
iRMXTM 86 SYSTEM DEBUGGER
REFERENCE MANUAL

I I

CONTENTS

PAGE

CHAPTER 1
ORGANIZATION •••••••••••••••••••••• "................................ 1-1

CHAPTER 2
INTRODUCTION
Advantages of the iRMXTH 86 Debugger ••••••••••••••••••••••••••••••••
Advantages of the ICE®-86 Emulator" ••••••••••••••••••••••••••••••••
Advantages of the iSBC® 957B, iSDM 86, and iSDM 286 Monitors •••••••
Advantages of the iRMXTH 86 Sys tern De bugge r •••••••••••••••••••••••••
Requirements of the iRMXTH 86 System De bugger •••••••••••••••••••••••

CHAPTER 3
USING THE SYSTEM DEBUGGER
How the System Debugger is Supplied ••••••••••••••••••••••••••••••••
Use Restrictions of the System Debugger ••••••••••••••••••••••••••••
Configuring the System Debugger ••• " ••••••••••••••••••••••••••••••••
Invoking the System Debugger •••••• ,~ ••••••••••••••••••••••••••••••••
Returning to Your Application ••••• ,~ ••••••••••••••••••••••••••••••••

CHAPTER 4
COMMANDS
Checking Validity of Tokens ••••••• " ••••••••••••••••••••••••••••••••
Pictorial Representation of Syntax,~ ••••••••••••••••••••••••••••••••
Display of Numerical Values ••••••• " ••••••••••••••••••••••••••••••••
Command Dictionary •••••••••••••••• " ••••••••••••••••••••••••••••••••

VC--Display System Call Information ••••••••••••••••••••••••••••••
VD--Display a Job's Object Directory •••••••••••••••••••••••••••••
VH--Display Help Information •••• " ••••••••••••••••••••••••••••••••
VJ--Display the Job Hierarchy ••• " ••••••••••••••••••••••••••••••••
VK--Display Ready and Sleeping Tasks •••••••••••••••••••••••••••••
Vo--Display the Obj ect s in a Jo b., ••••••••••••••••••••••••••••••••
VR--Display I/O Request/Result Segment •••••••••••••••••••••••••••
VS--Display Stack and System Call Information ••••••••••••••••••••
VT--Display iRMXTH 86 Object ••••••••••••••••••••••••••••••••••••••

Jo b Display ••••••••••••••••••• " ••••••••••••••••••••••••••••••••
Task Display •••
Mailbox Display ••••••••••••••• " ••••••••••••••••••••••••••••••••
Semaphore Display ••
Region Display •••••••••••••••• " ••••••••••••••••••••••••••••••••
Segment Display ••
Extension Object Display •••••• " ••••••••••••••••••••••••••••••••
Composite Object Display •••••• " ••••••••••••••••••••••••••••••••

VU--Display the System Calls in a Task's Stack •••••••••••••••••••

System Debugger iii

2-1
2-1
2-2
2-2
2-2

3-1
3-1
3-1
3-1
3-2

4-1
4-2
4-2
4-3
4-4
4-7
4-10
4-12
4-15
4-17
4-20
4-24
4-29
4-29
4-31
4-34
4-36
4-37
4-38
4-38
4-39
4-48

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.
4-25

FIGURES

Format Of VC Output ••
Format Of VD Output ••
Format Of VII Output ••
Format Of VJ Output ••
Format Of VK Output ••
Format Of VO Output ••
Format Of VR Output ••
Format Of VS Output ••
Format Of VT Output (Job Display) ••••••••••••••••••••••••••
Format Of VT Output (Non-Interrupt Task) •••••••••••••••••••
Format Of VT Output (Interrupt Task) •••••••••••••••••••••••
Format Of VT Output (Mailbox with No Queue) ••••••••••••••••
Format Of VT Output (Mailbox with Task Queue) ••••••••••••••
Format Of VT Output (Mailbox with Object Queue) ••••••••••••
Format Of VT Output (Semaphore with No Queue) ••••••••••••••
Format Of VT Output (Semaphore with Task Queue) ••••••••••••
Format Of VT Output (Region) •••••••••••••••••••••••••••••••
Format Of VT Output (Segment) ••••••••••••••••••••••••••••••
Format Of VT Output (Extension Object) •••••••••••••••••••••
Format Of VT Output (Composite Object Other Than BIOS) •••••
Format Of VT Output (BIOS User Object Composite) •••••••••••
Format Of VT Output (Physical File Connection) •••••••••••••
Format Of VT Output (Stream File Connection) •••••••••••••••
Format Of VT Output (Named File Connection) ••••••••••••••••
Format Of VU Output ••

System Debuger iv

PAGE

4-4
4-7
4-11
4-12
4-15
4-17
4-20
4-25
4-30
4-31
4-32
4-34
4-35
4-35
4-36
4-36
4-37
4-38
4-38
4-39
4-40
4-41
4-44
4-45
4-49

CHAPTER 1
ORGANIZATION

This manual contains four chapters. Some of the chapters contain
introductory or overview material that you might not need to read if you
are already familiar with the iSBC 957B, iSDH 86, or iSDM 286 monitor.
Other chapters contain reference material that you can use as you debug
your system. You can use this chapter to determine which of the other
chapters you should read.

The remaining chapters of the manual are the following:

Chapter 2

Chapter 3

Chapter 4

This chapter describes the features of the System
Debugger and its relationship to the other tools for
debugging iRMX 86 applications. You should read this
chapter if you are going through the manual for the
first time.

This chapter gives a variety of facts pertaining to
the use of the System Debugger. You should read this
chapter if you are installing the System Debugger
and/or configuring :it into your system.

This chapter contains detailed descriptions of the
System Debugger commands. The commands are listed in
alphabetical order for easy referencing. When you are
debugging your system you should refer to this chapter
for specific information about the format and
parameters of the commands.

System Debugger 1-1

• @ CHAPTER 2
INTRODUCTION

The development of almost every system requires debugging. To aid you in
the development of iRMX 86-based application systems, Intel provides the
iRHX 86 Debugger, the ICE-86 In-Cireuit Emulator, the iSDM 86 and
iSDM 286 System Debug Monitors, and the iSBC 957B monitor. The System
Debugger extends the capabilities of the three monitors. This manual
describes the System Debugger extension. The iRMX 86 DEBUGGER REFERENCE
MANUAL describes the iRMX 86 Debugger. The USER'S GUIDE FOR THE
iSBC 957B iAPX 86, 88 INTERFACE AND EXECUTION PACKAGE describes the
iSBC 957B monitor. The iSDM 86 SYSTEM DEBUG MONITOR REFERENCE MANUAL
describes the iSDM 86 monitor. And the iSDM 286 SYSTEH DEBUG MONITOR
REFERENCE MANUAL describes the iSDM 286 monitor. The following sections
describe the relative advantages of the various debugging tools.

ADVANTAGES OF THE iRMXT" 86 DEBUGGER

The iRMX 86 Debugger i.s a debugging tool that is "sensitive" to the data
structures that the Nucleus maintains. The iRMX 86 Debugger allows you
to:

• }lanipulate or examine any task while other tasks in the system
continue to run. This distinguishes the iRMX 86 Debugger from
the iRMX 86 System Debugger, which requires that the application
system be "frozen."

• Monitor system activity without interfering with execution.

• Examine and interpret data structures that are associated with
the Nucleus and the Nucleus objects.

ADVANTAGES OF THE ICE@-86 EMULATOR

The ICE-86 emulator provides in-circuit emulation for iAPX 86, 88
microprocessor-based systems, meaning that it "stands in" for the 8086 or
8088 microprocessor in your target iRMX 86-based system during
development. The ICE-86 emulator allows you to:

• Get closer to the hardware level by examining the contents of
input pins and input ports.

• Change the values at output ports.

• Examine individual components rather than an entire board.

• Look at the most recent 80 to 150 assembly language instructions
executed.

System Debugger 2-1

INTRODUCTION

ADVANTAGES OF THE iSBC® 957B, iSDMTI1 86, AND iSDMTI1 286 MONITORS

The iSBC 957B, iSDH 86, and iSDM 286 monitors each support both
interactive commands and system I/O routines. Each allows you to:

• Disassemble code.

• Set execution and memory breakpoints.

• Display memory.

ADVANTAGES OF THE iRMXTI1 86 SYSTEM DEBUGGER

You can extend the capabilities of the iSBC 957B, iSDM 86, or iSDM 286
monitor the System Debugger part of your operating system. In addition
to retaining the features of the monitors, the System Debugger:

• Identifies and interprets iRMX 86 system calls.

• Displays iR}~ 86 objects.

• Examines the stack of a task to determine which iRr~ 86 system
calls it has made recently.

REQUIREMENTS OF THE iRMXTM 86 SYSTEM DEBUGGER

In order to use the System Debugger, you must have exactly ~ of the
following hardware configurations, with whatever support hardware that is
required (independent of the System Debugger):

or

• A terminal connected directly to an iAPX 86-, 88-, 186-, 188-, or
286-based board.

• An Intellec system connected to an iAPX 86-, 88-, 186-, 188-, or
286-based board.

You must also have:

• The monitor portion of the iSBC 957B iAPX 86, 88 Interface and
Execution Package or the iSDM 86 or iSDM 286 System Debug Monitor.

• At least the minimal configuration of the Nucleus. The System
Debugger needs only a small portion of valid Nucleus code, so
most of the System Debugger commands will function even if you
accidentally write over part of the Nucleus.

See the next chapter for more information about configuring and
installing the System Debugger.

System Debugger 2-2

CHAPTER 3
USING THE SYSTEM DEBUGGER

This chapter contains various facts about using the iRMX 86 System
Debugger.

HOW THE SYSTEM DEBUGGER IS SUPPLIED

The System Debugger is supplied as a file along with the other parts of
the iRMX 86 Operating System.

USE RESTRICTIONS OF THE SYSTEM DEBUGGER

One of the capabilities of the System Debugger is that it can display
information about specific invocations of system calls. However, it can
do this correctly only for applications that use the PL/M-86 SMALL,
COMPACT, or LARGE mod€~l of segmentation.

CONFIGURING THE SYSTEM DEBUGGER

To use the System Debugger to debug: your application, you must configure
it into the application. You do this simply by responding to two prompts
that the iRMX 86 Interactive Configuration Utility issues. One of the
prompts asks whether you want the System Debugger to be part of your
system. The other, which applies only if you respond affirmatively to
the first prompt, asks which interrupt level you want to use to invoke
the System Debugger manually.

INVOKING THE SYSTEM DEBUGGER

There are two ways of invoking the System Debugger. As the previous
section implies, one ~lay is to press the button that is physically tied
to the interrupt level you specify during configuration. The other way,
which requires that your system include the Human Interface, is to use
the DEBUG command.

System Debugger 3-1

USING THE SYSTEM DEBUGGER

The DEBUG command syntax requires the pathname of a loadable file. DEBUG
loads the indicated file and then passes control to the iSBC 957B, iSDM
86, or iSDM 286 monitor. Normally, the file the DEBUG command loads is
the file that is to be debugged. However, in this case the file to be
debugged (the application system incorporating the System Debugger) is
already in memory. To satisfy the requirement that the DEBUG command
load some file, but without corrupting your application, specify the
pathname of a file that the DEBUG command can load harmlessly into an
area of memory not used by the application. A file you can use for this
purpose is the TIME command of the Human Interface. It requires little
memory and, when loaded, is automatically located where it does not
interfere with the application.

See the iRMX 86 OPERATOR'S MANUAL for more information concerning the
DEBUG command.

After the DEBUG command loads the file into memory or after you press the
interrupt button, the monitor issues its period (.) prompt, and you can
begin entering System Debugger commands. These commands are the subject
of the next chapter.

RETURNING TO YOUR APPLICATION

When you have finished debugging your application system, you can start
it up again by means of the go (G) command of the monitor.

System Debugger 3-2

CHAPTER 4
COMMANDS

This chapter contains detailed descriptions of the iRMX 86 System
Debugger commands, in alphabetical order. There is also a Command
Dictionary that lists the commands in functional groups.

This chapter uses "CS:IP" to mean "code segment:instruction pointer."
The chapter also contains several examples of System Debugger commands
entered at the terminal. In the examples, user input is underscored to
distinguish it from System Debugger ou.tput. Carriage returns are not
shown after the user input but they are required. for the System Debugger
to execute the command.

CHECKING VALIDITY OF TOKENS

The iRMX 86 Operating System maintains tokens in doubly-linked lists.
Whenever you enter a command that requires a token as a parameter, the
System Debugger checks the validity of that token by looking at the
token's forward and backward links. It checks tokens that you enter as
parameters for the VD, VIC, VJ, VO, VR, VT, and VU commands as well as the
tokens that are listed in the displays.

If one of a token's links is bad, the System Debugger generates an error
message along wi.th the information the command that you entered usually
displays. The token you enter as a pa.rameter of the System Debugger
command always appears in each line as the center value in the display of
tokens. The displays for forward- and backward-link errors are as
follows:

Forward link ERROR: 4111--)4E85 41 1 1(--4E85--)4155 ?FFFF(--4155

Back link ERROR: 4111--)410F? 4111(--4E85--)4155 4E85(--4155

Arrows to the right indieate forward links and those to the left indicate
backward links. A question mark appearing before or after a value
signals a forward or backward link error.

If both links are bad, the System Debugger considers the token invalid
and displays the following message:

*** INVALID TOKEN **~'<

System Debugger 4-1

COMMANDS

The presence of a link error means that iRMX 86 data structures have been
corrupted. The most common reason for this problem is overwriting. One
of your tasks might have accidentally written over part of the system
data structures and/or code. If you are using the non-maskable
interrupt, another possible cause of a link error is that you interrupted
the Nucleus while it was setting up the links. If either of these things
happen, you must re-initialize the System Debugger (and perhaps your
System). Only then can you use the VD, VJ, VK, YO, VR, VT, and VU
commands without getting another link error. See Chapter 3 in this
manual for more information about initializing the System Debugger on
your system.

PICTORIAL REPRESENTATION OF SYNTAX

This manual uses a schematic device to illustrate the syntax of
commands. The schematic consists of what looks like an aerial view of a
model railroad, with syntactic elements scattered along the track.
Imagine that a train enters the system at the far left, drives around as
much as it can or wants to (sharp turns and backing up are not allowed),
and finally departs at the far right. The command it generates in doing
so consists of the syntactic elements that it encounters on its journey.
The following pictorial syntax shows two valid sequences: AC and BC.

~I----
x-455

The pictorial syntax of the commands in this chapter does not show spaces
as elements. However, the SDB does allow one or more spaces between the
command and the parameter. For example, even though the syntax for VR is:

----------~~~----~Gse'~~---------------V tc~
you can enter: x-456

.VR xxxx

The space between "VR" and "xxxx" does not affect the result of the
command.

Even though all syntax diagrams show uppercase letters, such as VR,
entering lowercase equivalents of those letters produces the same effect.

DISPLAY OF NUHERICAL VALUES

In all of the displays that this chapter discusses, all numerical values
are given in hexadecimal form.

System Debugger 4-2

COMMANDS

COMMAND DICTIONARY

Command

DISPLAYING iRMX 86 DATA STRUCTURES

VD--Display a Job's Object Directory •••••••••••••••••••••••••••••••

VJ--Display the Job Hierarchy ••••••••••••••••••••••••••••••••••••••

VK--D i splay Re ady and Sl E!eping Ta sks •••••••••••••••••••••••••••••••

v 0-- Dis pIa y the 0 b j e c t sin a Job •••••••••••••••••••••••••••••••••••

VR--Display an I/O Request/Result Segment ••••••••••••••••••••••••••

VT--Displayan iRMX 86 Object ••••••••••••••••••••••••••••••••••••••

RECOGNIZING AND DISPLAYING iRMX 86 SYSTEM CALLS

VC--Display System Call Information ••••••••••••••••••••••••••••••••

VS--Display Stack and System Call Information ••••••••••••••••••••••

VU--Display System Calls in Task's Stack •••••••••••••••••••••••••••

OTHER COMMANDS

VH--Display Help Information •••••••••••••••••••••••••••••••••••••••

System Debugger 4-3

4-7

4-12

4-15

4-17

4-20

4-29

4-4

4-24

4-48

4-10

VC·DISPLAY SYSTEM CALL INFORMATION

VC--Display System Call Information

The VC command checks to see if a CALL instruction is an iRMX 86 system
call.

PARAMETER

pointer

DESCRIPTION

x-457

The optional pointer parameter can be any valid
iSBC 957B, iSDM 86, or iSDM 286 address. The
System Debugger uses this address as the address
of the CALL instruction to be checked.

If you do not supply a pointer, the System Debug
Monitor uses the default pointer, which is the
current CS:IP. If you specify an IP value but
not a CS value, the System Debugger uses the
current CS as the default base.

If the CALL instruction is an iRMX 86 system call, the VC command
displays information about the CALL instruction as shown in Figure 4-1.

S/W int: xx (subsystem) entry code xxxx system call

Figure 4-1. Format Of VC Output

The fields in Figure 4-1 are defined as follows:

S/W int: xx (subsystem)

entry code xxxx

system call

The software interrupt number and the
lRMX 86 subsystem that corresponds to
that number.

The entry code for the system call
within the subsystem.

The name of the iRMX 86 system call.

System Debugger 4-4

VC·DISPLAY SYSTEM CALL INFORMATION

ERROR MESSAGES

NOTE

The System Debugger uses the software
interrupt number associated with the
displayed entry code to determine
whether the CALL instruction represents
a system call. It is possible, but not
likely, that the System Debugger can
interpret a sequence of bytes as a
software interrupt (INT) instruction
and then (inaccurately) reported that a
CALL lnstruction is an iRMX 86 system
call.

The System Debugger returns the following error messages for the VC
command:

Error Message Description

Syntax Error You made an error in entering the command.

Not a system CALL The parameter you specified points to a CALL
instruction that is not an iRMX 86 system
call.

Not a CALL instruction The parameter you specified does not point
to any kind of call instruction.

EXAMPLES

Suppose you disassembled the following code using the DX command of the
iSBC 957, iSDM 86, or iSDM 286 monitor:

49A4:006D 50
49A4:006E E8ADIE
49A4:007I E8DD03
49A4:0074 B80000
49A4:0077 50
49A4:0078 8D060600
49A4: 007C IE
49A4:007D 50
49A4: 007E E841IE
49A4:008I A30000

PUSH
CALL
CALL
MOV
PUSH
LEA
PUSH
PUSH
CALL
MOV

AX
A = IFIE
A = 045IH
AX,O
AX

; $+7856
;$+992

AX,WORD PRT 006H
DS
AX
A = IEC2H ;$+7748
WORD PTR OOOOH,AX

If you use the VC command on the CALL instruction at address 49A4:006E,
that is, you enter:

.VC 49A4:006E

System Debugger 4-5

VC·DISPLAY SYSTEM CALL INFORMATION

the System Debugger responds by displaying the following information:

S/w Int: B8 (Nucleus) entry code 0801 set exception handler

The "S/W Int: B8 (Nucleus)" means that the software interrupt number,
"B8" , identifies this call as a Nucleus call. The entry code within the
Nucleus is "080 I" which corresponds to an RQSETEXCEPTION$HANDLER system
call.

Now suppose you want to see if the CALL instruction at 49A4:0071 is a
system call. Enter:

.VC 49A4:0071

The System Debugger responds with the following message.

Not a system CALL

Finally, if you use the VC command on the instruction at 49A4:0074, the
System Debugger responds with:

Not a CALL instruction

System Debugger 4-6

VD-DISPLAY A JOB'S OBJECT DIRECTORY

VD--Display A Job's Objeet Directory

The VD command displays a job's object directory.

----------~~~----~~~~---------------
x-458

PARAMETER

job token The token for the job whose object directory you
~l1an t to displa.y.

DESCRIPTION

If the parameter is a valid job token, the System Debugger displays the
job's object directory, as shown in Fi.gure 4-2.

Di rectory size:

namel
name2

namej
invalid entry
namek

namen

xxxx En tries used:

tokenl
tasks waiting token2 ••• tokeni

tokenn

Figure 4-2. Format Of VD Output

The fields in Figure 4-2 are as follows:

System Debugger 4-7

xxxx

VD·DISPLAY A JOB'S OBJECT DIRECTORY

Directory size

Entries used

namel ••• namen

tokenl···tokenn

tasks waiting

invalid entry

ERROR MESSAGES

The maximum allowable number of entries this
job can have in its object directory.

The number of entries used presently in the
directory.

The names under which objects are cataloged.

Tokens for the cataloged objects.

Signifies that one or more tasks have
performed an RQ$LOOKUP$OBJECT on an object
that is not cataloged. The tokens following
this field identify the tasks that are still
waiting for the objects to be cataloged.

This field appears only if the specified
job's object directory has been destroyed or
written ovc~r.

The System Debugger returns the following error messages for the VD
command:

Error Message

Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

De script iOl:!.

You did not specify a parameter for the
command, or you made an error in entering
the command.

You entered a valid token that is not a job
token.

The value you entered for the token is not a
valid token.

System Debugger 4-8

VD·DISPLAY A JOB'S OBJECT DIRECTORY

EXAMPLES

If you want to look at the object directory of job "528F," you can enter:

.VD 528F

The System Debugger responds as follows:

Directory size: OOOA Entries used: 0003

$ 5229
R?IOUSER 5201
RQGLOBAL 528F

The symbols "$," "R?IOUSER," and "RQGLOBAL" are the names of the objects,
and their respective tokens are 5229, .5201, and 528F. There are no
waiting tasks or invalid entries.

System Debu.gger 4-9

VH·DISPLAY HELP INFORMATION

VH--Display Help Information

The VH command displays and describes the ten System Debugger commands.

----------~~---------
x-459

PARAMETERS

There are no parameters for this call.

DESCRIPTION

The VH command lists all of the System Debugger commands, along with
their parameters and a short description of each command.

ERROR MESSAGE

The System Debugger returns the following error message for the VII
command:

Error Message Descriptior~

Syntax Error You made an error in entering the command.

EXAMPLE

If you enter:

.VH

the System Debugger responds as shown in Figure 4-3, where the brackets
indicate optional parameters.

System Debugger 4-10

VH·DISPLAY HELP INFORMATION

iRMX.86 SYSTEM DEBUGGER~ Vx.y

vc
vd
vh
vj
vk
vo
vr
vs
vt
vu

[<POINTER>] Display system call,
<Job TOKEN> Display job's object directory.

Display help information.
[<Jo b TOKEN>] Display job hierarchy from specified level.

<Job TOKEN>
<Seg TOKEN>
[<Count>]
<TOKEN>
<Task TOKEN>

Display ready and sleeping tasks.
Display list of objects for specified job.
Display I/O Request/Result Segment.
Display stack and system call information.
Display iRMX 86 object.
Display system calls on stack of specified

Figure 4-3. VH Display

NOTE

If yOUl use zero (0) for any of the
optional parameters shown in Figure
4-3, the effect is the same as if you
omitted the parameter altogether.

System Debugger 4-11

task.

VJ·DISPLAY JOB HIERARCHY

VJ--Display The Job Hierarchy

The VJ command displays the portion of the job hierarchy that descends from
the level you specify.

----~G

PARAMETER

job token

DESCRIPTION

x-460

The token for the job whose descendant job hierarchy you
want to display.

If you do not specify a job token, VJ assumes the
default job, which is the root job.

The specified job, whether it is specified explicitly or
whether it is the default (root) job, should not have
more than 44 generations of job descendants. Otherwise,
the display of the excessively-long branch is
discontinued, an error message is displayed, and the
System Debugger pron~ts for another command.

The VJ command displays the token of the specified job and all the tokens
of its descendant jobs. It also displays the tokens of the jobs (and their
descendants) at the same level as the specified job. The descendant jobs
are indented three spaces to show their position in the hierarchy. This
command displays the job hierarchy as shown in Figure 4-4.

iRMX/86 Job Tree

token1
token2

token3
token4

tokens
token6

Fi.gure 4-4. Format Of VJ Output

System Debugger 4-12

VJ·DISPLAY JOB HIERARCHY

The fields in Figure 4-4 are as follows:

token2···token6

The token for the root job or the job you
specify.

The tokens for the descendant jobs of the root
job or the job you specify.

In Figure 4-4, jobs 2 and 6 are both indented three spaces to signify that
they are children of job 1. Similarly, jobs 3 and 5 are depicted as
children of job 2, and job 4 is shown as the child of job 3.

ERROR MESSAGES

The System Debugger returns the following error messages for the VJ command:

Error Message

Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

Error looking for
root job

SDB job nest limit
exceeded

EXAMPLES

Description

You made an error in entering the command.

You entered a valid token that is not a job
token.

The value you entered for the token is not a
valid token.

The System Debugger cannot find the root job.

The job specified in the command invocation (or
the default job) has more than 44 generations
of job descendants.

If you want to examine the hierarchy of the root job, enter:

.VJ

Suppose the System Debugger responds w'ith the following job tree.

iRMX/86 Job Tree

57DE
528F

51CE
4F9F

5741
57B5

The display shows "57DE" to be the root job.

System Debugger 4-13

VJ·DISPLAY JOB HIERARCHY

If you want to display the descendant jobs of "51CE", enter:

.VJ 51CE

The System Debugger displays the following job tokens:

51CE
4F9F

NOTE

The VJ command (without a parameter)
requires the Nucleus interrupt vector
and a small part of the Nucleus code in
order to function correctly. If you
destroy the Nucleus interrupt vector
(by pressing the RESET switch) or if
you write over the required part of
Nucleus code, this command does not
operate properly. You must
re-initialize your system in order to
restore the VJ command.

System Debugger 4-14

VK·DISPLAY READY AND SLEEPING TASKS

VK--Display Ready And Sleeping Tasks

The VK command displays the tokens for the tasks that are in the ready
and sleeping states.

x-461

PARAMETERS

This command has no parameters.

DESCRIPTION

The VK command displays the tokens for the tasks that are ready and
asleep, in the format shown in Figure 4-5.

Ready tasks: xxxx
Sleeping tasks: xxxx

Figure 4-5. Forma:t Of VK Output

The fields in Figure 4-5 are as follows:

Ready tasks

Sleeping tasks

ERROR MESSAGES

The tokens for all ready tasks in the system.

The tokens for all sleeping tasks in the
system.

The System Debugger returns the follow:ing error messages for the VK
command:

System Debugger 4-15

VK·DISPLAY READY AND SLEEPING TASKS

Error Messages

Ready tasks: Can't locate
Sleeping tasks:

Can't locate

Syntax error

Description

The system is corrupted. See the
follc~ing explanation.

You made an error in entering the
command.

The System Debugger uses the Nucleus interrupt vector and some Nucleus
code in order to identify the ready and sleeping tasks. If you somehow
destroy the Nucleus interrupt vector or the required code, the System
Debugger can't identify the ready and sleeping tasks.

The most common reasons for this type of error are:

• Pressing the RESET switch durlng debugging.

• Not initializing the Nucleus lnterrupt vector.

• Tasks writing over the Nucleus code.

• Tasks writing over iRMX 86 objects.

If any of these problems apply to your system, you must re-initialize
your sys tern.

EXAMPLE

If you want to display a list of all the ready and sleeping tasks in your
system, enter:

.VK

In this example, the System Debugger r(~sponds as follows:

Ready tasks: 4F02
Sleeping tasks: 56F5

5021
50Dl

558A
4FFE
2302

56BF
5697

5204
5238

System Debugger 4-16

51B3
511F

5090
566E

55EC
563A

5052
5769

VO-DISPLAY THE OBJECTS IN A JO

Vo--Display Objects In A Job

The VO command displays the tokens for the objects in a job.

----------~~~~--------------

PARAMETER

job token

DESCRIPTION

x-462

The token for the job whose objects you want to
display.

The va command lists the tokens for a job's child jobs, tasks, mailboxes,
semaphores, regions, segnlents, extensions, and composites in the format
shown in Figure 4-6.

Child jobs: xxxx xxxx xxxx
Tasks: xxxx xxxx xxxx
Mailboxes: xxxx xxx x xxxx
Semaphores: xxxx xxxx xxxx
Regions: xxxx xxxx xxxx ...
Segments: xxxx xxxx xxxx
Extens ions: xxxx xxxx xxxx
Composites: xxxx xxxx xxxx

Figure 4-6. Format Of VO Output

The fields in Figure 4-6 are as follows:

Child jobs

Tasks

The tokens for the specified job's offspring
jobs.

The tokens for the tasks in the specified
job.

System Debugger 4-17

VO·DISPLAY THE OBJECTS IN A JOB

Mailboxes

Semaphores

Regions

Segments

Extensions

Composites

ERROR MESSAGES

The tokens for the mailboxes within the
job. A lower-case "0" immediately following
a mailbox token means that one or more
objects are queued at the mailbox. A
lower-cas€~ "t" immediately following a
mailbox token means that one or more tasks
are queued at the mailbox.

The tokens for the semaphores in the
specified job. A lower-case "t" immediately
following a semaphore token means that one
or more tasks are queued at the semaphore.

The tokens for the regions in the specified
job. A lower-case "b" (busy) immediately
following a region token means that a task
has access to information guarded by the
region.

The tokens for the segments in the specified
job.

The tokens for the extensions in the
specified job.

The tokens for the composites in the
specified job.

The System Debugger returns the following error messages for the va
command

Error Message

Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

EXAMPLE

Description

You did not specify a parameter for the
command or you made an error in entering the
command.

You entered a valid token that is not a job
token.

The value you entered for the token is not a
valid tok€~n.

Suppose you want to look at the objects in "SlCE."

.VO SlCE

System Debugger 4-18

VO·DISPLAY THE OBJECTS IN A JOB

The System Debugger responds with the following display:

Child jobs: 4F9F
Tasks: 511F 50D1 5090 5052 5021 4FFE
Mailboxes: 5119 5110 5100 t 50FB t 50CE t 5089 t
Semaphores: SaFE 501F t
Regions:
Segments: 510C 5103 508e 504E 4FE6 4FCB
Extens ion s:
Composites: 511C 5113 50C8 5083 4FF3 4FED

The previous display shows the tokens :Eor the child jobs, tasks,
mailboxes, semaphores, regions, segments, extensions, and composites in
the job. It also tells you that there are tasks waiting at four
mailboxes and at one semaphore.

System Debugger 4-19

VR·DISPLAY I/O REQUEST/RESULT SEGMENT

VR--Display I/O Request/Result Segment

The VR command displays information about the iRMX 86 Basic I/O System
I/O request/result segment (IORS) that corresponds to the segment token
that you enter.

~ ~;~~-----------------4V ---t"-~

PARAMETER

Segment token

DESCRIPTION

x-463

The token for a segment containing the 10RS you
want to display. This segment must be an 10RS or
the VR command returns invalid information.

The VR command displays the names and values for the fields of a specific
10RS. The System Debugger cannot determine whether the segment contains
a valid 10RS, so it is up to you to ensure that the segment does indeed
contain an 10RS. If the parameter is a valid segment token for a segment
containing an 10RS, the System Debugger displays information about the
10RS as shown in Figure 4-7.

The contents of the 10RS pertain to the most recent I/O operation in
which this IORS was used. For more information concerning the following
fields, see the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND
iRMX 88 I/O SYSTEMS.

I/O Request Result Segment

Status xxxx Unit status xxxx
Device xxxx Unit xx
Function xxxxx Subfunction xxxxxxx
Count xxxxxxx Actual xxxx
Device location xxxxxxxx Buffer pointer xxxx:xxxx
Resp mailbox xxxx Aux pointer xxxx:xxxx
Link forward xxxx:xxxx Link backward xxxx:xxxx
Done xxxx Cancel ID xxxx
Connection token xxxx

Figure 4-7. Format Of VR Output

System Debugger 4-20

VR·DISPLAY 110 REQUEST/RESULT SEGMENT

The fields in Figure 4-7 are as follows:

Status

Unit status

Device

Unit

Function

Subfunction

The condition code for the I/O operation.

See the description of I/O Request/Result
Segments in the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for further information.

Additional status information. The contents
of this field are meaningful only when the
Status field is set to the E$IO condition
(002BH).

See the description of I/O Request/Result
Segments in the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for further information.

The number of the device for which the last
request was intended.

The number of the unit for which this request
was intended.

The operation that was performed by the Basic
I/O System. The possible functions are as
follows:

Function
Read
Write
Seek
Special
Att Dev
Det Dev
Open
Close

System Call
RQAREAD
RQAWRITE
RQASEEK
RQASPECIAL
RQAPHYSICAL$ATTACH$DEVICE
RQAPHYSICAL$DETACH$DEVICE
RQAOPEN
RQACLOSE

If the function field contains an invalid
value, the System Debugger displays the
value in this field, followed by a space and
two question marks.

A further specification of the function that
applies only when the Function field
contains "Special." The possible
subfunctions and their descriptions are as
follows:

System Debugger 4-21

VR·DISPLAY 110 REQUEST/RESULT SEGMENT

Subfunction (con't)

Count

Actual

Device location

Buffer pointer

Resp mailbox

Aux pointer

Link forward

Link backwar d

Done

Subfunction
For/Que
Satisfy
Notify
Device char
Get Term Attr
Set Term Attr
Signal
Rewind
Read File Mark
Write File Mark
Retention Tape

Description
Format or Query
Stream file satisfy function
Notify function
Device characteristics
Get terminal attributes
Set terminal attributes
Signal funct ion
Rewind tape
Read file mark on tape
Write file mark on tape
Take up slack on tape

If the Function field doesn't contain
"Special", then the Subfunction field
contains "N/A." If the Subfunction field
contains an invalid value, the System
Debugger displays the value of the field
followed by a space and two question marks.

The number of bytes of data called for in the
I/O request.

The number of bytes of data transferred in
response to the request.

The eight-digit hexadecimal address of the
byte where the I/O operation began on the
specified device.

The address of the buffer from which the
Basic I/O System read or to which it wrote in
response to the request.

A token for the response mailbox to which the
device sent the laRS after the operation.

The pointer to the location of auxiliary
data, if any. This field is significant only
when the Function field contains "Special."

The address of the next laRS in the queue
where the laRS waited to be processed.

The address of the previous laRS in the queue
where the laRS waited to be processed.

This field is always present but applies only
to laRS's for I/O operations on random-access
devices. When applicable, it indicates
whether the I/O operation has been
completed. The possible values are TRUE
(FFFFH) and FALSE (OOOOH).

System Debugger 4-22

Cancel ID

Connection token

ERROR MESSAGES

VR·DISPLAY 110 REQUEST/RESULT SEGMENT

A word that is used by device drivers to
identify I/O requests that need to be
cancelled. A value of 0 indicates a request
that cannot be cancelled.

The token for the file connection that was
used to issue the request for the I/O
operation.

The System Debugger returns the following error messages for the VR
command:

Error Message

Syntax Error

Descriptio~

You did not specify a parameter for the
command or you made an error in entering the
command.

TOKEN is not a Segment You entered a valid token that is not a
segment token.

*** INVALID TOKEN ***'

Segment wrong size,
not an IORS

The value you entered for the token is not a
valid token.

The specified segment is neither four nor five
paragraphs in length, so it is not an I/O
request/result segment.

System Debugger 4-23

VS·DISPLAY STACK AND SYSTEM CAL~ INFORMATION I

VS--Display Stack And System Call Information

The VS command identifies system calls (as does the VC command) and
displays the stack.

PARAMETER

count

DESCRIPTION

~J
x-464

A decimal or hexadecimal value that specifies the
number of words from the stack that are to be
included in the display. A suffix of T, as in
l6T, means decimal. No suffix or a suffix of R
indicates hexadecimal.

If you do not specify a count, VS assumes the
default value, lOR.

The VS command identifies iRMX 86 system calls for all iRMX 86 subsystems
(as does the VC command) and interprets the parameters on the stack. If
a parameter is a string, the System Debugger displays the string. See
the appropriate iRMX 86 manual for additional information about system
calls.

The VS command interprets the CALL instruction at the current CS:IP. If
you want to interpret a CALL instruction at a different CS:IP value, you
must move the CS:IP to that value by using the iSBC 957B, iSDM 86, or
iSDM 286 GO command.

The VS command uses current values of the SS:SP (stack segment:stack
pointer) registers to display the current stack values. If the
instruction is an iRMX 86 system call, VS displays the system call and
the stack information, as shown in Figure 4-8.

System Debugger 4-24

xxxx:xxxx
xxxx:xxxx

xxxx
xxx x

xxxx
xxxx

VS·DISPLAY STACK AND SYSTEM CALL INFORMATION

xxxx
xxxx

xxx x
xxx x

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

S/W int: xx (subsystem) entry code xxxx system call

:parameters.:

Figure 4-8. Format Of VS Output

The fields in Figure 4-8 are as follows:

xxxx:xxxx

xxxx

parameters

The contents of the SS:SP.

Stack values.

The names of the stack values. The
parameters correspond to the stack values
directly above them.

The three remaining fields in Figure 4·-8 are identical to those in the VC
command.

S/W int: xx (subsystem) The software interrupt number and the

entry code xxxx

system call

ERROR MESSAGES

iRMX 86 subsystem that corresponds to that
number.

The entry code for the system call within
the subsystem.

The name of the iRMX 86 system call.

The System Debugger always displays the words at the top of the stack.
If it encounters problems, it then returns one of the following error
messages.

Error Message

Syntax Error

Not a system CALL

Description

You made an error in entering the command.

The CS:IP is pointing to a CALL instruction
that is not a system call.

System Debugger 4-25

VS·DISPLAY STACK AND SYSTEM CALL INFORMATION

Unknown entry code This message indicates that one of two
infrequent events has occurred. One is that
the System Debugger has mistaken an operand
for the software interrupt (INT)
instruction. The other possibility is that
a software link from user code into iRt1X 86
code has been corrupted.

If the instruction is not a CALL instruction, VS displays the contents of
the words on the stack and no message.

EXAMPLES

Suppose that by some means, such as the X command of the iSBC 957B,
iSDM 86, or iSDM 286 monitor, you determine that the SS:SP is 4906:07CA.
Suppose further that you then you use the VS command, as follows:

.VS

4906: 07CA
4906 :07DA

0008
49A4

S/W int: B8 (Nucleus)

4984
0020

4EAC
2581

4983
4EAC

entry code 0301

: •• excep$p •• :.mbox.:

4983
4EA1

0000
4EE7

delete mailbox

0600
0000

4906
0000

The parameter names identify the stack values directly above them. That
is, the "excep$p" parameter name signifies that the first two words
represent a pointer (4984:0008) to the exception code. Similarly, the
"mbox" parameter signifies that the third word (4EAC) is the token for
the mailbox being deleted.

Now, suppose that you move the SS:SP to 4906:07DO. If you invoke the VS
command now, the debug monitor displays the stack as follows:

.VS

4906:07DO
4906:07EO

4983
F7C7

Not a system CALL

4983
F7C7

0000
F5C7

0600
F5C7

4906
F5C7

49A4
F5C7

0020
F5CF

2581
F5CF

The System Debugger displays the stack and a message which informs you
that the instruction is a CALL instruction but is not a system call.

When an iRMX 86 system eall is executed, its parameters are pushed onto
the current stack, and then a CALL instruction is issued with the
appropriate address. If you want to display the stack at such a call
when there are more parameters than will fit on one line, the System
Debugger automatically displays multiple lines of words from the stack,
with corresponding lines of parameter description directly below them.

System Debugger 4-26

VS·DISPLAY STACK AND SYSTEM CALL INFORMATION

For example, suppose that you use the VS command as follows:

.vS

57CC:OF9A 015A 60C7 0000 60C6 60C6 0000 0600 57CC
57CC: OFAA 60EF 0028 2322 0000 60C7 6618 6605 6623
57CC:OFBA 6609 5A5F 5AF8 660B 0000 0000 0000 0000

S/W Int: B8 (Nucleus) entry code 0100 create job

: ••• excep$p ••• :t$flgs:stksze: •• sp •• : •• ss •• : •• ds •• : •• ip •• :
: •• cs •• :.pri •• :j$flgs:.exp$info$p •• :maxpri:maxtsk:maxobj:
:poolmx:poolmn:param. :dirsiz:

This display indicates that the CALL instruction is a Nucleus
RQ$CREATE$JOB system call having 18 parameters. The names of these
parameters are shown between the colons (:). As usual, the words on the
stack correspond to the parameters shown directly below those words.

The following display indicates that the CALL instruction is a Basic I/O
System (BIOS) RQAATTACH$FILE system eall having five parameters. The
"subpath$p" parameter points to a string that is seven characters long.
This string consists of the word "example."

.VS

57CC:OF4E
57CC:OF5E

OF8C
660B

57CC
3C13

65FD
6602

0000
2325

S/W Int: CO (BIOS) entry code 0002

6600
66D2

69A2
OF7C

attach file

0000
ODF7

: ••• excep$p ••• :.mbox.: •• subpath$p •• :prefix:.user.:
subpath--)07'example'

6602
FFFF

The following display indicates that the CALL instruction at CS:IP is an
Extended I/O System RQSRENAME$FILE system call having three
parameters. There are two parameters with strings in this example. The
new$path$p parameter points to a string that is four characters long.
This string contains "XY70." The path$p parameter points to a string
that is also four characters long and contains "temp."

.VS

57CC:OF98
57CC :OFA8

014A
57CC

60C7
60EF

06A5
0028

S/W Int: C1 (EIOS) entry code 0108

60EF
2322

06A5
0000

60EF
60C7

rename file

: ••• excep$p ••• :.new$path$p •• : ••• path$p •••• :
new path--)04'XY70'
path--)04' temp'

System De bugger 4-27

0000
OOOA

0600
6605

VS·DISPLAY STACK AND SYSTEM CALL INFORMATION

NOTE

If a string is more than 50 characters
in length, the System Debugger will
display only the first 50 characters of
the string. And if the pointer to a
string is 0000:0000, the System
Debugger does not display the string.

System Debugger 4-28

VT-DISPLAY iRMXTM 860BJEC

VT--Display An iRMX 86 Object

The VT command displays i.nformation about the iRMX 86 object associated
with the token you enter.

PARAMETER

token

DESCRIPTION

x-465

The token for the object for which the
System Debugger will display information.

The VT command ascertains the type of object represented by the token and
displays information abou.t that object. Both the information and the
format in which the System Debugger displays the information depend
entirely upon the type of the object. The following sections are divided
into display groups. Each display group illustrates the format of the
display for a particular type of object.

ERROR MESSAGES

The System Debugger returns the following error messages for the VT
command

Error Message

Syntax Error

*** INVALID TOKEN ***

JOB DISPLAY

Description

You did not specify a parameter for the
command or you made an error in entering the
command.

The value you entered for the token is not a
valid token.

If the parameter that you supply is a valid job token, the System
Debugger displays information about the job that has that token, as
Figure 4-9 shows.

System Debugger 4-29

VT·DISPLAY iRMXTM 86 OBJECT

Object type = 1 Job

Current tasks xxxx Max tasks xxxx Max priority xx
Current objects xxxx Max objects xxxx Parameter obj xxx x
Directory size xxxx E ntries uSE~d xxxx Job flags xxxx
Except handler xxxx:xxxx Except mode: xx Parent job xxxx
Pool min xXxx Pool Max xxxx Initial size xxxx
Pool size XXx x Allocated xxxx Largest seg xxxx

Figure 4-9. Format Of VT Output (Job Display)

The fields in Figure 4-9 are as follows:

Current tasks

Max tasks

Max priority

Current objects

Max objects

Parameter obj

Directory size

Entries used

Job flags

Except handler

The number of tasks currently existing in the job.

The maximum number of tasks that can exist in the
job at the same time. This value was set when
the job was created with the RQ$CREATE$JOB system
eall.

The maximum (numerically lowest) priority allowed
for anyone task in the job. This value was set
when the job was created.

The number of objects currently existing in the
job.

The maximum number of objects that can exist in
the job at the same time. This value was set
when the job was created.

The token for the object that the parent job
passed to this job. This value was set when the
job was created.

The maximum ntnnber of entries the job can have in
its object directory. This value was set when
the job was created.

The number of objects currently cataloged in the
job's object directory.

The job flags parameter that was specified when
the job was created.

The start address of the job's exception
handler. This address was set when the job was
create d.

System DebuggE!r 4-30

Except mode

Parent jo b

Pool min

Pool max

Initial size

pool size

Allocated

Largest Seg

TASK DISPLAY

VT·DISPLAY iRMXTM 86 OBJECT

The value that indicates when control is to be
passed to the new job's exception handler. This
value was set when the job was created.

The token for the job's parent.

The minimum size (in 16-byte paragraphs) of the
job's memory pool. This value was set when the
job was created.

The maximum size (in 16-byte paragraphs) of the
job's memory pool. This value was set when the
job was created.

The initial size (in 16-byte paragraphs) of the
job's memory pool.

The current size (in 16-byte paragraphs) of the
job's memory pool.

The number of currently-allocated 16-byte
paragraphs in the job's memory pool.

The number of 16-byte paragraphs in the largest
contiguous portion of the job's memory pool.

The System Debugger displays information about tasks in two different
ways. The first display is for non-interrupt tasks and the second is for
interrupt tasks. The format of the two types of tasks is shown in
Figures 4-10 and 4-11.

object type 2 Task

Static pri xx Dynamic pri xx Task state xxxx
S\,lspend depth xx Delay req xxxx Last exchange xxxx
Except handler xxxx:xxxx Except mode xx Task flags XX
Containing job xxxx Interrupt task no Kernel saved ss:sp xxxx:xxxx

Figure 4-10. Format Of VT Output (Non-Interrupt Task)

System Debugger 4-31

VT·DISPLAY iRMXTM 86 OBJECT

object type 2 Task

Static pri xx Dynamic pri xx Task state xxxx
Suspend depth xx Delay req xxxx Last exchange xxxx
Except handler xxxx:xxxx Except mode xx Task flags xx
Containing job xxxx Interrupt task yes Int Level xx
Master mask xx Slave mask xx Slave ntnnber xx
Pending int xx Max interrupt:; xx Kernel saved ss :sp xxxX:XXXx

Figure 4-11. Format Of VT Output (Interrupt Task)

The fields in Figures 4-10 and 4-11 are as follows:

Static pri

Dynamic pri

Task state

Suspend depth

Delay req

Last exchange

The current priority of the task. This value was
set when the task's containing job was created.

A temporary priority that the Nucleus sometimes
assigns to the task in order to improve system
performanc e.

The state of the task. The five possible states,
as they are displayed, are:

State pescript ion
ready ready for execution
asleep task is asleep
susp task is suspended
aslp/susp task is both asleep and suspended
deleted task is being deleted

If this field contains an invalid value, the
System Debugger displays the value follo'\tled by a
space and two qUE~stion marks.

The number of RQ~?SUSPEND$TASK system calls that
have been applied to this task without
corresponding RQ!?RESUME$TASK system calls.

The number of slE~ep units the task requested when
it last specified a delay at a mailbox or
semaphore, or when it last.called RQ$SLEEP. If
the task has not done any of these things, this
field contains 0.,

The token for the mailbox, region, or semaphore
at which the task most recently began to wait.

System Debugger 4-32

Except handler

Except mode

Task flags

Containing job

Interrupt task

Kernel saved ss:sp

Int level

Master mask

VT·DISPLAY iRMXTM 86 OBJECT

The start address of the job's default
exception handler. This value was set
either when the task was created, by means
of RQ$CREATE$TASK or RQ$CREATE$JOB, or later
by means of RQSETEXCEPTION$HANDLER.

The value used to indicate the exceptional
conditions under which control is to be
passed to the new task's exception handler.
This value was set either when the task was
created, by means of RQ$CREATE$TASK or
RQ$CREATE:$JOB, or later by means of
RQSETEXCEPTION$HANDLER.

The task flags parameter used when the task
was created with the RQ$CREATE$TASK system
call.

The token of the job that contains this task.

"No" signifies that the task is not an
interrupt task. In this case, there are no
fields following this field in the display.
(See Figure 4-10.)

"Yes" signifies that the task is an
interrupt task. In this case, there are
additional fields in the display. (See
Figure 4-11.)

The contents of the ss:sp registers when the
task last left the ready state.

The level that the interrupt task services.
This level was set when this task called
RQSETINTERRUPT.

The value associated with the interrupt mask
for the master interrupt controller. This
value represents the master interrupt levels
that are disabled by virtue of the interrupt
level that the task services. For example,
if the task services interrupt level 51 (in
octal), then master levels 6 and 7 are
disabled, so the master mask field is
11000000B (=COH). For more information
concerning interrupt levels, see the iRMX 86
NUCLEUS REFERENCE MANUAL.

System Debugger 4-33

VT·DISPLAY iRMXTM 86 OBJECT

Slave mask

Slave number

Pending int

Max interrupts

MAILBOX DISPLAY

The value associated with the interrupt mask
for a slave interrupt controller. This
value represents the slave interrupt levels
that are disabled by virtue of the level
that the task services. For example, if the
task services interrupt level 51 (octal),
then slave levels 2 through 7 are disabled,
so the slave level field is 11111100B
(=FCH). For more information concerning
interrupt levels, see the iRMX 86 NUCLEUS
REFERENCE)~UAL.

The programmable interrupt controller number
of the slave that is referred to by the
slave mask. This value depends entirely
upon the interrupt level that the task
services. If the value in the Int level
field (aft,er conversion to octal) is xy,
then y+l is the value in this field.

The number of RQ$SIGNAL$INTERRUPT calls that
are pending for this level.

The maximum number of RQ$SIGNAL$INTERRUPT
calls that can be pending for this level.

The System Debugger displays information about mailboxes in three
different ways. The first display appears when nothing is queued at the
mailbox, the second appears when tasks are queued at the mailbox, and the
third appears when objects are queued at the mailbox. The formats of the
three types of display are shown in Figures 4-12, 4-13, and 4-14.

Object type = 3 Mailbox

Task queue head
Queue discipline
Containing job

xxxx
xxxx
xxxx

Object queue head
Object cache depth

Figure 4-12. Format Of VT Output (Mailbox With No Queue)

System Debugger 4-34

xxxx
xxx x

Object type = 3 Mailbox

Task queue head
Queue discipline
Co nt aining job

Task queue

xxxx
xxxx
xxxx

xxxx xxxx •••

VT·DISPLAY iRMXTM 860BJECl

Object queue head
Object cache depth

xxxx
xxxx

Figure 4-13. Format Of VT Output (Mailbox With Task Queue)

Object type = 3

Task queue head
Queue discipline
Containing job

Object queue

Mailbox

xxxx
xxxx
xxxx

xxxx xxxx

Object queue head
Object cache depth

xxxx
xxx x

Figure 4-14. Format Of VT Output (Mailbox With Object Queue)

The fields in Figure 4-1:2,4-13, and 4·-14 are as follows:

Task queue head

Object queue head

Queue discipline

Object cache depth

Containing job

The token for the task at the head of the
queue. If the task queue for this mailbox
is empty, this field contains O.

The token for the object at the head of the
queue. If the object queue for this mailbox
is empty, this field contains O.

The manner in which tasks are queued at the
mailbox. Tasks are queued
"first-in/first-out" (FIFO) or by priority
(PRI), depending upon how the mailbox was
specified to RQ$CREATE$MAILBOX.

The size of the high performance portion of
the object queue that is associated with the
mailbox. This size was specified when the
mailbox was created with RQ$CREATE$MAILBOX.

The token for the job that contains this
mailbox.

System Debugger 4-35

VT·DISPLAY iRMXTM 86 OBJECT

Task queue

Object queue

SEMAPHORE DISPLAY

A list of tokens for the tasks queued at the
mailbox in the order in which tasks are queued.
If no tasks are queued at themailbox.this list
does not appear.

A list of tokens for the objects queued at the
mailbox in the order in which the objects are
queued. If no objects are queued at the
mailbox, this list does not appear.

The System Debugger displays information about semaphores in two ways. The
first display appears when no tasks are queued at the semaphore, and the
second appears when tasks are queued at the semaphore. The formats for the
two types of displays are shown in Figures 4-15 and 4-16.

Object type = 4 Semaphore

Task queue head
Current value
Containing job

xxxx
xxxx
xxxx

Queue discipline
Maximum value

xxx
xxxx

Figure 4-15. Format Of VT Output (Semaphore With No Queue)

Object type = 4

Task queue head
Current value
Containing job

Task queue

Semaphore

xxxx
xxxx
xxxx

xxxx xxxx

Queue discipline
Maximum value

xxx
xxxx

Figure 4-16. Format Of VT Output (Semaphore With Task Queue)

The fields in Figures 4-15 and 4-16 are as follows:

Task queue head The token for the task at the head of the queue.

System Debugger 4-36

Queue discipline

Current value

Maximum value

Containing job

Task queue

REGION DISPLAY

VT·DISPLAY iRMXTM 860BJECl

The manner in which tasks are queued at the
semaphore. The tasks are queued
"f irst-in/f irst-out II (FIFO) or by priority
(PRI), depending upon how the semaphore was
specified when created with RQ$CREATE$SEMAPHORE.

The number of units currently held by the
semaphore.

The maximum number of units the semaphore can
hold. This number was specified when the
semaphore ",as created with RQ$CREATE$SEMAPHORE.

The token for the job that contains the
semaphore.

A list of tokens for the tasks queued at the
semaphore, in the order in which the tasks are
queued there. If no tasks are queued at the
semaphore, this list does not appear.

If the parameter that you supply is a valid token for a region, the System
Debugger displays information about the associated region as shown in
Figure 4-26.

Object type = 5 Region

Entered task
Containing job

Task queue

xxxx
xxxx

xxxx

Queue discipline xxxx

xxxx

Figure 4-17. Format Of VT Output (Region)

The fields in Figure 4-17 are as follows:

Entered task

Queue discipline

The token for the task that is currently
accessing :information guarded by the region.

The manner in which tasks are queued at the
region. The tasks are queued first-in/first-out
(FIFO) or by priority (PRI), depending upon how
the region was specified when created with
RQ$CREATE$REGION.

System Debugger 4-37

VT-DISPLAY iRMXTM 86 OBJECT

Containing job

Task queue

SEGMENT DISPLAY

The token for the job that contains the region.

Tokens for the tasks waiting to gain access to
data guarded by the region. This line is
displayed only if a task already has access to
the data guarded by the region.

If the parameter that you supply is a valid token for a segment, the System
Debugger displays information about the associated segment as shown in
Figure 4-18.

Object type = 6 segment

Num of paragraphs xxxx Containing job xxxx

Figure 4-18. Format Of VT Output (Segment)

The fields in Figure 4-18 are as follows:

Num of paragraphs

Containing job

EXTENSION OBJECT DISPLAY

The number of 16-byte paragraphs in this
segment. The size of the segment was specified
when the segment was created with the
'RQ$CREATE$ SEGMENT system call.

The token for the job that contains the segment.

If the parameter that you supply is a valid token for an extension, the
System Debugger displays information about the associated extension as
shown in Figure 4-19.

Object type = 7 Extension

Extension type
Containing job

xxxx
xxxx

Deletion mailbox

Figure 4-19. Format Of VT Output (Extension Object)

System Debugger 4-38

xxxxx

VT·DISPLAY iRMXTM 86 OBJECT

The fields in Figure 4-19 are as follO\l7s:

Extension type

Deletion mailbox

Containing jo b

COMPOSITE OBJECT DISPLAY

The type code associated with composite objects
licensed by this extension. This code was
specified when the RQ$CREATE$EXTENSION system
call, was used to create this extension type.
See the iRMX 86 NUCLEUS REFERENCE MANUAL for more
information concerning extension types.

The token for the deletion mailbox associated
with this extension. This mailbox was specified
when the RQ~;CREATE$EXTENSION system call was used
to create this extension type.

The token for the job that contains the extension.

There are five kinds of composite displays. The first kind depicts all
composites except those defined in the Basic I/O System (BIOS). The second
kind depicts BIOS user objects. The remaining kinds depict BIOS physical,
stream, and named file connections.

The format for the display of non-BIOS objects is as shown in Figure 4-20.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

Component list xxxx

Extension obj
Num of entr:i.es

xxxx xxxx

xxxx
xXxx

xxxx •••

Deletion mbox xxxx

Figure 4-20. Format Of VT Output (Composite Object Other Than BIOS)

The fields in Figure 4-20 are as follmlls:

Extension type

Extension obj

The code for the extension type of the
extension object used to create this
composite,. This code was specified when the
extension object was created with
RQ$CREATE$EXTENSION.

The token for the extension object used to
create this composite object.

System Debugger 4-39

VT·DISPLAY iRMXTM 86 OBJECT

Deletion mbox

Containing job

Num of entries

Component list

The token for the mailbox to which this
composite goes when the composite is to be
deleted. This mailbox was specified when
the extension was created with
RQ$CREATE:~EXTENSION •

The token for the job that contains the
composite object.

The nlDllbeT of component entries in the
composite object.

The list of tokens for the components of the
composite ..

The format for the Basic I/O System usc~r object display is shown in
Figure 4-21.

Object type = 8 Composite

Extension type
Containing job

xxxx
xxxx

BIOS USER OBJECT:
User segment xxxx

User ID list xxxx

Extension obj xxxx
Num of entries xxxx

Number of IDs xxxx

xxxx

Deletion mbox xxxx

Figure 4-21. Format Of VT Output (BIOS User Object Composite)

The new fields introduced in Figure 4-21 are as follows:

User segment

Number of IDs

User ID list

The token for the segment containing the
user IDs for the user object.

The number of user IDs associated with the
user objec.t.

List of the user IDs associated with the
user objeet.

The format for a (file) connection to a physical file is shown in Figure
4-22.

System Debugger 4-40

VT·DISPLAY iRMXTM 86 OBJECT

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx
Containing job xxxx Num of entries xx xx

T$CONNECTION OBJECT
File driver Physical Conn flags xx Access xxxx
Open mode xxxx Open share xxx x File pointer xxxxxxxx
laRS cache xxxx File node xxxx Device desc xxxx
Dynami c DUIB xxxxx DUIB pointer xxxx:xxxx Num of conn xxxx
Num of readers xxxx Num of writers xxxx File share xxxxxxx
File drivers xxxx Device gran xxxx Device size xxxxxxxx
Device functs xxxx Num dev conn xxxx Device name xxxxxxxxxx

Figure 4-22. Format Of VT Output (Physical File Connection)

The new fields introduced in Figure 4-22 are as follows:

File driver

Conn flags

Access

The BIOS file driver to which this connection is
attached. The three possible values are physical,
stream, and named. If this field contains an
invalid value, the System Debugger displays the
value followed by a space and two question marks.

The flags for the connection. If bit 1 is set to
one, this connlection is active and can be opened.
If bit 2 is set to one, this is a device
connection. (Bit a is the low-order bit.)

The access rights for this connection. This
display uses a single character to represent a
particular access right. If the file has the
a.ccess right, the character appears. However, if
the file does not have the access right, a hyphen
(-) appears in the character position. The access
rights, along with the characters that represent
them, are as follows:

------- Delete

117===

List
Directory files: Add

Change
DLAC

DRAU

I!~====
Update

Data Files: Append
Read

------- Delete

System Debugger 4-41

VT·DISPLAY iRMXTM 86 OBJECT

Open mode

Open share

File pointer

laRS cache

File node

Device desc

The mode established when this connection was
opened. The possible values are:

0Een Mode Description
Closed Connection is closed
Read Connection is open for reading
Write Connection is open for writing
R/W Connection is open for reading

and writing

If this field contains an invalid value, the
System Debugger displays the value, followed by a
space and two question marks. If this value is
Read, Write, or R/W, this value was specified
when the connection was opened.

The sharing status established for this
connection when it was opened. The sharing
status for a connection is a subset of the
sharing status of the file (see the File share
field). The possible values are:

Share Mode DescriEtion
Private Private use only
Readers File can be shared with readers
Writers File can be shared with writers
ALL File can be shared with all

users

If the connection is not open, then 0 is
displayed. If this field contains an invalid
value, the System Debugger displays the value,
followed by a space and two question marks. This
probably indicates that the connection data
structure has been corrupted.

The current location of the file pointer for this
connection.

The token for the segment at the head of the BIOS
list of used IORS's. These laRS's are being
saved for the RQ$WAIT$IO system call to use
again.. The list is empty if 0000 appears in this
fiel d.

The token for a segment that the Operating System
uses to maintain information about the
connection. The information in this segment
appears in the next two fields.

The token for t.he segment that contains the
device descript.or. The device descriptor is used
by the Operating System to maintain information
about the connections to the device.

System Debugger 4-42

Dynamic DUIB

DUIB pointer

Num of conn

Num of readers

Num of writers

File share

File drivers

VT·DISPLAY iRMXTM 86 OBJECT

Indicates whether a DUIB was created dynamically
when the device associated with this connection
was attache d.

The address of the Device Unit Information Block
(DUIB) for the device unit containing the file.
See the GUIDE '1'0 WRITING DEVICE DRIVERS FOR THE
litMX 86 AND iR~~ 88 I/O OPERATING SYSTEMS for
more information about the DUIB.

The number of connections to the file.

The number of connections to the file that are
currently open for reading.

The number of connections to the file that are
currently open for writing.

The share mode of the file. This parameter
defines how other connections to the file can be
opened. The share mode of a file is a superset
of the sharing status of each of the connections
to the file (see the Open share field). The
possible values are:

Share Mode DescriEtion
Private Private use only
Readers File can be shared with readers
Writers File can be shared with writers
ALL File can be shared with all users

If this field contains an invalid value, the
System Debugger displays the value, followed by a
space and two question marks. This probably
means that the internal data structure for the
file or the fnode for the file has been
corrupted. Se(~ the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL for more information about
sharing modes for files and connections.

The file drivers that- the file can be connected
to. If the file can be connected to a file
driver, then the bit in the display is set to 1.
Bit 0 is the rightmost bit.

Bit
-0-

1
2
3

Driver
Physical file
Stream file
reserved
Named file

System Debugger 4-43

VT·DISPLAY iRMXTM 86 OBJECT

Device gran

Device size

Device functs

Num dev conn

Device name

The granularity (in bytes) of the device. This
is the minimum number of bytes that can be
written to or read from the device in a single
(physical) I/O operation.

The capacity (in bytes) of the device.

Describes the functions supported by the device
on which this file resides. Each bit in the
low-order byte of the field corresponds to one of
the possible device functions. If that bit is
set to 1, then the corresponding function is
supported by the device.

Bit
o
1
2
3
4
5
6
7

Function
F$READ
F$WRITE
F$SEEK
F$SPECIAL
F$ATTACH$DEV
F$DETACH$DEV
F$OPEN
F$CLOSE

The number of connections to the device.

The 14- (or fewer) character name of the device
where this file resides.

The format for a (file) connection to a stream file is shown in Figure
4-23.

Object type = 8 Composite

Extension type xxxx
Containing job xxx x

Extension obj xxxx
Num of entries xxxx

T$CONNECTION OBJECT
File driver Stream Conn.flags xx
Open mode xxxx Open share xxx x
IORS cache xxxx File node xXxx
Dynamic DUIB xxx xx DUIB pointer xxxx:xxxx
Num of readers xxxx Num of writers xxxx
File drivers xxxx Device gran xxx x
Device functs xxxx Num dev conn xxxx
Req queued xxxx Queued conn XXx x

Deletion mbx xxxx

Access xxxx
File pointer xxxxxxxx
Device desc xxxx
Num of conn xxxx
File share xxxxxxx
Device size xxxxxxxx
Device name xxxxxxxxxx
Open conn xxx x

Figure 4-23. Format Of VT Output (Stream File Connections)

System Debugger 4-44

VT·DISPLAY iRMXTM 86 OBJECT

The new fields introduced in Figure 4-23 are as follows:

Req queued

Queued conn

Open COnn

The number of requests that are currently
queued at the stream file.

The number of connections that are currently
queued at the stream file.

The number of connections to the stream file
that are currently open.

The format for a named (file) connection display is shown in Figure 4-24.

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbx xxxx
Containing job xxxx Num of entries xxxx

T$CONNECTION OBJECT
File driver Named Conn flags xx Access xxxx
Open mode xxxx Open share xxx x File pointer xxxxxxxx
IORS cache xxxx File node xxxx Device desc xxxx
Dynamic DUIB xxxxx DUIB pointer xxxx:xxxx Num of conn xxx x
Num of readers xxxx Num of writers xxxx File share xxxx
File drivers xxxx Device gran xxx x Device size xxxxxxxx
Device functs xxxx Num dev conn xxxx Device name xxxx
Num of buffers xxxx Fixed update xxx x Update timeout xxxx
Fnode number xxxx File type xxxx Fnode flags xxxx
Owner xxxxx File/Vol gran xxx x Fnode PTR(s) xxxx:xxxx
Total blocks xxxxxxxx Total size XXxxxxxx This size xxxxxxxx
Volume gran xxxx Volume size xxxxxxxx Volume name xxx xx x

Figure 4-24. Format Of VT Output (Named File Connection)

The new fields introduced in Figure 4-24 are as follows:

Num of buffers

Fixed update

The number of buffers allocated for blocking
and unblocking I/O requests involving the
device. A value of a indicates that the
device is not a random-access device.

Indicates whether the device uses the fixed
update feature. For more information about
fixed updating, see the iRMX 86 BASIC I/O
SYSTEM REFERENCE MANUAL.

System Debugger 4-45

VT·DISPLAY iRMXTM 86 OBJECT

Update timeout

Fnode number

File type

Fnode flags

Owner

File/Vol gran

Fnode PTR(s)

Total blocks

The length of the timeout for the update
timeout feature, measured in Nucleus time
units. For more information about update
timeout, see the iRMX 86 BASIC I/O SYSTEM
REFERENCE MANUAL.

The fnode number of this file. For more
information about fnodes, see the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL.

The type of named file. The possible values
are:

File type
DIR
DATA
SPACEMAP
FNODEMAP
BADBLOCKMAP

Description
Directory file
Data file
Volume free space map file
Free fnodes map file
Bad blocks file

A word. containing flag bits. If a bit is
set to 1, the following description
appliE:s. Otherwise, the description does
not apply. (Bit 0 is the low-order bit.)

Bit
o
1
2

3-4
5
6

7-15

Description
This fnode is allocated
The file is a long file
Primary fnode
Reserved
This file has been modified
This file is marked for deletion
reserved

The ID of the owner of the file. If this field
has a value of FFFF, then the field is
interpreted as "World." See the iRMX 86 BASIC
I/O SYSTEM REFERENCE MANUAL for more
information about owners of files.

The granularity of the file (in volume
granularity units).

The values of the fnode pointers. See the
iRMX 86 DISK VERIFICATION UTILITY REFERENCE
MANUAL for more information about fnode
pointers.

The total number of volume blocks currently
used for the file; this includes indirect
blocks. See the iRMX 86 DISK VERIFICATION
UTILITY REFERENCE MANUAL for more information
about blocks.

System DE~bugger 4-46

Total size

This size

Volume gran

Volume size

Volume name

VT·DISPLAY iRMXTM 86 OBJECT

The total size (in bytes) of the file; this
includes actual data only. See the iRMX 86
DISK VERIFICATION UTILITY REFERENCE MANUAL for
more information.

The total number of bytes allocated to the file
for data. See the iRMX 86 DISK VERIFICATION
UTILITY REFERENCE MANUAL for more information.

The granularity (in bytes) of the volume.

The size (in bytes) of the volume.

The name of the volume.

System Debugger 4-47

VU - Display The System Calls In A Task's Stack I

VU--Display The System Calls In A Task's Stack

The VU command displays (unwinds) the iRMX 86 system calls in the stack of
the task whose token you enter.

PARAMETER

token

DESCRIPTION

x fJ47

The token f or the task whose stack is to be
searched for system calls.

The VU command accepts a token for a task and then searches the task's
stack for iRMX 86 system calls, starting at the top of the stack. For
each system call it finds there, it displays two things:

• The address of the next instruetion to be executed on behalf of
the task after the system call has finished running. This is the
return address for the call.

• The VS display with two lines of stack values (or more if
required for parameters), as if the CALL instruction for the
system call were in the CS:IP register and the displayed stack
values were at the top of the stack.

This command requires that the task staek reside inside an iRMX 86 segment.

The VU command uses internal iRMX 86 data structures to get some of its
information. Immediately after the system call at the top of the task's
stack runs to completion, the data struetures are updated. Therefore,
there is a brief moment when the information the VU command uses is
obsolete. This means that it is possible, although unlikely, that the
first system call the VU command displays is not valid.

Figure 4-25 illustrates the format of one system call display by the VU
command. System calls can be nested, wjlth one calling another, so some
invocations of the VU command produce mLltiple displays of the type shown
in the figure. The example that follows illustrates this.

If there are no system calls in the staek of the indicated task, the VU
command displays the message:

No system calls on stack

System Debugger 4-48

VU -- Display The System Calls In A Task's Stack

Return cs:ip - yyyy:yyyy
xxxx:xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
xxxx:xxxx xxxx xxxx xxxx xxxx xxxx xxx x xxxx xxx x

S/W int: xx (subsystem) entry code xxxx system call

:parameters.:

Figure 4-25. Format Of VU Output

The fields in Figure 4-25 are as followrs:

Return cs:ip

xxxx:xxxx

xxxx

parameters

S/W int: xx
(subsystem)

entry code xxxx

system call

ERROR MESSAGES

The return address for the system call of this
display.

The address of the (top of the) portion of the
stack that is devoted to this call.

Stack values.

The parameter names associated with the stack
values. The parameters correspond to the stack
values directly above them.

The software interrupt number for this call and
the iRMX 86 subsystem corresponding to that number.

TIle entry code for the system call within the
subsystem.

The name of thE~ iRMX 86 system call.

The System Debugger returns the followlng error messages for the VU
command.

Error Message

Syntax Error

*** INVALID TASK TOKEN ***

Stack not in an iRMX 86 segment

Description

You made an error in entering the
command.

The value you entered for the token
is not a valid task token.

The stack of the indicated task is
not in an iRMX 86 segment, as is
required.

System Debugger 4-49

VU - Display The System Calls In A Task's Stacl4~

EXAMPLE

This example shows how the VU command responds when system calls are
nested. The task for the example has ealled RQSWRITE$MOVE of the
Extended I/O System. RQSWRITE$MOVE has called RQ$A$WRITE of the Basic
I/O System. And RQAWRITE has called RQ$RECEIVE$MESSAGE to wait for the
data transfer to be completed.

Before the message arrives signalling the completion of the transfer, the
VU command is invoked, as follows:

.VU ????

The System Debugger responds by displaying the following:

Return cs:ip - 0104:576A
416A:OIB2 01C8 416A
416A:OIC2 1550 0000

01CC
719E

416A FFFF
2FF9 3440

376E
ESSE

8763
5000

S/W Int: B8 (Nucleus) Entry code 0303 Receive message

: ••• excep$p ••• : •••• resp$p ••• : .time.: .mbox. :

Return cs: ip - 1756:08E7
416A:OID4 OlEA 416A 3F56 0400 0000 42E9 429A
416A:OIE4 1430 5246 01FE 22F9 1400 021D 0000

S/W In t: CO (BIOS) Entry code OOOE Write

: ••• excep$p ••• :.mbox.: ~count: •• buffer$p ••• :.conn.:

Return cs:ip - 3A98 :06FA
416A :0218 0020 39F4 0400 0034 39F4 429A 5A84
416A:0228 4456 0000 0000 C7C7 C7C7 C7C7 C7C7

S/W In t: Cl (EIOS) Entry code 0101 Write move

: ••• excep$p ••• :.count:» .buffer$p ••• : .conn.:

System Debugger 4-50

2988
DD54

7866
01FE

9344
C7C7

child jobs 4-17
command dictionary 4-3
commands 4-1
composite object display 4-39, 4-40
composite objects in a job 4-17
configuration 3-1
connection object display 4-41, 4-44, 4-45

DEBUG command of Human Interface 3-1
Debugger 2-1
debugging 2-1

extension object display 4-38
extensions objects in a job 4-17

file connection display 4-41, 4-44, 4-45

help 4-10

I/O request/result se~nent 4-20
ICE emulator 2-1
ICU 3-1
laRS 4-20
interrupt task display 4-32
invocation 3-1
iSBC 957B package 2-1, 2-2, 3-2
iSDM 86 System Debug Monitor 2-1, 2-2, 3-2
iSDM 286 System Debug Monitor 2-1, 2-2, 3-2

job display 4-30
job hierarchy 4-12
job objects 4-17

mailbox display 4-34, 4-35
mailboxes in a job 4-17

non-interrupt task display 4-31
numerical value display 4-2

object directory of a job 4-7
object display 4-29
objects in a job 4-17
offspring of a job 4-17

ready tasks 4-15
region display 4-37
regions in a job 4-17
restrictions 3-1
returning to application 3-2

System Debugger Index-1

INDEX

4-38
4-17
4-36

segment display
segments in a job
semaphore display
semaphores in a job
sleeping tasks 4-15
stack 4-24, 4-48

4-17

syntax diagrams 4-2

INDEX (continued)

system calls 4-4, 4-24, 4-48
System Debugger 2-2

task display 4-31, 4-32
tasks 4-15
tasks in a job 4-17
tokens 4-1

VC command 4-4
VD command 4-7
VH command 4-10
VJ command 4-12
VK command 4-15
va command 4-17
VR command 4-20
VS command 4-24
VT command 4-29
VU command 4-48

System Debugger Index-2

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	idx01
	idx02

