
-

iRM)(TM86
CONFIGURATION GUIDE

Order Number: 9803126-04

.
Copyright © 1980, 1981 Intel Corporation

--
I

Intel Cor ration 3065 Bowers Avenue Santa Clara California 95051 po

REV. REVISION HISTORY

-03 Adds information on Nucleus, Terminal
Handler, and Debugger component configur-
ation; adds chapters on Extended I/O
System and Human Interface configuration;
corrects technical and typographical errors;
and documents Release 3 of the iRMX 86
Operating System.

-04 Adds information on iSBC 208, iSBX 270,
terminal and line printer drivers; corrects
technical and typographical errors; and
documents Release 4 of the iRMX 86
Operating System.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The Information in this document is subject to change without notice.

PRINT
DATE

5/81

12/81

Intel Corporation makes no warrallty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined as
ASPR 7·104.9{a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
producta:

BXP Insite iSBC Multibus
CREDIT Intel iSBX Multimodule

inY Library Manager Plug·A·Bubble
ICE Intelevision MeS PROMPT
iCS Intellec Megachassis RMXl80
;", iOSP Micromainframe System 2000
iMMX iRMX Micromap UPI

A530/1281/4K PS

PREFACE

The iRMX 86 Operating System is a software package that provides a
realtime, multitasking environment for Intel iAPX 86-based
microcomputers, including the iSBC 86/l2A single board computer. This
manual contains the instructions that you need to configure an iRMX 86
application system using Release 3.0 of the iRMX 86 Operating System. By
following the instructions in this manual, you can use an INTELLEC Series
II or Series III Microcomputer Development System to build an iRMX 86
system.

READER LEVEL

This manual assumes that you are a system programmer, experienced in
dealing with operating systems. In particular, it assumes you are
familiar with the following:

• The iRMX 86 Operating System and the iRMX 86 reference manuals

• The 8086/8087/8088 Macro Assembly Language and/or PL/M-86

• The INTELLEC Series II or Series III Microcomputer Development
System

• LINK86 and LOC86

• The notions of segments, groups, and classes as they apply to
assembly language, PL/M-86, LINK86 , and LOC86

NOTATIONAL CONVENTIONS

The following conventions are used to show syntax in this manual:

UPPERCASE Information appearing in uppercase must be entered or
coded exactly as shown. This information, however, can
actually be entered in uppercase or lowercase.

lowercase Fields appearing in lowercase indicate variable
information. The user must enter the appropriate value or
symbol for variable fields.

iii

I

I

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to users of this manual.

Manual

Introduction to the iRMX- 86 Operating System

iRMXM 86 Installation Guide

iRMXM 86 Nucleus Reference Manual

iRMXM 86 Terminal l~ndler Reference Manual

iRMXM 86 Debugger Reference Manual

iRMXM 86 Basic I/O System Reference Manual

iRMXM 86 Extended I/O System Reference Manual

iRMXM 86 Loader Reference Manual

iRMXM 86 Human Interface Reference Manual

iRMXM 86 System Programmer's Reference Manual

iRMXM 86 Programming Techniques Manual

Guide to Writing Device Drivers for the iRMX- 86 and
iRMXM 88 I/O Systems

ISIS-II User's Guide

INTELLEC Series III Microcomputer Development System Console
Operating Instructions

PL/}1-86 User's Guide for 8086-Based Development Systems

PL/M-86 Programming Manual for 8080/8085-Based Development
Systems

PL/M-86 Compiler Operating Instructions for 8080/8085-Based
Development Systems

8086/8087/8088 Macro Assembly Language Reference Manual for
8086-Based Development Systems

iv

Number

9803124

9803125

9803122

143324

143323

9803123

143308

143318

9803202

142721

142982

142926

9800306

121609

121636

9800466

9800478

121627

8086/8087/8088 Macro Assembly Language Reference Manual for
8080/808S-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions for
8086-Based Development Systems

-8086/8087/8088 Macro Assembler Operating Instructions for
8080/808S-Based Development Systems

iAPX 86,88 Family Utilities User's Guide for 8086-Based
Development Systems

8086 Family Utilities User's Guide for 8080/808S~Based
Development Systems

The 8086 Family User's Manual

The 8086 Family User's Manual - Numerics Supplement

ICE-86 In-circuit Emulator Operating Instructions for
ISIS-II Users

iSBC· 9S7A INTELLEC - iSBC 86/12A Interface and Execution
Package User's Guide

User's Guide for the iSBC· 9S7B iAPX 86, 88 Interface and
Execution Package

Universal PROM Programmer User's Manual

v

12.1623

121628

121624

121616

9800639

9800722

121586

9800714

142849

143979 I
9800819

CONTENTS

CHAPTER 1
INTRODUCTION
Configuration Environment ••
Tasks, Jobs, and the Initial System ••••••••••••••••••••••••••••••••
Types of System Configuration ••••••••••••••••••••••••••••••••••••••
Us ing Thi s Ma.nua 1 ••

CHAPTER 2
PROCEDURAL OVERVIEW ••

CHAPTER 3
PREPARING JOBS FOR SYSTEM CONFIGURATION
Preparing Application Jobs ••

Language Requirements ••
INCLUDE Files ••
Size Control Considerations .•••••••••••••••••••••••••••••••••••••
Initialization .••••••••••••••••••••••

Preparing the Subsystems ••••••••••••••.

CHAPTER 4

.

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM
General System I..ayout ••.•••••••.••••••.••.••.••••••••••••••• ' •••••••

System Type ••
High and Low Location of Modules •••••••••••••••••••••••••••••••••
~{odule Order ..•••
Preparing a Memory Map •••

Link and Locate the Subsystems and Application Jobs ••••••••••••••••
Linking and Locating the Subsystems ••••••••••••••••••••••••••••••

Ove rview ••.••
Preparing Diskettes ••
Placing Diskettes in the Proper Drives •••••••••••••••••••••••••
Using a Series III Development System ••••••••••••••••••••••••••

Linking and Locating Application Jobs ••••••••••••••••••••••••••••
Linking Application Jobs •••••••••••••••••••••••••••••••••••••••
Locating Application Jobs ••••••••••••••••••••••••••••••••••••••

The Iterative Link and Locate Process ••••••••••••••••••••••••••••
Build the Configuration File •••••••••••••••••••••••••••••••••••••••

%JOB Macro •••
Data Segment Allocation ••
Stack Allocation •••

%SAB Macro •••
%SYSTEM Ma.cro ••
Macro Parameters for Subsystems ••••••••••••••••••••••••••••••••••
Creating the Configuration File ••••••••••••••••••••••••••••••••••

Generate the Root Job ••••••••••••••• ~ ••••••••••••••••••••••••••••••
Load and Test the System •••

vii

Page

1-3
1-3
1-5
1-5

2-1

3-1
3-2
3-2
3-3
3-3
3-5

4-1
4-2
4-2
4-2
4-3
4-8
4-8
4-8
4-9
4-10
4-10
4-11
4-13
4-14
4-15
4-22
4-23
4-27
4-27
4-28
4-30
4-33
4-37
4-38
4-39

CONTENTS (continued)

CHAPTER S
CONFIGURING THE FINAL ROM/RAM-BASED SYSTEM
Minimizing the Memory Address Space ••••••••••••••••••••••••••••••••
Locating the ROM/RAM-based System ••••••••••••••••••••••••••••••••••

Prepare a Memory Map •••
Locate the MOdules •••

Testing the System in RAM ••••••••••••••••• ~ ••••••••••••••••••••••••

CHAPTER 6
CONFIGURING THE NUCLEUS
Modifying NTABLE.A86 •••

Selecting Nucleus Internal Features ••••••••••••••••••••••••••••••
Parameter Validation ••••••••••••••••••••••••••••••••• ~ •••••••••
System Default Exception Handler •••••••••••••••••••••••••••••••

Selecting Nucleus System Calls •••••••••••••••••••••••••••••••••••
MOdifying NDEVCF.A86 •••

Programmable Interrupt Controller (PIC) Configuration ••••••••••••
DfA.STER· PIC Macro •••••••• eo •••••••••••••••••••••••••••••••••••••••

%SLAVE PIC Macro •••
Programmable Interval ~imer (PIT) Configuration ••••••••••••••••••
8087 NDP Configuration •••

Maximal, Default, and Minimal Configuration ••••••••••••••••••••••••
Assembling the Configuration Files, Linking and Locating the Nucleus
Nucleus Initialization Errors ••••••••••••••••••••••••••••••••••••••

Nucleus and Memory Initialization Errors •••••••••••••••••••••••••
Root Task Errors •••

CHAPTER 7
CONFIGURING THE TERMINAL HANDLER
Modi'fying MCONFG.A86 •••

%TH 19000 BAUD COUNT Macro •• - -. -»fIR Ma.c r o. •
%TH USART Macro ••
%TH-rlMER Macro •••••••• ~ •••
%TH-CHAR LENGTH Macro ••
%TH-MAILBOX NAMES Macro ••
%TH-INT LEVELS Macro ••• • '.

Assembling MCONFG.A~6, Linking and Locating the Terminal Handler •••
MTH.CSD Modifications ••
Submitting MTH.CSD •••

Creating Multiple Versions of the Terminal Handler •••••••••••••••••

CHAPTER 8
CONFIGURING THE DEBUGGER

Page

S-1
S-2
5-3
S-4
5-5

6-2
6-3
6-3
6-4
6-5
6-6
6-7
6-7
6-8
6-8
6-9
6-10
6-11
6-11
6-12
6-12

7-1
7-2
7-3
7-4
7-5
7-5
7-6
7-6
7-7
7-8
7-8
7-9

Modifying DTHCNF.A86... 8-1
Assembling DTHCNF.A86, Linking and Locating the Debugger........... 8-2

DB.CSD Modifications... 8-2
Submitting DB.CSD.. 8-2

viii

CONTENTS (continued)

CHAPTER 9
CONFIGURING THE BASIC I/O SYSTEM
INCLUDE Files ••
Selecting Non-File/Connection Interface Features (ITABLE.A86) ••••••
Selecting the File/Connection Interface Features (ITABLE.A86) ••••••

File Driver Global Data ••
File Driver Tables •••

Selecting Features (ITABLE.A86) ••••••••••••••••••••••••••••••••••••
Describing the I/O Devices (IDEVCF.A86) ••••••••••••••••••••••••••••

Device Numbering •••
Device-Unit Information Blocks •••••••••••••••••••••••••••••••••••
Device And Unit Information Tables •••••••••••••••••••••••••••••••

Common Device Driver Tables ••••••••••••••••••••••••••••••••••••
Random Access Device Driver Tables •••••••••••••••••••••••••••••

Device Driver Tables for Intel-supplied Device Drivers •••••••••••
iSBC 204 Driver ••
iSBC 206 Driver ••
iSBC 208 Driver ••
iSBC 2l5/iSBX 2l8/iSBC 220 Driver ••••••••••••••••••••••••••••••
iSBC 254 Driver ••
Line Printer Driver ••
iSBC 86/12A On Board USART •••••••••••••••••••••••••••••••••••••
iSBC 86 Terminal Driver ••
iSBX 270 Terminal Driver •••••••••••••••••••••••••••••••••••••••
Byte Bucket Driver •••

General Device Information ••••••••••••••••••••••••••••••••••••••
Assembling the Configuration Files, Linking and Locating the

Basic I/O System •••
Basic I/O System Initialization ••••••••••••••••••••••••••••••••••••

CHAPTER 10
CONFIGURING THE APPLICATION LOADER
Modifying LDRCNF.P86 •••
Compiling LCONFG.P86, Linking and Locating the Loader ••••••••••••••

CHAPTER 11
CONFIGURING THE BOOTSTRAP LOADER
First Stage Configuration ••

%CONSOLE 'Ma.c ro •••
%MANUAL Macro ••
%AUTO Ma.cro ••
%DEFAULTFILE Macro •••
%DEVICE Ma.cro ••
%END Macro •••

Driver Configuration •••
Intel-Supplied Procedures ••

iSBC 204 Device Driver •••••••••••••••••••••••••• ' •••••••••••••••

ix

Page

9-3
9-3
9-5
9-5
9-7
9-18
9-20
9-20
9-21
9-27
9-27
9-29
9-30
9-32
9-34
9-36
9-37
9-39
9-40
9-41
9-41
9-46
9-48
9-49

9-49
9-50

10-1
10-2

11-1
11-2
11-3
11-3
11-3
11-3
11-4
11-4
11-5
11-5

CONTENTS (continued)

CHAPTER 11 (continued)
iSBC 206 Device Driver •••
iSBC 208 Device Driver •••
iSBC 215/220 Device Driver •••••••••••••••••••••••••••••••••••••
iSBC 254 Device Driver •••

User-Supplied Procedures •••
Assembling the Configuration Files, Linking and Locating the

Bootstrap Loader •••

CHAPTER 12
CONFIGURING THE EXTENDED I/O SYSTEM
Selecting System Calls (ETABLE.A86) ••••••••••••••••••••••••••••••••
Selecting Logical Devices (EDEVCF.A86) •••••••••••••••••••••••••••••
Selecting I/O Jobs (EJOBCF.A86) ••••••••••••••••••••••••••••••••••••

%10 USER Macro ••
%10 JOB Macro •••

Assembling the Configuration Files, Linking and Locating the
Extended I/O System ••

Extended I/O System Initialization •••••••••••••••••••••••••••••••••

CHAPTER 13
CONFIGURING THE HUMAN INTERFACE
Modifying HCONFG.A86 ••••••••••••••••••••••••••••••••••••.••••••••••
Compiling HCONFG.A86, Linking and Locating the Human Interface •••••
Human Interface Requirements •••••••••••••••••••••••••••••••••••••••

Terminal Handler or Debugger Requirements ••••••••••••••••••••••••
Basic I/O System Requirements ••••••••••••••••••••••••••••••••••••••

Extended I/O System Requirements •••••••••••••••••••••••••••••••••
Creating Human Interface Volumes •••••••••••••••••••••••••••••••••••
Creating Human Interface Commands ••••••••••••••••••••••••••••••••••

Using a Series III Development System ••••••••••••••••••••••••••••
Using a Series II Development.System •••••••••••••••••••••••••••••
Additional Requirements for Absolute Code ••••••••••••••••••••••••

APPENDIX A
EXAMPLE SYSTEM CONFIGURATION
Prepare a Memory Map ••••••••••••••• · ••••••••••••••••••••••••••••••••
Configure the Subsystems and Link and Locate the System ••••••••••••

Prepare, Link, and Locate the Nucleus ••••••••••••••••••••••••••••
Prepare, Link, and Locate the Debugger •••••••••••••••••••••••••••
Allow Space for the Root Job •••••••••••••••••••••••••••••••••••••

Link the Application Job •••
Locate the Application Job •••
Build the Configuration File •••••••••••••••••••••••••••••••••••••••

%JOB Macro Calls •••
Debugger %JOB Call •••
Application Job %JOB Call ••••••••••••••••••••••••••••••••••••••

x

PAGE

11-6
11-7
11-7
11-9
11-9

11-10

12-3
12-4
12-6
12-7
12-8

12-10
12-11

13-1
13-4
13-5
13-5
13-5
13-6
13-7
13-8
13-7
13-9
13-10

A-2
A-4
A-6
A-10
A~12-

A-12·
A-13
A-l5
A-lS
A-1S
A-17

CONTENTS (continued)

APPENDIX A (continued)
%SAB Macro Calls •••
%SYSTEM Macro Call •••
Create the Actual Configuration File •••••••••••••••••••••••••••••

Generate the Root Job ••
Load the ~ystem •• ••••

APPENDIX B
BURNING THE NUCLEUS INTO 2732 PROM
Requirements ••••••••••••••••••••••••••••••••••••••.••••.•.•••••••••
Locate the Nucleus •••
Burn the Code Into PROM ••

APPENDIX C
SYSTEM CALL USAGE ••

1-1.
1-2.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
5-1.
5-2.
6-1-
6-2.
6-3.
6-4.
7-1.
8-1-
9-1-
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.

FIGURES

iRMX- 86 Application System ••••••••••••••••••••••••••••••••
Initial Job Tree •••
General System Layout ••••••••••••••••••••••••••••••••••••••
System Memory Map ••
Example Memory Map Worksheet •••••••••••••••••••••••••••••••
Subsystem SUBMIT File Procedure ••••••••••••••••••••••••••••
Application Job Link and Locate Procedure ••••••••••••••••••
Example Nucleus Locate Map •••••••••••••••••••••••••••••••••
Entering the Nucleus End Address on the Memory Map •••••••••
%JOB Macro Worksheet •••••••••••••••••••••••••••••••••••••••
%SAB Macro Worksheet •••••••••••••••••••••••••••••••••••••••
%SYSTEM Macro Worksheet ••••••••••••••••••••••••••••••••••••
Memory Layout of a RAM-based System ••••••••••••••••••••••••
Memory Layout of a ROM/RAM System ••••••••••••••••••••••••••
NTABLE.A86 Structure •••••••••••••••••••••••••••••••••••••••
Feature Configuration Table (NTABLE.A86) •••••••••••••••••••
System Call Configuration Table (NTABLE.A86) •••••••••••••••
Component Configuration Table (NDEVCF.A86) •••••••••••••••••
Terminal Handler Configuration File (MCONFG.A86) •••••••••••
Debugger Configuration File (DTHCNF.A86) •••••••••••••••••••
ITABLE.A86 and IDEVCF.A86 Structure ••••••••••••••••••••••••
Non-File/Connection Interface Configuration Values •••••••••
File Driver Global Data Parameters •••••••••••••••••••••••••
Physical File Driver Tables ••••••••••••••••••••••••••••••••
Stream File Driver Tables ••••••••••••••••••••••••••••••••••
Reserved File Driver Tables ••••••••••••••••••••••••••••••••
Named File Driver Tables •••••••••••••••••••••••••••••••••••
Basic I/O System Features ••••••••••••••••••••••••••••••••••
Device Numbering •••
Example DUIB Contained in IDEVCF.A86 •••••••••••••••••••••••
Device Information Table for iSBC 204 Device •••••••••••••••

xi

Page

A-19
A-21
A-23
A-23
A-24

B-1
B-1
B-2

C-1

1-2
1-4
4-3
4-5
4-7
4-9
4-12
4-18
4-21
4-24
4-29
4-31
5-2
5-3
6-2
6-3
6-5
6-6
7-2
8-1
9-2
9-4
9-6
9-8
9-10
9-12
9-13
9-18
9-20
9-26
9-33

9-12.
10-1-
11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
12-1.
12-2.
12-3.
12-4.
13-1.
A-1.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.
A-9.
A-10.
B-1.

3-1.
4-1.

4-2.
4-3.
6-1-
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
C-1.
C-2.
C-3.
C-4.
C-5.
C-6.

FIGURES (continued)

Unit Information Table for iSBC 204 Unit •••••••••••••••••••
Application Loader Configuration File (LCONFG.P86) •••••••••
First Stage Configuration File (BS1.A86) •••••••••••••••••••
Driver Configuration File (B204.A86) •••••••••••••••••••••••
Driver Configuration File (B206.A86) •••••••••••••••••••••••
Driver Configuration File (B208.A86) •••••••••••••••••••••••
Driver Configuration File (B215.A86) •••••••••••••••••••••••
Driver Configuration File (B254.A86) •••••••••••••••••••••••
Structure of Extended I/O System Configuration Files •••••••
System Configuration File (ETABLE.A86) •••••••••••••••••••••
Logical Device Configuration File (EDEVCF.A86) •••••••••••••
I/O Job Configuration File (EJOBCF.A86) ••••••••••••••••••••
Human Interface Configuration File (HCONFG.P86) ••••••••••••
Preparing the Memory l1ap •••••••• " ••••••••••••••••••••••••••
Completed Memory Map •••••••••••••••••••••••••••••••••••••••
Example Nucleus Configuration File •••••••••••••••••••••••••
Nucleus Locate Map •••
De bugger Locate Map ••••••• ' •••••••••••••••••••••••••••••••••
Application Job Locate Map •••••••••••••••••••••••••••••••••
Completed Debugger %JOB Macro Worksheet •• ~ •••••••••••••••••
Completed Application Job %JOB Macro Worksheet •••••••••••••
Completed %SAB Macro Worksheet •••••••••••••••••••••••••••••
Completed %SYSTEM Macro Worksheet ••••••••••••••••••••••••••
UPM SUBMIT File to Burn the Nucleus into PROM ••••••••••••••

TABLES

INCLUDE Files ••••••••••••••••••••••••••.••••••••••••.••••••
Interface Libraries as a Function of PL/M-86 Models
and Subsystems •••••••••••••••••••••••••••• ~ ••••••••••••••••
Suggested %JOB Values for Optional Subsystems ••••••••••••••
Suggested %SYSTEM Values for Optional Subsystems •••••••••••
System-Level and Job-Level Parameter Validation ••••••••••••
Physical File Driver System Calls and Procedure Names ••••••
Stream File Driver System Calls and Procedure Names ••••••••
Named File Driver System Calls and Procedure Names •••••••••
Common and Random Access Driver DUIB Values ••••••••••••••••
Eight Inch Diskette Characteristics ••••••••••••••••••••••••
5 1/4 Inch Diskette Characteristics ••••••••••••••••••••••••
System Calls Used by the Terminal Handler ••••••••••••••••••
System Calls Used by the Debugger ••••••••••••••••••••••••••
System Calls Used by the I/O System ••••••••••••••••••••••••
System Calls Used by the Extended I/O System •••••••••••••••
System Calls Used by the Application Loader ••••••••••••••••
System Calls Used by the Human Interface •••••••••••••••••••

xii

Page

9-34
10-1
11-2
11-5
11-6
11-7
11-8
11-9
12-2
12-3
12-5
12-7
13-2
A-3
A-5
A-6
A-8
A-10
A-13
A-16
A-18
A-20
A-22
B-2

3-3

4-14
4-34
4-36
6-4
9-15
9-16
9-17
9-26
9-31
9-32
C-1
C-2
C-2
C-3
C-3
C-4

CHAPTER 1. INTRODUCTION

The Intel iRMX 86 Operating System is a software package designed for use
with the Intel iAPX 86,88-based microcomputers. It is a powerful and
flexible system around which you can build your application system.

The iRMX 86 Operating System consists of a number of subsystems, some of
which must be included in your application system, and some of which are
optional. The subsystems of the iRMX 86 Operating System are:

•

•

•

•

•

•

•

•

Nucleus

Terminal Handler

Debugger

I/O System

Extended I/O
System

Application
Loader

Bootstrap Loader

Human Interface

This is the core of the iRMX 86 Operating
System and is required by every application
system. It provides services for the remainder
of the software running in the system.

This is an optional subsystem that provides a
real-time interface between your terminal and
other software running under the supervision of
the Nucleus.

This is an optional subsystem that provides a
facility for debugging and monitoring software
running under the supervision of the Nucleus.

This is an optional subsystem that provides
asynchronous file access capabilities for·
software running under the supervision of the
Nucleus.

This is an optional subsystem that provides high
level, synchronous file access capabilities for
software running under the supervision of the
Nucleus.

This is an optional subsystem that provides the
capability to load object files into memory
from disk under the control of the Operating
System.

This is an optional subsystem that provides the
capability to load the other subsystems and/or
application jobs into memory from disk and
begin system execution.

This is an optional subsystem that provides an
interactive interface between a user and
software running under the supervision of the
Nucleus.

1-1

INTRODUCTION

Software that you create runs in an iRMX 86 application system using the
facilities of the Nucleus and the other subsystems.

Configuration consists of selecting the subsystems that are appropriate
for your system, tailoring them to meet your individual needs, and
combining them with your own application software to form a functional
application system. Figure 1-1 illustrates this.

PARTS OF iRMX 86
OPERATING SYSTEM

BOOTSTRAP
LOADER

EXTENDED
1/0 SYSTEM

APPLICATION
LOADER

DEBUGGER

TERMINAL
HANDLER

lID
SYSTEM

z c:
n
:;;
c:
U>

C
m
III
c:
COl
COl
m
:II

O SELECT PARTS OF iRMX 86
1 OPERATING SYSTEM

REQUIRED BY
APPLICATION SOFTWARE.

APPLICATION
SOFTWARE

COMBINE APPLICATION
.-}. SOFTWARE WITH iRMX 86
~ OPERATING SYSTEM TO FORM

APPLICATION SYSTEM.

Figure 1-1. iRMXM 86 Application System

1-2

INTRODUCTION

CONFIGURATION ENVIRONMENT

The INTELLEC Microcomputer Development System provides the environment in
which you create your application system. With the development system
you can code and translate your user software, and link and locate the
various components of the application system. Upon completion, you can
load your iRMX 86 application system from the INTELLEC development system I
into an iAPX 86,88-based microcomputer using the ICE-86 in-circuit
emulator, or the iSBC 957A/B package.

The development system can also be used to run the Files Utility
(described in the iRMX 86 INSTALLATION GUIDE). The Files Utility can
format iRMX 86 disks and copy your system onto disk. Then you can use
the Bootstrap Loader to load your system.

TASKS, JOBS, AND THE INITIAL SYSTEM

Tasks are the active parts of an iRMX 86 application system. The
subsystems contain tasks that perform some of the functions of the
Operating System. Your application software also consists of one or more
tasks. Each task is part of a job. A job is the environment in which
tasks run; thus a job consists of tasks and the resources that they use.
The iRMX 86 NUCLEUS REFERENCE MANUAL describes this in detail.

The jobs in a system form a hierarchy. A task in one job can create
other jobs. Tasks in the new jobs can create still other jobs, and so
forth. The jobs which contain tasks that create other jobs are called
parent jobs, and the jobs they create are their offspring.

Task and job creation is a dynamic process. However, when you configure
a system, you specify an initial system which is created automatically
when the system starts executing. The job tree for an initial system
consists of an ultimate parent job called the root job and a number of
its offspring called first-level jobs. Intel supplies the root job.
Some of the first-level jobs are jobs for the subsystems that your
application system requires (the Debugger, the Terminal Handler, the I/O
System, the Extended I/O System, the Application Loader, and/or the Human
Interface). Intel also supplies these jobs as part of the subsystems.
The remainder of the first-level jobs are Jobs that you provide. Figure
1-2 illustrates an initial job tree.

1-3

INTRODUCTION

ROOT JOB

SUBSYSTEM 1 SUBSYSTEM N APPLICATION APPLICATION
FIRST·LEVEL ••• FIRST·LEVEL FIRST-LEVEL • •• FIRST·LEVEL

JOB JOB JOB 1 JOB N

Figure 1-2. Initial Job Tree

First-level jobs can spawn a number of offspring jobs~ beginning the
dynamic tree structure of the system. The iRMX 86 NUCLEUS REFERENCE
MANUAL describes how to create new tasks and jobs. However, in order to
create all of its offspring jobs, a first-level job must be able to
determine where in memory the code for all of its offspring tasks
resides. You provide this ability in one of two ways:

o The easiest and most common way is by linking a first-level job
and all of its offspring jobs together in one link module. This
allows tasks in the first-level job to use symbolic names to
specify the start addresses and data segment bases in calls to
CREATE$JOB.

o If the code is too large to link together in one module, you can
link and locate the tasks separately. However~ this prevents
some tasks from referring to other tasks with symbolic names. In
this case, when a task in the first-level job creates offspring
jobs or tasks, it must specify absolute values for the start
address and data segment base parameters of CREATE$JOB or
CREATE$TASK.

You must use one of these methods for each first-level job that you
create. Chapter 4 contains a further description. When you configure a;
system, you must supply information to the root job about each.
first-level job.

1-4

INTRODUCTION

TYPES OF SYSTEM CONFIGURATION

When you define an iRMX 86 configuration, you may have one of several
goals in mind. You may be putting together your first iRMX 86 system and
thus want to test and debug the entire system. You may have gotten
portions of the system working to your satisfaction, but now want to
correct a few isolated bugs or add a new task or tasks. Or, you may have
completely tested and debugged your system and now want to create the
final Rml-based version.

When building your first system, you should locate your entire system in
RAM only. This saves you the trouble of burning code into PROM, only to
have to reburn it later.

When creating your final system, you must perform additional procedures
because you are locating the system in two different areas of memory, ROM
and RAM. In a ROM/RAM system, you must separate all of the ROM-resident
parts of the system and locate them in ROM.

When building an intermediate system, you have debugged and tested
portions of your system, but are still developing or debugging others.
In this case you have two options. Each time you make a correction you
can use the same initial RAM-on1y configuration, and reload the entire
system into RAM for testing. Or, you can follow the procedures for
locating a ROM/RAM system for the stable portions of your system only,
such as the Nucleus. If you burn the stable portions into PROM, you save
the time of loading each time you generate a new system.

USING THIS MANUAL

Chapter 2 of this manual lists the procedure involved in building an
iRMX 86-based system in step-by-step instructions. You can read Chapter
2 first as an overview and then use it later as an easy reference.

Chapter 3 and Chapters 6 through 13 discuss creating your application
jobs and selecting features of the subsystems that you want to include in
your application system. You should read Chapters 3 and 6 and some or
all of Chapters 7 through 13, depending on which subsystems you are
including in your application system.

Chapter 4 describes locating a test system in RAM. Use it when you are
building your first system. It also contains step-by-step instructions,
but in much more detail than in Chapter 2.

~hapter 5 describes the modification you must make to your RAM configur
ation in order to make it a ROM/RAM configuration. Use it in conjunction
with Chapter 4 to create either an intermediate or final system.

Appendix A contains a sample configuration session for a RAM-based system.

Appendix B describes the process of burning the Nucleus code into PROM.

Appendix C lists the system call requirements of each of the optional
subsystems.

1-5

CHAPTER 2. PROCEDURAL OVERVIEW

The process of defining and building an iRMX 86 application systen
involves a number of steps. The following overview illustrates the main

-points and refers you to appropriate sections of this manual for detailed
descriptions.

1. Build and generate a configuration file for each subsystem that
you are going to include in your system. Refer to Chapter 6 for
a discussion of the Nucleus, Chapter 7 for the Terminal Handler,
Chapter 8 for the Debugger, Chapter 9 for the Basic I/O System,
Chapter 10 for the Application Loader, Chapter 11 for the
Bootstrap Loader, Chapter 12 for the Extended I/O System, and
Chapter 13 for the Human Interface.

2. Write code for and compile all application jobs that you want to
be a part of the application system. Refer to Chapter 3 for
further information.

3. Prepare the memory map for your system. Refer to the "General
System Layout" section of Chapter 4 for further information.

4. Iteratively link and locate each subsystem and first-level
application job in your application system. Record the pertinent
information on the memory map. Refer to the "Iterative Link and
Locate Process" section of Chapter 4 for further information.

5. Build a configuration file containing a %JOB macro for each
subsystem and first-level application job, one or more %SAB
macros, and one %SYSTEM macro. Refer to the "Build The
Configuration File" section of Chapter 4 for further information.

6. Assemble the configuration file and link and locate the root
job. Refer to the "Generate The Root Job" section of Chapter 4
for further information.

7. Using the ICE-86 in-circuit emulator or the iSBC 957A/B package, I
load the system into RAM. Refer to the "Load and Test The
System" section of Chapter 4 for further information.

8. Test and debug the system in RAM. Refer to the "Load And Test
The System" section of Chapter 4 for further information.

9. Layout a ROM/RAM system, but load it into RAM for testing.
Refer to Chapter 5 for further information.

10. Load the final system into ROM/RAM. Refer to Chapter 5 for
further information.

2-1

CHAPTER 3. PREPARING JOBS FOR SYSTEM CONFIGURATION

. Building a system involves linking and locating each job in the iRMX 86
application system and providing the root job with information concerning
the first-level jobs. Before you begin this process, you must make sure
that the pieces of the system, the Intel-supplied jobs and your user
jobs, are ready to be combined. This involves the following of two
operations.

• Preparing application jobs

• Preparing the subsystems

When you begin the configuration process, you do not need to have all the
jobs in your system written, because configuration can be an iterative
process. That is, you can build your initial system with only one
application job, and test it, before adding more jobs into the system.
In this way you can build on a stable system. Or, if all your
application jobs are available, you can build your initial system with
all of your application jobs present, and test and debug the entire
system at once. Regardless of how you build your application system, the
information provided in this chapter allows you to integrate jobs easily
into the iRMX 86 environment.

PREPARING APPLICATION JOBS

You can write the code for your application tasks in either PL/M-86 or
assembly language. This manual assumes that you are using PL/M-86. In
order to use assembly language, you must use version 3.0 of the
8086/8087/8088 Macro Assembly Language and adhere to the PL/M-86 caliing
conventions. These are described in the appropriate 8086/8087/8088 MACRO
ASSEMBLER OPERATING INSTRUCTIONS manual. The iRMX 86 PROGRAMMING
TECHNIQUES manual also contains information to help you write assembly
language tasks.

If you have any problems using the PL/M-86 language or compiling PL/M-86
code, refer to the appropriate PL/M-86 manual, either the PL/M-86
PROGRAMMING MANUAL FOR 8080/808S-BASED DEVELOPMENT SYSTEMS, the PL/M-86
COMPILER OPERATING INSTRUCTIONS FOR 808S-BASED DEVELOPMENT SYSTEMS, or
the PL/M-86 USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS. However, in
order to make use of the features of the iRMX 86 Operating System, you
must follow instructions additional to those provided in the PL/M-86
manuals when writing your code. The following sections provide this
information.

3-1

PREPARING JOBS FOR SYSTEM CONFIGURATIONS

LANGUAGE REQUIREMENTS

Note the following language requirements when writing your task code:

• DeSignate all of your tasks as procedures. Do not use main
modules in your application system.

• If you are compiling your PL/M-86 code using any model other than
large, specify the ROM compiler control. This causes the
compiler to place the CONST segment in the CODE class, where it
can be more easily loaded into ROM. You do not need to specify
the ROM control for those programs compiled using the large
model, because the compiler automatically does this for the large
model.

• Be careful of using the DATA and INITIAL statements. The DATA
statement is valid only if you are using the PL/M-86 large model
of computation or if you specify the ROM compiler control. The
INITIAL statement cannot be used in a procedure if you are going
to place that procedure in ROM. It can be used, however, if you
are going to use the Bootstrap Loader or the Application Loader
to load the procedure.

INCLUDE FILES

There are a number of files contained on the iRMX 86 release diskettes
that can be included with your PL/t1-86 procedures at compilation time.
You must include some or all of these files, depending on the subsystems
your programs make use of. Table 3-1 lists these files according to type
and subsystem. You must include the files in the compilation of your
procedures if those procedures use the system calls of the associated
subsystems. For example, if your procedures make Nucleus and I/O System
system calls, then you must include the four files associated with those
subsystems in the compilation of your procedures.

The INCLUDE files with the extension EXT contain the external PL/M-86
declarations that procedures need in order to use the system calls of the
associated subsystems. You can copy these files, edit them, and
eliminate the external declarations for system calls that you do not use
in your procedures. This can prevent dynamic storage overflow in the
compiler. Refer to the iRMX 86 PROGRAMMING TECHNIQUES MANUAL for further
information.

The INCLUDE files with the extension LIT contain the PL./M-86 declarations
and assignments for the subsystem condition codes.

To include the necessary files in the compilation of your procedures, use
the PL/M-86 $INCLUDE control. Both the PL/M-86 COMPILER OPERATING
INSTRUCTIONS FOR 8080/8085-BASED DEVELOPMENT SYSTEMS and the PL/M-86
USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS describe this control.

3-2

PREPARING JOBS FOR SYSTEM CONFIGURATIONS

Table 3-1. INCLUDE Files

SUBSYSTEM EXTERNAL DECLARATIONS CONDITION CODE
FILE FILE

Nucleus NUCLUS.EXT NEXCEP.LIT

I/O System IOS.EXT IEXCEP.LIT

Application Loader LOADER. EXT LEXCEP.LIT

Extended I/O System EIOS.EXT EEXCEP.LIT

Human Interface HI.EXT

SIZE CONTROL CONSIDERATIONS

Part of the configuration process requires selectively locating various
modules of the system (as described in Chapter 4). When you use class
names on segment declarations you simplify this procedure. The PL/M-86
compiler provides standard class designators for various segments of a
program module. However, when writing your application code, be aware
that the assignment of segments, classes, and groups in the PL/M-86
output module varies according to the size control specified with the
PL/M-86 compiler call. (Refer to the PL/M-86 COMPILER OPERATING
INSTRUCTIONS FOR 8080/8085-BASED DEVELOPMENT SYSTEMS or the PL/M-86
USER'S GUIDE FOR 8086-BASED DEVELOPMENT SYSTEMS for details.)

The size control of the PL/M-86 compiler call also determines how certain
registers are initialized. The next chapter discusses this in detail.
It is recommended that you use the same PL/M-86 size control for all of
your PL/M-86 jobs, and that any assembly language modules be compatible
with this control.

INITIALIZATION

When you configure an application system, you specify an initial system
consisting of a root job and several first-level jobs. When the system
starts executing, the Nucleus creates the root job. A task in the root
job, the root task, then creates each of the first-level jobs. Tasks in
the first-level jobs create the remainder of the application system.

/ 3-3

PREPARING JOBS FOR SYSTEM CONFIGURATIONS

When created, each first-level job contains only a single task. That
single task creates or starts the creation of all other objects required
by the first-level job. Thus it is referred to as th~ initialization
task for its job, even though it may perform other functions as well. It
is:[mportant for you to synchronize the operation of each initialization
task with that of the root task to ensure proper functioning of your
application system.

The root task is structured so that it creates the first-level jobs one
~t a time. It contains a programming loop that in general performs the
following:

Repeat for each first-level job

1. Create first-level job

2. Suspend root task (until resumed by a first-level job)

Until finished

End

Each time the root task creates a first-level job, the root task suspends
itself to allow the initialization task in the new job to perform
synchronous initialization. Synchronous initialization consists of
functions that must be performed immediately, bef9re some other
first-level job is created. Typically, this requires creating objects or
making resources availaple that tasks in first-level jobs not yet created
expect to be available when they themselves are created. (For example,
the initialization task in the I/O System job must .create the entire I/O
System before it can allow the root task to create other first-level jobs
that might make use of I/O System functions.)

When the initialization task finishes its synchronous initialization, it
must inform the root task that it is finished, so that the root task can
resume execution and create another first-leve~>jab. The initialization
task must al~ays inform the root task that it has completed its
synchronous initialization process by making the following procedure call:

CALL RQENDINIT$TASK;

This procedure call is not ,described in any other manual. It requires no
parameters. When you call this procedure, the root task resumes
execution, allowing it to create the next first-level job. You must
include a call to RQENDINIT$TASK in the initialization task of each of
your first-level jobs, even if the jobs require no synchronous
initialization. If one of the first-level tasks does not include this
call, the root job remains suspended and cannot create any of the
remaining first-level jobs. File NUCLUS.EXT contains the external
declaration for this RQENDINIT$TASK and the Nucleus interface library
(described in Chapter 4) contains its code.

3-4

PREPARING JOBS FOR SYSTEM CONFIGURATIONS

The amount of synchronous initialization that an initialization task must
do depends on your job structure. You may require some of your
initialization tasks to create all of the offspring jobs and a number of
other objects before calling RQENDINIT$TASK. Some others may only have
to perform one or two functions, call RQENDINIT$TASK, and then resume
the process of initialization asynchronously. Still other initialization
tasks may not have any synchronous initialization requirements and so can
~call RQENDINIT$TASK before performing any initialization. You must
determine how the pieces' of your system interact, and how they must be
synchronized.

Another important factor in initialization is the order in which the root
job creates the first-level jobs. The amount of processing your
initialization tasks must do before calling RQENDINIT$TASK may depend
on which jobs the root task has already created and which jobs it has yet
to create. The order in which the root task creates first-level jobs
depends on the order that you specify these jobs in a configuration file,
not on,the priority of the tasks in those jobs. (Refer to the
description of the %JOB macro in Chapter 4.) Always specify the %JOB
calls for the subsystems first, so that they are created and initialized
first and are available to all other jobs. The order in which you
specify your other first-level jobs depends on your application system.

You should always use RQENDINIT$TASK as described in this section in
order to perform your synchronous initialization. Do not attempt to
accomplish the same function by temporarily raising and lowering task
priorities. The iRMX 86 Operating System does not guarantee that your
tasks will execute in the correct order if you use priorities to
determine initialization order.

PREPARING THE SUBSYSTEMS

The subsystems have been created in a manner that allows you to choose
system calls and features that you want to have available in your
system. To prepare them, you must create tables that select or omit
features. You must create these tables in a format understandable to the
8086/8087/8088 Macro Assembler, assemble them, and link them to the
subsystems. The details of preparing individual subsystems are contained
in Chapters 6 through 11.

r5

CHAPTER 4. LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

After you have prepared your application jobs and the subsystems, you
should locate your first system entirely in RAM to facilitate testing and
debugging of your programs. It is much easier to test and debug your
programs in RAM than it is to continually reburn your PROMs when you
detect errors. After debugging in RAM, you can locate the final system
in ROM/RAM or copy it to a secondary storage device and load it with the
Bootstrap Loader.

Putting together a RAM-based system consists of the following steps:

1. Laying out the system

2. Linking and locating the Nucleus and application jobs

3. Building the configuration file

4. Generating the root job

5. Loading and testing the system

If you wish, the linking and locating can be separate steps. That is,
you can use LINK86 to link any or all of your subsystems and jobs before
ever starting the locate process. However, because the release diskettes
for each subsystem contain SUBMIT files that link and locate the
subsystems in one step, this manual considers the link and locate
processes together. The following sections discuss the steps in more
detail.

GENERAL SYSTEM LAYOUT

Linking and locating a system is an iterative process. That is, you must
link and locate one first-level job and the offspring jobs, examine the
locate maps to determine the ending address, and use that information to
link and locate the next first-level job and offspring jobs. Therefore,
before you use LINK86 to link the pieces of your system together and
LOC86 to assign absolute memory addresses, you must decide where in
memory to start locating the pieces, and in which order to locate them.
The following sections discuss the various factors that you must consider
when laying out your system.

4-1

SYSTEM TYPE

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

NOTE

This manual assumes that you link each
first-level job together with its
offspring jobs to produce a single link
module, referred to as the first-level
job, which you then locate at an
absolute address. If you do not link
your jobs together, you should follow
the same locate procedure outlined in
this chapter, but locate every job, not
just the first-level jobs.

At first, when creating an initial test system, you should locate all of
your modules in RAM. This allows you to layout the system on a
job-by-job basis. You can locate all segments associated with one job
(code segments, data segments, etc.) sequentially in RAM and locate all
segments of the next job following the first.

Later, if you locate a final ROM/RAM system, you must locate the system
by class, not by job. You must locate the code classes from all of the
jobs at ROM addresses, and the data, stack, and memory classes at RAM
addresses. Chapter 5 describes locating a ROM/RAM system. For now,
however, layout your system on a job-by-job basis, totally in RAM.

HIGH AND LOW LOCATION OF MODULES

You can locate the system either high or low in memory. When locating
high in memory, assign the first module to the numerically largest
absolute memory locations and the succeeding modules to numerically
smaller locations. When locating low in memory, assign the first module
to the numerically smallest memory locations and the succeeding modules
to numerically larger locations. This manual assumes low location of
modules because it is the easiest method to use with the iterative link
and locate process that this chapter describes.

MODULE ORDER

The order in which you layout your modules in memory should depend on
the relative stability of the modules. You must later create a system
configuration file that contains addresses of various parts of your
system. If you can keep the stable portions of your system located at
constant addresses, you can minimize modifications to the system
configuration file.

4-2

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Although you can change the sizes of the Nucleus and the subsystems by
reconfiguring them, it is likely that their sizes will remain constant
during your development cycle. Therefore, locate these modules first.
Locate any of your application jobs that are subject to change later in
memory, so that their size fluctuations do not necessitate changing the
addresses of the other modules. In general, layout your system as shown
in Figure 4-1.

• • •
APPLICATION FIRST-LEVEL

JOBS

ROOT JOB

OPTIONAL SUBSYSTEM
FIRST-LEVEL JOBS

NUCLEUS

LOW RAM ADDRESSES

Figure 4-1. General System Layout

Notice that Figure 4-1 illustrates locating the root job. Later sections
of this chapter discuss the root job. For now, just note its position in
the system layout.

As you continue to test and debug your system, you may wish to create a
fairly stable system with just a few user jobs and use that system as a
base on which to build, testing and debugging each new job you add before
adding others. If so, use the layout shown in Figure 4-1 for your first
system and locate any new jobs you add at the end, where there is space
available for them to grow during the debugging period.

PREPARING A MEMORY MAP

After you have decided in general how to layout your system, prepare a
memory map to indicate this. Figure 4-2 is a worksheet that you can use
for this. To prepare a memory map, do the following:

4-3

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

1. In the right column of the worksheet, record the highest RAM
"/If')

address in y..dUr system. Notice that addresses corresponding to
the begin~ing and end of the interrupt vector and reset vector
have already been recorded. The locations 40:0 through 6F:F are
reserved for the iSBC 957A monitor and the locations 40:0 through
7F:F are reserved for the iSBC 957B monitor. The locations 80:0
through FF:F (marked free space on the worksheet) are reserved
for future use and locations 100:0 through 103:F are reserved for
wake-up addresses. The wake-up address space reserved allows
room for four one page wake-up address areas. The first of these
is used by the default iSBC 215/220 configuration and maps to its
default base port address of 100. Adhering to these
recommendations for reserved addresses allows you to use the
default addresses supported by the iRMX 86 Basic I/O subsystem.

2. In the center column of the worksheet, list the modules in the
order you wish to locate them, one to a line, with the first
module (the Nucleus) closest to ~he bottom of the worksheet.

3. In the right column, on the same line as the first module, record
the lowest available RAM address. Use this value when locating
the first module.

After you have made this map, use it during the link and locate procedure
to condense the important information from the locate maps. You can use
it to record the starting and ending locations of the modules, as well as
other important information, such as entry points and data segment bases.

4-4

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

iRMX- 86 SYSTEM MEMORY MAP WORKSHEET

Configuration file name: __ ___

Start address/
Data segment base

Module Length

(reserved)

reset vector

Wake-up addresses

Free space

iSBC 957A/B monitor

Interrupt vector

Figure 4-2. System Memory Map

4-5

Absolute
Address

FFFF:F

FFFF:O

104:0

100:0

80:0

40:0

0:0

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Example:

This example shows how to prepare a memory map worksheet for a sample
system. The sample system has the following characteristics:

• 128K of contiguous RAM exists in the system. Thus the highest
RAM address is IFFF:F.

• The system consists of four modules: the NUcleus, the Debugger, a
first-level application job, and the root job.

• The iSBC 957B package is going to be used to load the system into
memory. Therefore, the lowest available address is 80:0. If the
iSBC 957A package were to be used to load the system into memory,
the lowest available address would be 70:0.

u,n ... ~,\...~., ,~."
• The wake-up address space is to be reserved for an iSBC 215. The ~'.

configuration fo this device requires a default port address of
100:0.

Figure 4-3 shows a prepared memory map for this system. When the modules
are located, actual addresses can be recorded on this worksheet.

4-6

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

iRMX- 86 SYSTEM MEMORY MAP WORKSHEET

Configuration file name: ______________________________ ~ ____________ ___

Start address!
Data- segment base

Module Length

(reserved)

reset vector

Highest RAM address

Application Job

Root Job

Debugger

Nucleus

iSBe 215 wake-up address

Free space

iSBe 957B monitor

Interrupt vector

Figure 4-3. Example Memory Map Worksheet

4-7

Absolute
Address

< FFFF:F

FFFF:O

1FFF:F

104:0

100:0

80:0

40:0

0:0

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

LINK AND LOCATE THE SUBSYSTEMS AND APPLICATION JOBS.

After you have laid out your system, you can begin the iterative process
of linking and locating your system. The following sections discuss this
process. The first two sections discuss the procedures used to link and
locate individual subsystems and application jobs. The third section
describes how you must combine these individual link and locate processes
and put together the entire application system.

LINKING AND LOCATING THE SUBSYSTEMS

The release diskette for each subsystem contains a SUBMIT file that
assembles the subsystem's configuration files, links the necessary
modules together, and locates the subsystem at an absolute address.
These SUBMIT files can be run on a Series II Microcomputer Development
System. Chapters 6 through 11 identify the SUBMIT files for each
subsystem and describe their parameters. This section provides an
overview of the general process, describes some restrictions that you
must adhere to in order to use the SUBMIT files as released, and
describes the modifications you must make to the SUBMIT files if you run
them on a Series III Microcomputer Development System.

Overview

Figure 4-4 illustrates the procedure that most of the subsystem SUBMIT
files follow in order to produce linked and located subsystems. This
procedure includes assembling (or compiling) the subsystem configuration
file or files, linking the object files together with the subsystem
library or libraries (Which contain the actual code for the subsystem)
and any necessary interface libraries, and locating the resulting link
module at absolute addresses. You can examine the individual SUBMIT
files to determine the commands used, if you wish. However, after you
have modified your subsystem configuration files to reflect your desired
system, prepared the diskettes correctly, and placed them in the proper
Series II development system disk drives, you need only use the ISIS-II
SUBMIT command to run the SUBMIT files. (If you use a Series III
development system, you will have to make additional modifications to the
SUBMIT files in order to take advantage of the Series III capabilities.)

4-8

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

SUBSYSTEM
CONFIGURATION

FILE(S)

ASM86
OR

PLM86

CONFIGURATION
OBJECT FILE(S)

SUBSYSTEM INTERFACE LIBRARIES
LIBRARY OR (EXCEPT FOR NUCLEUS)
LIBRARIES

I
LINK 86

LOC86

Figure 4-4. Subsystem SUBMIT File Procedure

Preparing Diskettes

When you configure individual subsystems, you should never make
modifications to the actual release diskettes. If you want to change any
of the files on the release diskettes,' such as the subsystem
configuration files (named file.A86 or file.P86) or the SUBMIT files
(named file.CSD), copy these files to another diskette first.

4-9

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Placing Diskettes in the Proper Drives

In order to use the subsystem SUBMIT files as they are released, you must
place your diskettes in the proper drives of the INTELLEC development
system. All subsystem SUBMIT files assume that you have a four drive
development system and that you have placed diskettes in the drives as
follows:

FO A system disk containing LINK86, LOC86, ASM86 (version 3.0),
and/or PLM86, as well as COPY, DELETE, and SUBMIT.

Fl A diskette on which you should place any modified versions of
configuration files and copies of all SUBMIT files. The
SUBMIT files also write the located code for the subsystems
to this diskette. If you need to make changes to any file on
a release diskette, you should first copy it from the release
diskette to this diskette and then make the changes. If you
copy a configuration file to this diskette and make changes
to it, you will also have to make changes to its associated
SUBMIT file to correct the drive number for the configuration
file. You should copy all SUBMIT files to this diskette
before entering the SUBMIT command, so that you can leave
your release diskettes in a write-protected state.

F2 The subsystem release diskette. The SUBMIT file reads
libraries and INCLUDE files from this diskette, but does not
modify the diskette in any way.

F3 A temporary and listing diskette. The SUBMIT file writes all
intermediate files (such as link files) to this diskette and
deletes them when it no longer needs them. It also writes
all listing files, link maps, and locate maps to this
diskette.

If you do not have a four-drive development system, or if your drives are
set up with different disk mnemonics, you must modify the subsystem
SUBMIT files and the subsystem configuration files to accomodate this.

Using a Series III Development System

If you use a Series III Microcomputer Development System in your
configuration process, your versions of PLM86 , ASM86, LINK86, and LOC86
run under 8086 execution mode. Thus you will have to modify the
configuration files and SUBMIT files in order to make them run correctly
on your development system. Use the following guidelines when making
these modifications.

4-10

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Guidelines for Configuration Files

• Ensure that each assembly language configuration file (a file
whose name is of the form Ifile.A86") contains the NAME
directive. This directive has the form:

NAME modname

where modname is the name of your module. The one restriction on
modname is that it must be different from all other modname
values in the linked system. Place this NAME directive at the
beginning of the file. Refer to the 8086/8087/8088 MACRO
ASSEMBLY LANGUAGE REFERENCE MANUAL FOR 8086-BASED DEVELOPMENT
SYSTEMS for more information concerning the NAME directive.

Guidelines for SUBMIT Files

• For each SUBMIT file (files whose names are of the form
"file.CSD"), add RUN before each ASM86, PLM86, LINK86, and LOC86
command or put a RUN/EXIT pair around every set of ASM86, PLM86 ,
LINK86, and LOC86 commands. Refer to the INTELLEC SERIES III
MICROCOMPUTER DEVELOPMENT SYSTEM CONSOLE OPERATING INSTRUCTIONS
for more information about the RUN and EXIT commands.

• Add the NOINITCODE control to every LOC86 command in your SUBMIT
files. Refer to the iAPX 86,88 FAMILY UTILITIES USER'S GUIDE FOR
8086-BASED DEVELOPMENT SYSTEMS for more information about this
control.

• Remove the DATE control from every ASM86 and PLM86 statement. In
most cases, this means that you will also be removing one of the
formal parameters from the SUBMIT file. Therefore, when you
invoke the SUBMIT file, do not specify the date parameter, but
include the comma (,) as a placeholder.

• Remove the MACRO control from the ASM86 statements in all SUBMIT
files.

LINKING AND LOCATING APPLICATION JOBS

The most common method of linking and locating your application jobs is
to link the first-level job together with every job ultimately created by
that first-level job and one or more interface libraries. You must then
locate this module at an absolute address. Figure 4-5 illustrates this
link and locate procedure.

. 4-11

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

FIRST-LEVEL JOB
OBJECT CODE

OFFSPRING JOB
OBJECT CODE

• • •
OFFSPRING JOB
OBJECT CODE

LlNK86

LOC86

INTERFACE
LIBRARY

• • •
INTERFACE

LIBRARY

Figure 4-5. Application Job Link and Locate Procedure

If you do not link your first-level jobs together with their offspring
jobs, you should link and locate the offspring jobs first. By doing
this, you can obtain the absolute starting locations of the offspring
tasks from the locate maps and specify these values in the CREATE $ JOB and
CREATE$TASK calls of their parent tasks before compiling the parents.

The following sections describe the individual link and locate commands
in more detail, and describe the interface libraries. The guidelines
discussed in the "Using a Series III Development System" section of this
chapter also apply to these link and locate commands.

4-12

,-

LOCATING A.TEST AND DEVELOPMENT SYSTEM IN RAM

Linking Application Jobs

The LINK86 command is used to link your application jobs. This command
is described in detail in the appropriate iAPX 86,88 FAMILY UTILITIES
USER'S GUIDE. However, the format of the LINK86 command that you must
enter is:

LINK86
:fx:app job.obj,
:fx:interface.lib

TO :fx:app_job.lnk MAP

where:

&
&
&

PRINT(:fx:app_job.mp1)

fx The appropriate disk mnemonic, indicating where the
file resides.

app_job.obj Object code for your application job. You do not need
to provide this code on one file; you can link in
several files or libraries at this point.

interface.lib Interface libraries for the subsystems that your jobs
make use of. You may have to link in several
libraries at this point. These interface libraries
are described in later paragraphs of this section.

app_job.lnk Name of the file in which LINK86 places the module
containing your linked application code. Use this
file as the input file when locating your application
job.

app_job.mp1 Name of the file in which LINK86 writes the link map
for the application job.

During the link process, you must link in a number of interface
libraries. These libraries contain the routines that satisfy external
references to system calls that you make in your application code. The
number and names of the libraries that you must link in with your
application code depend on which subsystems your jobs. use and which model
of PL/M-86 computation the jobs were compiled under. Table 4-1 shows the
correlation between subsystems, models of computation, and interface
libraries. Specify these libraries as the last modules in the LINK86
input list so that they can satisfy references from all linked modules.
Notice that no library exists for the small model of PL/M-86 computation;
the iRMX 86 Operating System does not support applications compiled in
small.

4-13

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Table 4-1. Interface Libraries as a Function of PL/M-86
Models and Subsystems

COMPACT LARGE OR MEDIUM

Nucleus RPIFC.LIB RPIFL.LIB

Basic I/O System IPIFC.LIB IPIFL.LIB

Application Loader LPIFC.LIB LPIFL.LIB

Extended I/O System EPIFC.LIB EPIFL.LIB

Human Interface HPIFC.LIB HPIFL.LIB

Locating Application Jobs

After you have used LINK86 to generate a link module for your application
job, you must use LOC86 to bind this link module to absolute addresses.
The appropriate iAPX 86,88 FAMILY UTILITIES USER'S GUIDE contains
specific instructions on the use of the LOC86 command.

Since you are laying out your test system by job rather than by class,
use a combination of the ORDER and ADDRESSES controls on LOC86 to
simplify the location process. Use the ORDER control to declare the
order in which the classes of the job are to be located. Then declare
the absolute address of the code class with the ADDRESSES control. LOC86
automatically locates the rest of the classes following the code class.
If you do this, a call to LOC86 appears similar to the following:

LOC86 input file TO output file &
ORDER-(CLASSES (CODE, DATA, STACK, MEMORY» &

where:

SEGSIZE (STACK (stack_size» &
ADDRESSES (CLASSES (CODE (absolute address») &
MAP PRINT (map file) - &
OBJECTCONTROLS (NOLINES,NOCOMMENTS,NOPUBLICS, &

NOSYMBOLS)

input-.tile Name of link file produced previously by LINK86.

Name of the file in which LOC86 writes the absolute
module.

4-14

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

stack size Size of this job's stack. Use this control for
those jobs requiring a statically allocated stack.
A stack is statically allocated if you, and not the
Operating System, specify a stack location and
size. A minimum value of 200H should be specified,
if this control is required; otherwise specify
zero. It is recommended that you specify zero for
this parameter and let the Nucleus dynamically
allocate a stack whenever possible. This depends.
however. on the model of PL/M-86 computation that
you used when compiling your code. With
dynamically allocated stacks. you specify the stack
size in the %JOB macro call. Refer to the "%JOB
Macro" section of this chapter for further
information.

absolute address Absolute starting location of the code segment of
the job. You can obtain this address by examining
the locate map of the previously located module.
Refer to the next section of this chapter for
further information about determining absolute
addresses.

map_file Name of the file in which LOC86 writes the locate
map. Always generate the locate map. You need it
in order to determine where to locate the next
module. It also contains information that you need
in order to generate the configuration file (as
described in the "Build the Configuration File"
section of this chapter).

Use this form of the LOC86 command to locate each application job.

THE ITERATIVE LINK AND LOCATE PROCESS

As mentioned before. the link and locate process is an iterative
process. You must link and locate one job. examine its locate map to
determine its ending address. and use that information to link and locate
the next job. This process can be broken down into ~he following steps:

1. Link and locate the Nucleus first by submitting the NUCLUS.CSD
SUBMIT file (described in Chapter 6). A parameter to this SUBMIT
file is used to assign the Nucleus to absolute memory locations.
Specify the lowest available memory locations for the Nucleus I
(1040 is recommended).

2. Determine the ending address of the Nucleus from the locate map
generated by ~OC86. Record this value in the memory map.

4-15

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

3. Using the next available address as input to a subsystem SUBMIT
file (described in Chapters 7 through 13), link and locate the
next subsystem.

4. Determine the starting and ending addresses from the locate map.
Record these values in the memory map. Also record the entry
point address and data segment base in the leftmost column. You
will use these values later when creating the configuration file.

5. Go back to step 3 and continue until you have linked and located
all of the subsystems.

6. Use the next available address as the starting address for the
root job. You do not have to link or locate the root job at this
point. Instead, assume a length of 6008 bytes for it and leave
that amount of space. (This length is adequate for an
application system with approximately 20 first-level jobs. If
your system contains more tha:n 20 first-level jobs, you should
allow more space for the root job.) Record the starting and
ending addresses on the memory map.

7. Using the next available address as input to the ADDRESSES
control of the LOC86 command, link and locate the first
application job.

8. Determine the starting address, the ending address, the entry
point address, and the data segment base from the locate map and
record these values in the memory map.

9. Instead of using the next available address as input to the
ADDRESSES control, leave some space between application jobs so
that these jobs can grow during the debugging process, if
needed. Use your own judgement as to how much space to leave,
but if you are unsure, leave approximately lK bytes for growth.
Add this padding factor to the ending address of the previously
located module and record that figure as the starting address of
the next module.

10. Using the starting address recorded on the memory map as input to
the ADDRESSES control of LOC86, link and locate the next
application job.

11. Go back to step 8 and continue until you have located all
application jobs.

After you perform this procedure once, you can create an additional
SUBMIT file to locate all of the modules at once. This procedure can
contain LINK86 commands for those jobs that may have to be relinked. The
padding factors that you included when assigning memory locations allow
the modules to grow during the debugging process without affecting the
LOC86 commands used to locate them.

4-16

Example:

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

NOTE

The locate map for the Nucleus always
contains a warning message similar to
the one shown in the following
example. This is a normal message for
the Nucleus. It does not indicate
errors in the LOC86 command.

This example assembles the Nucleus configuration file, links and locates
the full Nucleus, and records values from the locate map in the memory
map worksheet. It makes the following assumptions about the system:

• Disk drive FO on the INTELLEC Series II Development System is a
system disk containing LOC86.

• Disk drive Fl contains the user's configuration diskette. This
diskette contains a copy of the Nucleus SUBMIT file NUCLUS.CSD.

• Disk drive F2 contains the Nucleus release diskette.

• Disk drive F3 contains a diskette on which the SUBMIT file can
place temporary and intermediate files.

• The Nucleus is going to be located at address l040H.

The following command calls a SUBMIT file to assemble the Nucleus
configuration file and link and locate the Nucleus. Refer to Chapter 6
for a complete description of the SUBMIT file.

SUBMIT :Fl:NUCLUS(04-01-81, l040H)

The located object module is written to file NUCLUS on drive Fl and the
locate map to file NUCLUS.MP2 on drive F3. Figure 4-6 shows a part of
this locate map. This map should be viewed as an example only. It may
differ from the one generated when you locate the Nucleus.

4-17

I

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

ISIS-II MeS-8b LoeATER, Vl.3 INVOKED BY:
LOC86 &

:f3:nuclus.lnk TO :fl:nuclus &
MAP PRINT(:f3:nuclus.mp2) &
NOLINES NOCUMMENTS NOSYMBOLS &
SEGSIZE(data(2),stack(O» &
ORDER(CLASSEfi(code,data» &
ADDRESS~S(CLASSES(code(001040h»)

WARNING 2b: DECR~ASING SIZE OF SEGMENT
SEGMEhT: StACK

WARNING 26: DECREASING SIZE OF SEGMENT
SEGMENT: DATA

SYMBOL TASLE OF MuDuLE NBEGIN
REAO fROM FILE :FJ:NUCLUS.LNK
WRITTEN TO FILE :fl:NUCLUS

BASE OFfSET TYPE SYMBOL

0104H OOOOH PUB '~BEGI N

MEMOR'I MAP OF MODuLE NBEGIN
READ FROM FILE :Fl:NUCLUS.LNK
WRITTEN TO FILE :Fl:NuCL"US

SEGMENT MAP

STAHT STOP LENGTH ALIGN NAME

BASE

OOOOOH OOlFFH 0400H A (ABSOLUTE)
01040H 07077H 6031:SH W COOt:
01078H 07091H 0OlA~ W ObJ_SEG
07092H 0709BH OOOAH W JOB_SEG
0709CH 070AfH OO14H W TASK_SEG
010BOH 070B7H 0OO8H W MS_SEG
070b8H 070BFH OOOSH W SEM_SI::G
010eOH 070C9H OOOAH W REG_SEG
070CAH 070D7H OOOEH W FS_SEG
070D8H 070F1H 00lAH W INT_SEG
010F2H 070F1H 0OO6H W EXCEP_SEG
010F8H 07127H 0030H W VALID_SEG
07128H 0712CH 0OO5H W PIC_CNF_SEG

Figure 4-6. Example Nucleus Locate Map

4-18

OFFS£T T~P~ SY~BOL

CLASS

CODE
COUE
COUE
CODE
COOE
CODE
COuE
CODE
CODE
CODE
CODE
CODE

LOCATING A TEST .AND DEVELOPMENT SYSTEM IN RAM

0712EH 0713fH 0012H W
07140H 07151H 0012H W
07152H 07163H 0012H w
07164H 0716CH 0009H B
0716DH 0711bH OOOAH B
07118H 0717BH OOOOH W
07178H 07179H 0OO2H W
071l:l0H 07180t-l OOOOH G

01180H 07181H 0002H W
01190H 01190H OOOOH G
07190H 07190H OOOOH G
07190H 07190H OOOOH W
0719011 07190H OOOOH W

Gt<OUP MAP

ADDRESS GPOUP OR SEG~ENT NAMl
071d0l1 DGkfJUP

SYST~M_DATA_SEG_ID

DATA
01040H CGkOUP

COuE
OBJ_SFG
JOB_SEG
l'ASI<_SEG
MB_SEG
SEM_SEG
REG_SEG
fOS_SEG
INl'_SEG
EXCEP_SEG
VALIO_SEG
PIC_CNf_SEG
_IMR_PORT
_EOI_PORT
_ISR_Rt:AD_PORT
_PIC_INFIJ
TIMER_CNf_SEG
CSEG
SLAVE_SEG

_IMR_PORT
_EOI_PORT
_lSR_READ_POR'£
_PIC_INfO
TIMER_CNE_SEG
CSEG
SLAVE_SEG
SYSTEM_DATA_SE:.

-G_IO
DATA
??SEG
LIB_81_PUB
STACK
MEMORY

COOE
CODE
CODE
CODE
CODE
CODE
CODE
DATA

DATA

STACK
MEMORY

Figure 4-6. Example Nucleus Locate Map (continued)

4-19

I

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Notice the warning message contained on the locate map.
message that always occurs when you locate the Nucleus.
alarmed by it. It does not indicate an error.

This is a normal
Do not be

As you can see in Figure 4-6, the next available memory location is
719:0. The last location used by the Nucleus is 718:1. The memory map
shown in Figure 4-7 contains these values.

4-20

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

iRMX1II 86 SYSTEM MEMORY MAP WORKSHEET

Configuration file name: __ ___

Start address/
Data segment base

Module Length

~----~-----------------~< (r s r d) e e ve

reset vector

Highest RAM address

Applica tion Job

Root Job

Debugger

Nucleus

Wake-up addresses

Free space

iSBC 957A/B monitor

Interrupt vector

Absolute
Address

FFFF:F

FFFF:O

1FFF:F

719:0

718:1

104:0

100:0

80:0

40:0

0:0

Figure 4-7. Entering the Nucleus End Address on the Memory Map

4-21

LOCATING A TEST .AND DEVELOPMENT SYSTEM IN RAJof

BUILD THE CONFIGURATION FILE

After you have created the memory map and located the jobs, you are ready
to build the system configuration file or modify one of the existing
files provided on the subsystem release diskettes. The system
configuration file is an assembly language source file which must
describe each 'first-level job, the system address blocks, and the system
as a whole. The file must provide this information in the form of macro
calls. The macros used in the configuration file are:

%JOB
%SAB
%SYSTEM

These macros are described individually in the remainder of this
section. However, the following instructions apply to the configuration
file as a whole and to all of the macros.

• In addition to placing macros in your system configuration file,
you must also include two other statements. The first statement
in your system configuration file must be an $INCLUDE statement
to include the file CTABLE.MAC in the assembly of your
configuration file. CTABLE.MAC is on the Nucleus release
diskette and contains the definitions of the macros used in the
remainder of the configuration file. The format of this
statement is: ~

$INCLUDE (:f~LE.MAC)
where fx is the identifier of the drive containing the Nucleus
release diskette.

The last statement in your configuration file must be the END
statement. The format of this statement is:

END

• You can include space characters anywhere within your macro
calls, in order to provide a more readable configuration file.
Space characters consist of blank spaces.

• You can spread your macro calls over several lines (such as
placing one parameter on a line) if you specify the comment macro
(%') on each line that is continued. An examPle of this is:

%SAB (05000,
OFFFF,
U)

%' start base
%' end base

You must use these comment macros in order to exclude the
carriage return and line feed characters from being processed by
the assembler.

4-22

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

• For certain parameters you must specify a value of type addr,
offset, or base. These are described as follows:

addr An absolute address in the form base:offset.

base An absolute paragraph address.

offset A value which is offset from the specified base.

You must supply these values exactly as they appear on the locate map
produced by LOC86. The required radix for each of these values is
hexadecimal. Therefore, do not include the suffix H when specifying
a value. For other parameter types (such as byte or word), you must
explicitly specify a radix, with decimal the assumed default.

%JOB MACRO

The %JOB macro is used to specify parameters for first-level jobs. You
must specify one %JOB macro for each optional subsystem first-level job
and each application first-level job. Figure 4-8 contains the format of
the %JOB macro. It is a worksheet that you can use to prepare the macro
calls. The values in parentheses are suggested values. Use these
suggested values for noncritical parameters.

4-23

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Macro call: JOB (defines first-level jobs)

Number of calls required: one for each first-level job

CONFIGURATION FILE NAME:

FORt'1AT:

suggested
parameter ~ default value

%JOB (directory_size, word (0)
pool_min, word
pool_max, word (OFFFFH)
max objects, word (OFFFFH)
max-tasks, word (OFFFFH)
max_task-priority, byte (0)
exception_handIer_entry, addr (0:0)
exception_handIer_mode, byte (1)
job_flags, word (0)
init_task-priority, byte (0)
init_t ask_entry , addr
data_segment_base, base (0)
s tack""pointer, addr (0:0)
stack_size, word (512)
task _f lags) word (0)

NOTES:

1. Type addr is specified as base:offset.

2. Types addr and base must be entered as hexadecimal numbers
without the suffix H. Types word and byte default to decimal,
but will accept all radix suff~xes.

Figure 4-8. %JOB Macro Worksheet

4-24

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

As you can see from Figure 4-8, the format of the %JOB macro is almost
the same as the format of the CREATE$JOB system call described in the
iRMX 86 NUCLEUS REFERENCE MANUAL. The only difference between the two is
that the %JOB macro omits the param$obj parameter and includes the
exception_handIer_entry and exception~andler_mode parameters in line,
rather than as a pointer to a structure containing this data. The other
parameters are the same. For completeness, a short description of each
of the parameters of the %JOB macro follows. For more detailed
information, refer to the description of the CREATE$JOB system call in
the iRMX 86 NUCLEUS REFERENCE MANUAL.

directory_size Maximum allowable number of entries
in this job's object directory. A value of
zero indicates that no directory is to be
created. The maximum value for this
parameter is OFFOH.

pool_min Minimum allowable size of the job's memory
pool, in 16-byte paragraphs.

pool_max Maximum allowable size of the job's memory
pool, in 16-byte paragraphs.

max_objects Maximum number of objects that can exist
simultaneously in the job. A value of
OFFFFH indicates unlimited objects.

max tasks Maximum number of tasks that can exist
simultaneously in the job. A value of
OFFFFH indicates unlimited tasks.

max_task_priority Maximum allowable priority of tasks in the
job. Specify a value in the range 0 to 255
decimal. A value of zero indicates that the
priority of the root task is the maximum
allowable.

exception_handIer_entry Pointer to the start address of the job's
exception handler. A value of 0:0 indicates
that the job uses the exception handler
specified in the %SYSTEM macro (described
later in.this chapte~).

exception~andler_mode Encoded indication of the job's exception
mode. Values are interpreted as follows:

value
o
1
2
3

Pass control to
exception handler
Never
On programming error conditions only
On environmental conditions only
On all exceptional conditions

4-25

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

stack-pointer

stack size

Information that the Nucleus needs to create
and maintain the job. Bits in this word are
interpreted as follows:

1

meaning
Reserved.

If set ·to 0, the Nucleus validates
parameters for all system calls made
by tasks in this job or its
offspring. Refer to the "Parameter
Validation" section of Chapter 6 for a
further discussion of parameter
validation.

If set to 1, the Nucleus does not
validate parameters for tasks in this
job.

o Reserved.

Priority of this job's initialization task.
A value of zero assigns the initialization
task a priority equal to the ma~job-priority
parameter.

Entry point of this job's initialization task.

Base value of the initialization task's data
segment. A value of zero indicates that the
task itself assigns the data segment.

Address of the initialization task's stack.
A value of 0:0 causes the Nucleus to allocate
a stack segment to the task and initialize
the SS register to the base address of this
segment and the SP register to the value of
the stack size parameter. It is recommended
that you specify 0:0 for this parameter.
This permits dynamic stack allocation and
deallocation.

Size in bytes of the initialization task's
stack segment. Specify 200H as a minimum
value for this parameter. You must enter a
value for this parameter even if the job uses
dynamically allocated stacks.

4-26

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Information that the Nucleus needs to create
and maintain the job's initial task. Bits in
this word are interpreted as follows:

bit meaning

15-1 Reserved bits which should be set to
zero.

o If one, the initial task contains
floating-point instructions which
require the 8087 NDP for execution.

If zero, the initial task contains no
floating point instructions.

For your PL/M-86 jobs, the parameters that you must specify for each %JOB
macro depend on the PL/M-86 size control. The following sections outline
the differences with references to the appropriate %JOB macro parameters.

Data Segment Allocation

PL/M-86 large model procedures. Large model procedures have statically
allocated data segments. However, you do not have to specify data
segment values because the PL/M-86 compiler generates code that
automatically initializes the data segment (DS) register for each
procedure when that procedure begins executing. Therefore, for large
model procedures, set the data_segment_base parameter to zero.

PL/M-86 medium and compact model procedures. These procedures also have
statically allocated data segments. However, the compiler does not
automatically initialize the data segment register for medium and compact
models of computation. Therefore, if you compile a procedure using
either of these models, you must specify the base address of that
module's DGROUP as the data segment parameter of the %JOB macro. Obtain
the base address from the locate map produced by LOC86. (DGROUP includes
the data, stack, and memory segments/classes for the medium model and the
data segment/class for the compact model. The constant segment/class is
included in CGROUP if the ROM compiler control is used.)

Stack Allocation

PL/M-86 large and compact models. The Operating System must dynamically
allocate stacks for procedures compiled in these models. Thus, you must
specify 0:0 for the stack-pointer parameter of the %JOB macro. The
Operating System allocates a stack to the job with a size that you
specify in the stack size parameter of the %JOB macro.

4-27

I

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

When you use LOC86 to locate these procedures, you must use the SEGSIZE(
STACK(O» control. Refer to "The Locating Application Jobs" section of
this chapter for further information about this control.

PL/H-86 medium models. Procedures compiled using the medium model
require statically allocated stacks. Thus, for these procedures, you
must specify the address of the stack in the stack-pointer parameter of
the %JOB macro. Use the value indicated in the locate map when
specifying this parameter. You should also specify the size of the stack
in the stack size parameter of the %JOB macro. Use the same size as you
specified in-the SEGSIZE(STACK(•••) control of the LOC86 command.
Refer to "The Locating Application Jobs" section of this chapter for
further information concerning the LOC86 command.

%SAB MACRO

The %SAB macro declares the size and location of each system address
block. A system address block is an area of addressable memory not
available as dynamically reusable memory. This includes ROM, nonexistent
memory, and RAM reserved for jobs. The Nucleus needs to know where these
reserved areas are so that it does not reassign them. Look at the memory
map worksheet that you filled out for your system and use %SAB macro
calls to reserve all memory needed for the Nucleus, subsystems,
application jobs, interrupt vector, reset vector, iSBC 957A/B workspace,
and ROM.

The format of the %SAB macro is shown in Figure 4-9. This figure is a
worksheet that you can use to prepare the macro calls.

4-28

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Macro call: SAB (for system address blocks)

Number of calls required: one or more

CONFIGURATION FILE NAME:

FORMAT:

parameter ~

suggested
default value

%SAB (start_base, base
endJ.>ase, base
type) see note U

1

~-----------~---

%SAB

%SAB

(start base,
end base,
typ~)

(start_base,
end base,
typ~)

base
base
see note

1

base
base
see note

1

U

U

NOTES:

1. The type parameter is reserved for future use. Enter the
character U for this parameter.

2. A SAB is declared between start_base:O and end_base:F,
inclusive.

3. Types addr and base must be entered as hexadecimal numbers
without the suffix H. Types word and byte default to decimal
but will accept all radix suffixes.

Figure 4-9. %SAB Macro Worksheet

4-29

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

The parameter of the %SAB macro are described as follows:

start base

end base

type

A base value that defines the beginning of the
SAB. The starting address of the SAB is
interpreted as start_base:O.

A base value that defines the end of the SAB. The
end address of the SAB is interpreted as
end base:F.

Reserved for future use. Enter the character U
for this parameter.

When placing %SAB macro calls in the system configuration file, you must
observe the following guidelines:

• You must order your %SAB macro calls by the start addresses of
. the memory that they declare (from smallest to largest).

• You must declare the interrupt vector as a system address block
with a %SAB call.

• You must make %SAB calls for all ROM in your system.

• You must not overlap system address blocks (that is, %SAB macro
calls must declare discrete areas of memory).

• Each block of memory not declared with a %SAB macro call must be
at least (minimum transfer size +48 decimal bytes) in length.
Refer to the "%SYSTEM Macro" section of this chapter for a
description of the minimum transfer size.

• The first block of memory not declared with a %SAB macro call
must be at least 160 decimal bytes long.

%SYSTEM MACRO

The %SYSTEM macro is used to declare parameters that affect the system as
a whole. You must declare exactly one %SYSTEM macro for your entire
system and place it immediately prior to the END statement in the system
configuration file. Figure 4-10 contains the format of the %SYSTEM
macro. This figure is a worksheet that you can use to prepare the macro
call. The values in parentheses are suggested values. Use these
suggested values for noncritical parameters.

4-30

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Macro call: SYSTEM (system parameters)

Number of calls required: exactly one

CONFIGURATION FILE NAME --

FORMAT:

suggested
parameter ~ default value

%SYSTEM (nucleus_entry, base
rod_size, word (30)
min_trans_size, word (64)
debugger, see note (A)

1
default_e_h-provided, see note (N)

2
exception_mode) word

NOTES:

1. Valid entries for the debugger parameter include:

A Debugger available
N No debugger available

2. Valid entries for the default_e_h-provided parameter include:

Y Yes
D Debugger
N No

3. Types addr and base must be entered as hexadecimal numbers
without the suffix H. Types word and byte default to
decimal, but will accept all radix suffixes.

Figure 4-10. %SYSTEM Macro Worksheet

4-31

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

The parameters of the %SYSTEM macro are described as follows:

nucleus _entry

rod size

min trans size

debugger

Base value of the code segment of the Nucleus.
For this parameter, specify the base portion of
the value shown on the NUcleus locate map.

Maximum number of objects that can be cataloged
in the root object directory.

Minimum amount of memory, in l6-byte paragraphs,
that the NUcleus allows to be transferred
between jobs. If your application programs
consistently request memory in larger than
64-paragraph blocks, you should adjust this
parameter to reflect this, in order to cut down
on system overhead involved with transferring
memory. However, do not specify a value much
larger than the amount of memory your programs
ordinarily request or memory fragmentation will
occur, and the additional memory will be wasted.

Letter that indicates whether or not the
Debugger is available. Possible values include:

A The Debugger is available.

N No Debugger is available.

default_e_h-provided Letter that indicates the system default
exception handler. Possible values include:

Y A user-supplied exception handler is
the system default.

D The Debugger is the system default
exception handler.

N No default exception handler is
specified.

If you specify Y for this parameter, you must
create your own exception handler, designate it
to be a public procedure having name RQSYSEX,
and link it to the root job. If you specify D
for this parameter, make sure to include the
Debugger in your system. Even if you include
the Debugger in your system, you do not have to
specify it as the system default exception
handler.

4-32

mode

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Encoded indication of the exception handler
mode. Values are interpreted as follows:

Pass control to
value exception handler

o Never
1 On programming error conditions

only
2 On environmental conditions only
3 On all exceptional conditions

MACRO PARAMETERS FOR SUBSYSTEMS

Tables 4-2 and 4-3 list parameter values for the %JOB and %SYSTEM calls
which you should use, depending on the subsystems in your application
system. These tables list recommended values. A blank entry in either
of the tables implies that you must determine this value. Notes for
these tables follow the tables.

Notice that Tables 4-2 and 4-3 contain no entries for the Human
Interface. You do not specify a %JOB macro for the Human Interface in
order to include it in your application system. Instead, you must
include the Human Interface as an I/O job during the configuration of the
Extended I/O System. Refer to Chapters 12 and 13 for further information.

4-33

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Table 4-2. Suggested %JOB Values for Optional Subsystems

-

Macro Parameter Debugger Terminal Handler I/O System
Value Value Value

%JOB directory_size 0 0 0

pool_min 170H (without 85H 500H
NDP support)

178H (with NDP
support)

pool-,max OFFFFH OFFFFH 500H

max_objects OFFFFH OFFFFH OFFFFH

max tasks OFFFFH OFFFFH OFFFFH -
max_job-priority 0 0 0

exception_hand-
ler3ntry 0:0 0:0 0:0

exception _ hand-
ler mode 0 0 0 -
job_flags 0 0 0

init_task-pri-
ority 0 0 128

init_task3ntry note 1 note 1 note 1

da ta _s egment_
base 0 0 0

stack-pointer 0:0 0:0 .0:0

stack size 300H 300H 200H -
task_flags o (without 0 0

NDP support)

1 (with NDP
support)

4-34

Macro

%JOB

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Table 4-2. Suggested %JOB Values for Optional Subsystems
(continued)

Parameter Application Extended I/O
Loader System
Value Value

directory_size 0 0

pool_min 20H 180H

pool_max 20H 1800

max_objects 50 OFFFFH

max tasks 5 OFFFFH

max_job-priority 0 0

exception _hand-
ler_entry 0:0 0:0

exception_ hand-
ler mode 0 0 -
job_flags 0 0

init_task-pri-
ority 130 140

init_task_entry note 1 note 1

data_segment_
base 0 0

stack-pointer 0:0 0:0

stack_size 200H 300H

task_flags 0 0

4-35

I

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

Table 4-3. Suggested %SYSTEM Values for Optional Subsystems

t
I/O System Macro Parameter I Debugger Terminal

Value Handler Value
Value

,

%SYSTEM
j

i nucleus _entry I 2 note 2 2 i note I note

i rod size J 30 I 30 30

min trans size I 40H 40H 40H - - I

debugger I A note 3 note 3 ; ,

default e h I --.-provided D note 3 note 3

mode 3 note 4 note 4

Macro Parameter Application Extended I/O
Loader System
Value Value

~SYSTEM nucleus_entry note 2 note 2

rod size 30 30 -
min trans size 40H 40H -
debugger note 3 note 3

default e h ---provided note 3 note 3

mode note 4 note 4

4-36"

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

NOTES FOR TABLES 4-2 AND 4-3:

1. Determine the values of the initialization task entry points from
the absolute address specified as input to LOC86 (or the SUBMIT
file used to locate the subsystem). The base portion of this
address is the base of the entry point. The offset portion of
the entry point is O. Thus the entry points for all subsystems
are of the form "base:O".

2. Determine this value from the Nucleus locate map. Use the base
portion of the code class start address.

3. These values vary depending on whether you include the Debugger
in your application system.

4. These values vary depending on which exceptions are to be handled
by the exception handler.

CREATING THE CONFIGURATION FILE

After you have filled out all of the necessary %JOB, %SAB, and %SYSTEM
worksheets, use a text editor to build one file containing all of these
macro calls. You can create an entirely new file or use one of the files
available on the release diskettes. Each optional subsystem release
diskette contains an example system configuration file. This file is
named xROOT.A86, where x indicates the subsystem with which it is
associated (for example, IROOT.A86 is contained on the I/O System release
diskette and LROOT.A86 on the Application Loader release diskette). Each
one of these files contains %JOB calls for that particular subsystem and
all other required subsystems, %SAB calls, and a %SYSTEM call. You can
use any of these example system configuration files as your system
configuration file by filling in the absolute addresses, adding %JOB
calls for your application jobs, and modifying the %SAB calls to reflect
your hardware environment.

After you create or modify your system configuration file, write its name
on the macro worksheets, because you must specify this name later, during
the root job generation process.

When creating or modifying your system configuration file, remember the
following things:

• Place an $INCLUDE statement for the file CTABLE.MAC as the first
statement of the file and the END statement as the last statement
of the file.

• Enter all of the %JOB, %SAB, and %SYSTEM macro calls into this
file. You can enter them in the same format as shown on the
worksheets if you place comment macros (%') at the end of each
continued line, or you can place the parameters for each macro
calIon a single line. Enter the required %SAB calls for your
system, a %JOB call for each first-level job, and one %SYSTEM
call. Place the %SYSTEM macro call immediately before the END
statement. It must be the last macro call.

4-37

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

• It does not matter whether you place %JOB or %SAB calls first in
the file. However. the order in which you enter the individual
%JOB and %SAB calls is important. The %SAB calls must abide by
the order restrictions described in the "%SAB Macro" section of
this chapter. The %JOB call order is important because the root
job initializes jobs in the order that their %JOB calls appear in
the system configuration file. Always place the %JOB calls in
the following order:

1. Subsystem first-level jobs. in the following order:

Terminal Handler and/or Debugger (in any order)
Basic I/O System
Application Loader
Extended I/O System

You can omit the Application Loader and still include the
Extended I/O System. However, if you include the Human
Interface as an I/O job during Extended I/O System
configuration (refer to Chapters 12 and 13). you must
include the Application Loader and place its %JOB macro in
the indicated position.

2. Application first-level jobs

Place the subsystem first-level %JOB calls first so that the
services of the subsystems are available to the remainder of the
first-le~el jobs when the first-level jobs are initialized.

The order in which you place %JOB calls for your application jobs
depends on the content of these jobs. Any job whose services are
immediately used by other jobs should be initialized before the
other jobs; thus you should place its %JOB call earlier in the
file.

After you have created the configuration file or modified one of the
existing ones, you can go on to the next section and generate the root
job.

GENERATE THE ROOT JOB

In order to generate the root job. you must do three things:

• Assemble the configuration file

• Link the root job and its associated modules

• Locate the root job

The Nucleus release diskette contains a SUBMIT file. CROOT.CSD, which you
can use to perform all three of these functions. In order to use this
SUBMIT file, you must first prepare your diskettes and place them in the
proper drives as explained in the "Linking and Locating the Subsystems"
section of this chapter. Then you can enter the following command:

4-38

SUBMIT

where:

fx

file

date

loc addr

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

~f)..-
:fx:CROOT(file, date, loc~ddr)

The appropriate disk identifier, indicating the drive
containing CROOT.CSD.

Name of the system configuration file. You should not
include a disk identifier or an extension with this
file name. The SUBMIT file assumes that this file
resides on drive Fl and has the extension "A86". The
SUBMIT file places the located root job on drive Fl in
a file of the same name but without the extension and
the link and locate maps on drive F3 in files of the
same name but with extensions "MPl" and "MP2"
respectively. The SUBMIT file also expects file
CROOT.LIB to be available on drive F2.

Date on which this configuration takes place.

Address at which to locate the root job. Examine the
memory map that you made earlier to determine the
ending address of the last module that you located.
Add a padding factor to that value, if necessary, and
use the sum for the starting address of the root job.
If you want to specify this value as a hexidecimal
number, you must include the suffix H.

NOTE

If you are providing your own system
exception handler, you must assemble it
and modify CROOT.CSD in order to link
the exception handler in with the root
job. Its declaration must occur just
prior to CROOT.LIB in the LINK86
portion of CROOT.CSD.

LOAD AND TEST THE SYSTEM

After you have located all of your jobs (Nucleus, subsystem jobs,
application jobs, and root job), you are ready to load the system into
RAM and test it. Use the ICE-86 in-circuit emulator or the iSBC 957A/B
package to load your system from disk into RAM. The procedure for using
ICE-86 is available in the ICE-86 IN-CIRCUIT EMULATOR OPERATING
INSTRUCTIONS FOR ISIS-II USERS. The procedure for using the iSBC 957A
package is described in the iSBC 957A INTELLEC - iSBC 86/12A INTERFACE
AND EXECUTION PACKAGE USER'S MANUAL. The procedure for using the I
iSBC 957B package is described in the USER'S GUIDE FOR THE iSBC 957B iAPX
86, 88 INTERFACE AND EXECUTION PACKAGE. When loading into

4-39

I

LOCATING A TEST AND DEVELOPMENT SYSTEM IN RAM

RAM, be sure to load the root job last, so that its starting address gets
correctly loaded into the code segment (CS) and instruction pointer (IP)
registers.

When you have loaded your system, test it, correct any errors, reassemble
or recompile any appropriate program code, re-link and relocate the
necessary modules, and load the system again with the ICE-86 in-circuit
emulator or the iSBC 957A/B package. You can continue this procedure
(essentially a subset of the procedures described in this chapter) until
you have created an error-free system. Then you can copy your final
system to iRMX 86-formatted disks and use the Bootstrap Loader to load
your system or you can build a final ROM/RAM-based system.

If you are going to use the Bootstrap Loader, refer to Chapter 11 of this
manual for configuration information. Also refer to the iRMX 86 LOADER
REFERENCE MANUAL for information on how to use the Bootstrap Loader.

If you are going to build a final ROM/RAM-based system, you can, in order
to shorten the load time, burn your fully tested and completely debugged
jobs into PROM while still testing and developing other jobs in RAM.
Then, each time you reload your system, you need only load the jobs you
are still working on.

Chapter 5 describes the procedures necessary to configure a ROM/RAM
system. In general, it describes how to turn a completely debugged RAM
system into a ROM/RAM system. If you want to burn your jobs into PROM as
you finish testing and debugging them, make sure that all the fully
tested and debugged jobs are configured as described in Chapter 5. The
remaining jobs can be tested in RAM and burned into PROM as they are
completed.

4-40

CHAPTER 5. CONFIGURING THE FINAL ROM/RAM BASED SYSTEM

If you have followed the procedures outlined in Chapters 3 and 4 of this
manual, you should have a fully tested RAM-based iRMX 86 application

-system. In order to create the final ROM/RAM system, you should do the
following:

• Minimize the memory address space requirements of your system by
eliminating the padding factor you used originally when locating
your jobs.

• Locate your system so that all the ROM-resident segments are
contiguous.

• Test your final system in RAM first, locate it into ROM/RAM, and
burn the appropriate parts into PROM.

The remainder of this chapter discusses these procedures in more detail.
You should read the entire chapter, however, before modifying your
system. The order in which you perform these procedures depends on your
individual system requirements.

MINIMIZING THE MEMORY ADDRESS SPACE

When you originally located your first-level application jobs, you
included padding factors in the calculations used to determine starting
addresses of succeeding jobs. The additional space allocated with the
padding factors allowed you to make small changes in your programs that
increased their sizes without changing the LOC86 commands used to locate
them. The modules, despite increasing in size, did not overlap each
other. In your final ROM/RAM system,You have already debugged all of
your programs; their sizes are fixed. So now you can eliminate any extra
space existing between modules, if you desire. You also estimated the
size of the root job and included this estimate in the %SAB macro call.
You can now make a much better estimate of the size of the root job and
modify your %SAB macro call to indicate this.

Follow the procedures outlined in the "Locate the Jobs" section of
Chapter 4 to locate your application first-level jobs again. This time,
however, leave out the padding factors between jobs. Then modify the
configuration file by changing the %SAB and %JOB macro calls as follows:

• Change the %JOB macro call for each application first-level job
to reflect the new location of the job.

• Change the %SAB macro calls to reflect the smaller size of
reserved memory.

5-1

CONFIGURING THE FINAL ROM/RAM BASED SYSTEM

• Also,change the %SAB macro call to more accurately reflect the
size of the root job. You can make a better estimate of its size
because you have already located it during the testing phase.
Use the locate maps generated for it to make a size estimate.

If the starting address of the root job has changed, specify this new
address in the CROOT.CSD file. Then, re-submit CROOT.CSD. (The section
in Chapter 4 entitled "Generating the Root Job" describes this
procedures.)

After you have located your system, load it into RAM and test it again to
make sure that it functions correctly.

You can perform this procedure in conjunction with the one described in
the next section. However, it might be wise to perform them separately
in order to localize any possible errors.

LOCATING THE ROM/RAM BASED SYSTEM

When you located your initial test and development system, as described
in Chapter 4, you located it by job. That is, if you had three jobs,
they were laid out as shown in Figure 5-1.

Job 3 MEMORY class
Job 3 STACK class
Job 3 DATA class
Job 3 CODE class

Job 2 MEMORY class
Job 2 STACK class
Job 2 DATA class
Job 2 CODE class

Job 1 MEMORY class
Job 1 STACK class
Job 1 DATA class
Job 1 CODE class

high memory

___________________________________ low memory

Figure 5-1. Memory Layout of a RAM-based System

5-2

CONFIGURING THE FINAL ROM/RAM BASED SYSTEM

This was relatively easy; it allowed you to use the ORDER control in
LOC86 and specify only one address for each job with the ADDRESSES
control. The SUBMIT files used to link and locate each of the subsystems
used this method also. However, when configuring a ROM/RAM system, you
should layout the system by class, not by job. All of the ROM-resident
segments from all of the jobs should be positioned together. Likewise,
all of the RAM-resident segments should be positioned together. Thus, if

_ you had the same three jobs and were laying out a ROM/RAM system, you
should structure your memory as shown in Figure 5-2.

_____________________________________ high memory

Job 3 CODE class
Job 2 CODE class
Job 1 CODE class

Job 3 I1EMORY class
Job 3 STACK class
Job 3 DATA class
Job 2 MEMORY class
Job 2 STACK class
Job 2 DATA class
Job 1 MEMORY class
Job 1 STACK class
Job 1 DATA class

ROM

RAM

_____________________________________ low memory

Figure 5-2. Memory Layout of a ROM/RAM System

All of the code classes are located in the upper memory, or ROI1, and the
remainder are located in RAM.

•
As you can see, in order to transform your RAM-based system into a
ROM/RAM system, you must locate your jobs again. Before you do that,
however, you should prepare a new memory map.

PREPARE A NEW MEMORY MAP

To prepare a new memory map, follow the procedures outlined in the
"Preparing a Memory Map" section of Chapter 4, with one exception. In
this map record not only the first available RAM address and the last

5-3

I

CONFIGURING THE FINAL ROM/RAM BASED SYSTEM

available RAM address, but also the first available ROM address and the
last available ROM address. You need this information on your memory map
because for ROM/RAM systems you must specify a location for both the
ROM-resident code classes and RAM-resident classes.

LOCATE THE MODULES

The procedure for locating the modules of a ROM/RAM system, like that for
a &\l·f-based system, is an iterative procedure. You locate one module,
record its addresses in the memory map, and use those values to determine
where to locate the next module. The format of the LOC86 command used to
locate these modules is slightly different from the one used to locate
the RAM-resident system. The format of this command when using a Series
II development system is as follows:

LOC86

where:

input-file TO output_file &
ORDER (CLASSES (DATA, STACK, MEMORY» &
SEGSIZE (STACK (stack size» &
ADDRESSES (CLASSES (CODE (rom address), &

DATA (ram-address») &
MAP PRINT (map file) - &

OBJECTCONTROLS(NOLINES, NOCOMMENTS, NOPUBLICS, &
NOSYMBOLS)

Name of the link file produced previously by LINK86.

Name of the file in which LOC86 writes the absolute
module.

data size When locating the Nucleus, specify a value of 2H.

stack size

•

rom address

ram address

If you are locating the Nucleus, the stack size need
not be greater than zero. Otherwise, specify the
size of this job's stack. Use this control for those
jobs requiring a statically allocated stack. If this
control is required, specify a minimum value of 200H;
otherwise specify zero •

Absolute starting location of the ROM-resident class
(code class) of the module.

Absolute starting location of the RAM-resident
classes of the module.

Name of the file in which LOC86 writes the locate map.

If you have a Series III development system, you must also follow the
additional guidelines listed in the "Using a Series III Development
System" section of Chapter 4.

5-4

CONFIGURING THE FINAL ROM/RAM BASED SYSTEM

Use this form of the LOC86 command to locate the Nucleus. each optional
subsystem first-level job. the root job. and each application first-level
job. The ORDER and ADDRESSES controls of this command differ from those
of the RAM-based LOC86 command (refer to the "Locating Application Jobs"
section of Chapter 4). In this command. the ORDER control does not
mention the code class. The ADDRESSES control requires that you enter
two absolute addresses; one to locate the code class in ROM and one to
locate the remaining classes in RAM.

The SUBMIT files contained on the subsystem release diskettes that link
and locate the subsystems and the root job do not use this form of the
LOC86 command. In order to use these SUBMIT files to create a
ROM/RAM-based system, you must modify the LOC86 commands contained in
these files so that they conform to the methods just described.

One method of locating your ROM/RAM system is as follows:

1. Locate the Nucleus first. Assign its data class to the lowest
available RAM address and its code class to the lowest ROM
address.

2. Determine the ending addresses of the code class and the memory
class from the locate map generated by LOC86. Record these
addresses on the memory map.

3. Using the next available ROM and RAM addresses as input to LOC86.
locate the first optional subsystem.

4. Determine the ending addresses of the code class and the memory
class from the locate map generated by LOC86. Record these
addresses on the memory map. Also record the entry point address
on the memory map. You need to know this address in order to
specify it in the %JOB macro call.

5. Go back to step'3 and continue until you have located all of the
subsystems and all of the application jobs.

After you have performed this procedure. follow the procedures outlined
in the "Build the Configuration File" section of Chapter 4 in order to
modify the configuration file and locate the root job. Note that you
must modify the CROOT.CSD file in order to locate the root job as
described in this chapter. You must also reserve all areas of RAM needed
by the located modules.

TESTING THE SYSTEM IN RAM

Before you actually locate a ROM/RAM system. it is recommended that you
follow the procedures outlined in the previous section. but specify RAM
addresses for all classes. Then you can load the system into RAM and
test it before burning code into PROM~ After doing this, you can adjust
the addresses to reflect a ROM/RAM system and build your final system.

5-5

CHAPTER 6. CONFIGURING THE NUCLEUS

The Nucleus provides system calls and features to support a wide variety
of application software activities in a flexible hardware environment.
Its structure allows you to take advantage of a breadth of support
without sacrificing memory size or performance. If, after writing the
code for your application system, you discover that you never make
certain system calls or never make use of certain Nucleus features, you
can exclude these system calls and features from the Nucleus of your
application system.

The Nucleus also supports a variety of hardware environments. You can
specify several options for your interrupt controllers and timer. You
can also include an 8087 Numeric Data Processor in your system.

The process of including or excluding system calls and features and
specifying the component environment is called Nucleus configuration.
Nucleus configuration involves the following operations:

• Selecting the internal Nucleus features that you want to include
in your application system and omitting the rest.

• Selecting the Nucleus system calls that you want to include in
your application system and discarding the rest.

• Identifying certain hardware components that make up your system,
and selecting the attributes of these components.

You perform these operations by making modifications to two
Intel-supplied Nucleus configuration files: NTABLE.A86 and NDEVCF.A86.
NTABLE.A86 defines the system call and feature configuration; NDEVCF.A86
defines the component configuration. These files are assembly language
source files which are contained on the Nucleus release diskette. Figure
6-1 illustrates the structure of these files. After modifying the files,
you must assemble them and link them with the rest of the Nucleus object
files and libraries. The following sections describe this configuration
process in detail.

6-1

CONFIGURING THE NUCLEUS

$INCLUDE STATEMENT

FEATURE SELECTION

NUCLEUS CONFIGURATION
FILE (NTABLE, A86)

SYSTEM CALL SELECTION

END STATEMENT

$INCLUDE STATEMENT

COMPONENT CONFIGURATION
NUCLEUS CONFIGURATION

FILE (NDEVCF.A86)

END STATEMENT

Figure 6-1. NTABLE.A86 and NDEVCF.A86 Structure

MODIFYING NTABLE.A86

As released, NTABLE.A86 defines the full complement of Nucleus system
calls and internal features. To eliminate system calls or features, you
must modify this file.

NTABLE.A86 consists of a series of macro calls. A macro, which
corresponds in name to a system call or Nucleus internal feature, gives
directions to the assembler to include the code for that system call or
feature in the Nucleus. In order to exclude a system call or feature
from your system, delete the metacharacter of the associated macro call
(%), and replace it with the comment character (j). By doing this, you
change the macro call into a comment and prevent the assembler from
evaluating it.

6-2

CONFIGURING THE NUCLEUS

The file NTABLE.MAC, which is available on the Nucleus release diskette,
contains the definitions of all macros called in NTABLE.A86. NTABLE.A86
contains an $INCLUDE statement for NTABLE.HAC. which includes it in the
assembly of NTABLE.A86.

The following sections describe modifying NTABLE.A86 to select features
and system calls.

SELECTING NUCLEUS INTERNAL FEATURES

If you do not modify NTABLE.A86, the folloWing internal features are
included with the Nucleus:

• parameter validation

• system default exception handler

You can exclude any or all of these features in order to reduce code size
and/or increase performance by modifying the feature configuration table
portion of NTABLE.A86. Figure 6-2 illustrates this table. In order to
exclude a feature, replace the percent-sign (%) at the beginning of the
corresponding macro call with a semicolon (j). The following sections
describe each of these Nucleus internal features.

SINCLUDE(:F2:NTA8LE.~AC)

SEJECT
, ; : ; : ; J ; : ; : ; : ; : ; : ; : ; : ; , ; : ; : ; , ; : ; : ; ; ; J ; : ; : ; : ; : ; : ; : ; : ; , ; ; , ; , , ; ; ; ; , J
:
: ,
• •
: ,

NUCLEUS F~ATUHE CONfIGURAtIUN TABLE

TO LEAVE OUT A fEATURE, CHANGE THE ',' TO THE CO~MENT
CHAHACTER ',' •

: ; , ; : , : ; , ; : , : ; ; ; : ; : ; ; ; , ; , ; , , , ; , , ; : , : , ; : , , ; : ; : I : , , ; , ; , ; , I , ; , ; , ; : : ;

'PARAMErER_VALIDATION
'SYSTEM_EXCEPTION_HANDLER

Figure 6-2. Feature Configuration Table (NTABLE.A86)

Parameter Validation

A system call validates input parameters by checking for the existence of
objects and by verifying that the objects are of the proper types. You
can exclude all parameter validation by Nucleus system calls from your
application system by modifying the feature configuration table. To do
this, replace the percent-sign (%) in the %PARAMETER VALIDATION macro
with a semicolon (;). The inclusion or exclusion of-Parameter validation I
by making modifications to NTABLE.A86 is called system-level .

CONFIGURING THE NUCLEUS

parameter validation. It must be noted, however, that parameter
validation provides a very important safeguard while developing software.
If parameter validation is not configured, erroneous parameters will go
undetected until some undefined and possibly catastrophic result occurs.

, • " • '- '. - ',-::- - >~~~ •• ," -:~~~~~~'

!!li~:~i:~S~h~i~f!i:~;s i:~ld:::i~~e:~1~f I;~u:U:~~:!~~~:!~~~t\nclude
the Basic I/O subsystem, inclusion of system-level parameter validation
can be helpful during development stages and exclusion of system-level
parameter validation can be beneficial after development.

Whether or not you include system-level parameter validatioti~ you can als~
include ore e~clude parameter v~1idation Oil &" job"'"tor"j9h basiswitp
parameter to' the CREATE$JOB system call (refer to the iRMX 86 NUCL
REFERENCE MANUAL for details). If you have included the system-Ie
support, the CREATE$JOB system call allows you include or exclude
parameter validation support on an individual job basis. Table 6-1 shows
the relationship" between system-level and job-level parameter validation
support in terms of code savings and performance.

Table 6-1. System-level and Job-level Parameter Validation

System-level parameter !

validation I Included Excluded

Job-level parameter i Included Excluded Included Excluded
validation !

Is parameter
j

validation
performed for this job? yes no no no

Does the system
realize a code savings? no no yes yes

Does the job realize
a performance
improvement? no yes yes yes

System Default Exception Handle]l

If you do not modify NTABLE.A86, a system default exception handler is
included in your system automatically. This exception handler deletes
any task that causes an exceptional condition to occur. However, if you
remove the %SYSTEM EXCEPTION HANDLER macro from NTABLE.A86 by replacing>
the percent-sign (!) with a semicolon (;) t an alternate system exceptiop.
handler is included in your system-, This alternate handler suspends, "
rather than deletes, a task that causes an exceptional condition.
Including this alternate system default exception handler could result in
a significant code savings, if you are not otherwise using the
DELETE$TASK system call.

6-4

CONFIGURING THE NUCLEUS

SELECTING NUCLEUS SYSTEM CALLS

Figure 6-3 shows the system call configuration table portion of NTABLE.A86.
To exclude a system call from your application system, replace the percent
sign (X) at the beginning of the corresponding macro with a semicolon (;).

\ROGETTrPE
\ROOJSASLEDELETION
\RQEHABLEOELErION
\ROCATALOGOBJBCT
\ROUNCATALOGOSJECT
\ROLOOI<UPORJECT
'ROCR~AtEEXTEhSION
\RQOELETEEXTENSION
\RQCREATECOMPOSITE
'HOOELETECOMPOSITE
\RQINSP~CTCOMPOSITE

'HClAl·rERCOMpOSITE
'ROfORCEnELETE
~ tH)CR£A 'CEJOb
'RClDELE'rEJOB
\RQOFf'SPRING
\RQCR£ATETASI<
\ROOELErETASI<
\ROSUSPENOTASK
'HORF:SUfI\F.:TASI<
\ROSLEFP
\HOGF:ITASKTOI<t:;NS
\ROGF'fPRIORITY
'RQSErPRIORITY
\ROCREAl'EMAILbOX
\ROOF:LETEMAILSOX
\HOSENDMF.:SSAGE.
\RaR~CEIVE~ESSAGE
\riOCP£ATESEMAPHORE
\ROOELETESEMAPHORE
\ROSENOIJNITS
\RQRECEIVEUNITS
\ROCREATEREGION
\HOOELETEREGJON
\ROSENOCONTROL
\RORECEIVECONTROL
\ROACCEPTCONTROL
\ROCREATESF.GNENT
\ROOELEIESEGMENT
\HOGF.:TSIZE
\ROGEIPOOLATTRtB
\ROSFTPOO1iMIN
\RQSFTOSEXTENSION
\ROSETINTERRUPT
\RQENTERI~TERRUPT

Figure 6-3. System Call Configuration Table (NTABLE.A86)

6-5

END

CONFIGURING THE NUCLEUS

'R(')ENABLE
'R(')DISA8LE
,RORESEIIHTERRUPT
'ROGE'rLEVEL
'ROEX I Tl N'l'F:RRUPT
,ROSJGNALINT€RRUPT
'ROwAITINTF.RRUPT
'ROGF:TEXCEPTIONHANOLER
tROSF.TEXCEPTIONHANOLER
'ROSTGNALEXCEPTION

Figure 6-3. System Call Configuration Table (NTABLE.A86) (continued)

MODIFYING NDEVCF.A86

NDEVCF.A86 consists of a series of macro calls that specify information
about the following components:

• Programmable Interrupt Controller (PIC)

• Programmable Interval Timer (PIT)

• 8087 Numeric Data Processor (NDP)

As released, NDEVCF.A86 describes a standard system consisting of a
master 8259A PIC and an 8253 PIT. If your system varies from this
configuration, or If you want to change the attributes of any of the
components, you must modify NDEVCF.A86. Figure 6-4 illustrates the
component configuration portion of NDEVCF.A86.

SINcr,UDE (: F2: NOEVCF. MAC)

tMASTER_PIC(8259A,OCOH,O,O)

END

:SLAVE_PIC{ SLAVE_TYPE, BASE.PORT, EOGE.VS.LEVEL, MASTER.LEVEL)

'TJMER(8253,OOOH,28H,12288)

:NOP.SUPPORT(ENCODEO.tEVEL)

Figure 6-4. Component Configuration Table (NDEVCF.A86)

6-6

CONFIGURING THE NUCLEUS

The file,~V~.HAC, .which is available on the Nucleus release diskette,
contains the definitions of all macros called in NDEVCF.A86. NDEVCF.A86

:'contains an $INCLUDE statement which includes NDEVCF.MAC in'the assembly
of NDEVCF.A86.

The following sections describe modifying NDEVCF.A86 to include
information about individual components.

PROGRAMMABLE INTERRUPT CONTROLLERlPIC) CONFIGURATION
:~

The iRMX 86 Operating System supports a hardware environment with
a single PIC (non-cascaded mode) or several PICs (cascaded mode).
macros are available to define the environment and the attributes
PIC. These macros are:

%MASTER PIC
%SLAVE PIC

either
Two

of each

The %MASTER PIC macro defines the attributes of the master PIC. This
macro is required for both cascaded and non-cascaded mode. The
%SLAVE PIC macro is required only in cascade mode and defines the
attributes of a slave PIC. One %SLAVE PIC macro is required for each
slave PIC in the system. All %SLAVE PIC macros must follow the
%MASTER PIC macro in NDEVCF.A86. The followin8 sections describe the
formats-of the two macros.

%MASTER PIC Macro

The %MASTER PIC macro defines the attributes of the single PIC, when in a
non-cascaded environment, or the master PIC, when in a cascaded
environment. The format of this macro call is as follows:

%MASTER_PIC(8259A, base-port, 0, 0)

where:

base-port
Port address of the master PIC. When using Intel processor boards
such as the iSBC 86/12A and iSBC 86/05, you must specify a value of
OCOR for this parameter. The Nucleus assumes that all ports are at
even port addresses (base port + 0, base port + 2, base port + 4, and
so on).

Because the Operating System currently supports only the 8259A PIC, you
must specify the remaining parameters as shown. These remaining
parameters are reserved for future support upgrades. For further
information about the 8259A PIC, refer to THE 8086 FAMILY USER'S MANUAL.

As released, NDEVCF.A86 contains a default %MASTER PIC call that defines
an 8259A PIC with a port address of OCOR. If your-master PIC requires a
different value, you must modify this call.

6-7

CONFIGURING THE NUCLEUS

%SLAVE PIC Macro

The %SLAVE PIC macro defines the attributes of a slave PIC in a cascaded
environment. You must include one %SLAVE PIC macro for each slave PIC in
your system. All of these %SLAVE PIC calls must follow the %MASTER PIC
call. The format of the %SLAVE PIC call is as follows:

where:

base-port Port address of the slave PIC. The Nucleus assumes
that all ports are at even port addresses (base port +
0, base port + 2, base port + 4, and so on).

edge_vs_level Triggering mode for the PIC. Specify this parameter
as follows:

master level

value description

o Edge triggering mode

nonzero Level triggering mode

Interrupt level on the master PIC which connects
to the slave PIC. You must specify a value in
the range 0 through 7 for this parameter.

Because the Operating System currently supports only the 8259A PIC, you
must specify the remaining parameter as shown. This remaining parameter
is reserved for future support upgrades.

As released, NDEVCF.A86 does not include a %SLAVE PIC call. If your
system includes mUltiple interrupt controllers in-a cascaded environment,
you must modify NDEVCF.A86 to include a %SLAVE PIC call for each slave
PIC.

PROGRAMMABLE INTERVAL TIMER (PIT) CONFIGURATION

You can specify the attributes of the PIT by calling the %TlMER macro.
The format of this macro call is as follows:

%TlMER(8253, base-port, level, count)

where:

base-port Port address of the PIT. When using Intel processor
boards such as the iSBC 86/12A and iSBC 86/05. you
must specify a value of ODOR for this parameter. The
Nucleus assumes that all ports are at even port
addresses (base port + 0, base port +,2, base port +
4, and so on).

6-8

level

count

CONFIGURING THE NUCLEUS

Encoded value specifying the interrupt level of the
master PIC to which this timer is connected. This value
corresponds to the interrupt levels as follows:

value level

x8H Master levels MO through M7
(0 ~ x ~ 7)

Down count value that is loaded into the timer
register. You should use the following formula to
determine this value:

count = tick X clock_frequency

where:

tick" The period of time, in milliseconds,
that you wish to specify as a clock
interval.

clock The frequency, in kilohertz, of the
frequency clock input to the timer.

Because the Operating System currently supports only the 8253 PIT, the
remaining parameter must be specified as shown. This remaining parameter
is reserved for future support upgrades. For further information
concerning the 8253 PIT, refer to THE 8086 FAMILY USER'S MANUAL.

As released, NDEVCF.A86 contains a default %TIMER call which specifies a
port address of ODOH, an interrupt level of 2, and a 1.2288 megahertz clock I
with 10 millisecond clock interval. If your system requires a different
specification, you must modify NDEVCF.A86.

The standard clock interval for the iRMX 86 Operating System is 10 milli- I
seconds. Unless an application requires a different value, it is highly
recommended that this standard value be used. This will insure that pro-
grams using timed wait operations will be portable between iRMX 86 systems.

8087 NDP CONFIGURATION

If your system contains an 8087 NDP, you must call the %NDP_SUPPORT macro.
This macro sets up a system interrupt handler for the NDP and associates it
with a specified Programmable Interrupt Controller. The format of the
macro call is as follows:

%NDP_SUPPORT(level)

where:

level Encoded value specifying the interrupt level connected
to the 8087 NDP interrupt pin. This value corresponds
to the interrupt level as follows:

6-9

I

CONFIGURING THE NUCLEUS

value

x8H
(0 ~ x ~ 7)

yzH
(0 > y > 7)
(0 > z > 7)

level

Master Lnterrupt levels MO through
M7.

Slave interrupt levels 00 through
77.

No other application code can make use of this
interrupt level. Also, any task which uses the 8087
NDP must not have a priority high enough to mask this
interrupt level. Master level zero is recommended.
Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for
information concerning interrupt levels and priorities.

As released, NDEVCF.A86 does not include the %NDP SUPPORT macro call. If
your system contains an 8087 NDP, you must modify-NDEVCF.A86 to include
the %NDP SUPPORT call.

For further information about the 8087 NDP, refer to THE 8086 FAMILY
USER'S MANUAL, NUMERICS SUPPLEMENT.

MAXIMAL, DEFAULT, AND MINIMAL CONFIGURATION

The maximal Nucleus configuration (for features and system calls)
consists of all supported Nucleus system calls, parameter validation, and
the system default exception handler. This maximal configuration is the
same as the default configuration. You do not need to modify NTABLE.A86
in order to obtain this maximal configuration.

The default component configuration defines the attributes of the
components as they exist on the iSBC 86/1ZA single board computer.

The minimal Nucleus configuration for a Nucleus-only application system
consists of no configurable internal features and only the following
system calls:

CREATE$JOB
SUSPEND$TASK
RESUME$TASK
GET$TASK$TOKENS
SIGNAL$EXCEPTION

You must always include these system calls in your application system.
You can, of course, include any or all other system calls and internal
features that your application system requires.

6-10

CONFIGURING THE NUCLEUS

ASSEMBLING THE CONFIGURATION FILES, LINKING AND LOCATING THE NUCLEUS

After you have made any necessary modifications to the Nucleus
configuration files, NTABLE.A86 and NDEVCF.A86, you must assemble them
and link and locate the Nucleus. NUCLUS.CSD, a SUBMIT file contained on
the Nucleus release diskette, can be used to perform these functions. In
order to use this SUBMIT file, you must first prepare your diskettes and

- place them in the proper drives of your development system as explained
in the "Linking and Locating the Subsystems" section of Chapter 4. You
should also examine NTABLE.A86 and NDEVCF.A86 to make sure that the
$INCLUDE statements contain the proper disk identifiers. Then you can
enter the following command:

SUBMIT :fx:NUCLUS(date, loc_adr)

where:

fx

date

loc adr

The appropriate disk identifier, indicating the drive
containing NUCLUS.CSD.

The date on which you submit the file (maximum of nine
characters).

The address at which to locate the Nucleus. If you
want to enter this value as a hexidecimal number, you
must include the suffix H.

This command assembles NTABLE.A86 and NDEVCF.A86, links them together
with other libraries that contain the Nucleus code and locates the
Nucleus at the specified address. It places the located Nucleus in file
NUCLUS on drive Fl. It also places the assembly listings, link map, and I
locate map on drive F3 in files NTABLE.LST, NDEVCE.LST, NUCLUS.MPI, and
NUCLUS.MP2, respectively.

NOTE

The link map for the Nucleus always
contains a warning message indicating a
possible overlap. This is a normal
message for the Nucleus. It does not
indicate an error in the LINK86 command.

NUCLEUS INITIALIZATION ERRORS

If the Nucleus encounters an error during the initialization process, it
places diagnostic information in the processor registers and halts the
processor. Errors can occur during two operations:

Nucleus and memory initialization

Job creation by the root task

6-11

CONFIGURING THE NUCLEUS

The value p~aced in the AX register determines which type of errol
occurred. The following sections outline these errors.

NUCLEUS AND MEMOR.Y INITIALIZATION ERRORS

If an error occurs during the Nucleus and memory initialization process,
the Nucleus sets the processor registers as follows:

register value

AX 11H

BX ODOOiH

OD002H

OD003H

OD004H

ODOOSH

ODO06H

OD007H

ROOT TASK ERROR.S

description

A Nucleus or memory initialization
error occured. The BX register
contains a description of the error.

There are no SABs defined. There must
be at least one.

The interrupt vector is not contained
in a SAB.

Reserved.

There is not enough contiguous RAM
available for the root job's memory
pool.

The SABs are out of order or overlap.

There is not enough RAM available for
the system resources of the Nucleus.

An invalid minimum transfer size was
specified in the %SYSTEM macro. Refer
to the "%SYSTEM Macro" section of
Chapter 4 for a description of the
minimum transfer size.

If the root task encounters an error while it is creating the first-level
jobs of your application system, it sets the processor registers as
follows:

register value

AX 2iH

description

A root task error occurred. The BX,
CX, and DL registers contain a
description of the error.

6-12

register value

BX varies

CX varies

DL varies

CONFIGURING THE NUCLEUS

description

BX is set as an index to indicate which
%JOB call in the system configuration
file caused the error. For example, 1
implies the first %JOB call in the
file, 2 the second, and so forth.

CX contains the exception code returned
from the CREATE$JOB system call that
was called to create the first-level
job.

DL contains the number of the parameter
in the %JOB call that caused the
error. If OL is greater than 8, the
parameter number is OL +1. Otherwise,
the parameter number is OL.

6-13

CHAPTER 7. CONFIGURING THE TERMINAL HANDLER

The Terminal Handler provides real-time, asynchronous I/O between an
operator terminal and tasks running under the iRMX 86 Operating System.

- Terminal Handler configuration involves selecting characteristics of the
Terminal Handler and specifying information about the processor board and
the terminal. You perform these operations by making modifications to an
Intel-supplied Terminal Handler configuration file. This file,
MCONFG.A86, is an assembly language source file which is contained on the
Terminal Handler release diskette.

)... l As released, MCONFG.A86 defines a Terminal Handler that communicates with
~ a 9600 baud terminal and runs on an iSBC 86/12A single board computer. 7 ~'. t

~~ If you want the Terminal Handler to run on a different hardware
configuration, or if you want to change some of the characteristics of:t'I'U';, t. Q.~.e.L Itl6fr.
the Terminal Handler, you must modify MCONFG.A86, assemble it, link it ~~
with the rest of the Terminal Handler object files and libraries, and ~1I4""t l..-..v~l '~/J
locate the Terminal Handler at an absolute address. The following Ou+?~
sections discuss this configuration process in detail.

MODIFYING MCONFG.A86

MCONFG.A86 can consist of a series of macro calls which identify the
characteristics of the Terminal Handler, the terminal, and the processor
board. Figure 7-1 illustrates the released MCONFG.A86. As you can see
by this figure, the released file contains only an $INCLUDE statement.
This $INCLUDE statement causes the Terminal Handler to be assembled with
the default configuration parameters. To change the configuration, you
must add macro calls to MCONFG.A86. MCONFG.A86 can contain calls to the
following macros:

%TH 19200 BAUD COUNT
%MTH
%TH INT LEVELS
%THUSART
%TH-TIMER
%TH-CHAR LENGTH
%TH-MAILBOX NAMES

The file MTHCNF.MAC, which is available on the Terminal Handler release
diskette, contains the definitions of all these macros. MCONFG.A86
contains an $INCLUDE statement for MTHCNF.MAC, which includes it in the
assembly of MCONFG.A86.

The following sections describe the macro calls in detail.

7-1

CONFIGURING THE TERMINAL HANDLER

SlncludeC:f2:mtncnf.macl

end

Figure 7-1. Terminal Handler Configuration File (MCONFG.A86)

%TH 19200 BAUD COUNT MACRO

If your system's programmable interval timer (PIT) has a clock input
frequency other than 1.2288 megahertz, you must call this macro to set
the limits on the baud rate attributes of the Terminal Handler. The
format of the call to this macro is as follows:

where:

count Value that when loaded into the timer register
generates a maximum baud rate of 19200. The value
that you enter for this parameter depends on the clock
input frequency to your system's PIT (refer to the
following paragraphs). If you do not include the
macro call, a default value of 4 is assumed, which
corresponds to the default frequency of the clock
input to the 8253 PIT on the iSBC 86/12A board.

To derive the value to use for the count parameter, you must first
determine the clock input frequency to the PIT (in hertz). Then
substitute this frequency into the following equation:

(1) result • (clock frequency in hertz) / (19200 X 16)

Then substitute "result" from equation 1 into the following equation:

(2) fraction • result - INT(resu1t)

where INT(resu1t) is
portion of "result".
equal to 0.5, then:

gu integer obtained by truncating the fractional
If "fraction" from equation 2 is greater than or

(3) count • INT(resu1t) + 1

error fraction • 1.0 - fraction

7-2

CONFIGURING THE TERMINAL HANDLER

If "fraction" is less than 0.5, then:

(4) count = INT(result)

error fraction = fraction

Before placing "count" from equation 3 or 4 into the %TH 19200 BAUD COUNT
call, you should first determine the percentage of error in this value.
You do this by solving the following equation:

(5) % error = (error_fraction / count) X 100

If the percentage of error is less than 3%, you can use any Terminal
Handler-supported baud rate (which you later specify in the %MTH macro,
described later in this chapter). However, if the percentage of error is
3% or greater, you will have to perform the following additional
computations.

First, determine the desired baud rate of the terminal. Substitute this
value for the 19200 in equation 1 and recompute the value of "count"
(equations 1 through 4). Again determine the percentage of error
(equation 5). If the error is less than 3% with the new baud rate, you
can use the Terminal Handler with that new baud rate (and specify it in
the %MTH macro). However, if the percentage of error is still 3% or
greater, the combination of desired baud rate and clock frequency is
unacceptable to the Terminal Handler. You will have to change one or the
other. After doing this, recompute the error to verify that it falls
below the 3% level.

Regardless of the baud rate you eventually choose, use the "count" value
as originally computated (with the 19200 value) as input to the
%TH 19200 BAUD COUNT macro call.

If MCONFG.A86 does not contain a call to the %TH_19200_BAUD_COUNT macro,
the Terminal Handler will operate as if you had specified this macro call
with a value of 4 for the count parameter. This is an appropriate value
for the default input frequency to the 8253 PIT on the iSBC 86/12A board
(or any timer with an input frequency of 1.2288 megahertz).

If you specify this macro call, you must place it as the first macro call
in MCONFG.A86.

%MTH MACRO

This macro allows you to designate the baud rate and rubout
charateristics of your terminal. The format of this macro is as follows:

%MTH (baud_rate, rubout~ode, blank_char)

where:

7-3

baud rate

rubout mode

blank char

CONFIGURING THE TERMINAL HANDLER

Baud rate of the terminal being used with the Terminal
Handler. Specify one of the following rates:

19200
9600
4800
2400
1200

600
300
150
110

Refer to the "%TH 19200 BAUD COUNT Macro" section of
this chapter to ensure that the value you enter for
this parameter will cause the Terminal Handler to
operate correctly. If you omit the macro call, a
default value of 9600 is assumed.

Terminal Handler rubout mode. Enter one of the
following:

1 The Terminal Handler echoes the deleted
character back to the terminal.

2 The Terminal Handler replaces the deleted
character with the blank character.

If you omit the macro call, a default value of 2 is
assumed.

Blanking character for use with option 2 of
rubout mode. If you omit the macro call, the default
blanking character is assumed to be the ASCII space
(020H).

If MCONFG.A86 does not contain the %MTH call, the Terminal Handler
assumes a 9600 baud terminal with blanking mode 2 and a blanking
character of ASCII space (020H).

%TH USART MACRO

This macro allows you to designate the port address of the USART. The
format of this macro call is as follows:

where:

Hexadecimal number specifying the base port address of
the USART. The Terminal Handler assumes that all
ports are at even port addresses (base port + 0, base
port + 2, base port + 4, and so on). If you omit the
macro call, a value of OD8H is assumed.

7-4

CONFIGURING THE TERMINAL HANDLER

If MCONFG.A86 does not include a call to %TH USART, the Terminal Handler
assumes a USART port address of OD8H. This value must be used for Intel
processor boards, such as the iSBC 86/12A and iSBC 86/05 single board
computers.

%TH TIMER MACRO

This macro allows you to specify information about the programmable
interval timer (PIT). The format of the macro call is as follows:

. %TH_TlMER(base-port, baud_counter)

where:

base-port

baud counter

Port address of the PIT. The Terminal Handler assumes
that all ports are at even port addresses (base port +
0, base port + 2, base port + 4, and so on). If you
omit the macro call, a value of ODOH is assumed.

Number of the PIT counter connected to the USART clock
input~ The output of this counter generates the
Terminal Handler baud rate. You must specify a value
from 0 to 2 for this parameter. If you omit the macro
call, a value of 2 is assumed. You must ensure that
the counter you select is not used by the Nucleus or
any other module. The Nucleus uses counters 0 and 1
of the timer to which it is connected. Therefore, if
your system does not contain an off-board timer, you
must use counter 2 for the Terminal Handler.

If MCONFG.A86 does not contain the %TH TIMER macro call, the Terminal
Handler operates as if you had specified this macro call with a value of
ODOH for the base port parameter and a value of 2 for the baud counter
parameter. These values must be used for Intel processor boards, such as
the iSBC 86/12A and iSBC 86/05 single board computers.

%TH CHAR LENGTH MACRO

This macro allows you to specify the number of bits of valid data per
character sent from the USART. The format of this macro call is as
follows:

%T~CHAR_LENGTH(length)

where:

length Number of bits of valid data per character sent from
the USART. The only acceptable values for this
parameter are 7 and 8. If you omit the macro call, a
value of 7 is assumed. f)~

7-5

CONFIGURING THE TERMINAL HANDLER

If MCONFG.A86 does not contain the %TH CHAR LENGTH macro, the Terminal
Handler assumes 7 bit characters, which is appropriate for systems using
the ASCII character set.

%TH MAILBOX NAMES MACRO

This macro allows you to specify names for the Terminal Handler's input
and output mailboxes. The format for this macro call is as follows:

where:

Name of the mailbox used for input to the Terminal
Handler. Legitimate names consist of 12 or less
alphanumeric characters. If you omit the macro call,
the name RQTHNORMIN is assumed.

output_mailbox Name of the mailbox used for output by the Terminal

~ Handler. Legitimate names consist of 12 or less
r.-\ . alphanumeric characters. If you omit the macro call,
~ the name RQTHNORMOUT is assumed.

If MCONFG.A86 does not contain the %TH MAILBOX NAMES macro call, the
Terminal Handler uses the names RQTHNORMIN and-RQTHNORMOUT for its input
and output mailboxes.

If you intend to use the Basic I/O System's On Board USART driver to
communicate with the Terminal Handler, you must provide a Terminal
Handler whose input and output mailboxes have the names RQTHNORMIN and
RQTHNORMOUT, respectively. The Basic I/O System will communicate only
with a Terminal Handler that uses these mailbox names.

%TH INT LEVELS MACRO

This macro allows you to specify the interrupt levels used by the
Terminal Handler for input and output. The format of the call to this
macro is as follows:

where:

Encoded value specifying the interrupt level used for
input to the Terminal Handler. This value corresponds
to the interrupt level as follows:

value

x8H
(0 ~ x ~ 7)

7-6

level

Master interrupt levels MO through
M7.

CONFIGURING THE TERMINAL HANDLER

value

yzH
(0 > y > 7)
(0 > z > 7)

level

Slave interrupt levels 00 through
77.

If you omit the macro call, a value of 68H is assumed.

output~evel Encoded value specifying the interrupt level used for
output by the Terminal Handler. This value
corresponds to the interrupt level as follows:

value

x8H
(0 ~ x ~ 7)

yzH
(0 > y > 7)
(0 > z > 7)

level

Master interrupt levels MO through
M7.

Slave interrupt levels 00 through
77.

If you omit the macro call, a value of 78H is assumed.

The input interrupt level must be a higher priority level than the output
interrupt level. The iRMX 86 NUCLEUS REFERENCE MANUAL describes the
relationship between interrupt levels and priorities.

The maximum priority of user tasks in an application system containing
the Terminal Handler depends on the interrupt levels assigned to the
Terminal Handler with the %TH INT LEVELS macro. The priorities of all
user tasks must be lower (numerically higher) than the lowest priority
interrupt task in the Terminal Handler. In the default configuration,
the Terminal Handler's output interrupt level is set to M7, which
corresponds to a priority of 130 for the output interrupt task. Thus,
with the default Terminal Handler configuration, all user tasks must have
a priority lower (numerically higher) than 130.

If MCONFG.A86 does not contain the %TH INT LEVELS macro call, the
Terminal Handler assumes master level M6 (68H) for input and master level
M7 (78H) for output.

ASSEMBLING MCONFG.A86, LINKING AND LOCATING THE TERMINAL HANDLER

MTH.CSD, a SUBMIT file contained on the Terminal Handler release
diskette, can be used to assemble MCONFG.A86 and link and locate the
Terminal Handler. In order to use this SUBMIT file, you must first
prepare your diskettes and place them in the proper drives of your
development system as explained in the "Linking and Locating the
Subsystems" section of Chapter 4. You may also have to make
modifications to MTH.CSD before submitting it, depending on your Terminal
Handler requirements. This section describes MTH.CSD modifications and
the format of the command to submit this file.

7-7

CONFIGURING THE TERMINAL HANDLER

MTH.CSD MODIFICATIONS

If you are providing code to implement control-C semantics, you must
place this code in a procedure named RQABORTAP, which uses only near
calls. Since this procedure runs as part of the interrupt task for the
Terminal Handler, which does not have an exception handler, it should not
make any system calls to delete its task, delete its job, suspend its
task, or change its priority. The environmental condition codes
generated as a result of making these system calls are returned in-line.
Assemble this procedure and modify MTH.CSD to place its object file name
in the LINK86 input list immediately after MCONFG.OBJ. Refer to the iRMX
86 TERMINAL HANDLER REFERENCE MANUAL for further information on the
default control-c semantics.

The Human Interface release diskette includes a library HI.LIB which
cQntains a module HCONTC that implements control-C semantics for the
Human Interface. If you are planning to include the Human Interface in
your application system and wish include the control-c features of the
Human Interface, you must link this module in with the Terminal Handler
through which the Human Interface communicates. Include the following
line in the LINK86 input list immediately after MCONFG.OBJ:

:fx:HI.LIB(HCONTC), &

This module should replace any control-C semantics files that you would
otherwise include.

SUBMITTING MTH.CSD

Enter the following command to assemble MCONFG.A86 and link and locate
the Terminal Handler:

SUBMIT :fx:MTH(date, loc_adr, type)

where:

fx

date

loc adr

The appropriate disk identifier, indicating the drive
containing MTH.CSD.

The date on which you submit the file (maximum of nine
characters).

The address at which to locate the Terminal Handler.
If you want to enter this value as a .hexadecimal
number, you must includ~ the suffix H. The base
portion of this value is the base portion of the
Terminal Handler's entry point. The offset portion of
the entry point is O. You must specify this entry
point in the %JOB macro call for the Terminal Handler.

7-8

type

CONFIGURING THE TERMINAL HANDLER

Type of Terminal Handler you wish to create. Enter
one of the following:

RQOUTPUT An output-only version of the
Terminal Handler is generated.

RQINPUT An input and output version of the
Terminal Handler is generated.

This command assembles MCONFG.A86, links it together with other modules
that contain Terminal Handler code, and locates the Teminal Handler at
the specified address. It places the located Terminal Handler in file
MTH on drive Fl. It also places link and locate maps on drive F3 in
files MTH.MPI and MTH.MP2 respectively.

You must specify a %JOB macro in the system configuration file for the
Terminal Handler (refer to Chapter 4). ". 'thismacro,the etltrypoint
depends on the address at which you locate the Terminal Handler (CS:O).
'The data segment base should be specified as 0 (the Terminal Handler
assigns its own data segment).

CREATING MULTIPLE VERSIONS OF THE TERMINAL HANDLER

If desired, your iRMX 86 system can contain multiple versions of the
Terminal Handler. This may be desirable if, for example, you have two
tasks that use the Terminal Handler and you want to communicate with
these tasks from separate terminals. In order to create multiple
versions of the Terminal Handler, you must obey the following rules:

• Each Terminal Handler must use different input and output mailbox
names. That is, the %TH_MAILBOX_NAMES calls must be different.

• Each Terminal Handler must use a unique USART. This also means
that the %TH USART calls must be different.

• Each Terminal Handler must use a unique timer. This also means
that the %TH TIMER calls must be different.

• 'Each ,Terminal Handler must use different interrupt levels. This
also means that the %TH INT LEVELS calls must be different.

• The code for the Terminal Handlers must be located in different,
non-overlapping areas; each Terminal Handler must have its own
data area.

• Each Terminal Handler must have its own %JOB macro in the system
configuration file.

If you adhere to these rules, you can create multiple versions of the
Terminal Handler in your application system.

7-9

CHAPTER 8. CONFIGURING THE DEBUGGER

Because the Debugger contains a copy of the Terminal Handler, Debugger
configuration is almost identical to Terminal Handler configuration
(except that only one Debugger can be present in the application
.ystem). Debugger configuration involves selecting characteristics of
the Debugger's Terminal Handler and specifying information about the
processor board and the terminal. You perform these operations by making
modifications to an Intel-supplied Debugger configuration file. This
file, DTHCNF.A86, is an assembly language source file which is contained
on the Debugger release diskette.

As released, DTHCNF.A86 defines a Terminal Handler for the Debugger that
communicates with a 9600 baud terminal and runs on a system that uses an
iSBC 86/12A single board computer. If you want the Debugger's Terminal
Handler to run on a different hardware configuration, or if you want to
change some of the characteristics of that Terminal Handler, you must
modify DTHCNF.A86, assemble it, link it with the rest of the Debugger
object files and libraries, and locate the Debugger at an absolute
address. The following sections discuss this configuration process in
detail.

MODIFYING DTHCNF .A86

DTHCNF.A86 can consist of a series of macro calls which identify the
characteristics of the Debugger's Terminal Handler, the terminal, and the
processor board. Figure 8-1 illustrates the released DTHCNF.A86, which
causes the Debugger to be assembled with default configuration
parameters. To modify this file, refer to the 1Modifying MCONFG.A86"
section of Chapter 7. The macro calls that you can place in DTHCNF.A86
are exactly the same as those described in Chapter 7.

$lnclude(:fl:dtncnf.~ac)

end

Figure 8-1. Debugger Configuration File (DTHCNF.A86)

8-1

CONFIGURING THE DEBUGGER

ASSEMBLING DTHCNF .A86, LINKING AND LOCATING THE DEBUGGER

DB.CSD, a SUBMIT file contained on the Debugger release diskette, can be
used to assemble DTHCNF.A86 and link and locate the Debugger. In order
to use this SUBMIT file, you must first prepare your diskettes and place
them in the proper drives of your development system, as explained in the
"Linking and Locating the Subsystems" section of Chapter 4. You may also
have to make modifications to DB.CSD before submitting it, depending on
your Debugger requirements. This section discusses DB.CSD modifications
and the format of the command to submit this file.

DB.CSD MODIFICATIONS

If you are providing code to implement control-C semantics, you must
place this code in a procedure named RQABORTAP, which uses only near
calls. Since this procedure runs as part of the interrupt task for the
Terminal Handler, which does not have an exception handler, it should not
make any system calls to delete its task, delete its job, suspend its
task, or change its priority. The environmental condition codes
generated as a result of making these system calls are returned in-line.
Assemble this procedure and modify DB.CSD to place its object file name
in the LINK86 input list immediately after DTHCNF.OBJ. Refer to the iRMX
86 TERMINAL HANDLER REFERENCE MANUAL for further information on the
default control-C semantics.

The Human Interface release diskette includes a library HI.LIB which
contains a module HCONTC that implements control-C semantics for the
Human Interface. If you are planning to include the Human Interface in
your application system and wish include the control-C features of the
Human Interface, you must link this module in with the Terminal Handler
with which the Human Interface communicates. If the Human Interface
communicates with the Debugger's Terminal Handler, you must link this
module in with the Debugger. To do this, include the following line in
the LINK86 input list immediately after MCONFG.OBJ:

:fx:HI.LIB(HCONTC), &

This module should replace any control-C semantics files that you would
otherwise include.

SUBMITTING DB.CSD

Enter the following command to link and locate the Debugger:

SUBMIT :fx:DB(date, loc~dr)

where:

fx The appropriate disk identifier, indicating the
drive containing DB.CSD.

8-2

date

loc adr

CONFIGURING THE DEBUGGER

The date on which you submit the file (maximum
of nine characters).

The address at which to locate the Debugger. If
you want to enter this value as a hexadecimal
number, you must include the suffix R.The base
portion of this value is the base portion of the
Debugger's entry point. The offset portion of
the entry point is O. You must specify the
entry point in the %JOB macro call for the
Debugger.

This command links together the modules that make up the Debugger and
locates the Debugger at the specified address. It places the located
Debugger in file DB on drive Fi. It also places the link and locate maps
on drive F3 in files DB.MPl and DB.MP2 respectively.

You must specify a %JOB macro in the system configuration file for the
Debugger (refer to Chapter 4). In this macro, the entry point depends on
the address at which you locate the Debugger (CS:O). The data segment
base should be specified as 0 (the Debugger assigns its own data
segment). The exception_handIer_mode must be specified as O. I

8-3

CHAPTER 9. CONFIGURING THE BASIC 1/0 SYSTEM

Basic I/O System configuration involves the following two operations:

• Selecting the features and system calls of the Basic I/O System
that you want to include in your application system and
discarding those that you do not want.

• Supplying the Basic I/O System with information about the I/O
devices on your system.

You perform both of these operations by making modifications to two
Intel-supplied Basic I/O System configuration file: ITABLE.A86 and
IDEVCF.A86. These files, which are contained on the Basic I/O System
release diskette, are assembly language source files. They contain the
following information:

ITABLE.A86

IDEVCF.A86

This file contains information about the interfaces
available with the Basic I/O System, the individual
system calls associated with each interface, and the
internal features of the Basic I/O System. As
released, ITABLE.A86 defines the full complement of
system calls and internal features.

This file contains a description of the devices
supported, along with device and unit information for
each supported device. As released, IDEVCF.A86
describes a number of commonly available devices.

Figure 9-1 illustrates the structure of these two files.

9-1

NON-FILEfCONNECTION
INTERFACE

FILE/CONNECTION
INTERFACE

DESCRIBING
I/O DEVICES

I

CONFIGURTNG THE BASIC I/O SYSTEM

IINCLUOE STATEMENTS

SYSTEM CALL SELECTION

FILE DRIVER GLOBAL DATA

FILE DRIVER TABLES

OPTIONAL FEATURE SELECTION

END STATEMENT

~.

SlNCLUDE STATEMENTS

DEVICE-UNIT INFORMATION
BLOCKS

DEVICE INFORMATION
TABLES

UNIT INFORMATION
TABLES

GENERAL DEVICE INFORMATION

END STATEMENT

I/O SYSTEM
CONFIGURATION
FILE (ITABLE.AI6)

110 SYSTEM
CONFIGURATION
FILE (IDEVCF.A'6)

Figure 9-1. ITABLE.A86 and IDEVCF .A86 Struc'ture

9-2

CONFIGURING THE BASIC I/O SYSTEM

The following sections of this chapter show how to modify ITABLE.A86 and
IDEVCF.A86 in order to produce a Basic I/O System that supports your
individual needs. They also show how to assemble this file and link and
locate the Basic I/O System. Some of the sections in this chapter list
selected portions of the configuration file in order to aid you in the
configuration process.

INCLUDE FILES

ITABLE.A86 must contain an $INCLUDE statement for the following file as
the first statement (other than comments or general controls such as
$TITLE) in the configuration file.

ITABLE.INC This file contains segment, structure, macro, and
miscellaneous definitions for the non-file/connection
interfaces, the file/c6nnection interface, file d~iv~r
global data, and internal feature configuration.

IDEVCF.A86 must contain an $INCLUDE statement for the following file as
the first statement (other than comments or general controls such as
$TITLE) in the configuration file.

IDEVCF .INC This file contains segment, structure, and macro
definitions for device driver configuration; structure
definitions for device configuration; and the
definition of the %DEVICE TABLES macro. This macro is
described in the "General-Device Information" section
of this chapter.

These files are contained on the Basic I/O System release diskette. As
released, ITABLE.A86 and IDEVCF.A86 contain $INCLUDE statements for these
files. However, you should examine ITABLE.A86 and IDEVCF.A86 to ensure
that the $INCLUDE statements contain the correct disk identifiers.

SELECTING NON-FILE/CONNECTION INTERFACE FEATURES (ITABLE.A86)

The non-file/connection interfaces consist of the following:

parameter interface

configuration interface

power-fail interface

This interface supplies local parameters
which the Basic I/O System uses each time
a task makes a Basic I/O System call.

This interface is used by Operating System
extensions to dynamically configure the
Basic I/O System.

This interface informs the Basic I/O
System of impending power failure or power
available conditions.

9-3

CONFIGURING THE BASIC I/O SYSTEM

date/time interface This interface supplies date and time
information.

In ITABLE.A86, each non-file/connection interface consists of a group of
related system calls. Figure 9-2 contains the portion of ITABLE.A86 that
defines the non-file/connection interfaces. This code consists of macro
calls which correspond in name to system calls. Each macro gives
directions to the assembler to include the code for the corresponding
system call in the Basic I/O System.

If you do not modify this portion of ITABLE.A86, all of the system calls
associated with the non-file/connection interfaces will be included in
your application system. In order to exclude a system call from one of
the non-file/connection interfaces, delete the metacharacter of the
associated macro call (%), and replace it with the comment character
(j). By doing this, you change the macro call into a comment and prevent
the assembler from evaluating it. Any or all of the system calls shown
in Figure 9-2 can be excluded in this manner.

name 1table

$include(:fl:1table.inc)
~eject · . • I • , r , , , , , • , , , , , , , • ,

• ,
: Non-Pile-Connection Interfaces
· , · . , , , , , , • , , , , , , , , I , , • , , , , , • , , , , , , , , , • , # , • ,

· ,
: Parameter Intertace:
:

• ,

'ro.create.user
~rq_lnspect.us~r

~rQ_delete_user

~ro.set.default.us~r
'rQ.net.default.user
trn_set.default_pr~flx

'rQ.qet.default.oreflx

: Conflgur~tlo~ Interface:
· ,

\rq.B_onvstcal.attach.devlce
~rq_a_Phvslc81_detach.devlce

Figure 9-2. Non-File/Connection Interface Configuration Values

9-4

• ,

CONFIGURING THE BASIC I/O SYSTEM

: Power-Fail Interface:
• ,

• •

\ro_power_oown
,ro_oower_up

: T1me Interface:
• •

'rQ_set_t1me
'ro_Qet_t1me

Figure 9-2. Non-File Connection Interface Configuration Values
(continued)

SELECTING THE FILE/CONNECTION INTERFACE FEATURES (ITABLE.A86)

The file/connection interface is the primary programmatic interface to
the Basic I/O System, through which jobs manipulate connections and
perform I/O. It provides the support for the file types available to the
Basic I/O System user: named files, stream files, and physical files.
This support is in the form of a file driver for each of these file types.

ITABLE.A86 contains information about all of the file drivers supplied
with the Basic I/O System. If you do not modify ITABLE.A86, all of the
system calls associated with the file/connection interface will be
included in your application system. By modifying this file, you can
eliminate entire file drivers or change the number of system calls
supported by each driver. ITABLE.A86 contains two types of data
pertaining to file drivers.

• File driver global data

• File driver tables

The following sections discuss how to modify this data in order to
provide appropriate file driver support for your system.

FILE DRIVER GLOBAL DATA

The file driver global data consists of a group of macro calls which
provide parameters used by all file drivers in your Basic I/O System.
Figure 9-3 illustrates the portion of lTABLE.A86 which contains this
global data. The values shown in this figure are contained in the
released version of lTABLE.A86 and are the suggested defaults.

CONFIGURING THE BASIC I/O SYSTEM

: ; ; ; : ; : ; : ; : ; : ; : ; : ; : ; : ; , ; : ; : ; ; ; : ; : ; ; ; : : : ; : ; : ; : ; : ; : ; : ; , ; : : , ; , ; ; , : ; ; ;
• •
; Define file-driver global data ,
• , , . , , , , , . , , , , , . , , , . , , , . , . , . , . , , , , , , , , , , , , , , ,

Figure 9-3. File Driver Global Data Parameters

The following paragraphs discuss each of the macros shown in Figure 9-3.
You can change the parameters of these macro calls from their default
settings in order to reflect your individual Basic I/O System
requirements_.

%NUM FILE DRIVERS This macro declares the number of file
drivers in your Basic I/O System.
Associated with each file driver is a file
driver number. Use the largest file
driver number in your system as the value
for this parameter. Intel-supplied file
drivers are numbered as follows:

dliver number

Physical files 1
Stream files 2
Named files 4

%ATTACH DEVICE TASK PRIO This macro declares the priority of the
attach-device task. This task receives
all requests to attach devices (via
PHYSICAL$ATTACH$DEVICE). When the
attach-device task receives such a
request, it creates another task which
actually handles the request. The second
task's priority is one less than the
priority of the task which called
PHYSICAL$ATTACH$DEVICE. Thus the second
task has a slightly higher priority.

9-6

%TlMER TASK PRIO

FILE DRIVER TABLES

CONFIGURING THE BASIC I/O SYSTEM

This macro declares the priority of the
timer task. This task manages the
time-of-day clock for the Basic I/O
System. Its priority can impact its
performance and the Basic I/O System
behavior. If the priority is set too low,
the timer task may not get to run as often
as it needs and the clock will slip. If
the priority is set too high, the timer
task may take machine cycles away from
high priority tasks.

Associated with each file driver are two tables of procedure entry points
and a macro call, which define the contents of the file driver.
ITABLE.A86 contains this information for each of the Intel-supplied file
drivers: the physical, stream, and named file drivers.

The macro, named %FlLE_DRIVER_INFO, supplies parameters that are of use
to the particular file driver. This manual does not define these
parameters; therefore you should not modify any of the macro calls unless
you are excluding an entire file driver (discussed later in this section).

One of the tables, the request table, lists the entry points of the
procedures directly associated with the system calls of that file driver
(for example, the REQREAD procedure is associated with the A$READ system
call). These routines are called by user tasks.

The other table, the I/O service (or ios) table, lists the entry points
of procedures that are ultimately called to service requests generated by
procedures in the request table. The procedures in an ios table are
called by Basic I/O System routines.

ITABLE.A86 provides the request tables and the ios tables in the form of
two assembly language structures, REQ FILE DRIVER and lOS FILE DRIVER.
The REQ FILE DRIVER structure defines-the request table and th;
lOS FILE DRIVER table defines the ios table. The definitions for these
structures are contained in the file ITABLE.INC, which is available on
the Basic I/O System release diskette. The configuration file contains
an $INCLUDE statement for this file, which includes it in the assembly of
the configuration file.

Figure 9-4 shows the portion of ITABLE.A86 that contains the
%FILE_DRIVER_INFO call, the request table, and the ios table for the
physical file driver.

9-7

CONFIGURING THE BASIC I/O SYSTEM

:;;;:;:;;;;;:;:;1;:;:;:;:;:;:;1;;;:;:;:;:;,;:;:;:;;;:;:;1;;;:;';:;;;
:
: pnyslcal ftles: fll~-nrlver Number 1

: ; , ; : ; : ; : ; ; ; : ; : ; : ; : ; ; ; J ; : ; J ~ : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : : : J : ; : , : ; : ; : ; , ;
• •

• ,
: ReQuE'st part:
• ,
reQ_table
reo_fIle_drIver
Ii.
(.

~

~

&
~

~

Ii.
&
&
&
&
Ii.
&
Ii.
&
&

& , , ,
&
& ,
&>
reQ_table

seqment
<
reocreateflle,
,
reoattachfile,
,
reodetachfile,
,
,
,

,
reQot'en,
reQclose,
re<'1reati,
reowrlte,
reqseek,
,
reophyssDeclal,
renconnectionstatus,
renflJ.estatus,
reogPt~atneomponent,

,
,

• ,
• ,
• ,
• •
• ,
• •
• ,
• ,
• ,
• ,
• ,
• ,
• ,
· ,
• •
• ,
• ,
• •
• ,
• ,
• ,
• ,
• ,
• ,

rqSaScreateSflle
Reservec1
rqSasattllchSflle
Reserved
rqSaSdeletesconnectlon
rqSaScreate$dlrectory
Reservec1
rqSaSdelete$flle
Reserved
rqSaSrenameSflle
rqSaSchangp.$~ccess

rqSaSooen
rqSaSclose
rqSa$read
rqSaSwrlte
rqSaSseek
rqSaStruncate
rqsaSspeelal
rqSaS~etSconnectlon$status
rqsaSgp.tSfllesstatus
rqSaSgetspathscomponent
rqSaSgetsdlrectorySentry
rqSaSgetSext~nslonSdata

rqsaSsetSextenslonSdata

Figure 9-4. Physical File Driver Tables

9-8

CONFIGURING THE BASIC I/O SYSTEM

,
., I/O ~ystem part:
• ,
tos_table
tos_file_dr1ver

" &
'i.
&
&
&

" &
&
&
Ii.

" Ii.

" &
Ii.
&
Ii.

" " &.

" " I;.

" I;.

1;.>

,
commoniotasK,
Pl1vsut>date,
attachPhvsicalf1le,
attacnol1ysicalflle,

,
PhYSread,
Phvs wr1te,
Physseek,
pnysspecial,
attacophvsicaldevice,
co~mondetacl1device,
pnvsopen,
pnvsclose,
commonaetconnst,
pnvsaetfl1est,

,

,
,
pnvsaetptllth,

,
ohysdetacnfl1e

: File-driver inlt
: 110 (connection) Task
: Update
: Attacn rile
: Create file
: Chanae Access (non-null path)
: Delete (non-nUll path)
: Read
: write
: Sef'k
: Special
: Attach Device
: Detach Device
: Open
: Close
: Get Connection status
: Get rile status
: Get ~xtension Data
: ~et Extension Data
: Chanae Access (null path)
: Delete (null path)
: Rename
: Get Path Component
: ~et 01rectory ~ntry
: Truncate
: Detaen rile

los_tablf" ends

Figure 9-4. Physical File Driver Tables (continued)

Figure 9-5 shows the portion of ITABLE.A86 that contains the
%FILE_DRIVER_INFO call, the request table, and the ios table for the
stream file driver.

9-9

• ,

CONFIGURING THE BASIC I/O SYSTEM

• , . , . , , , , , , , ,
• ,
'fil~_~river_lnfn(false, 16, 512, 20)
• ,
: Refluest part:
:
reet_tabl~

reet_file_driver

" " " " " " " " " &

" &

&

" " ~

" I;.

" " I;.

" ,
" ,>

'reCl_table

seClment
<
reQcreat~file, ,
reaattachfile,
,
reQdetachfl1e,
,
,
renaeletestrfl1e,
,
,
,
ret'topen,
reoclose,
ref'1rea~,

rea.-rite,
,
,
reQstrspf!IIcial,
reaconnectionstatus,
reatilestatus,
re~getpathcomponent,

,
,

: rq$aScreatesfl1e
• Reserved ,
• rq$aSattachSflle ,
• Peserved ,
• rqSaSdelete$connection ,
• rqSaScreate$dlrectorv •
• Peserved ,
• rqSaSdeleteSfl1e ,
• Pe.served ,
• rqSC:lSrenalllesfile ,
• rqSa$chang~$~ccess ,
• rqSaSooen ,
· rq$aS,close ,
• rqSaSread ,
• rqSaS~rlte ,
• rqSaSseek ,
• rqSastruncate ,
• rqSaSsoeclal ,
• rq$aS~et$connectlonsstatus ,
• rqSaSgetSfilesstatus ,
• rqSaSgetSpath$component ,
• rq$aSgetSdlrectorv~entrv ,
• rqSaSgetSextenslonSdata ,
• rqSaSsetSextensionSaata ,

Fig'ure 9-5. Stream File Driver Tables

9-10

• •

CONFIGURING THE BASIC I/O SYSTEM

: 110 System part:
:
los __ tabl@ seqment
loS_file_driver <

" " ~

" &

&
&.

" " " " &.

" &.
&.
&.
&.
&

&.
&.
&.

" &.

" " " &>

nullfdlnlt,
commoniotasK,
,
attachstreamfl1e,
createstreamfile,
,
,
strread,
strwrlte, ,
strspec1al,
attachstreamdevlce,
eommondetachdevice,
stropen,
strclose,
commonQetconnst,
strgetfilest,
,
,
,
strdf'lete,

,
,
strd~tachflle

: ~lle-driver lnit
: tIn (connection) task
: Update
: AttaCh file
: Create file
: ChanQe Access (non-null path)
: Delete (non-null path)
: Read
: Write
: SeeK
: Sp@cjal
; AttaCh oevice
: Detdctl Oevlcp
; open
: Close
; Get Connection status
: Get File status
: ~et Fxtenslon Data
: ~et Extension Oata
: ChanQe Access (null path)
: Delete (null path)
: Rename
: r.et Path Component
: ~et Directorv Entrv
; Truncate
: netach file

los_table ends

Figure 9-5. Stream File Driver (continued)

Figure 9-6 shows the portion of ITABLE.A86 that contains null structures
for the reserved file driver, driver 3. You can use structures like
those contained in Figure 9-6 to exclude any other file driver from your
application system. To do this, replace the %FILE DRIVER INFO call and
the REQ FILE DRIVER and lOS FILE DRIVER structures-associated with that
driver with null structures-of the following form:

9-11

CONFIGURING THE BASIC I/O SYSTEM

%FILE_DRlVER_INFO(O,O,O, 0)

RE<LTABLE SEGMENT
REQ FILE DRIVER < >
REQ_TABLE ENDS

lOS TABLE SEGMENT
lOS-FILE DRIVER < >
lOS-TABLE ENDS

Even if you make changes to the structures, you must maintain them in the
order that they appear in the released Basic I/O System configuration
file.

:;:;:::;:;:::;;;:;;;:;:;:;:;;;:;:;:;:;1;:;;;1;:;:;:;1;1;:;;;';:
:
: Fl1e-uriver Numoer 3: Heserved.
• •
: ; : ; : ; : ; : ; ; ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; ; ; ; ; : ; : ; ; ; : ; : ; ; ; : ; ; ; , ; , ; : ; :
• •

• ,
: Request part:
:
req_table seqment
req_fl1e_drlver <>
reo_table ends
:
: 110 Systpm part:
• •
los_table seqment
los_file_driver <>
los_table ends
$e1ect

Figure 9-6. Reserved File Driver Tables

Figure 9-7 shows the portion of ITABLE.A86 that contains the
%FlLE DRIVER INFO call, the request table, and the ios table for the
named-file driver.

9-12

CONFIGURING THE BASIC I/O SYSTEM

: ; : ; : ; r ; : ; : ; : ; : ; J , : , : ; , , : ; : ; , ; : ; , ; J , : ; : ; : ; : ; , ; : ; : ; , ; : ; , , : ; , , J J : ;

:
: Wamed Files: File-oriver Number 4. ,
, ; : ; : ; : ; : ; : ; : ; ; ; 1 ; : ; : ; : ; : ; : : : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ;
:
'fl1e_drlver_lnfo(true, ?b, 1024, 54)
:
: Request part:
• ,
req_table seC'lment
reQ_file_orlver < , reacreatef'le, • rqSaScreate$file , , , : Peserved , reqattachfile, • rqSaSattach$flle , , .' Reserved , , , reqdetachfile, • rqSaSdeletesconnectlon , , reacre8tedi~ectory, • rqSaScreateSdlrectorv II

" • Reserved , , , rendeletefl1e, • rqSaSdeleteSfile , , , • Peserved , , reC'lrenametl1e, • rqSaS n~names f 11 e , , reachangeaccess, • rqSaSchange$8CCeSs , , reaOl"len, • rqSaSooen ,

" rel'1close, • rqSaSclose •

" reC'lrean, : rqSaSread , ren.rIte, • rqsaSwrite ,

" reaseek, • rqSaSseek ,

" reatrunc, · rqSaStruncate , , recnumspecial, • rqSaSsDec1al , , reaconnectlonstatus, • rqsasgetsconnectlonsstatus • , reafilestatus, • rqSaSgetSfl1eSstatus •

" reQgetDathcomponent, • rqSaSge tSpath$Component ,

" reogetdirectorventry, • rqsaSgetSdlrectorySentry , , rennumaetextensiondata, • rqSaSgetSextensionSdata , , recnumsetextensiondata • rqSaSsetsextenslonSoata , ,>
re4_table en~s

Figure 9-7. Named File Driver Tables

9-13

• ,

CONFIGURING THE BASIC I/O SYSTEM

; I/O System part:
• ,
10s_tabltt seament

< 1 os_ f 11 e_dr 1 ver
& , : File-driver jnit

: TID (connection) Task
: (Jptiate

&
&

'" &.
~

~

&

&. ,
&
&

&.
&
&

&
&

~

&
&
&
&
&
&
&
&
&>

comm~nlotasK,

nUl'lluodat~,

attacnnamedfl1e,
credtenamecitllf',
namecichangeaccess,
namedllp.lete,
numread,
num~rite,

nUl'llseek,
numsoeC'ial.
attacnnameddevice,
commondetachdev1ce,
nUII'ooen,
numclose,
cOMmonoetconnst,
numgetf11est,
namy~tPxtdata,

namsetPxtd~ta.
namchaccess,
namdel~te,

namrt"name,
namgetoc:lth,
namdirentrY,
nurntrunc,
numdett!chtlle

: Attach File
: Create flle
: Chanoe Access (non-null path)
: nelete (non-null path)
; Reaa
: Write
; SeeK
; Special
: Attach Of'vlce
: DetaCh Device
: Open
: ("lose
; r.et Connection status
: Get File status
: Get f.xtension Data
: ~et f.xtension nata
: Chanqe Access Cnull path)
: relete (null path~
: Reni:afTte
; Get Path Component
: G~t Directory gntrv
: Truncate
: f)etach file

10s_tahle ttnt1s

Figure 9-7. Named File Driver Tables (continued)

You can modify the file driver tables in one of two ways. If you want to
exclude an entire driver from your Basic I/O System, substitute null
structures for its %FILE DRIVER INFO call and its REQ FILE DRIVER and
IOS_FILE_DRIVER structures in ITABLE.A86. However, if you-want to
eliminate one or more system calls from a file driver but still include
the file driver as part of your Basic I/O System, delete the procedure
names associated with the affected system calls from both the
REQ_FILE_DRIVER structure and the lOS FILE DRIVER structure.

9-14

CONFIGURING THE BASIC I/O SYSTEM

Replace the procedure names in the REQ FILE DRIVER structure with the
name NOTCONFIGURED. Replace the procedure names in the lOS FILE DRIVER
structure with commas. This causes the Basic I/O System to-return the
ENOTCONFIGURED exception code to any task that attempts to invoke one
of the eliminated system calls. Table 9-1 lists the system calls and
associated procedure names for the physical file driver. Table 9-2 lists
the system calls and associated procedure names for the stream file

-driver. Table 9-3 lists the system calls and the associated procedure
names for the named file driver.

Table 9-1. Physical File Driver System Calls and Procedure Names

SYSTEM CALL REQ FILE DRIVER lOS FILE DRIVER
-NAME - NAME

A$CREATE$FILE REQCREATEFILE ATTACHPHYSICALFILE
(the second one)

A$ATTACH$FILE REQATTACHFILE ATTACHPHYSICALFILE
(the first one)

A$OPEN REQOPEN PHYSOPEN

A$SEEK REQSEEK PHYSSEEK

A$READ REQREAD PHYSREAD

A$WRITE REQWRITE PHYSWRlTE

A$SPECIAL REQPHYS SPEC IAL PHYSSPECIAL

A$CLOSE REQCLOSE PHYSCLOSE

AGETCON-
NECTION$STATUS REQCONNECTIONSTATUS PHYSGETCONNST

AGETFILE$STATUS REQFILESTATUS PHYSGETFILEST

AGETPATH$COM-
PONENT REQGETPATHCOMPONENT PHYSGETPATH

A$DELETE$CON-
NECTION REQDETACHFlLE PHYSDETACHFILE

9-15

CONFIGURING THE BASIC I/O SYSTEM

Table 9-2. Stream File Driver System Calls and Procedure Names

SYSTEM CALL REQyILE_DRlVER lOS 'FILE DRIVER -NAME NAME

A$CREATE$FILE REQCREATEFILE CREATESTREAMFlLE

A$ATTACH$FILE REQATTACHFlLE ATTACHSTREAMFILE

A$OPEN REQOPEN STROPEN

A$READ REQREAD STRREAD

A$WRITE REQWRITE STRWRlTE

A$SPECIAL REQSTRSPECIAL STRSPECIAL

A$CLOSE REQCLOSE STRCLOSE

AGETCON- REQCONNECTIONSTATUS STRGETCONNST
NECTION$STATUS

AGETFILE$STATUS REQFILESTATUS STRGETFlLEST

AGETPATH$COMPONENT REQGETPATHCOMPONENT STRGETPATH

A$DELETE$CONNECTION REQDETACHFILE STRDETACHFILE

A$DELETE$FILE REQDELETESTRFILE STRDELETE

9-16

CONFIGURING THE BASIC I/O SYSTEM

Table 9-3. Named File Driver System Calls and Procedure Names

SYSTEM CALL REQyILE_DRlVER lOS FILE DRIVER -NAME NAME

A$CREATE$FILE REQCREATEFILE CREATENAMEDFILE

A$ATTACH$FILE REQATTACHFILE ATTACHNAMEDFILE

A$CREATE$DIRECTORY REQCREATEDIRECTORY CREATENAMEDFILE

A$CHANGE$ACCESS REQCHANGEACCESS NAMEDCHANGEACCESS
NAMCHACCESS

A$RENAME$FILE REQRENAMEFILE NAMRENAME

A$OPEN REQOPEN NUMOPEN

A$SEEK REQSEEK NUMSEEK

A$READ REQREAD NUMREAD

A$WRITE REQWRITE NUMWRlTE

A$SPECIAL REQNUMSPECIAL NUMSPECIAL

A$CLOSE REQCLOSE NUMCLOSE

AGETCON-
NECTION$STATUS REQCONNECTIONSTATUS NUMGETCONNST

AGETFILE$STATUS REQFILESTATUS NUMGETFILEST

AGETDI-
RECTORY$ENTRY REQGETDlRECTORYENTRY NAMDIRENTRY

AGETPATH$COMPONENT REQGETPATHCOMPONENT NAMGETPATH

A$DELETE$CONNECTION REQDETACHFILE NUMDETACHFILE
.

A$TRUNCATE REQTRUNC NUMTRUNC

A$DELETE$FILE REQDELETEFILE NAMED DELETE
NAMDELETE

A$GET $EXTENS ION$DATA REQNUMGETEXTENSIONDATA NAMGETEXTDATA

A$ SET$EXTENS ION$DATA REQNUMSETEXTENSIONDATA NAMSETEXTDATA

9-17

COHFlGURlHG tHE BASIC I/O SYSTEK

In addition to the file driver tables shown in Figures 9-4, 9-5, 9-6, and
9-7, ITABLE.A86 also contains external declarations for all the symbols
referenced by the BE~FlLE __ DRIVERand the IOS-!ILB_DRIVER structures. If
you modify these structures to exclude systea calls froa your Basic I/O
Systea, you can eliainate the EXTRN statements for the excluded procedure
naaes, as long as these procedure names are not referenced by other file
driver structures. However, aake sure that all references to a procedure
naae have been eliainated befcu-e removing its EXTRN statement.

Example:

To remove the A$RENAME$FILB systea call from the named file driver,
replace the REQRENAMEFILE procedure naae in the named file driver
REQ_FILB_DRIVER structure with RQNOTCONFIGURED. Also replace the
NAMRENAME procedure name in the named file driver lOS FILE DRIVER
structure with a coama. Then remove the EXTRN state~nts iror these names
froa the configurat.ion file.

SELECTING FEATURES (ITABLE.A862

Figure 9-8 shows the part of ITABLE.A86 that selects features of the
Basic I/O Systea. These features are selected with macro calls, much in
the same way as the non-file/connection interfaces. However, unlike the
non-file/connection interface, features are selected by excluding the
corresponding aacro call ~rom ItABLE.A86. In order to include a aacro
call froa ITABLE.A86 (and thus exclude the feature), replace the
seaicolon (j) at the beginning of the corresponding aacro call with a
percent-sign (X).

:;:;:;;;:;;;:1:1:;;1;;';;1:;;;';1;:;';:;:;:;1;;;:;;;"I;',
1
: Define any f~atures to be configured.

:;';:;;;:;:;:;,;;;;;:;:;:;7;:;:;1;"';1;:':;;;;;:;1:';I;:,

;aummy_tl;ner
:no_create_f8lse
:no_truncate
:no_allocate

Figure 9-8. Basic I/O S,stea Features

9-18

CONFIGURING THE BASIC I/O SYSTEM

The following paragraphs discuss each of the macros shown in Figure 9-8.

%DUMMY TIMER The presence of this macro call causes the Basic I/O
System to be assembled without timing facilities.
Without timing facilities, the Basic I/O System fills in
all time fields with a zero value and saves the overhead
of maintaining a timer. Also, without timing facilities
you can debug your application system in single-step
mode using the iSBC 957A/B monitor, because the system I
is not constantly servicing clock interrupts. However,
if you include the %DUMMY TIMER macro call, you should
exclude the GET$TlME and SET$TI~m system calls from your
Basic I/O System.

If you exclude the %DUMMY TIMER call from ITABLE.A86,
the timing facilities of the Basic I/O System are
included in your application system.

%NO CREATE - The presence of this macro call causes the Basic I/O
FALSE System to be assembled without the ability to create

connections to existing files with the CREATE$FILE
system call. In particular, if this macro is present,
the user cannot call CREATE$FILE with the must$create
parameter set to false. If the Basic I/O System
encounters such a call, it returns the E$SUPPORT
exception code. This option implies that CREATE$FILE
can only be used to create connections to nonexistent
files. Refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL for detailed information concerning the
CREATE$FILE system call.

%NO TRUNCATE The presence of this macro call causes the Basic I/O
System to be assembled without the TRUNCATE system call
and its associated modules. The presence of this macro
call also requires the presence of the %NO CREATE FALSE
call, since setting the must$create parameter of -
CREATE$FILE to false requires the ability to truncate
the file (refer to the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL). This macro call also requires that
you omit the TRUNCATE and DELETE$FlLE system calls from
your application system by removing their entries from
the file driver tables (refer to the "File Driver
Tables" section of this chapter).

%NO ALLOCATE The presence of this macro call causes the Basic I/O
System to be assembled without the abil~ty to extend
files beyond their current end-of-file boundaries. This
macro call requires that you omit the CREATE$FILE and
CREATE$DlRECTORY system calls from your application
system by removing their entries from the file driver
tables (refer to the "File Driver Tables" section of
this chapter). You should not include this macro call
in ITABLE.A86 unless the users of the Basic I/O System
only read from existing files on named-file volumes.
However, inclusion of this macro call reduces the size
of the Basic I/O System.

9-19

CONFIGURING THE BASIC I/O SYSTEM

DESCRIBING THE I/O DEVICES (IDEVCF.A86)

An I/O device consists of a controller and one or more units. A device
driver services each I/O device. In order to include I/O devices in your
system, you must provide specific information about deVices, units, and
device drivers as well as general information about all devices in the
system. The specific information is provided in the form of device-unit
information blocks (DUIBs). The general information is provided in the
form of a macro call. The Basic I/O System configuration file,
IDEVCF.A86, contains several DUIBS for standard devices as well as the
general information for these devices.

Using the information presented in this chapter as a guide, you must
modify IDEVCF.A86 so that it describes the devices attached to your
system.

Before presenting the specific information that you need in order to
modify the configuration file, this chapter describes the terms device
number, unit number, and device-unit number, since you must specify each.

DEVICE NUMBERING

Figure 9-9 contains a simplified drawing of three I/O devices in a
system. The device numbers of these three devices are 0, 1, and 2, as
shown. The device number represents the device as a whole. A unit
number uniquely identifies a unit within a device (such as a single disk
drive of a multi-drive device). Notice that the unit numbers of one
device can duplicate the unit numbers of another. A device-unit number
uniquely identifies a unit of a device among all the units of all the
devices. Device-unit numbers are not duplicated.

DEVICE 0

CONTROLLER

I I
UNIT 0 UNIT 1

DEVICE- DEVICE-
UNIT 0 UNIT 1

DEVICE 1

CONTROLLER

I I I
UNIT 0 UNIT 1 UNIT 2

DeVICE- DEVICE- DEVICE-
UNIT 2 UNIT 3 UNIT 4

Figure 9-9. Device Numbering

9-20

DEVICE 2

UNIT 0

DEVICE
UNIT 5

CONFIGURING THE BASIC I/O SYSTEM

Before creating your Basic I/O System configuration file, assign each
device in your system a device number. Likewise, assign each unit a unit
number and a device-unit number. The order of assignment is not
important (with the exception of the unit number), as long as it is
consistent with the definitions supplied previously, and the numbering of
devices, units, and device-units begins with O. The device driver uses
the unit number to select the correct unit on the device. Make sure that
if you have two of the same type of controller (such as two iSBC 204
controllers), assign each of them a separate device number.

DEVICE-UNIT INFORMATION BLOCKS

A device-unit information block (DUIB) is a block of information that you
must supply for each device-unit in your system. You can provide this
information by entering DEFINE DUIB assembly language structures into the
Basic I/O System configuration-file. The definition of this structure is
contained in file IDEVCF.INC, which is available on the Basic I/O System
release diskette. IDEVCF.A86 contains an $INCLUDE statement for this
file, which includes it in the assembly of the configuration file. The
format of the DEFINE DUIB structure is as follows:

DEFINE DUIB <
& dev name,
& file drivers,
& functions,
& flags,
& dev_gran,
& 10w_dev_size,
& high dev size,
& device number,
& uni t number,
& device unit number,
& init,.J.o, -
& finish io,
& queue_io,
& cancel io,
& device info,
& unit info,
& update timeout,
& numyuffers,
& priority
& >

where:

dev name Name of the device-unit. Specify this name as
a string of 14 characters or less, surrounded
by single quotes. This name is supplied to the
PHYSICAL$ATTACH$DEVICE system call in order to
identify the device to be attached. For
example, the name 'FO' could be used as the
name of an iSBC 204 unit.

9-21

file drivers

I functions

flags

I

I

CONFIGURING THE BASIC I/O SYSTEM

WORD specifying file driver validity. Setting
bit number i of this word implies that file
driver number i+1 can attach this device-unit..
Clearing bit number i implies that file driver
number i+1 cannot attach this device-unit.
Bits are numbered from right to left, starting
with bit O. Legitimate file drivers and their
associated bit numbers include:

File Driver Bit Number
physical 0
stream 1
named 3

The remainder of the word must be set to zero.

BYTE specifying I/O function validity. Setting
bit number i of this word implies that this
device-unit supports function number i.
Clearing bit number i implies that the
device-unit does not support function number
i. Bits are numbered from right to left,
starting with bit O. Legitimate functions and
their numbers include:

Function
F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

Bit Number
o
1
2
3
4
5
6
7

Bits 4 and 5 must always be set.
driver requires these functions.
this word must be set to zero.

Every device
Bits 8-15 of

BYTE specifying characteristics of diskette
devices. The significance of the bits is as
follows:

bit meaning

0 0 = not a diskette; 1 =a diskette
1 0 .. single density; 1 = double

density
2 o .. single sided; 1 = double sided
3 o .. 8 inch; 1 = 5 1/4 inch

4-7 Reserved

9-22

CONFIGURING THE BASIC I/O SYSTEM

low dev size

device number

unit number

device unit number

init io

finish io

WORD specifying the device granularity in
bytes. This parameter is generally used for
random access devices (described later in this
section). It specifies the minimum number of
bytes of information that the device reads or
writes in one operation, or the sector size of
the device. You should set thIs value equal to
the volume granularity specified when the
volume was formatted. For example, for an
iSBC 204 or iSBC 206 unit you could specify 128
or 512.

Low-order WORD of the device storage capacity,
in bytes.

High-order WORD of the device storage capacity,
in bytes.

BYTE specifying the number of the device with
which this DUIB is associated. Refer to the
"Device Numbering" section of this chapter for
more specific information.

BYTE specifying the unit number of the device
unit associated with this DUIB. This number
identifies one out of several possible units of
a device. Refer to the "Device Numbering" sec
tion of this chapter for more information.

WORD specifying the number
associated with this DUIB.
"Device Numbering" section
more specific information.

of the device-unit
Refer to the

of this chapter for

WORD specifying the offset in the code segment
of this unit's Initialize I/O device driver
procedure. Refer to Table 9-4 for special
information concerning common and random access
drivers. The GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS
contains additional information about this
procedure. You must also place an EXTRN
statement for the init io parameter in the
configuration file.

WORD specifying the offset in the code segment
of this unit's Finish I/O device driver
procedure. Refer to Table 9-4 for special
information concerning common and random access
drivers. The GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS
contains additional information about this
procedure. You must also place an EXTRN
statement for the finish io parameter in the
configuration file.

9-23

I

cancel io

device info

unit info

update_timeout

CONFIGURING THE BASIC I/O SYSTEM

WORD specifying the offset in the code segment
of this unit's Queue I/O procedure. Refer to
Table 9-4 for special information concerning
common and random access drivers. The GUIDE TO
WRITING DEVICE DRIVERS FOR THE iRMX 86 AND
iRMX 88 I/O SYSTEMS contains additional
information about this procedure. You must
also place an EXTRN statement for the queue_io
parameter in the configuration file.

WORD specifying the offset in the code segment
of this unit's Cancel I/O procedure. Refer to
Table 9-4 for special information concerning
common and random access drivers. The GUIDE TO
WRITING DEVICE DRIVERS FOR THE iRMX 86 AND
iRMX 88 I/O SYSTEMS contains additional
information about this procedure. You must
also place an EXTRN statement for the cancel io
parameter in the configuration file.

POINTER to a device information table for this
device. Specify 0 for this parameter if the
driver for the associated device does not need
this field. Refer to the "Device and Unit
Information" section of this chapter for
specific information concerning the
device-information table.

POINTER to a unit information table for this
unit. Specify 0 for this parameter if the
driver for the associated unit does not need
this field. Refer to the "Device and Unit
Information" section of this chapter for
specific information concerning the
unit-information table.

WORD specifying the number of clock intervals
(defined during Nucleus configuration; see
Chapter 6) that the I/O system waits after
completing an I/O request before updating file
data structures on the volume. After a request
on a connection has been completed, the Basic
I/O System updates the data structures on the
volume unless a new request is made before this
timeout value expires. If you specify a zero
value for this parameter, the Basic I/O System
updates the structures during each request. A
value of OFFFFH indicates that updates occur
only when the device is detached.

When your Bas~c I/O System is in the debugging
stages, you should specify a zero timeout
value. Otherwise it is recommended that you
specify a value for this parameter that when
multiplied by the length of a clock interval

9-24

num buffers

priority

CONFIGURING THE BASIC I/O SYSTEM

yields an update timeout value of about 1
second, unless your system can maintain disk
integrity with the OFFFFH value. You can
adjust the update_timeout value in conjunction
with the num buffers parameter to increase the
performance of the Basic I/O System when
dealing with this unit.

WORD which specifies whether a device is a
random access device and, if it is, specifies
how many buffers the device uses. If this
parameter is nonzero, it specifies that the
device is of the random access variety and
indicates the number of buffers this unit will
have for blocking and deblocking I/O requests.
Each sector is one buffer plus 16 bytes long.
The Basic I/O System uses these buffers to
store partial blocks of data when I/O requests
do not start on sector boundaries or transfer
counts are not multiples of the device
granularity. In most application systems, 4 is
an optimal value for this parameter. A value
of 0 for this parameter indicates that the
device is not a random access device.

BYTE specifying the priority of the Basic I/O
System service task for the device.

You must specify a DEFINE DUIB structure for each device-unit in the
system. However, you can-specify more DUIB structur~s than
device-units. Each DUlB must have a unique name (specified with the
dev name parameter) but more than one DUIB can apply to the same
device-unit. Different DUIBs can be used to specify different
characteristics for the same device-unit. Therefore, different device or
unit characteristics can be selected at run-time when the DUIB is
associated with the device-unit (such as choosing between sing1e- and
double-density diskettes, for example). This is done with the
A$PHYSICAL$ATTACH$DEVICE system call. You must arrange all of the DUIBs
contiguously in your configuration file. Do not place any other code
between the DEFINE DUIB structures.

The Basic I/O System supports the notion of common and random access
drivers, providing a set of support routines for these drivers. When you
use common and random access drivers you must reference these
Intel-supplied procedures in the DEFINE DUIB structure. The DEFINE DUIB
parameters and the values which you must enter are listed in Table 9-4.
The GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/O
SYSTEMS discusses common and random access device drivers in more detail.

9-25

CONFIGURING THE BASIC I/O SYSTEM

Table 9-4. Common and Random Access Driver DUIB V~lues

DEFINE DUIB Common and Random Access Driver
Para_ter Parameter

init io INITIO -
finish 10 FINISHIO

queue_io QUEUE 10

cancel io CANCELIO -

Former releases of the Basic I/O System provided two versions of the
procedures listed in Table 9-4, one version for common drivers and one
version for random access drivers. The random access procedures had the
names listed in Table 9-4, but with the characters "RAD- as a preface.
Now, the procedures listed in Table 9-4 provide support for both types of
drivers. However, to be compatible with previous releases, the "RAD"
names are still supported. If you are using a configuration file created
in a previous release, you need not modify it to update these names.

IDEVCF.A86 contains DEFINE DUIB structures for several standard devices.
Figure 9-10 shows one of these structures •.

• ,
• 5nugart 204, unit t ,
• ,
deflne_duib <

" 'Ft', • Plame(14) •

" OOAH, • flleSdrivers ,

" OFJ'H, • functs •

" OOH, • flags ,

" 128, • dev$oran ,

" OI::900ri,03H, • dev$size = 256256 •
" 0, • Device ,

" 1 , • Unit ,

" 1, • dev$unlt ,

" initio, • InltSl0 , , flnlsnl0, • flnlshSl0 ,

" queueio, • Queueslo ,

" cancell0, • cancelSio ,

" dlnto_204, , devlceSlnfo

" uinto_shugart, • unltSlnfo , , 100, • updateStimeout , , 6, • num$bufferl , , 129 • priority ,
,>

Figure 9-10. Example DUIB Contained in IDEVCF .A86

9-26

CONFIGURING THE BASIC I/O SYSTEM

The DUIB in Figure 9-10 defines an iSBC 204 unit. The name of this DUIB
is Fl. This name should be used when making an A$PHYSICAL$ATTACH$DEVICE
system call. The parameter.s of the DUIB describe the unit as follows:

• The OBH value for the file_drivers parameter indicates that file
drivers one, two, and four can attach this device-unit (bits 0,
1, and 3 are set).

• The OFFH value for the functions parameter indicates that all
eight functions are valid for this device-unit (bits 0-7 are set).

• The OOH value for the flags parameter indicates that the drive is
a single-density, single-sided diskette drive.

• The OE900H value for the low_dev_size parameter and the 03H value
for the high dev size parameter indicate a storage. capacity of
3E900H bytes~ or-256256 decimal bytes.

• The values for the device number, unit_number, and
device unit number parameters indicate that this DUIB applies to
device:Unit-1, which is unit 1 of device O.

• The init io, finish io, queue io, and cancel io parameters
indicate-that this iSBC 204 device has a random access driver.
These parameters contain the values listed in Table 9-4 for
random access and common driver entry points. IDEVCF.A86
contains EXTRN statements for these entry points.

• The device info and unit info parameters indicate that this
device has a device information table located at the address of
symbol DINFO 204 and this unit has a unit information table
located at the address of symbol UNIFO_SHUGART. IDEVCF.A86
contains these tables. They are described in the next section.

DEVICE AND UNIT INFORMATION TABLES

The device info and unit info parameters of DEFINE DUIB refer to tables
that you m~st place in the configuration file which contain specific
information that the driver needs. The format of the information in each
table depends on the device driver. This section describes the formats
of the device information tables and unit information tables for common
and random access device drivers. The GUIDE TO WRITING DEVICE DRIVERS
FOR THE iRMX 86 AND iRMX 88 I/O SYSTEMS contains more complete
information about these device drivers.

Common Device Driver Tables

To provide device information tables for common device drivers, use the
COMMON DEV INFO assembly language structure. This structure is defined
in fii; IDEVCF. INC, which is available on the Basic I/O System release

9-27

CONFIGURING THE BASIC I/O SYSTEM

diskette. IDEVCF.A86 contains an $INCLUDE statement for this file, which
includes it in the assembly of the configuration file. The format of the
COMMO~DEV_INFO structure is as follows:

COMMON DEV INFO <
& level,
& priority,
& stack size,
& data size,
& num units,
& de vic e_init,
& device finish,
& device-start,
& device-stop,
& device-interrupt
& > -

where:

level

priority

stack size

data size

WORD specifying an encoded interrupt level at which
the device will interrupt. The interrupt task uses
this value to associate itself with the correct
interrupt level. The values for this field are
encoded as follows:

bits value

15-7 0

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and bits
6-4 specify the entire level number. If
zero, the level is a slave level and bits 2-0
specify the second digit

2-0 Second digit of the interrupt level (0-7), if
bit 3 is zero.

BYTE specifying the initial priority of the device's
interrupt task.

WORD specifying the size in bytes of the stack for the
user-written device interrupt procedure (and other
procedures that it calls). This number should not
include stack requirements for the Basic I/O
System-supplied procedures. They add their
requirements to this number.

WORD specifying the size in bytes of the user portion
of the device-local data. This data is for driver use
only. The common driver support procedures supplied
by the Basic I/O System allocate their data in
addition to this.

9-28

CONFIGURING THE BASIC I/O SYSTEM

num units WORD specifying the number of units supported by the
driver. Units are assumed to be numbered
consecutively, starting with zero.

device init WORD specifying the start address of the user-written
device initialization procedure.

device finish WORD. specifying the start address of the user-written
device finish procedure.

device start WORD specifying the start address of the user-written
device start procedure.

device_stop WORD specifying the start address of the user-written
device stop procedure.

device in- WORD specifying the start address of the user-written
terrupt device interrupt procedure.

Depending on the actual device driver, you may have to provide additional
fields for this structure. The GUIDE TO WRITING DEVICE DRIVERS FOR THE
iRMX 86 AND iRMX 88 I/O SYSTEMS describes all fields of this structure in
more detail.

Most common device drivers do not require unit information tables.
Therefore, make sure to set the unit info field of the DEFINE DUIB
structure to zero for any device-units that use common device-drivers,
unless the particular driver requires unit information.

Random Access Device Driver Tables

To provide the device information tables and unit information tables for
random access device drivers, use the RADEV DEV INFO and RADEV UNIT INFO
assembly language structure. These structures are defined in file -
IDEVCF.INC, which is available on the Basic I/O System release diskette.
IDEVCF.A86 contains an $INCLUDE statement for this file, which includes
!tin the assembly of the configuration file.

The format of the RADEV DEV INFO structure is as follows:

RADEV DEV INFO <
& level,
& priority,

. & stack_size,
& data_size,
& num units,
& device init,
& device-finish,
& device-start,
& device stop,
& device interrupt
& > -

9-29

I

CONFIGURING THE BASIC I/O SYSTEM

The fields of this structure are the same as those for the
COMMON DEV INFO structure and are described in the "Common Device Driver
TablesT seCtion of this chapter.

Depending on the actual device driver, you may have to provide additional
parameters for this structure. Refer to the "Device Driver Tables for
Intel-supplied Device Drivers" section of this chapter for examples of
this. The GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88
I/O SYSTEMS describes all of the fields of this structure in detail.

To provide the unit information table for a random access device driver,
use the RADEV UNIT INFO assembly language structure. The format of this
structure is as follows:

RADEV UNIT INFO <
& track_size,
& max retry,
& 0 -
& >

where:

track size WORD specifying the size in bytes of one track of a
volume of the device. If the controller can handle
requests that cross track boundaries, specify 0 for this
parameter.

max_retry WORD specifying the maximum number of times an operation
should be retried if an error occurs. A value of 9 is
recommended.

Depending on the actual device driver, you may have to provide additional
parameters for this structure. Refer to the "Device Driver Tables for
Intel-supplied Device Drivers" section of this chapter for examples of
this. Also refer to the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86
AND iRMX 88 I/O SYSTEMS for further information about this structure.

DEVICE-DRIVER TABLES FOR INTEL-SUPPLIED DEVICE DRIVERS

Intel supplies device drivers for the following devices:

iSBC 204 flexible disk controller

iSBC 206 hard disk controller

iSBC 208 flexible disk controller

iSBC 215/iSBX 218/ iSBC 220 winchester/flexible/SMD disk controller

iSBC 254 bubble memory controller

9-30

CONFIGURING THE BASIC I/O SYSTEM

line printer

iSBC 86/12A on board USART

iSBX 270 terminal controller

byte bucket

All you have to do in order to use these drivers is to fill out the
DUIBs, device information tables, and unit information tables as
described in this section.

Note that if several boards are configured in the system, each must have
its own unique interrupt level and port addresses.

In general, flexible disk drivers may support sector sizes of 128, 256,
512, and 1024 bytes, single or double density (128-byte sector size is
not supported with double density), single or double sided. Cylinder 0,
side 0 is always formatted with 128-byte sectors, single density. On two
sided, 8-inch, double density disks, cylinder 0, side 1 is always
formatted with 256-byte sectors, double density. Sectors are mapped into
device granularity blocks and assigned a sector number. Sector numbering
starts with the number 1 on side 0, cylinder 0 and continues
consecutively around that track. Numbering continues onto side 1,
cylinder 0 before proceeding to side 0, cylinder 1.

Characteristics of the supported 8-inch
are shown in Tables 9-5 and 9-6. These
both the iSBC 208 and iSBX 218 drivers.
apply to the iSBC 204 driver.

and 5 1/4-inch flexible formats
characteristics are common to
Values in these tables do not

Table 9-5. Eight Inch Diskette Characteristics

Sector Density Sectors Device Size Device Size
Size per Track One Sided Two Sided

128 Single 26 256256 * 512512 *
256 Single 15 295168 590848
512 Single 8 314880 630272

1024 Single 4 315392 630784

256 Double 26 509184 * 1021696 *
512 Double 15 587264 1177600

1024 Double 8 626688 1255424

* This device type is supported by the iSBC 208 and iSBX 218 bootstrap
drivers.

9-31

I

I

CONFIGURING THE BASIC I/O SYSTEM

Table 9-6. 5 1/4 Inch Diskette Characteristics

Sector Density Sectors Device Size
Size per Track One Sided Two Sided

35 Tracks 80 Tracks 35 Tracks 80 Tracks

128 Single 16 71680 163840 143360 327680
256 Single 9 80384 184064 * 161024 * 368384 *
512 Single 4 71680 163840 143360 327680

1024 Single 2 71680 163840 143360 327680

256 Double 16 141312 * 325632 * 284672 * 653312 *
512 Double 8 141312 325632 284672 653312

1024 . Double 4 141312 324532 284672 653312

* This device type is supported by the iSBC 208 and iSBX 218 bootstrap
drivers.

iSBC 204 Driver

The iSBC 204 driver is a random access driver. It supports the following:

o The functions F$READ, F$WRITE, F$SEEK, F$SPECIAL, F$ATTACH$DEVICE,
and F$DETACH$DEV. F$OPEN and F$CLOSE are accepted, but the driver
performs no operations for these functions. Track formatting and
volume change notification are supported via the F$SPECIAL
function. Refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL
for further information about these special functions.

o All Intel-supplied file drivers.

o Device granularities of 128 and 512 bytes, software selectable on a
per-unit basis.

o Up to four units per controller; two for each 8271 DMA chip. The
8271 chip at chip location A4 of the iSBC 204 board is FDCO,
controlling units 0 and 1. The 8271 chip at chip location A6 is
FDC1, controlling units 2 and 3.

You must place the following values in the device information table in
order to support the iSBC 204 driver:

RADEV_DEV_INFO Field

level
priority
stack size
data size
num_units
device init

Value

Configuration option
Configuration option
20
127
1 through 4
1204INIT

9-32

,
'. ,
• •

COBP'IGUB.ING THE BASIC I/O SYSTEM

RADEV DEV IBP'O Field

device finish
device-start
device stop
device interrupt

Value

DEFAULTFINISH
1204START
DEFAULTS TOP
1204INTERl.UPT

In addition, you must also append the following information to the device
information structure:

!U.!.
WORD

Value

Address of the I/O port which matches the
board configuration.

Figure 9-11 shows a device information table contained in IDEVCF.A86.
This table is the one associated with the DUIB shown in Figure 9-10.

General 204 Single-Density floppy device Information

dinto_204 radev_dev_lnfo <
& ,
&
& , , , ,
&
&

')

058H, • level ,
81, , priority
20, , stack$slze
127, • dataSslze ,
4, • nUIIISunlts ,
1~041nlt, • deviceS1nlt ,
defaultfinlsh, • dev1ceSflnlsh ,
1204start, , dev1cesstart
defaultstop, , devlceSstop
12041nterrupt • devlce$lnterrupt ,

dw OAOH , 1/0 port base (204 speclfl1c)

Figure 9-11. Device Information Table for iSBC· 204 Device

IDEVCF.A86 also contains ExrRN statements for the symbols referenced in
the Figure 9-11.

"
You must supply the following information in the unit information table
in order to support the iSBC 204 driver:

RADEV _UNIT _IBP'O Field

track size
max_retry

Value

26 * 128 or 8 * 512
9 (recoJllDlended)

9-33

,
• ,
• ,

CONFIGURING THE BASIC I/O SYST.BH

In addition, you JlUst append the fo110winl information, in sequence, to
the unit information structure:

VORD
wotm
BYTE
BYT.B
BYTE

Value

reserved
reserved
8tep-rate for drive
settle time for drive
head load /unload time

Refer to the description of the 8pecify command in the iSBC 204 FLEXIBLE
DISKETTE CONTROLLER BAllDWAllE REFERENCE HANUAL for more information about
these values. Figure 9-12 shows a unit information table contained in
IDEVCF.A86. Thi8 table is a880ciated with the DUIB 8hown in Figure 9-10.

Shugart flOpPY unit infolllatlon:

ulnto_shugart radev_untt_lnfO <
& 26 • 1'8, , track s1ze
& 9, • • "'ax retry ,
& 0 , reserved
&)
• , 204 Specific:

dw 4 , Reserved
db 035H,ODH , Fixed Initialize values.
db 8 , step rate
db 9 • settle ,
db 039H I ent$load

Figure 9-12. Unit Information Table for iSBC· 204 Unit

iSBC 206 Driver

The iSBC 206 driver is a rando. access driver. It supports the followinl:

• The functio~s F$READ, F$WRIT.B. F$SEEK, F$SPECIAL. F$ATTACB$DEV,
and F$DETACB$DEV. F$OPEN and F$CLOSI are accepted, but the
driver performs no operations for these functions. traCk
formattinl and volume chanae notification are 8upported via the
F$SPECIAL function. Refer to the 1RMX 86 BASIC I/O SYSTBH
REFERENCE MANUAL for further information about the8e special
functions.

9-34

CONFIGURING THE BASIC I/O SYSTEM

• All Intel-supplied file drivers.

• Device granularities of 128 and 512 bytes, hardware (switch)
selectable on a per-spindle basis.

• Up to 16 units per controller.

The iSBC 206 driver can support four spindles, with up to four platters
per spindle. Units 0-3 are on the first spindle, 4-7 are on the second,
8-11 are on the third, and 12-15 are on the fourth. Units 0, 4, 8, and
12 are the removable platters.

You must specify the following values in the device information table, in
order to support the iSBC 206 driver:

RADEV DEV INFO Field

level
priority

RADEV DEV INFO Field

stack size
data size
num units
device init
device finish
device start
device_stop
device_interrupt

Value

Configuration option
Configuration option

40
16

Value

1 through 16
1206INIT
DEFAULTFINISH
1206START
DEFAULTSTOP
1206INTERRUPT

In addition, you must also append the following data to the device
information structure:

Type

WORD

Value

Address of the I/O port which matches the
board configuration.

You must specify the following values in the unit information table, in
order to support the iSBC 206 driver:

RADEV UNIT INFO Field - -
track size
max_retry

Value

36 * 128 or 12 * 512
9 (recommended)

9-35

CONFIGURING THE BASIC I/O SYSTEM

iSBC 208 Driver

The iSBC 208 dirver is a random access device driver. It supports the
following:

• The functions F$ATTACH$DEV, F$DETACH$DEV, F$OPEN, F$CLOSE,
F$READ, F$WlTE, F$SEEK, and F$SPECIAL. F$OPEN is accepted, but
the driver performs no operations for this function. Track
formatting is supported by F$SPECIAL. Refer to the iRMX 86 BASIC
I/O SYSTEM REFERENCE MANUAL for further information about these
special) functions.

• Device granularities of 128, 256, 512, and 1024 bytes.

• All Intel-supported file drivers.

• Up to 4 units per controller.

The iSBC 208 can be attached 'to the Named or Physical file drivers. It
is configurable to allow various disk drivers, recording formats, and
multiple controller boards. Each diskette (lor 2 sides) is treated as a
single device-unit. Units 0-3 correspond to the four drives.

You must specify the following values in the device information table, in
order to support the iSBC 208 driver:

RAnEV DEV INFO Field

level
priority
stack size
data size
num units
device init
device finish
device -s tart
device stop
device interrupt

Value

Configuration option
Configuration option
220
150
1 through 4
1208$INIT
DEFAULTFINISH
1208$START
DEFAULTSTOP
1208$INTERRUPT

In addition, you must alwo append the following data to the device
information structure:

Type Value

WORD The base address value is the same as the
shorting plug configuration on the iSBC 208
board. .

WORD The motor $delay value is the number of system
clock ticks to wait after turning on a
minifloppy motor before accessing the drive.
Motor$delay is only needed for 5 1/4-inch
diskettes, and is usually set for 1/2-1 second.

9-36

CONFIGURING THE BASIC I/O SYSTEM

You must specify the following values in the unit information table. in
order to support the iSBC 208 driver:

RADEV_UNIT_INFO Field

track size
max_retry

Value

o
9 (recommended)

In addition. you must append the following information to the unit
information structure:

Type

WORD

WORD

BYTE

BYTE

BYTE

Value

The number of tracks on one side of a disk.
Typical values are 77 for eight inch diskettes.

The number of sectors per track. To determine
the number of sectors per track refer to Table
9-5 and Table 9-6.

The maximum drive step rate. in milliseconds per
step.

The amount of time to wait after an access before
unloading the head, in milliseconds.

The head load time and settling time. in
milliseconds.

iSBC 215/iSBX 218/iSBC 220 Driver

The iSBC 215/iSBX 218/iSBC 220 driver is a random access driver. It
supports the following:

• The functions F$READ, F$WRlTE, F$SEEK, F$SPECIAL, F$ATTACH$DEV,
and F$DETACH$DEV. F$OPEN and F$CLOSE are accepted, but the driver
performs no operations for these functions. Track formatting and
volume.change notification are supported via the F$SPECIAL
function. Refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL
for further information about these special functions.

• All Intel-supplied file drivers.

• Device granularities of 128, 256, 512, and 1024 bytes.

• Up to 12 disks per controller.

The iSBC 215/iSBX 218/iSBC 220 driver assumes that units 0-3 are fixed
disks on drives 1-4, units 4-7 are removable disks on drives 1-4, and 8-11
are flexible diskette drives 1-4 (when the iSBX 218 board is used in
conjunction with the iSBC 215 board). The driver checks only the four
least-significant bits of the unit number. The upper bits can be used to
identify multiple units on the same disk, as described in this section.

9-37

I

CONFIGURING THE BASIC I/O SYSTEM

You must specify the following values in the device information table, in
order to support the iSBC 215/iSBX 218/ iSBC 220 driver.

RADEV_DEV_INFO Field

level
priority
stack size
data size
num units
device init
device finish
device-start
devicestop
device interrupt

Value

Configuration option
Configuration option
300
400
12 or more
I215INIT
DEFAULTFINISH
I215START
DEFAULTS TOP
I215INTERRUPT

In addition, you must also append the following data the the device
information structure:

~

WORD
WORD
WORD

Value

Wakeup address offset (normally set to 0)
Wakeup address base
Wakeup port address

You should set the wakeup address base and the wakeup port address to the
values set with the switches on the iSBC 215 or iSBC 220 controller board.

You must specify the following values in the unit information table, in
order to support the iSBC 215/iSBX 218 driver:

RADEV UNIT INFO Field

track size
max_retry

Value

o
9 (recommended)

In addition, you must append the following information, in sequence, to
the unit information structure:

Type

WORD

WORD
BYTE

BYTE

BYTE

Value

The device code (0 for the iSBC 215 device and
2 for the iSBC 220 device)

The number of cylinders on the iSBC 215 disk.
The number of fixed data heads on the disk

drive.
The number of removable data heads on the disk

drive. For a iSBX 218 flexible disk drive,
you should set this to 1 or 2 to indicate
single or double sided diskettes. This
value should correspond to the flags field
of the DUIB for the unit.

The number of sectors per track. Refer to
Table 9-5 and Table 9-6 to determine the
number of sectors per track.

9-38

BYTE

DWORD

CONFIGURING THE BASIC I/O SYSTEM

Value

The number of cylinders set aside for alternate
tracks.

The starting sector number of the device
(normally 0). By using this field and the
device size field in the DUIB, you can define
several units on different parts of a single
disk drive.

iSBC 254 Controller

The iSBC 254 driver is a random access driver. It supports the following:

• The functions F$READ, F$WRITE, F$SEEK, and F$ATTACH$DEVICE.
F$DETACH$DEVICE, F$OPEN, and F$CLOSE are accepted, but the driver
performs no operations for these functions.

• All Intel-supplied file drivers.

• Device granularities of 64, 128, 256, and 512 bytes, software
selectable on a per-unit basis.

• Three types of hardware configuration:

Each iSBC 254 board as a complete device with one unit.

Several iSBC 254 boards as separate units of a single
imaginary device.

Several iSBC 254 boards as a single unit.

You must place the following values in the device information table in
order to support the iSBC 254 driver:

RADEV_DEV_INFO Field

level
priority
stack size
data size
num units
device init
device finish
device start
device_stop
device_interrupt

Value

Configuration option
Configuration option
512
15
Configuration option
DEFAULTINIT
DEFAULTFINISH
I254START
DEFAULTSTOP
I254INTERRUPT

9-39

I

I

CONFIGURING THE BASIC I/O SYSTEM

You must specify the following values in the unit information table, in
order to support the iSaC 254 driver:

RAnEV_UNIT_INFO Field

track size
max_retry

Value

o
9 (recommended)

In addition, you must append the following information, in sequence, to
the unit information structure:

WORD

WORD
WORD

Line Printer Driver

Value

Number of boards in the unit. The boards must
have contiguous base addresses (20H apart)
and all boards must be connected to the same
interrupt line. The number of pages on all
but the last board must be the same.

Base address of the board.
Number of deVice-granularity units of memory

(64-, 128-, 256-, or 512-byte units) on the
iSBC 254 board.

The line printer driver is a common device driver. It supports the
following:

• The functions F$ATTACH$DEV, F$DETACH$DEV, F$OPEN$, F$CLOSE, and
F$WRlTE. F$DETACHDEV, FOPEN, and F$CLOSE are accepted, but the
driver performs no operations for these functions. Refer to the
iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for further information
about any of these special functions.

The line printer driver interfaces the Basic I/O subsystem file driver to
the 8255 parallel I/O port of the iSBC 86/12A board. A flat ribbon cable
connects this board with a Centronix type line printer. The line printer
is not a random-access device and can only be attached to the physical
file driver.

You must specify the following values in the device information table, in
order to support the line pinter driver:

COMMON DEV INFO Field

level
priority
stack size
data size
num units
device init
devicefinish
device start
device stop
deVice_interrupt

Value

Configuration option
Configuration option
lEH
o
1
DEFAULTINIT
DEFAULTFINISH
PRINTERSTARTINTERRUPT
PRINTERStOP
PRINTERS TART INTERRUPT

9-40

CONFIGURING THE BASIC I/O SYSTEM

In addition, you must also append the following data to the device
information structure:

WORD
WORD
WORD
WORD
WORD

Value

The 8255 A-port address.
The 8255 B-port address.
The 8255 C-port address.
The 8255 Control-port address.
This is a BOOLEAN value indicating whether the line

printer can handle tabs or not. If TRUE is
specified, the driver won't interpret tabs.
Otherwise, all sequential tabs are forced to a
single blank character.

iSBC 86/12A On Board USART

The On Board USART is a Basic I/O System driver interface to the Terminal
Handler and the Debugger. It supports the functions F$READ, F$WRlTE,
F$ATTACH$DEV, and F$DETACH$DEV. This driver interfaces to the Basic I/O
System at the DUIB level. It should only be used by the physical file
driver. You must specify the following procedure names in the
DEFINE DUIB structure in order to support the On Board USART:

DEFINE DUIB Field

init io
finish io
queue io
cancel_io

Procedure Name

THINITIO
THFINISHIO
THQUEUEIO
THCANCELIO

The device and unit information pointers are ignored. Set the parameters
device info and unit info to O.

The USART driver requires a Terminal Handler (or the Debugger's Terminal
Handler) to be present in the application system. This Terminal Handler
must use input and output mailbox names RQTHNOBMIN and RQTHNOBMOUT,
respectively.

iRMX 86 Terminal Driver

The iRMX 86 terminal driver is a Custom Device Driver which allows I/O to
a terminal device via the onboard serial port of an iSBC 86/12A or any
other iAPX 86,88-based board. This terminal driver interfaces to the
Basic I/O subsystem at the DUIB level and eliminates the need to
interface with the Terminal Handler. It supports the functions F$HEAD,
F$WRlTE, F$SPECIAL, F$ATTACH$DEV, F$DETACH$DEV, F$OPEN and F$CLOSE. It
should only be used by the physcial file driver.

9-41

CONFIGURING THE BASIC I/O SYSTEM

You must specify the following values in the DEFINE DUlB structure in
order to support the iRMX 86 terminal driver: -

DEFlNE_DUIB Field

flags
devJran
low dev size - -high dev size
device -
unit
dev unit
init io
finish io
queue_io
cancel io
update-timeout
num_buffers
priority

o
o
o
o

Value

Configuration option
o
Configuration option
TERMINITIO
TERMFINISHIO
TERMQUEUEIO
TERMCANCELIO
OFFFFH
o
Configuration option

The device and unit information pointers point to the device and unit
information tables respectively.

You must specify the following values in the device information table in
order to support the iRMX 86 terminal driver:

DEFINE DEVICE Field

. num units
data size

. ; stack size
. -

device init
devicefinish
device setup·
device input
device output
reserved
num_interrupt_Ievel
input_interrupt_level

input..,j>riority

Type

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
DWORD
WORD
WORD

BYTE

Value

1
1024
700
USARTINIT
USARTFINISH
USARTSETUP
USARTINPUT
USARTOUTPUT
o
2
Interrupt level for the input

interrupt. The interrupt task
uses this value to associate
itself with the correct interrupt
level. The values for this field
are listed in this chapter's
section titled "Common Device
Driver Tables".

Initial priority of input
interrupt task.

9-42

DEFINE DEVICE Field

outputJ'riority

usart_dataJ'ort
usart_status-port
in_rateJ'ort

in_rate _cmd J'ort

in rate counter

in rate max

out rate counter

out rate max

CONFIGURING THE BASIC I/O SYSTEM

Type

WORD

BYTE

WORD
WORD
WORD

WORD

WORD

DWORD

WORD

WORD

BYTE

DWORD

Value

Interrupt level for the output
interrupt. The interrupt task uses
this value to associate itself with
the correct interrupt level. The
values for this field are listed in
this chapter's section titled
"Common Device Driver Tables".

Intitial priority of the output
interrupt task.

825LA data port address.
8251A control/status port address.
8253 counter register port

address for input rate.
8253 mode control port address

for input rate
8263 counter number, 0-2 for

input rate
Maximum input baud rate when

counter register value is 1
(for 1.23 MHz counter input, this
field is 76800).

8253 counter register port
address for output rate.

8253 mode control port address
for output rate.

8253 counter number, 0-2 for
output rate.

Maximum output baud rate when
counter register value is 1.

You must specify the following values in the unit information table in
order to support the iRMX 86 terminal driver:

DEFINE UNIT Field Type

WORD

Value

Connection mode information. The
significance of the bits is as
follows:

Bits
0-1

9-43

Meaning
Initial default line editing mode,
use the values of 1-3.

Mode 1 is not line-edited (console
input is transparent).

Mode 2 is the normal mode used for
line editing.

Mode 3 is not line-edited, and
immediately returns any characters
in the input buffer.

CONFIGURING THE BASIC I/O SYSTEM

DEFINE UNIT Field Type

WORD

Value

Bits -
2

Meaning

Echo;

o - a character entered at the
keyboard is transmitted to the
communications interface (USART)
and is returned to the terminal
screen;

1 - no echo returned.

3 Input parity control;

o • terminal driver sets parity
bit (bit 7) to 0 on input
characters;

1 • terminal driver does not
change bit 7 on input characters.

4 Output parity control;

o = terminal driver sets parity
bit (bit 7) to 0 on output
characters;

1 = terminal driver does not
change bit 7 on output characters.

5-8 reserved; set value to 0

Terminal mode information. The significance
of the bits is as follows:

Bits Meanina

o Reserved; set value to 1

1-3 Reserved; set value to 0

4,5 Input parity checking;

9-44

o - ignore parity checking and
set input parity bit (bit 7) to_Oj

1 • ignore parity checking and do
not change input bit;

2 - set input parity bit to zero
if even parity received, set
input parity to one if odd parity
received, if generated output

DEFINE UNIT Field

1n rate

out rate

CONFIGURING THE BASIC I/O SYSTEM

Type

WORD

WORD

Value

Bits Meaning

4,5 parity is even (2), then set
input parity bit to 1 if received
stop bit has a value of 0
(framing error) or new character
has been input before interrupt
routine for character processing
has completed (overrun error);

3 - set input parity bit to one
if even parity received, set
parity bit to zero if odd parity
received, if generated output
parity is odd (3), then set
input parity bit to 1 if stop
bit has a value of 0 (framing
error) or new character has been
input before interrupt routine
for character processing has
completed (overrun error).

6-8 Generated output parity, use
values of 0 to 4; if value 2 or
3 is used and input parity is
checked, then values 2 or 3
respectively must be used for
input parity checking.

o - output parity bit is 0;

1 = set output parity bit to 1;

2 = set output parity bit to 1
if the total number of l's in
the character is odd, set parity
bit to 0 if the total number of
l's is even (even parity);

3 = set output parity bit to 0
if the total number of l's in
the character is odd, set output
parity bit to 1 if total number
of l's is even (odd parity);

4 - don't change output parity
bit.

Input baud rate, or zero if not applicable.

o

Input value is used for output 1f device
ha3 only one baud rate.

9-45

CONFIGURING THE BASIC I/O SYSTEM

DEFINE UNIT Field Type

reserved WORD o
Value

reserved WORD o

iSBX 270 Terminal Driver

The iSBX 270 terminal driver is a Custom Device Driver which allows I/O
to a term:f.nal device consisting of an iSBX 270 terminal controller board
with a monitor and/or keyboard. This terminal driver interfaces to the
Basic I/O subsystem at the DUIB level in the same manner as the iRMX 86
Terminal Driver. It supports the functions F$READ, F$WRITE, F$SPECIAL,
F$ATTACH$DEV, F$DETACH$DEV, F$OPEN and F$CLOSE. It should only be used
by the physical file driver. You must specify the following values in
the DEFINE DUIB structure in order to support the iSBX 270 terminal
driver:

DEFlNE_DUIB Field

flags
devJran
low dev size
high dev size
device -
unit
dev unit
init io
finish io
queue_io
cancel io
update-timeout
num buffers
priority

o
o
o
o

Value

Configuration option
o
Configuration option
TERMINITIO
TERMFINISHIO
TERMQUEUEIO
TERMCANCELIO
OFFFFH
o
Configuration option

The device and unit information pointers point to the device and unit
information tables respectively.

You must specify the following values in the device information table in
order to support the iSBX 270 terminal driver:

DEFINE DEVICE Field Type Value

num units WORD 1
data size WORD 1024
stack size WORD 700
device init WORD 1270INIT
device-finish WORD 1270FINISH
device_setup WORD 1270SETUP
device_input WORD 1270INPUT
device_output WORD 12700UTPUT
reserved DWORD 0
num_interrupt_Ievel WORD 2

9-46

CONFIGURING THE BASIC I/O SYSTEM

DEFINE_DEVICE Field

input_interrupt_level

input...,priority

output_interrupt~evel

output...,priority

i270_data...,port
i270_statusJort

Type

WORD

BYTE

WORD

BYTE

WORD
WORD

Value

Interrupt level for the output
buffer full interrupt. The
interrupt task uses this value to
associate itself with the correct
interrupt level. The values for
this field are listed in this
chapter's section titled "Common
Device Driver Tables".

Initial priority of the output
full buffer interrupt task.

Interrupt level for the input
buffer empty interrupt. The
interrupt task uses this value to
associate itself with the correct
interrupt level. The values for
this field are listed in this
chapter's section titled "Common
Device Driver Tables".

Intitia1 priority of the input
buffer empty interrupt task.

iSBX 270 data port address.
iSBX 270 control/status port address.

You must specify the following values in the unit information table in
order to support the iSBX 270 terminal driver:

DEFINE UNIT Field Type

WORD

Value

Connection mode information. The
significance of the bits is as
follows:

Bits Meaning

0-1 Initial default line editing mode,
use the values of 1-3.

Mode 1 is not line-edited (console
input is transparent).

Mode 2 is the normal mode used for
line editing.

Mode 3 is not line-edited, and
immediately returns any characters
in the input buffer.

2 Echo; 0 = a character entered at
the keyboard is transmitted to the
terminal screen;

1 .. no echo returned.

9-47

CONFIGURING THE BASIC I/O SYSTEM

DEFINE UNIT Field Type

WORD

in rate WORD
out rate WORD
reserved WORD
reserved BYTE

Byte Bucket Driver

Value

Bit Meaning

4 Input parity control;

o = set parity bit (bit 7) to 0;

1 "" do not change parity bit (bit
7)

5-8 reserved; set to value 0

Terminal mode information. The significance
of the bits is as follows:

Bit Meaning

o Reserved; set to value 1

1-3 Reserved; set to value 0

4,5 Parity bit from keyboard;

o "" set parity bit (bit 7) to 0;

1 "" do not change parity bit

6-8 Reserved; set value to 0

0
0
0
0

The Basic I/O System supports a byte bucket device by providing a byte
bucket driver. This driver responds to F$READ, F$WRITE, F$OPEN, F$CLOSE,
F$ATTACH$DEVICE, and F$DETACH$DEVICE, but performs no operations for these
functions. It returns an exception code on an F$SEEK request. The
physical file driver and the stream file driver can make use of the byte
bucket device driver.

The byte bucket device driver interfaces to the Basic I/O System at the
DUIB level. In order to provide support for the byte bucket driver, you
must specify the following values in the DEFINE DUIB structure:

DEFINE DUIB Field

init io
finish 10
queue io
cancel 10

Procedure Name

BYTEBUCKETINITIO
BYTEBUCKETFINISHIO
BYTEBUCKETQUEUEIO
BYTEBUCKETCANCELIO

9-48

CONFIGURING THE BASIC I/O SYSTEM

GENERAL DEVICE INFORMATION

The Basic I/O System requires that several parameters and RAM-based data
structures be generated for device configuration. In order for this to
happen, you must include a %DEVICE TABLES macro call in the configuration
file. Place this call outside of all segment definitions in your Basic
I/O System configuration module and immediately following the DEFINE DUIB
structures. The released configuration file contains an example macro
call in the proper place. Modify this call to reflect your system.

The file IDEVCF.INC contains the definition of %DEVICE TABLES macro.
IDEVCF.A86 contains an $INCLUDE statement for this file, which includes
it in the assembly of the configuration file.

The format of the macro call is as follows:

where:

num duib

num dev unit

num devices

Number of DUIBs that you have defined with the
DEFINE DUIB structure.

Number of device-units that you have defined.
This number is 1 + (the largest dev unit number
parameter). The dev unit number parameter was
entered with the DEFINE DUIB structure.

Number of devices defined. This number is 1 +
(the largest device_number parameter). The
device number parameter was entered with the
DEFINE-DUIB structure.

ASSEMBLING THE CONFIGURATION FILES, LINKING AND LOCATING THE BASIC I/O
SYSTEM

After you have modified ITABLE.A86 and IDEVCF.A86 to conform to your
system requirements, you must assemble them and link and locate the Basic
I/O System. IOS.CSD, a SUBMIT file contained on the Basic I/O System
release diskette, can be used to perform these functions. In order to
use this SUBMIT file, you must first prepare your diskettes and place
them in the proper drives of your development system, as explained in the
"Linking and Locating the Subsystems" section of Chapter 4. You should
also examine ITABLE.A86 and IDEVCF.A86 to make sure that the $INCLUDE
statements contain the proper disk identifiers. Then you can enter the
following command:

SUBMIT :fx:IOS(date, loc_adr)

where:

fx The appropriate disk identifier, indicating the
drive containing IOS.CSD.

9-49

date

loc adr

CONFIGURING THE BASIC I/O SYSTEM

The date on which you submit the file (maximum
of nine characters).

The address at which to locate the Basic I/O
System. If you want to enter this value as a
hexadecimal number, you must include the suffix
H. The base portion of this value is the base
portion of the Basic I/O System's entry point.
The offset portion of the entry point is O.
You must specify the entry point in the %JOB
macro call for the Basic I/O System.

This command assembles ITABLE.A86 and IDEVCF.A86, links them together
with other modules containing Basic I/O System code, and locates the
Basic I/O System at the specified address. It places the located Basic
I/O System in file lOS on drive Fl. It also places the assembly listing,
link map, and locate map on drive F3 in files IOS.LST, IOS.MPI, and
IOS.MP2,. respectively.

You must specify a %JOB macro in the system configuration file for the
Basic I/O System (refer to Chapter 4). In this macro, the entry point
depends on the address at which you locate the Basic I/O System (CS:O).
The data segment should be specified as 0 (the Basic I/O System assigns
its own data segment).

BASIC I/O SYSTEM INITIALIZATION

The Basic I/O System defines a public symbol in which it returns its
initialization status. This symbol, RQ$AIOS$INIT$ERROR, is defined by
the Basic I/O System as follows:

DECLARE
RQ$AIOS$INIT$ERROR

EXCEP$INDEX
EXCEP$CODE

STRUCTURE (
WORD,
WORD) PUBLIC;

If the Basic I/O System initializes properly, it sets itself up as an
Operating System extension and returns a value of 0 in the EXCEP$CODE
field. If the Basic I/O System does not initialize properly, it sets
these fields as follows:

EXCEP$INDEX

EXCEP$CODE

An index in the initialization task indicating
where the task failed.

The first exception code that the
initialization task incurred.

9-50

CHAPTER 10. CONFIGURING THE APPLICATION LOADER

The iRMX 86 Application Loader provides the capability to load iAPX 86
object files from disk into memory under the control of the iRMX 86
Operating System. Application Loader configuration involves selecting
parameters of the Application Loader that you wish to include in your
application system and selecting the type of loading that the Application
Loader can do. You perform these operations by modifying an
Intel-supplied Application Loader configuration file and calling an
Intel-supplied SUBMIT file. The configuration file, LCONFG.P86, is a
PL/M-86 source file which is contained on the Application Loader release
diskette. As released, this file selects default parameters. To change
these parameters, you must modify this file, compile it, link it with the
rest of the Application Loader modules, and locate the Application Loader
at an absolute address. The Intel-supplied SUBMIT file, LOADER.CSD
performs the compile, link, and locate operations~ as well as selecting
the type of Application Loader to include. This chapter describes these
files.

MODIFYING LCONFG.P86

You can select parameters that are associated with the Application Loader
by making modifications to LCONFG.P86. Figure 10-1 lists the portion of
the released LCONFG.P86 that defines these"parameters.

loaderSconf1g: DO;

DECLARE buf$slze
DECLARE rdbufss1ze

DECLARE IbufSS!Ze
DECLARE 1$TobUf$s1ze

DECLARE L$DEFAULT$MgMpOOL

END loaderSconf19;

LITERALLY '1024';
LITERALLY '1024';

/* BYTES ./
/* BYTES */

WORD PUBLIC DATA(buf$slze + ~t)'
~ORD PUBLIC DATA(rdbufsslze);

WORD PUBLIC DAIA(50H): /* PAGES */

Figure 10-1. Application Loader Configuration File (LCONFG.P86)

10-1

CONFIGURING THE APPLICATION LOADER

In order to select parameter values, you must change the values specified
with the LITERALLY statements in LCONFG.P86. The following paragraphs
discuss the parameters.

buf$size Size of an Application Loader internal buffer.
This is the maximum allowable length of the data
block portion of a data record. Unless you are
familiar with the formats of data records. you
should not change this parameter from its default
of 1024.

rdbuf$size Size of an Application Loader buffer used for
reading the object file from disk.

l$default$mempool Default memory pool size. in 16-byte paragraphs.
This is the size that jobs will have when created
with the S$LOAD$IO$JOB and A$LOADIOJOB system
calls. This situation occurs if the mempool
control was not used when the program being
loaded was processed by LINK86. This value is
used for both the maximum and minimum pool sizes.

COMPILING LCONFG.P86. LINKING AND LOCATING THE LOADER

After you have made any necessary modifications to the Application Loader
configuration file, LCONFG.P86, you must compile it and link and locate
the Application Loader. LOADER.CSD, a SUBMIT file contained on the
Application Loader release diskette, can be used to perform these
functions. In order to use this SUBMIT file, you must first prepare your
diskettes and place them in the proper drives of your development system,
as explained in the "Linking and Locating the Subsystems" section of
Chapter 4. Then you can enter the follOWing command:

SUBMIT

where:

fx

date

loc adr

:fx:LOADER(date, loc_adr, code_type, load_job)

The appropriate disk identifier, indicating the drive
containing LOADER.CSD.

The date on which you submit the file (maximum of nine
characters).

The address at which to locate the Application
Loader. If you want to enter this value as a
hexadecimal number, you must include the suffix H.
The base portion of this value is the base portion of
the Application Loader's entry point. The offset
portion of the entry point is O. You must specify the
entry point in the %JOB macro call for the Application
Loader.

10-2

CONFIGURING THE APPLICATION LOADER

The type of code that the Application Loader can
load. Enter one of the following values for this
parameter:

value

A

P

L

o

type of code

Absolute code only.

Absolute and position independent code
(PIC).

Absolute, PIC, and load-time locatable
(LTL) code.

Absolute, PIC, LTL, and overlay code.

The types of job loading that the Application Loader
can perform. Enter one of the following values for
this parameter:

value

N

A

S

type of job loading

No job loading (neither A$LOAD$IO$JOB
nor S$LOAD$IO$JOB are supported). The
Application Loader can handle absolute
code and overlays only.

Asynchronous job loading.
(S$LOAD$IO$JOB is not supported).

Both synchronous and asynchronous job
loading.

This command compiles LCONFG.P86, links it together with the rest of the
Application Loader, and locates the Application Loader at the specified
address. It places the located Application Loader on drive Fl in file
LOADER. It also places the compilation listing, link map, and locate map
on drive F3 in files LOADER.LST, LOADER.MPl, and LOADER.MP2, respectively.

You must specify a %JOB macro in the system configuration file for the
Application Loader (refer to Chapter 4). In this macro, the entry point
depends on the address at which you locate the Application Loader
(CS:O). The data segment base should be specified as 0 (the Application
Loader assigns its own data segment).

10-3

CHAPTER 11. CONFIGURING THE BOOTSTRAP LOADER

The Bootstrap Loader is used to load the iRMX 86 Operating System and/or
application programs into memory from mass storage and begin execution of
the system. The Bootstrap Loader consists of two stages, the first of'
which must reside in ROM, and the second of which resides on mass
storage. The first stage contains a device driver (or drivers) which
loads the second stage into memory. This chapter provides configuration
parameters for the first stage and the drivers. The second stage is not
configurable; it is put on mass storage automatically when the mass
storage volume is formatted.

FIRST STAGE CONFIGURATION

First stage configuration consists of:

• Selecting the features that you wish to include in the Bootstrap
Loader.

• Listing the characteristics of the possible devices from which the
Bootstrap loader can read.

You perform both of these operations by making modifications to a
Bootstrap Loader first stage configuration file. This file, BSl.A86, is
an assembly language source file which is contained on the Bootstrap
Loader release diskette. As released, BS1.A86 defines an example
configuration. Figure 11-1 lists the portion of BS1.A86 that defines the
features and devices. To change the configuration of the Bootstrap
Loader, you must modify this file, assemble it, and link it with the rest
of the Bootstrap Loader object files and libraries.

The Bootstrap Loader first stage may also be configured into the iSBC 957B
monitor. This involves a process very similar to configuring the
stand-alone Bootstrap Loader. Refer to the USER'S GUIDE FOR THE iSBC 957B
iAPX 86, 88 INTERFACE AND EXECUTION PACKAGE for details.

11-1

I

I

CONFIGURING THE BOOTSTRAP LOADER

name bst

Slncludet;fl:bSl.1nc)
'console
'manual
'auto
\device(fO, 0, devtcelnlt204, dev1ceread204)
ldevice(fl, I, devlcelnit204, devlceread204)
\device(f2, 2, devtcelnlt204, devlceread204)
\device(f), 3, devicelnlt204, devlceread204)
\device(dO, 0, devtcelnlt20&, devlceread20~)
\devlce(wO, 0, devlcelnlt215, devlcereftd215)
'devlce(wtO, 8, devlcelnit215, devlceread~15)
'device(wtl, 9, devlcelnlt215, devlceread~J5}
'devlce(wt2, 10, devlcelnlt215, devlcereao215)
'devlce(wt3, 11, devicelnlt215, devlceread215)
\device(bO, 0, devlcelnlt254, devlceread254)
'end

Figure 11-1. First Stage Configuration File (BS1.A86)

The first stage configuration file consists of a series of macro calls
which define the features and devices. These macros include:

%CONSOLE
%MANUAL
%DEFAULTFILE
%AUTO
%DEVICE
%END

The file BSl.INC, which is available on the Bootstrap Loader release
diskette, contains the definitions of all of the macros which you can call
in the first stage configuration file. BSI.A86 contains an $INCLUDE
statement for SSI.INC which includes it in the assembly of SSI.A86.

%CONSOLE MACRO

This optional macro call indicates whether or not the user can supply,
from the console, the name of ~he file to be loaded. If you include the
%CONSOLE call in your configuration file, the user has the option of
entering the file name. If you omit the %CONSOLE call, the Bootstrap
Loader uses a default file name. The format of the %CONSOLE call is as
follows:

%CONSOLE

11-2

CONFIGURING THE BOOTSTRAP LOADER

%MANUAL MACRO

This optional macro indicates whether or not the user can supply, from the
console, the name of the device to load from. If you include the %MANUAL
call in your system, the user has the option of entering the name of the
device to load from, as well as the name of the file to be loaded. If you
omit the %MANUAL call from your system, the user cannot specify the device
name.

If you include the %MANUAL call in the first stage configuration file, the
%CONSOLE and %AUTO calls are automatically included, without having to
specify them. The format of the %MANUAL call is as follows:

%MANUAL

%AUTO MACRO

This optional macro indicates whether or not the Bootstrap Loader can
select devices automatically. If you include the %AUTO call in your first
stage configuration file and the user does not specify a device name from
the console, the Bootstrap Loader tries to initialize, in order, each of
the devices specified with %DEVICE calls (described in the next section).
It scans through the devices repeatedly until it successfully initializes
one. When it does succeed in initializing a device, it uses that device
from which to load. If you omit the %AUTO call from your first stage
configUration file, the Bootstrap Loader can use just one device. The
format of the %AUTO call is as follows:

%AUTO

%DEFAULTFILE MACRO

This macro spedifies the default file name that is to used by the
Bootstrap Loader. The format of the %DEFAULTFILE call is as follows:

%DEFAULTFILE ("default file name")

%DEVICE MACRO

This macro defines the possible devices from which the Bootstrap Loader
can load. You must include at least one %DEVICE call in your first stage
configuration file. You can include more than one if you also include the
%MANUAL or %AUTO calls. The format of the %DEVICE call is as follows:

%DEVICE(name, unit, device$init, device$read)

11-3

I

I

I

I

I

where:

name

unit

device$init

device$read

%END MACRO

CONFIGURING THE BOOTSTRAP LOADER

Name of the device from which to load.

Unit number of the device.

Address of a procedure that the Bootstrap Loader calls
to initialize the device. Intel supplies this procedure
for iSBC 204, iSBC 206, iSBC 208, iSBC 215, iSBC 220,
and iSBC 254 devices. To use one of these procedures,
specify one of the following values:

device value

iSBC 204 DEVICEINIT204
iSBC 206 DEVlCEINIT206
iSBC 208 DEVICEINIT208
iSBC 215 DEVICEINIT215
iSBC 220 DEVICEINIT215
iSBC 254 DEVICEINIT254

Address of a procedure that the Bootstrap Loader calls
to read the device. Intel supplies this procedure for
iSBC 204, iSBC 206, iSBC 208, iSBC 215, iSBC 220, and
iSBC 254 devices. To use one of these procedure,
specify one of the following values:

device value

iSBC 204 DEVICEREAD204
iSBC 206 DEVICEREAD206
iSBC 208 DEVICEREAD208
iSBC 215 DEVICEREAD215
iSBC 220 DEVICEREAD215
iSBC 254 DEVICEREAD254

This macro denotes the end of the first stage configuration file. You must
include the %END call as the last statement of the first stage
configuration file. The format of the %END call is as follows:

%END

DRIVER CONFIGURATION

Driver configuration consists of providing the elementary device driver
procedures that the Bootstrap Loader calls when it initializes and reads
from the device. You can either include the routines provided with the
Bootstrap Loader for the iSBC 204, 206, 208, 215, 220, and 254 devices, or
you can write your own driver procedures for other devices.

11-4

CONFIGURING THE BOOTSTRAP LOADER

INTEL-SUPPLIED PROCEDURES

Intel supplies elementary device driver procedures which can be used with
iSBC 204, 206, 208, 215, 220, and 254 devices. In order to include these I
procedures in your Bootstrap Loader, you can make modifications (if
necessary) to driver configuration files contained on the Bootstrap
Loader release diskette, assemble the files, and link them with the rest
of the Bootstrap Loader object fi'es and libraries. The following
sections describe these files.

iSBC 204 Device Driver

The file B204.A86 is a device configuration file which places iSBC 204
device driver procedures in the Bootstrap Loader. This file is an
assembly language source file which is contained on the Bootstrap Loader
release diskette. Figure 11-2 lists the portion of B204.A86 that
includes the driver procedures.

$1nclude(:f~:b204.1nc)

'b204(OAOH, 12S, 26)

Figure 11-2. Driver Configuration File (B204.A86)

B204.A86 contains two statements, an $INCLUDE statement and a %B204 macro
call. The $INCLUDE statement includes file B204.INC in the assembly of
B204.A86. B204.INC contains the definition of the %B204 macro and is
available on the Bootstrap Loader release diskette. The %8204 call
causes the configuration of the iSBC 204 driver routines. You can modify
the %B204 call to reflect your system. The format of the %8204 call is
as follows:

%B204(io_base, sector~ize, track_size)

where:

io base

sector~ize

track size -

Base I/O port number which is selected on the iSBC 204
board.

Sector size of the device in bytes.

Track size of the device in sectors.

11-5

CONFIGURING THE BOOTSTRAP LOADER

The iSBC 204 device driver uses the following values for drive parameters:

parameter

step rate
head settling time
head load time

value

2S ailliseconds
20 milliseconds
60 milliseconds

These values refer to 8-inch drives. The values are sufficient for most
flexible diskette drives.

iSBC 206 Device Driver

The file B206.A86 is a device configuration file which places iSBC 206
device driver procedures in the Bootstrap Loader. This file 1s an
assembly language source file which is contained on the Bootstrap Loader
release diskette. Figure 11-3 lists the portion of B206.A86 that
includes the driver procedures.

Slnclude(:f2:b206.inc)

Figure 11-3. Driver Configuration File (B206.A86)

B206.A86 contains two statements. an $INCLUDE statement and a %B206 macro
call. The $INCLUDE statement includes file B206.INC in the assembly of
B206.A86. B206.INC contains the definition of the %B206 macro and is
available on the Bootstrap Loader release diskette. The %8206 call
causes the configuration of the iSBC 206 driver routines. You can modify
the %8206 call to reflect your system. The format of the %B206 call is
as follows:

%B206(io __ base)

where:

Base I/O port number which is selected on the iSBC 206
board.

11-6

CONFIGtJR.ING THE BOOTSTRAP LOADER

iSBC 208 Device Driver

The file B208.A86 is a device configuration file which places iSBC 208
device driver procedures in the Bootstrap Loader. This file i8 an
assembly language source file which is contained on the Bootstrap Loader
release diskette. Figure 11-4 lists the portion of B208.A86 that
includes the driver procedures.

$include(:fl:b208.inc)

\b208(OOOH)

Figure 11-4. Driver Configuration File (B208.A86)

B208.A86 contains two statements, an $INCLUDE statement and a %B208 macro
call. The $INCLUDE statement includes file B208.INC in the assembly of
B208.A86. B208.INC contains the definition of the %B208 macro and is
available on the Bootstrap Loader release diskette. The %B208 call
causes the configuration of the ISBC 208 dirver routines. You can mqdlfy
the %B208 call to reflect your system. The format of the %B208 call is
as follows:

%B208(io_base)

where:

io base Base I/O port number which is selected on the iSBC 208
board.

iSBC 215/220 Device Driver

The file B215.A86 is a device configuration file which places iSBC 215 or
iSBC 220 device driver procedures in the Bootstrap Loader. This file is
an assembly language source file which is contained on the Bootstrap
Loader release diskette. Figure 11-5 lists the portion of B2l5.A86 that
includes the driver procedures.

11-7

CONl'IGURIHG THE BOOTSTRAP LOADER

'1nelude(:t2:b215.1ne)

'b215(70H, 256, 2, 0, 9, 1024, 5)

Figure 11-5. Driver Configuration File (B21S.A86)

B21S.A86 contains two statements, an $INCLUDE statement and either a
%B21S macro call or a %1220 macro call. The $INCLUDE statement includes
file B21S.INC in the assembly of B2IS.A86. B21S.INC contains the
definitions of the %8215 and %8220 macros and is available on the
Bootstrap Loader release diskette. The %B21S call causes the
configuration of the iSBC 215 driver routines_ The %B220 call (with the
same parameter values) causes the configuration of the iSBC 220 driver
routines. You can modify either of these calls to reflect your system.
The format of the two calls are as follows:

%B21S(wakeup, cylinders, fixed heads, removable~eads, sectors,
dev_sran, alternates) -

or

%B220(wakeup, cylinders, fixed heads, removable_heads, sectors,
dev-Bran, alternates)

where:

wakeup

cylinders

removable -
heads -

sectors

dev-Bran

alternates

Base address of the wakeup port

Number of cylinders on the disk drive or drives. All
drives used by the Bootstrap Loader must have the same
characteristics.

Number of heads on fixed platters.

Number of heads on removable platters.

Number of sectors per track.

Number of bytes per sector.

Number of alternate cylinders.

11-8

COD'IGURIHG THE BOOTSTRAP LOADER

iSBC 254 Device Driver

The file B254.A86 is a device configuration file which places iSBC 254
device driver procedures in the Bootstrap Loader. This file is an
assembly language source file which is contained on the Bootstrap Loader
release diskette. Figure 11-6 lists the portion of B254.A86 that
includes the driver procedures.

S1nc1ude(:f2:b'S4.inc)

'b254(040H, 64, 1, 8192)

Figure 11-6. Driver Configuration File (B254.A86)

B254.A86 contains two statements, an $IHCLUDE statement and a %B254 macro
call. The $INCLUDE statement includes file B254.INC in the assembly of
B254.A86. B254.INC contains the definition of the %B254 macro and is
available on the Bootstrap Loader release diskette. The %B254 call
causes the configuration of the iSBC 254 driver routines. You can modify
the %B254 call to reflect your system. The format of the %8254 call is
as follows:

where:

io base

board size

Base I/O port number which is selected on the iSBC 254
board.

Page size, in bytes.

Reserved field which must be set to 1.

Size, in pages, of the iSBC 254 board.

USER-SUPPLIED PROCEDURES

If you have devices other than iSIC 204, 206, 208, 215, 220, or 254 I
devices that you want to use with the Bootstrap Loader, you .ast write
device driver routines for these devices, specify the addresses of these
routines in the first stage configuration file, asseab1e thea, and link
thea to the rest of Bootstrap Loader object files and libraries. You
must supply the following two procedures for each type of device that you
wish to support:

11-9

I

CONFIGURING THE BOOTSTRAP LOADER

device initialization This procedure must determine whether the
device is ready and then perform any
necessary initialization.

device read This procedure must read data from the
device.

The Bootstrap Loader expects each of these procedures to follow the
PL/M-86 large model of computation, be of type FAR, and use 32-bit
pointers. If you are coding your routines in PL/M-86, you should specify
the ROM control in order to permit the Bootstrap Loader to function in
ROM. The iRMX 86 LOADER REFERENCE MANUAL describes how to create these
procedures.

You can use any names you want for your device initialization and device
read procedures. However, you must specify the names of the procedures
in the %DEVICE macro call for the device, when you create the first stage
configuration file.

ASSEMBLING THE CONFIGURATION FILES, LINKING AND LOCATING THE BOOTSTRAP
LOADER

After you have made any necessary modifications to the Bootstrap Loader
configuration files, BS1.A86, B204.A86, B206.A86, B208.A86, B215.A86, and
B254.A86 and have created any necessary device driver procedures, you
should assemble these files and link and locate the Bootstrap Loader.
BS1.CSD, a SUBMIT file contained on the Bootstrap Loader release
diskette, can be used to perform these functions. In order to use this
SUBMIT file, you must first prepare your diskettes and place them in the
proper drives of your development system, as explained in "Linking and
Locating the Subsystems" section of Chapter 4. You should also examine
the configuration files to make sure ·that the $INCLUDE statements contain
the proper disk identifiers. Then you can enter the following command:

where:

fx

date

rom loc addr

The appropriate disk identifier, indicating the drive
containing BS1.CSD

The date on which you submit the file (maximum of nine
characters).

The address at which to locate the first stage of the
Bootstrap Loader (the CODE segment). This address
specifies the location of the ROM-resident portion of
the Bootstrap Loader. If you want to specify a
hexidecimal value for this parameter, you must use the
suffix H (and the prefix 0, if the value begins with a
letter).

11-10

ram loc addr

CONFIGURING THE BOOTSTRAP LOADER

The address at which to locate the STACK, DATA, and
BOOT segments of the Bootstrap Loader. This address
specifies location of the RAM-resident portion of the
Bootstrap Loader. If you want to specify a
hexidecimal value for this parameter, you must use the
suffix H (and the prefix 0, if the value begins with a
letter).

If you have written and compiled your own device driver procedures, you
should modify BSl.CSD in order to link these procedures in with the
remainder of the Bootstrap Loader. To do this, place the names of your
device driver object files in the LINK86 input list immediately before
the line containing:

:Fl:bsl.lib &

If you plan to run the Bootstrap Loader on an iAPX 86,88-based
microcomputer system that does not include an iSBC 957A/B monitor and you
wish to use the console for input/output (%MANUAL or %CONSOLE calls
present in the configuration file), you must supply procedures that read
from and write to the console. The Bootstrap Loader release diskette
includes a PL/M-86 source file which contains procedures to do this. You
can examine this file, BCICO.P86, modify the procedures to suit your
needs, compile it, and link it to the rest of the Bootstrap Loader object
files and libraries. You can also use these routines as examples if you
need to supply console input and console output functions for any of your
other routines.

To include the read and write procedures as part of your Bootstrap
Loader, you should add three lines to the BSl.CSD SUBMIT file. Add the
first two lines immediately before the LINK86 statement, in order to
compile the routines. These line are:

PLM86 :Fl:BCICO.P86 LARGE ROM OPTIMIZE(3)
PRINT(:Fl:BCICO.LST) DATE(%O) CODE

&

Add the third line immediately following the LINK86 invocation, in order
to link the routines in with the remainder of the Bootstrap Loader. This
line is:

:Fl:BCICO.OBJ, &

If you include this line, LINK86 will generate a warning message similar
to:

WARNING 25: EXTRA START ADDRESS IGNORED

This is a normal message; it does not indicate an error condition.

11-11

I

CONFIGURING THE BOOTSTRAP LOADER

When locating the Bootstrap Loader, the location of the CODE segment
determines which locations of ROM the Bootstrap Loader needs. The
location of the STACK, DATA, and BOOT segments determines which locations
of RAM the Bootstrap Loader needs. (The Bootstrap Loader reads its
second stage into the BOOT segment during initialization.) You do not
have to reserve memory for these RAM segments with %SAB macro calls.

After you have located the Bootstrap Loader, you should burn the code
segment into PROM. The second stage portion of the loader will be placed
on disk automatically, when you use the Files Utility or the Human
Interface to format the disk. Refer to the iRMX 86 INSTALLATION GUIDE
for further information concerning the Files Utility and the iRMX 86
HUMAN INTERFACE REFERENCE MANUAL for information concerning the Human
Interface.

11-12

CHAPTER 12. CONFIGURING THE EXTENDED I/O SYSTEM

Extended I/O System configuration involves the following three operations:

• Selecting the system calls of the Extended I/O System that you
want to include in your application system and discarding the
rest.

• Selecting the logical devices that you want the Extended I/O
System to initialize.

• Selecting I/O jobs that you want the Extended I/O System to
create during system initialization.

You perform all of these operations by making modifications to the
following files, all of which are contained on the Extended I/O System
release diskette:

File Purpose

ETABLE.A86 System call configuration

EDEVCF.A86 Logical device configuration

EJOBCF.A86 I/O job configuration

Figure 12-1 illustrates the structure of these files. As released, these
files define the full complement of system calls, as well as a standard
group of logical devices and jobs. To eliminate system calls from your
Extended I/O System, or make changes to the logical device or job
configuration, you must make changes to these files, assemble them, link
them to the rest of the Extended I/O System object files and libraries,
and locate the Extended I/O System at an absolute address. The remainder
of this chapter describes these processes.

12-1

CONFIGURING THE EXTENDED I/O SYSTEM

SINCLUDE STATEMENT

EXTENDED 1/0 SYSTEM
SYSTEM CALL SELECTION CONFIGURATION FILE

(ETABLE.A86)

END STATEMENT

$INCLUDE STATEMENT

LOGICAL DEVICE
SELECTION

EXTENDED 1/0 SYSTEM
CONFIGURATION FILE

(EDEVCF.A86)

% END...DEV_CONFIG MACRO

END STATEMENT

$INCLUDE STATEMENT

% 10..uSER MACROS

EXTENDED 1/0 SYSTEM
% 10...lOB MACROS CONFIGURATION FILE

(EJOBCF.A86)

% END.JO...lOB_CONFIG
MACRO

END STATEMENT

Figure 12-1. Structure of Extended I/O System Configuration Files

12-2

CONFIGURING THE EXTENDED I/O SYSTEM

SELECTING SYSTEM CALLS (ETABLE.A86)

ETABLE.A86 consists of a series of macro calls which correspond in n~e
to the system calls of the Extended I/O System. Each macro gives
directions to the assembler to include code for that system call in the
Extended I/O System. To exclude a system call from your Extended I/O
System, delete the metacharacter (%) of the associated macro call, and
replace it with the comment character (j). By doing this, you change the
macro call into a comment and prevent the assembler from evaluating it.

The file ETABLE.MAC, which is available on the Extended I/O System
release diskette, contains the definitions of all macros called in
ETABLE.A86. ETABLE.A86 contains an $INCLUDE statement for ETABLE.MAC,
which includes it in the assembly of ETABLE.A86.

Figure 12-2 lists the released ETABLE.A86 file. If you do not modify
this file, it will include the full complement of Extended I/O System
system calls in your application system.

$INCLUn~(:F2:ETABLF.MAC)

:
• ,
• •

• ,
• ,
· ,

• ,

JOB IN1[HFACE

'riQCR~lrFIOJOB

'RO~XITlnJOB

CONFIGURATION INtERFACE

,~aLnGTCALATTACHD~VIC~
'ROLOGICALD~TACHDEVICl

: SYNCHRO~OUS INTERfACE
• ,

'kOSCREATEFILE
'kOSAITACHFILE
%RQSDELETECQNNECTION
\HOSLOOKUPCUNNECTION
'ROSCATALOGCONNECTION
'RaSUNCATALOGcnNN~CTJON
'ROSCR~ATEDIRErTOkY
'ROSDELETEFILE

Figure 12-2. System Configuration File (ETABLE.A86)

12-3

CONFIGURING THE EXTENDED I/O SYSTEM

tROSR£NA"'£FIL£
'ROSC';UNt;£ACCESS
\ROSOPF;N
\ROSC'LOS£
\ROSREAOMQV£
'ROSWRITF;MOV£
'ROSSEEK
'ROSTRUNCATEFILE
'ROSGETfILESTATUS
'ROSGETCONNECTIONSTATUS
'ROS5PECIAL

END

Figure 12-2. System Call Configuration File (ETABLE.A86) (continued)

SELECTING LOGICAL DEVICES (EDEVCF.A86)

EDEVCF.A86 consists of a series of macro calls that associate logical
names with physical device-units. When the Extended I/O System is
initialized, it creates Logical Device Objects for the devices and
catalogs these objects in the root job's object directory under the
specified logical names. The first time these logical names are used as
the prefix portions of path names, the Extended I/O System creates device
connections.

One of the macros called in EDEVCF.A86 is the %DEV INFO BLOCK macro. The
format of a call to this macro is very similar to the format of the
LOGlCAL$ATTACH$DEVICE system call (described in the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL). The format is as follows:

where:

lOtLname

dev name -

Logical name under which the device-unit is to be
cataloged in the root object directory. This name can
consist of one to twelve characters. You must enclose~
this name in single quotes.

Name of the device-unit to be assigned a logical
name_ Use the name associated with the DUIB of this
device-unit for this parameter. (DUIBs are described
in the -Device-Unit Information Block- section of
Chapter 9.) You must enclose this parameter in single
quotes.

12-4

CONFIGURING THE EXTENDED I/O SYSTEM

file driver Type of files which can reside on this device.
Possible values include:

PHYSICAL
STREAK
NAKED

The other macro called in EDEVCF.A86 is the %END DEV CONFIG aacro. The
format of this macro is:

where:

buffer size Suggested size of the buffers that the Extended I/O
System uses when it transfers information to and from
files. The actual buffer size is the largest multiple
of the device granularity that does not exceed the
buffer size value. If the device granularity for a
device-exceeds this value, then the buffer created
when a file is opened will be equal in size to its
device granularity. The device granularity is a Basic
I/O System configuration parameter (refer to Chapter
9).

A call to this macro specifies the buffer size and designates the end of
the logical device configuration •

The file EDEVCF.KAC, which is available on the Extended I/O System
release diskette, contains the definitions of the macros called in
EDEVCF.A86. EDEVCF.A86 contains an $INCLUDE statement for EDEVCF.KAC,
which includes it in the assembly of EDEVCF.A86.

Figure 12-3 lists EDEVCF.A86 as it is released with the Extended I/O
System. This file contains %DEV INFO BLOCK macro calls for several
commonly used device-units. You-should modify this file to reflect your
hardware environment.

NAME

CGROUP

EDEvcr

GROUP

$lNCLUDE(:F2:EDEVCF.~AC)

:
, BYTE-BUCKET ,

CODE
ASSUME CS: CGROUP

,DEV_INFO_BLOCK('8B','88',PHYSICAL)

Figure 12-3. Logical Device Configuration File (EDEVCF.A86)

12-5

I

CONFIGURING THE EXTENDED I/O SYSTEM

• ,
: T£kMINAL

• ,
: SHUGART 204, UNIT 0, DHIVE 0
:

• ,
: SHUGART 204, UNIT 1, DRIVE 1

• ,
: 218 WINCHEST~R FLOPP~ S5/50, UNIT 0, DRIVE 0
• ,

• •
: 218 WJNCHEST~P FLnppy S5/5D, U~TT 1, "HIVE 1
• ,

• ,
: STHFArot
• ,

'DEV_INFO_BLOCK(·5TREAM',·STKF.A~·,STKEA~)

Figure 12-3. Logical Device Configuration File (EDEVCF.A86) (continued)

SELECTING I/O JOBS (EJOBCF.A86)

EJOBCF.A86 consists of a series of macro calls that direct the Extended
I/O System to create I/O jobs at system initialization time. The I/O
jobs created become children of the Extended I/O System initialization
job. The macros called in EJOBCF.A86 are:

no USER
no JOB
%END 10 JOB CONFIG

12-6

CONFIGURING THE EXTENDED I/O SYSTEM

The file EJOBCF.MAC, which is available on the Extended I/O System
release diskette, contains the definitions of all macros called in
EJOBCF.A86. EJOBCF.A86 contains an $INCLUDE statement for EJOBCF.MAC,
which includes it in the assembly of ETABLE.A86. Figure 12-4 lists
EJOBCF.A86 as released with the Extended I/O System. This file contains
macro calls for one typical job. You must modify this file to reflect
the needs of your application system.

If you want to include the Human Interface in your configured system, you
must modify EJOB.A86 to specify the Human Interface as an I/O job. Refer
to Chapter 13 for further information.

CGRQUP GROUP CQD~

· ,

ASSUM~ CS: cr.RnUp

: USER 'WOkLD' DE~INIT18N
• ,

· ,
: ETOS T~ST J~b

· ,

Figure 12-4. I/O Job Configuration File (EJOBCF.A86)

%10 USER MACRO

The %10 USER macro defines users that are later specified in the %10 JOB
calls. -You must define each user with %10 USER before you refer to it,
and you must include one %10 USER macro for each object that you define.
The format of the call to %10 USER is as follows:

where:

user name Name of the user (1 to 12 characters). This name must
be enclosed in single quotes.

12-7

I

CONFIGURING THE EXTENDED I/O SYSTEM

user id - A 16-bit value that specifies the id of of the user •

Your EJOBCF.A86 file must contain at least one %10 USER call which
defines a user whose name is WORLD and whose id is-OFFFFH. The released
version of EJOBCF.A86 contains such a call.

%10 JOB MACRO

The %10 JOB macro defines the I/O jobs to be created. You must include
one macro call for each I/O job that you want the Extended I/O System to
create. The format of the call to the %10 JOB macro is very similar to
the format of the CREATEIOJOB system call. A short description of the
%10 JOB parameters is included in this section, but for a complete
description refer to the description of the CREATE$I9$JOB system call in
the iRMX 86 EXTENDED I/O SYSTEM REFERENCE MANUAL. The format of the call
to %10 JOB is as follows:

%IO_JOB('default-prefix', 'default_user', pool_min, pool_max,
excep handler addr, excep mode, job flags, task-prior,
task start addr, data segment, stack addr, stack_size,
task flags) - -

where:

default-prefix

default user

excep_handler_ -
addr

Logical name specifying the default prefix for
the job. If you omit this parameter, the default
prefix for the Extended I/O System's
initialization job is used. This parameter must
be enclosed in single quotes.

Name of the default user for this job. You must
have previously defined this user name with a
call to %10 USER. This parameter must be
enclosed in-single quotes.

Minimum allowable size of the new job's memory
pool, in 16-byte paragraphs. The Extended I/O
System uses this parameter as the initial size of
the memory pool for the new job.

Maximum allowable size of the new job's memory
pool, in 16-byte paragraphs.

Hexadecimal pointer to the new job's default
exception handler, in the form base:offset. A
value of 0:0 indicates that the job uses the
Extended I/O System exception handler. (The
Extended I/O System exception handler is declared
at system configuration time in the %JOB macro.
Refer to the "%JOB Macro" section of Chapter 4
for further information.)

12-8

jobylags

taskyrior

task start addr

stack addr

stack size

CONFIGURING THE EXTENDED I/O SYSTEM

Encoded value which tells the Extended I/O System
when to pass control to the exception handler.
Encode this value as follows:

Value

o
1
2
3

Control Passes to Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

Information that tells the Nucleus whether to
validate objects used as parameters in system
calls. Bits in this word are interpreted as
follows:

bit Meaning

15-2 Reserved.

1 If set to 0, the Nucleus validates
objects used as parameters. If
set to 1, the Nucleus performs no
validation.

o Reserved.

Priority of the initial task in the newly created
job. Specify a value in the range 0 to 255
decimal. A value of zero for this parameter
indicates that the initial task has a priority
equal to the maximum priority of the initial job
of the Extended I/O System.

Hexadecimal pointer to the first instruction of
the new job's initial task, in the form
base:offset.

Value to which the initial task's DS and ES
registers are initialized. A value of zero
indicates that the initial task assigns the data
segment.

Hexadecimal pointer (in the form base:offset) of
the stack for the initial task. A value of 0:0
causes the Nucleus to allocate a stack to the
task and initialize the SS register to the base
address of this segment and the SP register to
the value of the stack size parameter. It is
recommended that you specify 0:0 for this
parameter. This permits dynamic stack allocation.

Size in bytes of the stack for the initial task.

12-9

CONFIGURING THE EXTENDED I/O SYSTEM

A Word that specifies whether the new job's
initial task contains floating-point
instructions. The bits (where bit 15 is the
high-order bit) have the following meanings:

bit meaning

15-1 Reserved.

o If set to 1, the initial task uses
floating-point instructions.
These instructions require the
8087 NDP for execution. If set to
0, the initial task does not
contain floating-point
instructions.

%END 10 JOB CONFIG MACRO

The %END_IO_JOB_CONFIG macro indicates the end of I/O job configuration.
You should place this macro call at the end of EJOBCF.A86. The format of
the call to this macro is as follows:

where:

dir size Maximum allowable number of entries in the object
directories of I/O jobs. A value of zero indicates
that no object directories are to be created for I/O
jobs.

ASSEMBLING THE CONFIGURATION FILES, LINKING AND LOCATING THE EXTENDED I/O
SYSTEM

After you have made any necessary modifications to the Extended I/O
System configuration files, ETABLE.A86, EDEVCF.A86, and EJOBCF.A86, you
must assemble them and link and locate the Extended I/O System.
EIOS.CSD, a SUBMIT file contained on the Extended I/O System release
diskette, can be used to perform these functions. In order to use this
SUBMIT file, you must prepare your diskettes and place them in the proper
drives as explained in the "Linking and Locating the Subsystems" section
of Chapter 4. You should also examine ETABLE.A86, EDEVCF.A86, and
EJOBCF.A86 to make sure that the $INCLUDE statements contain the proper
disk identifiers. You can then enter the following command:

SUBMIT

where:

fx

:fx:E10S(date, loc_adr)

The appropriate disk identifier, indicating the drive
containing EIOS.CSD.

12-10

date

loc adr

CONFIGURING THE EXTENDED I/O SYSTEM

The date on which you submit the file (maximum of nine
characters).

The address at which to locate the Extended I/O
System. If you want to enter this value as a
hexadecimal number, you must include the suffix H.
The base portion of this value is the base portion of
the Extended I/O System's entry point. The offset
portion of the entry point is O. You must specify the
entry point in the %JOB macro call for the Extended
I/O System.

This command assembles ETABLE.A86, EDEVCF.A86, and EJOBCF.A86, links them
together with the other modules of the Extended I/O System, and locates
the Extended I/O System at the specified address. It places the located
Extended I/O System in file EIOS on drive Fl. It also places the
assembly listing, link map, and locate map on drive F3 in files EIOS.LST,
EIOS.MPI, and EIOS.MP2, respectively.

You must specify a %JOB macro in the system configuration file for the
Extended I/O System (refer to Chapter 4). In this macro, the entry point
depends on the address at which you locate the Extended I/O System
(CS:O). The data segment should be specified as 0 (the Extended I/O
System assigns its own data segment).

EXTENDED I/O SYSTEM INITIALIZATION

The Extended I/O System defines a public symbol, RQ$EIOS$INIT$ERROR, in
which it returns its initialization status. If the Extended I/O System
initializes properly, it attaches all logical devices specified in the
configuration file (EDEVCF.A86), sets itself up as an operating system
extension, and sets RQ$EIOS$INIT$ERROR to zero. If the Extended I/O
System does not initialize correctly, it sets RQ$EIOS$INIT$ERROR to a
nonzero value.

Once the initialization is complete, users can create and attach files on
the devices specified in EDEVCF.A86 (unless they are off-line, in which
case an exceptional condition code is returned). If one of these devices
is switched from on-line to off-line, the Extended I/O System
automatically marks all synchronous connections to that device as invalid
(returns the EBADSYNC$CONN condition code) and detaches the device.
When the unit is switched back on, the Extended I/O System automatically
attaches it the first time a user tries to create or attach a file on
it. The Extended I/O System performs this service only for all devices
that it attaches.

12-11

CHAPTER 13. CONFIGURING THE HUMAN INTERFACE

Human Interface configuration involves the following operations:

• Designating prefixes and subpaths for the logical names required
by the Human Interface

• Specifying the Human Interface sign-on

• Specifying the maximum number of characters in a command name

• Specifying the list of directories that the Human Interface
searches when it tries to load a command.

You perform these operations by making modifications to an Intel-supplied
Human Interface configuration file. This file, HCONFG.P86, is a PL/M-86 I
source file which is contained on the Human Interface release diskette.
As released, HCONFG.P86 defines a default Human Interface. To make I
changes, you must modify HCONFG.P86, compile it, link it with the rest of
the Human Interface object files and libraries, and locate the Human
Interface at an absolute address. The following sections describe this
configuration process.

MODIFYING HCONFG.P86

HCONFG.P86 consists of a series of PL/M-86 DECLARE statements which
identify the characteristics of the Human Interface. Figure 13-1 lists
the portion of the released HCONFG.P86 that you can modify. To change
the configuration information, you must modify the values associated with
the variables in the DECLARE statements. The following paragraphs list
the variables you can change.

13-1

CONFIGURING THE HUMAN INTERFACE

HCONF'G: DO;

1* path names tnat ~111 reoresent default directories *1

DECLARF'
H$syst~mSdirectory(.)

Hsprogsd1r~ctory(*)
HSriefaul t $<i! r (*)

~$WorKSd1rectory(*)

bY'lE
BYIF.
BYTF.
dYTF.

PUBLIC DATA(10,':F'O:SYST~M'), 1* :SYSTE
PUbLIC DATA(&,':fO:PRnc'), 1* :PPOt:::
PU~T,IC DATA(4,':fO:'), 1* :$: *1
PU~LIC DATA(&,':fO:WORK'); 1* :wOkK:

DECLAkE"

I

H$slonSon(*) RtT~ PUBLIC DATA(15,'lRMX &6 HI V1.0'),

H$ComruAnri$nameSmax WORD PUBLrC DATA(50), 1* command name max size

Hsor~fix~s(*) tHIF": PlIbLIC DATA(2, 1* number of preftxps *1
~,':PRn~:', 1* tirst preflx *1
~,':St~rF~:'); 1* second prefix *1

Figure 13-1. Human Interface Configuration File (HCONFG.P86)

The first four variables define paths for which the Human Interface
assigns logical names. These paths are specified in the form of
STRINGs. The first portion of each string (the length) is a number which
equals the number of characters in the second portion of the string. The
second portion of the string consists of the prefix and subpath.
Maintain this format when modifying the variables. If you specify a 0
for the length of any string, the Human Interface will not create the
corresponding logical name.

H$SYSTEM$DIRECTORY(*)

H$PROG$DIRECTORY(*)

H$DEFAULT$DIR(*)

A BYTE array containing a STRING which
defines the prefix and subpath of a
directory that the Human Interface
associates with logical name :SYSTEM:.

A BYTE array containing a STRING which
defines the prefix and subpath of a
directory that the Human Interface
associates with logical name :PROG:.

A BYTE array containing a STRING which
defines the prefix that the Human Interface
associates with logical name :$:.

13-2

CONFIGURING THE HUMAN INTERFACE

H$WORK$DIRECTORY(*} A BYTE array containing a STRING which
defines the prefix that the Human Interface
associates with logical name :WORK:.

The following variable is also specified in the form of a STRING. It
defines the Human Interface sign-on.

H$SIGN$ON(*} A BYTE array containing a STRING which
defines the Human Interface sign-on
characters. These characters are displayed
on the user terminal when the Human
Interface begins running.

The next variable defines the number of characters in a command name.

H$COMMAND$NAME$MAX A WORD specifying the maximum number of
characters in a command name. This includes
the prefix and subpath portions of the
command name.

The following variable defines directories that the Human Interface
searches when looking for a user-specified file. These directories are
specified in the form of a STRING table. A STRING table is a BYTE array
whose first byte specifies the number of strings in the table. The
remaining bytes of the STRING table specify the actual STRINGs.

H$PREF IXE S (*) A BYTE arrayv in the form of a STRING table,
indicating the directories that the Human
Interface searches, in order, when looking
for commands. As many as 255 directories
can be specified in this STRING table. The
STRINGs can contain either logical names
(for existing files) or pathnames. When the
Human Interface user specifies a pathname
that does not begin with ($) or (:), the
Human Interface appends the pathname from
the command line to the end of the first
directory name in the STRING table. If the
file this created is not found, the Human
Interface repeats the process for the
remaining directories.

If a directory name in the STRING table
includes a pathname (that is, it is more
than just a logical name), it must include
the (/) as the last character. The (/) is
needed because the Human Interface appends
the user-specified file name directly to the
end of the directory name.

13-3

I

I

I

I

CONFIGURING THE HUMAN INTERFACE

HCONFG.P86 also contains definitions of variables that are not described
in this manual. These variables are defined in the configuration file to
allow for future expansion of the configuration options. They are not
currently user selectable. Do not modify the value of any variable that
is not described in this section.

COMPILING HCONFG.P86, LINKING ANO LOCATING THE HUMAN INTERFACE

HI.CSO, a SUBMIT file contained on the Human Interface release diskette,
can be used to link and locate the Human Interface. In order to use this
SUBMIT file, you must first prepare your diskettes and place them in the
proper drives of your development system, as explained in the "Linking
and Locating the Subsystems" section of Chapter 4. Then you can enter
the following command:

SUBMIT

where:

fx

date

loc adr

:fx:HI(date, 10c_adr)

The appropriate disk identifier, indicating the drive
containing HI.CSO.

The date on which you submit the file (maximum of nine
characters).

The address at which to locate the Human Interface.
If you want to enter this value as a hexadecimal
number, you must include the suffix H. The base
portion of this value is the base portion of the Human
Interface subsystem entry point. The offset portion
of the entry point is O. You must specify the entry
point in the %10 JOB macro call for the Human
Interface. You specify this macro call during
Extended I/O System configuration.

This command compiles HCONFG.P86, links together the modules that make up
the Human Interface, and locates the Human Interface at the specified
address. It places the located Human Interface in file HI on drive Fl.
It also places the link and locate maps on drive F3 in files HI.MP1 and
HI.MP2 respectively.

Unlike the other iRMX 86 subsystems, the Human Interface does not require
a %JOB macro in the system configuration file. Instead, the Extended I/O
System must create the Human Interface as an I/O job. To ensure that
this process takes place, you must include an %10 JOB macro for the Human
Interface in the Extended I/O System configuratioi file (EJOBCF.A86).
Refer to Chapter 12 for more information about the %10 JOB macro. In
this %10 JOB macro, the entry point depends on the address at which you
locate the Human Interface (CS:O). The data segment base should be
specified as 0 (the Human Interface initializes its own data segment).

13-4

CONFIGURING THE HUMAN INTERFACE

HUMAN INTERFACE REQUIREMENTS

In order to run the Human Interface, you must include the following
iRMX 86 subsystems in your application system.

Nucleus
Debugger or Terminal Handler
Basic I/O System
Extended I/O System
Application Loader
Human Interface

The Nucleus, Basic and Extended I/O Systems, and the Application Loader
must be configured with the system calls required by the Human
Interface. Appendix C lists these requirements. The following sections
outline any additional requirements of the subsystems.-

TERMINAL HANDLER OR DEBUGGER REQUIREMENTS

The Human Interface communicates to the terminal via the Basic I/O
System, which in turn uses the Terminal Handler (or the Debugger's
Terminal Handler). In order for this to happen, the Basic I/O System
requires that a Terminal Handler with input and output mailbox names
RQTHNORMIN and RQTHNORMOUT, respectively, be present in the application
system. These mailbox names are configuration options of the Terminal
Handler. Refer to Chapter 7 for further information. The Basic I/O
System is unable to communicate through a Terminal Handler with different
input and output mailbox names.

The Human Interface library, HI. LIB, contains a module that implements
control-C semantics. To use this module, you must link it to the
Debugger or the Terminal Handler, depending on which you use with the
Human Interface. To link this module, modify the Terminal Handler or
Debugger SUBMIT file (MTH.CSD or DB.CSD) to include the following line:

:fx:HI.LIB(HCONTC), &

Place this line in the LINK86 input list in the place designated for the
control-C semantics file, as indicated in Chapters 7 and 8.

BASIC I/O SYSTEM REQUIREMENTS

The Human Interface uses the Basic I/O System to perform I/O to secondary
storage devices. In order to run the Human Interface, the Basic I/O
System must contain the following file drivers:

physical
stream
named

13-5

CONFIGURING THE HUMAN INTERFACE

Ensure that these file drivers are selected in the Basic I/O System
configuration file (ITABLE.A86). Refer to Chapter 9 for information.

The Basic I/O System must also contain DUIBs for the devices used by the
Human Interface. In particular, the IDEVCF.A86 configuration file must
contain DUIBs for devices with the following device names:

TO
liB
STREAM

Terminal device
Byte bucket device
Stream file device

The released version of IDEVCF.A86 contains DUIBs for these devices. You
must ensure that IDEVCF.A86 contains DUIBs for any other devices used by
the Human Interface, such as disk drives.

The Basic I/O System must also contain device drivers for each of the
devices used by the Human Interface. In particular, you must ensure that
IDEVCF.A86 includes the On Board USART driver to enable the I/O System to
communicate with the terminal via the Terminal Handler (or the Debugger's
Terminal Handler).

EXTENDED I/O SYSTEM REQUIREMENTS

The TO, BB, and STREMI devices must be logically attached when the Human
Interface starts processing. Therefore, the Extended I/O System
configuration file (EDEVCF.A86) must contain %DEV INFO BLOCK macro calls
for each of these devices. The macro calls should assign the logical
names to be the same as the device names. As released, EDEVCF.A86
contains macro calls for these devices. Refer to Chapter 12 for further
informatione

The Extended I/O System must create the Human Interface as an I/O job.
Thus EJOBCF.A86 must contain an %10 JOB macro call for the Human
Interface. The default prefix for the Human Interface job is the logical
name of the Human Interface's terminal (TO). As released, EJOBCF.A86
contains a macro call for the Human Interface job.

iVhen specifying the %JOB macro for the Extended I/O System, you must
ensure that its memory pool is large enough to include the Human
Interface. To do this, you can specify a value of OFFFFH for the
pool max parameter (refer to Chapter 4 for more information about the
%JOB-macro). You should also specify a value of OFFFFH for the pool max
parameter in the Human Interface's %10 JOB macro call. However, if you
specify OFFFFH for the Extended I/O System and the Human Interface, it is
recommended that you specify equal pool min and pool max values in all
other %JOB and %10 JOB calls to prevent-these other jobs from borrowing
memory.

13-6

CONFIGURING THE HUMAN INTERFACE

CREATING HUMAN INTERFACE VOLUMES

Before you can initially use the Human Interface, you must create iRMX 86
volumes that are properly formatted and contain the Human Interface
commands. Intel supplies one such volume in the iRMX 86 release
package. This volume is a preconfigured flexible diskette in iRMX 86
format (with a granularity of 128 bytes) that contains the Human
Interface commands. You can use this diskette if your iRMX 86 system
contains a flexible diskette drive connected to either an iSBC 204
controller or an iSBC 215/218 controller.

If your iRMX 86 system does not contain a flexible diskette drive, you
must use the Files Utility to create your first Human Interface volume.
Use the Files Utility FORMAT command to format the iRMX 86 volume and the
Files Utility UPCOPY command to copy the Human Interface commands from
the Human Interface release diskette to the formatted iRMX 86 volume.
Refer to the iRMX 86 INSTALLATION GUIDE for a description of the Files
Utility. The names of the command files to be copied from the ISIS media I
include the name of the command with the extension ".R86". For example,
the name of the filename of the DIR command on the release diskette is
"DIR.R86" •

CREATING HUMAN INTERFACE COMMANDS

One of the primary functions of the Human Interface is to execute files
of object code contained on secondary storage devices. It does this by
loading the code into iRMX 86 memory and creating jobs for this code.
The Human Interface is released with several such files which contain the
Intel-supplied Human Interface commands. You can also create your own
files of object code for the Human Interface to load as jobs. The
procedure for creating your own commands depends on the kind of
development system you use.

USING A SERIES III DEVELOPMENT SYSTEM

If you use a Series III development system to develop your commands, you
can produce load-time locatable code (LTL), position independent code
(PIC), or absolute code. To create LTL or PIC commands, which the Human
Interface can load anywhere in dynamic memory, perform the follOWing
steps:

1. Compile your code using the PL/M-86 compiler or assemble it using
the 8086/8087/8088 Macro }~sembler.

2. Use LINK86 to link your code together with the necessary
libraries and create an LTL or PIC module. Enter the LINK86
command as follows:

13-7

I

CONFIGURING THE HUMAN INTERFACE

RUN : fx: LINK86 &
:fx:command.obj, &
:fx:HPIFC.LIB, &
:fx:LPIFC.LIB, &
:fx:EPIFC.LIB, &
:fx:IPIFC.LIB, &
:fx:RPIFC.LIB &

TO :fx:command &
PRINT(:fx:command.mpl) SYMBOLCOLUMNS(2) &
OBJECTCONTROLS(PURGE) &
PRINTCONTROLS(LINES, PUBLICS, NOCOMMENTS, SYMBOLS) &
BIND SEGSIZE(STACK(stacksize» MEMPOOL(minsize,maxsize)

where:

: fx:

command.obj

HPIFC.LIB
LPIFC.LIB
EPIFC.LIB
IPIFC.LIB
RPIFC.LIB

command

command.mpl

stacksize

minsize
maxsize

The appropriate disk identifiers, indicating the
drives containing the modules.

File containing the assembled or compiled object
code for your command. You can link in several
files or libraries at this point, if necessary.

Interface libraries for the Human Interface,
Application Loader, Extended I/O System, Basic I/O
System, and Nucleus. These libraries satisfy
external references caused by making system calls.

File on which LINK86 places the linked command.
After transferring this file to an iRMX 86
secondary storage device, you can invoke the
command by entering its pathname.

File on which LINK86 places the link map.

Size, in bytes, of the stack needed by the
command and any system calls that the command
makes. The Human Interface uses this value when
it creates a job for the command.

Minimum and maximum sizes of the command's dynamic
memory requirements, in bytes. The Human
Interface uses these values when it creates a job
for the command.

The code is now ready to be transferred to an iRMX 86 secondary
storage device. You do not need to process the code further with
LOC86.

3. Use the Files Utility or the Human Interface UPCOPY command to
copy the linked command from the development system disk to an
iRMX 86 secondary storage device. At this point you can invoke
the command by entering its pathname at the Human Interface
terminal.

13-8

CONFIGURING THE HUMAN INTERFACE

You can also create your commands as absolute object modules, if you
wish. To do this, use the output file produced by LINK86 as input to
LOC86, and use the ADDRESSES control to specify absolute addresses for
the code.

There are limitations to commands containing absolute code. The next
section discusses these limitations further.

USING A SERIES II DEVELOPMENT SYSTEM

If you use a Series II development system to develop your commands, you
can produce only absolute object code which the Human Interface must load
into one particular area of memory. To create absolute commands, perform
the following steps:

1. Compile your code using the PL/M-86 compiler or assemble it using
the 8086/8087/8088 Macro Assembler.

2. Use LINK86 to link your code together with the necessary iRMX 86
interface libraries. Enter the LINK86 command as follows:

:fx:LINK86
:fx:command.obj,
:fx:HPIFC.LIB,
:fx:LPIFC.LIB,
:fx:EPIFC.LIB,
:fx:IPIFC.LIB,
:fx:RPIFC.LIB

TO :fx:command.lnk PRINT(:fx:command.mp1)

&
&
&
&
&

&
&

where the parameters of this command mean the same as they do when
entered with the Series III version of the LINK86 command. Notice
that when using the Series II development system, you do not
preface the LINK86 command with RUN and you do not use the
SYMBOLCOLUMNS, OBJECTCONTROLS, PRINTCONTROLS, BIND, MEMPOOL, and
SEGSIZE controls. These are not supported with the Series II
version of LINK86. With the exception of BIND and MEMPOOL, you
enter the omitted controls in the LOC86 command.

3. Use LOC86 to assign absolute addresses to the linked module
created by LINK86. Enter the LOC86 command as follows:

:fx:LOC86 :fx:command.lnk TO :fx:command &
ORDER (CLASSES (CODE, DATA, STACK, MEMORY» &
ADDRESSES (CLASSES (CODE (absolute address») &
SEGSIZE (STACK (stacksize» - &
MAP PRINT (:fx:command.mp2) SYMBOLCOLUMNS(2) &
OBJECTCONTROLS(PURGE) &
PRINTCONTROLS(LlNES ,PUBLICS,NOCOMMENTS ,SYMBOLS)

where:

command.lnk Name of the link file produced previously by
LINK86.

,13-9

CONFIGURING THE HUMAN INTERFACE

command Name of the file in which LOC86 writes the
absolute module. After transferring this
file to an iRMX 86 secondary storage device,
you can invoke the command by entering its
pathname.

absolute address Absolute starting location of the code
segment of the command. LOC86 locates the
remaining segments after the code segment.
You must reserve these areas of iRMX 86
memory during configuration with the %SAB
macro (refer to Chapter 4).

stacksize Size, in bytes, of the stack needed by the
command and any system calls that the
command makes.

command.mp2 Name of the file in which LOC86 writes the
locate map.

4. Use the Files Utility or the Human Interface UPCQPY command to
copy the located command from the development system disk to an
iRMX 86 secondary storage device. If you have reserved the areas
of iRMX 86 memory that the command needs with the %SAB macro
during system configuration, you can invoke the command by
entering its pathname at the Human Interface terminal.

ADDITIONAL REQUIREMENTS FOR ABSOLUTE CODE

When the commands you create contain absolute object code, you must take
steps during the configuration process to ensure that this code loads and
executes correctly, without affecting the remainder of the application
system.

Since absolute code contains the addresses at which it is to reside as
part of the code, the Application Loader, when called by the Human
Interface, cannot load this code at any convenient place in iRMX 86
memory. Instead, it must load this code at the exact place specified in
the code. If that place in iRMX 86 memory contains other objects (as it
might if the memory is part of a dymanic memory pool), the act of loading
the file can harm or destroy other tasks. If the place in memory
contains part of the Operating System, the results can be worse. In
order to ensure that no damage occurs when the Application Loader loads
absolute files, you must use the %SAB macro call to reserve areas into
which the Application Loader (when called by the Human Ingerface) will
later load code (refer to Chapter 4 for a description of the %SAB
macro). If you do this, no other objects will use the specified areas of
memory, and the Application Loader can safely load your commands into
that area for execution.

If you create your commands as tTL or PIC modules on a Series III
development system, you do not have to reserve memory with %SAB macros.
The Application Loader loads LTL and PIC modules into convenient areas of
dynamic memory.

13-10

APPENDIX A. EXAMPLE SYSTEM CONFIGURATION

One of the iRMX 86 release diskettes contains a demonstration system.
This system consists of the following:

• Nucleus

• Debugger

• root job

• application job consisting of a BASIC interpreter

The system contained on the release diskette has already been
configured. In order to run it, make sure that your hardware is
assembled correctly and load the system into your iSBC 86/12A single
board computer. Refer to the iRMX 86 INSTALLATION GUIDE for further
information on using this system. This appendix, however, shows how to
use the procedures described previously in this manual and build the
demonstration system from its individual parts.

In order to build the demonstration system, this appendix assumes that
you have the following:

• An INTELLEC Series II Microcomputer Development System with at
least four disk drives.

• A system disk containing ASM86, LINK86, and LOC86.

• The Nucleus release diskette, the Debugger release diskette, the
demonstration system release diskette, and the iSBC 957A or
iSBC 957B release diskette.

This appendix uses the SUBMIT files provided on the subsystem release
diskettes and described in the previous chapters of this manual to link
and locate the Nucleus and Debugger. The demonstration system release
diskette contains different SUBMIT files that link and locate the
Nucleus, Debugger, and TBASIC interpreter. These SUBMIT files do not,
however, follow the disk drive conventions outlined in Chapter 4. They
assume that you have only two disk drives in your development system.
You can use the files on the demonstration system release diskette, but
this appendix does not describe the commands used to submit them.

This Appendix also makes assumptions about terminal characteristics,
naming files, and placing files on diskettes. These are made for
convenience, not out of necessity. It also assumes that you are going to
use the iSBC 957A/B package to load the system into the iSBC 86/I2A
single board computer.

A-I

I

I

EXAMPLE SYSTEM CONFIGURATION

PREPARE A MEMORY MAP

The first step in the configuration process is preparing the memory map
to describe the general layout of the system. Figure A-I contains such a
memory map.

There are several things to notice about this memory map. They are:

• The highest RAM address recorded indicates that this system has
I28K of RAM.

• The iSBC 957A/B package will be used to load this system into
memory. Thus space is allocated in the memory map for the
iSBC 957A or iSBC 957B monitor.

• The modules will be located in memory as described in Chapter 4.

A-2

EXAMPLE SYSTEM CONFIGURATION

iRMX- 86 SYSTEM MEMORY MAP WORKSHEET

Configuration file name: ---
Start address/
Data segment base

Module Length

~(~---~)------------------~< reserved

reset vector

iSBC 957A/B monitor

I Highest RAM address

I Application Job

Root job <
,-

Debugger

Nucleus

Wake-up addresses

Free space

iSBC 957A7B monitor data <
Interrupt vector

Figure A-l. Preparing the Memory Map

A-3

Absolute
Address

FFFF:F

FFFF:O

FEOO:O

1FFF:F -:::- 12V'._

104: 0 L\<..

100:0

80:0

40:0

0:0

EXAMPLE SYSTEM CONFIGURATION

CONFIGURE THE SUBSYSTEMS AND LINK AND LOCATE THE SYSTEM

The next steps you must perform involve preparing configuration files for
the Nucleus and the Debugger, assembling these files, and linking and
locating all of the pieces of your system. You should fill out the
memory map each time you locate a module, in order to keep track of the
modules and the memory that they require. Figure A-2 shows a filled out
memory map- The following sections refer to this figure.

A-4

I

® <

,

® {

® {

<

\

EXAMPLE SYSTEM CONFIGURATION

iRMX- 86 SYSTEM MEMORY MAP WORKSHEET

Configuration file name: ---
Start address/
Data segment base

SS=1135:0

length=OA04

CSTART=ODDO:90

Module Length

(reserved)

reset vector

iSBC 957A/B monitor

Highest RAM address

Application Job

Root job

---Debugger

Nucleus

Wake-up addresses

Free space

iSBC 957A/B monitor data

Interrupt vector

Figure A-2. Completed Memory Map

A-5

<
/"
""-

<

<
<

-<
<
<
<
<
/'

Absolute
Address

FFFF:F

FFFF:O

FEOO:O

IFFF:F

l1EA:0

OE70:0

OD70:0

OD6E :5

611:0

6OF:1

104:0

100:0

80:0

40:0

0:0

EXAMPLE SYSTEM CONFIGURATION

PREPARE, LINK, AND LOCATE THE NUCLEUS

You should start the configuration process with the Nucleus. To do this,
place the diskettes in the proper drives of the development system
(system diskette in drive FO, configuration diskette in drive Fl, Nucleus
release diskette in drive F2, and scratch and listing diskette in drive
F3). Then copy the Nucleus configuration file, NTABLE.A86, from the
release diskette to your configuration diskette. Modify NTABLE.A86 so
that it includes only those features and system calls that your
application system requires. (You do not need to modify NDEVCF.A86 if
you are running on the iSBC 86/12A board.) Figure A-3 shows a modified
version of this file that specifies the system calls and features needed
by the TBASlC interpreter.

$lNCLunE(:r2:NTABLF.~AC)
SC::JE:.Cl · . , , r , , , , , , , , , , # , , , , , , , , , , • , • , , , ~ , , , , , , , , , , , , , , I , , , , , , , , , , • , , , , , , , , , , , ,

• · • ,
• ,
• ,
· •
• •

NUCLEUS F~aTUHF CaNfIGUHAlra~ TARLF

TO L~AVt: Utl'f A fF:ATURt:., CI1A~Gt:. 'fHt; ',' I'J THE CUM~FNT
rl1~kaCTC::R ';'

: ; : ; ; ; ; ; : ; ; ; : ; : ; : ; ; ; : ; : ; : ; : ; 7 ; : ; : ; : ; : : : ; : ; : ; : ; : ; : ; : ; : ; : ; : : : ; : ; : ; : ; : ; ;

St::JE.CT

~~AHAMFrF:H_VALTUATTUN

'~YSTC::~_F:XrEPTIUN_HANDLeP

· . , , , , , , , , • , , , , , , , , , , , , , , , • , , , • , , , , , r , , , , , , , , , • , , , • ,

• •
• •

· ,

· • · ,

NUrLF'US PRYMlrJ~F.: CO"lfYGlJHAITON TA~LE

TU Cl1NF'lGURt,. A NTlCLt::tJS PRIMITIVE. UlIT UF' THF: iR"A 86 Si'STEM,
PlPL~CF THF' '~' qy IH~ COMM~~T CHARACIFR ';'. C~LLS Tn
PHIMITTVfS Nnl CONF'IGUR~D TN TH~ SYST~M WILL RESULT IN AN
f:' S N uTS Cu~ f I \.iU HEO EXCEPT 1 Ol~ AL CO!~D 1 T 101 ••

· .
, , # , " , , , , , , , , , I , , , ,', , , , I , , , , , , , , , , , r , , , , , ,

%Hr}GF'ITiPE
\HOOISA8LEDELETrOH
_RnENARL~DF:LETlaN

'i<~CATALnGObJE~'r
'Hr}UNCAIALOGOBJECt
%Rr}LOQKUPUA.JFCT
:ROCPEATEEXI~hSlON
:RnuE~FT~~XTF~SlON

:HQCREAT~cn~POSITE

Figure A-3. Example Nucleus Configuration File

A-6

END

EXAMPLE SYSTEM CONFIGURATION

:ROOFLETEcnMPOSlTE
:HOIN~PECTCOMPOS!TE
:RQALrERCOMpnSITE
:kOFORCEOELETE
'.H)CREATEJOb *~ au,
: R()DF.LF1'F.JO~ ()
fROOFFSPRIN(;
%R()CREATF'TASK
'RODELF:'r~TASK ...L

tkQSUSPE"IDTASK ~
\RQHESIJ"'~TASK Jr
'H()SLEF:P
't(QGErTASKTOK~NS *
'ROGETPRIORITY
:t(QSEfPRIORITY
'ROCREAT~MAILbOX
'RODELF.r~MAILBOX
\.WSENO",ESSAr.E
\R()RECF:IVE~~SSAGF'
'HQCR~ATF'SE~APHOR~
'HQOELErF.SfMAPHOP~
\ROSE ... nu·n T.5
'ROHEeEl Vt:;lIl'11IT~
: fWCREATF'RF.",rO~
: RC'WFLE1'F'RF'G! UN
:ROSENDCONTr<OL
:R()kECEIVECONTROL
:t(QACCEPTCONTROL
'ROCRt:ATF'SEGM~"'T
\RQOELEIF.SE~Ml::NT

\ROGfl'S17,E
H<OGE fPOOLAT'Tf<T B
:ROSErpOOL~lN

:ROSFIOSEXTENStON
\R()SET t W"ERR IJPT
:RO~NTrkt~T~RkUPT

\ROENABLF.
\RQOTSABLE
:RQRESETINTERHUPT
:ROGF'TLEVEL
\R()t:;XITINTERRUPT
\H.(')SI GNAt,l NTFHRUPT
tR()wAITINTERRUPT
:RQ~flEXCEPIIONrlANOLFR

1ROSF:TExrEPTIUNHANDLER
\RQSJGNALEXCEPTION f

Figure A-3. Example Nucleus Configuration File (continued)

A-1

(j()I]~:
(I

, \

, '

EXAMPLE SYSTEM CONFIGURATION

Next, copy the Nucleus SUBMIT file, NUCLUS.CSD from the release diskette
on drive F2 to the configuration diskette on drve Fl. Modify the ASM86
command in NUCLUS.CSD so that it reads the configuration file
(NTABLE.A86) from drive FI instead of from drive F2. Then call the
version of NUCLUS.CSD that resides on Fl to assemble the configuration
files and link and locate the Nucleus. From the memory map in Figure
A-I, you can see that the Nucle~s should be located at address 104:0.
This allows room for the interrupt vector and the iSBC 957A/B monitor at
lower addresses. Therefore, enter the following command:

SUBMIT :FI:NUCLUS(date, 1040H)

where date is the date on which you submit the file. NUCLUS.CSD places
the located Nucleus in file NUCLUS on drive Fl. It places the locate map
in file NUCLUS.MP2 on drive F3. Figure A-4 shows the important parts of
the Nucleus locate map.

ISIS-II ~CS-!;6 LnCArF~, VI.J FJV(iKF:t. fox:
LOC86 &

:t3:nuclus.lnK 1J :fl:nuclus &
MAP P~I~T(:t3:nuclus.mpL) &
NULl""t,[, t,JC~JMMf;jTS~USYI~t;(ILo.') f."

SEGS1~f(ddta(2),stoCk(O» &
UkV~P(CLASSiSlcOde,datd» &
ADOhF~SiS(CLA~S~S(code(Olu40~»))

WARNING 2b: OFCIoIC::A.jI ... c; SIZr. Ufo 5r.GI>,Er.T
SEGMEfIoT: S rACK

WAR N t J>. G 2 b : Dr, C K ~ A .:; T~ G .5 I Z I; u F ~ to. G ~, F. id'
S t: G M f: N't' : [) 1.\ T A

SYMtWL TAIJ[,I:. cJf r~.JDuLe,; 'JfiEGIN
REA D to RUM ~ t (, t. : F j : '" J C [. v S • L r~ "-
W R I T l' E. N T i..l F I L I; : f 1 : .'; t.J C L lJ S

BASt:

0104H OOv(IH PUH '~biGIrj

ME M 0 R 'X /til A P U f r~ Q f) u LEn, t:. G p~
READ ~HUM flLt:: :Fj:;JUCl,US.Li~K

WRIrn.N TU +ILF :to'l :NtJCLIIS

SE'GMEN'I MAP

START SIO? Li:.:fljGrH ALIG!'4

OOOOOH 003FFH 0400H A
Ol040H 05fEDH 4FAeH w
OSFEEH oeOO7H 00lAH w
06008H 06011H OOOAIi W
06012H 06025H 0014H . W

NAME

(ABSOLUTE)
CUDE.
O~J_St:;G

JOB_SEG
TASK_SEG

JFFs~r TiP~ SYMBOL

CLASS

CODE
cout:
CODE
COllE

: F'3: ".!rAj;,.:!: 11..57 Figure A-4. Nucleus Locate Map
,

r-3', f'.d)6.UC' P, I...~r ,
,\ ~ 3 : 1,1 Ott I.)S ' 'ffl vi A-8
" ;:.?l • It ,mrt..

EXAMPLE SYSTEM CONFIGURATION

06026H 0602DH OOObH W
0602EH 06035H 0OO8H \III
06036H 0603FH OOOAH \III
06040H 0604DH OOOEH \III
0604EH 06061H 00lAH \III
06068H 0606DH 0OO6H \III
0606EH 0609DH 0030H \III
0609EH 060A2H 0OO5H \III

060A4H 060BSH 0012H W
060B6H ObOC1H 0012H \III

060C8H 060D9H 0012H \III
060DAH 060E2H 0OO9H B
060E3H 060ECH OOOAH B
060EEH ObOEEH OOOOH w
060EEH 060EFH 0OO2H \III
060FOH 060FOH OOOOH G

060FOH ObOFIH 0OO2H W
06100H 06100H OOOOH G
06100H 06100H OOOOH G
06100H 06100H OOOOH \III
06100H 06100H OOOOH \11/

GROUP MAP

ADDRESS GRUUP OR SEGMENT NAME
060FOH DGkOUP

SYSTEM_DATA_SEG_ID
DATA

01040H CGROUP
CODE
OBJ_SEG
JOB_SEG
TASK_SEG

•
•
•

Mb_SEG
SEff,_SEG
REG_SEG
FS_SEG
It'T_SEG
EXCEP_SEG
VALID_SEG
PIC_CNF_SE;G
_IMH_PORT
_t.OI_PORT
_ISR_HEAD_PORT
_PIC_INFO
TIMf:.R_CNF_SEG
CSE<.;
SLAVE_SEG
SYSTEM_DATA_SI:,;

-G_ID
DATA
??SEG
LIB_81_PUb
STACK
MEMORY

Figure A-4. Nucleus Locate Map (continued)

CODE
CODE
CODE
COUE
CODE
CODE
COUE
CODE
COUE
CODE
CODE
COUE
CODE
CODE
CODE
DATA

DATA

STACK
--@ MEMORY

As you can see from arrow Al in Figure A-4, the next available memory
location 1s 610:0. The last location used by the Nucleus was 6OF:l. I
Allowing for additional space, record these values on the memorr map as
shown in portions A and part of B in Figure A-2 •

.\-9

I

BXAMPLE SYSTEM CONFIGUU.TION

PREPAIE, LINlC, AND LOCATE THE DEBUGGER

You should continue the configuration process with the Debugger. This
example assumes that you can use the released versions of the Debugger
SUBMIT file and configuration file. Thus you do not need to copy any
files to your configuration diskette and .ake modifications. Just make
sure that you place the diskettes in the proper drives of your
development system (system diskette in drive FO, configuration diskette
in drive FI, Debugger release diskette in drive F2. and scratch and
listing diskette in drive F3). Then call the Debugger SUBMIT file.
DB.CSD, to assemble the DTHCNP.A86 and link and locate the Debugger.
Since you have already located the Nucleus, you can use the figure of
6110B in the call to DB.CSD. This call app~ars as follows:

SUBMIT :F2:DB(date, 6110B)

where date is the date on which you submit the file. DB.CSD places the
located Debugger in file DB on drive Fl. It places the locate map in
file DB.MP2 on drive F3. Figure A-5 shows the important parts of this
locate map.

ISIS-II MCS-86 LOCArER, V1.3 INVOKED BY:
LOC66 &

:f3:db.lnK TO :fl:db &
MAP P~INT(:f3:dD.mp2) &
NOLINES NJCO~MEN~S NOSYMBOLS &
SEGSIZE(staCK(O» &
OHDER(classes(code, data» ,
ADDRESSES(classes(code(6110H»}

WARNING 20: DECR~ASING SIZE OF SEGMENT
SEGMENT: StACK

SYMBOL TABLE OF MODULE DBUGA
READ FROM FILE :F3:DB.LNK
WRITTEN TO fILE :F1:D8

BASE OfFSET TYPE SYMBOL

0611H OOOOH PUB RQDbUGINIT

MEMORY MAP OF MODULE OBUGA
REAO FROM FILE :f3:0B.LNK
WRITTEN TO FILE :F1:DB

SEGMENT MAP

LENGTH ALIGN NAME

BASE

START

06110H
00lF4H

STOP

ODlf3H
OD1f9H

70E4H
0006H

ill
8

CODE
TH_CNF_SEGl

Figure A-5. Debugger Locate Map

A-I0

OFFSET TYPE SYMBOL

CLASS

CODE
CODE

EXAMPLE SYSTEM CONFIGURATION

OD1FAH ODIFFH 0006H B
OD200H OD201H 0008H B
OD208H OD20BH 0004H B
OD20CI1 OD20DH 0002H B
OD20EH OD218H OOOBH B

OD219H OD224H OOOCH B

OD226H OD6ESH 04COH W
OD6FOH OD6FOH OOOOH G
OU6FOH OD6FOH OOOOH W
OD6FOh OD6FOH OOOOH W

GROUP MAP

ADDRESS GROUP OR SEGME~T NAME
00220H DGROUP

DA1'A
06110H CGROUP

CODE
'l'H_CNF _SEG 1
TH_CNF_St::G2
TH_CNF_Sf:.:G3
TH_CNF_SEG4
'IH_CNF_SEGS
NORM_IN_MBX_SEG
NORM_OUT_MBX_SEG

Th_CNf_SEG2
TH_CNF_SEG3
TH_CNF_SEG4
Th_CNf'_SE~S

NORfII'I_Ih_MBX_SE
-G

NORI"I_OUT_MBX_S
-EG

DATA
??S£G
STACK
MEMORY

Figure A-S. Debugger Locate Map (continued)

CODE
CODE
CODE
CODE
CODE

CODE

DATA

STACK
--@ MEMORY

Arrow B1shows the only important piece of information in Figure A-5 that
you should record on the memory map. It identifies the next available
memory location. address OD6F:O. The last location used by the Debugger I
is OD6E:5. Record address OD6E:5 on the memory map. This is shown in
portion B of Figure A-2. You need to know the next available address in
order to leave enough space for the root job and correctly locate the
application job.

The entry point of the Debugger is determined from the address at which
you locate the Debugger. The base portion of the entry point is the base
portion of the location address (611). The offset portion of the entry I
point is O. Thus the Debugger entrv point is 611:0. You must supply
this address later in the %JOB macro call for the Debugger.

A-It

I

I

I

I

I

. EXAMPLE SYSTEM CONFIGURATION

ALLOW SPACE FOR THE ROOT JOB

Use the address OD70:0 as the starting address of the root job. Record
this value and the estimated size on the memory map. You do not know the
exact size since you have not created the root job yet. However, for this
system, use a size estimate of 600H bytes. Add this value to the starting
address and record the result, ODDO:O, on the memory map. Use this value
3S the starting address of the application job. Portion C of Figure A-2
shows this.

LINK THE APPLICATION JOB

Next, use LINK86 to link the modules of the TBASIC interpreter job
cogether. Before you do this, however, copy the file APXIOL.LIB from the
iSBC 957B release diskette (of SBCIOL.LIB from the iSBC 957A release
diskette) to your configuration diskette. Also copy the interface library,
RPIFL.LIB, from the Nucleus release diskette to your configuration
diskette. Place the diskettes in the proper drives of the development
system (system diskette in drive FO, configuration diskette in drive Fl,
demonstration system release diskette in drive F2, and scratch and listing
diskette in drive F3), and enter the following command:

LINK86 :F2:TBASIC.OBJ,
:F2:PTHIO.OBJ,
:F2:PTOKEN.OBJ,
:F2:PERR.OBJ,
:F2:PINT.LIB,
:Fl:APXIOL.LIB,
: Fl:RPIFL.LIB

&

&
&
&
&
&

&
TO :F3:TBASIC.LNK MAP PRINT(:F3:TBASIC.MP1)

The files linked in this process contain the following information:

TBASIC.OBJ

PERR.OBJ

PTOKEN.OBJ

PTHIO.OBJ

PINT.LIB

APXIOL.LIB

RPIFL.LIB

This file contains the initialization task and the
interpreter.

This file contains error printing routines.

This file contains a token scanner for PL/M-86
routines.

This file contains the interface between the Terminal
Handler and the interpreter.

This file contains a library of PL/M-86 routines that
interface with the iRMX 86 Operating System.

This file contains the iSBC 957B library.

This file contains the interface library for
application jobs.

LINK86 places the linked application job in file TBASIC.LNK on drive F3.

A-12

EXAMPLE SYSTEM CONFIGURATION

LOCATE THE APPLICATION JOB

After linking the application job, use LOC86 to assign absolute
locations. By examining the memory map, you can see that the next
available location is ODDO:O. Use LOC86 to locate the application job
there. To do this, enter the following command:

LOC86 :F3: TBASIC.LNK TO :Fl :TBASIC &
ORDER (CLASSES (CODE, DATA, STACK, MEMORY» &
ADDRESSES (CLASSES (CODE (ODDOOH») &
MAP PRINT (:F3:TBASIC.KP2) &
OBJECTCONTROLS(NOLINES,NOCOKHENTS, &

NOPUBLICS,NOSYHBOLS)

LOC86 places the located application job in file TBASIC on drive Fl. It
places the locate map in file TBASIC.MP2 on drive F3. Figure A-6 shows
the important portions of the application job locate map.

ISIS-II MeS-lib LUCA'fER, Vl.3 INVOKEO BY:
LOCB6 :f3:TBASIC.LNK TO :fl:TBASIC " ORDE.R (CLASSES (CUDE, DATA, STACK, MEMORY» " ADN<ESSI::S (CLASSES (CODE (ODDOOH») " ~AP PRINT (:F'3:TBASIC.MP2) " ObJECTCONrRULS(NOLINES,NOCOMMENTS, " NOSYMBOLS,NOPUBLICS)

SYMBOL TA~LE Of MUDULE TBASlC
READ FRO"" FILE :F3:TBASIC.LNK
WRITTE;N TO FILE :Fl:TBASIC

BASE OFfSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

I

I

ODOOH OOCEH PUB WSrART OOOOH 0090H PUB CSTART--@
OFF8H 0095H PU~ l'XT&GN Of'F'8H 1095H PUB rXTENO
OFF&H OOOEH PUB VARBGN OfF3H 005BH PUB rXTUNF
OE81H 01ECH PUB GETCHAR Ot::81H 018FH PUB FLUSH INPUT
OE81H 013EH PUB PUTCHAR Oe81H OOEAH PUB FLUSH OUTPUT
OE81H OOlAH PUB INITTHIO OEA4H 0043H PUB TOK€NIZE
OEA4H 0022H PUB HEX OEA4H OOOAH PUB HEXCHARS
OEE7H 0054H PUB PEKROR OEFOH OOOAH PUB PCRTSEMA
OEF9H OOOCH PUB PDELSEMA OFOIH OOlOH PUB PSNOUNIT
OFOAH OOOAH PUB PRCVUNIT Of13H OOOCH PUS PCRTMBOX
OF1CH 0OO4H PUB POELMBOX OF24H 0OO8H PUB PSENDMSG
OF20H 0OO6H PUB PRECVMSG OF36H OOOAH PUB PCRTSEGM
OF3EH OO12H PUB POELSEGM Ol'47H OOOAH PUB PCRTTASK
OF51H OOOCH PUB PDELTASK Of59H OOOEH PUB PSUSTASK

•
•
•

Figure A-6. Application Job Locate Nap

A-13

EXAMPLE SYSTEM CONFIGURATION

MEMOR~ MAP OF MOO~LE TBASIC
READ FROM fILE :FJ:TBASIC.LNK
WRITTEN TO FILE :Fl:TBASIC

MODULE START ADDRESS PARAGRAPH
SEGMENT MAP

START STOP LENGTH ALIGN

OOOOOH OEt)OEH OBOFH G
OES10H OEA49H 023AH W

OEA4AH OEE71H 0428H ..
OEE72H OEl'02H 0091H •

•
•

11342H 11342H OOOOH W

11350H 11D53H OA04H G
110&OH 11060H OOOOH G
110&OH 11 E9EH 013FH W
11EAOH llEAOH OOOOH w

GROUP MAP

ADDRESS GPOUP OR SEGME~T NAME
OFF30H OGROUF

CONS!
DATA
OATA2
STACK
MEMORY

ODOOOH CGROUP
CODE

= ODDOH OFFSt:;T

NAMt:

CODE:
TE.kMINALHANDLE

-RIO_CODE
TOKENIZt:_CODE
PERROR_COOE

INITTASKSIGNAL
-_DATA

SlACK
??SEG
CONST
Mt.MORY

= 0090H

CLASS

CODE
CODE

CODE
CODE

DATA

STACK

CaNST
ME,"IOR\

Figure A-6. Application Job Locate Map (continued)

As with the Debugger locate map. there are three pieces of important
information in Figure A-6 which you must record on the memory map.
Arrows Dl, D2, and D3 mark them.

--@
--@)

I Arrow Dl shows the next available memory location. llEA:O. Record this
value on the memory map. It will be used when when calling the %BAR
macro to reserve memory for the application system. This is shown in
portion D of Figure A-2.

A-14

EXAMPLE SYSTEM CONFIGURATION

Arrow D2 shows the entry point of the first-level job's initialization
task, CSTART. Record the address of CSTART, ODDO:090, on the left I
portion of the memory map, near the other information for the application
job. This is shown in portion D of Figure A-2. You must later provide
this information in the %JOB macro call for the application job.

Arrow D3 shows the stack segment starting address and length. Record the
starting address, 1135:0, and the length, OA04, on the left portion of I
the memory map, near the other information for the application job. This
is shown in portion D of Figure A-2. This job has a statically allocated
stack and so you must provide this information in the %JOB macro call.

This application job assumes that the code segment and the data segment
are the same. Therefore, it is not necessary to record any information
about the data segment in the memory map.

BUILD THE CONFIGURATION FILE

After you have located the-Nucleus, the Debugger, and the application job
and filled out the memory map, you have enough information to build the
configuration file needed by the root job. This involves creating a file
containing an $INCLUDE statement, a %SYSTEM macro call, %SAB macro calls I
and %JOB macro calls. The following sections show filled out worksheets
for these macros and discuss the parameters. Then the actual
configuration file itself is shown.

%JOB MACRO CALLS

For this system, you must make two %JOB calls; one for the Debugger and
one for the application job. The order in which you include these calls
in the configuration file is important because that is the order in which
the jobs are initialized when the system starts running. Make the %JOB
call for the Debugger first.

Debugger %JOB Call

Figure A-7 shows the completed worksheet for the Debugger's %JOB call.

A-15

I

EXAMPLE SYSTEM CONFIGURATION

Macro call: JOB (defines first-level jobs) - for Debugger

Number of calls required __ ~o~ne~f~o~r~e~a~c~h~f~i~r~s~t_-~l~e~v~e~l __ jo~b~ ____ ___

CONFIGURATION FILE NAME: CONFIG.A86

FORMAT:

suggested
parameter ~ default value

%JOB (directory_size, word (0) 0
pool_min, word IFFH
nool mAY. word fn'&''&''&''&'u'\ lFFH
~ - -------~ ~ -~. , •. : - &.&.J

max_objects, word OFFFFH
ma~tasks, word OFFFFH
max_jobyriority byte 0
exception_handIer_entry, addr (0:0) 0:0
exception_handIer_mode, byte (1) 1
job_flags, word (0) 1
init_taskyriority, byte (0) 0
init_task_entry, addr 611: 0000
data_segment_base, base (0) 0
stack_pointer, addr (0:0) 0:0
stack size, word (512) 512
task _f lags) word (0) 0

NOTES:

1. Type addr is specified as base:offset

2. Types addr and base must be entered as hexadecimal numbers
without the suffix H. Types word and byte default to
decimal, but will accept all radix suffixes.

Figure A-7. Completed Debugger %JOB Macro Worksheet

A-16

EXAMPLE SYSTEM CONFIGURATION

The parameters are described in the following:

directory size
through -
max tasks

exception_handIer_
entry

stack size

Application Job %JOB Call

The first five parameters affect the Debugger
while it is running. Enter these parameters
as shown in Figure A-7.

The 0 indicates that the priority of the root
job is the maximum priority for tasks in this
job.

The 0:0 value means that the default system
exception handler identified in the %SYSTEM
call is used.

The 1 indicates that the exception handler is
called in the event of programming errors.

The 0 indicates that the Nucleus does not
validate parameters.

This value was listed in Table 4-1.

This value depends on the address specified
when locating the Debugger. It is always
(base of the location address):O.

The 0 indicates that the Debugger assigns its
own data segment.

The 0:0 indicates that the Nucleus allocates
the stack segment.

This value was listed in Table 4-1.

The 0 indicates that the Debugger does not
use the 8087 NDP component.

Figure A-8 shows the completed %JOB macro worksheet for the application
job.

A-17

I
I

EXAMPLE SYSTEM CONFIGURATION

Macro call: JOB (defines first-level jobs2 - for TBASIC

Number of calls required: one for each first-level job

CONFIGURATION FILE NAME: CONFIG.AS6 -------------------------------------

FORMAT:

suggested
parameter !n!.. default value

%JOB (directory_size, word (0) 20
pool_min, word 1FFH
pool_max. word (OFFFFH) OFFFFH
ft·U!I ,,""" .;~" ... ct
IoUQIt. _",.., ... ~,- ... g J word OFFFFH
max_tasks, word OFFFFH
max_job-priority, byte 0
exception_handler_entry, addr (0:0) 0:0
exception_handler_mode, byte (1) 1
job_flags, word (0) 1
init_task-priority, byte (0) 131
init_task_entry, addr ODDO:090
data_segment_base, base (0) 0
stack-pointer, addr (0;0) 1135:0
stack_size, word (512) OA04H
task_flags) word (0) 0

NOTES:

1. Type addr is specified as base:offset

2. Types addr and base must be specified as hexadecimal numbers
without the suffix H. Types word and byte default to decimal
but will accept all radix suffixes.

Figure A-S. Completed Application Job %JOB Macro Worksheet

A-18

EXAMPLE SYSTEM CONFIGURATION

The values shown in Figure A-8 are very similar to those shown in Figure
A-7. The major differences are outlined as follows:

stack-pointer

stack size

%SAB MACRO CALLS

A value of 131 is the recommended value for
this job.

This value was taken from the memory map.

This 0 indicates that the task assigns the data
segment.

This job has a statically allocated stack.
This value was taken from the memory map.

This value was taken from the memory map.

This system uses two %SAB calls, one for the memory needed by the Nucleus
and the first-level jobs, and the other for the remainder of the address
space over l28K. Figure A-9 contains the completed worksheet for the two
%SAB calls.

A-19

I

I

I

EXAMPLE SYSTEM CONFIGURATION

Macro call: SAB (for system address blocks)

Number of calls required:

CONFIGURATION FILE NAME:

FORMAT:

parameter

%SAB (start_base,
end_base,
type)

%SAB (start_base,
end base,
type)

%SAB (start_base,
end base,
type)

NOTES:

one or more

~

base
base
see

1

base
base

note

see note
1

base
base
see note

1

suggested
default

U

u

u

value

0
IlEA

U

2000
FFFF

U

1. The type parameter is reserved for future use. Enter the
character U for this parameter.

2. A SAB is declared between start_base:O and end_base:F,
inclusive.

3. Types addr and base must be entered as hexadecimal numbers
without the suffix H. Types word and byte default to decimal
but will accept all radix suffixes.

Figure A-9. Completed %SAB Macro Worksheet

A-20

EXAMPLE SYSTEM CONFIGURATION

The first %SAB call shown in Figure A-9 reserves the memory needed for
the entire application system. The end base parameter is taken from the
memory map. It includes the estimate for the root job.

The second %SAB call shown in Figure A-9 reserves memory that is not
actually in the system. This system has only l28K bytes of memory. Thus
addresses 2000:0 to OFFFF:F are not used. Reserving these locations
speeds the system initialization process.

%SYSTEM MACRO CALL

Figure A-lO shows the completed worksheet for the %SYSTEM call. You must
place this call last in the configuration file.

A-2l

I

EXAMPLE SYSTEM CONFIGURATION

Macro call: SYSTEM (system parameters)

Number of calls required: exactly one

CONFIGURATION FILE NAME: CONFIG.A86

FORMAT:

suggested
parameter default value

%SYSTEM (nucleus_entry, base
word
word

NOTES:

rod_size,
min_trans_size,
debugger! see note

1
default_e_h-provided, see note

2
mode) word

(0)
(64)

(A \ ,--,

(N)

1. Valid entries for the debugger parameter include:

A Debugger available
N No Debugger available

104
20
64
A

D

1

2. Valid entries for the default_e_h-provided parameter include:

Y Yes
D Debugger
N No

3. Types addr and base must be entered as hexadecimal numbers
without the suffix H. Types word and byte default to
decimal, but will accept all radix suffixes.

Figure A-IO. Completed %SYSTEM Macro Worksheet

A-22

EXAMPLE SYSTEM CONFIGURATION

The parameters are described in the following:

nucleus_entry

rod size
and
min trans size

This value is taken from the memory map.

These values affect the system at run time. Use
the values listed in Figure A-10.

debugger The A indicates that the Debugger is available.

default_e_h-provided The D indicates that the Debugger is used for
the default exception handler.

mode The 1 indicates that the Operating System
transfers control to the exception handler (the
Debugger) in the event of a programming error
condition.

CREATE THE ACTUAL CONFIGURATION FILE

After you have filled out the macro worksheets, you can create the
configuration file. To do this, create a file called CONFIG.A86 on your
configuration diskette, and copy the information from the worksheets into
it as well as an $INCLUDE statement for file CTABLE.MAC and an END
statement. The statements in this file appear as follows:

$INCLUDE (:F2:CTABLE.MAC)
%SAB (0, IlEA, U)
%SAB (2000, FFFF, U)
%JOB(O,lFFH,lFFH,OFFFH,OFFFFH,0,0:0,1,1,0,61l:000D,0,0:0,512,0)
%JOB(20,lFFH,OFFFFH,OFFFFH,OFFFFH,0,0:0,1,1,13l,ODDO:090,0,1135:0,

OA04H,0)
%SYSTEM (104, 20, 64, A, D, 1)

END

GENERATE THE ROOT JOB

You can now use the CROOT.CSD SUBMIT file to assemble the configuration
file, link the root job, and locate the root job. Place the diskettes in
the proper drives of your development system (system diskette in drive
FO, coniguration diskette in drive FI, Nucleus release diskette in drive
F2, scratch and listing diskette in drive F3), and enter the following
command:

SUBMIT :F2:CROOT(CONFIG, date, OD700H)

Where date can be in any form, as long as it does not exceed nine
characters.

A-23

I

I

I

EXAMPLE SYSTEM CONFIGURATION

This command assembles the configuration file, links it to the root job,
and locates the root job at the correct address. LOC86 places the
located root job in file CONFIG on drive Fl. It also places the locate
map for the root job in file CONFIG.MP2 on drive F3. You can use the
locate map to determine the actual size of the root job. When you
configure your ROM/RAM system, you can update the memory map to reflect
this value.

LOAD THE SYSTEM

At this point you can use either the ICE-86 in-circuit emulator or the
iSBC 957A/B package to load the system into memory. When you do, load
the following files, in order, from your configuration diskette:

NUCLUS
DB
TBASIC
CONFIG

A-24

APPENDIX B. BURNING THE NUCLEUS INTO 2732 PROM

If you use the Universal PROM Mapper (UPM) version 3.2 to burn code into I
PROM, you cannot load the entire Nucleus with a single UPM READ command.
In order to burn the Nucleus (and possibly some of your other programs),
you must burn 16K byte pieces of the code into PROM. This appendix
describes the procedures required to do this. It also lists the required
hardware and software. Although this appendix refers specifically to the
Nucleus, you can use the procedures described here to burn any large
module into PROM •.

REQUIREMENTS

In order to use the procedure outlined in this appendix, you must have
the following hardware and software.

• A linked Nucleus (NUCLUS.LNK)

• LOC86 software

• A UPP universal PROM Programmer with a 2732 personality module

• 8 erased 2732A PROM modules

With this hardware and software you can use the procedures in the
following sections to place the Nucleus code into PROM.

LOCATE THE NUCLEUS

Use LOC86 to locate the Nucleus for a ROM/RAM configuration. Use a
command similar to the following:

LOC86 NUCLUS.LNK TO ROMNUC
ORDER (CLASSES (DATA, STACK, MEMORY»
SEGSIZE (DATA(2), STACK (0»
ADDRESSES (CLASSES (CODE (rom address),

(DATA (ram-address»)
MAP PRINT (map file) -
OBJECTCONTROLS(NOLINES,NOCOMMENTS,

NOPUBLICS,NOSYMBOLS)

&
&
&
&
&
&

Chapter 5 describes the parameters of this command in detail. However,
for the discussion in this appendix, the important parameter is
rom address. This parameter specifies the address in ROM where the
Nucleus will reside-

B-1

I

BURNING THE NUCLEUS INTO 2732 PROM

Also examine the locate map to determine the exact size of the code
class. You need this information to determine the number of pieces to
burn.

BURN THE CODE INTO PROM

To burn the code into PROM, insert the 2732 personality module into the
appropriate program socket (this appendix assumes socket 2). Then enter
the commands shown in Figure B-1. These commands are structured so that
you can place them in a SUBMIT file. TIle CNTL/E (control/E) characters
in the figure return control to you so that you can insert a PROM into
the UPP. After doing this, enter another CNTL!E to return control to the
SUBMIT file. Make sure to place a new PROM into the UPP before each
PROGRAM statement.

U~

2732
SOCKET-2

READ OBJECT FILE :F2:ROMNUC FROM 0 TO 3FFFH START OE8000H
STRIP LOW FROM 0 TO 3FFFH INTO 4000H
STRIP HI FROM 0 TO 3FFFH INTO 6000H

CNTL!E PROGRAM FROM 4000H TO 4FFFH START 0
CNTL!E PROGRAM FROM 6000H TO 6FFFH START 0
CNTL!E PROGRAM FROM 5000H TO 5FFFH START 0
CNTL/E PROGRAM FROM 7000H TO 7FFFH START 0

READ OBJECT FILE :F2:ROMNUC FROM 0 TO 2AF9H START OECOOOH
STRIP LOW FROM 0 TO 2AF9H INTO 4000H
STRIP HI FROM 0 TO 2AF9H INTO 6000H

CNTL/E PROGRAM FROM 4000H TO 4FFFH START 0
CNTL!E PROGRAM FROM 6000H TO 6FFFH START 0
CNTL!E PROGRAM FROM 5000H TO 557DH START 0
CNTL!E PROGRAM FROM 7000H TO 757DH START 0

EXIT

Figure B-1. UPM SUBMIT File to Burn the Nucleus into PROM

B-2

BURNING THE NUCLEUS INTO 2732 PROM

The commands in Figure B-1 assume that the Nucleus code class ranges from
OE8000H to OEEAF:9. You must modify the SUBMIT file to specify the
correct addresses for your system. To give you a better understanding of
how to do this, the individual UPM commands used to burn the first
portion of the Nucleus are listed and discussed in detail.

READ OBJECT FILE :F2:ROMNUC FROM 0 TO 3FFFH START OE8000H

This command reads the first piece of the object file from disk into
a 16K INTELLEC memory buffer. The logical addresses of the memory
buffer are 0 through 3FFFH. The absolute address of the module is
specified as OE8000H.

STRIP LOW FROM 0 TO 3FFFH INTO 4000H

This command separates the even address (low order) bytes from the
file and copies them into another memory buffer.

STRIP HI FROM 0 TO 3FFFH INTO 6000H

This command separates the odd address (high order) bytes from the
file and copies them into another memory buffer.

CNTL/E PROGRAM FROM 4000H TO 4FFFH START 0

This command burns the first half of the low order bytes into PROM.
Make sure that you insert a 2732 PROM into the UPP before entering
this command. Include the CNTL/E character only if you use a SUBMIT
file. This character returns control to you so that you can insert
the PROM. After you do, enter another CNTL/E and processing resumes.

CNTL/E PROGRAM FROM 6000H TO 6FFFH START 0

This command burns the first half of the high order bytes into PROM.

CNTL/E PROGRAM FROM 5000H TO 5FFFH START 0

This command burns the second half of the low order bytes into PROM;.

CNTL/E PROGRAM FROM 7000H TO 7FFFH START 0

This command burns the second half of the high order bytes into PROM.

B-3

BURNING THE NUCLEUS INTO 2732 PROM

The remainder of the commands in Figure B-1 function similarly. For
further information about UPM, refer to the UNIVERSAL PROM PROGRAMMER
USER t S MANUAL.

After you have burned all the PROMs, plug them into the memory board and
test the system.

B-4

APPENDIX C. SYSTEM CALL USAGE

This appendix lists the system calls used by fully-configured versions of
the optional subsystems. This information is important when you decide

_which system calls to include in your final application system. Table
C-l lists the system calls used by the Terminal Handler, Table C-2 lists
those used by the Debugger, Table C-3 lists those used by the I/O System,
Table C-4 lists those used by the Extended I/O System, Table C-S lists
those used by the Application Loader, and Table C-6 lists those used by
the Human Interface.

Table C-I. System Calls Used by the Terminal Handler

NUCLEUS SYSTEM CALLS

CATALOG$OBJECT
CREATE$MAILBOX
C REATE $ SEGMENT
CREATE$TASK
DELETE$SEGMENT
DISABLE
ENABLE
END$INIT$TASK
EX! T$INTERRUPT

C-I

GET$SIZE
GET$TASK$TOKENS
GET$TYPE
RECEIVE$MESSAGE
SEND$MESSAGE
SET$INTERRUPT
SIGNAL$INTERRUPT
WAIT$INTERRUPT

I

SYSTEM CALL USAGE

Table C-2. System Calls Used by the Debugger

NUCLEUS SYSTEM CALLS

GET$SIZE CATALOG$OBJECT
CREATE$JOB
CREATE$MAILBOX
CREATE$SEGMENT
C REATE$ TASK
DELETE$SEGMENT
DISABLE
DISABLE$DELETION
ENABLE
ENABLE$DELETION
END$INIT$TASK
EXIT$INTERRUPT
GET$PRIORITY

GE T$TASK$TOKENS
GET$TYPE
LOOKUP$OBJECT
RECEIVE$MESSAGE
RESUME$TASK
SEND$MESSAGE
SET$INTERRUPT
SET$PRIORITY
SIGNAL$INTERRUPT
SLEEP
SUSPEND$TASK
WAIT$INTERRUPT

Table C-3. System Calls Used by the I/O System

CATALOG$OBJECT
CREATE$COMPOSITE
CREATE$EXTENSION
CREATE$MAILBOX
CREATE$REGION
CREATE$SEGMENT
CREATE$TASK
DELETE$COMPOSITE
DELETE$MAILBOX
DELETE$REGION
DELETE$SEGMENT
DELETE$TASK

NUCLEUS SYSTEM CALLS

DISABLE$DELETION
ENABLE$DELETION
END$INI T$TASK
FORCE$DELETE
GET$LEVEL
GET$TASK$TOKENS
GET$TYPE
LOOKUP$OBJECT
RECEIVE$CONTROL
RECEIVE$MESSAGE
RESET$INTERRUPT
RESUME$TASK

C-2

SEND$CONTROL
SEND$MESSAGE
SET$INTERRUPT
SETOSEXTENSION
SIGNAL$EXCEPTION
SIGNAL$INTERRUPT
SLEEP
UNCATALOG$OBJECT
WAIT$INTERRUPT

SYSTEM CALL USAGE

Table C-4. System Calls Used By the Extended I/O System

NUCLEUS SYSTEM CALLS

CATALOG$OBJECT
CREATE$COMPOSITE
CRETE$EXTENSION
CREATE$JOB
CREATE$MAILBOX
CREATE$REGION
CREATE$SEGMENT
CREATE$TASK
DELETE$COMPOSITE
DELETE$JOB

DELETE$MAILBOX
DELETE$SEGMENT
GET$TASK$TOKENS
GET$TYPE
LOOKUP$OBJECT
RECEIVE$CONTROL
RECElVE$MESSAGE
SEND$CONTROL
SEND$MESSAGE
SETOSEXTENSION
UNCATALOG$OBJECT

BASIC I/O SYSTEM CALLS

A$ATTACH$FILE
A$CHANGE$ACCESS
A$CLOSE
A$CREATE$DlRECTORY
A$CREATE$FILE
A$DELETE$CONNECTION
A$DELETE$FILE
AGETCONNECTION$STATUS
AGETFILE$STATUS
A$OPEN
A$PHYSI CAL$ATTACH$ DEVICE
A$PHYSICAL$DETACH$DEVICE
A$READ
A$RENAME$FILE
A$SEEK
A$SPECIAL
A$TRUNCATE
A$WRITE
CREATE$USER

Table C-S. System Calls Used by the Application Loader

NUCLEUS SYSTEM CALLS I/O SYSTEM SYSTEM CALLS EXTENDED I/O SYSTEM CALLS
(if load job features

CATALOG$OBJECT
CREATE$MAILBOX
CREATE$SEGMENT
C REATE $ TASK
DELETE$JOB
DELETE$MAILBOX
DELETE$SEGMENT
DELETE$TASK
END$INIT$TASK
GET$POOL$ATTRIB
LOOKUP$OBJECT
RECElVE$MESSAGE
SEND$MESSAGE
SET$EXCEPTION$H~DLER

SETOSEXTENSION

A$ATTACH$FILE
A$DELETE$CONNECTION
A$CLOSE
A$OPEN
A$READ
A$SEEK

. C-3

are included)

CREATEIOJOB
S$ATTACH$FILE
S$DELETE$CONNECTION

I

I

SYSTEM CALL USAGE

Table C-6. System Calls Used by the Human Interface

NUCLEUS SYSTEM CALLS

CATALOG$OBJECT
CREATE $MAILBOX
CREATE$REGION
CREATE$SEGMENT
C REATE $ SEMAPHORE
CREATE$TASK
DELETE$JOB
DELETE$MAILBOX
DELETE$SEGMENT
END$INIT$TASK
GET$SIZE
GET$TASK$TOKENS

GET$TYPE
LOOKUP$OBJECT
RECEIVE$CONTROL
RECEIVE$MESSAGE
RECElVE$UNITS
SEND$CONTROL
SEND$MESSAGE
SEND$UNITS
SET$EXCEPTION$HANDLER
SET$O S$EXTENS ION

BASIC I/O SYSTEM CALLS

A$ATTACH$FILE
A$DELETE$CONNECTION
AGETCONNECTION$STATUS
AGETEXTENSION$DATA
A$OPEN
A$PHYSICAL$ATTACH$DEVICE

A$READ
A$WRITE
GET$TIME
SET$TIME

EXTENDED I/O SYSTEM CALLS

EXITIOJOB
S$ATTACH$FlLE
S$CHANGE$ACCESS
S$CREATE$FILE
S$DELETE$CONNECTION
S $ DELETE $F ILE
SGETCONNECTION$STATUS
SGETFILE$STATUS

S$OPEN
S$READ$MOVE
S$RENAME$FILE
S$SEEK
S$SPECIAL
S$TRUNCATE
S$WRITE$MOVE

APPLICATION LOADER SYSTEM CALLS

A$LOAD
A$LOAD$IO$JOB

C-4

INDEX

Underscored entries are primary references.

204 driver 9-32, 11-5
206 driver 9-34, 11-6
208 driver 9-36, 11-7
215 driver 9-37, 11-7
218 driver 9-37
220 driver 9-37, 11-7
254 driver 9-39, 11-9
2732 PROM B-1
5 1/4 inch diskette characteristics table 9-32
8087 4-27, 6-1, 6-9
8253 6-8
8259A 6-7
957A/B

monitor
package

4-4, 11-1
4-28, 4-40

A$ATTACH$FILE 9-15, C-3
A$CHANGE$ACCESS 9-17
A$CLOSE 9-15, C-3
A$CREATE$FILE 9-15, C-3
A$DELETE$CONNECTION 9-15, C-3
A$DELETE$FILE 9-17, C-3
AGETCONNECTION$STATUS 9-15, C-3
AGETDIRECTORY$ENTRY 9-17
AGETEXTENSION$DATA 9-17, c-4
AGETFILE$STATUS 9-15, C-3
AGETPATH$COMPONENT 9-15
A$LOAD$IO$JOB 10-2
A$OPEN 9-15, C-3
A$PHYSICAL$ATTACH$DEVICE 9-25, C-3
A$READ 9-15, C-3
A$RENAME$FILE 9-17, C-3
A$SEEK 9-15, C-3
ASETEXTENSION$DATA 9-17
A$SPECIAL 9-15, C-3
A$TRUNCATE 9-17, C-3
A$WRITE 9-15, C-3
absolute code 10-3, 13-10
application job link procedures 4-8, 4-11, A-12
Application Loader 4-35, 10-1

entry point 4-37, 10-3
system call usage C-3

assembling the root job 4-38
asynchronous job loading 10-3
%ATTACH DEVICE TASK PRIO macro 9-6
%AUTO macro 11-3

Index-l

"

INDEX (continued)

Basic I/O System 4-34, 9-1
entry point 9-50
features 9-18
initialization 9-50
interfaces 9-3, 9-5
system call usage C-2

B204.A86 11-5
B206.A86 11-6
B208.A86 11-7
B215.A86 11-7
B254.A86 11-9
baud rate 7-3
BCICO.P86 11-11
Bootstrap Loader 11-1

driver configuration 11-4
B204.A86 11-5
B206.A86 11-6
B208.A86 11-7
B215.A86 11-7
B254.A86 11-9

BSl.A86 11-1
BSl.CSD 11-10
building the configuration file 4-22
burning code into PROM 4-1, B-2
burning the Nucleus into PROM B-1

clock frequency 6-9
command files 13-7
comment character (;) 6-2
common driver 9-2S

tables 9-27
COMMON DEV INFO structure 9-28
compact model 3-2, 4-14, 4-27
component configuration 6-6, 7-1
condition code files 3-2
configuration

Application Loader 10-1
Basic I/O System 9-1
Bootstrap Loader 11-1
Debugger 8-1
environment 1-3
Extended I/O System 12-1
file 4-22, 4-37, A-IS, A-23
Human Interface 13-1
interface 9-3
Nucleus 6-1
overview 1-2, 2-1
ROM/RAM-based system 5-1
Terminal Handler 7-1
types 1-5

%CONSOLE macro 11-2
control-C semantics 7-8, 8-2
count 6-9, 7-2
CREATE$JOB system call 1-4, 4-25, 6-10

Index-2

INDEX (continued)

creating the configuration file 4-37, A-23
creation of tasks 1-3
CROOT.CSD 4-38, 5-2, A-23
CROOT.LIB 4-39
cylinders 11-8

data segment allocation 4-27
date/time interface 9-4
DB.CSD 8-2
Debugger 4-32, 4-34, 8-1, 13-5

entry point 4-37,~3
system call usage C-2

default exception handler 4-32
%DEFAULTFILE macro 11-3
default memory pool 10-2
DEFINE DUIB structure 9-21
DELETE$TASK system call 6-4
demonstration system A-1
describing I/O devices 9-20
%DEV INFO BLOCK macro 12-4
device granularity 9-23, 11-8
%DEVICE macro 11-3
devices 9-20

name 9-21, 12-4
number 9-23
numbering 9-20

device-information table 9-24, 9-27
%DEVICE TABLES macro 9-49
device-unit information blocks 9-21

cancel I/O procedure 9-24
device granularity 9-23
device information table pointer 9-24
device name 9-21, 12-4
device number 9-23
device unit number 9-23
file drivers 9-22
finish I/O procedure 9-23
flags 9-22
functions 9-22
hi~h order device size 9-23
initialize I/O procedure 9-23
low ordere device size 9-23
number of buffers 9-24
priority 9-24
queue I/O procedure 9-24
unit information table pointer 9-24
unit number 9-23
update timeout 9-24

device-unit number 9-20, 9-23
diskette preparation~9
DTHCNF.A86 8-1
DUIB 9-20, 9-21
%DUMMY~R macro 9-19

Index-3

INDEX (continued)

EBADSYNC$CONN 12-11
ENOTCONFIGURED 9-15
EDEVCF.A86 12-1
EDEVCF • MAC 12-5
edge triggering 6-8
EEXCEP.LIT 3-3
Eight-inch diskette characteristics table 9-31
EIOS.CSD 12-10
EIOS.EXT 3-3
EJOBCF.A86 12-1
%END DEV CONFIG macro 12-5
%END-IO JOB CONFIG macro 12-10
%END-macro -11-4
entry point

Application Loader 4-37, 10-3
Basic I/O System 4-37, 9-SO--
De bugger 4-37, 8-3 --
Extended I/O Syst;; 4-37, 12-11
Human Interface 13-4
Terminal Handler 4-37, 7-9

EPIFC .LIB 4-14 -
EPIFL.LIB 4-14
errors

nucleus and memory initialization 6-12
root task 6-12

ETABLE.A86 12-1
ETABLE.MAC 12-3
example system configuration A-I
exception handler 4-25, 4-32, 4-39, 6-4, 12-8
Extended I/O System 4-35, 12-1, 13-6

entry point 4-37, 12-1r--
initialization 12-11
I/O jobs 12-6
logical devices 12-4
system calls 12-3, C-3

external declaration 3-2

F$ATTACH$DEV 9-22
F$CLOSE 9-22
F$DETACH$DEV 9-22
F$OPEN 9-22
F$READ 9-22
F$SEEK 9-22
F$SPECIAL 9-22
F$WRITE 9-22
file driver 9-5

global data 9-5
tables 9-7

%FILE_DRIVE~INFO macro 9-7
FILE DRIVER INFO structure 9-7
file7connection interface 9-5
first-level jobs 1-3
fixed heads 11-8
floating-point instructions 4-27

Index-4

INDEX (continued)

general device information 9-49
general system layout 4-1, 5-2
generating the root job 4-38, A-23
GET$TASK$TOKENS system carr--6-l0
global data 9-5
granularity 9-23
guidelines

configuration files 4-11
SUBMIT files 4-11

H$COMMAND$NAME$MAX 13-3
H$DEFAULT$DIR 13-2
H$PREFlXES 13-3
H$PROG$DlRECTORY 13-2
H$SIGN$ON 13-3
H$SYSTEM$DlRECTORY 13-2
H$WORK$DlRECTORY 13-3
HCONFG.P86 13-1
HI.CSD 13-4
HI.EXT 3-3
HI.LIB 7-8, 8-2, 13-5
high location of modules 4-2
HPIFC.LIB 4-14
HPIFL.LIB 4-14
Human Interface 13-1

commands 13-7
entry point 4-37, 13-4
requirements 13-5
system call usage C-4
volumes 13-7

ICE-86 in-circuit emulator 4-40
IDEVCF.A86 9-1
IDEVCF.INC 9-3
IEXCEP.LIT 3-3
in-circuit emulator 4-39
include files 3-2, 9-3
initial system 1-3, 3-3
initialization 3-3, 9-50
Intel-supplied device drivers 9-30

byte bucket driver 9-48
iSBC 204 driver 9-32
iSBC 206 driver 9-34

. iSBC 208 driver 9-36
iSBC 215 driver 9-37
iSBX 218 driver 9-37
iSBC 220 driver 9-37
iSBC 254 driver 9-39
iSBX 270 terminal driver 9-46
iSBC 86/12A on board USART 9-41
iSBC 86 terminal driver 9-41

interface libraries 4-13
interfaces 9-3, 9-5
interrupt 7-6, 9-28
I/O devices 9-20

Index-5

INDEX (continued)

%10 JOB macro 12-S, 13-6
%lO-USER macro 1'2-'7
lOS-FILE DRIVER structure 9-7
IOS:CSD -9-49
IOS.EXT 3-3
IPIFC.LIB 4-14. 13-S
IPIFL.LIB 4-14
iSBC 204 driver 9-32, 11-5
iSBC 206 driver 9-34, 11-6
iSBC 20S driver 9-36, 11-7
iSBC 215 driver 9-37, 11-7
iSBC 21S driver 9-37
iSBC 220 driver 9-37, 11-7
iSBC 254 driver 9-39, 11-9
iSBC 957A/B monitor 4-4, 11-1
iSBC 957A/B package 4-2S, 4-40
ITABLE.A86 9-1
ITABLE.INC 9-3

. %JOB macro 4-23, 4-34, 5-1, 13-6, A-IS
job preparat~ 3-1
jobs 1-3

language requirements 3-2
large model 3-2, 4-14, 4-2;
layout of the system 4-1, 5-2
LCONFG.P86 10-1
level triggering 6-8
LEXCEP.LIT 3-3
LINKS6 4-13
linking

application jobs 4-13, A-12
Application Loader--rQ-2
Basic I/O System 9-49
Bootstrap Loader 11-10
Debugger 8-2, A-10
Extended I~System 12-10
Human Interface 13-4
Nucleus 6-11, A-6
root job 4-38, A-23
subsys tems -r-S
Terminal Handler 7-7

load-time locatable (LTL) code 10-3
LOADER.CSD 10-2
LOADER.EXT 3-3
loading the system 4-39, A-24
LOC86 4-14, 5-4, B-r
locating

application jobs 4-14, 5-4, A-13
Application Loader~-2
Basic I/O System 9-49
Bootstrap Loader 11-10
Debugger 8-2, A-I0
Extended I/O System 12-10
Human Interface 13-4

Index-6

INDEX (continued)

locating (continued)
Nucleus 6-11, A-6, B-1
RAM-based systems 4-1
ROM/RAM-based system 5-2, 5-4
root job 4-38, A-23
subsystems~8, 5-2, 5-4
Terminal Handler 7-8

logical devices 12-4
logical name 12-4

:$: 13-2
:PROG: 13-2
: SYSTEM: 13-2
: WORK: 13-3

low location of modules 4-2
LPIFC.LIB 4-14, 13-8
LPIFL.LIB 4-14

mailboxes 7-6
%MANUAL 11-3
manual usage 1-5
%MASTER PIC macro 6-7
MCONFG.A86 7-1
medium model 3-2, 4-14, 4-27
memory address space 4-28, 5-1,
memory map 4-3, 5-3, A-2
memory pool 4-25, 12-8, 13-6
metacharacter (%) 6-2
minimizing memory address space 5-1
module ordering 4-2
MTH.CSD 7-7
%MTH macro 7-3
multiple Terminal Handlers 7-9

named file driver 9-17
tables 9-13

named files 9-6
NDEVCF.A86 6-1, 6-6
NDP 4-27 6-9 -'-%NDP SUPPORT macro 6-9
NEXCEP.LIT 3-3
non-file connection interfaces 9-3
%NO ALLOCATE macro 9-19
%NO-CREATE FALSE macro 9-19
%NO-TRUNCATE macro 9-19
NTABLE.A86 6-1
Nucleus 6-1

component configuration 6-6
default configuration 6-10
INCLUDE files 3-2
initialization errors 6-11
internal features 6-3
link and locate procedures 6-11, A-6, B-1
maximal and minimal configuration 6-10
programmable interrupt controller configuration 6-7
root task errors 6-12
system calls 6-5, C-l

Index-7

INDEX (continued)

NUCLUS.CSD 4-15, 6-11
NUCLUS.EXT 3-3
numbering devices 9-20
%NUM_FILE_DRIVERS macro 9-6

object directory 4-25
offsprint 1-3
on board USART 9-41
optional subsystems 1.-1, 3-5, 4-8, 4-33
order of modules 4-2~-38
overview of configuration 2-1

parameter
interface 9-3
validation 6-3

physical file driver 9-15
tables 9-8

physical files 9-6
PIC 6-7, 10-3
PIT 6-8, 7-5
PL/M-86 3-1, 4-13, 4-27

large model 4-27
medium model 4-27
compact model 4-27

Position independent code (PIC) 6-7, 10-3
power-fail interface 9-3
preparing

application jobs 3-1
diskettes 4-9
jobs for system configuration 3-1
memory maps 4-3, 5-3, A-2
subsystems 3-5

procedural overview 2-1
programmable interrupt controller 6-7
programmable interval timer (PIT) 6-8, 7-5
PROM B-1

RADEV_DEV_INFO structure 9-29
RADEV UNIT INFO structure 9-30
random access driver 9~25

tables 9-29"
removable heads 11-8
REQ FILE DRIVER structure
reserved-file driver table
RESUME$TASK 6-10
ROM control 3-2
ROM/RAM location process
ROM/RAM-based system 5-1
root job 1-3, 3-3, 4-16,
root task errors 6-12
RPIFC.LIB 4-14
RPIFL.LIB 4-14
RQENDINIT$TASK 3-4
RQINPUT 7-9
RQOUTPUT 7-9

9-7
9-12

5-4

4-38, A-12, A-23

Index-8

INDEX (continued)

RQSYSEX 4-32
RQTHNORMIN 7-6, 13-5
RQTHNORMOUT 7-6, 13-5
rubout mode 7-4

S$LOAD$IO$JOB 10-2
%SAB macro 4-28, 5-1, 13-10, A-19
sample system-configuration A-I
sectors 11-8
Series II development system 13-9
Series III development system 4-10, 13-7

configuration files 4-11
SUBMIT files 4-11

SIGNAL$EXCEPTION 6-10
size control considerations 3-3, 4-27
%SLAVE PIC macro 6-8
stack allocation 4-15, 4-27, 12-9, 13-8
stream file 9-6

driver table 9-10
SUBMIT files 4-8, 5-3

Application Loader 10-2
Basic I/O System 9-49
Bootstrap Loader 11-10
De bugger 8-2
demonstration system A-I
Extended I/O System 12-10
Human Interface 13-4
Nucleus 6-11
Terminal Handler 7-7

subsystems 1-1
%JOB values 4-35
locating 4-8, 5-2, 5-4, A-4
macro parameters for 4-33
order 4-38
preparation 3-5
%SYSTEM values 4-36

SUSPEND$TASK 6-10
synchronous initialization 3-4
system

address block 4-28
calls 9-15, C-l
configuration file 4-22, 4-37, A-15, A-23
layout 4-1, 5-2 ----
loading 4-40, A-24
testing 4-40, 5-5
type 4-2

%SYSTEM EXCEPTION HANDLER macro 6-4
%SYSTEM-macro 4-30, 4-36, A-21

tables for file drivers 9-8
tasks 1-3, 4-25

initial 4-26
priority 4-25, 12-9

Index-9

INDEX" (continued)

T,erlnina.1Handler 4-34,7-1, 13-5
, conlpoiWnt,eonftgU'.~f6h 1-1

entJ;'y"polntA:",:l7 ~ 7-9
,system cali usa.a-iC-l

testing tbe ,system '~-40, 5-5
%'.g.I l,~200:B:AtJl) Coutft'",macro 7-2
%Tif-CHAR LENGR-ubJ;'o '7-5
%Ta-Un'¥lVE~S ',,1IlaCrb ',]':"6
%TiCMAliiBOX NAKe:S ,_cro 7-6
~TH _T1MER,,~acr$ "1-5
%TH, USART macro 7-4
%T:r'i&R1Ilacro ,6-8
~rlMERTASI<l'lU01Dacro 9-7
tick 6-' -'
elmer 6-8, 7 .. 5
type

configtlJ!'ation' .1-5
sY$tem 4-2

unit n\tll1ber" '~&',~?" 9-23
unit"'inf1>~ma:tiontable9-24, 9-30
UniVersal PRoM MapPE!r B-1
UPM'B":l '
UPI' B-2
U.5ART 7 -4 t ~';"41

wake-upaddresses4"'4, 11-8
'works'heets '

%J'6B ritlfcro 4-24
themory ma'p 4-5, A-3
%SABmaC'fo4-Z9
%SYSTEMmacro 4 ... 31

Index-tO

~, .

