
inter

iRMXTM 86 NUCLEUS
REFERENCE MANUAL

Copyright © 1980, 1981, 1982 Intel Corporation Order Number: 9803122-04
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

iRMXTM 86 NUCLEUS
REFERENCE MANUAL

Order Number: 9803122·04

Copyright© 1980,1981, 1982 Intel Corporation
I Intel Cor oration 5200 NE Elam Youn Parkwa Hillsboro OR 97123 I p 9 y,

REV. REVISION HISTORY

-03 Describes high performance mailbox queues,
8087 NDP, cascaded interrupts, and enhanced
interrupt processing; corrects various technical
and typographical errors; and documents
Release 3 of the iRMX 86 Operating System.
Debugger and Terminal Handler information
has been moved to separate manuals.

-04 Adds a chapter on configurable options, examples
of system call usage, and all relevant informa-
tion and system calls from iRMX 86 System
Programmer's Reference Manual; corrects
technical and typographical errors; and
documents Release 5 of the iRMX 86
Operating System

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

PRINT
DATE

5/81

9/82

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BXP Intel iSBX Multichannel
CREDIT Intel Library Manager Multimodule

Intelevision MCS Plug-A-Bubble
ICE Intellec Megachassis PROMPT
iCS iOSP Micromainframe RMX/SO
im iRMX Mircromap System 2000
iMMX iSBC Multibus UPI
Insite

Printed in U.S.A.lOM-001/5.2K10283/AP

PREFACE

iRMX 86 provides an operating system for Intel iAPX 86-based
microcomputers, including the iSBC 86/12Asingle board computer. It
consists of a Nucleus, a Terminal Handler, a Debugger, a basic
input/output system (BIOS), an extended input/output system (EIOS), an
Application Loader, and a Human Interface. This manual describes the
central portion of the Operating System, the Nucleus.

READER LEVEL

This manual is intended for both application and system programmers. It
describes the basic features of the Nucleus and thoroughly documents the
portion of the NUcleus that both application and system programmers
require. It also contains detailed information about the features and
system calls reserved for system programmers.

This manual is intended primarily as a source of Nucleus reference
materials; it is only secondarily for instruction. If you are unfamiliar
with the iRMX 86 Operating System, you should read the INTRODUCTION TO
THE iRMX 86 OPERATING SYSTEM prior to reading this manual.

CONVENTIONS

Throughout this manual, the following convention is used:

Reserved bits which should be set to zero.

Whenever this term is used, it means that the designated bits are not
currently checked by the Nucleus. However, Intel reserves the right to
establish meanings for these bits in future releases of the iRMX 86
Operating System. To ensure that your current system runs unchanged
under future releases, you should set these bits to zero.

iii

I

I

I

RELATED PUBLICATIONS

The following manuals provide additional information that may be helpful
to readers of this manual.

• Introduction to the iRMX- 86 Operating System, Order Number:
9803124

• iRMX- 86 Installation Guide, Order Number: 9803125

• iRMX- 86 Terminal Handler Reference Manual, Order Number: 143324

• iRMX- 86 Debugger Reference Manual, Order Number: 143323

• iRt1X- 86 Basic I/O System Reference Manual, Order Number: 9803123

• iRMX- 86 Extended I/O System Reference Manual, Order Number:
143308

• iRMX- 86 Human Interface Reference Manual, Order Number: 9803202

• i&~X- 86 Operator's Manual, Order Number: 144523

• iRMX- 86 Loader Reference Manual, Order Number: 143381

• iRMX- 86 Configuration Guide, Order Number: 9803126

• Guide to Writing Device Drivers for the iRMX- 86 and iRMX 88- I/O
Systems, Order Number: 142926

• iRMX- 86 Programming Techniques, Order Number: 142982

• iRMX- 86 Pocket Reference, Order Number: 142861

• iSBC@ 86/12A Hardware Reference Manual, Order Number: 9803074

• iOSP- 86/88 Support Package Reference Manual, Order Number: 144437

• ISIS-II User's Guide, Order Number: 9800306

• PL/M-86 Programming Manual, Order Number: 9800466

• PL/M-86 Compiler Operating Introduction for 8080/8085 Based
Development Systems, Order Number: 9800478

• The 8086 Family User's Manual, Order Number: 9800722

iv

CHAPTER 1
OVERVIEW

CONTENTS

Ob jects
Tasks ••
Jo bs •••
Segments •.••...•••.•..•••.•.•..•.••.••.••••••..•..•..•...••..••.•
Mailboxes ••
Semaphores •••
Re gions ••
Extension and Composite Objects ••••••••••••••••••••••••••••••••••

lIa ndlers•..
Exception Handlers •••
Interrupt Handlers •••

CHAPTER 2
JOB MANAGEMENT
Job Tree and Resource Sharing ••••••••••••••••••••••••••••••••••••••
Job Creation •••
Jo b De letion•..•.......................•.....................
System Calls for Jobs ••

CHAPTER 3
TASK MANAGEMENT
Priority .. .
Task States .••.•.•.••.•..•..•.•••.....•.•..•..•..••..••.•.•.•.....•

The Asleep State •••
The Sus pended State ••
The Asleep-Suspended State •••••••••••••••••••••••••••••••••••••••
The Ready and Running States •••••••••••••••••••••••••••••••••••••

Task State Transitions •••
Additional Task Attributes •••
Ta sk Re sources •••
System Calls for Tasks ••• ' ••

CHAPTER 4
EXCHANGE MANAGEMENT
Mailboxes•...........•.•.......•........•........•.............

Mai I box Qlleues •••
Mailbox Mechanics ••
High Performance Object Queue ••••••••••••••••••••••••••••••••••••
System Calls for ~~ilboxes •••••••••••••••••••••••••••••••••••••••

Semaphores •••••••••••••••••••••••••••••••••• 'e ••••••••••••••••••••••

Semaphore Queue ••
Semaphore Mechanics ••
System Calls for Semaphores ••••••••••••••••••••••••••••••••••••••

v

PAGE

1-2
1-2
1-3
1-4
1-5
1-5
1-5
1-6
1-6
1-6
1-6

2-1
2-3
2-3
2-4

3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-4
3-5
3-5

4-1
4-1
4-1
4-2
4-3
4-3
4-3
4-4
4-5

CONTENTS (continued)

CHAPTER 5
MEMORY MANAGEMENT
Se gments
Memory Pools •••
Controlling Pool Size ••
MOvement of Memory Between Jobs ••••••••••••••••••••••••••••••••••••
Memory Allocation ••
System Calls for Segments ••

CHAPTER 6
OBJEtT MANAGEMENT
Inquiring About Object Types •••••••••••••••••••••••••••••••••••••••
Using Object Directories •••
System Calls for Any Objects •••••••••••••••••••••••••••••••••••••••

CHAPTER 7
EXCEPTIONAL CONDITION MANAGEMENT
Types of Exceptional COnditions ••••••••••••••••••• .- ••••••••••••••••
Exception Handlers •••
Assigning an Exception Handler •••••••••••••••••••••••••••••••••••••
Invoking an Exception Handler ••••••••••••••••••••••••••••••••••••••
Handling Exceptions In-Line ••
System Calls for Exception Handlers ••••••••••••••••••••••••••••••••

CHAPTER 8
INTERRUPT MANAGEMENT
Interrupt Mechanisms •••

The Interrupt Vector Table •••••••••••••••••••••••••••••••••••••••
In terrupt Levels •••
Disabling Interrupts •••

Interrupt Handlers and Interrupt Tasks •••••••••••••••••••••••••••••
Setting Up an Interrupt Handler ••••••••••••••••••••••••••••••••••
Using an Interrupt Handler •••••••••••••••••••••••••••••••••••••••
Using an Interrupt Task ••
Using Multiple Buffers to Service Interrupts •••••••••••••••••••••

Single Buffer Example ••
Multiple Buffer Example ••
Specifying the Count Limit •••••••••••••••••••••••••••••••••••••
Enabling Interrupt Levels From Within a Task •••••••••••••••••••

Handling Spurious Interrupts •••••••••••••••••••••••••••••••••••••••
Calling GET$LEVEL ••••••••••.•••.•••••••••••.••••••.••••••••••••••
Judicious Selection of Interrupt Levels ••••••••••••••••••••••••••
Examining the In-Service Register ••••••••••••••••••••••••••••••••

Examples of Interrupt Servicing ••••••••••••••••••••••••••••••••••••
System Calls for Interrupts ••

vi

PAGE

5-1
5-1
5-2
5-3
5-3
5-4

6-1
6-1
6-2

7-1
7-1
7-2
7-2
7-3
7-5

8-1
8-1
8-2
8-4
8-6
8-7
8-8
8-9
8-12
8-12
8-13
8-14
8-17
8-18
8-18
8-19
8-19
8-19
8-23

CHAPTER 9
REGIONS

CONTENTS (continued)

Risks Involved in Sharing Data •••••••••••••••••••••••••••••••••••••
Mutual Exclusion Using Semaphores ••••••••••••••••••••••••••••••••••
Mutual Exclusion Using Regions •••••••••••••••••••••••••••••••••••••
Usefulness of Semaphores •••
Regions and Deadlock •••
Regions and System Knowledge •••••••••••••••••••••••••••••••••••••••
System Calls for Regions •••

CHAPTER 10
OPERATING SYSTEM EXTENSIONS
Three Ways of Adding Functionality ••••••••••••••••••••••••••••••••
Creating an Operating System Extension ••••••••••••••••••••••••••••

Procedures Used in Operating System Extensions ••••••••••••••••••
Interface Procedures ••
Entry Procedures ••
Function Procedures •••
RQ$ERROR Procedures •••
Linking the Procedures ••

Initializing the Interrupt Vector •••••••••••••••••••••••••••••••
Protecting Resources from being Deleted •••••••••••••••••••••••••••
System Calls Used in Extending the Operating System •••••••••••••••

CHAPTER 11
TYPE MANAGERS
Creating New Objects ••
Manipulating Composite Objects and Extension Types ••••••••••••••••
Deleting Composite Objects and Extension Types ••••••••••••••••••••

Type Manager Responsibilities During DELETE$JOB •••••••••••••••••
Type Manager Responsibilities During DELETE$EXTENSION •••••••••••
Deletion of Nested Composites •••••••••••••••••••••••••••••••••••

Writing a Type Manager ••
Example -- A Ring Buffer Manager ••••••••••••••••••••••••••••••••••

The Initialization Part •••
The Interface Library •••
The Entry Procedure •••
The CREATE$RING$BUFFER Procedure ••••••••••••••••••••••••••••••••
The DELETE$RING$BUFFER Procedure ••••••••••••••••••••••••••••••••
The PUT$BYTE Procedure ••
The GET$BYTE Procedure ••
Epilogue •..•••......••....•.••...•..•.•...•....•.......••..••..•

System Calls for Type Managers ••••••••••••••••••••••••••••••••••••

vii

PAGE

9-1
9-2
9-3
9-4
9-5
9-6
9-6

10-1
10-1
10-2
10-6
10-7
10-10
10-10
10-14
10-14
10-14
10-15

11-1
11-2
11-2
11-3
11-5
11-5
11-6
11-7
11-9
11-10
11-12
11-12
11-14
11-15
11-16
11-17
11-17

CONTENTS (continued)

CHAPTER 12
NUCLEUS SYSTEM CALLS
Command Dictionary ••

ACCEPT $CONTROL ••
ALTER$COMPOSITE •••
CATALOG$OBJECT ••
CREATE$COMPOSITE ••
CREATE$EXTENSION ••
CREATE$JOB ••
CREATE ~ILBOX ••.••••••
CREATE$REGION •••
CREATE SSE GlENT ••
CREATE$S EMAPHORE ••
CREATE $TASK •••
DELETE$COMPOSITE ••
DELETE$EXTENSION ••
DELETE$JOB ••
DELETE $MAILBOX .. .
DELETE$REGION •••
DELETE SSE QfENT ••
DELETE$SEMAPHORE ••
DELETE $TASK ••••••••••••••••••••••••••••• ! •••••••••••••••••••••••
DISABLE •••
DISABLE$DELETION ••
ENABLE ••
ENABLE$DELETION •••
END$INIT$TASK •••••••••••••••••••••••••••••••••.• •••••••••••••••••
ENTER$INTERRUPT •••
EXIT$INTERRUPT ••.•••••••••••.•••••••••••••••••••••••••••••••••••
FORCE $DELE TE ••
GET$EXCEPTION$HANDLER •••
GE T $LEVEL •••
GET$POOL$ATTRIB •••
GET$PRIORITY ••
GET$SIZE ••
GET$TASK$TOKENS •••
GET$TYPE ••
INSPECT$COMPOSITE •••
LOOKUP$OBJECT •••.•••
OFFSPRING •••
RECElVE$CONTROL •••
RECEIVE $lvIESSAGE •••
RECE lVE$UNITS •••
RESET$INTERRUPT •••
RES"UME$TASK •••
SEND $CONTROL ••
S END$MESSAGE ••
SEND $UNITS ••

viii

PAGE

12-2
12-7
12-10
12-12
12-15
12-17
12-19
12-27
12-30
12-32
12-34
12-37
12-41
12-43
12-45
12-47
12-49
12-52
12-54
12-56
12-59
12-62
12-65
12-68
12-71
12-72
12-76
12-79
12-81
12-83
1-2-85
12-87
12-89
12-92
12-94
12-97
12-99
12-102
12-105
12-108
12-112
12-115
12-119
12-122
12-125
12-128

CONTENTS (continued)

CHAPTER 12 (continued)
SET$EXCEPTION$HANDLER •••
SET$INTERRUPT •••
SETOSEXTENSION ••
SE T $POOL$MIN ••
S ET$PRIORI TY •••••••••••••••••••••••••••••••••••••• ' ••••••••••••••
SIGNAL$EXCEPTION ••
S IGNA.L$ INTERRUPT ••
SLEEP •••
S USPEND$TASK ••
UNCATALOG$OBJECT ••
WAIT$INTERRUPT ••

CHAPTER 13
CONFIGURATION OF THE NUCLEUS
Sy stem Ca.lls ••
lia.rdware ••
Sy stem Characteristics ••••••••••• " •••••••••••••••••••••••••••••••••

APPENDIX A
iRl4}(86 DATA TyPES •••

APPENDIX B
iRl4}(86 TYPE CODES •••

APPENDIX C
NUCLEUS MEMORY USAGE •••

7-1.
8-1.
8-2.

8-3.
8-4.
8-5.
8-6.

10-1.
B-1.

TABLES

Conditions and Their Codes •••••••••••••••••••••••••••••••••
Interrupt Levels Disabled for Running TASK •••••••••••••••••
The Relationship Between External Levels and Internal

Task Priorities •••
Handler and Task Interaction Through Time ••••••••••••••••••
Servicing Interrupts with an Interrupt Handler •••••••••••••
Servicing Interrupts with an Interrupt Task ••••••••••••••••
Servicing Interrupts with an Interrupt Handler, an
Interrupt Task, and Multiple Buffering ••••••••••••••••••••

Comparison of Techniques for Creating Common Functions ••••
Type Co des ••

ix

PAGE

12-131
12-135
12-140
12-142
12-144
12-148
12-151
12-155
12-157
12-160
12-164

13-1
13-1
13-2

A-1

B-1

C-l

7-4
8-5

8-10
8-15
8-20
8-21

8-22
10-2
B-1

I

I

1-1.
2-1.
3-1.
5-1.
5-2.
8-1.
8-2.
8-3.
8-4.

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
11-1.
11-2.
11-3.

FIGURES

Ini t ial Job Tree •••
A Jo b ••
Task State Transition Diagram ••••••••••••••••••••••••••••••
Comparison of Job and Memory Hierarchies •••••••••••••••••••
Memory Movement Diagram ••••••••••••••••••••••••••••••••••••
Cascaded Interrupt Levels ••••••••••••••••••••••••••••••••••
Flow Chart of Interrupt Handling •••••••••••••••••••••••••••
Single-Buffer Interrupt Servicing ••••••••••••••••••••••••••
Multiple-Buffer Interrupt Servicing ••••••••••••••••••••••••
OS Extensions Without Entry Procedures ••••••••••••••••••••
OS Extensions with Procedure Entry ••••••••••••••••••••••••
Summary of Duties of Procedures in OS Extensions ••••••••••
Handling Exceptions with an Exception Handler •••••••••••••
Extension Handling Exceptions In-Line •••••••••••••••••••••
Control Flow for OS Extensions and Application Task •••••••
The Creation Sequence for Composite Objects •••••••••••••••
Type 11anager Involvement in DELETE$JOB ••••••••••••••••••••
A Ring Buffer •••

x

PAGE

1-4
2-2
3-4
5-2
5-4
8-3
8-11
8-12
8-13

10-4
10-5
10-9
10-11
10-12
10-13
11-2
11-4
11-8

CHAPTER 1. OVERVIEW

The iRMX 86 Nucleus is the core of every iRMX 86 application system.
Among the activities of the Nucleus are the following:

• Supplying scheduling functions

• Controlling access to system resources

• Providing for communication between individual processes

• Enabling the system to respond to external events

The Nucleus provides the building blocks from which the other subsystems
(Basic I/O System, Extended I/O System, Application Loader, and Human
Interface) and application systems are constructed. These building
blocks are called objects and are classified into the following
categories called object types:

• Tasks

• Jobs

• Segments

• Mailboxes

• Semaphores

• Regions

• Extension objects

• Composite objects

The following simplistic generalizations can be made regarding these
types:

• Tasks are the active objects in a system. They do the work of
the system.

• Jobs are the environments in which tasks do their work. An
environment consists of tasks, the objects that tasks use, a
directory where tasks can catalog objects so as to make them
available to other tasks, and a pool of memory.

• Segments are pieces of memory, the medium that tasks use for
communicating and for storing data.

• Mailboxes are the objects to which tasks go to send or receive
other objects.

1-1

I

NUCLEUS OVERVIEW

• Semaphores enable tasks to send signals to other tasks.

• Regions are objects that guard a specific collection of shared
data.

• Extension objects are objects which designate new types of
objects.

• Composite objects are objects of the new types designated by
extension objects.

The Nucleus does extensive record-keeping of objects. It keeps track of
each object by means of a 16-bit value called a token. The Nucleus
provides a number of operators, called system calls, that tasks use to
manipulate objects.

When using a system call, a task supplies parameter values, such as
tokens, names, or other values, depending on the requirements of the
system call. Some of the functions that tasks can perform with system
calls are the following:

• Create objects

• Delete objects

• Send messages to other tasks

• Receive messages from other tasks

• Obtain information about objects

• Catalog objects with descriptive names

• Delete objects from catalogs

OBJECTS

Each of the eight object types discussed in this manual has unique
characteristics. These characteristics are discussed in detail in the
following sections.

TASKS

A task has two goals:

• Its primary goal is to do a specific piece of work.

• Its secondary goal is to obtain exclusive control of the
processor so that it can progress toward its primary goal.

1-2

NUCLEUS OVERVIEW

One of the main activities of the Nucleus is to arbitrate the competition
that results when several tasks each want exclusive control over the
processor. The Nucleus does this by maintaining, for each task, an
execution state and a priority. The execution state for each task is, at
any given time, either running, ready, asleep, suspended, or
asleep-suspended. The priority for each task is an integer value between
o and 255, inclusive, with 0 being the highest priority.

The arbitration algorithm that the Nucleus uses is that the running task
is the ready task with the highest (numerically lowest) priority.

As viewed by the Nucleus, a task is merely a context consisting of
values, some of which are the following:

• The task's priority

• The task's execution state

• A token for the job that contains the task

When a task becomes the running task, the following events occur, in
order:

• The context of the previously running task is saved by the Nucleus

• The Nucleus sets the new running task's context

• The new task begins executing

The task continues to run until one of the following events occurs:

JOBS

• The task removes itself from the ready state. For example, the
task can suspend or delete itself; the task can attempt to
receive a token for an object that has not yet been sent, in
which case it might elect to wait (in the asleep state).

• The task (task A) is preempted when a higher priority task (task
B) becomes ready. An example of how this could happen is that
task B might previously have gone into the asleep state for a
specific period of time. When the time period has passed, task B
becomes ready again. Because it is then the highest priority
ready task, task B becomes the running task.

A job consists of tasks and the resources they need.

The jobs in a system form a family tree, with each job, except the root
job, obtaining its resources from its parent. The tasks in the user jobs
can create additional objects. If they create additional jobs, this
enlarges the job tree.

1-3

I

I

NUCLEUS OVERVIEW

The job tree, right after the initializaton of a system, is shown in
Figure 1-1.

I ROOT JOB I
I

I I I
USER JOB USER JOB USER JOB

#1 #2 #N

I TASK I . . . I TASK I I TASK I

x-141

Figure 1-1. Initial Job Tree

Associated with each job is an object directory. Objects are known to
the Nucleus by their respective tokens, but often, in the code that is
executed by tasks, the objects are known by symbolic names. The object
directory for a job is a place in memory where a task can catalog an
object under a name. Other tasks that know the name can then use the
directory to access the object.

Also associated with each job is a memory pool. This is an amount of
memory which is allocated to the job and its descendents. All memory
needed to create objects in the job comes from the memory pool.

SEGMENTS

A fundamental resource that tasks need is memory. Memory is allocated to
tasks in the form of segments. A task needing memory requests a segment
of whatever size it requires. The Nucleus attempts to create a segment
from the memory pool given to the task's job when the job was created.

1-4

NUCLEUS OVERVIEW

If there is not enough memory available, the Nucleus will try to borrow
the needed memory from ancestors of the job. In this respect, the
tree-structured hierarchy of jobs is instrumental in resource
distr ibution.

MAILBOXES

A mailbox is one of three types of objects that can be used for intertask
communication. When task A wants to send an object to task B, task A
must send a token for the object to a mailbox, and task B must visit that
mailbox, where, if a token for an object isn't there, it has the option
of waiting for any desired length of time. When task B obtains the
token, it can access the object. Sending a token for an object in this
manner can achieve various purposes. The object might be a segment that
contains data needed by the waiting task. On the other hand, the segment
might be blank, and sending its token might constitute a signal to the
waiting task. Another reason to send a token for an object might be to
point out the object to the receiving task.

SEMAPHORES

A semaphore is a custodian of abstract "units". It dispenses units to
tasks that request them, and it accepts units from tasks.

An example of typical semaphore use is mutual exclusion. Suppose your
application system contains one I/O device which is being used for output
by mUltiple tasks. To ensure that only one of these tasks can use the
device at a given time, you can establish a semaphore which has one unit
and require that tasks obtain the unit before using the device. A task
wanting to use the device would reques't the unit from the semaphore.
When it gets the unit, it can use the device and then return the unit to
the semaphore. Because the semaphore has no units while the task is
using the device, other tasks are effectively excluded from using the
device.

REGIONS

A region is an iRMX 86 object that tasks can use to guard a specific
collection of shared data. Once a task gains access to shared data
through a region, the task can not be suspended or deleted by other tasks
until it surrenders access. When the task currently using the shared
data no longer needs access, it notifies the Operating System, which then
allows the next task to access the shared data.

1-5

I

NUCLEUS OVERVIEW

EXTENSION AND COMPOSITE OBJECTS

Whenever more than one job in your application system requires a function
not supplied by the iRMX 86 Operating System, you can judiciously add new
types of objects to your system to provide the needed function. The
procedures that you must add to the Operating System in order to support
the added function are called Operating System extensions. A type
manager is an Operating System extension that can create new objects. A
given type manager can only create one type of object, but can create
numerous objects (called composite objects) of that object type. The
object type is designated by an object called an extension object.

HANDLERS

Two kinds of events can be handled specially: exceptional conditions and
interrupts. The remainder of this chapter describes the handlers for
these events.

EXCEPTION HANDLERS

Tasks occasionally make errors. If an error occurs during an iRMX 86
system call, it causes an exceptional condition. The occurrence of an
exceptional condition can, if desired, cause a transfer of control to the
exception handler associated with the current task. The exception
handler is a procedure that typically deals with the problem by one of
the following methods:

• Correcting the cause of the problem and trying again

• Merely logging the error

• Deleting or suspending the task that caused the error

In regard to exception handlers, the designer of an iRMX 86-based system
has two kinds of decisions to make for each task. The first decision
concerns the choice of exception handlers. The task can have its own
custom exception handler, it can use the exception handler for the job to
which it belongs, or it can use the Intel-provided System Exception
Handler. The second decision concerns when control goes to an exception
handler. The task can direct control to the exception handler in
avoidable (programmer) and/or unavoidable (environmental) conditions. If
control is not directed to an exception handler, the responsibility for
handling the exception falls upon the task.

1-6

NUCLEUS OVERVIEW

INTERRUPT HANDLERS

To function effectively as a real-time system, an iRMX 86 application
system must be responsive to external events. An interrupt handler,
which is required for each source of external events (interrupts), is a
procedure that is invoked by hardware or software for the purpose of
responding to an asynchronous event. The handler takes control
immediately and services the interrupt. When the interrupt handler is
finished servicing the interrupt, it surrenders the processor, which
returns to the interrupted procedure.

As part of its servicing, the interrupt handler can invoke a task to
further process the interrupt. An interrupt handler invokes an interrupt
task if the processing of an interrupt requires large amounts of time or
if the processing requires those Nucleus system calls that interrupt
handlers are prohibited from using.

1-7

CHAPTER 2. JOB MANAGEMENT

A job is an environment in which iR~~ 86 objects such as tasks, mailboxes,
semaphores, segments, and (offspring) jobs reside. In addition, a job has
an object directory and a pool of memory. The job's memory pool provides
the raw material from which objects can be created by the tasks in the
job. Figure 2-1 illustrates some of the possible elements of a job.

Applications consist of one or more jobs. Jobs are independent but they
may share resources. Each job has its own tasks and may have its own
object directory. Objects may be shared between jobs, although each
object is contained in only one job.

The programmer must decide whether tasks belong in the same job. In
general, you should place tasks in the same job if:

• They have similar or related purposes

• They share many resources

• They have similar lifespans

JOB TREE AND RESOURCE SHARING

The jobs in a system are arranged in the form of a tree. The root is a
job that is provided by the Nucleus. The remaining jobs, including jobs
that are created dynamically while the system runs, are descendents of the
root job. A job containing tasks that create other jobs is a parent job.
A newly created job is a child of the job whose task created it.

Associated with each job is a set of limits. The limits of a job are as
follows:

• Maximum allowable size of its object directory

• Maximum and minimum allowable sizes of its memory pool

• Maximum allowable number of simultaneously existing objects that
it can contain

• Maximum allowable number of simultaneously existing tasks that it
can contain

• Highest allowable priority of any task contained in it

You must specify these limits whenever you create a job. These limits,
with the exception of object directory size, apply collectively to the job
and all of its descendent jobs.

2-1

I

OBJECT DIRECTORY

NAME OBJECT

JOB MANAGEMENT

TASKS: D D D··· D
OBJECTS CREATED BY THE TASKS IN THE JOB:

SEGMENTS: •••

MAILBOXES: •••

SEMAPHORES: ~~~ ••• ~

Figure 2-1. A Job

2-2

x-142

JOB MANAGEMENT

For example, suppose job A creates job B. When this happens:

• Sufficient memory to meet job B's minimum memory pool requirements
is transferred from job A's memory pool to that of job B.

• The memory for job B including its object directory is taken from
job A's memory pool.

• The numbers of tasks and total objects that job A can contain are
reduced by the corresponding values specified for job B.

• The specified maximum priority for tasks in job B cannot exceed
the maximum priority for tasks in job A.

If job B is later deleted, its resources are returned to job A.

JOB CREATION

A job is created with one task. The functions of this task should include
doing some initializing for the new job. Initializing activities can
include housekeeping and creating other objects in the new job.

When a task creates a job, it has the option of passing a token for a
parameter object to the newly created job. The parameter object can be of
any type and it can be used for any purpose. For example, the parameter
object might be a segment containing data, arranged in a predefined
format, needed by tasks in the new job. Tasks in the new job can obtain a
token for the job's parameter object by means of the GET$TASK$TOKENS
system call, described in Chapter 12. I

JOB DELETION

Before a job can be deleted, all of its extension objects (see Chapter 10)
and descendent jobs must be deleted. By using the OFFSPRING system call,
the deleting task can probe down the job tree and find all of the
descendents. Then it can delete them, beginning with descendents that
have no children and working up the tree. After all of the descendents
have been deleted, the task can delete the target job.

2-3

I

JOB MANAGEMENT

SYSTEM CALLS FOR JOBS

The following system calls manipulate jobs:

• CREATE$JOB --- creates a job with a task and returns a token for
the job; resources for the new job are drawn from the resources of
the job to which the invoking task belongs.

• DELETE$JOB --- deletes a childless job that contains no extension
objects and returns the job's resources to its parent.

• OFFSPRING --- provides a segment containing tokens of the child
jobs of the specified job.

2-4

CHAPTER 3. TASK MANAGEMENT

Tasks are the active objects in an iRMX 86 system. Each task is part of
a job and is restricted to the resources that its job provides. Tasks
should be written as PL/M-86 procedures, not as main modules.

The iRMX 86 Nucleus maintains a set of attributes for each task. Among
these attributes are the priority and execution state of the task.

PRIORITY

A task's priority is an integer value between a and 255, inclusive. The
lower the priority number, the higher the priority of the task. A high
priority task has favored status as it competes with other tasks for the
microprocessor.

unless a task is involved in processing interrupts (see Chapter 8), its
priority should be between 129 and 255. When a task having a priority in
the range a to 128 is running, certain external interrupt levels are
disabled, depending on the priority.

Also, if a task's code includes instructions that execute on the 8087 NPX
(Numeric Processor Extension), that task should not have a priority high
enough to disable the interrupt level of the NPX or a deadlock situation
will result. The interrupt level of the 8087 NPX is configurable; refer
to the iRMX 86 CONFIGURATION GUIDE for further information. Refer to
Chapter 8 of this manual for a correlation between priorities and
interrupt levels.

TASK STATES

A task is always in one of five execution states. The states are asleep,
suspended, asleep-suspended, ready, and running.

THE ASLEEP STATE

A task is in the asleep state when it is waiting for a request to be
granted. Also, a task can put itself to sleep for a specified amount of
time by using the SLEEP system call.

3-1

I

I

I

TASK MANAGEMENT

THE SUSPENDED STATE

A task enters the suspended state when it is placed there by an~ther
task, when it is waiting for an interrupt, or when it suspends itself.
Associated with each task is a suspension depth, which reflects the
number of "suspends" outstanding against it. Each suspend operation must
be countered with a resume operation before the task can leave the
suspended state.

THE ASLEEP-SUSPENDED STATE

When a sleeping task is suspended, it enters the asleep-suspended state.
In effect, it is then in both the asleep and suspended states. While
asleep-suspended, the task's sleeping time might expire, putting it in
the suspended state. Also, if another task resumes an asleep-suspended
task, the latter task will enter the asleep state.

THE READY AND RUNNING STATES

A task is ready if it is not asleep, suspended, or asleep-suspended. For
a task to become the running (executing) task, it must be the highest
priority task in the ready state.

TASK STATE TRANSITIONS

The Nucleus does not allocate the processor to tasks in a time-slicing
manner. Instead, as an iRMX 86 application system runs, events occur
which cause tasks to pass from state to state. The iRMX 86 Operating
System is, therefore, event-driven. Figure 3-1 shows the paths of
transition between states.

The following list describes, by number, the events that cause the
transitions in Figure 3-1. In the list, the migrating task is called
"the task":

(1) When the task is created, it is placed in the ready state •

(2) The task goes from the ready state to the running state when one
of the following occurs:

• The task has just become ready and has higher priority than
does any other ready task.

• The task is ready, no other ready task has higher priority,
no other task of equal priority has been ready for a longer
time, and the previously running task has just left the
running state by (4), (6), or (10).

3-2

TASK MANAGEMENT

(3) The task goes from the running state to the ready state when the
task is preempted by a higher priority task that has just become
ready.

(4) The task goes from the running state to the asleep state when one
of the following occurs:

• the task puts itself to sleep (by the SLEEP system call.)

• The task makes a request (by the RECElVE$MESSAGE,
RECEIVE$UNITS, RECElVE$CONTROL, or LOOKUP$OBJECT system call)
that cannot be granted immediately and expresses, in the
request, its willingness to wait.

(5) The task goes from the asleep state to the ready state or from
the asleep-suspended state to the suspended state when one of the
following occurs:

• The time period specified in the invocation of the SLEEP
system call expires.

• The task's designated waiting period expires without its
request being granted.

• The task's request is granted (because another task called
either the SEND$MESSAGE,SEND$UNITS, SEND $CONTROL, or
CATALOG$OBJECT system call; these calls correspond to those
mentioned in (4), above).

(6) The task goes from the running state to the suspended state when
the task suspends itself (by the SUSPEND$TASK or WAIT$INTERRUPT
system call).

(7) The task goes from the ready state to the suspended state or from
the asleep state to the asleep-suspended when the task is
suspended by another task (by the SUSPEND$TASK system call).

(8) The task remains in the suspended state or the asleep-suspended
state when one of the following occurs:

• (same as (7» or

• The task has a suspension depth greater than one and the task
is resumed by another task (by the RESUME$TASK system call).

(9) The task goes from the suspended state to the ready state or from
the asleep-suspended state to the asleep state when the task has
a suspension depth of one and the task is resumed by another task
(by the RESUME$TASK or SIGNAL$INTERRUPT system call) or when a
task awaiting an interrupt receives the interrupt.

(10) The task goes from any state to non-existence when it is deleted
(by the DELETE$TASK, DELETE$JOB, or RESET$INTERRUPT system call).

3-3

I

I

I

I

I

TASK MANAGEMENT

(NON-EXISTENT)

t(1)

READY

(2) (3)

ASLEEP 1~.~ ____ (4_) ____ ~R_U_N_N_IN_G~ ___ (_6) __ -l~~ I SUSPENDED I ::J
(8)

I ASLEEP-SUSPENDED I
(8)L-.J

~ (10)

(NON-EXISTENT)

Figure 3-1. Task State Transition Diagram

ADDITIONAL TASK ATTRIBUTES

In addition to priority, execution state, and suspension depth, the
Nucleus maintains current values of the following attributes for each
existing task: containing job, its PL/M-86 register context, starting
address of its exception handler (see Chapter 7), its exception mode (see
Chapter 7), whether or not it is an interrupt task (see Chapter 8) and

I whether the task uses the 8087 NPX.

3-4

x-143

TASK MANAGEMENT

TASK RESOURCES

When a task is created, the Nucleus takes any resources that it needs at
that time (such as memory for a stack) from the task's containing job.
If the task is subsequently deleted, those resources are returned to the
job.

SYSTEM CALLS FOR TASKS

The following system calls are provided for task manipulation:

• CREATE$TASK --- creates a task and returns a token for it.

• DELETE$TASK --- deletes a task from the system.

• SUSPEND$TASK --- increases a task's suspension depth by one;
suspends the task if it is not already suspended.

• RESUME$TASK --- decreases a task's suspension depth by one; if
the depth becomes zero and the task was suspended, it then
becomes ready; if the depth becomes zero and the task was
asleep-suspended, then it goes into the asleep state.

• SLEEP --- places the calling task in the asleep state for a
specified amount of time.

• GET$TASK$TOKENS --- returns to the calling task a token for
either itself, its job, its job's parameter object, or the root
job, depending on which option is specified in the call.

• GET$PRIORITY --- returns the priority of the specified task.

3-5

I

CHAPTER 4. EXCHANGE MANAGEMENT

The iRMX 86 Nucleus provides exchanges to facilitate intertask
communication, synchronization, and mutual exclusion. When a task uses
an exchange, it is always acting either as a sender or as a receiver.
There are three kinds of exchanges: mailboxes, semaphores, and regions.
If the exchange is a mailbox, one task will send a token for an object to
the mailbox; another task will go to the mailbox to receive the object's
token. If the exchange is a semaphore, either a task is receiving units
from the semaphore, or it is sending units to the semaphore. Regions are
discussed in Chapter 9 of this manual.

MAILBOXES

The principal function of mailboxes is to support intertask
communication. A sending task uses a mailbox to pass the token for an
object to another task. For example, the object might be that of a
segment containing data needed by the receiving task.

MAILBOX QUEUES

NOTE

This chapter refers to the passing of
objects between jobs or between tasks.
In fact, tokens rather than objects are
passed.

Each mailbox has two queues, one for tasks that are waiting to receive
objects, the other for objects that have been sent by tasks but have not
yet been received. The Nucleus sees that waiting tasks receive objects
as soon as they are available, so, at any given time, at least one of the
mailbox's queues is empty.

MAILBOX MECHANICS

When a task sends a token to a mailbox, using the SEND$MESSAGE system
call, one of two things happens. If no tasks are waiting at the mailbox,
the object is placed at the rear of the object queue (which might be
empty). Object queues are processed in a first-in/first-out (FIFO)
manner, so the object remains in the queue until it makes its way to the
front and is given to a task.

4-1

I

I

EXCHANGE MANAGEMENT

If, on the other hand,thereare tasks waiting, the rece1v1ng task, which
has been aslee~, goes either from the asleep state to the ready state or
from the asleep-suspended state to the suspended state.

NOTE

If the receiving task has a higher
priority than the sending task, then
the receiving task preempts the sender
and becomes the running task.

When a task attempts to receive an object from a mailbox via the
RECEIVE$MESSAGE system call, and the object queue at the mailbox is not
empty, the task receives the object immediately and remains ready.
However, if there are no objects at the mailbox there are two
possibilities:

• If the task, in its request, elects to wait, it is placed in the
mailbox's task queue and is put to sleep. If the designated
waiting period elapses before the task gets an object, the task
is made ready and receives an E$TIME exceptional condition (see
Chapter 7).

• If the task is not willing to wait, it remains ready and receives
an E$TIME exceptional condition.

A task has the option, when using the SEND$MESSAGE system call, of
specifying that it wants acknowledgment from the receiving task. Thus,
any task using the RECEIVE$MESSAGE system call should check to see if an
acknowledgment has been requested. For details, see the description of
the RECEIVE$MESSAGE system call in Chapter 12.

As stated earlier, the object queue for a mailbox is processed in a
first-in/first-out manner. However, the task queue of a mailbox can be
either first-in/first-out or priority-based, with higher-priority tasks
toward the front of the queue. When a task creates a mailbox, the task
specifies which kind of task queue the mailbox is to have.

HIGH PERFORMANCE OBJECT QUEUE

Directly associated with each mailbox is a high performance object
queue. A task, when creating a mailbox with CREATE$MAILBOX, can specify
the number of objects this queue can hold, from 4 to 60. By using this
high performance object queue, the task can greatly improve the
performance of SEND$MESSAGE and RECEIVE$MESSAGE when these calls actually
get or place objects on the queue (it has no effect when tasks are
already waiting at the task queue). When more objects than the high
performance queue can hold are queued at a mailbox, the objects overflow
into a slower queue whose size is limited only by the amount of memory in
the job containing the mailbox.

4-2

EXCHANGE MANAGEMENT

The high performance queue obtains its high speed because the Nucleus
allocates memory space for it as soon as the mailbox is created. This
memory space is permanently allocated to the mailbox, even if no objects
are queued there. No space is allocated for the overflow portion of the
queue until the space is needed to contain objects. Thus the overflow
portion of the queue is slower.

The user must weigh performance against size when deciding how large to
make the high performance queue. Specifying a high performance queue
that is too large results in a waste of memory. Conversely, a smaller
queue th~t is constantly overflowing does not realize all possible
performance benefits. Appendix C lists the memory usage algorithm for
high performance queues.

SYSTEM CALLS FOR MAILBOXES

The following system calls manipulate mailboxes:

• CREATE$MAILBOX creates a mailbox and returns a token for it.

• DELETE $MAILBOX deletes a mailbox from the system.

• SEND$MESSAGE --- sends an object to a mailbox.

• RECEIVE $MESSAGE --- sends the calling task to a mailbox for an
object; the task has the option of waiting if no objects are
present.

·SEMAPHORES

A semaphore is a custodian of abstract units. A task uses a semaphore
either by requesting a specific number of units from it via the
RECEIVE$UNITS system call or by releasing a specific number of units to
it via the SEND$UNITS system call. Although these operations do not
support communication of data, they facilitate mutual exclusion,
synchronization, and resource allocation.

SEMAPHORE QUEUE

Semaphores have only one queue - a task queue. As is the case with
mailboxes, the task queue is either first-in/first-out or priority
based. The queueing scheme to be used is specified for each semaphore at
the time of its creation.

4-3

EXCHANGE MANAGEMENT

SEMAPHORE MECHANICS

A semaphore might simultaneously have both tasks in its queue and units
in its custody. The allocation scheme used by semaphores is the reason
for this. That scheme is best understood by imagining that the semaphore
is trying, at all times, to satisfy the request of the task which is at
the front of the semaphore's task queue. Only when it can provide as
many units as the task requested does it award units, and then it does so
immediately.

When a task uses the CREATE$SEMAPHORE system call, it must supply two
values. One value specifies the initial number of units to be in the new
semaphore's custody. The other value sets an upper limit on the number
of units that the semaphore is allowed to keep at any given time. The
lower limit is automatically zero.

When a task requests units from a semaphore via the RECEIVE$UNITS system
call, the request must be within the specified maximum for that
semaphore; otherwise, the request is invalid and causes an E$LIMIT
exceptional condition. If a task's request for units is valid and both

• the size of the request is within the semaphore's current supply
of units and

• the task is - or would be if queued - at the front of the
semaphore's task queue,

then the request is granted immediately and the task remains ready.
Otherwise, one of the following applies:

• The task, in its request, elects to wait. It is placed in the
semaphore's task queue and is put to sleep. If the designated
waiting period elapses before the task gets its requested units,
the task is made ready and receives an E$TIME exceptional
condition.

• The task is not willing to wait. It remains ready and receives
an E$TIME exceptional condition.

Suppose, for example, that two tasks, A and B, are waiting at a
semaphore, with A at the front of the queue. The semaphore has no units,
A wants 3 units, and B wants 1 unit. The following three separate cases
illustrate the mechanics of the semaphore:

• If the semaphore is sent 2 units, both A and B remain asleep in
the semaphore's queue. Note that B's modest request is not
satisfied because A is ahead of B in the queue.

• If, instead, the semaphore is sent 3 units, A receives the units
and awakens, while B remains asleep in the queue.

• If, instead, the semaphore is sent 4 units, A and B both receive
their requested units and are awakened. A is awakened first.

4-4

EXCHANGE MA~AGEMENT

When a task sends units to a semaphore, the task remains ready. Sending
units to a semaphore causes an E$LIMIT exceptional condition if it pushes
the semaphore's supply above the designated maximum. The number of units
in the custody of the semaphore remains unchanged.

NOTE

It is possible that a task sending
units to a semaphore can be preempted
by a higher priority task becoming
ready as a result of getting its
requested units.

SYSTEM CALLS FOR SEMAPHORES

The following system calls manipulate semaphores:

• CREATE$SEMAPHORE --- creates a semaphore and returns a token for
it.

• DELETE$SEMAPHORE --- deletes a semaphore from the system.

• SEND$UNITS --- adds a specific number of units to the supply of a
semaphore.

• RECEIVE$UNITS --- asks for a specific number of units from a
semaphore.

4-5

CHAPTER 5. MEMORY MANAGEMENT

Occasionally a task needs additional memory. By using Nucleus system
calls for allocating and deallocating memory, tasks can usually satisfy
their memory needs.

SEGMENTS

Allocated memory is treated as a collection of segments. A segment is a
contiguous sequence of 16-byte paragraphs, with its starting (base)
address evenly divisible by 16. The base address functions as the token
for the segment. The Nucleus maintains, as attributes, the base address,
the length in bytes of each segment, and a token for the containing job.

When a task needs a segment, it can request one of the desired length via
the CREATE$SEGMENT system call. If enough memory is available, the
Nucleus returns a token for the segment.

MEMORY POOLS

NOTE

The token for a segment can be used
as the base portion of a pointer to
the segment. Thus, the token can be
used as a base address (as when
writing a message in the segment) or
as an object reference (as when
sending the segment-with-message to a
mailbox). The PL/M-86 SELECTOR data
type is especially useful in
referring to the segment.

A memory pool is the memory available to a job and its descendents. Each
job has a memory pool. When a job is created, the memory for its pool is
allocated from the pool of its parent job. Thus, there is effectively a
tree-structured hierarchy of memory pools, identical in structure to the
hierarchy of jobs. Memory that a job borrows from its parent remains in
the pool of the parent as well as being in the pool of the child. Such
memory, however, is available for use only by tasks in the child job, and
not by tasks in the parent job. Figure 5-1 illustrates the relationship
between the job and memory hierarchies. In the figure, the pool sizes
shown are actually the maximum sizes of those pools.

5-1

I

I

I

MEMORY MANAGEMENT

JOB A

/~
JOB B JOB C

/
JOB 0

Figure 5-1. Comparison of Job and Memory Hierarchies

CONTROLLING POOL SIZE

Two parameters, pool$min and pool$max, of the CREATE$JOB system call,
dictate the range of sizes (in 16-byte paragraphs) of a new job's memory
pool. Initially, the pool size is equal to pool$min, the pool minimum.
Memory allocated to tasks in the job is still considered to be in the
job's pool. A task needing to know about its job's pool may use the
GET$POOL$ATTRIB system call to obtain pool$min, pool$max, the initial
pool size, the number of paragraphs currently available, and the number
of paragraphs currently allocated.

x-144

A task may alter the pool minimum attribute for its job by means of the
SET$POOL$MIN system call; pool$min must lie in the range from 0 to
pool$max, the pool maximum. If a subsequent call to SET$POOL$MIN
increases the pool's minimum size, and the current pool size is less than
the new minimum, no memory is borrowed immediately from the parent job.
Rather, memory is automatically borrowed as it is requested by tasks in
the job, until the new minimum is reached. At that time, the new value
of the pool minimum attribute becomes a lower bound for the job's pool
size.

5-2

MEMORY MANAGEMENT

MOVEMENT OF MEMORY BETWEEN JOBS

When a task tries to create a segment (or an object of any other type),
and the unallocated part of its job's pool is not sufficient to satisfy
the request, the Nucleus tries to borrow more memory from the job's
parent (and then, if necessary, from its parent's parent, and so on).
Such borrowing increases the pool size of the borrowing job and is thus
restricted by the pool maximum attribute of the borrowing job.

When a job is deleted, the memory in its pool becomes unallocated, and
access to it is given back to the parent job. The smallest contiguous
piece of memory that a job may borrow from its parent is a configuration
parameter. The subject of configuration is covered in the iRMX 86
CONFIGURATION GUIDE.

Observe that, if a job has equal pool minimum and pool maximum
attributes, then its pool is fixed at that common value. This means
that, once it has this amount, the job may not borrow memory from its
parent.

MEMORY ALLOCATION

The memory pool of a job consists of two classes of memory: allocated
and unallocated. Memory in a job is unallocated unless it has been
requested, either explicitly or implicitly, by tasks in the job or unless
it is on loan to a child job. A task's request for memory is explicit
when it calls the CREATE$SEGMENT system call. A request is implicit when
the task attempts to create any type of object other than a segment.

The Nucleus borrows small amounts of memory from a job's pool each time a
task in that job creates an object. This memory is needed for bookkeeping
purposes. When the object is deleted, the borrowed memory is returned to
the pool. Appendix C lists these memory requirements.

When a task no longer needs a segment, it can return the segment to the
unallocated part of the job's pool by using the DELETE$SEGMENT system
call. Figure 5-2 shows how memory "moves. II

5-3

I

I

(

MEMORY MANAGEMENT

PARENT JOB'S POOL

CREATE$- ~ DELETE$JOB CREATE$-
JOB SEGMENT

JI'DELETE$- ,
JOB

DEL ETESSEGMENT
ORROWING) (B

(BORROWING)

,,. -\
CREATE$SEGMENT

(NORMAL)
'" , ~) UNALLOCATED ALLOCATED

MEMORY DELETE$SEGMENT MEMORY

CHILD JOB'S POOL

Figure 5-2. Memory Movement Diagram

SYSTEM CALLS FOR SEGMENTS

The following system calls manipulate segments:

• CREATE$SEGMENT --- creates a segment and returns a token for it.

• DELETE$SEGMENT --- returns a segment to the pool from which it
was allocated.

• GET$SIZE --- returns the size, in bytes, of a segment.

• SET$POOL$MIN enables a task to change the pool minimum
attribute of its job's pool.

• GET$POOL$ATTRIB --- returns the following memory pool attributes
of the calling task's job: pool minimum, pool maximum, initial
size, number of allocated paragraphs, and number of available
paragraphs.

5-4

x-145

CHAPTER 6. OBJECT MANAGEMENT

A few iRMX 86 Nucleus system calls apply to all objects. These system
calls allow tasks to inquire about an object's type and to use object
directories.

INQUIRING ABOUT OBJECT TYPES

The GET$TYPE system call enables a task to present a token to the Nucleus
and get an object's type code in return. (Type codes for Nucleus objects
are listed in Appendix B.) This is useful, for example, when a task is
expecting to receive objects of several different types. With the
object's type code, the task can use the appropriate system calls for the
object.

USING OBJECT DIRECTORIES

Each job has its own object directory. An entry in an object directory
consists of a token for an object and the object name. The name contains
from one to twelve characters, where a character is a one-byte value
(from 0 to OFFH). Such a feature is often needed because some tasks
might only know some objects by their associated names.

By using the LOOKUP$OBJECT system call, a task can present the name of an
object to the Nucleus. The Nucleus consults the object directory
corresponding to the specified job and, if the object has been cataloged
there, returns the token.

NOTE

In object directories, upper and lower
case alphabetic characters are treated
as being different. The Nucleus sees
the name as just a string of bytes. It
does not interpret these bytes as ASCII
characters.

If the object has not yet been cataloged, and the task is not willing to
wait, the task remains ready and receives an E$TIME exceptional
condition. However, if the task is willing to wait, it is put to sleep;
there are two possibilities:

• If the designated waiting period elapses before the task gets its
requested token, the task is made ready and receives an E$TIME
exceptional condition (see Chapter 7).

6-1

OBJECT MANAGEMENT

• If the task gets its requested token within the designated
waiting period, it is made ready with no exceptional condition.
This case is possible because another task can, while the
requesting task is waiting, catalog the appropriate entry in the
specified object directory.

When a task wants to share an object with the other tasks in a job (not
necessarily its own job), it can use the CATALOG$OBJECT system call to
put the object in that job's object directory. Typically, this is done
by the creator of the object. Likewise, entries can be removed from a
directory by the UNCATALOG$OBJECT system call.

What is required, when using an object directory, is the token of the job
whose directory is to be used. The root job's object dire~tory, called
the root object directory, is special in that its token is easily
accessible. Any task can call the GET$TASK$TOKENS system call to obtain
the token of the root job.

SYSTEM CALLS FOR ANY OBJECTS

The following system calls manipulate objects:

• CATALOG$OBJECT --- places an object in an object directory.

• UNCATALOG$OBJECT --- removes an object from an object directory.

• LOOKUP$OBJECT --- accepts a cataloged name of an object and
returns a token for it.

• GET$TYPE --- accepts a token for an object and returns its type
code.

6-2

CHAPTER 7. EXCEPTIONAL CONDITION MANAGEMENT

When a task invokes an iRMX 86 system call, the results are sometimes not
what the task is trying to achieve. For example, suppose a task requests
memory that is not available or uses an invalid token as a parameter. In
such cases, the system must inform the task that an error occurred.
Whenever a task makes a system call, the means of communicating the
success or failure of the call is the condition code.

TYPES OF EXCEPTIONAL CONDITIONS

Table 7-1 is a list of Nucleus conditions and their codes. The condi
tions that represent failure are called exceptional and are classified as
programmer errors or environmental conditions. An exceptional condition
that is preventable by the calling task is a programmer error. In con
trast, exceptional conditions due to environmental circumstances of which
the task could have no awareness are considered environmental conditions.

Table 7-1 lists the possible conditions, with their associated numeric
codes and mnemonics. Values not used as numeric codes are reserved.

EXCEPTION HANDLERS

The iRMX 86 Nucleus supports exception handlers. Their purpose is to
deal with the errors that tasks encounter in making system calls. How an
exception handler deals with an exceptional condition is a matter of
programmer discretion. In general, a handler performs one of the
following actions:

• Logs the error.

• Deletes or suspends the task that erred.

• Ignores the error. If this option is taken, the system continues
as if no error had occurred. Continuing under such circumstances
is generally unwise, however.

An exception handler is written as a procedure with four parameters
passed in the following order:

• The condition code (WORD).

• A code (BYTE) indicating which parameter, if any, was faulty in
the call (1 for first, 2 for second, etc., 0 if none).

• A reserved (WORD) parameter.

• A second reserved (WORD) parameter.

7-1

EXCEPTIONAL CONDITION MANAGEMENT

ASSIGNING AN EXCEPTION HANDLER

A task may use the SET$EXCEPTION$HANDLER system call to declare its own
exception handler. Otherwise, the task inherits the exception handler of
its job. A job can receive its own exception handler at the time of its
creation. If it doesn't, the job inherits the system exception handler.
Thus, the Nucleus can always find an exception handler for the running
task.

A system exception handler is provided as part of the iRMX 86 Operating
System. Depending on a configuration option, it either deletes or
suspends any task on whose behalf it is invoked. The iRMX 86
CONFIGURATION GUIDE describes this configuration option.

Users wanting to write their own exception handlers should compile them
under the PL/M-86 LARGE control.

Any task can have the Debugger as its exception handler; see the
description in Chapter 12 of the SET$EXCEPTION$HANDLER system call for
instructions on how to dynamically make such an assignment.
Alternatively, the Debugger or any other routine can be made the system
exception handler statically; see the iRMX 86 CONFIGURATION GUIDE for
information on how to do this.

INVOKING AN EXCEPTION HANDLER

An exception handler normally receives control when an exceptional
condition occurs. However, when a task encounters an exceptional
condition, it need not always have control passed to its exception
handler. The factor that determines whether control passes to the
exception handler is the task's exception mode. This attribute has four
possible values, each of which specifies the circumstances under which
the exception handler is to get control in the event of an exceptional
condition. These circumstances are: .

• Programmer errors only.

• Environmental conditions only.

• All exceptional conditions.

• No exceptional conditions.

When the Nucleus detects that a task has caused an exceptional condition
in making a system call, it compares the type of the condition with the
calling task's exception mode. If a transfer of control is indicated,
the Nucleus passes control to the exception handler on behalf of the
task. The exception handler then deals with the problem, after which
control returns to the task, unless the exception handler deleted the
task. While the exception handler is executing, the errant task is still
regarded by the Nucleus to be the running task.

7-2

EXCEPTIONAL CONDITION MANAGEMENT

When a task is created, its exception mode is set to its job's default
exception mode. The task can change its exception handler and exception
mode attributes by using the SET$EXCEPTION$HANDLER system call.

HANDLING EXCEPTIONS IN-LINE

If a task's exception mode attribute does not direct the Nucleus to
transfer control to the task's exception handler, the responsibility for
dealing with an error falls upon the task.

Each system call has as its last parameter a POINTER to a WORD. After a
system call, the Nucleus returns the resulting condition code to this
WORD. By checking this WORD after each system call, a task can ascertain
whether the call was successful. (See Table 7-1 for condition codes.)
If the call was not successful, the task can learn which exceptional
condition it caused. This information can sometimes enable the task to
recover. In other cases more information is needed.

If a system call returns an exception code to indicate an unsuccessful
call, all other output parameters of that system call are undefined.

NOTE

If an exceptional condition is caused
by an invalid parameter, an exception
handler, which is passed the parameter
number of the first invalid parameter,
should handle the condition.

7-3

CATEGORY/
MNEMONIC

Normal

E$OK

Exceptional

En vironmental
Conditions

E$TIME

E$MEM

E$LIMIT

E$CONTEXT

E$EXIST

E$STATE

ENOTCON
FIGURED

E$INTER
RUPT$SAT
URATION

E$INTER
RUPT$OV
ERFLOW

EXCEPTIONAL CONDITION MANAGEMENT

Table 7-1. Conditions and Their Codes

MEANING

The most recent system call was
successful.

A time limit (possibly a limit of
zero time) expired without a task's
request being satisfied.

There is not sufficient memory avail
able to satisfy a task's request.

A task attempted an operation which,
if it had been successful, would have
violated a Nucleus-enforced limit.

A system call was issued out of context.
or the Nucleus was asked to perform an
impossible operation.

A token parameter has a value which is
not the token of an existing object.

A task attempted an operation which
would have caused an impossible
transition of a task's state.

The system call being attempted is not
not part of the present software
configuration.

An interrupt task has accumulated the
maximum allowable amount of SIGNAL$IN
TERRUPT requests.

An interrupt task has accumulated more
than the maximum allowable amount of
SIGNAL$INTERRUPT requests.

7-4

NUMERIC CODE

HEX DECIMAL

OR o

1H 1

2H 2

4H 4

SH 5

6H 6

7H 7

8H 8

9H 9

OAH 10

EXCEPTIONAL CONDITION Mfu~AGEMENT

Table 7-1. Conditions and Their Codes (continued)

NUMERIC CODE
CATEGORY/
MNEMONIC MEANING HEX

Programmer
Errors

E$ZERO$- A task attempted to divide by zero.
DIVIDE 8000H

E$OVERFLOW An overflow interrupt occurred. 8001H

E$TYPE A token parameter referred to an
existing object that is not of the
required type. 8002H

E$PARAM A parameter which is neither a token
nor an offset has an illegal value. 8004H

EBADCALL A task wrote over the interface
library or attempted a restricted
software interrupt. 8005H

E$ARRAY $BOUNDS Hardware or Language has detected an
array overflow. 8006H

E $NDP $ERROR An 8087 Numeric Processor Extension
error has been detected; Operating
System extensions can return the
status of the 8087 to the exception
handler. 8007H

E$CHECK$- Language has detected a software
EXCEPTION interrupt type 17. 8017H

SYSTEM CALLS FOR EXCEPTION HANDLERS

The following system calls manipulate exception handlers:

• SET$EXCEPTION$HANDLER --- sets the exception handler and
exception mode attributes of the calling task.

DECIMAL

32768

32769

32770

32772

32773

32774

32775

32791

• GET$EXCEPTION$HANDLER --- returns to the calling task the current
values of its exception handler and exception mode attributes.

7-5

CHAPTER 8. INTERRUPT MANAGEMENT

Interrupts and interrupt processing are central to real-time computing.
External events occur asynchronously with respect to the internal
workings of an iRMX 86 application system. An interrupt, signalling the
occurrence of an external event, triggers an implicit "call" to a
location specified in a section of memory known as the interrupt vector
table. From there, control is redirected to an interrupt procedure
called an interrupt handler. At this point, one of two things happens.
If handling the interrupt takes little time and requires no system calls,
other than certain interrupt-related system calls, the interrupt handler
processes the interrupt. Otherwise, the interrupt handler invokes an
interrupt task which deals with the interrupt. After the interrupt has
been serviced, control returns to the ready application task with highest
priority.

INTERRUPT MECHANISMS

There are three major concepts in interrupt processing: the interrupt
vector table, interrupt levels, and disabling interrupt levels.

THE INTERRUPT VECTOR TABLE

The interrupt vector table is composed of 256 vectors. The vectors are
numbered 0 to 255. A number of the interrupt vectors are reserved and
therefore are not available to be defined by user tasks. The vectors are
allocated as follows:

o
1
2
3

4
5

6-55
56-63
64-127

128-183
184-223
224-255

divide by zero
single step (used by the iSBC 957A/B package)
non-maskable interrupt (used by the iSBC 957A/B package)
one byte interrupt instruction (used by the iRMX 86

Debugger and the iSBC 957A/B package)
interrupt on overflow (used by the hardware)
runtime array bounds error (used by compilers and

assembler)
reserved
reserved for external interrupts (PIC master levels)
reserved for external interrupts (PIC slave levels)
unused (available to users)
reserved
described in Chapter 10

8-1

I

I

I

I

I

INTERRUPT MANAGEMENT

INTERRUPT LEVELS

External interrupts are funneled through hardware interrupt controllers
(such as the 8259A PIC or 80130 component). An individual master PIC can
manage interrupts from as many as eight external sources. However, the
iRMX 86 operating system also supports an expanded (or cascaded)
environment in which up to seven input lines of one master PIC are
connected to slave 8259A PICs. The eighth input line from the master PIC
must be connected directly to the system clock. Since each of the slaves
can manage eight interrupts, this allows the operating system to manage
interrupts from as many as 56 external sources plus the system clock.

The interrupt lines of the master PIC and the interrupt lines of the
slave 8259A PICs are associated with interrupt levels as shown in Figure
8-1. The master interrupt levels, numbered MO through M7, correspond to
interrupt vectors 56 through 63, respectively. The slave interrupt
levels, numbered xO to x7 (where x ranges from 0 to 7) correspond to
interrupt vectors 64 through 127, respectively.

There are three restrictions you must obey when assigning interrupt
levels to external sources. They are:

• You must assign the system clock to a master interrupt level.
The level number is a configuration option and is described in
the iRMX 86 CONFIGURATION GUIDE.

• When you attach an interrupting device to a level on the master
PIC, you cannot also attach a slave PIC to the same level. For
example, suppose that you physically attach the device to level
M3. This means that Entry 59 (decimal) of the interrupt vector
table must contain the address of the interrupt handler for the
device. It also means that Entries 88 through 95 (decimal) of
the interrupt vector table (the slave level entries that
correspond to master level M3) will not be used.

• You cannot connect a slave PIC to master level MO if an
interrupting device connects directly to any other master level.
Thus, if you assign the system clock to an interrupt level other
than MO, you can connect at most six slave PICs to your master
PIC. If you assign the system clock to level MO, you can connect
seven slave PICs.

If your system is to include a 8087 Numeric Processor Extension, connect
it to master level zero. In these cases, the system clock should be
assigned to level M2 (this is the factory setting on most iAPX 86-based
boards).

8-2

INTERRUPT MANAGEMENT

MASTER PIC

MO
M1
M2

M3
M4
M5

M6
M7

_/

/
/
I
I
I
\
\
I
J

J
/

/

/-
/

SLAVE 1
8259A PIC

LEVELS
10·17

SLAVE 2
8259A PIC

LEVELS
30·37

•
•
•

SLAVE 6
8259A PIC

LEVELS
70·77

X-088

Figure 8-1. Cascaded Interrupt Levels

8-3

I

INTERRUPT MANAGEMENT

DISABLING INTERRUPTS

Occasionally you may want to prevent interrupt signals from causing an
immediate interrupt. For example, it is desirable to prevent low
priority interrupts from interfering with the servicing of a high
priority interrupt. In the iRMX 86 Operating System, each interrupt
level can be disabled. In some circumstances, described later, the
Nucleus disables levels. Tasks can also disable and enable levels by
means of the DISABLE and ENABLE system calls. The master level that you
reserve for the system clock should not be disabled or enabled.

If an interrupt signal arrives at a level that is enabled, the Operating
System transfers control to the address contained in the interrupt vector
table entry that corresponds to the level on which the interrupt
occurred. Otherwise, the level is disabled and the interrupt signal is
blocked until the level is enabled, at which time the signal is
recognized by the CPU. However, if the signal is no longer emanating
from its source, it is not recognized and the interrupt is not handled.

There are four ways in which an interrupt level can be disabled.

• A task can explicitly disable a specific interrupt level by
invoking the DISABLE system call. Later, a task can re-enable
the level by invoking the ENABLE system call.

• Whenever a task invokes the SET$INTERRUPT system call, the task
must specify a particular interrupt level. After the Operating
System puts the start address of the interrupt handler into the
appropriate entry of the interrupt vector table, the Operating
System automatically enables the interrupt level.

When a task invokes the SET$INTERRUPT system call to designate
itself as the interrupt task for a particular interrupt level,
the task can specify a limit to the number of interrupts that it
will queue. If enough interrupts occur on the task's interrupt
level, the queue can become full. Whenever this happens, the
Operating System automatically disables the interrupt level until
the queue ceases to be full.

• Whenever a task invokes the RESET$INTERRUPT system call to cancel
the assignment of a particular interrupt handler to a particular
interrupt level, the Operating System automatically disables the
interrupt level.

• In order to provide preemptive priority-based scheduling, the
Operating System can automatically disable or re-enable some
interrupt levels whenever a task begins running, depending on the
priority of the new running task and the priority of the previous
running task. This allows high-priority tasks to run more
quickly, without interrupts from lower-priority external
devices. Table 8-1 shows the correlation between the levels
disabled and the priority of the running task.

8-4

INTERRUPT MANAGEMENT

NOTE

A task should never use the PL/M-86
DISABLE statement or the ASM86 eLI
(clear interrupt-enable flag)
instruction to disable Operating System
interrupts. The Nucleus does not
guarantee that any interrupt level will
still be disabled after the task
invokes a Nucleus system call.

Table 8-1. Interrupt Levels Disabled for Running Task

Task Priority Disabled Levels

Slave I.e vels Master Levels

0-2 00 - 77 MO - M7
3-4 01 - 77 Ml - M7
5-6 02 - 77 Ml - M7
7-8 03 - 77 Ml - M7
9-10 04 - 77 Ml - M7

11-12 05 - 77 Ml - M7
13-14 06 - 77 Ml - M7
15-16 07 - 77 Ml - M7
17-18 10 - 77 Ml - M7
19-20 11 - 77 M2 - M7
21-22 12 - 77 M2 - M7
23-24 13 - 77 M2 - M7
25-26 14 - 77 M2 - M7
27-28 15 - 77 M2 - M7
29-30 16 - 77 M2 - M7
31-32 17 - 77 M2 - M7
33-34 20 - 77 M2 - M7
35-36 21 - 77 M3 - M7
37-38 22 - 77 M3 - M7
39-40 23 - 77 M3 - M7
41-42 24 - 77 M3 - M7
43-44 25 - 77 M3 - M7
45-46 26 - 77 M3 - M7
47-48 27 - 77 M3 - M7
49-50 30 - 77 M3 - M7
51-52 31 - 77 M4 - M7
53-54 32 - 77 M4 - M7
55-56 33 - 77 M4 - M7
57-58 34 - 77 M4 - M7
59-60 35 - 77 M4 - M7
61-62 36 - 77 M4 - M7
63-64 37 - 77 M4 - M7
65-66 40 - 77 M4 - M7

8-5

I

INTERRUPT MANAGEMENT

Table 8-1. Interrupt Levels Disabled for Running Task (continued)

Task Priority Disabled Levels

Slave Levels Master Levels

67-68 41 - 77 M5 - M7
69-70 42 - 77 M5 - M7
71-72 43 - 77 M5 - M7
73-74 44 - 77 t15 - M7
75-76 45 - 77 M5 - M7
77-78 46 - 77 M5 - ~17
79-80 47 - 77 t15 - M7
81-82 50 - 77 M5 - M7
83-84 51 - 77 M6 - M7
85-86 52 - 77 M6 - M7
87-88 53 - 77 M6 - M7
89-90 54 - 77 M6 - ~17
91-92 55 - 77 M6 - M7
93-94 56 - 77 M6 - M7
95-96 57 - 77 M6 - M7
97-98 60 - 77 M6 - M7
99-100 61 - 77 M7

101-102 62 - 77 M7
103-104 63 - 77 M7
105-106 64 - 77 M7
107-108 65 - 77 M7
109-110 66 - 77 M7
111-112 67 - 77 M7
113-114 70 - 77 M7
115-116 71 - 77 None
117-118 72 - 77 None
119-120 73 - 77 None
121-122 74 - 77 None
123-124 75 - 77 None
125-126 76 - 77 None
127-128 77 None
129-255 None None

INTERRUPT HANDLERS AND INTERRUPT TASKS

Whether an interrupt handler services an interrupt level by itself or
invokes an interrupt task to service the interrupt depends on two factors:

• the kinds of system calls needed

• the amount of time required

8-6

INTERRUPT MANAGEMENT

Regarding the first factor, interrupt handlers can make only the
ENTER$INTERRUPT, EXIT$INTERRUPT, GET$LEVEL, DISABLE and SIGNAL$INTERRUPT
system calls. If the handler needs other system calls in order to
service the interrupt, it must invoke an interrupt task.

Regarding the second factor, an interrupt handler should always invoke an
interrupt task unless the handler can service interrupts quickly. This
is because an interrupt signal disables all interrupts, and they remain
disabled until the interrupt handler either services the interrupt or
invokes an interrupt task. Invoking an interrupt task allows higher
priority interrupts (and in some cases, the same priority interrupts) to
be accepted.

SETTING UP AN INTERRUPT HANDLER

Interrupt handlers are generally written as PL/M-86 interrupt procedures,
but can be written in assembly language. If an interrupt handler is
written in assembly language, it must save and restore all register
values, as noted later.

The SET$INTERRUPT system call binds an interrupt handler and, optionally,
an interrupt task to an interrupt level. It does this as follows:

• One of the SET$INTERRUPT parameters, the interrupt$handler
parameter, when used in conjunction with the PL/M-86 built-in
function INTERRUPT$PTR, specifies the starting address of the
interrupt handler. SET$INTERRUPT binds the handler to a level
by placing this starting address into the interrupt vector table
at the entry that corresponds to the level. When an interrupt
of that level occurs, control automatically transfers through
the vector table to the handler.

• Another parameter in SET$INTERRUPT, the interrupt$task$flag
parameter, determines whether an interrupt task is associated
with the level. If the interrupt$task$flag parameter is set to
zero, there is no interrupt task for the specified level.
Otherwise, the calling task becomes the interrupt task for the
level.

Any desired value can be specified as the data segment base address for
an interrupt handler by means of the interrupt$handler$ds parameter in
SET$INTERRUPT. The interrupt handler can later cause this value to be
loaded into the DS register by calling ENTER$INTERRUPT. This feature
allows an interrupt handler and an interrupt task to share data areas.

When an iRMX 86 application system starts up, all interrupt levels are
disabled. When SET$INTERRUPT binds an interrupt handler but not an
interrupt task to a level, the level is enabled. If, instead, there is
an interrupt task, the level is not enabled until that task makes a
WAIT$INTERRUPT system call (described later.) An interrupt task should
not enable its own level before making its first call to WAIT$INTERRUPT.

8-7

I

INTERRUPT MANAGEMENT

A RESET$INTERRUPT system call cancels the bond between an interrupt level
and its interrupt handler. The call also disables the specified level.
If there is an interrupt task for the level, RESET$INTERRUPT deletes it.
DELETE$TASK does not delete interrupt tasks.

USING AN INTERRUPT HANDLER

If an interrupt handler is to service interrupts for a given level
without invoking an interrupt task, the handler must assume one of two
forms, depending on whether it needs to have the Nucleus set up its data
segment base address.

If the interrupt handler does not need to access the data segment or if
it contains its data segment base address in its code, then it should
perform the following functions in the following order:

1. If in assembly language, save all register contents

2. Service the interrupt

3. Call EXIT$INTERRUPT

4. If in assembly language, restore all register contents

5. Return

The call to EXIT$INTERRUPT sends an end-of-interrupt signal to the
hardware.

In contrast, if the interrupt handler wants the Nucleus to load a data
segment base address (as specified in an earlier call to SET$INTERRUPT)
into the DS register, then it should perform the following functions in
the following order:

1. If in assembly language, save all register contents

2. Optionally, do some interrupt servicing

3. Call ENTER$INTERRUPT

4. Complete interrupt servicing

5. Call EXIT$INTERRUPT

6. If in assembly language, restore all register contents

7. Return

The call to ENTER$INTERRUPT tells the Nucleus to load the interrupt
handler's data segment base address into the DS register. Because
PL/M-86 makes use of the data segment, as specified by the contents of
the DS register, loading a new value into this register serves to protect
the data segment of the interrupted task.

8-8

INTERRUPT MANAGEMENT

USING AN INTERRUPT TASK

If there is both an interrupt handler and an interrupt task associated
with a level, the interrupt handler invokes the interrupt task by making
a SIGNAL$INTERRUPT system call. If a level has only an interrupt
handler, however, the handler may not call SIGNAL$INTERRUPT.

If an interrupt handler invokes an interrupt task, the handler must
perform the following functions in the following order:

1. If in assembly language, save the register contents.

2. Optionally, do some servicing.

3. Optionally, call ENTERINTERRUPT.

4. Optionally, begin servicing the interrupt without system
calls.

5. Optionally, call EXIT$INTERRUPT
or call SIGNAL$INTERRUPT.

6. Optionally, do some servicing.

7. If in assembly language, restore the register contents.

8. Return

The call to SIGNAL$INTERRUPT starts up the interrupt task, enables higher
(and possibly equal) priority interrupts, and sends an End-of-Interrupt
signal to the interrupt controller.

If used, the call to ENTER$INTERRUPT sets up a new DS value for the
interrupt handler. If you want the interrupt handler to have the same DS
value as that used by the interrupt task, so the handler can pass data to
the task, follow the advice given in the description of the
interrupt$handler$ds parameter of SET$INTERRUPT in Chapter 12.

An interrupt handler uses the resources of the interrupted task. The
interrupt task, however, like any other task, has its own resources.

An interrupt task must perform the following functions in the following
order, although the first two functions may be interchanged:

1. Call SET$INTERRUPT.
2. Do initialization.
3. Do forever;

Call WAIT$INTERRUPT.
Service the interrupt (system calls allowed).

4. End;

An interrupt task, once initialized, is always in one of two modes.
Either it is servicing an interrupt or it is waiting for notification of
an interrupt.

8-9

I

I

I

I

INTERRUPT MANAGEMENT

When a task becomes an interrupt task by calling SET$INTERRUPT, the
Nucleus assigns a priority to it, according to the level that the task is
to service. Table 8-2 shows the relationship between levels and
interrupt task priorities.

LEVEL

MO
M1
M2
M3
M4
M5
M6
M7
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

NOTE

The priority that the Nucleus assigns
to an interrupt task might exceed the
maximum priority attribute of the job
that contains that task. If this
occurs, you get an exceptional
condition. You should make sure this
problem doesn't occur by creating the
job with an appropriately high maximum
priority attribute.

Table 8-2. The Relationship Between External Levels and
Internal Task Priorities

INTERRUPT INTERRUPT INTERRUPT
TASK TASK TASK
PRIORITY LEVEL PRIORITY LEVEL PRIORITY

18 20 36 50 84
34 21 38 51 86
50 22 40 52 88
66 23 42 53 90
82 24 44 54 92
98 25 46 55 94

114 26 48 56 96
130 27 50 57 98

4 30 52 60 100
6 31 54 61 102
8 32 56 62 104

10 33 58 63 106
12 34 60 64 108
14 35 62 65 110
16 36 64 66 112
18 37 66 67 114
20 40 68 70 116
22 41 70 71 118
24 42 72 72 120
26 43 74 73 122
28 44 76 74 124
30 45 78 75 126
32 46 80 76 128
34 47 82 77 130

Figure 8-2 illustrates the two interrupt servicing patterns and their
relationships.

8-10

INTERRUPT MANAGEMENT

INTERRUPT OCCURS AND
INTERRUPT HANDLER

GETS CONTROL

CONTROL RETURNS TO AN
APPLICATION TASK

Figure 8-2. Flow Chart of Interrupt Handling

NOTE

Because the automatic filling of the
interrupt vector is overridden by the
Nucleus, the NOINTVECTOR control should
be used when compiling the interrupt
handler.

x-146

Note that an interrupt handler might call an interrupt task sometimes yet
not call it at other times. An example is an interrupt handler that puts
characters entered at a terminal into a buffer. Whenever a character is
received, the interrupt handler is invoked and puts the character in the
line buffer. If the characater is an end-of-line character, or if the
character count maintained by the interrupt handler indicates that the
buffer is full, the interrupt handler calls its interrupt task to process
the contents of the buffer. Otherwise, the interrupt handler calls
EXIT$INTERRUPT and then returns control to application tasks. The next
section discusses this kind of interrupt servicing in more detail.

8-11

I

INTERRUPT MANAGEMENT

USING MULTIPLE BUFFERS TO SERVICE INTERRUPTS

In certain instances, as illustrated in Figure 8-2, both an interrupt
handler and an interrupt task are involved in servicing interrupts. The
handler performs the simple, less time-consuming functions and then
signals an interrupt task to perform more complicated functions. In doing
this, the handler and the task usually exchange information by sharing
data buffers. The handler places information into the buffers and the
task uses that information. The number of buffers used determines when
and how interrupts should be disabled.

Single Buffer Example

An example of a single buffer interrupt service mechanism is an interrupt
handler that reads data from an external device character by character and
places the characters into a buffer. When the buffer gets full, the
handler calls SIGNAL$INTERRUPT to signal an interrupt task to further
process the data. Since there is only one buffer for the data, the
interrupt level associated with the interrupt task must be disabled while
the task is processing. The Operating System, knowing (as a result of
your task calling SET$INTERRUPT) that there is only one buffer,
automatically disables the interrupt level when the handler invokes the
SIGNAL$INTERRUPT system call. This prevents the interrupt handler from
destroying the contents of the buffer by continuing to place data into an
already full buffer. Figure 8-3 illustrates this situation.

Many users require only single buffering in their interrupt servicing
routines. These users do not have to read the remaining paragraphs in
this section. They should just ensure that their interrupt tasks specify
a value of 1 for the interrupt$task$flag parameter in the call to
SET$INTERRUPT. However, users who require multiple buffering for their
interrupt servicing routines should continue reading this section.

CD PLACES DATA
INTO BUFFER

@WHEN BUFFER IS FULL,
HANDLER CALLS

SIGNAL$INTERRUPT

@UPON COMPLETION,
TASK CALLS

WAIT$INTERRUPT

TO START TASK

Figure 8-3. Single-Buffer Interrupt Servicing

8-12

x-147

INTERRUPT MANAGEMENT

Multiple Buffer Example

Now suppose that the interrupt handler and the interrupt task provide the
same functions as in the first example, but use multiple buffers. In
this case, the interrupt level associated with the task does not always
have to be disabled while the task runs. Instead, the task can process a
full buffer while the handler continues to accept interrupts. When the
handler fills a buffer, it calls SIGNAL$INTERRUPT to start the interrupt
task, as in the first example. However, because there are multiple
buffers, the interrupt level is not disabled. Instead, the handler
continues to accept interrupts, placing the data into the next empty
buffer.

While this is going on, the interrupt task processes the full buffer.
When the task completes the processing, it calls WAIT$INTERRUPT, to
indicate that it is ready to accept another SIGNAL$INTERRUPT request
(another full buffer) and to indicate that the buffer it just finished
processing is available for reuse by the handler. Figure 8-4 illustrates
this multiple buffer situation.

BUFFERS

~/
/

~/

, ,
I \

I \ INTERRUPT
j INTERRUPT I / SIGNALS
~ TASK , \ I" ,/ --'" '\

\~

_-1
,/ " I ,

I \
© CALLS I INTERRUPT I ® PROCESSES

WAIT$INTERRUPT \ TASK , FULL BUFFER

TFUOLW
L

ABIUTFFFOERR NEXT \ I
".. ,/ r -~- \ '--~

x-157

Figure 8-4. Multiple-Buffer Interrupt Servicing

8-13

INTERRUPT MANAGEMENT

Because the handler and the task are running somewhat indepe~dently, the
handler may fill a buffer and call SIGNAL$INTERRUPT before the task has
finished processing the previous buffer. To prevent the SIGNAL$INTERRUPT
request from becoming lost, the operating system maintains a count of
these requests. Each time the handler calls SIGNAL$INTERRUPT, the count
is incremented by one. Each time the task calls WAIT$INTERRUPT, the
count is decremented by one.

If the count is still greater than zero after the interrupt task calls
WAIT$INTERRUPT, the task does not wait for the next SIGNAL$INTERRUPT to
occur before resuming execution. Instead, it realizes that outstanding
requests exist and immediately starts processing the next request (the
next full buffer). Thus, with proper tuning, neither the interrupt task
nor the interrupt handler has to wait for the other. The interrupt
handler can continually respond to interrupts without having the task
disable the interrupt level. The interrupt task can continually process
full buffers of data without waiting for the handler to call
SIGNAL$INTERRUPT.

Specifying the Count Limit

The interrupt task, when it initially calls SET$INTERRUPT, puts a limit
on the maximum number of outstanding SIGNAL$INTERRUPT requests. The
interrupt$task$flag parameter specifies this limit. When the interrupt
handler calls SIGNAL$INTERRUPT, causing the count to be incremented to
the limit, two things happen. They are:

• The interrupt level is disabled, preventing the handler from
accepting further interrupts until the interrupt task makes its
next WAIT$INTERRUPT call.

• The E$INTERRUPT$SATURATION condition code is returned by
SIGNAL$INTERRUPT to the handler, to indicate that the limit has
been reached. This is an informative message only.

When the task calls WAIT$INTERRUPT and decrements the count below the
limit, the interrupt level is enabled, allowing the handler to resume
accepting interrupts.

The task should always set the limit equal to the number of buffers that
the task and handler use. If the task sets the limit larger than the
number of buffers, the handler will accept interrupts when no buffers are
available and data will be lost. If the task sets the limit smaller than
the number of buffers, there will always be empty buffers and space will
be wasted.

For example, if one buffer is used, the task should set the limit to
one. In this case, the interrupt level is always disabled while the task
is processing the buffer. If two buffers are used, the task should set
the limit to two. Then, the handler can fill one buffer while the task
is processing the other. Additional buffers require correspondingly
higher limits. However, if the task sets the limit to zero, the
interrupt handler operates without an interrupt task.

8-14

INTERRUPT MANAGEMENT

NOTE

When an interrupt task sets the count
limit to one, SIGNAL$INTERRUPT will
not return the E$INTERRUPT$SATURATION
condition code.

Table 8-3 illustrates the situation described in this section. It shows
the actions of the handler and the task illustrated in Figure 8-3. The
table is broken up into three parts: actions of the interrupt handler,
actions of the interrupt task, and SIGNAL$INTERRUPT count. The count
limit is set to two. The table shows the actions of both the handler and
the task through time, and the change in value of the count.

Table 8-3 documents two extreme conditions, labeled "A" and "B". At
position "A", the interrupt handler fills its last available buffer and
calls SIGNAL$INTERRUPT to notify the task. However, at this point the
task is not finished processing the first buffer. The count is
incremented to the limit and interrupts are disabled until the task
finishes with the first buffer and calls WAIT$INTERRUPT.

At position "B", the opposite case exists. The task finishes processing
its buffer and calls WAIT$INTERRUPT. However, the handler has not
processed enough interrupts to fill a buffer. The task must wait until
the handler calls SIGNAL$INTERRUPT.

Table 8-3. Handler and Task Interraction Through Time

SIGNAL$
Interrupt Interrupt INTERRUPT
Handler Task Count

Time Call SET$INTERRUPT to estab- 0
lish handler and task for
level, setting count limit to 2.

Call WAIT$INTERRUPT to wait 0
for first request from handler.

Intrpt
~ Process interrupt,

start filling first
buffer.

Intrpt
~ Process interrupt,

continue filling
first buffer.

· · ·
8-15

INTERRUPT MANAGEMENT

Ta ble 8-3. Handler and Task Interraction Through Time (continued)

Intrpt

Interrupt
Handler

~ Process interrupt.
Buffer is full. Call

Interrupt
Task

SIGNAL$
INTERRUPT

Count

S IGNAL$INTERRUPT. ~ Start processing first full 1
buffer.

Intrpt
~ Process interrupt.

Intrpt

Start filling next
buffer.

Process interrupt.
Buffer is full. Call
S IGNAL$INTERRUPT • ~
Count is at limit.
Interrupt level is
disabled.

Call WAIT$INTERRUPT. Task
starts processing next
full buffer immediately
and returns empty buffer.
Interrupt level is enabled.

~ Process interrupt.

Intrpt
~

Start filling next
buffer.

Process interrupt.
Buffer is full. Call

Call WAIT$INTERRUPT. No full
buffers are available. Task
waits for next request.

SIGNAL$INTERRUPT. ~ Start processing
next full buffer.

8-16

2

1

o

1

INTERRUPT MANAGEMENT

Enabling Interrupt Levels From Within a Task

In certain cases, an interrupt task may finish with a buffer of data
before it finishes its actual processing. An example of this is a task
that processes a buffer and then waits at a mailbox, possibly for a
message from a user terminal, before calling WAIT$INTERRUPT. If there
are other buffers of data available to the handler (i.e. the count of
outstanding SIGNAL$INTERRUPT requests has not reached the limit), this
does not present a problem. The handler can continue accepting
interrrupts and filling empty buffers. However, if the interrupt task is
processing the last available buffer (i.e. the count limit has been
reached), the interrupt handler cannot accept further interrupts, because
the interrupt level is disabled. This may be an undesirable situation if
the interrupt task takes a long time before calling WAIT$INTERRUPT.

To prevent this situation, the interrupt task can invoke the ENABLE
system call immediately after it finishes with the buffer, to enable its
associated interrupt level. This means that while the task engages in
its time-consuming activities the interrupt handler can accept further
interrupts and place the data into the buffer just released by the task.

However, if the interrupt handler fills the buffer and calls
SIGNAL$INTERRUPT before the task calls WAIT$INTERRUPT, the following
things occur:

• The count of outstanding SIGNAL$INTERRUPT requests is
incremented, causing it to exceed the user-specified limit.

• An exception code, E$INTERRUPT$OVERFLOW, is returned to the
interrupt handler to indicate this overflow.

• The interrupt level is again disabled. It cannot be enabled
again until the count falls to or below the limit.

If the interrupt task calls ENABLE when the interrupt level is enabled or
when the count is equal to the limit, nothing happens and no exception
code is returned. However, if the interrupt task tries to enable the
interrupt level when the count is greater than the limit, the ENABLE
system call returns the E$CONTEXT exception code.

If a task other than an interrupt task tries to enable the level, one of
three things can happen:

• If the level is already enabled, the ENABLE system call returns
the E$CONTEXT condition code.

• If the non-interrupt task tries to enable the level (presumably
following a DISABLE) and the interrupt task is not running (that
is, the interrupt task has called WAIT$INTERRUPT and is waiting
for a service request), the level is enabled immediately.

• If the interrupt task is running, the enable does not take effect
until the interrupt task next invokes WAIT$INTERRUPT.

8-17

I

INTERRUPT MANAGEMENT

HANDLING SPURIOUS INTERRUPTS

When a PIC receives a signal from an interrupting device, it informs the
Operating System of the interrupt level. If the interrupting device
sends interrupt signals of short duration (that is, the input line is
active for very short periods), the interrupt signal might be gone when
the PIC tries to determine the interrupt level. If this happens, the PIC
cannot determine the interrupt level and thus treats the interrupt as a
spurious interrupt.

Each time the PIC detects a spurious interrupt, it responds as if a level
7 interrupt had occurred. So, if a master PIC detects a spurious
interrupt, it responds as if the interrupt occurred on level M7. If a
slave PIC detects a spurious interrupt (for example, a slave connected to
master level M3), it responds as if the corresponding level 7 interrupt
occurred (in this case, level 37).

A spurious interrupt indicates a problem; the PIC detected an interrupt
signal but was unable to determine the level. Every application system
should provide some means of isolating spurious interrupts so as to
prevent further damage (such as falsely responding to a level 7
interrupt). This involves judiciously selecting interrupt levels and
adding code to all level 7 interrupt handlers (handlers that service
master level M7 or slave levels x7, where x ranges from 0 through 7).
Once the spurious interrupt has been isolated, the level 7 interrupt
handler can do one of two things:

• It can attempt to correct the problem.

• It can ignore the spurious interrupt and resume system processing.

In either case, before the handler returns control it should call
EXIT$INTERRUPT to clear the hardware.

The following sections describe several options for isolating spurious
interrupts.

CALLING GET$LEVEL

One way that a level 7 interrupt handler can check for spurious
interrupts is by invoking the GET$LEVEL system call as soon as the
handler starts running. GET$LEVEL returns the level of the highest
priority interrupt which a handler has started but not yet finished
processing. If the level returned is not the level associated with the
interrupt handler, the interrupt is spurious.

This method is simple to implement, but it is a viable solution only for
those handlers that can afford to spend the time required to execute
GET$LEVEL. Some handlers may have speed requirements that prohibit the
use of GET$LEVEL.

8-18

INTERRUPT MANAGEMENT

JUDICIOUS SELECTION OF INTERRUPT LEVELS

Another way to isolate spurious interrupts is to avoid connecting devices
to level 7 interrupts (master level M7 and slave levels x7, where x
ranges from 0 to 7). If you have no devices connected to these levels,
and thus no handlers servicing them, spurious interrupts will not affect
your system operation. Instead, each time a spurious interrupt occurs
the PIC reacts as if a level 7 interrupt had occurred, sending control to
interrupt vector table entry associated with the level 7 interrupt. But,
because no handler is associate with that level, the vector table entry
contains a pointer to the default handler, which returns control to the
highest priority ready task.

EXAMINING THE IN-SERVICE REGISTER

Another way that a level 7 interrupt handler can check for spurious
interrupts is by immediately reading the ISR (In-Service Register) of the
PIC corresponding to the level. If the BYTE value obtained from that
register does not have a 1 in the high-order bit, the interrupt is
spurious. In order to read the value, the handler must know the port
address of the ISR. In PL/M-86, the following lines perform this check
when placed at the beginning of the interrupt handler:

IF «INPUT (port address of ISR» AND 80H) = 0

THEN interrupt is spurious

This method of isolating spurious interrupts should be used only as a
last resort. It requires that the handler knows the address of the ISR
(which may vary from system to system).

EXAMPLES OF INTERRUPT SERVICING

To help you understand the major points already described, Tables 8-4,
8-5, and 8-6 are provided. Each table outlines the turning points in a
scenario where an interrupt handler is assigned to a level, an interrupt
arrives at that level and is serviced, and finally the assignment of an
interrupt handler is cancelled. Table 8-4 shows a case where the
interrupt handler deals with the interrupt. Table 8-5 treats the case
where the interrupt handler calls an interrupt task, either immediately
or after filling a single buffer of data. Table 8-6 treats the case
where an interrupt handler and an interrupt task use mUltiple buffers to
service interrupts. Tables 8-4 and 8-5 assign the handler to master
level 4. Table 8-6 assigns the handler to slave level 35.

In the right-hand column of each of tables 8-4, 8-5 and 8-6, the phrase
"interrupt levels necessarily disabled" alludes to the fact that the
events of the example cause certain levels to be enabled or disabled.
Other events, outside the scope of the example, might cause other levels
to be disabled as well.

8-19

INTERRUPT MANAGEMENT

Ta ble 8-4. Servicing Interrupts with an Interrupt Handler

INTERRUPT
LEVELS

STEP EVENTS EXPLANATION NECESSARILY
DISABLED

I - No interrupt handler
assigned to level M4. M4

2 RQSETINTERRUPT A task assigns an
(LEVEL$4t Ot •••); interrupt handler to NONE

level M4.

3 Leve I 4 device An interrupt arrives
interrupts at level M4. MO-M7 t 00-77

4 · The interrupt is

· serviced by the

· interrupt handler. HO-M7 t 00-77

5 RQ$EXIT$INTERRUPT Interrupt hardware
(LEVEL$ 4t •••) ; reset by the

interrupt handler. MO-M7 t 00-77

6 Interrupt handler Interrupts are
returns re-enabled. NONE

7 RQ$RESET$INTERRUPT A task cancels the
(LEVEL$4 t •••); assignment of an

interrupt handler to
level M4. M4

8-20

STEP

1

2

3

4

5

6

7

8

INTERRUPT MANAGEMENT

Table 8-5. Servicing Interrupts with an Interrupt Task

EVENTS

RQSETINTERRUPT
(LEVEL$4, 1, •••);

RQ$WAIT$INTERRUPT
(LEVEL$4, •••);

Leve I 4 device
interrupts

RQ$SIGNAL$INTERRUPT
(LEVEL$4, •••);

RQ$WAIT$INTERRUPT
(LEVEL$ 4, •••) ;

RQ$RESET$INTERRUPT
(LEVEL$ 4, •••) :

EXPLANATION

No interrupt handler
assigned to level M4.

A task assigns an interrupt
handler to level M4 and it
assigns itself to be the
interrupt task for that level.
It specifies that one
SIGNAL$INTERRUPT request can

INTERRUPT
LEVELS
NECESSARILY
DISABLED

M4

be outstanding. M4

The interrupt task begins
to wait for an interrupt.

An interrupt arrives at
level M4. The interrupt
handler gets control and
optionally, does some
servicing. The handler may
service several interrupts
by performing steps 4
through 6 of Table 8-4.

The interrupt handler
invokes the interrupt task.

The interrupt is
serviced by the
interrupt task.

The interrupt task finishes
and begins to wait for
another level M4 interrupt.
Control passes back to the
interrupt handler and then
back to an application task.

A task cancels the
assignment of an
interrupt handler to
Level 4.

8-21

NONE

MO-M7, 00-77

M4-M7, 50-77

M4-M7, 50-57

NONE

M4 I

STEP

1

2

3

4

5

6

7

INTERRUPT MANAGEMENT

Table 8-6. Servicing Interrupts with an Interrupt Handler,
an Interrupt Task, and Multiple Buffering

EVENTS

RQSETINTERRUPT
(LEVEL$35, 2, •••);

RQ$WAIT$INTERRUPT
(LEVEL$35, •••);

Leve I 35 device
interrupts

RQ$SIGNAL$INTERRUPT
(LEVEL$35, •••) ;

EXPLANATION

No interrupt handler
assigned to level 35.

A task assigns an
interrupt handler to
level 35 and assigns
itself to be the
interrupt task for
that level. It
specifies that two
SIGNAL$INTERRUPT
requests can be
outstanding (double
buffering).

The interrupt task
begins to wait for
an interrupt.

An interrupt arrives
at level 35. The
interrupt handler gets
control and does some
servicing.

The handler services
all interrupts, as
described in steps
4 through 6 of Table
8-4, until the first
buffer is full.

The interrupt handler
invokes the interrupt
task.

The interrupt task
processes the full
buffer. Meanwhile,
the interrupt handler
services interrupts,
as described in steps
4 through 6 of Table
8-4, until the next
buffer is full.

8-22

INTERRUPT
LEVELS
NECESSARILY
DISABLED

35

35

NONE

MO-M7, 00-77

M4-M7, 36-77

M4-M7, 36-77

INTERRUPT MANAGEMENT

Table 8-6. Servicing Interrupts with an Interrupt Handler,
an Interrupt Task, and Multiple Buffering

(continued)

INTERRUPT
LEVELS

STEP EVENTS EXPLANATION NECESSARILY
DISABLED

8 RQ$WAIT$INTERRUPT The interrupt task
(LEVEL$35, •••); finishes and begins

to wait for another
signal from the
interrupt handler.
Control passes back to
the interrupt handler
and then back to an
application task. NONE

9 RQ$RESET$INTERRUPT A task cancels the
(LEVEL$4, ••••); assignment of an

interrupt handler to
Level M4. M4

SYSTEM CALLS FOR INTERRUPTS

The following system calls manipulate interrupts:

• SET$INTERRUPT --- assigns an interrupt handler and, if desired,
an interrupt task to an interrupt level.

• RESET$INTERRUPT --- cancels the assignment made to a level by
SET$INTERRUPT and, if applicable, deletes the interrupt task for
that level.

• EXIT$INTERRUPT --- used by interrupt handlers to send an
end-of-interrupt signal to hardware.

• SIGNAL$INTERRUPT ---used by interrupt handlers to invoke
interrupt tasks.

• WAIT$INTERRUPT suspends the calling interrupt task until it
is called into service by an interrupt handler.

• ENABLE --- enables an external interrupt level.

• DISABLE --- disables an external interrupt level.

8-23

I

INTERRUPT MANAGEMENT

• GET$LEVEL --- returns the interrupt level of highest priority for
which an interrupt handler has started but has not yet finished
processing.

• ENTER$INTERRUPT --- sets up a previously designated data segment
base address for the calling interrupt handler.

8-24

CHAPTER 9. REGIONS

The iRMX 86 Nucleus provides three types of exchanges: mailboxes,
semaphores, and regions. Regions, unlike mailboxes and semaphores which
are discussed in Chapter 4, should be restricted to special uses. Misuse
of regions, which allow tasks to share data, can have profound affects on
your application system.

RISKS INVOLVED IN SHARING DATA

Occasionally, several tasks in a system must share data. If the tasks
run concurrently and the data is subject to change, access to the data
must be restricted to one task at a time. The following example
illustrates the importance of controlling tasks' access to data.

Suppose Tasks A and B are both part of an air-traffic-control application
system. Task A runs at fixed time intervals and checks for any potential
collisions. Task B runs as a result of an interrupt caused whenever the
sweep of the radar detects an aircraft. Task B is of higher priority
than Task A and is responsible for updating the position of the detected
aircraft. Potentially, task B could corrupt the data used by Task A.

For instance, suppose that Task A is in the process of extrapolating the
position of a particular aircraft. It first fetches the craft's
last-reported position and uses the craft's velocity to estimate the
position at some time in the near future. Suppose that Task A fetches
the X-coordinate of the position and is preempted by Task B before
fetching the Y- and Z-coordinates. Task B now updates the craft's X-,
Y-, and Z-coordinates to reflect the fresh information gathered from the
radar. Task B surrenders the processor, and the system resumes running
Task A. Task A finishes fetching the craft's last-reported position but
ends up with corrupt information. Instead of using (old X, old Y, old Z)
or (new X, new Y, new Z), Task A believes the last reported position to
be (old X, new Y, new Z). In this application, this error could lead to
disaster.

Corruption of data can occur in this manner whenever the following three
conditions are met:

• The data is shared between two or more tasks.

• The tasks sharing the data run concurrently. (In other words,
one of the tasks could possibly preempt another.)

• At least one of the tasks changes the data.

9-1

REGIONS

Whenever all three of these conditions exist, you must take special
precautions to protect the validity of the shared data. You must ensure
that only one task has access to the shared data at any instant, and you
must ensure that the task having access cannot be preempted by other
tasks desiring access. This protocol for sharing data is called mutual
exclusion.

MUTUAL EXCLUSION USING SEMAPHORES

As is discussed in the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM,
tasks can use semaphores to obtain mutual exclusion. However, using
semaphores for this purpose can lead to two kinds of problems:

• Priority Bottlenecks

Suppose that three tasks, Task A, Band C, have low, medium and
high priority, respectively. If these tasks employ a
priority-queued semaphore to ensure that no more than one of them
uses shared data at any instant, the following situation could
arise:

1. Task A (low priority) obtains access to the data and
continues to run.

2. Task C (high priority) attempts to gain access, but is forced
to wait at the semaphore until Task A frees the data.

3. Task B (medium priority) awakens from a timed sleep and
preempts Task A (low priority).

In Step 2, Task C must wait for Task A (which has lower priority)
to finish using the shared data. This is reasonable as Task A
gained access to the data before Task C. This kind of delay is
inherent in mutual exclusion.

In Step 3, however, the delay is unreasonable. Task C is forced
to wait for Task B (which has lower priority than Task C) even if
Task B does not use the shared data.

• Tying Up the Shared Data

If several tasks use a semaphore to govern access to shared data,
and the task currently having access is suspended, the semaphore
prevents any other tasks from using the shared data. Only after
the suspended task is resumed can it free the shared data for use
by the other tasks.

If the task using the data is deleted, rather than merely being
suspended, the situation is even worse. The governing semaphore
prevents any other tasks from ever using the shared data.

You can eliminate both of these kinds of problems by using regions rather
than semaphores to govern the sharing of data.

9-2

REGIONS

MUTUAL EXCLUSION USING REGIONS

A region is an iRMX 86 object that tasks can use to guard a specific
collection of shared data. Each task desiring access to shared data
awaits its turn at the region associated with that data. When the task
currently using the shared data no longer needs access, it notifies the
Operating System, which then allows the next task to access the shared
data.

Noteworthy are the following facts regarding regions:

• The priority of the task that currently has access to the shared
data may temporarily be raised. This happens automatically (at
regions where the task queue is priority-based) whenever the task
at the head of the queue has a priority higher than that of the
task that has access. Under such circumstances, the priority of
the task having access is raised to match that of the task at the
head of the queue. When the task having access surrenders
access, its priority automatically reverts to its original
value. This priority adjustment prevents the priority bottleneck
that can occur when tasks use semaphores to obtain mutual
exclusion.

• Once a task gains access to shared data through a region, the
task can not be suspended or deleted by other tasks until it
surrenders access. This characteristic prevents tasks from tying
up shared data.

When a task gains access through a
region, it must not attempt to suspend
or delete itself. Any attempt to do so
will lock up the region, preventing
other tasks from accessing the data
guarded by the region. In addition, the
task will never run again and its memory
will not be returned to the memory
pool. Also, if the task in the region
attempts to delete itself, all other
tasks that later attempt to delete
themselves will encounter the same
memory pool problems.

It should also be noted that you should
avoid using regions in Human Interface
applications. If a task in a Human
Interface application uses regions, the
application can not be stopped
asynchronously (via CTRL/c entered at a
terminal) while the task in the region.

9-3

REGIONS

• When you create a region you must specify which of two rules is
to be used to determine which waiting task next gains access to
the shared data. One rule is first-in/first-out (FIFO)t and the
other is priority.

• Regions are much faster than semaphores. The system calls used
to manipulate a region require much less processor time than do
those that manipulate semaphores.

USEFULNESS OF SEMAPHORES

After reading the last sectiont you are probably wondering why anyone
would want to use semaphores at all. There are three reasons:

1. You can use semaphores to accomplish much more than mutual
exclusion. For example t with semaphores you can synchronize
mUltiple tasks or allocate resources. Regions t on the other
hand t provide only mutual exclusion.

2. Because of the possibility of deadlock t regions should not be
used outside of extensions to the Operating System.
ConsequentlYt programmers not familiar with Operating System
extensions must use semaphores to accomplish mutual exclusion.

3. Semaphores allow a task to set an upper limit on the amount of
time the task is willing to wait for access. In contrast t
regions provide no such option. Tasks using regions for mutual
exclusion have only two choices:

They can request immediate access. If a task makes such a
request and access is not available immediatelYt the task
does not wait at the region. Rathert it receives an
exception code and continues to run.

They can request access as it becomes available. This kind
of request causes the task to wait at the region until access
becomes available. If access never becomes available t the
task never runs again.

Tasks use the ACCEPT$CONTROL system call to request immediate
access. They use the RECEIVE$CONTROL system call to request
access as it becomes available. Both of these system calls are
described in detail in Chapter 12 of this manual.

9-4

REGIONS

REGIONS AND DEADLOCK

A major concern in any multitasking system is avoiding deadlock.
Deadlock occurs when one or more tasks permanently lock each other out of
required resources. The following hypothetical situation illustrates a
method for quickly causing deadlock by using nested regions. An
explanation of how to avoid the illustrated deadlock situation follows
the example.

NOTE

In the following example, the only
system call used to gain access is the
RECEIVE$CONTROL system call. Tasks
using the ACCEPT$CONTROL system call
cannot possibly deadlock at a region
unless they keep trying endlessly to
accept control.

Suppose that two tasks, A (high priority) and B (low priority), both need
access to two collections of shared data. Call the two collections of
data Set 1 and Set 2. Access to each set is governed by a region (Region
1 and Region 2).

Now suppose that the following events take place in the order listed:

1. Task B requests access to Set 1 via Region 1. Access is granted.

2. Before Task B can request access to Set 2, an interrupt occurs
and Task A preempts Task B.

3. Task A requests access to Set 2 via Region 2. Access is granted.

4. Task A requests access to Set 1 via Region 1. Task A must wait
because Task B already has access.

5. Task B resumes running and requests access to Set 2 via Region
2. Task B must wait because Task A already has access.

At this point Task A is waiting for Task B and vice versa. Tasks A and B
are hopelessly deadlocked, and any other tasks that request access to
either set of data will also become deadlocked.

This team deadlock situation applies only to systems in which regions are
nested. If your system must use nested regions, you can prevent team
deadlock by adhereing to the following rule:

9-5

REGIONS

Apply a strict ordering to all the regions in your system, and code
tasks so that they gain access according to the order. For example,
suppose that your system uses 12 regions. Write the names of the
regions on a piece of paper in any order, and number them starting
with 1. As you program a task that nests any of the regions (say
Regions 3, 8, and 10), be sure that the task requests access in
numerical order. The essential element of this technique is that all
tasks must request access in a consistent order. The precise order
is unimportant as long as all tasks obey it.

If you follow this rule consistently, you can safely nest regions to any
depth.

REGIONS AND SYSTEM KNOWLEDGE

Use (and perhaps knowledge) of regions should be restricted to
programmers that have a firm understanding of the Operating System and
the entire application system. A careless or unscrupulous programmer
can, by abusing regions, corrupt the interaction between tasks in an
application system. For instance, by creating a region and gaining
acceS$ to nonexistent shared data, unscrupulous programmers can make
their tasks immune to deletion. If they never surrender access, the
tasks can permanently avoid deletion.

Abusing some of the features described in this manual can affect the
integrity of the entire Operating System. Regions constitute such a
feature. If you wish to preserve the integrity of your application
system, you should confine the use of regions to programmers who work
with the Operating System and, even then, only within Operating System
extensions.

SYSTEM CALLS FOR REGIONS

The following system calls manipulate regions:

• ACCEPT$CONTROL

This system call allows a task to gain access to shared data only
when access is immediately available. If a different task
already has access, the requesting task remains ready but
receives an exception code.

• CREATE$REGION

This system call creates a region and returns a token for it.
One of the parameters passed during this call specifies the
queuing rule (FIFO or priority).

• DELETE$REGION

This system call deletes a region.

9-6

REGIONS

• RECEIVE$CONTROL

This system call causes a task to wait at the region until the
task gains access to the shared data.

• SEND$CONTROL

This system call, when issued by a task, frees the Operating
System to grant a different task with access to the shared data.

9-7

CHAPTER 10. OPERATING SYSTEM EXTENSIONS

A feature of the iRMX 86 Operating System is that it can be extended to
include your own customized objects and system calls. This feature
allows you to create an operating system that precisely meets the needs
of your application. This chapter explains how to extend the iRMX 86
Operating System to include your own system calls.

Material presented in this chapter is intended for programmers who write
system programs to modify the Operating System.

THREE WAYS OF ADDING FUNCTIONALITY

Whenever more than one job in your application system requires a function
not supplied by the iRMX 86 Operating System, you have at least the
following three ways of adding the needed function:

• Write the function as a procedure and place it in a library by
using LIB86. After compiling each job that requires the
function, use LINK86 to link the library to the object module for
the job.

• Write the function as a task and allow application tasks to
invoke the function through a mailbox-segment interface.

• Write the function as a procedure and add it to the iRMX 86
Operating System. Application programs then invoke the function
by means of a system call.

The relative advantages and disadvantages of the three alternatives are
summarized in Table 10-1.

The third alternative involves extending the Operating System. The
procedures that you must add to the Operating System in order to support
the added function are called an Operating System extension, or OS
extension. From the application programmer's standpoint, an OS extension
appears to be a collection of one or more customized system calls.

CREATING AN OPERATING SYSTEM EXTENSION

Creating an OS extension involves both writing several procedures and
initializing the interrupt vector of the iAPX 86 microprocessor.

10-1

OPERATING SYSTEM EXTENSIONS

Table 10-1. Comparison of Techniques for Creating Common Functions

PROCEDURE
LIBRARY TASK as EXTENSION

INTERFACE FOR
APPLICATION SIMPLE COMPLEX SIMPLE
PROGRAMS

RELATIVE GOOD POOR MODERATE
PERFORMANCE (for (for (for

all quick quick
functions) functions) functions)

MODERATE GOOD
(for (for
slower slower

functions) functions)

SYNCHRONOUS
or BOTH ASYNCHRONOUS BOTH

ASYNCHRONOUS ONLY
CALLS

i
SYSTEM NOT NOT
PROGRAMMING REQUIRED REQUIRED REQUIRED

DUPLICATE Difficult to Easy to avoid Automatically
CODE avoid avoided

REQUIRES
RELINKING TO YES NO NO
CHANGE

SUPPORTS
NEW OBJECT NO NO YES
TYPES

PROCEDURES USED IN OPERATING SYSTEM EXTENSIONS

Every OS extension is composed of at least two kinds of procedures.
Figure 10-1 illustrates the simplest arrangement. The two required kinds
of procedure are the following:

10-2

OPERATING SYSTEM EXTENSIONS

• Interface Procedure

An interface procedure connects the customized system call to the
Operating System. For example, to issue a NEW$FUNCTION system
call, an application task executes a statement like

CALL" NEW $FUNCTION(••••••) ;

This statement is, in fact, a call to an interface procedure,
named NEW$FUNCTION, that transfers control to the Operating
System. One interface procedure is required for each customized
system call.

• Function Procedure

The function procedure does the important work of the system
call. That is, it performs the actions requested by the calling
task. One function procedure is required for each customized
system call.

Figure 10-1 depicts four OS extensions, each containing one system call.
Note that the interface procedures are part of the application software
and the function procedures are part of the system software. The tasks
are linked to the interface procedures, but the interface procedures are
not linked to the function procedures. Instead, the interface procedures
pass control to the function procedures by way of the interrupt vector.

The interrupt vector consists of 256 four-byte entries; the first entry
is at location 0 and the last is at location 1020 (decimal). The iRMX 86
Operating System uses these entries for many purposes, but the last 32
(entries 224 through 255) are reserved for user-supplied OS extensions.

In Figure 10-1, the four interface procedures transfer control to the
four function procedures through four separate interrupt vector entries
(each of which must be numbered in the 224 to 255 range). Note that, if
confined to the pattern illustrated in Figure 10-1, a system is limited
to 32 customized system calls.

In order to conserve system calls, another kind of procedure must be
employed:

• Entry Procedure

The entry procedure serves as a multiplexor for OS extensions
supporting more than one system call. Figure 10-2 depicts a
single OS extension with four system calls. The primary purpose
of the entry procedure is to route the call from the interf~ce
procedure to the proper function procedure. Note that four
interface procedures are still required to support the four
system calls.

The principal advantage of having an entry procedure is that one
interrupt vector entry can support multiple system calls. This
means that the 32 entries in the interrupt vector, along with
entry procedures, can support a virtually unlimited number of
customized system calls.

10-3

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

DDD

I

W X Y

QQQ
I I •

I .
I
I

• I • . . .
I I • · . . · . . · . . · . .

DOD
W' X' Y'

SYSTEM SOFTWARE

D TASKS

~CALL/RETURN

INTERFACE
PROCEDURES

~ SOFTWARE
\----) INTERRUPTI

(RETURN

Z'

FUNCTION
PROCEDURES

x-1S8

Figure 10-1. OS Extensions Without Entry Procedures

10-4

OPERATING SYSTEM EXTENSIONS

APPLICATION SOFTWARE

DDD
ABC

SOFTWARE ~ q Q. ~
INTERRUPTI f----"'" /
RETURN "', "

" ' I'

A' B' C'

SYSTEM SOFTWARE

D TASKS

--- CALLIRETURN

0'

INTERFACE
PROCEDURES

ENTRY
PROCEDURE

FUNCTION
PROCEDURES

x-150

Figure 10-2. OS Extension with Procedure Entry

10-5

OPERATING SYSTEM EXTENSIONS

The following paragraphs describe the responsibilities of each of the kinds
of procedures composing OS extensions. Figure 10-3 contains, in algorithmic
form, summaries of these descriptions. Also, Chapter 11 contains an example
of an OS extension that manages a customized object type.

Interface Procedures

For each system call in your OS extension, you must write a reentrant
assembly language interface procedure. (For detailed information concerning
the 8086 Asssmbly Language, refer to the appropriate 8086/8087/8088 MACRO
ASSEMBLY LANGUAGE REFERENCE MANUAL.) The primary purpose of this procedure
is to use a software interrupt to transfer control from the task that
invoked the system call to an entry procedure (or, in the absence of an
entry procedure, to a function procedure).

If there is an entry procedure, the interface procedure must communicate to
it a code which identifies the function procedure that the entry procedure
is to call. The interface procedure does this by loading the code into a
previously-designated register or onto the stack of the calling task. The
entry procedure, when invoked, extracts the code from this register or the
stack.

A second important function of an interface procedure is informing the
calling task (or its exception handler) of any exceptional conditions that
have occurred. The entry procedure (or the function procedure if no entry
procedure exists) communicates this information to the interface procedure
by placing the exception code in the CX register and the number of the
parameter that caused the error in the DL register. The interface procedure
then does the following:

• Checks the ex register for the condition code. If this register
contains a value other than zero (E$OK), an exceptional condition
exists.

• If an exceptional condition exists, calls a procedure named RQ$ERROR.

The Nucleus interface library contains a default RQ$ERROR procedure.
procedure gets the exception code and parameter number from the CX and
registers and then makes a SIGNAL$EXCEPTION system call to inform the
calling task (or its exception handler) of the exception. When
SIGNAL$EXCEPTION returns to the RQ$ERROR procedure, RQ$ERROR restores
DL with the exception code and parameter number and places a value of
in the AX register.

This
DL

ex and
OFFFFH

If you do not want to use this default procedure, you can write your own
RQ$ERROR procedure. Your RQ$ERROR procedure can perform any functions it
needs in order to inform the application task of the exceptional condition.
The only restriction placed on an RQ$ERROR procedure is that it should
always return a value of OFFFFH in the AX register (so that OFFFFH is
returned as a function value for your system calls that are typed
procedures). An example of an alternate RQ$ERROR procedure is one that
simply places OFFFFH in AX and then does a RETURN, returning control
directly to the application task to avoid the task's normal exception
handler.

10-6

OPERATING SYSTEM EXTENSIONS

To make sure that your own RQ$ERROR procedure is called instead of- the
default version, you should link your procedure directly to the interface
procedure or include it in a library with the rest of your interface
procedures. When linking your modules together, this library should
always precede the Nucleus interface library in the link sequence.

Another important purpose of interface procedures is that they
compensate, on behalf of the entry or function procedures that they call,
for differences between parameter-passing protocols. Three different
models (COMPACT, MEDIUM, and LARGE) are available when compiling iRMX 86
tasks written in PL/M-86. (Refer to the PL/M-86 COMPILER OPERATING
INSTRUCTIONS FOR 8080/808S-BASED DEVELOPMENT SYSTEMS manual for
information regarding these models.) By providing a library of interface
procedures for each PL/M-86 model, you make the entry and function
procedures independent of the PL/M-86 model in which application code is
being compiled. If other languages were available, the same strategy
would make the entry and function procedures independent of the language
in which application code is written. The benefit of this independence
is that only one entry procedure (or function procedure, if no entry
procedure exists) is needed for each interrupt vector entry in your
system.

Entry Procedures

Each OS extension comprising more than one system call must include a
reentrant entry procedure, whose chief purpose is to route the call to
the appropriate function procedure. Other duties of entry procedures are
the following:

• Set up the exception handling mechanism for the OS extension.
This can be done in one of two ways, depending on whether the OS
extension has its own exception handler or whether it wants to
handle exceptions in-line.

If the as extension has its own exception handler, the entry
procedure must change the exception handler from that of the
calling task to an exception handler for the OS extension. It
must do this to guarantee that an error by the OS extension
doesn't cause the calling task to be deleted (a common function
of exception handlers). To make this change, the entry procedure
calls GET$EXCEPTION$HANDLER to obtain and save the task's
exception handler address and exception mode. It then calls
SET$EXCEPTION$HANDLER to set new values for these entities. When
control returns to the entry procedure from the function
procedure, the entry procedure again calls SET$EXCEPTION$HANDLER
to restore the original values.

If you want the as extension to handle its exceptions in-line,
you must create your own RQ$ERROR procedure and link it to the
entry procedure. This RQ$ERROR procedure must return control
directly to the entry procedure instead of calling
SIGNAL$EXCEPTION. If you supply an RQ$ERROR procedure of this
type, the entry procedure does not have to change exception
handlers. Instead, if the as extension encounters exceptional

10-7

OPERATING SYSTEM EXTENSIONS

conditions while invoking other system calls, this RQ$ERROR
procedure is called to return control directly to the procedure
that incurred the error. That procedure can then handle the
error. It does not matter which exception handler is associated
with the application task, since the exception handler is not
called. The RQ$ERROR procedure is discussed in more detail later
in this chapter.

• Perform any chore required by all system calls in this OS
extension. By performing common chores in the entry procedure,
you can factor code out of several function procedures.

• If notified by the function procedure that an exception occurred
which must be transmitted back to the application task, do the
following:

Place the exception code in the ex register.

Place the number of the parameter that caused the exceptional
condition in the DL register.

Return control to the interface procedure.

The interface procedure should examine the ex register to check
for an exceptional condition and call the version of RQ$ERROR to
which it is linked.

When adding OS extensions, you might wish to add your own
customized exceptional conditions and associated codes. Values
available to users for exception codes are 4000H to 7FFFH (for
environmental conditions) and OCOOOH to OFFFFH (for programmer
errors) •

Write the entry procedure in assembly language so that you can directly
access the stack and the registers. This provides you with the following
benefits:

• It gives you access to the input parameters passed by the calling
task and the interface procedure.

• It allows you to set the ex and DL registers in the event of an
exceptional condition.

10-8

CALLING
TASK

INTERFACE
PROCEDURE

(OPTIONAL)
ENTRY

PROCEDURE

{

FUNCTION !
PROCEDURE l

Figure 10-3.

OPERATING SYSTEM EXTENSIONS

DO SOME PROCESSING
CALL AN INTERFACE PROCEDURE ••••••• : DO SOME MORE PROCESSING

r, " .. " .. , , .. " .. , , .. " .. , .. , j
:.., LOAD INTO A SPECIFIC PAIR OF REGISTERS A POINTER TO THE

PARAMETERS ON THE TASK'S STACK
IF THERE IS AN ENTRY PROCEDURE THEN

LOAD INTO A SPECIFIC REGISTER A CODE IDENTIFYING THE
FUNCTION BEING CALLED

DO A SOFTWARE INTERRUPT (INT n where 224::;n::;255) TO CALL THE
ENTRY PROCEDURE OR A FUNCTION PROCEDURE •••••••••••••• : ••••••••• ~

::::::..... ••••••••••• EXAMINE THE CX REGISTER : OR :
IF CX CONTAINS A NONZERO VALUE THEN ::

CALL RQ$ERROR TO INFORM THE TASK OF THE EXCEPTION: :
RETURN (RET) ••...•. : 1 ~

: .

1·· ... :f
:.~ IF USING DEFAULT RQ$ERROR PROCEDURE AND IF DESIRED, THEN

SAVE TASK'S EXCEPTION HANDLER (GET$EXCEPTION$HANDLER)
AND SET UP A TEMPORARY REPLACEMENT
(SET$EXCEPTION$HANDLER)

IF POSSIBLE THEN
DO PROCESSING COMMON TO ALL FUNCTION PROCEDURES IN

GETTr~~g~I~~T~~g~o~TORED BY INTERFACE PROCEDURE ~
CALL THE DESIGNATED FUNCTION PROCEDURE .. ••• .. • .. •••••••••••••••••••• •••• ..:

::::::::.......... IF EXCEPTION HANDLERS WERE SWITCHED EARLIER THEN • RESTORE ORIGINAL (SET$EXCEPTION$HANDLER) :
IF NOTIFIED OF AN EXCEPTION BY A FUNCTION PROCEDURE THEN :

PLACE EXCEPTION CODE IN CX REGISTER :
PLACE PARAMETER NUMBER IN DL REGISTER :

RETURN (IRET) •••••• : :

~ ... ~ ... ; ~
f""""""" , ' , , , , .. , t
:~ OBTAIN INPUT PARAMETERS

PERFORM ACTIONS EXPECTED BY CALLING TASK
RETURN EXCEPTION CODE AND ANY VALUES EXPECTED BY

CALLING TASK
RETURN ••••••• :

1.~~.L ~

x-151

Summary of Duties of Procedures in OS Extensions

10-9

OPERATING SYSTEM EXTENSIONS

Function Procedures

The duties of the function procedure are principally to perform the
actions requested by the calling task. Additionally, if there is not an
entry procedure, the function procedure should inform the interface
procedure concerning the exception status of the call. It should do this
by setting CX and DL as described previously in the description of entry
procedures. Function procedures should be reentrant and can be written
in PL/M-86 or assembly language.

RQ$ERROR Procedures

The sections of this chapter that describe interface procedures and entry
procedures both make mention of a procedure named RQ$ERROR. This is a
procedure called by the interface procedures of the Nucleus and each
subsystem of the Operating System in the event of an exceptional
condition. For example, if your application task makes a SEND$MESSAGE
system call and an exceptional condition results, the Nucleus returns the
error (in the CX and DL registers as described previously) to the Nucleus
interface library that is linked to your application task. The procedure
in the library then calls RQ$ERROR to process the error.

This is not only true for application tasks that make system calls, but
also for Intel-supplied subsystems (such as the I/O System) and OS
extensions that make system calls. For example, if the I/O System calls
SEND$MESSAGE and an exceptional condition results, the Nucleus returns
the error to the Nucleus interface library that is linked to the I/O
System. The procedure in that library calls RQ$ERROR to process the
error.

Every subsystem of the Operating System that implements system calls also
provides this mechanism for returning exceptions. If an application task
makes an I/O system call (CREATE$FILE, for example) and incurs an
exceptional condition, the I/O System returns control to the I/O System
interface library that is linked to that task. The interface procedure
in that library calls RQ$ERROR to process the error.

The OS extensions you write should also provide this mechanism for
returning exceptions to tasks (or other OS exceptions) that invoke your
customized system calls. The previous sections of this chapter describe
the method for doing this.

The Nucleus interface library, as released, contains a default RQ$ERROR
procedure. The function of this RQ$ERROR procedure is to call
SIGNAL$EXCEPTION to inform the calling task (or its exception handler) of
the exception. This version of RQ$ERROR should be linked to application
tasks to ensure that their exception handlers are called when exceptional
conditions occur. Figure 10-4 illustrates the flow of control from an
application task to an exception handler when the task incurs an
exceptional condition.

10-10

OPERATING SYSTEM EXTENSIONS

APPLICATION TASK

•

SOFTWARE INTERRUPT TO
NUCLEUS RQ$SIGNAL$

EXCEPTION

RESTORE CX, DL AND PLACE
OFFFF IN AX

EXCEPTION
HAN

• • •
RETURN -_a_------__

NUCLEUS

Figure 10-4. Handling Exceptions With an Exception Handler

x-152

The iRMX 86 Operating System uses this mechanism for returning exceptions
to give subsystems and OS extensions flexibility in handling their own
exceptions. They obtain this flexibility because they know that whenever
they incur an exceptional condition, a routine in an interface library to
which they are linked will call RQ$ERROR to process the exception. If
they want their exceptional conditions to be processed in a special
manner, they can provide their own version of RQ$ERROR to handle this
special processing. Thus each subsystem and OS extension can process
exceptional conditions in its own way.

As the creator of an OS extension, you have the option of linking your OS
extension to the default RQ$ERROR procedure or providing one of your
own. If you have an exception handler associated with your OS extension,
you will probably want to use the default RQ$ERROR procedure. You will
also want to use SET$EXCEPTION$HANDLER and GET$EXCEPTION$HANDLER, as
described previously, to ensure that your exception handler is actually
called in the event of an exceptional condition.

10-11

OPERATING SYSTEM EXTENSIONS

However, if your OS extension does not have an exception handler, it
should handle exceptions in-line, so that it can then return the proper
exception code to the task (or OS extension) that invoked your customized
system calls. You can provide this feature by linking your OS extension
to a version of RQ$ERROR that does not call SIGNAL$EXCEPTION. Instead,
this RQ$ERROR procedure should place OFFFFH in the AX register (so that
OFFFFH is returned for system calls that are invoked as functions) and
then do a RETURN, to return control directly to the interface library.
The interface library then returns control to your OS extension, allowing
the OS extension to process the exception in-line. Figure 10-5
illustrates the flow of control for an OS extension that processes its
exceptions in-line. The RQ$ERROR procedure in Figure 10-5 simply sets AX
and does a RETURN.

OS EXTENSION

• • •
CALL RQ$SEND$

MESSAGE

• • •

NUCLEUS INTERFACE
LIBRARY NUCLEUS

EXCEPTIONAL
CONDITION

• • •

Figure 10-5. OS Extension Handling Exceptions In-Line

x-153

Even though your OS extension processes its own exceptions in-line, it
will still want to return exceptions to tasks (or other OS extensions)
that invoke the customized system calls. This involves having the entry
(or function) procedure of your OS extension place the condition code and
parameter number in CX and DL and then having the interface procedure
call RQ$ERROR in the event of an exceptional condition. The "Interface
Procedures" and "Entry Procedures" section of this chapter describe this
procedure in detail. Because your OS extension returns the exception to
the inteface procedure linked to the application task (or another OS
extension), the RQ$ERROR procedure that gets called is the one in the
interface library linked to the calling task, not the one in the
interface library linked to the OS extension.

10-12

OPERATING SYSTEM EXTENSIONS

Figure 10-6 illustrates the flow of control for an OS extension that
incurs an exceptional condition, processes the exception in-line, and
then returns an exception to the application task that called it. Notice
that both the OS extension and the application task, although not linked
together, are each linked to interface libraries and an RQ$ERROR
procedure. The RQ$ERROR procedure linked to the OS extension returns
control back to the OS extension. The RQ$ERROR procedure linked to the
application task is the default one; it calls SIGNAL$EXCEPTION.

OS EXTENSION

• • •
CALL RQ$SEND$MESSAGE - ____ --.::::::..-

•
.~-----

I
I
I
I

APPLICATION TASK

I __________ ~-----

NUCLEUS INTERFACE
LIBRARY NUCLEUS

Figure 10-6. Control Flow for OS Extension and Application Task

10-13

x-154

OPERATING SYSTEM EXTENSIONS

Linking the Procedures

For each OS extension, you should produce several libraries of interface
procedures. In fact, you should produce one library for each PL/M-86
model in which the calling task can be written. Within each library, you
should have one interface procedure for each system call of the OS
extension. Each job in your system should be linked to the appropriate
interface library for each OS extension that the job calls.

For each OS extension, the entry procedure (if any) and the function
procedures should all be linked together, along with any Operating System
interface libraries that the procedures need. They should not be linked
to any application code, since they are connected to the application
tasks via the interrupt vector.

Any RQ$ERROR procedures that you create should be linked to the
appropriate routines. If you create a special RQ$ERROR procedure that
your interface procedures call whenever they inform the application task
of an exception, you should place that RQ$ERROR procedure in the
interface library you create. If you create an RQ$ERROR procedure to
process exceptions that your OS extension incurs, you should link this
RQ$ERROR procedure directly to the entry and function procedures. You
should also link the Nucleus interface library, and the interface
libraries for any of the other subsystems that you use, to both the
application task and the OS extension. If you provide your own RQ$ERROR
procedure, either for your interface procedures to call or to process
exceptions in your OS extension, this procedure must precede the Nucleus
interface library in the link sequence.

INITIALIZING THE INTERRUPT VECTOR

Before an interface procedure can successfully transfer control to an OS
extension, the interrupt vector must be initialized with the addresses of
the entry (or function) procedures. The SETOSEXTENSION system call is
available for this purpose.

Because the interrupt vector must be initialized before any OS extensions
are invoked, you must ensure that the initialization happens shortly
after the system begins running. This can be accomplished during the
initialization process described in the iRMX 86 CONFIGURATION GUIDE.

PROTECTING RESOURCES FROM BEING DELETED

Normally, an object can be deleted by a call to the deletion system call
corresponding to the object's type. However, OS extensions can use the
DISABLE$DELETION system call to make the object immune to this kind of
deletion. A subsequent call to ENABLE$DELETION removes the immunity.

An object can have its deletion disabled more than once. Each call to
DISABLE$DELETION must be countered by a call to ENABLE$DELETION before
the object can be deleted. An object's disabling depth at any given
moment is defined to be the number of times the object has had its

10-14

OPERATING SYSTEM EXTENSIONS

deletion disabled minus the number of times its deletion has been
enabled. Usually, an object cannot be deleted until its disabling depth
is zero. The lone exception is that a call to FORCE$DELETE deletes
objects whose disabling depth is one. Also, calling ENABLE$DELETION for
an object whose deletion depth is zero results in the E$CONTEXT exception
code.

All of these system calls--DISABLE$DELETION, ENABLE$DELETION, and
FORCE$DELETE--should be used only by OS extensions.

NOTE

When a task attempts to delete an object
whose disabling depth is too high to
permit deletion, that task goes to
sleep. The task remains asleep until
the object's deletion depth becomes
small enough to permit deletion. At
that time, the object is deleted and the
task is awakened. Because these
circumstances can cause system deadlock,
your tasks should exercise caution when
deleting objects.

SYSTEM CALLS USED IN EXTENDING THE OPERATING SYSTEM

The following system calls are used extensively by OS extensions:

• DISABLE$DELETION

This system call increases the deletion disabling depth of an
object by one.

• ENABLE$DELETION

This system call removes one level of deletion disabling from an
object, reversing the effect of one DISABLE$DELETION call.

• FORCE$DELETE

This system call deletes objects whose disabling depths are one
or zero.

• SETOSEXTENSION

This system call can be used either to place an address in a
specific entry of the interrupt vector or to remove such an entry.

• SIGNAL$EXCEPTION

This system call advises a task than an exceptional condition has
occurred in an OS extension that the task has called.

10-15

CHAPTER 11. TYPE MANAGERS

The object types and system calls provided by the Nucleus and I/O System
are sufficient for many applications. However, some applications have
special requirements that would best be met if the iRMX 86 Operating
System had additional object types and system calls for manipulating
objects of those types. A type manager is an operating system extension
that provides these services.

If your system requires additional object types, you must write a type
manager for each of those types. The responsibilities of each type
manager include:

• Implementing a new type by creating objects of the new type.

• Providing a mechanism for deleting objects of the new type.

• Optionally providing the system calls that application tasks can
invoke to create, manipulate, and delete objects of the new type.

This chapter describes creating and deleting objects of new type.
Chapter 10 describes extending the Operating System to include new system
calls. An example appears at the end of this chapter which combines both
of these operations.

CREATING NEW OBJECTS

Creating custom-made objects is a two-step process:

1. Create the type.

2. Create objects of that type.

The CREATE$EXTENSION system call creates the type. CREATE$EXTENSION
accepts a new type code as a parameter and returns a token for the new
type. The token represents a license to create objects of the new type.

The CREATE$COMPOSITE system call creates objects of the new type.
CREATE$COMPOSITE accepts as a parameter the token returned from
CREATE$EXTENSION. CREATE$COMPOSITE also accepts as input a list of
tokens for the objects that are to compose the new object (the component
objects) and returns a token for the new object, called a composite
object.

Figure 11-1 illustrates the creation process for composite objects.

11-1

TYPE MANAGERS

Input System Call Output

Type Code ~CREATE$EXTENSION---.. ~ ... Token for type-,

L;:Token for type---..
~CREATE$COMPOSITE---~~Token for new object

List of component~ .
object tokens

Figure 11-1. The Creation Sequence for Composite Objects

You should take note of two facts concerning the process of creating a
composite object.

• First, its components, called component objects, are all iRMX 86
objects, either Intel- or user-provided.

• Second, no structure is imposed upon composite objects of a given
extension type. Two objects of the same extension type can be,
if desired, completely different in structure or in the number of
components objects they comprise. This feature allows for
maximum flexibility in the c.reation of new objects.

Once a type manager creates a new object type by calling
C REATE$EXTENS ION , that type manager owns the type. It is the only type
manager that can create composite objects of that type. In addition,
when it creates composite objects, the type manager can request that the
composite object be sent back to the type manager when the object has to
be deleted. Later sections describe this in detail.

MANIPULATING COMPOSITE OBJECTS AND EXTENSION TYPES

Two system calls are available for manipulating existing composite
objects: INSPECT$COMPOSITE and ALTER$COMPOSITE. INSPECT$COMPOSITE
returns a list of component tokens for a composite object.
ALTER$COMPOSITE replaces a token in the component list of a composite
object, either with another token or with a null.

DELETING COMPOSITE OBJECTS AND EXTENSION TYPES

Two system calls are available exclusively for deleting composite
objects: DELETE$COMPOSITE and DELETE$EXTENSION. DELETE$COMPOSITE deletes
a particular composite object (but not its components); DELETE$EXTENSION
deletes a specified extension type and either deletes the composites of
that type or sends them to a deletion mailbox, in which case the type
manager must delete them.

11-2

TYPE MANAGERS

A third system call, DELETE$JOB, also deletes composite objects as a part
of its processing. Although DELETE$JOB cannot delete extension types (in
fact, DELETE$JOB returns an exception code if the job contains any
extension objects), it can delete composites or send them to deletion
mailboxes where the type managers for these objects must delete them.

The deletion$mailbox parameter in the CREATE$EXTENSION system call
determines whether DELETE$EXTENSION and DELETE$JOB actually delete
composite objects or instead send them to deletion mailboxes. There are
two possibilities for this option.

If you specify a zero for the deletion$mailbox parameter of
CREATE$EXTENSION, then DELETE$EXTENSION and DELETE$JOB assume all
responsibility for deleting extension and composite objects. Your type
manager plays no part in the deletion process and you can skip the next
three sections of this chapter.

However, if you specify a token for a mailbox in the deletion$mailbox
parameter of CREATE$EXTENSION, then DELETE$EXTENSION and DELETE$JOB send
tokens for all composite objects of the indicated type to the mailbox
instead of actually deleting these objects. Your type manager for that
extension type is then responsible for deleting the composite objects.

There are two conditions that must occur before the type manager receives
tokens for composite objects via the previously mentioned deletion
mailbox:

• Your type manager, when it called CREATE$EXTENSION, must have
filled in the deletion$mailbox parameter with a token for a
mailbox.

• A task must call DELETE$EXTENSION or DELETE$JOB.

If these two conditions are met, the type manager is responsible for
deleting the composite objects sent to the mailbox. The following
sections describe the type manager's responsibilities in more detail.

TYPE MANAGER RESPONSIBILITIES DURING DELETE$JOB

When a task calls DELETE$JOB, the Nucleus normally deletes every object
in the job. However, if the job contains a composite object whose
extension has a deletion mailbox, the Nucleus sends the token for the
composite object to the deletion mailbox. The Nucleus then waits until
the type manager calls DELETE$COMPOSITE before continuing the deletion
process.

The type manager has the following responsibilities for servicing the
deletion mailbox.

1. First, it must wait at the deletion mailbox to receive the tokens
for the objects to be deleted.

11-3

TYPE MANAGERS

2. Next, it must perform any special processing that is required in
order to delete the composite object. For example, it might want
to wait until all tasks have stopped using the composite.

3. Then, it has the option of deleting those component objects that
are not contained in the job being deleted. It cannot, however,
delete objects contained in the job being deleted or it will
incur an exceptional condition. This is not a problem because
the objects that are a part of the job being deleted will
automatically be deleted as part of the DELETE$JOB call.

4. Finally, it should call DELETE$COMPOSITE. This serves two
purposes. It deletes the composite object (but not the component
objects), and it informs the Nucleus that the type manager has
finished the special processing neeeded to delete the composite
object. After the type manager calls DELETE$COMPOSITE, the
Nucleus resumes the DELETE$JOB processing.

The type manager must call DELETE$COMPOSITE each time the Nucleus sends a
token for a composite object to the deletion mailbox because
DELETE$COMPOSITE serves to return control back to the Nucleus. If the
type manager fails to call DELETE$COMPOSITE, the DELETE$JOB system call
will not finish processing. Figure 11-2 illustrates the type manager's
involvement in the DELETE$JOB process.

OELETE$JOB

NUCLEUS STARTS DELETING
OBJECTS IN THE JOB:

composite

composite

• • •
composite

segment

task

• • •

I'

NUCLEUS SENDS COMPOSITE
TO DELETION MAILBOX

CONTROL RETURNS
TO DELETE$JOB

DELETION
MAILBOX

,
TYPE MANAGER

1. WAITS FOR OBJECT AT
MAILBOX.

2. PERFORMS CLEANUP
OPERATIONS, IF ANY.

3. CALLS DELETE$COMPOSITE.

x-155

Figure 11-2. Type Manager Involvement in DELETE$JOB

11-4

TYPE MANAGERS

Note that the type manager is not required to delete all component
objects. In the course of DELETE$JOB, the Nucleus deletes any Nucleus
objects in the job. The Nucl~us sends stopstartstop

TYPE MANAGER RESPONSIBILITIES DURING DELETE$EXTENSION

A task can call DELETE$EXTENSION to delete an extension type. This is
useful when the license to create composite objects of a given extension
type is no longer needed. When a task calls DELETE$EXTENSION and the
extension has a deletion mailbox, the Nucleus sends the tokens for all
composite objects of that extension type to the deletion mailbox. After
sending a token for an object to the deletion mailbox, the Nucleus waits
until the type manager calls DELETE$COMPOSITE before sending the next
composite.

The type manager has similar responsibilities during DELETE$EXTENSION
that it has during DELETE$JOB. First it must wait at the deletion
mailbox for the objects' tokens. Then it must handle any special
processing necessary to delete the object. Finally it must call
DELETE$COt~OSITE to delete the composite. As with DELETE$JOB, the type
manager must call DELETE$COMPOSITE for each token it receives at the
deletion mailbox. If it does not do this, the DELETE$EXTENSION system
call will not finish processing.

However, unlike the situation during DELETE$JOB, the type manager has the
choice during DELETE$EXTENSION of whether or not to delete individual
component objects. If it wishes the component objects to be deleted, the
type manager must explicitly delete these objects. Unlike DELETE$JOB,
the DELETE$EXTENSION system call does not automatically delete component
objects.

DELETION OF NESTED COMPOSITES

Since a composite object can contain objects of any kind, it is possible
for some of its component objects to be composite objects themselves.
This situation can cause problems for type managers when they delete the
composite objects if the type manager for any of the composite objects
depends on the existence of any of the other composite objects in order
to complete its processing.

11-5

TYPE MANAGERS

For example, suppose objects A and B are composites of different
extension types and B is a component of A. Each of the composites has a
type manager that performs special cleanup functions before it can delete
the corresponding composite. If neither of the type managers requires
information contained in the other composite in order to perform its
special processing, the deletion process can proceed without difficulty.

However, if for some reason the type manager for composite A requires
some information contained in composite B in order to complete its
processing, the deletion process becomes more complex. In order for this
deletion scheme to work, you must guarantee that composite A will be
deleted before composite B. This requires that you know the order in
which the Nucleus deletes objects and sends composites to deletion
mailboxes, so that you can set up your composites correctly.

The Nucleus deletes composite objects before it deletes non-composite
objects. It deletes composite objects on a last-in/first-out basis; that
is, in the reverse order from which they were created. Therefore, a type
manager can depend on receiving the tokens for composite objects that it
creates before the Nucleus deletes the component objects contained in
them. The only exception to this is when a composite (composite A) is
created before another composite (composite B) and composite B is
inserted as a component into composite A using the ALTER$COMPOSITE system
call. In this case, composite B will be deleted first, and the type
manager of composite A cannot rely on the existence of composite B when
it receives composite A for deletion.

WRITING A TYPE MANAGER

A type manager consists of two parts:

• The initialization part creates the type and optionally creates a
deletion mailbox to which the system can send tokens for objects
of the type when deleting either jobs or the type itself.

• The service part provides the system calls through which tasks
can create and manipulate objects of the type.

Because the initialization phase must be completed before any task
attempts to obtain tokens for objects, the initialization part should be
written as a task that executes early in the life of the system. To
ensure early execution, the task should be part of the initialization
task of a first-level user job in the job tree. Refer to the iRMX 86
CONFIGURATION GUIDE for information concerning first-level jobs.

The service part of the type manager is written as an operating system
extension. Refer to Chapter 10 for information about operating system
extensions.

The best way to learn about type managers is to study an example. The
following example presents the main parts of a type manager for ring
buffers.

11-6

TYPE MANAGERS

EXAMPLE -- A RING BUFFER MANAGER

This example shows the most educational portions of a ring buffer
manager. It also serves to illustrate the various parts of an operating
system extension. Be advised, however, that the example is incomplete
and therefore should be imitated only with discretion. In particular,
the example has the following shortcomings:

• The issue of exception handling is not addressed. Clearly the
code supporting a system call should examine each invocation for
validity, but, for brevity, the ring buffer example does not do
this.

• There are no safeguards against partial creation of an object.
When creating a composite object, a type manager must first
create the components of the object. Occasionally, after
creating some of the components, the manager might be unable to
create the others. A type manager should be able to recover from
this situation, usually by deleting the components already
created and returning an exception code to the caller. The
example, again for brevity, does not do this.

• The entry routine does not check the entry code for validity.

• The potential for problems with deletion is ignored. For this
reason, you should imagine that the environment of the example is
constrained in at least two ways. First, only one task will ever
try to delete a ring buffer and, when it does try, no other task
will be using that buffer. Second, when a job containing a task
that created a ring buffer is deleted, no tasks in other jobs are
using that ring buffer.

• The example has been desk-checked, but the example has not
actually been tested.

A ring buffer is a block of memory in which bytes of data are placed at
successively higher addresses. Interspersed with byte insertions are
byte removals, with the restriction that the byte being removed must
always be the byte that has been in the buffer for the longest time.
Thus, data enters and leaves a ring buffer in a first-in-first-out
manner. Ring buffers get their name from the fact that the lowest
address logically follows the highest address. That is, if the last byte
placed in (or retrieved from) the buffer is at its highest address, then
the next byte to be placed in it (or retrieved from it) is at the lowest
address. As data enters and leaves the buffer, the portion contaning
data "runs" around the ring, with the pointer to the last byte out
"chasing" the pointer to the last byte in. Figure 11-3 illustrates these
characteristics.

11-7

TYPE MANAGERS

RING BUFFER

Figure 11-3. A Ring Buffer

The main (service) part of the example consists of four procedures:
CREATE_RING_BUFFER, DELETE_RING_BUFFER, PUT_BYTE, and GET_BYTE. The last
two procedures are for placing a character in a ring buffer, and for
retrieving a character, respectively.

/**
* NOTE: The following common literal file (COMMON.LIT) is included *
* in each of the PL/M 86 portions of the example. *
**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/* if your PL/M compiler does

not support this variable
type, declare TOKEN a WORD */

11-8

DECLARE forever
DECLARE indefinitely
DECLARE ASTR$STRUC

DECLARE POINTER$STRUC

DECLARE SEGMENT$STRUC

THE INITIALIZATION PART

TYPE MANAGERS

LITERALLY 'WHILE 1';
LITERALLY 'OFFFFH';
LITERALLY 'STRUCTURE (

num$slots
num$components
seg
empty$ct
full$ct

LITERALLY 'STRUCTURE (
offset
base

LITERALLY 'STRUCTURE (
size
head
tail
buffer(l)

WORD,
WORD,
TOKEN,
TOKEN,
TOKEN) , ;

WORD,
WORD)';

WORD,
WORD,
WORD,
BYTE) , ;

The initialization part creates a region to protect data in ring buffers
from being manipulated by more than one task at a time. This part also
creates the required extension type, creates a deletion mailbox, sets the
operating system extension at entry 224 of the interrupt vector table,
and then waits at the deletion mailbox. Code for the initialization part
includes the following:

$INCLUDE(: Fx: COMMON .LIT); /* Declares common literals */

RINGBUFFERMANAGER: PROCEDURE EXTERNAL;
END RINGBUFFERMANAGER;

DECLARE ring$buffer$type
DECLARE ring$buffer$region

RING BUFFER INIT:
PROCEDURE;
DECLARE delete$object
DECLARE exception
DECLARE fifo
DECLARE rb$code
DECLARE deletion$mbox
DECLARE response$mbox

TOKEN PUBLIC;
TOKEN PUBLIC;

TOKEN;
WORD;
LITERALLY '0';
LITERALLY '8000R';
TOKEN;
TOKEN;

ring$buffer$region = RQ$CREATE$REGION (fifo,
@exception);

deletion$mbox = RQ$CREATE~ILBOX (fifo,
@exception) ;

ring$buffer$type = RQ$CREATE$EXTENSION (rb$code,
deletion$mbox,
@exception) ;

11-9

CALL RQSETOS$EXTENSION

CALL RQENDINIT$TASK;
DO FOREVER;

TYPE MANAGERS

(224,
@ring$buffer$manager,
@exception) ;

delete$object = RQ$RECEIVE$MESSAGE (deletion$mbox,
indefinitely,
@respons e$mbox,
@exception);
(ring$buffer$type,
delete$object,
@exception) j

CALL RQ$DELETE$COMPOSITE

/**
* If desired, delete the components of the composite object. They are *
* not automatically deleted when DELETE$EXTENSION is called. See the *
* DELETE$RING$BUFFER procedure, shown later, for the code that does *
* this. *
**/

END RING~UFFER_INITj

The variable ring$buffer$manager is a pointer to the entry procedure of
the operating system extension.

THE INTERFACE LIBRARY

The user interface library consists of four small procedures, one for
each of the system calls provided by the operating system extension. The
library supports application code written in the' PL/M-86 "large" model.
If a different model had been used for compiling the application code,
these interface procedures would be slightly different, reflecting the
fact that, When making procedure calls in other models, the stack is used
differently than in the large model. The interface procedures are as
follows:

CREATERB PROC FAR
PUBLIC RQCREATERB
PUSH SP ;Save the BP value
MOV BP,SP
LEA SI,SS: BP+6 ;SS:SI contains location

of first parameter
MOV BX,O ;Code for CREATE_RING_BUFFER
INT 224 ;Call the extension
POP BP jRestore the BP value
RET 2 ;Passing one argument

CREATERB ENDP

DELETERB PROC FAR
PUBLIC RQDELETERB
PUSH BP
MOV BP,SP

11-10

TYPE MANAGER8

81,88: BP+6 LEA
MOV
INT
POP
RET

BX,1 ;Code for DELETE RING BUFFER
224
BP
2 ;Passing one argument

DELETERB ENDP

GETRBBYTE PROC FAR
PUBLIC RQGETBYTE
PU8H BP
MOV BP,8P
LEA 81,88: BP+6
MOV BX,2 jCode for GET BYTE
IN! 224
POP BP
RET 2 jPassing one argument

GETRBBYTE ENDP

PUTRBBYTE PROC
PUBLIC
PUSH
MOV
LEA
MOV
INT
POP
RET

PUTRBBYTE ENDP

FAR
RQPUTBYTE
BP
BP,SP
81,88: BP+6
BX,3 j Code for PUT_BYTE
224
BP
4 jPassing two arguments

These interface procedures correspond to a set of external procedure
declarations in the application PL/M-86 code:

CREATERB: PROCEDURE(size)
DECLARE size

END CREATERB;

WORD EXTERNAL;
WORD;

DELETERB: PROCEDURE(ring$buffer$token) EXTERNAL;
DECLARE ring$buffer$token TOKEN;

END DELETERB;

GETRBBYTE: PROCEDURE(ring$buffer$token) BYTE EXTERNAL;
DECLARE ring$buffer$token TOKEN;

END GETRBBYTE;

PUTRBBYTE: PROCEDURE (char, ring$buffer$token) EXTERNAL;
DECLARE char BYTE;
DECLARE ring$buffer$token WORD;

END PUTRBBYTE;

11-11

TYPE MANAGERS

THE ENTRY PROCEDURE

The entry procedure in the operating system extension is as follows:

PUBLIC RINGBUFFERMANAGER
EXTRN CREATERINGBUFFER:FAR
EXTRN DELETERINGBUFFER:FAR
EXTRN GETBYTE:FAR
EXTRN PUTBYTE:FAR

FLAGS EQU
RINGBUFFERMANAGER PROC

PUSH
PUSH
MOV

BP+8
FAR
DS
BP
BP,SP

PUSH FLAGS
POPF
PUSH SS

PUSH SI

; Push user values not
; automatically saved
;Value of BP equals

stackpointer and is
used in any calls
from this operating
system extension to
SIGNAL$EXCEPTION

;Restore
saved flags

;Base of pointer to
parameters

;Offset of pointer
to parameters

SHL BX,1 ;Call the appropriate
SHL BX,1 extension
CALL CS:TABLE BX; procedure
POP BP ;Restore saved BP
POP DS and DS values
IRET

TABLE DD CREATERINGBUFFER; The addresses
DD DELETERINGBUFFER; of the utility
DD GETBYTE procedures in
DD PUT BYTE the OS extension

RINGBUFFERMANAGER ENDP

Note that the entry routine is completely independent of the PL/M-86
model used when compiling the application code. The interface library
conceals the choice of model from the entry procedure.

THE CREATE RING BUFFER PROCEDURE

The sole function of the CREATE_RING_BUFFER procedure is to create a ring
buffer for the calling task and to return to the task a token for the
composite ring buffer object.

11-12

TYPE MANAGERS

Each ring buffer consists of three objects: a segment and two
semaphores. The supporting data structure, required by the iRMX 86
Operating System for calls to CREATE$COMPOSITE and INSPECT$COMPOSITE, has
the following five fields:

• The number of slots available for tokens in the following list of
component object tokens. Because ring buffers are composed of
three objects and there is no apparent reason to add components
at a later time, the number of slots is set to three.

• The number of component objects actually in the composite
object. In this case, the number of components is three.

• A token for a segment. The segment contains the ring buffer.
The first word in the segment contains the size of the actual
ring buffer. The second word of the segment is a "pointer" to
the most recently entered byte in the buffer, while the third
word points to the oldest byte in the buffer. The remainder of
the segment is to be used as the buffer itself. Note that, in
the program, a structure reflecting the intended breakdown of the
segment is superimposed on the segment.

• A token for a semaphore. This semaphore is used to keep track of
the number of vacancies in the ring buffer. Thus, it is
initialized to the size of the buffer.

• A token for a semaphore. This semaphore is used to keep track of
the number of occupied bytes in the ring buffer. Thus, it is
initialized to zero.

The CREATE_RING_BUFFER routine creates the components of the composite
ring buffer object, initializes the appropriate fields, and then creates
the composite object, as follows:

$INCLUDE(:Fx:COMMON.LIT);
DECLARE ring$buffer$type

CREATE RING BUFFER:

/* Declares common literals */
TOKEN EXTERNAL;

PROCEDURE-(param$ptr)
DECLARE param$ptr

TOKEN PUBLIC REENTRANT;

DECLARE size BASED param$ptr
DECLARE se g$pt r
DECLARE ptr$struc
DECLARE astr
DECLARE segment
DECLARE exception
DECLARE ring$buffer
DECLARE priority

POINTER;
WORD;
POINTER;
POINTER$STRUC AT (@seg$ptr);
ASTR$STRUC;
SEGMENT$STRUC BASED seg$ptr;
WORD;
TOKEN;
LITERALLY '1';

11-13

TYPE MANAGERS

astr.num$slots = 3;
astr.num$components = 3;
astr.seg = RQ$CREATE$SEGMENT (size+6,

@exception) ;
(size, size,
priority,
@exception) ;
(0,

astr.empty$ct = RQ$CREATE$SEMAPHORE

astr.full$ct = RQ$CREATE$SEMAPHORE

ptr$struc.base = astr.seg;
ptr$struc.offset = 0;
segment. size = size;
segment. head = -1;
segment. tail = 0;

size,
priority,
@exception) ;

ring$buffer = RQ$CREATE$COMPOSITE (ring$buffer$type,
@astr,
@exception) ;

RETURN ring$buffer;
END CREATE_ RING_BUFFER;

The segment.head variable is set to -1 because the PUT BYTE procedure
(shown later) advances this pointer before placing a character in the
buffer.

THE DELETE RING BUFFER PROCEDURE

DELETE RING BUFFER can be called by any task wanting to delete a ring
buffer:

$INCLUDE(:Fx:COMMON.LIT);
DECLARE ring$buffer$type

DELETE RING BUFFER: - -

/* Declares common literals */
TOKEN EXTERNAL;

PROCEDURE(param$ptr) REENTRANT PUBLIC;
DECLARE param$ptr POINTER;
DECLARE ring$buffer$token BASED param$ptr TOKEN;
DECLARE astr ASTR$STRUC;
DECLARE exception WORD;

astr.num$slots = 3;
CALL RQ$INSPECT$COMPOSITE

CALL RQ$DELETE$COMPOSITE

CALL RQ$DELETE$SEGMENT

(ring$buffer$type,
ring$buffer$token,
@astr,
@exception);
(ring$buffer$type,
ring$buffer$token,
@exception) ;
(astr.seg,
@exception) ;

11-14

CALL RQ$DELETE$SEMAPHORE

CALL RQ$DELETE$SEMAPHORE

THE PUT BYTE PROCEDURE

TYPE MANAGERS

(astr. empty $c t,
@exception) ;
(astr.full$ct,
@exception) ;

The PUT_BYTE procedure places a character in the buffer by advancing the
"pointer" to the front of the buffer and then placing the character in
the byte being pointed to:

$INCLUDE(:Fx:COMMON.LIT); /* Declares common literals */
DECLARE ring$buffer$type TOKEN EXTERNAL;
DECLARE ring$buffer$region TOKEN EXTERNAL;

PUT BYTE:
PROCEDURE(param$ptr) REENTRANT PUBLIC;
DECLARE param$ptr POINTER;
DECLARE params BASED param$ptr STRUCTURE(

ring$buffer$token TOKEN,
char BYTE);

DECLARE size WORD;
DECLARE seg$ptr POINTER;
DECLARE ptr$struc POINTER$STRUC AT (@seg$ptr);
DECLARE astr ASTR$STRUC;
DECLARE segment SEGMENT$STRUC BASED seg$ptr;
DECLARE exception WORD;
DECLARE units$left WORD;

astr.num$slots = 3;
CALL RQ$INSPECT$COMPOSITE

units$left = RQ$RECEIVE$UNITS

CALL RQ$RECEIVE$CONTROL

ptr$struc.base = astr.seg;
ptr$struc.offset = 0;

(ring$buffer$type,
params.ring$buffer$token,
@astr,
@exception);
(ast r. empty$c t,
1,
indefinitely,
@exception) ;
(ring$buffer$region,
@exception) ;

segment.head = «segment.head + 1) MOD segment.size);
segment.buffer(segment.head) = params.char;
CALL RQ$SEND$CONTROL (@exception);
CALL RQ$SEND$UNITS (astr.full$ct,

1,
@exception) ;

END PUT_BYTE;

11-15

TYPE MANAGERS

Note that this procedure enters a region after obtaining the desired
unit. To reverse these steps would create a deadlock situation,
particularly if the same reversal occurs in the GET BYTE routine (shown
later) •

Note also that the order of the parameters ring$buffer$token and char is
the opposite of the order of those parameters in the earlier external
declaration of PUTRBBYTE. This is typical of procedures with multiple
arguments and results from the use of the stack when passing parameters.

THE GET BYTE PROCEDURE

GET BYTE removes the oldest byte in the buffer and then advances the
segment. tail "pointer":

$INCLUDE(:Fx:COMMON.LIT);
DECLARE ring$buffer$type
DECLARE ring$buffer$region

/* Declares common literals */
TOKEN EXTERNAL;
TOKEN EXTERNAL;

GET BYTE: PROCEDURE(param$ptr) BYTE PUBLIC REENTRANT;
DECLARE param$ptr POINTER;
DECLARE ring$buffer$token
DECLARE size
DECLARE seg$ptr
DECLARE ptr$struc
DECLARE astr
DECLARE segment
DECLARE exception
DECLARE char
DECLARE units$left

astr.num$slots = 3;
CALL RQ$INSPECT$COMPOSITE

BASED param$ptr TOKEN;
WORD;
POINTER;
POINTER$STRUC AT (@seg$ptr);
ASTR$STRUC;
SEGMENT$STRUC BASED seg$ptr;
\JORD;
BYTE;
WORD;

units$left = RQ$RECEIVE$UNITS

(ring$buffer$type,
ring$buffer$token,
@astr,
@exception);
(astr.full$ct,

CALL RQ$RECEIVE$CONTROL

ptr$struc.base = astr.seg;
ptr$struc.offset = 0;

1,
indefinite ly,
@exception) ;
(ring$buffer$region,
@exception) ;

char = segment.buffer(segment.tail);
segment.tail = «segment.tail + 1) MOD segment.size);
CALL RQ$SEND$CONTROL (@exception);
CALL RQ$SEND$UNITS (astr.e,pty$ct,

RETURN char;
END GET_BYTE;

1,
@exception) ;

11-16

TYPE MANAGERS

EPILOGUE

This completes the important parts of the example (recall that the
example is not complete). Any task in any job linked to these procedures
may call anyone of the procedures. The procedure names to be used in
such calls are CREATE$RB, DELETE$RB, GETRBBYTE, and PUTRBBYTE. Note
that application programs cannot manipulate either ring buffers or their
component objects, except through these system calls. In fact, there is
no need for application programmers to be aware that ring buffers are
composed of several other objects. To them, ring buffers appear (except
for the absence of 'RQ' in the procedure names) to be standard iRMX 86
objects.

SYSTEM CALLS FOR TYPE MANAGERS

The following system calls enable type managers to manipulate extension
and composite objects:

• ALTER$COMPOSITE

This system call replaces a component in a composite object with
either a null or another object.

• CREATE$COMPOSITE

This system call creates a composite object of a specified
extension type.

• CREATE$EXTENSION

This system call creates an extension object which may
subsequently be used as a license for creating composite
objects. Input includes a token for a mailbox where these
composite objects are sent for deletion.

• DELETE$COMPOSITE

This system call deletes a composite object.

• DELETE$EXTENSION

This system call deletes an extension object and sends all
composite objects of that extension type to the associated
deletion mailbox.

• INSPECT$COMPOSITE

This system call returns a list of the component object tokens
contained in a composite object.

11-17

CHAPTER 12. NUCLEUS SYSTEM CALLS

This chapter contains the calling sequences and other information about
the system calls to the Nucleus. The system calls are listed in
alphabetical order. Names of the calls are written in white on a dark
background in the upper outside corner of each page. The calling
sequence for each call is that for the PL/M-86 interface. The
information for each system call is organized into the following
categories, in the following order:

• A brief sketch of the effects of the call.

• The PL/M-86 calling sequence for the system call.

• Definitions of the input parameters, if any.

• Definitions of the output parameters, if any.

• A detailed description of the'effects of the call.

• An example of how the system call can be used.

• The condition codes that can result from using the call, with a
description of the possible causes of each condition.

PL/M-86 data types, such as BYTE, WORD, and SELECTOR, are used throughout
the chapter. They are always capitalized and their definitions are found
in Appendix A. Also, the iRMX 86 data type TOKEN is capitalized
throughout the chapter. If your compiler supports the SELECTOR data
type, a TOKEN can be declared literally either SELECTOR or WORD. The
word "token" in lower case refers to a value that the iRMX 86 Operating
System assigns to an object. The Operating System returns this value to
a TOKEN (the data type) when it creates the object.

The examples used in this chapter assume the reader is familiar with
PL/M-86. In these examples, the appropriate DECLARE statements are made
first. Before the first of these DECLARE statements is an INCLUDE
statement that declares all of the system calls included in the iRMX 86
Operating System. Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual for
additional information on creating this INCLUDE statement. For the sake
of simplicity, the examples assume that an established exception handler
is to deal with exceptional conditions. Consequently, they do not
illustrate in-line exception processing.

Between this introduction and the details of the system calls is a
command dictionary, in which the calls are grouped according to type.
This dictionary, which includes short descriptions and page numbers of
the complete descriptions in this chapter, is provided as an alternate
way of indexing the system calls.

12-1

I

I

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY

CALLS FOR JOBS PAGE

CREATE$JOB -- Creates a job with a task and returns
a token for the job •• 12-19

DELETE$JOB -- Deletes a childless job that contains
no extension objects (extension objects are described
in Chapter 11) ••• 12-45

OFFSPRING -- Provides a segment containing tokens of
the child jobs of the specified job. • •••••••••••••••••••••••• 12-102

CALLS FOR TASKS

CREATE$TASK -- Creates a task and returns a token for it. 12-37

DELETE$TASK -- Deletes a task that is not an interrupt task. 12-56

GET$PRIORITY -- Returns the priority of a task. 12-87

GET$TASK$TOKENS -- Returns to the caller a token for either
itself, its job, its job's parameter object, or the root job.. 12-92

RESUME$TASK -- Decreases a task's suspension depth by one;
resumes (unsuspends) the task if the suspension
depth becomes zero ••• 12-119

SLEEP -- Places the calling task in the asleep state for a
specified amount of time ••••••••••••••••••••••••••••••••••••• 12-155

SUSPEND$TASK -- Increases a task's suspension depth by one;
suspends the task if it is not already suspended ••••••••••••• 12-157

CALLS FOR MAILBOXES

CREATE$MAILBOX -- Creates a mailbox and returns a token f'or it.

DELETE $MAILBOX -- Deletes a mailbox.
RECElVE$MESSAGE -- Allows the calling task to receive an object;

the task has the option of waiting if no objects are
present.

SEND$MESSAGE -- Sends an object to a mailbox.

12-2

12-27

12-47

12-108

12-125

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR SEMAPHORES PAGE

CREATE$SEMAPHORE -- Creates a semaphore and returns a
token for it. • ••• 12-34

DELETE$SEMAPHORE -- Deletes a semaphore. 12-54

RECEIVE$UNITS -- Asks for a specific number of units
from a semaphore. 12-112

SEND$UNITS -- Adds a specific number of units to a semaphore. 12-128

CALLS FOR SEGMENTS AND MEMORY POOLS

CREATE$SEGMENT -- Creates a segment and returns a token
for it ••• 12-32

DELETE$SEGMENT -- Returns a segment to the memory pool
from which it was allocated •••••••••••••••••••••••••••••••••• 12-52

GET$POOL$ATTRIBUTES -- Returns the following memory pool
attributes of the caller's job: pool minimum, pool
maximum, initial size, number of allocated 16-byte
paragraphs, number of available 16-byte paragraphs. •••••••••• 12-85

GET$SIZE --returns the size, in bytes, of a segment. 12-89

SET$POOL$MIN -- Changes the minimum attribute of the memory
pool of the caller's job. • •••••••••••••••••••••••••••••••••• 12-142

CALLS FOR ALL OBJECTS

CATALOG$OBJECT -- Places an object in an object directory. ••••••• 12-12

GET$TYPE -- Accepts a token for an object and returns
its type code •• 12-94

LOOKUP$OBJECT -- Accepts a cataloged name of an object
and returns a token for it ••••••••••••••••••••••••••••••••••• 12-99

UNCATALOG$OBJECT -- Removes an object from an object directory. 12-160

12-3

I

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR EXCEPTION HANDLERS PAGE

SET$EXCEPTION$HANDLER -- Sets the exception handler and
exception mode attribures of the caller. ••••••••••••••••••••• 12-131

GET$EXCEPTION$HANDLER -- Returns the current values of the
caller's exception handler and exception mode attributes. 12-81

CALLS FOR INTERRUPT HANDLERS, TASKS, AND LEVELS

(* indicates the system calls that an interrupt handler can make)

*DISABLE -- Disables an internal interrupt level. •••••••••••••••• 12-59

ENABLE -- Enables an external interrupt level. 12-65

END$INIT$TASK -- Informs root task that a synchronous
initialization process has completed. • ••••••••••••••••••••••• 12-71

~NTER$INTERRUPT -- Sets up a previously designated data
segment base address for the calling interrupt handler.

*EXIT$INTERRUPT -- Used by interrupt handlers to send an

12-72

end-of-interrupt signal to hardware. • •••••••••••••••••••••••• 12-76

*GET$LEVEL -- Returns the interrupt level of highest priority
for which an interrupt handler has started but has not
yet finished processing. ••••••••••••••••••••••••••••••••••••• 12-83

RESET$INTERRUPT -- Cancels the assignment of an interrupt
handler to a level and, if applicable, deletes the
interrupt task for that level. • •••••••••••••••••••••••••••••• 12-115

SET$INTERRUPT -- Assigns an interrupt handler and, if
desired, an interrupt task to an interrupt level.

*SIGNAL$INTERRUPT -- Used by interrupt handlers to invoke

12-135

interrupt tasks. • •• 12-151

WAIT$INTERRUPT -- Puts the calling interrupt task to sleep
until it is called into service by an interrupt handler. 12-164

12-4

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR COMPOSITE OBJECTS PAGE

ALTER$COMPOSITE -- Replaces components of composite objects. 12-10

CREATE$COMPOSITE -- Creates a composite object. 12-15

DELETE$COMPOSITE -- Deletes a composite object. 12-41

INSPECT$COMPOSITE -- Returns a list of the component tokens
contained in a composite object •••••••••••••••••••••••••••••• 12-97

CALLS FOR EXTENSION OBJECTS

CREATE$EXTENSION -- Creates a new object type. 12-17

DELETE$EXTENSION -- Deletes an extension object and all composites
of that type ••• 12-43

CALLS FOR DELETION CONTROL

DISABLE$DELETION -- Makes an object immune to ordinary deletion. 12-62

ENABLE$DELETION -- Makes an object susceptible to ordinary
deletion. Requi~ed only if the object has had its deletion
disabled ••• 12-68

FORCE$DELETE -- Deletes objects whose disabling depths are zero
or one ••• 12-79

CALLS FOR OPERATING SYSTEM EXTENSIONS

SETOSEXTENSION -- Either enters the address of an entry (or
function) procedure in the Interrupt Vector Table or it
deletes such an entry •• 12-140

SIGNAL$EXCEPTION -- Used by extensions of the iRMX 86 Operating
System to signal the occurrence of an exception. • •••••••••••• 12-148

CALLS FOR PRIORITY CONTROL

SET$PRIORITY -- Changes a task's priority. 12-144

12-5

NUCLEUS SYSTEM CALLS

COMMAND DICTIONARY (continued)

CALLS FOR REGIONS PAGE

ACCEPT$CONTROL -- Causes the calling task to accept control from
the region only if control is immediately available. If
control is not available, the calling task does not wait at
the region. • ••• 12-7

CREATE$REGION Creates a region and returns a token for it. 12-30

DELETE$REGION -- Deletes a region. 12-49

RECEIVE$CONTROL -- Causes the calling task to wait at the
region until the task receives control ••••••••••••••••••••••• 12-105

SEND $CONTROL -- Relinquishes control to the next task waiting
at the region •• 12-122

12-6

"9" , if tr'll$' 'if I] I

THE SYSTEM CALLS

ACCEPT$CONTROL

The ACCEPT$CONTROL system call requests immediate access to data
protected by a region.

lEE]
Tasks which use regions cannot be
deleted while they access data
protected by the region. Therefore,
you should avoid using regions in Human
Interface applications. If a task in a
Human Interface application uses
regions, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal) while the task
is in the region~

CALL RQ$ACCEPT$CONTROL (region, except$ptr);

INPUT PARAMETER

region

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A-TOKEN for the target region.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The ACCEPT$CONTROL system call provides access to data protected by a
region if access is immediately available- If access is not immediately
available, the E$BUSY condition code is returned and the calling task
remains ready.

12-7

~CCEPT$CONTROL

EXAMPLE

/**
* This example illustrates how the ACCEPT$CONTROL system call can be *
* used to access data protected by a region. *
**/

$INCLUDE(:F1:SAMPLE.EXT); /* declares all system calls */

DECLARE TOKEN

DECLARE region$token
DECLARE priority$queue

DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '1'; /* tasks wait in

priority order */
WORD;

--- } Typical PL/M-86 Statements

/**
* In order to access the data within a region, a task must know the *
* token for that region. In this example, the needed token is known *
* because the calling task creates the region. *
**/

region$token = RQ$CREATE$REGION (priority$queue,
@status) ;

-: } Typical PL/M-86 Statements

/**
* At some point in the task, access is needed to the data protected *
* by the region. The calling task then invokes the ACCEPT$CONTROL *
* system call and obtains access to the data if access is *
* immediately available. *
**/

CALL RQ$ACCEPT$CONTROL (region$token,
@status) ; .•. } Typical PL/M-86 Statements

/**
* When the task is ready to relinquish access to the data protected *
* by the region, it invokes the SEND$CONTROL system call. *
**/

CALL RQ$SEND$CONTROL (@status);

... } Typical PL/M-86 Statements

END SAMPLE~ROCEDURE;

12-8

ACCEPT$CONTROL

CONDITION CODES

E$OK No exceptional conditions.

E$BUSY Another task currently has access to the data.

E$EXIST The region parameter does not refer to a currently
existing object.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$TYPE The region parameter does not contain a token for a
region.

12-9

ALTER$COMPOSITE

The ALTER$COMPOSITE system call replaces components of composite objects.

Composite objects require the creation
of extension objects. Jobs that create
extension objects cannot be deleted
until all the extension objects are
deleted. Therefore you should avoid
creating composite objects in Human
Interface applications. If a Human
Interface application creates extension
objects, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal).

CALL RQ$ALTER$COMPOSITE(extension, composite, component$index,
replacing$obj, except$ptr);

INPUT PARAMETERS

extension

composite

component$index

replacing$obj

OUTPUT PARAMETER

except$ptr

A TOKEN for the extension type object corresponding
to the composite object being altered.

A TOKEN for the composite object being altered.

A WORD whose value specifies the location (starting
at 1) in the component list of the component to be
replaced.

A TOKEN for the replacement component object or
zero, which represents no object.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-10

ALTER$COMPOSITE

DESCRIPTION

The ALTER$COMPOSITE system call changes a component of a composite
object. Any component in a composite object can be replaced either with
a token for another object or with a place-holding zero that represents
no object.

The component$index indicates the position of the target token in the
list of components. A component$index value of three indicates the third
component object in the list.

EXAMPLE

See the example in section "The GET BYTE Procedure" of Chapter 11.

CONDITION CODES

E$OK No exceptional conditions.

E$CONTEXT The composite parameter is not compatible with the
extension parameter.

E$EXIST One or both of the extension or composite
parameters does not refer to a currently existing
object.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$PARAM The component$index parameter refers to a
nonexistent position in the component object list.

E$TYPE One or both of the extension or composite
parameters is not of the correct object type.

12-11

ATALOG$OBJECT

CATALOG$OBJECT"

CATALOG$OBJECT places an entry for an object in an object directory.

CALL RQ$CATALOG$OBJECT (job, object, name, except$ptr);

INPUT PARAMETERS

job

object

name

OUTPUT PARAME~ER
except$ptr

DESCRIPTION

A TOKEN that indicates where the object is to be
cataloged.

• if zero, indicates that the object is to be
cataloged in the object directory of the job to
which the calling task belongs.

• if not zero, the TOKEN for the job in whose
object directory the object is to be cataloged.

A TOKEN for the object to be cataloged. A zero for
this parameter indicates that a null token is being
cataloged.

1
A POINTER to a STRING containing the name under

_/ " which the object is to be cataloged. The name
itself must not exceed 12 characters in length.
Each character can be a byte consisting of any
value from 0 to OFFH.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The CATALOG$OBJECT system call places an entry for an object in the
object directory of a specific job. The entry consists of both a name
and a token for the object. There may be several such entries for a
single object in a directory, because the object may have several names.
(However, in a given object directory, only one object may be cataloged
under a given name.) If another task is waiting, via the LOOKUP$OBJECT
system"call, for the object to be cataloged, that task is awakened when
the entry is cataloged.

12-12

CATALOG$OBJECT

EXAMPLE

1**
* This example illustrates how the CATALOG$OBJECT system call can be· *
* used to place an entry in an object directory. *
**1

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE mbx$token
DECLARE mbx$flags
DECLARE job
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

mbx$flags = 0;

job = 0;

1* Declares all system calls *1

LITERALLY 'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

TOKEN;
WORD;
TOKEN;
WORD;

1* designates four objects to be queued
on the high performance object
queue; designates a first-inl
first-out task queue. *1

/* indicates objects to be cataloged
into the object directory of the
calling task's job *1

-: } Typical PL/M-86 Statements

1**
* The calling task creates an object, in this example a mailbox, *
* before cataloging the object's token. *
**/

mbx$token = RQ$CREATE$MAILBOX (mbx$f1ags,
@status);

--- } Typical PL/M-86 Statements

12-13

CATALOG$OBJECT

/**
* After creating the mailbox, the calling task catalogs the mailbox *
* token in the object directory of its own job. *
**/

CALL RQ$CATALOG$OBJECT (job,
mbx$token,
@ (3, 'MBX'),
@status);

.: } Typical PL/M-86 Statements

END SAMPLEY ROCEDURE ;

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$PARAM

E$TYPE

No exceptional conditions.

At least one of the following is true:

• The name being cataloged is already in the
designated object directory.

• The directory's maximum allowable size is O.

Either the job parameter (which is not zero) or the
object parameter is not a token for an existing
object.

The designated object directory is full.

This system call is not part of the present
configuration.

The first BYTE of the STRING pointed to by the name
parameter contains a value greater than 12 or a
value of O.

The job parameter is a token for an object which is
not a job.

12-14

CREATE$COMPOSIT

CREATE$COMPOSITE

The CREATE$COMPOSITE system call creates a composite object.

Composite objects require the creation
of extension objects. Jobs that create
extension objects cannot be deleted
until all the extension objects are
deleted. Therefore you should avoid
creating composite objects in Human
Interface applications. If a Human
Interface application creates extension
objects, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal).

composite=RQ$CREATE$COMPOSITE(extension,token$list, except$ptr);

INPUT PARAMETERS

extension

token$list

A TOKEN for an extension type representing license
to create a composite object.

A POINTER to a structure of the form:

Declare
token$list
num$slots
num$used
tokens(*)

STRUCTURE (
WORD,
WORD,
TOKEN) ;

where:

num$slots

num$used

token(*)

Number of positions available for
tokens in token$list.

Number of component tokens making up
the composite object.

Tokens that will actually constitute
the composite object.

12-15

CREATE$COMPOSITE

OUTPUT PARAMETERS

composite

except$ptr

DESCRIPTION

A TOKEN to which the Operating System returns the
new composite token.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The CREATE$COMPOSITE system call creates a composite object of the
specified extension type. It accepts a list of tokens that specify the
component objects and returns a token for the new composite object. A
zero value in the token list is a place holder and does not represent an
object.

If num$used is less than num$slot, the extra component slots at the end
of the composite object are filled with zeros.

If num$slots is less than num$used, the entry list is truncated to fit
within the specified number of slots in the composite object.

EXAMPLE

See section "The CREATE RING BUFFER Procedure" in Chapter 11.

CONDITION CODES

E$OK

E$EXIST

E$LIMIT

E$MEM

No exceptional conditions.

The extension parameter or one or more of the
non-zero token$list parameters does not refer to an
existing object.

The calling task's job has already reached its
object limit.

Insufficient memory is available to satisfy the
request.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$PARAM The specified number of components is zero.

E$TYPE The extension parameter does not contain a token
for an extension object.

12-16

CREATE$EXTENSIO

CREATE$EXTENSION

The CREATE$EXTENSION system call creates a new object type.

Jobs that create extension objects
cannot be deleted until the extension
object is deleted. Therefore, you
should avoid creating extension objects
in Ruman Interface applications. If a
Human Interface application creates
extension objects, the application
cannot be deleted asynchronously (via a
CTRL/c entered at a terminal).

extension=RQ$CREATE$EXTENSION(type$code, deletion$mailbox,
excep t$pt r) ;

INPUT PARAMETERS

type$code A WORD containing the type code for the new type.
The type code for the new type can be any value
from 8000R to OFFFFR and must not be currently in
use. (The type codes a through 7FFFH are reserved
for Intel products.)

deletion$mailbox A TOKEN for the mailbox where objects of the new
type are sent whenever the extension type or their
containing job is deleted. A zero value indicates
no deletion mailbox is desired.

OUTPUT PARAMETERS

extension

except$ptr

A TOKEN to which the Operating System will return a
token for the new type.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-17

CREATE$EXTENSION

DESCRIPTION

The CREATE$EXTENSION system call returns a token for the newly created
extension object type.

You can specify a deletion mailbox when the extension type is created.
If you do, a task in your type manager for the new type must wait at the
deletion mailbox for tokens of objects of the new extension type that are
to be deleted. Tokens of objects are sent to the deletion mailbox for
deletion either when their extension type is deleted or when their
containing job is deleted; they are not sent there when being deleted by
DELETE$COMPOSITE. The task servicing the deletion mailbox may do
anything with the composite objects sent to it, but it must delete. them.

If you do not want to specify a deletion mailbox, set the token value for
deletion$mailbox to zero. If the extension type has no deletion mailbox,
composite objects of that type are deleted automatically, and the type
manager is not informed. The advantage of having a deletion mailbox is
that the type manager has the opportunity to do more than merely delete
the composite objects.

A job containing a task that creates an extension object cannot be
deleted until the extension object is deleted.

EXAMPLE

See the example in section "The Initialization Part" of Chapter 11.

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

No exceptional conditions.

The calling task's job is partially deleted.

The deletion$mailbox TOKEN does not refer to an
existing object.

The calling task's job has reached its object limit.

The memory pool of the calling task's job does not
contain a sufficiently large block to satisfy the
request.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$PARAM The type$code parameter is invalid.

E$TYPE The deletion$mailbox TOKEN does not contain a token
for a mailbox.

12-18

CREATE$JOB

CREATE$JOB

CREATE$JOB creates a job with a single task.

job = RQ$CREATE$JOB (directory$size, param$obj, pool$min, pool$max,
max$objects, max$tasks, max$priority, except$handler,
job$flags, task$priority, start$address, data$seg, stack$ptr,
stack$size, task$flags, except$ptr);

INPUT PARAMETERS

directory$size

param$obj

pool$min

pool$max

max$objects

A WORD specifying the maximum allowable number of
entries a job can have in its object directory.
The value zero is permitted, for the case where no
object directory is desired. The maximum value for
this parameter is OFFOH.

A TOKEN indicating the presence or absence of a
parameter object. See Chapter 2 for an an
explanation of parameter objects.

• if zero, indicates that the new job has no
parameter object.

• if not zero, contains a valid token for the new
job's parameter object.

A WORD which contains the minimum allowable size of
the new job's pool, in 16-byte paragraphs. The
pool$min parameter is also the initial size of the
new job's pool. Poo1$min should be at least 32
(decimal). If the stack$ptr parameter has a base
value of 0, pool$min should be at least 32
(decimal) plus the value of stack$size in 16 byte
paragraphs.

A WORD which contains the maximum allowable size of
the new job's memory in 16-byte paragraphs. If
pool$max is smaller than pool$min, an E$PARAM error
occurs.

A WORD that specifies the maximum number of objects
that the created job can own.

• if not OFFFFH, contains the maximum number of
objects, created by tasks in the new job, that
can exist at one time.

• if OFFFFH, indicates that there is no limit to
the number of objects that tasks in the new job
can create.

12-19

CREATE$JOB

max$tasks

max$priority

except$handler

A WORD that specifies the maximum number of tasks
that can exist simultaneously in the new job.

• If not OFFFFH, it contains the maximum number of
tasks that can exist simultaneously in the new
job.

• If OFFFFH, it indicates that there is no limit
to the number of tasks that tasks in the new job
can create.

A BYTE that sets an upper limit on the priority of
the tasks created in the new job.

• If not zero, it contains the maximum allowable
priority of tasks in the new job. If
max$priority exceeds the maximum priority of the
parent job, an E$LIMIT error occurs.

• If zero, it indicates that the new job is to
inherit the maximum priority attribute of its
parent job.

A POINTER to a structure of the following form:

STRUCTURE (
EXCEPTION$HANDLER$PTR
EXCEPTION $MODE

POINTER,
BYTE) ;

If exception$handler$ptr is not zero, then it is a
POINTER to the first instruction of the new job's
own exception handler. If exception$handler$ptr is
zero, the new job's exception handler is the system
default exception handler. In both cases, the
exception handler for the new task becomes the
default exception handler for the job. The
exception$mode indicates when control is to be
passed to the exception handler. It is encoded as
follows:

Value

o
1
2
3

When Control Passes
To Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditions

12-20

job$flags

task$priority

start$address

data$seg

CREATE$JOB

A WORD containing information that the Nucleus
needs to create and maintain the job. The bits
(where bit 15 is the high-order bit) have the
following meanings:

bit

15-2

1

meaning

reserved.

If 0, then whenever a task in the new job
or any of its descendent jobs makes a
Nucleus system call, the Nucleus will
check the parameters for validity.

If 1, the Nucleus will not check the
parameters of Nucleus system calls made
by tasks in the new job. However, if any
ancestor of the new job has been/created
with this bit set to 0, there will be
parameter checking for the new job.

° reserved.

A BYTE that controls the priority of the new job's
initial task.

• If not zero, it contains the priority of the new
job's initial task. If the task$priority
parameter is greater (ntnnericallysmaller) than
the new job's maximtnn priority attribute, an
E$PARAM error occurs.

• If zero, it indicates that the new job's initial
task is to have a priority equal to the new
job's maximum priority attribute.

A POINTER to the first instruction of the new job's
initial task (the task created with the job).

A WORD or SELECTOR that specifies which data
segment the new job is to use.

• If not zero, it contains the base address of the
data segment of the new job's initial task.

• If zero, it indicates that the new job's initial
task assigns its own data segment. Refer to the
iRMX 86 CONFIGURATION GUIDE for more information
about data segment allocation.

12-21

~REATE$JOB

stack$ptr

stack$size

task$flags

OUTPUT PARAMETERS

job

except$ptr

A POINTER that specifies the location of the stack
for the new job's initial task.

• If the base portion is not zero, the pointer
points to the base of the user-provided stack of
the new job's initial task.

• If the base portion is zero, it indicates that
the Nucleus should allocate a stack for the new
job's initial task. The length of the allocated
segment is equal to the value of the stack$size
parameter.

A WORD containing the size, in bytes, of the stack
of the new job's initial task. This size must be
at least 16 (decimal) bytes. The Nucleus increases
specified values that are not multiples of 16 up to
the next higher mUltiple of 16.

The stack size should be at least 300 (decimal)
bytes if the new task is going to make Nucleus
system calls. Refer to the iRMX 86 PROGRAMMING
TECHNIQUES manual for further information on
estimating stack sizes.

A WORD containing information that the Nucleus
needs to create and maintain the job's initial
task. The bits (where bit 15 is the high order
bit) have the following meanings:

bit meaning

15-1 Reserved bits which should be set to zero.

a If one, the initial task contains
floating-point instructions. These
instructions require the 8087 component
for execution.

If zero, the initial task does not
contain floating-point instructions.

A TOKEN to which the Operating System will return a
token for the new job.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-22

(j.H.EA·l·E~U.H

DESCRIPTION

The CREATE$JOB system call creates a job with an initial task and returns
a token for the job. The new job's parent is the calling task's job.
The new job counts as one against the parent job's object limit. The new
task counts as one against the new job's object and task limits. The new
job's resources come from the parent job, as described in the chapter on
job management. In particular, the max$task and max$objects values are
deducted from the creating job's maximum task and maximum objects
attributes, respectively.

EXAMPLE

/**
* This example illustrates how the CREATE$JOB system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */

INITIAL TASK: PROCEDURE EXTERNAL;
END INITIAL_TASK;

DECLARE TOKEN

DECLARE job$token
DECLARE directory$size
DECLARE param$obj
DECLARE pool$min
DECLARE pool$max
DECLARE max$objects
DECLARE max$tasks
DECLARE max$priority
DECLARE except$handler
DECLARE job$flags
DECLARE task$priority
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size
DECLARE task$flags
DECLARE status

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
WORD;
TOKEN;
WORD;
WORD;
WORD;
WORD;
BYTE;
POINTER;
WORD;
BYTE;
POINTER;
WORD;
POINTER;
WORD;
WORD;
WORD;

12-23

SAMPLE PROCEDURE:
PROCEDURE;
directory$size = 10;
param$ob j = 0;
pool$min = IFFH;
pool$max = OFFFFH;
max$objects = OFFFFH;
max$tasks = OAH;
max$priority = 0;
except$handler = 0;
job$flags = 0;
task$priority = 0;

/* max 10 entries in object directory */
/* new job has no parameter object */
/* min IFFH/ max OFFFFH 16-byte */
/* paragraphs in job pool */
/* no limit to number of objects */
/* OAR tasks can exist simultaneously */
/* inherit max priority of parent */
/* use system default except handler */
/* no flags set */
/* set initial task to max priority */

start$address @INITIAL TASK;

data$seg = 0;

stack$pointer = 0;
stack$size 512;
task$flags = 0;

- /* points to first instruction of
initial task */

/* initial task sets up own data
segment */

/* Nucleus allocates stack */
/* 512 bytes in stack of initial task */
/* no floating-point instructions */

.: } Typical PL/M-86 Statements

/**
* The calling task creates a job with an initial task labeled *
* INITIAL TASK. *
**/

job$token = RQ$CREATE$JOB (directory$size,
param$obj,
pool$min,
pool$max,
max$objects,
max$tasks,
max$priori ty ,
except$handler,
job$flags,
task$priority,
start$address,
data$seg,
stack$pointer,
stack$size,
task$flags,
@status); ..• } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

12-24

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$MEM

E$PARAM

No exceptional conditions.

The job containing the calling task is in the
process of being deleted.

The param$obj parameter is not zero and is not a
token for an existing object.

At least one of the following is true:

CREATE$dUH

• max$objects is larger than the unused portion of
the object allotment in the calling task's job.

• max$tasks is larger than the unused portion of
the task allotment in the calling task's job.

• max$priority is greater (numerically smaller)
than the maximum allowable task priority in the
calling task's job.

• directory$size is larger than OFFOH.

• The new task would exceed the object limit in
the new job (that is, the max$objects parameter
is set to zero).

• The new task would exceed the task limit in the
new job (that is, the max$tasks parameter is set
to zero).

At least one of the following is true:

• The memory available to the new job is not
sufficient to create the job descriptor and the
object directory.

• The memory available to the new job is not
sufficient to satisfy the pool$min parameter.

• The memory available to the new job is not
sufficient to create the task as specified.

At least one of the following is true:

• pool$min is less than 16 + (number of paragraphs
needed for the initial task and any system
allocated stack) + 5 (if the task uses the 8087
component).

• pool$min is greater than pool$max.

• task$priority is unequal to zero and greater
(numerically smaller) than max$priority.

12-25

• stack$size is less than 16.

• pool$max is specified as zero.

• the exception handler mode is not valid.

12-26

CREATE~ILBOX

CREATE$MAILBOX creates a mailbox.

mailbox = RQ$CREATE$MAILBOX (mailbox$flags, except$ptr);

INPUT PARAMETERS

mailbox$flags

OUTPUT PARAMETERS

mailbox

except$ptr

A WORD containing information about the new
mailbox. The bits (where bit 15 is the high-order
bit) have the following meanings:

bit meaning

15-5 Reserved bits which should be set to
zero.

4-1 A value that, when mUltiplied by four,
specifies the number of objects that
can be queued on the high performance
object queue. Additional objects are
queued on the slower, overflow queue.
Four is the minimum size for the high
performance queue; that is, specifying
zero or one in these bits results in a
high performance queue that holds four
objects.

o A bit that determines the queuing
scheme for the task queue of the new
mailbox, as follows:

value queueing scheme

o First-in/first-out

1 Priority based

A TOKEN to which the Operating System will return a
token for the new mailbox.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-27

CREATE$MAILBOX

DESCRIPTION

The CREATE$MAILBOX system call creates a mailbox and returns a token for
it. The new mailbox counts as one against the object limit of the
calling task's job.

EXAMPLE

/**
* This example illustrates how the CREATE $MAILBOX system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE mbx$token
DECLARE mbx$flags
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

mbx$flags = 0;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
WORD;
WORD;

/* designates four objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue. */

.: } Typical PL/M-86 Statements

/**
* The token mbx$token is returned when the calling task invokes the *
* CREATE$MAILBOX system call. *
**/

mbx$token = RQ$CREATE$MAILBOX (mbx$flags,
@status) ; ... } Typical PL/M-86 Statements

E NO SAMP LEYROCEDURE;

12-28

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

C REATE $MAILBOX

No exceptional conditons.

The requested mailbox would exceed the job object
limit of the calling task's job.

The memory available to the calling task's job is
not sufficient to create a mailbox.

This system call is not part of the present
configuration.

12-29

CREATE$REGION

CREATE$REGION

The CREATE$REGION system call creates a region.

Tasks which use regions cannot be
deleted while they access data
protected by the region. Therefore,
you should avoid using regions in Human
Interface applications. If a task in a
Human Interface application uses
regions, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal) while the task
is in the region.

region RQ$CREATE$REGION (region$flags, except$ptr);

INPUT PARAMETER

region$flags

OUTPUT PARAMETERS

region

except$ptr

DESCRIPTION

A WORD that specifies the queueing protocol of the
new region. If the low order bit equals zero,
tasks await access in FIFO order. If the low order
bit equals one, tasks await access in priority
order. The other bits in the WORD are reserved and
should be set to zero.

A TOKEN to which the Operating System will return a
token for the new region.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The CREATE$REGION system call creates a region and returns a token for
the region.

12-30

CREATE$REGION

EXAMPLE

/**
* This example illustrates how the CREATE$REGION system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE region$token
DECLARE priority$queue

DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '1'; /* tasks wait in

priority order */
WORD;

-: } Typical PL/M-86 Statements

/**
* The token region$token is returned when the calling task invokes *
* the CREATE$REGION system call. *
**/

region$token = RQ$CREATE$REGION (priority$queue,
@status) ;

-: } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK No exceptional conditions.

E$LIMIT The calling task's job has reached its object limit.

E$MEM The memory pool of the calling task's job does not
contain a sufficiently large block to satisfy the
request.

ENOTCONFIGURED This system call is not part of the present
configuration.

12-31

REATE$SEGMENT

CREATE$SEGMENT

CREATE$SEGMENT creates a segment.

segment = RQ$CREATE$SEGMENT (size, except$ptr);

INPUT PARAMETER

size

OUTPUT PARAMETERS

segment

except$ptr

DESCRIPTION

A WORD that specifies the size of the requested
segment.

• If not zero, it contains the size, in bytes, of
the requested segment. If the size parameter is
not a multiple of 16, it will be rounded up to
the nearest higher multiple of 16 before the
request is processed by the Nucleus.

• If zero, it indicates that the size of the
request is 65536 (64K) bytes.

A TOKEN to which the Operating System will return a
token for the new segment.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The CREATE$SEGMENT system call creates a segment and returns the token
for it. The memory for the segment is taken from the free portion of the
memory pool of the calling task's job, unless borrowing from the parent
job is both necessary and possible. The new segment counts as one
against the object limit of the calling task's job.

To gain access into the segment, you should base an array or structure on
a pointer by setting the base portion equal to the segment's TOKEN and
the offset portion equal to zero. If you have a PL/M-86 compiler that
supports the SELECTOR data type, you can accomplish the same thing by
basing the array or structure on the SELECTOR.

12-32

CREATE$SEGMENT

EXAMPLE

/**
* This example illustrates how the CREATE$SEGMENT system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */

DECLARE TOKEN

DECLARE seg$token
DECLARE seg$size
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

seg$size 0100H;

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
WORD;
WORD;

/* the size of the requested segment is
256 bytes. */

:. } Typical PL/M-86 Statements

/**
* The token seg$token is returned when the calling task invokes the *
* CREATE$SEGMENT system call. *
**/

seg$token = RQ$CREATE$SEGMENT (seg$size,
@status);

-: } Typical PL/M-86 Statements

END SAMPLEYROCEDURE;

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

No exceptional conditions.

The requested segment would exceed the job object
limit.

The memory available to the calling task's job is
not sufficient to create the specified segment.

This system call is not part of the present
configuration.

12-33

REATE$SEMAPHORE

CREATE$SEMAPHORE

CREATE$SEMAPHORE creates a semaphore.

semaphore = RQCREATE$SEMAPHORE (initial$value, max$value,
semaphore$flags, except$ptr);

I NPUT PARAMETERS

initial$value

max$value

s emap ho reS flags

OUTPUT PARAMETERS

semaphore

except$ptr

DESCRIPTION

A WORD containing the initial number of units to be
in the custody of the new semaphore.

A WORD containing the maximum number of units over
which the new semaphore is to have custody at any
given time. If max$value is zero, an E$PARAM error
occurs.

A WORD containing information about the new
semaphore. The low-order bit determines the
queueing scheme for the new semaphore's task queue:

Value Queueing Scheme

o First-in/first-out

1 Priority based

The remaining bits in semaphore$flags are reserved
for future use and should be set to zero.

A TOKEN to which the Operating System will return a
token for the new semaphore.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The CREATE$SEMAPHORE system call creates a semaphore and returns a token
for it. The semaphore thus created counts as one against the object
limit of the calling task's job.

12-34

CREATE$SEMAPHORE

EXAMPLE

1**
* This example illustrates how the CREATE$SEMAPHORE system call can *
* be used. *
**1

$INCLUDE{:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE sem$token
DECLARE init$value
DECLARE max$value
DECLARE sem$flags
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

init$value = 1;

max$va1ue = lOll;

sem$flags = 0;

1* Declares all system calls *1

LITERALLY 'SELECTOR';
1* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD *1

TOKEN;
WORD;
WORD;
WORD;
WORD;

1* the new semaphore has one initial
unit *1

1* the new semaphore can have a maximum
of 16 units * I

1* designates a first-inl
first-out task queue. *1 ... } Typical PL/M-86 Statements

1**
* The token sem$token is returned when the calling task invokes the *
* CREATE$SEMAPllORE system call. *
**1

sem$token = RQ$CREATE$SEMAPHORE (init$value,
max$value,
sem$flags,
@status) ;

:. } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

12-35

CREATE$SEMAPHORE

CONDITION CODES

E$OK

E$LIMIT

E$MEM

E$PARAM

ENOTCON
FIGURED

No exceptional conditions.

The requested semaphore would exceed the job object
limit.

The memory available to the calling task's job is
not sufficient to create a semaphore.

At least one of the following is true:

• The initial$value parameter is larger than the
maximum$value parameter.

• The maximum$value parameter is O.

This system call is not part of the present
configuration.

12-36

CREATE$TASK

CREATE$TASK

CREATE$TASK creates a task.

task = RQ$CREATE$TASK (priority, start$address, data$seg, stack$ptr,
stack$size, task$flags, except$ptr);

INPUT PARAMETERS

priority

s tart$address

data$seg

s tack$ptr

stack$size

A BYTE that specifies the priority of the new task.

• If not zero, it contains the priority of the new
task. The priority parameter must not exceed
the maximum allowable priority of the calling
task's job. If it does, an E$PARAM error occurs.

• If zero, it indicates that the new task's
priority is to equal the maximum allowable
priority of the calling task's job.

A POINTER to the first instruction of the new task.

A WORD or SELECTOR that specifies the new task's
data segment.

• If not zero, the WORD contains the base address
of the new task's data segment.

• If zero, the WORD indicates that the new task
assigns its own data segment. Refer to the iRMX
86 CONFIGURATION GUIDE for further information
on data segment allocation.

A POINTER that specifies the location of the stack
for the new task.

• If the base portion is not zero, the POINTER
points to the base of the new task's stack.

• If the base portion is zero, the Nucleus
allocates a stack to the new task. The length
of the stack is equal to the value of the
stack$size parameter.

A WORD containing the size, in bytes, of the new
task's stack segment. The stack size must be at
least 16 bytes. The Nucleus increases specified
values that are not multiples of 16 up to the next
higher multiple of 16.

12-37

CREATE$TASK

task$flags

OUTPUT PARAMETERS

task

except$ptr

DESCRIPTION

The stack size should be at least 300 bytes if the
new task is going to make Nucleus system calls.
Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual
for further information on assigning stack sizes.

A WORD containing information that the Nucleus
needs to create and maintain the task. The bits
(where bit 15 is the high-order bit) have the
following meanings:

bit

15-1

meaning

Reserved bits which should be set to
zero.

o If one, the task contains
floating-point instructions. These
instructions require the 8087
component for execution.

If zero, the task does not contain
floating-point instructions.

A TOKEN to which the Operating System will return a
token for the new task.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The CREATE$TASK system call creates a task and returns a token for it.
The new task counts as one against the object and task limits of the
calling task's job. Attributes of the new task are initialized upon
creation as follows:

• priority: as specified in the call.

• execution state: ready.

• suspension depth: O.

• containing job: the job which contains the calling task.

• exception handler: the exception handler of the containing job.

• exception mode: the exception mode of the containing job.

12-38

C REATE $TASK

EXAMPLE

/**
* This example illustrates how the CREATE$TASK system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

TASK CODE: PROCEDURE EXTERNAL;
END TASK_CODE;

DECLARE TOKEN

DECLARE task$token
DECLARE priority$level$66
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size$512

DECLARE task$flags
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;
start$address = @TAS~CODE;
data$seg = 0;
stack$pointer = 0;
task$flags = 0;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '66';
POINTER;
WORD;
POINTER;
LITERALLY '512'; /* new task's stack

size is 512 bytes */
WORD;
WORD;

/* first instruction of the new task */
/* task sets up own data segment */
/* automatic stack allocation */
/* designates no floating-point

instructions */

:. } Typical PL/M-86 Statements

12-39

/**
* The task (whose code is labeled TASK CODE) is created when the *
* calling task invokes the CREATE$TASK-system call. *
**/

task$token = RQ$CREATE$TASK (priority$level$66,
start$address,
data$seg,
stack$pointer,
s tack $ s iz e$ 512,
task$flags,
@status) ;

... } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

At least one of the following is true:

• The new task would exceed the object limit or
the task limit of the calling task's job.

• The priority parameter is nonzero and greater
(numerically smaller) than the maximum allowable
priority for tasks in the calling task's job.

The memory available to the calling task's job is
not sufficient to create a task as specified (task
descriptor, stack, and possibly 8087 area).

This system call is not part of the present
configuration.

The stack$size parameter is less than 16.

12-40

, II",' 'i"I)1' it'@"W

DELETE$COMPOSITE

The DELETE$COMPOSITE system call deletes a composite object.

Composite objects require the creation
of extension objects. Jobs that create
extension objects cannot be deleted
until all the extension objects are
deleted. Therefore you should avoid
creating composite objects in Human
Interface applications. If a Human
Interface application creates extension
objects, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal).

CALL RQ$DELETE$COMPOSITE(extension, composite, except$ptr);

INPUT PARAMETERS

extension

composite

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the extension type used as a license to
create the composite object to be deleted.

A TOKEN for the composite object to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$COMPOSITE system call deletes the specified composite object
but not its component objects.

12-41

DELETE$COMPOSITE

EXAMPLE

See the example in section "The Initialization Part" of Chapter 11.

CONDITION CODES

E$OK

E$CONTEXT

No exceptional conditions.

The extension type does not match the composite
parameter.

E$EXIST One or both of the extension or composite
parameters does not refer to a currently existing
object.

E$MEM The memory pool of the calling task's job does not
contain a sufficiently large block for Nucleus
housekeeping purposes.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$TYPE One or both of the extension or composite
parameters is not of the correct object type.

12-42

DELETE$EXTENSION

DELETE$EXTENSION

The DELETE$EXTENSION system call deletes an extension object and all
composites of that type.

Jobs that create extension objects
cannot be deleted until the extension
object is deleted. Therefore, you
should avoid creating extension objects
in Human Interface applications. If a
Human Interface application creates
extension objects, the application
cannot be deleted asynchronously (via a
CTRL/c entered at a terminal).

CALL RQ$DELETE$EXTENSION(extension, except$ptr);

INPUT PARAMETER

extension

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the extension object to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$EXTENSION system call deletes the specified extension object
type and all composite objects of that type. This makes the
corresponding type code available for reuse.

If a deletion mailbox was specified when the extension type was created,
then all of the composite objects created by the extension type to be
deleted are sent to that deletion mailbox. In this case, this call will
not be completed until all of the composite objects have been deleted.

If the extension type has no deletion mailbox, the composite objects
created by the extension type to be deleted are deleted without informing
the type manager.

12-43

DELETE$EXTENSION

The job containing the task that created the extension object type cannot
be deleted until the extension object is deleted.

CONDITION CODES

E$OK

E$EXIST

E$MEM

No exceptional conditions.

The extension parameter does not refer to an
existing object.

The memory pool of the calling task's job does not
contain a sufficiently large block for Nucleus
housekeeping purposes.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$TYPE The extension parameter does not contain a token
for an extension object.

12-44

DELETE$JOB

DELETE$JOB deletes a job.

CALL RQ$DELETE$JOB (job, except$ptr);

INPUT PARAMETER

job

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the job to be deleted. A value of zero
specifies the calling task's job.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$JOB system call deletes from the system the specified job, as
well as all objects created by tasks in it. Exceptions are that jobs and
extension objects (see Chapter 11) created by tasks in the target job
must be deleted prior to the call to DELETE$JOB. Information concerning
the descendents of a job is obtained via the OFFSPRING system call.
During deletion, all resources that the target job had borrowed from its
parent are returned.

Deleting a job causes a credit of one toward the object total of the
parent job. Also, the maximum tasks and maximum objects attributes of
the deleted job are credited to the current tasks and current objects
attributes, respectively, of the parent job.

12-45

DELETE$JOB

EXAMPLE

/**
* This example illustrates how the DELETE$JOB system call can be *
* used to delete the calling task's job. *
**/

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */

DECLARE calling$tasks$job
DECLARE status

LITERALLY '0';
WORD;

SAMPLE PROCEDURE:
PROCEDURE;

.•. } Typical PL/M-86 Statements

/**
* If you set the selection parameter to zero, the DELETE$JOB system *
* call will delete the calling task's job. *
**/

CALL RQ$DELETE$JOB (calling$tasks$job,
@status) ;

END SAMPLE~ROCEDURE;

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$MEM

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

At least one of the following is true:

• There are undeleted jobs, or extension objects (see
Chapter 11) which have been created by tasks in the
target job.

• The deleting task has access to data guarded by a
region contained in the job to be deleted. (Refer to
Chapter 9 for information concerning, regions.)

The job parameter is not a token for an existing object.

The job to be deleted contains undeleted composite
objects (see Chapter 11), and there is not sufficient
memory for the Nucleus to send deletion messages to the
appropriate deletion mailboxes.

This system call is not part of the present
configuration.

The job parameter is a token for an object that is not
a job.

12-46

DELETE$MAILBO
I

DELETE $MAILBOX

D~LETE$MAILBOX deletes a mailbox.

CALL RQ$DELETE$MAILBOX (mailbox, except$ptr);

INPUT PARAMETER

mailbox

OUTPUT PARAMETERS

except$ptr

DESCRIPTION

A TOKEN for the mailbox to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$MAILBOX system call deletes the specified mailbox. If any
tasks are queued at the mailbox at the moment of deletion, they are
awakened with an E$EXIST exceptional condition. If there is a queue of
object tokens at the moment of deletion, the queue is discarded.
Deleting the mailbox counts as a credit of one toward the object total of
the containing job.

EXAMPLE

/**
* This example illustrates how the DELETE$MAILBOX system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE mbx$token
DECLARE mbx$flags
DECLARE status

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
WORD;
\lORD;

12-47

[)ELETE$MAILBOX

SAMPLE PROCEDURE:
PROCEDURE;

mbx$flags = 0; /* designates four objects to be queued
on the high performance object
queue; designates a first-in/
first-out task queue. */

:. } Typical PL/M-86 Statements

/**
* In order to delete a mailbox, a task must know the token for that *
* mailbox. In this example, the needed token is known because the *
* calling task creates the mailbox. *
**/

mbx$token = RQ$CREATE$MAILBOX (mbx$flags,
@status) ; ... } Typical PL/M-86 Statements

/**
* When the mailbox is no longer needed, it may be deleted by any task *
* that knows the token for the mailbox. *
**/

CALL RQ$DELETE$MAILBOX (mbx$token,
@status); .•. } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

Either the mailbox parameter is not a token for an
existing object or it represents a mailbox whose
job is in the process of being deleted.

This system call is not part of the present
configuration.

The mailbox parameter is a token for an object
which is not a mailbox.

12-48

DELETE$REGION

DELETE$REGION

The DELETE$REGION system call deletes a region.

Tasks which use regions cannot be
deleted while they access data
protected by the region. Therefore,
you should avoid using regions in Human
Interface applications. If a task in a
Human Interface application uses
regions, the application cannot be
deleted asynchronously (via a CTRLlc
entered at a terminal) while the task
is in the region.

CALL RQ$DELETE$REGION (region, except$ptr);

INPUT PARAMETER

region

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the region to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$REGION system call deletes a region. If a task that has
access to data protected by the region requests that that region be
deleted, the task receives an E$CONTEXT exceptional condition. If a task
requests deletion while another task has access, deletion is delayed
until access is surrendered. When the region is deleted, any waiting
tasks awaken with an E$EXIST exceptional condition.

12-49

DELETE$REGION

EXAMPLE

/**
* This example illustrates how the DELETE$REGION system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE region$token
DECLARE priority$queue

DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '1'; /* tasks wait in

priority order */
WORD;

.: } Typical PL/M-86 Statements

/**
* In order to delete a region, a task must know the token for that *
* region. In this example, the needed token is known because the *
* calling task creates the region. *
**/

region$token = RQ$CREATE$REGION (priority$queue,
@status) ; ... } Typical PL/M-86 Statements

/**
* When the region is no longer needed, it may be deleted by any task *
* that knows the token for the region. *
**/

CALL RQ$DELETE$REGION (region$token,
@status) ;

... } Typical PL/M-86 Statements

END SAMPLE .J?ROCEDURE;

12-50

DELETE$REGION

CONDITION CODES

E$OK No exceptional conditions.

E$CONTEXT The deletion is being requested by a task that
currently holds access to data protected by the
region.

E$EXIST The region does not refer to an existing object.

ENOTCONFIGURED This system call is not part of the present
c onf igura tion.

E$TYPE The region parameter is a token for an object that
is not a region.

12-51

ELETE$SEGMENT

DELETE$SEGMENT

OELETE$SEGMENT deletes a segment.

CALL RQ$DELETE$SEGMENT (segment, except$ptr);

INPUT PARAMETER

segment

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the segment that is to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
-System will return the condition code generated by
this system call.

The DELETE$SEGMENT system call returns the specified segment to the
memory pool from which it was allocated. The deleted segment counts as a
credit of one toward the object total of the containing job.

EXAMPLE

/**
* This example illustrates how the DELETE$SEGMENT system call can be *
* used. *
**/

$INCLUDE(:Fl:SAMPLE.EXT);

DECLARE TOKEN

DECLARE seg$token
DECLARE size
DECLARE status

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
WORD;
WORD;

12-52

DELETE$SEGMENT

SAMPLE PROCEDURE:
PROCEDURE;
size = 64; /* designates new segment to contain

64 bytes */

Typical PL/M-86 Statements

/**
* In order to delete a segment, a task must know the token for that *
* segment. In this example, the needed token is known because the *
* calling task creates the segment. *
**/

seg$token = RQ$CREATE$SEGMENT (size,
@status); ..• } Typical PL/M-86 Statements

/**
* When the segment is no longer needed, it may be deleted by any task *
* that knows the token for the segment. *
**/

CALL RQ$DELETE$SEGMENT (seg$token,
@status);

:. } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

Either the segment parameter is not a token for an
existing object or it represents a segment whose
job is in the process of being deleted.

This system call is not part of the present
configuration.

The segment parameter is a token for an object that
is not a segment.

12-53

DELETE$SEMAPHORE

DELETE$SEMAPHORE

DELETE$SEMAPHORE deletes a semaphore.

CALL RQ$DELETE$SEMAPHORE (semaphore, except$ptr);

INPUT PARAMETER

semaphore

OUTPUT PARfu~TER

except$ptr

DESCRIPTION

A TOKEN for the semaphore that is to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$SEMAPHORE system call deletes the specified semaphore. If
there are tasks in the semaphore's queue at the moment of deletion, they
are awakened with an E$EXIST exceptional condition. The deleted
semaphore counts as a credit of one toward the object total of the
containing job.

EXAMPLE

/**
* This example illustrates how the DELETE$SEMAPHORE system call can *
* be used. *
**/

$INCLUDE(:Fl:SAMPLE.EXT);

DECLARE TOKEN

DECLARE sem$token
DECLARE init$value
DECLARE max$value

DECLARE sem$flags
DECLARE status

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
WORD;
WORD;

WORD;
WORD;

12-54

SAMPLE PROCEDURE:
PROCEDURE;

init$value = 1;

max$value = 10H;

sem$flags = 0;

DELETE$SEMAPHORE

/* the new semaphore has one initial
unit */

/* the new semaphore can have a maximum
of 16 units * /

/* designates a first-in/
first-out task queue. */

.: } Typical PL/M-86 Statements

/**
* In order to delete a semaphore, a task must know the token for that *
* semaphore. In this example, the needed token is known because the *
* calling task creates the semaphore. *
**/

sem$token = RQ$CREATE$SEMAPHORE (init$value,
max$value,
sem$flags,
@status) ; ..• } Typical PL/M-86 Statements

/**
* When the semaphore is no longer needed, it may be deleted by any *
* task that know the token for the semaphore. *
**/

CALL RQ$DELETE$SEMAPHORE (sem$token,
@status); ... } Typical PL/M-86 Statements

END SAMPL~PROCEDURE;

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

Either the semaphore parameter is not a token for an
existing object or it represents a semaphore whose
job is in the process of being deleted.

This system call is not part of the present
configuration.

The semaphore parameter is a token for an object that
is not a semaphore.

12-55

DELETE$TASK

I

DELETE$TASK

DELETE$TASK deletes a task.

CALL RQ$DELETE$TASK (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN that identifies the task to be deleted.

• If not zero, the TOKEN contains a token for the
task that is to be deleted.

• If zero, the iRMX 86 Operating System will
delete the calling task.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DELETE$TASK system call deletes the specified task from the system
and from any queues in which the task was waiting. Deleting the task
counts as a credit of one toward the object total of the containing job.
It also counts as a credit of one toward the containing job's task total.

You cannot successfully delete an interrupt task by invoking this system
call. Any attempt to do so results in an E$CONTEXT exceptional
condition. To delete an interrupt task, invoke the RESET$INTERRUPT
system call.

12-56

DELETE$TASK

EXAMPLE

/**
* This example illustrates how the DELETE$TASK system call can be *
* used. *
**/

$INCLUDE(:Fl:SAMPLE.EXT);

TASK CODE: PROCEDURE EXTERNAL;
END TAS~CODE;

DECLARE TOKEN

DECLARE task$token
DECLARE priority$level$66
DECLARE start$address
DECLARE data$seg
DECLARE stack$pointer
DECLARE stack$size$ 512

DECLARE task$flags
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

s tart$address

data$seg = 0;
stack$pointer
task$flags = 0;

@TAS~CODE;

0-,

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '66';
POINTER;
WORD;
POINTER;
LITERALLY '512'; /* new task's stack

size is 512 bytes */
WORD;
WORD;

/* points to first instruction of
the new task */

/* task sets up own data segment */
/* automatic stack allocation */
/* indicates no floating-point

instructions */ .•. } Typical PL/M-86 Statements

/**
* In order to delete a task, a task must know the token for that *
* task. In this example, the needed token is known because the *
* calling task creates the new task (The task's code is labeled *
* TASK CODE). *
**/

task$token = RQ$CREATE$TASK (priority$level$66,
start$address,
data$seg,
stack$pointer,
stack$s iz e$512,
task$flags,
@status) ;

12-57

.ELETE$TASK

..• } Typical PL/M-86 Statements

/**
* The calling task has .created a task (whose code is labeled *
* TASK CODE) which is not an interrupt task. When this task is no *
* longer needed, it may be deleted by any task that knows its token. *
**/

CALL RQ$DELETE$TASK (task$token,
@status); ..• } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The task parameter is a token for an interrupt task.

Either the task parameter is not a token for an
existing object or it represents a task whose job
is in the process of being deleted.

This system call is not part of the present
configuration.

The task parameter is a token for an object which
is not a task.

12-58

DISABLE

DISABLE disables an interrupt level.

CALL RQ$DISABLE (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD that specifies an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call. All exceptional conditions must
be processed in-line. Control does not pass to an
exception handler.

The DISABLE system call disables the specified interrupt level. It has
no effect on other levels. The level must have an interrupt handler
assigned to it. The level reserved for the system clock should not be
disabled. This level is determined during system configuration (refer to
the iRMX 86 CONFIGURATION GUIDE).

12-59

DISABLE

[)ISABLE

EXAMPLE

/**
* This example illustrates how the DISABLE system call can be used to *
* disable an interrupt level. *
**/

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */

INTERRUPT HANDLER: PROCEDURE EXTERNAL;
END INTERRUPT_HANDLER;

DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

interrupt$task$flag O· ,

LITERALLY '0000 0000 0111 100Ds';
/* specifies master interrupt level 7 */
BYTE;
POINTER;
WORD;
WORD;

/* indicates no interrupt task on level
7 */

data$segment = 0; /* indicates that interrupt handler
will load its own data segment */

interrupt$handler = INTERRUPT$PTR (@INTERRUPT HANDLER);

... }
/* points to first instruction of

interrupt handler */

Typical PL/M-86 Statements

/**
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *
* calling task assigns INTERRUPT HANDLER to interrupt level 7. *
**/

CALL RQSETINTERRUPT (interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

:. } Typical PL/M-86 Statements

12-60

/**
* The SET$INTERRUPT system call enabled interrupt level 7. In order *
* to disable level 7, the calling task invokes the DISABLE system *
* call. *
**/

CALL RQ$DISABLE (interrupt$level$7,
@status) ;

-: } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

The level indicated by the level parameter is
already disabled.

This system call is not part of the present
configuration.

The level parameter is invalid.

12-61

DISABLE

DISABLE$DELETION

DISABLE$DELETION

The DISABLE$DELETION system call makes an object immune to ordinary
deletion.

DISABLE$DELETION makes an object immune
to ordinary deletion by increasing the
disabling depth of an object. If a
Human Interface application contains
objects whose disabling depths are
greater than one, the application
cannot be deleted asynchronously (via a
CTRL/c entered at a terminal).
Therefore you should not use
DISABLE$DELETION (and have no need to
use ENABLE$DELETION or FORCE$DELETE) in
Human Interface applications.

CALL RQ$DISABLE$DELETION (object, except$ptr);

INPUT PARAMETER

object

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the object whose deletion is to be
disabled.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The DISABLE$DELETION system call increases by one the disabling depth of
an object, making it immune to ordinary deletion and possibly making it
immune to forced deletion. If a task attempts to delete the object while
it is immune, the task sleeps until the immunity is removed. At that
time, the object is deleted and the task is awakened.

12-62

EXAMPLE

NOTES

If an object within a job has had its
deletion disabled then the containing
job cannot be deleted until that object
has had its deletion reenabled.

An attempt to raise an object's
disabling depth above 255 causes an
E$LIMIT exceptional condition.

DISABLE$DELETION

/**
* This example illustrates how the DISABLE$DELETION system call can *
* be used to make an object immune to ordinary deletion. *
**/

$INCLUDE(:Fl:SAMPLE.EXT);

DECLARE TOKEN

DECLARE task$token
DECLARE calling$task
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '0';
WORD;

... } Typical PL/M-86 Statements

/**
* In this example the calling task will be the object to become *
* immune to ordinary deletion. The GET$TASK$TOKEN is invoked by the *
* calling task to obtain its own token. *
**/

task$token = RQ$GET$TASK$TOKENS (calling$task,
@status) ;

.: } Typical PL/M-86 Statements

/**
* Using its own token, the calling task invokes the DISABLE$DELETION *
* system call to increase its own disabling depth by one. This makes *
* the calling task immune to deletion. *
**/

12-63

lISABLE$DELETION

CALL RQ$DISABLE$DELETION (task$token,
@status);

.: } Typical PL/M-86 Statements

END SAMPL~PROCEDURE;

CONDITION CODES

E$OK No exceptional conditions.

E$EXIST The object parameter does not refer to an existing
object.

E$LIMIT The object's disabling depth is already 255.

ENOTCONFIGURED This system call is not part of the present
configuration.

12-64

ENABLE

ENABLE enables an interrupt level.

CALL RQ$ENABLE (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD that specifies an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The ENABLE system call enables the specified interrupt level. The level
must have an interrupt handler assigned to it. A task must not enable
the level associated with the system clock.

12-65

ENABLE

ENABLE

EXAMPLE

/**
* This example illustrates how the ENABLE system call can be used to *
* enable an interrupt level. *
**/

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */

INTERRUPT HANDLER: PROCEDURE EXTERNAL;
END INTERRUPT_HANDLER;

DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

interrupt$task$flag 0;

LITERALLY '0000 0000 0111 1000B';
/* specifies master interrupt level 7 */
BYTE;
POINTER;
WORD;
WORD;

/* indicates no interrupt task on level
7 */

data$segment = 0; /* indicates that interrupt handler
will load its own data segment */

interrupt$handler = INTERRUPT$PTR (@INTERRUPT HANDLER);

:. }
/* points to first instruction of

interrupt handler */

Typical PL/M-86 Statements

/**
* An interrupt level must have an interrupt handler or an interrupt *
* task assigned to it. Invoking the SET$INTERRUPT system call, the *
* calling task assigns INTERRUPT HANDLER to interrupt level 7. *
**/

CALL RQSETINTERRUPT (interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status); ... } Typical PL/M-86 Statements

12-66

/**
* The SET$INTERRUPT system call enabled interrupt level 7. In order *
* to illustrate the use of the ENABLE system call, interrupt level 7 *
* must first be disabled. The calling task invokes the DISABLE *
* system call to disable interrupt level 7. *
**/

CALL RQ$DISABLE (interrupt$level$7,
@status) ; ..• } Typical PL/M-86 Statements

/**
* When an interrupt level needs to be enabled, a task must invoke the *
* ENABLE system call. *
**/

CALL RQ$E NABLE (interrupt$level$7,
@status) ;

:. } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

At least one of the following is true:

• A non-interrupt task tried to enable a level
that was already enabled.

• There is not an interrupt handler assigned to
the specified level.

• There has been an interrupt overflow on the
specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

12-67

ENABLE

ENABLE$DELETION

The ENABLE$DELETION system call enables the deletion of objects that have
had deletion disabled.

DISABLE$DELETION makes an object immune
to ordinary deletion by increasing the
disabling depth of an object. If a
Human Interface application contains
objects whose disabling depths are
greater than one, the application
cannot be deleted asynchronously (via a
CTRL/c entered at a terminal).
Therefore you should not use
DISABLE$DELETION (and have no need to
use ENABLE$DELETION or FORCE$DELETE) in
Human Interface applications.

CALL RQ$ENABLE$DELETION (object, except$ptr);

INPUT PARAME TER

object

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A TOKEN for the object whose deletion is to be
enabled.

A POINTER to a WORD to which the iR}~ 86 Operating
System will return the condition code generated by
this system call.

The ENABLE$DELETION system call decreases by one the disabling depth of
an object. If there is a pending deletion request against the object,
and the ENABLE$DELETION call makes the object eligible for deletion, the
object is deleted and the task which made the deletion request is
awakened.

12-68

ENABLE$DELETION

EXAMPLE

/**
* This example illustrates how the ENABLE$DELETION system call can be *
* used to enable the deletion of a task that had been deletion *
* disabled. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE task$token
DECLARE calling$task
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '0';
WORD;

:. } Typical PL/M-86 Statements

/**
* In this example the calling task will be the object to become *
* immune to deletion. The GET$TASK$TOKEN is invoked by the calling *
* task to obtain its own token. *
**/

task$token = RQ$GET$TASK$TOKENS (calling$task,
@status) ;

.: } Typical PL/M-86 Statements

/**
* Using its own token, the calling task invokes the DISABLE$DELETION *
* system call to increase its own disabling depth by one. This makes *
* the calling task immune to deletion. *
**/

CALL RQ$DISABLE$DELETION (task$token,
@status); ... } Typical PL/M-86 Statements

/**
* In order to allow itself to be deleted, the calling task invokes *
* the ENABLE$DELETION system call. This system call decreases by one *
* the disabling depth of an object. In this example, the object is *
* the calling task. *
**/

12-69

ENABLE$DELETION

CALL RQ$ENABLE$DELETION (task$token,
@status) ;

:. } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

No exceptional conditions.

The object's deletion is not disabled.

The object parameter does not refer to an existing
object.

ENOTCONFIGURED This system call is not part of the present
configuration.

12-70

END$INIT$TASK

END$INIT$TASK

END$INIT$TASK is used by an initialization task to inform the root task
that it has completed its synchronous initialization process.

CALL RQENDINIT$TASKj

DESCRIPTION

When the initialization task finishes its synchronous initialization, it
must inform the root task that it is finished, so that the root task can
resume execution and create another first-level job. When you call
END$INIT$TASK, the root task resumes execution, allowing it to create the
next first-level job. You must include this system call in the
initialization task of each first-level job, even if the jobs require no
synchronous initialization. Refer to the iRMX 86 CONFIGURATION GUIDE for
more information on first-level jobs and the initialization process.

12-71

"$'" if' '5'" i' i'" i'.

ENTER$INTERRUPT

ENTER$INTERRUPT is used by interrupt handlers to load a previously
specified segment base address into the DS register.

CALL RQ$ENTER$INTERRUPT(level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD specifying an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits Value

15-7 0

6-4 first digit of the interrupt level (0-7)

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call. All exceptional conditions must
be processed in-line. Control does not pass to an
exception handler.

ENTER$INTERRUPT, on behalf of the calling interrupt handler, loads a base
address value into the DS register. The value is what was specified when
the interrupt handler was set up by an earlier call to SET$INTERRUPT.

If the handler is going to call an interrupt task, ENTER$INTERRUPT allows
the handler to place data in the iAPX 86 data segment that will be used
by the interrupt task. This provides a mechanism for the interrupt
handler to pass data to the interrupt task.

12-72

ENTER$INTERRUP'I'

EXAMPLE

/**
* This example illustrates how the ENTER$INTERRUPT system call can be *
* used to load a segment base address into the data segment register. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE the$first$word
DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE intrpt$handlr$addrs
DECLARE data$segment
DECLARE status
DECLARE interrupt$status
DECLARE ds$pointer
DECLARE PTR$OVERLAY

DECLARE ds$pointer$ovly

/* Declares all system calls */

WORD;
LITERALLY '0000 0000 0111 1000B';
/* specifies master interrupt level 7 */
BYTE;
POINTER;
WORD;
WORD;
WORD;
POINTER;
LITERALLY 'STRUCTURE (offset

base
/* establishes a structure for

overlays */
PTR$OVERLAY AT (@ds$pointer);

WORD,
WORD)' ;

/* using the overlay structure, the
base address of the interrupt
handler's data segment is
identified */

INTERRUPT HANDLER: PROCEDURE INTERRUPT 59 PUBLIC;

:. } Typical PL/M-86 Statements

/**
* The calling interrupt handler invokes the ENTER$INTERRUPT system *
* call which loads a base address value (defined by *
* ds$pointer$ovly.base) into the data segment register. *
**/

CALL RQ$ENTER$INTERRUPT

CALL INLINE ERROR PROCESS

(interrupt$level$7,
@interrupt$status);
(interrupt$status);

:. } Typical PL/M-86 Statements

12-73

ENTER$INTERRUPT

/**
* ____ lat~:u·rup_t _handLers ___ that_d_o __ n_o_t_iuvok_e __ i_uter_r_up_t_ ta_s_ks __ need_ t_Q__ _ ___ *
* invoke the EXIT$INTERRUPT system call to send an end-of-interrupt *
* signal to the hardware. *
**/

CALL RQ$EXIT$INTERRUPT (interrupt$level$7,
@interrupt$status);

CALL INLINE_ERROR~ROCESS (interrupt$status);
END INTERRUPT_HANDLER;

INLINE ERROR PROCESS: PROCEDURE (INTERRUPT STATUS);
IF interrupt$status <> E$OK THEN

DO;

:. } In-line Error Processing PL/M-86 Statements

END;
END INLlNE_ERRO~PROCESS;

SAMPLE PROCEDURE:

PROCEDURE;

ds$pointer = @the$first$word; /* a dummy identifier used to point to
interrupt handler's data segment */

data$segment = ds$pointer$ovly.base;
. /* identifies the base address of the

interrupt handler's data segment */
intrpt$handlr$addrs = INTERRUPT$PTR (@INTERRUPT HANDLER);

/* points to the first instruction of
the interrupt handler */

interrupt$task$flag 0; /* indicates no interrupt task on level
7 */

:. } Typical PL/M-86 Statements

/**
* By first invoking the SET$INTERRUPT system call, the calling task *
* sets up an interrupt level. *
**/

CALL RQSETINTERRUPT (interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
dat a$segment,
@status); ... } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

12-74

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

ENTER$INTERRUPT

No exceptional conditions.

No value had previously been specified in the call
to SET$INTERRUPT.

This system call is not included in the
present configuration.

The level parameter is invalid.

12-75

; 1'J ' ,'J 'tF , 7 'Z "., , III

EXIT$INTERRUPT

--------~ATI$LNTERRUp-T-rs-u-se-d-Dy-Inferi~upt--harufIe rs -w-lien-fhey -,fon'-t--fuvok-e------------
interrupt tasks; this call sends an end-of-interrupt signal to the
hardware.

CALL RQ$EXIT$INTERRUPT (level, except$ptr);

INPUT PARAMETER

level

OUTPUT PARAMETER

except$ptr

DESCRIPTION

A WORD specifying an interrupt level that is
encoded as follows (bit 15 is the high-order bit):

Bits

15-7

6-4

3

Value

o

first digit of the interrupt level (0-7)

if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit of
the interrupt level

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call. All exceptional conditions must
be processed in-line, as control does not pass to
an exception handler.

The EXIT$INTERRUPT system call sends an end-of-interrupt signal to the
hardware. This sets the stage for re-enabling interrupts. The
re-enabling actually occurs when control passes from the interrupt
handler to an application task.

12-76

EXIT$INTERRUPT

EXAMPLE

/**
* This example illustrates how the EXIT$INTERRUPT system call can be *
* used to send an end-of-interrupt signal to the hardware. *
**/

$INCLUDE(:Fl:SAMPLE.EXT);

DECLARE interrupt$level$7

DECLARE interrupt$task$flag
DECLARE interrupt$handler
DECLARE data$segment
DECLARE status
DECLARE interrupt$status

/* Declares all system calls */

LITERALLY '0000 0000 0111 100GB';
/* specifies master interrupt level 7 */
BYTE;
POINTER;
WORD;
WORD;
WORD;

INTERRUPT HANDLER: PROCEDURE INTERRUPT 59 PUBLIC;

.: } Typical PL/M-86 Statements

/**
* Interrupt handlers that do not invoke interrupt tasks need to *
* invoke the EXIT$INTERRUPT system call to send an end-of-interrupt *
* signal to the hardware. *
**/

CALL RQ$EXIT$INTERRUPT (interrupt$level$7,
@interrupt$status);

IF interrupt$status <> E$OK THEN
DO;

.: } In-line Error Processing PL/M-86 Statements

END;

END INTERRUPT_HANDLER;

SAMPLE PROCEDURE:
PROCEDURE;

interrupt$task$flag O· , /* indicates no interrupt task on
level 7 */

data$segment = 0; /* indicates that the interrupt handler
will load its own data segment */

interrupt$handler = INTERRUPT$PTR (@INTERRUPT HANDLER);

:. }
/* points to the first instruction of

the interrupt handler */

Typical PL/M-86 Statements

12-77

~XIT$INTERRUPT

/**
--~·--*-By--f-H&t--4-nv9k-!-ng----t-he--SE'r4-1N'I'E.RRUP.T--sy.stem--CalL,-.t.ha.-CalliIlg--tas.~ ___ 'I5 ___ .. _____ . __

* sets up an interrupt level. *
**/

CALL RQSETINTERRUPT (interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

-: } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$CONTEXT

ENOTCON
FIGURED

E$PARAM

No exceptional conditions.

The SET$INTERRUPT system call has not been invoked for
the specified level.

This system call is not part of the present
configuration.

The level parameter is invalid.

12-78

FORCE$DELETE

FORCE$DELETE

The FORCE$DELETE system call deletes objects whose disabling depths are
zero or one.

DISABLE$DELETION makes an object immune
to ordinary deletion by increasing the
disabling depth of an object. If a
Human Interface application contains
objects whose disabling depths are
greater than one, the application
cannot be deleted asynchronously (via a
CTRL/c entered at a terminal).
Therefore you should not use
DISABLE$DELETION (and have no need to
use ENABLE$DELETION or FORCE$DELETE) in
Human Interface applications.

CALL RQ$FORCE$DELETE(extension, object, except$ptr);

INPUT PARAMETERS

extension

object

OUTPUT PARAMETER

except$ptr

If the object to be deleted is a composite object,
this parameter is a TOKEN for the extension type
associated with the composite object to be
deleted. Otherwise, the extension parameter must
be zero.

A TOKEN for the object that is to be deleted.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-79

FORCE$DELETE

DESCRIPTION

The FORCE$DELETE system call deletes objects whose disabling depths are
zero or one. If an object has a deletion depth of two or more, the
calling task is put to sleep until the deletion depth is decreased to
one. At that time, the object is deleted and the task is awakened.

CONDITION CODES

E$OK No exceptional conditions.

E$EXIST One or both of the object or extension paramenters
does not refer to an existing object.

E$MEM The memory pool of the calling task's job does not
contain a sufficiently large block for Nucleus
housekeeping purposes.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$TYPE The extension parameter is a token for an ojbect
that is not an extension type.

12-80

GET$EXCEPTION$HANDLE

GET$EXCEPTION$HANDLER

GET$EXCEPTION$HANDLER returns information about the calling task's
exception handler.

CALL RQGETEXCEPTION$HANDLER (exception$info$ptr, except$ptr);

OUTPUT PARAMETERS

exception$info$ptr A POINTER to a structure of the following form:

except$ptr

DESCRIPTION

STRUCTURE (
EXC EPTION$HANDLER$O FFSET
EXCEPTION$HANDLER$BASE
EXGEPTION$MODE

WORD,
WORD,
BYTE);

where, after the call,

• exception$handler$offset contains the offset of
the first instruction of the exception handler.

• exception$handler$base contains a base for the
segment containing the first instruction of the
exception handler. If exception$handler$base
and exception$handler$offset are both zero, the
calling task's exception handler is the system
default exception handler.

• exception$mode contains an encoded indication
of the calling task's current exception mode.
The value is interpreted as follows:

Value

o
1
2
3

When to Pass Control
to Exception Handler

Never
On programmer errors only
On environmental conditions only
On all exceptional conditons

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The GET$EXCEPTION$HANDLER system call returns both the address of the
calling task's exception handler and the current value of the task's
exception mode.

12-81

GET$EXCEPTtON$HANDLER

EXAMPLE
~--~--'.--~-~~---~---~---~--~-~-~-~ --~------ -----~--~~----

/ ***-ic-****-****-**-*********iaac-----------
* This example illustrates how the GET$EXCEPTION$HANDLER system call *
* can be used to return information about the calling task's *
* exception handler. *
**/

$INCLUDE(:F1:SAMPLE.EXT); 1* Declares all system calls */

DECLARE x$hand1er

DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

STRUCTURE (x$hand1er$offset
x$hand1er$base
x$mode
WORD;

-: } Typical PL/M-86 Statements

WORD,
WORD,
BYTE);

/**
* The address of the calling task's exception handler and the value *
* of the task's exception mode (which specifies when to pass control *
* to the exception handler) are both returned when the calling task *
* invokes the GET$EXCEPTION$HANDLER system call. *
**/

CALL RQGETEXCEPTION$HANDLER (@x$handler,
@status) ;

--- } Typical PL/M-86 Statements

END SAMPL~PROCEDURE;

CONDITION CODES

E$OK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

12-82

GET$LEVEL

GET$LEVEL returns the number of the level of the highest priority
interrupt being serviced.

level = RQGETLEVEL (except$ptr);

OUTPUT PARAMETERS

level A WORD whose value is interpreted as follows (bit
15 is the high-order bit):

Bits Value

15-8 reserved

7 if zero, some level is being serviced
and bits 6-0 are significant

if one, no level is being serviced
and bits 6-0 are not significant

GET$LEVEL

6-4 first digit of the interrupt level (0-7)

except$ptr

DESCRIPTION

3 if one, the level is a master level and
bits 6-4 specify the entire level number

if zero, the level is a slave level and
bits 2-0 specify the second digit

2-0 second digit of the interrupt level
(0-7), if bit 3 is zero

A POINTER to a WORD to which the condition code for
the call is to be retured. All exceptional
conditions must be processed in-line. Control does
not pass to an exceptional handler.

The GET$LEVEL system call returns to the calling task the highest
(numerically lowest) level which an interrupt handler has started
servicing but has not yet finished. To interpret the returned level
number with more ease, strip away the unwanted bits (31-16) by logically
ANDing the returned value with OOFFH.

12-83

GET$LEVEL

EXAMPLE

/**
* This example illustrates how the GET$LEVEL system call can be used. *
**/

$INCLUDE(:Fl:SAMPLE.EXT); /* Declares all system calls */

DECLARE interrupt$level
DECLARE status

WORD;
WORD;

SAMPLE PROCEDURE:
PROCEDURE;

... } Typical PL/M-86 Statements

/**
* The GET$LEVEL system call returns to the calling task the number of *
* the highest interrupt level being serviced. *
**/

interrupt$level = RQ$GET$LEVEL (@status);

:. } Typical PL/M-86 Statements

END SAMPL~PROCEDURE;

CONDITION CODES

E$OK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

12-84

GET$POOL$A TIRI

GET$POOL$ATTRIB

GET$POOL$ATTRIB returns information about the memory pool of the calling
task's job.

CALL RQGETPOOL$ATTRIB (attrib$ptr, except$ptr);

INPUT PARAMETER

attrib$ptr

OUTPUT PARAMETER

except$ptr

A POINTER to a data structure of the following form:

STRUCTURE (
POOL$MAX
POOL$MIN
INITIAL$SIZE
ALLOCATED
AVAILABLE

where, after the call,

WORD,
WORD,
WORD,
WORD,
WORD) ;

• POOL$MAX contains the maximum allowable size of
the memory pool of the calling task's job.

• POOL$MIN contains the minimum allowable size of
the memory pool of the calling task's job.

• INITIAL$SIZE contains the original value of the
pool$min attribute.

• ALLOCATED contains the number of 16-byte
paragraphs currently allocated from the memory
pool of the calling task's job.

• AVAILABLE contains the number of 16-byte
paragraphs currently available in the memory
pool of the calling task's job. It does not
include memory that could be borrowed from the
parent job. The memory indicated in AVAILABLE
may be fragmented and thus not allocatable as a
single segment.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-85

}ET$POOL$ATTRm

DESCRIPTION

The GET$POOL$ATTRIB system call returns information regarding the memory
pool of the calling task's job. The data returned comprises the
allocated and available portions of the pool, as well as its initial,
minimum, and maximum sizes.

EXAMPLE

/**
* This example illustrates how the GET$POOL$ATTRIB system call can *
* be use to return information about the memory pool of the the *
* calling task's job. *
**/

$INCLUDE(:Fl:SAMPLE.EXT); /* Declares all system calls */

DECLARE mem$pool STRUCTURE (mem$pool$max
mem$pool$min
mem$initial$size
mem$allocated
mem$available

DECLARE status WORD;

SAMPLE PROCEDURE:
PROCEDURE;

-: } Typical PL/M-86 Statements

WORD,
WORD,
WORD,
WORD,
WORD);

/**
* The maximum and minimum size of the memory pool, the original value *
* of the minimum pool size, and the allocated and available number of *
* 16-byte paragraphs in the memory pool of the calling task's job are *
* all returned when the calling task invokes the GET$POOL$ATTRIB *
* system call. *
**/

CALL RQGETPOOL$ATTRIB (@mem$pool,
@status);

-: } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

ENOTCON
FIGURED

No exceptional conditions.

This system call is not part of the present
configuration.

12-86

GET$PRIORITY

GET$PRIORITY

GET$PRIORITY returns the priority of a task.

priority = RQGETPRIORITY (task, except$ptr);

INPUT PARAMETER

task

OUTPUT PARAMETERS

priority

except$ptr

DESCRIPTION

A TOKEN that specifies the task whose priority is
being requested.

• If not zero, the TOKEN contains a token for the
task whose priority is being requested.

• If zero, the calling task is asking for its own
priority.

A BYTE containing the priority of the task
indicated by the task parameter.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The GET$PRIORITY system call returns the priority of the specified task.

EXAMPLE

/**
* This example illustrates how the GET$PRIORITY system call can be *
* used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE priority
DECLARE calling$tasks$priority
DECLARE status

/* Declares all system calls */

BYTE;
LITERALLY '0';
WORD;

12-87

GET$PRIORITY

SAMPLE PROCEDURE:
_~~~ ____ PROCEDURE;~~~

-: } Typical PL/M-86 Statements

/**
* The GET$PRIORITY system call returns the priority of the calling *
* task. *
**/

priority = RQGETPRIORITY (calling$tasks$priority,
@status);

:-} Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditions.

The task parameter is not a token for an existing
object.

This system call is not part of the present
configuration.

The task parameter is a token for an object that is
not a task.

12-88

GET$SIZE

GET$SIZE returns the size, in bytes, of a segment.

size = RQGETSIZE (segment, except$ptr);

INPUT PARAMETER

segment

OUTPUT PARAMETERS

size

except$ptr

DESCRIPTION

A TOKEN for a segment.

A WORD that specifies the size of the segment.

• If not zero, it contains the size, in bytes, of
the segment indicated by the segment parameter.

• If zero, the WORD indicates that the size of
the segment is 65536 (64K) bytes.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The GET$SIZE system call returns the size, in bytes, of a segment.

EXAMPLE

/**
* This example illustrates how the GET$SIZE system call can be used. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE mbx$token
DECLARE calling$tasks$job
DECLARE wait$forever

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '0' j
LITERALLY 'OFFFFH'j

12-89

GET$SIZE

~ET$SIZE

DECLARE seg$token TOKEN;
--------~-DE_G_LAR.E_Ees-ponse------~----~-------~--.TQKEN+~-~---~-------______ ~~ _______ ~ ____ ~ _____ ~ ______ .~ __

DECLARE size WORD;
DECLARE status WORD;

SAMPLE PROCEDURE:

PROCEDURE;

-: } Typical PL/M-86 Statements

/**
* In order to invoke the GET$SIZE system call, the calling task must *
* know the token for the segment. In this example, the calling task *
* invokes the LOOKUP $OBJECT and RECEIVE$MESSAGE system calls to *
* receive the token for a segment (seg$token). The calling task *
* invoked LOOKUP$OBJECT to receive the token for the mailbox named *
* 'MBX'. 'MBX' had been predesignated as the mailbox another task *
* would use to send an object. *
**/

mbx$token = RQ$LOOKUP$OBJECT (calling$tasks$job,
@ (3, 'MBX'),
wait$forever,
@status);

:-} Typical PL/M-86 Statements

/**
* The RECEIVE $MESSAGE system call returns seg$token to the calling *
* task. *
**/

seg$token = RQ$RECEIVE$MESSAGE (mbx$token,
wait$forever,
@response,
@status);

-: } Typical PL/M-86 Statements

/**
* The GET$SIZE system call returns the size of the segment pointed *
* to by seg$token. *
**/

size = RQGETSIZE (seg$token,
@status);

-: } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

12-90

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

E$TYPE

No exceptional conditons.

The segment parameter is not a token for an
existing object.

This system call is not part of the present
configuration.

The segment parameter is a token for an object that
is not a segment.

12-91

GET$SIZE

2"3 lit1 tt3 ,.J t .. 2ti'1.

GE T $TASK$TOKENS
-~-~~~~--~.-~-~-~ - -----.---"------------------ ------- -----"----~--~------------".-- --.--~~---------.--~.------- - - ~ ~--- ~-------------~- -- - --- ~---- ----~---

GET$TASK$TOKENS returns the token requested by the calling task.

token = RQGETTASK$TOKENS (selection, except$ptr);

INPUT PARAMETER

selection

OUTPUT PARAMETERS

token

except$ptr

DESCRIPTION

A BYTE that tells the iRMX 86 Operating System what
information is desired. It is encoded as follows:

Value Object for which a Token is Requested

o The calling task.

1 The calling task's job.

2 The parameter object of the calling task's
job.

3 The root job.

A TOKEN to which the iRMX 86 Operating System will
return the requested token.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The GET$TASK$TOKENS system call returns a token for either the calling
task, the calling task's job, the parameter object of the calling task's
job, or the root job, depending on the encoded request.

12-92

GET$TASK$TOKENS

EXAMPLE

/**
* This example illustrates how the GET$TASK$TOKENS system call can be *
* used to return the TOKEN requested by the calling task. *
************************************~***********************************/

$INCLUDE(:F1:SAMPLE.EXT)j

DECLARE TOKEN

DECLARE task$token
DECLARE calling$task
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

WORD;
LITERALLY '0';
WORD;

.: } Typical PL/M-86 Statements

/**
* If you set the selection parameter to zero, the GET$TASK$TOKENS *
* system call will return a token for the calling task. *
**/

task$token = RQ$GET$TASK$TOKENS (calling$task,
@status) ;

.•. } Typical PL/M-86 Statements

END SAMPLE_PROCEDURE;

CONDITION CODES

E$OK No exceptional conditions.

E$PARAM The selection parameter is greater than 3.

12-93

GET$TYPE
- -- -~----~- --- ------- -- - ~--~---- ------ .. _-- -.. -"----.--"~-- --- ~-~~

~-~~-~-~-~~-~GET$TYPE returns the encoded type of an object.

type$code = RQ$GET$TYPE (object, except$ptr);

INPUT PARAMETER

object

OUTPUT PARAMETERS

type$code

except$ptr

DESCRIPTION

A TOKEN for an object.

A WORD which contains the encoded type of the
specified object. The types for Nucleus objects
are encoded as follows:

Value ~

I job
2 task
3 mailbox
4 semaphore
5 region
6 segment
7 extension
8 composite

Regions, extensions, and composites are described
in Chapter 9.

A POINTER to a WORD to which the condition code for
the call is returned.

The GET$TYPE system call returns the type code for an object.

12-94

EXAHPLE

/**
* This example illustrates how the GET$TYPE system call can be used *
* to return the encoded type of an object. *
**/

$INCLUDE(:F1:SAMPLE.EXT);

DECLARE TOKEN

DECLARE type$code
DECLARE mbx$token
DECLARE calling$tasks$job
DECLARE wait$forever
DECLARE object$token
DECLARE response
DECLARE status

SAMPLE PROCEDURE:

PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

WORD;
TOKEN;
LITERALLY '0';
LITERALLY 'OFFFFH';
TOKEN;
TOKEN;
WORD;

... } Typical PL/M-86 Statements

/**
* In order to invoke the GET$TYPE system call, the calling task must *
* have the token for an object. In this example, the calling task *
* invokes the LOOKUP$OBJECT system call and then the RECEIVE $MESSAGE *
* system call to receive the token for an object of unknown type *
* (objec t$token). *
**/

mbx$token = RQ$LOOKUP$OBJECT (calling$tasks$job,
@ (3, 'MBX') ,
wait$forever,
@status);

:. } Typical PL/M-86 Statements

/**
* The RECEIVE$MESSAGE system call returns object$token to the calling *
* task after the calling task invoked LOOKUP$OBJECT to receive the *
* token for the mailbox named 'MBX'. 'MBX' had been predesignated *
* as the mailbox another task would use to send an object. *
**/

object$token = RQ$RECEIVE$MESSAGE (mbx$token,
wait$forever,
@response,
@status);

12-95

G.K~r'TYPE

~__ _ ______ ----!--}_TYI)J&!1lP~§~t~1!!!mt"'------- -- ------ --------- --------

/**
* Using the type code returned by the GET$TYPE system call, the *
* calling task can find out if the object is a job, a task, a *
* mailbox, a region, or a segment. *
**/

type$code = RQ$GET$TYPE (object$token,
@status);

END SAMPLE~ROCEDURE;

CONDITION CODES

E$OK

E$EXIST

ENOTCON
FIGURED

No exceptional conditions.

The object parameter is not a token for an existing
object.

This system call is not part of the present
configuration.

12-96

INSPECT$COMPOSITE

INSPECT$COMPOSITE

The INSPECT$COMPOSITE system call returns a list of the component tokens
contained in a composite object.

Composite objects require the creation
of extension objects. Jobs that create
extension objects cannot be deleted
until all the extension objects are
deleted. Therefore you should avoid
creating composite objects in Human
Interface applications. If a Human
Interface application creates extension
objects, the application cannot be
deleted asynchronously (via a CTRL/c
entered at a terminal).

CALL RQ$INSPECT$COMPOSITE(extension, composite, token$list,
except$ptr);

INPUT PARAMETERS

extension

composite

OUTPUT PARAMETERS

token$list

A TOKEN for the extension object corresponding to
the composite object being inspected.

A TOKEN for the composite object being inspected.

A POINTER to a structure of the form:

Declare
token$list
num$slots
num$used
tokens(*)

where:

STRUCTURE (
WORD,
WORD,
TOKEN) ;

num$slots Number of positions available for
tokens in token$list (an upper limit
on the number of tokens to be
returned).

12-97

INSPECT$COMPOSITE

---IIt-------------------~----~ -~--------

except$ptr

DESCRIPTION

num$used Number of component tokens making up
_______ ~ __ ~ __ ~~ ________ E~1"!~ __ ~_~!llp~s!_~~1J j~~~~ __ ~ ____ ~ _____________________ _

token(*) The tokens that actually constitute
the composite object.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

The INSPECT$COMPOSITE system call accepts a token for a composite object
and returns a list of tokens for the components of the composite object.

The calling task must supply the num$slots value in the data structure
pointed to by the token$list parameter. The Nucleus fills in the
remaining fields in that structure. If num$slots is set to zero, the
Nucleus will fill in only the num$used field.

If the num$slots value is smaller than the actual number of component
tokens, only that number (num$slots) of tokens will be returned.

EXAMPLE

See the example in section "DELETE RING BUFFER Procedure" of Chapter 11.

CONDITION CODES

E$OK

E$CONTEXT

No exceptional conditions.

The composite parameter is not compatible with the
extension parameter.

E$EXIST One or both of the extension or composite
parameters does not refer to a currently existing
object.

ENOTCONFIGURED This system call is not part of the present
configuration.

E$TYPE One or both of the extension or composite
parameters is not of the correct object type.

12-98

LOOKUP$OBJECT

LOOKUP$OBJECT returns a token for a cataloged object.

object = RQ$LOOKUP$OBJECT (job, name, time$limit, except$ptr);

INPUT PARAMETERS

job

name

time$limit

OUTPUT PARAMETERS

object

except$ptr

A TOKEN indicating the object directory to be
searched.

• If not zero, the TOKEN contains a token for the
job whose object directory is to be searched.

• If zero, the object directory to be searched is
that of the calling task's job.

A POINTER to a STRING which contains the name under
which the object is cataloged. During the lookup
operation, upper and lower case letters are treated
as being different.

A WORD indicating the task's willingness to wait.

• If zero, the WORD indicates that the calling
task is not willing to wait.

• If OFFFFH, the WORD indicates that the task
will wait as long as is necessary.

• If between 0 and OFFFFH, the WORD indicates the
number of clock intervals that the task is
willing to wait. The length of a clock
interval is a configuration option. Refer to
the iRMX 86 CONFIGURATION GUIDE for further
information.

A TOKEN containing the requested token.

A POINTER to a WORD to which the iRMX 86 Operating
System will return the condition code generated by
this system call.

12-99

LOOKUP$OBJECT

DESCRIPTION

The LOOKUP$OBJECT system call returns the token for the specified object
after searching for its name in the specified object directory. Because
it is possible that the object is not cataloged at the time of the call,
the calling task has the option of waiting, either indefinitely or for a
specific period of time, for another task to catalog the object.

EXAMPLE

/**
* This example illustrates how the LOOKUP$OBJECT system call can be *
* used to return a token for a cataloged object. *
**/

$INCLUDE(:Fl:SAMPLE.EXT);

DECLARE TOKEN

DECLARE mbx$token
DECLARE calling$tasks$job
DECLARE wait$forever
DECLARE status

SAMPLE PROCEDURE:
PROCEDURE;

/* Declares all system calls */

LITERALLY 'SELECTOR';
/* if your PL/M compiler does not

support this variable type,
declare TOKEN a WORD */

TOKEN;
LITERALLY '0';
LITERALLY 'OFFFFH';
WORD;

-: } Typical PL/M-86 Statements

/**
* In this example, the calling task invokes LOOKUP$OBJECT in order-to *
* search the object directory of the calling task's job for an object *
* with the name 'MBX'. *
**/

mbx$token = RQ$LOOKUP$OBJECT (calling$tasks$job,
@(3,'MBX'), '
wait$forever,
@status);

:-} Typical PL/M-86 Statements

END SAMPL~PROCEDURE;

12-100

CONDITION CODES

E$OK

E$CONTEXT

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$PARAM

E$TIME

E$TYPE

LOOKUP$OBJECT

No exceptional conditions.

The specified job has an object directory of size O.

One of the following is true:

• The specified job was deleted while the task
was waiting.

• The job parameter (which is not zero) is not a
token for an existing object.

• The name was found, but the cataloged object
has a null (zero) token.

The specified object directory is full and the
object being looked-up has not yet been cataloged.

This system call is not part of the present
configuration.

The first byte of the string pointed to by the name
parameter contains a value greater than 12 or equal
to zero.

One of the following is true:

• The calling task indicated its willingness to
wait a certain amount of time, then waited
without satisfaction.

• The task was not willing to wait, and the entry
indicated by the name parameter is not in the
specified object directory.

The job parameter contains a token for an object
that is not a job.

hi' , 12';: 'Sl.

OFFSPRING

~~~-~~ ~ - - - --~-~- --------~---- --- ---

--~---~------~---O-FF-SPRING-reEl.iins--a-ioken-Ior--each child (job) of a job. 

token$list = RQ$OFFSPRING (job, except$ptr); 

INPUT PARAMETER 

job 

OUTPUT PARAMETER 

token$list 

except$ptr 

DESCRIPTION 

A TOKEN for the job whose offspring are desired. A 
value of zero specifies the calling task's job. 

A TOKEN that indicates the children of the 
specified job. 

• If not zero, the TOKEN contains a token for a 
segment. The first word in the segment 
contains the number of words in the remainder 
of the segment. Subsequent words contain the 
tokens for jobs which are the immediate 
children of the specified job. 

• If zero, the specified job has no children. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The OFFSPRING system call returns the token for a segment. The segment 
contains a token for each child of the specified job. By repeated use of 
this call, tokens can be obtained for all descendents of a job; this 
information is needed by a task which is attempting to delete a job that 
has child jobs. 

12-102 



UlfI4'SP KING 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the OFFSPRING system call can be used * 
* to return a token for each child of a job. * 
************************************************************************/ 

$INGLUDE(: F1: SAMPLE.EXT); /* Declares all system calls */ 

DECLARE TOKEN LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

DECLARE token$list 
DECLARE calling$tasks$job 
DECLARE status 

TOKEN; 
LITERALLY '0'; 
WORD; 

SAMPLE PROCEDURE: 
PROCEDURE; 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* In this example, the calling task invokes the system call OFFSPRING * 
* to obtain a token for a segment. This segment contains the tokens * 
* for jobs that are immediate children of the calling task's job. * 
************************************************************************/ 

token$list = RQ$OFFSPRING (calling$tasks$job, 
@status); .•. } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$EXIST 

E$LIMIT 

E$MEM 

No exceptional conditions. 

The job parameter does not contain a token for an 
existing object. 

The required segment, if allocated, would exceed 
the job object limit. 

There is not sufficient memory available to create 
the required segment. 

12-103 



OFFSPRING 

E$NOT$CON- This system call is not part of the present 
________ ~ ____ ~ ___ 1J~g!!RED ____ ~ ___ ~ ___ ~Q~!:ig~_!'a~J5?n._~_~ __ ~_~ ____ ~ ______________ ~_~ _____ ~~_ 

E$TYPE The job parameter contains a token for an object 
that is not a job. 

12-104 



,i1,,;' ,~c 'i"'f" i)" Z 

RECEIVE $CONTROL 

The RECEIVE$CONTROL system call allows the calling task to gain access to 
data protected by a region. 

Tasks which use regions cannot be 
deleted while they access data 
protected by the region. Therefore t 
you should avoid using regions in Human 
Interface applications. If a task in a 
Human Interface application uses 
regions t the application cannot be 
deleted asynchronously (via a CTRL/c 
entered at a terminal) while the task 
is in the region. 

CALL RQ$RECEIVE$CONTROL (regiont except$ptr); 

INPUT PARAMETER 

region 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the region protecting the data to which 
the calling task wants access. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The RECEIVE$CONTROL system call requests access to data protected by a 
region. If no task currently has access t entry is immediate. If another 
task currently has access t the calling task is placed in the region's 
task queue and goes to sleep. The task remains asleep until it gains 
access to the data. 

If the region has a priority-based task queue t the priority of the task 
currently having access is temporarily boosted t if necessarYt to match 
that of the task at the head of the queue. 

12-105 



RECEIVE$CONTROL 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the RECEIVE$CONTROL system call can be * 
* used to gain access to data protected by a region. * 
************************************************************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); 

DECLARE TOKEN 

DECLARE region$token 
DECLARE priority$queue 

DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '1'; /* tasks wait in 

priority order */ 
WORD; 

-: } Typical PL/M-86 Statements 

/************************************************************************ 
* In order to access the data within a region, a task must know the * 
* token for that region. In this example, the needed token is known * 
* because the calling task creates the region. * 
************************************************************************/ 

region$token = RQ$CREATE$REGION (priority$queue, 
@status); 

--- } Typical PL/M-86 Statements 

/************************************************************************ 
* When access to the data protected by a region is needed, the * 
* calling task may invoke the RECElVE$CONTROL system call. * 
************************************************************************/ 

CALL RQ$RECEIVE$CONTROL (region$token, 
@status); 

:-} Typical PL/M-86 Statements 

12-106 



RECEIVE$CONTROL 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The region parameter refers to a region already 
accessed by the calling task. 

E$EXIST The region parameter does not contain a token for 
an existing object. 

E$NOT$CONFIGURED T?is system call is not part of the present 
configuration. 

E$TYPE The region parameter contains a token for an object 
that is not a region. 

12-107 



I i1 I" t~1 13)1' et-r72P' 

RECEI VE $MESSAGE 

RECEIVE$MESSAGE delivers the calling task to a mailbox, where it can wait 
for an object token to be returned. 

object RQ$RECEIVE$MESSAGE (mailbox, time$limit, response$ptr, 
excep t$pt r); 

INPUT PARAMETERS 

mailbox 

time$limit 

OUTPUT PARAMETERS 

object 

response$ptr 

A TOKEN for the mailbox at which the calling task 
expects to receive an object token. 

A WORD that indicates how long the calling task is 
willing to wait. 

• if zero, indicates that the calling task is not 
willing to wait. 

• if OFFFFH, indicates that the task will wait as 
long as is necessary. 

• if between 0 and OFFFFH, indicates the number 
of clock intervals that the task is willing to 
wait. The length of a clock interval is 
configurable. Refer to the iRMX 86 
CONFIGURATION GUIDE for further information. 

A TOKEN for the object being received. 

A POINTER to a WORD in which the system returns a 
value. The returned word, 

• if not zero, contains a token for the exchange 
to which the receiving task is to send a 
response. 

• if zero, indicates that no response is expected 
by the sending task. 

12-108 



except$ptr 

DESCRIPTION 

I~ 
Response$ptr points to a location for 
the sending task to use. If you 
specify a constant value for 
response$ptr, be careful to ensure 
that the value does not conflict with 
system requirements. 

RECEIVE$MESSAGE 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The RECEIVE$MESSAGE system call causes the calling task either to get the 
token for an object or to wait for the token in the task queue of the 
specified mailbox. If the object queue at the mailbox is not empty, then 
the calling task immediately gets the token at the head of the queue and 
remains ready. Otherwise, the calling task goes into the task queue of 
the mailbox and goes to sleep, unless the task is not willing to wait. 
In the latter case, or if the task's waiting period elapses without a 
token arriving, the task is awakened with an E$TIME exceptional condition. 

It is possible that the token returned by RECEIVE$MESSAGE is a token for 
an object that has already been deleted. To verify that the token is 
valid, the receiving task can invoke the GET$TYPE system call. However, 
tasks can avoid this situation by adhering to proper programming 
practices. 

One such practice is for the sending task to request a response from the 
receiving task and not delete the object until it gets a response. When 
the receiving task finishes with the object, it sends a response, the 
nature of which must be determined by the writers of the two tasks, to 
the response mailbox. When the sending task gets this response, it can 
then delete the original object, if it so desires. 

12-109 



RECEIVE$MESSAGE 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the RECEIVE $MESSAGE system call can be * 
* used to receive a message segment. * 
************************************************************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); 

DECLARE TOKEN 

DECLARE mbx$token 
DECLARE calling$tasks$job 
DECLARE wait$forever 
DECLARE seg$token 
DECLARE response 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '0'; 
LITERALLY 'OFFFFH'; 
TOKEN; 
TOKEN; 
WORD; 

.•. } Typical PL/M-86 Statements 

/************************************************************************ 
* In this example the calling task looks up the token for the mailbox * 
* prior to invoking the RECEIVE$MESSAGE system call. * 
************************************************************************/ 

mbx$token = RQ$LOOKUP$OBJECT (calling$tasks$job, 
@ ( 3, 'MBX' ) , 
wait$forever, 
@status); 

:-} Typical PL/M-86 Statements 

/************************************************************************ 
* Knowing the token for the mailbox, the calling task can wait for a * 
* message from this mailbox by invoking the RECEIVE$MESSAGE system * 
* call. * 
************************************************************************/ 

seg$token = RQ$RECEIVE$MESSAGE (mbx$token, 
wait$forever, 
@response, 
@status); 

.: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

12-110 



CONDITION CODES 

E$OK 

E$EXIST 

E$NOT$CON
FIGURED 

E$TIME 

E$TYPE 

RECEIVE$MESSAGE 

No exceptional conditions. 

One of the following is true: 

• The mailbox parameter does not contain a token 
for an existing object. 

• The mailbox was deleted while the task was 
waiting. 

This system call is not part of the present 
configuration. 

One of the following is true: 

• The calling task was not willing to wait and 
there was not a token available. 

• The task waited in the task queue and its 
designated waiting period elapsed before the 
task got the desired token. 

The mailbox parameter contains a token for an 
object that is not a mailbox. 

12-111 



RECEIVE$UNITS 

RECEIVE$UNITS delivers the calling task to a semaphore, where it waits 
for units. 

value RQ$RECEIVE$UNITS (semaphore, units, time$limit, except$ptr); 

INPUT PARAMETERS 

semaphore 

units 

time$limit 

OUTPUT PARAMETERS 

value 

except$ptr 

A TOKEN for the semaphore from which the calling 
task hopes to receive units. 

A WORD containing the number of units that the 
calling task is requesting. 

A WORD that indicates how long the calling task is 
willing to wait. 

• If zero, the WORD indicates that the calling 
task is not willing to wait. 

• If OFFFFH, the WORD indicates that the task will 
wait as long as is necessary. 

• If between 0 and OFFFFH, the WORD indicates the 
number of clock intervals that the task is 
willing to wait. The length of a clock interval 
is configurab1e. Refer to the iRMX 86 
CONFIGURATION GUIDE for further information. 

A WORD containing the number of units remaining in 
the custody of the semaphore after the calling 
task's request is satisfied. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

12-112 



RECEIVE$UNITS 

DESCRIPTION 

The RECEIVE$UNITS system call causes the calling task either to get the 
units that it is requesting or to wait for them in the semaphore's task 
queue. If the units are available and the task is at the front of the 
queue, then the task receives them and remains ready. Otherwise, the 
task is placed in the semaphore's task queue and goes to sleep, unless 
the task is not willing to wait. In the latter case, or if the task's 
waiting period elapses before the requested units are available, the task 
is awakened with an E$TIME exceptional condition. 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the RECEIVE$UNITS system call can be * 
* used to receive a unit. * 
************************************************************************/ 

$INCLUDE(:F1:SAMPLE.EXT); 

DECLARE TOKEN 

DECLARE sem$token 
DECLARE calling$tasks$job 
DECLARE wait$forever 
DECLARE seg$token 
DECLARE units$remaining 
DECLARE units$requested 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '0'; 
LITERALLY 'OFFFFH'; 
TOKEN; 
WORD; 
WORD; 
WORD; 

:. } Typical PL/M-86 Statements 

/************************************************************************ 
* In this example the calling task looks up the token for the * 
* semaphore prior to invoking the RECEIVE$UNITS system call. * 
************************************************************************/ 

sem$token = RQ$LOOKUP$OBJECT (calling$tasks$job, 
@ (5, 'SEMA4' ), 
wai t$forever, 
@status) ; 

:. } Typical PL/M-86 Statements 

12-113 



RECEIVE$UNITS 

/************************************************************************ 
~ __ ~ ___ ~ ____ ~ ________ ! __ ~Knowing the token for the semaphore, the _ calling _. task can wait for * 

* unit-~at~thi-s--;;-emaphore bi--invoklng-the RE-C~EIVE-$U.t~ff~ts--syst-em-cal-r~~--*--~~---~~-
************************************************************************/ 

units$remaining = RQ$RECEIVE$UNITS (sem$token, 
units$requested, 
wait$forever, 
@status); 

.: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$EXIST 

E$LIMIT 

E$NOT$CON
FIGURED 

E$TIME 

E$TYPE 

No exceptional conditions. 

One of the following is true: 

• The semaphore parameter is not a token for an 
existing object. 

• The semaphore was deleted while the task was 
waiting. 

The units parameter is greater than the maximum 
value that had been specified for the semaphore 
when it was created. 

This system call is not part of the present 
configuration. 

One of the following is true: 

• The calling task was not willing to wait and the 
requested units were not available. 

• The task waited in the task queue and its 
designated waiting period elapsed before the 
requested units were available. 

The semaphore parameter is a token for an object 
that is not a semaphore. 

12-114 



R SET INTERRUPT 

RESET$INTERRUPT 

RESET$INTERRUPT cancels the assignment of an interrupt handler to a level. 

CALL RQ$RESET$INTERRUPT (level, except$ptr); 

INPUT PARAMETER 

level 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD specifying an interrupt level which is 
encoded as follows (bit 15 is the high-order bit): 

Bits Value 

15-7 0 

6-4 first digit of the interrupt level (0-7) 

3 if one, the level is a master level and 
bits 6-4 specify the entire level number 

if zero, the level is a slave level and 
bits 2-0 specify the second digit 

2-0 second digit of the interrupt level 
(0-7), if bit 3 is zero 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The RESET$INTERRUPT system call cancels the assignment of the current 
interrupt handler to the specified interrupt level. If an interrupt task 
had also been assigned to the level, the interrupt task is deleted. 
RESET$INTERRUPT also disables the level. 

The level reserved for the system clock should not be reset and is 
considered invalid. This level is a configuration option (refer to the 
iRMX 86 CONFIGURATION GUIDE for further information). 

12-115 



K.E8.E'1~'lNTERRUPT 

EXAMPLE 
---_._-"._-- --- -- -- -.----~- ~- -_ .. --~- _._ .. _--- ----_.--

---------T*~**-*-*-*******-****-*;k****-**-**1Fk*-***********-**-**-*************************** 
* This example illustrates how the RESET$INTERRUPT system call can be * 
* used to cancel the assignment of an interrupt handler to an * 
* interrupt level. * 
************************************************************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$segment 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE interrupt$level$7 

DECLARE interrupt$task$flag 
DECLARE intrpt$handlr$addrs 
DECLARE interrupt$status 
DECLARE status 

INTERRUPT TASK: PROCEDURE PUBLIC; 

interrupt$task$flag = 001H; 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack 

size is 512 bytes */ 
WORD; 
LITERALLY '0000 0000 0111 1000B'; 
/* specifies master interrupt level 7 */ 
BYTE; 
POINTER; 
WORD; 
WORD; 

/* indicates that calling task is to 
be interrupt task */ 

data$segment = 0; 
intrpt$handlr$addrs 

/* use own data segment */ 
= INTERRUPT$PTR (@INTERRUPT HANDLER); 

/* points to the first instruction of 
the interrupt handler */ 

/************************************************************************ 
* The first system call in this example, SET$INTERRUPT, makes the * 
* calling task (INTERRUPT TASK) the interrupt task for the interrupt * 
* level. - * 
************************************************************************/ 

CALL RQ$SET$INTERRUPT (interrupt$level$7, 
interrupt$task$flag, 
intrpt$handlr$addrs, 
data$segment, 
@interrupt$status); 

12-116 



RESET$INTERRUPT 

/************************************************************************ 
* The second system call, WAIT$INTERRUPT, is used by the interrupt * 
* task to signal its readiness to service an interrupt. * 
************************************************************************/ 

CALL RQ$WAIT$INTERRUPT (interrupt$level$7, 
@interrupt$status); 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* When the interrupt task invokes the RESET$INTERRUPT system call, * 
* the assignment of the current interrupt handler to interrupt level * 
* 7 is canceled and, because an interrupt task has also been assigned * 
* to the level, the interrupt task is deleted. * 
************************************************************************/ 

CALL RQ$RESET$INTERRUPT 

END INTERRUPT_TASK; 

SAMPLE PROCEDURE: 
PROCEDURE; 

(interrupt$level$7, 
@interrupt$status); 

start$address = @INTERRUPT TASK; 
- /* 1st instruction of interrupt task */ 

stack$pointer = 0; 
task$flags = 0; 

data$segment = 0; 

/* automatic stack allocation */ 
/* indicates no floating-point 

instructions */ 
/* use own data segment */ 

..• } Typical PL/M-86 Statements 

/************************************************************************ 
* In this example the SAMPLE PROCEDURE is needed to create the task * 
* labeled INTERRUPT TASK. - * 
************************************************************************/ 

task$token = RQ$CREATE$TASK (priority$level$66, 
start$address, 
dat a$segmen t, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); .•. } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

12-117 



RESET$INTERRUPT 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$NOT$CON
FIGURED 

E$PARAM 

No exceptional conditions. 

There is not an interrupt handler assigned to the 
specified level. 

This system call is not part of the present 
configuration. 

The level parameter is invalid. 

12-118 



RESUME$TASK 

RESUME$TASK 

RESUME$TASK decreases by one the suspension depth of a task. 

CALL RQ$RESUME$TASK (task, except$ptr); 

INPUT PARAMETER 

task 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the task whose suspension depth is to 
be decremented. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The RESUME$TASK system call decreases by one the suspension depth of the 
specified non-interrupt task. The task should be in either the suspended 
or asleep-suspended state, so its suspension depth should be at least 
one. If the suspension depth is still positive after being decremented, 
the state of the task is not changed. If the depth becomes zero, and the 
task is in the suspended state, then it is placed in the ready state. If 
the depth becomes zero, and the task is in the asleep-suspended state, 
then it is placed in the asleep state. 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the RESUME$TASK system call can be * 
* used to decrease by one the suspension depth of a task. * 
************************************************************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TAS~CODE; 

/* Declares all system calls */ 

12-119 



RESUME$TASK 

DECLARE TOKEN LITERALLY 'SELECTOR'; 
____ ______ _ ___________________________ ~____ _______________ ____ ___ 1!t __ !J ___ 'l2 u r _RY~L5! omp~l~_~ __ 5!_~~~ __ l1:~~_______ _____ _ _ __ _ 

DECLARE task$token 
DECLARE priority$level$200 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @TASK_CODE; 
data$seg = 0; 
stack$pointer = 0; 
task$flags = 0; 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '200'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack 

size is 512 bytes */ 
WORD; 
WORD; 

/* first instruction of the new task */ 
/* task sets up own data seg */ 
/* automatic stack allocation */ 
/* indicates no floating-point 

instructions */ 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* In this example the calling task creates a non-interrupt task and * 
* suspends that task before invoking the RESUME$TASK system call. * 
************************************************************************/ 

task$token = RQ$CREATE$TASK (priority$level$200, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); .... } Typical PL/M-86 Statements 

/************************************************************************ 
* After creating the task, the calling task invokes SUSPEND$TASK. * 
* This system call increases by one the suspension depth of the new * 
* task (whose code is labeled TASK CODE). * 
************************************************************************/ 

CALL RQ$SUSPEND$TASK (task$token, 
@status); 

.: } Typical PL/M:"'86 Statements 

12-120 



RESUME$TASK 

/*****************************~****************************************** 
* Using the token for the suspended task (whose code is labeled * 
* TASK CODE), the calling task invokes RESUME$TASK to decrease by the * 
* one the suspension depth of the suspended task. * 
************************************************************************/ 

CALL RQ$RESUME$TASK (task$token, 
@status); 

:. } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$STATE 

E$TYPE 

No exceptional conditions. 

The task indicated by the task parameter is an 
interrupt task. 

The task parameter is not a token for an existing 
object. 

The task indicated by the task parameter was not 
suspended when the call was made. 

The task parameter is a token for an object that is 
not a task. 

12-121 



END$CONTROL 

SEND $CONTROL 
-----------------

--~-----~-------~~-----~~----
-----~-~~~-------~-~---------

The SEND$CONTROL system call allows a task to surrender access to data 
protected by a region. 

Tasks which use regions cannot be 
deleted while they access data 
protected by the region. Therefore, 
you should avoid using regions in Human 
Interface applications. If a task in a 
Human Interface application uses 
regions, the application cannot be 
deleted asynchronously (via a CTRL/c 
entered at a terminal) while the task 
is in the region. 

CALL RQ$SEND$CONTROL (except$ptr); 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

When a task finishes with data protected by a region, the task invokes 
the SEND$CONTROL system call to surrender access. If the task is using 
more than one set of data, each of which is protected by a region, the 
SEND$CONTROL system call surrenders the most recently obtained access. 
When access is surrendered, the system allows the next task in line to 
gain access. 

If a task calling SEND$CONTROL has had its priority boosted while it had 
access through a region, its priority is restored when it relinquishes 
the access. 

12-122 



SEND$CONTROL 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SEND$CONTROL system call can be * 
* used to surrender access to data protected by a region. * 
************************************************************************/ 

$INCLUDE(:F1:SAMPLE.EXT); 

DECLARE TOKEN 

DECLARE region$token 
DECLARE priority$queue 

DECLARE status 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '1'; /* tasks wait in 

priority order */ 
WORD; 

.:} Typical PL/M-86 Statements 

SAMPLE PROCEDURE: 
PROCEDURE; 

/************************************************************************ 
* In order to access the data within a region, a task must know the * 
* token for that region. In this example, the needed token is known * 
* because the calling task creates the region. * 
************************************************************************/ 

region$token = RQ$CREATE$REGION (priority$queue, 
@status); 

.:} Typical PL/M-86 Statements 

/************************************************************************ 
* When access to the data protected by a region is needed, the * 
* calling task may invoke the RECEIVE$CONTROL system call. * 
************************************************************************/ 

CALL RQ$RECEIVE$CONTROL (region$token, 
@status); 

:.} Typical PL/M-86 Statements 

/************************************************************************ 
* When a task finishes using data protected by a region, the task * 
* invokes the SEND$CONTROL system call to surrender access. * 
************************************************************************/ 

CALL RQ$SEND$CONTROL (@status); 

.:} Typical PL/M-86 Statements 

12-123 



,END$CONTROL 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

A task invoked the SEND$CONTROL system call while 
it did not have access to data protected by any 
region. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

12-124 



SEND$MESSAG 

SEND $MES SAGE 

SEND$MESSAGE sends an object token to a mailbox. 

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr); 

INPUT PARAMETERS 

mailbox 

object 

response 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the mailbox to which an object token is 
to be sent. 

A TOKEN containing an object token which is to be 
sent. 

A TOKEN for a mailbox or semaphore at which the 
sending task will wait for a response. 

• if not zero, contains a token for the desired 
response mailbox or semaphore. 

• if zero, indicates that no response is requested. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SEND$MESSAGE system call sends the specified object token to the 
specified mailbox. If there are tasks in the task queue at that mailbox, 
the task at the head of the queue is awakened and is given the token. 
Otherwise, the object token is placed at the tail of the object queue of 
the mailbox. The sending task has the option of specifying a mailbox or 
semaphore at which it will wait for a response from the task that 
receives the object. The nature of the response must be agreed upon by 
the writers of the two tasks. 

12-125 



SEND$MESSAGE 

EXAMPLE 
--~---~ - ~-- --~--~--- -- ~ ~-.-----.-----.--------.-."-----------.---- - - - ----- -- ~ - - --

I ******************************************-*-****-*****-**-******-***-********* ------------
* This example illustrates how the SEND$MESSAGE system call can be * 
* used to send a segment token to a mailbox. * 
************************************************************************1 

.$INCLUDE(:F1:SAMPLE.EXT); 

DECLARE TOKEN 

DECLARE seg$token 
DECLARE size 
DECLARE mbx$token 
DECLARE mbx$flags 
DECLARE no$response 
DECLARE status 
DECLARE job 

SAMPLE PROCEDURE: 
PROCEDURE; 

size = 64; 

mbx$flags = 0; 

job = 0; 

1* Declares all system calls *1 

LITERALLY 'SELECTOR'; 
1* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD *1 

TOKEN; 
WORD; 
TOKEN; 
WORD; 
LITERALLY '0'; 
WORD; 
WORD; 

1* designates new segment to contain 64 
bytes *1 

1* designates four objects to be queued 
on the high performance object 
queue; designates a first-inl 
first-out task queue. *1 

1* indicates objects to be cataloged 
into the object directory of the 
calling task's job *1 

.•. } Typical PL/M-86 Statements 

1************************************************************************ 
* The calling task creates a segment and a mailbox and catalogs the * 
* mailbox token. The calling task then uses the tokens for both * 
* objects to send a message. * 
************************************************************************1 

seg$token = RQ$CREATE$SEGMENT (size, 
@status); 

mbx$token = RQ$CREATE$MAILBOX (mbx$flags, 
@status); 

12-126 



/************************************************************************ 
* It is not mandatory for the calling task to catalog the mailbox * 
* token in order to send a message. It is necessary, however, to * 
* catalog (or in someway communicate) the mailbox token if another * 
* task is to receive the message. * 
************************************************************************/ 

CALL RQ$CATALOG$OBJECT (job, 
mbx$token, 
@ ( 3, ' MBX' ), 
@status); 

... } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling task invokes the SEND$MESSAGE system call to send the * 
* token for the segment to the specified mailbox. * 
************************************~***********************************/ 

CALL RQ$SEND$MESSAGE (mbx$ token, 
seg$token, 
no$response, 
@status) ; 

: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$EXIST 

E$MEM 

E$NOT$CON
FIGURED 

E$TYPE 

No exceptional conditions. 

One or more of the input parameters is not a token 
for an existing object. 

The high performance queue is full and there is not 
sufficient memory in the job containing the mailbox 
for the Nucleus to do the housekeeping that 
supports a send message operation. 

This system call is not part of the present 
configuration. 

One of the following is true: 

• The mailbox parameter is a token for an object 
that is not a mailbox. 

• The response parameter is a token for an object 
that is neither a mailbox nor a semaphore. 

12-127 



2 'S' ';ll 'S" 1-1' 

SEND$UNITS 

SEND$UNITS sends units to a semaphore. 

CALL RQ$SEND$UNITS (semaphore, units, except$ptr); 

INPUT PARAMETERS 

semaphore 

units 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the semaphore to which the units are to 
be sent. 

A WORD containing the number of units to be sent. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SEND$UNITS system call sends the specified number of units to the 
specified semaphore. If the transmission would cause the semaphore's 
supply of units to exceed its maximum allowawble supply, then an E$LIMIT 
exceptional condition occurs. Otherwise, the transmission is successful 
and the Nucleus attempts to satisfy the requests of the tasks in the 
semaphore's task queue, beginning at the head of the queue. 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SEND$UNITS system call can be used * 
* to send units to a semaphore. * 
************************************************************************/ 

$INCLUDE(:F1:SAMPLE.EXT); 

DECLARE TOKEN 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

12-128 



DECLARE sem$token 
DECLARE init$value 
DECLARE max$value 
DECLARE s emS flags 
DECLARE three$units$sent 
DECLARE status 
DECLARE job 

SAMPLE PROCEDURE: 
PROCEDURE; 

init$value = 1; 

TOKEN; 
WORD; 
WORD; 
WORD; 
LITERALLY '3'; 
WORD; 
WORD; 

/* the new semaphore has one initial 
unit */ 

SEND$UNITS 

max$value = lOR; /* the new semaphore can have a maximum 
of 16 units * / 

sem$flags = 0; /* designates a first-in/ 
first-out task queue. */ 

job = 0; 

..• } 

/* indicates objects to be cataloged 
into the object directory of the 
calling task's job */ 

Typical PL/M-86 Statements 

/************************************************************************ 
* The calling task creates a semaphore and catalogs the semaphore * 
* token. The calling task then uses the token to send a unit. * 
************************************************************************/ 

sem$token = RQ$CREATE$SEMAPHORE (init$value, 
max$value, 
sem$flags, 
@status) ; 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* It is not mandatory to catalog the semaphore token in order to send * 
* units. It is necessary, however, to catalog (or in someway * 
* communicate) the semaphore token if another task is to receive the * 
* units. * 
************************************************************************/ 

CALL RQ$CATALOG$OBJECT (job, 
sem$token, 
@(5, 'SEMA4'), 
@status); 

..• } Typical PL/M-86 Statements 

12-129 



SEND$UNITS 

/************************************************************************ 
* The calling task invokes the SEND$UNITS system call to send the * 
* units to the semaphore just created (sem$token.) * 
************************************************************************/ 

CALL RQ$SEND$UNITS (sem$token, 
three$units$sent, 
@status); 

-: } Typical PL/M-86 Statements 

END SAMPL~ROCEDURE; 

CONDITION CODES 

E$OK 

E$EXIST 

E$LIMIT 

E$NOT$CON
FIGURED 

E$TYPE 

No exceptional conditons. 

The semaphore parameter is not a token for an 
existing object. 

The number of units that the calling task is trying 
to send would cause the semaphore's supply of units 
to exceed its maximum allowable supply. 

This system call is not part of the present 
configuration. 

The semaphore parameter is a token for an object 
that is not a semaphore. 

12-130 



SET$EXCEPTION$HANDLE 

SE T$EXCEPTION$HANDLER 

SET$EXCEPTION$HANDLER assigns an exception handler to the calling task. 

CALL RQ$SET$EXCEPTION$HANDLER (exception$info$ptr, except$ptr); 

INPUT PARAMETER 

exception$info$ptr A POINTER to a structure of the following form: 

OUTPUT PARAMETER 

except$ptr 

STR(JCTURE( 

where: 

EXC EPTION$HANDLER$O FFSET 
EXCEPTION $HANDLER $BASE 
EXCEPTION$MODE 

WORD, 
WORD, 
BYTE) ; 

• exception$handler$offset contains the offset of 
the first instruction of the exception handler. 

• exception$handler$base contains the base of the 
iAPX 86 segment containing the first instruction 
of the exception handler. 

• exception$mode contains an encoded indication of 
the calling task's intended exception mode. The 
value is interpreted as follows: 

Value 

o 
1 
2 
3 

When to Pass Control 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional 

conditions 

If exception$handler$offset and 
exception$handler$base both contain zeros, the 
exception handler of the calling task's parent job 
is assigned. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

12-131 



SET$EXCEPTION$HANDLER 

DESCRIPTION 

The SET$EXCEPTION$HANDLER system call enables a task to set its exception 
handler and exception mode attributes. If you want to designate the 
Debugger as the exception handler to interactively examine system objects 
and lists, the following code sets up the needed structure in PL/H-86: 

DECLARE 

DECLARE 

x STRUCTURE (OFFSET 
BASE 
MODE 

Y POINTER AT (@X); 

DECLARE EXCEPTION WORD; 

WORD, 
WORD, 
BYTE); /* establish a structure for 

exception handlers */ 

Y = @RQDEBUGGEREX; /* designate the debugger 
as the exception handler*/ 

X.MODE = ZERO$ONE$TWO$OR$THREE; /* the mode is a value 0-3 */ 
CALL RQ$SET$EXCEPTION$HANDLER (@X, @EXCEPTION); 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SET$EXCEPTION$HANDLER system call * 
* can be used to assign an exception handler to the calling task. * 
************************************************************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); /* Declares all system calls */ 

EXCEPTION HANDLER: PROCEDURE EXTERNAL; 
END EXCEPTION YANDLER; 

DECLARE X$HANDLER$STRUCTURE 

DECLARE x$handler 

DECLARE new$x$handler 

LITERALLY 'STRUCTURE offset WORD, 
base WORD, 
mode BYTE)'; 

/* establishes a structure for 
exception handlers */ 

X$HANDLER$STRUCTURE; 
/* using the exception handler 

structure, the pointer to the 
old exception handler is 
defined */ 

X$HANDLER$STRUCTURE; 
/* using the exception handler 

structure, the new exception 
handler is defined */ 

12-132 



DECLARE all$exceptions 

DECLARE PTR$OVERLAY 

DECLARE seg$pointer 
DECLARE seg$pointer$ovly 

DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

SET$EXCEPTION$HANDLER 

LITERALLY '3'; 
/* control is passed to the exception 

handler on all exceptional 
conditions */ 

LITERALLY 'STRUCTURE offset \~ORD, 

base WORD) '; 
/* establishes a structure for 

overlays */ 
POINTER; 
PTR$OVERLAY AT (@seg$pointer); 
/* using the overlay structure, the 

first instruction of the 
exception handler is identified */ 

WORD; 

seg$pointer = @EXCEPTION HANDLER; /* pointer to exception handler */ 
new$x$handler.offset = seg$pointer$ovly.offset; 

/* offset of the first instruction 
of the exception handler */ 

new$x$hand1er.base = seg$pointer$ovly.base; 
/* base address of the exception 

handler 8086 segment containing 
the first instruction of the 
exception handler */ 

new$x$hand1er.mode a11$exceptions; 
/* pass control on all conditions */ 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* The address of the calling task's exception handler and the value * 
* of the task's exception mode (when to pass control to the exception * 
* handler) are both returned when the calling task invokes the * 
* GET$EXCEPTION$HANDLER system call. * 
************************************************************************/ 

CALL RQ$GET$EXCEPTION$HANDLER (@x$handler, 
@status); 

.: } Typical PL/M-86 Statements 

12-133 



SET$EXCEPTION$HANDLER 

/************************************************************************ 
* The calling task may invoke the SET$EXCEPTION$HANDLER system call * 
* to first set a new exception handler and then to later reset the * 
* old exception handler. * 
************************************************************************/ 

CALL RQ$SET$EXCEPTION$HANDLER (@new$x$handler, 
@status) ; ... } Typical PL/M- 86 Statements 

/************************************************************************ 
* No longer needing the new exception handler, the calling task uses * 
* the address and mode of the old exception handler to return * 
* exception handling to its original exception handler. * 
************************************************************************/ 

CALL RQ$SET$EXCEPTION$HANDLER ( @x$handle r , 
@status) ; 

..• } Typical PL/M-86 Statements 

END SAMPLEYROCEDURE; 

CONDITION CODES 

E$OK 

E$NOT$CON
FIGURED 

E$PARAM 

No exceptional conditions. 

This system call is not part of the present 
configuration. 

The exception$mode parameter is greater than 3. 

12-134 



SET$INTERRUPT 

SET$INTERRUPT 

SET$INTERRUPT assigns an interrupt handler to an interrupt level and, 
optionally, makes the calling task the interrupt task for the level. 

CALL RQ$SET$INTERRUPT (level, interrupt$task$flag, interrupt$handler, 
interrupt$handler$ds, except$ptr); 

INPUT PARAMETERS 

level A WORD containing an interrupt level that is 
encoded as follows (bit 15 is the high-order bit): 

Bits 

15-7 

6-4 

3 

Value 

o 

first digit of the interrupt level (0-7) 

if one, the level is a master level and 
bits 6-4 specify the entire level number 

if zero, the level is a slave level and 
bits 2-0 specify the second digit 

2-0 second digit of the interrupt level 
(0-7), if bit 3 is zero 

interrupt$task$flag A BYTE indicating the interrupt task that will be 
invoked by the interrupt task. 

• if zero, indicates that no interrupt task is to 
be associated with the special level and that 
the new interrupt handler will not call SIGNAL 
INTERRUPT. 

The code for interrupt handlers that 
set this interrupt$task$flag to zero 
should not be part of a Human Interface 
application that is loaded into dynamic 
memory. If such an application is 
stopped (via a CTRL/c entered at a 
terminal), subsequent interrupts to the 
vector table entry set by this system 
call could cause unpredictable results. 

12-135 



3ET$INTERRUPT 

interrupt$handler 

• if unequal to zero, indicates that the calling 
task is to be the interrupt task that will be 
invoked by the interrupt handler being set. The 
priority of the calling task is adjusted by the 
Nucleus according to the interrupt level being 
serviced. Table 8-2 lists the levels and the 
corresponding interrupt task priorities. Be 
certain that priorities set in this manner do 
not violate the max$priority attribute of the 
containing job. 

The value of this parameter indicates the number of 
outstanding SIGNAL$INTERRUPT requests that can 
exist. When this limit is reached, the associated 
interrupt level is disabled. The maximum value for 
this parameter is 255 decimal. Chapter 8 describes 
this feature in more detail. 

A POINTER to the first instruction of the interrupt 
handler. To obtain the proper start address for 
interrupt handlers written in PL/M-86, place the 
following instruction before the call to 
SET$INTERRUPT: 

interrupt$handler 
= interrupt$ptr (inter); 

where interrupt$ptr is a PLIM-86 built-in 
procedure and inter is the name of your 
interrupt handling procedure. 

interrupt$handler$ds A WORD which specifies the interrupt handler's data 
segment. 

• if not zero, contains the base address of the 
interrupt handler's data segment. See the 
description of ENTER$INTERRUPT in this chapter 
for information concerning the significance of 
this parameter. 

It is often desirable for an interrupt handler 
to pass information to the interrupt task that 
it calls. The following PL/M-86 statements, when 
included in the interrupt task's code (with the 
first statement listed here being the first 
statement in the task's code), will extract the 
DS register value used by the interrupt task and 
make it available to the interrupt handler, 
which in turn can access it by calling 
ENTER$INTERRUPT: 

12-136 



OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

SET$INTERRUPT 

DECLARE BEGIN WORD; /* A DUMMY VARIABLE */ 

DECLARE DATA$PTR POINTER; 

DECLARE DATA$ADDRESS STRUCTURE ( 

OFFSET WORD, 

BASE WORD) AT (@DATA$PTR); /* THIS MAKES 
ACCESSIBLE THE TWO HALVES OF THE 
POINTER DATA$PTR */ 

DATA$PTR @BEGIN; /* PUTS THE WHOLE 
ADDRESS OF THE DATA SEGMENT INTO 
DATA$PTR AND DATA$ADDRESS */ 

DS$BASE = DATA$ADDRESS.BASE; 

CALL RQ$SET$INTERRUPT ( ••• ,DS$BASE); 

• if zero, indicates that the interrupt handler 
will load its own data segment and may not 
invoke ENTER$INTERRUPT. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SET$INTERRUPT system call is used to inform the Nucleus that the 
specified interrupt handler is to service interrupts which come in at the 
specified level. In a call to SET$INTERRUPT, a task must indicate 
whether the interrupt handler will invoke an interrupt task and whether 
the interrupt handler has its own data segment. If the handler is to 
invoke an interrupt task, the call to SET$INTERRUPT also specifies the 
number of outstanding SIGNAL$INTERRUPT requests that the handler can make 
before the associated interrupt level is disabled. This number generally 
corresponds to the number of buffers used by the handler and interrupt 
task. Refer to Chapter 8 for further information. 

If there is to be an interrupt task, the calling task is that interrupt 
task. If there is no interrupt task, SET$INTERRUPT also enables the 
specified level, which must be disabled at the time of the call. 

12-137 



JET$INTERRUPT 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SET$INTERRUPT system call can be * 
* used. * 
************************************************************************/ 

$INCLUDE(:FI:SAMPLE.EXT); /* Declares all system calls */ 

INTERRUPT HANDLER: PROCEDURE EXTERNAL; 
END INTERRUPT_HANDLER; 

DECLARE interrupt$level$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

interrupt$task$flag = 0; 

LITERALLY '0000 0000 0111 1000B'; 
/* specifies master interrupt level 7 */ 
BYTE; 
POINTER; 
WORD; 
WORD; 

/* indicates no interrupt task on level 
7 */ 

data$segment = 0; /* indicates that the interrupt handler 
will load its own data segment */ 

interrupt$handler = INTERRUPT$PTR (@INTERRUPT HANDLER); 
/* points to the first instruction of 

the interrupt handler */ 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* An interrupt level must have an interrupt handler or an interrupt * 
* task assigned to it. Invoking the SET$INTERRUPT system call, the * 
* calling task assigns INTERRUPT HANDLER to interrupt level 7. * 
************************************************************************/ 

CALL RQ$SET$INTERRUPT (interrupt$level$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); ..• } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

12-138 



CONDITION CODES 

E$OK 

E$CONTEXT 

E$NOT$CON
FIGURED 

E$PARAM 

SET$INTERRUPT 

No exceptional conditions. 

One of the following is true: 

• The task is already an interrupt task. 

• The specified level already has an interrupt 
handler assigned to it. 

• The job containing the calling task or the 
calling task itself is in the process of being 
deleted. 

This system call is not part of the present 
configuration. 

One of the following is true: 

• The level parameter is invalid or would cause 
the task to have a priority not allowed by its 
job. 

• The PIC corresponding to the specified level is 
not configured. 

12-139 



5" tilrl? 'i" 'SF' fllS1 

SET$OS$EXTENSION 

The SET$OS$EXTENSION system call either enters the address of an entry 
(or function) procedure in the Interrupt Vector Table or it deletes such 
an entry. 

This system call should not be used by 
Human Interface applications that are 
loaded into dynamic memory. If such an 
application is deleted (via a CTRL/c 
entered at a terminal), subsequent 
interrupts to the vector table entry 
set by this system call could cause 
unpredictable results. 

CALL RQ$SET$OS$EXTENSION (os$extension, start$address, except$ptr); 

INPUT PARAMETERS 

o s$extension 

start$address 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A BYTE designating the entry of the interrupt 
vector table to be set or reset. This value must 
be between 224 and 255 (decimal), inclusive. The 
values in the range 192 to 223 are valid, but are 
reserved for Intel use. 

A POINTER to the first instruction of an entry (or 
function) procedure. If start$address contains a 
zero value, the specified interrupt vector table 
entry is being reset (deallocated). 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SET$OS$EXTENSION system call sets or resets anyone of the 32 
operating system extension entries in the interrupt vector table. An 
entry must be reset before its contents can be changed. An attempt to 
set an already set entry causes an E$CONTEXT exceptional condition. 

12-140 



EXAMPLE 

/************************************************************************ 
* This example illustrates how the SET$OS$EXTENSION system call can * 
* be used to reset an entry in the Interrupt Vector Table. The * 
* example assumes that the entry for the level (number 250) was set * 
* earlier by another procedure. * 
************************************************************************/ 

$INCLUDE(: F1: SAMPLE. EXT) ; 

DECLARE vector$entry$250 
DECLARE reset 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

/* Declares all system calls */ 

LITERALLY '250'; 
LITERALLY '0'; 
WORD; 

..• } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling task invokes the SET$OS$EXTENSION system call to reset * 
* entry 250 (decimal) of the Interrupt Vector Table. * 
************************************************************************/ 

CALL RQ$SET$OS$EXTENSION (vec tor$e nt ry$ 250, 
reset, 
@status); 

.: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT An attempt is being made to set an entry that 
already is set. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$PARAM The OS$extension byte value is less than 192. 

12-141 



§J' f3 ,1111 '1)1' '5' 

SET$POOL$MIN 

SET$POOL$MIN sets a job's pool$min attribute. 

CALL RQ$SET$POOL$MIN (new$min, except$ptr); ] 
INPUT PARAMETER 

new$min 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD indicating the pool$min attribute of the 
calling task's job. 

• if OFFFFH, indicates that the pool$min attribute 
of the calling task's job is to be set equal to 
that job's pool$max attribute. 

• if less than OFFFFH, contains the new value of 
the pool$min attribute of the calling task's 
job. This new value must not exceed that job's 
pool$max attribute. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SET$POOL$MIN system call sets the pool$min attribute of the calling 
task's job. The new value must not exceed that job's pool$max 
attribute. When the pool$min attribute is made larger than the current 
pool size, the pool is not enlarged until the additional memory is needed. 

12-142 



EXAMPLE 

/************************************************************************ 
* This example illustrates how the SET$POOL$MIN system call can be * 
* used. * 
************************************************************************/ 

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls * / 
DECLARE new$min 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

new$min = OFFFFH; 

WORD; 
WORD; 

/* sets pool$min attribute of calling 
task's job equal to job's pool$max 
attribute */ 

:-} Typical PL/M-86 Statements 

/************************************************************************ 
* In this example the pool$min attribute of the calling task's job * 
* is to be set equal to that job's pool$max attribute. * 
************************************************************************/ 

CALL RQ$SET$POOL$MIN (new$min, 
@status) ; 

:-} Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$LIMIT 

E$NOT$CON
FIGURED 

No exceptional conditions. 

The new$min parameter is not OFFFFH, yet is greater 
than the pool$max attribute of the calling task's 
job. 

This system call is not part of the present 
configuration. 

12-143 



SET$PRIORITY 

The SET$PRIORITY system call changes the priority of a task. 

CALL RQ$SET$PRIORITY (task, priority, except$ptr); 

INPUT PARAMETERS 

task 

priority 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the task whose priority is to be 
changed. A zero value specifies the invoking task. 

A BYTE containing the task's new priority. A zero 
value specifies the maximum priority of the 
specified task's containing job. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SET$PRIORITY system call allows the priority of a noninterrupt task 
to be altered dynamically. 

If the priority parameter is set to the zero, the task's new priority is 
its containing job's maximum priority. Otherwise, the priority 
parameter contains the new priority of the specified task. The new 
priority, if explicitly specified, must not exceed its containing job's 
maximum priority. 

EXAMPLE 

1************************************************************************ 
* This example illustrates how the SET$PRIORITY system call can be * 
* used to change the priority of a task. * 
************************************************************************1 

$INCLUDE(:F1:SAMPLE.EXT); 1* Declares all system calls */ 

12-144 



TASK CODE: PROCEDURE EXTERNAL; 
END TAS~CODE; 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE priority$level$O 
DECLARE start$address 
DECLARE data$seg 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '66'; 
LITERALLY '0'; 
POINTER; 
WORD; 
POINTER; 

SET$PRIORITY 

DECLARE stack$pointer 
DECLARE stack$size$512 LITERALLY '512'; /* new task's stack 

size is 512 bytes */ 
DECLARE task$flags 
DECLARE status 
DECLARE job 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address 

data$seg = 0; 
stack$pointer = 0; 
task$flags = 0; 

WORD; 
WORD; 
WORD; 

/* pointer to first instruction of 
interrupt task */ 

/* task sets up own data seg */ 
/* automatic stack allocation */ 
/* designates no floating-point 

instructions */ 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* In this example, the calling task creates a task whose priority is * 
* to be changed. The new task initially has a priority level 66. * 
************************************************************************/ 

task$token = RQ$CREATE$TASK (priority$level$66, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status) ; 

12-145 



SET$PRIORITY 

/************************************************************************ 
* The calling task in this example does not need to invoke the * 
* CATALOG$OBJECT system call to ensure the successful use of the * 
* SET$PRIORITY system call. To allow other tasks access to the new * 
* task, however, requires that the task's object token be cataloged. * 
************************************************************************/ 

CALL RQ$CATALOG$OBJECT (job, 
task$token, 

..•. } 
@(12, 'TASK CODE'), 
@status); -

Typical PL/M-86 Statements 

/************************************************************************ 
* The new task (whose code is labeled TASK_CODE) is not an interrupt * 
* task, so its priority may be changed dynamically by invoking the * 
* SET$PRIORITY system call. * 
************************************************************************/ 

CALL RQ$SET$PRIORITY (task$token, 
priority$level$ 0, 
@status); 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* Once the need for the higher priority is no longer present, the * 
* priority of the new task can be changed back to its original * 
* priority by invoking SET$PRIORITY a second time. * 
************************************************************************/ 

CALL RQ$SET$PRIORITY (task$token, 
priority$level$66, 
@status); 

:. } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

No exceptional conditions. 

An attempt is being made to change the priority of 
an interrupt task. 

The task parameter does not refer to an existing 
object. 

12-146 



SET$PRIORITY 

E$LIMIT The priority parameter contains a priority value 
that is higher than the maximum priority of the 
specified task's containing job. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE The task parameter does not contain a token for a 
task. 

12-147 



SIGNAL$EXCEPTION 

SIGNAL$EXCEPTION 

The SIGNAL$EXCEPTION system call is invoked by OS extensions to signal 
the occurrence of an exceptional condition. 

CALL RQ$SIGNAL$EXCEPTION(exception$code, param$num, stack$pointer, 
reserved$param, NPX$status$word, except$ptr); 

INPUT PARAMETERS 

e xcep tion$code 

param$num 

stack$pointer 

reserved$word 

NPX$status$word 

OUTPUT PARAMETER 

except$ptr 

A WORD containing the code (see list in Appendix B) 
for the exceptional condition detected. 

A BYTE containing the number of the parameter which 
caused the exceptional condition. If no parameter 
is at fault, param$num equals zero. 

A WORD which, if not zero, must contain the value 
of the stack pointer saved on entry to the 
operating system extension (see the entry procedure 
in Chapter 10 for an example). The top five words 
in the stack (where BP is at the top of the stack) 
must be as follows: 

FLAGS 
CS 
IP 
DS 
BP 

Saved by software interrupt 
to OS extension 

Saved by OS extension 
on entry 

Upon completion of SIGNAL$EXCEPTION, control is 
returned to either of two instructions. If 
stack$pointer contains a zero, control returns to 
the instruction following the call to 
SIGNAL$EXCEPTION. Otherwise, control returns to 
the instruction identified in CS and IP. 

A WORD reserved for Intel use. Set this parameter 
to zero. 

A WORD containing the status of the 8087 NPX. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

12-148 



SIGNAL$EXCEPTION 

DESCRIPTION 

Operating system extensions use the SIGNAL$EXCEPTION system call to 
signal the occurrence of exceptional conditions. Depending on the 
exceptional condition and the calling task's exception mode, control may 
or may not pass directly to the task's exception handler. 

If the exception handler does not get control, the exceptional condition 
code is returned to the calling task. The task can then access the code 
by checking the contents of the word pointed to by the except$ptr 
parameter for its call (not for the call to SIGNAL$EXCEPTION). 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SIGNAL$EXCEPTION system call can * 
* be used to signal the occurrence of the exceptional condition * 
* E $CONTEXT • * 
************************************************************************/ 

$INCLUDE (: F 1: SAMPLE. EXT) ; 

DECLARE e$context 
DECLARE param$num 
DECLARE stack$pointer 
DECLARE reserved$word 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

param$num = 0; 
stack$pointer o· , 

/* Declares all system calls */ 

LITERALLY '5H'; 
BYTE; 
WORD; 
LITERALLY , 0' ; 
WORD; 

/* no parameter at fault */ 
/* return control to instruction 

following call */ 

:-} Typical PL/M-86 Statements 

12-149 



,IGNAL$EXCEPTION 

/************************************************************************ 
* In this example the SIGNAL$EXCEPTION system call is invoked by * 
* extensions of the Operating System to signal the occurence of an * 
* E$CONTEXT exceptional condition. * 
************************************************************************/ 

CALL RQ$SIGNAL$EXCEPTION (e$context, 
param$num, 
stack$pointer, 
reserved$wor d, 
reserved$word, 
@status) ; 

-: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

12-150 



SIGNAL$INTERRUP 

SIGNAL$INTERRUPT 

SIGNAL$INTERRUPT is used by an interrupt handler to activate an interrupt 
task. 

CALL RQ$SIGNAL$INTERRUPT (level, except$ptr); 

INPUT PARAMETER 

level 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing an interrupt level which is 
encoded as follows (bit 15 is the high-order bit): 

Bits Value 

15-7 0 

6-4 first digit of the interrupt level (0-7) 

3 if one, the level is a master level and 
bits 6-4 specify the entire level number 

if zero, the level is a slave level and 
bits 2-0 specify the second digit 

2-0 second digit of the interrupt level 
(0-7), if bit 3 is zero 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. All exceptional conditions must 
be processed in-line, as control does not pass to 
an exceptional handler. 

An interrupt handler uses SIGNAL$INTERRUPT to start up its associated 
interrupt task. The interrupt task runs in its own environment with 
higher (and possibly the same) level interrupts enabled, whereas the 
interrupt handler runs in the environment of the interrupted task with 
all interrupts disabled. The interrupt task can also make use of 
exception handlers, whereas the interrupt handler always receives 
exceptions in-line. 

12-151 



'IGNAL$IN'I'EKKUP'l' 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SIGNAL$INTERRUPT system call can * 
* be used to activate an interrupt task. * 
************************************************************************/ 

$INCLUDE(: F1 : SAMPLE • EXT); 

DECLARE the$first$word 
DECLARE interrupt$level$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 
DECLARE interrupt$status 
DECLARE ds$pointer 
DECLARE PTR$OVERLAY 

DECLARE ds$pointer$ovly 

/* Declares all system calls */ 

WORD; 
LITERALLY '0000 0000 0111 10008'; 
/* specifies master interrupt level 7 */ 
BYTE; 
POINTER; 
WORD; 
WORD; 
WORD; 
POINTER; 
LITERALLY 'STRUCTURE (offset 

base 
/* establishes a structure for 

overlays */ 
PTR$OVERLAY AT (@ds$pointer); 

WORD, 
WORD) '; 

/* using the overlay structure, the 
base address of the interrupt 
handler's data segment is 
identified */ 

INTERRUPT HANDLER: PROCEDURE INTERRUPT 59 PUBLIC; 

:. } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling interrupt handler invokes the ENTER$INTERRUPT system * 
* call which loads a base address value (defined by * 
* ds$pointer$ovly.base) into the data segment register. This * 
* register provices a mechanism for the interrupt handler to pass * 
* data to the interrupt task to be started up by the SIGNAL$INTERRUPT * 
* system call. * 
************************************************************************/ 

CALL RQ$ENTER$INTERRUPT 

CALL INLINE ERROR PROCESS 

(interrupt$level$7, 
@interrupt$status); 
(interrupt$status); 

... } Typical PL/M-86 Statements 

12-152 



:SlUNAL:tilNrl'EKKuprl' 

/************************************************************************ 
* The interrupt handler uses SIGNAL$INTERRUPT to start up its * 
* associated interrupt task. * 
************************************************************************/ 

CALL RQ$SIGNAL$INTERRUPT (interrupt$level$7, 
@interrupt$status); 

CALL INLINE ERROR PROCESS (interrupt$status); 

END INTERRUPT_HANDLER; 

INLINE ERROR PROCESS: PROCEDURE; 
IF-interrupt$status <> E$OK THEN 

DO; 

-: } In-line Error Processing PL/M-86 Statements 

END; 

END INLINE _ERRORYROCESS; 

SAMPLE PROCEDURE: 
PROCEDURE; 

ds$pointer = @the$first$word; /* a dummy identifier used to point to 
interrupt handler's data segment */ 

data$segment = ds$pointer$ovly.base; 
/* identifies the base address of the 

interrupt handler's data segment */ 
intrpt$handlr$addrs = INTERRUPT$PTR (@INTERRUPT HANDLER); 

/* points to the first instruction of 
the interrupt handler */ 

interrupt$task$flag = OlH; /* indicates that calling task is to be 
interrupt task */ 

-: } Typical PL/M-86 Statements 

/************************************************************************ 
* By first invoking the SET$INTERRUPT system call, the calling task * 
* sets up an interrupt level and becomes the interrupted task for * 
* level 7. * 
************************************************************************/ 

CALL RQ$SET$INTERRUPT (interrupt$le~el$ 7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); 

-: } Typical PL/M-86 Statements 

END SAMPLEYROCEDURE; 

12-153 



SIGNAL$INTERRUPT 

CONDITION CODES 

E$OK 

E$CONffEXT 

E$INTERRUPT$ 
SATURATION 

E$INTERRUPT$ 
OVERFLOW 

E$LIMIT 

E$NOT$CON- ' 
FIGURED 

E$PARAM 

No exceptional conditions. 

There is not an interrupt task assigned to the 
specified level. 

The interrupt task has accumulated the maximum 
allowable number of SIGNAL$INTERRUPT requests. 
This is an informative message only. It does not 
indicate an error. 

The interrupt task has accumulated more than the 
maximum allowable number of SIGNAL$INTERRUPT 
requests. It had reached its saturation point and 
then called ENABLE to allow the handler to receive 
further interrupt signal~. It subsequently 
received an additional SIGNAL$INTERRUPT request 
before calling WAIT$INTERRUPT. 

An overflow has occurred because the interrupt task 
has received more than 255 SIGNAL$INTERRUPT 
requests. 

This system call is not part of the present 
configuration. 

The level parameter is invalid. 

12-154 



SLEEP 

SLEEP puts the calling task to sleep. 

CALL RQ$SLEEP (time$limit, except$ptr); 

INPUT P~~TER 

time$limit 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD indicating the conditions in which the 
calling task is to be put to sleep. 

• if not zero and not OFFFFH, causes the calling 
task to go to sleep for that many clock 
intervals, after which it will be awakened. The 
length of a clock interval is configurable. 
Refer to the iRMX 86 CONFIGURATION GUIDE for 
further information. 

• if zero, causes the calling task to be placed on 
the list of ready tasks, immediately behind all 
tasks of the same priority. If there are no 
such tasks, there is no effect and the calling 
task continues to run. 

• if OFFFFH, is invalid. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SLEEP system call has two uses. One use places the calling task in 
the asleep state for a specific amount of time. The other use allows the 
calling task to defer to the other ready tasks with the same priority. 
When a task defers in this way it is placed on the list of ready tasks, 
immediately behind those other tasks of equal priority. 

12-155 



;LEEP 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SLEEP system call can be used. * 
************************************************************************/ 

$INCLUDE(:F1:SAMPLE.EXT); /* Declares all system calls */ 

DECLARE time$limit 
DECLARE status 

WORD; 
WORD; 

SAMPLE PROCEDURE: 
PROCEDURE; 

time$limit = 100; /* sleep for 100 clock ticks */ 

:. } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling task puts itself in the asleep state for 100 clock * 
* ticks by invoking the SLEEP system call. * 
************************************************************************~ 

CALL RQ$SLEEP (time$limit, 
@status); ... } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$NOT$CON
FIGURED 

E$PARAM 

No exceptional conditions. 

This system call is not part of the present 
configuration. 

The time$limit parameter contains the invalid value 
OFFFFH. 

12-156 



SUSPEND$TASK 

SUSPEND$TASK 

SUSPEND$TASK increases by one the suspension depth of a task. 

CALL RQ$SUSPEND$TASK (task, except$ptr); 

INPUT PARAMETER 

task 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTIONS 

A TOKEN specifying the task whose suspension depth 
is to be incremented. 

• if not zero, contains a token for the task whose 
suspension depth is to be incremented. 

• if zero, indicates that the calling task is 
suspending itself. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SUSPEND$TASK system call increases by one the suspension depth of the 
specified task. If the task is already in either the suspended or 
asleep-suspended state, its state is not changed. If the task is in the 
ready or running state, it enters the suspended state. If the task is in 
the asleep state, it enters the asleep-suspended state. 

SUSPEND$TASK can not be used to suspend interrupt tasks. 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SUSPEND$TASK system call can be * 
* used to increase the suspension depth of a non-interrupt task. * 
************************************************************************/ 

$INCLUDE(: F1: SAMPLE.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

/* Declares all system calls */ 

12-157 



SUSPEND$TASK 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$200 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @TASK_CODE; 
data$seg = 0; 
stack$pointer = 0; 
task$flags = 0; 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a \lORD */ 

TOKEN; 
LITERALLY '200'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack 

size is 512 bytes */ 
WORD; 
WORD; 

/* first instruction of the new task */ 
/* task sets up own data seg */ 
/* automatic stack allocation */ 
/* designates no floating-point 

instructions */ ..• } Typical PL/M-86 Statements 

/************************************************************************ 
* In order to suspend a task, a task must know the token for that * 
* task. In this example, the needed token is known because the * 
* calling task creates the new task (whose code is labeled TASK CODE).* 
************************************************************************/ 

task$token = RQ$CREATE$TASK (priority$level$200, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status) ; 

:. } Typical PL/M-86 Statements 

12-158 



SUSPEND$TASK 

1************************************************************************ 
* After creating the task, the calling task invokes SUSPEND$TASK. * 
* This system call increases by one the suspension depth of the new * 
* task (whose code is labeled TASK CODE). * 
************************************************************************1 

CALL RQ$SUSPEND$TASK (task$token, @status); 

END SAMPLE YROCEDURE ; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$LIMIT 

E$TYPE 

.: } Typical PLfM-86 Statements 

No exceptional conditions. 

The task indicated by the task parameter is an 
interrupt task. 

The task parameter is not a token for an existing 
object. 

The suspension depth for the specified task is 
already at the maximum of 255. 

The task parameter is a token for an object that is 
not a task. 

12-159 



NCATALOG$OBJECT 

UNCATALOG$OBJECT 

UNCATALOG$OBJECT removes an entry for an object from an object directory. 

~$UNCATALOG$OBJECT (job, name, except$ptr); 

INPUT PARAMETERS 

job 

name 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN indicating the job of the object directory 
from which an entry is to be deleted. 

• if not zero, the TOKEN contains a token for the 
job from whose object directory the specified 
entry is to be deleted. 

• if zero, the entry is to be deleted from the 
object directory of the calling task's job. 

A POINTER to a STRING containing the name of the 
object whose entry is to be deleted. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The UNCATALOG$OBJECT system call deletes an entry from the object 
directory of the specified job. 

12-160 



UNCATALOG$OBJECT 

EXAMPLE 

/***********~************************************************************ 
* This example illustrates how the UNCATALOG$OBJECT system call can * 
* be used. * 
************************************************************************/ 

$INCLUDE(:F1:SAMPLE.EXT}; 

DECLARE TOKEN 

DECLARE seg$token 
DECLARE size 
DECLARE mbx$token 
DECLARE mbx$flags 
DECLARE no$response 
DECLARE status 
DECLARE job 

SAMPLE PROCEDURE: 
PROCEDURE; 

size = 64; 

mbx$flags = 0; 

job O· , 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
WORD; 
TOKEN; 
WORD; 
LITERALLY '0'; 
WORD; 
WORD; 

/* designates new segment to contain 64 
bytes */ 

/* designates four objects to be queued 
on the high performance object 
queue; designates a first-in/ 
first-out task queue. */ 

/* indicates objects to be cataloged 
into the object directory of the 
calling task's job */ ... } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling task creates a segment and a mailbox and catalogs the * 
* mailbox TOKEN. The calling task then uses the TOKENs for both * 
* objects to send a message. * 
************************************************************************/ 

seg$token = RQ$CREATE$SEGMENT (size, 
@status) ; 

mbx$token = RQ$CREATE$MAILBOX (mhx$flags, 
@status) ; 

12-161 



UNCATALOG$OBJECT 

/************************************************************************ 
* It is not mandatory for the calling task to catalog the mailbox * 
* token in order to send a message. It is necessary, however, to * 
* catalog the mailbox token if a task in another job is to receive * 
* the message. * 
************************************************************************/ 

CALL RQ$CATALOG$O BJECT (job, 
mbx$token, 
@(3, 'MBX'), 
@status); 

:. } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling task invokes the SEND $MESSAGE system call to send the * 
* token for the segment to the specified mailbox. * 
************************************************************************/ 

CALL RQ$SEND$MESSAGE (mbx$token, 
seg$token, 
no$response, 
@status) ; .-. } Typical PL/M-86 Statements 

/************************************************************************ 
* When the mailbox is no longer needed and there is no need to keep * 
* its token cataloged, it may be deleted by any task that knows its * 
* token. * 
************************************************************************/ 

CALL RQ$UNCATALOG$OBJECT 

CALL RQ$DELETE~ILBOX 

(job, 
@ (3, 'MBX' ), 
@status): 
(mbx$token, 
@status) ; .•. } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

12-162 



CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$NOT$CON
FIGURED 

E$PARAM 

E$TYPE 

UNCATALOG$OBJECT 

No exceptional conditions. 

The specified object directory does not contain an 
entry with the designated name. 

The job parameter is neither zero nor a token for 
an existing object. 

This system call is not part of the present 
c onf igura tion. 

The first byte of the STRING pointed to by the name 
parameter contains a value greater than 12 or equal 
to O. 

The job parameter is a token for an object that is 
not a job. 

12-163 



WAIT$INTERRUPT 

WAIT$INTERRUPT 

WAIT$INTERRUPT is used by an interrupt task to signal its readiness to 
service an interrupt. 

CALL RQ$'WAIT$INTERRUPT (level, except$ptr); 

INPUT PARAMETER 

level 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD specifying an interrupt level which is 
encoded as follows (bit 15 is the high-order bit): 

Bits Value 

15-7 0 

6-4 first digit of the interrupt level (0-7) 

3 if one, the level is a master level and 
bits 6-4 specify the entire level number 

if zero, the level is a slave level and 
bits 2-0 specify the second digit 

2-0 second digit of the interrupt level 
(0-7), if bit 3 is zero 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The WAIT$INTERRUPT system call is used by interrupt tasks immediately 
after initializing and immediately after servicing interrupts. Such a 
call suspends an interrupt task until the interrupt handler for the same 
level resumes it by invoking SIGNAL$INTERRUPT. 

12-164 



" .l"1.1. .I. '1'.1..1 ~ .I. £I~~ '-' C .I. 

While the interrupt task is processing, all lower level interrupts are 
disabled. The associated interrupt level is either disabled or enabled, 
depending on the option originally specified with the SET$INTERRUPT 
system call. If the associated interrupt level is enabled, all 
SIGNAL$INTERRUPT calls that the handler makes (up to the limit specified 
with SET$INTERRUPT) are logged. If this count of SIGNAL$INTERRUPT calls 
is greater than zero when the interrupt task calls WAIT$INTERRUPT, the 
task is not suspended. Instead it continues processing the next 
SIGNAL$INTERRUPT request. 

If the associated interrupt level is disabled while the interrupt task is 
running and the number of outstanding SIGNAL$INTERRUPT requests is less 
than the user-specified limit, the call to WAIT$INTERRUPT enables that 
level. 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the WAIT$INTERRUPT system call can be * 
* used to signal a task's readiness to service an interrupt. * 
************************************************************************/ 

$INCLUDE(: Fl: SAMPLE. EXT); 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$segment 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE interrupt$level$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE interrupt$status 
DECLARE status 

INTERRUPT TASK: PROCEDURE PUBLIC; 

interrupt$task$flag = aIR; 

/* Declares all system calls */ 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack 

size is 512 bytes */ 
WORD; 
LITERALLY '0000 0000 0111 1000B'; 
/* specifies master interrupt level 7 */ 
BYTE; 
POINTER; 
WORD; 
WORD; 

/* indicates that calling task is to 
be interrupt task */ 

data$segment = 0; 
intrpt$handlr$addrs 

/* use own data segment */ 
= INTERRUPT$PTR (@INTERRUPT HANDLER); 

/* points to the first instruction of 
the interrupt handler */ 

12-165 



/************************************************************************ 
* The first system call in this example, SET$INTERRUPT, makes the * 
* calling task (INTERRUPT TASK) the interrupt task for interrupt * 
* level seven. - * 
************************************************************************/ 

CALL RQ$SET$INTERRUPT (interrupt$level$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@interrupt$status); 

.: } Typical PL/M-86 Statements 

/************************************************************************ 
* The calling interrupt task invokes WAIT$INTERRUPT to suspend itself * 
* until the interrupt handler for the same level resumes the task by * 
* invoking the SIGNAL$INTERRUPT system call. * 
************************************************************************/ 

CALL RQ$WAIT$INTERRUPT (interrupt$level$7, 
@interrupt$status); ... } Typical PL/M-86 Statements 

/************************************************************************ 
* When the interrupt task invokes the RESET$INTERRUPT system call, * 
* the assignment of the current interrupt handler to interrupt level * 
* 7 is canceled and, because an interrupt task has also been * 
* assigned to the line, the interrupt task is deleted. * 
************************************************************************/ 

CALL RQ$RESET$INTERRUPT 

END INTERRUPT_TASK; 

SAMPLE PROCEDURE: 
PROCEDURE; 

(interrupt$level$7, 
@interrupt$status); 

start$address = @INTERRUPT_TASK; /* 1st instruction of interrupt 
task */ 

stack$pointer = 0; 
task$flags = 0; 

data$segment = 0; 

/* automatic stack allocation */ 
/* designates no floating-point 

instructions */ 
/* use own data segment */ 

.: } Typical PL/M-86 Statements 

12-166 



W ft.l..1. ".1.1"'l1lI .I. .c..n..n.\J r .I. 

/************************************************************************ * In this example the calling task invokes the system call * 
* CREATE$TASK to create a task labeled INTERRUPT TASK. * 
* ******************************.***************************************** / 

task$token = RQ$CREATE$TASK (priority$level$66, 
start$address, 
data$segment, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status) ; 

.: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$NOT$CON
FIGURED 

E$PARAM 

No exceptional conditions. 

The calling task is not the interrupt task for the 
given level. 

This system call is not part of the present 
configuration. 

The level parameter is invalid. 

12-167 





CHAPTER 13. CONFIGURATION OF THE NUCLEUS 

The Nucleus is a configurable part of the Operating System. It contains 
several options that you can adjust to meet your specific needs. To help 
you make configuration choices, Intel provides three kinds of information: 

• A list of configurable options 

• Detailed information about the options 

• Procedures to allow you to specify your choices 

The balance of this chapter provides the first category of information. 
To obtain the second and third categories of information, refer to the 
iRMX 86 CONFIGURATION GUIDE. 

SYSTEM CALLS 

The Nucleus provides system calls to support a wide variety of 
application software activities. By using the Interactive Configuration 
Utility, you can selectively eliminate system calls that are not needed 
by your application software or by other layers being configured. 

HARDWARE 

When you configure your application system, you can choose from a number 
of hardware features that effect the Nucleus. These features allow you 
to use the 80130 component (refer to the iOSP 86/88 SUPPORT PACKAGE 
REFERENCE MANUAL for a complete description of the 80130 component), the 
8253 Programmable Interrupt Timer, the 8259A Programmable Interrupt 
Controller, and the 8087 Numeric Processor Extension. 

• 80130 component 

• 8253 PIT 

If the 80130 component is a part of your 
system, you can specify its base address 
location, base port address, the interval 
between ports, and choose whether or not you 
wish to use its timer and interrupt features. 

If you are using the 8253 Programmable 
Interval Timer to provide timing for your 
system, you can specify its port base, the 
interval between ports, clock interrupt 
level, clock interval and clock frequency. 

13 .... 1 



CONFIGURATION OF THE NUCLEUS 

• 8259 PIC 

• 8087 NPX 

SYSTEM CHARACTERISTICS 

If you are using the 8259A to provide 
interrupt control for your system, you can 
specify master and slave controller bases, 
the interval between ports, and choose edge
or level-mode interrupts for seven or fewer 
slaves. 

If you have a task that needs floating-point 
instructions, you can specify the addition 
of the 8087 Numeric Processor Extension to 
your system. 

When you configure the Nucleus, you can specify a number of 
characteristics that affect your system. They include: 

• 

• 

• 

• 

Parameter 
Validation 

Minimum Transfer 
Size 

Default Exception 
Handler 

Exception Mode 

A system call validates input parameters by 
checking for the existence of objects and by 
verifying that the objects are of the proper 
type. If your system software does not 
include the Basic I/O System, you may 
exclude parameter validation from your 
system. 

You can choose the minimum amount of memory 
that the Nucleus allows to be transferred 
between jobs. 

You can choose from one of four options for 
your system default exception handler. The 
choices are: 

• Use the system dafault exception handler 
which deletes offending jobs. 

• Use the alternative system exception 
handler that suspends rather than deletes. 

• Use the Debugger as the exception handler. 

• Use an exception handler that you supply. 

You can choose to never pass control to the 
exception handler, pa~s control only on 
programmer errors, pass control only on 
environmental conditions, or pass control on 
all exceptional conditions. 

13-2 



APPENDIX A. iRMXm 86 DATA TYPES 

The following are the data types that are recognized by ·the iRMX 86 
Operating System: 

BYTE - An unsigned, 8-bit, binary number. 

WORD An unsigned, two byte, binary number. 

INTEGER A signed, two byte, binary number that is stored in two's 
complement form. 

POINTER Two words containing the base of a segment and an offset, 
in the reverse order. 

OFFSET - A word whose value represents the distance from the base 
of a segment. 

BASE - A word which identifiers a range of 64K bytes. 

SELECTOR - A 16-bit quantity that is equivalent to the base portion 
of a POINTER. Your PL/M compiler may not support this 
data type. 

TOKEN 

STRING 

- A word or selector whose value identifies an object. A 
token can be declared literally a WORD or a SELECTOR 
depending on your needs. 

- A sequence of consecutive bytes. The first byte contains 
the number (not to exceed 12) of bytes that follow it in 
the string. 

A-1 





APPENDIX B. iRMX- 86 TYPE CODES 

Each iRMX 86 object type is known within iRMX 86 systems by means of 
a numeric code. For each code, there is a mnemonic name that can be 
substituted for the code. Table B-1 lists the types with their codes 
and associated mnemonics. 

Table B-1. Type Codes 

OBJECT TYPE NUMERIC CODE 

Job 1 

Task 2 

Mailbox 3 

Semaphore 4 

Region 5 

Segment 6 

Extension 7 

Composite varies from 8000H to 
OFFFFH depending on 
the value specified in 
CREATE$EXTENSION 

B-1 





APPENDIX C. NUCLEUS MEMORY USAGE 

This appendix lists the amount of memory the Nucleus requires for object 
creation and memory borrowing. The Nucleus obtains this memory from the 
calling job's memory pool when creating the specified object or 
implementing the memory borrowing. The values listed in this appendix 
reflect Release 5 of the iRMX 86 Operating System. These values are 
subject to change in future releases. 

The Nucleus uses the following amounts of memory when it creates objects: 

object 

job 

object directory 

t~k 

mailbox 

semaphore 

region 

segment 

extension 

composite 

number of 16-byte paragraphs 
required by the Nucleus 

3 + object directory 

1 per entry in the directory 

5 
+ 6 (if the task uses the 8087 NDP) 
+ stacksize/16 (if the Nucleus allocates the 

stack) 

2 
+ size of high performance queue/4 

2 

2 

1 + segsize/16 

2 

3 
+ number of positions available for components/8 

When a job borrows memory from its parent, the Nucleus uses three 16-byte 
paragraphs in addition to the amount it uses for object creation. The 
Nucleus obtains this memory from the parent job. 

C-l 

I 

I 

I 





INDEX 

Underscored entries are primary references. 

8-2, 13-1 80130 component 
8087 3-1, 3-4, 

C-1 
7-5, 8-2, 10-6, 12-22, 12-25, 12-38, 12-40, 12-148, 13-1, 

8253 13-1 
8259A 8-2, 13-1 

ACCEPT$CONTROL system call 9-4, 12-7 
additional task attributes 3-4 
ALTER$COMPOSITE system call 11-2, 11-6, 11-17, 12-5, 12-10, 12-11 
application 2-1, 12-97, 12-105, 12-122, 12-135, 12-140, 13-1 
application code 11-10 
application system 1-1, 1-6, 3-2, 8-1, 8-7, 8-18, 9-1, 9-6, 10-1, 13-1 
application task 8-21, 8-23, 10-1, 11-1, 12-7, 12-10, 12-15, 12-17, 

12-30, 12-41, 12-43, 12-49, 12-62, 12-68, 12-79 
asleep state 1-3, 3-1, 4-2, 12-2, 12-119, 12-155, 12-157 
asleep-suspended state 3-2, 4-2, 12-119, 12-157 
assembly language 8-7, 10-6, 10-8, 10-10 
assigning an exception handler 7-2 
avoidable conditions 1-6 
AX register 10-6, 10-12 

BASE A-I 
base 5-1 
buffer 8-11, 8-12, 11-7 
BYTE 7-1, 8-19, 12-1, A-I, C-1 

cascaded interrupt 8-3 
CATALOG$OBJECT system call 3-3, 6-2, 12-12, 12-127, 12-129, 12-146, 

12-162 
child 2-1, 

job 5-1 
clear interrupt-enable flag 8-5 
CLI 8-5 
command dictionary 12-2 
COMPACT model 10-7 
comparison of job and memory hierarchies 5-2 
comparison of techniques for creating common functions 10-2 
component object 11-13, 11-17, 1-2, 11-1, 11-7, 11-10, 11-13, 11-17, 

12-10, 12-11 
composite object 12-5, 12-10, 12-11, 12-15, 12-16, 12-41, 12-79, 12-97, 

12-98 
condition code 7-1, 7-3, 8-14, 8-15, 8-17, 10-6, 10-12 
configuration 3-1, 5-3, 7-2, 7-4, 8-2, 10-14, 11-6, 12-21, 12-59, 12-71, 

12-99, 12-108, 12-112, 12-115, 12-155, 13-1 
containing job 3-4, 5-1, 12-17, 12-18, 12-~12-47, 12-52, 12-54, 

12-56, 12-63, 12-136, 12-144, 12-147 
control flow for OS extensions and application task 10-13 
controlling pool size 5-2 
count limit 8-14, 8-15, 8-17 

Index-1 



INDEX (continued) 

CREATE RING BUFFER procedure 11-8, 11-10, 11-12, 12-16 
CREATE$CO~WOSITE system call 11-1, 11~2, 11-5, 11-13, 11-14, 11-17, 

12-15, 
CREATE$EXTENSION system call 11-1, 11-9, 11-17,12-10, 12-15, 12-17, 

12-41, 12-43, 12-97, B-1 
CREATE$JOB system call 2-4, 5-2, 12-19, 12-23, 12-24 
CREATE$MAILBOX system call 4-2, 4-3, 11-9, 12-13, 12-27, 12-48, 12-126, 

12-161 
CREATE$REGION system call 12-30 
CREATE$SEGMENT system call 5-1, 5-3, 5-4, 11-14, 12-32, 12-53, 12-126, 

12-161 
CREATE$SEMAPHORE system call 4-4, 4-5, 11-14, 12-34, 12-55, 12-129 
CREATE $ TASK system call 3-5, 12-37, 12-57, 12-117, 12-120, 12-145, 

12-158, 12-167 
creating an Operating System extension 10-1 
creating new objects 11-1 
creation sequence for composite objects 11-2 
CTRL/c 9-3, 12-7, 12-10, 12-15, 12-17, 12-30, 12-41, 12-43, 12-49, 

12-62, 12-68, 12-79, 12-97, 12-105, 12-122, 12-135, 12-140 
CX register 10-6, 10-8 

data segment 8-7, 8-8, 8-24, 12-21, 12-37, 12-39, 12-57, 12-60, 12-66, 
12-72, 12-77, 12-78, 12-136, 12-152 

data type 5-1, 12-1, 12-32, A-I 
deadlock 3-1, 9-4, 9-5, 10-15, 11-16 
debugger 7-2, 8-1, 13-2, 12-132 
default exception handler 12-20, 12-81, 13-2 
DELETE RING BUFFER procedure 11-8, 11-10, 11-11, 11-14, 11-15, 12-98 
DELETE$COMPOSITE system call 11-2, 11-10, 11-14, 11-17, 12-18, 12-41 
DELETE$EXTENSION system call 11-2, 11-3, 11-5, 11-10, 11-17, 12-43, 12-79 
DELETE$JOB system call 2-4, 3-3, 11-3, 12-45, 12-46 
DELETE$MAILBOX system call 4-3, 12-47, 12-48, 12-162 
DELETE$REGION system call 12-49 
DELETE$SEGMENT system call 5-3, 5-4, 11-14, 12-52 
DELETE$SEMAPHORE system call 4-5, 11-15, 12-54 
DELETE$TASK system call 3-3, 3-5, 8-8, 12-56 
deleting composite objects and extension types 11-2 
deletion mailbox 11-2, 11-9 
deletion of nested composites 11-5 
descendents 1-4, 2-1, 2-3, 5-1, 12-45, 12-102 
DISABLE system call 8-4, 8-5, 8-7, 8-17, 8-23, 10-14, 12-59 
DISABLE$DELETION system call 10-14, 10-15, 12-62, 12-68, 12-69, 12-79 
disabling interrupts 8-1 
DL register 10-6, 10-8 
DS register 8-7, 8-8, 12-72, 12-136 

ENABLE system call 7-3, 8-4, 8-5, 8-17, 8-23, 10-14, 11-17, 12-62, 
12-65, 12-79, 12-154 

ENABLE$DELETION system call 10-14, 12-62, 12-68, 12-79 
enabling interrupt levels from within a task 8-17 
END$INIT$TASK system call 12-71 
end-of-interrupt signal 8-8, 8-9, 8-23, 12-4, 12-76, 12-77 
ENTER$INTERRUPT system call 8-24, 12-72, 12-136, 12-137, 12-152 
entry procedures 10-3, 10-7, 10-14, 11-10, 11-12, 12-62, 
examining the in-service register 8-19 

Index-2 



INDEX (continued) 

example -- a ring buffer manager 11-7, 
initialization Part 11-9 
interface library 11-10 
entry procedure 11-12 
CREATE_RING_BUFFER procedure 11-12 
DELETE RING BUFFER procedure 11-14 
PUT BYTE procedure 11-15 
GET BYTE procedure 11-16 

examples of interrupt servicing 8-19 
exception code mnemonics, 

E$ARRAY$BOUNDS 7-5 
E$BAD$CALL 7-5 
E$CONTEXT 7-4, 8-17, 10-15, 12-11, 12-14, 12-18, 12-25, 12-42, 

12-46, 12-49, 12-51, 12-56, 12-58, 12-61, 12-67, 12-70, 12-75, 
12-78, 12-98, 12-101, 12-107, 12-118, 12-121, 12-124, 12-139, 
12-140, 12-141, 12-146, 12-149, 12-150, 12-154, 12-159, 12-163, 
12-167 

E$EXIST 7-4, 12-9, 12-11, 12-14, 12-16, 12-18, 12-25, 12-42, 12-44, 
12-46, 12-47, 12-48, 12-49, 12-51, 12-53, 12-54, 12-55, 12-58, 
12-64, 12-70, 12-80, 12-88, 12-91, 12-96, 12-98, 12-101, 12-103, 
12-107, 12-111, 12-114, 12-121, 12-127, 12-130, 12-146, 12-159, 
12-163 

E$INTERRUPT$OVERFLOW 8-17 
E$INTERRUPT$SATURATION 8-14, 8-15 
E$LIMIT 4-4, 4-5, 7-4, 12-14, 12-16, 12-18, 12-20, 12-25, 12-29, 

12-31, 12-33, 12-36, 12-40, 12-63, 12-64, 12-101, 12-103, 12-114, 
12-128, 12-130, 12-143, 12-147, 12-154, 12-159 

E$MEM 7-4, 12-16, 12-18, 12-25, 12-29, 12-31, 12-33, 12-36, 12-40, 
12-42, 12-44, 12-46, 12-80, 12-103, 12-127 

E$NDP$ERROR 7-5 
E$NOT$CONFIGURED 12-9, 12-11, 12-14, 12-16, 12-18, 12-29, 12-31, 

12-33, 12-36, 12-40, 12-42, 12-44, 12-46, 12-48, 12-51, 12-53, 
12-55, 12-58, 12-61, 12-64, 12-67, 12-70, 12-75, 12-78, 12-80, 
12-82, 12-84, 12-86, 12-88, 12-91, 12-96, 12-98, 12-101, 12-104, 
12-107, 12-111, 12-114, 12-118, 12-124, 12-127, 12-130, 12-134, 
12-139, 12-141, 12-143, 12-147, 12-150, 12-154, 12-156, 12-163, 
12-167 

E$OK 7-4, 10-6, 12-9, 12-11, 12-14, 12-16, 12-18, 12-25, 12-29, 
12-31, 12-33, 12-36, 12-40, 12-42, 12-44, 12-46, 12-48, 12-51, 
12-53, 12-55, 12-58, 12~61, 12-64, 12-67, 12-70, 12-74, 12-75, 
12-77, 12-78, 12-80, 12-82, 12-84, 12-86, 12-88, 12-91, 12-93, 
12-96, 12-98, 12-101, 12-103, 12-107, 12-111, 12-114, 12-118, 
12-121, 12-124, 12-127, 12-130, 12-134, 12-139, 12-141,12-143, 
12-146, 12-150, 12-153, 12-154, 12-156, 12-159, 12-163, 12-167 

E$OVERFLOW 7-5 
E$PARAM 7-5, 12-11, 12-14, 12-16, 12-18, 12-19, 12-21, 12-25, 12-34, 

12-36, 12-37, 12-40, 12-61, 12-67, 12-75, 12-78, 12-93, 12-101, 
12-118, 12-134, 12-139, 12-141, 12-154, 12-156, 12-163, 12-167 

E$STATE 7-4, 12-121 
E$TIME 4-2, 4-4, 6-1, 7-4, 12-101, 12-109, 12-111, 12-113, 12-114 
E$TYPE 7-5, 12-9, 12-11, 12-14, 12-16, 12-18, 12-42, 12-44, 12-46, 

12-48, 12-51, 12-53, 12-55, 12-58, 12-80, 12-88, 12-91, 12-98, 
12-101, 12-104, 12-107, 12-111, 12-114, 12-121, 12-127, 12-130, 
12-147, 12-159, 12-163 

Index-3 



INDEX (continued) 

exception, 
handler 1-6, 3-4, 7-1, 10-6, 10-7, 10-10, 12-1, 12-4, 12-20, 

12-26, 12-38, 12-59, 12-72, 12-76, 12-81, 12-82, 12-131, 12-149, 
13-2 

mode 3-4, 7-2, 10-7, 12-4, 12-20, 12-38, 12-81, 12-82, 12-131, 
12-149, 13-2 

condition 1-6, 6-2, 7-1, 8-10, 10-6, 10-8, 10-10, 10-15, 
11-4 12-47 12-4--9--12-54 12-56 12-63, 12-109, 12-113, 12-128, , , , , , 
12-140, 12-148 

Exchange 4-1, 8-12, 12-108 
Execution state 1-3, 3-1, 3-4, 12-38 
EXIT$INTERRUPT system call 8-11, 8-18, 8-20, 8-23, 12-4, 12-74, 12-76 
extension, 

handling exceptions in-line 10-12 
object 1-2, 1-6, 2-3, 11-17, 12-5, 12-15, 12-17, 12-41, 12-43, 

12-44, 12-97 
type 11-2, 11-5, 11-9 

FIFO 4-1, 9-4, 9-6, 11-9, 12-30 
first-level user job 11-6, 12-71 
floating-point 13-2, 12-22, 12-24, 12-38, 12-39, 12-57, 12-117, 12-120, 

12-145, 12-158, 12-166 
flow chart of interrupt handling 8-11 
FORCE$DELETE system call 10-15, 12-62, 12-68, 12-79 
function procedures 10-10 
functionality, adding 10-1 

GET BYTE procedure 11-8, 11-11, 11-16, 12-11 
GET$EXCEPTION$HANDLER system call 7-5, 10-7, 10-11, 12-81, 12-133 
GET$LEVEL system call 8-7, 8-18, 8-24, 12-83 
GET$POOL$ATTRIB system call 5-2, 5-4, 12-85 
GET$PRIORITY system call 3-5, 12-87 
GET$SIZE system call 5-4, 12-89 
GET$TASK$TOKENS 2-3, 3-5, 6-2, 12-63, 12-69, 12-92 
GET$TYPE system call 6-1, 6-2, 12-94, 12-109 

handlers 1-6 
handling exceptions in-line 7-3 
handling exceptions with an exception handler 10-11 
handling spurious interrupts 8-18 
hardware 13-1 
high performance object queue 4-2, 12-27 
Human Interface 1-1, 9-3, 11-5~2-7, 12-10, 12-15, 12-17, 12-30, 12-41, 

12-43, 12-49, 12-62, 12-68, 12-76, 12-79, 12-97, 12-105, 12-122, 
- 12-135, 12-140 

I/O system interface library 10-10 
in-service register 8-19 
INCLUDE statement 12-1 
initial, 

job tree 1-4 
task 12-21 

initialization 8-9, 10-14, 11-6, 11-9, 12-4, 12-18, 12-42, 12-71 
initializing the Interrupt Vector 10-14 
inquiring About Object Types 6-1 

Index-4 



INDEX (continued) 

INSPECT$COMPOSITE system call 11-2 t 11-13 t 12-5 t 12-97 
INTEGER A-I 
interface library 10-11t 10-14 
interface procedure 10-3 t 10-6 
interrupt 1-7 t 3-1 t 7-4 t 7-5 t 9-1 t 9-5 t 11-9 t 

controller 8-9 t 13-1 
handler 1-7 t 8-1 t 12-4 t 12-59 t 12-60 t 12-65 t 12-72 t 12-76 t 12-83 t 

12-115 t 12-135 t 12-151 t 12-164 
level 3-1 t 8-1 t 12-4 t 12-59 t 12-65 t 12-72 t 12-76, 12-83, 12-84, 

12-115, 12-135, 12-151, 12-164, 13-1 
manager 8-1 
mechanisms 8-1 
procedure 8-1 
servicing 8-8, 8-10 t 8-12 

interrupt continued, -
task 1-7, 3-4, 7-4, 8-1, 12-2, 12-4, 12-56, 12-58, 12-60, 12-66, 

12-67, 12-72, 12-77, 12-78, 12-115, 12-135, 12-145, 12-151, 
12-157, 12-164 

vector 10-1, 10-3, 10-6, 10-7, 10-14 
vector table 8-1, 8-2, 8-4, 8-7, 8-19, 11-9, 12-140 

intertask communication 1-5, 4-1 
invoking an Exception Handler 7-2 
iOSP 13-1 
iRMX 86 DATA TYPES A-I 
iRMX 86 TYPE CODES B-1 
ISR 8-19 

job 1-1, 1-3, 2-1, 4-2, 5-1, 6-1, 7-2, 8-10, 10-1, 10-14, 11-3, 11-17, 
12-2, 12-19, 12-45, 12-63, 12-85, 12-94, 12-99, 12-102, 12-142, 

12-160, B-1, C-l, 
creation 2-3 
deletion 2-3 
management 2-1 
tree 1-3, 1-4, 2-1, 11-6 

judicious selection of interrupt levels 8-19 

LARGE 4-3, 7-2, 10-7, 11-10 
level 11-6, 13-1 
level 7 interrupt 8-18, 8-19 
library 7-5, 10-1, 10-7, 11-10, 11-12 
linking 10-7, 10-11, 10-12, 10-14 
LOOKUP$OBJECT system call 3-3, 6-1, 6-2, 12-12, 12-90, 12-95, 12-99, 

12-110, 12-113 

mailbox 1-1, 1-5, 4-1, 8-17, 10-1, 11-17, 12-2, 12-13, 12-14, 12-17; 
12-18, 12-27, 12-43, 12-47, 12-48, 12-94, 12-108, B-1, C-1, 
mechanics 4-1 
queue 4-1 

manipulating composite objects and extension types 11-2 
master level 8-2, 8-4, 8-18, 8-19, 12-59, 12-65, 12-72, 12-76, 12-83, 

12-115, 12-135, 12-151, 12-164 
MEDIUM 9-2, 10-7 

Index-5 



INDEX (continued) 

memory 1-4, 1-5, 2-3, 3-5, 4-2, 4-3, 5-1, 5-3, 7-4, 8-1, 9-3, 11-7, 
12-16, 12-19, 12-25, 12-29, 12-36, 12~40, 12-46, 12-103, 12-127, 

12-135, 12-140, 12-142, 13-2, C-1, 
allocation 5-3 
management 5-1 
movement diagram 5-4 
pool 1-4, 2-1, 2-3, 5-1, 9-3, 12-3, 12-18, 12-31, 12-32, 12-42, 

12-44, 12-52, 12-80, 12-85, 12-86, C-1 
models 11-10 
movement of memory between jobs 5-3 
multiple buffers 8-12 
mutual exclusion 1-5, 4-3, 

using regions 9-3, 
using semaphores 9-2 

NOINTVECTOR control 8-11 
non-interrupt task 8-17, 12-67, 12-119, 12-120, 12-157 
NPX 3-1, 3-4, 8-3, 12-148, 13-2 
nucleus 1-1, 2-1, 3-1, 3-2, 3-4, 4-1, 5-1, 5-3, 6-1, 7-2, 7-3, 8-4, 8-5, 

8-8, 8-10, 8-11, 9-1, 10-7, 10-10, 11-1, 11-3, 12-1, 12-21, 12-22, 
12-24, 12-32, 12-37, 12-38, 12-42, 12-44, 12-46, 12-80, 12-94, 
12-98, 12-127, 12-128, 12-136, 12-137, 13-1, C-1 

interface library 10-6, 10-14 
system calls 12-1 

numeric processor extension 3-1, 7-5, 8-2, 13-1 

object 1-1, 1-2, 2-1, 2-3, 3-5, 4-1, 4-2, 5-1, 6-1, 7-4, 7-5, 9-3, 10-1, 
10-14, 12-1,62, 12-68, 12-79, 12-94, 12-160, A-I, B-1, C-1 
directory 1-4, 2-1, 2-3, 6-1, 12-3, 12-12, 12-19, 12-24, 12-25, 

12-99, 12-126, 12-129, 12-160, 12-161, 12-163, C-1 
limit 12-16, 12-18, 12-23, 12-25, 12-28, 12-29, 12-31, 12-36, 12-38, 

12-40, 12-103 
management 6-1 
name 6-1 
queue 4-1, 12-27, 12-109, 12-125 
total 12-45, 12-47, 12-52, 12-54, 12-56 
type 1-1, 1-6, 10-6, 11-1, 11-2, 12-5, 12-11, 12-17, 12-18, 12-42, 

12-98, B-1 
OFFSET A-I 
OFFSPRING system call 2-3, 2-4, 12-45, 12-102 
operating system 1-5, 1-6, 3-2, 7-2, 8-2, 8-4, 8-5, 8-12, 8-14, 8-18, 

9-3, 9-4, 10-1, 11-1, 11-13, 12-1, 12-5, 12-92, 13-1, A-I, C-1 
extension 1-6, 10-1, 11-1, 11-6, 11-7, 11-9, 11-10, 11-12, 12-140, 

12-148 
OS extension 10-1, 11-10, 11-12, 12-5, 12-140, 12-141, 12-148, 

without entry procedures 10-4 
with procedure entry 10-5 

paragraph 5-1, 5-2 
parameter, 

object 2-3, 3-5, 12-2, 12-19, 12-24, 12-92 
validation 13-2 

parent 1-3, 12-20, 12-23, 12-24, 12-32, 12-45, 12-85, 12-131, C-1 
job 2-1, 5-1, 5-3, 12-20, 12-23, 12-32, 12-45, 12-85, 12-131, C-1 

Index-6 



INDEX (continued) 

PIC 8-1, 8-18, 8-19, 12-139, 13-2 
PIT 13-1 
PL/M-86 Model 10~7 
PL/M-86 procedures 3-1 
PL/M-86 register context 3-4 
POINTER 5-1, 7-3, A-I 
pointer 8-19, 11-7, 11-10, 11-12 
pool size 5-2, 12-86, 12-142 
priority 1-3, 2-1, 3-1, 3-2, 4-2, 4-5, 8~1, 8-18, 8-19, 8-24, 9-1, 9-4, 

11-13, 11-14, 12-2, 12-4, 12-5, 12-19, 12-30, 12-37, 12-83, 12-87, 
12-88, 12-106, 12-116, 12-117, 12-120, 12-122, 12-123, 12-136, 
12-139~ 12-144, 12-155, 12-158, 12-165, 12-167 
bottleneck 9-2 

priority-based 4-2, 4-3, 8-4, 9-3, 12-27, 12-34, 12-105 
procedure 1-6, 1-7, 7-1, 8-1, 10-1, 10-5, 10-10, 11-10, 12-5, 12-136, 

12-140, 12-148 
used in Operating System extensions 10-2 

processor 1-2, 1-7, 3-1, 3-2, 7-5, 8-2, 9-1, 9-4, 13-1 
program interrupt timer (PIT) 13-1 
programmer error 7-1 
protecting Resources from being Deleted 10-14 
PUT_BYTE procedure 11-8. 11-11. 11-14, 11-15 

queue 8-4, 9-3. 12-8, 12-13, 12-27, 12-28, 12-31, 12-34, 12-35, 12-47, 
12-48, 12-50, 12-54. 12-55, 12-105, 12-106, 12-109, 12-111, 12-113, 
12-114, 12-123, 12-125, 12-128, 12-161, C-1 

queueing scheme 4-3, 12-27, 12-34 

ready state 1-3, 3-2, 4-2, 12-119 
RECEIVE$CONTROL system call 3-3, 9-4, 9-5, 9-7, 11-15, 11-16, 12-105, 

12-123 
RECEIVE$MESSAGE system call 3-3, 4-2, 4-3, 11-10, 12-90, 12-95, 12-108 
RECEIVE$UNITS system call 3-3, 4-3, 4-4, 4-5, 11-15, 11-16, 12-112 
reentrant 10-6, 10-7, 10-10, 11-13 
region 1-2, 1-5, 9-1, 11-9, 11-15, 11-16, 12-6, 12-30, 12-31, 12-46, 

12-49, 12-94, 12-96, 12-105, 12-122, B-1, C-1, 
and deadlock 9-5 
and system knowledge 9-6 

relationship between external levels and internal task priorities 8-10 
RESET$INTERRUPT system call 3-3, 8-4, 8-8, 8-20, 8-21, 8-23, 12-56, 

12-115, 12-166 
resource allocation 4-3 
RESUME$TASK system call 3-3, 3-5, 12-119 
ring buffer 11-8, 

manager 11-7, 11-10 
risks involved in sharing data 9-1 
root job 1-3, 2-1, 3-5, 6-2, 12-2, 12-92 
RQ$ERROR 10-6, 10-10 
RQ$ERROR Procedures 10-10 
running state 3-1, 3-2, 12-157 

Index-7 



INDEX (continued) 

segment 1-1, 1-4, 2-3, 4-1, 5-1, 5-3, 8-7, 8-8, 8-24, 10-1, 11-9, 11-13, 
12-3, 12-21, 12-22, 12-32, 12-37, 12-52, 12-81, 12-85, 12-94, 12-96, 
12-102, 12-103, 12-110, 12-131, 12-136, A-I, B-1, C-1 

selecting interrupt levels 8-18 
SELECTOR 5-1, 11-8, 12-1, A-I 
semaphore 1-2, 1-5, 4-4, 9-2, 11-13, 12-3, 12-34, 12-54, 12-55, 12-94, 

12-112, 12-125, B-1, C-1 
mechanics 4-4 
queue 4-3 

SEND$CONTROL system call 3-3, 9-7, 11-15, 11-16, 12-8, 12-122 
SEND$MESSAGE 3-3, 4-1, 10-10, 12-125, 12-162 
SEND$UNITS 3-3, 4-3, 4-5, 11-15, 11-16, 12-128, 12-130 
Servicing Interrupts with an Interrupt Handler, an Interrupt Task, and 

Multiple Buffering 8-22 
SET$EXCEPTION$HANDLER system call 7-2, 7-3, 7-5, 10-7, 10-11, 12-131, 

12-134 
SET$INTERRUPT system call 8-4, 8-7, 8-12, 8-14, 8-15, 8-20, 12-60, 

12-61, 12-66, 12-67, 12-72, 12-74, 12-75, 12-78, 12-116, 12-135, 
12-153, 12-165, 12-166 

SET$OS$EXTENSION system call 10-14, 10-15, 11-10, 12-140 
SET$POOL$MIN system call 5-2, 5-4, 12-142 
SET$PRIORITY system call 12-144 
setting up an interrupt handler 8-7 
SIGNAL$EXCEPTION system call 10-6, 10-7, 10-10, 10-12, 10-13, 10-15, 

11-12, 12-148 
SIGNAL$INTERRUPT system call 3-3, 7-4, 8-7, 8-9, 8-12, 8-21, 12-135, 

12-151, 12-164 
single buffer 8-12, 8-19 
slave 8-2, 12-59, 12-65, 12-72, 12-76, 12-83, 12-115, 12-135, 12-151, 

12-164, 13-2 
levels 8-1, 8-5, 8-18 

SLEEP 3-1, 3-3, 3-5, 4-2, 4-4, 6-1, 9-2, 10-15, 12-2, 12-4, 12-80, 
12-105, 12-109, 12-113, 12-155 
specifying the count limit 8-14 
spurious interrupts 8-18 
stack 3-5, 10-6, 10-8, 11-10, 11-16, C-1 
stack size 12-19, 12-22, 12-26, 12-37, 12-57, 12-116, 12-117, 12-120, 

12-145, 12-158, 12-165, 12-167 
STRING 6-1, 12-12, 12-14, 12-99, 12-160, 12-163, A-I 
summary of duties of procedures in OS extensions 10-9 
SUSPEND$TASK system call 3-3, 3-5, 12-2, 12-120, 12-157, 12-159 
suspended state 3-2, 4-2, 12-119, 12-157 
suspension depth 3-2, 12-2, 12-38, 12-119, 12-157 
synchronization 4-3 
system call 1-2, 2-4, 3-5, 4-3, 4-5, 5-4, 6-2, 7-4, 7-5, 8-5, 9-6, 10-1, 

10-3, 10-6, 10-7, 10-10, 10-14, 10-15, 11-1, 11-17, 12-1, 13-1 
any objects 6-2 
exception handlers 7-5 
interrupts 8-23 
jobs 2-4 
mailboxes 4-3 
regions 9-6 
segments 5-4 
semaphores 4-5 
tasks 3-5 

Index-8 



INDEX (continued) 

system call (continued) 
type managers 11-17 
used in extending the Operating System 10-15 

system characteristics 13-2 
system clock 8-2, 8-4, 12-59, 12-65, 12-115 
system exception handler 1-6, 7-2, 13-2 

task 1-1, 1-2, 2-1, 2-3, 3-1, 4-1, 5-1, 6-1, 7-1, 9-1, 11-3, 11-17, 
12-2, 12-19, 12-37, 12-56, 12-71, 12-87, 12-94, 12-122, 12-144, 13-2, 

B-1, C-1 
management 3-1 
queue 4-2, 4-3, 9-3, 12-13, 12-27, 12-28, 12-34, 12-35, 12-48, 

12-55, 12-105, 12-109, 12-111, 12-113, 12-114, 12-125, 12-126, 
12-128, 12-129, 12-161 

resources 3-5 
states 3-1 

TOKEN 12-1, A-I 
token 1-2, 1-3, 1-5, 2-3, 2-4, 3-5, 4-1, 5-1, 6-1, 7-4, 7-5, 9-6, 11-1, 

12-1, A-I 
type 1-6, 2-3, 6-1, 7-5, 12-1, 13-2, A-I, B-1, 

code 6-1, 11-1, 11-2, 12-3, 12-17, 12-18, 12-43, 12-94, B-1 
type manager 1-6, 11-1, 11-17, 12-18, 12-43, 

manager involvement in DELETE$JOB 11-4 
manager responsibilities during DELETE$JOB 11-3 
manager responsibilities during DELETE$EXTENSION 11-5 

types of exceptional conditions 7-1 

unavoidable conditions 1-6 
UNCATALOG$OBJECT system call 6-2, 12-160 
unit 1-5, 4-4, 11-16, 12-35, 12-55, 12-113, 12-129 
usefulness of semaphores 9-4 
using, 

an interrupt handler 8-8 
an interrupt task 8-9 
multiple buffers to service interrupts 8-12 
object directories 6-1 

vector table 8-1, 8-2, 8-4, 8-7, 8-19, 11-9, 12-5, 12-135, 12-140, 12-141 

WAIT$INTERRUPT system call 3-3, 8-7, 8-9, 8-13, 8-21, 12-117, 12-154, 
12-164 

WORD 7-1, 7-3, 11-8, 12-1, A-I 
writing a type manager 11-6 

Index-9 





iRMXTM 86 NUCLEUS REFERENCE 
MANUAL 

9803122·04 

REQUEST FOR READER'S COMMENTS 

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel 
product users. This form lets you participate directly in the publication process. Your comments will help 
us correct and improve our publications. Please take a few minutes to respond. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this publication. If you have any comments on the product that this publication describes, please contact 
your Intel representative. If you wish to order ,publications, contact the Intel Literature Department (see 
page ii of this manual). 

1. Please describe any errors you found in this publication (include page number). 

2. Does the pul;>lication cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of publication for your needs? Is it at the right level? What other types of 
publications are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _ 

NAME ____________ ~~--------------- DATE _________ _ 

TITLE ______________________________________ _ 

COMPANYNAME/DEPARTMENT ____________________________ __ 

ADDRESS ____________________________________ __ 

CIT" _____________ _ STATE _______ _ ZIPCODE ________ _ 
(COU~TRY) 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing I ntel products. Your comments on the back of this form-
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of I ntel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

OMO Technical Publications 

'''''' 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





INTEL CORP9RATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


