
GUIDE TO WRITING
DEVICE DRIVERS FOR THE

iRMX™ 86 AND iRMX™ 88
1/0 SYSTEMS

CI)p),ngtll' lono 1 Ofi 1 1 9H'? Int.'11 C;oq)(Hlltlon Ordor Numbm 142B26··004
'!nlt,1 COI,)()I Iltion :U)(i,h lhlw("".1 A,\I~'\n u,", ·Slln!4!I(,: IHI.I (: ,'I,III(I" nil! f'~'!I()~1 1

GUIDE TO WRITING
DEVICE DRIVERS FOR THE iRMXTM 86

AND iRMXTM 881/0 SYSTEMS
Order Number: 142926-004

Copyright© 1980,1981, 1982 Intel Corporation
I Intel Corporation, 5200 NE Elam Young Parkway, Hillsboro, OR 97123 I

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 11/80

-002 Updated to reflect the changes in 5/81
version 3.0-ofthe iRMX 86 software.

-003 Broadened to cover the iRMX 88 12/81
Executive and reorganized for
improved usability.

-004 Updated to include Terminal Driver 5/82
support for iRMX 86 Users

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara~.,.CA 95051

The Information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied war,ranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no'respo~sibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined as
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Insite iSBC Multibus
CREDIT Intel iSBX Multirnodule

intel Library Manager Plug-A-Bubble
ICE Intelevision MCS PROMPT
iCS Intellec Megachassis RMX/80
im iOSP Micromainframe System 2000
iMMX iRMX Micromap UPI

A 746/1082/ 6K D D

PREFACE

The I/O System is the part of the iRMX 86 Operating System and the
iRMX 88 Real-Time Multitasking Executive that provides you with the
capability of accessing files on peripheral devices. (In the case of the
iRMX 86 Operating System, the term "I/O System" is meant to encompass
both the Basic I/O System and the Extended I/O System.) Each of these
I/O Systems is implemented as a set of file drivers and a set of device
drivers. A file driver provides user access to a particular type of
file, independent of the device on which the file resides. A device
driver provides a standard interface between a particular device and one
or more file drivers. Thus, by adding device drivers, your application
system can support additional types of devices. And it can do this
without changing the user interface, since the file drivers remain
unchanged.

This manual describes how to write device drivers to interface with the
I/O Systems. It illustrates the basic concepts of device drivers and
describes the different types of device drivers (common, random access,
and cus tom).

READER LEVEL

This manual assumes that you are a systems-level programmer experienced
in dealing with I/O devices. In particular, it assumes that you are
familiar with the following:

• The PL/M-86 programming language and/or the MCS-86 Macro
Assembly Language.

• The hardware codes necessary to perform actual read and write
operations on your I/O device. This manual does not document
these device-dependent instructions.

If you plan to write a device driver that uses iRMX 86 system calls, you
should be familiar with the following, as well:

• The iRMX 86 Operating System and the concepts of tasks,
segments, and other objects.

• The I/O System, as described in the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL. This manual documents the user interface to
the I/O System.

• Regions, as described in the iRMX 86 NUCLEUS REFERENCE MANUAL.

And if you plan to write a device driver that uses iRMX 88 functions or
system calls, you should be familiar with the iRMX 88 Reference Manual.

iii

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to users of this manual.

Manual

iRMX1It 86 Nucleus Reference Manual

iRMX1It 86 Basic I/O System Reference ~~nual

iRMX1It 86 Extended I/O System Reference Manual

iRMX1It 86 Loader Reference Manual

iRMX1It 86 Configuration Guide

iRMX1It 88 Reference Manual

iRMX1It 80/88 Interactive Configuration Utility User's Guide

PL/M-B6 Programming Manual for 80BO/B085-Based Development
Systems

PL/M-B6 Compiler Operating Instructions for 8080/B085-Based
Development Systems

P·L/M-B6 User's Guide for BOB6-Based Development Systems

80B6/B087/B08B Macro Assembly Language Reference Manual
for BOBO/80B5-Based Development Systems

B086/BOB7/B08B Macro Assembly Language Reference Manual
for 8086-Based Development Systems

B086/8087/8088 Macro Assembler Operating Instructions
for 8080/8085-Based Development Systems

8086/8087/8088 Macro Assembler Operating Instructions
for 8086-Based Development Systems

8086 Family Utilities User's Guide for 8080/B085-Based
Development Systems

iAPX 86 Family Utilities User's Guide for 80B6-Based
Development Systems

iv

Number

9803122

9803123

143308

143381

9803126

143232

142603

9800466

9800478

121636

121623

121627

121624

121628

9800639

121616

CHAPTER 1
INTRODUCTION

CONTENTS

I/O Devices and Device Drivers •••••••••••••••••••
I/O Re.ques ts •••••••••••••••.••.•••••••••••••••••.•••••••••••••••••.
Types of Device Drivers ••
How to Read This Manual ••

CHAPTER 2
DEVICE DRIVER INTERFACES
I/O System Interfaces •••••••

Device-Unit Information Block (DUIB) •••••••••••••••••••••••••••••
DUIB Structure ••••••••••••.••.•••••••••••••••.•••••••••••••••••
Using the DUIBs ••••••••••••••••••••••..•••.••••••••.•••••••••••
Creating DUIBs •••

I/O Request/Result Segment (laRS) ••••••••••••••••••••••••••••••••
Device Interfaces ••

CHAPTER 3
CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS
Categories of Devices ••

Common Devices •••
Random Access Devices ••
Terminal Devices •••
Cus tom Devices •••

I/O System-Supplied Routines for Common and Random Access
Device Drivers •••

I/O System Algorithm For Calling the Device Driver Procedures ••••••
Required Data Structures •••

Device Information Table •••
Uni t Information Table •••
Relationships Between I/O Procedures and I/O Data Structures.

Writing Drivers For Use With Both iRMX 86- and iRMX 88-Based
Sy stems ••

Device Data Storage Area •••

CHAPTER 4
I/O REQUESTS
I/O System Responses to I/O Requests •••••••••••••••••••••••••••••••

Attach Device Requests •••
Detach Device Requests •••
Read, Write, Open, Close, Seek, and Special Requests •••••••••••••
Cancel Requests ••

DUIB and IORS Fields Used By Device Drivers ••••••••••••••••••••••••

v

PAGE

1-2
1-3
1-3
1-4

2-1
2-1
2-1
2-6
2-7
2-8
2-13

3-1
3-1
3-1
3-2
3-2

3-2
3-5
3-7
3-8
3-10
3-11

3-11
3-12

4-1
4-1
4-1
4-2
4-2
4-2

CONTENTS (continued)

CHAPTER 5
WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS
Introduction to Procedures That Device Drivers Must Supply •••••••••
Device Initialization Procedure ••••••••••••••••••••••••••••••••••••
Device Finish Procedure ••
Device Start Procedure •••
Device Stop Procedure ••
Device Interrupt Procedure •••
Procedures that iRMX 86 Random Access Drivers Must Call ••••••••••••

The Notify Procedure •••
The Seek$Complete Procedure ••••••••••••••••••••••••••••••••••••••

CHAPTER 6
WRITING A CUSTOM DEVICE DRIVER
Initialize I/O Procedure •••
Finish I/O Procedure •••
Queue I/O Procedure ••
Cancel I/O Procedure •••
Implementing a Request Queue •••••••••••••••••••••••••••••••••••••••

CHAPTER 7
TERMINAL DRIVERS
Terminal Support Code ••
Data Structures Supporting Terminal I/O ••••••••••••••••••••••••••••

DUIB •••
Terminal Device Information Table ••••••••••••••••••••••••••••••••
Terminal Controller Data and Terminal Unit Data ••••••••••••••••••

Terminal Driver Procedures •••
The Term$Init Procedure ••
The Term$Finish Procedure ••
The Term$Setup Procedure •••
The Term$Answer Procedure ••
The Term$Hangup Procedure ••
The Term$Check Procedure •••
The Term$Out Procedure •••

Procedures' Use of Data Structures •••••••••••••••••••••••••••••••••

CHAPTER 8
BINDING A DEVICE DRIVER TO THE I/O SYSTEM
Using the iRMX 86 Interactive Configuration Utility ••••••••••••••••
Using the iRMX 88 Interactive Configuration Utility ••••••••••••••••

APPENDIX A
COMMON DRIVER SUPPORT ROUTINES
INIT$IO Procedure ••
FINISH$IO Procedure ••
QUEUE$IO Procedure •••
CANCEL$IO Procedure ••
Interrupt Task (INTERRUPT$TASK) ••••••••••••••••••••••••••••••••••••

vi

PAGE

5-1
5-1
5-2
5-3
5-4
5-5
5-6
5-6
5-7

6-1
6-2
6-3
6-4
6-5

7-1
7-2
7-2
7-2
7-4
7-8
7-8
7-8
7-9
7-9
7-9
7-10
7-10
7-11

8-1
8-3

A-I
A-3
A-5
A-7
A-9

CONTENTS (continued)

PAGE
APPENDIX B
EXAMPLES OF DEVICE DRIVERS... B-1

1-1.
1-2.
2-1.
3-1.
3-2.
3-3.
3-4.

6-1.
7-1.
A-I.
A-2.
A-3.
A-4.
A-5.

4-1.
4-2.
4-3.
7-1.

FIGURES

Communication Levels •••••••••••••••••••••••••••••••••••••••
Device Numbering •••
Attaching Devices ••
Interrupt Task Interaction •••••••••••••••••••••••••••••••••
How the I/O System Calls the Device Driver Procedures ••••••
DUIBs, Device and Unit Information Tables ••••••••••••••••••
Relationships Between I/O Procedures and I/O Data
Structures •••••••••••••••• ~ ••••••••••••••••••••••••••••••••
Request Queue ••
Software Layers Supporting Terminal I/O ••••••••••••••••••••
Common Device Driver Initialize I/O Procedure ••••••••••••••
Common Device Driver Finish I/O Procedure ••••••••••••••••••
Common Device Driver Queue I/O Procedure •••••••••••••••••••
Common Device Driver Cancel I/O Procedure ••••••••••••••••••
Common Device Driver Interrupt Task ••••••••••••••••••••••••

TABLES

DUIB and IORS Fields Used by Common Device Drivers •••••••••
DUIB and IORS Fields Used by Random Access Device Drivers ••
DUIB and IORS Fields Used by Custom Device Drivers •••••••••
Uses of Fields in Terminal Driver Data Structures ••••••••••

vii

1-1
1-2
2-7
3-4
3-6
3-7

3-12
6-6
7-1
A-2
A-4
A-6
A-8
A-I0

4-3
4-4
4-5
7-11

CHAPTER 1. INTRODUCTION

The iRMX 86 and iRMX 88 I/O Systems are each implemented as a set of file
drivers and a set of device drivers. File drivers provide the support
for particular types of files (for example, the named file driver
provides the support needed in order to use named files). Device drivers
provide the support for particular devices (for example, an iSBC 215
device driver provides the facilities that enable an iSBC 215 Winchester
drive to be used with the I/O System). Each type of file has its own
file driver and each device has its own device driver.

One of the reasons that the I/O Systems are broken up in this manner is
to provide device-independent I/O. Application tasks communicate with
file drivers, not with device drivers. This allows tasks to manipulate
all files in the same manner, regardless of the devices on which they
reside. File drivers, in turn, communicate with device drivers, which
provide the instructions necessary to manipulate physical devices.
Figure 1-1 shows these levels of communication.

APPLICATION TASK

file independent interface

FILE DRIVER

device independ~nt interface

DEVICE DRIVER

DEVICE

Figure 1-1. Communication Levels

1-1

INTRODUCTION

The I/O System provides a standard interface between file drivers and
device drivers. To a file driver, a device is merely a standard block of
data in a table. In order to manipulate a device, the file driver calls
the device driver procedures listed in the table. To a device driver, all
file drivers seem the same. Every file driver calls device drivers in
the same manner. This means that the device driver does not need to
concern itself with the concept of a file driver. It sees itself as
being called by the I/O System and it returns information to the I/O
System. This standard interface has the following advantages:

• The hardware configuration can be changed without extensive
modifications to the software. Instead of modifying entire file
drivers when you want to change devices, you need only substitute
a different device driver and modify the table.

• The I/O System can support a greater range of devices. It can
support any device as long as you can provide for the device a
driver that interfaces to the file drivers in the standard manner.

I/O DEVICES AND DEVICE DRIVERS

Each I/O device consists of a controller and one or more units. A device
as a whole is identified by a unique device number. Units are identified
by unit number and device-unit number. The device number identifies the
controller among all the controllers in the system, the unit number
identifies the unit within the device, and the unique device-unit number
identifies the unit among all the units of all of the devices. Figure
1-2 contains a simplified drawing of three I/O devices and their device,
unit, and device-unit numbers.

DEVICE 0 DEVICE 1 DEVICE 2

CONTROLLER CONTROLLER CONTROLLER

I I I I I I
UNIT 0 UNIT 1 UNIT 0 UNIT 1 UNIT 2 UNIT 0

DEVICE- DEVICE- DEVICE- DEVICE- DEVICE- DEVICE-
UNIT 0 UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5

Figure 1-2. Device Numbering

1-2

INTRODUCTION

You must provide a device driver for every device in your hardware
configuration. That device driver must handle the I/O requests for all
of the units the device supports. Different devices can use different
device drivers; or if they are the same kind of device, they can share
the same device driver code. (For example, two iSBC 215 controllers are
two separate devices and each has its own device driver. However, these
device drivers share common code.)

I/O REQUESTS

To the device driver, an I/O request is a request by the I/O System for
the device to perform a certain operation. Operations supported by the
I/O System are:

Read
write
Seek
Special
Attach device
Detach device
Open
Close

The I/O System makes an I/O request by sending an I/O request/result
segment (IORS) containing the necessary information to the device
driver. (The IORS is described in Chapter 2.) The device driver must
translate this request into commands to the device in order to cause the
device to perform the requested operation.

TYPES OF DEVICE DRIVERS

The I/O System supports four types of device drivers: custom, common,
random access, and terminal. A custom device driver is one that the user
creates in its entirety. This type of device driver may assume any form
and may provide any functions that the user wishes, as long as the I/O
System can access it by calling four procedures, designated as Initialize
I/O, Finish I/O, Queue I/O, and Cancel I/O.

The I/O System provides the basic support routines for the common, random
access, and terminal device driver types. These support routines provide
a queueing mechanism, an interrupt handler, and other features needed by
common, random access, and terminal devices. If your device fits into
the common, random access, or terminal device classification, you need to
write only the specialized, device-dependent procedures and interface
them to the ones provided by the I/O System in order to create a complete
device driver.

1-3

I

I

I

INTRODUCTION

HOW TO READ THIS MANUAL

This manual is for people who plan to write device drivers for use with
1RMX 86- and/or iRMX 88-based systems. Because there are numerous
terminology differences between the two iRMX systems, the tone of this
manual is general, unlike that of other manuals for either system. For
iRMX 88 users, this should not be a problem, but iRMX 86 users should
take note of the following:

• In a number of places the phrase "the location of" is substituted
for OI a token for".

• The "device data storage area" that is alluded to in many places
is actually an iRMX 86 segment.

• The term "resources" usually means "objects." The intended
meaning of "resources" is clear from its context.

1-4

CHAPTER 2. DEVICE DRIVER INTERFACES

Because a device driver is a collection of software routines that manages
a device at a basic level, it must transform general instructions from
the I/O System into device-specific instructions which it then sends to
the device itself. Thus, a device driver has two types of interfaces:

• an interface to the I/O System, which is the same for all device
drivers, and

• an interface to the device itself, which varies according to
device.

This chapter discusses these interfaces.

I/O SYSTEM INTERFACES

The interface between the device driver and the I/O System consists of
two data structures, the device-unit information block (DUIB) and the I/O
request/result segment (IORS).

DEVICE-UNIT INFORMATION BLOCK (DUIB)

The DUIB is an interface between a device driver and the I/O System, in
the sense that the DUIB contains the addresses of the device driver
routines. By accessing the DUIB for a unit, the I/O System can call the
appropriate device driver. All devices, no matter how diverse, use this
standard interface to the I/O System. You must provide a DUIB for each
device-unit in your hardware system. You supply the information for your
DUIBs as part of the configuration process.

DUIB Structure

The structure of the DUrB is defined as follows:

2-1

I

I
I

DEVICE DRIVER INTERFACES

DECLARE

where:

NAME

DEV$UNIT$INFO$BLOCK STRUCTURE (
NAME(14) BYTE,
FILE$DRlVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEV$GRAN WORD,
DEV$SIZE DWORD,
DEVICE BYTE,
UNIT BYTE,
DEV$UNIT WORD,
INIT$IO WORD,
FINISH$IO WORD,
QUEUE $ I 0 WORD,
CANCEL$IO WORD,
DEVICE$INFO$P POINTER,
UNIT$INFO$P POINTER,
UPDATE$TlMEOUT WORD,
NUM$BUFFERS WORD,
PRIORITY BYTE,
FlXED$UPDATE BYTE,
MAX$BUFFERS BYTE,
RESERVED BYTE) ;

BYTE array specifying the name of the DUIB. This
name uniquely identifies the device-unit to the I/O
System. Use only the first 13 bytes. The
fourteenth is used by the I/O System.

You specify the name when configuring with the
Interactive Configuration Utility. If you are an
iRMX 86 user, you specify the same name when
attaching a unit by means of the
RQAPHYSICAL$ATTACH$DEVICE system call. Device
drivers can ignore this field.

FILE$DRlVERS WORD specifying file driver validity. Setting bit
number i of this word implies that file driver
number i+1 can attach this device-unit. Clearing
bit number i implies that file driver i+1 cannot
attach this device-unit. The low-order bit is bit
O. The bits are associated with the file drivers
as follows:

bit

o
I
3

file driver

physical (no. 1)
stream (no. 2)
named (no. 4)

The remainder of the word must be set to zero.
Device drivers can ignore this field.

2-2

FUNCTS

FLAGS

DEVICE DRIVER INTERFACES

BYTE specifying the I/O function validity for this
device-unit. Setting bit number i implies that
this device-unit supports function number i.
Clearing bit number i implies that the device-unit
does not support function number i. The low-order
bit is bit O. The bits are associated with the
functions as follows:

bit

o
1
2
3
4
5
6
7

function

F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

Bits 4 and 5 should always be set. Every device
driver requires these functions.

This field is used for informational purposes
only. Setting or clearing bits in this field does
not limit the device driver from performing any I/O
function. In fact, each device driver must be able
to support any I/O function, either by performing
the function or by returning a condition code
indicating the inability of the device to perform
that function. However, in order to provide
accurate status information, this field should
indicate the device's ability to perform the I/O
functions. Device drivers can ignore this field.

BYTE specifying characteristics of diskette
devices. The significance of the bits is as
follows, with bit o being the low-order bit:

bit meaning

o

1
2
3

4

o = bits 1-7 not significant;
1 = bits 1-7 significant
o = single density; 1 = double density
o single sided; 1 = double sided
o = 8-inch diskettes;
1 = 5 1/4-inch diskettes
o = standard diskette, meaning that

track 0 is single-density with
128-byte sectors

1 = not a standard diskette or not a
diskette

5-7 reserved

If bit 0 is set to 1, then a driver for the device
can read track 0 when asked to do so by the I/O
System.

2-3

I

I

I

I

I
DEV$GRAN

I
I DEV$SIZE

DEVICE

UNIT

DEV$UNIT

INIT$IO

I
FINISH$IO

I
QUEUE$IO

I
CANCEL$IO

I
DEVICE$INFO$P

I

DEVICE DRIVER INTERFACES

WORD specifying the device granularity, in bytes.
This parameter applies to random access devices.
It specifies the minimum number of bytes of
information that the device reads or writes in one
operation. If the device is a disk or magnetic
bubble device, you should set this field equal to
the sector size for the device. Otherwise, set
this field equal to zero.

DWORD specifying the number of bytes of information
that the device-unit can store.

BYTE specifying the device number of the device
with which this device-unit is associated. Device
drivers can ignore this field.

BYTE specifying the unit number of this
device-unit. This distinguishes the unit from the
other units of the device.

WORD specifying the device-unit number. This
number distinguishes the device-unit from the other
units in the entire hardware system. Device
drivers can ignore this field.

WORD specifying the offset, in the code segment, of
this unit's Initialize I/O device driver
procedure. Device drivers can ignore this field.

WORD specifying the offset, in the code segment, of
this unit's Finish I/O device driver procedure.
Device drivers can ignore this field.

WORD specifying the offset, in the code segment, of
this unit's Queue I/O device driver procedure.
Device drivers can ignore this field.

WORD specifying the offset, in the code segment, of
this unit's Cancel I/O device driver procedure.
Device drivers can ignore this field.

POINTER to a structure which contains additional
information about the device. The common, random
access, and terminal device drivers require, for
each device, a Device Information Table, in a
particular format. This structure is described in
Chapter 3. If you are writing a custom driver, you
can place information in this structure depending
on the needs of your driver. Specify a zero for
this parameter if the associated device driver does
not use this field.

2-4

UNIT$INFO$P

UPDATE$TlMEOUT

NUM$BUFFERS

PRIORITY

FIXED$UPDATE

DEVICE DRIVER INTERFACES

POINTER to a structure that contains additional
information about the unit. Random access and
terminal device drivers require this Unit
Information Table in a particular format. Refer to
Chapter 3 for further information. If you are
writing a custom device driver, place information
in this structure, depending on the needs of your
driver. Specify a zero for this parameter if the
associated device driver does not use this field.

WORD specifying the number of system time units
that the I/O System is to wait before writing a
partial sector after processing a write request for
a disk device. In the case of drivers for devices
that are neither disk nor magnetic bubble devices,
this field should be set to OFFFFH during
configuration. This field applies only to the
device for which this is a DUIB, and is independent
of updating that is done either because of the
value in the FlXED$UPDATE field of the DUIB or by
means of the A$UPDATE system call of the I/O
System. Device drivers can ignore this field.

WORD which, if not zero, both specifies that the
device is a the random access device and indicates
the number of buffers the I/O System may allocate.
The I/O System uses these buffers to perform data
blocking and deblocking operations. That is, it
guarantees that data is read or written beginning
on sector boundaries. If you desire, the random
access support routines can also be made to
guarantee that no data is written or read across
track boundaries in a single request (see the
section on the Unit Information Table in Chapter
3). A value of zero indicates that the device is
not a random access device. Device drivers can
ignore this field.

BYTE specifying the priority of the I/O System
service task for the device. Device drivers can
ignore this field.

BYTE indicating whether the fixed update option was
selected for the device when the application system
was configured with the Interactive Configuration
Utility. This option, when selected, causes the
I/O System to finish any write requests that had
not been finished earlier because less than a full
sector remained to be written. Fixed updates are
performed throughout the entire system whenever a
time interval (specified during configuration)
elapses. This is independent of the updating that
is indicated for a particular device (by the
UPDATE$TlMEOUT field of the DUIB) or the updating
of a particular device that is indicated by the
A$UPDATE system call of the I/O System.

2-5

I

I

I

MAX$BUFFERS

RESERVED

Using the DUIBs

DEVICE DRIVER INTERFACES

A value of OFFH indicates that fixed updating has
been selected for this device, and a value of zero
indicates that it has not been selected. Device
drivers can ignore this field.

BYTE containing a value that indicates the maximum
number of buffers that the Extended I/O System (of
the iRMX 86 Operating System) can allocate for a
connection on this device when the connection is
opened by a call to S$OPEN. The value in this
field is specified during configuration with the
Interactive Configuration Utility. Device drivers
can ignore this field.

BYTE reserved for future use.

In order to use the I/O System to connect your application software and
any files on a device-unit, the unit must first be attached. If you are
an iRMX 88 user, this is done automatically when you first attach or
create a file on the unit. If you are an iRMX 86 user, you attach the
unit by using the RQAPHYSICAL$ATTACH$DEVICE system call (refer to the
iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for a description of this
system call).

When you cause a unit to become attached, the I/O System assumes that the
device-unit identified by the device name field of the DUIB has the
characteristics identified in the remainder of the DUIB. Thus, whenever
the application software makes an I/O request using the connection to the
attached device-unit, the I/O System ascertains the characteristics of
that unit by means of the associated DUIB. The I/O System looks at the
DUIB and calls the appropriate device driver routine listed there in
order to process the I/O request.

If you would like the I/O System to assume different characteristics at
different times for a particular device-unit, you can supply multiple
DUIBs, each containing identical device number, unit number, and
device-unit number parameters, but different DUIB device name
parameters. Then you can select one of these DUIBs by specifying the
appropriate dev$name parameter in the RQ$A$PHYSICAL$ATTACH$DEVICE system
call (for iRMX 86 users) or the appropriate device name when calling
DQ$ATTACH$FILE or DQ$CREATE$FILE (for iRMX 88 users.) Before the DUIBs
for a unit can be changed, however, the unit must be detached.

Figure 2-1 illustrates this concept. It shows six DUIBs, two for each of
three units of one device. The main difference within each pair of DUIBs
in this figure is the device granularity parameter, which is either 128
or 512. With this setup, a user can attach any unit of this device with
one of two device granularities. In Figure 2-1, units 0 and 1 are
attached with a granularity of 128 and unit 2 with a granularity of 512.
To change this, the user can detach the device and attach it again using
the other DUIB name.

2-6

DEVICE DRIVER INTERFACES

NOTE

In the case of devices supporting named
volumes, it is not necessary to supply
multiple DUIBs if you are going to use
volumes that differ in granularity,
density, size (5 1/4" or 8" for
diskettes), or the number of sides
(single or double.) This is because
the I/O System uses the volume label,
rather than DUIBs, to ascertain such
information.

name = UNITA
devSgran " 128

device =- 1
unit = 0
dev$unit = 6

t

name '=' UNITA1
dev$gran = 512

device ~ 1
unit = 0
dev$unit = 6

-1
CALL RQSASPHYSICALSATTACH$DEVICE (UNITA)

name ~ UNITB
devSgran ~ 128

device ~ 1
unit = 1
devSunit = 7

t
I

name = UNITB1
dev$gran = 512

device = 1
unit = 1
dev$unit = 7

CALL RQSPHYSICALSATTACH$DEVICE (UNITB •...)

name 0= UNITC
devSgran = 128

device = 1
unit = 2
devSunit = 8

name = UNITC1
devSgran = 512

device = 1
unit = 2
devSunit = 8

~
CALL RASASPHYSICALSATTACHSDEVICE (UNITC1 •...)

Figure 2-1. Attaching Devices

)
(DUIBs for I de,~e~""it 1

DUIBs for
device-unit 8

Creating DUIBs

During interactive configuration, you must provide the information for
all of the DUIBs. The configuration file, which the ICU produces, sets
up the DUIBs when it executes. Observe the following guidelines when
supplying DUIB information:

• Specify a unique name for every DUIB, even those that describe
the same device-unit.

• For every device-unit in the hardware configuration, provide
information for at least one DUIB. Because the DUIB contains the
addresses of the device driver routines, this guarantees that no
device-unit is left without a device driver to handle its I/O.

2-7

I
I

I

DEVICE DRIVER INTERFACES

• Make sure to specify the same device driver procedures in all of
the DUIBs associated with a particular device. There is only one
set of device driver routines for a given device, and each DUIB
for that device must specify this unique set of routines.

• If you are writing a common or random access device driver, you
must supply information for a Device Information Table for each
device. If you are using a random access device driver, you must
supply information for a Unit Information Table for each unit.
See Chapter 4 for specifications of these tables. If you are
using custom device drivers and they require these or similar
tables, you must supply information for them, as well.

• If you are writing a terminal driver, you must supply information
for a Controller Data Table and a terminal device information
table for each terminal controller, and a unit data table for
each terminal. See Chapter 7 for specifications of these tables.

I/O REQUEST/RESULT SEGMENT (IORS)

An I/O request/result segment (lORS) is the second structure used as an
interface between a device driver and the I/O System. The I/O System
creates an laRS when a user requests an I/O operation. The IORS contains
information about the request and about the unit on which the operation
is to be performed. The I/O System passes the 10RS to the appropriate
device driver, which then processes the request. When the device driver
performs the operation indicated in the 10RS, it must modify the IORS to
indicate what it has done and send the IORS back to the response mailbox
(exchange) indicated in the IORS.

The IORS is the only mechanism that the I/O System uses to transmit
requests to device drivers. Its structure is always the same. Every
device driver must be aware of this structure and must update the
information in the IORS after performing the requested function. The
laRS is structured as follows:

DECLARE
laRS

STATUS
UNIT$STATUS
ACTUAL
ACTUAL$FILL
DEVICE
UNIT
FUNCT
SUBFUNCT
DEV$LOC
BUFF$P
COUNT
COUNT$FILL
AUX$P
LINK$FOR
LINK$BACK
RESP$MBOX

STRUCTURE (
WORD,
WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
WORD,
DWORD,
POINTER,
WORD,
WORD,
POINTER,
POINTER,
POINTER,
SELECTOR,

2-8

where:

STATUS

DEVICE DRIVER INTERFACES

DONE
FILL
CANCEL$ID
CONN$T

BYTE,
BYTE,
SELECTOR,

SELECTOR);

WORD in which the device driver must place the
condition code for the I/O operation. The E$OK
condition code indicates successful completion of
the operation. For a complete list of possible
condition codes, see either the iRMX 86 NUCLEUS
REFERENCE MANUAL, the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL, and the iRMX 86 EXTENDED I/O
SYSTEM REFERENCE MANUAL, or the iRMX 88 REFERENCE
MANUAL.

UNIT$STATUS WORD in which the device driver must place
additional status information if the status
parameter was set to indicate the E$IO condition.
The unit status codes and their descriptions are as
follows:

ACTUAL

ACTUAL$FILL

DEVICE

UNIT

code mnemonic description

0 IO$UNCLASS Unclassified error
1 IO$SOFT Soft error; a retry is possible
2 IO$HARD Hard error; a retry is

impossible
3 IO$OPRINT Operator intervention is

required
4 IO$WRPROT Write-protected volume

The I/O System reserves values 0 through 15 (the
rightmost four bits) of this field for unit status
codes. The high 12 bits of this field can be used
for any other purpose that you wish. For example,
the iSBC 204 driver places the result byte in the
high eight bits of this field. Refer to the iSBC
204 FLEXIBLE DISKETTE CONTROLLER HARDWARE REFERENCE
MANUAL for further information on the result byte.

WORD which the device driver must update on the
completion of an I/O operation to indicate the
number of bytes of data actually transferred.

Reserved WORD.

WORD into which the I/O System places the number of
the device for which this request is intended.

BYTE into which the I/O System places the number of
the unit for which this request is intended.

2-9

I

FUNCT

SUBFUNCT

I

I DEV$LOC

I
BUFF$P

COUNT

COUNT$FILL

DEVICE DRIVER INTERFACES

BYTE into which the I/O System places the function
code for the operation to be performed. Possible
function codes are:

function
F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

code
o
1
2
3
4
5
6
7

WORD into which the I/O System places the actual
function code of the operation, when the F$SPECIAL
function code was placed into the FUNCT field. The
value in this field depends on the device driver.
The random access device driver supports the
following special functions:

function
FS$FORMAT/FS$QUERY
FS$SATISY
FS$NOTIFY
FS$DEVICE$CHARACTERISTICS
FSGETTERMINAL$ATTRIBUTES
FSSETTERMINAL$ATTRIBUTES
FS$SIGNAL

code
o
1
2
3
4
5
6

To maintain compatibility with random access device
drivers and to allow for future expansion, other
drivers should avoid using these codes, and 7
through 10 as well, for other functions.

DWORD into which the I/O System places the absolute
byte location on the I/O device where the operation
is to be performed. For example, for the F$WRlTE
operation, this is the address on the device where
writing begins. If a random access device driver
is used and the track$size field in the unit's Unit
Information Table contains a value greater than
zero, the DEV$LOC field contains the track number
(in the high-order WORD) and sector number (in the
low-order WORD.) If track$size contains zero, the
DEV$LOC field contains a sector number.

POINTER which the I/O System sets to indicate the
internal buffer where data is read from or written
to.

WORD which the I/O System sets to indicate the
number of bytes to transfer.

Reserved WORD.

2-10

AUX$P

DEVICE DRIVER INTERFACES

POINTER which the I/O System can set to indicate the
location of auxiliary data. This data is used when
the request calls the F$SPEClAL function, in order to
pass or receive a variety of kinds of data.

The following paragraphs define the particular
formats for some uses of the F$SPECIAL function, as
specified in the SUBFUNCT field of the 10RS.

In a request to format a track on a disk or diskette,
FUNCT equals F$SPECIAL, SUBFUNCT equals FS$FORMAT,
and AUX$P points to a structure of the form:

DECLARE FORMAT$TRACK STRUCTURE(
TRACK$NUMBER WORD,
INTERLEAVE WORD,
TRACK$OFFSET WORD,
FILL$CHAR BYTE);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL.

In a request to set up an iRMX 86 mailbox, where the
iRMX 86 I/O System is to send an object whenever a
door to a flexible disk drive is opened or the STOP
button on a hard disk drive is pressed, FUNCT equals
F$SPECIAL, SUBFUNCT equals FS$NOTIFY, and AUX$P
points to a structure of the form:

DECLARE SETUP$NOTIFY STRUCTURE(
MAILBOX SELECTOR,
OBJECT SELECTOR);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL. Random access drivers do
not have to process such requests because they are
handled by the 'I/O System.

In a request to read or write terminal mode
information for a terminal being driven by a terDdnal
driver, FUNCT equals F$SPECIAL, SUBFUNCT equals
FSGETTERMINAL$ATTRIBUTES (for reading) or
FSSETTERMINAL$ATTRIBUTES (for writing), and AUX$P
points to a structure of the form:

DECLARE TERMINAL$ATTRIBUTES STRUCTURE(
NUM$SLOTS WORD,
NUM$USED WORD,
CONN$FLAGS WORD,
TERM $FLAG S WORD,
IN$RATE WORD,
OUT$RATE WORD,
SCROLL$NUMBER WORD);

where the fields are defined in the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL.

2-11

LINK$FOR

LINK$BACK

RESP$MBOX

DONE

I
FILL

CANCEL$ID

I CONN$T

DEVICE DRIVER INTERFACES

In a request to set up a special character for
signalling purposes, FUNCT equals F$SPECIAL,
SUBFUNCT equals FS$SIGNAL, and AUX$P points to a
structure of the form:

DECLARE SIGNAL$CHARACTER STRUCTURE(
SEMAPHORE WORD, /* or SELECTOR */
CHARACTER BYTE);

where the fields are defined in the iRMX 86 BASIC
I/O SYSTEM REFERENCE MANUAL.

POINTER that the device driver can use to implement
a request queue. Drivers use this field to point
to the location of the next IORS in the queue.

POINTER that the device driver can use to implement
a request queue. Drivers use this field to point
to the location of the previous IORS in the queue.

WORD that the I/O System fills with either an iRMX
86 token for the response mailbox or the address of
an iRMX 88 exchange. Upon completion of the I/O
request, the device driver must send the IORS to
this response mailbox or exchange.

BYTE that the device driver can set to TRUE (OFFH)
or FALSE (OOH) to indicate whether the entire
request has been completed. Random access and
common drivers can use this byte in this fashion.
On the other hand, a random access driver can use
the SEEK$COMPLETE procedure. If it does, it sets
this field to TRUE as soon as the seek operation
has begun, then calls SEEK$COMPLETE when the seek
operation has finished.

Reserved BYTE.

WORD used to identify queued I/O requests tilat are
to be removed from the queue by the CANCEL$IO
procedure.

WORD used in requests to the iRMX 86 I/O System.
This field contains the token of the iRMX 86 file
connection through which the request was issued.

2-12

DEVICE DRIVER INTERFACES

DEVICE INTERFACES

One or more of the routines in every device driver must actually send
commands to the device itself, in order to carry out I/O requests. The
steps that a procedure of this sort must go through vary considerably,
depending on the type of I/O device. Procedures supplied with the I/O
System to manipulate devices such as the iSBC 204 and iSBC 206 devices
use the PL/M-86 builtins INPUT and OUTPUT to transmit to and receive from
I/O ports. Other devices may require different methods. The I/O System
places no restrictions on the method of communicating with devices. Use
the method that the device requires.

2-13

CHAPTER 3. CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

There are four types of device drivers in the iRMX 86 and iRMX 88
environments: common, random access, custom, and terminal. This chapter
defines the distinctions between the types of drivers and discusses the
characteristics and data structures pertaining to common and random
access device drivers. Chapters 5, 6, and 7 are devoted to explaining
how to write the various types of device drivers.

CATEGORIES OF DEVICES

Because the I/O Systems provide procedures that constitute the bulk of
any common or random access device driver, you should consider the
possibility that your device is a common or random access device. If
your device falls in either of these categories, you can avoid most of
the work of writing a device driver by using the supplied procedures.
The following sections define the four types of devices.

COMMON DEVICES

Common devices are relatively simple devices other than terminals, such
as line printers. This category includes devices that conform to the
following conditions:

• A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

• Only one interrupt level is needed to service a device.

• Data either read or written by these devices does not need to be
broken up into blocks.

If you have a device that fits into this category, you can save the
effort of creating an entire device driver by using the common driver
routines supplied by the I/O System. Chapter 5 of this manual describes
the procedures that you must write to complete the balance of a common
device driver.

RANDOM ACCESS DEVICES

A random access device is a device, such as a disk drive, in which data
can be read from or written to any address of the device. The support
routines provided by the I/O System for random access assume the
following conditions:

3-1

I
I

I

I

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

• A first-in/first-out mechanism for queuing requests is sufficient
for accessing these devices.

• Only one interrupt level is needed to service the device.

• I/O requests must be broken up into blocks of a specific length.

• The device supports random access seek operations.

If you have devices that fit into the random access category, you can
take advantage of the random access support routines provided by the I/O
System. Chapter 5 of this manual describes the procedures that you must
write to complete the balance of a random access device driver.

TERMINAL DEVICES

A terminal device is characterized by the fact that it reads and writes
single characters, with an interrupt for each character. Because such
devices are entirely different than common, random access, and even
custom devices, terminal drivers and their required data structures are
described in Chapter 7. The remainder of this chapter applies only to
common, random access, and custom device drivers.

CUSTOM DEVICES

If your device fits neither the common nor the random access category,
and is not a terminal or terminal-like device, you must write the entire
driver for the device. The requirements of a custom device driver are
defined in Chapter 6.

I/O SYSTEM-SUPPLIED ROUTINES FOR COMMON AND RANDOM ACCESS DEVICE DRIVERS

The I/O System supplies the common and random access routines that the
I/O System calls when processing I/O requests. Flow charts for these
procedures can be found in Appendix A; their names and functions are as
follows:

3-2

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Common Routine Random Access Routine

INlT$IO RAD$INIT$IO

FlNISH$IO RAD$FINlSH$IO

QUEUE$IO RAD$QUEUE$IO

CANCEL$IO RAD$CANCEL$IO

Function

Creates the resources needed by
the remainder of the driver
routines, creates an interrupt
task, and calls a user-supplied
routine that initializes the
device itself.

Deletes the resources used by
the other driver routines,
deletes the interrupt task, and
calls a user-supplied procedure
that performs final processing
on the device itself.

Places I/O requests (IORSs) on
the queue of requests.

Removes one or more requests
from the request queue, possibly
stopping the processing of a
request that has already been
started.

In addition to these routines, the I/O Systems supply an interrupt
handler (interrupt service routine) and either INTERRUPT$TASK or
RAD$INTERRUPT$TASK, which respond to all interrupts generated by the
units of a device, process those interrupts, and start the device working
on the next I/O request on the queue. This interrupt task is the one
that the INIT$IO or RAD$INIT$IO procedure creates.

After a device finishes processing a request, it sends an interrupt to
the processor. As a consequence, the processor calls the interrupt
handler. This handler either processes the interrupt itself or invokes
an interrupt task to process the interrupt. Since an interrupt handler
is limited in the types of system calls that it can make and the number
of interrupts that can be enabled while it is processing, an interrupt
task usually services the interrupt. The interrupt task feeds the
results of the interrupt back to the I/O System (data from a read
operation, status from other types of operations). The interrupt task
then gets the next I/O request from the queue and starts the device
processing this request. This cycle continues until the device is
detached.

Figure 3-1 shows the interaction between an interrupt task, an I/O
device, an I/O request queue, and a Queue I/O device driver procedure.
The interrupt task in this figure is in a continual cycle of waiting for
an interrupt, processing it, getting the next I/O request, and starting
up the device again. While this is going on, the Queue I/O procedure
runs in parallel, putting additional I/O requests on the queue.

3-3

REQUEST QUEUE

lID REQUEST

lID REQUEST

• • •

lID REQUEST

)
l1li(

j

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

CD GET REQUEST

Q

INTERRUPT TASK

CD SERVICE
INTERRUPT

(!) START DEVICE

UEUE I/O PROCEDURE

l1li(PUT REQUESTS ON QUEUE D

Figure 3-1. Interrupt Task Interaction

3-4

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

I/O SYSTEM ALGORITHM FOR CALLING THE DEVICE DRIVER PROCEDURES

The I/O System calls each of the four device driver procedures in response
to specific conditions. Figure 3-2 is a flow chart that illustrates the
conditions under which three of the four procedures are called. The
following numbered paragraphs discuss the portions of Figure 3-2 labelled
with corresponding circled numbers.

1. In order to start I/O processing, an application task must make an I/O
request. This can be done by making any of a variety of system
calls. However, if you are an iRMX 86 user, the first I/O request to
each device-unit must be an RQAPHYSICAL$ATTACH$DEVICE system call,
and if you are an iRMX 88 user, the first request to each device-unit
must be either a DQ$ATTACH or a DQ$CREATE system call.

2. If the request results from an RQAPHYSICAL$ATTACH$DEVICE, a
DQ$ATTACH, or a DQ$CREATE system call, the I/O System checks to see if
any other units of the device are currently attached. If no other
units of the device are currently attached, the I/O System realizes
that the device has not been initialized and calls the Initialize I/O
procedure first, before queueing the request.

3. Whether or not the I/O System called the Initialize I/O procedure, it
calls the Queue I/O procedure to queue the request for execution.

4. If the request just queued resulted from an RQAPHYSICAL$DETACH$DEVICE
system call, the I/O System checks to see if any other units of the device
are currently attached. If no other units of the device are attached, the
I/O System calls the Finish I/O procedure to do any final processing on the
device and clean up resources used by the device driver routines.

The iRMX 86 I/O System calls the fourth device driver procedure, the Cancel
I/O procedure, under the following conditions:

• If the user makes an RQAPHYSICAL$DETACH$DEVICE system call
specifying the hard detach option, in order to forcibly detach·
the connection objects associated with a device-unit. The
iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL describes the hard
detach option.

• If the job containing the task which made a request is deleted.

The iRMX 88 I/O System does not call the Cancel I/O procedure.

3-5

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Figure 3-2.

'0 The user makes an 110 request
U via a system call

No

1/0 System calls the Queue 110
procedure to place the request
on Ihe queue

Return

yl!5

yes

I/O System cells !he Inill .. 1ze
I/O pl'OCl!dun! 10 Inltilllize !he
de¥Ice

110 System calls the Finish I/O
procedure to clean up lhe
device and _te objects

How the I/O System Calls the Device Driver Procedures

3-6

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

REQUIRED DATA STRUCTURES

In order for the I/O System-supplied routines to be able to call the
user-supplied routines, you must supply the addresses of these
user-supplied routines, as well as other information, for a Device
Information Table. In addition, processing I/O requests through a random
access driver requires a Unit Information Table. Each device-unit
information block (DUIB) contains one pointer field for a Device
Information Table and another for a Unit Information Table.

DUIBs that correspond to units of the same device should point to the
same Device Information Table, but they can point to different Unit
Information Tables, if the units have different characteristics. Figure
3-3 illustrates this.

UNITSINFOS1

UNIT$INFOS2

OUIB1

Device 1
Unit 0

OEVSlNFOS1

UNJTSlNFOS1

OUlB2

Device = 1
unH = 1

OEVSINFOS1

UNIT$INFOS2

OUIB3

Device = 2
Unit = 0

DEV$INFO$2

UNITSINFO$2

DEVSlNFOS1

DEV$INFOS2

Figure 3-3. DUIBs, Device and Unit Information Tables

3-7

Unit
o

Unit
1

Unit
o

Device
1

Device
2

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

DEVICE INFORMATION TABLE

Common and random access Device Information Tables contain the same
fields in the same order, but the tables have different names. Common
drivers refer to the Device Information Table as COMMON$DEVICE$INFO,
while random access drivers refer to RAD$DEVICE$INFO. For brevity, we
show only the declaration of COMMON$DEVICE$INFO.

DECLARE
COMMON$DEVICE$INFO

LEVEL
STRUCTURE (

WORD,
BYTE,
WORD,
WORD,
WORD,
WORD,
WORD,
WORD,
WORD,
WORD);

where:

LEVEL

PRIORITY
STACK$SIZE
DATA$SIZE
NUM$UNITS
DEVICE$INIT
DEVICE$FINISH
DEVICE$START
DEVICE$STOP
DEVICE$INTERRUPT

WORD specifying an encoded interrupt level at which
the device will interrupt. The interrupt task uses
this value in order to associate itself with the
correct interrupt level. The values for this field
are encoded as follows:

Bits Value

15-7 0

6-4 First digit of the interrupt level (0-7)

3 If one, the level is a master level and
bits 6-4 specify the entire level
number.

If zero, the level is a slave level and
bits 2-0 specify the second digit.

2-0 Second digit of the interrupt level
(0-7), if bit 3 is zero.

NOTE

In iRMX 88 systems, only master
levels are available.

3-8

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

PRIORITY

STACK$SIZE

DATA$SIZE

NUM$UNITS

DEVICE$INIT

DEVICE$FINISH

DEVICE$START

DEVICE$STOP

DEVICE$INTERRUPT

BYTE specifying the initial priority of the
interrupt task. The actual priority of an
iRMX 86 interrupt task might change because the
iRMX 86 Nucleus adjusts an interrupt task's
priority according to the interrupt level that it
services. Refer to the iRMX 86 NUCLEUS REFERENCE
MANUAL for further information about this
relationship between interrupt task priorities
and interrupt levels.

WORD specifying the size, in bytes, of the stack
for the user-written device interrupt procedure
(and procedures that it calls). This number
should not include stack requirements for the I/O
System-supplied procedures. They add their
requirements to this figure.

WORD specifying the size, in bytes, of the user
portion of the device's data storage area. This
figure should not include the amount needed by
the I/O System-supplied procedures; rather, it
should include only that amount needed by the
user-written routines. This then is the size of
the read or write buffers plus any flags that the
user-written routines need.

WORD specifying the number of units supported by
the driver. Units are assumed to be numbered
consecutively, starting with zero.

WORD specifying the start address of a
user-written device initialization procedure.
The format of this procedure, which is called by
INIT$IO, is described in Chapter 5.

WORD specifying the start address of a
user-written device finish procedure. The format
of this procedure, which is called by FINISH$IO,
is described in Chapter 5.

WORD specifying the start address of a
user-written device start procedure. The format
of this procedure, which is called by QUEUE$IO
and INTERRUPT$TASK, is described in Chapter 5.

WORD specifying the start address of a
user-written device stop procedure. The format
of this procedure, which is called by CANCEL$IO,
is described in Chapter 5.

WORD specifying the start address of a
user-written device interrupt procedure. The
format of this procedure, which is called by
INTERRUPT$TASK, is described in Chapter 5.

3-9

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

Depending on the requirements of your device, you can append additional
information to the COMMON$DEVICE$INFO or RAD$DEVICE$INFO structure. For
example, most devices require that the I/O port address be appended to
this structure, in order that the user-written procedures have access to
the device.

You must supply information for the Device Information Tables as a part of
the configuration process.

UNIT INFORMATION TABLE

If you have random access device drivers in your system, you must create a
Unit Information Table for each different type of unit in your system.
Each random access device-unit's DUIB must point to one Unit Information
Table, although multiple DUIBs can point to the same Unit Information
Table. The structure of the Unit Information Table is as follows:

DECLARE

where:

RAD$UNIT$INFO
TRACK$SIZE
MAX $RE TRY
CYLINDER$SIZE

STRUCTURE (
WORD,
WORD,
WORD);

TRACK$SIZE WORD specifying the size, in bytes, of a single track
of a volume on the unit. If the device controller
supports reading and writing across track boundaries,
place a zero in this field. If you specify a zero for
this field, the I/O Systemrsupplied procedures place a
sector number in the DEV$LOC field of the 10RS. If you
specify a nonzero value for this field, the I/O
System-supplied procedures guarantee that read and
write requests do not cross track boundaries. They do
this by placing the sector number in the low-order word
of the DEV$LOC field of the IORS and the track number
in the high-order word of the DEV$LOC field before
calling a user-written device start procedure.
Instructions for writing a device start procedure are
contained in Chapter 5.

MAX$RETRY WORD specifying the maximum number of times an I/O
request should be tried if an error occurs. A value of
nine is recommended for this field. When this field
contains a nonzero value, the I/O System-supplied
procedures guarantee that read or write requests are
retried if the user-supplied device start or device
interrupt procedures return an IO$SOFT condition in the
lORS.UNIT$STATUS field. (The 10RS.UNIT$STATUS field is
described in the "IORS Structure" section of Chapter 2.)

3-10

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

CYLINDER$SIZE WORD whose meaning depends on its value, as follows:

o The I/O System is not to perform automatic seek
operations (described in Chapter 5 under the
heading "The SEEK$COMPLETE Procedure") as part of
read and write operations on the unit. Also, the
device driver for the unit is not to call the
SEEK$COMPLETE procedure.

1 The I/O System is to perform automatic seek
operations (described in Chapter 5 under the
heading "The SEEK$COMPLETE Procedure") as part of
all read and write operations on the unit. Also,
the device driver for the unit is to call the
SEEK$COMPLETE procedure immediately following
each seek operation.

Other The CYLINDER$SIZE field contains the number of
sectors in a cylinder on the unit. The I/O
System is to perform automatic seek operations
(described in Chapter 5 under the heading "The
SEEK$COMPLETE Procedure") whenever a requested
read or write operation on the unit begins in a
different cylinder than that associated with the
current position of the read/write head. Whether
an automatic seek operation is necessary or not,
the device driver for the unit is to call the
SEEK$COMPLETE procedure immediately following
each seek operation.

RELATIONSHIPS BETWEEN I/O PROCEDURES AND I/O DATA STRUCTURES

This section brings together several of the procedures and data structures
that have been described so far in this manual. Figure 3-4 shows the many
relationships that exist among these entities, with solid arrows
indicating procedure calls and dotted arrows indicating pointers. Note
that the I/O System contains the address of each'DUIB, which in turn
contains the addresses of the procedures that the I/O System calls in
order to perform I/O on the associated device-unit. The DUIB also has the
address of the Device Information Table and, if the device is a random
access device, the Unit Information Table. The Device Information Table,
in turn, contains the addresses of the procedures that are called by the
procedures that the I/O System calls. It is through these links that the
appropriate calls are made in the servicing of an I/O request for a
particular device-unit.

WRITING DRIVERS FOR USE WITH BOTH iRMX 86- AND iRMX 88-BASED SYSTEMS

A common or random access device driver that makes no system calls will be
compatible with both the iRMX 86 and iRMX 88 I/O Systems. Consequently,
such a device driver can be "ported" between applications based on the two
iRMX systems.

3-11

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

::T<*"~
I DEVICE

-----A-----~" DEVICESSTART ,..-------,
/ j I r.::::I

, / / / I ~

~ I /
NUCLrEU " / / /

/ --y INTERRUPT- INTERRUPT /1 7" DEVICESINTERRUPT
TASK --_.. 110 SYSTEM / I HANDLER TASK j

I ~/ / / /

DUIB

· · · DIVSUNIT
INITSIO

QUEUESIO
CANCELSIO
FINISHSIO

DEVICESlNFOSP

UNITSINFOSP

· ·

I / /
/ / I

/ / / / ;;;<----------'
I / / CANCELSIO / /. DEVICESST/O __ - --

I I I /~ / / / /~ _ ---
/ / / / / !--7' --

/ I / _1-1--; /
/ / / -- / / / I // / _____ ~~2.-........ - / / 7 / I ;".. DEVICESFINISH

II ~--:;;/ / / / /
1
/
I--.../- / / / / / //

/ / /1///

"
/./ DEVICE INFO. TABlE I I / / / /

~// /// /1/
---- f/

· - · · I, -
\.

\.
\.

\.
\.

\.
\.

\.

DEVlCESlNIT

DEVICESFINISH I.
DEVlCE$START

DEVICESSTOP V
DEVlCESlNTERRUPT

l,-_U_N_IT_IN_FO_. li_AB_LE_-,

/!
/

LEGEND:

----... PROCEDURE CALL

REFERENCE

x-118

Figure 3-4. Relationships Between I/O Procedures and I/O Data Structures

DEVICE DATA STORAGE AREA

The common and random access device drivers are set up so that all data
that is local to a device is maintained in an area of memory. The
Initialize I/O procedure creates this device data storage area and the
other procedures of the driver access and update information in it as
needed. Two purposes are served by storing the device-local data in a
central area.

3-12

CATEGORIES AND PROPERTIES OF DEVICES AND DRIVERS

First, all device driver procedures that service individual units of the
device can access and update the same data. The Initialize I/O procedure
passes the address of the area back to the I/O System, which in turn gives
the address to the other procedures of the driver. They can then place
information relevant to the device as a whole into the area. The identity
of the first lORS on the request queue is maintained in this area, as well
as the attachment status of the individual units and a means of accessing
the interrupt task.

Second, several devices of the same type can share the same device driver
code and still maintain separate device data areas. For example, suppose
two iSBC 204 devices use the same device driver code. The same Initialize
I/O procedure is called for each device, and each time it is called it
obtains memory for the device data. However, the memory areas that it
creates are different. Only the incarnations of the routines that service
units of a particular device are able to access the device data area for
that device.

Although the common and random access device drivers already provide this
mechanism, you may want to include a device data storage area in any
custom driver that you write.

3-13

CHAPTER 4. I/O REQUESTS

This chapter contains two kinds of information that writers of drivers
for devices other than terminals will find useful. Presented first are
summaries of the actions that the I/O System takes in response to the
various kinds of I/O requests that application tasks can make. Next are
three tables -- one for each type of device driver -- that show which
DUIB and IORS fields device drivers should be concerned with.

I/O SYSTEM RESPONSES TO I/O REQUESTS

This section shows which device driver procedures the I/O System calls
when it processes each of the eight kinds of I/O requests. When there
are multiple calls, the order of the calls is significant.

ATTACH DEVICE REQUESTS

When the I/O System receives the first attach device request for a
device, it makes the following calls to device driver procedures in the
following order:

The Call
Initialize I/O

Queue I/O, with the
FUNCT field of the IORS
set to F$ATTACH (=4)

The Effects of the Call
The driver resets the device as a whole
and creates the device data storage
area and interrupt tasks.

The driver resets the selected unit.

When the I/O System receives an attach device request that is not the
first for the device, it makes the following call:

The Call
Queue I/O, with the
FUNCT field of the IORS
set to F$ATTACH (=4)

DETACH DEVICE REQUESTS

The Effects of the Call
The driver resets the selected unit.

When the I/O System receives a detach device request, and there is more
than one unit of the device attached, it makes the following call:

The Call
Queue I/O, with the
FUNCT field of the IORS
set to F$DETACH (=5)

The Effects of the Call
The driver performs cleanup operations
for the selected unit, if necessary.

4-1

I

I/O REQUESTS

When the I/O System receives a detach device request, and there is only
one attached unit on the device, it makes the following calls to device
driver procedures in the following order:

The Call
Queue I/O, with the
FUNCT field of the IORS
set to F$DETACH (=5)

Finish I/O

The Effects of the Call
The driver performs cleanup operations
for the selected unit, if necessary.

The driver performs cleanup operations
for the device as a whole, if necessary.

READ, WRITE, OPEN, CLOSE, SEEK, AND SPECIAL REQUESTS

When the I/O System receives a read, write, open, close, seek, or special
request, it makes the following call to a device driver procedure:

The Call
Queue I/O, with the FUNCT
field of the IORS set to
F$READ (=0), F$WRITE (=1),
F$OPEN (=6), F$CLOSE (=7),
F$SEEK (=2), or F$SPECIAL
(=3), depending on the type
of the I/O request.

CANCEL REQUESTS

The Effects of the Call
The driver performs the requested
operation. (F$OPEN and F$CLOSE
usually require no processing.)

When a connection is deleted while I/O might be in progress, such as when
an iRMX 86 job is deleted, the I/O System makes the following calls to
device driver procedures in the following order:

The Call
Cancel I/O.

Queue I/O, with the
FUNCT field of the
IORS set to F$CLOSE
(=7)

The Effects of the Call
The driver removes from the request queue
all requests that contain the same Cancel ID
value as that in the current request, and
stops processing if necessary.

When this request reaches the front of the
queue, it is simply returned to the indicated
response mailbox (exchange).

DUIB AND IORS FIELDS USED BY DEVICE DRIVERS

The following tables indicate, for each type of device driver, the fields
of DUIBs and IORSs with which user-written portions of device drivers
need to be concerned.

4-2

I/O REQUESTS

Table 4-1. DUIB and IORS Fields Used by Common Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Special

DUIB
Name
File$drivers
Functs
Flags m m m m m m m m
Dev$gran m m m m m m m m
Dev$size m m m m m m m m
Device
Unit m m m m m m m m
Dev$unit
Init$io
Finish$io
Queue$io

I Cancel$io

I
Device$info$p m m m m m m m m
Unit$info$p m m m m m m m m

I
Update$timeout
Num$buffers

I Priority

I Fixed$update
I Max$buffers

I IORS

I
I Status w w w w w w w w
I Unit$status w w w w w w w w
i
I Actual w w
! Actual$fill
I Device

I Unit m m m m m m m m
! Funct r r r r r r r r
I Subfunct r
! Dev$loc m m m
I Buff$p r r
! Count r r

I
Count$fill
Aux$p m
Link$for

I L ink$ back

I

Resp$mbox
Done w w w w w w w w
Fill
Cancel$id
Conn$t I

r --- is read by the device driver
w --- is written by the device driver
m --- might be read by some device drivers

4-3

I/O REQUESTS

Table 4-2. DUIB and lORS Fields Used by Random Access Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Special

DUlB
Name
File$drivers
Functs
Flags m m m m m m m m

I Dev$gran m m m m m m m m
Dev$size m m m m m m m m
Device
Unit m m m m m m m m
Dev$unit

I Init$io

I
Finish$io
Queue$io

f Cancel$io
I Device$info$p m m m m m m m m

Unit$info$p m m m m m m m m
Update$timeout
Num$buffers

I Priority

I
Fixed$update
Max$buffers I

lORS '-

Status w w w w w w w w
Unit$status w w w w w w w w
Actual w w
Actual$fill
Device
Unit m m m m m m m m
Funct r r r r r r r r
Subfunct r
Dev$loc r r r
Buff$p r r
Count r r
Count$fill
Aux$p m
Link$for
Link$back
Resp$mbox
Done w w w w w w w w
Fill
Cancel$id

I Conn$t

r --- is read by the device driver
w --- is written by the device driver
m --- might be read by some device drivers

4-4

I/O REQUESTS

Table 4-3. DUIB and IORS Fields Used by Custom Device Drivers

Attach Detach
Device Device Open Close Read Write Seek Special

DUlB
Name
File$drivers
Functs
Flags m m m m m m m m
Dev$gran m m m m m m m m
Dev$size m m m m m m m m
Device
Unit m m m m m m m m
Dev$unit
Init$io
Finish$io
Queue$io
Cancel$io
Device$info$p m m m m m m m m
Unit$info$p m m m m m m m m
Update$timeout
Num$buffers
Priority
Fixed$update
Max$buffers I

lORS
Status w w w w w w w w
Unit$status w w w w w w w w
Actual w w
Actual$fill
Device
Unit m m m m m m m m
Funct r r r r r r r r
Subfunct
Dev$loc m m m
Buff$p r r
Count r r
Count$fill
Aux$p m
Link$for a a a a a a a a
Link$back a a a a a a a a
Resp$mbox r r r r r r r r
Done a a a a a a a a
Fill a a a a a a a a
Cancel$id m
Conn$t I

r --- is read by the device driver
w --- is written by the device driver
m --- might be read by some device drivers
a --- is available for any purpose suiting the needs of the device

driver

4-5

CHAPTER 5. WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

This chapter contains the calling sequences for the procedures that you
must provide when writing a common or random access device driver. Where
possible, descriptions of the duties of these procedures accompany the
calling sequences.

The I/O System-supplied procedures are referred to in this chapter, for
brevity, as if the chapter were written only for writers of common device
drivers. For example, "INIT$IO" is shorthand for "INIT$IO or
RAD$INIT$IO" •

In addition to providing information about the procedures that common or
random access drivers must supply, this chapter describes the purpose and
calling sequence for each of two procedures that random access device
drivers in iRMX 86 applications must call under certain conditions.

INTRODUCTION TO PROCEDURES THAT DEVICE DRIVERS MUST SUPPLY

The routines that are provided by the I/O System and that the I/O System
calls constitute the bulk of a common or random access device driver.
These routines, in turn, make calls to device-dependent routines that you
must supply. These device-dependent routines are described here briefly
and then are presented in detail:

A device initialization procedure. This procedure must perform any
initialization functions necessary to get the device ready to process
I/O requests. INIT$IO calls this procedure.

A device finish procedure. This procedure must perform any
necessary final processing on the device so that the device can be
detached. FINISH$IO calls this procedure.

A device start procedure. This procedure must start the device
processing any possible I/O function. QUEUE$IO and INTERRUPT$TASK
(the I/O System-supplied interrupt task) call this procedure.

A device stop procedure. This procedure must stop the device from
processing the current I/O function, if that function could take an
indefinite amount of time. CANCEL$IO calls this procedure.

A device interrupt procedure. This procedure must do all of the
device-dependent processing that results from the device sending an
interrupt. INTERRUPT$TASK calls this procedure.

5-1

I
I

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

DEVICE INITIALIZATION PROCEDURE

The INIT$IO procedure calls the user-written device initialization
procedure in order to initialize the device. The format of the call to
the user-written device initialization procedure is as follows:

CALL device$init(duib$p, ddata$p, status$p);

where:

device$init

duib$p

ddata$p

status$p

Name of the device initialization procedure. You can
use any name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

POINTER to the DUIB of the device-unit being
attached. From this DUIB, the device initialization
procedure can obtain the Device Information Table,
where information such as the I/O port address is
stored.

POINTER to the user portion of the device's data
storage area. You must specify the size of this
portion in the Device Information Table for this
device. The device initialization procedure can use
this data area for whatever purposes it chooses.
Possible uses for this data area include local flags
and buffer areas.

POINTER to a WORD in which the device initialization
procedure must return the status of the initialization
operation. It should return the E$OK condition code
if the initialization is successful; otherwise it
should return the appropriate exceptional condition
code. If initialization does not complete
successfully, the device initialization procedure must
ensure that any data areas it initializes are reset.

If you have a device that does not need to be initialized before it can
be used, you can use the default device initialization procedure supplied
by the I/O System. The name of this procedure is DEFAULT$INIT. Specify
this name in the Device Information Table. DEFAULT$INIT does nothing but
return the E$OK condition code.

DEVICE FINISH PROCEDURE

The FINISH$IO procedure calls the user-written device finish procedure in
order to perform final processing on the device, after the last I/O
request has been processed. The format of the call to the device finish
procedure is as follows:

CALL device$finish(duib$p, ddata$p);

5-2

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

device$finish Name of the device finish procedure. You can use any
name for this procedure,. as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

duib$p POINTER to the DUIB of the device-unit being
detached. From this DUIB, the device finish procedure
can obtain the Device Information Table, where
information such as the I/O port address is stored.

ddata$p POINTER to the user portion of the device's data
storage area. The device finish procedure should
obtain, from this data area, identification of any
resources other user-written procedures may have
created, and delete these resources.

If you have a device that does not require any final processing, you can
use the default device finish procedure supplied by the I/O System. The
name of this procedure is DEFAULT$FINISH. Specify this name in the
Device Information Table. DEFAULT$FINISH merely returns to the caller
with an E$OK condition code and is normally used when the default
initialization procedure DEFAllLT$INIT is used.

DEVICE START PROCEDURE

Both QUEUE$IO and INTERRUPT$TASK make calls to the device start procedure
in order to start an I/O function. QUEUE$IO calls this procedure on
receiving an I/O request when the request queue is empty. INTERRUPT$TASK
calls the device start procedure after it finishes one I/O request if
there are more I/O requests on the queue. The format of the call to the
device start procedure is as follows:

CALL device$start(iors$p, duib$p, ddata$p);

where:

device$start

iors$p

Name of the device start procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
the name in the Device Information Table.

POINTER to the IORS of the request. The device start
procedure must access the IORS in order to obtain
information such as the type of I/O function
requested, the address on the device of the byte where
I/O is to commence, and the buffer address.

5-3

duib$p

ddata$p

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

POINTER to the DUIB of the device-unit for which the
I/O request is intended. The device start procedure
can use the DUIB to access the Device Information
Table, where information such as the I/O port address
is stored.

POINTER to the user portion of the device's data
storage area. The device start procedure can use this
data area to set flags or store data.

The device start procedure must do the following:

• It must be able to start the device processing any of the
functions supported by the device and recognize that requests for
nonsupported functions are error conditions.

• If it transfers any data, it must update the IORS.ACTUAL field to
reflect the total number of bytes of data transferred (that is,
if it transfers 128 bytes of data, it must put 128 in the
10RS.ACTUAL field).

• If an error occurs when the device start procedure tries to start
the device (such as on an F$WRITE request to a write-protected
disk), the device start procedure must set the 10RS.STATUS field
to indicate an E$IO condition and the 10RS.UNIT$STATUS field to a
nonzero value. The lower four bits of the field should be set as
indicated in the "IORS Structure"' section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 device driver returns the device's result byte in
the remainder of this field). If the function completes without
an error, the device start procedure must set the IORS.STATUS
field to indicate an E$OK condition.

• If the device start procedure determines that the I/O request has
been processed completely, either because of an error or because
the request has been successfully completed, it must set the
10RS.DONE field to TRUE. The I/O request will not always be
completed; it may take several calls to the device interrupt
procedure before a request is completed. However, if the request
is finished and the device start procedure does not set the
IORS.DONE field to TRUE, the device driver support routines will
wait until the device sends an interrupt and the device interrupt
procedure sets 10RS.DONE to TRUE, before determining that the
request is actually finished.

DEVICE STOP PROCEDURE

The CANCEL$IO procedure calls the user-written device stop procedure in
order to stop the device from performing the current I/O function. The
format of the call to the device stop procedure is as follows:

CALL device$stop{iors$p, duib$p, ddata$p);

5-4

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

where:

device$stop

iors$p

duib$p

ddata$p

Name of the device stop procedure. You can use any
name for this procedure, as long as it doesn't
conflict with other procedure names and you include
this name in the Device Information Table.

POINTER to the IORS of the request. The device stop
procedure needs this information to determine what
type of function to stop.

POINTER to the DUIB of the device-unit on which the
I/O function is being performed.

POINTER to the user portion of the device's data
storage area. The device stop procedure can use this
area to store data, if necessary.

If you have a device which guarantees that all I/O requests will finish
in an acceptable amount of time, you can omit writing a device stop
procedure and use the default procedure supplied with the I/O System.
The name of this procedure is DEFAULT$STOP. Specify this name in the
Device Information Table. . DEFAULT$STOP simply returns to the caller.

DEVICE INTERRUPT PROCEDURE

INTERRUPT$TASK calls the user-written device interrupt procedure to
process an interrupt that just occurred. Whereas the device start
procedure is called to start the device performing an I/O function, the
device interrupt procedure is called when the device finishes performdng
the function. The format of the call to the device interrupt procedure
is as follows:

CALL device$interrupt(iors$p, duib$p, ddata$p);

where:

device$interrupt

iors$p

duib$p

Name of the device interrupt procedure. You can
use any name for this procedure, as long as it
doesn't conflict with other procedure names and
you include this name in the Device Information
Table.

POINTER to the IORS of the request being
processed. The device interrupt procedure must
update information in this IORS. A value of zero
for this parameter indicates that there are no
requests on the request queue and that the
interrupt is extraneous.

POINTER to the DUIB of the device-unit on which
the I/O function was performed.

5-5

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

ddata$p POINTER to the user portion of the device's data
storage area. The d~vice interrupt procedure can
update flags in this data area or retrieve data
sent by the device.

The device interrupt procedure must do the following:

• It must determine whether the interrupt resulted from the
completion of an I/O function by the correct device-unit.

• If the correct device-unit did send the interrupt~ the device
interrupt procedure must determine whether the request is
finished •. If the request is finished, the device interrupt
procedure must set the lORS.DONE field to TRUE.

• It must process the interrupt. This may involve setting flags in
the user portion of the data storage area, tranferring data
written by the device to a buffer, or some other operation.

• If an error has occurred~ it must set the lORS.STATUS field to
indicate an E$IO condition and the IORS.UNIT$STATUS field to a
nonzero value. The lower four bits of the field should be set as
indicated in the "IORS Structure" section of Chapter 2. The
remaining bits of the field can be set to any value (for example,
the iSBC 204 and 206 device drivers return the device's result
byte in the remainder of this field). It must also set the
10RS.DONE field to TRUE, indicating that the request is finished
because of the error.

• If no error has occurred, it must set the 10RS.STATUS field to
indicate an E$OK condition.

PROCEDURES THAT iRMI 86 RANDOM ACCESS DRIVERS MUST CALL

There are two procedures that random access drivers in iRMX 86
applications must call under certain well-defined circumstances. They
are called NOTIFY and SEEK$COMPLETE.

THE NOTIFY PROCEDURE

Whenever a door to a flexible diskette drive is opened or the STOP button
on a hard disk drive is pressed, the device driver for that device must
notify the I/O System that the device is no longer available. The device
driver does this by calling the NOTIFY procedure- When called in this
manner, the I/O System stops accepting I/O requests for files on that
device unit. Before the device unit can again be available for I/O
requests, the application must detach it by a call to
A$PHYSICAL$DETACH$DEVICE and reattach it by a call to
A$PHYSICAL$ATTACH$DEVICE. Moreover, the application must obtain new file
connections for files on the device unit.

5-6

WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

In addition to not accepting I/O requests for files on that device unit,
the I/O System will respond by sending an object to a mailbox. For this
to happen, however, the object and the mailbox must have been established
for this purpose by a prior call to A$SPECIAL, with the spec$func
argument equal to FS$NOTIFY (=2). (The A$SPECIAL system call is
described in the BASIC I/O SYSTEM REFERENCE MANUAL.) The task that
awaits the object at the mailbox has the responsibility of detaching and
reattaching the device unit and of creating new file connections for
files on the device unit.

The syntax of the NOTIFY procedure is as follows:

where

unit

ddata$p

CALL NOTIFY(unit, ddata$p);

BYTE containing the unit number of the unit on the
device that went off-line.

POINTER to the user portion of the device's data
storage area. This is the same pointer that was
passed to the device driver by way of the device$init,
device$start, or device$interrupt procedure.

THE SEEK$COMPLETE PROCEDURE

In most applications, it is desirable that seek operations be performed
as quickly as possible. To facilitate this, a device driver receiving a
seek request can take the following actions in the following order:

• Set the DONE flag in the IORS to TRUE (=OFFH).

• Perform the requested seek operation.

• Call the SEEK$COMPLETE procedure to signal the completion of the
seek operation.

This enables the I/O System to increase the extent to which it operates
asynchronously, and thereby to improve its performance.

The syntax of the SEEK$COMPLETE procedure is as follows:

where

unit

ddata$p

CALL SEEK$COMPLETE(unit, ddata$p);

BYTE containing the unit number on the device of the
unit on which the seek operation is completed.

POINTER to the user portion of the device's data
storage area. This is the same pointer that was
passed to the device driver by way of the device$init
procedure.

5-7

I
WRITING COMMON OR RANDOM ACCESS DEVICE DRIVERS

Note that if your device driver calls the SEEK$COI1PLETE procedure when a
seek operation is completed, the CYLINDER$SIZE field of the Unit
Information Table for the device unit should be configured greater than
zero. On the other hand, if the driver does not call SEEK$COMPLETE, then
CYLINDER$SIZE must be configured to zero.

5-8

CHAPTER 6. WRITING A CUSTOM DEVICE DRIVER

Custom device drivers are drivers that you create in their entirety
because your device doesn't fit into either the common or random access
device category, either because the device requires a priority-ordered
queue, multiple interrupt levels, or because of some other reasons that
you have determined. When you write a custom device driver, you must
provide all of the features of the driver, including creating and
deleting resources, implementing a request queue, and creating an
interrupt handler. You can do this in any manner that you choose as long
as you supply the following four procedures for the I/O System to call:

An Initialize I/O Procedure. This procedure must initialize the
device and create any resources needed by the procedures in the
driver.

A Finish I/O Procedure. This procedure must perform any final
processing on the device and delete resources created by the
remainder of the procedures in the driver.

A Queue I/O Procedure. This procedure must place the I/O requests on
a queue of some sort, so that the device can process them when it
becomes available.

A Cancel I/O Procedure. This procedure must cancel a previous1y
queued I/O request.

In order for the I/O System to communicate with your device driver
procedures, you must provide the addresses of these four procedures for
the DUIBs that correspond to the units of the device.

The next four sections describe the format of each of the I/O System
calls to these four procedures. Your procedures must conform to these
formats.

INITIALIZE I/O PROCEDURE

The iRMX 86 I/O System calls the Initialize I/O procedure when an
application task makes an RQAPHYSICAL$ATTACH$DEVICE system call and no
units of the device are currently attached. The iRMX 88 I/O System calls
the Initialize I/O procedure when an application task attaches or creates
a file on the device and no other files on the device are currently
attached. In either case, the I/O System calls the Initialize I/O
procedure before calling any other driver procedure.

The Initialize I/O procedure must perform any initial processing
necessary for the device or the driver. If the device requires an
interrupt task (or region or device data object, in the case of iRMX 86
drivers), the Initialize I/O procedure should create it (them).

6-1

WRITING A CUSTOM DEVICE DRIVER

The format of the call to the Initialize I/O procedure is as follows:

CALL init$io(duib$p, ddata$p, status$p);

where:

init$io

duib$p

ddata$p

status$p

FINISH I/O PROCEDURE

Name of the Initialize I/O procedure. You can use
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address for the DUIBs
of all device-units that it services.

POINTER to the DUIB of the device-unit for which
the request is intended. The init$io procedure
uses this DUIB to determine the characteristics of
the unit.

POINTER to a WORD in which the init$io procedure
can place the location of a data storage area, if
the device driver needs such an area. If the
device driver requires that a data area be
associated with a device (to contain the head of
the I/O queue, DUIB addresses, or status
information), the init$io procedure should create
this area and save its location via this pointer.
If the driver does not need such a data area, the
init$io procedure should return a zero via this
pointer.

POINTER to a WORD in which the init$io procedure
must place the status of the initialize operation.
If the operation is completed successfully, the
init$io procedure must return the E$OK condition
code. Otherwise it should return the appropriate
exception code. If the init$io procedure does not
return the E$OK condition code, it must delete any
resources that it has created and leave all data
fields with exactly the same information that they
contained prior to the call to init$io.

The iRMX 86 I/O System calls the Finish I/O procedure after an
application task makes an RQAPHYSICAL$DETACH$DEVICE system call to
detach the last unit of a device. The iRMX 88 I/O System calls the
Finish I/O procedure when an application task detaches or deletes the
last remaining file connection for the device.

The Finish I/O procedure performs any necessary final processing on the
device. It must delete all resources created by other procedures in the
device driver and must perform final processing on the device itself, if
the device requires such processing.

6-2

WRITING A CUSTOM DEVICE DRIVER

The format of the call to the Finish I/O procedure is as follows:

CALL finish$io(duib$p, ddata$t);

where:

finish$io

duib$p

ddata$t

QUEUE I/O PROCEDURE

Name of the Finish I/O procedure. You can specify
any name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address for the DUIBs
of all device-units that it services.

POINTER to the DUIB of a device-unit of the device
being detached. The finish$io procedure needs this
DUIB in order to determine the device on which to
perform the final processing.

SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. The finish$io procedure must delete
this resource and any others created by driver
routines.

The I/O System calls the Queue I/O procedure to place an I/O request on a
queue, so that it can be processed when the device is not busy. It is
recommended that the Queue I/O procedure actually start the processing of
the I/O request if the device is not busy. The format of the call to the
Queue I/O procedure is as follows:

CALL queue$io(iors$t, duib$p, ddata$t);

where:

queue$io

iors$t

Name of the Queue I/O procedure. You can use any
name for this procedure as long as it does not
conflict with other procedure names. You must,
however, provide its starting address for the DUIBs
of all device-units that it services.

SELECTOR containing the location of an IORS. This
10RS describes the request. When the request is
processed, the driver (though not necessarily the
queue$io procedure) must fill in the status fields
and send the 10RS to the response mailbox
(exchange) indicated in the 10RS. Chapter 2
describes the format of the IORS. It lists the
information that the I/O System supplies when it
passes the IORS to the queue$io procedure and
indicates the fields of the 10RS that the device
driver must fill in.

6-3

I

I

I

I

duib$p

ddata$t

CANCEL I/O PROCEDURE

WRITING A CUSTOM DEVICE DRIVER

POINTER to the DUIB of the device-unit for which
the request is intended.

SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. The queue$io procedure can place any
necessary information in this area in order to
update the request queue or status fields.

The I/O System can call the Cancel I/O procedure in order to cancel one
or more previously queued I/O requests. The iRMX 88 I/O System does not
call Cancel I/O, but in the iRMX 86 environment Cancel I/O is called
under either of the following two conditions:

• If the user makes an RQAPHYSICAL$DETACH$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL for a description of this call). This
system call forcibly detaches all objects associated with a
device-unit.

• If the job containing the task which made an I/O request is
deleted. The I/O System calls the Cancel I/O procedure to remove
any requests that tasks in the deleted job might have made.

If the device cannot guarantee that a request will be finished within a
fixed amount of time (such as waiting for input from a terminal
keyboard), the Cancel I/O procedure must actually stop the device from
processing the request. If the device guarantees that all requests
finish in an acceptable amount of time, the Cancel I/O procedure does not
have to stop the device itself, but only removes requests from the queue.

The format of the call to the Cancel I/O procedure is as follows:

CALL cancel$io(cancel$id, duib$p, ddata$t);

where:

cancel$io

cancel$id

Name of the Cancel I/O procedure. You can use any
name for this procedure as long as it doesn't
conflict with other procedure names. You must,
however, provide its starting address for the DUIBs
of all device-units that it services.

WORD containing the id value for the I/O requests
that are are to be cancelled. Any pending requests
with this value in the cancel$id field of their
10RS's must be removed from the queue of requests by
the Cancel I/O procedure. MOreover, the I/O System
places a CLOSE request with the same cancel$id value
in the queue. The CLOSE request must not be
processed until all other requests with that
cancel$id value have been returned to the I/O System.

6-4

duib$p

ddata$t

WRITING A CUSTOM DEVICE DRIVER

POINTER to the DUIB of the device-unit for which
the request cancellation is intended.

SELECTOR containing the location of the data
storage area originally created by the init$io
procedure. This area may contain the request queue.

IMPLEMENTING A REQUEST QUEUE

Making I/O requests via system calls and the actual processing of these
requests by I/O devices are asynchronous activities. When a device is
processing one request, many more can be accumulating. Unless the device
driver has a mechanism for placing I/O requests on a queue of some sort,
these requests will become lost. The common and random access device
drivers form this queue by creating a doubly linked list. The list is
used by the QUEUE$IO and CANCEL$IO procedures, as well as by
INTERRUPT$TASK.

Using this mechanism of the doubly linked list, common and random access
device drivers implement a FIFO queue for I/O requests. If you are
writing a custom device driver, you might want to take advantage of the
LINK$FOR and LINK$BACK fields that are provided in the IORS and implement
a scheme similar to the following for queuing I/O requests.

Each time a user makes an I/O request, the I/O System passes an laRS for
this request to the device driver, in particular to the Queue I/O
procedure of the device driver. The common and random access driver
Queue I/O procedures make use of the LINK$FOR and LINK$BACK fields of the
laRS to link this laRS together with IORSs for other requests that have
not yet been processed.

This queue is set up in the following manner. The device driver routine
that is actually sending data to the controller accesses the first IORS
on the queue. The LINK$FOR field in this IORS points to the next laRS on
the queue. The LINK$FOR field in the second laRS points to the third
IORS on the queue, and so forth until, in the last laRS on the queue, the
LINK$FOR field points back to the first IORS on the queue. The LINK$BACK
fields operate in the same manner. The LINK$BACK field of the last laRS
on the queue points to the previous IORS. The LINK$BACK field of the
second to last laRS points to the third to last laRS on the queue, and so
forth, until, in the first IORS on the queue, the LINK$BACK field points
back to the last IORS in the queue. A queue of this sort is illustrated
in Figure 6-1.

The device driver can add or remove requests from the queue by adjusting
LINK$FOR and LINK$BACK pointers in the IORSs.

6-5

I

---.

r--

Firs.,ORS
on queue

linkSlor

linkSback
K

WRITING A CUSTOM DEVICE DRIVER

Second IORS
on queue

IinkSlor

IinkSback

>(
Third IORS
on queue

IinkStor

Unk$Nc:k

/:.\

Figure 6-1. Request Queue

Last IORS
on queue

linkSlor

IinkSback

To handle the dual problems of locating the queue and ascertaining
whether the queue is empty, you can use a variable such as head$queue.
If the queue is empty, head$queue contains the value O. Otherwise,
head$queue contains the address of the first IORS in the queue.

6-6

~

-

CHAPTER 7. TERMINAL DRIVERS

In both iRMX 86- and iRMX 88-based application systems, there can be a
system-supplied Terminal Handler that interfaces between the Nucleus and
a terminal device. However, in UlMX 86-based applications requiring
maximum performance, it is better to supply a terminal driver that is
written especially for your type of terminal. Such a driver has the
added advantage of supporting the power and convenience of the I/O System
calls. The iRMX 88 Executive does not support terminal drivers.

This chapter explains how to write a terminal driver whose capabilities
include handling single-character I/O, parity checking, answering and
hanging up functions on a modem, and automatic baud rate searching for
each of several terminals. Such a driver is neither common, random
access, nor custom. Consequently, this chapter is more self-contained
than Chapters 5 and 6; it describes the data structures used by terminal
drivers, as well as the procedures that you must provide.

TERMINAL SUPPORT CODE

As in the case of common and random access drivers, the I/O System
provides the procedures that the I/O System calls. They are known
collectively as the Terminal Support Code. Figure 7-1 shows
schematically the relationships between the various layers of code that
are involved in driving a terminal.

APPLICATION TASK

BASIC I/O SYSTEM

TERMINAL SUPPORT
CODE

TERMINAL DRIVER

TERMINAL 0952

Figure 7-1. Software Layers Supporting Terminal I/O

7-1

TERMINAL DRIVERS

Among the duties performed by the Terminal Support Code are managing
buffers and maintaining several terminal-related modes.

DATA STRUCTURES SUPPORTING TERMINAL I/O

The principal data structures supporting terminal I/O are the Device-Unit
Information Block (DUIB), Terminal Device Information Table, Terminal
Controller Data, and Terminal Unit Data. These data structures are
defined in the next few paragraphs.

DUIB

The DUIB for a device-unit that is a terminal is as follows:

DECLARE DEV$UNIT$INFO$BLOCK STRUCTURE (
NAME(14)
FILE$DRlVERS
FUNCTS
FLAGS
DEV$GRAN
DEV$SIZE
DEVICE
UNIT
DEV$UNIT
INIT$IO
FINISH$IO
QUEUE $10
CANCEL$IO
DEVICE$INFO$P
UNIT$INFO$P
UPDATE$TIMEOUT
NUM$BUFFERS
PRIORITY
FlXED$UPDATE
MAX$BUFFERS
RESERVED

BYTE,
WORD,
BYTE,
BYTE,
nORD,
WORD,
BYTE,
BYTE,
WORD,
WORD,
WORD,
WORD,
WORD,
POINTER,
POINTER,
WORD,
WORD,
BYTE,
BYTE,
BYTE,
BYTE) ;

TERMINAL DEVICE INFORMATION TABLE

/* Device-Dependent */
/* 1 = Physical */
/* OFBH = No Seek */
/* 0 = Not a Disk Device */
/* 0 = Not Random Access */
/* 0 = Not a Storage Device */
/* Device-Dependent */
/* Unit-Dependent */
/* Device- and Unit-Dependent */
/* TSINIT Offset */
/* TSFINISH Offset */
/* TSQUEUE Offset */
/* TSCANCEL Offset */
/* Device$info Address */
/* Unit$info Address */
/* OFFFFH = Not a Disk Device */
/* 0 = No Buffers */
/* I/O System-Dependent */
/* 0 = No Fixed Updates */
/* 0 = No Buffers */

The Terminal Device Information Table is designed to provide information
about a terminal controller. A pseudo-declaration of it, having nested
structures (which violates the rules of the PL/M-86 language and can be
accomplished only by overlaying structures) follows. See the example of
a terminal driver in Appendix B for an example of how the Terminal Device
Information Table is actually declared.

The procedures term$init, term$finish, term$setup, term$out, term$answer,
term$hangup, and term$check, whose names appear in this declaration, are
user-supplied procedures whose duties are described later in this chapter.

7-2

TERMINAL DRIVERS

DECLARE TERMINAL$DEVICE$INFORMATION STRUCTURE(
NUM$UNITS WORD,
DRIVER$DATA$SIZE WORD,
STACK$SIZE WORD,
TERM$INIT WORD,
TERM$FINISH WORD,
TERM$SETUP WORD,
TERM$OUT WORD,
TERM$ANSWER WORD,
TERM$HANGUP WORD,
NUM$INTERRUPTS WORD,
INTERRUPTS(NUM$INTERRUPTS) STRUCTURE(

INTERRUPT$LEVEL WORD,
TERM$CHECK WORD,

DRlVER$INFO(*) BYTE»;

where:

NUM$UNITS WORD containing the number of terminals on this
terminal controller.

DRIVER$DATA$SIZE

STACK$SIZE

TERM$INIT

TERM$FINISH

TERM$SETUP

TERM$OUT

TERM$ANSWER

TERM$HANGUP

NUM$INTERRUPTS

INTERRUPT$LEVEL

WORD containing the number of bytes in the
driver's data area pointed to by the
END$CDATA$PTR field of the Terminal Controller
Data structure.

WORD containing the number of bytes of stack
needed collectively by the user-supplied
procedures in this device driver.

WORD containing the offset in the code segment of
this controller's term$init procedure.

WORD containing the offset in the code segment of
this controller's term$finish procedure.

WORD containing the offset in the code segment of
this controller's term$setup procedure.

WORD containing the offset in the code segment of
this controller's term$out procedure.

WORD containing the offset in the code segment of
this controller's term$answer procedure.

WORD containing the offset in the code segment of
this controller's term$hangup procedure.

WORD containing the number of interrupt lines
that this controller uses.

WORDS containing the level numbers of the
interrupts that are associated with the terminals
driven by this controller.

7-3

TERM$CHECK

DRIVER$INFO

TERMINAL DRIVERS

WORDS containing the offsets in the code segment
of the term$check procedures associated with the
interrupts that this controller uses. If one of
these words equals zero, there is no term$check
procedure associated with the corresponding
interrupt level. Instead, interrupts on this
line are assumed to be output ready interrupts
for unit (terminal) O.

BYTES containing driver-dependent information.

NOTE

Because terminal drivers are directly
concerned only with the driver$info
field, a terminal driver can declare
this structure for its own purposes as
follows:

DECLARE
TERM$DEVICE$INFO STRUCTURE(
FILLER(NBROFWORDS) WORD,
/* driver info fields here*/);

where NBROFWORDS equals
10 + 2*(number of interrupt levels used
by the driver)

You must supply procedures with the names term$init, term$finish,
term$setup, term$out, term$answer, term$hangup, and term$check. However,
if your terminals are not used with modems, the term$answer and
term$hangup procedures may simply contain a RETURN. Also, if your
application does not require the services of a procedure that tidies up
when all of the terminals on the controller are detached, the term$finish
procedure also may simply contain a RETURN.

TERMINAL CONTROLLER DATA AND TERMINAL UNIT DATA

The Terminal Controller Data structure contains data pertaining to a
terminal controller. The Terminal Unit Data structure, on the other
hand, contains data pertaining to an individual terminal. Each terminal
controller can drive several terminals, so for each Terminal Controller
Data structure, there is one or more Terminal Unit Data structures.
Because of this relationship, it is convenient to describe these two data
structures together in a single pseudo-declaration. As with the
pseudo-declaration of the Terminal Device Information Table, nesting
structures violates the syntax rules of the PL/M-86 language and can be
accomplished only by overlaying structures. See the terminal driver
example in Appendix B for an example of how the Terminal Controller Data
and Terminal Unit Data structures are actually declared.

7-4

TERMINAL DRIVERS

The Terminal Controller Data structure always starts on a segment
boundary.

DECLARE CONTROLLER$DATA STRUCTURE(
10 S $DATA$ SEGMENT SELECTOR,
STATUS WORD,
INTERRUPT$TYPE BYTE,
INTERRUPTING$UNIT BYTE,
DEV$INFO$PTR POINTER,
END$CDATA$PTR POINTER,
RESERVED(34) BYTE,
UNIT$DATA(*) STRUCTURE (

UNIT$INFO$PTR POINTER,
TERMINAL$FLAGS WORD,
IN$RATE WORD,
OUT$RATE WORD,
SCROLL$NUMBER WORD,
RESERVED(1012) BYTE»;

where:

IOS$DATA$SEGMENT SELECTOR containing the base address of the I/O
System's data segment.

STATUS

INTERRUPT$TYPE

WORD containing the status that is returned by
the term$init procedure.

BYTE containing the encoded interrupt type that
is returned from the term$check procedure. The
possible values are:

TI$NOTHING = o or 8
TI$INPUT 1 or 9
TI$OUTPUT 2 or 10
TI$RING = 3 or 11
TI$CARRIER = 4 or 12

For more information about these codes and their
values~ see the description of the term$check
procedure in the next section.

INTERRUPTING$UNIT BYTE containing the unit number returned by the
term$check procedure. This value identifies the
unit that is interrupting.

DEV$INFO$PTR POINTER to the Terminal Device Information Table
for this controller.

END$CDATA$PTR

UNIT$DATA

POINTER to the end of the information in the
Terminal Controller Data structure. This area
may be used by the driver, as needed.

STRUCTURE containing Terminal Unit Data for a
particular unit (terminal) being driven by this
controller.

7-5

TERMINAL DRIVERS

CONTROLLER$DATA (continued)

UNIT$INFO$PTR

TERMINAL$FLAGS

POINTER to the unit$info for this terminal. This
is the same value as in the UNIT$INFO$P field of
the DUIB for this device-unit (terminal).

WORD containing a variety of mode information
pertaining to this terminal. The flags in this
word are encoded as follows (bit 15 is the
high-order bit):

Bits Meaning

o Reserved. Must equal 1.

1 Terminal configuration.
o Full duplex
1 = Half duplex

2 Output medium.
o CRT
1 = Hard copy

3 MOdem indicator.
o = Not used with a modem
1 = Used with a modem

5-4 Parity control for bytes read
from the keyboard.

7-6

o Set input parity bit (bit 7) to
o

1 = Do not alter parity bit (bit 7)
on any byte read

2 Set input parity bit (bit 7) to
1 if the input byte has odd
parity or if there is an error,
such as (a) the received stop
bit has a value of 0 (framing
error) or (b) the current
character was input before the
previous character had been
fully processed (overrun
error); otherwise, set the
parity bit to 0*

3 Set input parity bit (bit 7) to
1 if the input byte has even
parity or if there is an error,
such as (a) the received stop
bit has a value of 0 (framing
error) or (b) the current
character was input before the
previous character had been
fully processed (overrun
error); otherwise, set the
parity bit to 0*

TERMINAL DRIVERS

8-6 Parity control for bytes written
0 Set output parity bit (bit 7)

to 0
1 Set output parity bit (bit 7)

to 1
2 Set output parity bit (bit 7)

for even parity*
3 Set output parity bit (bit 7)

for odd parity*
4 Don't alter output parity bit

(bit 7)
15-9 Reserved. Set to O.

* If bits 4-5 contain 2 or 3 and bits 6-8 also contain 2 or 3, then
they must both contain the same value. That is, both contain 2 or
both contain 3.

IN$RATE

OUT$RATE

S CROLL$NUMBER

Input baud rate indicator, encoded as follows:
o Not applicable
1 Perform automatic baud rate search

Other Baud rate on input

Output baud rate indicator, encoded as follows:
o Not applicable
1 Use the input baud rate for output

Other Baud rate for output

The number of lines of output to be scrolled when
the scrolling output control character (default
is Control-W) is entered at the terminal

7-7

TERMINAL DRIVERS

TERMINAL DRIVER PROCEDURES

Each terminal driver must supply the seven procedures that the Terminal
Support Code calls. Each of these procedures, which are described in the
following paragraphs, requires as input a pointer to a data structure.
If the procedure is to perform duties on behalf of all of the terminals
connected to the controller, this data structure is the Terminal
Controller Data. On the other hand, if the procedure is to perform
duties for just a particular terminal, the data structure is the Terminal
Unit Data for that terminal.

Because the Terminal Controller Data structure always starts on a
paragraph boundary, a procedure that receives a pointer to the Terminal
Unit Data structure can find the Terminal COntroller Data structure by
using the base part of the Terminal Unit Data pointer.

THE TERM$INIT PROCEDURE

This procedure must initialize the controller. The nature of this
initialization is device-dependent. When finished, the term$init
procedure must fill in the STATUS field of the Terminal Controller Data
structure, as follows:

• If initialization was successful, set STATUS equal to E$OK (= 0).

• If initialization was not successful, you should normally set
STATUS equal to E$IO (= 2BH). However, the STATUS field can be
set to any other value. If it is, that value will be returned to
the task that is attempting to attach the device.

The syntax of a call to term$init is as follows:

CALL term$init(cdata$p);

where cdata$p is a POINTER to the Terminal Controller Data structure.

THE TERM$FINISH PROCEDURE

The Terminal Support Code calls this procedure after the last terminal
unit on the terminal controller is detached. The term$finish procedure
can simply do a RETURN, it can clean up data structures for the driver,
or it can clear the controller.

The syntax of a call to term$finish is as follows:

CALL term$finish(cdata$p);

where cdata$p is a POINTER to the appropriate Terminal Controller Data
structure.

7-8

TERMINAL DRIVERS

THE TERM$SETUP PROCEDURE

This procedure "sets up" one terminal according to the TERMINAL$FLAGS,
IN$RATE, and OUT$RATE fields in that terminal's Terminal Unit Data
structure. In particular, if IN$RATE is 1, then the term$setup procedure
must start a baud rate search. (The term$check procedure usually
finishes the search and then fills in IN$RATE with the actual baud
rate.) If OUT$RATE is 1, the output baud rate is to be the same as the
input baud rate.

The syntax of a call to term$setup is as follows:

CALL term$setup{udata$p);

where udata$p is a POINTER to the terminal's Terminal Unit Data structure.

THE TERM$ANSWER PROCEDURE

This procedure activates the Data Terminal Ready line for a particular
terminal. The Terminal Support Code calls term$answer only when both of
the following are true:

• Bit 3 of TERMINAL$FLAGS in the terminal's Terminal Unit Data
structure has been set to 1.

• The Terminal Support Code has received a Ring Indicate signal or
an answer request for the terminal.

The syntax of a call to term$answer is as follows:

CALL term$answer(udata$p);

where udata$p is a POINTER to-the terminal's Terminal Unit Data structure.

THE TERM$HANGUP PROCEDURE

This procedure clears the Data Terminal Ready line for a particular
terminal. The Terminal Support Code calls term$hangup only when both of
the following are true:

• Bit 3 of TERMINAL$FLAGS in the terminal's Terminal Unit Data
structure has been set to 1.

• The Terminal Support Code has received a Carrier Loss signal or a
hangup request for the terminal.

The syntax of a call to term$hangup is as follows:

CALL term$hangup(udata$p);

where udata$p is a POINTER to the terminal's Terminal Unit Data structure.

7-9

TERMINAL DRIVERS

THE TE~~$CHECK PROCEDURE

The Terminal Support Code usually calls this procedure whenever the
terminal produces an interrupt, which usually signals that a key on that
terminal's keyboard has been pressed. The term$check procedure, which
receives a pointer to the Terminal Controller Data structure, must fill
in that structure's interrupt$type and interrupting$unit fields. If the
character received is an upper-case "U .. , and the term$check procedure has
not already done so, it should ascertain the terminal's baud rate and
place that value into the IN$RATE field of the terminal's Terminal Unit
Data structure.

If the interrupt cannot be processed immediately because previous
interrupts are still being processed, this is indicated by adding 8 to
the usual interrupt$type code. For example, if the interrupt indicates
an input character is ready on unit 1 and unit 3 has become ready for
output, term$check should return 9 in interrupt$type and 1 in
interrupting$unit. The Terminal Support Code will call term$check again,
and when it does, term$check should return 2 in interrupt$type and 3 in
interrupting$unit.

If the interrupt$type is TI$INPUT (= 1 or 9), the term$check procedure
must input the character, adjust the parity bit according to bits 4 and 5
of the TERMINAL$FLAGS word in the terminal's unit data structure, and
return the adjusted byte. If the interrupt$type is not TI$INPUT,
term$check may return any value.

The syntax of a call to term$check is as follows:

input$char = term$check(cdata$p);

where cdata$p is a POINTER to the Terminal Controller Data structure.

THE TERM$OUT PROCEDURE

This procedure is called to display a character on a terminal. The
Terminal Support Code passes it the character and a pointer to the
Terminal Unit Data structure for the terminal. If bits 6 through 8 of
the terminal's TERMINAL$FLAGS word so indicate, the term$out procedure
should adjust the character's parity bit and then output (echo) the
character.

The syntax of a call to term$out is as follows:

CALL term$out(udata$p, output$character);

where udata$p is a POINTER to the Terminal Unit Data structure.

7-10

TERMINAL DRIVERS

PROCEDURES' USE OF DATA STRUCTURES

This section provides Table 7-1 to help you sort out the responsibilities of
the various procedures in a terminal device driver. In the table, the
following codes are used to refer to those procedures:

(1) Term$init
(2) Term$finish
(3) Term$setup
(4) Term$answer
(5) Term$hangup
(6) Term$check
(7) Term$out

Also, "System" and "rcu" are used in Table 7-1 to indicate the iRMX 86
software and the iRMX 86 Interactive Configuration Utility, respectively. In
addition, IITerm$flags" is an abbreviation of ··Terminal$flags,·· and numbers
following immediately after "Term$flags" are bit numbers in that word.

Table 7-1. Uses of Fields in Terminal Driver Data Structures

Filled in/Changed by Can or Will be Used by
Controller$data

IOS$data$segment System (1)-(7)
Status (1) System
Interrupt$type (6) System
Interrupting$unit (6) System
Dev$info$ptr System (1)-(7)
End$cdata$ptr System (1)-(7)
Unit$data

Unit$info$ptr System System
Term$flags (0-2) System System
Term$flags (3) System (3)
Term$flags (4-5) System (3),(6)
Term$flags (6-8) System (3),(6),(7)

In$rate System,(3),(6) (3)
Out$rate System (3)
Scroll$number System System

Terminal$device$info
Num$units rcu System
Driver$data$size rcu System
Stack$size rcu System
Term$init rcu System
Term$finish rcu System
Term$setup rcu System
Term$out leu System
Term$answer reu System
Term$hangup reu System
Term$check reu System
rnterrupts

Interrupt$level reu System
Term$check reu System

Driver$info reu (1)-(7)

7-11

CHAPTER 8. BINDING A DEVICE DRIVER TO THE I/O SYSTEM

You can write the modules for your device driver in either PL/M-86 or the
MCS-86 Macro Assembly Language. However, you must adhere to the
following guidelines:

• If you use PL/M-86, you must define your routines as reentrant,
public procedures, and compile them using the ROM and COMPACT
controls.

• If you use assembly language, your routines must follow the
conditions and conventions used by the PL/M-86 COMPACT size
control. In particular, your routines must function in the same
manner as reentrant PL/M-86 procedures with the ROM and COMPACT
controls set. The 8086/8087/8088 MACRO ASSEMBLER OPERATING
INSTRUCTIONS FOR 80BO/8085-BASED DEVELOPMENT SYSTEMS and the
8086/8087/8088 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR
8086-BASED DEVELOPMENT SYSTEMS describe these conditions and
conventions.

USING THE iRMX 86 INTERACTIVE CONFIGURATION UTILITY

In order to use the iRMX 86 Interactive Configuration Utility to
configure a driver that you have written into your system, you must
perform the following steps in the following order:

(1) For each device driver that you have written, assemble or
compile the code for the driver.

(2) Put all the resulting modules in the same library, such as
driver. lib.

(3) Ascertain the next available device-unit number.

(a) For each Intel-supported device, count the number of
different unit numbers that are referenced in all the
device-units for that device.

(b) Add all of the values obtained in step 3(a).

(c) Add two to the total calculated in step 3(b). This value
is the next available device-unit number.

(4) Determine the next available device number.

8-1

I

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

(5) For each device driver create the following:

(a) The DUIBs for the device. (All DUIBs should be in the same
file.)

(b) The device information table for the driver.

(c) If applicable, any unit information table(s).

(d) An external declarations file for any custom devices. (The
device information tables, unit information tables, and
external declarations should be in the same file.)

(6) When using the ICU,

(a) Answer "yes" when asked if you have any non-Intel device
drivers (this means drivers that you have written.)

(b) When asked, enter the path name of your device driver
library. This refers to the library built in step (2), for
example, :fl:driver.lib.

(c) When prompted, enter the information the lCU needs to
assemble your code. The ICU creates a submit file that
assembles your code with the Intel-supplied code. The
information needed includes the following:

• DUIB source code pathname

• Device and Unit source code pathname

• Number of user defined devices

• Number of user defined device-units.

The ICU does the rest.

8-2

BINDING A DEVICE DRIVER TO THE I/O SYSTEM

USING THE iRMX 88 INTERACTIVE CONFIGURATION UTILITY

In order to use the iRMX 86 Interactive Configuration Utility to
configure a driver that you have written into your system, you must
perform the following steps in the following order:

(1) For each driver, assemble or compile the code.

(2) When using the ICU,

(a) Answer "20S", "215", "common
when asked for device type.

"random access", or "custom"

(b) When prompted, enter the information for the DUIB's, the
device information tables, and, if applicable, the unit
information table or the terminal controller data table.

(c) When prompted for linking information, enter the names of
the appropriate modules.

The ICU does the rest.

8-3

APPENDIX A. COMMON DRIVER SUPPORT ROUTINES

This appendix describes, in general terms, the operations of the common
device driver support routines. The routines described include:

INIT$IO
FINISH$IO
QUEUE $10
CANCEL$IO
INTERRUPT$TASK

These routines are supplied with the I/O System and are the device driver
routines actually called when an application task makes an I/O request of
a common device. These routines ultimately call the user-written device
initialize, device finish, device start, device stop, and device
interrupt procedures.

This appendix provides descriptions of these routines in order to show
you the steps that an actual device driver follows. You can use this
appendix to get a better understanding of the I/O System-supplied portion
of a device driver in order to make writing the device-dependent portion
easier (the random access driver support routines follow essentially the
same pattern). Or you can use it as a guideline for writing custom
device drivers.

INIT$IO PROCEDURE

The iRMX 86 I/O System calls INIT$IO when an application task makes an
RQAPHYSICAL$ATTACH$DEVICE system call and there are no units of the
device currently attached. The iRMX 88 I/O System calls INIT$IO when an
application task attaches or creates a file on the device and no other
files on the device are attached.

INIT$IO initializes objects used by the remainder of the driver routines,
creates an interrupt task, and calls a user-supplied procedure to
initialize the device itself.

When the I/O System calls INIT$IO, it passes the following parameters:

• A pointer to the DUIB of the device-unit to initialize

• In the iRMX 86 environment, a pOinter to the location where
INIT$IO must return a token for a data segment (data storage
area) that it creates

• A pointer to the location where INIT$IO must return the condition
code

A-I

COMt10N DRIVER SUPPORT ROUTINES

The following paragraphs show the general" steps that the INIT$IO
procedure goes through in order to initialize the device. Figure A-I
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

INITSIO

Creates data object for de-
vice and starts filling it.

11f

o
Creates the region for ac-
cess to the queue

t

Creates the interrupt task

Calls user-supplied proce-
dure to initialize device.

Returns to I/O System,
passing data object and
condition code

Figure A-I. Common Device Driver Initialize I/O Procedure

A-2

COMMON DRIVER SUPPORT ROUTINES

1. It creates a data storage area that will be used by all of the
procedures in the device driver. The size of this area depends
in part on the number of units in the device and any special
space requirements of the device. INIT$IO then begins
initializing this area and eventually places the following
information there:

• The value of the DS (data segment) register

• A token (identifier) for a region (exchange --- for mutual
exclusion)

• An array containing the addresses of the DUIBs for the
device-units on this device

• A token (identifier) for the interrupt task

• Other values indicating that the queue is empty and the
segment is not busy

It also reserves space in the data storage area for device data.

2. It creates a region. The other procedures of the device driver
gain access from this region whenever they place a request on the
queue or remove a request from the queue. INIT$IO places a token
for this region in the data object.

3. It creates an interrupt task to handle interrupts generated by
this device. INIT$IO passes to the interrupt task a token for
the data storage area. This area is where the interrupt task
will get information about the device. Also, INIT$IO places a
token for the interrupt task in the data storage area.

4. It calls a user-written device initialization procedure that
initializes the device itself. It gets the address of this
procedure by examining the device information table portion of
the DUIB. Refer to Chapter 3 for information on how to write
this initialization procedure.

5. It returns control to the I/O System, passing a token for the
data storage area and a condition code which indicates the
success of the initialize operation.

FINISH$IO PROCEDURE

The iRMX 86 I/O System calls FINISH$IO when an application task makes an
RQAPHYSICAL$DETACH$DEVICE system call and there are no other units of
the device currently attached. The iRMX 88 I/O System calls FINISH$IO
when an application detaches or deletes a file and no other files on the
device are attached.

FINISH$IO deletes the objects used by the other device driver routines,
deletes the interrupt task, and calls a user-supplied procedure to
perform final processing on the device itself.

COI1MON DRIVER SUPPORT ROUTINES

When the I/O System calls FINISH$IO, it passes the following parameters:

• A pointer to the DUIB of the device-unit just detached

• A pointer to the data storage area created by INIT$IO

The following paragraphs show the general steps that the FINISH$IO
procedure goes through in order to terminate processing for a device.
Figure A-2 illustrates these steps. The numbers in the figure correspond
to the step numbers in the text.

1. It calls a user-written device finish procedure that performs any
necessary final processing on the device itself. FINISH$IO gets
the address of this procedure by examining the device information
table portion of the DUIB. Refer to the Chapter 4 for
information about device information tables.

FINISHSIO

Calls user-supplied
procedure to finish up
processing on the device

,

o
Deletes interrupt task for
device and resets interrupt

Deletes region and data
objects used by this device
driver

,~

Returns to the 1/0 System

Figure A-2. Common Device Driver Finish I/O Procedure

A-4

COMMON DRIVER SUPPORT ROUTINES

2. It deletes the interrupt task originally created for the device
by the INIT$IO procedure and cancels the assignment of the
interrupt handler to the specified interrupt level.

3. It deletes the region and the data storage area originally
created by the INIT$IO procedure, allowing the operating system
to reallocate the memory used by these objects.

4. It returns control to the I/O System.

QUEUE$IO PROCEDURE

The I/O System calls the QUEUE$IO procedure in order to place an I/O
request on a queue of requests. This queue has the structure of the
doubly linked list shown in Figure 2-2. If the device itself is not
busy, QUEUE$IO also starts the request.

When the I/O System calls QUEUE$IO, it passes the following parameters

• A token (identifier) for the IORS

• A pointer to the DUIB

• A token (identifier) for the data object originally created by
INIT$IO

The following paragraphs show the general steps that the QUEUE$IO
procedure goes through in order to place a request on the I/O queue.
Figure A-3 illustrates these steps. The numbers in the figure correspond
to the step numbers in the text.

1. It sets the DONE field in the IORS to OH, indicating that the
request has not yet been completely processed. Other procedures
that start the I/O transfers and handle interrupt processing also
examine and set this field.

2. It receives access to the queue from the region. This allows
QUEUE$IO to adjust the queue without concern that other tasks
might also be doing this at the same time.

3. It places the IORS on the queue.

4. It calls an I/O System-supplied procedure in order to start the
processing of the request. This results in a call to a
user-written device start procedure which actually sends the data
to the device itself. This start procedure is described in
Chapter 5. If the device is already busy processing some other
request, this step does not start the data transfer.

5. It surrenders access to the queue, allowing other routines to
insert or remove requests from the queue.

A-5

COMMON DRIVER SUPPORT ROUTINES

aUEUESIO

Sets status fields in the
10RS

,

Gains access from the
region

1

Places the 10RS on the
queue

, ..

Starts the processing of the
request, if the device is not
busy

,

Surrenders access to the
region

Returns to the 1/0 System

Figure A-3. Common Device Driver Queue I/O Procedure

A-6

COMMON DRIVER SUPPORT ROUTINES

CANCEL$IO PROCEDURE

The I/O System calls CANCEL$IO to remove one or more requests from the
queue and possibly to stop the processing of a request, if it has already
been started. The iRMX 86 I/O System calls this procedure in one of two
instances:

• If a user makes an RQAPHYSICAL$DETACH$DEVICE system call and
specifies the hard detach option (refer to the iRMX 86 SYSTEM
PROGRAMMER'S REFERENCE MANUAL for information about this system
call). The hard detach removes all requests from the queue.

• If the job containing the task that makes an I/O request is
deleted. In this case, the I/O System calls CANCEL$IO to remove
all of that task's requests from the queue.

When the I/O System calls CANCEL$IO, it passes the following parameters:

• An id value that identifies requests to be cancelled

• A pointer to the DUIB

• A token (identifier) for the device data storage area

The following paragraphs show the general steps that the CANCEL$IO
procedure goes through in order to cancel an I/O request. Figure A-4
illustrates these steps. The numbers in the figure correspond to the
step numbers in the text.

1. It receives access to the queue from the region. This allows it
to remove requests from the queue without concern that other
tasks might also be processing the IORS at the same time.

2. It locates a request that is to be cancelled by looking at the
cancel$id field of the queued IORSs, starting at the front of the
queue.

3. If the request that is to be cancelled is at the head of the
queue, that is, the device is processing the request, CANCEL$IO
calls a user-written device stop procedure that stops the device
from further processing. Refer to the Chapter 5 for information
on how to write this device stop procedure.

4. If the request is finished, or if the IORS is not at the head of
the queue, CANCEL$IO removes the 10RS from the queue and sends it
to the response mailbox (exchange) indicated in the IORS.

5. It surrenders access to the queue, allowing other procedures to
insert or remove requests from the queue.

NOTE

The additional CLOSE request supplied
by the I/O System will not be processed
until all other requests with the given
cance1$id value have been dealt with.

~7

Figure A-4.

COMMON DRIVER SUPPORT ROUTINES

CANCElSIO

GAINS ACCESS
FROM THE REGION

I ,
Oblam IOAS
with specilied

CANCELSIO ue

R U. IORS _

Senda IORS

IOU:=-

-.... ,....,

10-110

calls the user-written
dewk:e Slop procedure

Common Device Driver Cancel I/O Procedure

A-8

COMMON DRIVER SUPPORT ROUTINES

INTERRUPT TASK (INTERRUPT$TASK)

As a part of its processing, the INIT$IO procedure creates an interrupt
task for the entire device. This interrupt task responds to all
interrupts generated by the units of the device, processes those
interrupts, and starts the device working on the next I/O request on the
queue.

The following paragraphs show the general steps that the interrupt task
for the common device driver goes through in order to process a device
interrupt. Figure A-5 illustrates these steps. The numbers in Figure
A-5 correspond to the step numbers in the text.

1. It uses the contents of the iAPX 86 DS register to obtain a token
(identifier) for the device data storage area. This is possible
because of the following two reasons:

• When INIT$IO created the interrupt task, instead of
specifying the correct contents of the OS register, it passed
the address of the data object as the contents of the task's
DS register.

• When the INIT$IO procedure created the data storage area, it
included the correct contents of the OS register in one of
the fields.

When the interrupt task starts running, it saves the contents of
the DS register (to use as the address of the data storage area)
and sets the DS register to the value listed in the field of the
data storage area. Thus the task has the correct value in its OS
register and it has the address of the data storage area. This
is the mechanism that is used to pass the address of the device's
data storage area from the INIT$IO procedure to the interrupt
task.

2. It makes an RQSETINTERRUPT system call to indicate that it is
an interrupt task associated with the interrupt handler supplied
with the common device driver. It also indicates the interrupt
level to which it will respond.

3. It begins an infinite loop by waiting for an interrupt of the
specified level.

4. Via a region, it gains access to the request queue. This allows
it to examine the first entry in the request queue without
concern that other tasks are modifying it at the same time.

5. It calls a user-written device-interrupt procedure to process the
actual interrupt. This can involve verifying that the interrupt
was legitimate or any other operation that the device requires.
This interrupt procedure is described further in Chapter 3.

~9

COMMON DRIVER SUPPORT ROUTINES

INTERRUPT$TASK

Adjusts OS register to obtain
the data object for the device

Sets interrupt level at which to
respond and indicates device

handler

- J

Waits for interrupt at the
specified level

t
Gains access from region

Calls the user-written intp.rrupt
proced u re to process

the interrupt

Is
the request

done
?

No

Yes

Surrenders access to the region

CD

®

Removes the IORS from the
queue and sends a message to

the response mail box

Starts the
next request

I

0951

Figure A-S. Common Device Driver Interrupt Task

A-lO

@

COMMON DRIVER SUPPORT ROUTINES

6. If the request has been completely processed, (one request may
require multiple reads or writes, for example), the interrupt
task removes the IORS from the queue and sends it as a message to
the response mailbox (exchange) indicated in the IORS. If the
request is not completely processed, the interrupt task leaves
the IORS at the head of the queue.

7. If there are requests on the queue, the interrupt task initiates
the processing of the next I/O request.

8. In any case, the interrupt task then surrenders access to the
queue, allowing other routines to modify the queue, and loops
back to wait for another interrupt.

A-II

APPENDIX B. EXA..~LES OF DEVICE DRIVERS

This appendix contains four examples of device drivers. The first, a
common driver, is a driver for a box with eight lights and eight
switches. The second~ also a common driver~ drives a line printer. The
third, a random access driver~ is a driver for the iSBC 206 disk
controller- And the fourth, a terminal driver, is a driver for a USART.

Note that the names of the procedures in the examples are not
device$start, device$interrupt, etc., as in the text of this manual.
This is because the actual names are placed~ during configuration, in the
appropriate DUIBs.

B-1

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

SERIES-III PL/M-86 DEBUG X119 COMPILATION OF MODULE LIGHT
OBJECT MODULE PLACED IN :F5:LIGHT.OBJ
COMPILER INVOKED BY: PLM86. 86 : FS: LIGHT. PS6 ROM COt.1PAC'r

I

2 I
3 I
4 1
5 1
6 1
7 1
8 1
9 1

IS 1
11 1
12 1
13 I
14 1

15 1

LI:3HT:
/***

~ilis driver is written to control a light/switch box
attached to an iSBC508 I/O Expansion Board. The box consists of
a series of 8 LED's (one for each bit) and 8 switches which
allow a byte to be 'read' from the device. The box is atta~hed
to the board at port 0, and an interrupt level of the user's
choosing (set at configuration time in the DUIB of the lOS) is
triggered by a debouncing circuit attached to the appropriate
interrupt level on the ~ultibus.

When the attachment is made to this device by a call to
RQAPHYSICAL$ATTACH$DEVICE, the box will light all LED's to
indicate a successful attachment. When the device is detached,
all LEry's will be turned off. Anytime a read or write is done
to or from the device, the interrupt must be manually triggered
by the user to indicate that the device has successfully
completed the transfer.

In order to accomplish this, the device was treated as a
~:),ilinon device, thereby allowing the use of the default routines
init$io, queue$io, finish$io, and cancelSio. In addition, the
Intel supplied procedures default$stop and defaultS finish were
used, since no action was required of the deuice on any of
these procedures.

This device and driver combination are not intended to be
used in a practical application, but rather are meantto show
the versatility and configurability of the device driver and to
present a simple example of one.

kkkkkk*******/

DO;

DECLARE TRUE LITERALLY '0FFH' ;
DECLARE FALSE LITERALLY aH' ;
DECLARE E$OK LITERALLY SH' ;
DECLARE E$IDDR LI'fERALLY ,

2AH' •
DECLARE E$IO LITERALLY , 2BH' ;
DECLARE F$READ LITERALLY S' ;
DECLARE F$WRITE LITERALLY 1 ';
DECLARE F$SEEK LITERALLY 2' • ,
DECLARE F$SPECIAL LITERALLY 3';
DECLARE F$ATTACH$DEV LITERALLY 4' ;
DECLARE F$DETACH$DEV LI'fERALLY 5' ;
DECLARE F$OPEN LITERALLY 6' ;
DECLARE F$CLOSE LITERALLY 7' ;

DECLARE ALL$LIGHTS$OFF LITERALLY 'f/JSSSSS0f/JB';

B-2

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

16

17

18
19

,20

21

22

23

24

25

1

1

2
2

2

2

1

2

2

2

DECL~RE ~LL$LIGHTS$ON LITERALLY '111111118';

SET$LIGHTS:

/* Routine to output the corresponding string to the light box */

PROCEDURE (PORT,NEW$VALUE)REENTRANTi

1)ECLARE PORT
DECLARE NEW$VALUE

OUTPUT (PORT)=NEW$VALUEi

END SET$LIGHTS;

READ$SWITCHES:

WORD;
BYTEi

/* Routine to read the switches on the front panel of the
light box */

PROCEDURE (PORT) BYTE REENTRANTi

DECL~RE PORT

RETURN (INPUT(PORT));

END REAO$SWITCHES;

B-3

WORD;

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

26

27
28

29
30
31
32

33

34
35

36

1

2
2

2
2
2
2

2

2
2

3

$EJECT

LIGHTBOXINIT$IO:
PROCEDURE (D~IB$PTR,DDATA$PTR,STATUS$PTR) REENTRANT PUBLIC;

/***

This procedure will establish a connection to the lights by
turning off all lights on all attached devices (as determined in
the num$units in the common$device$info block).

**/
DECLARE DUIB$PTR POINTER;
DECLARE DUIB BASED DUIB$PTR STRUCTURE

NAME(14} BYTE,
FILE$DRIVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEV$GRAN WORD,
LO'~DEVS I Z E WORD,
HIGHOEVSIZE WORD,
DEVICE I3Y'rE,
V~IT BYTE,
DEV$UNIT WORD,
INIT$IO WORD,
FINISH$IO WORD,
QUEUE$IO WORD,
CANCEL$IO WORD,
DEVICE$INFO$PTR POINTER,
UNIT$INFO$PTR POINTER,
UPDATE$TIMEOUT WORD,
~UM$BUFFERS WORD,
PRIORITY BYTE);

DECLARE STATUS$PTR POINTER;
DECLARE DD~TA$PTR POINTER;
DECLARE COMMON$DEVICE$INFO$PTR POINTER;
DECLARE COMMON$DEVICE$INFO BASED

COMMON$DEVICE$INFO$p'rR STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACK$SIZE WORD,
DATASSIZE WORD,
NUM$UNITS WORD,
DEVICE$INIT WORD,
DEVICE$FINISH WORD,
DEVICE$START WORD,
DEVICE$STOP WORD,
DEVICE$INTERRUPT WORD,
BASE WORD);

DECLARE INDEX WORD;

COMMON$DEVICESINFO$PTR=DUIB.DEVICE$INFO$PTR;
DO INDEX=0 TO (COMMON$DEVICE$INFO.NUM$UNITS-l);

CALL SET$LIGHTS «CO~MOS$OEVICE$INFO. BASE + INDEX),
ALL$LIGHTS$OFF);

B-4

EXAMPLES OF DEVICE DRIVERS

PL/M-86 CO~PILER LIGHT

37 3 END;
38 2 END LIGHTBOXINIT$IO;

39 1 LIGHTBOXSTART$IO:
PROCEDURE (IORS$PTR,DUIB$PTR,DDATA$PTR) REENTRANT PUBLIC;

4(3 2 DECLARE DUIB$PTR POINTER;
41 2 DECLARE DUIB BASED DUIB$PTR STRUCTURE

NA"1E(14) BYTE,
FILE$DRIVERS WORD,
FUNCTS BYTE,
FLAGS BYTE,
DEV$GRAN WORD,
LOWDEVSIZE WORD,
HIGHDEVSIZE WORD,
DEVICE BYTE,
UNIT BYTE,
DEV$UNIT WORD,
INIT$IO WORD,
FINISH$IO WORD,
QUEUE$IO WORD,
CANCEL$IO WORD,
DEVICE$INFO$PTR POINTER,
UNIT$INFO$PTR POINTER,
UPDATE$'rI~EOUT WORD,
NUM$BUFFERS WORD,
PRIORITY BYTE) ;

42 2 DECLARE DDATA$PTR POINTER;
43 2 DECLARE COMMON$DEVICE$INFO$PTR POINTER;
44 2 DECLARE COMMON$DEVICE$INFO BASED

COMMON$DEVICE$INFO$PTR STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACK$SIZE 'flORD,
DATA$SIZE WORD,
NUM$UNITS WORD,
DEVICE$INIT WORD,
DEVICE$FINISH WORD,
DEVICE$START WORD,
DEVICE$STOP WORD,
DEVICE$INTERRUPT WORD,
BASE WORD) ;

45 2 DECLARE IORS$PTR POINTER;
46 2 DECLARE IORS BASED IORS$PTR STRUCTURE (

STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUAL$FILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
LOWDEVLOC WORD,
HIGHDEVLOC WORD,
BUFF$PTR POINTER,

B-5

PL/M-86 COMPILER

47
48
49
5~

51

52

53
54
55
56

57
58
59
6~

61
62

63
64

65
66

2
2
2
2

2

2

3
4
4
4

3
4
4
4

3
4

3
4

3
4

EXAMPLES OF DEVICE DRIVERS

LIGHT

COUNT
COUNT$FILL
AUX$PTR
LINK$FOR
LINK$BACK
RESP$r.tBOX
DONE
FILL
CANCEL$ID

WORD,
WORD,
POINTER,
POINTER,
POINTER,
WORD,
BYTE,
BYTE,
WORD);

1* Initialize the 1/0 Structures *1

C0~MON$DEVICE$INFO$PTR=DUIB.DEVICE$INFO$PTR;

IORS.STATUS=E$IDDR;
IORS.ACTUAL=~;
IORS.DONE=TRUE;

1* Check for valid 1/0 functions *1

IF (IORS.FUNCT (= F$CLOSE) THEN

/* 1/0 function is valid, go ahead */

DO CASE (IORS.FUNCT);

/* Read-- Set done to false, since function will be finished
by interrupt routine. Set status to E$OK, since
function is valid. */

DO;
IORS.DONE=FALSEi
IORS.STATUS=E$OK;

END;

1* Write-- Set done to false, since function will be finished
by interrupt routine. Set status to E$OK, since
function is valid. *1

00;
IORS.DONE=FALSE;
IORS.STATUS=E$OK;

END;

1* Seek-- Function is invalid, return E$IDDR */

DO;
END;

1* Special-- Function is invalid, return E$IDDR *1

DO;
END;

1* Attach-- Activate all lights, return E$OK */

DO;
CALL SET$LIGHTS «COMMON$DEVICE$INFO.BASE + DUIB.UNIT),

B-6

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

ALL$LIGHTS$ON);
157 4 IORS.STATUS=E$OK.
68 4 END;

/* Detach-- Deactivate all lights, return E$OK. */

fi9 3 DO;
7" 4 CALL SET$LIGHTS {(COMMON$DEVICE$INFO.BASE + DUIS.UNIT),

ALL$LIGHTS$OFF);
71 4 IORS.STATUS=E$OK;
72 4 END;

/* Open-- Valid function, return E$OK */

73 3 DO;
74 4 IORS.STATUS=E$OK;
75 4 END;

/* Close-- Valid function, return ESOK */

76 3 DO;
77 4 IORS.STATUS=ESOK;
78 4 END;

79 3 END; /* case */
Bra 2 END LIGHTSOXSTARTSIO;

B-7

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

$EJECT

81 1 LIGHTBOXINTERRUPT:
PROCEDURE (IORS$PTR,DUIB$PTR,DDATA$PTR) REENTRANT PUBLIC;

82 2 DECLARE DUIB$PTR POINTER;
83 2 DECLARE DUIB BASED DUIB$PTR STRU:TURE

NAME(14) BYTE,
FILE$DRIVERS ~-lORD,

FUNCTS BYTE,
FLAGS BYTE,
DEV$GRAN \-lORD,
LOWDEVSIZE WORD,
HIGHDEVSIZE WORD,
DEVICE BYTE,
UNIT BYTE,
DEV$UNIT WORD,
INIT$IO WORD,
FINISH$IO WORD,
QUEUE$IO WORD,
CANCEL$IO WORD,
DEVICE$INFO$PTR POINTER,
UNIT$INFO$p'rR POINTER,
UPDATE$TIMEOUT WORD,
NUM$BUFFERS WORD,
PRIORITY BYTE) ;

84 2 DECLARE DDATA$PTR POINTER;
85 2 DECLARE COMMON$DEVICE$INFO$PTR POINTER;
86 2 DECLARE CO~MON$DEVICE$INFO BASED

CO~MON$DEVICE$INFO$PTR STRUCTURE (
LEVEL WORD,
PRIORITY BYTE,
STACK$SIZE WORD,
DATA$SIZE WORD,
NUM$UNITS WORD,
DEVICE$INIT WORD,
DEVICE$FINISH WORD,
DEVICE$STAR'r WORD,
DEVICE$STOP WORD,
DEVICE$INTERRUPT WORD,
BASE WORD) ;

87 2 DECLARE IORS$PTR POINTER;
88 2 DECLARE laRS BASED IORS$PTR STRUCTURE

STATUS WORD,
UNIT$STATUS WORD,
ACTUAL WORD,
ACTUAL$FILL WORD,
DEVICE WORD,
UNIT BYTE,
FUNCT BYTE,
SUBFUNCT WORD,
LOWDEVLOC WORD,
HIGHDEVLOC WORD,
BUFF$PTR POINTER,
COUNT WORD~
COUNT$FILL WORD,

B-8

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER LIGHT

89
90

91
-92

93
94

95

96

97

38
99

100
101
102
un
104
105
106
197

2
2

2
2

3
3

3

4

4

4
3
3
3
4
4
4
3
2
1

AUX$PTR
LINK$FOR
LINK$BACK
RESP$MBOX
DONE
FILL
CANCEL$ID

DECLARE BUFFER$PTR
DECLARE BUFFER BASED

POINTER,
POINTER,
POINTER,
WORD,
BYTE,
BYTE,
WORD);
POINTER;

BUFFER$PTR (1)

1* Check fo~ a valid inte~~upt */

IF (IORS$PTR<>0) THEN
DOi

By'rEi

COMMON$DEVICE$INFO$PTR=DUIB.DEVICE$INFO$PTRi
BUFFER$PTR=IORS.BUFF$PTR;

END;

DO CASE (IORS.FUNCT);

/* Read-- B~ing in switch ~eading */

BUFFER (rORS.ACTUAL)=READ$SWITCHES(
COMMON$DEVICE$INFO.BASE + DUlB.UNIT)i

/* W~ite-- Output light pattern */

CALL SET$LlGHTS «COMMON$DEVICE$INF0.BASE + DUlB.UNIT),
BUFFER (lORS.ACTUAL»;

ENDi
IORS.ACTUAL=IORS.ACTUAL+l;
IF (IORS.ACTUAL=lORS.COUNT) THEN

DO;
IORS.STATUS=E$OKi
IORS.oONE=TRUE;

END;

END LIGHTBOXlNTERRUPTi
END LIGHT;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
377 LINES READ
~ PROGRAM WARNINGS
" PROGRAM ERRORS

END OF PL/M-86 COMPILATION

921BH
3000H
900~H

991EH

5390
00
00

39D

B-9

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p86
printerSstartSinterrupt

SERIES-III PL/M-8r, DEBUG Xl19 COMPILATION OF MODULE IPRNTR
OBJECT MODULE PLACED IN :Fl:IPRNTR.OBJ
CO~PILER INVOKED BY: PLM8~.86 :Fl:tPRNTR.P86 COMPACT ROM NOTYPE OPTIMIZE(3)

1

13 1

Stitle ('iprntr.p86')
/*
* iprntr.p86
*
*
*
*
*
*
*

This module implements centronix-type interface line printer
driver. It is written as a 'common' device driver. It is
assumed that the reader is familiar with the 8255 chip.

LANGUAGE DEPENDENCIES:
CO~PACT ROM OPTIMIZE(3)

*/
Sinclude{:fl:icpyrt.not)
/*
* INTEL CORPORATION PROPRIETARY INFORMATION. TijIS LISTING IS
* SUPPLIED UNDER THE TERMS OF A LICENSE AGREEMENT WITH INTEL
* :ORPQR~TrO~ A~D ~AY ~O~ BE COPIED NOR DISCLOSED EXCEPT TN
* ACCORDANCE WITH THE TERMS OF THAT AGREE~E~T.
*/

iprntr: DO;
Sinclude(:fl:icomon.lit)
Ssave nolist
Sinclude(:fl:iparam.~it)
$save nolist
Sinclude(:fl:inutyp.lit)
$save nolist
Sinclude(:fl:iiors.lit)
Ssave nolist
Sinclude(:fl:iduib.lit)
Ssave nolist
$include(:fl:iprntr.lit)

/*
* Common device driver information

* * level:
* priority:
* stackSsize:
* dataS si ze:
* numSunits:
* deviceSinit:
* deviceSfinish:
* dey iceS sta rt:
* deviceSstop:
* deviceS interrupt:
*/

Interrupt level
Priority of interrupt task
Stack size for interrupt task
Device local data size
Number of units on device
Tnit device procedure
Finished with device procedure
Start device procedure
Stop device procedure
Device interrupt procedure

DECL~RE COMMONSDEVSINFO LI"rERALLY ,
level WORD,
priority BYTE,
stackSsize WORD,
dataSsize WORD,

B-IO

EXAMPLES OF DEVICE DRIVERS

PL/~-86 COMPILER iprntr. p86
printerSstartSinterrupt

14 1

15 1

15 1

18 1

numSunits
device$init
deviceSfinish
device$start
device$stop
device$interrupt

WORD,
WORD,
WORD,
WORD,
WORD,
WORD' ;

DECLARE i8255SINFO
ASport
BSport
CSport
ControlS port

LITERALLY ,
WORD,
WORD,
WORD,
WORD' ;

DECLA.RE
PRINTERSDEVICESINFO LITERALLY 'STRUCTURE (

COMMONSDEVSINFO,
i8255SINFO,
tabScontrol WORD}';

Sinclude(:fl:i8255.lit)
/*
*
*
*
*
*
*
*
*

8255 is programmed ~s fo11ows:

Group A: Mode"
Group B: Mode 1

Port A and Upper Port C: OUTPUT
Port B and Lower Port C: INPUT

* Port C definition (bit" is LSB; bit 7 is "1SB):

*
*
*
*
*
*
*
*/

Bit 0
1
2
3
4

5,6,7

Interrupt to CPU (not used by the driver)
Character acknowledge from the printer
Printer interrupt ~nable
Paper error status (not used by the driver)
Character strobe to the printer
not used

DECLARE
~ODE$WORD LITERALLY
C8ARS~CK LITER~LLY
INTSENABLE LITERALLY
INTSDISABLE LITERALLY
STROBESON LITER~LLY
STROBESOFF LITERALLY

Sinclude(:fl:iprerr.lit)
$save nolist
/*
* literal declaration
*/

DECLARE
TABSCHAR LITERALLY '09H',
SPACE LITERALLY '20B';

B-11

'8EH' ,
'(] 2M' ,

'" 58' ,
'''48' ,
'''98' ,
'~8H' ;

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p~6
printer$start$interrupt

19 1

2

21 2

22 2

23 2

24 2

25 2
26 2

27 3
28 1
29 3

30 2

31 3
32 4
31 4
34 4

35 3

$eject
$subtitle('printer$start$interrupt')
/*
* printer$start/printer$interrupt
* start/interrupt procedure for the line printer

* * CALLING SEQUENCE:
* CALL printer$start$interrupt (iors$p, duibSp, ddata$p);

* * INTERF~CE VARI~8LES:
* iors$p I/O request/result segment pointer
* duib$p pointer to the device-unit info. block
* ddata$p pointer to t~e device(printer) data segment.
* * CALLS: None

*
*/

printer$start$interrupt: PROCEDURE (iors$p, duib$p, ddat3$p)
PUBLI~ REENTRANT;

DECLARE
(iors$p, duib$p, ddata$p)

DECL~RE
POINTER;

iors
duib

DECLARE

BASED
BASED

i ors$p
duib$p

dinfo$p POINTER,

IO$REQSRES$SEG,
DEV$UNITSINFO$BLOCK;

dinfo ~ASED dinfoSp PRINTER$DEVICESINFO;
DECLARE

bufferSp POINTER,
(char BASED bufferSp) (1) BYTE;

dinfoSp = duib.device$info$p;

/*
* test for spurious interrupts
*/

IF iors$p = 0 THEN
DO;

/*
* turn off the interrupt and return
*/

OUTPUT (dinfo.Control$port) = INT$DISABLE;
RETURN;

END;

DO CASE (iors.funct) ;

/* read */
DO;

lors.status = E$IDDR;
iors.done TRUE;

END;

/* write */
DO;

B-12

PL/M-86 COMPILER

37

38

39

41

42
43

44

45
46

47
48
49

5e

51
52

53

4

4

4

5

5

5
5

5

5
5

6
6
6

5

6
6

5

EXAMPLES OF DEVICE DRIVERS

iprntr.p10
printerSstartSinterrupt

/* get the buffer pointer */
bufferSp = iors.buffSpi

/* disable printer interrupt */
OUTPUT(dinfo.ControlSport) = INTSDISABLEi

DO WHILE (iors.actual < iors.count);

/*

*
*

convert TAB character to a SPACE character if the
printer does not handle them

*/
IF «char(iors.actual~ = TABSCHAR) AND

«dinfo.tabScontrol)
THEN char(iors.actual) = SPACE;

/*

FALSE»

* l's complement the character and send it to the
* printer. Port-A is the data port
*/

OUTPUT(dinfo.A$port) = NOT(char(iors.actual»i
/*
* strobe the line printer
* this is a way of telling the printer that there is
* valid data on the bus
*/

JUTPUT(dinfo.Control$port)
OUTPUT(dinfo.Control$port)
/*

STR08E$O~;
STRJBESOFF;

* increment the count of chars printed
*/

iors.actual = iors.actual + I:
/*

* test whether printer acknowledgement bit is set
*/

IF (INPUT(dinfo.C$port) ~ND CHARSACK) = ~ THEN
DO;

/*
*
*
*
*/

printer didn't acknowledge. Hopefully it has
started printing. So enable the printer interrupt
and return(printer will interrupt when it's done)

OUTPUT(dinfo.ControlSport) = INTSENABLE;
RETURN:

€ND;
ELSE
DO;

/*
*
*
*
*

printer copied the character into its buffer
clear printer acknowledge bit by reading port B.
actual$fill field in the iors is used as a tempo
rary v~riable. Char read is ignored.

*/
iors.actualSfill

END;
INPUT(dinfo.BSport);

END: /* end of DO WHILE statement */

B-13

PL/M-86 COMPILER

54
55
56

57
58
59
69

61
62
El1
64

65

65
67
58
59

70
71
72
73

74
75
7~
77

78
79
89
81

82

4
4
4

1
4
4
4

3
4
4
4

3

4
4
4
4

3
4
4
4

3
4
4
4

3
4
4
4

EXAMPLES OF DEVICE DRIVERS

iprntr.p86
printerSstartSinterrupt

/*
* set iors.done to TRUE
* set iors.status to OK
*/

iors.status = ESOK;
iors.done TRUE;

END:

/* seek */
DO;

iors.status = ESIDDR;
iors.done = TRUE;

END;

/* special */
DO:

iors.status = ESIODR:
iors.done = TRUE:

END;

/* attach device */
DO:

/* initialize the 8255 */
OUTPUT(dinfo.ControlSport)
iors.status = ESOK;
iors.done = TRUE;

END;

/* detach device */
DO;

iors.status
iors.done

END;

/* open */
DO;

iors.status
iors.done

END;

/* close */
DO;

iors.status
iors.done

END;

ESOK:
TRUE:

= ESQI<;
TRUE;

= ESOK:
TRUE:

MODESWORO;

END: /* end of DO CASE statement */

83

3

2 END printerSstart$interrupt:

B-14

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iprntr.p86
pr interS stop

84
85

8'5

87

88

89
99
91

92

93

1
2

2

2

2

2
2
2

2

1

$subtitle('printerSstop')
/*
* printer$stop
* stop procedure for the line printer

* * CALLING SEQUENCE:
* CALL printer$stop (iors$p, duibSp, ddata$p);

*
*
*
'ITt

*
*

INTERFACE VARIABLES:
iors$p I/O request/result segment pointer
~uib$p pointer to the device-unit info. block
ddata$p pointer to the device(printer) data segment.

* CALLS: None

*
*/

printerSstop: PROCEDURE (iors$p, duib$p, ddata$p) PUBLIC REENTRANT;
OECLARE

(iors$p, duibSp, ddataSp) POINTER;
DECL~RE

BASED iors$p
BASED duibCSp

POINTE'l,

IOREQRES$SEG,
DEV$UNIT$INFO$BLOCK;

iors
duib

DECL~RE

dinfoSp
dinfo 3~SED dinfo$p PRINTER$DEVICE$INFOi

/*
*
*
*
*/

turn off the printer interrupt
set iors.oone to TRUE
set iors.status to E$OK

dinfoSp = duib.device$infoSp;

OUTPUT(dinfo.Control$port) = INT$DIS~BLE;
iors.status = E$OK;
iors.done = TRUE;

END printer$stop;

END i prntr;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
~AXI~UM STACK SIZE
599 LINES READ
9 PROGRAM WARNINGS
a PROGRAM ERRORS

END OF PL/~-86 COMPILATION

9140H
0990H
0990H
0916a

3200
00
90

220

B-15

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86
Module Header

SERIES-III PL/M-86 DEBUG Xl19 COMPILATION OF MODULE 120605
OBJECT MODULE PLACED IN :F5:I206DS.OBJ
COMPILER INVOKED BY: PL~86.86 :F5:I206DS.P86 COMPACT NOTYPE OPTIMIZE(3) ROM

1

$titleC'i206ds.p86')
$subtitleC'Module Header')

/*

* i206ds.p86

* * CONTAINS:
* i206$start
* i206$interrupt
* i206$init

*

maps to device$init.
maps to device$interrupt.
maps to device$start.

* This module contains the procedures that are referenced
* in the device information tables.

* * L~NGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
*/

i206ds: DO;

$include(:fl:icomon.lit)
$save nolist
$include(:fl:inutyp.lit)
$save nolist
$include(:fl:iparam.lit)
$save nolist
$include(:fl:iiotyp.lit)
$save nolist
$ inc 1 ud e (: f 1: i i 0 r s • 1 it)
$save nolist
$include(:fl:iduib.lit)
$save nolist
$ inc 1 ud e (: f 1: i d r i n f • 1 it)
$save nolist
$include(:fl:i206in.lit)
$save nolist
$include(:fl:i206dv.lit)
$save nolist
$include(:fl:iexcep.lit)
$save nolist
$includeC:fl:iioexc.lit)
$save nolist
$include(:fl:iradsf.lit)
$save nolist

$include(:fl:i206dp.ext)
$save nolist
$include(:fl:i206dc.ext)
$save nolist
$include(:fl:i206fm.ext)
$save nolist

PL/M-86 COMPILER i206ds.p86

htodule Header

$includeC:fl:iasmut.ext)
$save nolist
$include(:fl:inotif.ext)
$save nolist

B-16

PL/M-86 COMPILER

EXAMPLES OF DEVICE DRIVERS

i206ds.p86
Local Data

$subtitle{'Local Datal)

49 1

/*
* The need$reset array is used to determine if device needs to be
* reset after an error. Indexed by status.

* * TRUE = 0FFH
* FALSE = ~HH1H
*/

DECLJ\RE
need$reset(24)

FALSE,
TRUE,
FALSE,
FALSE,
TRUE,
FALSE,
FALSE,
FALSE,
FALSE,
F!\LSE,
FALSE,
TRUE,
TRUE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
FALSE,
TRUE,
FALSE,
FALSE,
FALSE,
FALSE);

BYTE DATA(
/* Successful completion */
/* tD field miscompare */
/* Data field CRC error */
/* special for incorrect result$type *1
/* Seek error */

/* Illegal Record Address */

/* ID Field eRC error */
/* Protocol error */
/* Illegal Cylinder Address */

/* Record not found */
/* Data Mark ~issing */
/* Format Error */
/* write Protected */

/* Write Error */

/* Drive Not Ready */

B-17

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86

Unit status Array

$subtitle('Unit Status Array')

50 1

51 1

/*
* unit$status is used to set the unit status field in iors.
* Indexed by status.
* * IO$UNCLASS
* IO$SOFT =
* IO$HARD =
* IO$OPRINT
* IO$WRPROT
*/

DECLARE

/*

unit$status(24)
IO'$UNCLASS,
IO$SOFT,
IO$SOFT,
IO$HARD,
IO$SOFT,
IO$UNCLASS,
IO$UNCLASS,
IO$UNCLASS,
IO$HARD,
IO$UNCLASS,
IO$SOFT,
IO$SOFT,
IO$HARD,
IO$UNCLASS,
IO$SOFT,
IO$SOFT,
IO$SOFT,
IO$WRPROT,
IO$UNCLASS,
IO$SOFT,
IO$UNCLASS,
IO$UNCLASS,
IO$UNCLASS,
IO$OPRINT) ;

BYTE DATA(
/* Successful completion */
/* ID field miscompare */
/* Data field eRC error */
/* special for incorrect result$type */
/* Seek error */

/* Illegal Record Address */

/* ID Field eRe error */
/* Protocol error */
/* Illegal Cylinder Address */

/* Record not found */
/* Data Mark Missing */
/* Format Error */
/* Write Protected */

/* Write Error */

/* Drive Not Ready */

*
*
*/

drive$ready is used to find tpe drive ready bit
in the drive status.

DECLARE
drive$ready(4) BYTE DATA(020H,040H,010H,020H);

B-18

PL/M-86 COMPILER

EXAMPLES OF DEVICE DRIVERS

i2~6ds.p86

i2~6$start

$subtitle('i2~6$start')

52
53

54

1
2

2

/*
* i206$start
* start procedure for the iSBC 206 controller.

* * CALLING SEQUENCE:
* CALL i206$start(iors$p, duib$p, ddata$p);

* * INTERFACE VARIABLES:
* iors$p - I/O Request/Result segment pointer
* duib$p - pointer to Device-Unit Information Block
* ddata$p - device data segment pointer.
* * CALLS:
* io$2~6
* format$206
* send206iopb
* * CALLED FROM:
* radev via a reference in the device info table.

* * ABSTRACT:
*
*
*
*
*
*
*
*
*
*
*
*
*/

This is the device start procedure called by Random
Access Interface (radev). The device is assumed to
have been initialized, any necessary resources
allocated and the interrupt task has already been
created. All requests to any number of
iSBC 2~6 controller board's are funneled through this
procedure. The reentrant nature of the procedure will
allow multiple invocations with only one copy of the
code. The nature of the request is passed in as the
function code and sub-function fields of the IORS.
The function provides a simple method to 00 CASE into
the required procedures.

i2~6$start: PROCEDURE(iors$p, duib$p, ddata$p) PUBLIC REENTRANT;
DECLARE

iors$p
duib$p
ddata$p

DECLARE

/*

iors
duib
dinfo$p
dinfo
uinfo$p
uinfo
ddata
base
dummy

POINTER,
POINTER,
POINTER;

BASED iors$p IO$REQRESSEG,
BASED duib$p DEV$UNIT$INFO$BLOCK,
POINTER,
BASED dinfo$p 1206$DEVICE$INFO,
POINTER,
BASED uinfo$p I206$UNIT$INFO,
BASED ddata$p IO$PARM$BLOCK$206,
WORD,
BYTE;

* Initialize the local variables.
*/

B-19

PL/M-86 COMPILER

55
56
57

58
59

C513

61

62
53

64

55
56

67

68
69

713

71
72

73

74
75
76
77
78

79

80
81

82

2
2
2

2
2

2

3

4
4

3

4
4

3

4
4

3

4
4

4

5
5
5
5
4

3

4
4

4

EXAMPLES OF DEVICE DRIVERS

i2136ds.p86

i206$start

dinfo$p = duib.device$info$p;
base = dinfo.base;
uinfo$p = duib.unit$info$p;

/*
* If we got called because of a restore operation
* then just return.
*/

IF (ddata.restore) THEN
RETURN;

do-$ca'se$ funct:
DO CASE iors.funct;

/*
* in the following calls the @ddata is literally
* iopb$p (i.e., the pointer to the iopb).
*/

caseS read:
DO;

CALL io$206(base, iors$p, duibSp, @ddata);
END case$read;

case$wr i te:
DO;

CALL io$206(base, iors$p, duib$p, @ddata);
END case$write;

case$seek:
DO;

CALL io$206(base, iors$p, duib$p, @ddata);
END caseS seek;

case$spec$funct:
DO;

IF iors.sub$funct = FS$FORMAT$TRACK THEN
CALL format$206 (base, iors$p, duib$p, @ddata);

ELSE
DO;

END;

/*
* Notifiy caller that this is an
* Illegal Device Driver Request.
*/

iors.status = E$IDDR;
iors.actual = 0;
iors.done TRUE;

END case$spec$funct;

case$attach$device:
DO;

dummy = (duib.dev$gran = 512);
IF «input(sub$system$port) OR 073H) <> 0FBR) OR

«(input(disk$config$port) AND
SHL(0H'H,SHR(duib.unit,2») <> 0) <> dummy) THEN

DO;

B-20

PL/M-86 COMPILER

83
84
85
86
87
88
89
9~
91

92
93

94

95
96
97
98

99

HH'
1~1

102

103

lQJ4
105
165

107

108
109
11~

III

112

5
5
5
5
5
5
4
4
4

4
5

5

5
5
5
4

3

4
4
4

3

4
4
4

3

4
4
4

3

2

EXAMPLES OF DEVICE DRIVERS

i2~6ds.p86

i206$start

END;

iors.status = E$IO;
iors.unit$status = IO$OPRINT;
iors.actual = 0;
iors.done = TRUE;
RETURN;

ddata.inter = interonmask;
ddata.instr = restore$op;
IF NOT send206iopb(base, @ddata) THEN

/*
* the board would not accept the iopb
* so •••
*/

DO;

END;

iors.status = E$IO;
/*
* insert the result code into unit status
* so the user has access to the code.
* This will assist in debugging.
*/

iors.unit$status = IO$SOFT OR
SHL(input(result$byte$port), 8);

iors.actual = ~;
iors.done = TRUE;

END case$attach$device;

case$detach$device:
DO;

iors.status = E$OK;
iors.done = TRUE;

END case$detach$device;

case$open:
DO;

iors.status = E$OK;
iors.done = TRUE;

END case$open;

case$close:
DO;

iors.status = E$OK;
iors.done = TRUE;

END case$close;

END do$case$funct;

END i206$start;

B-21

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206ds.p86

i206$interrupt

113

114

115

116
117
118

1

2

2

2
2
2

$subtitle('i206$interrupt·)

/*
* i206$interrupt
* interrupt procedure for the iSBC 206 controller.

* * CALLING SEQUENCE:
* CALL i206$interrupt(iors$p, duib$p, ddata$p);

* * INTERFACE VARIABLES:
* iors$p - I/O Request/Result segment pointer
* duib$p - pointer to Device-Unit Information Block
* ddata$p - device data segment pointer.
* * CALLS:
* i206$start
* send206iopb
* rq$send$message
* * CALLED FROM:
* radev via a reference in the device info table.

* * ABSTRACT:
* This procedure will handle the interrupts from the
* iSBC 206 controller and will initiate any actions
* necessary to recover from an error condition
* (there are some conditions that are not recoverable).
*/

i206$interrupt: PROCEDURE(iors$p, duib$p, ddata$p)

DECLA.RE
iors$p
duib$p
ddata$p

DECLARE
iors
duib

/*

d info$p
dinfo
ddata
temp
base
spindle
status

POINTER,
POINTER,
POINTER;

PUBLIC REENTRANT;

BASED iors$p IO$REQRESSEG,
BASED duib$p DEV$UNIT$INFO$BLOCK,
POINTER,
BASED dinfo$p I2e6$DEVICE$INFO,
BASED ddata$p IO$PARM$BLOCK$206,
BYTE,
WORD,
WORD,
WORD;

* Initialize the local variables.
*/

dinfo$p = duib.device$info$pi
base = dinfo.base;
spindle = shr(duib.unit, 2); /* 4 units/spindle */

/*
* input from the result type port and
* mask out all the unused bits.

B-22

PL/M-86 COMPILER

119
120

121

122
123

124
125
126

127

128

129

130
131

132

133
134

135
136

137
138
139

140
141

14i
143

144

145

2
2

3

3
3

4
4
4

4

5

5

4
4

3

3
3

4
4

5
5
5

5
5

5
5

5

5

EXAMPLES OF DEVICE DRIVERS

i206ds.p86
i2g6$interrupt

*/
IF (input(resultStype$port) ~ND 3) = 0 ~HEN
done$int:

DO;
status = input(result$byte$port};

IF ddata.restore THEN
did$ restore:

DO;
ddata.restore = F~LSE;
ddata.status(spindle) status;
IF iors$p <> 0 THEN
/*
* There is a valid iors and we have
* just returned from a restore operation
* so, reinitiate the request.
*/

restart:
DO;

CALL i206$start(iors$p,
ddata$p,
duib$p) ;

END restart;
/*
* That is all we can do so •••
*/

RETURN;
END did$restore;

ddata.status(spindle)

IF iors$p <> 0 THEN
valid$iors:

status;

DO;
IF status <> 0 THEN
bad$status:

DO;

B-23

iors.status = E$IO;
IF (status <= 010H) THEN

temp = status;
ELSE

temp = shr(status, 4) + 00FH;
iors.unit$status unit$status(temp}

OR SHL(status,8);
iors.actual = g;
iors.done = TRUE;
/*
* Index into the need$reset array
* to determine the next course of
* action.
*/

IF need$reset(ddata.status
(iors.unit / 4» THEN

recalibrate:
DO;

/*

PL/M~86 COMPILER

146
147
148

149

150
151

152
153
154
155
156
157

158
159
160
161
162
163

164
165

166
167
168

169

6
6
6

6

5
4

5
5
5
4
3
2

3
3
4
4
4
3

3
4

4
4
3

2

EXAMPLES OF DEVICE DRIVERS

i2fiJ6ds.p86

i206$interrupt

* Note: must index drive
* select bits from iors.unit.
*/

ddata.inter =
ddata.instr =
ddata.restore

END recalibrate;

interonmask;
restore$op;
send$2~6$iopb(

dinfo.base,
@ddata) ;

END bad$status;
ELSE ok$status:

DO;
/*
* set actual = count as the status
* indicated that the transfer worked.
* This is done regardless of the
* operation preformed.
*/

iors.actual = iors.count;
iors.done = TRUE;

END ok$status;
END val idS iors;

END done$ inti
ELSE status$int:

DO;
/*
* Have arrived here because of an interrupt
* initiated by the drive itself.
* Could have been a drive ready or not ready
* signal.
*/

temp = input(inter$stat$port);
DO spindle=0 TO 3;

IF (temp AND SHL(l, spindle}) <> fiJ THEN
GOTO found$spindle;

END;
found$spindle:

spindle = SHL(spindle,2);
DO temp=spindle TO sp)ndle+3;

END;

IF «input(result$byte$port) AND
drive$ready(spindle» = a) THEN
/*
* let the user know the status
* of the drive.
*/

CALL notify(temp, @ddata);

END status$int;

END i2fiJ6$interrupt;

B-24

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i296ds.p86
i296$init

170
171

172

173

174

175
176

177

178

179

1
2

2

2

2

2
2

2

2

1

$subtit1e('i206$init')

/*
* i206$init
* init procedure for the iSBC 296 controller.

* * CALLING SEQUENCE:
* CALL i206$init(duib$p, ddata$p, status$p);

* * INTERFACE VARIABLES:
* duib$p - pointer to Device-Unit Information Block
* ddata$p - device data segment pointer.
* status$p - pointer to WORD indicating status of
* the operation.
* * CALLS:
* <none>

* * CALLED FROM:
* radev via a reference in the device info table.

* * ABSTRACT:
* initialize the hardware when called.
* There is not much to do.
*/

i206$init: PROCEDURE(duib$p, ddata$p, status$p) PUBLIC REENTRANT;
DECLARE

duib$p POINTER,
ddata$p POINTER,
status$p POINTER;

DECLARE
duib
d info$p
dinfo
ddata
status

DECLARE
i

BASED duib$p DEV$UNIT$INFO$BLOCK,
POINTER,
BASED dinfo$p I2g6$DEVICE$INFO,
BASED ddata$p IO$PARM$BLOCK$206,
BASED status$p WORD;

WORD;

dinfo$p

/*

duib.device$info$p;

* Reset iSBC 206 controller.
*/

output(reset$port) = 0;
status = E$OK;

ddata.restore = FALSE:

END i206$init;

END i 2"5ds;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
1UJl LINES READ
" PROGRAM WARNINGS
" PROGRAM ERRORS

END OF PL/M-86 COMPILATION

"36AH
39908
39008
00468

8740
9D
90

79D

B-25

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i2~6io.p86: iSBC 2~6 controller I/O Module
Module Header

SERIES-III PL/M-86 DEBUG Xl19 COMPIL~TIaN OF MODULE I2~6IO
OBJECT MODULE PLACED IN :F5:1206IO.OBJ
CO~PILER INVOKED BY: PL~86.86 :F5:I286IO.P86 CO~PACT NOTYPE OPTIMIZE(3) ROM

1

31 I

$title('i2~6io.p86: iSBC 286 controller I/O Module')
$subtitle('Module Header')
i 2~6 io: DO;

/*
* This module modifies the 2~6 parameter block
* and passes the address of it to
* the iSBC 286 controller.

* * CONTAINS:
* io$206

* * LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
*/

$include(:fl:icomon.lit)
$ save nol ist
$include(:fl:inutyp.lit)
$save nolist
$include(:fl:iiotyp.lit)
$save nolist
$include(:fl:iparam.lit)
$ save nol ist
$include(:fl:i286dv.lit)
$save nolist
$include(:fl:i205in.lit)
$ save nol ist
$include(:fl:iiors.lit)
$save nolist
$include(:fl:iduib.lit)
$ save nol ist
$include(:fl:itrsec.lit)
$save nolist
$include(:fl:iexcep.lit)
$save nolist
$include(:fl:iioexc.lit)
$save nolist

$include(:fl:i2~6dc.ext)

$save nolist

/*
* This module does the normal io (read, writes and seeks).
* Formatting a track is handled by i206~m.p86.
*/

DECLARE
i206opcodes (*)

READ$OP,
WRITE$OP,

BYTE DATA (

PL/M-86 COMPILER i2~6io.p86: iSBC 286 controller I/O Module
Module Header

SEEK$OP
) ;

B-26

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206io.p86: iSBC 206 controller I/O Module
io$206: iSBC 206 controller I/O Module

32
33

34

I
2

2

$subtitle('io$206: iSBC 206 controller I/O Module')
/*
* io$236
* I/O module (read/write/seek)
* * CALLING SEQUENCE:
* CALL io$206 (base, iors$p, duib$p, iopb$p);
* * INTERFACE VARIABLES:
* base - base address of the board.

* iors$p - I/O Request/Result segment pointer

* duib$p - pointer to Device-Unit Information
* iopb$p - pointer to I/O parameter block.
* * INTERNAL V~RIABLES:
* iors I/O Request/Result Structure.

Block

* ts - DWORD containing track and sector info.
* ts$o - overlay of ts to allow access through
* PL/M-86.
* duib - Device Unit Information Block Structure.
* iopb - I/O parameter block for the
* iSBC 206 controller.
* platter - local var to prevent multiple computations.
* spindle - as above.
* surface - as above.
* * CALLS:
* send236iopb(base, @iopb)

* * ABSTRACT:
*
*
*/

All io functions (except format) are handled by this
module.

io$206: PROCEDURE (base, iors$p, duib$p, iopb$p) REENTRANT PUBLIC;
DECL~RE

base
iors$p
duib$p
iopb$p

DECLARE

/*

'iors
ts
ts$o
duib
iopb
platter
spindle
surface

WORD,
POINTER,
POINTER,
POINTER;

BASED iors$p IO$REQRESSEG,
DWORD,
TRACK$SECTOR$STRUCT AT(@ts),
BASED duib$p DEV$UNIT$INFO$BLOCK,
BASED iopb$p IO$PARM$BLOCK$236,
BYTE,
BYTE,
BYTE;

* Initialize local variables:
*
*
*
*
*/

ts <-- track and sector info from iors.dev$loc.
platter <-- from iors.unit.
spindle <-- from iors.unit.
surface <-- from high bit in track field.

B-27

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i2~6io.p86: iSBC 296 controller I/O Module
io$296: iSBC 296 controller I/O Module

35

36
37
38

39
49

41

42

43

44

45

46
47
48
49
50

51

52

2

2
2
2

2
2

2

2

2

2

2

2
3
3
3
3

2

1

ts = iors.dev$loc;

spindle
platter
surface

/*

shr(iors.unit, 2);
iors.unit AND 903H;
ts$o.track AND 90091H;

/* 4 units/spindle *1
/* (as above) */
/* select surface *1

* Fill out the iopb for the iSBC 296 controller.
*/

iopb.inter = INTERONMASK; /* we use interrupts *1
iopb.cyl$add = shr(ts$o.track, 1); /* track/2 = cylinder */

/*
* Note that the iopb.instr field is used by
* the iSBC 296 controller to determine which
* drive/platter/surface combination to access
* AND the op code determines
* how that combination is to be accessed.
*1

iopb.instr i2B6opcodes(iors.funct) OR
shl(spindle, 4) OR
shl(platter, 6} OR
shl(surface, 3};

/*
* note: the controller only supports 512
* or 128 byte sectors so no checking is done.
*/

/* divide by sectors size */
iopb.r$count = iors.count / duib.dev$gran;

/*
* sectors come in based on ~ and the controller
* will only understand sectors starting at 1.
*1

/* (cyl AND 01~~H) / 2 *1
iopb.rec$add = (ts$o.sector + 1) OR

shr(ts$o.track AND 920~H,_2);

iopb.buff$p = iors.buff$p;

IF NOT send$2~6$iopb(base, @iopb) THEN
/*
* the board did not accept the iopb so •.•
*/

DO;

END;

iors.status = IO$SOFg;
iors.actual = 9;
iors.done TRUE;

END io$296;

END i2~6io;

PL/M-86 COMPILER i2~6io.p86: iSBC 2~6 controller I/O Module
io$206: iSBC 296 controller I/O Module

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
615 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

00DBH
3009H
0003H
0022H

219D
0D
00

34D

B-28

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206dc: iSBC 206 controller parameter handler
Modul e Header

SERIEs-Itr PL/M-86 DEBUG Xll9 COMPILATION OF MODULE i206DC
OBJECT MODULE PLACED IN :F5:1206DC.OBJ
COMPILER INVOKED BY: PLM86.86 :F5:I2060C.P86 COMPACT NOTYPE OPTIMIZE(3) ROM

1

$title('i206dc: iSBC 206 controller parameter handler')
$subtitle('Module Header'}
i206dc: 00;

/*
*
*
*
*
*

i206dc.p86

CONTAINS:
send206iopb

* LANGU~GE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
*1

$include(:fl:icomon.lit)
$save nolist
$include(:fl:inutyp.lit)
$save nolist
$include(:fl:i206dv.lit)
$save nolist

B-29

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206dc: iSBC 206 controller parameter handler
Send 206 I/O Parameter Block

8
9

10

11
12

13
14
15

16
17

18
19

1
2

2

2
2

2
2
3

3
3

4
4

$subtitle('Send 206 I/O Parameter Block')
/*
* send206iopb

* send the iSBC 206 controller the address of the parameter blo'

* * CALLING SEQUENCE:
* CALL send206iopb (base, iopb$p);

* * INTERFACE VARIABLES:
*
*
*

base
iopb$p

- base address of board.
- I/O parameter block pointer

* INTERNAL VARIALBLES:
* iopbpo - overlay for the pointer.

*
*
*

iopb - I/O parameter block structure.
drive - local var to reduce computations.

* CALLS:
* <none>
* * ABSTRACT:

* outputs the iopb to the iSBC 206 controller.
*/

send206iopb: PROCEDURE (base, iopb$p) BOOLEAN REENTR~NT PUBLIC;
DECLARE

base
iopb$p

DECLARE
iopbpo
iopb
drive

/*

WORD,
POINTER;

P$OVERLAY AT(@iopb$p),
BASED iopb$p IO$PARM$BLOCK$206,
BYTE;

* Extract the drive unit from the instruction.
*/

drive
drive

/*

shr(iopb.instr AND 030H, 4);
shl (~lH,drive);

* Check to see i,f the drive is busy.
*/

IF (input(controller$stat» <> (COMMAND$BUSY OR drive) THEN
DO;

output (looffport) = low (iopbpo.offset);

/*
* Check to see if the drive is busy AGAIN.
*/

IF (input(controller$stat) AND COMMAND$BUSY)
DO;

/*
* made it to here so
* output rest of iopb address.
*/

o THEN

output (losegport) low (iopbpo.base);
output (hisegport) = high (iopbpo.base);

B-30

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206dc: iSBC 206 controller parameter handler
Send 2~6 I/a Parameter Block

20

21
22
23

24

25

26

4

4
4
3

2

2

1

END;
END;

/*

output (hioffport)

RETURN (TRUE) ;

high (lopbpo.offset);

* If we got here then something blew up.
* So inform the caller that we could not process the iopb.
*/

RETURN (FALSE);

END send206iopb;

END i206dc;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
216 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

0066H
~000H
0000H
000CH

1020
00
00

120

B-31

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i206fm.p86
Module Header

SERIES-III PL/M-86 DEBUG Kl19 COMPILATION OF MODULE 1296FM
OBJECT MODULE PL~CED IN :F5:I206FM.OBJ
COMPILER INVOKED BY: PLM86.86 :F5:1206FM.P86 COMPACT NOTYPE OPTIMIZE(3) ROM

1

$title('i206fm.p86')
$subtitle('~odule Header')

/*
* i206fm.p86

* * CONTAINS:
* format$206
* build206$$fmt$table
* * LANGUAGE DEPENDENCIES: COMPACT ROM OPTIMIZE(3)
*/

i2"6fm: DOi

$include(:fl:icomon.lit)
$save nolist
$include(:fl:inutyp.lit)
$save nolist
$include(:fl:iiotyp.lit)
$save nolist
$include(:fl:iparam.lit)
$save nolist
$include(:fl:i206dv.lit)
$save nolist
$include(:fl:i206in.lit)
$save nolist
$include(:fl:iradsf.lit)
$save nolist
$include(:fl:iiors.lit)
$save nolist
$include(:fl:iduib.lit)
$save nolist
$include(:fl:itrsec.lit)
$save nolist
$include(:fl:iexcep.lit)
$save nolist
$include(:fl:iioexc.lit)
$save nolist

$include(:fl:i206dc.ext)
$save nolist

B-32

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i296fm.p86

34

35

36

37
38
39

40
41
42

1

2

2

2
2
2

3
3
3

format$206: Format track procedure

$subtitle('format$2a6: Format track procedure')
/*
* format$206
* format a track on the iSBC 206 controller.
* * CALLING SEQUENCE:
* CALL format$296 (base, iors$p, duib$p, iopb$p);
* * INTERFACE VARIABLES:
* base - base address of board.
* iors$p - I/O Request/Result segment pointer
* duib$p - pointer to Device-Unit Information Block
* iopb$p - I/O parameter block pointer.
* * CALLS:
* build$2~6$fmt$table
* send296iopb
* * CALLED FROM:
* i296$start
* * ABSTRACT:
* this procedure will format a single track on the disk.
* It will not format the other side of the cylinder.
*/

format$296: PROCEDURE (base, iors$p, duib$p, iopb$p)
REENTRANT PUBLICi

DECLARE
base
iors$p
duib$p
iopb$p

WORD,
POINTER,
POINTER,
POINTER;

DECLARE
iors BASED iors$p IO$REQRESSEG,
format$info$p POINTER,
format$info BASED format$info$p FORMAT$INFO$STRUCT,
duib BASED duib$p DEV$UNIT$INFO$BLOCK,
iopb BASED iopb$p IO$PARM$BLOCK$2~6,
platter BYTE,
spindle BYTE,
surface BYTE,
max$sectors BYTE;

/*
* initialize local variables.
*/

format$info$p = iors.auxSp;
IF format$info.track$num > i205$TRACK$MAX THEN

DO;
/*
* Let's leave now since we cannot
* access any tracks.
*/

iors.status E$SPACE;
iors.actual 0;
iors.done = TRUEi

B-33

PL/M-86 COMPILER

43
44

45
46
47

48

49

50
51

52

53
54

55

56

57

58
59
60
61

3
3

2
2
2

2

2

2
2

2

2
2

2

2

2

2
3
3
3

PL/M-86 COMPILER

62

63

3

2

EXAMPLES OF DEVICE DRIVERS

i206fm.p86
format$206: Format track procedure

/*

RETURN;
END;

* use local variables to eliminate later confusion.
*/

spindle
platter
surface

/*

shr(iors.unit, 2);
iors.unit AND 003H;
format$info.track$num AND

000"lH;

* fill out the lOPS for the io$205.
*/

/* 4 units/spindle */
/* (as above) */

/* select surface */

iopb.inter = INTERONMASK OR FORMAT$TRACK$ON;

/* track/2 = cylinder */
iopb.cyl$add = shr(format$info.track$num, 1);

/* se~ bit if over 256 cylinders */
iopb.rec$add = shr(format$info.track$num AND 0200H, 2);
iopb.instr = format$op OR

shl(spindle, 4) OR
shl(platter, 6) OR
shl(surface, 3);

iopb.buff$p = @iopb.format$table;

IF duib.dev$gran = 128 THEN
max$sectors = 36;

ELSE
/*
* if not 128 then MUST be 512 byte sectors
*/

max$sectors 12;

/*
* the device controller expects a table built containing
* the information on what the track should look like.
* so build it using the local variable.
*/

CALL build206fmt$table(@iopb.format$table,
format$info.track$num,
format$info.track$interleave,
format$info.track$skew,
format$info.fill$char,
~ax$sectors) ;

IF NOT send206iopb(base, @iopb) THEN
/*

* the board did not accept the iopb so •••
*/

DO;
iors.status = IO$SOFT;
iors.actual = 0;
iors.done = TRUE;

i206fm.p86
format$206: Format track procedure

END;

END format$206;

B-34

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i2~6fm.p86

64

55

66

67

68
69
7~

71

1

2

2

2
3
3
3

format$2~6: Format track procedure

$eject
/*
* build$2~6$fmt$table
* fill out format table

* * CALLING SEQUENCE:
* CALL build$2~6$fmt$table(buf$p,
* track,
* int$fact,
* skew,
* fill$char,
* max$sectors);
* * INTERFACE VARIABLES:
* buf$p - address of format table.

*
*
*
*
*
*

track - track to be formatted.
int$fact - interleave factor.
skew - squew from physical sector one.
fill$char - used to fill sectors.
max$sectors - maximum number of sectors

* CALLS:
* <none)
* * No error checking on skew, int$fact parameters;
* if nonsense, the algorithm completes & formats
* the track in a strange manner.
*/

build$2~6$fmt$table: PROCEDURE(buf$p, track, intSfact, skew,
fill$char,max$sectors) REENTRANT;

DECLARE
buf$p
track
int$fact
skew
fillSchar
max$ sectors

DECLARE
s
i

DECLARE

POINTER,
WORD,
BYTE,
BYTE,
BYTE,
BYTE;

BYTE,
BY'rE;

fmt$tab BASED buf$p
record$address
f i 11$ char

/*

(36) STRUCTURE (
BYTE,
BYTE) ;

* fill out the format table with ~FFH,
* this will be used to indicate when
* all the record addresses are filled in.
*/

DO i = ~ TO (max$sectors - 1);
fmt$tab(i) .record$address = ~FFH;
fmt$tab(i) .fill$char = fill$char;

END;

B-35

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER i2fiJ6fm.p86

72

73

74
75
76

77
78

79

8~

81

2

2

3
4
4

3
3

3

2

1

format$206: Format track procedure

s = skew MOD max$sectors;

DO i = 1 TO max$sectors;

END;

DO WHILE fmt$tab(s) .record$address (> 0FFH;
5 = (5 + 1) MOD max$sectors;

END;

fmt$tab(s) .record$address = i;
s = (s + int$fact) MOD max$sectors;

END bui1d$2~6$fmt$table;

END i2~6fm;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
~AXIMUM STACK SIZE
717 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

0195H
0000H
0000H
0028H

B-36

4050
00
0D

40D

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER lusart: standard usart device drIver
Module Header

lRMX 86 PL/M-86 V2.0 COMPILATION OF MODULE lUSARr
08J~CT MODULE PLACED IN IUSART.OBJ
CUMPILER INVO~ED BY: :SYSTEM:plm86 IUSART.P86 COMPACT ROM OPTIMIZE(3) PAGEWIOTH(87)

1

=

=

=
=

$tltle('iusart: standard usart device driver')
$suDtltle('Module Header') .

1* * TITLE: lusart.p86

* * DATe::
•
• A8STR~CT:
• ContaIns the Terminal Support usart driver, procedures
* usart$lnlt, usartssetup, usart$cheC~, usartSoutput,
* usartSflnish.

* • LANGUAGE DEPENDENCIES:
* PLM86 COHPACT ROM
*1

iusart: DO;

Sinclude(lcomon.llt)
ssave nollst
Slnclude(lnutyp.llt)
Ssave nollst
Slnclude(11otyp.llt)
ssave no list
$lnclude(lexcep.llt)
ssave nollst

SsubtltleC'oata structures and literals')

B-37

PL/M-8& COMPILER

11 1

12 1

13 1

14 1

1

1& 1

EXAMPLES OF DEVICE DRIVERS

lusart: standard usart device driver
Data structures and-literals

1*
• usart command values
*1

DECLARE
USARTSRESET
USARTSSTART$CMO

LITERALLY '40n',
LITERALLY 'l7n';

DECLARE
ANSWER$CONTROL
HANGUPSCONTROL

LITERALLY '031H',
LIT£RALLY '010H';

1* * usart mode & output p~rlty stuff.
*1

DECLARE
USARTSMODE$WORO
EVEN$MODt:

LITERALLY '42n',
LiT~RAL~Y '3an',
LITERALLY 'ian',
LIT£RALLY 'OCn';

1*

ODD$MOOE
NO$PARITY$MODE

* Configurat1on Info
*1

DECLARE
USART$CONTROLLER$lNfO

USARTsINFOSl,
USART$INFO$2,
USART$INFO$J)';

LITERALLY 'STRUCTURE(

DECLARE

'*

USARTSINFOSl LITERALLY
'fll1er(i4) WORD',

USART$INfOS2 LITERALLY
'usartSdatasport WORD,
usart$controlsport WORD,
in$tlmerScountsport WORD,
in$tlmer$modeSport WJRD,
InScountersnumber BYTE,
insmaxSbaudsrate DWORD',

USART$INFOSl LITERALLY
'outstlmerScountSport WORD,
out$tlmerSmodesport WORO,
outscountersnumoer BtTE,
outsmaXSbaudSrate OWORO';

* Flags values

*'
DECLARE

IN.PARITYSMASK
OUTSPARITYSMASK

B-38

LITERALLY 'OlOH',
LIT£RALLY 'lCOH',

PL/M-86 COMPILER

17 1

18 1

19 1

20 1

21 1

22 1

EXAMPLES OF DEVICE DRIVERS

lusart: standard usart devIce driver
Data structures and-literals

1*

srRIPSINPU~SPARITYSMODE
PASS$INPUTSPARITYSMODE
EVEN$INPUT$PARITYSMODE
ODD$INPUTSPARITYSMODE
SPACESOUTPUTSPARITY$MODE
MARK$OUTPUTSPARITYSMODE
EVENSOUTPUTSPARITYSMODE
ODDSOUTPUTSPARITYSMODE
PASSSOUTPUTSPARITYSMODE
OUTSPARSCHECK

* Baud rate values
*1

DECLARE
HARDWARE$BAUDSSELECT
AUTOS8AUDSSELECT
OUT$BAUDSSAME

1*

LITERALLY 'OOOH',
LiTERALLY '010H',
LITERALLY '0208',
LITeRALLY 'OlOH',
LITERALLY 'OOOH',
LiTERALLY '0408',
LITERALLY '080H',
LITERALLY 'OCOH',
LITERALLY '100H',
LITERALLY '0808"

LITERALLY '0',
LITERALLY '1',
LITERALLY '1';

.. interface to terminal support
"'1

DECLARE
INPUTS INTERRUPT LITERALLY '1';

1*
• status register bit maSks
*1

DECLARE
TXSREADY
RXSREADY
USARTSINPUTSERROR

LITERALLY '1',
LITERALLY '2',
LITERALLY 'Ol8h';

DECLARE
TSSCDATA LITERALLY 'STRUCTURE(

TSSCDATA1,
TSSCDATA2)',

DECLARE
TSSCDATAI LITERALLY

'ios$datasseg.ent
status
Interrupts type
interruptIngsunlt
dlnfoSp
drlverScdata$p

TSSCDATA2 LiTERALLY
'reServed(l.)
udata(l)

SEGMENT,
WORD,
BYT£#
BYTE,
POUlTER,
POINTER',

DECLARE
TSSUDA!A

uinfosp
LITERALLY 'STRUCTURE(

POINTER,

B-39

PL/M-86 COMPILER

EXAMPLES OF DEVICE DRIVERS

lusart: standard usart device driver
Data structures and"l1terals

terms flags
InSrate
out.rate
scrollSnumber
reServed(1012)

WORD,
weiRD,
WORO,
WORO,
BIT£)';

$suDtltleC'usartSlnlt')

B-40

PL/M-ij6 COMPILER

23
24

25

26

27

28

29
30

31
32

33

1
2

2

2

2

2

2
3

3
;)

2

/*

EXAMPLES OF DEVICE DRIVERS

1usart: standard usart device dr1ver
usart$in1t .

* TITLE: usartSlnlt

* * CALLING SEQUENCE: * CALL usart$1n1t(cdata$p);

* * INTERFACE VARIABLES:
* cdata$p -POINTER to controller data

* * CALLS:
* none

* * A8StRACr:
* Init1alizes the usart cn1p to be ready for mode 1n1t
• by usart$setup.
*/

usart$1n1t: PROCEDUR~(Cdata$p) REENTRANT PUBLIC,
DECLARE

cdatasp POINTER,
cdata BASED cdataSP TSSCDATA;

DECLARE
usart$info$p POINTER,
usartSlnfo BASED usartSinfo.p USARTSCONTROLLERSINFO;

DECLARE
port WORD,
1 8YT£,

/*
• get the conflgurat1on 1nfo
*/

usartslnfoSp = cdata.dinfoSp;

/* * init1al1ze the uaart by send1ng
* four zeroe., and an 80h. *,

port = uaart$lnfo.usart$controlSport,

DO 1 = 0 to 3;
OUTPUT(port) • 0,
/* * wait for co •• and to be accepted.
*/

CALL ti •• (l);
END;

OUTPUT(port) • 80h;

B-41

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iusart: standard usart device driver
usartSinlt

34 2

35 2

1* * Return status of ln1t. Always Ok.
*1

cdata.status = ESOK;

END usartSinit;
Ssubtltle('usartSsetup')

B-42

PL/M-86 COMPILER

36 1
31 2

38 2

39 2

40 2

41 2

42 2

43 3

,.

EXAMPLES OF DEVICE DRIVERS

iusart: standard usart device driver
usartssetup

• TITLE: usartSsetup
•
• CALLING SEQUENCE:
• CALL usartssetup(udataSp);
•
• INTERFACE VARIABLES:
• udata$p POINTER to un1t data
•
• CALLS:
• none •
• ABSTRACT:
• Inltia11zes the baud rate generator to the conf1gured
• rate,-and sets up tne usart for asychronous mode,
* divide by 16, 8 data b1ts, 1 stop
• bit; parity generation per configuration • . ,

usartssetup: PROCEDURE(udata$p) REENtRANT PUBLIC;
DECLARE

udatasp POINTER,
udatapo StRUCIURE(

offset WORD,
base SELECTOR) AT(fudataSp),

cdata BASfD udataSpso.base TSSCDATA,
udata BAStD udata$p TS$UDATA;

DECLARE
usartSinfo$p POINTER,
usart$1nfo BASED usartSlnfosp USART$CONTROLL~R$INFO;

DECLARE
port WORD,
parltysmode BYT£,
ratecount WORD;

usart$infoSp = cdat~.dinfosP;
1*

• Initialize the Input rate generator, If it's program.able.
*1

IF (usartSinfo.ln$maxSbaudsrate <> 0) AND
(udata.insrate <> HARDWARE.8AUD.SELECT) THE"
DO;

'* * Compute 8253 com.and word according to the counter
• being used for the baud rate ~enerator • . ,

OUTPUT(usart.lnfo.ln.ti.erS.od •• portl a
SAL(USart.lnfo.lnscounter$nU.ber, 6) OR 036H;

,.
• The baud count 11 co.puted by dividing the .ax

B-43

PL/M-86 COMPILER

44
45
46
47

49
50

51
52

53
54
5S

5b

57

5~

59

60

61
62
63

3
3
1
l

2

2
1

3
l

3
l
3

2

2

2
3

2

2
1
)

EXAMPLES OF DEVICE DRIVERS

iusart: standard u$art device driver
us~rtssetup

END;

,.

• baud rate (the baud rate which would be
• generated by a baud count of 1)
• by the conf1gured baud rate.
*1

ratecount = usartSlnfo.ln$maxSbaud$rate/udata.in$rate;
OUTPUT(uSartSlnto.lnStimercountport)-= LO~(ratecount);
OUTPUT(usartS1nfO.lnStlmercountportl a HIGH(ratecount>;

• initialize the output baud rate generator, if there is one,
* and it's programmable.

*'
IF (usart$lnfo.outsmaxSbaudSrate <> 0) AND

(udata.outlrate <> HARDWARES8AUOSSELECT) THEN

'*

DO;
OUTPUT(usartS1nto.outStlmersmodeSport) =

ShL(usartSi~fo.~utScountersnumber, 6) OR 036H;
IF udata.outsrate <> OUTSBAUDSSAME THEN

ratecount = usart~lnfo.outSmaXSbaudsrate ,
udata.outsrate;

QUTPUT(usartSlnfo.outstlmercountport) = LOW(ratecount);
aUTPUT(USartSlnto.outstlmercountport) = HIGH(ratecount);

END; . .

* initialize the us art by sending a software reset command,
• followed by the mode word tor * asychronous operation, etc., and the command word to start
* It up.

*'
port = usart81nfo.usartscontrolSportl

OUTPUT(port) = USARTSRESEr,

'* • wait for command to be accepted • . ,
DO wHILE (lnput(port) AND TXSREAD!> = 0;
END;

'* • figure out the ~arlty control p~rt of the Mode word. *,
If (udata.termSflags AND OUTSPARITYSMASK) a

EVENSOUfPUT.PARITYSMOOE THEN
DO;

paritySmode = EVEN$MOOE;
END;

B-44

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iusart: standard usart device driver
usartssetup

64

65
66
61
68

69
10

11

12
7J
14

75

2

2
3
J
2

3
3

2

2
j

2

2

ELSE IF (udata.term$flsgs AND OUTSPARITYSHASK) =
ODOSOUTPUTSPARITYSMOOE THEN

ELSE

00;
paritysmode = OODSMOOE;

END;

DO;
paritysmode = NOSPARITYSMODEI

END;

OUTPUT(port) = USARTSHODESWORD OR parityS.od.,

'* * wait for command to be accepted.

*'
DO WHILE (input(port) AND TXSREADY) a 0;
END;
OUTPUT(port) = USARTSSTART8CMD;

END usartssetup;
ssuDtltle('usartScheck')

B-45

PL/M-86 COMPILER

7&
71

18

19
80

81

82

83

84
8~
86
81

88
89

1
2

2

2
2

2

2

2

2
3
3
2

3
3

,.

EXAMPLES OF DEVICE DRIVERS

iusart: standard ulart device driver
usartscheck

• TITLE: usartScheck

* * CALLS:
• none
* • INTERFACE VARIABLES:
* cdatasp POINTER to controller data

* * CALLING SEQUENCE:
• cn = usart$CheCkCcdatasp);
•
• ABSTRACT:
* Termscheck procedure, connected to usart input 1nterrupt.
* Gets input char, strips off parity If required, and lets * up flags for ter.ln~l support •
• 1

usartScheck: PROCEDURE(CdataSp) 8YTE REENTRANT PUBLIC;
DECLARE

cdatasp
cdata

DECLARE
usartslrtfoSp
usartslnfo
udatasp
udata
dummy
i
ch

1*

POINTER,
BAStD cdataSp TSSCOATA;

POINTER,
BASED-usartSinfo$p USARTSCONTROLLERSINFO,
POINTER,
BASED udata$p TS$UDATA,
BIT£,
"ORO,
BIT£;

* find port address ~ get character
*1

usartSinfosp = cdata.dinfo$PI
udat8$p = icdata.udata;

cn = inputCulartSlnfo.usartSdatasport);

1*
• check Input parity mode, strip parity 1f deSired

*'
IF CUdata.termSflags AND INSPARITYSMASK) (>

PASSSINPUrSPARITYSMOOE THEN
IF Cudata.teraSflegs AND INSPARITYSMASK) •

ELSE

STRIPSINPUT.PARITYSMOOE THEN
001

Ch a cn AND 01£nl
ENOl

DO;
If Cudata.ter_Sflag. AND OUTSPARSCHECK) (> 0 THEN

DO;

B-46

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER lusart: standard usart device driver
usartScheclC

90 4

91 4
92 S
9j 5

94 5

95 5
96 4
91 3

98 3
99 • 100 4

iOl 4
102 4
103 4

104 4
i05 .3

lOb 4
101 • i08 " 109 4
110 4

111 4
112 3

113 2

114 2

115 2

116 2

-) AND

-ort) =

END;

1*

END;

If (Input(usartSlnfo.usart$control$port)
AND USARTSINPUT'ERROR) <> 0 THEN

DO;

ENO;

ch a: ch OR 080HI
If (lnput(usartSlnfo.usartcontrolport

TX,READY) <> 0 THEN
OUTPUTCusart$lnfo.usartscontrolSP

USARTSSTARTSCMD;

ELSE If Cudata.teraSflags AND IN$PARITY$MASK) =
EVENSINPUT'PARITY5MaD~ tHEN

00;

END;
ELSE

DO;

END;

dumllY = 0;
ch :. ch OR dummy;
If PARITY THEN

en. = cn AND 07FHI
ELSE

Ch = ch OR 080H;

dummy = 01
ch = Ch OR dum.y;
If ~OT PARITY THEN

ch, = ch AND 01FH;
ELSE

ch = Ch OR 080H;

* fIll In 1nfo for ter_lnal support
*1

cdata.lnterruptstype = INPUTS INTERRUPT;

cdat~.lnterruPtln9sunlt = 0;

RETURN cru

END usart$check;
Ssubtltle('usartSoutput')

B-47

I. 1 unIt per device *1

PL/M-86 COMPILER

111
its

119

120
i21
122
i23
i24
125
126
i21

128
i29
i30

1
2

2

2
:2
2
J
3 ..
4
3

4
4
3

I.

E~~LES OF DEVICE DRIVERS

1usart: standard usart device driver
usartsoutput -

• TITLE: usartsoutput
•
• CALLING SEQUENCE:
• CALL usartsoutput(Udatasp, Ch);
•
• INTERFACE VARIABLES:
• udatasp POINTER to unit data
• eh BYT£, Character to output
•
• CALLS:
• none •
• ABSTRACT:
• Thts 15 the usart output routine. Marking or spae1ng
• partty 15 handled here If enabled, and the char is
• sent out.

* .1

usartsoutput: PROCEDURE(uaatasp, eh) REENTRANT PU8LIC;
DECLARE

udatasp
udataspso

offset
base

edata-
Ch
udata

DECLARE
usartslnfosp
usartslnfo
mode

1*

POINTER,
STRUCTURE(

WORO,·
SELECTOR) AT(,Udatasp),

BASED udatapo.base TSSCDATA,
BYTE,
BASED udataSp TSSUDATA;

POINTER,
BASED usart$lnfosp USARTSCOHTROLLERSINFO,
WORD;

* Check output parity mode. If It's mark or space, we do
• it here. Odd or even 15 taken care of by the hardware.
*1

mode = udata.termSflags AND OUTSPARITYSMASK;
IF mode <= MARK$OUTPUTSPARITYSMODE THeN

DO;

END;

I.

IF mode = MARK$UUTPUT$PARITYSMODE THEN

ELSE

DO;
eh : eh OR ttOh;

END;

DO;
eh = eh AND 07fh;

END;

* Now send the char.
*1

B-48

EXAMPLES OF DEVICE DRIVERS

PL/~-8b COMPILER 1usart: standard usart device dr1ver
usart$output

131
i3l

133

2
2

2

usartSlntoSp = cdata.dlnfoSPI
OUTPUT(uSartSlnfo.usartsdat&Sport) s: ChI

END usart$output;
$Subtltle('usart$answer')

B-49

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER lusart: standard usart device driver
usartsanswer

134
135

136

131

138

139

1
2

2

2

2

I'
• TITLE: usartSanswer
•
• CALLING SEQUENCE:
• CALL usartsanSwer(udataSp);
•
• INTERfACE VARIABLES:
• udatasp POINTER to unit data
•
• CALLS:
• none •
• ABSTRACT:
• Sends a mode word to the ulart to place DTR active.
•
'1

usartsanswer: PROCEDURE(Udatasp) REENTRANT PUBLIC;
DECLARE

udata$p
udataspso

offset
base

cdata
udata

.DECLARE
usartSlnfo$p
usart$lnfo

POINTER,
STRUCTURE(

WORO,
SELECTOR) AT(~udataSp),

BASED udataSPso.base TSSCDATA,
BASED udataSp TS$UDATA;

POINTER,
BASED usartslnfo$p USART$CONTROLL~R$INFO;

usart$lnfosp = cdat~.dlnfO$p;
OUTPUT(ulartSlnfo.usarticontrolSport) = ANSWERSCONTROL;

END usart$answer;
$suotltle('usartShanQup')

B-50

EXAMPLES OF DEVICE DRIVERS

PL/M-~6 COMPILER 1usart: standard usart device driver
usart$han~up

14U
i41

142

143

144

145

1
2

2

2

2

2

1*
* TITLE: usartShangup

* * CALLING SEQUENCE:
* CALL us~rtshangup(UdataSP);

* * INTERFACE VARIABLES:
• udataSP POINTER to unit data

* * CALLS:
* none

* * ABSTRACT:
* Sends a mode word to the ulart to place DTR inactive.

* *1

usart$hangup: PROCEOURE(udataSP) REENTRANT PUBLIC;
DECLARE

udata$p
udatapo

offset
base

cdata
udata

DECLARE
usart$lnfo$p
usart$lnfo

POINTER,
STRUCrURE(

-WORD, -
SELECTOR) AT(iudataSp),

BAS~D udataSPso.base TS$COATA,
8AS~O udataSp TSSUOATA;

POINTER,
BASED usartsinfosp USART.CONTROLLERSINFO;

usart$info$p = cdata.dlnfosp;

OUTPUT(usart$info.usartscontrol$portl a HANGUPSCONTROL;

END UsartShangup;
SsuDtltleC'usart$finish')

B-51

EXAMPLES OF DEVICE DRIVERS

PL/M-86 COMPILER iusart: standard usart devIce drlver
usartSflnlsh

146
141

14ij

149
150

1
2

2

2
1

1* * TITLE: usartsflnlsn

* * CALLING SEQUENCE:
* CALL usartsflnlsh(cdataSp);
* * INTERFACE VARIABLES:
• cdatasp POINTER;
• * CALLS:
• none •
• ABSTRACT:
• Tnls does nothIng.
•
.1

usartSflnisn: PROCEDURElcdatasp) REENTRANT PUBLIC;
Dt::CLARE

cdatasp POINTER;

RETURN;

END usartSflnlsh;
END 1usart;

MODULE INFORMATION:

CODE AREA SU.E
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STAC~ SIZE
137 LINES READ
o PROGHAM ~AKNIN~S
o PROGRAM ERRORS

= 0200H
= OOOOH
= OOOOH
= 0016H

END OF PL/M-86 COMPILATION

7200
00
00

220

B-52

INDEX

Underscored entries are primary references.

attach device requests 4-1

baud rate 7-7, 7-9
buffers 2-5, 2-6, 2-9

Cancel I/O procedure 6-4
CANCEL$IO 2-4, 3-3, A-7
cancel requests 4-2
close requests 4-2
common device driver 1-3, 5-1

device information table--3-8
example B-2, B-I0
support routines A-I

common device 3-1
communication levels 1-1
condition codes 2-9, 7-8
configuration 8-1
connection 2-12
creating DUIBs 2-7
custom device drivers 1-3, 6-1
custom devices 3-2
cylinder 3-11

data storage area 3-9, 3-12
data structures 3-11
default finish procedure 5-3
default initialization procedure 5-2
default stop procedure 5-4
DEFAULT$FINISH 5-3
DEFAULT$INIT 5-2
DEFAULT$STOP 5-4
detach device requests 4-1
device

granularity 2-4
interfaces 2-13
number 1-2, 2-4, 2-9

device data storage area 3-9, 3-12, A-3, A-9
device driver

interfaces 2-1
type 1-3

device finish procedure 3-9, 5-2, A-4
Device Information Table 2-4, 3-8, 7-2, 7-11
device initialization procedure-:3-9, 5-2, A-3
device interrupt procedure 3-9, 5-5, A-9

Index-l

INDEX (continued)

device start procedure 3-9, 5-3, A-5
device stop procedure 3-9, 5-4, A-7
Device-Unit Information Bloc~2-1
d evice-uni t

name 2-2
number 1-2, 2-4

doubly linked list 6-5
DUIB 2-1

creation 2-7
structure 2-1
use of 2-6, 4-2

examples of device drivers B-1

file connection 2-12
file drivers 1-2, 2-2
Finish I/O procedure 6-2
FINISH$IO 2-4, 3-3, A-3
fixed updating 2-5
format 2-12
functions 2-3, 2-10, 2-11

granularity 2-4, 2-7

Initialize I/O procedure 6-1
INIT$IO 2-4, 3-3, A-I
Intel-supplied routines 5-1
Interactive Configuration Utility 8-1
interfaces to the device driver 2-1
interrupt

handlers and tasks 3-3
level 3-8, 7-3
task A-3
task priority 3-9
type 7-5, 7-10

INTERRUPT$TASK 3-3, A-9
I/O functions 2-3 ---
I/O request/result segment 1-3, 2-8, A-5, A-7
I/O requests 1-3, 4-1
IORS 1-3 2-8 A-5~-7 , --' ,

structure 2-8
use of 4-2

I/O System interfaces 2-1
I/O System responses 4-1
I/O System-supplied routines 5-1

levels of communication 1-1
linked list 6-5

modem 7-6

name of device-unit 2-2
notify procedure 2-11, 5-6
numbering of devices 1-2

Index-2

INDEX (continued)

open requests 4-2

portable device drivers 3-11
priority 3-9

Queue I/O procedure 6-3
QUEUE$IO 2-4, 3-3, A-5

random access device drivers 1-3, 5-1
random access devices 3-1
random access driver example B-16
read requests 4-2
request queue 6-5
requests 1-3, 4-1
requirements for using the common device driver 3-1
retry limit 3-9, 4-7

seek complete procedure 2-12, 3-11, 5-7
seek requests 4-2
signal character 2-12
special requests 4-2
stack size 3-9

terminal
attributes 2-11
baud rate 7-7, 7-9
Device Information Table 7-2, 7-11
devices 3-3
driver example B-37
drivers 7-1
flags 7-6, 7-9, 7-10
modem 7-6
parity 7-6

terminal answer procedure 7-3, 7-9, 7-11
terminal check procedure 7-4, 7-10, 7-11
Terminal Controller Data 7-4, 7-5, 7-11
terminal finish procedure 7-3, 7-8, 7-11
terminal hangup procedure 7-3, 7-9, 7-11
terminal initialization procedure 7-3, 7-8, 7-11
terminal out procedure 7-3, 7-10, 7-11 --
terminal setup procedure 7-3, 7-9, 7-11
Terminal Support Code 7-1 ---
Terminal Unit Data 7-4, 7-5, 7-11
track size 3-10
types of device drivers 1-3

Unit Information Table 2-5, 3-10
unit number 1-2, 2-4, 2-9
unit status codes 2-9
updating output to a device 2-5
using the DUIBs 2-6

volume granularity 2-7

write requests 4-2

Index-3

Guide to Writing Device Drivers for the
iRMXTM 86 and iRMXTM 88 1/0 Systems

142926-004

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

._---,,---,,_._---,,----

--.. ------_._-" .. _--------_. __ ._._-"_._,, - _ ... _-_ .. __ _---_._._ .. _-_._-_ .. " .. _ .. ,,_. -----

4. Did you have any difficulty understanding descriptions or wording? Where?

-_ .. _----.. _"_._" .. _ _ "._-_ ... _-. __ ... ".,,.-....... _,,-_.---_._"._ _ -".,' _ •.... -",,,-_ ... ,,-,,._,-.. -,-,,,-- .. _._ .. ,,--_ __ .. _......... """ _._" .. " .. _"" .. _---.. __ .. __ .. __ . __ ._ .. _.,,._----

....... "."-_ .. - ... __ ,,--_ __ ._-._ .. _---,,, .. ,-, , _ _ _----

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). -----_ .. _- ._--

NAME _" _ , " , , ,., _." , .. " ... " ", _.

TIT L E _ ' , .. ,,, , .. _ , _ .. ,, ... _ ... , ... _., , _ ... "._ , ... ,._ ,., " , .. .

COMPANY NAME/DEPARTMENT

ADDRESS

CITY

I

STATE
(COUNTRY)

Please check here if you require a written reply. II I

DATE ____ .. _ _ .. _"",, __ .. ___ _

.. ... , " , ... ,-............ - " -_."",,, ... _ ... _---

._-_ _--------_._ .. __ _---...... _ .. __ .. _- .. _---

ZIP CODE

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of I ntel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

""" NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	I-01
	I-02
	I-03
	replyA
	replyB
	xBack

