volume granularity
The file must be contiguous
Number of bytes/allocation

When a contiguous file is extended, space is
allocated in volume-granularity units; if "other"
is specified, a multiple of 1024 bytes is
recommended.

This parameter is ignored for physical and stream
files.

applies to named files only and is a WORD pair
giving the number of bytes initially reserved for
the file; for stream files, this value must equal
zero.

applies to named files only and is a BYTE whose
value (OFFH for true or 0 for false) determines
the handling of input paths designating an
existing file (see following DESCRIPTION).

a WORD containing a token for the mailbox that
receives the result object of this call; this
result object is a token for a new file connection
if the call succeeded or a token for an I/O result
segment otherwise (see Appendix C). To determine
the type of object returned, use the Nucleus
system call GET$TYPE (Nucleus).

If the object received is an I/O result segment,
the calling task should issue DELETE$SEGMENT to
delete the segment.

8-30

A$CREA TE$FILE

SYSTEM CALLS

OUTPUT PARAMETERS (continued)

except$ptr

DESCRIPTION

a POINTER to a WORD where the sequential exception
code will be returned.

The A$CREATE$FILE system call creates a physical, stream, or named data
file and returns a token for the new file connection. If a named file
designated by the prefix and subpath parameters already exists, one of
the following situations occurs:

• Error: If the "must$create" parameter is TRUE (OFFH), an error
condition code (E$FEXIST) is returned.

• Truncate File: If the "must$create" parameter is FALSE (0) and
the path designates an existing data file, a new connection to
that file is returned (that is, A$CREATE$FILE acts like
A$ATTACH$FILE). In this case, the file is truncated or expanded
according to the "size" parameter, so data in the file might be
lost.

• Temporary File Created: If the "must$create" parameter is FALSE
(0), and the path designates an existing directory file or
device, an unnamed temporary file is created on the corresponding
device. This file is deleted automatically when the last
connection to it is deleted. Since this file is created without
a path, it can be accessed only through a connection.

Any task can create a temporary file by referring to any
directory. This is true because temporary files are not listed
as ordinary entries in the directory, so no add-entry access is
required.

Many of the parameters specified in the A$CREATE$FILE call do not apply
to physical and stream files. In these cases, the parameter is ignored.

NOTE

The caller must have add-entry access
to the parent directory of the new
named file.

8-31

A$CREATE$FILE

SYSTEM CALLS

EXCEPTION CODES

A$CREATE$FILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

E$EXIST

E$LIMIT

E$MEM

NORMAL CODE. No exceptional conditions.

The prefix parameter in this system call refers to
a logical connection. Either:

• The device is offline, or

• The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The prefix parameter

• The response mailbox parameter

• The user parameter.

2. The prefix connection is being deleted.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-32

ENOPREFIX

ENOUSER

ENOTCONFIGURED

E$PARAM

E$TYPE

A$CREATE$FILE
SYSTEM CALLS

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included-when the system was configured:

CREATE$FILE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)
DISABLE$DELETION (Nucleus)
CREATE$COMPOSITE (Nucleus)

The path name contains invalid characters.

One of two conditions caused this exception:

• The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

8-33

A$CREA TE$FILE

EXCEPTION CODES

E$TYPE (continued)

SYSTEM CALLS

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$CONTEXT

E$FACCESS

E$FEXIST

E$FNEXIST

E$FTYPE

E$IO

E$LIMIT

E$MEM

The file specified is on a device which the system
is detaching.

The user object in the parameter list is not
qualified for "add entry" to the parent directory,
or is not qualified for "update" access to
existing file.

The "must$create" parameter in the call is TRUE,
and the file already exists. (See the DESCRIPTION
section.)

This indicates one of the following circumstances:

• A file in the specified path does not exist.

• A file in the specified path is marked for
deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/O error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion~

8-34

A$CREA TE$FILE

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SHARE

E$SPACE

E$SUPPORT

The file this call is attempting to create already
exists and is open. It was opened with the
characteristic "no share with writers." (See the
A$OPEN call in this chapter.)

Either:

• The volume has no more space, or

• No more named files or directories can be
created on this volume. The maximum number of
files or directories which can be created on a
particular volume is set when that volume is
formatted. (See the description of the FORMAT
Command in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL.)

This code is caused by a conflict between the
service being requested by the A$CREATE$FlLE call
and the way the Basic I/O System is configured.
One of these conditions exists:

• The entry point associated with A$CREATE$FILE
is not included in the "I/O System part" of the
file driver table (named, physical, or stream
file). TIle corresponding entry point in the
"Request part" is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

• The call is attempting to allocate file space,
but the Basic I/O System was configured with an
option which prevents allocation of file space.

• The file exists, and the must$create parameter
is FALSE. When the Basic I/O System was
configured, an option was chosen which
prevented this combination, so that files could
not be automatically truncated to zero size.
See the DESCRIPTION section.

• The file exists, the size parameter in the call
is less than the current size of the file, and
the Basic I/O System was configured with an
option which prevents truncation of files.

8-35

A$DELETE$CONNECTION

I

SYSTEM CALLS

A$DELETE$CONNECTION

A$DELETE$CONNECTION deletes a named file connection created by
A$CREATE$FILE, A$CREATE$DlRECTORY, or A$ATTACH$FILE.

CALL RQADELETE$CONNECTION(connection, resp$mhox, except$ptr); ~

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

except$ptr

DESCRIPTION

a WORD containing a token for the file connection
to be deleted.

a WORD containing a token for the mailbox that
receives an I/O result segment indicating the
result of the operation (see Appendix C). A value
of zero means that you do not want to receive an
I/O result segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

I

The A$DELETE$CONNECTION system call deletes a connection object. It also
deletes the associated file if both the file is already marked for
deletion (by a previous A$DELETE$FILE call) and the specified connection
is the last remaining connection to the file. If a connection is open
when A$DELETE$CONNECTION is called, it is closed before being deleted.

NOTE

Connections should be deleted when no
longe r neede d.

8-36

A$DELETE$CONNECTION
SYSTEM CALLS

EXCEPTION CODES

A$DELETE$CONNECTION can return exception codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

NORMAL CODE. No exceptional conditions.

The connection parameter is a device connection,
not a file connection.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

A$DELETE$CONNECTIION
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

8-37

A$DELETE$CONNECTION

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SUPPORT

E$TYPE

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The prefIx parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$IO

E$SUPPORT

NORMAL CODE. No exceptional conditions.

An I/O error occurred during the operation.

One of these conditions caused this exception code:

• Your system is configured incorrectly. The
entry point associated with A$DELETE$CONNECTION
is not included in the "I/O System part" of the
file driver table (named, physical, or stream
file). The corresponding entry point in the
"Request part" is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

• The connection being deleted is the last
connection to a file which is marked for
deletion. Normally this would be the point at
which the file itself would be deleted. But
the Basic I/O System was configured without the
capability to delete files. (The call to
delete the file would also have returned an
E$SUPPORT exception code.)

8-38

A$DELETE$FIL

SYSTEM CALLS

A$DELETE$FILE

A$DELETE$FILE marks a named or stream file for deletion.

CALL RQADELETE$FILE(user, prefix, subpath, resp$mbox, except$ptr);

INPUT PARAMETERS

user

prefix

subpath

OUTPUT PARAMETERS

resp$mbox

except$ptr

applies to named files only and is a WORD
containing a token for the user object to be
inspected in access checking; a zero specifies the
default user for the calling task's job.

a WORD containing a token for a connection; in the
case of a named file, this prefix acts as the
starting point in a directory tree scan; a zero
specifies the default prefix for the calling
task's job.

applies to named files only and is a POINTER to a
STRING giving the subpath for the file being
deleted; a null string indicates that the prefix
itself designates the desired file; in this
instance, the user parameter is ignored, since
access checking was already performed when the
file was attached.

a WORD containing a token for a mailbox that
receives an I/O result segment (see Appendix C)
when the file is marked for deletion. The file
will not actually be deleted until all connections
to the file are deleted, as explained under the
DESCRIPTION below. A value of zero means that you
do not want to receive an I/O result segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-39

I

A$DELETE$FILE

SYSTEM CALLS

DESCRIPTION

The A$DELETE$FILE system call applies to stream and named files only.
When called, it marks the designated file for deletion and removes the
file's entry from the parent directory. The entry is removed
immediately, but the file is not actually deleted until all connections
to the file have been severed (by A$DELETE$CONNECTION calls). Directory
files cannot be deleted unless they are empty.

EXCEPTION CODES

NOTE

The caller must have delete access to
the file.

A$DELETE$FILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the \-lORD
specified by the except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

E$EXIST

NORMAL CODE. No exceptional conditions.

The prefix parameter in this system call refers to
a logical connection. Either:

• The device is offline, or

• The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The prefix parameter

8-40

EXCEPTION CODES

E$EXIST (continued)

E$IFDR

E$LIMIT

E$MEM

ENOPREFIX

ENOUSER

A$DELETE$FILE

SYSTEM CALLS

• The response mailbox parameter

• The user parameter.

2. The prefix connection is being deleted.

This system call applies only to named or stream
files, but the parameter list specified a another
type of file.

Processing this call caused one of these limits to
be exceeded:

• The maximum number of objects allowed for this
job (specified when the job was created).

• The number of I/O operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of I/O operations which can be
outstanding at one time for the caller's job
(also 255 decimal).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

8-41

A$DELETE$FILE

SYSTEM CALLS

EXCEPTION CODES

ENOUSER (continued)

ENOTCONFIGURED

E$PARAM

E$SUPPORT

E$TYPE

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included when the system was configured:

DELETE$FILE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)
DISABLE$DELETION (Nucleus)
CREATE$COMPOSITE (Nucleus)

The subpath parameter contains invalid characters.

The connection pa~ameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O Syste.m can return the following codes in an I/O result
segment at the. mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

NORMAL CODE. No exceptional conditions.

One of these problems caused this exception code:

• The file specified is on a device which the
system is detaching.

8-42

A$DELETE$FILE

SYSTEM CALLS

EXCEPTION CODES

E$CONTEXT (continued)

E$FACCESS

E$FNEXIST

E$FTYPE

E$IO

E$LIMIT

E$MEM

E$SUPPORT

• The call is attempting to delete a stream file
which is already marked for deletion.

• The call is attempting to delete a directory
which has entries in it, or is attempting to
delete a ROOT directory.

The user object in the parameter list is not
qualified for "delete" access to this file.

This indicates one of the following circumstances:

• Either a file in the specified path, or thp
target file itself, does not exist.

• Either a file in the specified path, or the
target file itself, is marked fer deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/O error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

One of two problems exist:

• Your system is configured incorrectly. The
entry point associated with A$DELETE$FlLE is
not included in the "I/O System part" of the
file driver table (named or strf::am file). The
corresponding entry point in the "Request part"
is included. Refer to the 1RMX 86
CONFIGURATION GUIDE for further informatione

• The Basic I/O System was configured to prevent
truncation of files. In order to delete a
file, the file must first be truncated.

8-43

A$G ET$CONNECTION$STATUS

SYSTEM CALLS

AGETCONNECTION$STATUS

AGETCONNECTION$STATUS returns information about a file connection.

CALL RQAGET$CONNECTION$STATUS(connection, resp$mhox, except$ptr); ~

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

a \-lORD containing a token for the file connection
whose status is desired.

a WORD containing a token for the mailbox that
receives a connection-status segment. The calling
task is responsible for deleting the
connection-status segment.

The information in this segment is structured as
follows:

DECLARE
conn$status

status
file$driver
flags
open$mode
share
low$file$ptr
high$file$ptr
access

STRUCTURE (
WORD,
BYTE,
BYTE,
BYTE,
BYTE,
WORD,
WORD,
BYTE) ;

These fields are interpreted as follows:

status a condition code indicating how the
status-fetch operation completed; if
this code is not E$OK, the remaining
fields must be considered invalid.

file$driver tells the type of file driver to which
this connection is attached; possible
values are:

Value
1
2
4

8-44

Type
Physical files
Stream files
Named files

AGETCONNECTION$STATUS
SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

except$ptr

DESCRIPTION

flags

open$mode

share

low$file$ptr
high$file$ptr

access

contains two flag bits; if bit 1 is set
to one, this connection is active and
can be opened; if bit 2 is set, this
connection is a device connection.

the mode established when this con
nection was opened; possible values are:

o Connection is closed
1 Open for reading
2 Open for writing
3 Open for reading and writing

the current sharing status established
when this connection was opened;
possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

The open mode and shared state are
initially set by the A$OPEN call.

the current byte location of the
file pointer for this connection.

gives the access rights for this
connection; for each bit set to one,
the corresponding access is granted;
bit values are:

Bit Data File Directory

0 Delete Delete
1 Read Display
2 Append Add Entry
3 Update Change Entry

4-7 Reserved Reserved

a POINTER to a \~ORD where the sequential exception
code will be returned.

The AGETCONNECTION$STATUS system call returns a segment containing
status information about a file connection.

8-45

AGETCONNECTION$STATUS

SYSTEM CALLS

EXCEPTION CODES

AGETCONNECTION$STATUS can return exception codes at two different
times. The code returned to the calling task immediately after invocation
of the system call is considered a sequential code. A code ceturned as a
result of asynchronous processing is a concurrent exception code. A
complete explanation of sequential and concurrent parts of system calls is
in Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

E$SUPPORT

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the calling task's job dQes not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

AGETCONNECTION$STATUS
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

8-46

AGETCONNECTION$STATUS

SYSTEM CALLS

EXCEPTION CODES (continued)

E$TYPE One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System will return the following codes in the
connection-status segment (status field). After examining the segment,
you should delete it.

E$OK

E$SUPPORT

NORMAL CODE. No exceptional conditions.

Your system is configured incorrectly. The entry
point associated with AGETCONNECTION$STATUS is
not included in the "I/O System part" of the file
driver table (named, physical, or stream file).
The corresponding entry point in the "Request
part" is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-47

AGETDIRECTORY$ENTRY
SYSTEM CALLS

AGETDIRECTORY$ENTRY

AGETDIRECTORY$ENTRY returns the file name associated with a named
directory file entry.

CALL RQAGET$DlRECTORY$ENTRY(connection, entry$num, reSP$mbO~

INPUT PARAMETERS

connection

entry$num

OUTPUT PARAMETERS

resp$mbox

except$ptr); ~

a WORD containing a token for the directory file
with the desired entry.

a WORD giving the entry number of the desired file
name; entries within a directory are numbered
sequentially starting from zero; E$EMPTY$ENTRY
condition code will be issued if the specified
file has been deleted and the Basic I/O System has
not reissued the entry to another file.

a WORD containing a token for the mailbox that
receives a directory-entry segment. The task
making the AGETDIRECTORY$ENTRY call is
responsible for deleting this segment.

Information in this segment is structured as
follows:

where:

status

DECLARE
dir$entry$info

status
name (14)

STRUCTURE (
WORD,
BYTE);

indicates how the operation completed;
EOK, EEMPTY$ENTRY, and E$DIR$END
condition codes all indicate
successful completion.

name the file name contained in the
designated entry, padded with blanks;
this field is valid only if status =
E$OK.

8-48

AGETDIRECTORY$ENTRY
SYSTEM CALLS

OUTPUT PARAMETERS (continued)

except$ptr

DESCRIPTION

a POINTER to a WORD where the sequential exception
code will be returned.

The AGETDIRECTORY$ENTRY system call applies to named files only. When
called, it returns the file name associated with a specified directory
E~ntry. This name is a single subpath component for a file whose parent
is the designated directory. As an alternative to using this system
call, an application task can open and read a directory file.

EXCEPTION CODES

NOTE

The caller must have display access to
the designated directory.

AGETDIRECTORY$ENTRY can return exception codes at two different times.
~llie code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$EXIST

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

8-49

AGETDIRECTORY$ENTRY
SYSTEM CALLS

EXCEPTION CODES (continued)

E$IFDR

E$LIMIT

E$MEM

ENOTCONFIGURED

E$SUPPORT

E$TYPE

This system call applies only to named
directories, but the connection parameter
specifies something else.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

AGET$DIRECTORY$ENTRY
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System will return the following codes in the
directory-entry segment (status field). After examining the segment, you
should delete it.

E$OK

E$DlREND

E$EMPTY$ENTRY

E$FACCESS

E$FTYPE

NORMAL CODE. No exceptional conditions.

The entry$num parameter is greater than the number
of entries in the directory.

The file entry designated in the call has been
deleted, and the Basic I/O System has not reissued
the entry to another file.

The connection in the parameter list is not
qualified for "display" access to the directory.

The connection parameter does not refer to a
directory ..

8-50

AGETDIRECTORY$ENTRY
SYSTEM CALLS

EXCEPTION CODES (continued)

E$IO

E$SUPPORT

An I/O error occurred during the operation.

Your system is configured incorrectly. The entry
point associated with GET$DlRECTORY$ENTRY is not
included in the "I/O System part" of the named
file driver table. The corresponding entry point
in the "Request part" is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

8-51

AGETEXTENSION$DATA
SYSTEM CALLS

AGETEXTENSION$DATA

The AGETEXTENSION$DATA system call returns extension data stored with a
Basic I/O System file.

CALL RQAGET$EXTENSION$DATA(connection, resp$mbox, excePt$Ptr~

This System Programmer call is included here for convenience.
AGETEXTENSION$DATA is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-52

A$G ET$FILE$ST ATUS

SYSTEM CALLS

~GETFILE$STATUS

AGETFILE$STATUS returns status and attribute information about a file.

[CALL RQAGET$FILE$STATUS(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

a WORD containing a token for a connection to the
file whose status is sought.

a WORD containing a token for the mailbox that
receives a segment containing the common
file-status (and, for named files, the named
file-status) information. The calling task is
responsible for deleting this segment.

Structure of the common file-status information is
as follows:

DECLARE common$info STRUCTURE (
status WORD,
num$conn WORD,
num$reader WORD,
num$writer WORD,
open$share BY~E,

named$file BYTE,
dev$name (14) BYTE,
file$drivers WORD,
functs BYTE,
flags BYTE,
dev$gran WORD,
lowdevsize WORD,
highdevsize WORD,
dev$conn WORD);

These fields are interpreted as follows:

status

num$conn

a condition code indicating how the
status-fetch operation completed; if
this code is not E$OK, the remaining
fields must be considered invalid.

the number of connections to the file.

8-53

AGETFILE$ST ATUS

SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

num$reader the number of connections currently
open for reading.

num$writer the number of connections currently
open for writing.

open$share the current shared status of the file;
possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

named$file specifies whether the file is a named
file and, therefore, whether the
segment will contain named-file, as
well as common information; a value of
OFFH indicates the additional
information is present.

dev$name the name of the device where this file
resides, padded with blanks.

file$drivers indicates which file drivers can be
used with the device containing the
file; if bit n is on, then file driver
n+l can be used; bit 15 is the
high-order bit.

Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 reserved
3 4 Named file

functs describes the functions supported by
the device where this file resides;
each bit set to one indicates the
corresponding function is supported.

Bit

o
1
2
3
4
5
6
7

8-54

Function

F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

AGETFILE$STATUS

SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

flags used only with diskette drives;
interpreted as follows:

Bit Meaning

o not a diskette device
1 O=single density

1=double density
2 O=single sided

1=double sided
3 O=8-inch diskette

1=5 1/4-inch diskette
4-7 reserved

where bit 0 is the rightmost bit.

dev$gran the device granularity, in bytes.

lowdevsize the size of the device, in bytes.
highdevsize

dev$conn the number of connections to the
device.

The foregoing structure is returned for all files.
If the file is a named file, additional information
is returned. This information appears in the
segment immediately after the common file-status
information (described previously) and is
structured as follows:

DECLARE
named$file$info
fdesc$num
file$type
file$gran
owner
low$create$time
high$create$time
low$access$time
high$access$time
lowmodtime
highmodtime
low$file$size
high$file$size
low$file$blocks
high$file$blocks
vol$name (6)
vol$gran
lowvolsize
highvolsize

8-55

STRUCTURE (
WORD,
BYTE,
BYTE,
WORD,
WORD,
WORD,
WORD,
l-lORD,
WORD,
WORD,
WORD,
WORD,
WORD,
WORD,
BYTE,
WORD,
WORD,
WORD,

AGETFILE$STATUS

SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

id$count
first$access
first$ID
second$access
second$ID
third$access
third$ID

WORD,
BYTE,
WORD,
BYTE,
WORD,
BYTE,
WORD) ;

These fields are interpreted as follows:

fdesc$num

file$type

file$gran

owner

low$create$time
high$create$time

low$access$time
high$access$time

lowmodtime
highmodtime

low$file$size
high$file$size

low$file$blocks
high$file$blocks

vol$name

the number of the file's file
descriptor; the file descriptor is a
Basic I/O System data structure
containing file attribute and status
data.

indicates the type of the file; a
value of 8 means data file, and 6
means directory file.

specifies the file granularity.

the user ID number of the file's owner.

the time and date when the file was
created; whether the Basic I/O System
maintains this field depends on a
configuration option.

the time and date when the file was
last accessed; whether the Basic I/O
System maintains this field depends on
a configuration option.

the time and date when the file was
last modified; whether the Basic I/O
System maintains this field depends on
a configuration option.

the total size, in bytes, of the data
in the file.

the number of volume blocks allocated
to this file.

the ASCII name for the volume
containing this file.

8-56

AGETFILE$STATUS
SYSTEM CALLS

OUTPUT PARAMETERS

resp$mbox (continued)

except$ptr

DESCRIPTION

vol$gran

lowvolsize
highvolsize

id$count

first$access
second$access
third$access

first$ID
second$ID
third$ID

the volume granularity, in bytes.

the size of the volume, in bytes.

the number of access/ user-ID pairs
declared for this file.

access masks for as many ID's as are
indicated by id$count.

Bit Data File Directory File

0 Delete Delete
1 Read Display
2 Append Add Entry
3 Update Change Entry

4-7 Reserved Reserved

ID values for the accessors.

a POINTER to a WORD where the sequential exception
code will be returned.

The AGETFILE$STATUS system call returns status and attribute
information about the designated file. Certain common information is
returned regardless of the file driver type (physical, stream, or
named). Additional information is returned for named files.

Note that this call returns device-dependent information.

EXCEPTION CODES

AGETFILE$STATUS can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

8-57

A$G ET$FILE$BT A TUB

SYSTEM CALLS

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

E$SUPPORT

E$TYPE

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

The call cannot be processed without exceeding the
maximlm number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

AGETFILE$STATUS
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System will return the following codes in the status
segment (staus field) at the mailbox specified by resp$mbox. After
examining the segment, you should delete it.

8-58

A$G ET$FILE$ST A TUS

SYSTEM CALLS

EXCEPTION CODES (continued)

E$OK

E$SUPPORT

NORMAL CODE. No exceptional conditions.

Your system is configured incorrectly. The entry
point associated with AGETFILE$STATUS is not
included in the "I/O System part" of the file
driver table (named, physical, or stream file).
The corresponding entry point in the "Request
part" is included. Refer to the iRMX 86
CONFIGURATION GUIDE for further information.

8-59

AGETPATH$COMPONENT

SYSTEM CALLS

AGETPATH$COMPONENT

AGETPATH$COMPONENT returns the name of a named file as the file is
known in its parent directory.

CALL RQAGET$PATH$COMPONENT(connection, resp$mhox, excePt$Ptr)~

INPUT PARAMETER

connection a \~ORD containing a token for the file connection
whose name is sought.

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the mailbox that
receives the file$name segment; this segment
contains the file name associated with the
designated connection and is structured as follows:

DECLARE FILE$NAME
file$name STRUCTURE (

status WORD,
name(14) BYTE);

These fields are interpreted as follows:

where:

status

name

a condition code indicating how the
operation completed.

a left-justified, null-padded ASCII
string giving the desired file name;
this name is the same as the last item
in the subpath string specified when
the file was created or renamed.

NOTE

The task which makes the AGETPATH$COMPONENT
call is responsible for deleting the file$name
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-60

AGETPATH$COMPONENT
SYSTEM CALLS

DESCRIPTION

.A caller who knows the token for a connection to a file can specify the
token to this system call and receive the name of the file in return.
This is the name by which the file is cataloged in its parent directory.
If the connection is to the root directory of a volume (that is, if no
parent directory exists), a null string is returned. A null string is
also returned if the file is marked for deletion.

AGETPATH$COt1PONENT can be called no matter what type of file is
supported, but if a connection to a physical or stream file is specified,
the call simply returns a null string.

EXCEPTION CODES

AGETPATH$COMPONENT can return exception codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

The call cannot be processed without exceeding the
maximum nUmber of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-61

AGETPATH$COMPONENT
SYSTEM CALLS

EXCEPTION CODES (continued)

ENOTCONFIGURED

E$SUPPORT

E$TYPE

One or more of the following system calls was not
included when the system was configured:

AGETPATH$COMPONENT
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System will return the following codes in the status field
of the file$name segment. After examining the segment, you should delete
it.

E$OK

E$FNEXIST

E$IO

E$LIMIT

E$MEM

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The file is marked for deletion. (A null string
is returned in the name field of the file$name
segment.)

An I/O error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of \
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Your system is configured incorrectly. The entry
point associated with AGETPATH$COMPONENT is not
included in the "I/O System part" of the named
file driver table. The corresponding entry point
in the "Request part" is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further
information.

8-62

SYSTEM CALLS

A$OPEN

A$OPEN opens an asynchronous file connection for I/O operations.

[CALL RQAOPEN(connection. mode. share. resp$mhox. except$ptr);

INPUT PARAMETERS

connection

mode

share

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the connection to be
opened.

a BYTE giving the mode desired for the open
connection; possible values are:

1 Open for reading
2 Open for writing
3 Open for both reading and writing

a BYTE specifying the kind of sharing desired for
this connection; possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

a WORD containing a token for the mailbox that
receives the I/O result segment (see Appendix C)
indicating completion of this operation. A value
of zero means that you do not want to receive an
I/O result segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGIENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-63

A$OPEN

I

A$OPEN
SYSTEM CALLS

DESCRIPTION

The A$OPEN system call opens a connection for I/O operations. The
connection must be opened before reading, writing, and seeking can be
performed on the associated file.

A$OPEN also initializes the file pointer to byte position zero.
Subsequent Basic I/O System calls (A$SEEK, A$READ, and A$WRITE) will move
this pointer.

A$OPEN checks the current sharing status of the file, and returns an
E$SHARE exceptional condition if the requested sharing status is
inconsistent with the sharing already permitted. Open requests are not
queued ..

If the file is attached by multiple connections, the file might be open
for reading by some connections and open for writing by others at the
same time. Any modification of the file by a writer will be seen by the
reader, if a reader subsequently reads the modified part of the file.

The request mode is compared to the current sharing status of the file;
if they are not compatible, an E$SHARE exceptional condition is
returned. No deadlock occurs, however, since open calls are not queued.
The system does not notify callers when the sharing status of the
connection changes. If such notification is important, users of the file
should arrange a suitable protocol.

EXCEPTION CODES

NOTES

The mode and share parameters must each
be compatible with the current shared
state of the connected file.

Directory files can be opened and read,
but only by specifying a one for the
mode parameter and a three for the
share parameter.

A$OPEN can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

8-64

SYSTEM CALLS

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCONFIGURED

E$PARAM

E$SUPPORT

E$TYPE

NORMAL CODE. No exceptional conditions.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

A$OPEN
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The mode or share parameter has an invalid value
(out of the range 1-3 or 0-3 respectively).

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

8-65

A$OPEN

A$OPEN
SYSTEM CALLS

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment" you should delete it.

E$OK

E$CONTEXT

E$FACCESS

E$SHARE

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The connection (file or directory) is already
open, or it is a device connection.

The connection does not have access compatible
with the mode specified in this A$OPEN call.

One of these situations prevented opening the file:

• The current file share characteristic is not
compatible with the mode or the share parameter
in the A$OPEN call.

• This A$OPEN is attempting to open a directory
for some operation other than "read" (mode
parameter) and "share with all users" (share
parameter). (See DESCRIPTION above for more
information on sharing of files.)

Your system is configured incorrectly. The entry
point associated with A$OPEN is not included in
the "I/O System part" of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part" is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-66

A$PHYSICAL8A TT ACH$DEVICE

SYSTEM CALLS

A$PHYSICAL$ATTACH$DEVICE

The A$PHYSICAL$ATTACH$DEVICE system call attaches a device to the Basic
I/O System.

CALL RQAPHYSICAL$ATTACH$DEVICE(dev$name, file$driver, resp$mbox,
except $pt r) ;

This System Programmer call is included here for convenience.
A$PHYSICAL$ATTACH$DEVICE is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-67

A$PHYSICAL$DETACH$DEVICE
SYSTEM CALLS

A$PHYSICAL$DETACH$DEVICE

The A$PHYSICAL$DETACH$DEVICE system call detaches a device from the Basic
I/O System.

CALL RQAPHYSICAL$DETACH$DEVICE(connection, hard, resp$mbox, ~
except$ptr); ~

This System Programmer call is included here for convenience.
A$PHYSICAL$DETACH$DEVICE is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-68

SYSTEM CALLS

A$READ

A$READ reads the requested number of bytes, starting with the current
position of the pointer for the specified file.

CALL RQAREAD(connection, buff$ptr, count, resp$mbox, except$ptr);

INPUT PARAMETERS

connection

buff$ptr

count

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the open file
connection to be read.

a POINTER to the buffer that receives the data.

a WORD giving the number of bytes to be read.

a WORD containing a token for the mailbox that
receives the I/O result segment (see Appendix C)
after the read is complete. A value of zero means
that you do not want to receive an I/O result
segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

The number of bytes read is in the "actual" field
of the I/O result segment. If a read operation is
requested with the file pointer set at or beyond
the end of the file, an actual value of of zero is
returned.

If all the connections to a stream file are
requesting read operations, an actual value of
zero is returned.

a POINTER to a WORD where the sequential exception
code will be returned.

8-69

A$READ
I

I

A$READ

SYSTEM CALLS

DESCRIPTION

The A$READ system call initiates a read operation from an open
connection. The connection is read as a string of bytes, starting at the
current location of the file pointer. Any number of bytes can be
requested. Some efficiency may be gained by starting reads on device
block boundaries. After the read operation is finished, the file pointer
points just past the last byte read.

The buffer specified by the "buff$ptr" parameter can be in a segment
allocated by the Nucleus, but this is not a requirement.

EXCEPTION CODES

NOTE

A call to A$READ will not be successful
unless the mode of the open connection
permits reading (see A$OPEN).

A$READ can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

E$EXIST

NORMAL CODE. No exceptional conditions.

The connection parameter is a buffered connection
produced by the Extended I/O System.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

8-70

SYSTEM CALLS

EXCEPTION CODES (continued)

E$LIMIT

ENOTCONFIGURED

E$SUPPORT

E$TYPE

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

A$READ
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$FLUSHING

E$IO

E$SPACE

NORMAL CODE. No exceptional conditions.

This connection is not open for read or update.

The connection was closed before the READ request
was completed.

An I/O error occurred during the operation.

The A$READ request attempted to read past the end
of the physical device; this applies only to
physical files.

8-71

A$READ

A$READ

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SUPPORT Your system is configured incorrectly. The entry
point associated with A$READ is not included in
the "I/O System part" of the file driver table
(named, physical, or stream file). The
corresponding entry point in the "Request part" is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-72

A$RENAME$FILE

SYSTEM CALLS

A$RENAME$FILE

A$RENAME$FILE changes the path name of a named file.

CALL RQARENAME$FILE(connection, user, prefix, subpath, resp$mbox,
except$ptr) ;

INPUT PARAMETERS

connection

user

prefix

subpath

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for a connection to the
file being renamed; this connection and all other
connections to the file will remain in effect
after the file is renamed.

a WORD containing a token for the user object to
be inspected in access checking; a zero specifies
the default user for the job.

a WORD containing a token for the connection to be
used as the starting point in a path scan; a zero
specifies the default prefix for the job.

a POINTER to a STRING containing the new subpath
for the file; prefix and subpath must not lead to
an already-existing file; the string pointed to by
the subpath parameter cannot be a null string.

a WORD containing a token for the mailbox that
receives an I/O result segment (see Appendix C)
indicating completion of the rename operation. A
value of zero means that you do not want to
receive an I/O result segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-73

I

A$RENAME$FILE

SYSTEM CALLS

DESCRIPTION

The A$RENAME$FILE system call applies to named files only. It is called
to change the path name of a file. For named data or directory files,
A$RENAME$FILE can be used to recatalog files in different parent
directories, as long as the new directory is on the same volume as the
file's original parent directory.

There is one restriction governing the renaming of a directory. Any
attempt to rename a directory as its own parent will cause the Basic I/O
System to return an exception code. Also, be aware that renaming a
directory changes the paths of any files contained in the directory.

EXCEPTION CODES

NOTE

The caller must have delete access to
the original file and must have
add-entry access to the file's parent
directory.

A$RENAME$FILE can return exception codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

EDEVOFFLlNE

NORMAL CODE. No exceptional conditions.

The connection and the prefix in the call refer to
different devices. You cannot simultaneously
rename a file and move it to another device.

The prefix parameter in this system 'call refers to
a logical connection. Either:

• The device is offline, or

• The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

8-74

A$RENAME$FILE

SYSTEM CALLS

EXCEPTION CODES (continued)

E$EXIST

E$IFDR

E$LIMIT

E$MEM

ENOPREFIX

ENOUSER

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The prefix parameter

• The connection parameter

• The response mailbox parameter

• The user parameter.

2. The prefix connection is being deleted.

This system call applies only to named files, but
the connection parameters specifies some other
type of file.

Processing this call caused one of these limits to
be exceede d:

• The maximum number of objects allowed for this
job (specified when the job was created).

• The number of I/O operations which can be
outstanding at one time for the user object
specified in the call (255 decimal).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
user object.

8-75

A$REN AME$FILE

SYSTEM CALLS

EXCEPTION CODES

ENOUSER (continued)

ENOTCONFIGURED

E$PARAM

E$SUPPORT

E$TYPE

If the user parameter is zero, it specifies a
default user. But no default user can be found
because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

One or more of the following system calls was not
included when the system was configured:

RENAME$FILE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)
DISABLE$DELETION (Nucleus)

The path name contains invalid characters, or has
a length of zero.

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of three conditions caused this exception:

• The prefix parameter is not a valid objec,t
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

• The connection parameter is not a connection
objec t.

• The response mailbox parameter in the call is
not a token for a mailbox.

8-76

A$REN AME$FILE
SYSTEM CALLS

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$FACCESS

E$FEXITS

E$FNEXIST

E$FTYPE

E$IO

E$LIMIT

E$MEM

NORMAL CODE. No exceptional conditions.

One of these conditions caused this exception code:

• The file specified is on a device which the
system is detaching.

• The call is attempting to rename the ROOT
directory.

• The call is attempting to rename the directory
to a new path containing itself. This is
specifically forbidden; see DESCRIPTION.

Either:

• The user object in the parameter list is not
qualified for "delete" access to the file, or

• The connection doesn't have "add entry" access
to the parent directory.

The file name already exists.

This indicates one of the following circumstances:

• A file in the specified path does not exist.

• A file in the specified path is marked for
deletion.

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last
string, each string in a pathname must be a named
directory.)

An I/O error occurred during the operation.

To service this call, the Basic I/O System had to
create some objects. The maximum number of
objects which it can contain at one time was
exceeded. (This maximum limit is specified when
the Basic I/O System job is configured.)

The memory pool of the Basic I/O System does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-77

A$RENAME$FILE

SYSTEM CALLS

EXCEPTION CODES (continued)

E$SPACE

E$SUPPORT

There is no more space on this volume.

As the Basic I/O System is configured, either:

• The entry point associated with A$RENAME is not
included in the "I/O System part" of the named
file driver table. The corresponding entry
point in the "Request part" is included. Refer
to the iRMX 86 CONFIGURATION GUIDE for further
information.

• The Basic I/O System does not allow allocation
of space on volumes.

8-78

SYSTEM CALLS

A$SEEK

A$SEEK moves the file pointer of an open connection.

CALL RQASEEK(connection, mode, hiptrmove, lowptrmove,
except$ptr);

---------------------------- ~-"-----

INPUT PARAMETERS

connection

mode

hiptrmove
lowptrmove

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for the open file
connection whose file pointer is to be moved.

a BYTE describing the movement of the file pointer;
possible values are:

1 Move pointer back by "ptr$move" amount; if this
action moves the pointer past the beginning of
the file, the pointer is set to zero (first
byte) •

2 Set the pointer to the location specified by
"ptr$move" •

3 Move the file pointer forward by "ptr$move"
amount.

4 Move the pointer to the end of the file, minus
the "ptr$move" specified.

a pair of words giving the number of bytes involved
in the seek; the interpretation of "ptr$move"
depends on the mode setting, as just explained.

a WORD containing a token for the mailbox that
receives an I/O result segment (see Appendix C)
when the seek is completed. A value of zero means
that you do not want to receive an I/O result
segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-79

A$SEEK

I

A$SEEK
SYSTEM CALLS

DESCRIPTION

The A$SEEK system call applies to physical and named files only. This
call moves the file pointer for an open connection, thus allowing file
contents to be accessed randomly- The file pointer can be moved to any
byte position in the file; the first byte is byte zero.

EXCEPTION CODES

A$SEEK can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

E$EXIST

E$IFDR

E$LIMIT

NORMAL CODE. No exceptional conditions.

The connection parameter is a buffered connection
produced by the Extended I/O System.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter.

2. The connection is being deleted.

This system call applies only to named and
physical files, but the prefix and subpath
parameters specify a stream file.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

8-80

SYSTEM CALLS

EXCEPTION CODES (continued)

E$MEM

ENOTCONFIGURED

E$PARAM

E$SUPPORT

E$TYPE

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

A$SEEK
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The mode parameter value is out of the valid range
(1 to 4).

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is not
a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$FLUSHING

E$IO

E$PARAM

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The connection is not open.

The connection specified in the call was closed
before the seek operation could be completed.

An I/O error occurred during the operation.

This call attempted to seek beyond the end of the
physical device. This applies only to physical
files.

Your system is configured incorrectly. The entry
point associated with A$SEEK is not included in the
"I/O System part" of the file driver table (named or
physical file). The corresponding entry point in
the "Request part" is included. Refer to the
iRMX 86 CONFIGURATION GUIDE for further information.

8-81

A$SEEK

ASETEXTENSION$DATA

SYSTEM CALLS

ASETEXTENSION$DATA

The ASETEXTENSION$DATA system call writes the extension data for a
Basic I/O System file.

CALL RQASET$EXTENSION$DATA(connection, data$ptr, resp$mhox, ~
except$ptr); ~

This System Programmer call is included here for convenience.
ASETEXTENSION$DATA is described completely in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL, Chapter 7.

8-82

SYSTEM CALLS

A$SPECIAL

A$SPECIAL enables tasks to perform a variety of special functions.

CALL RQASPECIAL(connection, spec$func, ioparm$ptr, resp$mbox;,
except$ptr);

INPUT PARAMETERS

connection

spec$func

ioparm$ptr

OUTPUT PARAMETERS

resp$mbox

except$ptr

a WORD containing a token for a connection to the
file where the special function is to be performed.

an encoded WORD that, with the connection
argument, specifies the function being requested;
the functions are described under the heading
DESCRIPTION and are summarized as follows:

file driver
for connection
physical
physical or named
stream
stream

spec$func
value
o
2
o
1

function
format track
notify
query
satisfy

a POINTER to a parameter block; the contents of
the parameter block depends upon the requirements
of the special function being requested and are
described fully under the heading DESCRIPTION.

a WORD containing a token for the mailbox that
receives the I/O result segment (see Appendix C)
for the special. operation. A value of zero means
that you do not want to receive an I/O result
segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

8-83

A$SPECIAL

I

A$SPECIAL

SYSTEM CALLS

DESCRIPTION

The A$SPECIAL system call enables tasks to perform a variety of special
functions.

Tasks define their requests by means of the spec$func and ioparam$ptr
parameters. Spec$func is a code which, when combined with the file
driver associated with the connection argument, specifies the function
the Basic I/O System is to perform. When more information is needed to
define a request, ioparam$ptr points to a parameter block containing the
additional data. Descriptions of the available functions follow.

Formatting a Track. This function applies to physical files only. To
format a track on a flexible diskette, set spec$func to 0, and set
ioparam$ptr to point to a structure of the form

DECLARE format$track STRUCTURE (

where:

track$number

interleave

track$offset

track$number WORD,
interleave WORD,
track$offset WORD);

the number of the track to be formatted;
acceptable values are 0 to 76; other values cause
an E$SPACE exceptional condition.

the interleaving factor for the track (that is,
the number of physical sectors to skip before
locating the next logical sector); the supplied
value, before being used, is evaluated mod 26 for
128-byte sectors or mod 8 for 512-byte sectors.

the number of physical sectors to skip before
locating logical sector one.

To format a track on a hard disk, set spec$func to 0 and set ioparam$ptr
to point to a structure of the form:

where:

track$number

DECLARE format$track STRUCTURE (
track$number WORD,
interleave WORD,
track$offset WORD,
fill$char WORD);

the number of the track to be formatted;
acceptable values are 0 to 799; other values cause
an E$SPACE exceptional condition.

8-84

A$SPECIAL

SYSTEM CALLS

DESCRIPTION (continued)

interleave the interleaving factor for the track; the
supplied value, before being used, is evaluated
mod 36 for 128-byte sectors or mod 12 for 512-byte
sectors.

track$offset

fill$char

the number of physical sectors to skip before
locating logical sector one.

the byte value with which each sector is to be
filled.

Requesting Notification that a Volume is Unavailable. This function
applies to named and physical files only.

When a person opens a door to a flexible disk drive or presses the STOP
button on a hard disk drive, the volume mounted on that drive becomes
unavailable. A task can request notification of such an event by calling
A$SPECIAL. For flexible disk drives attached to an iSBC 204 controller,
notification occurs when the Basic I/O System first tries to perform an
operation on the unavailable volume. For most other drives notification
occurs immediately. The reason for this difference is that the iSBC 204
controller does not generate an interrupt when its drives cease to be
ready. In contrast, most other controllers do.

To request notification, a task calls A$SPECIAL with a token for a device
connection, with spec$func set to 2, and with ioparam$ptr pointing to a
structure of the form:

where:

mailbox

object

DECLARE notify STRUCTURE (
mailbox WORD,
object WORD);

contains a token for a mailbox.

contains a token for an object; when the Basic I/O
System detects that the implied volume is
unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic I/O System
remembers the object and mailbox tokens until either the volume is
detected as being unavailable or until the device is detached (see
A$PHYSICAL$DETACH$DEVICE in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL). When the volume becomes unavailable, the object is sent to the
mailbox. Note that this implies that some task should be dedicated to
waiting at the mailbox.

8-85

A$SPECIAL
SYSTEM CALLS

DESCRIPTION (continued)

If the volume is detected as being unavailable, the Basic I/O System will
not execute I/O requests to the device on which the volume was mounted.
Such requests are returned with the status field of the I/O result seg
ment set to E$IO and the unit$status field set to IO$OPRINT (value = 3).
The latter code means that operator intervention is required.

To restore the availability of a volume, four steps are required:

1. Close the door of the diskette drive or restart the hard disk
drive.

2. Call A$PHYSICAL$DETACH$DEVICE (see the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL). It may be necessary to do a "hard" detach of
the device.

3. Call A$PHYSICAL$ATTACH$DEVICE (see the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL) and reattach the device.

4. Create a new file connection.

To cancel a request for notification, make a dummy request using the same
connection with a 0 value in the mailbox parameter. In this case, the
result is that there is no longer a request for notification.

Obtaining Information about Stream File Requests. Occasionally, a task
using a stream file needs to know what is being requested by the other
task using the same stream file. For example, the task doing a read
operation on a stream file might need to know how many bytes are being
sent by the task doing a write operation on the same file. Tasks can
obtain this kind of information by calling A$SPECIAL, using the
connection for the stream file, with spec$func set to 0 (query). The
ioparam$ptr argument is ignored.

If a read or write request is queued at the file, the information
requested is returned in the I/O result segment for the call to
A$SPECIAL. The actual field contains the number of bytes being sent, the
count field contains the number of bytes still remaining in the buffer,
and the buff$ptr field points to the buffer.

If no read or write request is queued at the file, the calling task's
request for information is queued at the file. If a second request for
information is made before the first one is satisfied, the I/O result
segments for both requests are returned with E$CONTEXT in the status
field.

8-86

A$SPECIAL
SYSTEM CALLS

Artificially Satisfying a Stream File I/O Request

When a task tries to read or write to a stream file, the request is not
satisfied until the other task makes a request that matches the first
request. For example, if task A wants to read 512 bytes, but task B only
wants to write 256 bytes, only 256 bytes are transferred. Task A
continues to wait for the other 256 bytes, even though Task B may never
write them.

By using A$SPECIAL, with a stream file connection and with spec$func set
to 1 (ioparam$ptr is ignored), either task can force the data to transfer
request to be satisfied, even though the reading task is requesting more
bytes than the writing task is providing. After the transfer, the tasks
can ascertain the number of bytes sent by checking the actual field in
their respective I/O result segments.

A task trying to satisfy an I/O request in this way will receive an
E$CONTEXT exceptional condition if no request is queued at the stream
file or if a request for information is queued. In the latter case, the
task that submitted the request for information also receives an
E$CONTEXT condition.

EXCEPTION CODES

A$SPECIAL can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

l~e Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

E$EXIST

NORMAL CODE. No exceptional conditions.

The connection parameter is for a buffered I/O
connection, which is not valid in this call.
(Buffered I/O connections are a function of the
Extended I/O System.)

Two conditions can cause this exception code to be
returned:

8-87

A$SPECIAL

EXCEPTION CODES

E$EXIST (continued)

E$IFDR

E$I..IMIT

E$MEM

ENOTCONFIGURED

E$PARAM

E$SUPPORT

SYSTEM CALLS

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

The function requested (spec$func) is not valid
for the type of file specified by the connection
parameter.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

SPECIAL
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The special request applies to a stream file, but
the code is not either "query" or "notify".

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

NORMAL CODE. No exceptional conditions.

One of the following exceptional conditions exists:

• The function code is 'notify' and the
connection is not a device connection. This
applies to named and physical files only.

8-88

A$SPECIAL

SYSTEM CALLS

EXCEPTION CODES (continued)

E$FLUSHING

E$IDDR

E$IFDR

E$IO

E$SPACE

E$SUPPORT

• The' connection is not open. This applies to
stream and physical files only.

• This is a "query" request t but another query is
already queued This applies only to stream
files.

• This is a "satisfy" request t but either a query
request is queued t or no requests are queued.
This applies only to stream files. (See
Artifically Satisfying A Stream File I/O
Request.)

The connection to which this special function
applies was closed before the function could be
completed.

The function being requested is not valid for the
device specified by the connection parameter.

The connection refers to a named filet but the
function is not "notify".

An I/O error occurred during the operation.

The A$SPECIAL call attempted to format a physical
file past the end of the device.

Your system is configured incorrectly. The entry
point associated with A$SPECIAL is not included in
the "I/O System part" of the file driver table
(named t physical t or stream file). The
corresponding entry point in the "Request part" is
included. Refer to the iRMX 86 CONFIGURATION
GUIDE for further information.

8-89

A$TRUNCATE

I

SYSTEM CALLS

A$TRUNCATE

A$TRUNCATE truncates a named file at the current setting of the pointer,
freeing all allocated space beyond the pointer.

CALL RQATRUNCATE(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

except$ptr

DESCRIPTION

a WORD containing a token for an open connection
to the file being truncated.

a WORD containing a token for the mailbox that
receives the I/O result segment (see Appendix C)
for the truncate operation. A value of zero means
that you do not want to receive an I/O result
segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

a POINTER to a WORD where the sequential exception
code will be returned.

The A$TRUNCATE system call applies to named files only. This call
truncates a file at the current setting of the file pointer, freeing all
allocated space beyond the pointer. A$SEEK can be called to position the
pointer before A$TRUNCATE is called. If the file pointer is at or beyond
the end-of-file, no operation is performed.

Truncation is performed immediately, rather than waiting until
connections to the file are deleted.

NOTE

The designated file connection must be
open for writing and the connection
must have update access to the file.

8-90

A$TRUNCATE

SYSTEM CALLS

EXCEPTION CODES

A$TRUNCATE can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

E$EXIST

E$IFDR

E$LIMIT

E$MEM

NORMAL CODE. No exceptional conditions.

The connection parameter is a buffered I/O
connection, which is invalid here. (Buffered I/O
connections are a function of the Extended I/O
System.

Two conditions can cause this exception code to be
returned:

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

This system call applies only to named files, but
the parameter list specified some other type of
file.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-91

A$TRUNCATE

SYSTEM CALLS

EXCEPTION CODES (continued)

ENOTCONFIGURED

E$SUPPORT

E$TYPE

One or more of the following system calls was not
included when the system was configured:

A$TRUNCATE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$FACCESS

E$IO

E$SUPPORT

NORMAL CODE. No exceptional conditions.

The file specified is not open for write or update.

The connection in the parameter list is not
qualified for "update" access to the file.

An I/O error occurred during the operation.

As the Basic I/O System is configured, eith~r:

• The entry point associated with A$TRUNCATE is
not included in the "I/O System part" of the
named file driver table. The corresponding
entry point in the "Request part" is included.
Refer to the iRMX 86 CONFIGURATION GUIDE for
further information, or

• Truncating files is not allowed.

8-92

SYSTEM CALLS

A$WRITE

A$WRITE writes data from the calling task's buffer to a connected file.

CALL RQAWRITE(connection, buff$ptr, count, resp$mbox, except$ptr);

INPUT PARAMETERS

connection

buff$ptr

count

OUTPUT PARAMETERS

resp$mbox

except$ptr

DESCRIPTION

a WORD containing a token for the open connection
through which the write operation is to take place.

a POINTER to the buffer (segment) that contains
the data to be written.

a WORD giving the number of bytes to be written.

a WORD containing a token for the mailbox that
receives the I/O result segment (see Appendix C)
for the write operation. A value of zero means
that you do not want to receive an I/O result
segment.

If it receives an I/O result segment, the calling
task should issue DELETE$SEGMENT to delete the
segment.

If all the other connections to a stream file are
requesting write operations, an actual value of
zero and a status value for E$FLUSHING are
returned in the I/O result segment.

a POINTER to a WORD where the sequential exception
code will be returned.

The A$WRITE call writes data from the caller's buffer to a connected
file. The data is written starting at the current file pointer. After
the write operation, the file pointer is positioned just after the last
byte written. Some efficiency may be gained by starting writes on device
block boundaries and writing an integral number of device blocks.

8-93

A$WRITE

I

A$WRITE

SYSTEM CALLS

DESCRIPTION (continued)

Be aware that it is possible to use the A$SEEK system call to position
the file pointer beyond the end of the file and comence writing. If a
task does this, the Basic I/O System will extended the file to
accommodate the writing operation. However, the positions in the file
located between the old end of file and the beginning of the writing
operation will contain arbitrary information.

EXCEPTION CODES

NOTES

The buffer supplying the data to be
written should not be modified until
the write request has been acknowledged
at the response mailbox.

The designated file connection must be
open for writing, and the connection
must have append or update access to
the file.

A$WRlTE can return exception codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential code. A code returned as a result of
asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 4 of this manual (ASYNCHRONOUS SYSTEM CALLS).

The following list is divided into two parts -- one for sequential codes,
and one for concurrent codes.

Sequential Exception Codes

The Basic I/O System can return the following exception codes to the WORD
specified by the except$ptr parameter of this system call.

E$OK

E$CONTEXT

E$EXIST

NORMAL CODE. No exceptional conditions.

The connection specified is a buffered I/O
connection, which is not valid for the A$WRITE
call. (Buffered I/O connections are a function of
the Extended I/O system.)

Two conditions can cause this exception code to be
returned:

8-94

SYSTEM CALLS

EXCEPTION CODES (continued)

E$LIMIT

E$MEM

ENOTCONFIGURED

E$SUPPORT

E$TYPE

1. At least one of the following parameters is not
a token for a valid object:

• The connection parameter

• The response mailbox parameter

2. The connection is being deleted.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

One or more of the following system calls was not
included when the system was configured:

A$WRITE
GET$TYPE (Nucleus)
SEND$MESSAGE (Nucleus)
CREATE$SEGMENT (Nucleus)

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of two conditions caused this exception:

• The connection parameter is not a valid object
type. It must be a connection object.

• The response mailbox parameter in the call is
not a token for a mailbox.

Concurrent Exception Codes

The Basic I/O System can return the following codes in an I/O result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$CONTEXT

E$FACCESS

NORMAL CODE. No exceptional conditions.

The connection is not open for update or write.

The connection in the parameter list is not
qualified for "update" or "append" access to the
file.

8-95

A$VVRITE

A$WRITE

SYSTEM CALLS

EXCEPTION CODES (continued)

E$FLUSHING

E$IO

E$SPACE

E$SUPPORT

Either:

• The connection was closed before the write
could be performed, or

• The file specified by the connection parameter
is a stream file, and all other connections are
also requesting to write the file. (See the
description of resp$mbox.)

An I/O error occurred during the operation.

Either:

• The volume has no more space, or

• The operation attempted to write beyond the end
of the device. This applies to physical files
only.

As the Basic I/O System is configured, either:

• The entry point associated with A$WRITE is not
included in the "I/O System part" of the file
driver table (named, physical, or stream
file). The corresponding entry point in the
"Request part" is included. Refer to the iRMX
86 CONFIGURATION GUIDE for further information.

• The write is attempting to extend the file, but
allocation of file space is not allowed.

8-96

A$CREATE$USE
SYSTEM CALLS

CREATE$USER

The CREATE$USER system call creates a user object.

user = RQ$CREATE$USER(ids$ptr t except$ptr);

This System Programmer call is included here for convenience.
CREATE$USER is described completely in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL t Chapter 7.

8-97

A$DELETE$USER
SYSTEM CALLS

DELETE$USER

The DELETE$USER (Basic I/O) system call deletes a user object.

~ ____ C_AL __ L __ R_Q_$_D_E_L_E_T_E_$U_S_E_R_(_U_S_e_r_, __ e_x_ce_p_t_$_p_t_r_)_; ____________________________ ~

This System Programmer call is included here for convenience.
DELETE$USER is described completely in the iRMX 86 SYSTEM PROG~lliR'S
REFERENCE MANUAL, Chapter 7.

8-98

GET$DEFAULT$PREFIX
SYSTEM CALLS

GET$DEFAULT$PREFIX

GET$DEFAULT$PREFIX returns the default prefix of a job.

connection

INPUT PARAMETER

job

OUTPUT

except$ptr

connection

DESCRIPTION

GET$DEFAULT$PREFIX(job, except$ptr);

a WORD containing a token for the job whose
default prefix is sought; a zero specifies the
calling job.

a POINTER to a WORn where the sequential exception
code will be returned.

a WORD receiving a token for the connection object
which is the default prefix for the designated job.

The GET$DEFAULT$PREFIX system call allows the caller to determine the
default prefix for the specified job.

EXCEPTION CODES

E$OK

ENOPREFIX

NORMAL CODE. No exceptional conditions.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default prefix.

• No default prefix is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

8-99

GET$DEFAULT$PREFIX
SYSTEM CALLS

EXCEPTION CODES

ENOPREFIX (continued)

• The prefix which is cataloged is not the
correct type. The default prefix must be a
connection object or logical device object.
(Logical device objects are created by the
Extended I/O System.)

ENOTCONFIGURED The system call GET$DEFAULT$PREFIX was not
included when the Basic I/O System was configured.

8-100

GET$DEFAULT$USER

SYSTEM CALLS

GET$DEFAULT$USER

GET$DEFAULT$USER returns the default user object of a job.

[user$id - GET$DEFAULT$USER(job. except$ptr);

INPUT PARAMETER

job

OUTPUT

except$ptr

user$id

DESCRIPTION

a l~ORD containing a token for the job whose
default user object is sought; a zero specifies
the calling jo b.

a POINTER to a WORD where the sequential exception
code will be returned.

a WORD containing a token for the user object
which is the default user for the designated job.

The GET$DEFAULT$USER system call allows the calling task to determine the
default user object associated with the designated job.

EXCEPTION CODES

E$OK

ENOUSER

NORMAL CODE. No exceptional conditions.

No default user can be found because:

• When this job was created, a size of zero was
specified for its object directory. So the job
cannot catalog a default user.

• No default user is cataloged for this job.

• When the system was configured, the Nucleus
system call LOOKUP$OBJECT was not included.

8-101

GET$DEFAULT$USER
SYSTEM CALLS

EXCEPTION CODES

ENOUSER (continued)

• The object which is cataloged with the name
R?USER is not a user object. The name R?USER
should be treated as a reserved word.

ENOTCONFIGURED The system call GET$DEFAULT$USER was not included
when the Basic I/O System was configured.

8-102

SYSTEM CALLS

GET$TIME

GET$TlME system call returns the date/time value from its doubleword
counter.

date$time

OUTPUT

date$time

except$ptr

DESCRIPTION

GET$TIME(except$ptr);

a POINTER containing a date/time value expressed
as the number of seconds since a fixed~

user-determined point in time; the offset portion
of the pointer contains the low part of the value
and the base portion contains the high part of the
value.

a POINTER to a WORD where the sequential exception
code will be returned.

The GET$TlME system call returns the date/time value for the Basic I/O
System. The Basic I/O System maintains the date/time value in two words
containing the number of seconds since some fixed point in time. Any
time in the past can be used as the "beginning of time". See your system
programmer for the reference point used in your system.

EXCEPTION CODES

E$OK

ENOTCONFIGURED

NORMAL CODE. No exceptional conditions.

The system call GET$TlME was not included when the
Basic I/O Sytem was configured.

8-103

GET$TIM

INSPECT$USER
SYSTEM CALLS

INSPECT$USER

The INSPECT$USER (Basic I/O) System call returns a list of the ID's
contained in a user object.

CALL RQ$INSPECT$USER(user, ids$ptr, except$ptr);

This System Programmer call is included here for convenience.
INSPECT$USER is described completely in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL, Chapter 7.

8-104

SET$DEFAULT$PREFIX
SYSTEM CALLS

,SE T$DEFALUL T$PREF IX

SET$DEFAULT$PREFIX sets the default prefix for an existing job.

CALL RQSETDEFAULT$PREFIX(job, prefix, except$ptr);

INPUT PARAMETERS

job

prefix

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

a WORD containing a token for the job whose
default prefix is to be set; a zero specifies the
current job.

a WORD containing a token for the connection that
is to become the default prefix.

a POINTER to a WORD where the condition code will
be returned.

The SET$DEFAULT$PREFIX system call sets the default prefix for an
existing job. It does this by cataloging the connection (supplied as the
prefix parameter) in the object directory of the job (supplied as the job
parameter). The Basic I/O System catalogs the prefix under the name $.

EXCEPTION CODES

E$OK

E$CONTEXT

NORMAL CODE. No exceptional conditions.

Either:

• When this job was created, a size of zero was
specified for the object directory. So a
default prefix cannot be cataloged

• As the system was configured, the Nucleus
system call UNCATALOG$OBJECT was not included.
So objects cannot be removed from the directory.

8-105

SET$DEFAULT$PREFIX
SYSTEM CALLS

EXCEPTION CODES (continued)

E$EXIST At least one of the following parameters is not a
token for a valid object:

• The prefix parameter

• The job parameter

E$LIMIT The prefix parameter cannot be cataloged because
the job object directory is full.

ENOTCONFIGURED One or more of the following system calls was not
included when the system was configured:

E$TYPE

SET$DEFAULT$PREFIX
CATALOG$OBJECT
GET$TYPE (Nucleus)

One of two conditions caused this exception:

• The prefix parameter is not a valid object
type. It must be either a connection object,
or a logical device object (Logical devices are
described in the iRMX 86 SYSTEM PROGRAMMER'S
REFERENCE MANUAL.)

• The job parameter is not a token for a job.

8-106

SET$DEFAULT$USER
SYSTEM CALLS

SET$DEFAULT$USER

SET$DEFAULT$USER sets the default user object for a job.

CALL RQSETDEFAULT$USER(job, user, except$ptr);

INPUT PARAMETERS

job

user

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

a WORD containing a token for the job whose
default user object is to be set; a zero
designates the calling task's job.

a WORD containing a token for the user object that
is to become the default user.

a POINTER to a WORD where the sequential exception
code will be returned.

The SET$DEFAULT$USER system call sets the default user for an existing
job.

EXCEPTION CODES

E$OK

E$CONTEXT

NORMAL CODE. No exceptional conditions.

Either:

• When this job was created, a size of zero was
specified for the object directory. So a
default prefix cannot be cataloged, or

• As the system was configured, the Nucleus
system call UNCATALOG$OBJECT was not included.
So objects cannot be removed from the directory.

8-107

SET$DEFAULT$USER

SYSTEM CALLS

EXCEPTION CODES (continued)

E$EXIST At least one of the following parameters is not a
token for a valid object:

• The user parameter

• The job parameter

E$LIMIT The user object cannot be cataloged because the
job object directory is full.

ENOTCONFIGURED One or more of the following system calls was not
included when the system was configured:

E$TYPE

SET$DEFAULT$USER
CATALOG$OBJECT (Nucleus)
GET$TYPE (Nucleus)

The job or user argument refers to an object of
the wrong type.

8-108

SYSTEM CALLS

SET$TIME

The SET$TIME system call sets the date and time for the I/O System.

CALL RQSETTIME(time$high, time$low, except$ptr);

This System Programmer call is included here for convenience. SET$TIME
is described completely in the iRMX 86 SYSTEM PROGRAMMER'S REFERENCE
MANUAL, Chapter 7.

8-109

SET$TIME

APPENDIX A. iRMX- 86 DATA TYPES

The following are the data types that are recognized by the iRMX 86
Operating System:

BYTE

WORD

INTEGER -

OFFSET

TOKEN

POINTER -

STRING

An unsigned, one byte, binary number.

An unsigned, two byte, binary number.

A signed, two byte, binary number that is stored in
two's complement form.

A word whose value represents the distance from the
base of a segment.

A word whose value identifies an object.

Two words containing the base of a segment and an
offset, in the order: offset followed by base.

A sequence of consecutive bytes. The first byte
contains the number of bytes that follow it in the
string.

A-I

APPENDIX B. iRMX~ 86 TYPE CODES

Each iRMX 86 object type is known within the iRMX 86 System by means of a
numeric code. For each code, there is a mnemonic name that can be
substituted for the code. The following lists the types with their codes
and associated mnemonics.

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE

Job T$JOB 00lR

Task T$TASK 002H

Mailbox T$MAILBOX 003R

Semaphore T$SEMAPHORE 004H

Segment T$SEGMENT 006R

User TNUMUSER 100H

Connection T$CONNECTION 101R

B-1

APPENDIX C. I/O RESULT SEGMENT

Certain asynchronous I/O system calls return a data structure called an
I/O result segment to the mailbox specified by the "resp$mbox"
parameter. The following system calls can return such a segment:

A$ATTACH$FILE
A$CLOSE
A$CREATE$FILE
A$DELETE$FILE
A$READ
A$SEEK
A$TRUNCATE

A$CHANGE$ACCESS
A$CREATE$DlRECTORY
A$DELETE$CONNECTION
A$OPEN
A$RENAME$FILE
A$SPECIAL
A$WRITE

Three of these system calls (A$ATTACH$FILE, A$CREATE$DlRECTORY, and
A$CREATE$FILE) can return either a connection or an I/O result segment to
the mailbox. Your application task can determine which type of object
has been returned by making a GET$TYPE system call before trying to
examine the object.

Before waiting at the response mailbox to receive the I/O result segment,
your application task should examine the condition code returned in the
word pointed to by the "except$ptr" parameter. If this code is ··E$OK··,
the task can wait at the mailbox. However,ifthecodeisnot"E$OK",an
exceptional condition exists and nothing is sent to the mailbox.

Immediately after receiving the I/O result segment, the task should
examine the status field. This field contains an "E$OK" if the system
call was completed sucessfully or an exceptional-condition code if an
error occurred. The result segment also contains the actual number of
bytes read or written, if appropriate.

STRUCTURE OF I/O RESULT SEGMENT

The I/O result segment is structured as follows:

DECLARE iors STRUCTURE (
status
unit$status
actual

WORD,
WORD,
WORD} ;

C-l

where:

status

unit$status

actual

I/O RESULT SEGMENT

the condition code indicating the outcome of the
call; Appendix D lists these asynchronous condition
codes.

contains, in the low-order four bits,
device-dependent error code information that is
meaningful only if status = E$IO; the codes, their
meanings, and their associated mnemonics are as
follows:

code mnemonic

o IO$UNCLASS

1 IO$SOFT

2 IO$HARD

3 IO$OPRINT

4 IO$WRPROT

meaning

Unclassifed error

Soft error; the I/O system
has retried the operation
and failed; another retry is
not possible

Hard error; a retry is not
possible

Operator intervention is
required

Write-protected volume

the actual number of bytes transferred

The I/O result segment contains other fields which are of interest only
to the designer of a device driver. These fields are not described in
this manual. For further information about the remaining fields of the
I/O result segment, refer to the GUIDE TO WRITING DEVICE DRIVERS FOR THE
iRMX 86 I/O SYSTEM.

UNIT STATUS FOR SPECIFIC DEVICES

You may need to know the information contained in the "unit$status" field
for the following devices.

iSBC 204 AND iSBC 206 CONTROLLERS

The iSBC 204 and 206 drivers place a controller-generated result byte in
the high eight bits of this word. For information about this byte, refer
to the hardware reference manual for the iSBC 204 or 206 controller.

C-2

I/O RESULT SEGMENT

iSBC 215 CONTROLLER

Under certain circumstances, the iSBC 215 Winchester disk controller
places information in the high twelve bits of this word. If the low four
bits indicate IO$SOFT, the controller sets the high twelve bits as
follows:

Bit

15 (leftmost)
14
13
12
11

10-8
7

6-4

Interpretation

l=seek error
l=cylinder address miscompare
l=drive fault
l=ID field ECC error
l=data field ECC error
unused
l=sector not found
unused

On the other hand, if the low four bits indicate I o $ HARD , the iSBC 215
controller sets the high twelve bits as follows:

iSBC 208 CONTROLLER

Bit

15
14
13
12
11
10

9
8
7
6
5
4

Interpretation

l=invalid address
l=sector not found
l=invalid command
l=no index
l=diagnostic fault
1=illegal sector size
1=end of media
1=illegal format type
l=seek in progress
l=ROM error
l=RAM error
unused

If you need more detailed information regarding the
meanings of these errors, refer to the iSBC 215
WINCHESTER DISK CONTROLLER HARDWARE REFERENCE MANUAL.

If the error is IO$SOFT (low four bits =lH), the next hex digit position I
can be 0,1, or 2. That is, the value in the low byte of unit$status will
be 01H, 11H, or 21H. The upper byte of the unit$status word will indicate
the exact meaning of the error condition. The meanings are listed here.

C-3

low byte

01H

11H

21H

I/O RESULT SEGMENT

high byte
bit meaning

8,9
10
11
12
13
14,15

8
9
10
12
13
15

8
9
12
13
14

unit select
head select
not ready
equipment check
seek end

00 normal termination
01 abnormal termination
10 invalid command
11 ready state changed

missing address mark
not writeable
no data, sector not found
over-run, DMA late
CRC error in ID field
end of cylinder

missing data address mark
wrong cylinder in ID field
wrong cylinder in ID field
CRC error in data field
deleted data mark

If you need more detailed information regarding the meanings of these
errors, refer to the iSBC 208 FLEXIBLE DISK DRIVE CONTROLLER HARDWARE
REFERENCE MANUAL.

C-4

APPENDIX D. EXCEPTION CODES

This Appendix lists two types of exception codes. Those detected
synchronously with system call invocation (sequential codes) and those
detected during the asynchronous portion of system call processing
(concurrent codes). The sequential codes are returned to the location
addressed by the "excep$ptr" fiel;d of the system call. The concurrent
codes are returned in an I/O result segment (see Appendix C). This
appendix lists all codes with their decimal and hexadecimal equivalents.

SYNCHRONOUS (ENVIRONMENTAL) EXCEPTION CODES

CODE

E$OK
E$TIME
E$MEM
E$LIMIT
E$CONTEXT
E$EXIST
E$STATE
ENOTCONFIGURED
E$FEXIST
E$FNEXIST
E$SUPPORT
E$FACCESS
E$FTYPE
E$SPACE
EDEVOFFLINE

DECIMAL

o
1
2
4
5
6
7
8

32
33
35
38
39
41
45

HEXADECIMAL

OR
1H
2H
4H
51l
6H
7H
81l

20H
21H
23H
26H
27H
29H
2DH

SEQUENTIAL (PROGRAMMER ERROR) EXQEPTION CODES

CODE

E$ZERO$DIVIDE
E$OVERFLOW
E$TYPE
E$PARAM
EBADCALL
E$IFDR
E$NOUSER
E$NOPREFIX

DECIMAL

32768
32769
32770
32772
32773
32800
32801
32802

D-1

HEXADECIMAL

8000H
8001H
8002R
8004H
8005H
8020H
8021H
8022H

I

I

I
EXCEPTION CODES

CONCURRENT EXCEPTION CODES

CODE DECIMAL HEXADECIMAL

E$MEM
E$LIMIT
E$CONTEXT
E$FEXIST
E$FNEXIST
E$DEVFD
E$SUPPORT
E$EMPTY$ENTRY
EDIREND
E$FACCESS
E$FTYPE
E$SHARE
E$SPACE
E$IDDR
E$IO
E$FLUSHING

2
4
5

32
33
34
35
36
37
38
39
40
41
42
43
44

D-2

2H
4H
5H

20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH

APPENDIX E. LOGICAL DEVICES AND THE BASIC I/O SYSTEM

You can assign a logical name to any device with the system programmer
call LOGICAL$ATTACH$DEVICE. This creates a Logical Device object,
(TLOGDEV) and catalogs the object in the root object directory.

Typically, you will use these Logical Device objects with Extended I/O
System calls. However, Basic I/O System calls also permit the prefix
parameter to be a Logical Device object. When you use a Logical Device
object as the prefix parameter in Basic I/O System calls, you might
receive the exception code EDEVOFFLlNE. If you receive this exception
code and the device is online, the device was never physically attached.

Before you can use a logically named device, the device must be made
known to the system (attached), with the Basic I/O System call
A$PHYSICAL$ATTACH$DEVICE. But when LOGICAL$ATTACH$DEVICE is invoked, the
system does not immediately issue a call to A$PHYSICAL$ATTACH$DEVICE.
Instead, physical attachment occurs transparently during processing of
any Extended I/O System call which references the Logical Device object.

You might create a logical device connection, but not invoke any Extended
I/O System call to perform the physical attach operation. If so, the
Basic I/O System will return EDEVOFFLlNE. You can correct this
situation by invoking at least one Extended I/O System call which uses
the logical device.

For further information, refer to the descriptions of
LOGICAL$ATTACH$DEVICE and A$PHYSICAL$ATTACH$DEVICE in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL.

E-l

INDEX

Underscored entries are primary references.

access computation 5-9
access control 2-4
access list 5-8
access rights 5-8
asynchronous system calls 2-1, 4-1
A$ATTACH$FILE 8-9
A$CHANGE$ACCESS 8-14
A$CLOSE 8-20
A$CREATE$DIRECTORY 8-23
A$CREATE$FILE 8-29
A$DELETE$CONNECTION 8-36
A$DELETE$FILE 8-39
AGETCONNECTION$STATUS 8-44
AGETDIRECTORY$ENTRY 8-48
AGETEXTENSION$DATA 8-52
AGETFILE$STATUS 8-53
AGETPATH$COMPONENT 8-60
A$OPEN 8-63
A$PHYSICAL$ATTACH$DEVICE 8-67
A$PHYSICAL$DETACH$DEVICE 8-68
A$READ 8-69
A$RENAME$FILE 8-73
A$SEEK 8-79
ASETEXTENSION$DATA 8-82
A$SPECIAL 8-83
A$TRUNCATE 8-90
A$WRITE 8-93

buffers 8-4
BYTE A-I

CREATE$USER 8-97

DELETE$USER 8-98

exception codes 8-5, D-2, and each system call in Chapter 8
connection 2-4, 3-2, 5-3

data files 5-1
data types A-I
default prefix 5-3
default user 5-7
device connections 3-3
device drivers 2-3
device independence 2-2
devices 2-2, 3-1
directory fileS--5-1

Index-l

file connections 3-3, 5-3
file pointer 3-4
file sharing 2-4
files 2-3, 3-2

fragmentation of 2-5
granularity 2-5
named files 2-3, 5-1
physical files 2-3, 6-1
stream files 2-3, 7--1--

formats of volumes 6-1--
fragmentation of files 2-5

GET$DEFAULT$PREFIX 8-99
GET$DEFAULT$USER 8-101
GET$TlME 8-103
granularity of files 2-5
group 5-5

I/O result segment C-1
INSPECT$USER 8-104
INTEGER A-I
IORS C-1

Logical Devices E-1

named files 2-3, 5-1
access control 5-7
system calls for 5-11

object type codes B-1
OFFSET A-I
organization of manual 1-1
owner of a file 5-8

path 5-2, 5-3
path name 5-3
physical files 2-3, 6-1
POINTER A-I
prefix parameter 5-3, 8-1

response mailbox parameter 8-4

SET$DEFAULT$PREFIX 8-105
SET$DEFAULT$USER 8-107
SET$TIME 8-109
stream files 2-3, 7-1
STRING A-I
subpath parameter 5-3, 8-1
synchronous system calls 2-1
system call dictionary 8-6
system calls 8-1
system programmers 3-1, 8-1

INDEX

Index-2

temporary files 8-31
TOKEN A-I
type codes B-1

user 5-5
user object 5-6
user parameter 8-1
volumes 3-2

WORD A-I
World 5-6

INDEX

Index-3

REQUEST FOR READER'S COMMENTS

iRMX 861M Basic I/O System
Reference Manual

9803123-04

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, or{f.anization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ DATE ____________ _

TITLE

COMPANY NAME/DEPARTMENT __ _

ADDRESS __ __

C I TV __ STAT E ______ ZIP CO D E ________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

O.M.S. Technical Publications

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	8-001
	8-002
	8-003
	8-004
	8-005
	8-006
	8-007
	8-008
	8-009
	8-010
	8-011
	8-012
	8-013
	8-014
	8-015
	8-016
	8-017
	8-018
	8-019
	8-020
	8-021
	8-022
	8-023
	8-024
	8-025
	8-026
	8-027
	8-028
	8-029
	8-030
	8-031
	8-032
	8-033
	8-034
	8-035
	8-036
	8-037
	8-038
	8-039
	8-040
	8-041
	8-042
	8-043
	8-044
	8-045
	8-046
	8-047
	8-048
	8-049
	8-050
	8-051
	8-052
	8-053
	8-054
	8-055
	8-056
	8-057
	8-058
	8-059
	8-060
	8-061
	8-062
	8-063
	8-064
	8-065
	8-066
	8-067
	8-068
	8-069
	8-070
	8-071
	8-072
	8-073
	8-074
	8-075
	8-076
	8-077
	8-078
	8-079
	8-080
	8-081
	8-082
	8-083
	8-084
	8-085
	8-086
	8-087
	8-088
	8-089
	8-090
	8-091
	8-092
	8-093
	8-094
	8-095
	8-096
	8-097
	8-098
	8-099
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

