
intel®

iRMX 86 OPERATING SYSTEM
PART II (1/0)

WORKSHOP NOTEBOOK

VERS'ION 5.0 DECEMBER 1982

~---
. -

-
Copyrlght© 1982 Intel Corpor~tion, ,
Intet Corporation, 3065 Bowers Ayen~, Sant~ Clara, Cailfornla 95051

IAMX 86 OPERATING SYSTEM PART I 1(1/0) WORKSHOP NOTEBOOK

By LUIS ZIEGENHIRT

With con~rlbutions by Stan Mazor and layout and artwork by Mary Lou Faraco.

@ 1982 INTEL CORPORATION

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BX?, CREDIT, it ICE, 12 ICE. iCS, i m, iMMXt '"site, INTEL,
intel, Intelevision, Inteflec, inteligent IdentifierT

.. , inte'igent
ProgrammingTl

., Intellink, iOS?, iPDS, iRMS. iSBC.
iSBX, iSXM, Library Manager, MeS. Megachassis,
Micromainframe, MULTIBUS, MultichannelT

" Plug-A-Bubble,
MULTIMODULE. PROMPT,Promware, RMX/80, RUPI, System
2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC.
MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MOS· is a registered trademark of
Mohawk Data SCiences Corporation.

• MULTIBUS is a patented Intel bus.

(

iRMX 86 OPERATING SYSTEM
. PART I I (1/0)

WORKSHOP NOTEBOOK

VERSION 5.0

DECEMBER 1982

TABLE OF CONTENTS

CHAPTER
1. IRMX 86 BASIC I/O SYSTEM (APPLICATION PROGRAMMER'S VIEW)

2.

3.

4.

5.

FILES. I • • • • 9. . I • • • •

FILE CLASSES . . •
I/O OPERATIONS
HIERARCHICAL FILE STRUCTURE.
FILE CONNECTIONS

IRMX 86 BASIC I/O SYSTEM (SYSTEM PROGRAMMER'S VIEW)
DEVICE CONNECTIONS .
USER OBJECTS
FILE ACCESS LISTS

· .1-1
· .1-6

.1-7
· .. 1-10

.1-18

· .2-1
.2-10

· .2-12
SUMMARY 2-15
LAB ONE: USING THE BIOS .. .

EXTENDED I/O SYSTEM (APPLICATION PROGRAMMER'S VIEW)
WHY USE THE EIOS? ..
ACCESSING NAMES FILES ..
EIOS BUFFERING . .

.2-16

.3-1
· .. 3-4

· .3-9
FILE CREATION 3-14

IRMX 86 EXTENDED I/O SYSTEM (SYSTEM PROGRAMMER'S VIEW)
LOGICAL NAMES . . .
DEVICE CONNEGTIONS.
I/O JOBS
DEFAULT TOKENS .. .
LAB TWO: USING THE EIOS .

.4-1

.4-3
· .4-5
· .4-10

. .. 4-13

· .5-1

WRITING DEVICE DRIVERS
INDEPENDENT I/O ...
DRIVER COMPONENTS .
THE DUIB.
THE I/O REQUEST .
DRIVER FUNCTIONS ..

. ... 5-3
· .5-5

.5-8

.5-11

6. CUSTOM DEVICE DRIVERS
THE INTERRUPT TASK AND HANDLER.
THE QUEUE$IO PROCEDURE.
THE INIT$IO PROCEDURE

7. RANDOM AND COMMON DEVICE DRIVERS
COMPONENTS.
THE INTERRUPT PROCEDURE
THE START PROCEDURE
DEVICE INFORMATION TABLE ...
LAB THREE: WRITING A COMMON DEVICE DRIVER .

· .6-3
. •• 6-7

· .6-9

· .7-1
· .7-5

.7-8
. ... 7-18

· .7-21

8. BASIC 10 CONFIGURATION
TABLES•.
ICU86 ..•..............
LAB FOUR: BASIC 1/0 SYSTEM GENERATION ..

9. EXTENDED 10 CONFIGURATION
TABLES. I •••••••••••••••

ICU86 I •

LAB FIVE: BASIC 1/0 SYSTEM GENERATION .

10. THE IRMX 86 APPLICATION LOADER
LOADER FUNCTIONS
TYPES OF LOADABLE CODE ..
SYSTEMS WITHOUT THE EIOS.
LOADER RESULT SEGMENT .
SYSTEMS WITH THE EIOS . .

11. APPLICATION'LOADER CONGIGURATION
TABLES

'.

LAB SIX: APPLICATION LOADER . .

12. IMMX 800
BASIC CONCEPTS ..
CHANNELS
IMMX SYSTEM CALLS .
THE IMMX JOB.
LAB SEVEN: INTERDEVICE COMMUNICATION ...

13. THE HUMAN INTERFACE
COMMANDS
SYSTEM CALLS . . .
THE RESIDENT USER. .
DEFINITION FI LES•.

• I' •

LAB EIGHT: HUMAN INTERFACE CONFIGURATION

14. UNIVERSAL DEVELOPMENT INTERFACE
SPECIFICATIONS
LIBRARIES.
DEVELOPMENT PROCESS.
SYSTEM- CALLS

APPENDICES
A ALTER TEXT EDITOR
B PLIM 86
C BOOTSTRAP LOADER

.. ", .

.8-1

.S-10
. .. S-11

.9-1
. .. 9-S

.9-9

. .10-1
. ... 10-3

. .10-7
.10-9
.10-15

.11-1

.11-7

.12-2

.12-4

.12-12

.12-17

.12-29

13-1
· 13-3
· 13-5

.. 13-6
· 13-10

. . 14-1
· 14-3

. ... 14-4
· 14-7

MANUAL vs. AUTOMATIC TRANSMISSIONS

T. N.T.

WHY BUY MANUAL?

• ECONOMICAL
(MINIMUM I CAN BUY THE CAR WITH)
(I. CAN SAVE ON GAS., IF I DON'T ABUSE IT>
(I DON'T NEED A BATTERY TO START THE CAR)

• PERFORMANCE
(I'AM A RACE CAR DRIVER)
(TERRAIN CALLS FOR IT., MOUNTAINOUS., HILLS ETC.)

I
•

• DISADVANTAGE

• LAZY

(NEED A SKILLED DRIVER)
(HAVE TO DO MORE WORK)
(CAN'T HOLD ON TO "PERSON" FRIEND WHILE DRIVING)

WHY BUY AUTOMATIC?

(LESS WORK., NO PUSHING·CLUTCH., NO CHANGING GEARS)

• SKILL
(DON'T NEED TO WORRY ABOUT ROLLING DJWN HILLS)

• DISADVANTAGE
(COSTS MORE)

ii

A CLOSER LOOK

MANUAL

THE MANUAL OR "BASIC"
TRANSMISSION

iii

AUTOMATIC

THE MANUAL TRANSMISSION
IS "EXTENDED" BY ADDING
SOME "STUFF" TO IT

SPEAKING OF BASIC AND EXTENDED

iRMX 8S LAYERS

iv

CHAPTER 1
RMX 86 BASIC 110 SYSTEMS

-An Applications Programmer's Vievi

• FILES

• FI LE CLASSES
MANUAL

• I/O OPERATIONS

• HIERARCHICAL FILE STRUCTURES

• FILE CONNECTION

PROGRAMMING ROLES

THERE ARE TWO PROGRAMMING ROLES ASSOCIATED WITH
THE IRMX 86 OPERATING SYSTEM.

- THE APPLICATION PROGRAMMER USES SYSTEM CALLS
AND OBJECTS THAT AFFECT ONLY HIS OWN JOB

- THE SYSTEM PROGRAMMER CONTROLS SYSTEM
RESOURCES AND CHARACTERISTICS

1-1

110 COMMUNICATION

• THROUGH RMX 86 I/O SYSTEMS~ TASKS COMMUNICATE WITH EACH OTHER
AND THE EXTERNAL WORLD.

WINNIE FLOPPY

8 £1
! !

/ /

lOS > TASK B

./

1-2

COMMUNI CATION

• TASKS MAKE "SYSTEM CALLS" TO THE BIOS TO COMMUNICATE
WITH THE FILE

CALL READ I/O
SYSTEM

1-3

RMX 1/0 IS DONE TOIFROM FILES

o 1 2 345 6

- A FILE IS AN UNBOUNDED SEQUENCE OF COMPONENTS

- FILES ARE USED FOR
- LONG TERM STORAGE
- TEMPORARY DATA STORAGE EXPANSION

1-4

I£.

THE FILE

• FILES HAVE A FILE POINTER

FILE
,/

I I I I I I I I I I I I ~ ~~I----,-I--,--Ia.-I ~I 1
'-BEGINNING I END.J

FILE POINTER

1-5

CLASSES OF FI LES

• PHYSICAL FILE - CONTINUOUS SEQUENCE OF BYTES ON A DEVICE WHERE NO
FILE STRUCTURE IS IMPOSED (E.G.~ PRINTER~ TERMINAL)

• STREAM FILE - MEMORY BASED BYTE STREAMS. DESTRUCTIVE-READ
SERVES COMMUNICATION BETWEEN TASKS

• NAMED FILE - DATA FILES RESIDING ON RANDOM ACCESS STORAGE DEVICES.
ACCESSED VIA ASCII NAMES (E,G,~ FLOPPY DISK~ HARD
DISK) .

1-6

ACCESSING NAMED FILES

1-7

OPEN

AFTER A FILE CONNECTION HAS BEEN ESTABLISHED, THE RQAOPEN
SYSTEM CALL OPENS A FILE FOR I/O OPERATIONS

• OPEN FILE COMMANDS
READ
WRITE
SEEK

• THE RQAOPEN SPECIFIES
- A FILE MAY BE

READ ONLY
WRITE ONLY
READ OR WRITE

- TYPE OF SHARING DESIRED
READERS
WRITERS
ALL

1-8

OPENING A FILE

CALL RQAOPEN (FILE$CONNECTION$TOKEN~ MODE~ SHARE~ RESP$MBOX~@STATUS;

MODE: MODE OF ACCESS DESIRED

VALUE MODE
1 OPEN FOR READING
2 OPEN FOR WRITING
3 OPEN FOR READING AND WRITING

SHARE: KIND OF SHARING DESIRED

a PRIVATE USE ONLY
1 SHARE WITH READERS ONLY
2 SHARE WITH WRITERS ONLY
3 SHARE WITH ALL USERS

1-9

THE RQAREAD SYSTEM CALL

• READ 'COUNT' BYTES FROM AN OPEN FILE INTO THE BUFFER

• BYTES ARE READ STARTING AT FILE POINTER

CALL RQAREAD (FILE$CONNECTION$TOKEN, @BUFFER~ COUNT~ RSP$MBOX~ @STATUS);

1-10

THE RQAWRITE SYSTEM CALL

• WRITE ANY NUMBER OF BYTES FROM A USER BUFFER
INTO AN OPEN FILE

• THE DATA IS WRITTEN BEGINNING AT THE CURRENT SETTING
OF THE FILE POINTER

CALL RQAWRITE (FILE$CONNECTION$TOKEN~ @BUFFER~ COUNT~ RESP$MBOX~ @STATUS);

1-11

THE RQASEEK SYSTEM CALL

• MOVES THE FILE POINTER TO ANY BYTE POSITION IN THE OPEN FILE

• HIPTRMOVE~ LOWPTRMOVE = WORD PAIR CONTAINING A 32-BIT
UNSIGNED NUMBER

CALL RQ$SEEK (FILE$CONNECTION$TOKEN~MODE~PTR$MOVE~RESP$MBOX~@STATUS);

MODE ACTION BY POINTER

1 BACKWARD BY PTR$MOVE (RELATIVE
2 EQUAL TO PTR$MOVE (ABSOLUTE)
3 FORWARD BY PTR$MOVE (RELATIVE)
4 TO EOF MINUS PTR$MOVE (ABSOLUTE)

1-12

THE RQACLOSE SYSTEM CALL

• CLOSES AN OPEN FILE CONNECTION

• A FILE CONNECTION IS CLOSED BY THE APPLICATION PROGRAMMER
- WHEN I/O OPERATIONS ARE COMPLETE
- WHEN THE MODE OR SHARED STATUS IS TO BE CHANGED

CALL RQACLOSE (FILE$CONNECTION$TOKENJRESP$MBOX) EXCEP$PTR);

1-13

BIOS I/O ASYNCHRONOUS

• EACH I/O OPERATION (OPEN) READ) WRITE) SEEK) CLOSE) SHOULD BE
FOLLOWED BY A "STATUS CHECK";<HANDSHAKE)

TASK BASI C I/O

OPEN ..
RECEIVE ~ <lORS) -EJ READ •

~ RECEIVE • (JORS)
SEEK ..

RECEIVE 4' (JORS)
READ ..

RECEIVE ,. (IORS)

1-14

RESULT OF 1/0 OPERATION CALLS

• THE PROGRAM MAY RECEIVE AN 1/0 RESULT SEGMENT* (IORS)
AFTER A FILE ACCESS CALL.

*SEE BASIC 1/0 REFERENCE MANUAL FOR A DESCRIPTION OF
THE IORS STRUCTURE.

• THE PROGRAM WAITS AT THE RESPONSE MAILBOX SPECIFIED
IN THE CALL.

• AFTER EXAMINING THE STATUS FIELD IN THE IORS THE PROGRAMMER
MUST DELETE THE SEGMENT.

• IF THE RESPONSE MAILBOX PARAMETER IN THE CALL EQUALS 0
THEN NO 10RS WILL BE RETURNED BY THE 1/0 SYSTEM. (NOT RECOMMENDED)

1-15

EXAMPLE ACCESS CALL

CALL RQAREAD (FILE$CONNECTION$TOKEN~ @BUFFERJ 80~ RSP$MBOXJ @STATUS);

I F STATUS <>E$OK THEN CALL ERROR; I*SYNCHRONOUS PART* I

OVERLAPPED PROCESSING

IORS$TOKEN = RQ$RECEIVE$MESSAGE (RSP$MBOXJ ... 'J@STATUS);
IF STATUS< >E$OK THEN CALL ERROR; I*SYNCHRONOUS PART* I

IF 10RS.STATUS<>E$OK THEN CALL ERROR: I*ASYNCHRONOUS PART*I
CALL RQ$DELETE$SEGMENT (IORS$TOKENJ@STATUS);

1-16

THE EASY WAY!

• FOR READJ WRITEJ AND SEEK WE MAY USE THE RQ$WAIT$IO SYSTEM CALL

• THE FORM OF THE CALL IS
(ACTUAL = RQ$WAIT$IO(CONN$TJRSPMBOXJTIMELIMITJ@STATUS);I

• BASIC 1/0 DEALS WITH IORS'S DIRECTLY
- EFFICIENT BECAUST IT KEEPS A SUPPLY OF IORS'S AVAILABLE
- USER TASKS DO NOT HAVE TO DELETE THE IORS

CREATE FILE
OR ATTACH

FILE

1-17

FILE CONNECT! ON

FILE ACCESS

1-18

DELETE CONN
DELETE FILE

FILE ATTACH

• IF THE FILE ALREADY EXISTS THEN THE USER MAKES AN "ATTACH$FILE"
SYSTEM CALL.

CALL RQAATTACH$FILE (USER$TOKEN~ PREFIX~ SUBPATH~ . , .~@STATUS);

SEE BASIC I/O REFERENCE MANUAL FOR DETAILS.

CALL RQAATTACH$FILE (USER$OBJECT~ DEVICE$CONNECTION$TOKEN~
@(25~ 'S~RVICE/TUNEUP/TUNESCHED' L RSP$M.BOX.I @STATUS);

• THE USER$TOKEN WILL BE DISCUSSED IN NEXT CHAPTER.

TUNEUPS
BODY

RECALLS

1-19

HIERARCHICAL FILE STRUCTURE

SERVICE
SALES

•
•

RESCHED

1-20

EMPTY

D DIRECTORIES

~ DATA FILES

EMPTY

PATHNAMES

• PATH NAMES ARE SPECIFIED BY A PREFIX AND A SUBPATH

PREFIX - TOKEN FOR AN EXISTING DEVICE CONNECTION OR FILE CONNECTION
- SPECIFIES THE STARTING POINT IN A DIRECTORY TREE SCAN

SUBPATH - ASCII STRING DESIGNATING THE REST OF THE PATH

E. G. - PREFIX DEVICE$CONNECTION$TOKEN

- SUBPATH @(25J 'SERVICEITUNEUPSITUNESCHED')

1-21

FI LE CREATION

• TO CREATE A FILE THE USER MAKES A "CREATE$FILE" SYSTEM CALL

CALL RQACREATE$FILE (uSER$TOKEN J PREFIX J SUBPATH J • I @STATUS);

SEE BASIC I/O REFERENCE MANUAL FOR DETAILS aN PARAMETERS

1-22

RESULT OF FILE CONNECTION

• THE PROGRAMMER MUST WAIT AT THE RESONSE MAILBOX SPECIFIED IN THE
CREATE$FILE OR ATTACH$FILE SYSTEM CALL.

CALL RQAATTACH$FILE (J RSP$MBOX J @STATUS);

FILE$CONNECTION$TOKEN = RQ$RECEIVE$MESSAGE (RSP$MBOXJ J J @STATUS);

• SUCCESSFUL CONNECTION RETURNS FILE CONNECTION TOKEN (TYPE = 101H)

• UNSUCCESSFUL CONNECTION RETURNS SEGMENT TOKEN (TYPE = 6)

- THE SEGMENT RETURNED IS AN IORS

- THE PROGRAMMER MUST DELETE THE IORS AFTER EXAMINING THE STATUS FIELD

1-23

EXERCISE (OPEN MANUAL)

• HOW LONG CAN AN ASCII NAME IN A SUBPATH BE?

• DESCRIBE PICTORIALLY AN IORS.

• FILL IN THE ELLIPSES:
OPEN
READ
WRITE
SEEK
CLOSE

• A PREfIX CAN BE A ________ uR A ______ _

1-24

CHAPTER 2

RMX 86 BASIC 1/0 SYSTEM
-A Systert:l Programmer's View

• DEVICE CONNECTION

• PHYSICAL ATTACHMENT

• USER OBJECT

• FILE ACCESS LIST

• SUMMARY

DEVICE CONNECTION

• DEVICE CONNECTION AND USER TOKEN IS A "SYSTEM PROGRAMMERS"
RESPONSIBI LITY.

CREATE
USER

PHYSICAL
ATTACH
DEVICE

CREATE FILE
OR ATTACH

FILE

FILE ACCESS

Y"
OPt. "TIl (tu'>(
ftJ fill

.U

DELFTE CONti
DELETE FILE

~~ ________ ~_~ ______ ~; ~~----________________ ----------------J'
SYSTEM

PROGRAMMER

2-1

LAYERS

APPLICATION
PROGRAMMER

i THE BASIC I/O SYSTEM HAS TWO LAYERS OF SOFTWARE MODULES
SUPPLIED BY INTEL:

- FILE DRIVER INTERFACE
- DEVICE DRIVER INTERFACE

FILE)
DRIVERS (PHYSICAL 0 r NAMED ~ r STREAM ~ - - ~ - - - - -. - - -- - - - - - - - - - - - - - -- ~
DEVI CE)(
DRIVERS FLOPPY ~ f BUBBLE ~ (STREAM ~ r USART ~

2-2

PHYSICAL ATTACHMENT

• AT RUN n",E THE FI LE DRIVER IS "PHYSI CALLY ATTACHED" TO THE
DEVICE DRIVERS THROUGH lID SYSTEM CALLS

~r 0 L1 USART 4 •
I

8 I PHYSICAL 0
~ t

I NAMED

B 0 ~ t

I STREAM

0 ~ •

~RE J ! : - DEVICE ,....-~ r ,
FILE DRIVERS DRIVERS DEVICES

2-3

INTEL SUPPLIED DEVICE DRIVERS

• THE BASIC lID SYSTEM SUPPORTS SEVERAL DEVICES

- SOME EXAMPLES -

DEVICE CONTROLLER DEVICE DRIVER 'NAME'

iSBC 204 SS/128 UNIT 0 'F0'

iSBC 204 SS/512 UNIT 0 'FX0'

iSBC 208 DS/256 UNIT 0 'AFDD0'

iSBC 215/218 PRIAM 3450 UNIT 0 'IW0'

iSBC 215/218 DS/256 FLOPPY UNIT 0 'WFDD0'

LI NE PRI NTER 'LP'

USART . 'T0'

2-4

PHYSICAL ATTACHMENT

CALL RQAPHYSICAL$ATTACH$DEVICE <DRV$NAME.I FI~E$DRIVER, RESP$MB05<, @STATUS);

• A SUCCESSFUL "PHYSICAL ATTACH DEVICE" RETURNS A DEVICE CONNECTION
TOKEN (TYPE = l~lH)

• AN UNSUCCESSFUL CONNECTION RETURNS A SEGMENT TOKEN (TYPE = 6)
- THE STRUCTURE OF THE SECMENT IS AN I/O REQUEST/RESULT SEGMENT

(IORS)

2· J

EXAMPLE

CALL RQAPHYSICAL$ATTACH$DEVICE(@(2.1 'F0'), 4.1RESP$MBOX J@STATUS)j
•
• (OVERLAPPED PROCESSING ~~Y OCCUR HERE>
•

DEVICE$CONNECT ION$TOKEN = RQ$RECEIVE$MESSAGE(RESP$~1BOXJ0FFFFHJ @RESP J @STATUS) j

/* TEST FOR VALID CONNECTION OBJECT */

TYPE$TOKEN = RQ$GET$TYPE(DEVICE$CONNECTION$TOKEN J @STATUS);

IF TYPE$TOKEN < > lOlH THEN ERROR;

2-6

SYSTEM
PROGRAMMER

- CREATE$USER

BASIC I/O SYSTEM CALLS FOR FILES

APPLI CATION
PROGRAMMER

- PHYSICAL$ATTACH$DEVICE - CREATE$FILE OR ATTACH$FILE

- READ
- SEEK

- OPEN }

" - WRITE
~ - CLOSE

--------------- DELETE$CONNECTION OR
DELETE$FILE .

- PHYSICAL$DETACH$DEVICE
- DELETE$USER

2-7

BASIC I/O EXERCISE

1) WRITE THE CODE NECESSARY TO WRITE A STRING OF DATA TO A FILE
ON A SBC204 SD/SS FLOPPY

* GIVEN
- THE FLOPPY HAS ALREADY BEEN FORMATTED
- THE NAME OF THE DEVICE IS F0
- THE NAME OF THE FILE IS 'COMPANY/EMPLOYEE/PERSONAL'
- THE FILE ALREADY EXISTS
- THE DATA TO BE WRITTEN AT THE END OF THE FILE
- THE DATA IS 'L. JONESJ 5050 MAIN DRAGJ 3710217'

2-8

FILE
ACCESS

CONTROLLED ACCESS

• ONLY "NAMED FI LES" PROVIDE CONTROLLED ACCESS TO FI LES,

• CONTROL IS ACCOMPLISHED BY COMPARISON OF A USER ID$STRUCTURE
AND A FILE ACCESS LIST,

FI LE ACCESS LI ST

IDl ALL
ID2 READ nNI Y

ID3 WRITE ONLY

~~--------------------------------~~
2-9

THE USER ID STRUCTURE

• IDENTIFYING INFORMATION ABOUT A USER (JOB OR HUMAN)

• EACH ID$STRUCTURE CONTAINS AN ARRAY OF 16 BIT VALUES CALLED ID'S

• THE FIRST ID IN THE ARRAY IS CALLED THE OWNER ID

• THE.REMAINING ID'S DEFINE THE GROUPS OF WHICH THE USER IS A MEMBER OF

ID$STRUCTURE

_.... ..,- J...... - "tJ::..' .: .:.,....4.~ .. ~ ~'::=:I4'''?-

{

OWNER ID
ID
ID
ID

2-10

USER TOKEN CREATION

• TO CREATE A USER TOKEN THE "SYSTEM PROGRAMMER" MAKES A CALL
TO THE O.S. IN THE FORM

• E. G.

USER$TOKEN ~ RQ$CREATE$USER (@ID$STRUCT~ @STATUS);

DECLARE ID$STRUCT STRUCTURE(LENGTH WORD~'

COUNT WORD~

ID(*) WORD);

2-11

FI LE ACCESS LIST

• A COLLECTION OF UP TO 3 PAIRS OF OWNER IDtS AND ACCESS MASKS

• THE ID/S REPRESENT USERS OR GROUP OF USERS

• THE ACCESS MASK REPRESENTS THE KINDS OF ACCESS TO THE FILE
THAT THOSE USERS OR GROUPS OF USERS ARE ALLOWED

(I

OWNER ID #1 I ACCESS
ACCESS .

LIST 1---------'1-----4

-----------------~
• THE ACCESS LIST BELONGS TO THE FILE

2-12

ACCESS LIST CREATION

• TASKS CALLING CREATE$FILE PASS AN ACCESS MASK AND A USER$TOKEN

• THE I/O SYSTEM PAIRS THE "OWNER 10" AND "ACCESS MASK" AND
APPENDS THE PAIR TO THE FILE ACCESS LIST

• "ACCESS" ...);

~
USER {~~ . 10 . 10

STRUCTURE ID

I ACCESS I } ID

• ACCESS IS ALSO IMBEDDED IN THE FILE CONNECTION TOKEN RETURNED
TO THE CALLING TASK VIA THE RESPONSE MAILBOX

2-13

ADDING ID'S TO THE ACCESS LIST

FI LE
ACCESS
LIST

• THE RqACHANGE$ACCESS SYSTEM CALL WILL CHANGE THE ACCESS
RIGHTS TO A NAMED DATA OR DIRECTORY FILE.

• THE ID AND ACCESS SPECIFIED IN THE CALL WILL BE ADDED
TO THE ACCESS LIST IF THE ID IS NOT FOUND IN THE LIST.

• THE FORM OF THE CALL IS

CALL RQACHANGE$ACCESS . (uSER$TOKEN" ... "10,, ACCESS" ...)

2-14

COMPUTATION OF ACCESS DURING ATTACH FILE

• THE I/O SYSTEM COMPARES THE ID'S IN THE USER ID STRUCTURE
WITH THE ID'S IN THE ACCESS LIST.

• THE ACCESS MASKS CORRESPONDING TO MATCHING ID.'S ARE LOGICALLY
COMBINED ... FORMING, AN AGGREGARE MASK WI.TH COMBINED RIGHTS.

USER ID STRUCTURE ACCESS LIST

IDI
ID3

• THE COMPUTED ACCESS IS IMBEDDED IN THE FILE CONNECTION TOKEN
RETURNED TO THE CALLING TASK VIA THE RESPONSE MAILBOX.

2-15

READ OR WRITE

LABS

******* LAB ONE (BASIC 10 SYSTEM) *******

OBJECTIVES:

EXECUTE A STUDENT BASIC 10 APPLICATION JOB IN AN RMXB6 O.S. ENVIROMENT

INTRODUCE (BIOS) SYSTEM CALLS:
- RQAPHYSICAL$ATTACH$DEVICE
- RQACREATE$FILE
- RQAOPEN
- RQAREAD
- RQASEEK
- RQAWRITE
- RQACLOSE
- RQ$WAIT$IO

CREATE SOURCE CODE:
- A SOURCE FILE NAMED START.PB6
- A SOURCE FILE NAMED BIOLAB.PB6

COMPILE (PLM86), LINK, AND LPCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE BIOS TO COMMUNICATE WITH A TERMINAL AND A FILE IN A FLOPPY

STEP1:

USE THE ATTACH$FILE COM~ND TO ATIACH THE DIRECTORY NAMED (/"TEAM NAME"/LABl)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LABI AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

(ROOT)

(APPLICATION)

STARTl" BIalAS
TASK TASK

iii'

LAB OBJECT IVE
• Use Basic to System Calls
• Read and write from/to a terminal & a floppy
• The student will be given the nucleus. BIOS and SOB

2-16

******* LAB ONE (BASIC 10 SYSTEM) *******

STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:BIOLAB.P86.
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:BIOLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

CREATE A BUFFER */* LENGTH=80

. CREATE A RESPONSE MAILBOX */* FIFO, HIGH PERFORMANCE

PHYSICAL ATTACH TO DEVICE */* @(2,'TO') , PHYSICAL, *NOTEl

PHYSICAL ATTACH TO DEVICE */* @(5,'WFDDO') , NAMED, *NOTEl

CREATE FILE CONNECTION TO TERMINAL */* *NOTEl

CREATE A USER TOKEN */* IDS=(2,2,OOOOH~OFFFFH)

CREATE FILE-CONNECTION TO FLOPPY */* @(8,'LABIDATA') , *NOTE1

OPEN TERMINAL FILE */* (R/W) , SHARE ALL, *NOTE2

OPEN FLOPPY FILE */* (R/W) , SHARE ALL , *NOTE2

WRITE READY MESSAGE TO TERMINAL */* (USE RQ$WAIT$IO)

. ACTUAL = 80;

DO WHILE ACTUAL GREATER THAN 2

READ FROM TERMINAL */* (USE RQ$WAIT$IO)

WRITE TO FLOPPY */* (USE RQ$WAIT$IO)

SEEK TO EOF MINUS ACTUAL */* (USE RQ$WAIT$IO)

READ FROM FLOPPY */* (USE RQ$WAIT$IO)

WRITE TO TERMINAL */* (USE RQ$WAIT$IO)

CLOSE TERMINAL FILE */* *NOTE2
---~-------------------CLOSE FLOPPY FILE */* *NOTE2

** DELETE SELF **

*NOTEl: WAIT FOR CONNECTION AND VALIDATE
*NOTE2: WAIT FOR IORS , VALIDATE IORS.STATUS , AND DELETE SEGMENT

THE SOURCE CODE SUPPLIED DOES NOT VALIDATE CONNECTIONS OR IORS'S
THE STUDENT MAY WISH TO IMPLEMENT THIS FUNCTIONALITY WHEN MODIFYING
THE SOURCE CODE

2-17

******* LAB ONE (BASIC 10 SYSTEM) *******

STEP3:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.
FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO
THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE·

* THIS APPLICATION JOB WILL BE A FIRST LEVEL JOB, THIS REQUIRES
THAT A TASK WITHIN THIS JOB MAKE A CALL TO RQENDINIT$TASK
TO RESUME THE ROOT TASK

* IN ORDER TO DEBUG OUR CODE BEFORE IT "CRASHESII WE MAY WISH TO
INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.
THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSE$INTERRUPT(3)"
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:START.P86
WITH THE "ALTERII TEXT EDITOR

- ALTER :LAB:START.P86

* THIS SOURCE FILE IS THE START TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

---.
CALL RQENOINIT$TASK

CAUSE$INTERRUPT(3)

CREATE THE "COMMON$ENTRY" TASK */* PRI=155 , STACKSIZE = 512

** DELETE SELF **

2-18

******* LAB ONE (BASIC 10 SYSTEM) *******

STEP4:

'COMPILE THE SOURCE FILES (START.P86 AND BIOLAB.P86)

- PLM86 :LAB:START.P86
- PLM86 :LAB:BIOLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST F'ILE.NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED II:LAB:(SOURCE).OBJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:START.OBJ,&
:LAB:BIOLAB.OBJ,&
/RMX5.0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5.0/DUTILS/RPIFL.LIB &

TO :LAB:JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN'ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:LABJOB &

SC(3) SEGSIZE(STACK(O)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H))) &
NOINITCODE &
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER PRECONFIGURED
PARTS OF OUR SYSTEM

LIB86
DELETE :LAB:RMX86(STARTMOD)
ADD :LAB:LABJOB to :LAB:RMX86
EXIT

* IN THE LINKING PROCESS OBSERVE THAT WE LINKED THE START MODULE FIRST

* !!! NO WARNINGS OR ERRORS DURING LINK

* I!! SOME WARNINGS ARE OK DURING LOCATE (SEE INSTRUCTOR)

* :LAB:RMX86 IS A "GIVEN" FILE THAT CONTAINS:
- A PRECONFIGURED NUCLEUS
- A PRECONFIGURED BIOS
- A PRECONFIGURED SOB
- A PRECONFIGURED ROOT JOB

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:JOB.CSD
2-19

******* LAB ONE (BASIC 10 SYSTEM) *******

STEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE. THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /IITEAM NAMEII/LABl/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT- ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

* GOOD LUCK ••• !

2-20

CHAPTER 3

RMX 86 EXTENDED 1/0 SYSTEM

-An Application Programmer's View

• WHY USE EIOS? AUTOMATIC

• ACCESSING NAMED FILES
• EIOS BUFFERING
• FILE CREATION

JL
tlJ --- -------

WHY USE THE EXTENDED liD SYSTEM?

• REDUCE DEVELOPMENT COST

• AUTOMATIC BUFFERING

• SYNCHRONOUS SYSTEM CALLS

• FREES PROGRAMMER FROM TEDIOUS DETAILS . ~

3-1

~l
(YJ _
L,f~
~ -- --

". ----

SYNCHRONOUS LEVEL 1/0 OPERATIONS (EIOS)

• PROGRAMMER DOES NOT HAVE TO USE RESPONSE MAILBOXES

• SYSTEM CALLS REQUIRE FEWER PARAMETERS

• NEED TO CHECK ONLY ONE STATUS AFTER THE CALL

3-2

EIOS MEMORY REQUIREMENTS

• THE EIOS REQUIRES 12K BYTES ABOVE THE BIOS

3-3

ACCESSING NAMED FILES THROUGH EIOS

3-4

EIOS OPERATIONS

AFTER A FILE CONNECTION HAS BEEN ESTABLISHED~
THE RQSOPEN SYSTEM CALL OPENS A CONNECTION
FOR I/O OPERATIONS.

• THE RQSOPEN SPECIFIES
- A FILE MAY BE

READ ONLY
WRITE ONLY
READ OR WRITE

- NUMBER OF BUFFERS DESIRED

• COMMANDS ON OPEN FILES
READ
WRITE
SEED

3-5

OPENING A FILE

CALL RQSOPEN (FILE$CONNECTION$TOKEN~ MODE~ NUM$BUF~@STATUS);

MODE: MODE OF ACCESS DESIRED

VALUE MODE
1 OPEN FOR READING
2 OPEN FOR WRITING
3 OPEN FOR READING AND WRITING

• CONTROL IS RETURNED ONLY AFTER I/O HAS BEEN PERFORMED.

3-6

THE RQSREAD$MOVE SYSTEM CALL

• ALLOWS READING FROM AN OPEN FILE

• COUNT BYTES ARE READ STARTING AT FILE POINTER

ACTUAL = RQSREAD$MOVE (FILE$CONNECTION$TOKEN~ @BUFFER~ COUNT~ @STATUS);

3-7

THE RQSWRITE$MOVE SYSTEM CALL

• ENABLES ANY NUMBER OF BYTES TO BE WRITTEN
FROM A USER BUFFER INTO AN OPEN FILE

• THE DATA IS WRITTEN BEGINNING AT THE CURRENT
SETTING OF THE FILE POINTER

ACTUAL = RQSWRITE$MOVE (~ILE$CONNECTION$TOKEN~ @BUFFER~ COUNT~ @STATUS);

3-8

EIOS BUFFERING

• THE EIOS PROVIDES AUTOMATIC BUFFERING OF 1/0 OPERATIONS

Eros
BUFFER

• ONE BUFFER ONLY

3-9

BUFFERING METHODS

- THE EIOS WILL WRITE OR READ INFORMATION ONE BUFFER AT
A TIME (BLOCKING).

• TWO OR MORE BUFFERS
- ALLOWS BLOCKING AND OVERLAPPED 1/0 BY USING READ-AHEAD~

WRITE-BEHIND ALGORITHMS.

• ZERO BUFFERS
- THE EIOS WILL ACCESS THE FILE EACH TIME THE APPLICATION

READS OR WRITES TO THE FILE.

3-10

THE RQSSEEK SYST~M CALL

• MOVES THE FILE POINTER FOR AN OPENED FILE
TO ANY BYTE POSITION IN THE FILE

• HIPTRMOVEJ LOWPTRMOVE =
WORD PAIR CONTAINING A 32-BIT UNSIGNED NUMBER

CALL RQSSEEK (FILE$CONNECTION$TOKEN J MODEJ HIPTRMOVEJ LOWPTRMOVEJ @STATUS); .

MODE ACTION BY POINTER
1 BACKWARD BY PTR$MOVE (RELATIVE)
2 EQUAL TO PTR$MOVE (ABSOLUTE)
3 FORWARD BY PTR$MOVE (RELATIVE)
4 TO EOF MINUS PTR$MOVE (ABSOLUTE)

3-11

THE RQSCLOSE SYSTEM CALL

• CLOSES AN OPEN FILE CONNECTION

• A FILE CONNECTION IS CLOSED BY THE PROGRAMMER
- IF I/O OPERATIONS ARE COMPLETE
- IF THE OPEN MODE OR SHARED STATUS IS TO BE CHANGED

CALL RQSCLOSE (FILE$CONNECTION$TOKEN J EXCEPT$PTR);

3-12

EXAMPLE

ACTUAL = RQSR~AD$MOVE (FlLE$CONNECTION$TOKEN~ @BUFFER~ 80~ @STATUS);

I F STATUS < > £3 THEN CALL ERROR;

• THE USER ONLY NEEDS TO CHECK STATUS

• AFTER RETURNING FROM THE CALL THE BUFFER WILL CONTAIN
THE INFORMATION

3-13

EIOS FILE CREATION

• TO CREATE A FILE THE USER MAKES A "CREATE$FILE" SYSTEM CALL

I FILE$CONNECTION$TOKEN = RQSCREATE$FILE (PATH$PTR~ @STATUS);I

SEE.EIOS REFERENCE MANUAL FOR DETAILS ON PARAMETE~S

3-14

EIOS FILE ATTACH

• IF THE FILE ALREADY EXISTS THEN THE USER MAKES AN "ATTACH$FILE"
SYSTEM CALL.

FILE$CONNECTION$TOKEN = RQSATTACH$FILE (PATH$PTR J @STATUS);

SEE EIOS REFERENCE MANUAL FOR DETAILS.

3-15

EXAMPLE

F$CONN = RQ$S$ATTACH$FI LE (@<l9 J ': FO: SERVI CEITUNEUPS') J @STATUS);

• I NOW HAVE A CONNECTION TO THE DIRECTORY
"TUNEUPS"

3-16

EIOS SYSTEM CALLS FOR FILES

SYSTEM
PROGRAMMER

- LOGICAL$DETACH$DEVICE

3..:17

EXERCISE

APPLI CAT I ON
PROGRAMMER

- CREATE$FILE OR ATTACH$FILE
OPEN
READ
SEEK FILE
WRITE ACCESS
CLOSE

- DELETE$CONNECTION OR
DELETE$FI LE

• DISCUSS THE DIFFERENCES IN THE TWO SYSTEM CALLS.

CALL RQACREATE$FILE (__ _

---);

AND
CALL RQSCREATE$FILE

---);

3-18

·A

CHAPTER 4

RMX 86 EXTENDED 1/0 SYSTEM

-A System Programmer's View

• LOGI CAL NAMES
• DEVICE CONNECTIONS

• 10 JOBS
• DEFAULT TOKENS

/

Q: WHAT IS A LOGICAL NAME

• IF I CATALOG THE DEVICE CONNECTION TOKEN IN MY JOB'S DIRECTORY
UNDER AN ASCII NAME~ THEN THAT NAME WILL BE KNOWN TO THE EIOS
AS THE LOGICAL NAME FOR THAT FILE CONNECTION.

CALL RQ$CATALOG$OBJECT(~~ F$TOKEN~ @(4~'AUTO')~ @STATUS)

JOB DIRECTORY
ASCII NA/,,£ OBJECT TOKEN

, INTE$6STASK' 8C58

'AUTO'

4-1

EIOS AND LOGICAL NAMES

• PLACING COLONS AROUND AN ASCII STRING IDENTIFIES A
LOGICAL NAME TO THE EIOS

F$CONN$l = RQSATTACH$FILE(@(15~':AUTO:TUNESCHED' ~ @STATUS);

MI[MlCHICAL flU STMT ..
MJOrDIII£CTOIIY

4-2

THE EIOS DEVICE CONNECTION

ROOT JOB DIRECTORY

ASCI I NAII'f OBJECT TOKEN

, INTES6$TASK' 8e58

, MBXl ' 9'!5C

'FW' 846C

LOGICAL
ATTACH
DEVICE

CREATE FILE
OR ATTACH

FILE

• THE EIOS PHYSICALLY
ATTACHES TO THE DEVICE

• THEN CATALOGS THE
DEVICE CONNECTION TOKEN
UNDER A LOGICAL NAME

FI LE ACCESS

+ " ..
fill' liLt

."

DELt1E CONII
DELETE FILE

~~ ______________ -J/~~ ________________ ~~~~~ ________________ ~

APPqtATION
PROGRAMMER

SYSTEM
PROGRAMMER

4-3

EIOS LOGICAL ATTACHMENT

• LOGICAL ATTACH IS ACCOMPLISHED THROUGH

CALL RQSLOGICAL$ATTACH$DEVICE(LOG$NAME~DRV$NAME~ FILE$DRIVER~ @STATUS);

E.G.

CALL RQALOGICAL$ATTACHSDEVICE (@(4':F0: ')~ @(2~/F0')~ 4~ @STATUS);

4-4

THE 10 JOB

• THE 10 JOB DIFFERS FROM A NORMAL JOB

- THERE ARE THREE ENTRIES IN THE OBJECT DIRECTORY
OF THE JOB UNDER THE NAMES "RQGLOBAL"~ "$"~ AND "R?USER"

Jon DIRECTORY
ASCII NAI"E OBJECT TOKEN

'RQGLOBAL' 8C58

'S'

'R?USER' 9818

4-5

IO JOB CREATION

TO CREATE AN 10 JOB

JOB$TOKEN = RQ$CREATEIOJOB (POOL$MIN~ POOL$MAX~

EXCEPT$HANDLER~ JOB$FLAGSJ
TASK$PRIORITY~ START$ADDRESS~

DATA$SEG J STACK$PTRJ
STACK$SIZE J TASK$FLAGS~
MSG$MBOX~ @STATUS);

REFER TO EXTENDED 10 SYSTEM REFERENCE MANUAL.

4-6

1/0 JOB DELETION

• TO DELETE AN 1/0 JOB

CALL RQ$EXIT$IO$JOB (USER$FAULT$CODE J

RETURN$DATA$PTRJ
@STATUS);

REFER TO EXTENDED io SYSTEM REFERENCE MANUAL.

4-7

"CATCH 22"

• AN 1/0 JOB CAN ONLY BE CREATED BY AN liD JOB

• THE SYSTEM PROGRAMMER DEFINES 1/0 JOBS DURING CONFIGURATION
OF THE EXTENDED 1/0 SYSTEM (TO.BE DISCUSSED LATER)

• THESE 1/0 JOBS WILL BE CHILD JOBS OF THE EIOS

4-8

EIOS LOGICAL NAME SEARCH SEQUENCE

• THE EIOS SEARCHES THREE OBJECT DIRECTORIES FOR THE
LOGICAL NAME

• FIRST~ THE OBJECT DIRECTORY OF THE LOCAL JOB

• SECOND~ THE OBJECT DIRECTORY OF THE GLOBAL JOB
- A JOB THAT HAS MORE "SCOPE" THAN THE LOCAL JOB

BUT LESS "SCOPE" THAN THE ROOT JOB

• THIRD~ THE OBJECT]IRECTORY OF THE ROOT JOB

4-9

THE DEFAULT PREFIX

• THE DEFAULT PREFIX IS A DEVICE OR FILE CONNECTION TOKEN

• IT IS CATALOGED IN THE LOCAL JOB DIRECTORY UNDER THE
ASCI I NAME "$"

• IF A TASK FAILS TO SPECIFY A CONNECTION DURING A SYSTEM CALL
THAT REQUIRES IT~ THE EIOS USES THE DEFAULT PREFIX

4-10

THE DEFAULT USER

• THE DEFAULT USER IS A USER TOKEN

• IT IS CATALOGUED IN THE LOCAL JOB DIRECTORY UNDER THE
ASCII NAME UR?US~R"

• THE EIOS PERFORMS ALL OF THE I/O OPERATIONS WITHIN A JOB
ON BEHALF OF ONE USER TOKEN

4-11

EIOS EXERCISE

1) WRITE THE CODE NECESSARY TO WRITE A STRING OF DATA TO A FILE
ON A SBC204 SD/SS FLOPPY

* GIVEN
- THE FLOPPY HAS ALREADY BEEN FORMATTED
- THE NAME OF THE DEVICE IS F0
- THE NAME OF THE FILE IS 'COMPANY/EMPLOYEE/PERSONAL'
- THE FILE ALREADY EXISTS
~ THE DATA TO BE WRITTEN AT THE END OF THE FILE
- THE DATA IS 'L. JONES~ 5050 MAIN DRAG~ 3710217'

4-12

******* LAB TWO (EXTENDED 10 SYSTEM) *******

BJECTIVES:

EXECUTE A STUDENT EXTENDED 10 APPLICATION JOB IN AN RMX86 O.S. ENVIROMENT

INTRODUCE (EIOS) SYSTEM CALLS:
- RQSCREATE$FILE
- RQSOPEN
- RQSREAD$MOVE
- RQSSEEK
- RQSWRITE$MOVE
- RQSCLOSE
- RQ$EXIT$IO$JOB

CREATE SOURCE CODE:
- A SOURCE FILE NAMED START.P86
- A SOURCE FILE NAMED EIOLAB.P86

COMPILE (PLM86), LINK, AND LOCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE EIOS TO COMMUNICATE WITH A TERMINAL AND A FILE IN A FLOPPY

TEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB2)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAMEII/LAB2 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

(APPLICATION)

START2
TASK ./

LAB PURPOSE
• Use extended 10 system calls
• Read and write to/from a terminal and a floppy
• The student will be given the nucleus, BIOS, EIOS AND SOB
• The student will supply the LAB2JOB and LAB2RJB

4-13

******* LAB TWO (EXTENDED 10 SYSTEM) *******
STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:EIOLAB.P86
WITH THE IIALTERII TEXT EDITOR

- ALTER :LAB:EIOLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

CREATE A BUFFER */* LENGTH=80

CREATE FILE CONNECTION TO TERMINAL */* @(4,':TO:') , *NOTEI

CREATE FILE CONNECTION TO FLOPPY */*"@(13,':FDO:LAB2DATA') , *NOTEI

OPEN TERMINAL FILE */* (R/W) , SHARE ALL , *NOTEI

OPEN FLOPPY FILE */* (R/W) , SHARE ALL, *NOTEl"

WRITE READY MESSAGE TO TERMINAL */*

ACTUAL = 80;

DO WHILE ACTUAL GREATER THAN ~

READ FROM TERMINAL */*

WRITE TO FLOPPY */*
------------~--READ FROM FLOPPY */*

SEEK TO EOF MINUS ACTUAL */*

WRITE TO TERMINAL */*

CLOSE TERMINAL FILE */* *NOTEI

CLOSE FLOPPY FILE */* *NOTEI

** DELETE SELF ** CALL EXITIOJOB

*NOTEl: VALIDATE BY CHECKING STATUS = E$OK

THE SOURCE CODE SUPPLIED DOES NOT VALIDATE CONNECTIONS
THE STUDENT MAY WISH TO IMPLEMENT THIS FUNCTIONALITY WHEN MODIFYING
THE SOURCE CODE

4-14

******* LAB TWO (EXTENDED 10 SYSTEM) *******

STEP3:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.
FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO
THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE

* THIS APPLICATION JOB WILL BE A SECOND LEVEL JOB. A TASK WITHIN THIS
JOB IS NOT REQUIRED TO MAKE A CALL TO RQENDINIT$TASK, THE EIOS CODE
SUPPLIES A TASK THAT CALLS RQENDINIT$TASK

* IN ORDER TO DEBUG OUR CODE BEFORE IT "CRASHES" WE MAY WISH TO
INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.
THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSE$INTERRUPT(3)1I
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:START.P86
WITH THE IIALTER" TEXT EDITOR

- ALTER :LAB:START.P86

* THIS SOURCE FILE IS THE START TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

CAUSE$INTERRUPT(3)

CREATE THE "COMMON$ENTRY" TASK */* PRI=1.55 , STACKSIZE = 512

. -Itf* DELETE SELF **

4-15

******* LAB TWO (EXTENDED 10 SYSTEM) *******
STEP4:

COMPILE THE SOURCE FILES (START.P86 AND EIOLAB.P86)

- PLM86 ": LAB: START. P86
- PLM86 :LAB:EIOLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).OBJII

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGt)

LINK86 :LAB:START.OBJ,&
:LAB:EIOLAB.OBJ,&
/RMX5.0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5.0/DUTILS/RPIFL.LIB &

TO :LAB:JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:LABJOB &

SC(3) SEGSIZE(STACK(O)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H))) &

,NOINITCODE &
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER PRECONFIGURED
PARTS OF OUR SYSTEM

LIB86
DELETE :LAB:RMX86(STARTMOD)
ADD :LAB:LABJOB to :LAB:RMX86
EXIT

* IN THE LINKING PROCESS OBSERVE THAT WE LINKED THE START MODULE FIRST

* !!! NO WARNINGS OR ERRORS DURING LINK

* !I! SOME WARNINGS ARE OK DURING LOCATE (SEE INSTRUCTOR)

* :LAB:RMX86 IS A "GIVEN" FILE THAT CONTAINS:
- A PRECONFIGURED NUCLEUS
- A PRECONFIGURED BIOS
- A PRECONFIGURED EIOS
- A PRECONFIGURED SOB
- A PRECONFIGURED ROOT JOB

* THE STUDENT MAY "OPTIONALLY" USE A IIGIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:JOB.CSD 6 4-1

******* LAB TWO (EXTENDED 10 SYSTEM) *******

STEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE. THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /IITEAM NAME"/LAB2/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

* GOOD LUCK .•. !

4-17

CHAPTER 5

WRITING .DEVICE DRIVERS

-Generalities

• INDEPENDENT 10
• DRIVER COMPONENTS.

• THE DUIB
• THE I/O REqUEST
• DRIVER FUNCTIONS

DEVICE INDEPENDENCE

FILE DRIVERS DEVICE DRIVERS HARDWARE

I'

[

C

.<

~ LJ::s I . USART
~/ PHYSICAL

C W [NCHESTER ~ 8 ~ ..
~ ~ NAMED
~

I
<"

~ B FLOPPY .. •
~ STREAM ----.. C U STREAM .. ~

5-1

DEVICE INDEPENDENT I/O

• APPLICATION TASKS COMMUNICATE WITH FILE DRIVERS
- THIS ALLOWS TASKS TO MANIPULATE ALL FILES IN THE SAME MANNER

• FILE DRIVERS COMMUNICATE WITH DEVICE DRIVERS
- THEY PROVIDE THE INTERFACE BETWEEN SOFTWARE AND HARDWARE

• THIS STANDARD INTERFACE HAS ADVANTAGES
- THE HARDWARE CAN BE CHANGED WITHOUT EXTENSIVE MODIFICATION

TO THE SOFTWARE

- THE I/O SYSTEM CAN SUPPORT A GREATER RANGE OF DEVICES.

5-2

I
1
I ~I----II I IORS
I
I
I

0:: 1
~1
;:1
~I

~I u:.
I
I
I
I
I

• I

I
EJ~

DUIB

DEVICE DRIVER COMPONENTS

CONTROLLER

DEVICE

5-3

RUN TIME BINDING

• WHEN A TASK MAKES A RQAPHYSICAL$ATTACH CALL THE BIOS BINDS

THE FILE DRIVER TO THE DEVICE DRIVER

FILE
DRIVER

5-4

DEVICE
DRIVER

THE DUIB STRUCTURE
(DEVICE UNIT INFORMATION BLOCK)

NAME (14)
FI LE$DRIVERS

FUN ITS J
FLAGS I

DEV$GRAN
LOWDEVSIZE
HIGHDEVSIZE

DEVICE J
UNIT I

DEV$UNIT
INIT$IO
FINISH$IQ
QUEUEtIQ
CANCEL 10

DEVICE$INFO$PTR
UNIT$INFO$PTR

UPDATE$TIMEOUT
NUM$BUFFERS

PRIORITY J

~

J
J

*REFER TO "GUIDE TO WRITING DEVICE DRIVERS" REFERENCE MANUAL.

5-5

THE DUIB

• THE QEVICE QNIT INFORMATION ~LOCK IS A TABLE OF VALUES DESCRIBING
THE COMPONENTS OF A DEVICE DRIVER.

• IT IS CREATED BY THE SYSTEM PROGRAMMER DURING CONFIGURATION OF
THE BASI C I/O.

• THE DUIB BINDS THE FILE DRIVER TO THE DEVICE DRIVER BY DESCRIBING
POINTERS TO THE DEVICE DRIVER PROCEDURES.

I / ~~ AI
'i'r-.. DUIB" EJJ _ -r ~

~~~E~'" 'I~I::: --S 
11\ '-~ 

5-6 



THE DEVICE DRIVER "PROCEDURES" 

• THE DEVICE DRIVER PROCEDURES ARE CALLED BY THE FILE DRIVER 

• THESE PROCEDURES 
- CONTAIN THE CODE NECESSARY TO COMMUNICATE WITH THE HARDWARE 
- MAINTAIN THE QUEUE 

• THE ADDRESSES OF THESE PROCEDURES ARE IMBEDDED IN THE DEVICE 
UNIT INFORMATION BLOCK (DUIB) 

5-7 

THE 1/0 REQUEST 

• WHEN THE APPLICATION TASK CALLS THE BASIC 1/0 SYSTEM 
AN 10RS IS GENERATED (1/0 REQUEST SEGMENT) 

APPLICATION TASK ~ BASIC 110 

I 
CALL RQ$A$READ ( I II ); 

--r~--" 
~ I...,.) 

I ............ 
I ;," 
" ,.1 

,," I 
,. I 

,. I 

5-8 

I 
L 

READ 

o 
R 

S 



THE REQUEST QUEUE 

• THE FILE DRIVER SENDS IORS TO THE DEVICE DRIVER (QUEUE r~ PROC) 

• IF THE DEVICE DRIVER IS "BUSY"I THE 10RS IS PLACED AT THE 
END OF THE QUEUE 

I 
~----------------~.~ a 

0:::1 
1.&.1 

2:1 
~1 
1.&.1 

:::1 
lJ..

1 
I 
1 
I 
I 

I 
a 

5-9 

I 
o 

R 
S 

CD 
QUEUE 

REGION 

THE REGION 

• PROTECTION OF THE QUEUE IS ACCOMPLISHED THROUGH A REGION 

- THE TASK CALLS THE IRMX O.S. 
TO GAIN ACCESS TO THE QUEUE 

- THE TASK MANIPULATES OBJECTS 
IN THE QUEUE 

- THE TASK THEN CALLS THE IRMX 
O.S. TO RELEASE ACCESS TO' 
THE QUEUE 

5-10 

IORS 



I 

DEVICE DRIVER FUNCTIONS 

• A DEVICE DRIVER MAY SUPPORT UP TO E'IGHT FUNCTIONS 
- READ 
- WRITE 
- SEEK 
- SPECIAL 
- ATTACH 
- DETACH 
- OPEN 
- CLOSE 

SPECIAL FUNCTION = SCF 
(STOP & CATCH FIRE!) 

5-11 

QUEUE IMPLEMENTATION 

• THE IORS STRUCTURE CONTAINS FORWARD AND BACKWARD POINTER FIELDS 

.",---,-------
/ , 

I 
I 
I 

-- .... - .. ----~------- ..... 
, " 

-- I 

, 
\ , 
I 

I 
I 
I 
I 
I 
I 

---
-_~I~-----------------------------------------------

5-12 

o 



THE 10RS STRUCTURE 
(INPUT OUTPUT REQUEST SEGMENT) 

STATUS 
UNIT$STATUS 

ACTUAL 
ACTUAL$FILL 

DEVICE 
UNIT I 
FUNCT I 
SUB$FUNCT 
LOW$DEV$LOC 
HTf,HSDEV$LOC 

BUF$PTR 
COUNT 
COUNT$FILL 

AUX$PTR 
I TNKSFOR 
LINK$RACK 
IX 

DONF 1 
FILL -I 

CANCEL ID 

-REFER TO "GUIDE TO WRITING DEVICE DRIVERS" REFERENCE MANUAL. 

5-13 

QUEUE PROTECTION 

• THE QUEUE IS A SHARED RESOURCE OF OTHER DEVICE DRIVER 
COMPONENTS 

• THE QUEUE CAN ONLY BE ACCESSED BY ONE OF THE DEVICE DRIVER 
COMPONENTS AT A TIME 

• THAT COMPONENT MUST HAVE A KEY TO USE THE QUEUE 

5-14 



SOME FACTS ABOUT REGIONS 

• ONCE A TASK GAINS ACCESS TO A REGION 

- THE PRIORITY OF THE TASK MAy BE TEMPORARILY RAISED 

- THIS OCCURS AUTOMATICALLY IF THE REGION IS PRIORITY BASED~ 
AND THERE IS A TASK OF HIGHER PRIORITY WAITING TO USE 
THE REGION 

- THE TASK CANNOT BE SUSPENDED OR DELETED UNTIL IT SURRENDERS 
ACCESS TO THE REGION 

5-15 

SYSTEM CALLS FOR REGIONS 

• REGION = RQ$CREATE$REGION (FLAGS~ QSTATUS); 

• CALL RQ$SEND$CONTROL (QSTATUS); 

• CALL RQ$RECEIVE$CONTROL (REGION~QSTATUS); 

• CALL RQ$ACCEPT$CONTROL (REGION~QSTATUS); 

• CALL RQ$DELETE$REGION (REGION~QSTATUS); 

REFER TO SYSTEM PROGRAMMER'S REFERENCE MANUAL 

5-16 



THE (DIT) AND (UIT) 

• ALL DUIB'S ARE FIXED LENGTH 

• SOME DEVICE DRIVERS NEED MORE INFORMATION 

• THE SYSTEM PROGRAMMER MAY "OPTIONALLY" PROVIDE TWO EXTRA 
TABLES OF UNBOUND LENGTH 

DEVICE UNIT INFO BLOCK DEVICE INFO TABLE UNIT INFO TABLE 

.c:J . 
DUIB 

DIT J 

UIT ~ 

• THE DUIB CONTAINS POINTERS TO THESE TABLES 

5-17 

EXERCISE 

• WHY ARE THE ADDRESS FIELDS IN THE DUIB~ FOR THE DRIVER 
PROCEDURES~ ONLY WORD FIELDS AND NOT POINTER FIELDS? 

• NAME SOME GENERAL DEVICE DRIVER COMPONENTS. 

• NAME ONE ADVANTAGE OF A REGION vs. SEMAPHORE FOR RESOURCE 
PROTECTION. 

5-18 



DEVICE DRIVER TYPES 

• THERE ARE THRE~ TYPES OF DEVICE DRIVERS IN THE IRMX ENVIRONMENT 

- COMMON DEVICE DRIVER 

- RANDOM ACCESS DEVICE DRIVER 

- CUSTOM DEVICE DRIVER 

5-19 



CHAPTER 6 

THE CUSTOM DEVICE DRIVER 





THE DUIB STRUCTURE 
(DEVICE UNIT INFORMATION BLOCK) 

NAME (14) 
FILE$DRIVERS 

FUN ITS j 
FLAGS l 

DEV$GRAN 
LOW$DEV$SIZE 
HI GH$DEV$S IZE 

DEVICE I 
! UNIT I 

DEV$UNIT 
INIT$IO 
FINISH$IO 
QUEUE$IO 
CANCEL 10 

DEVICE$iNFO$PTR 
UNIT$I NFO$PTR 

UPDATE$TIMEOUT 
NUM$BUFFERS 

PRIORITY I 

~ 

I 
r 

*REFER TO "GUIDE TO WRITING DEVICE DRIVERS" REFERENCE MANUAL. 

6-1 

THE CUSTOM DEVICE DRIVER 

• THE CUSTOM DEVICE DRIVER IS NEEDED IF 
- TWO OR MORE INTERRUPT LEVELS PER DEVICE ARE REQUIRED 

- PRIORITY ORDERED REQUEST QUEUE IS REQUIRED 

- THE DEVICE DOES NOT FIT INTO THE COMMON RANDOM ACCESS 
DEVICE CATEGORY (TO BE DISCUSSED LATER) 

!~ 
~ElLJ 

6-2 



CUSTOM DEVICE DRIVER COMPONENTS 

• TO WRITE A CUSTOM DEVICE DRIVER YOU MUST PROVIDE 

- AN INITIALIZE I/O PROCEDURE 

- A FINISH I}O PROCEDURE 

- A QUEUE I/O PROCEDURE 

- A CANCEL I/O PROCEDURE 

- A DEVICE INTERRUPT TASK AND HANDLER 

6-3 

THE DEVICE INTERRUPT HANDLER 

• EXAMPLE INTERRUPT HANDLER 

,.-
RQSIGNAL 
~ 

INIT 
10 

PROC 1/ 

FINISH 
10 

PROC 

QUEUE 
10 

PROC 

CANCEL 
10 

PROC 

- WHEN THE DEVI CE CONTROLLER FI NISHES A REQUEST (READ~SEEK~. . . ~WRITE) 
IT GENERATES AN INTERRUPT. 

- THE INTERRUPT HANDLER THEN SIGNALS THE INTERRUPT TASK 

HARDWARE 
UNIT" UNIT 1 

I _.~--. 1/ 7 
.. :' ,'~=! . -;;;.- ,II=! 

: ... .jIio~i~·;!·,':'..;,~-JI 

HANDLER T ' , ' 
TASK DEVICE 

6-4 



INTERRUPT TASK 

• THERE ARE 3 PARTS TO AN INTERRUPT TASK 

1) 
TASK 

!DENT! FI CATION 
TO 

THE RMX O.S. 

} THIS IS DONE ONLY ONCE 

2) 'WAITING 
THE 

EVENT 

3) WORK TO BE 
DONE BY 

THE TASK 

6-5 

EXAMPLE DEVICE INTERRUPT TASK 

IDENTIFY HANDLER & TASK TO THE RMX 86 O.S. 
DO FOREVER 
WAIT FOR HANDLER TO SIGNAL 

GAIN ACCESS TO REGION 
REMOVE 10RS FROM QUEUE 
SEND 10RS TO A RESPONSE MAILBOX (IMBEDDED IN 10RS) 

SEND COMMANDS TO DEVICE TO START NEXT REQUEST (IF ANY!) 
SURRENDER ACCESS TO REGION I 

---

RQ$SI GNAL 

"-- I/O COMMANDS 

Q: HOW DOES THE FIRST REQUEST GET STARTED? 

6-6 

- I /~_:r.:l 
~'~ . .a: .. ; 
--:. ' .. 



THE QUEUE 1/0 PROCEDURE 

• THE BASIC 1/0 SYSTEM CALLS THE QUEUE 1/0 PROCEDURE 
IN THE FOLLOWING MANNER 

CALL QUEUE$IO(IORS$T~DUIB$P~D$DATA$T); 

WHERE: 
- IORS$T IS THE TOKEN FOR THE 1/0 REQUEST SEGMENT 

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK 
OF THE DEV I CE 

- D$DATA$T IS A TOKEN FOR A DATA STORAGE AREA (CREATED BY THE 
IN IT 1/0 PROCEDURE)~ CONTAINS (HEAD OF QUEUE~ REGION TOKEN~ 
... INTERRUPT TASK TOKEN~ ... ETC) 

6-7 

EXAMPLE - QUEUE 1/0 PROCEDURE 

SET THE STATUS FIELD IN THE 10RS 

GAIN ACCESS TO THE REGION 

PLACE THE 10RS ON THE QUEUE 

SURRENDER ACCESS TO REGION 

RETURN 

6-8 

THIS IS WHERE 
THE FIRST REQUEST 
GETS STARTED 

r--~ ... . 
t ,00; ,. 
, .... 
! ."I~ 
!r=-t 
~ElLJ 

':!r- ~~/~ 

t~l" "0 . 

~UIIlaIllJ.' 
~! 

,~\""'-~ ---



THE INIT 1/0 PROCEDURE 

• THE BASIC 1/0 SYSTEM CALLS THE INIT 1/0 PROCEDURE IN THE 
FOLLOWING MANNER: 

CALL INIT$IO(DUIB$PJD$DATA$PJSTATUS$P); 

WHERE: 

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK OF THE DEVICE 
- D$DATA$P IS A POINTER TO A WORD WHERE rHE INIT 1/0 PROCEDURE 

PLACES THE TOKEN FOR A DATA STORAGE AREA 

- STATUS$P IS A POINTER TO A WORD WHERE THE INIT $1/0 PROCEDURE 
PLACES A STATUS OF THE INITIALIZE OPERATION (SUCCESSFUL OR NOT 
SUCCESSFUL> 

6-9 

EXAMPLE INIT 1/0 PROCEDURE 

1\ " CREATE THE DATA STORAGE AREA 

CREATE THE REGION FOR ACCESS TO QUEUE 

CREATE THE INTERRUPT TASK 

INITIALIZE THE DEVICE 

INITIALIZE THE DATA STORAGE AREA 

" 
RETURN 

6-10 

~/~.'" ~\.' .'-

~~i' .,. 
~CQlIIIIUl' ~! 



THE FINISH I/O PROCEDURE 

• THE BASIC I/O CALLS THE FINISH I/O PROCEDURE IN 
THE FOLLOWING MANNER: 

CALL FINISHSIO(DUIBSP~DSDATAST); 

WHERE: 

1\ 

"-

- DUIBSP IS A POINTER TO THE DEVI£E UNIT INFORMATION 
BLOCK OF THE DEVICE 

- DSDATAST IS A TOKEN FOR THE DATA STORAGE AREA 

6-11 

EXAMPLE FINISH I/O PROCEDURE 

" SENDS COMMANDS (IF NEEDED) 
TO DE-PROGRAM DEVICE 

RESETIDELETE INTERRUPT TASK 

DELETE REGION 

DELETE DATA STORAGE AREA 

RETURN 

6-12 



THE CANCEL I/O PROCEDURE 

• THE BASIC I/O SYSTEM CALLS THE CANCEL I/O PROCEDURE IN 
. . 

THE FOLLOWING MANNER: 

CALL ~ANCEL$IO(CANCEL$IDJDUIB$PJD$DATA$T); 

WHERE: 

- CANCEL$ID IS A WORD CONTAINING THE ID # OF THE REQUESTSJ 
WAITING IN THE QUEUL TO BE CANCELLED. . 

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK 
OF THE DEVICE 

- D$DATA$T IS A TOKEN FOR THE DATA STORAGE AREA 

6-13 

EXAMPLE CANCEL I/O PROCEDURE 

" " GAIN ACCESS TO THE REGION 

DO WHILE 10RS NEEDS TO BE CANCELLED 

~E~ICE CURRENTLY PRor~ccT"~ 
F . - T 
~ SEND COMMANDS TO DEVICE TO STOP 

~ S ? THE REQUEST DONE_ 
F . T 

I REMOVE 10RS FROM THE QUEUE 

~ SEND 10RS TO RESPONSE MBOX 

SURRENDER ACCESS TO THE REGION 

"-
RETURN 

6-14 



RELATIONSHIP BETWEEN CALLS 

TASK .... IO SYSTEM 

• INITIO~ B 
./ QUEUE 10----__ .......... ~~IT 
~ ~ INTERRUPT 

~
HANDLER TASK EJ 
~ ~ CANCEL 10 U~IT 

FINISH 10 __ 

6-15 

EXERCISE 

• WRITE THE QUEUE$I/O PROCEDURE HEADING AND DECLARATIONS 
IN PL/M 86. 

• WHAT IS A DATA STORAGE AREA? 

• WHEN IS THE INIT$I/O PROCEDURE CALLED? 

• WHEN IS CANCEL$I/O CALLED? 

• HOW DOES THE INTERRUPT ·HANDLER KNOW WHERE THE DATA STORAGE 
AREA IS LOCATED? 

6-16 



CHAPTER 7 

DEVICE DRIVERS 

(Random Access and Common Device Drivers) 

• COMPONENTS 
• THE INTERRUPT PROCEDURE 
• THE START PROCEDURE 
• DEVICE INFORr1ATION TABLE 





THE COMMON DEVICE DRIVER 

• SIMPLE DEVICES 
E.G. LINE PRINTERS} USART 

• FIFO MECHANISM FOR QUEUING REQUESTS IS SUFFICIENT 

• ONLY ONE INTERRUPT LEVEL IS NEEDED TO SERVICE A DEVICE 

• DATA READ OR WRITTEN BY THESE DEVICES DOES NOT NEED TO BE 
BROKEN UP INTO BLOCKS .. 

7-1 

f1CJ\' 
~ 

THE RANDOM ACCESS DEVICE DRIVER 

• COMPtEX DEVICES 
E.G. HARD DISK 1 BUBBLE MEMORYI FLOPPY 

• FIFO MECHANISM FOR QUEUING REQUESTS IS SUFFICIENT 

• ONLY ONE INTERRUPT LEVEL IS NEEDED TO SERVICE A DEVICE 

• I/O REQUESTS MUST BE BROKEN UP INTO BLOCKS OF SPECIFIC LENGTH 

• THE DEVICE SUPPORTS RANDOM ACCESS SEEK OPERATIONS 

o 
7-2 



RANDOM/COMMON DEVICE DRIVER COMPONENTS 

CALL It' L-r'_D_E_VI_C_E _I_NI_T __ O 
.. RET - -

<' 
CALL • I DEVI CE FI NISH 

... RET ' 

CALL ... (DEVICE START 
.. RET 

;:=~ (DEVICE INTERRUPT 

7-3 

1/0 SYSTEM SUPPLIED PROCS 

UNIT ~ 

• THE BASIC 10 SYSTEM PROVIDES PROCEDURES THAT COMPRISE THE 
BULK OF WRITING A RANDOM ACCESS OR COMMON DEVICE DRIVER, 

D 
o 
D 
D 

- PROCEDURE NAMES -

• "RAD$INIT$IO" OR "INITSIQ" 

• "RADSFINISHSIO OR "FINISH$IO" 

• "RAD$QUEUESIO" OR "QUEUESIO" 

• "RADSCANCELSIO" OR "CANCELSIO" 

7-4 

UNIT 1 

/ 



THE DEVICE$INTERRUPT PROCEDURE 

• THE INTERRUPT TASKI SUPPLIED BY 'THE 10 SYSTEM 1 CALLS THE INTERRUPT 
PROCEDURE IN THE FOLLOWING MANNER: 

CALL DEVICE$INTERRUPT(IORS$P 1 DUIB$PI DDATA$P); 

WHERE: 

-IORS$P IS A POINTER TO THE I/O REQUEST SEGMENT 

-DUIB$P IS A POINTER'TO THE DEVICE UNIT INFORMATION BLOCK 

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT (SCRATCH PAD AREA) 

7-5 

DEVICE DEPENDENT PROCS 

• TO WRITE A RANDOM ACCESS OR COMMON DEVICE DRIVER 
YOU MUST PROVIDE: 

SYSTEM SUPPLI ED 
PROCS 

DEVICE DEPENDENT 
PROCS 

--•• ( DEVICE INIT a 
--.. (DEViCE FINISH 0 

DEVICE START 

DEVICE STOP 0 

__ ... (DEV I CE INTERRUPT a 

7-6 

• A DEVICE$INIT PROCEDURE 

• A DEVICE$FINISH PROCEDURE 

• A DEVICE$START PROCEDURE 

• A DEVICE$STOP PROCEDURE 

• A DEVICE$INTERRUPT PROCEDURE 



EXAMPLE DEVICE$INTERRUPT PROCEDURE 

*HANDLE THE INTERRUPT* 

T 

//,""////~ IORS. STATUS F IELD= 
ERROR 
IORS.DONE FIELD = 
TRUE 

7-7 

THE DEVICE$START PROCEDURE 

• THE INTERRUPT TASK AND THE QUEUE$IO PROCEDURE~ SUPPLIED BY THE 
10 SYSTEM~ CALLS THE DEVICE$START PROCEDURE IN THE FOLLOWING MANNER: 

CALL DEVICE$START(IORS$P~ DUIB$P~ODATA$P); 

WHERE: 

- 10RS$P IS A POINTER TO THE I/O REQUEST SEGMENT 

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK 

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT 

7-8 



\ 
'-

N 
o 
T 

V 
A 
L 
I 
D 

EXAMPLE DEVICE$START PROCEDURE 

T 

READ DO CASE 10RS.FUNCTION 
t----tWRITE 

START 

READ START r==-fuF,j~~-l~~ WRITE . START 
SEEK t----t 

IORS 
DONE = TRUE 

IORS.DONT = TRUE 
~~~~~~~~~",,~"=L __________ : _ ~~~>-~"--'/~ 

ma~g~.\$ ~ ____________________ ; r-:I1 ". ~-

}:lEI -' -.'-- u.{ -

7-9

THE DEVICE$INIT PROCEDURE

• THE INIT$10 PROCEDURE) SUPPLIED BY THE 10 SYSTEM)
CALLS THE DEVICE$INIT PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICE$INITCDUIB$P)DDATA$P)STATUS$P);

WHERE:

-DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

-STATUS$P IS A POINTER TO A WORD WHERE THE RESULT OF THE CALL
WILL BE STORED BY THE USER

7-10

EXAMPLE DEVICE&INIT PROCEDURE

INITIALIZE DEVICE
STATUS = ERROR

STATUS = OK

RETURN

7-11

THE DEVICE$FINISH PROCEDURE

• THE FINISH $10 PROCEDURE~ SUPPLIED BY THE 10 SYSTEM~ CALLS
THE DEVICE$FINISH PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICE$FINISH(DUIB$P~ DDATA$P);

WHERE:

-DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

-DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

7-12

EXAMPLE DEVICE$FINISH PROCEDURE

,
~

FINAL
PROCESSING

S & CF INSTRUCTION , RETURN

7-13

THE DEVICE$STOP PROCEDURE

• THE CANCEL$IO PROCEDURE~ SUPPLIED BY THE 10 SYSTEM~ CALLS
THE DEVICE$STOP PROCEDURE IN THE FOLLOWING MANNER:

CALL DEVICE$STOP(IORS$P~ DUIB$P~ DDATA$P);

WHERE:

- 10RS$P IS A POINTER TO THE I/O REQUEST SEGMENT

- DUIB$P IS A POINTER TO THE DEVICE UNIT INFORMATION BLOCK

- DDATA$P IS A POINTER TO A USER REQUESTED RAM SEGMENT

7-14

EXAMPLE DEVICE$STOP PROCEDURE

~~-------------~~
STOP CURRENT I/O

RETURN

7-15

THE DEFAULT PROCEDURES

• THE I/O SYSTEM PROVIDES THREE NULL PROCEDURES THAT
THE USER MAY USE.

THEY ARE:
- "DEFAULT$INIT"

- "DEFAULT$FINISH"

- "DEFAULT$STOP"

7-16

DIT'S

• COMMON AND RANDOM ACCESS DEVICE INFORMATION TABLES ARE CREATED
BY THE SYSTEM'S PROGRAMMER DURING CONFIGURATION OF THE BASIC I/O SYSTEM.

• THE DIT BINDS THE 10 SYSTEM SUPPLIED PROCEDURE TO THE DEVICE'
DEPENDENT PROCEDURES BY DESCRIBING POINTERS TO THEM.

DIT

7-17

THE DIT STRUCTURE
(DEVICE INFORMATION TABLE)

LEVEL
PRIORITY I

STACK$SIZE
DATA$SIZE
NUM$UNITS

DEVI CE$I NIT
DEVICE$FINISH
DEVICE$START

DEVICE$STOP
DEVICE$INTERRUPT

-

(
(
(
(
(

~ USER MAY

0
0
0
0
0

APPEND MORE FIELDS

• REFER TO "GUIDE TO WRITING DEVICE DRIVERS" REFERENCE MANUAL.

7-18

UIT'S

• UNIT INFORMATION TABLES ARE CREATED BY THE SYSTEM PROGRAMMER
DURING CONFIGURATION OF THE BASIC 10 SYSTEM.

TRACK$SIZE

MAX$RETRY

RESERVED

--

7-19

. TABLES AND CALLS

--USER MAY APPEND
MORE FI ELDS

NIT$IO • DEVIcE$INIT-_______ -......
l f .. DEVICE

/ QUEUE$IO ltiEVICE$START----____ ..L

TASK~IO$SYSTEM
I

1NTERRU~$HANDLER~I~ERRUPT$TAS~DEVICE$INTERRU~

/1 CANCEL$IQ // I~DEVICE$S~'-O-P-----~~~-----lrNITI

1

I
.I

I

/
/

DUIB

INIT 10
QUEUE 10

CANCEL 10
FINISH 10

UIT
UIT

I

I I /' / I I ./ .-__ ---'
I I / FINISH$IO I / ., DEVICE$FINISH --------

I / / / /1 j / /
/ / / /1 I / /

II//., j///
1/ /'" j//

DIT
:

~ / / / /
// /

DEVICE INIT
DEV I CE START I

'" //
DEVICE INTERRUPT

DEVICE STOP

...,
I

urt+

DEVICE FINISH /

§

7-20

*******. LAB THREE (COMMON DEVICE DRIVER) *******

)BJECTIVES:

EXECUTE A GIVEN APPLICATION JOB, THAT WILL CALL UPON THE BIOS
TO COMMUNICATE WITH A LIGHT BOX

THE STUDENT WILL WRITE A COMMON DEVICE DRIVER TO SUPPORT THE
LIGHT BOX HARDWARE

CREATE SOURCE CODE:
- A SOURCE FILE NAMED DEVDRV.P86
- A SOURCE FILE NAMED LBOXDUIB.SRC
- A SOURCE FILE NAMED LBOXDUIT.SRC

STEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAMEJI/LAB3)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB3 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

• Write a common device driver for the light box
• The student will be given the nucleus, SOB, application and root
• The student will supply init, start and interrupt procedures for

the driver
• The student will build a BIOS with preconfigured ITABLE.A86 and

tOEVCF. A86

7-21

******* LAB THREE (COMMON DEVICE DRIVER) *******

STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:LBOXDUIB.SRC
WITH THE nALTER n TEXT EDITOR

- ALTER :LAB:LBOXDUIB.SRC

* THIS SOURCE FILE CONTAIN PARTIALLY WRITTEN SOURCE CODE TO THE DUIS TABLES
NEEDED TO SUPPORT THE LIGHT BOX DRIVER

STEP3:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:LBOXDUIT.SRC
WITH THE nALTERn TEXT EDITOR .

- ALTER :LAB:LBOXDUIT.SRC

* THIS SOURCE FILE CONTAIN PARTIALLY WRITTEN SOURCE CODE TO THE DIT TABLES
NEEDED TO SUPPORT THE LIGHT BOX DRIVER

STEP4:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:DEVDRV.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:DEVDRV.P86

* THIS SOURCE FILE CONTAIN PARTIALLY WRITTEN SOURCE CODE TO THE FOLLOWING
PROCEDURES:

- A LIGHT BOX DEVICE INTERRUPT PROCEDURE
- A LIGHT BOX DEVICE START PROCEDURE
- A LIGHT BOX DEVICE INIT PROCEDURE

7-2.2

******* LAB THREE (COMMON DEVICE DRIVER) *******

;TEP5:
COMPILE THE SOURCE FILE DEVDRV.P86

- PLM86 :LAB:DEVDRV.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR THE
SOURCE FILE:

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED I/:LAB:(SOURCE).OBJ"

;TEP6 :
* WE MUST NOW ADD THE OBJECT CODE THAT. WE HAVE GENERATED TO

THE BIOS SYSTEM

* THEN WE MUST BUILD A LOAD~BLE SYSTfiM THAT INCLUDES:
- THE NUCLEUS
- THE BIOS (YOU SUPPLY THE LIGHT BOX DRIVER)
- THE SOB
- THE APPLICATION JOB (SUPPLIED) THAT CALLS YOUR DRIVER
- THE ROOT JOB

* THIS IS ACCOMPLISHED THROUGH SEVERAL LINKS, LOCATES AND FINALLY
USING THE LIB86 UTILITY

* A SUBMIT FILE IS SUPPLIED
- SUBMIT :LAB:ICU.CSD

;TEP7:
* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF

PROBLEMS ARISE. THIS IS THE TIME TO GET THE LISTINGS OUT
REMEMBER THE MAP FILE IS :LAB:IOS.MP2

YOU ARE NOW READY TO "BOOTI/ YOUR NEWLY CREAtED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM
.B /I/TEAM NAME"/LAB2/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COPY THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL
-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

7-23

CHAPTER 8

BASIC 1/0 SYSTEM

Configura tion

• TABLES

• ICU86

STEPS IN BUILDING THE BASIC 1/0 SYSTEM

1) TWO CONFIGURATION FILES ARE NEEDED (ITABLE.A86 AND IDEVCF.A86)
2) ASSEMBLE EACH CONFIGURATION FILE
3) LINK AND LOCATE THE BIOS

8-1

) . ALTER I ...• A86

• ITABLE CONTAINS SYSTEM CALLS
AND FILE DRIVERS AND TABLES

• IDEVCF CONTAINS DEVICE DRIVERS
INTO TABLES (DUIBS, DITS , UITS)

• REFER TO CONFIGURATION ,MANUAL
THROUGH THE REST OF THIS CHAPTER

ITABLE.A86

IRQ_DELETE_USER
IRQ SET DEFAULT USER

IRQ_CREATE_USER j
IRQ_I NSPECT _USER

IR(SET =DEFAUL T =USER PARAMETER INTERFACE
IRQ_SET _DEFAULT_PREFIX
IRQ_ GET _DEFAULT _PREFI X

IRQ A PHYSICAL ATTACH DEVICE,- ~
IR((PHYS I CAL=DET ACH=DEV I C~ONFI GURATI ON INTERFACE

IRQ_POWER_DOWN ~
IRQ_POWER_UP ~ I POWER-FAI L INTERFACE

IRQ SET TIME~
IRQ-GET-TIME~TIME INTERFACE

INUM FILE DRIVERS(4~

IATTACH_DEVICCTASK]RIO(l29) DEFINE FILE-DRIVER GLOBAL PARAM

%TIMER_TASK]RIO(l29)

END

;DUMMY_TIMER~
; NO CREATE FALSE
; NO=TRUNCATE OTHER FEATURES
;NO_ALLOCAT~

PHYsiCAL~
N~f~EAM""""'-REQUEST & lOS FILE-DRIVER CONFI(-URATION TABLES

8-2

•

EXTRN INITIO: NEAR
EXTRN FINISHIO: NEAR
EXTRN QUEUEIO: NEAR

EXTRN
EXTRN
EXTRN

1204INIT: NEAR
1204START: NEAR
1204INTERRUPT: NEAR

IDEVCF.A86

8-3

EXTERNAL PROCEDURES
DEFINITIONS

IDEVCF. A86 (CONT I NUED-)
SPC 204 CONTROLLER UNIT 0

DEFI NE_DUIB
& 'F0' ~ NAME (14)
& ~~BH~ FILEDRIVERS
& 0FFH~ FUNCTS
& 00H~ FLAGS
& 128~ ; DEV GRANULARITY
& 0E900H;03H~ ; DEV SIZE = 256256
& 0~ ; DEVICE #
& 0~ ; UNIT #
& 0~ ; DEVICE-UNIT #
& INITIO~ ; DRIVER PROCS
& FINISHIO J
& QUEUEIOJ
& CANCELlOJ
& DINFO_204J ; DIT
& VINFO_SHUGART~ ; UIT
& 100 J UPDATE TIMEOUT
& 6~ NUMBER OF BUFFERS
& 129 INITIAL TASK PRIORITY
& >

8-4

DUIB
DEFINITIONS

IDEVCF,A86 (CONTINUED)

DINFO_2~4 RAnEV_DEV_INFO(
& 58H~ LEVEL
& 81H~ ; PRIORITY
& 209~ ; STACK SIZE
& 127~ ; DATA SIZE
& 4~ ; NUM UNITS
& I204INIT~ ; DRIVER PROCS
& DEFAULTFINISH~ ;
& I204START~ ;
& DEFAULTSTOP~ ;
& I204INTERRUPT ;
& >

DEVICE INFO TABLE

DW ~A~H BASE ADDRESS __ - ... _ EXTRA I NFO MAY BE
APPENDED HERE

UINFO_SHUGART
&26 • 128~
& 9~

& 0

& >

8-5

IDEVCF,A86 (CONTINUED)

RADDEV_UNIT _I NFO(
TRACK SIZE
MAX RETRY

204 SPECIFIC

DW 4 RESERVED • DB 035H~OOH ; FIXED INIT VALUES
DB 8 STEP RATE
DB 8 SETTLE,
DB 39H ENT LOAD

. -."
'"

8-6

UN IT I NFO TABLE

EXTRA INFO IS
APPENDED HERE

THE SUBMIT FILE (86/330 STYLE)
IOS.CSD
;ASSEMBLE THE TABLES
ASM86 IRMXIDBIOS/ITABLEA86 WORKFILES(:WORK:J:WORK:)
ASM86 IRMXIDBIOS/IDEVCF.A86 WORKFILES(:WORK:J:WORK:)
J LINK THE BIOS
LINK 86 IRMXIDBIOS/IOS.LIB(ISTART)J&

IRMXIDBIOS/ITABLE.OBJ J&
IRMXIDBIOS/IDEVCF.OBJ J&
IRMXIDBIOS/ITDR.LIB 1& -FOUND "IN MISCELLANEOUS DISKETTE
IRMXIDHI/HI.LIB(HCONTC) J&
IRMXlDBIOS/IOOPTl.LIB J&
IRMXlDBIOS/IOS.LIB J&
JRMXIDNUCLUS/RP I FC. LI B J& • COMPACT!

TO IRMXJDBIOS/IOS.LNK &
NO PUBLICS EXCEPT(RQAIOSINITTASKJRQAIOSINITERROR)

; LOCATE THE BIOS
LOCATE JRMXDBIOS/IOS.LNK &
TO IRMXIDBIOS/IOS.LNK &

SEGSIZE(STACK(0» &
ORDER(CLASSES(CODEJDATA» &
ADDRESSES{CLASSES{CODE(%l») &---.ADDRESS OF BIOS IS PASSED
NOINITCODE AS A PARAMETER

8-7

LOCATE ADDRESSES
• THE LOCATE PROGRAM GENERATES A MAP FILE CALLED

IRMXIDBIOS/IOS.M12
EXAMINING THE MAP WE OBTAIN THE ENDING ADDRESS OF THE BIOS
MEMORY MAP OF MODULE ISTART
SEGMENT MAP
START START LENGTH ALIGN NAME CLASS
00200H 00216H 0017H A (ABSOLUTE)
07190H 14E85H DCF6H W CODE CODE
14E86H 14E93E 000EF W PARAM_SEG CODE
14E94H 14E97H 0004H W CONFIG_SEG CODE
14E98H 14B9BH 0004H W POWER_SEG CODE
14E9CH 14E9FH 0004H W TIME_SEG CODE
14EA0H 14EBBH 001CH W FI LE_DRIVER_I N CODE

-FO_SEG
14F7BH 00C0H W REQ_TABLE CODE
1504BH 00D0H W lOS_TABLE CODE
1509DH 0052H W DATA DATA
150AFH 0010H G ??SEG
150B0H 0000H W STACK STACK
150B0H 0000H W MEMORY MEMORY

8-8

REMEMBER!

• ADD A %JOB MACRO TO YOUR ROOT JOB

; lOS JOB

%JOB(01 %' OBJECT DIRECTORY SIZE
0600HI 0FFFFJ I %1 POOL SIZE (MINI MAX)
0FFFFHI 0FFFFHI %' MAX OBJECTS AND TASKS
01 %' MAX JOB PRIORITY
0:01 0 %' EXCEPTION HANDLER ADDRI MODE
01 %' JOB FLAGS
1301 %' I NIT TASK PRIORITY
719:0 %' INIT TASK ENTRY ADDRESS
01 %' INIT TASK DATA SEGMENT ADDRESS
0:01 200H %' INIT TASK STACK ADDRESSI STACK SIZE
0) %' INIT TASK FLAGS

THAT'S ALL FOLKS!

8-9

THE GOOD NEWS!

• ICU WILL
-CREATE ITABLE AND IDEVCF
-CREATE A SUBMIT FILE TO ASSEMBLE

LINK AND LOCATE THE BIOS
-ADD A JOB MACRO TO THE HOOT JOB
-COMPUTE THE STARTING ADDRESS FOR

THE BIOS

8-10

******* LAB FOUR (BIOS CONFIG THROUGH lCU) *******

IBJECTIVES:

EXECUTE A GIVEN APPLICATION JOB, THAT WILL CALL UPON THE BIOS
TO COMMUNICATE WITH A LIGHT BOX

THE STUDENT WILL BUILD UPON LAB THREE TO CONFIGURE THE ALL THE
PARTS NESSESARY TO EXECUTE THAT LAB

THE STUDENT WILL USE THE INTERACTIVE CONFIGURATION UTILITY (ICU)

;TEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB3)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB3 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

8-11

******* LAB FOUR (BIOS CONFIG THROUGH ICU) *******

STEP2:

THE (ICU) IS INVOKED BY TYPING THE FOLLOWING
-ICU86 :LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN
THE INFORMATION NEEDED TO CONFIGURE OUR O.S.

WHEN THE ICU SIGN ON ENTER THE. COMMAND C , TO MODIFY THE SCREENS

STEP3:

* TRY FILLING THE SCREENS WITHOUT LOOKING AT THESE FIRST,
THEN MATCH YOUR ENTRIES TO THE ONES GIVEN HERE

* IF YOU DO NOT UNDERSTAND AN ENTRY TYPE ?
- E.G. OSP?"<cr>

* THE SCREEN FOR OUR LAB THREE CONFIGURATION FOLLOW

Hardware
(OSP) 80130 Operating System Extension (Yes/No)
(OTU) 80130 Timer Used (Yes/No)
(OPU) 80130 PIC Used (Yes/No) .
(OCD) 80130 Copyright = 1981 rYes/No)
(BL) 80130 Base Address Location (40h-OFFFFh)
(BP) 80130 Base Port Address (O-OFFFFH)
(MP) 8259A Master Port (O-OFFFFH)
(MPS) Master PIC Port Separation (O-OFFH)
(SIL) Slave Interrupt Levels (~-7/None)
(LSS) Level Sensitive Slaves rJ-7/None)
(LSP) Local Slave PICS (1-7/None)
(TP) 8253 Timer Port (O-OFFFFH)
(CIL) Clock Interrupt Level (0~7)
(CN) Timer Counter Number (0,1,2)
(CI) Clock Interval (O-OFFFFH msec)

. (CF) Clock Frequency (O-OFFFFH khz)
(TPS) Timer Port Separation (O-OFFH)
(NPX) Numeric Processor Extension (Yes/No)
(NIL) NPX Interrupt Level (Encoded)

Memory
Type RAM = low, high
Type: ROM = low, high
Type : RAM = 0500H, F7FFH

8-12

No
No
No
Yes
OOOOH
OOOOH
OOCOH
0002H
None
None
None
OODOH
0002H
OOOOH
OOOAH
04CDH
0002H
Yes
0008H

******* LAB FOUR (BIOS CONFIG THROUGH lCU) *******

Sub-systems
(UDI) Universal Development Interface
(HI) Human Interface (Yes/No)
(AL) Application Loader (Yes/No)
(EIO) Extended I/O System (Yes/No)
(BIO) Basic I/O System (Yes/No)
(DB) . Debugger (Yes/No)
(TH) Terminal Handler (Yes/No)
(CA) Crash Analyzer (Yes/No)
(UIR) UDI in ROM (Yes/No)
(CAR) Crash Analyzer in ROM (Yes/No)
(RIR) Root Job in ROM (Yes/No)

3IOS

(Yes/No)

(ASC) All Sys Calls in BIOS (Yes/No)
(ADP) Attach Device Task Priority (1-0FFH)
(TF) Timing Facilities Required rYes/No)
(TTP) Timer Task Priority (O-OFFH)
(CON) Connection Job Delete Priority (O-OFFH)
(ACE) Ability to Create Existinq Files (Yes/No)
(SMI) System Manager 10 (Yes/No)
rCUT-) Common Update Timeout (O-OFFFFH) .
(CST) Control-Sequence Translation (Yes/No)
rPMI) BIOS Pool Minimum (O-OFFFFH)
iPMA) BIOS Pool Maximum (O-OFFFFH)
~BIR) Basic I/O System in ROM (Yes/No)

Jser Devices
~OPN) Object Code Path Name (1-45 characters)

:LAB:DEVDRV.OBJ

No
No
No
No
Yes
No
No
No
No
No
No

Yes
0081H
Yes
0081H
0082H
Yes
Yes
03E8H
Yes
OCOOH
OCOOH
No

:DPN) Duib Source Code Path Name (1-45 characters)
:LAB:LBOXDUIB.SRC

:DUP) Device and Unit Source Code Path Name (1-45 characters)
:LAB:LBOXDUIT.SRC

'NO) Number of User Defined Devices (O-OFFH}" OOOlH
~NDU) Number of User Defined Device-Units (O-OFFH) 0002H

8-13

******* LAB FOUR (B I OS CONF I G THROUGH I CU) *.******

Nucleus
(ASC) All $ys Calls (Yes/No)
(PV) Parameter Validation (Yes/No)
(ROD) Root Object Directory Size (0 - OFFOh)
(MTS) Minimum Transfer Size (O-OFFFFH)
(DEH) Default Exception Handler (Yes/No/Deb/Use)
(NEH) Name of Ex Handler Object Module (1-32ths)
(EM) Exception Mode (Never/Program/Environ/All)
(NR) Nucleus in ROM (Yes/No)

Yes
Yes
0028H
0040H
Yes

Never
No

***** THIS JOB IS SUPPLIED TO CALL THE (BIOS) ****
User Jobs
(ODS) Object. Directory Size (O-OFFOH)
(PMI) Pool Minimum (20H - OFFFFH)
(PMA) Pool Maximum (20H - OFFFFH)
(MOB) Maximum Objects (1 - OFFFFH)
(MTK) Maximum Tasks (1 - OFFFFH)
(MPR) Maximum Priority (0 - OFFH)
(AEH) Address of Exception Handler (CS:IP)
(EM) Exception Mode (Never/Proq/Environ/All)
(PV) Parameter Validation (Yes/No)
(TP) Task Priority (O-OFFH)
(TSA) Task Start Address (CS:IP)
(DSB) Data Segment Base (O-OFFFFH)
(SSA) Stack Segment Address (SS:SP)
(SS) Stack Size (O-OFFFFH)
(NPX) Numeric Processor Extension Used (Yes/No)

0032H
0100H
FFFFH
FFFFH
FFFFH
OOOOH
OOOOH:OOOOH
Never
Yes
009BH
0104H:0002H
OOOOH
OOOOH:OOOOH
0200H
No

***** THIS JOB SUPPLIES THE INTERRUPT FOR THE MONITOR ****
User Jobs
(ODS) Object Directory Size (O-OFFOH)
(PMI) Pool Minimum (20H - OFFFFH)
(PMA) Pool Maximum (20H - OFFFFH)
(MOB) Maximum Obj~cts (1 - OFFFFH)
(MTK) Maximum Tasks (1 - OFFFFH)
(MPR) Maximum Priority (0 - OFFH)
(AEH) Address of Exception Handler (CS:IP)
(EM) Exception Mode (Never/Prog/Environ/All)
(PV) Parameter Validation (Yes/No)
(TP) Task Priority (O-OFFH)
(TSA) Task Start Address (CS:IP)
(DSB) Data Segment Base (O-OFFFFH)
(SSA) Stack Segment Address (SS:SP)
(SS) Stack Size (O-OFFFFH)
(NPX) Numeric Processor Extension Used (Yes/No)

8-14

OOOAH
0030H
FFFFH
FFFFH
FFFFH
OOOOH
OOOOH:OOOOH
Never
Yes
OOOOH
0080H:0002H
OOOOH
OOOOH:OOOOH
0200H
No

******* LAB FOUR (BIOS CONFIG THROUGH ICU) *******

Includes and Libraries
Path Name (1-45 Characters)
(UOF) UOI Includes and Libs

/RMX5.0/0UDI/
(HIF) Human Interface Includes and Libs

/RMX5.0/DINCLSLIBS/
(ElF) Extended I/O System Includes and Libs .

. /RMX5.0/DINCLSLIBS/
(ALF) Application Loader Includes and Libs

/RMX5.0/DLOADER/
(BIF) Basic I/O System Includes and Libs

/RMX5.0/DINCLSLIBS/
(THF) Terminal Handler and Debugger Includes and Libs

/RMX5.0/DDEBTH/
(NUF) Nucleus and Root Job Includes and Libs

/RMX5.0/DNUCLUS/
(ILF) Interface Libraries

/RMX5.0/DUTILS/
(CAF) Crash Analyzer Includes and Libs

/RMX5.0/DUDI/
(DTF) Development Tools Path Names

3enerate File Names
=ile Name (J-55 Characters)
(ROF) ROM Code File Name

(RAF) RAM Code File Name

STEP4:

/LANG/

:LAB:NONE

:LAB:RMX86

AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE

EXIT THE ICU

SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM

-SUBMIT :LAB:ICU.CSD

8-15

******* LAB FOUR (BIOS CONFIG THROUGH ICU) *******

STEPS:

YOU MUST NOW ADD THE USER JOB , AND· THE SOB TO THE SYSTEM,
USING THE LIB86 UTILITY

STEP6:

-LIB86
DELETE
ADD
DELETE
ADD
EXIT

:LAB:RMX86(STARTMOD)
:LAB:LABJOB to :LAB:RMX86
:LAB:RMX86(INT3TASKMOD)
/DINT3/INT3JOB to :LAB:RMX86

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /"TEAM NAME"/LAB3/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

8-16

CHAPTER 9

EXTENDED 1/0 SYSTEM

Configura tion

• TABLES

• ICU86

STEPS IN BUILDING THE EXTENDED I/O SYSTEM

1) THREE CONFIGURATION FILES ARE NEEDED (ETABLE.A86~EDEVCF.A86~
EJOBCF.A86)

2) ASS£~BLE EACH CONFIGURATION TABLE
3) LINK AND LOCATE THE EIOS .

EIOS I LIB

9-1

ETABLE.A86

• ETABLE CONTAINS SYSTEM CALLS
• EDEVCF CONTAINS DEVICES TO

BE LOGICALLY ATTACHED BY
EIOS

• EJOBCF CONTAINS DESCRIPTION
OF CHILD 10 JOBS

• REFER TO CONFIGURATION
MANUAL THROUGH THE REST
OF THIS CHAPTER

%RQCREATE IOJO B1<=========--.-
%RQEXITIOJOB- JOB INTERFACE

%RQLOG I CALATTACHDEV ICE =
%RQLOGICALDETACHDEVICE _--=====-'-<CONFI GURATION INTERFACE

%RQSCREATEFILE
$RQATTACHFILE
%RQDELETECONNECTION
%RQLOOKUPCONNECTION
%RQCATALOGCONNECTION
%RQUNCATALOGCONNECTION
%RQSCREATEDIRECTORY
%RQSDELETEFILE
%RQSRENAMEFILE
%RQSCHANGEACCESS
%RQSOPEN
%RQSCLOSE
%R~SOPEN

%RQSREADMOVE
%RQSWR ITEMOVE
%RQSSEEK
%RQSTRUNCATEFILE
%RQSGETFILESTATUS
%RQSGETCONNECTIONSTATUS
%RQSSPECIAL

SYNCHRONOUS INTERFACE

9-2

EDEVCF,A86

BYTE-BUCKET
%DEV_INFO_BLOCK('BB')'BB' "PHYSICAL)

TERMINAL
%DEV_INFO_BLOCK('TO)'TO' ~PHYSICAL)

; . 215 WINCHESTER - PR1AM) UNIT ~.1 DRIVE ~
%DEV_INFO_BLOCK('WD~')'IW~') NAMED) ... ---LOGICALLY ATTACH

215 WINCHESTER FLOPPY DSIDD.I UNIT ~) DRIVE ~ IW~ AS :WD~:

%DEV-INFO-BLOCK('FD~)'WFDD~"NAMED)

STREAM
%DEV-INFO-BLOCK('STREAM' ,,'STREAM' "STREAM)

LP
%DEV-INFO-BLOCK('STREA~'.I'STREAM')STREAM)
%END_DEV_CONFIG(1~24)

9-3

EJOBCF,A86

USER 'WOR~' DEFINITION

%IO_USER('WORLD'.1 0FFFFH) -.---- OWNER ID

EIOS TEST JOB

y
YOU PROVIDE ADDRESS

9-4

LOCATE ADDRESSES
• THE LOCATE PROGRAM GENERATES A MAP FILE CALLED /RMXIDEIOS/EIOS,MP2

EXAMINING THE MAP WE OBTAIN THE ENDING ADDRESS OF THE EIOS
(USED FOR LOCATING THE NEXT JOB)

MEMORY MAP OF MODULE EIOENT
SEGMENT MAP
START STOP LENGTH ALI GN NAME CLASS
!1!12!10H 00216H 0017H A (ABSOLUTE)
182B0H lD0D7H 2E28H W CODE CODE
lD0D8H lD0DFH 0008H W JOB_SEG C9DE
ID!1E0H IDl17H 0038H W SYNCHRONOUS_SE CODE

-G
IDl18H IDIIBH 0004H W CONFI GURATI ON CODE -

-SEG
IDIICH ID129H 000EH W GROUPUSER_SEG CODE
ID12AH ID133H 000AH W ALLOCATION_SEG CODE
ID134H ID143H 0010H W DATA DATA
lD150H ID150H 0000H G ??SEG
ID150H lD150H 0000H W STACK STACK
~ ID150H 0000H W MEMORY MEMORY

9-5

THE SUBMIT FILE (86/330 STYLE)

ASM86 IRMXIDEIOS/ETABLE330.A86 PRIfHURMX/DEJOS/ETABLE330.LST) &

WORKFILES(:WORK:, :loIORK:) OBJECH/RMXIDEIOS/ETABLE.OBJ)
ASM86 IRMXIDEIOS/EDEVCF330 .A86 PRINTURMX/DEIOS/EDEVCF330. LSTl &

WORKFI LES (: WORK: , : WORK:) OBJECT URMX/DEIOS/EDEVCF .OBJ)
ASM86 IRMX/DE I OS IEJOBCF33~. A8S PR I NT UR~lX/DEIOS/EJOBCF332. LST> &

WORKF I LES (: WORK: , :WORK:) OBJECT URI1XIDEIOS/EJOBCF • OBJ)

; LINK AND LOCATE EIOS INITIALIZATION CODE AND SYSTEM CALLS

L1NK86 &

IRMXIDEIOS/EIOS. L1B(EIOENTl, &

IRMXIDEI OS/ETABLE. OBJ,
IRMX/DEI OS/EDEVCF. OBJ, &

IRMXIDEIOS/EJOBCF.OBJ, &

IRMXIDEIOS/EIOS. LIB, &

IRMXIDEIOS/EPIFC.LIB, &

IR",XIDBJOS/I PI FC. LI B, &

IRMX/DNUCLUS/RPIFC. LIB &

TO IRMXIDEIOS/EIOS.LNK &

MAP PRI NT UR.'1XIDEIOS/E lOS. MPI) &

NOPUBLICS EXCEPT(RQEIOSINITIASK, RQEIOSINITERROR)

LOC86 &

IRMXIDEIOS/EIOS. LNK TO IRMXIDEIOS/EIOS &

MAP PRINTURMXIDEIOS/EIOS.MP2) &

NOLINES NOCOMMENTS NOSYMBOlS &

SEGSIZE(STACK(0» &

ORDER (CLASSES (CODE. DATA»
ADDRESSES (CLASSES (CODE(0%l»)

9-6

ROOT JOB MACRO

• REMEMBER TO ADD A %JOB MACRO TO YOUR ROOT JOB

EIOS JOB

%JOB(10 ...
0150H... 0'FFFFH ...
0'FFFFH... 0'FFFFH ...
13kL
0':0' ... 3 ...
0 ...
1513 ...
1A2B:0 ...
13 ...
0':0' ... 2513H ...
0)

• ICU86 WILL

%,' OBJECT D I RECTORY SIZE
%'POOL SIZE (MIN ... MAX)
%'MAX OBJECTS AND TASKS
%'MAX JOB PRIORITY
%'EXCEPTION HANDLER ADDR. MODE
%' JOB FLAGS
%'INIT TASK PRIORITY
%'INIT TASK ENTRY ADDRESS
%'INIT DATA SEGMENT ADDRESS
%' HUT TASK STACK ADDRESS I STACK SIZE
%'INIT TASK FLAGS

9-7

rcu 86

- CREATE ETABLE... EDEVCF AND EJOBCF
- CREATE A SUBr1IT FILE THAT INCLUDES ASSEMBLY

LINKING AND LOCATION OF THE EIOS
- ADD A JOB MACRO TO THE ROOT JOB
- COMPUTE THE STARTING ADDRESS OF THE EIOS

9-8

******* LAB FIVE (EIOS CONFIG THROUGH ICU) *******

)BJECTIVES:

EXECUTE A GIVEN APPLICATION JOB, THAT WILL CALL UPON THE EIOS TO
COMMUNICATE WITH A TERMINAL AND A FILE IN A FLOPPY

THE STUDENT WILL BUILD UPON LAB TWO TO CONFIGURE ALL THE
PARTS NESSESARY TO EXECUTE THAT LAB

THE STUDENT WILL USE THE INTERACTIVE CONFIGURATION UTILITY (ICU)

;TEPl:

. USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB2)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB2 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

START2
TASK l/

9-9

******* LAB FIVE (EIOS CONFIG THROUGH ICU) *******

STEP2:

THE (ICU) IS INVOKED BY TYPING THE FOLLOWING
-ICU86 :LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN
THE INFORMATION NEEDED TO CONFIGURE OUR O.S.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS

STEP3:

* TRY FILLING THE SCREENS WITHOUT LOOKING AT THESE FIRST,
THEN MATCH YOUR ENTRIES TO THE ONES GIVEN HERE

. * IF YOU· DO NOT UNDERSTAND AN ENTRY TYPE ?
- E.G. OSP? <Gr>

* THE SCREEN FOR OUR LAB TWO CONFIGURATION FOLLOW

Hardware
- (OSP)

(OTU)
(OPU)
(OCD)
(BL)
(BP)
(MP)
(MPS)
(SIL)
(LSS)
(LSP)
(TP)
(CIL)
(CN)
(CI)
(CF)
(TPS)
(NPX)
(NIL)

80130 Operating System Extension (Yes/No)
80130 Timer Used (Yes/No)
80130 PIC Used (Yes/No)
80130 Copyright = 1981 (Yes/No)
80130 Base Address Location (40h-OFFFFh)
80130 Base Port Address (O-OFFFFH)
8259A Master Port (O-OFFFFH)
Master PIC Port Separation (O-OFFH)
Slave Interrupt Levels (1-7/None)
Level Sensitive Slaves (1-7/None)
Local Slave PICS (1-7/None)
8253 Timer Port (O-OFFFFH)
Clock Interrupt Level (0-7)
Timer Counter Number (0,1,2)
Clock Interval (O-OFFFFH msec)
Clock Frequency (O-OFFFFH khz)
Timer Port Separation (O-OFFH)
Numeric Processor Extension (Yes/No)
NPX Interrupt Level (Encoded)

No
No
No
Yes
OOOOH
OOOOH
OOCOH
0002H
None
None
None
OODOH
0002H
OOOOH
OOOAH
04CDH
0002H
Yes
0008H·

9-10

******* LAB FIVE (EIOS CONFIG THROUGH ICU) *******

~emory
rype : RAM = low, high
rype : ROM = low, high
rype' : RAM = OSOOH, F7FFH

5ub-systems
(UDI) Universal Development Interface (Yes/No)
rHI) Human Interface (Yes/No)
(AL) Application Loader (Yes/No)
(EIO) Extended I/O System (Yes/No)
(BIO) Basic I/O System (Yes/No)
(DB) Debugger (Yes/No)
rTH) Terminal Handler (Yes/No)
(CA) Crash Analyzer (Yes/No)
rUIR) UDI in ROM (Yes/No)
rCAR) Crash Analyzer in ROM (Yes/No)
(RIR) Root Job in ROM (Yes/No)

:IOS

No
No
No
Yes
Req
No
No
No
No
No
No

rASC) All Sys Calls in EIOS Yes
rABR) Automatic Boot Device Recognition (Yes/No) No'
(DLN) Default System Device Loqical Name (1-12 characters)
rDPN) Default System Device Physical Name (1-1~ characters)
~DFD) Default System Device File Driver (Phys/Str/Named) Named
rOO) Default System Device Owners 10 (O-OFFFFH) OOOOH
~EBS) Internal Buffer Size (O-OFFFFh) 0400H
~DDS) Default 10 Job Directory Size (S-OFFOh) 0020H
~ITP) Internal EIOS Task's Priorities (O-OFFH) 0083H
:PMI) EIOS Pool Minimum (O-OFFFFH) 0180H
:PMA) EIOS Pool Maximum (O-OFFFFH) FFFFH
'EIR) Extended I/O System in ROM (Yes/No) No

9-11

******* LAB FIVE (EIOS CONFIG THROUGH ICU) *******

I/O Users
User: user name,Owner-IO (,10,10,10,10)
User: LAB2,OOOOH,FFFFH

Logical Names
Logical Name logical name,device name,file driver,owners-id

(1-12 Chars ,1-14 Chars ,Physlcal/Stream/Named, O-OFFFFH)
BB, BB, Physical, OOOOH Logical Name

Logical Name
Logical Name
Logical Name

I/O Jobs

STREAM, STREAM, Stream, OOOOH
TO, TO, Physical, OOOOH
FOO, WFDOO, Named, OOOOH

(IJD) I/O Job Default Prefix (Loqical Name)
(DU) Default User (I/O User)
(PMI) Pool Minimum (20H - OFFFFH)
(PMA) Pool Maximum -(20H - OFFFFH)
(AEH) Address of Exception Handler (CS:IP)
(EM) Exception Mode (Never/Prog/Environ/All)
(PV) Parameter Validation (Yes/No)
(TP) Task Priority (O-OFFH)
(TSA) Task Start Address (CS:IP)
(OSB) Data Segment Base (O-OFFFFH)
(SSA) Stack Segment Address (SS:SP)
(SS) Stack Size (O-OFFFFH)
(NPX) Numeric Processor Extension Used (Yes/No)

BIOS
(ASC) All Sys Calls in BIOS (Yes/No)
(AOP) Attach Device Task Priority (1-0FFH)
(TF) Timing Facilities Required (Yes/No)
(TTP) Timer Task Priority (O-OFFH)
(CON) Connection Job Delete Priority (O-OFFH)
(ACE) Ability to Create Existing Files (Yes/No)
(SMI) System Manaqer 10 (Yes/No)
(CUT) Common Update Timeout (O-OFFFFH)
(CST) Control-Sequence Translation (Yes/No)
(PMI) BIOS Pool Minimum (O-OFFFFH)
(PMA) BIOS Pool Maximum (O-OFFFFH)
(BIR) Basic I/O System in ROM (Yes/No)

9-12

TO
LAB2
0260H
FFFFH
OOOOH:OOOOH
Never
Yes
009BH
0104H:0002H
OOOOH
OOOOH:OOOOH
0300H
No

Yes
0081H
Yes
0081H
0082H
Yes
Yes.
03E8H
Yes
OCOOH
OCOOH
No

******* lAB FIVE (EIOS CONFIG THROUGH ICU) *******

Intel Terminal Driver
(Ill) Input Interrupt level (Encoded)
(OIL) Output Interrupt level (Encoded)
(UDP) USART Data Port (O-OFFFFH)
(USP) USART Status Port (O-OFFFFH)
(IRP) 8253 Inout Rate Port (O-OFFFFH)
(ICP) 8253 Input Control Port (O-OFFFFH)
(IRC) 8253 Input Counter Number (0-2)
(IRM) Input Rate Maximum (O-OFFFFFFFFH)
(ORP) 8253 Output Rate Port (O-OFFFFH)
(OCP) 8253 Output Control Port (O-OFFFFH)
(ORC) 8253 Output Counter Number (0-2)
(ORM) Output Rate Maximum (O-OFFFFFFFrH)

Intel Terminal Driver Unit Information
(NAM) Unit Info Name (1-17 Chars)
(lEM) line Edit Mode (Trans/Normal/Flush)
(ECH) Echo Mode (Yes/No)
(IPC) 'Input Parity Control (Yes/No)
(OPC) Output Parity Control (Yes/No)
(OCC) Output Control in Input (Yes/No)
(OSC) OSC Controls (Both/In/Out/Neither)
(DUP) Duplex Mode (Full/Half)
(TRM) Terminal Tyoe (CRT/Hard Copy)
(MC) Modem Control (Yes/No)
(RPC) Read Parity Checkinq (See Help/O-3)
(WPC) Write Parity Checking (See Help/0-4)
(BR) Baud Rate (O-OFFFFH)
(SN) Scroll Number (O-OFFFFH)

Intel Terminal Driver Device-Unit Information
(NAM) Device-Unit Name (1-13 chars)
(UN) Unit Number on this Device (O-OFFH)
(UIN) Unit Info Name (1-17 Chars)
(MB) Max Buffers (O-OFFH)

9-13

0068H
0078H
OOD8H
OODAH
OOD4H
OOD6H
0002H
00012COOH
OOOOH
OOOOH
OOOOH
OOOOOOOOH

to uinfo
Normal
Yes
No -
No
Yes
Both
Full
CRT
No
OOOOH
OOOOH
2580H
0012H

TO
OOOOH
to uinfo
OOOOH

******* LAB FIVE (EIOS CONFIG THROUGH ICU) *******

Intel iSBC 215/218 Driver
(IL) Interrupt Level (Encoded Level)
(ITP) Interrupt Task Priority (O-OFFH)
(WIP) Wakeup I/O Port (O-OFFFFH)

Intel iSBC 215/218 Unit Information
(NAM) Unit Info Name (1-17 Chars)
(MR) Maximum Retries (O-OFFFFH)
(CS) Cylinder Size (O-OFFFFH) .
(NC) Number of Cylinders (O-OFFFFH)
(NFH) Number of Fixed Platters/Disk (O-OFFH)
(NRH) Number of Remove Platters/Disk (O-OFFH)
(NS) Number of Sectors/Track (O-OFFFFH)
(NAC) Number of Aux. Cylinders (O-OFFH)
(SSN) Startinq Sector ~umber (O-OFFFFFFFFH) .
(BTl) Bad Track Information (Yes/No)

Intel iSBC 2I5/iSBX 218 Device-Unit Information
(NAM) Device-Unit Name (1-13 chars) -
(PFD) Physical File Driver Required (Yes/No)

0058H
0082H
OIOOH

uinfo 215fd
0009H
OOOOH
004DH
OOOOH
0002H
OOJAH
OOOOH
OOOOOOOOH
Yes

(NFD) Named File Driver Required (Yes/No)
(SDD)·Single or Double Density Disks (Single/Double)
(SDS) Single ·or Double Sided Disks fSingle/Double)
(EFI) 8 or 5 Inch Disks (8/5)
(GRA) Granularity (O-OFFFFH)
(DSZ) Device Size (O-OFFFFFFFFH)
(UN) Unit Number on this Device (O-OFFH)
(UIN) Unit Info Name (1-17 Chars)
(UDT) Update Timeout (O-OFFFFH)
(NB) Number of Buffers (nonrandom = O/rand = I-OFFFFH)
(FUP) Fixed Update (True/False)
(MB) Max Buffers (O-OFFH)

Nucleus
(ASC) All Sys Calls (Yes/No) Yes
(PV) Parameter Validation (Yes/No) Yes
(ROD) Root Object Directory Size (0 - OFFOh) 0028H
(MTS) Minimum Transfer Size (O-OFFFFH) 0040H
(DEH) Default Exception Handler (Yes/No/Deb/Use) Yes
(NEH) Name of Ex Handler Object Module (1-32chs)
(EM) Exception Mode (Never/Proqram/Environ/All) Never
(NR) Nucleus in ROM (Yes/No) . No

9-14

WFDDO
Yes
Yes
Double
Double
8
0100H
000F9700H
0008H
uinfo 215fd
0064H-
0006H
True
OOFFH

******* LAB FIVE (EIOS CONFIG THROUGH ICU) *******

Jser Jobs
:ODS)
'PMI)
~PMA)
'MOB)
'MTK)
:MPR)
:AEH)
:EM)
:PV)
:TP)
:TSA)
:DSB)
:SSA)
:SS)
:NPX)

Object Directory Size (O-OFFOR)
Pool Minimum (20H - OFFFFH)
Pool Maximum (20H - OFFFFH)
Maximum Objects (1 - OFFFFH)
Maximum Tasks (1 - OFFFFH)
Maximum Priority (0 - OFFH)
Address of Exception Handler (CS:IP)
Exception Mode (Never/Prog/Environ/All)
Parameter Validation (Yes/No)
Task Priority (O-OFFH)
Task Start Address (CS:IP)
Data Segment Base (O-OFFFFH)
Stack Seqment Address (SS:SP)
Stack Size (O-OFFFFH)
Numeric Processor Extension Used (Yes/No)

[ncludes and Libraries
)ath Name (1-45 Characters)
'UDF) UDI Includes and Li~s

/RMX5.0/DUDI/
:HIF) Human Interface Includes and Libs

/RMX5.0/DINCLSLIBS/
:EIF) Extended I/O System Includes and Libs

/RMXS.O/DINCLSLIBS/
:ALF) Application Loader Includes and Libs

/RMX5.0/DLOADER/
'BIF) Basic I/O System Includes and Libs

/RMX5.0/DINCLSLIBS/

OOOAH
0030H
FFFFH
FFFFH
FFFFH
OOOOH
OOOOH:OOOOH
Never
Yes
OOOOH
0080H:0002H
OOOOH
OOOOH:OOOOH
0200H
No

'THF) Terminal Handler and Debugger Includes and Libs
/RMX:5.0/DDEBTH/

'NUF) Nucleus and Root Job Includes and Libs
/RMX5.0/DNUCLUS/

:ILF) Interface Libraries
/RMX5.0/DUTILS/

'CAF) Crash Analyzer Includes and Libs
/RMX5.0/DUDI/

:DT~) Development Tools Path Names

lenerate File Names
~ile Name (1-55 Characters)
'ROF) ROM Code File Name

RAF) RAM Code File Name

/LANG/

:LAB:NONE

:LAB:RMX86

9-15

******* " LAB FIVE (EIOS CONFIG THROUGH ICU) *******

STEP4:

AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE

EXIT THE ICU

SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM

-SUBMIT :LAe:ICU.CSD

STEP5:

YOU MUST NOW ADD THE USER JOB AND THE SOB TO THE SYSTEM,
USING THE LIB86 UTILITY

STEP6:

-LIB86
DELETE
ADD
DELETE
ADD
EXIT

:LAB:RMX86(STARTMOD)
:LAB:LABJOB to :LAB:RMX86
:LAB:RMX86(INT3TASKMOD)
/DINT3/INT3JOB to :LAB:RMX86

.. :..

YOU ARE NOW READY TO "BOOT" "YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /"TEAM NAME"/LAB2/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B" /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

9-16

CHAPTER 10

THE IRMX 86 APPLICATION LOADER

• LOADER FUNCTION
• TYPES OF LOADABLE CODE
• SYSTEMS WITHOUT THE EIOS
• LOADER RESULT SEGMENT
• SYSTEMS WITH THE EIOS

APP LOADER FUNCTION

• THE APP LOADER MOVES CODE FROM SECONDARY STORAGE INTO RAM

o D

00 0

:J ~go
0° ~

BUBBLES ~

tINNI~ Nr. COD9

/-~-OP-i-~

APP
LOADER

10-1

NAMED FI LES

M
~--

MY
TASK

• THE APP LOADER CAN LOAD OBJECT CODE FROM ANY DEVICE
THAT SUPPORTS IRMX 86 NAMED FILES

• THE iRMX 86 O.S. IS CURRENTLY DELIVERED WITH SUPPORT
FOR THE FOLLOWING PEVICES

ISBC 204
ISBC 206
ISBC 215

ISBC 218
ISBC 220
ISBC 254

• IT WILL ALSO SUPPORT CUSTOM DEVICES~ FOR WHICH YOU
HAVE WRITTEN A DEVICE DRIVER

10-2

TYPES OF-LOADABLE CODE

• ABSOLUTE (ABS)

- CODE IS LOCATED AT AN ABSOLUTE LOCATION IN MEMORY
WITH THE LOC86 UTILITY PROGRAM

- THE USER "MUST" HAVE THIS LOCATION RESERVED
AT CONFI GURATION

- THE LOADER ALWAYS LOADS THE CODE AT THE SAME
ABSOLUTE LOCATION

- PL/M MODELS MAY BE MEDIUM J LARGE OR COMPACT

10-3

TYPES OF LOADABLE CODE (CONTINUED)

• POSITION INDEPENDENT CODE (PIC)

- CODE IS NEVER LOCATED J INSTEAD THE BIND OPTION IS USED
WHEN LINKING WITH THE LINK86 UTILITY PROGRAM

- PIC CODE CAN BE LOADED INTO ANY MEMORY LOCATION

- THE LOADER OBTAINS IRMX 86 SEGMENTS "RUNTIME" AND
LOADS PIC INTO THE SEGMENTS

- PIC IS RESTRICTED TO USE BY TASKS THAT HAVE ONLY
ONE CODE SEGMENT AND ONE DATA S£G~1ENT

- PL/M MODEL IS COMPACT ONLY

• "0 ~- -.

10-4

TYPES OF LOADABLE CODE (CONTINUED)

• LOAD TIME LOCATABLE (LTL)

- SIMILAR TO PIC CODE~ LINK WITH BIND~ CODE MAY BE
LOADED ANYWHERE IN MEMORY

- CAN BE USED BY TASKS HAVING MORE THAN ONE CODE
SEGMENT OR MORE THAN ONE DATA SEGMENT

- PL/M MODELS MAY BE MED I ur·1.. LARGE OR COMPACT

10-5

PL/M MODELS AND TYPES OF CODE

LARG~ MEDIU~COMPACT

lx!7!.
ABS LTL PIC

*LINK86 *LINK86 (BIND) *LINK86(BIND)
*LOC86 *00 NOT USE INITIAL OR DATA

TO INITIALIZE A POINTER
*USE NOINTVECTOR FOR ANY

INTERRUPT PROCEDURE

IF YOU DON'T HAVE AN 86-BASED DEVELOPMENT SYSTEM YOU CAN
GENERATE ONLY ABS CODE.

10-6

,

SYSTEMS WITHOUT THE EIOS

• THE APPLICATION LOADER LIVES IN YOUR SYSTEM AS
A FIRST LEVEL JOB.

~ /

ROOT
JOB

II

J

I
/ / / / I

SDB USER .V LOADER
JOB #1

~ I

• YOU CALL THE LOADER THROUGH RQALOAD
• THE LOADER CALLS THE BIOS TO LOAD THE CODE

10-7

LOADER SYSTEM CALLS

• R~ALOAD SYSTEM CALL
- A SYNCHRONOUS
- LOADS FROM A FILE INTO MEMORY
- THE FORM OF THE CALL IS

/

II

CALL RQALOAD (FILE$CONN~ RSP$MBOX~ @STATUS);

10-8

L /

BIOS

I

THE LOADER RESULT SEGMENT

• THE LDRS IS RETURNED TO THE RESPONSE MAILBOX AFTER THE
LOADER HAS COMPLETED THE LOAD FUNCTION.

EXCEPT$CODE
RECORD$COUNT
REC$TYPE I
NUMBER$UNDEFINED$REFS

WIT$IP
CODESEGBASE
STACKSEGBASE

STACK$OFFSET
STACKSEGBASE·

STACK$SIZE
CATASEGBASE

• THE LOADING TASK USES THE INFORATION IN THE LDRS TO
CREATE A TASK OR CREATE A JOB.

10-9

CODE ENTRY POINTS

• THE ENTRY POINT IS WHERE EXECUTION BEGINS AFTER THE
CODE I S LOADED.

• THE LOADER MUST GET THIS ENTRY POINT FROM THE LOADABLE CODE.

• THERE IS ONE CIRCUMSTANCE IN WHICH THE LOADER DOES NOT
REQUIRE AN ENTRY POINT.

- THE LOADABLE CODE IS ABSOLUTE~ AND
- THE LOADING TASK KNOWS THE ENTRY POINT~ AND
- THE LOADING TASK USES THE RQALOAD SYSTEM CALL

10-10

USING RQALOAD SYSTEM CALL

LARG~ ~I~ COMPACT

\--~
ABS LTL PIC

MAIN
-SEGSIZE(STACK(#»ON LOC86
-LDRS IS OK TO CREATE

TASK OR JOB
-USE DYNAMIC STACK~SIZE=128
-*DEBUGGER OVERFLOW

10-11

MAIN
-SEGSIZE(STACK(#» ON L C 86
-LORS IS OK TO CREATE

TASK OR JOB

PROCEDURE
-MUST BE PLM LARGE MODEL
-USE START (PUBLIC SYMBOL)

ON LOC86
-USE DYNAMIC STACK~SIZE=512
-SEGSIZE(STA K

LOADABLE PROCEDURES

• WRITE SOURCE CODE AS A PROCEDURE ONLY IF:
- CODE IS (ABS)~ WITHOUT USING NOINITCODE IN LOC86
- YOU ARE LOADING A TASK(S) AND NOT A JOB
- YOU ARE USING THE RQALOAD SYSTEM CALL

• PROCEDURE EXAMPLE
FLASHMOD:DO;
$INCLUDE (/RMXIDNUCLUS/NUCLUS,EXT)

DECLARE STATUS WORD;
FLASHTASK: PROCEDURE PUBLIC;

DO FOREVER;
OUTPUT (9CH) = 0FFH;
CALL RQSLEEP(58~ @STATUS);
OUTPUT (9CH) = 0;
CALL RQSLEEP(5D~ @STATUS);

END; I-END OF FOREVER!I
END; I*END OF TASK'· /

END; I-END OF MODULE*I

10-12

LOADABLE MAIN MODULES

• IF CODE IS LTL OR PIC THEN CODE MUST BE A MAIN MODULE

• A MAIN MODULE CONTAINS EXECUTABLE STATEMENTS AT THE 'OUTERMOST
LAYER OF THE MODULE

• WHEN LINKING OR LOCATING USE "SEGSIZE(STACK(###»" TO
ASSIGN THE APPROPRIATE STACKSIZE

• MAIN MODULE EXAMPLE
FLASHMOD: DO;

$INCLUDE(/RMXIDNUCLUS/NUCLUS.EXT)
DECLARE STATUS WORD;

DO FOREVER;
OUTPUT(09CH) = 0FFH;
CALL RQSLEEP(25~ @STATUS);
OUTPUT(09CH) = 0;
CALL RQSLEEP(25J @STATUS);

END; I*END OF FOREVER*I
END; I*END OF MODULE*I

10-13

QUIZ!

1) NAr1E TYPES OF CODE __ _

2) WHERE DOES THE LDRS COME FROM?

3) NAME ONE ADVANTAGE OF USING A PROCEDURE OVER A MAIN MODULE?

10-14

SYSTEMS WITH THE EIOS (THE EASY WAY)

ROOT
JOB

• THE USER CALLS THE LOAl)ER THROUGH RQALOADIOJOB OR RQSLOAl)IOJOB
• THE LOAl)ER CALLS THEEIOS ON YOUR BEHALF (YOU MUST BE AN IOJOB)~

TO LOAD THE CODE

10-15

SYNCHRONOUS LOAl)ER SYSTEM CALL

• RQS LOAl) I OJOB

- SYNCHRONOUS
- LOAl)S CODE INTO MEMORY~ STARTS NEW 10 JOB
- THE FORM OF THE CALL IS

JOB$TOKEN = RQSLOADIOJOB (@(10~':FD0:FLASH')~

0~0FFFFH ..
0~

0~

130~

0 ..
RSPMBOX.I

@STATUS);

10-16

I*PATH PTR*I
I*POOL LOWER~UPPER*I
I*EXCEPT HANDLER*I
1* JOB FLAGS* I
I*TASK PRIORITY*I
I*TASK FLAGS* I
I*RESPONSE MAILBOX*I

THE TERMINATION MESSAGE

• WHEN THE NEWLY CREATED 10 JOB MAKES AN RQEXITIOJOB CALL

- THE PARENT JOB RECEIVES A TERMINATION MESSAGE
- THE PARENT JOB WAITS AT THE RSPMBOX FOR THIS MESSAGE
- THE FORMAT OF THE MESSAGE IS

TERMINATION CODE
USER$FAULT$CODE

JOB$TOKEN
DATA$LENI

DATA(*) ~

• REFER TO RQCREATEIOJOB IN EIOS REFERENCE MANUAL.

10-17

RQSLOADIOJOB

COMPACT

~
PIC

MAIN

-SEGSIZE(STACK(#»

10-18

CHAPTER 11

APPLICATION LOADER

ConflQura tion

STEPS IN BUILDING THE APPLICATION LOADER

1) A CONFIGURATION FILE IS NEEDED (LCONFG.P86)
2) COMPILE (PLM86) THE CONFIGURATION FILE
3) LINK AND LOCATE THE APP LOADER

LOADER$CONFIG: DO;

DECLARE BUF$SIZE
DECLARE RDBUF$S'IZE

DECLARE LBUF$SIZE
DECLARE L$RDBUF$SIZE

11-1

LCONFG.P86

) ALTER LCONFG. P86

• REFER TO CONFIGURATION
GUIDE THROUGH THE REST
OF THIS CHAPTER

THE SIZE OF THE
LITERALLY , H~24'; 1* BYTES *1 / LOADER INTERNAL
LITERALLY 'la24'; /* BYTES *1 BUFFERS FOR OBJECT

RECORDS.
WORD PUBLIC DATA(BUF$SIZE + 11);
WORD PUBLIC DATA(RDBUF$SIZE);---. THE SIZE OF THE

INPUT BUFFERS
DECLARE$DEFAULT$MEMPOOL WORD PUBLIC DATA(2@~H); I*PAGES*I

END LOADER$CONFI G; \

L$DEFAULT$MEMPOOL SELECTS THE DYNAMIC MEMORY
(MEMPOOL) REQUIREMENT FOR THE OBJECT-FILE
BEl NG LOADED.

NOTE: THIS VALUE IS SPECIFIED IN PAGES
(1 PAGE = 16 BYTES).

11-2

THIS PARAMETER HAS NO EFFECT ON
'RQALOAD' SYSTEM CALL.

THE SUBMIT FILE (86/330 STYLE)

PU186 IRMXIDlOADER/lCONFG330.P86 COMPACT OPTIMIZE(3) NOTYPE ROM &

LOC86

OBJECT (/RMXIDLOADER/lCONFG. OBJ) PRI NT (/RMXIDlOADER/lCONFG330 .lST) WORKF I LES (: WORK: , : WORK:)

CP2 =CONFI GURATION· PARAMETER 2
A - ABSOLUTE
P - ABSOLUTE + PIC
L - ABSOLUTE + PIC + LTl
o - ABSOLUTE + PIC + lTL WITH

OVERLAYS
IRMXIDEIOS/EPI FC. LIB,
IRMXIDBIOS/I PI FC. LIB, CP 3 =CONFI GURATION PARAMETER 3
IRMXIDNUClUS/RPIFC.LIB & N - NO LOAD-JOB FUNCTION
TO IRMXIDLOADER/lOADER. LNK & A - ASYNCHRONOUS LOAD-JOB FUNCTION
PRI NT URMXIDLOADER/LOADER. MPl) & S - ASYNCHRONOUS + SYNCHRONOUS LOAD

JOB FUNCT I ON
NOPUBLICS EXCEPT<R'llOADERINITIASK, RQlOADERINITERROR)

IRMXIDlOADER/lOADER.LNK TO IRMXIDLOADER/lOADER &
MAP PR I NT URMXID LOADER/lOADER. MP2) &
NOLINES NOCOMMENTS NOSYMBOLS &
ORDER (CLASSES (CODE, DATA» &
SEGSIZE(STACK(Il), DATA(2» &
ADDRESSES (ClASSES (CODE@W-----.. LOCATE ADDRESS

·SUBMIT /RMXIDLOADER/lOADER(DATE, LOC_ADR, CP2, CP3)

11-3

LOCATE ADDRESSES

• THE LOCS6 PROGRAM GENERATES A MAP FILE CALLED
IRMXIDLOADER/LOADER,MAP

EXAMINING THE MAP WE OBTAIN THE ENDING ADDRESS OF THE LOADER
(USED FOR LOCATING THE NEXT JOB)

MEMORY MAP OF MODULE LDRINT

SEGMENT MAP

START STOP LENGTH ALI GN NAME CLASS

~~2(l(lH ~(l216H ~(l17H A (ABSOLUTE)
IDlS(lH IF432H 22E3H W CODE CODE
IF44~H IF441H ~~~2H G DATA DATA
IF4S(lH IF4S(lH (l(l(l(lH G ??SEG
IF4S(lH IF4S(lH (l(l(l(lH W STACK STACK

F4S(l IF4S(lH (l(l(l(lH W MEMORY ME~1ORY

11-4

DON'T FORGET ROOT JOB MACRO!

• ADD A %JOB MACRO TO YOUR SYSTEM ROOT JOB

• MUST BE BETWEEN lOS AND EIOS %JOB MACROS

; APP LOADER
%JOB(@.1

. 2@H.l2@H.I
513.15.1

• ICU86 WILL

13.1

13:13.113.1

13.1

130.1

ID15:@.1
13.1

13.1160.1
(3)

- CREATE LCONFG.P86

!'OBJECT DIRECTORY SIZE
%'POOL SIZE (MIN.I MAX)
%'MAX OBJECTS AND TASKS
%'MAX JOB PRIORITY
%'EXCEPTION HANDLER.I MODE
%' JOB FLAGS
%'INIT TASK PRIORITY
%'INIT TASK ENTRY
%'INIT TASK DATA SEGMENT ADDRESS
%'INIT TASK STACKADDRESS.I STACKSIZE
%' I NIT TASK FLAGS

11-5

ICU86

- CREATE A SUBMIT FILE THAT INCLUDES COMPILING
LI NKI NG AND LOCATI NG OF THE APP LOADER

- ADD A JOB MACRO TO THE ROOT JOB
- COMPUTE THE STARTING ADDRESS OF THE LOADER

11-6

******* LAB SIX (APP LOADER SYSTEM) *******

)BJECTIVES:

EXECUTE A STUDENT APP LOADER APPLICATION JOB IN AN RMX86 O.S. ENVIROMENT

INTRODUCE (EIOS) SYSTEM CALLS:
- RQSLOADIOJOB

USE ICU TO BUILD A SYSTEM CONTAINING:.
'- A NUCLEUS
- A BIOS
- AN EIOS
- AN APPLICATION LOADER

CREATE SOURCE CODE:
- A SOURCE FILE NAMED START.P86
- A SOURCE FILE NAMED LDRLAB.P86

COMPILE (PLM86), LINK, AND LOCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE EIOS TO COMMUNICATE WITH A FILE IN A FLOPPY, CONTAINING A LOADABLE
JOB, LOAD THE JOB AN EXECUTE

THE LOADABLE JOB WILL CONTAIN A SIMPLE TASK THAT FLASHES THE LIGHTS IN
THE LIGHT BOX

;TEP1:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB6)
AS THE LOGICAL NAME (:LAB:) ,

- AFILE /"TEAM NAME"/LAB6 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *
LAB 6 (PART A)

• LAI OBJECT lYE

• USE Tt£ MtPLJCATJOfI LOADER TO LOAD A MAIN IODULE (JOB). SYllCIIIDII)USLY UStNG THE nos
• THE STIJ)[IfT WI LL IE &IYEN THE NUCLEUS. tiOS. Bios. SOB
• TIE STIJ)ENT WILL S~PLY APPLICATION. IIOOT. LOADER All) WILL BUILD AND PLACE FLASH JOB

11-7

******* LAB SIX (APP LOADER SYSTEM) *******

STEP2:

BUILD A SYSTEM CONTAINING THE APPLICATION LOADER

* WE WILL USE THE SYNCHRONOUS LOADER CALL TO LOAD AN 10 JOB FROM
A FLOPPY INTO MEMORY

* SINCE THIS REQUIRES THAT OUR SYSTEM INCLUDE THE EXTENDED 10, WE
WILL USE THE SYSTEM WE ALREADY BUILT IN LAB FIVE.

THE (ICU) IS·INVOKED BY TYPING THE FOLLOWING
-ICU86 /RIIS.O/LABS/ICU.DEF TO ·:LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN
THE INFORMATION NEEDED TO CONFIGURE OUR O.S.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS

APP LOADER SCREENS:

Application Loader
(IBS) Internal Buffer Size (0 - OFFFFh)
(RBS) Read Buffer Size (0 - OFFFFh)
(LJT) Load Job Type (None!Async/Sync)
(DMP) Default Memory Pool Size (0 - OFFFFh)
(CT) Code Type (Abs/Pic/Ltl/Ovr)
(ALR) Application Loader in ROM (Yes/No)

STEP3:

0400H
0400H
Synchronous and Asyncronous
OIOOH
Overlay, LTL, PIC and Abs
No

AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE

EXIT THE ICU

SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM

-SUBMIT :LAB:ICU.CSD

11-8

******* LAB SIX (APP LOADER SYSTEM) *******

STEP4:

BUILD THE RESIDENT JOB

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:LDRLAB.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:LDRLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

CREATE A RESPONSE MAILBOX

LOAD THE JOB FROM :FDO:FLASHJOB

CREATE FILE CONNECTION TO TERMINAL */* @(4,':TO:')

OPEN TERMINAL "FILE */* (R/W) , SHARE ALL , *NOTE

WRITE MESSAGE TO TERMINAL */* MESSAGE = "FILE HAS BEEN LOADED

CLOSE TERMINAL FILE */*

** DELETE SELF ** CALL EXITIOJOB

11-9

******* LAB SIX rAPP LOADER SYSTEM) *******

STEPS:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.
FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO
THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE

* THIS APPLICATION JOB WILL BE A SECOND LEVEL JOB. A TASK WITHIN THIS
JOB IS NOT REQUIRED TO MAKE A CALL TO RQENDINIT$TASK, THE EIOS CODE
SUPPLIES A TASK THAT CALLS RQENDINIT$TASK .

* IN ORDER TO DEBUG OUR CODE BEFORE IT. "CRASHES" WE MAY WISH TO
INVOKE THE 9S7 MONITOR AT THE START OF OUR JOB'S EXECUTION.
THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSE$INTERRUPT(3)"
INSTRUCTION AT THE BEGINNING OF OUR CODE (IN OUR START TASK).

* WE WILL USE THE SAME START TASK THAT WE USED IN LAB TWO

-COpy /RIIS.0/LAB2/START.P86 TO :LAB:START.P86

11-10

******* LAB SIX (APP LOADER SYSTEM) *******

STEP6:

COMPILE THE SOURCE FILES (START.P86 AND LDRLAB.P86)

- PLM86 :LAB:START.P86
- PLM86 :LAB:LDRLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST FILE NAMED ":LAB:(SOURCELLST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).OBJII

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:START.OBJ,&
:LAB:LDRLAB.OBJ,&
/RMX5.0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5.0/DUTILS/LPIFL.LIB,&
/RMX5.0/DUTILS/RPIFL.LIB &

TO :LAB:JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:LABJOB &

SC(3) SEGSIZE(STACK(O)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(1040H1)) &
NOINITCODE &
OC(PURGE)

YOU MUST NOW ADD THE USER JOB AND THE SOB TO THE SYSTEM,
USING THE LIB86 UTILITY

-LIB86
DELETE
ADD
DELETE
ADD
EXIT

:LAB:RMX86(STARTMOD)
:LAB:LABJOB to :LAB:RMX86
:LAB:RMX86(INT1TASKMOD)
/DINT3/INT3JOB to :LAB:RMX86

* THE STUDENT MAY "OPTIONALLYII USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:JOB.CSD

11-11

******* LAB SIX (APP LOADER SYSTEM) *******

STEP6:

BUILD THE NON RESIDENT JOB

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:FLASHJOB.P86
WITH THE "ALTER" TEXT EDITOR

- ALTER :LAB:FLASHJOB.P86

* THIS SOURCE FILE IS THE NON RESIDENT TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

DO FOREVER

OUTPUT OFFH TO PORT 09CH

GO TO SLEEP FOR 1/4 SEC

OUTPUT 0 TO PORT 09CH

GOT TO SLEEP FOR 1/4 SEC

STEP?:

COMPILE THE SOURCE FILES (FLAS~JOB.P86)

- PLM86 :LAB:FLASHJOB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCE).OBJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 :LAB:FLASHJOB.OBJ, &
/RMXS.O/DUTILS/RPIFL.LIB &

TO :LAB:FLASHJOB &
NOMAP SEGSIZE(STACK(S12)) BIND

COpy THE JOB INTO A FILE ON THE FLOPPY

COpy :LAB:FLASHJOB OVER :FDO:FLASHJOB

11-12

******* LAB SIX (APP LOADER SYSTEM) *******

STEP8:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE. THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOTII YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /IITEAM NAME"/LAB6/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

.* GOOD LUCK ••• !

11-13

CHAPTER 12

iMMX 800
Multi Message eXchange Software'

• BASIC CONCEPTS

• CHANNELS

• MMX SYSTEM CALLS

• THE MMX JOB

iMMX 800

MESSAGE TRANSFER

MESSAGE SENDING AND RECEIVING MODEL

SENDING TASK

TASK ENTRY POINT

IN ITIALIZE TASK

RECEIVING TASK

TASK ENTRY POINT

INITIALIZE TASK

[
PERFORM FUNCT\~N<:::::J[WAIT FOR . MESSAGE

SEND MESSAGE-:''''' PERFORM FUNCT ION

WAIT FOR RESPONSE¢::::: SEND RESPONSE

• RMX SOFTr/ARE H1PLH1ENTS THIS r'10DEL OF INTER TASK COMMUNICATION
BETWEEN TASKS RES IDING ON THE SAME DEVICE (BOARD).

• IMMX SOFTWARE GENERALIZES THE MODEL TO ACCOMODATE INTERDEVICE
COMMUHICATION.

12-1

BASIC CONCEPTS

• DEVICE - A PROCESSOR BOARD IN A SYSTEM

• PORT - A LOGICAL DELIVERY MECHANISM WHICH UTILIZED FIFO
ORDER (QUEUE)

MULTIBUS

1'-----..,----
I
I
I
I
~E~E2_ _____ -.J

12-2

DATA BASE APPLICATION EXAMPLE

• 2 OPERATORS - 2 TERMINALS ACCESSING DATA FILES
• THE TERMINALS CONTROLLED BY RMX 80
• THE DATA BASE (-WINCHESTERH

) CONTROLLED BY RMX 86 BASIC 1/0 SYSTEM

(8085)
RMX 80 8 8

MULTI.US

(8085)
RMX 80

r - - - - - -,..-___ __

I

I 8 C~III12A
(8086)

I RMX 86 ISBC~ 215

I
I I L _________ ---I

12-3

CHANNELS

• COMMUNICATION BETWEEN DEVICES IS IMPLEMENTED USING CHANNELS
- A CHANNEL CONSISTS OF A PAIR OF ~UEUES
- ONE CHANNEL MUST BE DEFINED FOR EACH DEVICE PAIR

WHICH WILL COMMUNICATE WITH EACH OTHER

.-_....;;;Enqu=_~-.,RQDr-_.....;O":;.;;:::; .. ::: .. :.....-__ ~
8 byt .. --"

I

Source R~", Queue

~
Requ .. t Queue {

Descriptor I RQD R!E

_ lICE I
DEVICE

I'"
r---nDeq=u=_~_",RQD - _..I

I~

DEVICE

12-4

Request Queue I I
.Entrles I I , ... ------:-~-:------II

16 byt ..

CHANNELS

• A CHANNEL MUST RESIDE IN A MEMORY SEGMENT ACCESSIBLE
BY BOTH DEVICES WHICH USE THAT CHANNEL

- GLOBAL MEMORY
- DUAL PORT MEMORY

12-5

MESSAGE TRANSFER (FULL DELIVER)

• 1) MESSAGE IS COPIED ON SEND

2) MESSAGE IS COPIED ON RECEIVE

1) COl'\'
(

_X-.MIUAGI

\ ~-------CllNIJIIC MIUAGI

L CllNIJIIC lllUAGl

I
:.--------- \ ---------

...... UGMIHT

COl'\' » """Aft 2)

12-6

u.
lflIIitN

I
I

iMMX 800
MESSAGE TRANSFER

i MMX 800 MESSAGE MANAGERS) Tm I
1M EXCIWM'i

1[!;fIWS(EXCl'.w£ ..
1£SSA6E

TEXT

• HEADERS ARE NOT PASSED BETWEEN DEVICES
• MEMORY SEGMENTS FOR r-1ESSAGES ARE ALLOCATED BY

- iRMX 86 NUCLEUS
- iRMX 80/88 FREE SPACE MANAGER (PMM)

• TWO TRANSMISSION MODES ARE AVAILABLE
- TRANSPARENT

-MESSAGE RESIDES IN NON-SHARED MEMORY
-MESSAGE IS COPIED PRIOR TO TRANSMISSION
-COPIED ALSO AT RECEIPT

- NON-TRANSPARENT
-r·1ESSAGE IS ACCESS IBLE BY BOTH DEVI CES
-COpy ONLY ON RECEIPT

12-7

SUPPORTED SINGLE BOARD COMPUTERS

iRMX 80 iRMX 88 iRMX 86
OPERATING OPERATING OPERATING

SYSTEM SYSTEM SYSTEM
iSBC 80/24 iSBC 86/05 iSBC 86/05
iSBC 80/30 iSBC 86/12A iSBC 86/12A
iSBC 544 iSBC 86/14 iSBC 86/14
iSBC 569 iSBC 86/30 iSBC 86/30

iSBC 88/25 iSBC 88/25
iSBC 88/40 iSBC 88/40
iSBC 88/45 iSBC 88/45

12-8

IIfSWE
TEXT

iNf·1X 800

• COMES IN THREE VERSIONS
- OPERATION UimER i RMX 80 NUCLEUS

o*iMMX 800/80

- OPERATION UNDER i Rf1X 88 NUCLEUS

*iMMX 800/880 FOR NON-MEGABYTE SUPPORT

*iMMX 800/881 FOR MEGABYTE SUPPORT

-OPERATION UNDER iR.MX 86 NUCLEUS

*iMMX 800/86

• ALL THREE VERSIONS PRESENT IDENTICAL USER INTERFACES

12-9

SOFTWARE ~1EMORY REQUI REj~ENTS

EXECUTIVE K BYTES

iRMX 80 OPERATING SYSTEM 3.7K BYTES

iRMX 88 OPERATING SYSTH-1
128K SUPPORT 4.8K BYTES
1MB SUPPORT

"COMPACT" 5.5K BYTES
"LARGE" 6.3K BYTES

iRMX 86 OPERATING SYSTEr1 6.6K BYTES

12-10

APPLICATION EXAM~LE
• WHEN AN OPERATOR ENTERS A REQUEST AT A TERMINAL~ THE FOLLOWING

SE~UENCE OCCURS:
I. A TASK ON THE iSBC 80/24 BOARD IN THE TERMINAL BUILDS A MESSAGE

THAT MEETS iRMX 80 MESSAGE-FORMAT REqUIREMENTS AND ISSUES A
CQXFER CALL TO MMX 80. (CQXFER IS THE NAME OF THE iMMX 80
TRANSFER PROCEDURE).

2. MMX 80 TRANSFERS THE MESSAGE TO MMX 86 ON THE iSBC 86/12A BOARD.
3. MMX 86 REFORMATS THE MESSAGE AND PASSES IT TO AN iRMX 86 TASK.
4. THE I/O SYSTE~1 PERFORMS THE NECESSARY 110 OPERATIONS FOR THE TASK.
5. THE TASK PUTS THE DATA IN A MESSAGE THAT SATISFIES RMX 86 FORMAT

CONVENTIONS AND ISSUES A CQXFER CALL TO MMX 86.
6. MMX 86 TRANSFERS THE MESSAGE TO MMX 80 ON THE iSBC 80/24 BOARD.
7. MMX 80 REFORMATS THE MESSAGE TO MEET iRMX 80 FORMAT REQUIREMENTS

AND PASSES IT TO THE iRMX 80 TASK.
8. THE TASK EXTRACTS THE DATA FROM THE MESSAGE AND SENDS IT TO

THE TERM I NAL.

12-11

i MMX SYSTEM CALLS

FUNCTION NAME DESCRIPTION

FWD PORT CQFIND FIND A PORT AND RETURN A CONNECTION-ID.

ACTIVATE PORT CQACTV ACTIVATE A PORT FOR RECEIVING MESSAGES FROM
OTHER TASKS.

TRANSFER MESSAGE CQXFER TRANSFER A ~1ESSAGE TO A PORT IDENT! FI ED BY
THE CONNECTION-ID.

DEACTIVATE PORT CQDACT DEACTIVATE PORT. FURTHER MESSAGES ARE
RETURNED TO THE SENDER.

LOSE CQLOSE LOSES A CONNECTION TO A PORT.

12-12

WHAT IS MIP?

• THE MULTIBUS INTERPROCESSOR PROTOCOL (MIP) IS A SPECIFICATION
FOR A SET OF MECHANISMS AND PROTOCOLS.

• PROVIDES AN EXCHANGE OF DATA ~~ONG TASKS EXECUTING ON VARIOUS
SINGLE-BOARD COMPUTERS.

C--~---1

I -- I

It
I Non-M.P Dwice

i-
I
I

j ---
I __ I

ki,·_ .. ,_..;.... __ :-1

12-13

MESSAGE MANAGER

• FUNCTIONALITY FROM USER VIEWPOINT

PRODUCER

12-14

I
I
I·"

I
bL.,"""'-·:.-.-;;;.:..;""-'

CONSUMER

RECEIVE
THE

MESSAGE

Non·YIP Dfttee

THREE-LEVEL INTERFACE STRUCTURE

• THE VIRTWAL LEVEL~ BY WHICH USER TASKS INTERACT WITH THE MIP FACILITY.
• THE PHYSICAL LEVEL~ BY WHICH THE MIP FACILITIES ON DIFFERENT DEVICES

INTERACT WITH EACH OTHER.
• THE LOGICAL LEVEL~ WHICH TRANSLATES BETWEEN THE VIRTUAL LEVEL AND

THE PHYSICAL LEVEL.
VIRTUAL LEVEL

Inlerface
Procedures

ACTIVATE

Receiving RECEIVE

DEACTIVATE

FIND
Sending

TRANSFER

12-15

SIGNALING

LOGICAL LEVEL I PHYSICAL LEVEL

I Incoming
~I I Oueue.

I
D.vlce 0

D •• ic.1

De.ice n

Device 1

Device n

• H1MX SOFTWARE SUPPORTS FOUR DIFFERENT SIGNALING r"ECHANISMS:

- MULTIBUS INTERRUPTS
- MEMORY MAPPED INTERRUPTS
- la-PORT MAPPED IfITERRUPTS
- POLLING

• A SOFTWARE HANDSHAKE THAT USES FLAGS IS ALSO EMPLOYED FOR
MORE EFFICIENT THROllGH PUT.

- E.G. A QUEUE KNOWN TO BE EMPTY IS NOT EXAMI~IED BY IN$TASK.

12-16

THE USER APP JOB AND MMX 800/86

• A USER JOB MUST LINK TO A SET OF INTERFACE PROCEDURES

• THESE PROCEDURES ARE IN A LIB NAMED R4LINF, LIB OR R4CINF,LIB - -

I

~/_--.r/
USER APP 1

R4XINF, LIB

12-17

I MMX 800 I NAN" RMX86 ENV IRONMENT

I
/

MMX
____ ..I~

/////- ////h~

~~~ 
V;:/./.L ~~ 
~~/~~ 

W/-/",/////% 
W/-/'i Yh~ 

~~ /7~% 
M'D'.Y. tlof/l:% 

~~~ 

• r1MX SOFTWARE I S A JOB I N THE SYSTEM

• THERE IS AN MMX JOB IN EACH SYSTEM OF EACH DEVICE

·12-18

I
./ I /

USER
APP
1

....... _-1/

1
./ I /

USER
APP
2

STEPS W BU I LDI NG THE r1MX JOB

1. BUILD A CONFIGURATION FILE NAMED'R4CNFG,P86,

2, COMPILE AND PRODUCE AN OBJECT MODULE.

3. LINK THE MODULE TO A SET OF MMX LIBS.

4, LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS.

5. ENTER A "USER JOB" IN ICU86 FOR THE MMX JOB.

12-19

THE CONFI GURA TI OfJ r10DULE (R4CNFG, P86)

• THE CONFIGURATION t10DlJLE IS A SET OF STRUCTURES,

• THESE STRUCTURES CONTAIN It~FORMATION ABOUT THE CONFIGURATION
AND REQUIREMENTS OF YOUR SYSTEM,

• THESE STRUCTURES FALL INTO THREE CATEGORIES:
- SYSTEM LEVEL DECISIONS
- DEVICE LEVEL DECISIONS
- PORT LEVEL DECISIONS

12-20

FFFFH

OH

EXERCISE

• THE CONFIGURATION CHAPTER IN THE LMMX800 REFERENCE
MANUAL DESCRIBES EACH OF THE STRUCTURES IN DETAIL.

• WITH THE AID OF YOUR INSTRUCTOR FILL IN THE BLANKS
TO ACCOMODATE THE TWO RMX86 DEVICE EXAMPLE.

12-21

AN EXAMPLE CONFIGURATION FOR TWO RMX86 DEVICES

• MEMORY MAP FOR OUR EXAMPLE:

<DEVICE 0)
MEM POOL
ROOT JOB

MMX JOB
APP JOB
NUCLEUS

VECTOR TABLE

SBC 86/12A

SBC 064

SHARED
MEMORY

10000H "'--__ ..J

PRIVATE

12-22

<DEVICE 1)

FFFFH MEM POOL
ROOT JOB

MMX JOB
APP JOB
NUCLEUS

OH VECTOR TABLE

SBC 86/12A

PRIVATE

EXAMPLE CONFIGURATION FOR TWO RMX86 DEVICES

• SEND/RECEIVE ARCHITECTURE

RMX 86

I-~ M -t---+-+-------l._
~---' M

X I CONSUMER I~:-+- -4----+--+-----f-

12-23

EXERCISE (CONTINUED)

DECLARE CQDVCS BYTE PUBLIC
DATA (__);

DECLARE CQSKTS BYTE PUBLIC
DATA (__);

DECLARE CgPRTS BYTE PUBLIC
DATA (__);

DECLARE CQMDLY WORD PUBLIC
DATA (__);

DECLARE CQITWT WORD PUBLIC
DATA (__);

12-24

E:) • REQUEST QUEUE

X • iMMX PORT

RMX 86

EXERCISE (CONTINUED)

DECLARE DSDT (___) DSD$ENTRY$TYPE
PUBLIC
DATA (_-'--_

---);

DECLARE LPT$ROM (___) LPT$ROM$ENTRY$TYPE
PUBLI C
DATA ();

DECLARE. LPT$RAM
PUBLIC;

___) LPTRAMENTRYHYPE

12-25

EXERCISE (CONTINUED)

DECLARE DCM$ROM (___) DM$ROM$ENTRY$TYPE
PUBLIC
DATA (__ _

---);
DECLARE DCM$RAM (___) DM$RAM$ENTRY$TYPE

PUBLIC;

DECLARE CQSGLY WORD PUBLIC
DATA ();

DECLARE C~IDPD WORD PUBLIC
DATA ();

12-26

EXERCISE (CONTINUED)

DECLARE SFT
PUBLIC

___) SFT$ENTRY$TYPE

DATA (__ _

((J((JCEH~

a((J((J3H

((J((JH~

((J((J((J((JH~

((J((J((J((JH~

((J((J((JH~

((J((J((J((JH~

11((JI1((JH);

DECLARE C~IDSS BYTE PUBLIC
DATA ();

DECLARE IDST (______) IDS$ENTRY$TYPE
PUBLIC
DATA ();

12-27

EXERCISE (CONTINUED)

DECLARE CQPLHS BYTE PUBLIC
DATA ();

DECLARE PLHTBL (___) POOL$ENTRY$TYPE PUBLI C;

DECLARE CQBLKS BYTE PUBLIC
DATA ();

DECLARE BLKTBL
PUBLIC
DATA (__ _

---);

BLOCK$ENTRY$TYPE

12-28

******* LAB SEVEN (MMX800/86 SYSTEM) PART A *******

3BJECTIVES:

EXECUTE A STUDENT MMX800/86 APPLICATION JOB IN AN RMX86 O.S. ENVIROMENT

INTRODUCE (MMX800/86) SYSTEM CALLS:
- CQ$ACTV
- CQ$FIND
- CQ$XFER

CREATE SOURCE CODE:
- A SOURCE FILE NAMED START.P86
- A SOURCE FILE NAMED MMXLAB.P86

COMPILE (PLM86), LINK, AND LOCATE AN APPLICATION JOB, THAT WILL CALL UPON
THE MMX800/86 TO COMMUNICATE WITH AN EXTERNAL DEVICE
(THE TRUTH IS THAT WE WILL ONLY USE ONE DEVICE, AND THAT DEVICE WILL

COMMUNICATE WITH ITSELF .••)

STEPl:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LAB7)
AS THE LOGICAL NAME (:LAB:)

- AFILE /"TEAM NAME"/LAB7 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

MMX
800

(root)

Light Box

• USE MMX 800/86 SYSTEM CALLS
• COMMUNICATION TO A LIGHT BOX

(SOB)

• SIMULATE INTEROEVICE COMMUNICATION

12-29

******* LAB SEVEN (MMX800/86 SYSTEM) PART A *******

STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:MMXLAB.P86
WITH THE "ALTER n TEXT EDITOR

- ALTER :LAB:MMXLAB.P86

* THIS SOURCE FILE IS THE APPLICATION TASK THAT CONFORMS TO THE FOLLOWING
FLOWCHART

ACTIVATE THE PODUCER PORT

FIND THE CONSUMER CONNECTION

DO FOREVER

CREATE A SEGMENT

1ST BYTE IN SEGMENT = READ SWITCHES PORT 9CH

2ND BYTE IN SEGMENT = READ SWITCHES PORT 9DH

TRANSFER MESSAGE (SEGMENT) TO OTHER DEVICE

WAIT AND RECEIVE MESSAGE (SEGMENT) FROM OTHER DEVICE
-------------------------~--

LIGTHS PORT 9CH = 1ST BYTE IN MESSAGE RECEIVED ..

LIGTHS PORT 9DH = 2ND BYTE IN MESSAGE RECEIVED
---- --'--

* DELETE SELF **

12-30

******* LAB SEVEN (MMX800/86 SYSTEM) PART A· *******

STEP3:

* ROOT JOBS ABSOLUTELY ADDRESS THE STARTING LOCATION OF THE STUDENT'S
JOB CODE. THE ENTRY POINT MAY VARY IF INTERNAL PROCEDURES OR
CHARACTER CONSTANTS ARE USED.
FOR THIS REASON IT IS ADVISABLE TO CREATE AND LINK A START TASK TO
THE REST OF THE APPLICATION CODE TO FIX THE ENTRY POINT'S OFFSET
INTO THE CODE

* THIS APPLICATION JOB WILL BE A FIRST LEVEL JOB, THIS REQUIRES
THAT A TASK WITHIN THIS JOB MAKE A CALL TO RQENDINIT$TASK
TO RESUME THE ROOT TASK

* "IN ORDER TO DEBUG OUR CODE BEFORE IT "CRASHES" WE MAY WISH TO
INVOKE THE 957 MONITOR AT THE START OF OUR JOB'S EXECUTION.
THIS CAN EASILY BE ACCOMPLISHED BY PLACING A "CAUSE$INTERRUPT(3)"
INSTRUCTION AT THE BEGIN~ING OF OUR CODE (IN OUR START TASK).

* WE WILL USE THE SAME START TASK THAT WE USED IN LAB TWO

-COpy /RII5.0/LAB2/START.P86 TO :LAB:START.P86

12-31

•

******* LAB SEVEN (MMX800/86 SYSTEM) PART A *******

STEP4:

COMPILE THE SOURCE FILES (START.P86 AND MMXLAB.P86)
- PLM86 :LAB:START.P86
- PLM86 :LAB:MMXLAB.P86

* IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* IF COMPILATION IS SUCCESFUL THE COMPILER WILL CREATE FOR EACH OF
THE SOURCE FILES:

- A LIST FILE NAMED ":LAB:(SOURCE).LST II

- AN OBJECT FILE NAMED ":LAB:(SOURCE).OBJ"

LINK THE OBJECTS WITH THE INTERFACE LiBRARIES NEEDED (LARGE)

LINK86 :LAB:/START.OBJ,&
:LAB:/MMXLAB.OBJ,~
/MMX86/R4LINF.LIB,&
/RMX5.0/DUTILS/EPIFL.LIB,&
/RMX5.0/DUTILS/IPIFL.LIB,&
/RMX5.0/DUTILS/RPIFL.LIB &

TO :LAB:/JOB.LNK &
NOMAP

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:/JOB.LNK &
TO :LAB:/LABJOB &

SC(3) SEGSIZE(STACK(O)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSESrClASSESrCODE(1040H))) &
NOINITCODE &
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER PRECONFIGURED
PARTS OF OUR SYSTEM

LIB86
DELETE :LAB:RMX86(STARTMOD)
ADD :LAB:LABJOB to :LAB:RMX86
EXIT

* :LAB:RMX86 IS A "GIVEN" FILE THAT CONTAINS:
- A PRECONFIGURED NUCLEUS
- A PRECONFIGURED MMX800/86
- A PRECONFIGURED ROOT JOB
= A PRECONFIGUREO SOB

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK, LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:JOB.CSD

12-32

******* LAB SEVEN (MMX800/86 SYSTEM) PART A *******

;TEP5 :

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE. THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO "BOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION,
THEN:

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW S¥STEM

.B /"TEAM NAME"/LAB7/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG ·MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

12-33

******* LAB SEVEN (MMX800/86 SYSTEM) PART B *******

OBJECTIVES:

EXECUTE A STUDENT MMX800/86 APPLICATION JOB IN AN RMX86 O.S. ENVIROMENT

LEARN HOW TO BUILD A CONFIGURATION FILE , AND AN MMX86 JOB TO REPLACE THE
. ONE GIVEN IN THE PREVIOS LAB (LAB SEVEN PARr A)

CREATE SOURCE CODE:
- A SOURCE FILE NAMED R4CNFG.P86

STEPl:

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (!"TEAM NAME"/LAB7)
AS THE LOGICAL NAME (:LAB:)

- AFILE /IITEAM NAME"/LAB7 AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

STEP2:

MODIFY A SOURCE FILE (PARTIALLY SUPPLIED FOR YOU) NAMED :LAB:R4CNFG.P86
WITH THE "ALTERII TEXT EDITOR

- ALTER :LAB:R4CNFG.P86

* THIS SOURCE FILE IS THE MMX86 CONFIGURATION FILE

******* LAB SEVEN (MMX800/86 SYSTEM) PART B *******

;TEP3 :

COMPILE THE SOURCE FILE (R4CNFG.P86)

- PLM86 :LAB:R4CNFG.P86

. * IF ANY ERRORS OCCURRED DURING COMPILATION , YOU MUST FIX AND
RECOMPILE BEFORE CONTINUING

* ELSE THE FOLLOWING FILES WILL BE CREATED

- A LIST FILE NAMED ":LAB:(SOURCE).LST"
- AN OBJECT FILE NAMED ":LAB:(SOURCELOBJ"

LINK THE OBJECTS WITH THE INTERFACE LIBRARIES NEEDED (LARGE)

LINK86 /MMX86/R4DRVR.LIB(MBEGIN) ,&
:LAB:R4CNFG.OBJ,&
/MMX86/R4DRVR.LIB ,&
/MMX86/R4XMGR.LIB ,&
/MMX86/R4957P.LIB ,&
/MMX86/R4PMM.LIB ,&
/MMX86/R4UTIL.LIB ,~
/RMX5.0/DUTILS/RPIFC.LIB &

TO :LAB:JOB.LNK &
NOMAP NOTYPE

LOCATE THE LINKED MODULE TO AN ABSOLUTE ADDRESS

LOC86 :LAB:JOB.LNK &
TO :LAB:MMXJOB &

SC(3) SEr,SIZE(STACK(O)) &
ORDER(CLASSES(CODE,DATA,STACK)) &
ADDRESSES(CLASSES(CODE(3000HY)) &
NOINITCODE &
OC(PURGE)

AND FINALLY ADD THE LOCATED MODULE TO THE OTHER 'PRECONFIGURED
PARTS OF OUR SYSTEM

.IB86
)ELETE :LAB:RMX86(MBEGIN)
~DD :LAB:MMXJOB to :LAB:RMX86
:XIT

* THE STUDENT MAY "OPTIONALLY" USE A "GIVEN" SUBMIT FILE THAT WILL
COMPILE , LINK , LOCATE AND ADD THE FINAL MODULE TO THE SYSTEM

- SUBMIT :LAB:MMXJOB.CSD

12-35

******* LAB SEVEN (MMX800/86 SYSTEM) PART B *******

STEPS:

* A LOCATE MAP AND SOURCE LISTING WILL HELP YOU DEBUG YOUR CODE IF
PROBLEMS ARISE. THIS IS THE TIME TO GET THE LISTINGS OUT

YOU ARE NOW READY TO nBOOT" YOUR NEWLY CREATED SYSTEM

IF YOUR EXECUTION VEHItLE IS THE SAME AS THE DEVELOPMENT STATION
THEN:

-PRESS INTERRUPf ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /nTEAM NAME"/LAB7/RMX86

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION
THEN:

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY.
(COpy :LAB:RMX86 OVER :FDO:RMX86)

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

-BOOT THE NEW SYSTEM

.B /RMX86

* THE 957 DEBUG MONITOR IS PRESENT AND CAN BE USED TO DEBUG
YOUR CODE IF NESSESARY. PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL

12-36

CHAPTER 13

HUMAN INTERFACE
• COMMANDS

• SYSTEM CALLS

• THE RESIDENT USER

• DEFINITION FILES

PERIPHERAL

HUMAN INTERFACE COMMANDS'

RMX BOX

~
LJ

• COMMANDS ARE PROGRAMS (COpy J RENA~lE ETC.)
• THESE PROGRAMS ARE JOBS CREATED BY THE H.I.
• LOADED BY THE HUMAN INTERFACE UPON OPERATOR'S REQUEST.

13-1

INTEL PROVIDES A SET OF COMMANDS

ATTACHDEVICE
ATTACHFILE
BACKUP
COpy
CREATEDIR
DATE
DEBUG
DELETE
DETACHDEVI CE
DETACHFILE

DIR
DISKVERIFY
DOWN COpy
FORMAT
INITSTATUS

JOB DELETE
LOCK
PERMIT
RENAME
RESTORE
SUBMIT
SUPER
TIME
UPCOPY
VERSION

• A COMPLETE DESCRIPTION OF THESE COMMANDS ARE FOUND IN THE
iRMX 86 OPERATOR'S MANUAL.

13-2

SYSTEM CALLS

• A SET OF CALLS ARE AVAILABLE TO AID IN THE CREATION OF CUSTOM
COMMANpS.

CGETINPUT$CONNECTION
CGETOUTPUT$CONNECTION
CGETCHAR
CGETINPUT$PATHNAME
CGETPARAMETER
CGETOUTPUT$PATHNAME
CSETPARSE$BUFFER

CGETCOMMAND$NAME
C$FORMAT$EXCEPTION
C$SEND$CO$RESPONSE
C$SEND$EO$RESPONSE·
C$CREATE$COMMAND$CONNECTION
C$DELETE$COMMAND$CONNECTION
C$SEND$COMMAND

• A COMPLETE DESCRIPTION OF THESE H.I. SYSTEM CALLS ARE FOUND IN
THE iRMX86 HUMAN INTERFACE REFERENCE MANUAL.

13-3

HUMAN INTERFACE INITIAL PROGRAM

• INTEL PROVIDES THE DEFAULT RESIDENT INITIAL PROGRAM.

• THIS PROGRAM IS A STANDARD COMMAND LINE INTERPRETER.

• YOU MAY PROVIDE YOUR OWN INITIAL PROGRAM DURING CONFIGURATION.

13-4

THE RESIDENT USER

• THE RESIDENT USER MAY BE:
-THE ONLY USER IN THE SYSTEM
-THE FIRST USER IN A MULTI-ACCESS SYSTEM

• RESIDENT USER IS DEFINED DURING CONFIGURATION BY:
-TERMINAL DEVICE NAME
-MAX TASK PRIORITY
-USER ID
-INITIAL PROGRAM
-DEFAULT PREFIX
-POOL SIZE

13-5

MULTI-ACCESS USER DEFINITION

• OTHER USERS ARE DEFINDED IN FILES THAT DESCRIBE THE
OPERATOR AND HIS TERMINAL.

• THE PATHNAMES FOR THESE FILES ARE:
CONFI G/TERMI NALS
CONFI G/USER/ID#

(TERMINAL DEFINITION FILE)
(USER DEFINITION FILE)

• ID# IS THE ACTUAL ID NUMBER FOR THAT PARTICULAR USER
-E.Gi CONFIG/USER/~~82

• IF THESE FILES DO NOT EXIST~ THE HUMAN INTERFACE WILL
COME UP IN SINGLE-ACCESS MODE.

13-6

TERMINAL DEFINITION FILE

• # OF TERMINALS
• DEVICE - NAME

• USER - 10
• PARTITION - SIZE
• MAX - PRIORITY
• UNIT - PATHNAME

• USER-ID
• PASSWORD
• DEFAULT-PARTITION
• MAX-PARTITION
• MAX-PRIORITY
• DEFAULT-PREFIX
• INIT-PATHNAME

:SD:CONFIG/TERMINALS
EXAMPLE OF FOUR TERMINALS

4
TL42 ... 9~ <CR>
HL65535 ... 80 ... 210 ... :SD:SPECLI <CR>
T3 ... 85 ... 64 ... 220 <CR >
T2 ... 85 ... 64 ... 225 <CR>

USER DEFINITION FILE

:SD:CONFIG/USER/65535
EXAMPLE OF ONE USER

65535 ... PASS ... 64 <CR>
120 <CR>
190 <CR>
: SD: USER/65535 <CR>

• A COMPLETE DESCRIPTION OF THESE FILES IS FOUND IN THE IRMX 86
CONFIGURATION GUIDE.

13-8

******* LAB EIGHT (H.I. CONFIG THROUGH ICU) *******

jBJECTIVES:

THE STUDENT WILL USE THE INTERACTIVE CONFIGURATION UTILITY (ICU)
TO CREATE A SINGLE ACCESS SYSTEM

THIS SYSTEM WILL CONTAIN

STEP1.:

,- A NUCLEUS JOB
- A BIOS JOB
- A EIOS JOB
- A LOADER JOB
- A HUMAN INTERFACE JOB

USE THE ATTACH$FILE COMMAND TO ATTACH THE DIRECTORY NAMED (/"TEAM NAME"/LABB)
AS THE LOGICAL NAME (:LAB:)

- AFILE /IITEAM NAME"/LABB AS :LAB:

* FOR THE REST OF THIS LAB WE WILL USE THIS LOGICAL NAME *

13-9

******* LAB EIGHT (H.I. CONFIG THROUGH ICU) *******

STEP2:

THE (ICU) IS INVOKED BY TYPING THE FOLLOWING
-ICU86 :LAB:ICU.DEF

* WHERE ICU.DEF IS THE NAME OF THE FILE WE HAVE CHOSEN TO CONTAIN.
THE INFORMATION NEEDED TO CONFIGURE OUR O.S.

WHEN THE ICU SIGN ON ENTER THE COMMAND C , TO MODIFY THE SCREENS

STEP3:

* TRY FILLING THE SCREENS WITHOUT LOOKING ~T THESE FIRST,
THEN MATCH YOUR ENTRIES TO THE ONES GIVEN HERE

* IF YOU DO NOT UNDERSTAND AN ENTRY TYPE ?
- E.G. OSP?<cr>

* SOME OF THE SCREENS NEEDED FOR OUR LAB EIGHT CONFIGURATION FOLLOW

Type : RAM = 0104H, 24FFH
Type : RAM = 26B6H, F7FFH

Human Interface
(ICL) Initial Command Line Size (O-OFFFFH) OIOOH
(CNM) Command Name Length (0-255) 0030H
(SYS) System Directory (1-45 characters)

:SD:SYSTEM
(DRP) Default Resident Initial Program (Yes/No) Yes
(RIP) Resident Initial Program (1-45 characters)

Default
(CON) Configuration Device Name (1-14 chars) :SD:
(PMI) Human Interface Pool Minimum (O-OFFFFH) 0260H
(PMA) Human Interface Pool Maximum (O-OFFFFH) FFFFH
(HIR) Human Interface in ROM (Yes/No) No

HI Jobs
(MIN) Jobs Minimum Memory (O-OFFFFH pages) 0200H
(MAX) Jobs Maximum Memory (O-OFFFFH pages) OOOOH
(NPX) Numeric Processor Extension Used (Yes/No) Yes

Resident User
(TON) Terminal Device Name (1-12 Characters) TO
(MTP) Maximum Task Priority (O-OFFH) OOAOH
(UID) User 10 Number (O-OFFFFH) OOOOH
(MIN) Minimum Memory Required (O-OFFFFH) 1000H
(MAX) Maximum Memory Required (O-OFFFFH) FFFFH
(IPP) Initial-Program Pathname (RESIDENT/1-45 Characters)

RESIDENT
(DEF) Default Directory (1-45 characters)

:SD:USER

13-10

******* LAB EIGHT (H.I. CONFIG THROUGH ICU) *******

Prefixes
Prefix
Prefix
Prefix
Prefix
Prefix
Prefix

1-45 characters
.$. . .
:PROG:
:SYSTEM:
:LANG:

HI Logical Names
Logical Name: logical name,path name

(1-12 Chars ,1-4S-Chars)

Logical Name
Logical Name
Logical Name

EIOS

WORK, :SD:USER/WORK
LANG, :SD:LANG
PROG, :SD:USER/PROG

(ASC) All Sys Calls in EIOS
(ABR) Automatic Boot Device Recognition (Yes/No)
(DLN) Default System Device Logical Name (l-J~ characters)
(DPN) Default System Device Physical Name (1-12 characters)
(DFD) Default System Device File Driver (Phys/Str/Named)
(DO) Default System Device Owners 10 (O-OFFFFH)
(EBS) Internal Buffer Size (O-OFFFFh)
(DDS) Default 10 Job Directory Size (5-0FFOh)
(ITP) Internal EIOS Task's Priorities (O-OFFH)
(PMI) EIOS Pool Minimum (O-OFFFFH)
(PMA) E lOS' Poo 1 Max imum (O-OFFFFH) .
(EIR) Extended I/O System in ROM (Yes/No)

Req
Yes
SD
IWO
Named
OOOOH
0400H
0020H
0083H
0180H
0180H
No

Loqical Names
Logical Name logical name,device name,file driver,owners-id

(1-12 Chars ,1-14 Chars ,Physical/Stream/Named, O-OFFFFH)
Logical Name BB, BB, Physical, OOOOH
Logical Name STREAM, STREAM, Stream, OOOOH
Logical Name : FDO, WFDDO, Named, FFFFH

Intel Terminal Driver
(IlL) Input Interrupt Level (Encoded)
(OIL) Output Interrupt Level (Encoded)
(UDP) USART Data Port (O-OFFFFH)
(USP) USART Status Port (O-OFFFFH)
(IRP) 8253 Input Rate Port (O-OFFFFH)
(ICP) 8253 Input Control Port (O-OFFFFH)
(IRC) 8253 Input Counter Number (0-2)
(IRM) Input Rate Maximum (O-OFFFFFFFFH)
(ORP) 8253 Output Rate Port (O-OFFFFH)
(OCP) 8253 Output Control Port (O-OFFFFH)
(ORC) 8253 Output Counter Number (0-2)
(ORM) Output Rate Maximum (O-OFFFFFFFFH)

Intel iSBC 215/218 Driver
(IL) Interrupt Level (Encoded Level)
(ITP) Interrupt Task Priority (O-OFFH)
(WIP) Wakeup I/O Port (O-OFFFFH)

0068H
0078H
00D8H
OODAH
00D4H
OOD6H
0002H
00012COOH
OOOOH
OOOOH
OOOOH
OOOOOOOOH

0058H
0082H
OIOOH

13-11

******* LAB EIGHT (H.I. CONFIG THROUGH ICU) *******

Intel iSBC 215/218 Unit Information
(NAM) Unit Info Name (1-17 Chars) uinfo_215gen
(MR) Maximum Retries (O-OFFFFH) 0OO9H
(CS) Cylinder Size (O-OFFFFH) OOOOH
(NC) Number of Cylinders (O-OFFFFH) 0OO1H
(NFH) Number of Fixed Platters/Disk (O-OFFH) 0OO1H
(NRH) Number of Remove Platters/Disk (O-OFFH) OOOOH
(NS) Number of Sectors/Track (O-OFFFFH) OOOCH
(NAC) Number of Aux. Cylinders (O-OFFH) OOOlH
(SSNl Startinq Sector Number (O-OFFFFFFFFH) OOOOOOOOH
(BTl Bad Track Information (Yes/No) Yes

Intel iSBC 215/218 Unit Information
(NAM) Unit Info Name (1-17 Chars) uinfo ?15w
(MR) Maximum Retries (O-OFFFFH) 0OO9H

~~~~ Cylinder Size (O-OFFFFH) OOOOH 
Number of Cylinders (O-OFFFFH) 0208H 

(NFH) Number of Fixed Platters/Disk (O-OFFH) 0OO5H 
~ NRH) Number of Remove Platters/Disk (O-OFFH) OOOOH 
,NS) Number of Sectors/Track (O-OFFFFH) . OOOCH 
(NAC) Number of Aux. Cylinders (O-OFFH) OOOAH 
~SSN) Starting Sector Number (O-OFFFFFFFFH) OOOOOOOOH 
BTl) Bad Track Information (Yes/No) Yes 

Intel iSBC 215/218 Unit Information 
. (NAM) Unit Info Name (1-17 Chars) uinfo_215pt 

(MR) Maximum Retries (O-OFFFFH) 0OO9H 
(CS) Cylinder Size (O-OFFFFH) OOOOH 
(NC) Number of Cylinders (O-OFFFFH) 01D2H 
( NFH) Number of Fixed Platters/Disk (O-OFFH) 0OO3H 
(NRH) Number of Remove Platters/Disk (O-OFFH) OOOOH 
(NS) Number of Sectors/Track (O-OFFFFH) OOOCH 
(NAC) Number of Aux. Cylinders (O-OFFH) 0OO6H 
~SSN) Start i ng Sector Number. (O-OFFFFFFFFH) OOOOOOOOH 
BTl) Bad Track Information (Yes/No) Yes 

Intel iSBC 215/218 Unit Information 
(NAM) Unit Info Name (1-17 Chars) uinfo 215f 
(MR) Maximum Retries (O-OFFFFH) 0OO9H-
(CS~ Cylinder Size (O-OFFFFH) OOOOH 

. (NC Number of Cylinders (O-OFFFFH) 004DH 
(NFH) Number of Fixed Platters/Disk (O-OFFH) OOOOH 
(NRH) Number of Remove Platters/Disk (O-OFFH) 000lH 
(NS) Number of Sectors/Track (O-OFFFFH) 00lAH 
(NAC) Number of Aux. Cylinders (O-OFFH) OOOOH 
(SSN) Starting Sector Number (O-OFFFFFFFFH) OOOOOOOOH 
(BTl) Bad Track Information (Yes/No) Yes 

13-12 



******* LAB EIGHT (H.I. CONFIG THROUGH ICU) ******* 

Intel iSBC 215/218 Unit Information 
(NAM} Unit Info Name (1-17 Chars) 
(MR) .Maximum Retries (O-OFFFFH) 
(CS) Cylinder Size (O-OFFFFH) 
(NC) Number of Cylinders (O-OFFFFH) 
(NFH) Number of Fixed Platters/Disk (O-OFFH) 
(NRH) Number of Remove Platters/Disk (O-OFFH) 
(NS) Number of Sectors/Track (O-OFFFFH) 
(NAC) Number of Aux. Cylinders (O-OFFH) 
(SSN) Starting Sector Number (O-OFFFFFFFFH) 
(BTl) Bad Track Information (Yes/No) 

Intel 
(NAM) 

iSBC 215/iSBX 218 Device-Unit Information 
Device-Unit Name (1-13 chars) 
Physical File Driver Required (Yes/No) 
Named File Driver Required (Yes/No) 

uinfo 215fd 
0009H-
OOOOH 
004DH 
OOOOH 
b002H 
001AH 
OOOOH 
OOOOOOOOH 
Yes 

(PFD) 
(NFD) 
(SOD) Single or Double Density Disks (Single/Double) 

Single or Double Sided Disks (Single/Double) 
8 or 5 Inch Disks (8/5) 
Granularity (O-OFFFFH) 
Device Size (O-OFFFFFFFFH) 

WO 
Yes 
Yes 
Single 
Single 
8 
0400H 
00000400H 

(SDS) 
(EFI) 
(GRA) 
(DSZ) 
(UN) 
(UIN) 
(UDT) 
(NB) . 

Unit Number on this Device (O-OFFH) 
Unit Info Name (1-17 Chars) 

- OOOOH 

(FUP) 
(MB) 

Intel 
(NAM) 
(PFD) 
( NFD) 
(SOD) 
(SDS) 
(EFI) 
(GRA) 
(DSZ) 
(UN) 
(UIN) 
(UDT) 
(NB) 
(FUP) 
(MB) 

Update Timeout (O-OFFFFH) 
Number of Buffer~ (nonrandom = O/rand = 1-0FFFFH) 
Fixed Update (True/False) 
Max Buffers (O-OFFH) 

iSBC 215/iSBX 218 Device-Unit Information 
Device-Unit Name (1-13 chars) 
Physical File Driver Required (Yes/No) 
Named File Driver Required (Yes/No) 
Single or Double Density Disks (Single/Double) 
Single or Double Sided Disks (Single/Double) 
8 or 5 Inch Disks (8/5) 
Granularity (O-OFFFFH) 
Device Size (O-OFFFFFFFFH) 
Unit Number on this Device (O-OFFH) 
Unit Info Name (1-17 Chars) 
Update Timeout (O-OFFFFH) 
Number of Buffers (nonrandom = O/rand = 1-0FFFFH) 
Fixed Update (True/False) 
Max Buffers (O-OFFH) 

13-13 

uinfo 215qen 
0064H- . 
0006H 
True 
OOFFH 

IWO 
Yes 
Yes 
Single 
Single 
8 
0400H 
OlDE2000H 
OOOOH 
uinfo 215w 
0064H-
0006H 
True 
OOFFH 



******* LAB EIGHT (H.I. CONFIG THROUGH ICU) ******* 

Intel iSBC 215/iSBX 218 Device-Unit Information 
(NAM) Device-Unit Name (1-13 chars) 
(PFD) Physical File Driver Required (Yes/No) 
(NFD) Named File Driver Required (Yes/No) 
(SOD) Single or Double Density Disks (Single/Double)' 
(SDS) Single or Double Sided Disks (Sinqle/Double) 
(EFI) 8 or 5 Inch Disks (8/5) 
(GRA) Granularity (O-OFFFFH) 
(DSZ) Device Size (O-OFFFFFFFFH) 
(UN) Unit Number on this Device (O-OFFH) 
(UIN) Unit Info Name (1-17 Chars) 
(UDT) Update Timeout (O-OFFFFH) 
(NB) Number of Buffers (nonrandom = O/rand = 1-0FFFFH) 
(FUP) Fixed Update (True/False) 
(MB) Max Buffers (O-OFFH) 

Intel iSBC 215/iSBX 218 Device-Unit Information 
(NAM) Device-Unit Name (1-13 chars) 
(PFD) Physical File Driver Required (Yes/No) 
(NFD) Named File Driver Required (Yes/No) 
(SDD) Single or Double Density Disks (Single/Double) 
(SDS) Single or Double ·Sided Disks (Single/Double) 
(EFI) 8 or 5 Inch Disks (8/5) , 
(GRA) Granularity (O-OFFFFH) 
(DSZ) Device Size (O-OFFFFFFFFH) 
(UN) Unit Number on this Device (O~OFFH) 
(UIN) Unit Info Name (1-17 Chars) 
(UDT) Update Timeout (O-OFFFFH) 
(NB) Number of Buffers (nonrandom = O/rand = 1-0FFFFH) 
(FUP) Fixed Update (True/False) 
(MB) Max Buffers (O-OFFH) 

Intel iSBC 215/iSBX 218 Device-Unit Information 
(NAM) Device-Unit Name (1-13 chars) 
(PFD) Physical File Driver Required (Yes/No) 
(NFD) Named File Driver Required (Yes/No) 
(SDD) Single or Double Density Disks (Single/Double) 
(SDS) Single or Double Sided Disks (Single/Double) 
(EFI) 8 or 5 Inch Disks (8/5) 
(GRA) Granularity (O~OFFFFH) 
(DSZ) Device Size (O-OFFFFFFFFH) 
(UN) Unit Number on this Device (O-OFFH) 
(UIN). Unit Info Name (1-17 Chars) 
(UDT' Update Timeout (O-OFFFFH) 
(NB) Number of Buffers (nonrandom = O/rand = 1-0FFFFH) 
(FUP) Fixed Update (True/False) 
(MB) Max Buffers (O-OFFH) 

13-14 

PWO 
Yes 
Yes 
Single 
Single 
8 
0400H 
0102COOOH 
OOOOH 
uinfo 215pt 
0064H-
0006H 
True 
OOFFH 

WFO 
Yes 
Yes 
Single 
Single 
8 
0080H 
0003E900H 
0008H 
uinfo 215f 
0064H-

. 0006H 
True 
OOFFH 

WFDO 
Yes 
Yes 
Double 
Single 
8 
0100H 
0007C500H 
0008H 
uinfo 215f 
OOn4H-
0006H 
True 
OOFFH 



******* LAB EIGHT (H.I. CONFIG THROUGH ICU) ******* 

:ntel iSBC 215/iSBX 218 Device-Unit Information 
:NAM) Device-Unit Name (1-13 chars) WFDDO 

Yes 'PFD) Physical File Driver ,Required (Yes/No) 
'NFD) Named File Driver Required (Yes/No) 
'SDD) Single or Double Density Disks (Single/Double) 
:SDS) Single or Double Sided Disks (Single/Double) 
'EFI) 8 or 5 Inch Disks (8/5) 
:GRA) Granularity (O-OFFFFH) 
:DSZ) Device Size (O-OFFFFFFFFH) 

Yes 
Double 
Double 

:UN) Unit Number on this Device (O-OFFH) 
:UIN) Unit Info Name (1-17 Chars) . 
:UDT) Update Timeout (O-OFFFFH) 

8 
OIOOH 
OOOF9700H 
0008H 
uinfo 215fd 
0064H-

'NB) Number of Buffers (nonrandom = O/rand = 1-0FFFFH) 
:FUP) Fixed Update (TrueiFalse) 

0006H 
True 

'MB) Max Buffers (O-OFFH) OOFFH 

***** THIS JOB SUPPLIES THE INTERRUPT FOR THE MONITOR **** 
Jser Jobs 
;ODS) Object Directory Size (O-OFFOH) 
,PMI) Pool Minimum (20H - OFFFFH) 
'PMA) Pool Maximum (20H - OFFFFH) 
;MOB) Maximum Objects (1 - OFFFFH) 
,MTK) Maximum Tasks (1 - OFFFFH) 
'MPR) Maximum Priority (0 - OFFH) 
:AEH) Address of Exception Handler (CS:IP) 
:EM) Exceotion Mode (Never/Proq/Environ/All) 
'PV) Parameter Validation (Yes/No)' 
:TP) Task Priority (O-OFFH) 
~TSA) Task Start Address (CS:IP) 
:DSB) Data Seqment Base (O-OFFFFH) 
;SSA) Stack Segment Address (SS:SP) 
ISS) Stack Size (O-OFFFFH) 
:NPX) Numeric Processor Extension Used (Yes/No) 

[ncludes and Libraries 
'ath Name (1-45 Characters) 
(UDF) UDI Includes and Libs 

/RMX5.0/DUDI/ 
(HIF) Human Interface Includes and Libs 

/RMX5.0/DINCLSLIBS/ 
(ElF) Extended I/O System Includes and Libs . 

/RMX5.0/DINCLSLIBS/ 
(ALF) Application Loader Includes and Libs 

/RMX5.0/DLOADER/ 
(BIF) Basic I/O System Includes and Libs 

/RMX5.0/DINCLSLIBS/ 

OOOAH 
0030H 
FFFFH 
FFFFH 
FFFFH 
OOOOH 
OOOOH:OOOOH 
Never 
Yes 
OOOOH 
0080H:0002H 
OOOOH 
OOOOH:OOOOH 
0200H 
No 

(THF) Terminal Handler and Debugger Includes and Libs 
/RMX5.0/DDEBTH/ 

(NUF) Nucleus and Root Job Includes and Libs 
/RMX5.0/DNUCLUS/ 

(ILF) Interface Libraries 
/RMX5.0/DUTILS/ 

(CAF) Crash Analyzer Includes and Libs 
/RMX5.0/DUDI/ 

(DTF) Development T06l5 Path Names 
"'.; /LANG/ 

13-15 



******* LAB EIGHT (H.I. CONFIG THROUGH ICU) ******* 

STEP4: 
AFTER YOU ENTER ALL OF THE SCREENS ENTER G TO GENERATE 

EXIT THE ICU 

SUBMIT THE ICU.CSD FILE TO GENERATE YOUR SYSTEM 

-SUBMIT :LAB:ICU.CSD 

STEPS: 

YOU MUST NOW ADD rHE SOB TO THE SYSTEM, 
USING THE LIB86 UTILITY 

-LIB86 
DELETE :LAB:RMX86(INT3TASKMOD) 
ADD /DINT3/INT3JOB to :LAB:RMX86 
EXIT 

STEP6: 

YOU ARE NOW READY TO "BOOT" YOUR NEWLY. CREATED SYSTEM 

IF YOUR EXECUTION VEHICLE IS THE SAME AS THE DEVELOPMENT STATION 
THEN: 

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL 

-BOOT THE NEW SYSTEM 

.B /"TEAM NAME"/LAB8/RMX86 

IF YOUR EXECUTION VEHICLE DIFFERS FROM THE DEVELOPMENT STATION 
THEN: 

-COpy THE NEWLY CREATED BOOTABLE SYSTEM INTO A FLOPPY. 
( COpy :LAB:RMX86 OVER :FDO:RMX86 ) 

-PRESS INTERRUPT ON EXECUTION VEHICLE FRONT PANEL 

-BOOT THE NEW SYSTEM 

.B /RMX86 

13-10 



CHAPTER 14 

UNIVERSAL DEVELOPMENT INTERFACE 

• . SPECIFICATIONS 

• LIBRARIES 

• DEVELOPMENT PROCESS 

• SYSTEM CALLS 





WHATIWHY UDI? 

UNIVERSAL DEVELOPMENT INTERFACE 

UDI IS A SPECIFICATION OF A SET OF PROCEDURE CALLS THAT ARE 
USED TO REQUEST OPERATING SYSTEM FUNCTIONS. 

FUNCTIONS ARE IMPLEMENTED BY MODULES THAT TRANSLATE FROM THE 
UDI STANDARD TO THE ACTUAL OPERATING SYSTEM CALLS. 

EACH INTEL OPERATING SYSTEM FOR THE rAPX 86~88 FAMILY ~ROVIDES 
A UNIVERSAL DEVELOPMENT INTERFACE OR A SUBSET THEREOF. 

14-1 

UDI FUNCTIONS 

THE KINDS OF FUNCTIONS THAT ARE AVAILABLE THROUGH UDI PROCEDURE 
CALLS INCLUDE: 

• CREATING AND BREAKING CONNECTIONS TO DATA FILES 
• OPENING~ READING~ SEEKING~ WRITING~ AND CLOSING DATA FILES 
• CONTROLLING PROGRAM EXECUTION 
• CONTROLLING MEMORY ALLOCATIONS 
• HANDLING SYSTEM EXCEPTION CONDITIONS 
• CONTROLLING THE PROCESSING OF CONSOLE INPUT & PARSING 

COMMAND LINES 

• FETCHING THE CURRENT DATE AND TIME 

14-2 



LINK { 

LINK 

LIBRARIES 

THE iRMX 86 OPERATING SYSTEM SUPPORTS UDI BY PROVIDING 
UDI INTERFACE LIBRARIES. 

INTEL APPLICATION LANGUAGES (ASSEMBLY J PLM J PASCAL J FORTRAN) 

RUN-TIME LIBRARIES I 
UDI JOB 

OPERATING SYSTEM 

IAPX 86J 88 HARDWARE 

14-3 

SOFTWARE DEVELOPMENT PROCESS 

___ 1 ...... -
14-4 



CAREFULI 

• YOU CAN MAKE OPERATING SYSTEM CALLS DIRECTLY FROM YOUR 
APPLI CATION (SUBJECT TO SYSTEM AND LANGUAGE RESTRI CTIONS)' 

• I F YOU DO SO... Hm/EVER., YOU MAY NOT BE ABLE TO TRANSPORT 
YOUR APPLI CATION TO ANOTHER· OPERATING ENVI RONMENT. 

• ADHERING TO UDI SPECIFICATIONS ENSURES THAT YOUR APPLICATION 
REMAINS OPERATING-SYSTEM INDEPENDENT AND TRANSPORTABLE. 

14-5 

THE iRMX OPERATING SYSTEM CONSISTS OF A NUMBER OF SUBSYSTEMS 

R~'X LAYERS 

NUCLEUS 

TERm NAL HANDLER 

BASIC I/O SYSTEM 

EXTENDED I/O SYSTEM 

APPLICATION 
LOADER 

HUMAN INTERFACE 

DESCRIPTION 

THE CORE OF THE iRMX 8£ OPERATING SYSTEM 
AND IS REQUIRED FOR EVERY APPLICATION 
SYSTEM 

PROVIDES A REAL-TIME INTERFACE BETWEEN 
YOUR TERMINAL AND OTHER SOFTWARE. 

PROVIDES ASYNCHRONOUS FILE ACCESS 
CAPAB I LIT I ES 

PROVIDES HIGH LEVEL., SYNCHRONOUS FILE 
ACCESS CAPABILITIES 

PROVIDES THE CAPABILITY TO LOAD OBJECT 
FILES INTO MEMORY FROM DISK 

PROVIDES AN INTERACTIVE INTERFACE BETWEEN 
A USER AND SOFTWARE 

14-6 

'"-.," . 



UDI CALLS AND iRMX 86 SYSTEM CALLS 

UDI CALLS iRMX 86 SYSTEM CALLS SUBSYSTEMS 

DQSALLOCATE RQSCREATESSEGMENT NUCLEUS 
DQSATTACH RQSSSATTACHSFILE EXTENDED 1/0 SYSTEM 
DQSCHANGESEXTENSION (NOND (NONE) 
DQSCLOSE RQSSSCLOSE EXTENDED 1/0 SYSTEM 
DQSCREATE RQ$SSCREATESFILE EXTENDED 1/0 SYSTEM 

RQSSSGETSFILESSTATUS 
DQSDECODESEXCEPTION RQSCSFORMATSEXCEPTION HUrlAN INTERFACE 
DQSDELETE RQSDELETESFILE EXTENDED 1/0 SYSTEM 
DQSDETACH RQSSSDELETE$CONNE~TION EXTENDED 1/0 SYSTEM 

RQ$S$CLOSE 
DQSFREE RQSDELETESSEGMENT NUCLEUS 

14-7 

UD I CALLS AND i Rf1X 86 SYST,EM CALLS 

UDI CALLS iRMX-86 SYSTEM CALLS SUBSYSTH1S 

DQ$GET$ARGUMENT RQSC$GET$CHAR HUMAN INTERFACE 
DQ$GET$CONNECTIONSSTATUS RQ$S$GETSCONNECTIONSSTATUS EXTENDED lID SYSTEM 

RQ$A$GET$FILE$STATUS BASIC 1/0 SYSTEM 
DQSGET$EXCEPTIONSHANDLER RQSGET$EXCEPTION$HANDLER NUCLEUS 
DQSGETSSIZE RQ$GETSSIZE NUCLEUS 
DQSGETSSYSTEM$ID (NOND (NONE) 
DQSGETST I~'E RQSGETSTIME BASIC 1/0 SYSTEM 
DQSOPEN RQSSSOPEN EXTENDED 1/0 SYSTEM 
DQSOVERLAY RQSS$OVERLAY APPLICATION LOADER 
DQSREAD RQ$S$READSMOVE EXTENDED 1/0 SYSTEM 
DQ$RENAME RQSSSRENAMESFILE EXTENDED lID SYSTEM 
DQSSEEK RQSS$SEEK EXTa~DED lID SYSTEM 
DQ$SPECIAL RQ$SSSPECIAL EXTENDED lID SYSTEM 
DQSSWITCHSBUFFER RQSSETSSPARSESBUFFER HUr1AN INTERFACE 
DQ$TRAPSEXCEPTION RQSSSTRUNCATESFILE EXTENDED lID SYSTEM 
OOSWRITE RQSSSWR ITESMOVE EXTENDED lID SYSTEM 

14-8 



EXAMPLE CALL TO REQUEST MEMORY 

DECLARE STATUS. WORD; 
DECLARE ARRAY-BASE SELECTOR; 

ARRAY-BASE = DQ$ALLOCATE(128J @STATUS); 

• IF THE REQUEST FAILS THEN 
ARRAY-BASE EQUALS 0FFFFH 
AND STATUS = ESMEM 

14-9 

ERROR REPORTING 

UDI PROCEDURES RETURN A CONDITION CODE THAT INDICATES THE RESULTS 
OF EXECUTING A UDI PROCEDURE. 

• YOU MUST CHECK THE CONDITION CODE AFTER EACH UDI CALL TO 
ENSURE PROPER RESULTS 

TABLE 6-2. iRMX 86 EXCEPTION CODES AND MNEMONICS 

HEX CODE 

0000 
0001 
0002 

MNEMONIC 

ESOK 
E$TIME 
ESMEM 

. 

HEX CODE 

0065 
0066 
a067 

(SEE COMPLETE LISTING IN RUN TIME SUPPORT MANUAL) 

14-10 _ 

MNEf10NIC 

E$[OF 
ESFIXUP 
ESNOSLOADERSMEM 



OTHER UDI FACTS 

INTERRUPT HANDLING 

PROGRAMS THAT RUN UNDER THE iRMX 86 OPERATING SYSTEM SHOULD 
USE iRMX 86 INTERRUPT MANAGEr~ENT TECHN'IQUES TO HANDLE INTERRUPTS. 
• THE UDI LIBRARIES DO NOT INCLUDE INTERRUPT MANAGEMENT. 

REENTRANCY 

UDI LIBRARIES ARE FULLY REENTRANT WITH THE FOLLOWING RESTRICTIONS: 
• EACH JOB MUST HAVE ITS OWN COpy OF THE UDI INTERFACE LIBS. 

MULTITASKING 

• THE UDI LIBRARIES ARE FULLY COMPATIBLE WITH A 
MULTITASKING ENVIRONMENT. HOWEVER J THERE ARE NO UDI 
CALLS TO CREATE AND DELETE TASKS. 

14-11 

LOGI CAL NAMES 

THE UDI USES CERTAIN LOGICAL NAMES TO MEAN SPECIAL THINGS. 
FOR EXAMPLE ... : LP: MEANS "LINE PRINTER" ... : CO: MEA~S "CONSOLE 
OUTPUT" ... AND "CI" MEANS "CONSOLE INPUT". 

REQUIREMENTS 

A UDI JOB MUST BE CONFIGURED IN YOUR SYSTEM WITH I.C.U.86. 

14-12 



APPENDIX 





APPENDIX A 

ALTER EDITOR 

• INSERTION 

• CORRECTING MISTAKES 

• ENDING THE EDITING SESSION 





INVOCATION 

- RUN ALTER :Fl:LABl.ASM 

ALTER IS MENU DRIVEN 

INITIAL SCREEN 

EOF MARKER---,7 

CURSOR~ 
TEXT AREA-:::::;"%----

MESSAGE lINE~e:i--_IE'UES.III"LTEIIV'.O 
MENU- ..... _I. la_I. 

• TO GET NEXT MENU: 

G 

A-I 



THE MENUS 

MENU 1 

a .... ~ -.. --. , ... _ G.I 

MENU 2 

L-a - ~_ .. 
~ - lIetoIece -

MENU 3 

a Teg View I_nee 

TO INVOKE A COMMAND" KEY THE FI RST LETTER OF THE COMr1AND. 

INSERTING NEW TEXT 

Jump Macro 

• TO INSERT TEXT" TYPE I 

A-2 



MESSAGE LINE 

I KEYSTROKES I 
How'. the time 8 
for all good mend 

INSERTION 

SCREEN 

:.-- EOF 

~CURSOR 

INSERTION 

A-3, 

SCREEN 

Now 18 the time 

EOF 
for all good mend !. ~ 

'-CURSOR 



CORRECTING MISTAKES 

SCREEN 

Now ia the time 

.or all good men.:. 

(jnsert] 

ENDING INSERTION 

SCREEN 

Now ia the time 

for aa good menl, 

MENU Again Block Delete Execute 

A-4 



CURSOR CONTROL 

co 
EJBG 

CO 
• ARROW KEYS MOVE CURSOR ONE SPACE OR LINE FOR EDITING 

• 

DELETI NG TEXT 

I CONTROL DELETES CHARACTER AT CURSOR 

I CONTROL DELETES LINE ON WHICH CURSOR IS POSITIONED 

I CONTROL I @] UNDO-RESTORES DELETED CHARACTERS 

THESE ALSO WORK DURING INSERTION 

A-5 



EXITING ALTER 

I K EYSTROKESI 

Q 

Insert Jump Macro Other 

EXITING ALTER~ CONT, 

E 

In It 

A-6 



START 
UP 

ADVANCED ALTER FEATURES 

• EDITING MULTIPLE FILES DURING 
ONE" SESS ION· 

• BLOCK MOVES 

PRIMARY BUFFER 

OTHER 
';COMMAND 

ALTER BUFFERS 

SECONDARY BUFFER 

BLOCK BUFFER 

• SECONDARY BUFFER ALLOWS SEARCHING AND BORROWING FROM ANOTHER FILE 

• BLOCK BUFFER USED FOR MOVING OR DELETING BLOCKS OF TEXT 

A-7 



ALTER INVOCATION 

- RUN ALTER INPUT FILE [,OTHER INPUT FILE] (CR) 

• OTHER INPUT FILE IS FILE TO BE EDIT~D IN SECONDARY BUFFER 

EXAMPLES: 
- RUN ALTER :Fl:LAB1.ASM (CR) 

- RUN ALTER :Fl:LAB1.ASM,:Fl:LAB1.LST (CR) 

OR 

- RUN ALTER :Fl:LAB1.ASM-LST <CR) 

INSERi MODE 

START UP -......, MAIN MENU 

X 

XCHANGE MODE 

ALTER MODES 

(ESC) 

(ESC) 

FIRST LETTER 
OF COMMAND 
(ESC) OR.C 

<ESC) EXECUTES COMMAND & RETURNS TO MAIN MENU 
tc ABORTS COMMAND 

A-8 

COMMANDS 



XCHANGE MODE 

• ALLOWS 'TYPING OVER' OF TEXT 

• (ESC) RETURNS ALTER TO MAIN COMMAND LEVEL 

CURSOR MOVEMENT AND PAG I NG 

( HOME ) ( .) - MOVES CURSOR TO END OF LI NE 

( HOME ) ( • ) - MOVES CURSOR TO BEGINNING OF LINE 

( HOME) [[) - PAGES DOWN 

( HOME) CD -PAGES UP 

A-9 



ALTER COMMANDS 

DELETE 

SCREEN 

INTEL CORPORATION 

D @NTEL CORPORATION 

@@TEL CORPORATION 

( HOME) aNTEL CORPORATION@ 

D 

• DELETES AND MOVES TEXT TO BLOCK USING BEGIN AND END MARKERS (@) 

• RETRI EVE TEXT WITH GET COMMAND 

A-IO 



BLOCK -~ FOR COPYING TEXT 

'KEYSTROKES I SCREEN 

INTEL CORPORATION 

B QNTEL CORPORATION 

s@TEL CORPORATION 

( HOME] @NTEL CORPORATION@ 

B INTEL CORPORATION 

• COPIES TEXT TO BLOCK BUFFER USING BEGIN & END MARKERS (@) 

• RETRIEVE TEXT WITH GET COMMAND 

GET -- RETRIEVING THE BLOCK BUFFER 

IKEYSTROKES I 
GEJ 

• RETRIEVES BLOCK BUFFER TO CURRENT CURSOR POSITION 

NOTE: MAY ALSO BE USED TO 'GET' DISK FILES 

A-II 



FINDING A STRING 

I~EYSTROKESI 

F "STRING" a 

• SEARCHES FORWARD FOR FIRST OCCURENCE OF "STRING" AND 
MOVES CURSOR IF FOUND 

• -F COMMAND SEARCHES BACKWARDS 

REPLACING TEXT 

I KEYSTROKES J 

R "OLD STRINGBNEW STRING" a 

• REPLACES FIRST OCCURENCE OF "OLD STRING" WITH "NEW STRING" AND 
MOVES CURSOR IF FOUND 

• ? REPLACE PROMPTS YOU: 
OK TO REPLACE? (Y OR [N]) 

A-12 



REPEAT FUNCTI ON 

• OPTIONAL FACTOR THAT INDICATES THE NUMBER OF TIMES TO 
EXECUTE A COMMAND 

• PRECEDES ENTERING OF COMMAND LETTER 

• / - MEANS REPEAT FOREVER 

EXAMPLE: 
lOF "SAM" <ESC) 

FINDS TENTH OCCURENCE OF SAM 

JUMPING TO BEGINNING OR END OF FILE 

I KEYSTROKESI 

JS 
OR 

J,E 

• JS MOVES CURSOR TO BEGINNING OF FILE 

• JE MOVES CURSOR TO END OF FILE 

A-13 



INSERTING CONTROL CHARACTERS 

IKEYSTROKES I . 

H I "HEX VALUE" 8 

• INSERTS CONTROL CHARACTER AT CURRENT CURSOR POSITION AND 
DISPLAYS IT AS ? 

EXAMPLE: ~ 
H I 0C ~ - INSERTS A FORM FEED CHARACTER 

DISPLAYING CONTROL CHARACTERS 

DISPLAYS HEXADECIMAL VALUE OF CHARACTER AT CURRENT CURSOR POSITION 

A-14 



QUIT 

'KEYSTROKESI I MENU PROMPT LIllE 

Q ABORT EXIT INIT UPDATE WRITE 

SUBCOMMANDS: 

A - ABORT - ALL CHANGES LOSTj RETURN TO OPERATING SYSTEM 

E - EXIT - RETURN TO OPERATING SYSTEMj FILE IS UPDATED 

I - INIT - RESTARTS EDITING SESSIONj ALL CHANGES LOST 

U - UPDATE - UPDATES FILEj DOES NOT RETURN TO OPERATING SYSTEM 

W - WRITE - PROMPTS YOU FOR NEW FILE TO WRITE TOj DOES NOT 
RETURN TO OPERATING SYSTEM 

OTHER ALTER FEATURES 

• MACROS 

• DISK I/O 

• TAGS 

• ENVIRONMENT SETTINGS 

A-I5 



• 



APPENDIX B 

PL/M OVERVIEW 





PLIM IS A BLOCK STRUCTURED LANGUAGE 

~lY$PROG: DO; 

DECLARATIONS • RESERVE SPACE IN MEMORY 
• GIVE A NAME TO THAT SPACE 

EXECUTABLE 
STATEMENTS 

• CAUSE WORK TO BE PERFORMED 

END; 

PL/M STATEMENT FORMAT 

• FREE FORMAT 

• ENDS WITH A SEMICOLON 

• COMMENTS 
- MAY BE USED WHEREVER A SPACE IS LEGAL 
- /* THIS IS A COMMENT */ 

8-1 



• SEQUENTIAL 
- --I 

A=A+ 12; 

B=B-40; 

BASIC Pl/M CONSTRUCTS 

" CONDITIONAL • lOOPING 

A=A+ 12; 

NO 

B=B-40; 

PL/M 

SAMPLE PROGRAM. 

-
I 

A <12 

SERIES-III PL/M-86 Vl.O CO~PILATION OF MODULE SAMPLEl 
OBJECT MODULE PLACED IN :Fl:PROGl.OBJ 
CO~PILER INVOKED BY: PLM86.86 :Fl:PROGl.PLM 

/* THIS PROGRAM ADDS TWO NUMBERS */ 

1 SAMPLE$l: 

DO; 
2 1 DECLARE NOM$l BYTE, 

NUM$2 BYTE, 
SUM BYTE: 

3 1 NUM$l .., 3: 
4 1 NUM$2 .. 2: 
5 1 SUM = Nm1$l + NUM$2: 

6 1 END SAMPLE$l: 

C=INPUT (l); 
A=A+l; 

YES 

MODULE INFORMATION: 

CODE AREA SIZE • 0018H 240 
CONSTANT AREA SI~E = OOOOH OD 
VARIABLE AREA SIZE = 0003H 3D 
MAXIMUM STACR SIZE = OOOOH on 
15 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

... - ~-

8-2 



A VARIABLE HAS: 

A 
NAME 

NAME -

~I 

FIXED THRUOUT PROGRAM 

A 
CONTENTS 

CONTENTS - TRANSIENT .... 

VARIABLE DECLARATIONS 

• BEFORE ANY VARIABLE CAN BE USED IT MUST 
BE DEFINED IN A DECLARATION STATEMENT 

• VARIABLE DECLARATIONS 
- RESERVE SPACE IN MEMORY 
- ASSOCIATE AN IDENTIFIER WITH THAT SPACE 
- PRECEDE EXECUTABLE STATEMENTS 

PROG: DO; MEMORY 

~1.D.1~1.£iI.l12I.lI.a. 

END; 

DECLARE SPOT BYTE; 

SPOT =5; 

SPOT 0 0 0 0 0 1 0 1 

B-3 



PLIM VARIABLE TYPES 

DATA TYPES 
BYTES RANGE 

PL/M-80 PL/M-86 

BYTE BYTE 1 o TO 255 

ADDRESS WORD 2 o TO 65,,535 

DWORD 4 o TO 232 - 1 
INTEGER 2 -32.768 TO 

+32,767 

REAL 4 -38 1.17xlO TO 
3.37xlO 38 

POINTER 2 OR 4 TO BE DISCUSSED 
LATER 

SELECTOR 2 o TO 65,535 

DECLARATION FORMATS 

DECLARE A BYTE; DECLARE A BYTE" 

DECLARE B BYTE; B BYTL ~ DECLARE (A,B,C) BYTE; 

DECLARE C BYTE; C BYTE; 

8-4 



• SIMPLIFY PROGRAM UPDATES: 
DECLARE BUFFERSSIZE LITERALLY '256'; 

DECLARE COUNT WORD; 
DECLARE BUFFER(BUFFERSSIZE) BYTE; 

COil NT = B UFFERSS I ZE; I*SAME AS: courn =256;· / 

• IMPROVE DOCUMENTATION: 
DECLARE SPACE LITERALLY '20H'; 
DECLARE CR LITERALLY '0DH'; 
DECLARE LF LITERALLY '0AH' ; 

OPERATOR PRECEDENCE 

OPERATOR 
CLASS OPERATOR 

PRECEDENCE ( ) 

UNARY -J+ 

• /J r10D ARITHMETIC J 
+J -

RELATIONAL <J =J >J <=J >=J <>J 

NOT 
LOGICAL AND 

OR J XOR 

PRECEDENCE 

HIGHEST 
)~ 

'iiI 

LOWEST 

• EXPRESSIONS WITH OPERATORS OF EQUAL PRECEDENCE ARE EVALUATED 
LEFT TO RI GHT 

8-5 



ARITHMETIC EXPRESSION SUMMARY 

VARIABLE TYPE KIND OF OPERAND ARITHMETIC 
RESULT' 

PL/M-80 PL/M;"S6 ARITHMETIC TYPE OPERATION 

BYTE AND BYTE AND UNSIGNED 1 BYTE... 1 BYTE + ,- , * .'/ /10D 1 BYTE 
ADDRESS WORD 2 BYTE 

1 BYTE... 2 BYTE +I-'*'/IMOD 2 BYTE 

2 BYTE, 2 BYTE +I-'*J/IMOD 2 BYTE 

DWORD UNSIGNED 1 CYTL4.IWTES +,-,*,.' ... MOD 4-DYTES 
2 BYTL4 BYTES 4 RYTES 
4 DYT~,l; BYTES ~ ~YT:S 

INTEGER SIGNED INTEGER,INTEGEf + ,- J *, / )':OD INTEGER 

REAL FLOAT! NG REAL,REAL +'-1*1/ REAL 
POINT 

LOGICAL AND RELATIONAL EXPRESSION SUMMARY 

VARIABLE TYPE OPERAND RELAT IONAL LOGI CAL 

PL/M-SO PL/M-86 TYPE RESULT RESULT 

BYTE AND BYTE AND 1 BYTE... 1 BYTE 1 BYTE 1 BYTE 
ADDRESS WORD 

1 BYTE... 2 BYTE 1 BYTE 2 BYTE 

2 BYTE, 2 BYTE 1 BYTE 2 BYTE 

DWORD 
1 BYTE, 4 BYTES 1 BYTE 4 BYTFS 
2 BYTES, 4 BYTES 1 nYTE '1 ~YT~S 
4 BYTES, 4 BYTES 1 BYTE 4 BYTES 

INTEGER IiHEGER, INTEGER 1 nYTE ILLEGAL 

REAL REALI REAL 1 BYTE ILLEGAL 

8-6 



PORT INPUT AND OUTPUT 
DATA IS "READ" FROM OR "WRITTEN" TO SPECIFIED PORT 

PLlr~ 80 PLlM 86 

1 BYTE READ OR 1 BYTE READ OR <VARIABLE> = UJPUT E<PORT$EXPR »; 
\lRITTEN URITTEN 

L OUTPUT«PORHEXPR » = I <VARIABLESEXPR> 
CONSTANT 

<VARIABLE> = rN\~ORD «PORT$EXPR»; 

2 BYTES RE.~D OR 
WRITTEN 

OUTWORD «PORTSEXPR» = t < VAR IABLESEXPR > 
CONSTANT L 

<PORT$EXPR> 
PLlM-80 PL/M-86 

• ~'UST BE A • CAN BE A 

NUMBER OR A NUMBER J CONSTANT 
CONSTANT 

EXPRESS rON 

• 0~ PORT$EXPR 

~55 

DO WHI LE BLOCKS 

kLABELNAME> :] DO WHILE <EXPRESSION>; 

kSTATEMENT> J ; 

END [<LABELNAME>] 

EXPRESSION J OR 

EXPRESSION 

• e~ PORT$EXPR~ 
65535 

<STMT> 

<STMT> 

T 

• STATEMENTS EXECUTE AS LONG AS < EXPRESSION> EVALUATES TO A NUMBER WITH 

BIT e=l 

B-7 



ITERATIVE 'DO' BLOCKS 

DO <COUNTERSVARIABLE> = <STARTEXP> TO < LIMITEXP> [BY <STEPEXP> 1; 

[<STATEMENT> 1; 

END; 

WHERE 
<COUNTER$VARIABLE> IS A 1 BYTE OR 2 BYTE VARIABLE 

<STARTEXP> i < LIMITEXP> AND <STEPEXP> 
ARE EXPRESSIONS 

<STMT> 

< STMT > 

• STATEMENTS WITHIN AN ITERATIVE DO BLOCK ARE EXECUTED REPEATEDLY 

IF .. THEN 

THE CONDITIONAL STATH1ENT TESTS Art EXPRESSION FOR TRUE OR FALSE 
AND CAUSES CODE TO BE EXECUTED OR BYPASSED ACCORDINGLY. 

IF <EXPRESSION> THEN 
< STATEMENT> 

T 

[ AN EXPRESSION IS TRUE IF BIT0 = I. 

8-8 

F 



IF <EXPRESSION> 

THEN 
<STATEMENTl> 

~LSE , 
<STATEMENT2 >; ] 

IF •• THEN •• ELSE 

"ELSE" CAUSES AN ALTERNATE STATEMENT 

TO BE EXECUTED 

N 

THE 'DO CASE' 

y 

[<LABELNAME> :]DO CASE <EXPRESSION>; 

(STATEMENT> 

[<STATEMENT> ] 

I-EXECUTED WHEN EXPRESSION = B */ 

I- EXECUTED WHEN EXPRESSJON = 1 */ 

[<t:TATEMENT>] 

END [< LABEU~AME>] ; 

I- EXECUTED '~HEN EXPRESSION = N */ 

l.I1EQ1ITl\f'1I: NO RANGE CHECK IS PERFORMED ON THE VALUE OF THE EXPRESSION 

AFTER IT IS COr·1PUTED. IF TUE VALUE CO~1PUTED IS GREATER THAN THE 

NU~1BER OF 'BASIC$STATEM[NTS'~ THE PROGRAi-1 CRASHES. 

8-9 



DO CASE 
"N" LEGAL CASES 

DO CASE EXAi'1PLE 

DO CASE (STOP$LIGHT$VALUE); 

DO; 
CURRENT$STATE = GREEN$LIGHT; 
TIME = SHORT; 

END; 
DO; 

CURRENT$STATE = YELLOW$LIGHT; 
TIME = GOTCHA; 

END; 
DO; 

CURRENT$STATE = REO$LIGHT; 
TIME = ETERN ITY; 

END; 

CURRENT$STATE = BLINK$YELLOW; 

END; 

8-10 

.1* CASE ~ * / 

1* C,l\SE 1 * / 

/* CASE 2 */ 

/* CASE 3 IS ~ULL */ 
/* CASE 4 *,' 



ARRAYS CAN BE USED TO MANIPULATE 
GROUPS OF RELATED DATA ITEMS 

• A~ AR~AY OF BOXES FOR EACH STREET 

! ! • EACH ARP.AY HAS .fl. NN1E 
SORTING OFF}CE] 

L----------=~TIi[.&lmr.1tml.._. REFER TO BOX FOR rm.4 HIGH STREET: 
HIGH(4) 

/ 
/ 

• ALL MEMBERS OF AN ARRAY MUST BE OF 
THE SAME TYPE 

DECLARE VICTORIA(120) BYTEj 

DECLARE HIGH (81) BYTEj 

STORAGE OF DATA INPUT FROM TEr1PER,UURE SENSOR 

DATA$IN: 

. DOj 

DECLARE READY LITERALLY '01' j 

DECLARE TEMP$BUFFER(256) BYTEj 
DECLARE TEr1P$BUFFEP'$PTR BYTEj 

DO TEMP$BUFFER$PTR = 0 TO 255j 

DO \iHILE INPUT ( 4 )<>READYj 
ENDj 

TH1P$BUFFER nH1P$BUFFER$PTR) = HlPUT ( 8 ) j 
ENDj 

B-11 



WORD 
DECLARE ~ARRAy$NAME> «ARRAy$CONST» ~NTEGER ; 

PL/M-86 ONLY~ 'P~~~TER * 

DECLARE I~PUT$BUFFER (128) BYTE; 

INPUT$BUFFERun ........... ~~~~~~~ 

INPUT$BUFFER(l)~ 

STRUCTURES 

CONTIGUOUS BLOCK 
OF 128 BYTES 

* LATER 

• LOGICAL AND PHYSICAL GROUPS OF DISSIMILIAR 1 RELATED DATA ITEMS 

• A STRUCTURE MAY CONTAIN DATA ITEMS OF DIFFERENT TYPES 

DECLARE AIRPLANE STRUCTURE( 
SPEED BYTL 
ALTITUDE WORD); 

AIRPLANE,SPEED---+ ~ 

A I RPLANE. AL T I TUDE ~ titJitj 

B-12 



r 
ARRAY OF STRUCTURES 

DECLARE AIRPLANE (5) STRUCTURE ( 
SPEED BYTE~ 

/ .... \~.-4-\t,...J,-~ AIRPLANE (0) 

ALTITUDE HORD); ~ 7 I } 

AIRPLANE(0).sPEED ~ 
AIRPLANE(e) ,ALTITUDE 1-r..,\....L...p:-\~-n 

A I RPLANE (1), SPEED~ I/I} A I RPLANE (1) 
A I RPLANE (1) ,AL T I TUDE ~ 1++-+44\-4\-f 

\\ V\. \ V\.',,·I/ 

~'(?iL\'(1 AIRPLANE(4).SPEED ) 

AIRPLANE(4) 'ALTITUDE~. } 

STRUCTURE WITH AN ARRAY AS AN ELEMENT 

DECLARE AIRPLANE STRUCTURE( 
SPEED BYTL 
ALTITUDE WORD~ 
ENGINE (4) BYTE); 

AIRPLANE. SPEED ~ ~~H-t-1-t 

AI RPLANE. ALTITUDE --+ I'+++H-f-H""tt 

AIRPLANE.ENGINE(~)~ I++++l~r-+i 
AIRPLANE.ENGINE(l)--+ 
AI RPLANE. ENG INE (2)~ t++-r-++t-H-~I 
AIRPLANE.ENGINE(3)--? 

8-13 

AIRPLANE (4) 



PROCEDURE HEADING' 

DECLARATION PART 

EXECUTABLE PART 

PROCEDURE DECLARATION 

..... , 

MODULESNAME: 
DO; 

I <DECLARATIONSSTATEMENTS> I 

PROCEDURESNAME: PROCEDURE; 
1< DECLARAT I ONSSTATEMENT > J 

< EXECUTABLESSTATEMENT> 
< END I < PROCEDURESNAME > I ; 

I < DECLARATIONSSTATEMENTS > I 
I < EXECUTABLESSTATEMENTS> I 

END; 

PARA~ETERLESS PROCEDURE 

MAIN: DO; 
DECLARE (RESULT, opl, op2, ANSWER) BYTF; 

SUM: PRGCEDURE; 
RESULT = opl + op2; 

. END sur~; 

opl = 4; 
op2 = 5; 
C~,LL SUt,; 

ANSWER = RESULT; 

mD MAIN; 

• PROCEDURE ACCESSES 
GLOBAL VAR I.~BLES 

8-14 

/* PROCEDURE DEFINITION */ 

/* START OF MAIN */ 

/* PROCEDURE INVOCATION */ 



PROCEDURE WITH PARA~'lETERS 

MAIN: DO; 
DECLARE (XI YI ANSWERI) BYTE; 
DECLARE (AI 8 1 ANSWER2) BYTE; 
DECLARE RESULT BYTE; 

SUM: PROCEDURE (opl l op2); /* PROCEDURE DEFINITION */ 
DECLARE (opll op2) BYTE; 
RESULT = opl + o~2; 

END SUM; 
CALL SUM(X I v); 
ANSWERI = .RESULT; 
CALL SUM (A-3 /B-2); 
ANSWER2 = RESULT; 

END MAIN; 

• TWO INPUT P~RAr'ETERS 

/* PROCEDURE INVOCATION */ 

/* PROCEDURE INVOCATION */ 

• PROCEDURE OUTPUT IS RETURNED IN A GLOBAL VARIABLE 

TYPED PROCEDURES 

A SINGLE VALUE IS RETURNED 

MAIN: DO; 
DECLARE (XI Y IANSWER) BYTE: 

SUM: PROCEDURE (OPII OP2) BYTE; /* PROCEDURE DEFINITION */ 
DECLARE (OPI I OP2) BYTE; 

RETURN OPI + OP2; 
END SUM; 

X = 3; 
Y = 2; 

ANSWER = SUM (X/Y); 

END MAIN; 

B-15 

/* PROCEDURE INVOCATION */ 



MAIN: 

BUFF IS "GLOBAL" 

VARIABLES: GLOBAL vs. LOCAL 

DO; 
DECLARE BUFF(128) BYTE: 

FILL$EUFFER: PROCEDUREj 
I r DECLARE I BYTE j 

"I" AND PORT$IN lJ _----_ 
ARE "LOCAL" TO -...... PORT$IN: PROCEOURE BYTE; 
FILL$BUFFER 

CALL FILL$BUFFER; 
END; 

END; 
BUFF( l)=PORHINj 

- END; 

SCOPE OF VARIABLES 

• THE SCOPE OF A VARIABLE I S THE FULL LENGTH OF THE BLOCK~ UNLESS IT 
IS REDECLARED WITHIN A NESTED BLOCK. 

• TO DETERMINE IF A VARIABLE/LABEL CAN BE USED IN A BLOCK: 

1) IF IT IS NOT DECLARED IN THE BLOCK~ GO TO THE NEXT OUTER BLOCK." 
2) IF DEFINED~ THE SCOPE IS SET~ ELSE REPEAT 1) AND 2). 

3) IF REACH THE OUTER MOST BLOCK WITHOUT ENCOUNTERING THE 
DECLARATION~ THE VARIABLE/LABEL CANNOT BE USED. 

B: X,R,Z,S 

8-16 



SYNTAX 

• DECLARE qARIABLE$NAMD BASED <POINTER$VARIABLE> 

• EXAMPLE 
SUM: 
DECLARE 

[

BYTE } WORD 
[(<ARRAY$CONSTANT»] INTEGER 

REAL 
STRUCTURE 

PROCEDURE (OPI_PTR, OP2_PTR, RSLT_PTR); 
OPI-PTR POINTER, 
OP2_PTR POINTER, /* ADDRESS FOR PL/M-80 */ 

RSLT_PTR POINTER: 

DECLARE OPI BASED OPI PTR(6) BYTE, 

BASED VARIABLE ~ DIMENSION SPECIFIER OF BASED VARIABLE 

OP2 BASED OPI_PTR (6) BYTE, 
RESULT BASED RSLT_PTR (6) BYTE; 

PROGRAM TO SUM TWO ARRAYS USING BASED VARIABLES 

ARRAY$SUM: DO; 
DECLARE ANSWER (6) BYTE, TOTAL (8) BYTE, 

X (6) BYTE, A (8) BYTE, 
Y (6) BYTE, B (8) BYTE; 

SUM: PROCEDURE (OP1_PTR, OP2_PTR, RSLT_PTR, ARRAYSIZE); 
DECLARE OPI_PTR POINTER, 

OP2_PTR POINTER, 
RSLT_PTR POINTER, /* ADDRESS FOR PL/M-80 */ 

ARRAYSIZE BYTE; 

DECLARE OPl BASED OP1_PTR (l) BYTE, 
OP2 BASED OP2_PTR (1) BYTE, 
RESULT BASED RSLT_PTR (l) BYTE; 

DECLARE I BYTE; 
DO I = 0 TO ARRAYSIZE; 
RESULT (I) = OPI(I) + OP2(I) 
END; 
END SUM; 
CALL SUM(@X, @Y, @ANSWER, LAST(ANSWER»i 
CALL SUM (@A, @B, @TOTAL, LAST(TOTAL»; 
END ARRAY$SUM; 

8-17 

NOTE: IN Pt/M-80, USE 
n,n INSTEAD OF n@", 



A "BASED VARIABLE" IS A PROCEDURE'S MOVABLE TEMPLATE FOR 
A DATA STRUCTURE DECLARED IN A CALLING PROGRAM. 

MAIN: 
DO; 
DECLARE ARRAY$l (6) BYTEi 

ARRAY$2 (4) BYTE; 

ARRAY$HANDLER: PROCEDURE (ARRAY$PTR); 
DECLARE ARRAY$PTR POINTER: 
DECLARE BLOCK BASED ARRAY$PTR (l) BYTE; 

1* EXECUTABLE STATEMENTS *1 

END ARRAY$HANDLER: 

CALL ARRAY$HANDLER (@ARRAY$l); 

CALL ARRAY$HANDLER (@ARRAY$2); 

END MAIN; 

SOME PRIMARY CONTROL NAMES 

NOPRIrH / PRHH (SOURCESFILE. LST)* 
SYMBOLS I NOSYMBOLS* 
XREF I NOXREF* 
DEBUG I NODEBUG* 

PL/M-86 ONLY 

OPTIMIZE (0 I 1- I 2 I 3) 

ROM/RAM* 
TYPE-/NO TYPE 

SMALL- ICOMPACT I MEDIUM I LARGE 

* DEFAULT CONDITION 

8-18 

DESTINATION OF LISTING 
GENERATE SYMBOL TABLE LISTING 
GENERATE CROSS REFERENCE LIST 
RETAINS SYMBOL TABLE 

-{ 

0 MIfIIMAL CODE OPTIMIZATION 

1: CONSTANT & COMMON EXPRESSIONS 
2: #1 PLUS LOCAL CODE OPTIMIZATION 
3: #2 PLUS FURTHER OPTIMIZATION 
PLACEMENT OF CONSTANTS IN CODE SEGMENT 

(SEE P. 8-6) 



PL/M COMPILER OPERATION 

COMMAND SYNTAX: 

I PLM86/ 
~<DEVICE>D PLM80 <SOURCESFILE> [<CONTROLS>] 

<CONTROLS> IS A SEQUENCE OF EITHER 

LI ST* I NOLI ST 
CODE / NOCODE* 
EJECT I -* 
INCLUDE / -* 

<PRIMARYSCONTROLS> WHICH MUST OCCUR BEFORE SOURCE CODE 
<GENERALSCONTROLS> WHICH MAY OCCUR ANYWHERE (INVOCATION 

OR IMBEDDED WITHIN THE SOURCE CODE,) 

SOME GENERAL CONTROL NAMES 

SUSPEND / RESUME LISTING 
GENERATE OBJECT CODE INTERLIST 
GENERATE PAGE EJECT 

OVERFLOW / NOOVERFLOW* (PL/M-86 ONLY) 
INCLUDE CONTENTS OF ANOTHER FILE 
INTEGER OVERFLm-l DETECT CODE 
(REQUIRES USER SUPPLIED TYPE 4 

-* NO DEFAULT 

8-19 

INTERRUPT SERVICE PROCEDURE. 
DISCUSSED IN CH, 16) 



COMPILER CONTROL USAGE 

> PLM86 :Fl:ALICE.SRC DEBUG SYMBOLS OPTIMIZE(2) 

IN THE SOURCE FILE WE HAVE THE FOLLmIING: 

'$' MUST 
APPEAR IN 
COLUMN 1 

SCODE 

BIGSTIME: DO; 

SINCLUDE (:Fl:PREAMB.LIT) 

SEJECT 

DECLARE CAROL BYTE; 

SEJECT 

SNOLIST 

[<EXECUTABLE$STATEMENTS>] 

END; 

. PL/M-86: SIZE CONTROL SWITCH 

~OMPILATION FAILS 
IF :FI: NOT READY 
OR IF :FI: PREAMB,LIT 
DOES NOT EXIST 

ALLOCATION OF MEMORY AND THE WAY IN WHICH LOCATIONS ARE REFERENCED BY A 
PROGRAM IS DETERMINED BY THE SIZE CONTROL SWITCH. 

1. 'SMALL' - FOR PROGRAMS WITH LESS THAN 64K BYTES OF CODE AND LESS 
THAN 64K BYTES OF DATA. (MAXIMUM OF 128K BYTES.) 

2. 'COMPACT' - FOR PROGRAMS WITH A MAXIMUM OF 64K BYTES EACH OF CODE) 
DATA) AND STACK. 

3. 'MEDIUM' - FOR PROGRAMS WITH MORE THAN 64K BYTES OF CODE AND LESS 
THAN 64K BYTES OF DATA. 

4. 'LARGE' - FOR PROGRAMS WITH MORE THAN 64K BYTES OF CODE AND MORE THAN 
64K BYTES OF DATA. 

FOR GREATEST EFFICIENCY) USE THE SMALL CASE WHEN POSSIBLE. UPGRADED PL/M-80 
PROGRAMS tlllSI USE THE 'SMALL' CASE. 

8-20 



APPENDIX C 

THE iRMX 86 BOOTSTRAP LOADER 





WHY THE NEED FOR A BOOTSTRAP LOADER? 

• MAINTENANCE COSTS GREATLY REDUCED 

- MINIMIZE THE NEED TO MANUFACTURE ROM CHIPS 
- SOFTWARE UPGRADES AND BUG FIXES ARE EASILY INSTALLED 

AND DELIVERED 

FUNCTION AND CONTROLLERS 

• THE BOOTSTRAP LOADER FUNCTION 

- LOAD THE RMX86 O.S AND APPLICATION SOFTWARE FROM 
SECONDARY STORAGE INTO RAM 

• SECONDARY STORAGE SUPPORT 

- THE RMX86 PRODUCT INCLUDE BOOTSTRAP LOADER DEVICE 
DRIVERS FOR THE FOLLOWING CONTROLLERS: 
1) ISBC 204 
2) ISBC 208 
3) ISBC 206 
4) ISBC 215 
5) ISBC 218 
6) ISBC 254 

C-l 



STAGES 

• THERE ARE TWO PARTS TO THE APPLICATION LOADER 
- THE FIRST STAGE AND THE SECOND STAGE 

(ROM) (RA."1 ) 

1ST STAGE 

~----

PASSES) ~PASSES, 
CONtRO[c:JCONTRO~ 

STAGE 

• RUNS UPON SYSTEM RESET 
• FINDS DEVICE TO LOAD 

FROM 
• LOADS PART OF 2ND 

STAGE AND TRANSFERS 
CONTROL 

• FINISHES LOADING 
ITSELF 

• FINDS FILE TO LOAD 
FROM 

• LOADS FILE AND TRANSFERS 
CONTROL 

THE SECOND STAGE 

(RAM) 

• A VOLUME MAY BE FORMATTED WITH TH'E HUr·1AN INTERFACE OR 
THE FILES UTILITIES. 

• THE FORMATTING PROCESS WILL PLACE THE SECOND STAGE ON 
THE VOLUME WITH NO EFFORT ON YOUR PART. 

• THE SECOND STAGE IS ::: 6K OF LTL CODE. 

C-2 



THE FIRST STAGE 

• THE FIRST STAGE CONSISTS OF TWO PARTS 

• THE FIRST STAGE RESIDES IN ROM 

• DEVICE DRIVER SOFTWARE (PART I) 
- SIZE DEPENDS ON HOW MANY DEVICE DRIVERS YOU CHOOSE 

TO INCLUDE. (EACH DRIVER 300 TO 500 BYTES) 

• BOOT LOADER CORE (PART 2) 
- THIS PART LOADS THE 2ND STAGE 
- SIZE DEPENDS ON HOW MANY OPTIONS YOU CHOOSE. 

(SIZE 100 TO 500 BYTES) 

\FI RST STAGE OPTIONS 

• THE LOCATION OF THE FIRST STAGE 

• THE LOCATION WHERE THE FIRST STAGE LOADS THE SECOND STAGE 
- (USUALLY IN THE FREE SPACE OF THE FINAL SYSTEM TO BE LOADED) 

• ·METHOD TO BE USED FOR DEVICE SELECTION 
- NO SELECTION 
- AUTO SELECTION 
- MANUAL SELECTION 

• METHOD TO BE USED FOR FILE SELECTION 
- LOADING A DEFAULT FILE NAME 
- ALLOWING THE END USER TO SPECIFY A FILE NAME 

C-3 



DEVICE SELECTION 

• NO SELECTION 
- BOOTSTRAP LOADER ALWAYS USES SAME DEVICE 
- IF DEVICE IS NOT READY J LOADER TERMINATES 

• AUTO DEVICE SELECTION 
- YOU PROVIDE A LIST OF DEVICES 
- THE LOADER CYCLES THROUGH THE LIST UNTIL IT 

FINDS A READY DEVICE 

• MANUAL DEVICE SELECTION 
- THE LOADER PROMPTS THE USER AT THE TERMINAL (*) 
- THE USER ENTERS A DEVICE NAME (E.G. :F0:) 
- IF NAME IS NOT FOUND THEN LOADER SWITCHES TO AUTO 

DEVICE SELECTION 

FILE SELECTION 

• THE LOADABLE FILE MUST BE A NA~ED FILE 

• LOADING A DEFAULT FILE 
- THE DEFAULT FILE IS (/SYSTEM/RMX86) 

• SPECIFYING A FILE NAME 
- DEVICE DELECTION MUST BE MANUAL 
- (E.G. :YES:LIFE/IS/HARD/INITHE/FAST/LANE) 

C-4 



WHAT IF: 

PROBLEMS 

• I AM NOT USING ONE OF THE BOOTSTRAP DEVICE 
DRIVERS SUPPLED WITH THE RMX86 PRODUCT? 

• I DO NOT HAVE THE STANDARD 957B "TERMINAL" SUPPORT? 

WAIT--DON'T DO IT ! 

WRITING YOUR OWN DEVICE DRIVER 

• A DEVICE DRIVER FOR THE BOOTSTRAP LOADER CONSISTS OF 
TWO PROCEDURES: 

- DEVICE$INIT AND DEVICE$READ 

• THE PROCEDURES MUST BE WRITTEN IN THE PLM86 LARGE MODEL. 

• THE RMX86 LOADER REFERENCE MANUAL SUPPLIES MORE SPECIFIC 
INFORMATION ABOUT THESE PROCEDURES, 

C-5 



CUSTOM TERMINAL SUPPORT 

• T.HERE IS INTEL PROVIDED SOURCE CODE (MODIFIABLE TO YOUR 
NEEDS) FOR TERMINAL COMMUNICATION SUPPORT. 

• YOU CAN ALWAYS WRITE YOUR OWN CODE. 

INTEL 
CODE 

~ 

QUIZ! 

MY-OWN 
CODE 

• I CAN CHOOSE ANY FILE NAME TO BE LOADED? T OR F 

• WHAT IS THE MAX NUMBER OF DEVICES I CAN SPECIFY 
IN AUTO SELECTION? 

• WHAT ARE POSSIBLE ERROR CAUSES IF BOOTSTRAP LOADER 
LOOPS IN 2ND STAGE? 

HINT -- LOOK IN THE LOADER MANUAL! 

C-6 





i ,Ci.'" 1 
.dS '(::',1"\: 

1 "Sb.A, 
',~ "', 

" ,~ ;,' 
;: . 



inter WORKSHOPS 

Self-Study Introduction to Microprocessors 
. Introduction to Microprocessors 
MCS~'-48/49 Microcontrollers 
MCS~-51 Microcontrollers 
MCS'lI'-80/85 Microprocessors 
iAPX 86,88.186 Microprocessors, Part I 
iAPX 86,88,186 Microprocessors, Part II 
iAPX 286 Architecture 

Software for Non-Programmers. 
PLlMProgramming 
Pascal Programming for Microcomputers 
Ada-' Programming 
iRMX™86 Operating System Part I 

, iRMX™86 Operating System Part II (110) 
iRMX™88,80 Operating System 

System 86/300 Users 
NOS-II Network Development System Superuser 
Transaction Processing System (iTPS) 
Terminal Application Processing System (iTAPS) 
iDBp™ Database Processor 
8086-Based Personal Computers 

Peripheral Chips/Data Communications 
Speech Communication with Computers 
2920 Signal Processor 

Boston Area 
27 Industrial Avenue. Chelmsford. MA 01824 (617) 256-1374 

Chicago Area 
Gould Center. East Tower 
2550 Golf Road. Suite 815. Rolling Meadows. Il60008 (312) 981-7250 

Dallas Area 
12300 Ford Rd., Suite 380, Dallas. TX 75234 (214) 241-8087 

San Francisco Bav Area 
1350 Shorebird Way. Bldg. B .• Mt. View, CA 94043 (415),940-7800 



" ,,: . ,.~ . . .. , ..' 
, ,INTEL Corporation, 3065 Bowers A~ue" San~a Clara. CA 95051 • (408) 987~080 . ,. 


