
inter

iRMXTM 86
OPERATOR'S MANUAL

Copyright© 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Order Number: 144523-001

iRMXTM 86
OPERATOR'S MANUAL

Order Number: 144523-001

Copyright© 1982 Intel Corporation
I I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

REV. REVISION HISTORY

-001 Original Issue. Contains information formerly found
in iRMX 86 HUMAN INTERFACE REFERENCE
MANUAL and iRMX 86 INSTALLATION GUIDE.
This issue documents Release 5 of the iRMX 86
Operating System.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

PRINT
DATE

11/82

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document. may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BXP
CREDIT
i
I"-ICE
ICE
iCS
iLBX
im
iMMX

Insite
Intel
Intel
Intelevision
Intellec
inteligent Identifier
inteligent PrograJllJllj.ng
Intellink
iOSP

iPDS
iRMX
iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
Micromainframe

Micromap
Multibus
Multichannel
Multimodule
Plug-A-Bubble
PROMPI'
RMXJao
RUPI
System 2000
UPI

Printed in USA/OM-049/4K/0683/WCP

PREFACE

This manual is the primary reference for operators who access the iRMX 86
Operating System through a terminal using Human Interface commands. In
addition to Human Interface commands, this manual also discusses the
line-editing and control characters supported by the iRMX 86 Operating
System and two utilities available to i~1X 86 operators: the Patching
Utility and the Files Utility.

The manual is divided into the following chapters:

Chapter 1 discusses the Line-editing and control characters available
to terminals that access the iRMX 86 Operating System. This chapter
applies to all application systems, .regardless of whether they
include the Human Interface.

Chapters 2 through 4 discuss the Human Interface. Chapter 2
introduces the operator to the Human Interface and describes the
general process of using it. Chapter 3 provides a detailed
description of Human Interface commands in alphabetical order.
Chapter 4 contains examples of Human Interface operations.

Chapter 5 discusses the Patching Utility, a utility that runs on both
iRMX 86-based systems and Series III Microcomputer Development
Systems.

Chapter 6 discusses the Files Utility, an iRMX 86 application system
that you can use to format and maintain iRMX 86 secondary storage
volumes.

Appendix A contains a list of iRMX 86 condition codes with short
descriptions of the codes.

NOTATIONAL CONVENTIONS

This manual uses the following notational conventions to illustrate
syntax.

UPPERCASE

lowercase

underscore

In examples of command syntax, uppercase information
must be entered exactly as shown. You can, however,
enter this information in uppercase or lowercase
characters.

In examples of command syntax, lowercase fields
indicate information to be supplied by the user. You
must enter the appropriate value or symbol for
lowercase fields.

In examples of dialog at the terminal, user input is
underscored to distinguish it from system output.

iii

<>

PREFACE (continued)

Angle brackets surround variable fields in messages
, displayed by the Human Interface commands and by the

utilities. This information can vary from message to
message.

All numbers, unless otherwise noted, are assumed to be decimal.
Hexadecimal numbers include the "h" radix character (for example OFFh).

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information:

• Introduction to the iRMXT" 86 Operating System,
Order Number: 9803124

• iRMXT" 86 Nucleus Reference Manual, Order Number: 9803122

• iRMXT" 86 Terminal Handler Reference l1anual, Order Number: 143324

• iRMXT" 86 Basic I/O System Reference Manual, Order Number: 9803123

• iRMXT" 86 Extended I/O System Reference l>1 anua I ,
Order Number: 143308

• iRMXT" 86 Loader Reference Manual, Order Number: 143318

• iRMXT" 86 Human Interface Reference Hanual, Order Number: 9803202

• iRMXT" 86 Configuration Guide, Order Number: 9803126

• iRMXTIo 86 Programming Techniques, Order Number: 142982

• iRMXT" 86 Disk Verfication Utility Reference Hanual,
Order Number: 144133

• iAPX 86,88 Family Utilities Users' Guide, Order Number: 121616

• User's Guide for the iSBC® 957B iAPX 86,88 Interface and
Execution Package, Order Number: 143979

• Guide to Writing Device Drivers for the iRMX
TIo

86 and iRMX
nt

88 I/O
Systems, Order Number: 142926

• :il1MXT" 800 Multibus® Message Exchange Reference Manual, Order
Number: 144912

iv

CONTENTS

CHAPTER 1
LINE EDITING AND CONTROL CHARACTERS
Type-Ahead •••
Controlling Input to a Terminal ••••••••••••••••.•••••••••••••••••••
Controlling Output to a Terminal •••••••••••••••••••••••••••••••••••
Escape Sequences •••

CHAPTER 2
USING THE Hill1AN INTERFACE
Requirements •••
Configurable Features of the Human Interface •••••••••••••••••••••••
Loading the Operating System •••••••••••••••••••••••••••••••••••••••
Accessing the Human Interface ••••••••••••••••••••••••••••••••••••••
File Structure •••

Types of Files •••
Named File Hierarchy •••
P athnames ••
Logical Names ••

Logical Names for Devices ••••••••••••••••••••••••••••••••••••••
Logical Names for Files ••
Where Logical Names are Stored •••••••••••••••••••••••••••••••••
Logical Names Created by the Operating System ••••••••••••••••••
Removing Volumes from Devices ••••••••••••••••••••••••••••••••••

Wild Cards ••.•••
Command Syntax •••

Command Name •••
Prepositions •••
Inpath-List and Outpath-List •••••••••••••••••••••••••••••••••••••

One-for-One Match ••
Concatenate ••
Error Conditions •••

Other Parameters •••
System Manager ••• ••••••••••••

CHAPTER 3
HUNAN INTERFACE COHMANDS
Error Messages •••
Command Syntax Schematics ••
ATTACHDEVICE •••
ATTACHF ILE •••
BACKUP •••
COpy •••••••••••••••••••••• ' • ••
CREATEDIR ••
DATE •••
DEBUG ••
DELETE •••
DETACHDEVICE •••
DETACHF ILE •••

v

PAGE

1-1
1-2
1-3
1-5

2-1
2-1
2-2
2-4
2-5
2-5
2-6
2-8
2-9
2-10
2-11
2-11
2-13
2-13
2-14
2-17
2-19
2-20
2-21
2-22
2-22
2-23
2-23
2-24

3-1
3-3
3-7
3-13
3-16
3-24
3-28
3-29
3-31
3-33
3-35
3-38

CONTENTS (continued)

CHAPTER 3 (continued)
DIR ••
DISKVERIFY •••
DOWNCOPY ••• ' • •••••••••••••••••
FORl1AT •••
INITSTATUS •••
JOB DELETE ••
LOCK •••
PERtiIT •••
REN.&fE •••
RESTORE ••
SUBMIT •••
SUPER ••
Tll1E •••
UPCOpy •••
VERS ION ••

CHAPTER 4
HUMAN INTERFACE EXAMPLES
Command Examples Format ••
How to Begin a Console Session •••••••••••••••••••••••••••••••••••••
How to Create a Simple Data File •••••••••••••••••••••••••••••••••••
How to Copy Files ••

How to Copy to New Files •••
How to Display the Contents of Files •••••••••••••••••••••••••••••
How to Replace Existing Files •••••••••••••••••••••••••••••••••••
How to Concatenate Files •••

How to Delete Files ••
How to Use Directories •••

How to Create a New Directory ••••••••••••••••••••••••••••••••••••
How to Refer to a Directory ••••••••••••••••••••••••••••••••••••••
How to Add New Entries to a Directory ••••••••••••••••••••••••••••
How to Create a Directory Within a Directory ••••••••••••••••••.•••
How to List Directories ••
How to Move Files Between Directories ••••••••••••••••••••••••••••
How to Delete a Directory ••
How to Change Your Default Directory •••••••••••••••••••••••••••••

How to Rename Files and Directories ••••••••••••••••••••••••••••••••
How to Rename Files ••
How to Rename Directories ••

How to Move Files Across Volume Boundaries •••••••••••••••••••••••••
How to Format a New Volume •••
Diskette Switching Procedures ••••••••••••••••••••••••••••••••••••••

CHAPTER 5
PATCHING UTILITY
Types of Patches •••
Types of Replacement Code ••

vi

PAGE

3-40
3-48
3-53
3-56
3-63
3-65
3-67
3-69
3-74
3-77
3-83
3-87
3-90
3-92
3-95

4-1
4-1
4-2
4-3
4-4
4-5
4-5
4-6
4-8
4-9
4-9
4-10
4-11
4-12
4-13
4-14
4-14
4-15
4-16
4-16
4-18
4-19
4-20
4-21

5-1
5-1

CONTENTS (continued)

CHAPTER 5 (continued)
Versions of the Patching Utility •••••••••••••••••••••••••••••••••••
Invoking the Patching Utility ••••••••••••••••••••••••••••••••••••••
Error Messages •••
Patching Procedures •••• ~ ••••••••••••••••••••••••••••••••••••••• ••••

Jump Instruction Patch •••
In-Place Patch •••
Patching Library Modules •••
Listing Translator Header Records ••••••••••••••••••••••••••••••••

CHAPTER 6
FILES UTILITY SYSTEM
Hardware Required ••
Starting the Files Utility •••
Using the Files Utility ••

Changing Diskettes •••
Commands •••

ATTACHDEV (AD) •••
BREAK (BR) •••
CREATEDIR (CD) •••
DELETE (DE) ••
DETACH (DT) ••
DIR (01) •••
DOWNCOPY (DC) ••
FO~AT (FO) ••
HELP (HE) ••
UPCOpy (DC) ••

Error Messages •••

APPENDIX A
CONDITION CODES SillfMARY ••

2-1.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.

FIGURES

Example of a Named-File Tree •••••••••••••••••••••••••••••••
Sample DEBUG Display •••••••••••••••••••••••••••••••••••••••
FAST Directory Listing Example •••••••••••••••••••••••••••••
SHORT Directory Listing Example ••••••••••••••••••••••••••••
LONG Directory Listing Example •••••••••••••••••••••••••••••
EXTENDED Directory Listing Example •••••••••••••••••••••••••
INITSTATUS Display •••

vii

PAGE

5-2
5-2
5-4
5-5
5-5
5-6
5-7
5-8

6-1
6-2
6-3
6-3
6-3
6-3
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-9
6-9
6-9

A-I

2-7
3-32
3-43
3-43
3-44
3-44
3-63

2-1.
3-1.
3-2.
3-3.
A-I.

TABLES

Input Pathname and Output Pathname Combinations ••••••••••••
Human Interface Command Dictionary •••••••••••••••••••••••••
Suggested Physical Device Names ••••••••••••••••••••••••••••
Directory Listing Headings ••••••••••••••••••••••••••••••••• '
iID1X® 86 Condition Codes •••••••••••••••••••••••••••••••••••

viii

PAGE

2-21
3-5
3-9
3-45
A-I

CHAPTER 1. LINE EDITING AND CONTROL CHARACTERS

Every terminal connected to an i~1X 86 application system communicates
with the system via one of two software packages: the iRMX 86 Terminal
Handler or the Terminal Support Code feature of the Basic I/O System.

The Terminal Handler is an independent layer of the Operating System that
provides terminal I/O facilities for application systems that do not
include the Basic I/O System. Because this manual assumes you are using
an application system that includes the Basic I/O System, it does not
discuss how to communicate with an application system via the Terminal
Handler. Refer to the iRMX 86 TERMINAL HM~DLER REFERENCE MANUAL for
information about the line-editing and control characters available with
the Terminal Handler.

The Terminal Support Code is a software package that interfaces to
terminal device drivers to provides terminal communication for systems
that include the Basic I/O System. This manual assumes that your
terminal communicates with the iRMX 86 application system via the
Terminal Support Code.

The Terminal Support Code provides a set of line-editing and control
characters that give you the basic editing and control functions you need
when entering text at a terminal. You can use these characters in
addition to the Human Interface commands described later in this manual.
This chapter discusses the line editing features and control characters
that are available. However, the Terminal Support Code contains many
features other than those discussed in this chapter. Refer to the
iRMX 86 BASIC I/O SYSTEM REFERENCE l1ANUAL for a complete description of
the Terminal Support Code.

TYPE-AHEAD

When you enter characters at the terminal, you can use the type-ahead
feature to enter a number of lines at one time. The Terminal Support
Code sends the first line to the Operating System for processing and
stores additional lines in a type-ahead buffer. It sends the next line
in the buffer to the Operating System after the Operating System finishes
with the first line. If the type-ahead buffer becomes full, the Terminal
Support Code sounds the terminal bell and refuses to accept input.

1-1

LINE EDITING AND CONTROL CHARACTERS

CONTROLLING INPUT TO A TERMINAL

The Terminal Support Code provides several characters that you can enter
to control and edit terminal input. Some of these characters correspond
to single keys on your terminal (such as carriage return or rubout). For
others, called control characters, you must press the CTRL key, and while
holding it down, also press an alphabetical key. This manual designates
control characters as follows:

CTRL/character

The editing and control characters are processed by the Terminal Support
Code. With the exception of the line terminator, they are not normally
included in the input line that is sent to the Operating System.

The control characters listed in this section are the default
characters. Each can be replaced with a different character by means of
a selection procedure described in the iRMX 86 BASIC I/O SYSTEM REFERENCE
MANUAL. The default editing and control characters for terminal input
include:

CARRIAGE RETURN
or

LINE FEED

RUBOUT

CTRL/p

Terminates the current line and positions the
cursor at the beginning of the next line.
Entering either of these characters adds a
carriage return/line feed pair to the input line.

Deletes (or rubs out) the previous character in
the input line. In response to the RUBOUT, your
terminal display changes in one of two ways,
depending on the configuration of the Terminal
Support Code. In one configuration, each RUB OUT
removes a character from the screen and moves the
cursor back to that character position. In the
other configuration, each RUBOUT echoes the
deleted character back to the terminal. In the
second configuration, also called hard-copy mode,
the Terminal Support Code surrounds the echoed
characters with the "If" character to distinguish
the echoed characters from the surrounding text.

A "quoting" character, which removes, from the
character that follows it, any any meaning that
is special to the Terminal Support Code. It
literalizes the next character, causing it to be
sent on to the Operating System, even if it is a
control character that the Terminal Support Code
understands. All control characters (except for
output control characters) sent to the Operating
System in this manner are not processed as
control characters. Output control characters
(such as CTRL/s and CTRL/q) perform their special
functions even if preceded by a CTRL/p. The
CTRL/p does not echo at the terminal.

1-2

CTRL/r

CTRL/u

CTRL/x

CTRL/z

LINE EDITING AND CONTROL CHARACTERS

If the current input line is not empty, this
character reprints the line with editing already
performed. This enables you to see the effects
of the editing characters entered since the most
recent line terminator. If the current line is
empty, this character reprints the previous line,
up to the point of the line terminator.
Additional CTRL/r characters display previous
lines, until there are no more lines in the
type-ahead buffer. Subsequent CTRL/r characters
display the last line found.

Discards the current line and the entire contents
of the type-ahead buffer.

Discards the current input line. This character
echoes the "II" character, followed by a carriage
return/line feed, at the terminal.

If entered as the only character in a line, this
character specifies an end-of-file, terminating a
read from the terminal. If entered on a
non-empty line, it terminates the line without
appending a carriage return/line feed pair to the
line.

CONTROLLING OUTPUT TO A TERMINAL

When sending output to a terminal, the Terminal Support Code always
operates in one of four modes. You can switch the current output mode
dynamically to any of the other output modes by entering output control
characters. The output modes and their characteristics are as follows:

Normal

Stopped

Scrolling

Discarding

The Terminal Support Code accepts output from the
application system and immediately passes the output
to the terminal for display.

The Terminal Support Code accepts output from the
application system, but it queues the output rather
than immediately passing it to the terminal.

The Terminal Support Code accepts output from the
application system, and it queues the output as in the
stopped mode. However, rather than completely
preventing output from reaching the terminal, it sends
a predetermined number of lines (called the scrolling
count) to the terminal whenever the operator enters a
control character at the terminal.

The Terminal Support Code discards output from the
application system without displaying or queuing the
output.

1-3

LINE EDITING AND CONTROL CHARACTERS

The following control characters, when entered at the terminal, change
the output mode for the terminal. Like the input control characters,
these are defaults. They can be changed by a selection process described
in the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL.

CTRL/o

CTRL/q

CTRL/s

CTRL/t

CTRL/w

Places the terminal in discarding mode if the terminal
is in a mode other than discarding mode. If the
terminal is already in discarding mode, the CTRL/o
character returns the terminal to its previous output
mode.

Resumes previous output mode. If you enter this
character after stopping output with the CTRL/s
character, output continues in the same manner as
before you entered the ~TRL/s (that is, if your
terminal was in scrolling mode before you entered
CTRL/s, output resumes in scrolling mode). Entering
CTRL/q at any other time places your terminal in
normal mode (that is, all output is displayed at the
terminal without waiting for permission to continue).
Therefore, you can use CTRL/q to reverse the effect of
a CTRL/w and get your terminal out of scrolling mode.

Places the terminal in stopped mode (stops output).
You can resume output without loss of data by entering
the CTRL/q character. If the terminal is in
discarding mode (as a result of a CTRL/o character),
the CTRL/s character has no effect on output.

Places the terminal in scrolling mode and sets the
scroll count to one. This means that you must enter
another CTRL/t character after each displayed line in
order to continue the display.

Places the terminal in scrolling mode. In this mode,
the terminal displays output several lines at a time
(usually, enough lines to fill the screen) and then
waits for user input to continue. When you enter
another CTRL/w character, the terminal displays the
next screen of information. The scrolling count is
selectable; refer to the iRMX 86 BASIC I/O SYSTm1
REFERENCE HANUAL for more information.

Entering the CTRL/w character while the terminal is
already in scrolling mode increments the scrolling
count by the original scrolling count value.
Therefore, you can use CTRL/w to increase the number
of lines the terminal displays before stopping.
Entering an input line resets the scroll count to its
original value.

An additional control character is supported which, although it doesn't
affect the output mode of the terminal, can affect output to the
terminal. This character is:

1-4

CTRL/c

ESCAPE SEQUENCES

LINE EDITING AND CONTROL CHARACTERS

Deletes the type-ahead buffer and causes the Operating
System to abort the currently-executing program. If
you enter a Human Interface command to initiate a
program, you can enter CTRL/c to stop it.

The Terminal Support Code also accepts escape characters that you can
enter to further define your terminal. (For example, you could set the
scroll count or switch your terminal into transparent mode so that
control characters have no effect.) You can enter these escape
characters from the terminal, or you can write them to the terminal from
a program. Refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for
more information about these escape characters.

1-5

CHAPTER 2. USING THE Hill1AN INTERFACE

This chapter discusses how to use the Human Interface. It doesn't
provide detailed descriptions of individual commands; that is done in
Chapter 3. However, it does address the followirig topics:

• Requirements for including the Human Interface in your system.

• Configurable features of the Human Interface.

• The process of accessing the Human Interface.

• The iru1X 86 file structure and file-naming conventions (including
wild cards).

• The general syntax of a command.

• The system manager.

REQUIREMENTS

The Human Interface is a layer of the iRMX 86 Operating System. To
include the human Interface in your application system, you must also
include the following additional layers:

• Nucleus

• Basic I/O System

• Extended I/O System

• Application Loader

During command execution, the Human Interface invokes the services of
these other iRMX 86 layers in a way that is transparent to the operator.
Therefore, an operator needs little or no knowledge of operating system
structures to load and execute programs from the console keyboard. For
more information about iRMX 86 configuration, refer to the iRMX 86
CONFIGURATION GUIDE.

CONFIGURABLE FEATURES OF THE H~1AN INTERFACE

The Human Interface, like the other layers of the iRMX 86 Operating
System, is configurable. Thus, any description of how to use the Human
Interface depends a great deal on its configuration. This manual
describes several features of the Human Interface that may be different
(or not present at all) in your system. The configurable items that are
the most visible to the operator include:

2-1

USING THE HUMAN INTERFACE

• Multi-access. If your Human Interface is configured for
multi-access, several users can access the Human Interface at
once via separate terminals. One of the users, the system
manager, has more capabilities than other users and is
responsible for managing system resources and controlling who can
use the system. Users of a multi-access Human Interface are
concerned about user IDs, access rights to files, and attaching
and detaching devices -- all in relation to the other users of
the system.

However, if your Human Interface is configured for single access,
you are less interested in much of this information. You are the
only user accessing the system; therefore you are not as
interested in user IDs and the system manager. You have no great
concern about file access rights since all the files on the
system are yours.

This manual attempts to satisfy both users. It explains all the
information that the user of a multi-access Human Interface
needs, but it also pOints out cases where information does not
apply to users of single-access systems. In all cases, the
information required by a user of a single-access Human Interface
is a subset of the information required by a user of a
multi-access system.

• Initial program. During initialization, the Human Interface
starts an initial program for each terminal. This initial
program is a Command Lin~ Interpreter (CLI), a program that reads
commands and starts those programs running.

This manual assumes that the initial program for all users is the
CLI supplied by the Human Interface. If your Human Interface is
configured with a different initial program, the information in
this manual might not describe your Human Interface accurately.
The system prompts might be different, the command syntax might
be different, or you might be restricted to using a special
program such as an interpreter or a transaction processor. If
you suspect that your initial program is not the standard eLI,
contact the person who configured your system to determine the
differences.

There are other configuration options that affect how the system appears
to a user. When describing these items, this manual points out their
configurable nature and urges you to consult the iRMX 86 CONFIGURATION
GUIDE. If you are not involved in iRMX 86 configuration, contact the
person who configured your system to obtain more information.

LOADING THE OPERATING SYSTffi1

Before you can access the Human Interface, someone must first load the
Operating System into the memory of your iRMX 86 system and start it
running. This process can vary from system to system, but generally it
involves one of the following procedures:

2-2

USING THE RUHAN INTERFACE

• Connecting the target system (the iRMX 86 system) to an Intel
Microcomputer Development System and using the iSBC 957B package
to load the Operating System from development system files to
memory in the iRMX 86 system. This procedure is normally done
during the development phase of an application system, when some
of the system elements remain unstable. Refer to the USER'S
GUIDE FOR TRE iSBC 957B iAPX 86, 88 INTERFACE AND EXECUTION
PACKAGE for more information.

• Using the iRHX 86 Bootstrap Loader to load the Operating System
from iRMX 86 files to memory in the iRMX 86 system. For some
systems, you simply ensure that an iRMX 86-formatted volume
containing the Operating System resides in the proper device and
reset the system. On other systems, you must verify that the
device contains the correct volume and perform the following
steps:

1. Reset the system; usually, this involves pressing the
RESET button on the system chassis. A series of
characters (usually asterisks) should appear at the
system terminal (the one connected to the processor
board).

2. Type an uppercase U at the system terminal. This
accesses the iAPX 86, 88 monitor. The monitor
displays the following information:

iAPX 86, 88 MONITOR Vx.y

The period (.) is the monitor prompt.

3. Use the monitor's B command to bootstrap load the
Operating System. In most cases you do this by
entering:

.B

For the default configuration of the Bootstrap Loader,
this command loads a file with pathname SYSTEM/RMX86
from the first available device. If your Operating
System resides on a file with a different pathname,
you must specify that pathname in the B command.
Refer to the iRMX 86 LOADER REFERENCE MANUAL, the
iRMX 86 CONFIGURATION GUIDE, and the USER'S GUIDE FOR
THE iSBC 957B iAPX 86, 88 INTERFACE AND EXECUTION
PACKAGE for more information about the configuration
of the Bootstrap Loader and the interface between it
and the iSBC 957B package.

Some systems contain the entire Operating System in ROM and do not
require you to load additional information from secondary storage. The
usual process for starting these systems is simply to reset the system.

2-3

USING THE Hm1AN INTERFACE

If you were not involved in the configuration of your system and are
unsure about how to load and start the Operating System, contact the
person who configured your system.

ACCESSING THE Hill1AN INTERFACE

Assuming that the Operating System software is loaded into the system,
you access the Human Interface by powering on your terminal. If your
application system is configured for automatic baud rate recognition, you
must also enter the following character at the keyboard:

U (uppercase U)

This character allows the Operating System to determine the baud rate of
your terminal.

When the Human Interface starts running, it creates an environment for
you to enter commands. This environment is an iRMX 86 job, which this
manual refers to as an interactive job.

As part of creating this interactive job, the Human Interface assigns you
a user ID. This user ID is your "identity" in the system. It determines
your access to files and devices. Whenever you create files, the Human
Interface assigns your user ID as the owner ID of the file. Being the
owner of a file gives you complete control over the file; you can read
it, delete it, write it, update it, and select the access that you wish
to grant to other users. Your own ability to access files created by
other users depends on the access they grant you.

At this point, an initial program begins execution. The initial program
that runs in your interactive job (at your terminal) may be different
from one ·,that runs at another terminal. (A configuration option
specifies which initial programs are associated with which user IDs.)
Initial programs are command line interpreters (CLls), which read and
parse command input and start programs running based on that input. The
Human Interface supplies a standard CLI, which this manual assumes you
are using. The standard CLI begins running by displaying the following
(configurable) header message and prompt:

iRMX 86 HI CLI, Vx.x: user = <user ID>

where:

Vx.x

user <user ID>

The version number of the Human Interface.

A display of your user ID. The Human Interface
uses this ID to determine the type of access you
have to files an~ devices. Most single-access
systems are set up to give you an ID of WORLD
(65535 decimal), but some may differ. The user

2-4

- (hyphen)

USING THE HUMAN INTERFACE

ID WORLD is compatible with multi-access systems
(if transferring files is necessary), because
every multi-access user has read and write access
to files created by WORLD.

The Human Interface prompt. This prompt implies
that the eLI is ready to accept command input.

If the information that appears at your terminal is different from this,
contact the person who configured your iRMX 86 Operating System to
determine the differences between your initial program and the standard
CLI.

Next, the standard CLI searches for the logon file, a file whose pathname
is :PROG:R?LOGON (later sections of this chapter discuss pathnames of
files). There can be a file with this name for each user of the system.
The eLI expects to find command invocati·on lines in this file. lV-hen it
finds this file, the CLI automatically invokes the SUBMIT command to
process all the commands in the file (refer to Chapter 3 for more
information about SUBMIT). You can modify the information in your
:PROG:R?LOGON file to change the amount of processing that occurs
automatically when the Operating System recognizes your terminal.

After processing all the commands in the logon file, the CLI issues its
prompt (-) and returns control to you. At this point you can enter Human
Interface commands and invoke programs.

FILE STRUCTURE

One of the primary uses of Human Interface commands is manipulating
files. Hefore you can use the Human Interface commands described in
Chapter 3, you snould have an understanding of the kinds of files that
exist in an iRHX 86 environment and how to access those files.

TYPES OF FILES

There are three basic types of files in an iRMX 86 environment: named
files, physical files, and stream files. These files are used as follows:

Named files Named files divide the data on mass storage
devices into individually-accessible units.
Users and programs refer to these files by name
when they want to access information stored in
them. Terminal operators access named files more
often than any other file type.

2-5

Physical files

Stream files

USING THE Hill1AN INTERFACE

Physical files are mechanisms by which the
Operating System can access an entire I/O device
as a single file. The Human Interface accesses
backup volumes and devices such as line printers
and terminals in this manner. It also accesses
secondary storage devices (such as disk drives)
as physical devices when formatting them. When
terminal operators access physical files, it is
usually in a manner that is transparent to them
(such as copying a named file to the line printer
or formatting a disk).

Stream files are mechanisms for communicating
between programs. Two programs can use a stream
file for communication if one program writes
information to the stream file while another
program reads the information. Terminal
operators seldom use stream files directly.

When manipulating data with Human Interface commands, you are most often
dealing with named files. Therefore it is important that you know about
the hierarchy of named files and file-naming conventions. The next
sections discuss these topics in detail.

NAMED FILE HIERARCHY

The iRMX 86 Operating System allows you to organize named files into
structures called file trees, as shown in Figure 2-1.

As you can see from the figure, there are two kinds of files in the file
tree: data files and directories. Data files, (shown as triangles in
Figure 2-1) contain the information that you manipulate in the course of
your terminal session (for example, inventory, accounts payable, text,
source code, and object code). Directories, (shown as rectangles in
Figure 2-1) contain only pointers to other files (either named files or
directories). The iRMX 86 Operating System allows you to have multiple
directories in a hierarchical structure so that instead of having a
single directory containing an enormous number of files, you can organize
your files into logical groupings under several directories. You can
display the list of files in any directory by invoking the DIR command
for that directory (refer to Chapter 3 for more information).

Another advantage of hierarchical file structure is that duplicate file
names are permitted unless the files reside in the same directory.
Notice in Figure 2-1 that the file tree contains two directories named
BILL. (These directories are on the extreme left and extreme right of
the figure.) However,' the Operating System recognizes them as unique
files because each resides in a different directory.

2-6

USING THE HUMAN INTERFACE

SIM-SOURCE SIM-OBJECT TEST -OBJECT

TEST-DATA

'--___ ~I = DIRECTORY

_cc DATA FILE

x-053

BATCH-1 BATCH-2

Figure 2-1. Example of a Named-File Tree

Each file tree resides on a secondary storage volume -- the storage
medium that contains the data. Examples of volumes include flexible
diskettes. hard disks. and bubble memories. Before you can place named
files on a volume. you must format the volume to accept named files. The
formatting process writes a number of data structures on the volume to
aid the Operating System in creating and maintaining files. You can use
the FOIDiAT command (described in Chapter 3) to format your volumes.

The uppermost point of each file tree is a directory called the root
directory. When formatted for named files. each secondary storage volume
has one and only one root directory. For this reason:

• There can be only one file tree per secondary storage volume.

• A file tree cannot extend to more than one volume.

2-7

USING THE HUMAN INTERFACE

PATHNAMES

This section describes how to specify a particular file in a named-file
tree. For simplification, it assumes that all files reside in the same
file tree, and thus in the same volume. To identify the volume as well
as the file, you must include a logical name for the device as the first
portion of the file specification. Refer to the "Logical Names" section,
later in this chapter, for more information about logical names.

In a file tree, each file (data or directory) has a unique shortest path
connecting it to the root directory. For example, in Figure 2-1, the
shortest path from the root directory to file BATCH-2 goes through
directory DEPTl, through directory TOM, through directory TEST-DATA, and
finally stops at data fileBATCH-2. When you want to perform an
operation on a file (for example, using the COpy command to copy one file
to another), you must specify not only the file's name, but the path
through the file tree to the file. This is called the file's pathname.
For file BATCH-2 in Figure 2-1, the pathname is:

DEPTI/TOM/TEST-DATA/BATCH-2

This pathname consists of the names of files (in uppercase or lowercase
characters; the Operating System treats them as the same) and
separators. In this case, slashes (/) separate the individual components
of the pathname and tell the Operating System that the next component
resides down one level in the file tree. You can use another separator,
the circumflex or up-arrow (A), between path components. Each circumflex
tells the Operating System that the next path component resides up one
level in the file tree. The following pathname, although not the
shortest possible pathname, indicates another path to file BATCH-2:

DEPTI/BILLATOM/TEST-DATA/BATCH-2

If you always start at the root directory, the circumflex separator is
not very useful, since you usually want to traverse down the file tree.
However, in some systems, your starting point in the file tree may be a
directory other than the root directory. In such cases the circumflex
separator is useful in accessing files in other branches of the file
tree. Your default prefix (discussed later in the "Logical Names"
section of this chapter) determines your starting point in the file tree.

For example, suppose your starting point in the file tree is the
directory TOM shown in Figure 2-1. In order for you to access a file in
directory BILL from this starting point, you must use the circumflex in
the pathname. To indicate file SIM-SOURCE in directory BILL, you could
enter the pathname:

ABILL/SIM-SOURCE

This path tells the Operating System to go up one level in the file tree
from the starting point (to directory DEPTI from directory TOM), search
in that directory for directory BILL, and search in directory BILL for
file SIM-SOURCE.

2-8

USING THE HUMAN INTERFACE

Another way to specify files in different branches of the file tree is by
including the slash separator as the first character in the pathname.
This tells the Operating System to ignore your normal starting point and
begin the path from the root directory. Using the previous example where
the starting point is directory TOM, another way to specify SIM-SOURCE is
with the pathname:

/DEPTI/BILL/SIM-SOURCE

.The initial slash causes the Operating System to search in the root
directory for directory DEPTI instead of in the normal starting directory
(TOM).

LOGICAL NAMES

Although the Operating System allows you to use pathnames to refer to
files, it also allows you to create symbol~c names that correspond to
files or devices. These symbolic names are called logical names. You
can create logical names that represent devices, data files, or
directories. After creating a logical name, you can refer to the entity
it represents by specifying the logical name. The rules for logical
names are:

• Each logical name must contain 1 to 12 ASCII characters.

• The hexadecimal representation of each character must be between
021h and 07Fh inclusive (printing characters).

• The logical name cannot include the characters colon (:), slash
(/), up-arrow or circumflex (A), asterisk (*), and question mark
(?).

• When you specify a logical name, you must surround it with colons.

When referring to logical names, this manual always lists the surrounding
colons.

For an example of how to use logical names, refer again to Figure 2-1.
Suppose you have created a logical name called :ME: that represents the
pathname DEPTI/TOM/TEST-DATA (a later paragraph in this section discusses
how to create this logical name). If you want to refer to the directory
TEST-DATA, you can either specify its pathname as before, or you can
specify the logical name :ME:. If you want to refer to the file BATCH-l
under directory TEST-DATA, you can do this in either of the following
ways:

DEPTI/TOM/TEST-DATA/BATCH-l

or

:ME:BATCH-l

2-9

USING THE Hill1AN INTERFACE

The second line shows that you can use a logical name as a beginning
portion (or prefix) of a pathname. The logic-al name tells the Operating
System where to begin in its search for the file. However, you cannot
use a logical name in the middle or at the end of a pathname. If you use
a logical name, you must specify it at the beginning.

Notice that you must not include a slash or circumflex between the
logical name and the next path component if you want the Operating System
to search down one level. If you include the slash, the Operating System
ignores the normal starting point (the directory TEST-DATA) and searches
for the file BATCH-1 in the root directory of the volume. If you include
the circumflex, the Operating System searches up one level from the
starting point.

As a Human Interface user, you deal with two gener-al classes of logical
names: logical names for devices and logical names for files.

Logical Names for Devices

Device logical names allow you to refer to specific devices by name. The
Operating System can establish logical names for devices during system
initialization. You can establish other logical names for new or
existing devices by invoking the ATTACHDEVICE command (see Chapter 3 for
details).

By using device logical names as the prefix portion of your pathname
specifications, you can refer to any file on any device. For example,
suppose your system contains two flexible disk drives for which you have
established logical names :FO: and :F1:. (You used the ATTACHDEVICE
command to attach the devices as :FO: and :F1:.) If you have a diskette
containing the file DEPT2/HARRY, you could place the diskette in drive
:FO: and access the file with the pathname:

:FO:DEPT2/HARRY

If you put the same diskette in drive :F1:, you could access the file by
specifying the pathname:

:F1:DEPT2/HARRY

You can see that for devices containing named files, the device logical
name is actually a logical name for the root directory on that device.
If you enter the DIR command (described in Chapter 3) to list the
directory of device :F1:, as follows:

DIR : F 1:

DIR actually displays the root directory of the volume in drive :F1:.

2-10

USING THE H~1AN INTERFACE

Logical Names for Files

A logical name for a file provides a shorthand way of accessing that
file. For example, suppose you have a file that resides several levels
down in the file tree, such as:

:F1:DEPT1/T~1/TEST-DATA/BATCH-2

where :F1: is logical name for the device that contains the file. After
entering this pathname a few times, you might find it inconvenient to
continually enter so many characters. If so, you can establish a logical
name for this pathname, such as :BATCH:. (You could also say that you
attached the file with the logical name :BATCH:.) Then, whenever you
want to refer to the file in a command, you can specify the logical name
instead of the pathname.

If your logical names refer to directories instead of data files, you can
use the logical names in the prefix portion of a pathname. For example,
consider the same pathname:

:F1:DEPT1/TOM/TEST-DATA/BATCH-2

Suppose you have attached the pathname :F1:DEPT1/TOM/TEST-DATA as logical
name :TEST:; therefore it is a logical name for the directory TEST-DATA.
To refer to file BATCH-2, you could enter:

:TEST:BATCH-2

Logical names for files come into existence in two ways. One way is for
you to invoke the ATTACHFILE command (refer to Chapter 3 for details).
The other way is for the Operating System to create them. The Operating
System establishes a number of logical names for files during system
initialization. A later section lists these logical names.

\lhere Logical Names are Stored

When the Operating System creates logical names, at initialization time
or as a result of ATTACHFILE or ATTACHDEVICE commands, it does so by
placing the logical name, along with a token for a connection to the file
or device, into an object directory. This process is referred to as
cataloging the logical name (refer to the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about this process). The object
directory that receives this information determines the scope of the
logical name (that is, who can use the logical name). There are three
possibilities:

Root object directory Logical Names cataloged in the object
directory of the root job can be accessed by
every user. When you use ATTACHDEVICE to
create logical names for devices, the
Operating System catalogs the logical names
in the root directory.

2-11

USING THE HUMAN INTERFACE

Logical names cataloged in the root object
directory remain valid until deleted or
until the system is reinitialized.

Global object directory Logical names can be cataloged in the object
directory of a job that is designated as a
global job (refer to the iRMX 86 EXTENDED
I/O SYSTEM REFERENCE MANUAL for more
information about global jobs). Each
interactive job (user session) is a global
job. When you use ATTACHFILE to create
logical names for files, the Operating
System catalogs the logical names in your
global job. Likewise, if you invoke any
commancis that issue ATTACHFILE commands
(such as a SUBMIT command), the Operating
System catalogs the logical names in your
global job. You (and any commands that you
invoke) can use the logical names cataloged
in your interactive job. However, other
users have no access to these logical names.

Local object directory

Logical names cataloged in your interactive
job remain valid for the life of your
interactive job or until deleted.

Logical names can be cataloged in the object
directory of the job itself. When you
invoke a command (such as DIR) , the
Operating System creates a job for that
command and catalogs certain objects in its
object directory. A command that you create
and invoke might also use i&~X 86 system
calls to catalog logical names in its own
object directory.

Logical names cataloged in a local job
remain valid only for the life of the job or
until deleted.

Whenever you (or one of the commands you invoke) use a logical name, the
Operating System searches for that logical name in ~s many as three
different object directories. It first looks in the local object
directory. If the logical name is not defined there, it next looks in
the global object directory and finally, if necessary, the root object
directory. It uses the first such logical name it finds.

Because of this order of search, you can override the system logical
names (those cataloged in the root object directory) by cataloging the
same logical names (but representing different files or devices) in the
object directory of your interactive job. For example, suppose you used
the ATTACHFILE command to attach a file with the logical name :SYSTEM:.
Then, whenever you specify : SYSTEM: , the Operating System refers to your
file and not the one represented by the same logical name in the root
object directory. .

2-12

USING THE HU1AN INTERFACE

Logical Names Created by the Operating System

The Operating System establishes several logical names that you can use
without first having to create them. It catalogs some of these logical
names in the root object directory (where they are available to all
users). It catalogs others in global object directories (these are
specific to each interactive job). It catalogs others in local object
directories (these are specific to each,interactive job and to each
command invoked).

The Human Interface catalogs system-wide logical names in the root object
directory. These logical names are available to all users and they
represent the same file or device for all users. The number of logical
names created and their identities depend on the configuration of your
Operating System. However, the following logical names are available on
most systems.

:BB:

:1ANG:

:SD:

: STREAM:

:SYSTEH:

:UTILS:

:WORK:

A device that is treated as an infinite sink (byte
bucket). Anything written to :BB: disappears, and
anything read from :BB: returns an end-of-file.

A directory used to store language products, such as
assemblers, compilers, and linkers.

The system device. If you used the Bootstrap Loader
to load your system, this logical name refers to the
device from which the Bootstrap Loader read the
Operating System file.

The prototype stream file connection. To create a
connection to a stream file, you must use this logical
name as the prefix portion of the pathname.

The directory containing the Human Interface commands.

A directory used to store utility programs created by
users.

A directory that Intel language translators and
utilities use to store their temporary and work files.

The following logical names are cataloged in each user's globa~ object
directory. Although each user has access to these names, the names
represent different files or devices for each user.

: $: Your default prefix. This is the path to your default
directory. If you do not specify a logical name (a
prefix) at the beginning of a pathname, the Operating
System automatically uses :$: as the prefix. In this
case, the Operating System assumes that the file
resides in the directory corresponding to :$:. During
an interactive session, you can use the ATTACHFILE
command to change the directory corresponding to :$:.

2-13

:HOME:

:PROG:

USING THE HUMAN INTERFACE

Your default prefix when you first start using the
Human Interface. Initially, :HOME: and :$: represent
the same directory. This logical name provides you
with the ability to re-establish your original :$:
logical name if you become lost in the hierarchical
file structure. You should not use ATTACHFILE to
change the directory corresponding to :HG1E:.

A directory in which to store your programs.

The following logical names are cataloged in the local object directory
of each user and each command that a user invokes. These logical names
can have different meanings for each user and each command.

:CI:

:CO:

The terminal keyboard (or command input). As the name
implies, each user's :CI: refers to the terminal
associated with that user.

The terminal screen (or command output). As the name
implies, each user's :Co: refers to the terminal
associated with that user.

Upon initialization, your Human Interface may create additional logical
names. These logical names are configuration parameters. Contact the
person who configured your system for more information about the logical
names initially available to you. The iRMX 86 CONFIGURATION GUIDE
discusses this subject in more detail.

Removing Volumes from Devices

Removing volumes from devices (such as removing flexible diskettes from
drives) destroys any connections that may have existed to files on that
device. Therefore, any logical names that represent files on the volume
are no longer valid once you remove the volume. The names remain
cataloged in the directories, but they do not represent valid
connections. Therefore, before removing volumes, you should invoke
DETACHFILE commands to detach the files.

WILD CARDS

Wild cards provide a shorthand notation for specifying several files in a
single reference when entering commands. You can use either of two
special wild card characters in the last component of a pathname to
replace some or all characters in that component. The wild card
characters are:

2-14

USING THE Hill1AN INTERFACE

? The question mark matches any single character. The Human
Interface allows any character to appear in that character
position. It selects every file that meets this
requirement. For example, the name "FILE?" could imply all
of the follo'ling files:

FILE1
FILE2
FILEA

* The asterisk matches any number of characters (including zero
characters). The Human Interface allows any number of
characters to appear in that character position. It selects
every file that meets this requirement. For example, the
name "FILE*" could imply all of the following files:

FILE1
FILE.OBJ
FILE
FILECHANGE

You can use multiple wild cards in a single pathname. For example, the
name:

?PIF?*

matches every file whose second through fourth characters are "PIF" and
whose sixth character is a period. These files could include all of the
following names (or more):

RPIFC.LIB
EPIFL.TXT
HPIFC.

You can use wild cards in both input pathnames (files that commands read
for information) and output pathnames (files into which commands write
information). For example, in the command:

COpy A* TO B*

the A* represents the input pathname and B* represents the output
pathname. In this command (which copies information from one file to
another), the Human Interface searches the appropriate directory for all
files that begin with the "A" character. Then it copies each file to a
file of the same name, but beginning with the "B" character. If the
directory contains the files:

ALPHA
A112
A

the previous command would copy files in the following manner:

ALPHA TO BLPHA
A112 TO B112
A TO B

2-15

USING THE HUMAN INTERFACE

There are several operational characteristics that you should be aware of
when using wild cards:

• Wild cards are valid in the last component of the pathname only •
. Therefore , :F1:SYSTffi1/APP1/FILE* is a valid pathname, but
:FI:SYSTEM/APP*/FILEI is not valid.

• You can negate the meaning of a wild card character by enclosing
it in quotes, either single (') or double ("). For example, if
you have a file named F*123, you can refer to it alone in a
command by specifying F'*'123 or 'F*123'.

• When you specify input and output pathnames in commands, you can
specify lists of pathnames, separated by commas. For example:

COpy A,B,C TO D,E,F

copies A to D, B to E, and C to F. If you use a wild cards in
anyone of the output pathnames, you must use the same wild cards
in the same order in the corresponding input pathname. The term
"same order" means that if you use both the "*" and the "?"
characters, their ordering must be the same in both the input and
output pathnames. For example, the following is valid:

COpy A*B?C* TO *DE?FGH*I

However, the following is invalid because the wild cards are out
of order:

COpy A*B?C* TO *DE*FGH?I

• If you use wild cards in an input pathname, you can omit all wild
cards from the corresponding output pathname to cause t~e Human
Interface to perform file concatenation. For example, suppose a
directory contains files AI, BI, and CI. The following command
is valid:

COPY *1 TO X

It copies files in the following manner:

Al TO X
BI AFTER X
CI AFTER X

Refer to the "Command Syntax" section later in this chapter for
more information about the prepositions TO and AFTER.

• The "*" character matches as close to the end of the pathname as
possible. For example, suppose the directory contains the file
"ABXCDEFXGH", and you enter the command:

COpy *X* TO *1*

2-16

USING THE HUMAN INTERFACE

This command copies:

ABXCDEFXGH TO ABXCDEF1GH

The first asterisk matches the characters "ABXCDEF"t and the
second asterisk matches the characters "GH".

COMMAND SYNTAX

This section describes the general syntax rules that apply when entering
Human Interface commands at a terminal. These rules apply equally to
both the supplied Human Interface commands and any user-created commands
that may have been added to your system. The individual command
descriptions in Chapter 3 contain additional and more specific
information about each supplied Human Interface command.

The elements that form a standard command entry include a command name t
required input parameters (if anY)t and optional parameters. The general
structure of a command line is as follows (brackets [] indicate optional
portions):

command-name (inpath-list [preposition outpath-list]] [parameters] cr

where:

command-name

inpath-list

preposition

outpath-list

parameters

cr

Pathname of the file containing the command's
executable object code.

One or more pathnames t separated by commas, of files
to be read as input during command execution.

A word that tells the executing command how to handle
the output. The four prepositions used in
Intel-supplied commands are TOt OVER, AFTER t and AS.

One or more pathnames t separated by commas, of files
that are to receive the output during command
execution.

Parameters that cause the command to perform
additional or extended services during command
execution.

A line terminator character. This character
terminates the current line and causes the cursor to
go to a new line. The RETURN (or CARRIAGE RETUru~) key
and NEW LINE (or LINE FEED) key are both line
terminators.

You can enter all elements of a command line in uppercase characters,
lowercase characters, or a mix of both. The Human Interface makes no
distinction between cases when it reads command line items. In addition,
you can include the following optional command line entries:

2-17

continuation
mark

c,pmment
character

quoting
characters

USING THE HUMAN INTERFACE

An ampersand character (&) indicates that the command
continues on the next line. When you include the
ampersand character, the Human Interface displays two
asterisks (**) on the next line to prompt for the
continuation line. All characters appearing after the
continuation mark but before the line terminator are
interpreted as comments.

Within available memory limits, you can use as many
continuation lines for a given command as you desire.
After you enter the line terminator without a
preceding ampersand character, the invoked command
receives the entire command string as a single command.

A semicolon (;) character indicates that all text
following it on the current line is a non-executable
comment. You can also enter comments after a
continuation mark (&) but before the line terminator.
A common use of comments in commands is in a SUBMIT
file list of commands (see the SUBMIT command in
Chapter 3).

Two single-quote (') or double-quote (") characters
remove the semantics of special characters they
surround. For example, if you surround an ampersand
character (&) with single quotes, the ampersand is not
recognized as a continuation character. The same
holds for other characters such as asterisk (*),
question mark (?), equals (=), semicolon (;), and
others. The only special characters not affected by
the quoting characters are the pathname separators (I
and'"), semicolon (:), and dollar sign ($). Although
you can use either single quotes or double quotes as
quoting characters, you must use the same quoting
character at the beginning and at the end of your
quoted string. If you want to include the quoting
character inside your quoted string, you must specify
the character twice. For example:

'can' 't'

You can accomplish the same effect by using the other
quoting character, for example:

"can't"

Although the Human Interface places no restriction on the number of
characters in a command, each terminal line can have a maximum of 255
characters, including any punctuation, embedded blanks, continuation
mark, non-executable comments, and carriage return. If your command
requires more characters, use continuation lines.

The following sections discuss the individual elements of the command
syntax in more detail.

2-18

USING THE HUMAN INTERFACE

COMMAND NAME

Each Human Interface command is a file of executable code that resides in
secondary storage. When you specify a command name, you actually specify
the name of the file containing the command's code. If you write your
own command (refer to the iru1X 86 HU1AN INTERFACE REFERENCE MANUAL for
information), you invoke it by entering the name of the file that
contains it. After you invoke a command, the Operating System loads it
from secondary storage into memory and executes it in conformance with
parameters you specify.

When you enter a command name, you can enter the complete pathname of the
command, or, in many cases, you can enter just the last component of the
pathname.

• If you enter the complete pathname of the command (that is, if
you include a logical name as the prefix portion of the
pathname), the Operating System searches only the device and
directory you specify for the command. If it cannot find the
command there, it returns an error message.

• If you enter only the last component of the pathname (such as
COpy instead of :Fl:SYSTEM/COPY), the Operating System
automatically searches a certain number of directories for the
command. It does not return an error message until it has
searched each of the directories. The number of directories
searched and the order of search are Human Interface
configuration parameters. However, in the default case, the
Operating System searches the following directories, in order,
for commands:

: $:
:PROG:
: SYSTEM:

When writing your own commands, you can take advantage of the order in
which the Operating System searches directories. For example, suppose
you write your own copy command, one that provides more or different
functions than the Human Interface COPY command. If you want to invoke
your own program whenever you type the command "COpy", you can simply
place your copy program in a file called COpy in your :PROG: directory.
Since the Operating System searches the :PROG: directory before searching
the :SYSTn1: directory (the directory that normally contains Human
Interface commands), it will invoke your copy program when you enter the
command "COpy". "

If you still want to be able to invoke the Human Interface COpy command,
you can do so by entering its complete pathname, that is, by entering the
following:

:SYSTEM:COPY

2-19

US ING THE HUNAN INTERFACE

PREPOSITIONS

Preposition parameters in a command line tell the the command how you
want it to process the output file or files. The Human Interface
commands usually provide three options in the choice of a preposition:
TO, OVER, and AFTER. The preposition AS is also available for use in the
ATTACHDEVICE and ATTACHFILE commands. The TO preposition and :CO:
(console screen) will be used by default if you do not specify a
preposition and an output file. The prepositions have the following
meaning:

TO Causes the command to send the processed output to new files;
that is, to files that do not already exist in the given
directory. If a listed output file already exists, the
command displays the following query at the console screen:

OVER

AFTER

<pathname), already exists, OVERWRITE?

Enter a Y or y if you wish to write over the existing file.
Enter any other character if you do not wish the file to be
overwritten. In the latter case, the command does not
process the corresponding input file but rather goes to the
next input file in the command line. Commands process input
files and write to output files on a one-for-one basis. For
example:

COpy A,B TO C,D

copies file A to file C and file B to file D.

Causes the command to write your input files to the output
files in sequence, destroying any information currently
contained in the output files. It creates new output files
if they do not exist already. For example:

COpy SAMP 1 ,SM-iP 2 OVER OUT 1 ,OUT2

copies the data from file SAMPl over the present contents of
file OUT1, and copies the data of SAMP2 over the contents of
file OUT2.

Causes the command to append the contents of one or more
files to the end of one or more new or existing files (file
concatenation). For example:

COpy IN1,IN2 AFTER DEST1,DEST2

appends the contents of file INl ~o the the end of file
DEST1, and appends the contents of IN2 to the end of DEST2.

AS A special preposition used with the ATTACHDEVICE and
ATTACHFILE commands. When you use the AS preposition, the
Operating System does not assume that the command contains
input pathnames and output pathnames. Rather, it sees the
parameters as entities that it must associate (for example,
ATTACHFILE associates a pathname with a logical name).

2-20

USING THE HUMAN INTERFACE

INPATH-LIST AND OUTPATH-LIST

An inpath-list specifies the files on which a command is to operate. An
outpath-list defines the destination or destinations of the processed
output. Each inpath-list or outpath-list consists of a pathname (or
logical name) or list of pathnames. If you specify multiple pathnames,
you must separate the individual pathnames with commas. Embedded blanks
between pathnames are optional. You can also use wild cards to indicate
multiple pathnames (refer to the "Wild Cards" section of this chapter).

Usually when you specify multiple pathnames, each pathname in the
inpath-list has a corresponding pathname in the outpath-list. For
example, the command:

COpy A, B TO C, D

copies file A to file C and also copies ·file B to file D. Therefore, A
and C are corresponding pathnames, and so are Band D. However, there
are some instances when the number of input pathnames you enter differs
from the number of output pathnames. The validity of the operation
depends on whether the pathname lists contain single pathnames, lists of
pathnames, a wild-card pathname, or lists of wild-card pathnames. Table
2-1 lists the possibilities and describes the Human Interface's action in
each instance. The following sections discuss the Human Interface's
actions in more detail.

Table 2-1. Input Pathname and Output Pathname Combinations

Human Interface
Inpath-list Outpath-list Action

single pathname single pathname one-for-one match
single pathname list of pathnames error
single pathname wild-card pathname error
single pathname list of wild cards error

list of pathnames single pathname concatenate
list of pathnames list of pathnames one-for-one match
list of pathnames wild-card pathname error
list of pathnames list of wild cards error

wild-card pathname single pathname concatenate
wild-card pathname list of pathnames error
wild-card pathname wild-card pathname one-for-one match
wild-card pathname list of wild cards error

list of wild cards single pathname concatenate
list of wild cards list of pathnames concatenate
list of wild cards wild-card pathname concatenate
list of wild cards list of wild cards one-for-one match

2-21

USING THE HUMAN INTERFACE

One-For-One Match

The combinations in Table 2-1 that are marked "one-for-one match" are
those in which each element in the inpath-list is matched with an element
of the outpath-list. An example of this is the command:

COpy A*, B* TO C*, D*

In this case, the Human Interface copies all files beginning with the
character "A" to corresponding files beginning with the character "C".
When it finishes this operation, it advances past the comma to the next
set of pathnames (copies all files beginning with "B" to corresponding
files beginning with "D").

Concatenate

The combinations in Table 2-1 that are marked "concatenate" are those in
which there are multiple input pathnames that correspond to a single
output pathname. In this situation, the Operating System automatically
appends the remaining input files to the end of the specified output
file, regardless of the preposition you specify.

This allows you to combine one-for-one file operations (as in TO or OVER
preposition) with file concatenation (as in the AFTER preposition) in a
single command, and thus avoid entering an extra command to perform a
separate concatenation operation. The following example explains this
situation.

Assume that in a COpy command, you use the TO preposition and specify the
following input and output pathnames:

COpy A,B,C TO D

When the Human Interface processes the command line, it copies file "A"
to file "D" and appends files "B" and "c" to the end of file "D" as
follows:

A TO D
B AFTER D
C AFTER D

Notice that this concatenation occurs only when there are multiple
elements in the inpath-list that correspond to a single element of the
outpath-list. This means that the following commands are invalid:

COPY A, B, C TO D, E INVALID COMMAND

COpy A*, B*, C* TO D*, E* INVALID COHMAND

2-22

USING THE HUMAN INTERFACE

Error Conditions

The combinations in Table 2-1 that are marked "error" indicate invalid
operations. For these combinations, the Human Interface returns an error
message without performing the requested operation.

OTHER PARAt-1ETERS

Most commands allow you to enter parameters other than inpath-lists,
out'path-lists, and prepositions. These other parameters are known as
keyword parameters, because you must enter a particular word, called a
keyword, to obtain the additional or extended services provided by the
parameter.

For example, the DIR command (described in Chapter 3) lists the contents
of a directory. You can enter several different keyword parameters to
specify the amount of information displayed and the format of the
display. A command such as:

DIR : SYSTEM: EXTENDED

displays the contents of the : SYSTEM: directory in extended format. You
could substitute other keywords such as SHORT or LONG to obtain different
formats.

The command descriptions in Chapter 3 list the keyword parameters
available with each command. However, the descriptions list the complete
names for the keywords. When you use keywords, you can enter their
complete names or you can enter only as many characters as are necessary
to uniquely identify the keyword. For example, you could enter the
previous command as:

DIR : SYSTEH: E

For the DIR command, the character E uniquely identifies the EXTENDED
parameter. Other keywords might require additional characters to make
them unique.

Some keyword parameters also require an associated value. An example of
this is the FORMAT command (described in Chapter 3), which prepares
secondary storage volumes for iRMX 86 use. A command such as:

FORMAT :F1:TEST FILES = 60

formats a volume on device :F1: and sets up the volume to contain at most
60 files. The keyword in this command (FILES) has an associated value
(60). Although this example and the descriptions in Chapter 3 use the
equal sign (=) to associate keywords and values, there are actually two
ways to do this. They are:

2-23

keyword = value
keyword (value)

USING THE HUMAN INTERFACE

The blanks are optional. You can use either method when entering Human
Interface commands.

SYSTEM MANAGER

The multi-access Human Interface supports a user called the system
manager. The system manager's primary purpose is to maintain the
multi-access configuration files. The system manager can modify these
files to add or delete user IDs, add or delete terminals, and change
terminal or user characteristics (refer to the iRMX 86 CONFIGURATION
GUIDE for more information). For security reasons, no user other than
the system manager can access these files.

In addition, the system manager has a special user ID which gives that
user privileges that other users do not have. The system manager:

• Has read access to all data files and list access to all
directories.

• Can change the access rights of any file, regardless of the
file's owner.

• Can detach devices attached by any user.

• Can delete any user from the system.

Any operator can become the system manager by invoking a Human Interface
command called SUPER. This command (which requires entering a password)
changes the operator's user ID from its normal value to that of the
system manager. Once an operator invokes SUPER, that operator has all
the powers of the system manager. Refer to Chapter 3 for more
information about the SUPER command.

2-24

CHAPTER 3. HUMAN INTERFACE COMMANDS

The commands described in this chapter are supplied by Intel for iRMX 86
Operating Systems that are configured with the Human Interface. If you
aroe a new user of the Human Interface, it is suggested that you review
the information on file-naming conventions and invocation considerations
in Chapter 2 before reading this chapter.

This chapter does not describe how to specify the names of the devices
and directories that contain the Human Interface commands. This is
because during the Human Interface configuration process you can specify
a number of directories that the Human Interface automatically searches
for commands. If you place your Human Interface commands in one of these
directories (normally the :SYSTEM: directory), you can invoke the
commands by entering only their names. However, if your commands reside
in a directory that the Human Interface does not search automatically, or
if you have multiple commands with the same name in different
directories, you can use the complete pathname for the command. For
example, if the DIR command resides in directory COMMANDS on device :F6:
(a directory not normally searched by the Human Interface), you can'
invoke the command by entering:

: F6 : COM"1'1ANDS /DIR

Refer to the iRMX 86 CONFIGURATION GUIDE for more information about Human
Interface Configuration.

This chapter presents the commands in alphabetical sequence without
regard for functional organization. The Human Interface Command
Dictionary (Table 3-1) also lists a functional grouping of the commands
for fast reference.

ERROR MESSAGES

Each command can generate a number of error messages which indicate
errors in the way you specified the command. The messages that apply to
a specific command are listed with that command. However, the following
are general error messages that can appear with many of the commands:

• command not found

There is no file whose pathname is the same as the command name
you specified, nor can the Human Interface find the file in any
of the directories it automatically searches.

• <logical name), device does not belong to you

The device you specified was originally attache4 by a user other
than WORLD or you.

3-1

Hill1AN INTERFACE COMMANDS

• <pathname>, file does not exist

The pathname you specified does not represent an existing file.

• <pathname>, invalid file type

You specified a data file for an operation that required a
directory, or vice versa.

• <logical name>, invalid logical name

The logical name you specified contains unmatched colons, is
longer than 12 characters, or contains invalid characters.

• <pathname>, invalid pathname

The pathname you specified contains invalid characters or a
component of the pathname (other than the last one) does not
exist or does not represent a directory.

• <logical name>, is not a device connection

The logical name you specified does not represent a connection to
a physical device.

• <logical name>, logical name does not exist

The logical name you specified does not exist.

• parameters required

The command you specified cannot be entered without parameters.

• program version incompatible with system

The command and the Operating System are not compatible. The
command expects to obtain information from internal tables that
are not present. Therefore the command cannot run successfully.

• <control>, unrecognized control

The parameter you entered is not valid for the specified command.

3-2

HUMAN INTERFACE COMMANDS

• <exception value> : <exception mnemonic>, while loading command

The Operating System encountered an exceptional condition while
attempting to load the command into memory from secondary
storage. The message lists the exception code encountered.

• <exception value> : <exception mnemonic>

An operational error occurred during the execution of the
command. The <exception value> and <exception mnemonic> portions
of the message indicate the exception code encountered.

• <parameter>, <exception value> : <exception mnemonic>

The command encountered an exceptional condition while attempting
to process the <parameter> portion of the command. The
<exception value> and (exception mnemonic> portions of the
message indicate the exception code encountered.

COMMAND SYNTAX SClfill.1ATICS

The syntax for each command described in this chapter is presented by
means of a "railroad track" schematic, with syntactic elements scattered
along the track. Your entrance to any given schematic is always from
left to right, beginning with some command name entry.

Elements shown in uppercase characters must be typed in a command line
exactly as shown in the command schematics except that you can type them
either in uppercase or lowercase characters; the Human Interface makes no
distinction between cases in alphabetic characters. Syntactic elements
shown in lowercase characters are generic terms, which means that you
supply the specific item, such as the pathname for a file.

The vertical dotted line separates the position-dependent parameters from
those that are position-independent. Parameters to the left of the
dotted line must be entered in the order listed (from left to right).
Parameters to the right of the dotted line can be entered in any order
(as long as they obey the rest of the syntax).

The example that follows shows all the possible paths through a railroad
track schematic. Notice that the main track goes through required
elements in a given command.

"Railroad sidings" go through optional parameter elements. In some
cases, you have a choice of going through one of several possible sidings
before returning to the main track. In still other cases, the main track
itself diverges into two separate tracks, which means that you must
select one parameter or the other but not both.

3-3

HUMAN INTERFACE COMMANDS

(START)

x-224

In this example:

• A is a required element. It is position-dependent; it must be
entered first.

• Either B or C is required but not both. These elements are also
position-dependent. Whichever element you enter must follow A
immediately.

• D, E, or F are all optional but only one can be selected. These
are position-independent elements. If you select one of these
elements, you can enter it before or after G.

• G is required. It is a position-independent parameter. You can
enter it before or after D, E, or F.

3-4

Command

ATTACHFILE

COpy

CREATEDIR

DELETE

DETACHFILE

DIR

DOWNCOPY

PERMIT

RENAME

UPCOPY

ATTACHDEVICE

BACKUP

DETACHDEVICE

DISKVERIFY

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary

Synopsis Page

File Management Commands

Associates a logical name with an existing file. 3-13

Creates new data files, or copies files to
other pathnames.

Creates one or more new directories.

Deletes data files and empty directories from a
volume on secondary storage.

Removes the association of a logical name with
a file.

Lists a directory's filenames (and optionally,
file attributes).

Copies files and directories from an iRMX 86
volume mounted on a secondary storage device to
an ISIS-II secondary storage device.

Grants or rescinds user access to a file.

Renames files or directories.

Copies files and directories from an ISIS-II
secondary storage device to an iRMX 86 volume
mounted on a secondary storage device.

Volume Management Commands

Attaches a new physical device to the system
and catalogs its logical name to the root
job's object directory.

Copies named files to a backup volume.

Removes a physical device from system use and
deletes ~ts logical name from the root job's
object directory.

Verifies the data structures of named and
physical volumes.

3-5

3-24

3-28

3-33

3-38

3-40

3-53

3-69

3-74

3-92

3-7

3-16

3-35

3-48

HUMAN INTERFACE COMMANDS

Table 3-1. Human Interface Command Dictionary (continued)

Command

FORMAT

RESTORE

INITSTATUS

JOBDELETE

LOCK

SUPER

DATE

DEBUG

SUBMIT

TIME

VERSION

Synopsis

Volume Management Commands (continued)

Formats an iRMX 86 volume.

Copies files from a backup volume to a named
volume.

Multi-Access Commands

Displays the initialization status of Human
Interface terminals.

Deletes a running interactive job.

Prevents the Human Interface from automatically
creating an interactive job after the job has
been deleted.

Changes the operator's user ID into that of
the system manager (user ID 0) and grants the
ability to change to other user IDs.

General Utility Commands

Sets or resets the system date, or displays the
current date.

Transfers control to the iSBC 957B package to

Page

3-56

3-77

3-63

3-65

3-67

3-87

3-29

debug an iRMX 86 application program. 3-31

Reads, loads, and executes a string of commands
from secondary storage instead of the keyboard. 3-83

Sets or resets the system clock, or displays the
current system time. 3-90

Displays the version numbers of commands. 3-95

3-6

ATTACHDEVICE

This command attaches a physical device to the Operating System and
associates a logical name with the device. The command catalogs the
logical name in the root object directory, making the logical name
accessible to all users. The format of the command is as follows:

INPUT PARAMETERS

physical name

AS

: logical name:

NAMED

PHYSICAL

Physical device name of the device to be attached
to the system. This name must be the name used in
one of the Basic I/O System's Device Unit
Information Blocks (DUIB), as defined at system
configuration time (see Table 3-2).

Preposition; required for the command.

A 1- to 12-character name, that represents the
logical name to be associated with the device.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons.

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the FORMAT command in this chapter for a further
description of NAMED files.

Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples include line printers and terminals. See
the FORMAT command in this chapter for a further
description of PHYSICAL volumes.

3-7

x-192

~.1. .1.~vLI.1..Il!t V.1.vl!t

WORLD

DESCRIPTION

Specifies that user ID lJORLD (65535 decimal) is the
owner of the device. This implies that any user can
detach the device. If you omit this parameter, your
user ID is listed as the owner of the device. In this
case, only you and the system manager can detach"the
device.

ATTACHDEVICE attaches a device to the system and catalogs a logical name
for it in the root job's object directory. The logical name is the means
by which all users can access the device. Devices must have their
characteristics listed in the Basic I/O System's Device Unit Information
Block (DUIB) at configuration time before they can be attached with the
ATTACHDEVICE command.

Table 3-2 lists the physical device names normally used with the Basic
I/O System. Your system might support a subset of these devices or it
might support devices not listed. If it supports the devices listed, it
might support them under different names. Therefore, consult the person
who configured your system to determine the correct device names for your
system.

One frequent use of the ATTACHDEVICE command is to attach a new device,
such as a new disk drive or a line printer, without having to reconfigure
portions of the Operating System. (See the DETACHDEVICE command in this
chapter for a description of how to detach a device from the system
without reconfiguring.)

Unless you have a user ID of WORLD (65535) or specify the WORLD
parameter, once you attach a device, only you and the system manager can
detach the device. This prevents users from detaching devices belonging
to other users and prevents you from accidentally detaching system
volumes. However, if you have a user ID of WORLD or specify the WORLD
parameter, any device that you attach can be detached by any other user.
Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE command
displays the following message:

<physical name>, attached as <logical name>, id = <user id>

where <physical name> and <logical name> are as specified in the
ATTACHDEVICE command and <user id> is your user ID (or WORLD, if you
specify the WORLD parameter).

3-8

... .a..L .La.~.&..&..I.J~ y ~V.CJ

Table 3-2. Suggested Physical Device Names

Physical
Device Device Unit Bytes per
Names Controller Type Number Sides Density Sector

Flexible Disk Drives

I
FO 204 Shugart SA800 0 1 Single 128
F1 204 Shugart SA800 1 1 Single 128
FXO 204 Shuga.rt SA800 0 1 Single 512

I FX1 204 Shugart SA800 1 1 Single 512

I AFO 208 Shugart SA800 0 1 Single 128

I AF1 208 Shugart SA800 1 1 Single 128

I
AFDO 208 Shugart SA800 0 1 Double 256
AFDI 208 Shugart SA800 1 1 Double 256
AHFO 208 Shugart SA410 0 1 Double 256
AMF1 208 Shugart SA410 1 1 Double 256
AFDDO 208 Shugart SA850/SA851 0 2 Double 256

I AFDDI 208 Shugart SA8S0/SA8S1 1 2 Double 256
AFDXO 208 Shugart SA8S0/SA851 0 2 Double 1024
AFDX1 208 Shugart SA8S0/SA8S1 1 2 Double 1024
WFO 218 Shugart SA800 0 1 Single 128
WFI 218 Shugart SA800 1 1 Single 128
W"FDO 218 Shugart SABOO 0 1 Double 256
WFDI 218 Shugart SA800 1 1 Double 256
WHFO 218 Shugart SA410 0 1 Double 256
WHFI 218 Shugart SA410 1 1 Double 256
WFDDO 218 Shugart SA850/SA851 0 2 Double 256
WFDDI 218 Shugart SA8S0/SA8SI 1 2 Double 256
WFDXO 218 Shugart SA8S0/SA851 0 2 Double 1024
WFDXl 218 Shugart SA8S0/SA8S1 1 2 Double 1024

Hard Disk Drives

DO 206 0 512
Dl 206 1 512
DSO 206 0 128
DSI 206 1 128

Winchester Disk Drives

rwo 215 Priam 3450 1024
MWO 215 Hemorex 101 1024
Pl.JO 215 Pertec D8000 1024
SWO 215 Shugart SAI002 1024

3-9

Table 3-2. . Suggested Physical Device Names (continued)

Physical
Device Device Unit Bytes per
Names Controller Type Number Sides Density Sector

Storage Module Disk Drives

SMDO 220 0 1024
S~IDI 220 1 1024

Bubble Memory Device

BO 254 4 bubbles 256

Others

BB Byte bucket (already attached)
STREAM Stream file device (already attached)
TO USART terminal
T1-T4 534 terminals
CO 270 terminal

ERROR MESSAGES

• <device name>, cannot be ATTACHED as <type> device

The device specified by <device name> cannot support the type of
files specified by <type> (NAMED or PHYSICAL). ATTACHDEVICE does
not attach the device. For example, the NAMED option is not
valid for a device such as a line printer.

• <device name>, device already attached

The specified device has already been attached. ATTACHDEVICE
does not attach the device.

3-10

ATTACHDEVlCE

• <device name>, device does not exist

The physical device name you specified does not correspond to a
name the Basic I/O System recognizes. That is, the person who
configured your application system did not specify <device name>
as the name of a device-unit during configuration of the Basic
I/O System. ATTACHDEVICE does not attach the device.

• <logical name>, logical name already exists

The specified logical name is already cataloged in the root job's
object directory. ATTACHDEVICE does not attach the device.

• 0085: E$LIST, too many device names

You tried to attach more than one physical device with a single
ATTACHDEVICE command. ATTACHDEVICE does not attach a device.

• <logical name>, volume is not a NAMED volume

ATTACHDEVICE attempted to attach a device as a named device and
discovered a physical volume on the device. However,
ATTACHDEVICE does attach the device. You can use the device
after formatting the volume as a named volume or after inserting
a named volume in the device.

• <logical name>, volume not formatted
<logical name>, <exception value> : <exception mnemonic>

ATTACHDEVICE attempted to attach a device as a named device and
encountered an I/O error while searching for the volume's root
directory. This usually indicates that the volume is not
formatted. However, ATTACHDEVICE does attach the device.

• <logical name>, volume not mounted

•

The specified device does not contain a volume. However,
ATTACHDEVICE does attach the device.

<exception value>
name

<exception mnemonic>, while collecting device

ATTACHDEVICE encountered an exceptional condition while parsing
the device name from the command line. This message lists the
resulting exception code. ATTACHDEVICE does not attach the
device.

3-11

ATTACHDEVICE

• <exception value>
logical name

<exception mnemonic>, while collecting

ATTACHDEVICE encountered an exceptional condition while parsing
the logical name from the command line. This message lists the
resulting exception code.

3-12

ATTACHFILE

This command allows you to associate a logical name with an existing
file. The command catalogs the logical name in your global object
directory. The format of this command is as follows:

INPUT PARAMETERS

x-193

pathname Pathname of the file to which the Human Interface
associates a logical name.

:logical name: 1- to 12-character name that represents the
logical name to be associated with the file.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons. If you omit this parameter, the default
logical name is :$:.

If you enter the ATTACHFILE command without parameters, the default is:

ATTACHFILE :HOME: AS :$:

DESCRIPTION

The ATTACHFILE command allows you to associate a logical name with an
existing file. After making this association, you can use the logical
name, instead of the entire pathname, to refer to the file.

When the attachment is complete, ATTACHFILE displays the following
message:

<pathname>, attached AS <logical name>

where <pathname> and <logical name> are as specified in the ATTACHFILE
command.

ATTACHFILE makes the association between a file and a logical name by
cataloging a connection to the file in your global object directory (this
is normally the object directory of your interactive job). It catalogs
the connection under the name specified as the log1.cal name. If there is
another connection cataloged in the object directory under the same
logical name, ATTACHFILE uncatalogs and deletes the previous connection
before cataloging the new one. If an object other than a

3-13

FILE

ATTACHFILE

connection is cataloged in the directory under the specified logical
name, ATTACHFILE leaves the previous object as is, does not catalog the
new connection, and displays an error message to describe the situation.

Because ATTACHFILE catalogs the connection in your global object
directory, the logical name has effect only within your interactive job.
Therefore, several users can specify the same logical name without
affecting the others.

If you specify a pathname for a file but omit the logical name,
ATTACHFILE attaches the file as :$:. This allows you to change your
default prefix. Changing your default prefix can be useful when you want
to manipulate files that reside in a directory other than the one
specified by your original default prefix. For example, suppose you have
a file that you normally refer to as:

:PROG:SOURCE/PLM/INTERRUPT/TEST.P86

You can change your default prefix with the command:

ATTACHFILE SOURCE/PUM/INTERRUPT

Then, you can refer to the file as simply:

TEST.P86

When you finish using the files in directory :PROG:SOURCE/PLM/INTERRUPT,
you can return your default prefix to its original setting by entering:

ATTACHFILE

This is the same as entering:

ATTACHFILE :HOME: AS :$:

:HOME: is a logical name that refers to the same directory as your
original default prefix. Therefore, you can change your default prefix
as much as you like with ATTACHFILE and return to the original setting by
making reference to :HOME:. However, you cannot use ATTACHFILE to change
the meaning of :HOME:. (Also, you cannot use ATTACHFILE to change the
meaning of :CI: and :CO:.)

The logical name created with ATTACHFILE remains valid until one of the
following situations occur:

• A DETACHFILE command (described later in this chapter) dissolves
the association between file and logical name.

• The interactive session that specified the ATTACHFILE command
terminates processing. This occurs when a user, in response to
the Human Interface prompt, enters a Control-Z character to
reinitialize the interactive job. In this case, the Operating
System deletes the interactive job and then recreates it.

3-14

• A task deletes the connection to the file via a Basic I/O System
or Extended I/O System call (refer to the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL or the iRMX 86 EXTENDED I/O SYSTEM
REFERENCE MANUAL for more information about connections). In
this instance, the logical name remains cataloged in the global
directory, but the connection to which it refers does not exist.

• A user forcibly detaches the volume containing the file via the
DETACHDEVICE command (described later in this chapter).

• A user removes the volume from the drive.

ERROR MESSAGES

• <logical name), list of logical names not allowed

You entered more than one logical name as input to ATTACHFILE.

• <pathname), list of pathnames not allowed

You entered more than one pathname as input to ATTACHFILE.

• <logical name), logical name not allowed

ATTACHFILE

You attempted to attach a file using a logical name :HOME:, :CI:,
or :Co:. You cannot change the meaning of these logical names.

• <logical name), not a file connection

The logical name you specified, <logical name), is already
cataloged in object directory of the session and does not
represent a connection object.

• <pathname), not allowed as default prefix

You attempted to attach a physical or stream file as your default
prefix (:$:). Only named files are valid.

• <logical name), too many logical names

Your global object directory is full. Therefore ATTACHFILE is
unable to catalog the file's name in the object directory.

3-15

BACKUP

BACKUP

This command saves files from a named volume by copying them to a
physical volume which serves as a backup volume. Later, you can use the
RESTORE command (described later in this chapter) to retrieve these files
and copy them to named volumes.

The format of this command is as follows:

INPUT PARAMETERS

pathname

'dd month year'

Pathname of a file on the source volume. BACKUP
saves files from the branch of the file tree that
begins with the specified file. If you specify
the logical name of the device only, BACKUP saves
all files in the volume, beginning with the root
directory.

One form of the date parameter that BACKUP uses,
in conjunction with the time parameter, to
determine which files to save. BACKUP saves only
those files that have been modified since the
specified date and time. If you use this form of
the date parameter, you must enclose the date
parameter in single quotes. The individual fields
of this parameter are:

dd Two-digit number that specifies the day of
the month.

month Designation for the month. You can enter
the whole name (such as AUGUST) or enough
characters to distinguish one month from
another (for example, AU, to distinguish
AUGUST from APRIL). You can use this form
for specifying the month only when using
the "dd month year" format.

3-16

x-194

mm/dd/year

hh:mm:ss

QUERY

year Designation for the year. You can enter
this as a two- or four-digit number t as
follows:

entered year

o through 77
78 through 99
100 through 1977
1978 through 2099
2100 and up

actual year

2000 through 2077
1978 through 1999
error
1978 through 2099
error

If you omit the date parameter but specify the
time parameter, the date defaults to the current
system date. If you omit both the date and time
parameters, the date defaults to 1 JAN 78.

Alternate form of the date parameter. If you use
this form, you do not have to surround the
parameter with quotes. The individual fields of
this parameter are:

rom Numerical designation for the month (for
example: 1 represents January, 2 represents
February, etc.). You can use this form for
specifying the month only when using the
"mm/dd/year" format.

dd Same as in the previous form of the date
parameter.

year Same as in the previous form of the date
parameter.

Time parameter that BACKUP uses, in conjunction
with the date parameter, to determine which files
to save. BACKUP saves only those files that have
been modified since the specified date and time.
The individual fields of this parameter are:

hh Hours specified as 0-24.

mm Minutes specified as 0-59.

ss Seconds specified as 0-59.

If you omit this parameter, the time defaults to
00:00:00.

Causes the Human Interface to prompt for
permission to save each file. The Human
Interface prompts with one of the following
queries:

3-17

Dft\..lftUr

Dft\.J.n.ur

OUTPUT PARAMETER

:backup device:

DESCRIPTION

<pathname), BACKUP data file?

or

<pathname), BACKUP directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R orr

Any other
character

Action

Save the file.

Exit from the BACKUP command.

Continue saving files without
further query.

If data file, do not save the
file; if directory file, do
not save the directory or any
file in that portion of the
directory tree. Query for
the next file, if any.

Logical name of the device to which BACKUP copies
the files.

BACKUP is a utility which saves named files on backup volumes, such as
diskettes. BACKUP saves the following information for each file:

• File name

• Access list, including owner
"-

• Extension data

• File granularity

• Contents of the file

You can copy this information back to a named file by using the RESTORE
utility, described later-in this chapter.

3-18

Before a volume can be used as a backup volume, the volume must be
formatted. Although BACKUP will accept both physical and named volumes,
it is'recommended that you use freshly-formatted physical volumes or old
backup volumes for this purpose. BACKUP issues a message before
continuing if the backup volume you supply is anything other than a
freshly-formatted physical volume. When BACKUP copies files to the
backup volume, it overwrites any information that currently exists on the
volume.

In order for BACKUP to save files from a named volume, you must have read
access to the files and to the directories that contain them.

You can limit the files which BACKUP processes in the following ways:

• If you specify a complete directory name instead of just the
device's logical name in the invocation line, BACKUP limits its
processing to the specified directory and its subdirectories.

• If you specify the date and time parameters, BACKUP processes
only those files modified since the specified time.

• If you specify the QUERY parameter, BACKUP asks permission before
saving each file. If you deny permission for BACKUP to save a
data file, BACKUP skips the file and continues with the next
file. If you deny permission for BACKUP to save a directory
file, BACKUP skips the directory and all files contained in the
directory or its subdirectories.

When you enter the BACKUP command, BACKUP displays the following sign-on
message:

iRMX 86 DISK BACKUP UTILITY, Vx.y

where Vx.y is the version number of the utility. It then displays the
following message:

all files modified after <date>, <time> will be saved

where <date> and <time> are the values you specified in the date and time
parameters (or the defaults). Then BACKUP prompts you for a backup
volume.

Whenever BACKUP requires a new backup volume, it displays the following
message:

<backup device>, mount backup volume #<nn>, enter Y to continue:

where <backup device> indicates the logical name of the backup device and
<nn> the number of the requested volume. (BACKUP in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place a volume in the backup device and enter
one of the following:

3-19

HAtJ.I\.U.t'

Entry

Y, y, R or r

E or e

Any other
character

Action

Continue the backup process.

Exit from the BACKUP command.

Invalid entry; reprompt for entry.

BACKUP continues prompting for a backup volume until you supply one that
it can access.

If the backup volume you supply is not a freshly-formatted physical
volume, but one that BACKUP can access (such as a named volume, a
previously"";used backup volume, or a physical volume containing data),
BACKUP informs you of this with one of the following messages:

or

or

<backup device>, not a physical volume, enter Y to overwrite:

<backup device>, backup volume lI<nn>, <date>, <time~, enter Y to
overwrite:

<backup device>, named volume, <volume name>, enter Y to continue:

where <backup device> is the logical name of the backup device, <volume
name> is the volume name of the named volume, <nn> is the volume number
of the backup volume, and <date> and <time> are the date and time on
which the previous backup was performed. In response to these messages,
enter one of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Use the volume as a backup volume, overwriting the
information currently stored on the volume.

Exit from the BACKUP command.

Reprompt for another volume.

As BACKUP saves each file in the source volume, it displays one of the
following message at your console output device (:CO:):

<pathname>, saved

or

<pathname>, directory saved

3-20

When the backup process is complete, BACKUP displays the number of data
files saved, as follows:

files saved = <num>

If your backup volume becomes full and you supply additional backup
volumes, you should write the numbers of the backup volumes on the volume
labels. Later, when you restore files to a named volume with the RESTORE
utility, you must supply the backup volumes in order.

ERROR MESSAGES

• <backup device>, backup operation not completed

When BACKUP requested a new backup volume, you specified an "E"
to exit BACKUP. This message is a reminder that the backup
operation is not complete. The last file on the last backup
volume may be incomplete.

• <backup device>, backup volume #<nn>, <date>, <time>, enter Y to
overwrite:

The backup volume you supplied already contains backup
information. BACKUP lists the logical name of the backup device,
the volume number, and the date on which the original backup
occurred. It overwrites this volume if you enter Y, y, R, or r.

• <backup device>, cannot attach volume

•

<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

BACKUP cannot access the backup volume. This could be because
there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. BACKUP
continues to issue this message until you supply a volume that
BACKUP can access.

<pathname>, <exception value>
up file

<exception mnemonic>, cannot back

For some reason BACKUP could not copy a file from the named
volume, possibly because you do not have read access to the file
or because there is a faulty area on the named volume. The
message lists the pathname of the file and the exception code
encountered. BACKUP copies as much of the file as possible and
continues with the next file.

3-21

HAlj1\.Ur

Dftv.n.ur

• <backup device>, device in use
<backup device>, <exception value> : <exception mnemonic>

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

• <backup device>, error writing volume label
<backup device>, <exception value> : <exception mnemonic>

• <backup device>, mount backup volume #<nn>, enter Y to continue:

When BACKUP attempted to write a label on the backup volume, it
encountered an error condition, possibly because of a faulty area
on the volume, or because the volume is write-protected. The
second line of the message indicates the iRMX 86 exception code
encountered. BACKUP reprompts for a different backup volume.

• <backup device>, input and output are on same device

The device you specified for the backup device is the same device
that contains your input pathname. Continuing would result in
damage to the files on the input volume.

• <backup device>, invalid backup device

The logical name you specified for the backup device was not a
logical name for a device. Examples of invalid names are :CI:,
:CO:, and :HOME:.

• <exception value> : <exception mnemonic>, invalid DATE or TIME

For either the DATE or TIME parameter, you entered a value that is
out of range (such as 31 FEB 81 or 26:03:62). The message lists
the exception code encountered as a result of this entry.

• <backup device>, named volume, <volume name>, enter Y to overwrite:

The backup volume you supplied is a named volume. BACKUP lists
the logical name of the device containing the volume and the
volume name. It overwrites this volume if you enter Y, y, R, or r.

• <backup device>, not a physical volume, enter Y to overwrite:

The backup volume you supplied is a formatted volume, but it has a
label that is not readable. BACKUP will overwrite this volum~ if
you enter Y, y, R, or r.

3-22

• output specification missing

You did not supply the logical name of the backup device when you
entered the BACKUP command.

• <exception value> : <exception mnemonic>, requested date/time
later than system date/time

The date and time you specified is more recent than the current
system date and time (as set by the DATE and TIME commands).
Either the date and time you specified in the BACKUP command are
in error or you did not set the system date and time.

• <pathname>, too many input pathnames

You attempted to enter a list of pathnames or use a wild-carded
pathname as the input pathname. You can enter only one pathname
per invocation of BACKUP.

• <pathname>, too many output pathnames

You attempted to enter a list of logical names for the backup
device. You can enter only one output logical name per
invocation of BACKUP.

• <pathname>, unable to complete directory

BACKUP encountered an error when accessing a file in the
<pathname> directory. It skips the rest of the files in the
directory and goes on to the next directory. This error could
occur if you do not have list access to the directory.

• <backup device>, volume not formatted

<backup device>, mount backup volume #<nn>, enter Y to continue:

The backup volume you supplied was not formatted. BACKUP
continues to issue this message until you supply a formatted
backup volume.

• <backup device>, write error on backup volume
<backup device>, <exception value> : <exception mnemonic>

BACKUP encountered an error condition when writing information to
the backup volume. The second line of the message lists the
exception code encountered. This error is probably the result of
a faulty area on the volume.

3-23

COpy

This command reads data from the specified input source or sources and
writes the output to the specified destination file or files.

The format of the command is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more pathnames for the ~iles to be copied.
Multiple pathnames must be separated by commas.
Separating blanks are optional. To copy files on
a one-for-one basis, you must specify the same
number of files in the inpath-list as in the
outpath-list.

Causes the Human Interface to prompt for
permission to copy each file. Depending on the
specified preposition (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<pathname), copy TO <out-pathname)?

<pathname), copy OVER <out-pathname)?

<pathname), copy AFTER <out-pathname)?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry
Y or y
E or e
R or r

Any other
character

Action
Copy the file.
Exit from COpy command
Continue copying files without
further query.
Do not copy this file; go to the
next file in.the input list.

3-24

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

Writes the listed input files to named new
output files. The specified output file or
files should not already exist. If they dOt
COpy displays the following message:

<pathname)t already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over
the existing file. Enter an "N" (upper or lower
case) or a carriage return alone if you do not
wish to overwrite the existing file. In the
latter case, the COpy command will pass over the
corresponding input file without copying it, and
will attempt to copy the next input file to its
corresponding output file.

If you specify multiple input files and a single
output file, COpy appends the remaining input
files to the end of the output file.

Writes the input files over (replaces) the
existing output files on a one-for-one basis,
regardless of file size. If an output file does
not already exist, its corresponding input file
is written to a new file with the corresponding
output file name. If you specify multiple input
files and a single output file, COpy appends
the remaining input files to the end of the
output file.

Appends the input file or files to the current
data in the existing output file or files. If
the output file does not already exist, all
listed input files will be concatenated into a
new file with the listed output file name.

One or more pathnames for the output files.
Multiple pathnames must be separated by commas.
Separating blanks are optional. If you omit the
preposition and outpath-list parameters, COpy
displays the output at your console screen (TO
:CO:).

The COpy command can be used to perform several different operations.
Some of these include:

• Creating new files (TO preposition).

3-25

~urI

• Copying over existing files or creating new files (OVER
preposition).

• Adding data to the end of existing files (AFTER preposition).

• Copying a list of files to another list of files on a
one-for-one basis.

• Concatenating two or more files into a single output file.

As each file is copied, the COpy command displays one of the following
messages:

<pathname), copied TO <out-pathname)

<pathname), copied OVER <out-pathname)

<pathname), copied AFTER <out-pathname)

When you copy files, the number of input pathnames you specify must
equal the number of output pathnames, unless you specify only one
output pathname. In the latter case, COpy appends the remainder of the
input files to the end of the ouput file. As each file is appended,
the following message is displayed on the console screen:

<pathname), copied AFTER <output-file)

If you specify multiple output files, and there are more input files
than output files, or if you specify fewer input files than output
files, COpy returns an error message.

Also, if you specify a wild-card character in an output pathname, you
must specify the same wild-card character in the corresponding input
pathname. Other combinations result in error conditions.

You cannot successfully use COpy to copy a directory to a data file or
to another directory. Although a directory can be copied, the
attributes of the directory are lost. That is; the directory can no
longer be used as a directory. However, a file listed under one
directory can be copied to another directory. For example:

COpy SAMP/TEST/A TO :Fl:/ALPHA/BETA

This would copy the A data file to a different volume, directory, and
filename, where the new file's pathname would be :Fl:/ALPHA/BETA.

The user ID of the user who invokes the COpy command is considered the
owner of new files created by COpy. Only the owner can change the
access rights associated with the file (refer to the PERMIT command
later in this chapter).

When COpy creates new files, it sets the access rights and list of
accessors as follows:

3-26

• It sets the file for ALL access (delete, read, append, and
change).

• It sets the owner as the only accessor to the file.

Refer to the PERMIT command for more information about access rights
and the list of accessors.

ERROR MESSAGES

• <pathname), output file same as input file

You attempted to copy a file to itself.

• <pathname), UPDATE or ADD access required

Either you cannot overwrite the information in a file because
you do not have update access to it, or you cannot copy
information to a new file because you do not have add entry
access to the file's parent directory.

3-27

COpy

C~AHDrn

CREATEDIR

This command creates one or more iRHX 86 user directories. The format is
as follows:

INPUT PARAMETER

inpath-list

DESCRIPTION

One or more pathnames of the iRMX 86 directories
to be created. Multiple pathnames must be
separated by commas. Embedded blanks between
commas and pathnames are optional.

CREATEDIR creates a directory with all access rights available to you,
the owner. That is, you can delete; list, add, and change the contents
of the directory you created with CREATEDIR. Other users (except the
system manager) have no access to the directory unless you use the PERMIT
command (described later in this chapter) to change the access rights and
list of accessors.

The following message is displayed if a directory is successfully created:

<directory-name>, directory created

You can create new directories that are subordinate to other directories.
For example:

CREATEDIR AB/DC/EF/GH

causes the newly-created directory GH to be nested within existing
directory EF, which in turn, is nested within directory DC, and so on.
The directories AB, DC, and EF must already exist before entering this
command.

You can check the contents of the directory at any time by using the DIR
command to list the directory (see the DIR command in this chapter).

ERROR MESSAGE

• <directory-name>, file already exists

The pathname of the directory to be created already exists.

3-28

DATE

This command sets a new system date or displays the current date. The
format is as follows:

INPUT PARAMETERS

dd

month

mm

year

QUERY

dd month year

QUERY
x-195

Two-digit number that specifies the day of the month.

Designation for the month. You can enter the whole
name (such as AUGUST) or enough characters to
distinguish one month from another (for example, AU,
to distinguish AUGUST from APRIL). You can use this
form for specifying the month only when using the
"dd month year" format.

Numerical designation for the month (for example: 1
represents January, 2 represents February, etc.).
You can use this form for specifying the month only
when using the "mm/dd/year" format.

Designation for the year. You can enter this as a
two- or four-digit number, as follows:

entered year actual ~ear

o through 77 2000 through 2077
78 through 99 1978 through 1999
100 through 1977 error
1978 through 2099 1978 through 2099
2100 and up error

Causes DATE to prompt for the date by issuing the
following message:

DATE:

DATE continues to issue this prompt until you enter
a valid date.

3-29

DATE

DESCRIPTION

If you set one date parameter, you must set all three; there are no
default settings for individual date parameters. You must separate the
dd, month, and year entries with single blanks.

If you omit the date parameters, DATE displays the current date and time
in the following form:

dd mmm yy, hh:mm:ss

When the Operating System displays the date, it displays only the first
three characters of the month and the last two digits of the year. It
separates the hours, minutes, and seco~ds of the time with colons.

If you request the date on a non-timing system, DATE displays the
following message:

00:00:00

Refer to the TIME command in this chapter if you wish to set the system
clock while setting the date.

ERROR MESSAGES

• <date>, invalid date

You entered an invalid date. This could result from specifying a
day that is invalid for the month you specified (such as 31 FEB
82), entering characters for the year parameter that do not fall
into the legitimate ranges listed under the year parameter,
entering a month parameter that does not uniquely identify the
month, or entering invalid characters.

• <parameter>, invalid syntax

You specified both a date and the QUERY parameter in the DATE
command.

3-30

DEBUG

This command allows you to debug your iRMX 86 application jobs if your
system is configured with the iSBC 957B package.

INPUT PARAMETERS

pathname

parameter-string

DESCRIPTION

x-196

Pathname of the fil.e containing the application
program to be debugged.

String of required, optional, and default
parameters that can be used in the command line to
load and execute the application program.

DEBUG loads your specified application program into main memory and
transfers control to the iSBC 957B monitor. You can then use the iSBC
957B monitor to single-step, display registers, and set breakpoints
within the program. Refer to the USER'S GUIDE FOR THE iSBC 957B
iAPX 86, 88 INTERFACE AND EXECUTION PACKAGE for a complete description of
the iSBC 957B functions.

When you invoke the DEBUG command, it displays the following message:

DEBUG file, <pathname)

where <pathname) is the pathname of the file containing the application
job to debug. Then DEBUG loads the application job and displays
information about the location of the job's segments and groups. Figure
3-1 shows an example of this output.

As Figure 3-1 shows, the first line of-the display lists the token for
the job that was created. The remaining lines list the base portions of
all segments and groups assigned by LINK86 when the code was linked. The
S(n) and G(n) values are the same as those that appear on the link map.
Therefore, you can match the base values shown in this display with the
offset values shown in the link map to determine the exact location of a
symbol listed in the link map. Refer to the iAPX 86, 88 FAMILY UTILITIES
USER'S GUIDE for information about LINK86 and the link map.

3-31

U~JjUU

SEGMENT AND GROUP MAP FOR JOB: A88F

NAME BASE NAME BASE NAME BASE NAME BASE NAME BASE

S(l) 9E4E S(2) 9E32 S(3) 9CFF S(5) 9CEC S(6) A863
S(7) A229 S(8) A84D S(9) A152 S(13) 9C91. S(15) 9C85
S(17) 9C67 S(18) 9C5C

G(l) A229 G(2) A152

Figure 3~1. Sample DEBUG Display

When DEBUG executes, the iSBC 957B package disables interrupts. This
causes the time-keeping function to stop when code is not executing.
This slowing of the timing function:

• Affects the ability of the Nucleus to execute time-out tasks that
have provided time limits to system calls, such as RECEIVE$UN1TS
and RECEIVE$MESSAGE.

• Affects the ability of the Basic 1/0 System to keep track of the
ti~-of-day and write its data structures to secondary storage.

Unless you use the monitor's NQ command to single-step through code, the
iSBC 957Bpackage cannot tolerate interrupts while single-stepping. The
NQ coquuand disables interrupts while single-stepping, allowing you to
lJingle-step through code without being interrupted by the system clock.

When DEBUG is invoked to debug an application program, it loads the
application program into its own dynamic memory. This means that the
application program obtains dynamic memory from the memory pool of DEBUG,
not from the memory pool of the user session. Therefore, programs that
experience problems with insufficient memory when run independently might
not experience those problems when run under the control of DEBUG.

ERROR MESSAGE

• (exception value> : (exception mnemonic> command aborted by EH

While processing, the DEBUG command encountered an exceptional
condition. Therefore, the Human Interface's exception handler
aborted the command. The message lists the exception code that
occurred.

3-32

DELETE

This command removes data files and empty directories from secondary
storage. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

DESCRIPTION

One or more pathnames for the named data files or
empty directories to be deleted. Hultiple
pathname entries must be separated by commas.
Separating blanks are optional.

Causes the DELETE command to ask for your
permission to delete each file in the list. Prior
to deleting a file, the DELETE command displays
the following query:

<pathname), DELETE?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Delete the file.

Exit from DELETE command.

Continue deleting without further
query.

Do not delete file; query for next
file in sequence.

The DELETE command allows you to release unused secondary storage space
for new uses by removing empty direc.tories and unneeded data files. To
delete a file, you need not be the owner of the file; however you must
have delete access to the file. If a user or program is accessing the
file (has a connection to the file) when you enter the DELETE command,
DELETE marks the file for deletion and deletes it when all connections to
the file are gone.

3-33

Non-empty directories cannot be deleted. If you wish to delete a
directory that contains files, you must first delete all its contents.
For example, if you wish to delete a directory named ALPHA whose entire
contents consist of a directory BETA containing a data file SAMP, you
would enter the following command:

DELETE ALPHA/BETA/SAMP, ALPHA/BETA, ALPHA

This would delete all the files contained under ALPHA before deleting the
directory itself.

DELETE displays the following message as it deletes each file or marks
the fiie for deletion:

<pathname>, DELETED

ERROR MESSAGES

• <pathname), DELETE access required

You do not have permission to delete the specified file.

3-34

DETACHDEVICE

This command detaches the specified devices and deletes their logical
names from the root job's object directory. The format of this command
is as follows:

INPUT PARAMETER

logical-name
list

FORCE

DESCRIPTION

One or more logical names of the physical devices
that are to be detached. Colons surrounding each
logical name are optional; however, if you use
colons, you must use matching colons. Multiple
logical names must be separated by commas.

Causes DETACHDEVICE to detach the device even if
connections to files on the device currently exist.

The DETACHDEVICE command allows you to detach a device without having to
reconfigure the system. After a device is detached, no volume mounted on
that device is accessible for system use.

Unless you are the system manager (user ID 0), you can detach only the
following devices:

• Devices that are configured with your user ID as the owner ID

• Devices you originally attached using the ATTACHDEVICE command

• Devices originally attached using the WORLD parameter of
ATTACHDEVICE

• Devices originally attached by user WORLD (user ID 65535)

DETACHDEVICE returns an error message if you attempt to detach devices
originally attached by other users. This prevents users from detaching
devices belonging to other users and from accidentally detaching system
volumes. However, the system manager can detach all devices.

3-35

x-197

U.l1.jT1\.l.i.t1lJ~ V llJ~

Unless you specify the FORCE parameter, you cannot detach a device if any
connections exist to files on the device (that is, if other users are
currently accessing the device). However, the FORCE parameter causes
DETACHDEVICE to delete .all connections to files on the device before .
detaching the device.

After detaching the device and deleting its logical name from the root
job's object directory, the DETACHDEVICE command displays the following
message:

<logical-name>, detached

ERROR MESSAGES

NOTE

Using the DETACIIDEVICE command to
detach the device containing your Human
Interface commands causes loss of
access to Human Interface functions
until the system is restarted.

• <logical name>, can't detach device
<logical name>, <exception value> <exception mnemonic>

An exceptional condition occurred which prevented DETACHDEVICE
from detaching the device. This message lists the resulting
exception code.

• <logical name>, device does not belong to you

The device was originally attached by a user other than WORLD or
you. Thus you cannot detach the device.

• <logical name>, device has outstanding file connections

There are existing connections to files on the device. Because
you did not specify the FORCE parameter, DETACHDEVICE does not
detach the device.

• <logical name>, device is in use

Another user or program is accessing the device (has a connection
to a file). Therefore, you must specify the FORCE parameter in
order to detach the device.

3-36

• (logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.
However, because you specified the FORCE parameter, DETACHDEVICE
deleted those connections. This is a warning message that does
not prevent DETACHDEVICE from detaching the device.

3-37

DETACHFILE

This command allows you to terminate the association of a logical name
with a file. The format of this command is as follows:

--IIII(G:ETACHFI~)----cGcal-name-iV""'--
x-198

PARAMETERS

logical-name-list List of logical names, separated by commas, that
represent the files to be detached. Each logical
name must be contain 1 to 12 characters. Colons
surrounding each logical name are optional;
however, if you use colons, you must use matching
colons.

DESCRIPTION

You establish an association between a file and a logical name by
entering the ATTACHFILE command. DETACHFILE breaks this association. It
does this by uncataloging the logical name from your interactive job's
global object directory. When DETACHFILE detaches a file in this manner,
it displays the following message:

<logical name>, detached

where <logical name> is the name you specified.

You cannot use DETACHFILE to detach logical names that do not represent
files. DETACHFILE returns an error message if you make such an attempt.
In particular, you cannot use DETACHFILE to detach devices.

You cannot use DETACHFILE to detach logical names originally created by
other users. DETACHFILE searches for logical names in the global object
directory of your interactive job only. It does not search the root
job's object directory nor the object directories of any other
interactive jobs.

3-38

U.I!i -I-1\. \.i n.r -IL.I!i

ERROR MESSAGES

• <exception value> : <exception mnemonic> invalid global job

The Human Interface encountered an internal system problem when
it attempted to remove the logical name from the global job's
object directory. The message lists the resulting exception code.

• <logical name>, logical name does not exist

The logical name is not cataloged in the global object directory
of your interactive job.

• <logical name>, logical name not allowed

The logical name you specified was either :$:, : HOME: , :CI:, or
:CO:. You cannot detach the files associated with these logical
names.

• <logical name>, not a file connection

The logical name you specified is cataloged in the global object
directory of your interactive job,but it is not the logical name
of a file.

3-39

DIR

This command lists the names and attributes of the data and directory
files contained in a given directory. The format of the command is as
follows:

INPUT PARAMETERS

inpath-list

FAST

SHORT

ONE

One or more pathnames of the directories to be
listed (the pathnames can represent data files if
the PARENT parameter is also specified). Multiple
directory pathname entries must be separated by
commas. Separating blanks are optional. If no
pathname is specified, the user's default
directory is listed.

Lists only the filenames and directory names in
the directory. The output format contains five
columns of filenames unless you also specify the
ONE parameter (see Figure 3-2 at the end of this
command description). FAST is the default if you
omit the listing format.

Lists the file information in a two"'column format
(see Figure 3-3 at the end of this command
description).

Lists the output of a FAST or SHORT listing in
single-column format. ONE is the default number
of columns for EXTENDED or LONG listings.

3-40

x-199

LONG

EXTENDED

INVISIBLE

PARENT

QUERY

OUTPUT PARAMETERS

TO

Lists file information in a one-line format (see
Figure 3-4 at the end of this command description).

Lists all available information for each data file
or directory file in the directory. The first
line for each file is the same as for the LONG
form. The second line contains the last access
date, creation date, and the accessor list. The
listing is in a double-column format (see Figure
3-5 at the end of this command description).

Lists the invisible files (those beginning with
the characters "R?" or lOr?") in addition to the
rest of the files in the directory. If you omit
this parameter, DIR does not display invisible
files.

Causes DIR to display an entry for .the directory
specified in the inpath-list in addition to the
files contained in the directory. This parameter
is useful for obtaining information about the root
directory of a volume when using the LONG or
EXTENDED parameters.

Causes the DIR command to prompt you for
permission to list a directory by issuing the
following message:

<pathname>, DIR?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

List the directory.

Exit from DIR command.

Continue listing directories without
further query.

Do not list directory; query for the
next directory, if any.

Copies the directory listing to the specified
destination data file. If the destination file
already exists, DIR displays the following
information:

<pathname>, already exists, OVERWRITE?

3-41

OVER

AFTER

outpath-list

DESCRIPTION

Enter Y, y, R, or r if you wish to delete the
existing file. Enter any other character if you
do not wish to delete the file.

If you omit the TO/OVER/AFTER preposition and the
output pathname, TO :CO: is the default.

Copies the directory listing to the specified
output file and writes over (replaces) the
previous contents.

Appends the directory listing to the current
contents of the specified output file.

One or more pathnames of the files to receive the
directory listing. Multiple pathname entries must
be separated by commas. Separating blanks are
optional. If you omit the preposition and the
outpath-list, the default destination is the
user's console screen (TO :CO:).

You do not need to be the owner of a directory to list its contents with
DIR; however, you must have list access to the directory.

The amount of information listed for each file depends upon what listing
format you specify (FAST, SHORT, LONG, or EXTENDED) in the DIR command.
An example of each type of listing format is provided at the end of the
DIR command description in Figures 3-2 through 3-5 respectively. Table
3-3, which follows the figures, provides an explanation of the
illustrated headings.

If you want to list the default user directory but also wish to specify a
listing format other than FAST, use the default directory name
explicitly. For example:

DIR :$: EXTENDED

displays a listing of the default directory in the EXTENDED format. Note
that the identity of your default directory is a configuration option.

Figures 3-2, 3-3, 3-4, and 3-5 show output examples for FAST, SHORT,
LONG, and EXTENDED listing formats respectively. Table 3-3 defines the
displayed column headings.

If a file name begins with the characters "R?" or "r?", it is an
invisible file. Normally DIR does not display invisible files. However,
you can specify the INVISIBLE parameter to display these files.

3-42

DIR

-DIR alpha

03 MAR 82 04:25:40
DIRECTORY OF alpha ON mvol

fnamel fname2 fname3 fname4 fname5
fname6 fname7 fname8 fname9 fnamel0
fnamel1 . . .

Figure 3-2. FAST Directory Listing Example (Default Listing Format)

-DIR mldirectorl2 S

03 MAR 82 21:55:24
DIRECTORY OF mydirectory2 ON myvol

NAME AT ACC BLKS LENGTH NAME AT ACC BLKS LENGTH
append -R-- 02 1425 alpha.obj DRAU 3 2871
REFERENCE DR -L-- 1 10 DATA DR DLAC 1 4
LEMONADE IT DRAU 123456789 123456789
time DRAU 6 5374 detachdevice DRAU 4 3414
test -R-- 5 4415 schedule ---U 7 6976
testprog.a86 -RA- 2 2040 DATABASE.LST -RAU 11 10336
EXPERIMENTAL DR -LAC 1 20 BACKUP DR DLAC 1 10

13 FILES 44 BLOCKS 36895 BYTES

Figure 3-3. SHORT Directory Listing Example

3-43

DIR

-DIR mydirectoryl L

03 MAR 82 21:55:24
DIRECTORY OF mydirectoryl ON myvol

NAME AT
ed
programs DR
fmat
OBJFILE
ALPHAl.P86
ALPHAl.MPI
manuals DR

ACC BLKS
-R-- 11
DL-- 30
DRAU 1
---U 3
DLAC 2
DLAC 6
-L-- 1

GRAN
LENGTH VOL FIL OWNER

1057 1024 1 II 47
30185 1024 1 II 47

39 1024 1 II 655535
2895 1024 1 II 47
1304 1024 1 II 50
5397 1024 1 II 50

304 1024 1 II 47

7 FILES 54 BLOCKS 41181 BYTES

Figure 3-4. LONG Directory Listing Example

-DIR m~dir E

03 MAR 82 21:55:24
DIRECTORY OF mydir ON myvol

GRAN
NAME AT ACC BLKS LENGTH VOL FIL OWNER

.programs DR DL-- 30 30185 1024 1 II 47
CREATION: 01 JAN 81 04:05:44 ACCESSORS
LAST ACC: 03 MAR 82 05:52:33 II 47
LAST MOD: 03 MAR 82 05:52:33 II 50

II 82
ed -R-- 11 1057 1024 1 II 47

CREATION: 11 NOV 81 12:24:05 ACCESSORS
LAST ACC: 02 MAR 82 14:22:16 II 47
LAST MOD: 02 MAR 82 14:22:16

fmat DRAU 1 39 1024 1 II 65535
CREATION: 01 NOV 81 08:54:39 ACCESSORS
LAST ACC: 03 MAR 82 14:56:59 /1 65535
LAST MOD: 08 NOV 81 20:44:01

testdir DR DLAC 1 32 1024 1 II 47
CREATION: 02 FEB 82 15:02:42 ACCESSORS
LAST ACC: 03 MAR 82 09:32:53 II 47
LAST MOD: 01 MAR 82 13:13:07 II 50

/I 65535

4 FILES 43 BLOCKS 32213 BYTES

Figure 3-5. EXTENDED Directory Listing Example

3-44

LAST ~10D
02 MAR 82
03 MAR 82
08 NOV 81
18 DEC 81
22 OCT 81
22 OCT 81
02 JUL 80

LAST MOD
03 ~fAR 82

ACC
DL--
-LA-
-L--

02 MAR 82
ACC

-R--

08 NOV 81
ACC

DRAU

01 MAR 82
ACC

DLAC
-LA-
-L--

Heading

NAME

AT

ACC

BLKS

LENGTH

VOL

FIL

OWNER

LAST" MOD

LAST ACC

CREATION

Table 3-3. Directory Listing Headings

Meaning

l4-character file name.

File attribute, where:
DR = Directory
MP = Bit map file
blank = Data file

File access rights of the user who entered the DIR command,
where:

Directories:

Data Files:

1

------- Delete
------ List

fr
----- Add
r---- Change

DLAC

Update
Append
Read
Delete

Nine-digi~ number (five digits on SHORT listing) giving the
volume-granularity units allocated to the file. On the
SHORT display, if the number of digits exceeds five, DIR
displays the file in the nine-digit form (see the
LEMONADEIT file in Figure 3-5).

lO-digit number (7 digits on SHORT listing) giving the
length of the file in bytes. On the SHORT form, if the
number of digits exceeds 7, the file is displayed in the
lO-digit form (see the LEMONADIT file in Figure 3-5).

Five-digit number giving the volume granularity in bytes.

Three-digit number giving the granularity of the file in
multiples of volume granularity.

l4-character, alphanumeric owner name.

Date of last file modification.

Date of last file access.

Date of file creation.

3-45

Dffi

DIR

Table 3-3. Directory Listing Headings (continued)

Heading :t-ieaning

ACCESSORS User IDs of users who have access to the file.

ACC Access rights of the corresponding user. The format of
this field is identical to ACC as described previously.

ERROR MESSAGES

• no directory files found

None of the files you specified were directories.

• <pathname> , READ access required

You do not have read (list) access to the directory.

• <pathname>, UPDATE or ADD access required

EXAMPLES

Either you cannot overwrite the information in a file because you
do not have update access to it, or you cannot copy information
to a new file because you do not have add entry access to the
file's parent directory.

The examples that follow show how a directory's files are listed when you
use your default prefix in a directory's pathname. In the examples, ~
directory names are enclosed in triangles; data file names are enclosed
in rectangles.

Assume you have the following directory structure for your files:

3-46

Example 1:

Suppose your default prefix is :FO:Q. This example shows the files
that would be listed in response to various DIR commands. It shows
the pathnames that you could enter and the resulting files that DIR
would list.

Pathname

omitted
f
A
A/d
A/CB
A/CB/e

Example 2:

Files Listed

A, f
not allowed
bb, CB, d
not allowed
e, f
not allowed

because f is a data file

because d is a data file

because e is a data file

Suppose your default prefix is :FO:Q/A. This example also shows the
files that would be listed in response to various DIR commands.

Pathname

omitted
A

CB

Files Listed

bb, CB, d
not allowed because directory A does not
contain an entry A
e, f

3-47

UIH

DISKVERIFY

This command invokes the disk verification utility which verifies the
data structures of iRMX 86 physical and named volumes. This utility can
also be used to reconstruct portions of the volume and perform absolute
editing on the volume. The format of the DISKVERIFY command is as
follows:

:Iogical name:

INPUT PARAMETERS

: logical-name: Logical name of the secondary storage device
containing the volume.

DISK Displays the attributes of the volume (such as type of
volume, device granularity, block size, number of
blocks, interleave factor, extension size, volume
size, and number of fnodes) and returns control to you
at the Human Interface level. You can then enter any
Human Interface command.

If you omit this parameter (and the VERIFY parameter),
the utility displays a sign-on message and the utility
prompt (*). You can then enter individual disk
verification commands. These commands are described
in the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL.

3-48

VERIFY or V

NAMEDl or Nl

NAMED or N

ALL

NAMED2 or N2

PHYSICAL

Performs a verification of the volume. If you
specify this parameter and omit the options, the
utility performs the NAMED verification.

If you specify this parameter, the utility
performs the verification function and returns
control to you at the Human Interface level. You
can then enter any Human Interface command.

J.J.10n.. v .£In..1.r I

If you omit this parameter (and the DISK
parameter), the utility displays a sign-on message
and the utility prompt (*). You can then enter
individual disk verification commands. These
commands are described in the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL.

VERIFY option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file hierarchy. (Refer to the
description of the FORMAT command for more
information about fnodes.) This option also
checks the information in each fnode to ensure
that it is consistent. As a result of this
option, DISKVERIFY displays a list of all files on
the volume that are in error, with information
about each file. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more
information.

VERIFY option that performs both the NAMEDl and
NAMED2 verification functions on a named volume.
If you omit the VERIFY option, NAMED is the
default option.

VERIFY option that applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs only the PHYSICAL verification function.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL
for more information.

VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checks for I/O errors.

3-49

.J..J.u,J..I.~ y .L:J..I."..I...I." ..I.

LIST VERIFY option that you can use with other VERIFY
options that, either explicitly or implicitly,
specify the NAMEDl option. When you use this
option, the file information generated by VERIFY
is displayed for every file on the volume, even if
the file contains no errors. Refer to the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath

DESCRIPTION

Copies the output from the disk verification
utility to the specified file. If the file
already exists, DISKVERIFY displays the following
information:

(pathname), already exists, OVERWRITE?

Enter Y, y, R, or r to write over the existing
file. Enter any other character if you do not
wish to overwrite the file.

If no preposition is specified, TO :CO: is the
default.

Copies the output from the disk verification
utility over the specified file.

Appends th~ output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from
the disk verification utility. If you omit this
parameter and the TO/OVER/AFTER preposition, the
utility copies the output to the console screen
(TO :CO:). You cannot direct the output to a file
on the volume being verified. If you attempt
this, the utility returns an "E$NOT_CONNECTED error
message.

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.y

where Vx.y is the version number of the utility. If you specify the
VERIFY or DISK parameter in the DISKVERIFY command, the utility performs
the operation specified in the parameter and copies the output to the
console (or to the file specified by the outpath parameter).

3-50

Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for a
description of the output. After generating the output. the utility
returns control to the Human Interface. which prompts you for more Human
Interface commands. The following is an example of a DISKVERIFY command
that uses the VERIFY option:

-DISKVERIFY :F1: VERIFY NAMED2
iRMX 86 DISK VERIFY UTILITY. Vx.y
DEVICE NAME = F1 : DEVICE SIZE

'NAMED2' VERIFICATION
BIT MAPS O. K.

0003E900 BLOCK SIZE 0080

The following is an example of a DISKVERIFY command that uses the DISK
option:

-DISKVERIFY :F2: DISK
iRMX 86 DISK VERIFY UTILITY. Vx.y
Device name = WFO

Named disk. Volume name = UTILS
Device gran = 0080

Block size = 0080
No of blocks = 0000072D No of Free blocks = 00000408

Volume size = 0003E900
Interleave = 0005

Extension size 03
No of fnodes 0038 No of Free fnodes 0022

However. if you omit the VERIFY and DISK parameters from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The following is an example of such a
DISKVERIFY command:

- DISKVERIFY : F 1 :

*
After you receive the asterisk prompt, you can enter any of the
DISKVERIFY commands listed in the iRMX 86 DISK VERIFICATION UTILITY
REFERENCE MANUAL.

ERROR MESSAGES

• argument error

The VERIFY option you specified is not valid.

• command syntax error

You made a syntax error when entering the command.

3-51

u .lOn. v ~n..l.r I

DISKVERl}4'Y

• device size inconsistent
size in volume label = <valuel> : computed size = <value2>

When the disk verification utility computed the size of the
volume, the size it computed did not match the information
recorded in the iRMX 86 volume label. It is likely that the
volume label contains invalid or corrupted information. This
error is not a fatal error, but it is an indication that further
error conditions may result during the verification session. You
may have to reformat the volume or use the disk verification
utility to modify the volume label. Refer to the iRMX 86 DISK
VERIFICATION UTILITY REFERENCE MANUAL for more information about
the disk verification utility commands.

• not a named disk

You tried to perform a NAMED, NAMEDl, or NAMED2 verification on a
physical volume.

The NAMEDl, NAMED2, and PHYSICAL verification options can also produce
error messages. Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about these messages.

EXAMPLE

The following command performs both named and physical verification of a
named volume.

-DISKVERIFY :Fl: VERIFY ALL

iRMX 86 DISK VERIFY UTILITY, Vx.y
DEVICE NAME = Fl DEVICE SIZE = 0003E900 BLK SIZE = 0080

'NAMEDl' VERIFICATION

'NAMED2' VERIFICATION
BIT MAPS O.K.

'PHYSICAL' VERIFICATION
NO ERRORS

3-52

, It·'I'y,n.,,· ..

DOWN COpy

This command copies files from a volume on an iRMX 86 secondary storage
device to a volume on an ISIS-II secondary storage device via the
iSBC 957B Interface and Execution package. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

One or more iRMX 86 pathnames for files, separated
by commas, that are to be copied to ISIS-II
secondary storage. Separating blanks between
pathnames are optional. The files may be copied
in the listed sequence either on a one-for-one
basis or concatenated into one or more files.

Causes the Human Interface to prompt for
permission to copy each iRMX 86 file to the listed
ISIS-II destination file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<pathname>, copy down TO <outfile>?

<pathname>, copy down OVER <outfile>?

<pathname>, copy down AFTER <outfile>?

Enter one of the following in response to the
query:

Entry

Y or y

E or e

R or r

Any other
character

3-53

Action

Copy the file.

Exit from the DOWNCOPY command.

Continue copying files without
further query.

Do not copy this file; query
for the next file in sequence.

uu VV l't\JUr I

OUTPUT PARAMETERS

TO

OVER

AFTER

outfile-list

DESCRIPTION

Reads iRMX 86 files and copies them TO new ISIS-II
files in the listed sequence. If the specified
output files already exist in the ISIS-II
directory when the TO parameter is used, DOWNCOPY
displays the following message:

<filename>, already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to delete the
existing file. Enter any other character if you
do not wish the existing file to be deleted.

If no preposition is specified, TO :CO: (ISIS-II
console screen) is the default. If more input
files than output files are specified, the
remaining input files are appended to the end of
the last-specified ISIS-II file.

Copies the iRMX 86 input files OVER the existing
ISIS-II destination files in the specified
sequence. If you specify multiple input files and
one output file, DOWNCOPY appends the remaining
input files to the end of the output file.

Copies the iID1X 86 input files, in sequence, AFTER
the end of data on the existing ISIS-II
destination files.

One or more ISIS-II filenames for the output
files. Multiple filenames must be separated by
commas. Separating blanks are optional. If the
preposition and output file defaults are used in
the command line, the output goes to the ISIS-II
console screen.

The DOWNCOPY command cannot be used to copy directories from an iRMX 86
system to a Series III microcomputer development system; only files can
be copied.

Before you enter a DOWNCOPY command on the iRMX 86 console keyboard, your
target system must be connected to a Series III system via the iSBC 957B
package, and the package must be running. To do this, you must start
your iRMX 86 system from the Series III terminal (either by loading the
software into the target system and using the monitor G command to start
execution, or by using the monitor B command to bootstrap load the
software). DOWNCOPY does not function if you start up your system from
the iRMX 86 terminal or if you establish the link between the Series III
system and target system after starting up your iRMX 86 system.

3-54

When DOWNCOPY copies files to the development .system, it turns off all
ISIS-II file attributes.

As each file in the input list is copied, one of the following messages
will be displayed on the Human Interface console output device (:CO:):

<pathname), copied down TO <out-filename)

<pathname), copied down OVER <out-filename)

<pathname), copied down AFTER <out-filename)

When the DOWNCOPY command is executing, the iSBC 957B package disables
interrupts. This affects services such as the time-of-day clock. Also,
the Operating System is unable to receive any characters that you
type-ahead while the DOWNCOPY command is executing.

ERROR MESSAGES

• <pathname), DELETE access required

DOWNCOPY could not replace an existing ISIS-II file because the
file is write-protected.

• <pathname), ISIS ERROR: <nnn)

An ISIS-II Operating System error occurred when DOWNCOPY tried to
transfer the file to the Microcomputer Development System. Refer
to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting
error code.

• ISIS link not present

The the iRMX 86 system is not connected to the development system
via the iSBC 957B package.

3-55

DOWNCOPY

FORMAT

This command formats or reformats a volume on an iRMX 86 secondary
storage device, such as a diskette, hard disk, or bubble memory. The
format is as follows:

INPUT PARAMETERS

: logical-name:

volume-name

FILES=num

Logical name of the physical device-unit to be
formatted. You must surround the logical name
with colons. Also, you must not leave space
between the logical name and the succeeding volume
name parameter.

Six-character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume. If
you include this parameter, you must not leave
spaces between the logical name and the volume
name.

Defines the maximum decimal number of user files
that can be created on a NAMED volume. (This
parameter is not meaningful when formatting a
PHYSICAL volume and is ignored if specified for
such volumes.) FORMAT uses the information
specified in this parameter to determine how many
structures (called fnodes) to create on the NAMED
volume. The range for the FILES parameter is 1
through 32,761, although the maximum number of
user files you can define depends on the settings
of the GRANULARITY and EXTENSIONSIZE parameters
(as explained in the "Description" portion of this
command write-up). When you use this parameter,
FORMAT creates six additional fnodes for internal
system files. If not specified, the default is 50
user files.

3-56

x-200

FORCE

GRANULARITY=num

Forcibly deletes any existing connections to files
on the volume before formatting the volume. If
you do not specify FORCE, you cannot format the
volume if any connections to files on the volume
still exist.

Volume granularity; the minimum number of bytes to
be allocated for each increment of file size on a
NAMED volume. (This parameter is not meaningful
for PHYSICAL volumes, and is ignored if specified
for such volumes.) FORMAT rounds the value you
specify up to the next multiple of the device
granularity. Then it places the decimal number in
the header of the volume, where it becomes the
default file granularity when a file is created on
the volume. The range is 1 through 65,535
(decimal) bytes, although the maximum allowable
volume granularity depends on the settings of the
FILES and EXTENSIONSIZE parameters (as explained
in the "Description" portion of this write-up).
If not specified, the default granularity is the
device granularity. Once the volume granularity
is defined, it applies to every file created on
that volume.

NOTE

Using a large volume granularity
(in excess of 1024), might cause
users to exceed their memory limits
when executing programs that reside
on the volume. This can occur
because the Operating System uses
the volume granularity as a minimum
buffer size when reading and
writing files.

EXTENSIONSIZE=num Size, in bytes, of the extension data portion of
each file. (This parameter is not meaningful for
PHYSICAL volumes, and is ignored if specified for
such volumes.) The range is 0 through 255
(decimal), although the maximum allowable
extension size depends on the settings of the
FILES and GRANULARITY parameters (as explained in
the "Description" portion of this write-up). If
not specified, the default extension size is 3
bytes.

INTERLEAVE=num Interleave factor for a NAMED or PHYSICAL volume.
Acceptable values are 1 through 255 decimal. If
not specified, the default value is 5. See the
interleave discussion under "Description" in this
command write-up.

3-57

.r V.ltlVlB.T

FORMAT

NAMED

PHYSICAL

DESCRIPTION

The volume can store only named files; that is,
the volume can hold many files (up to the number
of fnodes allocated), each of which can be
accessed by its pathname. A diskette or hard disk
surface are examples of devices that would be
formatted for named files. If neither NAMED nor
PHYSICAL is specified, the volume is formatted for
the file specified when you attached the device
(with the ATTACHDEVICE command).

The volume can be used only as a single, physical
file. The GRANULARITY and FILES parameters are
not meaningful when PHYSICAL is specified for the
volume. If neither NAMED nor PHYSICAL is
specified, the volume is formatted for the file
type specified when you attached the device (with
the ATTACHDEVICE command).

Every physical device-unit used for secondary storage must be formatted
before it can be used for storing and then accessing its files. For
example, every time you mount a previously unused diskette into a drive,
you must enter a FORMAT command to format that diskette as a new volume
before you can create, store and access files on it.

Once a volume is formatted, its name becomes a volume identifier when you
display the root directory of the volume, and the name appears in the
directory's heading. Although the Human Interface uses the volume name
in its own internal processing when you access the volume, you need not
specify the volume name in any subsequent command after the volume is
formatted. You must specify only the logical name of the secondary
storage device that contains the volume.

Volume Name

The Human Interface requires a volume name for its own internal
processing of your read/write accesses to the volume. Once the volume is
formatted, you need never specify the volume name in a command; you only
specify the logical name for the device on which you later mount the
volume.

For diskettes, a volume name gives you a method for identifying a volume
in case the stick-on label on the diskette gets lost or destroyed. You
need only mount the disk on a drive and enter a DIR command for that
drive to get a directory listing that specifies the volume name.

3-58

Fnodes

The number of fnodes on a volume defines the number of files that can
exist on the volume. You can specify the number of fnodes reserved for
user files with the FILES parameter. Each fnode is a data structure that
contains information about a file. Each time you create a file on the
volume, the Operating System records information about the file in an
unused fnode. Later, it uses the fnode to determine the location of the
file on the volume.

Internal Files

When you format a named volume, FORMAT creates six internal system
files. It names three of these files and lists their names in the root
directory of the volume. The files are:

file

R?SPACEMAP
R?FNODEMAP
R?BADBLOCKMAP

description

Volume free space map
Free fnodes map
Bad blocks map

It grants the user WORLD read access to these files. Refer to the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more information
about these files.

Root Directory

FORMAT also uses one of the fnodes for the root directory. It lists the
user who formats the volume as the owner, giving that user all access
rights. No other user has access to the root directory until the owner
explicitly grants access. The owner can grant other users access to the
volume via the PERMIT command described later in this chapter. However,
because the owner has all access rights to the root directory, the owner
can obtain exclusive access to the volume, and can obtain delete access
to any file created on the volume, even files created by other users.

Extension Data

Each fnode contains a field that stores extension data for its associated
file. An operating system extension can access and modify this extension
data by invoking the AGETEXTENSION$DATA and A$SET$EXTENSION$DATA system
calls (refer to the iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode.
Although you can specify any size from 0 to 255 bytes, the Human
Interface requires all fnodes to have at least 2 bytes of extension data.

3-59

FORMAT

FORMAT

Volume Granularity

The default volume granularity is always the granularity of the physical
device for the volume. For example, if the default granularity for a
device is 128 bytes of secondary storage, the I/O System will
automatically allocate permanent storage to each new file you create on
that volume in multiples of 128 bytes, regardless of whether the file
requires the full amount.

Relationship between FILES, GRANULARITY, and EXTENSIONSIZE

Although the FILES, GRANULARITY, and EXTENSIONSIZE parameters have
maximum values which are listed in the parameter descriptions, the
combination of these parameters must also satisfy the following formula:

(87 + EXTENSIONSIZE) x (FILES + 6) / GRANULARITY ~ 65535

where all numbers are decimal. FORMAT displays an error message if the
combination of parameter values exceeds the limit.

Interleave Factor

The interleave factor applies to volumes formatted either for NAMED or
PHY~ICAL files. The interleave factor specifies the logical sector
sequence. The interleave specification maximizes access speed for the
files on a given volume, depending on the intent of volume and the device
configuration. For example, an interleave factor of 5 for a flexible
disk drive means that, for each file, the I/O System reads and writes
every fifth sector on the diskette, starting with an index of 1. (Other,
hard disk systems may be different, depending on 'your configuration.)
With the appropriate interleave factor, the I/O System does not need to
wait for the disk to make a complete revolution before it accesses the
next sector; the next sector by an increment of 5 is ready to be accessed
for read/write by the time the previously accessed sector has been
processed.

Output Display

The FORMAT command displays one of the following message when volume
formatting is completed. For physical volumes:

volume «vo~ume name» will be formatted as a PHYSICAL volume
device gran.
interleave
volume size

volume formatted

= <number>
<number>

= <k-number> K (or M)

3-60

For named volumes:

volume size
volume formatted

where:

<volume name>

<number>

<k-number>

<sides>

<density>

<d-size>

ERROR MESSAGES

= <number>
= <number>

<number>
<number>
<k-number> K (or M)

Volume name specified in the FORMAT command.

Decimal number as specified in the command (or the
default)

Volume size in K (1024-byte units) or M
(1048576-byte units). FORMAT displays the volume
size in Kbyte units unless the size is greater
than 25 Mbytes.

Number of sides of the volume that will be
formatted (lor 2). This fleld is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

Density at which the volume will be formatted
(single or double). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

Size of the volume (8 or 5.25). This field is
displayed only for flexible diskettes in which
FORMAT can recognize this characteristic.

• <logical name>, can't attach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot
re-attach the device (that is, restore it to its original
condition) after formatting takes place.

• <logical name>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that
the volume does not exist, the volume is busy, or the device on
which the volume is mounted is not currently attached to the
system.

3-61

FORMAT

• <logical name>, device is in use

You cannot format the volume because there are outstanding
connections to files on the volume and you did not specify the
FORCE param~ter.

• <vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnode size, granularity, and
extension data size cause the formula listed in the "Description"
section to exceed its limit.

• <number>, invalid number

You specified an out-of-range number for any of the FILES,
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters.

• <logical name>, outstanding connections to device have been
deleted

There were outstanding connections to files on the volume.
However, because you specified the FORCE parameter, FORMAT
deleted those connections. This is a warning message that does
not prevent FORMAT from formatting the volume.

• 0085: E$LIST, too many values

You entered multiple logical-name/volume-name combinations
separated by commas. FORMAT can format only one volume per
invocation.

• <volume name>, volume name is too long

FORMAT requires the volume name you specify to be 6 chara'cters or
less.

3-62

INITSTATUS

This command displays the initialization status of Human Interface
terminals. The format of this command is as follows:

--IIIII(GITSTATU0)---
x-201

DESCRIPTION

INITSTATUS displays at the user terminal the initialization status of all
Human Interface terminals. Figure 3-6 illustrates the format of the
INITSTATUS display.

TERMINAL CONFIG DEVICE INIT USER JOB USER
DEVICE NAME EXCEP EXCEP EXCEP STATE ID ID
.TO. 0000 0000 0000 LE 1 65535
.T1. 0000 0000 0000 -E 2 1
.T3. 0000 0002
.T4. 0021

Figure 3-6. INITSTATUS Display

The columns listed in Figure 3-6 contain the following information.

TERMINAL
DEVICE NAME

CONFIG EXCEP

DEVICE EXCEP

The physical name of the terminal, as defined during
the configuration of the Basic I/O System and as
attached by the Human Interface. Periods surround
each name.

Hexadecimal condition code that the Human Interface
received when it attempted to interpret the terminal
definition and user definition files (refer to the
iRMX 86 CONFIGURATION GUIDE for more information). A
zero value indicates a normal condition. Nonzero
values indicate exceptional conditions. Refer to
Appendix B for a list of exception codes.

Hexadecimal condition code that the Human Interface
received when it originally attached the terminal as a
physical device.

3-63

INITSTATUS

INITSTATUS

INIT EXCEP

USER STATE

JOB ID

USER ID

Condition code that the Human Interface received when
it created a job for the interactive session.

Two characters that indicate the current state of the
terminal. The first character can be either:

L The terminal is locked and cannot be
reinitialized (refer to the LOCK command
later in this chapter).

The terminal is unlocked.

The second character can be either:

E The Human Interface created the interactive
job associated with this terminal and the
job exists.

The interactive job does not exist.

A sequential number that the Human Interface assigns
to the interactive job during initialization. You
must specify this number as a parameter in the
JOBDELETE command in order to delete the corresponding
interactive job.

User ID associated with the interactive job. This is
the identification of the user that the Human
Interface associates with the job when the user begins
a Human Interface session.

ERROR MESSAGE

• not a multi-access system

The Human Interface cannot return information about terminals
because it is not configured for multi-access.

3-64

JOBDELETE

This command deletes a running interactive job. The system manager can
use this command to delete any interactive job. Other users can delete
only those interactive jobs that have the same user ID that they have.
The format of this command is as follows:

---fGOBDELET0 ----(C job-id-list ~)OOO--

where:

job-id-list

DESCRIPTION

x-202

One or more job IDs, separated by commas, of the
interactive jobs to be deleted. You can obtain
the IDs of jobs by invoking the INITSTATUS command
(described earlier in this chapter).

The JOBDELETE command allows users to delete interactive jobs. Deleting
an interactive job causes the Human Interface to terminate the
corresponding user session.

When JOB DELETE attempts to delete a job, it first attempts to delete the
job's offspring jobs (for example, a SUBMIT file or a program invoked as
a result of an RQ$CREATE$IO$JOB system call). It deletes multiple levels
of offspring jobs. However, JOBDELETE cannot delete any interactive job
(or offspring) that contains extension objects. Refer to the iRMX 86
NUCLEUS REFERENCE MANUAL for more information about deleting jobs
containing extension objects.

Normally, when a user's interactive job is deleted, the Human Interface
recreates the interactive job, thus restarting the user session.
However, if the LOCK command (described later in this chapter) has been
specified for the user's terminal, the Human Interface does not
automatically recreate the user's interactive job after a JOBDELETE
command. Therefore, the system manager can use the combination of LOCK
and' JOB DELETE to remove users from the system prior to a system shutdown.

As JOBDELETE deletes each job, it displays the following message at the
user terminal (:CO:):

<job-ID), deleted

where <job-ID) is the identifier of the deleted job.

3-65

ERROR MESSAGES

• <job-IO>, does not exis~

The interactive job associated with the identifier <job-IO> does
not exist. It has already been deleted.

• <job-IO>, invalid job id

The number <job-IO> is not a job 10 that is associated with any
terminal managed by the Human Interface.

• <job-IO>, job does not belong to you

The user who attempted to delete the interactive job does not
have the same user ID as the interactive job or is not the system
manager.

• <job-ID>, not deleted
<job-ID>, <exception value> : <exception mnemonic>

An exceptional condition occurred, preventing JOBDELETE from
deleting the job <job-ID>. JOBDELETE displays the exception code
that resulted.

3-66

LOCK

This command prevents the Human Interface from automatically recreating
the interactive job for a terminal once that interactive job has been
deleted. This process is called locking the terminal. The system
manager can use this command to lock any terminal. Other users can lock
only those terminals whose interactive jobs have the same user ID that
they have. The format of this command is as follows:

where:

terminal-name-

*

DESCRIPTION

x-203

One or more terminal device names, separated by
commas, of the terminals to be locked. You can
obtain the terminal device names by invoking the
INITSTATUS command (described earlier in this
chapter).

A special character indicating that all configured
terminals should be locked.

The system manager can use the LOCK command in conjuction with the
JOBDELETE command either to selectively delete users from the system or
to shut down the entire system. LOCK prevents the Human Interface from
recreating a user's interactive job once that job has been deleted.
Interactive jobs can be deleted in any of the following ways:

• As a result of the JOBDELETE command (described earlier in this
chapter)

• By shutting off the terminal

• By entering an end-of-file character (CTRL/z) at the terminal

As LOCK locks each terminal, it displays the following message to the
user terminal (:CO:):

<terminal-name), locked

where ·<terminal-name) is the terminal device name of the locked terminal.

3-67

LOCK

ERROR MESSAGES

• lock not allowed

You attempted to lock your own terminal. Only system managers
can lock their own terminals.

• <terminal-name>, not found

A terminal with device name <terminal-name> is not configured .
into your application system.

• not a multi-access system

The LOCK command does not function if the Human Interface is
configured for single-access only.

3-68

PERMIT

This command allows you to grant or revoke user access to files that you
own. The format of this command is as follows:

INPUT PARAMETERS

pathname-list

access

One or more pathnames, separated by commas, of the
files that are to have their access rights or list
of accessors changed.

Access characters that grant or rescind the
corresponding access to the file, depending on the
value parameter that follows. The possible values
include:

value

D

L or R

A

C or U

N

3-69

access

Delete

List (for directories) and
read (for data files)

Add entry (for directories)
and append (for data files)

Change (for directories) and
Update (for data files)

Rescinds all access not
explicitly granted (used
without an accompanying value)

PERMIT

x-204

P~H.MIT

value

user-list

DATA

DIRECTORY

QUERY

If specified without an accompanying value, each
access character grants the specified access.
Specifying N alone rescinds all access and removes
the users specified with the USER parameter from
the file's access list. Specifying N with other
characters grants the access specified by those
characters and rescinds all other access. You can
use Land R interchangeably for both data files
and directories; likewise C and U.

Value which specifies whether to grant or rescind
the associated access right. Possible values
include:

value meaning

o Rescind the access right

1 Grant the access right

The default value is 1. That is, specifying an
access character without a value grants the
corresponding access.

User IDs for whom the previously-specified access
rights apply. Two special values are also
acceptable for this parameter. They are:

WORLD

*

Special user ID (OFFFFh) giving all
users access to the file.

Designator indicating that the
access rights apply to all users
currently in the file's access list.

The Operating System limits each file to three
user IDs in the access list. If you omit this
parameter, PERMIT assumes the user ID associated
with your interactive job.

Specifies that the access information applies to
the data files in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Specifies that the access information applies to
the directories in the pathname list. If you omit
both the DATA and DIRECTORY parameters, PERMIT
assumes both.

Causes PERMIT to prompt for permission to modify
the access rights associated with each file. It
does this by displaying the following message:

3-70

DESCRIPTION

<pathname),
accessor = <new id>, <new access), PERMIT?--

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Change the access.

Exit from the PERMIT command.

Change the access and continue
with the command without
further query.

Do not change access; continue
with PERMIT command and query
for next access change, if any.

You can use the PERMIT command to update the access information for the
following files:

• Files for which you are listed as the owner.

• Files for which you have change-entry access to the file's parent
directory.

You cannot change the access information for other files. PERMIT can
perform the following functions:

• Adding or subtracting users from a file's list of accessors.
This list determines which users have access to the file.

• Setting the type of access (access rights) granted to the users
in the accessor list.

Currently the Operating System allows only three user IDs in the list of
accessors, but one of these IDs can be the special ID WORLD, which grants
access to all users.

You specify the type of access to be granted or rescinded by means of
access characters and values. You can concatenate access characters and
values together or you can separate the individual access specifications
with commas. For example, if you want to grant delete access and rescind
add and update access, you could enter any of the following combinations:

AODUO
AO,D,UO
AODIUO
AO,Dl,UO

3-71

r .r.;rUVlr I"

As you can see from the previous lines, D is equivalent to DI. Also, the
order in which you specify access characters is not important.

If there are multiple occurrences of an access character in the PERMIT
command, PERMIT uses the last such character to determine the access.
For example, the combination:

DO,Al,Rl,Dl

is the same as the combination:

Al,Rl,Dl

In the first combination, the Dl overrides the DO.

You can use the N character to rescind all access to the file. If
specified alone, it removes user IDs from the accessor list. However,
the N character can also be useful when changing access rights, if you
don't remember the specified user's current access rights. In this case
you can specify the N character first, to clear all the access rights,
and follow it with other characters to grant the desired access. For
example, if you want to grant list access only, instead of specifying:

DOAOCOL

you could specify:

NL

After changing the access information for a file, PERMIT displays the
following information:

<pathname>,
accessor <accessor ID>, <access>

where <pathname> is the pathname of the specified file, <accessor ID> is
the user ID of one of the files accessors, and <access> indicates the
access rights that the corresponding user has. PERMIT displays the
access rights as access characters: DLAC for directories and DRAU for
data files. If a particular access right is not allowed, the display
replaces the corresponding character with a dash (-). For example, the
display:

-L-C

indicates that the corresponding user has list and change access.

3-72

ERROR MESSAGES

• <pathname>, accessor limit reached

The Operating System permits only three IDs in the accessor list
of a file. Before you can add another accessor, you must remove
one of the current accessors by setting its access rights to N.

• <pathname>, directory CHANGE access required

Either you are not the owner of the file specified by <pathname>,
or you do not have change access to the file's parent directory.
You must satisfy one of these two conditions in order to use the
PERMIT command.

• <user ID>, duplicate USER control

You must specify the keyword and parameter combination USER =
userlist only once during the PERMIT command. However, you can
specify multiple user IDs by separating them with commas in the
userlist. PERMIT exits without updating the access rights.

• <character>, invalid access switch

The character you entered to indicate the access rights for the
file was not a valid access character. PERMIT exits without
updating the access rights.

• <invalid id>, invalid user id

The user IDs you supply with the USER parameter must consist of
decimal or hexadecimal characters, the characters WORLD, or the
character *. PEID1IT exits if supplied other characters.

• missing access switches

You must specify one or more access characters with the PERMIT
command. PERMIT exits without updating the access rights.

• no files found

There were no files of the type you specified (data, directory,
or both) in the pathname list.

3-73

nnfnl)?'·

RENAl-IE

This command allows you to change the pathname of one or more data files
or directories. RENAME is effective across directory boundaries on the
same volume. The format is as follows:

INPUT PARAMETERS

inpath-list

QUERY

OUTPUT PARAMETERS

TO

One or more pathnames. separated by commas. of
files or directories that are to be renamed.
Blanks between pathnames are optional separators.

Causes the Human Interface to prompt for
permission to rename each pathname in the input
list by issuing one of the following messages:

<oldname> , rename TO <newname>?
<oldname> , rename OVER <newname>?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry Action

Y or y Rename the file.

E or e Exit from RENAME command.

R or r Continue renaming without further
query.

Any other Do not rename file; query for the next
character file in sequence.

Moves the data to the new pathnames in the
output list. A new pathname in the output list
should not already exist. If the output
pathname already exists, RENAME displays the
following message:

3-74

OVER

outpath-list

DESCRIPTION

<pathname), already exists, DELETE?

Enter Y, y, R, or r to delete the existing
file. Enter any other character if you do not
wish tp delete the file. In the later case,
RENAME skips over the specified file without
changing it and attempts to rename the next
pathname in the list.

Changes each old pathname in a list to the
corresponding new pathname, even if the new
pathname already exists. OVER cannot be used to
rename a non-empty directory over another
non-empty directory.

List of new pathnames.
be separated by commas.
optional.

Multiple pathnames must
Separating blanks are

The primary distinction between the RENAME command and the COpy command
is that, as the RENAME command runs, it releases the pathnames of the
input files for new uses without performing any further operation on the
files.

Another distinction between RENAME and COpy is that RENAME cannot be used
across volume boundaries; that is, you cannot use the RENAME command to
rename a file or move data from a volume located on one secondary storage
device to a volume located on another secondary storage device (for
example, from one diskette to another). 'An attempt to do so causes an
error message. Use the COpy command or a combination of COpy and DELETE
commands if you wish to rename files or move data across volume
boundaries.

To use RENAME, you must have delete access to the current file and
add-entry access to the destination directory. If you rename a file OVER
an existing file, you must also have delete access to the second file.

Although RENAME can be used to rename an existing directory pathname TO a
new pathname, it cannot be used to rename an existing directory OVER
another existing directory. For example:

-RENAME ALPHA TO DELTA ; allowed
-RENAME ALPHA OVER BETA ;not allowed (unless BETA is empty)
-RENAME ALPHA/SAMPl OVER BETA/TESTl ; allowed

3-75

RENAME

RENAME

NOTE

Changing the name of a directory also
changes the path of all files listed in
that directory. All subsequent
accesses to those files must specify
the new pathnames for the files.

As each file in a pathname list is renamed, the RENAME command displays
one of the following messages, as appropriate:

<old pathname), renamed TO <new pathname)
or

<old pathname), renamed OVER <new pathname)

ERROR MESSAGES

• <old pathname), DELETE access required

You cannot rename a file unless you have delete access to that
file.

• <new pathname), directory ADD ENTRY access required

You cannot rename a file unless you have add-entry access to the
destination directory.

• <new pathname), new pathname same as old pathname

You specified the same name for the input pathname as you did for
the output pathname.

• TO or OVER preposition expected

Either you used the AFTER preposition with the RENAME command or
the number of files in your inpath-list did not match the number
in your outpath-list.

3-76

RESTORE

This command restores files to a named volume by copying them from a
backup volume.

The format of this command is as follows:

INPUT PARAMETERS

:backup device:

QUERY

Logical name of the backup device from which
RESTORE restores files.

Causes the Human Interface to prompt for
permission to restore each file. The Human
Interface prompts with one of the following
queries:

<pathname), RESTORE data file?

or

<pathname), RESTORE directory?

Enter one of the following responses to the query:

Entry

Y or y

E or e

R or r

Any other
character

3-77

Action

Restore the file.

Exit from the RESTORE command.

Continue restoring files without
further query.

If data file, do not restore the
file; if directory file, do not
restore the directory or any
file in that portion of the
directory tree. Query for the
next file, if any.

RESTORE

RESTORE

OUTPUT PARAMETERS

TO

OVER

pathname

DESCRIPTION

Restores the files from the backup volume to new
files on the named volume, if the files do not
already exist on the named volume. If a file
being restored already exists on the named volume,
RESTORE displays the following message:

<pathname), already exists, OVERWRITE?

Enter one of the following in response to the
query:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Delete the file and replace
it with the one from the
backup volume.

Exit from the RESTORE
command.

Do not restore the file; go
on to the next file.

Restores the files from the backup volume over
(replaces) the files on the named volume. If a
file does not exist on the named volume, RESTORE
creates a new file on the named volume.

Pathname of a file which receives the restored
files (you must specify a directory pathname when
restoring more than one file). If you specify a
logical name for a device, RESTORE places the
files under the root directory for that device.
However, the device must contain a volume
formatted as a named volume. If you wish to
restore files to the directory in which they
originated, you should specify the same pathname
parameter as you used with the BACKUP command.

RESTORE is a utility which copies files from backup volumes (where the
BACKUP command originally saved them) to named volumes. RESTORE copies
the files to any directory you specify, maintaining the hierarchical
relationships between the backed-up files.

Normally, when RESTORE copies files, it copies only those files to which
you have access. When it copies these files to the named volume, it
establishes your user ID as the owner ID (regardless of what the previous
owner ID was). However, if you are the system manager (user ID 0),
RESTORE restores all files from the backup volume and leaves the owner ID
the same as it was.

3-78

When copying files, RESTORE restores the following information:

• File name

• Access list

• Extension data

• File granularity

• Contents of the file

RESTORE changes the creation, last modification, and last access dates of
the file to the current date.

Each backup volume which is used as input to the RESTORE command must
contain files placed there by the BACKUP command. In addition, if the
backup operation required multiple backup volumes, you must restore these
volumes in the same order as they were backed up.

The output volume which receives the restored files must be a named
volume. You must have sufficient access rights to the files in that
volume to allow RESTORE to perform all necessary operations. For RESTORE
to create new files on a named volume, you must have add entry access to
directories on that volume. For RESTORE to restore files over existing
files, you must have add entry and change entry access to directories in
that volume and delete, append, and update access to data files.

When you enter the RESTORE command, RESTORE displays the following
sign-on message:

iRMX 86 DISK RESTORE UTILITY Vx.y

where Vx.y is the version number of the utility. Then it prompts you for
a backup volume.

Whenever RESTORE requires a new backup volume, it issues the following
message:

<backup device>, mount backup volume #<nn> , enter Y to continue:

where <backup device> indicates the logical name of the backup device and
<nn> the number of the requested volume. (RESTORE in some cases displays
additional information to indicate problems with the current volume.) In
response to this message, place the backup volume in the backup device
(make sure that the volume number is correct if the backup operation
involved multiple volumes). Enter one of the following:

Entry

Y, y, R, or r

E or e

Any other
character

Action

Continue the restore process.

Exit from the RESTORE command.

Invalid entry; reprompt for entry.

3-79

RESTORE

RESTORE

RESTORE continues prompting you until you supply the correct backup
volume.

As it restores each file, RESTORE displays one of the following messages
at the Human Interface console output device (:CO:):

<pathname>, restored

or

<pathname>, directory restored

ERROR MESSAGES

• <pathname>, access to directory or file denied

RESTORE could not restore a file, either because you did not have
add entry access to the file's parent directory or because you
did not have update access to the file. RESTORE continues with
the next file.

• <backup device>, backup volume #<nn>, <date>, mounted
<backup device>, backup volume #<nn>, <date>, required

<backup device>, mount backup volume t/<nn> , ent.er Y to continue:

RESTORE cannot continue because the backup volume you supplied is
not the one that RESTORE expected. Either you supplied a volume
out of order or you supplied a volume from a different backup
session. RESTORE reprompts for the correct backup volume.

• <backup device>, cannot attach volume
<backup device>, <exception value> : <exception mnemonic>

<backup device>, mount backup volume #<nn>, enter Y to continue:

RESTORE cannot access the backup volume. This could be because
there is no volume in the backup device or because of a hardware
problem with the device. The second line of the message
indicates the iRMX 86 exception code encountered. RESTORE
continues to issue this message until you supply a volume that
RESTORE can access.

• <pathname>, <excep·tion value> : <exception mnemonic>, error
during BACKUP, file not restored

When the BACKUP utility saved files, it encountered an error when
attempting to save the file indicated by this pathname. RESTORE
is unable to restore this file. The message lists the iRMX 86
exception code encountered.

3-80

• <pathname>, <exception value> : <exception mnemonic>, error
during BACKUP, restore incomplete

When the BACKUP utility saved the files, it encountered an error
when attempting to save the file indicated by this pathname.
RESTORE restores as much of the file as possible to the named
volume. The message lists the iID1X 86 exception code encountered.

• <backup device>, error reading backup volume
<backup device>, <exception value> : <exception mnemonic>

RESTORE tried to read the backup volume but encountered an error
condition, possibly because of a faulty area on the volume. The
second line of the message indicates the iRMX 86 exception code
encountered.

• <pathname>, <exception value> : <exception mnemonic>, error
writing output file, restore incomplete

RESTORE encountered an error while writing a file to the named
volume. This message lists the iRMX 86 exception code
encountered. RESTORE writes as much of the file as possible to
the named volume.

• <pathname), extension data not 'restored, <nn) bytes required
.

The amount of space available on the named volume for extension
data is not sufficient to contain all the extension data
associated with the specified file. The value <nn) indicates the
number of bytes required to contain all the extension data. This
message indicates that the named volume on which RESTORE is
restoring files is formatted differently than the named volume
which originally contained the files. To ensure that you restore
all the extension data from the backup volume, you should restore
the files to a volume formatted with an extension size set equal
to the largest value reported in any message of this kind. Refer
to the description of the FORMAT command for information about
setting the extension size.

• <backup device>, invalid backup device

The logical name you specified for the backup device was not a
logical name for a device.

• <backup device), not a backup volume

<backup device>, mount backup volume #<nn), enter Y to continue:

The volume you supplied on the backup device was not a backup
volume. RESTORE continues to issue this message until you supply
a backup volume.

3-81

RESTORE

RESTORE

• <pathname), not restored

For some reason, RESTORE was unable to restore a file from the
backup volume. RESTORE continues with the next file. Another
message usually precedes this message to indicate the reason for
not restoring the file.

• output specification missing

You did not specify a pathname to indicate the destination of the
restored files.

• <pathname), READ access required

You do not have read access to a file on the backup volume;
therefore RESTORE cannot restore the file.

• <pathname), too many input pathnames

You attempted to enter a list of logical names as logical names
for backup devices. You can enter only one input logical name
per invocation of RESTORE.

3-82

SUBMIT

This command reads and executes a set of commands from a file in
secondary storage instead of from the console keyboard. To use the
SUBMIT command you must first create a data file that defines the command
sequence and formal parameters (if any). The format of the command is as
follows:

INPUT PARAMETERS

pathname

parameter-list

OUTPUT PARAMETERS

TO

Name of the file from which the commands will be
read. This file may contain nested SUBMIT files.

Actual parameters that are to replace the formal
parameters in the SUBMIT file. You must surround
this parameter list with parentheses. You can
specify as many as 10 parameters, separated by
commas, in the SUBMIT command. If you omit a
parameter, you must reserve its position by
entering a comma. If a parameter contains a
comma, space, or parenthesis, you must enclose the
parameter in single quotes. The sum of all
characters in the parameter list must not exceed
512 characters.

Causes the output from each command in the SUBMIT
file to be written to the specified new file
instead of the console screen. If the output file
already exists, the SUBMIT command displays the
following message:

<pathname), already exists OVERWRITE?

3-83

"1"~,)1'"

~U.HMIT

OVER

AFTER

out-pathname

DESCRIPTION

Enter Y, y, R, or r if you wish the existing
output file to be deleted. Enter any other
character if you do not wish the existing file to
be deleted. A response other than Y or y causes
the SUBMIT command to be terminated and you will
be prompted for a new command entry.

Causes the output for each command in the SUBMIT
file to be written over the specified existing
file instead of the console screen.

Causes the output from each command in the SUBMIT
file to be written to the end of ~n existing file
instead of the console screen.

Pathname of the file to receive the processed
output from each command executed from the SUBMIT
file. If no preposition or output file is
specified, TO :CO: is the default.

Any program that reads its commands from the console input (:CI:) can be
executed from a SUBMIT file. If another SUBMIT command is itself used in
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest
SUBMIT files to any level of nesting until memory is exhausted (each
level of SUBMIT requires approximately 10K of dynamic memory). When one
nested SUBMIT file completes execution, it returns control to the next
higher level of SUBMIT file.

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the
CTRLlc character to abort processing, all SUBMIT processing exits and
control returns to your user session.

When you create a SUBMIT file, you indicate formal parameters by
specifying the characters %n, where n ranges from ° through 9. When
SUBMIT executes the file, it replaces the formal parameters with the
actual parameters listed in the SUBMIT command (the first parameter
replaces all instances of %0, the second parameter replaces all instances
of %1, and so forth). If the actual parameter is surrounded by quotes,
SUBMIT removes the quotes before performing the substitution. If there
is no actual parameter that corresponds to a formal parameter, SUBMIT
replaces the formal parameter with a null string.

When you specify a preposition and output file (other than :CO:) in a
SUBMIT command, only your SUBMIT command entry will be echoed on the
console screen; the individual command entries in the submit file are not
displayed on the screen as they are loaded and executed.

The SUBMIT command will display the following message when all commands
in the submit file have been executed:

END SUBMIT <pathname)

3-84

ERROR MESSAGES

• <pathname), end of file reached before end of command

The last command in the input file was not specified completely.
For example, the last line might contain a continuation character.

• <parameter), incorrectly formed parameter

You separated the individual parameters in the parameter list
with a separator character other than a comma.

• <pathname), output file same as, input file

You attempted to place the output from SUBMIT into the input file.

• <pathname), too many input files

You specified more than one pathname as input to SUBMIT. SUBMIT
can process only one file per invocation.

• <parameter), too many parameters

You specified more than 10 parameters in your parameter list.

• <pathname), UPDATE or ADD access required

EXAMPLE

SUBMIT cannot write its output to the output file because you do
not have update access to the file (if it already exists) or
because you do not have add access to the file's parent directory
(if the file does not currently exist).

This example shows a SUBMIT file that uses formal parameters and the
command that you can enter to invoke this SUBMIT file. The SUBMIT file,
which resides on file :Fl:MOVE$FILE, contains the following lines:

ATTACHDEVICE Fl AS %0
CREATEDIR %0/%1
UPCOPY :Fl:%2 TO %0%1/%2

The SUBMIT file contains three formal parameters, indicated by %0, %1,
and %2. The %0 indicates the logical name of an iRMX 86 device; the %1
indicates the name of a directory on ~hat device; the %2 indicates the
name of a file which will be copied from an ISIS-II disk to the iRMX 86
device.

3-85

~UHMIT

:SUBMIT

The SUBMIT command used to invoke this file is as follows:

-SUBMIT :FO:MOVE$FILE (:FI:, PROG, FILEl)

The command sequence created and executed by SUBMIT is shown as it would
be echoed on the console output device.

-ATTACHDEVICE FI AS :FI:
FI, attached as :FI:
-CREATEDIR :FI:/PROG
:FI:PROG, directory created
-UPCOPY :FI:FILEI TO :FI:PROG/FILEI
:FI:FILEI upcopied TO :Fl:PROG/FILEl
END SUBMIT :FO:MOVE$FILE

3-86

SUPER

This command allows operators who are designated as system managers to
change their user IDs to the system manager user ID (user ID 0). Having
entered the SUPER command, these users can invoke a sub-command to change
to any other user ID. The format of this command is as follows:

--IOIII(C SUPER ~ --
x-206

DESCRIPTION

SUPER allows you to change your user ID to that of the system manager.
It has two sub-commands (CHANGEID and EXIT) that are available only after
you have invoked SUPER. CHANGEID allows you to change your user ID to
any possible value. EXIT exits the SUPER utility.

In order to invoke SUPER, you must know a password associated with the
system manager. This password is stored in the user definition file for
user ID 0 (refer to the iRMX 86 CONFIGURATION GUIDE for more
information). After you enter the SUPER co~nd, SUPER prompts for the
password by displaying:

ENTER PASSWORD:

You must then enter the correct password. (SUPER does not echo your
input at the terminal.) After you enter the correct password, SUPER
changes your user ID to user ID 0 and issues the following prompt.

super-

This prompt is a new system prompt (replacing the "_") that appears
whenever the Human Interface is· ready to accept input. At this point,
you can enter any Human Interface commands and access any files available
to the system manager. If you create new files, they will be listed as
owned by user ID O. You can also invoke the sub-commands available with
SUPER.

SUBCOMMANDS

There are two sub-commands available with SUPER: CI~NGEID and EXIT. You
can invoke these sub-commands only after first invoking· the SUPER command.

The CHANGEID sub-command allows you to change your current user ID to any
value between 0 and 65535 decimal. The format of the CHANGEID
sub-command is as follows:

3-87

SUPER

where:

id

x-207

Value to which you want to change your user ID.
This can be any numeric value from 0 to 65535
decimal, or the characters "WORLD" which specifies
ID 65535 decimal. If you omit this value,
CHANGEID sets your user ID to that of the system
manager (user ID 0).

If you change your user ID to anything other than that of the system
manager (user ID 0), the system prompt changes to the following:

super(id)-

where id is the decimal equivalent of your new user ID (or the characters
"WORLD").

The EXIT sub-command exits from the SUPER utility. The format of this
sub-command is as follows:

--"""'c EXIT ~)---
x-208

After you enter this sub-command, the Human Interface changes your user
ID back to the ID you had before entering the SUPER command. It also
changes the system prompt back to the "-" value. To change your user ID
again, you must invoke the SUPER command.

ERROR MESSAGES

• <exception value> : <exception mnenonic> cannot set default user

An internal system problem prevented the Human Interface from
changing your user ID.

• <user-id>, invalid user id

The user ID you specified contained invalid characters or was not
in the range 0 to 65535 decimal.

3-88

• invalid password

The password you entered does not match the password associated
with the system manager that is listed in the user definition
file.

• -(exception value> : (exception mnemonic>, SUPER is un-available

The Human Interface encountered an error while reading the
password you entered or while accessing the system manager's user.
definition file (to determine if the password is correct). This
message lists the exception code that occurs.

3-89

1")1'=

TIME

This command sets the system clock. If no new time is entered, the TIME
displays the current system time. The format is as follows:

x-209

INPUT PARAMETERS

hh Hours specified as 0 through 24.

mm Minutes specified as o through 59. If you omit

ss

QUERY

DESCRIPTION

this parameter, 0 is assumed.

Seconds specified as o through 59. If you omit
this parameter, 0 is assumed.

Causes TIME to prompt you for the time by issuing
the following message:

TIME:

TIME continues to issue this message until you
enter a valid time.

You must separate the individual time parameters with colons.

If you omit the time parameters, TIME displays the current date and time
in the following format:

dd mmm yy, hh:mm:ss

where dd mmm yy indicates the date and hh:mm:ss indicates the time.

3-90

In order to obtain the correct time when you enter the TllfE command
without parameters, you must initially set the time. If you request the
time on a system in which you haven't already set the time (or on a
non-timing system), TIME command displays the following message:

00:00:00

See also the DATE command in this chapter if you wish to set the date in
conjunction with the system clock.

ERROR MESSAGES

• <time), invalid time

You specified an invalid or out-of-range entry for one or more of
the time parameters.

• <parameter), invalid syntax

You specified both a time and the QUERY parameter in the TIME
command.

3-91

'1'11Vl~

UPCOPY

This command copies files from a volume on ISIS-II secondary storage to a
volume on iRMX 86 secondary storage via the iSBC 957B Interface and
Execution package.

INPUT PARAMETERS

inpath-list

QUERY

List of one or more filenames of the ISIS-II files
that are to be copied to iRMX 86 secondary
storage, either on a one-for-one basis or
concatenated into one or more iRMX 86 output files.

Causes the Human Interface to prompt for
permission to copy each ISIS-II file to the listed
iRMX 86 output file. Depending on which
preposition you specify (TO, OVER, or AFTER), the
Human Interface prompts with one of the following
queries:

<in-pathname), copy up TO <out-pathname)?

<in-pathname), copy up OVER <out-pathname)?

<in-pathname), copy up AFTER <out-pathname)?

Enter one of the following (followed by a carriage
return) in response to the query:

Entry

Y or y

E or e

R or r

Any other
character

Action

Copy the file.

Exit from the UPCOPY command.

Continue copying files without
further query.

Do not copy this file; go to
the next file in sequence.

3-92

OUTPUT PARAMETERS

TO

OVER

AFTER

outpath-list

DESCRIPTION

Copies the ISIS-II file or files TO a new
iRMX 86 file or files in the listed sequence.
If the output file already exists, UP COpy
displays the the following message:

<pathname) , already exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over
the existing file. Enter any other character if
you do not wish the file to be overwritten.

If no preposition is specified, TO :CO: is the
default. If more input files than output files
are specified in the command line, the remaining
input files will be appended to the end of the
last listed output file.

Copies the listed ISIS-II input file or files
OVER existing iRMX 86 destination files in the
listed sequence. If more input files than
output files are listed in the command line, the
remaining input files will be appended to the
end of the last listed output file.

Appends the listed ISIS-II input file or files
AFTER the end-of-data on an existing iRMX 86
output file or files in the listed sequence.

One or more pathnames of the i~IX 86 destination
files. Multiple pathnames must be separated by
commas. Separating blanks are optional. If the
preposition and output parameter defaults are
used in the command line, the output will go to
the iRMX 86 console screen.

Before you enter an UPCOPY command on the iRMX 86 console keyboard, you
must have your target system connected to a development system via the
iSBC 957B package, and the package must be running. To do thiS, you
must start your iRMX 86'-system from the development system terminal
(either by loading the software into the target system and using the
monitor G command to start execution, or by using the monitor B command
to bootstrap load the software). UPCOPY does not function if you start
up your system from the iRMX 86 terminal or if you establish the link
between development system and target system after starting up your iRMX
86 system.

The user ID of the user who invokes the UPCOPY command is considered the
owner of new files created by UPCOPY. Only the owner can change the
access rights associated with the file (refer to the PERMIT command).

3-93

ur\.Jvrl.

UPCOpy

As it copies each ISIS-II file in the input list, UP COpy displays one of
the following messages at the terminal, as appropriate:

<in-pathname), copied up TO <out-pathname)

<in-pathname), copied up OVER <out-pathname)

<in-pathname), copied up AFTER <out-pathname)

When the UPCOPY command is executing, the iSBC 957B package disables
interrupts. This affects services such as the time-of-day clock. Also,
the Operating System is unable to receive any characters that you
type-ahead while the UPCOPY command is executing.

ERROR MESSAGES

• <pathname), ISIS ERROR: <nnn)

An ISIS-II Operating System error occurred when UPCOPY tried to
transfer the file to the Microcomputer Development System. Refer
to the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYST~1
CONSOLE OPERATING INSTRUCTIONS for a description of the resulting
error code.

• ISIS link not present

The the iRMX 86 system is not connected to the development system
via the iSBC 957B package.

• <pathname), UPDATE or ADD access required

Either you cannot overwrite the information in a file because you
do not have update access to it, or you cannot copy information
to a new file because you do not have add entry access to the
file's parent directory.

3-94

VERSION

This command displays the version number of a command, if that command
has a version number. The format of this command is as follows:

---CCVERSloN~thname-li~J---

INPUT PARAMETER

pathname-list

DESCRIPTION

x-210

One or more pathnames, separated by commas, of
commands for which a version number is desired.

When you enter the VERSION command, it displays the version number of
each command, if there is one, in the following format:

<pathname>, <command-name> version is x.y

where:

<pathname>

<command-name>

x.y

Pathname of the file containing the command.

Name of the specified command; Intel-supplied
commands have names as listed in this manual.

Version number of the command.

You can use VERSION to determine the version number of any Human
Interface command. You can also use it to determine the version numbers
of commands that you write. However, for VERSION to work on your
commands, you must include a literal string in the command's source code
to specify the name of the command and its version. The string must
contain the following information:

'program version number=xxxx' ,
'program_name=yyyy ••• yyy' ,0

where:

program_version number= You must specify this portion exactly as
shown (lower case, underscore separating the
words, no spaces).

3-95

VERSION

xxxx

program_name=

yyyy ••• yyy

o

Version number of the product. This can be
any four characters, but it must be exactly
four characters long.

This portion is optional. However, if you
want VERSION to recognize and display the
program name, you must specify this portion
exactly as shown.

Name of the command. This can be any number
of characters.

The literal string must be terminated with a
byte of binary zero.

An example of such a literal string is:

DECLARE version (*) BYTE DATA('program version number=VS.5',
'program name=MYPROGRAM' ,0);

If your program includes this declaration, when you invoke VERSION, it
will display the following information:

<pathname>, MYPROG version is VS.5

A literal string that does not include the program name is:

DECLARE vers2(*) BYTE DATA('program_version_number=19S3' ,0);

If your program includes this declaration, when you invoke VERSION, it
will display the following information:

<pathname>, version is 1983

3-96

CHAPTER 4. HUMAN INTERFACE EXAMPLES

This chapter s'hows you how to use some of the Human Interface commands.
Its primary intent is to introduce you to basic techniques by presenting
a series of examples that illustrate typical command entries.

CG1MAND EXAMPLES FORMAT

To make it easier to follow the interactive dialog between the user and
Human Interface in the examples, the user keyboard entries are
underscored. All other items displayed in the examples are Human
Interface command output. For instance, in the example:

-copy samp to test
samp copied TO test
-copy test
aaaaa
bbbbb
test copied TO :CO:

the underscored items are user command entries; all other characters and
lines are output by the Human Interface or the supplied commands.

Control characters, such as (CTRL/z), are enclosed in parentheses in the
examples to indicate that such entries are not echoed at the console
screen as they are entered. Do not actually enclose control key entries
in parentheses.

HOW TO BEGIN A CONSOLE SESSION

You can begin an interactive dialog with the Human Interface after the
initial program displays a sign-on message at your console screen.
Although the sign-on message is a system configuration option, the
message supplied with the default initial program of the Human Interface
is as follows:

iRMX 86 HI CLI Vx.x: USER = userid

This message tells you the Human Interface is running; it also tells you
your user ID. The hyphen (-) is a Human Interface prompt to indicate
that it is ready to accept your first command line. Begin entering a
command immediately after and on the same line as the prompt. For
example:

-copy :ci: to test1

4-1

HUMAN INTERFACE EXAMPLES

HOW TO CREATE A SIMPLE DATA FILE

You can use the COpy command to create data files during a console
session. Assume you wish to create a file called ALPHA and write two
lines of data into the file. Also assume you wish the data file to be
listed under your default directory. Enter the following command and
data:

-copy :ci: to alpha
aaaaa
bbbbb
(CTRL/z)

:ci: copied TO alpha

In this example, the :ci: in the COpy command line tells the command to
read data from the keyboard (:ci: = console input) and write the data
(aaaaa and bbbbb) to a new file named ALPHA. Because you did not preface
the file name with a directory name, COpy places the file ALPHA in your
default directory.

The command does not prompt you for the data lines; you simply begin
entering data after you press RETURN at the end of the command line.
Your CTRL/z entry writes an end-of-file mark at the end of your data to
inform the COpy command that there is no more data to be copied.

Note that after you enter the last line of data, you must press the
RETURN key before you enter a CTRL/z to insert an end-of-file.
Otherwise, none of the characters entered after you press the'RETURN key
and before you enter a CTRL/z are written to the file. For example:

-copy :ci: to alpha
ccccc
ddddd (CTRL/z) (then press RETURN)

would only write the data ccccc to the new file named ALPHA.

Since control characters are not echoed on the screen as you enter them,
(such as a RETURN or CTRL function), the above file creation sequence
would be displayed on the screen as follows:

_-copy :ci: to alpha
ccccc
ddddd

:ci: copied TO alpha

Now, assume that when you entered the COpy command line, the Human
Interface sent you the following message and query:

-copy :ci: to alpha
alpha, already exists, OVERWRITE?

4-2

HUMAN INTERFACE EXAMPLES

Whenever you create a new data file. the COpy command expects a new
pathname rather than one already listed in the directory file. If your
entry to the query is:

alpha. already exists, OVERWRITE? Z

the COpy 'command deletes the data in the existing file and waits for you
to enter new data under that pathname.

If your response to the query is:

alpha, already exists, OVERWRITE? n (or any other character except
y)

your COpy command is ignored and the Human Interface prompts for a new
command entry by issuing a hyphen (-).

HOW TO COpy FILES

COpy command options provide a number of different ways for you to copy
existing files. You exercise these options either by specifying one of
the TO/OVER/AFTER prepositions, by the way in which you specify your
input file and output file pathname lists, or by a combination of both
techniques. The services of the COpy command include:

• Copying files on a one-for-one basis.

• Displaying the contents of files at the console screen.

• Creating multiple copies of the same file.

• Copying data from multiple files to a new or existing file.

• Replacing data in one file with data from another file.

• Adding data from one or more files to the end of the data in
another file.

• Combining one-for-one file copying with file concatenation in a
single COpy command.

The examples that follow show you how to use these services. They also
call your attention to certain file handling considerations when using
the COpy command.

4-3

HUMAN INTERFACE EXAMPLES

HOW TO COpy TO NEW FILES

Copying existing files to new files is most frequently done on a
one-for-one basis; that iS t you list a number of existing files to be
copied and a matching list of files to receive the copies. The files are
copied in the same sequence you specify in the input list and output list
on the command line. For example, assume you wished to copy files AI,
A2, and A3 to files BI, B2, and B3 respectively. Enter the following
command:

-copy aI, a2, a3 to bI, b2, b3
al copied TO bi
a2 copied TO b2
a3 copied TO b3

You could also make use of the wild card feature when copying files. If
the files AI, A2, and A3 are the only files in the directory that begin
with the character "A", you can use the following command to perform the
same operation:

-copy a* to b*
al copied TO bi
a2 copied TO b2
a3 copied TO b3

The asterisks in the command are the wild card characters. In this
instance, the command copies all files in the default directory that
start with the character "A" to new files starting with the character
"B." If files other than AI, A2, and A3 also begin with the character
"A", this command will copy them also.

When you copy files, you can specify wild card characters (as in the
previous example), lists of file names (as in the example before that),
or a combination of both. However, some of the possible combinations are
invalid. When copying files, remember the following rules:

• If you specify multiple input pathnames and a single output
pathname, file concatenation takes place. This is described
later in this chapter.

• If you specify multiple output pathnames, you must specify the
same number of input pathnames as output pathnames. Specifying
more input pathnames than output pathnames results in an error
message. For example, the command:

-copy a,b,c to d,e (invalid)

returns an error message. The command:

-copy a,b to c,d,e (invalid)

also returns an error message. Refer to the "Inpath-List and
Outpath-List" section of Chapter 2 for more information.

4-4

HUMAN INTERFACE EXAMPLES

HOW TO DISPLAY THE CONTENTS OF FILES

When you perform a number of file manipulations during a single session,
it is occasionally advisable to display a file's contents at the terminal
before proceeding further. Assume you wish to display the contents of a
file named ALPHA that is contained in your default directory. Simply
enter the command:

-copy alpha
aaaaa
aaaaa

alpha copied TO :CO:

This COpy command example uses the default preposition (TO) and default
output file (:CO:), which means that the command copies the output to the
console screen.

You can halt the scrolling of a displayed list to examine the data more
closely. Press the following CTRL keys to control scrolling of the
output:

CTRL/s

CTRL/q

CTRL/c

Stops the data from scrolling off the screen until you
press a CNTRL/q.

Resumes scrolling of listed data until the end-of-file is
reached or you enter a CTRL/c.

Cancels listing the data and returns "control to the Human
Interface, which prompts for a new command.

HOW TO REPLACE EXISTING FILES

There may be occasions when you wish to update the contents of an
existing file. One way to do this is to create a new file and then
replace the contents of the old file with the new data. Although you can
use the RENAME command to perform this operation, this section shows how
to replace the contents of a file with the COpy command's OVER
preposi tion •.

Assume the following conditions:

• You have a file named ALPHA that is accessed under that name by a
number of different programs. ALPHA has outmoded data.

• Since you cannot change the name without also modifying the
programs that access ALPHA, you must retain the name but update
the outmoded file contents.

4-5

HUMAN INTERFACE EXAMPLES

Enter the following commanq sequence:

-copy :ci: to temp
nu nu nu nu
nu nu nu nu
(CTRL/z)

:ci: copied TO temp
-copy temp over alpha
temp copied OVER alpha
-coPY alpha
nu nu nu nu
nu nu nu nu

alpha copied TO :CO:

The last COpy ALPHA command lists the file at the terminal to show that
the old file contents have been successfully replaced.

You could have used the TO preposition in the COpy command to write TEMP
over ALPHA; but since the Human Interface always expects a new output
file when the TO preposition is used, this would have caused unnecessary
keystrokes, as shown in the following:

-copy temp to alpha
alpha, already exists, OVERWRITE? Z
temp copied TO alpha

Note that you now have two copies of the same new data; one in the TEMP
file and one in the ALPHA file. If you had used the OVER preposition in
a RENAME command instead of the COpy command, file TEMP would have been
deleted automatically when RENAME was executed. However, if you did not
want two existing copies of the same data, you could update the existing
file directly from the keyboard. Enter the following command:

-copy :ci: over alpha
newnewnew
(CTRL/z)
:ci: copied OVER alpha

HOW TO CONCATENATE FILES

Concatenation is the process of combining a number of files by appending
them in sequence into a single file. You can use the COpy command in
several ways to concatenate files:

• by specifying the AFTER p~eposition in the command line

• by specifying multiple input pathnames and a single output
pathname

4-6

HUMAN INTERFACE EXAMPLES

• by using a combination of both techniques

Assume you have four existing files named A, B, C, D respectively, and
want to append the contents of B, C, and D to the end of file A.
Although you could specify the TO preposition in the COpy command line,
the TO preposition would force you to enter extra keystrokes because your
listed output file (A) already exists. It would also force you to delete
the previous contents of A, which is not always desirable. Therefore,
use the AFTER preposition, as follows:

-coPY b,c,d after a
b copied AFTER a
c copied AFTER a
d copied AFTER a

Now, assume you wish to concatenate all four files into a new file called
ALL. You can still use the AFTER preposition, or you can use the TO
parameter, as follows:

-coPY a,b,c,d to all
a copied TO all
b copied AFTER all
c copied AFTER all
d copied AFTER all

In this example, file A is copied to ALL and the remaining input files
are automatically appended to the end of ALL.

You can save keystrokes when listing a series of-files on the screen by
using this automatic concatenation in a single command line. Assume you
wish to list files named ALPHA, BETA, and GAMMA. Enter the following
command, using the default TO preposition and default output file (:CO:):

-copy alpha,beta,gamma
aaaaa
aaaaa
alpha copied TO :CO:
bbbbb
bbbbb
beta copied AFTER :CO:
ggggg
ggggg
gamma copied AFTER :CO:

When data sequence and/or data format are important in a concatenated
file, remember that all copy operations are performed in the sequence you
specify in the command line.

Assume you have formatted data in a group of files named A, B, C, D, and
E, and you wish to concatenate their contents into a new file named
SQUARE in that sequence. However, if you list the input files on the
command line in a haphazard sequence, as follows:

-copy b,a,d,c,e to square

4-7

HUMAN INTERFACE EXAMPLES

the format of the total data block is destroyed, as can be seen in the
following incorrect and correct versions of the listed output. Although
the data block of Latin words shown in the left-hand example seems
correct when read horizontally, the intent and meaning of the vertical
columns has been lost. The right-hand example shows the corrected file
sequence:

b,a,d,c,e
sequence

ARE P 0
SAT 0 R
OPE R A
TEN E T
ROT A S

a,b,c,d,e
sequence

SAT 0 R
ARE P 0
TEN E T
OPE R A
ROT A S

In the right-hand example, the Latin "magic square" now reads the same
both horizontally and vertically, which was the intended operation.

HOW TO DELETE FILES

It is vital to good file housekeeping that you routinely delete obsolete
or unused files and empty directories. (Deleting unused directories is
described later in this chapter.) In addition to the obvious benefit of
recovering unused secondary storage, deleting your obsolete files reduces
confusion and file manipulation errors.

Assume that you want to delete files ALPHA and BETA from the system.
Enter the following command:

-delete alpha,beta
alpha, deleted
beta, deleted

Now, assume that you entered the following command line and received the
following error message:

-delete ay,bee,key
ay, deleted
bee, deleted
key, does not exist ,

The error message for the KEY file tells you one of three things:

• There is a syntax error in the spelling of the KEY file.

• The file does not exist.

• The file exists in a directory other than the one you are
currently accessing (see the directory examples later in this
chapter).

4-8

HUMAN INTERFACE EXAMPLES

HOW TO USE DIRECTORIES

A directory is a kind of file under which you assign and maintain other
files or directories. It is distinguished from a data file by a
directory heading that is automatically created when you create a new
directory. Under that heading, the directory maintains a formatted list
of its containing files and directories. This heading is updated
whenever you assign new files to the directory. Directories provide you
with a convenient and efficient technique for organizing large numbers of
files into logical groupings. Creating your own directories aids you in
two ways:

• It allows you to organize your files into logical groupings.
This eases the task of maintaining large numbers of files on the
system.

• It reduces the possibility of accidental destruction of files,
either by yourself or other system users.

A directory contains a list of all files assigned under its name, which
you can display by using the DIR command (described later). Optional DIR
command parameters also allow you to access and display other pertinent
information about each file, such as file size and other file attributes.

Previous command examples in this chapter, when creating and accessing
files, have used the default directory configured for your user ID. The
following examples show you how to create and use your own directories
for easier file management.

HOW TO CREATE A NEW DIRECTORY

Whenever you wish to group a series of files under a single topical
structure, you normally create a new directory in which to assign them
before creating the files themselves. (You can also move existing files
under a new directory name by using the RENAME command, as described
later.)

You create new directories by using the CREATEDIR command to specify a
list of directory names for the new directories. You will find it easier
to keep track of both your directories and. files if you use directory
names that give some hint of a directory's topical structure.

Assume you wish to create two directories named MYTEST and NUTEST under
which you will assign several practice files. Enter the following
command:

-createdir MYTEST,NUTEST
MYTEST, directory created
NUTEST, directory created

4-9

HUMAN INTERFACE EXAMPLES

This example specified the directory pathnames as uppercase characters.
It is suggested that you also capitalize all directory pathnames in a
CREATEDIR command and use lowercase characters for data pathnames when
you create new files with the COpy command. This practice is recommended
because, when you subsequently list a directory by using the DIR command
(described later), it will be much easier for you to distinguish between
data fi~e names and directory names.

Once you create directories and data files, you can enter their pathnames
in either lowercase or uppercase characters in subsequent commands; the
Human Interface commands make no distinction in interpretation.

HOW TO REFER TO A DIRECTORY

After you create a new directo~y, all named files or directories that you
assign to that directory will have a hierarchical relationship to this
"parent" directory. This relationship to the parent is called a path.
When you wish to access any file or other directory assigned to the
parent, you must specifically identify the path in the form of a pathname
in your command.

For example, assume your default directory has a directory named NUTEST
under which you have another directory named SAMP. SAMP, in turn, has a
data file named TEST. NUTEST is then the parent directory for the SAMP
directory and SAMP, in turn, is the parent for the TEST data file. In a
command, the pathname for the SAMP directory would be NUTEST/SAMP, where
the slash characters separate the individual hierarchical components of
the pathname. The pathname for the TEST data file would be
NUTEST/SAMP/TEST.

If the files are contained in your default directory, you can refer to
them without specifying a logical name as a prefix. When you enter the
pathname:

NUTEST/SAMP/TEST

the Human Interface automatically appends the prefix :$: to the
beginning. However, if the files are contained in a directory other than
your default directory, you must enter the complete pathname for the
file. For example, if the files reside on a device whose logical name is
:AD3:, you must include this logical name as the prefix portion of the
pathname, as follows:

:AD3:NUTEST/SAMP/TEST

If you omit the :AD3: portion, the Human Interface assumes the files
reside in the default directory.

4-10

HUMAN INTERFACE EXAMPLES

HOW TO ADD NEW ENTRIES TO A DIRECTORY

Previous data file examples in this chapter used the default directory
(as configured for your system) for all file creation and access.
Consequently, each example that created a new file or accessed an
existing file specified only the last component of the file's pathname;
it did not need to specify a logical name or intermediate pathname
components. However, whenever you wish to create a new data file to be

. assigned to a specific directory, you must precede the filename with the
directory name and separate the two names with a slash (/) in the COpy
command, as described in the previous subsection. You might also need to
specify a logical name, if the directories do not reside in your default
directory.

For example, assume you wish to create files named SAMP1 and SAMP2 and
assign them to the MYTEST directory (MYTEST resides in your default
directory). Enter the following commands:-

-copy :ci: to mytest/samp1
aaaaa
(CTRL/z)

:ci: copied TO mytest/sampl
-coPY :ci: to mytest/samp2
bbbbb
(CTRL/z)

:ci: copied TO mytest/samp2

Remember that once you have added files to a specific directory, every
subsequent operation involving those files must specify a preceding
directory name and the slash separator (unless you change your default
directory, as described in a later section). For example, assume you
want to delete files SAMP1 and SAMP2 from the MYTEST directory. You
might enter the following command:

-delete mytest/sampl psamp2
mytest/samp1, deleted
samp2, does not exist

The Human Interface issues the "does not exist" message for SAMP2 because
it looked for the file in your default directory instead of the MYTEST
directory. The correct command line entry should have been:

-delete mytest/samp1,mytest/samp2

so that the Human Interface would search the correct directory for each
listed file.

4-11

HUMAN INTERFACE EXAMPLES

HOW TO CREATE A DIRECTORY WITHIN A DIRECTORY

In the same manner that you create new directories in your default
directory, you can also create new directories in other directories,
therefore expanding the file hierarchy.

For example, assume you have data files ALPHA, BETA, and GAMMA assigned
to the MYTEST directory and now wish to add a new directory file named
URTEST to the directory. Enter a CREATEDIR command, as follows:

-createdir mytest/URTEST
mytest/URTEST, directory created

Now, assume you wish to create a new data file named NOMOR and assign it
to the URTEST directory. Enter the following COpy command: --copy :ci: to mytest/urtest/nomor

nononon
nononon
(CONTROL/z)

:ci: copied TO mytest/urtest/nomor

The 'NYTEST/URTEST" sequence is the path from your default directory to
the URTEST directory, and the '~YTEST/URTEST/NOMOR" sequence is the path
from your default directory to the NOMOR file. When you use
file-handling commands, you must always specify a path to the file,
either a path from your default directory to the file, or a path from
some other known point (such as from the root directory for another
device). For example, assume you have another data file in URTEST named
SUMOR and wish to list both NOMOR and SUMOR on the console screen. Enter
the following command and specify the pathname for each file:

-copy mytest/urtest/nomor,mytest/urtest/sumor
nononon
nononon
mytest/urtest/nomor copied TO :CO:
sumsumsum
sumsumsum
mytest/urtest/sumor copied TO :CO:

If the directory MYTEST resides on a device other than your default
device (for example, :F6:), you would specify the previous command as
follows:

-copy :f6:mytest/urtest/nomor,:f6:mytest/urtest/sumor
nononon
nononon
:f6:mytest/urtest/nomor copied TO :CO:
sumsumsum
sums ums um
:f6:mytest/urtest/sumor copied TO :CO:

4-12

HUMAN INTERFACE EXAMPLES

You can also specify file operations involving two or more different
directories, and these directories need not be on the same path. Assume
you wish to list the ALPHA file from MYEST and a file named DIFF on a
directory path ONE/MOR. Enter the following command:

-copy mytest/alpha,one/mor/diff
aaaaa
aaaaa
my test/alpha copied TO :CO:
yyyyy
yyyyy
one/more/diff copied TO :CO:

HOW TO LIST DIRECTORIES

Previous examples have shown you how to list the contents of data files
by specifying a directory pathname in a COpy command. However, you
should not use the COpy command to list the contents of directories,
because COpy lists the directory as though it were a data file. For
example, if you enter the COpy command to list the MYTEST directory on
the screen, you obtain:

-copy my test
alphabetagammaurtest copied to :CO:

The resulting output is almost unreadable. Instead, use the DIR command
to list the directory's catalog of files as follows:

-dir my test

01 JAN 78 00:00:00
DIRECTORY OF MYTEST ON VOLUME disk2

alpha
URTEST

beta gamma

This example used the DIR command's default TO preposition and FAST
format for the listing. You could have sent the directory listing to
another output file and specified either the OVER preposition, to write
the listing over the file's previous contents, or the AFTER preposition,
to append the directory listing to other data. If you want to list more
information about each file, specify the EXTENDED parameter. See the DIR
description in Chapter 3 for examples of the available listing formats.

4-13

HUMAN INTERFACE EXAMPLES

HOW TO MOVE FILES BETWEEN DIRECTORIES

There may be situations when you wish to reorganize a large group of
existing files under new headings (directories). You can move files from
one directory to another by using the RENAME command. For example,
assume you wish to move files ALPHA, BETA, and GAMMA from your default
directory to the existing directory MYTEST, and file DELTA from your
default directory to an existing directory named NUTEST. Enter the
following command line, using the QUERY parameter (optional):

-rename alpha,betapgamma,delta to MYTEST/alpha,MYTEST/beta, &
**MYTEST/gamma,NUTEST/delta query
alpha, rename TO MYTEST / alpha? Z
alpha renamed TO MYTEST/alpha
beta, rename TO MYTEST/beta? Z
beta renamed TO MYTEST/beta
gamma, rename TO MYTEST/gamma? Z
gamma renamed TO MYTEST/gamma
delta, rename TO NUTEST/delta? Z
delta renamed TO NUTEST/delta

Assume you later decide to move file ALPHA back to your default
directory. You need not specify the default directory in the new
pathname for ALPHA. Enter the following command:

-rename my test/alpha to alpha
my test/alpha renamed TO alpha

Any subsequent operations involving file ALPHA would only require the
file name. For example:

-copy alpha
aaaaa
aaaaa
alpha copied TO :CO:

HOW TO DELETE A DIRECTORY

You delete unused directories from secondary storage by using the DELETE
command. However, the Human Interface protects you from accidently
destroying valuable files by refusing to delete a diiectory that contains
one or more files. For example, assume you wish to delete directory
MYTEST and do not realize it contains a data file named ALPHA and a
directory named DED that itself contains, a data file named LIV. You
enter the following command:

-delete my test
my test , directory not empty

4-14

HUMAN INTERFACE EXAMPLES

At this point you should list the MYTEST directory by using the DIR
command to determine the contents of MYTEST, as follows:

-dir my test

01 JAN 78 00:00:00
DIRECTORY OF MYTEST ON VOLUME disk2

alpha DED

You now have two options. You can use the RENAME command to move any
files to be saved to a different directory on the same volume, or you can
use the DELETE command to delete the entire contents of MYTEST before
deleting the directory.

Assume you wish to move ALPHA to the NUTEST directory and delete the rest
of the directory's contents so that MYTEST itself can be deleted. Enter
the following commands:

-rename my test/alpha to nutest/alpha
my test/alpha renamed TO nutest/alpha
-delete mytest/ded/liv,mytest/ded,mytest
mytest/ded/liv deleted
mytest/ded deleted
my test deleted

The RENAME command automatically deleted the MYTEST/ALPHA pathname from
the MYTEST directory. Note how the pathname sequence in the DELETE
command travelled upward through the hierarchical structure, with the
MYTEST directory being the last item to be deleted.

HOW TO CHANGE YOUR DEFAULT DIRECTORY

Suppose your default directory contains a directory called MYTEST which
contains another directory called URTEST which in turn contains several
data files called MOR, SUMOR, STILMOR, and NOMOR. If you plan to
manipulate these data files extensively, your Human Interface commands
can become very cumbersome, due to the length of the pathnames involved.
For example, suppose you wish to copy the data files to files called
ALPHA, BETA, DELTA, and GAMMA in the same directory. The command to do
this is:

-copy mytest/urtest/mor, mytest/urtest/sumor, mytest/urtest/stilmor, &
**mytest/urtest/nomor to mytest/urtest/alpha, mytest/urtest/beta, &
**mytest/urtest/delta, mytest/urtest/gamma

If there are more levels in the directory structure, your commands can
become even longer.

4-15

HUMAN INTERFACE EXAMPLES

To eliminate some of these long pathnames, you
command to change your default directory to be
level of the files with which you are working.
command shorter, you could change your default
directory, as follows:

-attachfile mytest/urtest as :$:
mytest/urtest attached AS :$:

can use the ATTACHFILE
a directory closer to the

To make the previous
directory to the URTEST

Now, when you make references to files without- specifying the entire
pathname, the Human Interface assumes that they reside in the URTEST
directory, not your previous default directory. Therefore, to perform
the same operation as in the previous COpy command, you could now enter
the following command:

-copy mor, sumor, stilmor, nomor to alpha, beta, delta, gamma

You can use the ATTACHFILE command to change your default directory to
any directory that you wish, so that you can manipulate the files in that
directory more easily. To return to your original default directory,
enter the following command:

-attachfile

This command uses the default parameters and has the same effect as
IOATTACHFILE :HOME: AS :$:10. The : HOME: logical name represents your
original default directory; therefore the command returns :$: to its
original value.

HOW TO RENAME FILES AND DIRECTORIES

The most direct method to save the contents of a file or directory but
change its pathname is to use the the RENAME command. To make the
process easier to follow, this section discusses the renaming of files
and directories separately.

HOW TO RENAME FILES

Assume you wish to change the name of file ALPHA to a new name of OMEGA,
where OMEGA does not already exist. Enter the following command:

-rename alpha to omega
a~pha renamed TO omega

The ALPHA pathname is automatically deleted from the system when the
RENAME command is executed. You can also rename lists of files to new
pathnames In this case, it is useful to include the QUERY parameter in
your command line to make certain that your old pathnames and new
pathnames are matched up in the way you intend.

4-16

HUMAN INTERFACE EXAMPLES

Assume you wish to rename files ALPHA, BETA, and GAMMA to TOM, DICK, and
HARRY respectively. Enter the following command sequence:

-rename alpha,beta,gamma to tom,dick,harry
alpha renamed TO tom
beta renamed TO dick
gamma renamed TO harry

Remember that when using the RENAME command, you must always have a
one-for-one match of pathnames between the new list and the old file
list. For example, more old pathnames than new pathnames would cause the
following exchange at the terminal:

-rename alpha,beta to tom
alpha renamed TO tom
TO or OVER preposition expected

Similarly, specifying fewer old pathnames than new pathnames would cause
the following exchange:

-rename alpha to beta,tom
008B: E$UNMATCHED_LISTS

So far, these RENAME examples have used the TO parameter to give new
names to existing files. However, you can also use the OVER preposition
with RENAME. The primary purpose of OVER is to move data from one named
file over the data in another existing file. This matches the action of
the OVER preposition in the COPY command with one important distinction:
RENAME automatically deletes the input file when the command is executed.

Exercise a little care here! It's easy to get into semantic confusion
when using the OVER preposition in a RENAME command. Just remember a few
simple rules:

• Use the pathname of the data to be moved to a different but
existing pathname as the input parameter; that is, on the
left-hand side of the OVER preposition. This pathname will be
deleted when the command is executed.

• Use the pathname that receives the input data as the ouput
parameter; that is, on the right-hand side of the OVER
preposition. The previous contents of this file will be replaced
when the command is executed.

For example, assume you have a file named ABLE whose contents consist of
the data line aaaaa, and another file named BAKER whose contents consist
of the data line bbbbb. You wish to rename ABLE with the name BAKER.
Enter the following command:

-rename able over baker
able renamed OVER baker

4-17

HUMAN INTERFACE EXAMPLES

Now display the contents of the file previously named ABLE but now named
BAKER:

-copy baker
aaaaa

baker copied TO :CO:

The previous contents of BAKER have been deleted, and pathname ABLE has
been deleted from its directory. You can also use the TO preposition to
rename files with other existing pathnames. Using TO might be slightly
less confusing but you must enter extra keystrokes. For example, assume
you wish to rename ALPHA and BETA with the existing file names GAMMA and
DELTA. Enter the following command:

-rename alpha,beta to gamma,delta
gamma, already exists, OVERWRITE? Z
alpha renamed TO gamma
delta, already exists, OVERWRITE? Z
beta renamed TO DELTA

HOW TO RENAME DIRECTORIES

A directory can be renamed to new pathname on the same volume (but not to
an existing pathname). Assume you have a directory whose pathname is
ALPHA/BETA and you wish to rename it with a new pathname of AY/BEE.
Enter the following command:

-rename alpha/beta to AY/BEE
alpha/beta renamed TO AY/BEE
-dir alpha/beta
alpha/beta, does not exist

Be careful when renaming directories! The last message explains the
consequences of renaming a directory to a new pathname. Once you rename
a directory, all files listed under that directory will also have their
pathnames changed. If your system has other programs that use data files
that are listed under the old directory name, those programs will never
find the files. In such a case, you must either rename the directories
to their original names or modify the programs.

In summary, the distinctions between using the RENAME and COpy commands
are as follows:

• When you use COpy to move the contents of an existing file TO a
new file or OVER an existing file, the input file still exists.

• When you use RENAME to move the contents of an input file TO a
named new file or OVER an existing file, the input pathname is
automatically released for new uses.

4-18

HUMAN INTERFACE EXAMPLES

HOW TO MOVE FILES ACROSS VOLUME BOUNDARIES

You can use all Human Interface file-handling commands except RENAME to
manipulate files across volume boundaries. That is, you can copy files
or directories from one diskette or disk platter to another one mounted
on a different drive. The restriction against using RENAME across volume
boundaries is intended for the protection of files against accidental
deletion.

You access a different volume by entering the logical name for the device
(the drive on which the volume is mounted) as the first item in the
pathname. For example, assume you have a volume mounted on a drive whose
logical name is :f1:. Further assume you wish to list the root directory
for that volume to see what directories and data files you have on the
volume. Enter the following command:

-dir :f1:

01 JAN 81 00:00:00
DIRECTORY OF :f1: ON VOLUME disk2

able
BUS

baker
nus amp

chuck
STATS

OMNI samp

Assume you wish to copy file ABLE from this volume mounted on :f1: to the
MYTEST directory (which resides in your default directory). Enter the
following command:

-copy :f1:/able to my test/able
:f1:/able copied TO my test/able

If you then wish to delete files ABLE and BAKER from the :f1: volume,
simply enter the command:

-delete :f1:/able,:f1:/baker
:f1:/able, deleted
:f1:/baker, deleted

Now, assume the following conditions:

• You have two data files on the :f1: volume with the pathnames
STATS/SALES/FEB and STATS/SALES/MAR.

• You wish to merge both files to a new file with the pathname
MYTEST/PEEK/SUBTOT on your system's default volume.

Enter the following command:

-copy :f1:/stats/sales/feb,:f1:/stats/sales to mytest/peek/subtot
:f1:/stats/sales/feb copied TO mytest/peek/subtot
:f1:/stats/sales/mar copied AFTER mytest/peek/subtot

4-19

HUMAN INTERFACE EXAMPLES

Note that a volume prefix must be specified for each pathname in any
command that crosses volume boundaries. A volume uses the prefix of the
drive on which it is mounted.

HOW TO FOm1AT A NEW VOLUME

Whenever you wish to use a new volume on a secondary storage device (such
a diskette, disk platter, or bubble memory), you must format the volume
before you can write any information in it. Assume you are going to
mount a new diskette on a disk drive with the prefix :f1: that you have
attached (with the ATTACHDEVICE command) as a named device.

Enter the following command:

-format :f1:
volume () will be

granularity
interleave
files
extensionsize
volume size

volume formatted

formatted
128

= 5
= 50
= 3

250K

as a NAMED volume
sides 1
density = single
disk size = standard (8")

This formatting example exercised all the default options.

This example did not specify a volume name as parameter of FORMAT. A
volume name is not required; however, for diskettes, a volume name gives
you a method for identifying a volume in case the stick-on label on the
diskette gets lost or destroyed. You need only mount the disk on a drive
and enter a DIR command for that drive to get a directory listing that
specifies the volume name.

The GRANULARITY, INTERLEAVE, EXTENSIONSIZE, and FILES parameters tell the
FORMAT command how you want the physical space (for instance, disk
surface space) on the volume allocated and accessed for maximu~
efficiency. The default parameters caused the NEWVOL example to be
formatted with the following attributes:

• Since the device is attached as a named device, the NAMED
parameter is the default with FORMAT. It specifies that you will
be using the volume only to handle named files and directories.
If you specified the PHYSICAL parameter, the entire volume would
be treated as a single, large physical file. Once you you define
the volume as NAMED or PHYSICAL, you can only use it for that
purpose.

• The GRANULARITY parameter specifies the minimum number of bytes
to be allocated for each increment of file size on the volume.
The default granularity is the granularity of the physical
device. Once the volume granularity is defined, it is applied to
every file you create on the volume,

4-20

HUMAN INTERFACE EXAMPLES

For example, assume the default volume granularity for your
device is 1024 bytes. Each time you create a new file on the
volume, the I/O System automatically allocates 1024 bytes of
primary storage to that file, whether or not the file requires
the full 1024 bytes. If the size of your file exceeds 1024
bytes, the I/O System will increment your file size by still
another block of 1024 bytes, and so on, until the end-of-file is
reached.

• The INTERLEAVE default specifies that you want an interleave
factor of 5. The interleave factor defines the number of
physical sectors that occur between sequential logical sectors.
This value maximizes access speed for the files on a given
volume, depending upon the intent of the volume and the device
configuration of your system.

For example, an interleave value of 5 for a flexible disk system
means that, for each file, the I/O System will read every fifth
sector on the diskette, starting from an index of 1 (other, hard
disk systems may be different, depending on your hardware
configuration). Therefore, the I/O System does not need to wait
for the disk to make a complete revolution before it accesses the
next sector; the next sector by an increment of 5 is ready to be
accessed for read/write by the time the first accessed sector has
been processed.

Note that the INTERLEAVE is the only optional parameter that is
meaningful for volumes formatted for PHYSICAL files; the FILES,
EXTENSIONSIZE, and GRANULARITY options are ignored in FOID1AT
commands that specify a PHYSICAL file format for the volume.

• The default FILES parameter specifies that you wish create a
maximum of 50 user files on the volume. Although the actual
number of files you can specify is 1 through 32,761, at a
practical level, one of your determining factors will be the
incremental file size you specify in the GRANULARITY parameter •

. The default EXTENSIONSIZE parameter specifies that you wish to
create three bytes of extension data for each file. The Human
Interface requires that at least three bytes of extension data be
available. Other system programs included in your system may
require larger values.

DISKETTE SWITCHING PROCEDURES

If your system is configured with the iSBC 204 flexible disk controller
and you are using single-density diskettes to perform file management
functions, a special procedure is required to switch the diskettes.
Perform the following steps:

1. Remove the old diskette and mount the new one into the drive.

4-21

Hm~AN INTERFACE EXAMPLES

2. Enter a DIR command for the root directory of the new diskette to
force physical access. The root directory "name" is actually the
prefix (logical name) for the drive on which the diskette is
mounted. For example:

-dir :f1:

The following exception message will be displayed:

E$IO

3. Ignore the error message and begin entering Human Interface
commands that access the volume.

4-22

CHAPTER 5. PATCHING UTILITY

The iAPX 86, 88 Patching Utility is a utility that runs on both iRHX 86
application systems and Series III Microcomputer Development Systems. It
modifies combine-type attributes of object modules, permitting them to be
~ritten over (or repaired) with replacement modules. This provides you
with a method of modifying relocatable object modules with software
updates or repair code. The process requires that the replacement code
first be generated with the ASM86 Assembler.

The Patching Utility also enables you to list the translator header
records of the modules in a library. This allows you to see which
patches have been installed in a module or a library.

TYPES OF PATCHES

You can update a module to a newer version or add repair code in two ways:

• As a patch that generates a jump instruction to the replacement
code and appends the replacement code to the end of the original
module.

• As an in-place patch that directly overlays the replacement code
on that of the original module.

An example of each technique is provided later in this chapter.

TYPES OF REPLACEMENT CODE

The replacement code itself may be supplied by Intel in either of two
forms:

• As an Intel-supplied object file, on diskette. In this case, all
of the coding and assembly has been done. You need only invoke
the Patching Utility to effect the replacement.

• As an Intel-supplied source code listing with instructions for
inserting the replacement code. In this case, much of the
preliminary work has been done; you need little or no knowledge
of ASM86 Hacro Assembly Language to generate the replacement
object module.

You can also use the Patching Utility to modify your application modules
with replacement modules that you.create. In this case, a working
knowledge of ASM86 Macro Assembly Language is required.

5-1

PATCHING UTILITY

VERSIONS OF THE PATCHING UTILITY

There are two versions of the Patching Utility. One version runs on an
iffi1X 86 application system and can be invoked with a Human Interface
command. The other version run on a Series III Microcomputer Development
System and can be invoked using the Series III RUN command. Both
versions are contained on the Utilities release diskette and have the
following file names:

Version

iRMX 86
Series III

File Name

PTCH86.R86
PTCH86.86

If you intend to use the Series III version, copy PTCH86.86 from the
Utilities release diskette to a file on one of your Series III disks. If
your release diskette is in iRMX 86 format, this involves using the
iRMX 86 DOWNCOPY command (refer to Chapter 3) or the Files Utility (refer
to Chapter 6). Otherwise, use the COpy command available with the Series
III.

If you intend to use the iRMX 86 version, copy PTCH86.R86 to one of your
iRMX 86 secondary storage devices and change its name to PTCH86. If your
release diskette is in ISIS-II format, this involves using the Human
Interface UPCOPY command (refer to Chapter 3) or the Files Utility (refer
to Chapter 6). Otherwise, use the COPY command available with the Human
Interface.

INVOKING THE PATCHING UTILITY

Before invoking the Patching Utility, ensure that the file containing it
resides in the proper place. If you are using the Series III version,
ensure that the PTCH86.86 resides on drive 0 of your development system.
If you are using the iRMX 86 version, ensure that PTCH86 resides in your
default directory or in one of the directories that the Operating System
automatically searches (usually :PROG: and :SYSTEM:). Then you can
invoke the Patching Utility by entering one of the following commands:

Series III Invocation

5-2

x-211

iRMX 86 Invocation

where:

pathname

segmentname

segmentattribute

PATCHING UTILITY

x-212

Pathname of the file containing an iAPX 86, 88
object module produced by PL/M-86, ASM86, or
LINK86. If you are listing the translator header
records, the object module can be one produced by
LOC86 or LIB86.

Name of the segment whose combine-type attribute
is to be modified. The name must be a valid
segment name (usually CODE). If you omit this
parameter (and the segmentattribute parameter),
the utility does not modify the attributes of any
segment. Instead, it displays the translator
header records contained in the module.

Combine-type attribute to be given to the named
segment. You must specify one of the following
values for this attribute:

COMMON

PUBLIC

Allows patch code to be overlaid
on the segment.

Returns the segment to the
combination mode normally given by
the PL/M-86 compiler.

Refer to the ASM86 LANGUAGE REFERENCE MANUAL for
a more detailed explanation of combine-type
attributes.

In response, the Patching Utility displays the following header message:

<operating system> iAPX 86, 88 OBJECT PATCHING UTILITY, Vx.y

where:

<operating system> Name of the operating system, either iRMX 86 or
SERIES III.

x.y Version number of the Patching Utility.

5-3

PATCHING UTILITY

If you exclude the optional segmentname and segmentattribute parameters,
the utility next displays the translator header records contained in the
object file. These header records serve to identify the patches that
have been made to a module (described later in this chapter). This
displays allows you to determine the update status of the file.

If you specify the segmentname and segmentattribute parameters, the
utility omits the display of the translator header records. Instead, it
changes the combine-type attribute as specified and displays the
following message:

ATTRIBUTE MODIFIED

Any other message indicates an error condition.

ERROR MESSAGES

When the Patching Utility encounters an error condition during a module
repair session, it displays one of the following error messages:

• ERROR nnn

When using the Patching Utility on a Series III development
system, the operating system returned an error message. Refer to
the INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM CONSOLE
OPERATING INSTRUCTIONS for a description of numbered messages of
this form.

• <exception code value> : <exception code mnemonic>

When using the Patching Utility on an iID1X 86 application. system,
the operating system returned an exceptional condition code.
Refer to Appendix A of this manual for summary of these condition
codes. Refer to the appropriate iRMX 86 manual for detailed
descriptions of iill1X 86 exception codes.

• INVALID MODULE TYPE

The file specified is not suitable for the segment attribute
modification and subsequent patching.

• INVALID RECORD TYPE

The object file contains an invalid record type for the object
module format. Perhaps you entered the wrong file name or
specified a file that contains code other than object code.

5-4

PATCHING UTILITY

• INVALID SYNTAX

The command line contains an error that was caused by a missing
file name or a missing or misspelled keyword.

• SEGMENT NOT FOUND

The desired record was not found before the end of the module.

PATCHING PROCEDURES

Repair modules that you insert into existing modules must be generated
with the ASM86 Assembler. To patch an independent object module
containing errors (patching library modules is described later in this
chapter), you must first invoke the Patching Utility to modify the
combine-type attribute in the desired module segment to COMBON. This
step allows you to use LINK86 to overlay the repair module on the segment
to be patched. After linking with the repair module, you then use the
Patching Utility to restore the PUBLIC attribute to the segment. The
following example illustrates the steps for repairing independent object
module files:

1. Enter the PTCH86 command to set the CODE segment combine-type
attribute to COMMON. For example, on a Series III development
system, enter:

RUN PTCH86 badmodule CODE COMMON

2. Enter the LINK86 command to overlay the repair object module on
the original version, for example:

RUN LINK86 badmodule, repairmodule TO newmodule

3. Enter the PTCH86 command to restore the CODE segment to PUBLIC,
for example:

RUN PTCH86 newmodule CODE PUBLIC

Typical examples of jump instruction overlays, in-place patch overlays,
library module patching, and listing module header records are given in
the following sections.

JUMP INSTRUCTION PATCH

In the following example, the module generates a patch that overlays a
three-byte jump instruction on offset OIOOH through Ol02H of the original
module. The jump transfers control to repair code at offset 0500H. The
repair code is appended to the end of the module.

5-5

PATCHING UTILITY

EXANPLE:

NAME REPAIR VOOOOI ; Identifying module name.

CODE
CGROUP

RETURN

SEGMENT
GROUP
ASSUME

ORG

JHP

LABEL

ORG

REPAIRCODE:

(Repair goes

JMP

CODE ENDS
END

WORD COHHON
CODE
CS : CGROUP

OIOOR

REPAIRCODE

NEAR

0500R

here)

RETURN

'CODE'

Offset of area in original
module to be patched.

Return here from repair area.

Offset of end of original
module.

Return control to original
module.

When making a jump instruction patch similar to the one listed
previously, you must overlay the three-byte jump instruction on one of
the following:

• A three-byte instruction

• A two-byte instruction and a one-byte instruction

• Three one-byte instructions

Otherwise, you must place NOP instructions after the JMP instruction and
before the RETURN label so that the repair code returns to the start of
the next instruction (not to the middle of a previous instruction).

IN-PLACE PATCR

The following example generates an in-place patch that directly overlays
repair code on a module's previous code.

5-6

PATCHING UTILITY

EXAMPLE:

NAME REPAIR V00002 ; Module name identification.

CODE SEGMENT
CGROUP GROUP

ASSUME

ORG

ADD

CODE ENDS

END

WORD COMMON
CODE
CS : CGROUP

0200H

AX, 3

PATCHING LIBRARY MODULES

'CODE'

Offset of the original operand.

Replaces the original value with a "3"
(the new instruction must be the same
size as the original instruction).

To patch an object module that is located in a library, use one of two
SUBMIT files supplied on your Utilities diskette: PATCH.CSD or PATCH.CMD.
PATCH.CSD is designed to run on Series III development systems; PATCH.CMD
is designed to run on iRMX 86 application systems. If you plan to use a
Series III development system, you should copy PATCH.CSD to the same
volume that contains the Patching Utility. If you plan to use an iRMX 86
system, you should copy PATCH.CMD to a directory that the Human Interface
automatically searches. Each SUBMIT file expects the LINK86 and LIB86
utilities to be present.

When invoked, each SUBMIT file performs the following steps:

1. Invokes the LINK86 command to separate the module to be patched
from the library and put it in a temporary file.

2. Invokes the PTCH86 command to set the CODE segment combine-type
attribute to COMMON.

3. Invokes the LINK86 command to overlay the replacement object
module on the original version.

4. Invokes the PTCH86 command to restore the CODE segment PUBLIC
attribute.

5. Invokes the LIB86 command to replace the original module in the
library with the updated version.

6. Deletes the temporary files when the replacement is completed.

To invoke either SUBMIT file, enter one of the following commands. Note
that the parentheses enclosing the parameter string and the embedded
commas are required; embedded blanks are optional:

5-7

PATCHING UTILITY

Series III command

SUBMIT PATCH(library, oldmodule, segment, newmodule)

iRMX 86 command

SUBMIT PATCH.CMD(library, oldmodule, segment, newmodule)

where:

library

oldmodule

segment

newmodule

Pathname of library containing the old module to
be replaced.

Name of the module to be replaced.

Name of the segment whose combine-type attribute
is to be set to COMMON.

Pathname of the file containing the replacement
module code.

LISTING TRANSLATOR HEADER RECORDS

If you want the Patching Utility to list an object module's translator
header records on the console screen, enter the PTCH86 command without
specifying the segment" name or segment attribute. The listed records
allow you to identify the patches that have been made to the module. A
typical PTCH86 command entry (from an iRMX 86 system) and resulting
header record display is as follows:

-PTCH86 FILE.OBJ
iRMX 86 iAPX 86, 88 OBJECT PATCHING UTILITY, Vx.y

ORIGINAIl10DULE
ORIGINALMODULE REPAIR V030-01 - -
ORIGINALMODULE REPAIR V030-02

The "030" stands for version 3.0 of the software being patched, and "01"
and "02" are the patch numbers of the Intel-supplied patches that have
been made to the module. The Patching Utility can perform this listing
operation on both object modules and libraries.

5-8

CHAPTER 6. FILES UTILITY SYSTEM

Because INTELLEC Microcomputer Development Systems do not recognize
iRMX 86 diskette files, you cannot read, write, or format iRMX 86
diskettes directly from the ISIS-II operating system. However, you can
perform these operations indirectly from the Development System by using
'the iRMX 86 Files Utility System. The iRMX 86 Files Utility System is an
iRMX 86 application system that allows you to perform the following
operations:

• Format an iRMX 86 diskette.

• Copy a file from an ISIS-II diskette to an iRMX 86 diskette.

• Copy a file from an iRMX 86 diskette to an ISIS-II diskette.

• Delete a file from an iRMX 86 diskette.

• Create a directory on an iRMX 86 diskette.

• Display, on the Development System terminal, the contents of a
directory of an iRMX 86 diskette.

If you cannot use the startup system (described in the iRMX 86
INSTALLATION GUIDE) to format your first iRMX 86 secondary storage
volumes and transfer necessary files (such as Human Interface commands)
to these volumes, you can use the Files Utility for this purpose. The
Files Utility System also gives you the ability to build and maintain
secondary storage volumes for iRMX 86 application systems that do not
include the Human Interface.

HARDWARE REQUIRED

The Files Utility System requires the following hardware:

• A Series III Microcomputer Development System having at least 64k
bytes of memory and at least one disk drive (hard or flexible).

• A target system consisting of an iAPX 86, 88-based Single Board
Computer, at least 192k bytes of memory, and at least one disk
drive (hard or flexible).

• The iSBC 957B iAPX 86,88 Interface and Execution Package.

6-1

FILES UTILITY SYSTEM

STARTING THE FILES UTILITY

Before you can enter commands to the Files Utility, you must start it
up. This involves connecting certain hardware modules and then entering
appropriate commands at the Series III terminal.

After you have assembled your hardware, perform the following steps:

1. Place an ISIS-II system diskette containing the iSBC 957B
software into drive 0 of your INTELLEC Microcomputer Development
System and the Utilities release diskette into any other drive.

2. Load the ISIS-II system.

3. Enter the following ISIS-II command:

SUBMIT :fx:FILES (:fx:)

where:

fx Identifier of the diskette drive containing the
Utility release diskette.

When you enter this command, the ISIS-II operating system reads and
processes the commands contained on the FILES.CSD file. These commands
instruct the iSBC 957B monitor to load the Files Utility System from a
diskette on the INTELLEC system into RAM on the target system.

After the ISIS-II system finishes processing the commands in the SUBMIT
file, the system prompts for another command. Respond by entering:

APXLOD

This command instructs the ISIS-II system to connect you to the monitor.
The monitor then signals you that it is ready to accept your next command
by displaying a period (.) on the screen of your Series III system. When
the period appears, enter:

G

This causes the Disk Utility System to begin running. The screen of your
INTELLEC system should display the heading:

iRMX 86 FILES UTILITY Vx. x '

The Files Utility signals that it is ready to accept your next command by
displaying an asterisk (*) at the screen of the INTELLEC system.

6-2

FILES UTILITY SYSTEM

USING THE FILES UTILITY

The Files Utility provides 10 file management commands, as follows:

ATTACHDEV
BREAK
CREATEDIR
DELETE
DETACH

DIR
DOWNCOPY
FORMAT
HELP
UP COpy

The commands are described in alphabetical sequence later in this
chapter. However, before actually using the commands, you should
understand the diskette handling procedures and how the Files Utility
System handles errors.

CHANGING DISKETTES

When the Files Utility is running and you have already performed an
operation on a particular diskette, you cannot simply remove that
diskette from the drive and replace it with another. The Utility System
is not aware of diskette changes and treats the second diskette as if it
were the first, and thereby possibly writes over or destroys valuable
information. To change diskettes in a drive, you must enter a DETACH
command to logically detach the drive from the system, change diskettes,
and then (with one exception) enter an ATTACHDEV command to again
logically attach the device.

The one exception to this command entry sequence is the FORMAT command.
As described later in this chapter, this command writes iRMX 86
formatting information on blank diskettes. Since the FORMAT command
always expects a blank diskette and a detached drive, you can replace
diskettes in a drive any number of times if you use only the FORMAT
command before entering the ATTACHDEV command. The FORMAT command
destroys the information, if any, previously contained on the diskette.

COMMANDS

This section provides descriptions of the Files Utility commands and
their parameters in alphabetical sequence. Each command has a
two-character abbreviation. You can use either the full name or its
abbreviation when entering a command.

ATTACHDEV (AD)

This command attaches a physical device to the system and associates a
logical name with the device. The command can also be used to display
the current attachment of a logical name. The format is as follows:

6-3

where:

: logical-name:

=physical-name

BREAK (BR)

FILES UTILITY SYSTEM

:logicalnamf3:

x-213

A I-to I2-character ASCII name, surrounded by
colons.

If used, there must be nO spaces surrounding the
equal sign. This specifies the physical device
name as configured in the I/O System (see Table
3-2). If physical name is omitted, the current
attachment is displayed by default; for example:

AD :FO: (command entry)
:FO: = FXO (displayed output)

This command causes an exit from the Files Utility System to the
monitor. The format is as follows:

--..... 8 ... --
x-214

CREATEDIR (CD)

This command creates an iRMX 86 directory file on the attached device.
The format is as follows:

where:

rmx-pathname

x-215

Pathname of the iRMX 86 directory file to be
created.

6-4

FILES UTILITY SYSTEM

DELETE (DE)

This command removes the specified iRMX 86 file from the directory where
it is listed. The format command is as follows:

x-216

where:

rmx-pat hname Pathname of the iRMX 86 file to be deleted.

DETACH (DT)

This command detaches a logical name from the system. The command is
used for changing diskettes t prior to entering a FORMAT command t or to
reconfigure a device to a different sector size. The format is as
follows:

--~~al-devicen~)----

where:

: logical-name:

DIR (DI)

x-217

The logical name you assigned to a physical
device via an ATTACHDEV command.

This command lists an iRMX 86 directory file at the Development System
console. The format is as follows:

where:
x-218

rmx-pathname Pathname of the iRMX 86 directory file to be listed.

6-5

S

FILES UTILITY SYSTEM

Switch that causes a "long" or expanded display of
directory file that includes: file type (a "DR" heading for
a directory file, a ''MP'' heading for the bit map file, or a
blank heading for a data file), number of blocks, and
number of' bytes in file. If S is not specified, a "fast"
format will be displayed, consisting of file names only.

The directory file listing includes a line that lists the size of the
directory. 'This line appears as:

<n> FILES

In this line, <n> specifies the number of entries currently present in
the directory. If you specify the S parameter, this command also lists
the following information about the directory:

<numblks> BLOCKS <numbytes> BYTES

In this line, <numblks> specifies the number of volume-granularity blocks
allocated to files in the directory and <numbytes> specifies the number
of bytes allocated to files in the directory.

DOWNCOPY (DC)

This command creates an ISIS-II file and copies the specified iRMX 86
file to it. If the ISIS-II file already exists, it is written over. The
format is as follows:

--~~x-pathnam~iS-filenam0)----
x-219

where:

rmx-pathname Pathname of the iRMX 86 file to be copied.

isis-filename Name of the ISIS-II file to be created.

FORMAT (FO)

This command writes iRMX 86 formatting information on a secondary storage
device. It performs the same kind of operations as the Human Interface
FORMAT command described in Chapter 3. All information previously
contained on the device is destroyed by the formatting operation. Each
device must be formatted before it can be used by the iRMX 86 Operating
System.

6-6

FILES UTILITY SYSTEM

The FORMAT command expects an unattached device. The device can either
be unattached at system start up, or you can detach it by entering a
DETACH command prior to entering the FORMAT command. Since the device
remains unattached after FORMAT completes execution, you must attach the
device by entering an ATTACHDEV command before entering any other Utility
command except another FORMAT command. (See also the "Changing
Diskettes" section in this chapter, and the ATTACHDEV and DETACH command
descriptions.)

The FORMAT command contains parameters that are specified in the form
"keyword=value". When entering parameters of this type, you must not
place any spaces around the equal sign. Also, you can abbreviate each of
these keywords as shown. The abbreviations and the format of this
command are as follows:

where:

physicalname

volumename

nodes

Physical device name for the drive, as configured in
the I/O System, that denotes the iRMX 86 drive on
which the diskette resides. Possible values are
itemized in Table 3-2.

A 1- to 10-character volume name that identifies the
diskette. Decimal digits, uppercase and lowercase
letters, and the following special characters can be
used in the volume names:

&

%

,
(
)

*
+

. ,
/
= ?

The number of files (including internal system files)
that can be created on this volume. If you omit this
parameter, a default value of 56 is assumed.

6-7

x-220

gran

num

ileave

switch

FILES UTILITY SYSTEM

The granularity, in bytes, for this volume. The
granularity is the number of bytes obtained during
each diskette access. If you omit this parameter, the
default volume granularity is the device granularity
(the number of bytes in a physical sector).
Specifying any value less than the device granularity
causes the default to be used. Any "non-multiple of
device granularity (such as 128 or 512) is rounded
upward to the next higher multiple of device
granularity.

Size, in bytes, of the extension data associated with
each file. This data is used by AGETEXTENSION$DATA
and ASETEXTENSION$DATA system calls (refer to the
iRMX 86 BASIC I/O SYSTEM REFERENCE MANUAL). The Human
Interface requires files it accesses to have three
bytes of extension data. The range is 0 through 255
(decimal). If not specified, the default is three
bytes.

The interleave factor for the volume, or the number of
physical sectors between logical sectors. You can
specify any integer from 1 to 13 for this value. If
you omit this parameter, a default value of 5 is
assumed.

A switch that indicates the support option for this
volume. One value can be entered for the switch:

NAMED The volume is created to contain named
files. The ROOT directory is
initialized.

If you omit this switch, the volume is created as a
single physical file. In this case, FORMAT records
the interleave information on the diskette but does
not initialize any of the iRMX 86 file structures.

When it formats a named volume, the FORMAT command creates six internal
system files. It names three of these files and lists their names in the
root directory of the volume. The files are:

file

R?SPACEMAP
R?FNODEMAP
R?BADBLOCKMAP

description

Volume free space map
Free fnodes map
Bad blocks map

The command assumes that the user WORLD is the owner of these files.
Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more
information about these files.

6-8

FILES UTILITY SYSTEM

HELP (HE)

This command displays a list of the available Files Utility commands and
their syntax on the console screen. The format is as follows:

--.... § ... --
x-222

UPCOPY (UC)

This command creates an iRMX 86 file and copies the specified ISIS-II
file to it. If the i~fX 86 file already exists, it is written over. The
format is as follows:

---~iS-filenam~x-pathnarV~---
x-223

where:

isis-filename Name of the ISIS-II file to be copied.

rmx-pathname Pathname of the im1X 86 file to be created.

ERROR MESSAGES

The Files Utility displays all error messages on the screen of the
INTELLEC Microcomputer Development System. These messages can be in any
of three forms. They are:

• UNRECOGNIZED COMMAND

The Files Utility does not recognize the spelling of your
command. It prompts for another command.

• ISIS ERROR # <nnn>

The Files Utility actually uses the ISIS-II operating system to
read and write diskettes attached to the INTELLEC Microcomputer
Development System. If the ISIS-II system detects any errors, it
returns an error code to the Files Utility. To interpret this
error message, refer to the INTELLEC SERIES III MICROCOMPUTER
DEVELOPMENT SYSTEM CONSOLE OPERATING INSTRUCTIONS. Fatal errors
require you to restart the Files Utility System by using the
FILES.CSD file, as described earlier in this chapter.

6-9

FILES UTILITY SYSTEM

• RMX EXCEPTION If <mmmm>

When reading or writing on drives attached to the target system,
the Files Utility System uses the iRMX 86 Nucleus and the iRMX 86
I/O System. If either of these layers returns an exceptional
condition code, the Files Utility displays the condition code in
this format, where mmmm is in hexadecimal. For a brief
explanation of such an error message, refer to Appendix A. After
displaying this message, the Files Utility prompts for the next
command.

6-10

APPENDIX A. CONDITION CODES SUMMARY

Table A-I provides a list of the iRMX 86 condition codes that can occur
during system operations. This table provides a minimum of information
about each condition code. In most cases t the condition code must be
considered in terms of the unique circumstances that caused the
condition. Table A-I is provided to guide you to the most appropriat~
manual. The appropriate iRMX 86 manuals have more detailed descriptions
of the meanings. The appropriate manual is listed in the column marked
"Manuals" •

Hex.
Value

OH

IH

2H

3H

4H

5H

N
B
E

Table A-I. iRMX~ 86 Condition Codes

Mnemonic

E$OK

Manuals
N BEL H

* * * * *

Meaning

No exceptional conditions (normal)

Environmental Conditions

E$TIME * * * * *

E$MEM * * * * *

E$BUSY *

E$LIMIT * * * * *

E$CONTEXT * * * * *

Nucleus Reference Hanual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

Insufficient available memory to
satisfy a task's request.

Another task currently has access to
data protected by a region.

A task attempted an operation which,
if it had been successful, would
have violated a Nucleus-enforced
limit.

A system call was issued out of
proper context.

L
H

A-I

Loader Reference Manual
Human Interface Reference Manual

Hex.
Value

6H

7H

8H

9H

OAR

20H

2IH

22H

23H

24H

25H

26H

27H

N
B
E

CONDITION CODES S~1ARY

Table A-I. iRMX'" 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$EXIST

E$STATE

ENOTCON
FIGURED

E$INTER
RUPT$SAT
URATION

E$INTER
RUPT$
OVERFLOW

E$FEXIST

E$FNEXIST

E$DEVFD

E$SUPPORT

E$EMPTY$
ENTRY

EDIREND

E$FACCESS

E$FTYPE

* * * * *

*

* * * * *

*

*

* *

* * * *

* * *

* * * *

* *

* *

* * * *
* * *

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

A token parameter has a value which is
not the token of an existing object.

A task attempted an operation which
would have caused an impossible
transition of a task's state.

This system call is not part of the
present configuration.

An interrupt task has accumulated the
maximum allowable amount of
SIGNAL$INTERRUPT requests.

An interrupt task has accumulated
more than the maximum allowable
amount of SIGNAL$INTERRUPT requests.

File already exists.

File does not exist.

Device and file driver are
incompatible.

Combination of parameters not
supported.

The specified slot in a directory
file is empty.

The specified slot is beyond the end
of a directory file.

File access not granted.

Incompatible file type.

L
H

A-2

Loader Reference Manual
Human Interface Reference Manual

Hex.
Value

28H

29H

2AH

2BH

2CH

2DH

2EH

2FH

40H

I 141H

42H

44H

45H

46H

N
B
E

CONDITION CODES SUMMARY

Table A-I. iRHX'" 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Environmental Conditions (continued)

E$SHARE

E$SPACE

E$IDDR

E$IO

E$FLUSHING

E$ILLVOL

EDEVOFF
LINE

E$IFDR

ELOGNAME$
SYNTAX

E$CANNOT$
CLOSE

E$IOMEM

E$MEDIA

ELOGNAME$
NEXIST

ENOTOWNER

* * * *
* *

* *

* * * *
* * * *

* * *

*

* *

* *

*

* *

* *

* *

*

Nucleus Reference Manual
Basic 1/0 System Ref Manual
Extended 1/0 Sys Ref l1anual

A-3

Improper file sharing requested.

No space left.

Invalid device driver request.

An 1/0 error occurred.

Connection specified in call was
deleted before the operation was
completed.

Invalid volume name.

The device being accessed is now
offline.

Invalid file driver request.

The specified path starts with a colon
(:) but does not contain a second,
matching colon.

The Extended 1/0 System was not able
to transfer remaining data in buffers
to output device.

The Basic 1/0 System has insufficient
memory to process a request.

The device containing a specified file
is not online.

The Extended 1/0 System was unable
to find a specified logical name in
the object directories that it checks.

The user who attempted to detach the
device is not the owner of the device.

L
H

Loader Reference Manual
Human Interface Reference Manual

Hex.
Value

47H

50H

5IH

52H

53H

54H

60H

6IH

62H

63H

64H

65H

66H

N
B
E

CONDITION CODES SUMMARY

Table A-I. iRMXTM 86 Condition Codes (continued)

Mnemonic l-1anuals
N BEL H

Meaning

Environmental Conditions (continued)

EIOJOB

EIOUNCLASS

E$ 10$ SOFT

E$ 10$ I-IARD

EIOOPRINT

EIOWRPROT

EABSADD
RESS

E$ BAD$ GROUP

EBAD
HEADER

EBADSEG
DEF

E$CHECKSUM

E$EOF

E$FIXUP

*

*

* *

* *

* *

The Extended I/O System cannot create
an I/O job because the size specified
for the object directory is too small.

An unknown type of I/O error occurred.

A soft I/O error occurred. A retry
might be successful.

A hard I/O error occurred. A retry is
probably useless.

The device was off-line. Operator
intervention is required.

* * The volume is write-protected.

* An absolute object program was loaded
into system protected memory area.

* * Invalid group component in the a group
definition record.

* * Invalid header record in the object
file.

* * Invalid segment definition record.

* * A checksum error occurred while
reading an object record.

* * Unexpected end of file encountered
while reading object records.

* * Invalid fixup record in the object
file.

Nucleus Reference Manual L
Basic I/O System Ref Manual H
Extended I/O Sys Ref Manual

Loader Reference Manual
Human Interface Reference Manual

A-4

Rex.
Value

67H

68H

69H

6AH

6BH

6eH

6DH

6ER

6FH

70H

80H

N
B
E

CONDITION CODES Sm~1ARY

Table A-I. iRMX~ 86 Condition Codes (continued)

Mnemonic Hanuals
N BEL H

Meaning

Environmental-Conditions (continued)

ENOLOADER
$MEM

ENOMEH

ERECFOR
MAT

EREC
LENGTH

ERECTYPE

ENOSTART

EJOBSIZE

E$OVERLAY

E$LOADER
$ SUPPORT

ESEG
BOUNDS

E$LITERAL

* *

* *

* *

* *

* *

* *
* *

*

* *

*

*

Insufficient memory to satisfy
loader dynamic memory requirements.

Insufficient memory to create PIC/LTL
segments.

Invalid record format encountered.

Record length of an object record
exceeds configured loader-buffer size.

Invalid record type encountered in the
object file.

Start address not found.

Maximum job-size specified is less
than the memory requirement specified
in the object file.

Overlay name does not match with any
of the overlay module names.

The object file being loaded requires
features not supported by the
configured loader.

One of the data records in a module
loaded by the Application Loader
referred to an address outside the
segment created for it.

The parse buffer contains a literal
with no closing quote.

Nucleus Reference Manual L
Basic I/O System Ref Manual H
Extended I/O Sys Ref Nanual

Loader Reference Manual
Human Interface Reference Manual

A-5

Hex.
Value

8IH

82H

83H

84H

8SH

86H

87H

88H

89H

8AH

8BH

N
B
E

CONDITION CODES SUHHARY

table A-I. iRMXT" 86 Condi tion Codes (continued)

Mnemonic Hanuals
N BEL H

Heaning

Environmental Conditions (continued)

E$STRING$
BUFFER

E$SEPARA
TOR

E$CONTINUED

E$INVALID$
Nill1ERIC

E$LIST

E$WILDCARD

E$PREPOSI
TION

E$PATH

E$CONTROL$C

E$CONTROL

E$ UNHATCHED
$LISTS

*

*

*

*

*

*

*

*

*

*

*

Nucleus Reference Hanual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

The string to be returned as the
parameter name exceeds the size of
the buffer the user provided in the
call.

The parse buffer contains a command
separator.

The parse buffer contains a
continuation character.

A numeric value contains invalid
characters.

The last value of the value list is
missing.

A wild-card character appears in an
invalid context, such as an
intermediate component of a pathname.

The same preposition as on the the
command line was indicated, but can
not be used.

The command line specifies an invalid
pathname.

The user typed CONTROL-C while the
command was being loaded.

The command line contains an invalid
control.

There were no more input pathnames
although the output pathname list was
not empty.

L
H

A-6

Loader Reference Manual
Human Interface Reference Manual

CONDITION CODES SUMMARY

Table A-I. iRMXTH 86 Condition Codes (continued)

Hex. Nnemonic
Value

Nanuals
N BEL H

Meaning

Programmer Errors

8000H

800IH

8002H

8003H

8004H

8005H

8006H

8007H

B008H

8021H

8022H

8040H

E$ZERO$
DIVIDE

E$OVERFLOW

E$TYPE

E$BOUNDS

*

*

* * * * *

*

E$P~1 * * * * *

EBADCALL * *

E$ARRAY$- *
BOUNDS

ENDP- *
STATUS

E$CHECK$EX- *
CEPTION

E$NOUSER

E$NOPREFIX

ENOTLOG$
NAME

* *

* *

*

*

*

*

N
B
E

Nucleus Reference Manual
Basic I/O System R~f Manual
Extended I/O Sys Ref Manual

A task attempted to divide by zero.

An overflow interrupt occurred.

A token parameter referred to an
existing object that is not of the
required type.

A task attempted to access beyond the
end of a segment.

A parameter which is neither a token
nor an offset has an invalid value.

The I/O System code has been damaged,
probably due to a bug in an
application task. Recovery is not
possible.

Hardware or software has detected an
array overflow.

An 8087 Numeric Processor Extension
error has been detected; Operating
System extensions can return the
status of the 8087 to the exception
handler.

A software interrupt 17 has occurred.

No default user.

No default prefix.

Specified object is not a device
connection or file connection.

L
H

A-7

Loader Reference Manual
Human Interface Reference Manual

Hex.
Value

804IR

8042H

8060H

8080H

808IR

8083H

8084H

N
H
E

CONDITION CODES SUMMARY

Table A-I. iRMXTK 86 Condi tion Codes (continued)

~1nemonic

ENOT-
DEVICE

ENOTCON-
NECTION

EJOBPARAM

E$PARSE$-
TABLES

EJOB-
TABLES

E$DEFAULT$SO

E$STRING

Hanuals
N BEL R

Meaning

Programmer Errors (continued)

*

*

* *

*

*

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not, but
should be, a file connection.

The maximum job-size specified is
less than the minimum job-size.

There is an error in the internal
parse tables.

An internal Human Interface table was
overwritten, causing it to contain an
invalid value.

* The default output name STRING is
invalid.

* The pathname to be returned exceeds
255 characters in length.

Nucleus Reference Manual
Basic I/O System Ref Manual
Extended I/O Sys Ref Manual

L
H

Loader Reference Manual
Human Interface Reference Manual

A-8

INDEX

Underscored entries are primary references.

:$: logical name 2-13, 2-19, 3-13

access rights 3-8, 3-26, 3-28, 3-35,
accessing the Human Interface 2-4
AD command (files utility) 6-3
AFTER preposition 2-20
ampersand 2-18
AS preposition 2-20
ATTACHDEVICE command 2-10, 3-7
ATTACHFILE command 2-11, 3-13
attaching

devices 3-7
files 3-13

automatic search 2-19

BACKUP command 3-17
backup volumes 3-78
:BB: logical name 2-13
beginning a console session
blocks 3-45, 3-49
bootstrap loader 2-3
BR command (files utility)
byte bucket 2-13

carriage return 1-2
CD command (files utility)
CHANGEID sub-command 3-87
changing diskettes 6-3
:CI: logical name 2-14
:CO: logical name 2-14
combine-type attributes 5-1
command

dictionary 3-5
file 3-83

2-4 4-1 --'

6-4

6-4

line interpreter (CLI) 2-2, 2-4
name 2-17, 2-19
syntax 2-17

commands 3-1
comment 2-18
COMMON attribute 5-3
concatenating files 4-6
condition codes A-I
configuration 2-1
connections 2-11, 2-15, 3-14, 3-57

3-46 3-69 3-75 , --'

Index-l

INDEX (continued)

continuation mark 2-18
control characters 1-1
COpy command 3-24, 4-2
CREATEDIR command 3-28, 4-9
creating data files~2
creating directories' 6-4
CTRL/c 1-5
CTRL/o 1-4
CTRL/p 1-2
CTRL/q 1-4
CTRL/r 1-3
CTRL/s 1-4
CTRL/t 1-4
CTRL/t 1-4
CTRL/u 1-3
CTRL/w 1-4
CTRL/x 1-3

data files 4-2
DATE command 3-29
DC command (files utility) 6-6
DE command (files utility) 6-4
DEBUG command 3-31
default prefix 2-13, 2-14, 4-15
DELETE command 3-33, 4-8, 4-14
deleting files 3-33, 4-8, 6-5
DETACHDEVICE command 3-35
DETACHFILE command 3-38
detaching

devices 3-35
files 3-38
logical names 6-5

device
logical names 2-10
name 3-9, 3-63, 3-67

device-unit information block 3-8
DI command (files utility) 6-5
dictionary 3-5
DIR command 2-10, 3-40, 4-13
directories 2-6, 3-28, 3-40, 4-9
discarding mode 1-3, 1-4
diskette switching 4-21, 6-3
DISKVERIFY command 3-49
DOWNCOPY command 3-53
DT command (files utility) 6-5
DUIB 3-8

error messages (Human Interface) 3-1
escape sequences 1-5
examples 4-1
exception codes A-I
EXIT sub-command 3-88
extension data 3-57, 3-59, 4-21, 6-8

Index-2

INDEX (continued)

file
data 2-6
directory 2-6
length 3-45
named 2-5, 3-7
physical 2-6, 3-7
root directory 2-7
stream 2-6
structure 2-5

files 3-57
files utility 6-1

commands 6-3
error messages 6-9
hardware 6-1
invocation 6-2

fnodes 3-57,3-59, 6-7
FO command (files utility)
FORMAT command 2-7, 2-23,
formatting volumes 6-7

6-7
3-56, 4-20

global object directory 2-12, 2-13, 3-13, 3-38
granularity 3-45, 3-49, 3-57, 3-60, 4-20, 6-8
groups 3-31--

hard-copy mode 1-2
HE command (files utility) 6-9
header records 5-8
hierarchy 2-6
:HOME: logical name 2-14, 3-13
Human Interface commands 3-1

in-place patch 5-6
initial program 2-2, 2-4
INITSTATUS command 3-62
inpath-list 2-17, 2-21
interactive job 2-4, 3-65, 3-67
interleave factor 3-57, 3-60, 4-21, 6-8
internal files 3-59
invisible files 3-41
iSBC 957B package 2-3, 3-31, 3-53, 3-92, 6-1
ISIS-II files 3-53, 3-92, 6-6

job ID 3-64, 3-65
JOBDELETE command 3-65
jump instruction patch 5-5

: LANG: logical name 2-13
library module patching 5-7
line editing 1-1
line feed 1-2
line terminator 1-2, 2-17
link map 3-31
listing directories 4-13, 6-5
listing translator header records 5-8
loading the operating system 2-2

Index-3

INDEX (continued)

local object directory
LOCK command 3-67
logical names 2-9

2-12 2-14 --'

devices 2-10
files 2-11

logon file 2-5

monitor 2-3, 3-31
multi-access 2-2

named files 2-5, 2-6, 3-7
normal mode 1-3

object directories 2-11
global 2-12, 2-13, 3-13, 3-38
local 2-12, 2-14
root 2-11, 2-13, 3-7

outpath-li~2-17, 2-21
output mode 1-3
OVER preposition 2-20
owner 2-4, 3-35, 3-45, 3-71

parameters 2-17,2-23
password 3-87
Patching Utility 5-1

error messages 5-4
invocation 5-2
patching procedures 5-5
versions 5-2

pathnames 2-8
separators 2-8

PERMIT command 3-69
physical files 2-6, 3-7
physical names 3-9
prefix 2-10, 2-13, 2-14, 2-19
preposition 2-17,2-20
:PROG: logical name~14, 2-19
:PROG:R?LOGON file 2--5-
prompt 2-5; 3-87
PTCH86.86 5-2
PTCH86.R86 5-2
PUBLIC attribute 5-3

quoting characters 1-3, 2-18

R?BADBLOCKMAP file 3-59, 6-8
R?FNODEMAP file 3-59, 6-8
R?LOGON file 2-5
R?SPACEMAP file 3-59, 6-8
removing volumes 2-15
RENAME command 3-74, 4-14, 4-16
replacement modules 5-1
replacing files 4-5
requirements 2-1
RESTORE command 3-77

Index-4

INDEX (continued)

RMX86 file 2-3
root directory 2-7, 2-10, 3-59
root object directory 2-11, 2-13, 3-7
rubout 1-2 ----

scrolling mode 1-3, 1-4
:SD: logical name 2-13
search order 2-19
segments 3-31, 5-3
separators 2-8
single-access 2-2
state 3-64
stopped mode 1-3, 1-4
storing logical names 2-11
stream files 2-6
: STREAM: logical name 2-13
structure of files 2-5
sub-commands 3-87
SUBMIT command 2-5, 3-83
SUPER command 3-87
switching diskettes 4-21
syntax 2-17, 3-3
system device 2-13
: SYSTEM: logical name 2-13, 2-19, 3-1
system manager 2-24, 3-8, 3-28, 3-35, 3-87
SYSTEM/RMX86 file-:2-3

terminal device name 3-63, 3-67
Terminal Handler 1-1
Terminal Support Code 1-1
TIME command 3-90
TO preposition 2-20
translator header records 5-8
trees 2-6
type-ahead 1-1

UC command (files utility) 6-9
UPCOPY command 3-92
user ID 2-4, 2-24, 3-46, 3-64, 3-87, 4-1
user state3-64
:UTILS: logical name 2-13

VERSION command 3-95
volume 2-7, 2-15, 3-77

boundaries 4-18
name 3-57, 3-58, 6-7

wild cards 2-15, 4-4

: WORK: logical name 2-13
WORLD 2-4, 3-35, 3-8

Index-5

iRMX™ 86 Operator's Manual
144523-001

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME __ __ DATE ________ _

TITLE ___ __

COMPANYNAME/DEPARTMENT ___ ___

ADDRESS ___ ___

CITY ___________________________ _ ST A TE ________ . ____ _ ZIP CO DE _____________ _
(COUNTRY)

Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and s·uggestions become the property of I ntel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

111111 NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

" ,
""

intJ
INTEL CO"RPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-808()

PrintE~d in U.S.A.

