
iRMX™ 86 TERMINAL HANDLER
REFERENCE MANUAL

J I

• @ CONTENTS

PAGE

CHAPTER 1
OVERVIEW OF THE TERMINAL HANDLER
Organization of This Manual.. 1-1

CHAPTER 2
USING A TERMINAL WITH THE iRMXTH 86 OPERATING SYSTEM
How Normal Characters are Handled ••••••••••••••••••••••••••••••••••
How Special Characters are Handled •••••••••••••••••••••••••••••••••

Rubbing Out a Previously-Typed Character (RUBOUT) ••••••••••••••••
Displaying the Current Line (Control-R) ••••••••••••••••••••••••••
Deleting the Current Line (Control-X), ••••••••••••••••••••••••••••
Sending an Empty Message (Control-Z) •••••••••••••••••••••••••••••
Signalling the End of a Line of Input (Carriage Return, Line

Feed, or ESCape) ••
au tpu t Con tro 1 ••••••••••••••••••••••••• , ••••••••••••••••••••••••••••

Suspending Output (Control-S) • ••••••• ' ••••••••••••••••••••••••••••
Resuming Output (Control-Q) •••••••••• , ••••••••••••••••••••••••••••
Deleting or Restarting Output (Control-O) ••••••••••••••••••••••••

Program Control •••••••••••••••••••••••• ~ •••••••••••••••••••••• •••••
Calling a User-Written Procedure Manually (Control-C) ••••••••••••

CHAPTER 3
PROGRAMMING CONSIDERATIONS

2-1
2-1
2-2
2-3
2-3
2-3

2-3
2-4
2-4
2-4
2-4
2-4
2-5

Output... 3-3
Inpu t. • 3-5

CHAPTER 4
CONFIGURATION
Configurable Options

Selecting a Version of the Terminal Handler ••••••••••••••••••••••
Baud Rate ••
Baud Count •••
Rubout Mode and' Blanking Character •••••••••••••••••••••••••••••••
U SART ••
PIT ••
Mailbox Names ••
Interrupt Levels ••••••••••••••••••••• , ••••••••••••••••••••••••••••

Creating Multiple Versions of the Terminal Handler •••••••••••••••••

Terminal Handler iii

4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4

2-1.

3-1.
3-2.
3-3.

CONTENTS
(continued)

TABLE

Special Character Summary ••••••• , •••••••••••••••••••••••••••

FIGURES

In put and Output Mail box In terfaces ••••••••••••••••••••••••
Protocol for Obtaining Root Job and Mailbox Tokens •••••••••
Request Message Format ••••••••• " •••••••••••••••••••••••••••

Terminal Handler i v

PAGE

2-2

3-1
3-2
3-3

CHAPTER 1
OVERVIEW OF THE TERMINAL HANDLER

The Terminal Handler supports real-time, asynchronous I/O between an
operator's terminal and tasks running under the iRMX 86 Nucleus. It is
intended for use in applications whic:h require only limited I/O through a
terminal, and it generally is used in applications that do not include
the iRMX 86 I/O System. The features of the Terminal Handler include the
following:

• Line editing capabilities.

• Keystroke control over output:, including output suspension and
res umption, and deletion 0 f data being sen t by tasks to the
terminal.

• Echoing of characters as they are entered into the Terminal
Handler's line buffer.

An output-only version of the Terminal Handler is available for use in
applications in which tasks send output to a terminal but do not receive
input from the terminal.

NOTE

The terminal handler is intended
primarily to support character-by
character input from a terminal, rather
than computer-to-eomputer input.

ORGANIZATION OF THIS MANUAL

This manual consists of four chapters:

• Chapt~r 1 --Overview of the Terminal Handler

This chapter discusses the purpose of the Terminal Handler and
introduces some of the features.

• Chapter 2 -- Using a Terminal with the iRMX 86 Operating System

This chapter provides information that the operator needs in
order to use a terminal with the iRMX 86 Operating System.

Terminal Handler 1-1

OVERVIEW OF THE TERMINAL HANDLER

• Chapter 3 -- Programming Considerations

•

This chapter contains the information that a programmer needs to
write tasks that send data to, or receive data from, the
terminal.

Chapter 4 Configuration

This chapter identifies and describes the configurable features,
characteristics, and identifiers of the Terminal Handler.

**·k

Terminal Handler 1-2

CHAPTER 2
USING A TERl\nlNAL WITH THE iRMX™ 86

OPERATING SYSTEM

When you are using a terminal with the iRMX 86 Operating System, you must
limi t the maximum prior:ity of your tasks or they could interfere with the
proper functioning of your termina 1. High priority processor-bound tasks
can cause the Terminal Handler to drop input characters.

While using a terminal that is under control of the Terminal Handler, an
operator either reads an output message from the terminal's display or
enters characters by striking keys on the terminal's keyboard. Normal
input characters are those destined for input messages that are sent to
tasks. Special input characters direct the Terminal Handler to take
special actions. The special characters are RUBOUT, Carriage Return, Line
Feed, ESCape, control-C, control-O, control-Q, control-R, control-S,
control-X, and control-Z. The output-only version of the Terminal
Handler does not support any of the special characters. In the remainder
of this chapter, the handling of these two types' is discussed, and the
significance of each of the special characters is explained.

NOTE

This chapter conta.ins several references
to mailboxes and request messages used
by tasks to communicate with the
ter~lnal. If you are puzzled by such a
reference, look in Chapter 3 for an
explanation.

HOW NORMAL CHARACTERS ARE HANDLED

The destination of a normal character, when entered, depends on whether
there is an input request message at the Terminal Handler's input request
mailbox. If there is an input request message, the character is echoed
to the terminal's display and goes into the input request message. If
there is not an input request messagE!, the character is deleted.

HOW SPECIAL CHARACTERS ARE HANDLED

Table 2-1 lists the special characters and summarizes the effects of each
of them. The following text comprises complete descriptions of the
effects of the special characters. In these descriptions, there are
several references to "the current line." The current line consists of
the data, with editing, that has been entered since the last end-of-file
character.

Terminal Handler 2-1

USING A TERMINAL WITH THE jRMX~ 86 OPERATING SYSTEM

Table 2-1. Special Character Summary

Special
Character Effect

RUB OUT

carriage
Return

Line Feed

EScape

control-C

control-O

control-Q

control-R

control-S

control-X

control-Z

Deletes previously entered character.

Signals end of lin€~.

Signals end of linE!.

Signals end of linE!.

Calls an application program.

Kills or restarts output.

Resumes suspended output.

Displays current llne with editing.

Suspends output.

Deletes the current: line.

Sends empty message.

The following descriptions concern the: special characters needed when
entering data at the terminal. Most of these characters are for
line-editing. Each description is divided into two parts: internal
effects and external effects. The difference is that internal effects are
those that are not directly visible, whereas external effects are
immediately shown on the terminal's display.

RUBBING OUT A PREVIOUSLY-TYPED CHARACTER (RUBOUT)

Internal Effects: causes the most recently entered but not yet deleted
character to be deleted from the current line. If the
current line is empty, there is no internal effect.

Terminal Handler 2-2

USING A TERMINAL WITH THE iRMX~ 86 OPERATING SYSTEM

External Effects: If the current line is empty, the BEL character (07H)
is sent to the terminal. Otherwise, the character is
"rubbed out" in aecordance with one of two available
rubout modes. See Chapter 4 for a description of
rubout modes.

DISPLAYING THE CURRENT LINE (CONTROL-'R)

In ternal Ef fects: None .•

External Effects: Sends a carriage return and line feed to the terminal,
followed by the current line. If the current line is
empty, the previous line is sent to the display, where
it can be line-edited and submitted as a new input
message.

DELETING THE CURRENT LINE (CONTROL-X)

Internal Effects: Empties the current line.

External Effects: Causes the sequence (#, Carriage Return, Line Feed) to
be sent to the terminal.

SENDING AN EMPTY MESSAGE (CONTROL-Z)

Internal Effects: Puts a zero in the ACTUAL field of the input request
message currently being processed. The message is then
sent to the appropriate response mailbox.

External Effects: None.

SIGNALLING THE END OF A LINE OF INPUT (CARRIAGE RETURN, LINE FEED, OR
ESCAPE)

Internal Effects: Puts either the ASCII end-of-transmission character
(OAH in the case of Carriage Return or Line Feed) or
the ESCape character (lBH) in the current line. Each
of these characters signals the end of a message, so
the input request message currently being constructed
is sent to the appropriate response mailbox.

External Effects: If the end-of-line indicator is either Carriage Return
or Line Feed, both Carriage Return and Line Feed are
sent to the terminal. If the indicator is ESCape,
however, there is no effect on the display.

Terminal llitndler 2-3

USING A TERMINAL WITH THE jLRMX'" 86 OPERATING SYSTEM

OUTPUT CONTROL

Output request messages that are sent to output mailboxes can be processed
in one of three ways:

• They can be outputted as described later in Chapter 3.

• They can be queued at the output mailbox where they remain until
an operator at the terminal takes action to permit processing of
the messages.

• They can be discarded.

In the descriptions that follow, thesE~ methods of dealing with output
requests are called the normal mode, the queueing mode, and the
suppression mode, respectively. Initially, output is in the normal mode.

SUSPENDING OUTPUT (CONTROL-S)

Puts output in the queueing mode.

RESUMING OUTPUT (CONTROL-Q)

Negates the effects of control-S by allowing the display of output
requests that are sent to the output mailbox. The output that has
been suppressed is displayed (very quickly) in the order in which it
would have been displayed earlier if the control-S had not been
pressed. If you are overwhelmed by this output, you can stop it again
by pressing control-S.

DELETING OR RESTARTING OUTPUT (CONTROL-O)

If output is in the normal mode, c:ontrol-O puts it in the suppression
mode. If output is in the suppression mode, control-O restores it to
the normal mode. If output is in the queueing mode, control-O has no
effect. Internally, the request messages that tasks send while output
is being suppressed are returned to those tasks just as if the output
had not been suppressed.

PROGRAM CONTROL

The remaining control character affects system behavior.

Terminal Handler 2-4

USING A TERMINAL WITH THE :tRMX'" 86 OPERATING SYSTEM

CALLING A USER-WRITTEN PROCEDURE MANUALLY (CONTROL-C)

Control-C invokes a parameter-less, user-written procedure named
RQ$ABORT$AP. This procedure, which OOlSt be compiled under the COMPACT
control, can perform any actions that suit the application. Often, as its
name suggests, RQ$ABORT$AP aborts an application. If it is written by the
user (and it need not be), RQ$ABORT$AP is not required to have a RETURN
statement.

Control-C also causes the effects produced by control-Z; that is, it
returns the current input request message with its ACTUAL field set to
zero. This is the case even if the application system does not contain an
RQ$ABORT$AP procedure.

:~

Terminal Handler 2- 5

CHAPTER 3
PROGRAMIMING CONSIDERATIONS

The iRMX 86 Terminal Handler supports terminal input and output by
providing mailbox interfaces. Figure 3-1 shows the use of these
mailboxes. In the figure, an arrow pointing from a task to a mailbox
represents an RQ$SEND$MESSAGE system eall. An arrow pointing from a
mailbox to a task indicates an RQ$RECEIVE$MESSAGE system call.

IN iRMX 86

PROVIDED
BY USER

USER
TASKS

TERMINAL
HANDLER

IN iRMX 86

PROVIDED
BY USER

USER
TASKS

TERMINAL
HANDLER

Figure 3-1. Input And Output Mailbox Interfaces

x-601

The protocol that tasks observe is mueh the same for input and output.
In each case, the task initiates I/O by sending a request message to a
mailbox. An input request mailbox (default name RQTHNORMIN) and an
output request mailbox (default name RQTHNORMOUT) are provided. These
mailboxes are cataloged in the root job directory. In the case of
multiple terminals, one input and one output mailbox will be cataloged
for each Terminal Handler. (See Chapter 4 for more information about
mUltiple versions of the Terminal Handler.) Figure 3-2 illustrates the
protocol for finding the root job token and for obtaining the input and
output mailbox tokens.

Terminal Ha.ndler 3-1

PROGRAMMING CONSIDERATIONS

/**
* This example illustrates the protocol for finding the root job token *
* and for obtaining the input and output mailbox tokens. *

DECLARE rtjb$token WORD;
DECLARE root$job LITERALLY , 3' ;
DECLARE status WORD;

DECLARE inputmbxtoken WORD;

DECLARE wait$forever LITERALLY 'OFFFFH' ;

/*By setting the input parameter to three, the GET$TASK$TOKEN primitive
will return the root job's TOKEN.*/

rtj b$token = RQ$GET$TASK$TOKENS (rtj b$token,
@status) ;

/*The following LOOKUP$OBJECT primitives use the default mailbox names.*/

inputmbxtoken = RQ$LOOKUP$OBJECT

outputmbxtoken RQ$LOOKU P$O BJECT

(rtjb$token,
@ (1 0, 'RQTHNORMI N'),
wai t$foreve r,
@status) ;

(rtj b$token,
@(11, 'RQTHNORMOUT'),
wait$forever,
@status) ;

Figure 3-2. Protocol For Obtaining Root Job And Mailbox Tokens

Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for more information
concerning the individual primitives used in the previous example. When
a task sends a message. to the Terminal Handler mailbox, the Terminal
Handler processes the request and then. sends a response message back to
the requesting task. The task waits at a response mailbox for the
message. Thus, whether a task does input or output, it first sends and
then receives. The full details of the input and output protocols are
described later in this chapter. Output is discussed first because it is
somewhat easier to understand.

For both input and output, a task sends a message segment to the Terminal
Handler. The format of a request message is depicted in Figure 3-2. The
nwnbers in that figure are offsets, in bytes, from the beginning of the
segment. The field names have differl~nt meanings for input and for
output. For both input and output, the first four fields are WORD
values. The MESSAGE CONTENT field can be up to 132 bytes in length for
input and up to 65527 bytes in length for output.

Terminal Handler 3-2

PROGRAMMING CONSIDERATIONS

OFFSET REQUEST MESSAGE

FUNCTION

COUNT

EXCEPTION CODE

--
ACTUAL

MESSAGE
CONTENT

· · ·

x-602

Figure 3-3. Request Message Format

In the following discussions, the names F$WRITE and F$READ are literal
names for the particular WORD values 5 and 1, respectively.

OUTPUT

The first thing a task does when transmitting output is prepare an output
request message. The ta.sk must fill in the following fields prior to
sending the message:

FUNCTION --- F$WRITE.

COUNT --- the number of bytes (not to exceed 65527) in the MESSAGE
CONTENT field.

MESSAGE CONTENT --- the bytes that are to be output.

Terminal Ha.ndler 3-3

PROGRAMMING CONSIDERATIONS

Having prepared the message segment, the task must send it to the output
request mailbox. Messages sen t to this mailbox are processed in a
first-in-first-out manner. Processing a message involves sending the
characters in the MESSAGE CONTENT field to the terminal until a total of
COUNT characters have been sent. ThE~re is one exception; when the
Terminal Handler encounters the end-of-transmission character (OAH), it
sends a Carriage Return and a Line Feed to the terminal.

When sending the output request messa.ge, the task specifies a user
supplied response mailbox. If no res:ponse mailbox is specified, the
Terminal Handler will delete the segment that contained the message. But
note, if the the system call DISABLE$DELETION was used by the application
engineer to make the segment containing the output message immune to
ordinary deletion, the Nucleus will put the Terminal Handler into the
asleep state because the Terminal Handler cannot execute deletion of the
segment. This situation effectively eliminates the Terminal Handler as a
functioning task.

In addition to transmi-tting the messa.ge to the terminal, the Terminal
Handler fills in the remaining fields in the output request message. The
requesting task can wait indefinitely at the response mailbox (that is,
it can call the RQ$RECEIVE$MESSAGE system call with a time limit of
OFFFFH) immediately after sending the output request. By observing this
protocol, the task can learn of the success or failure of the output
attempt. The fields that provide this information are the following:

• EXCEPTION CODE --- the encoded result of the output operation:

E$OK ---- the operation was successful.

E$PARAM --- the FUNCTION field in the message did not
contain F$WRITE.

E$BOUNDS the COUNT field in the message is too big for
the segment, that is, COUNT + 8 is greater
than the length of the segment containing the
message.

• ACTUAL --- the actual number of bytes output.

In summary, the protocol observed by tasks doing output is as follows:

• Prepare the output request message segment, filling in the
FUNCTION, COUNT, and MESSAGE CONTENT fields.

• Send the segment, via the RQ$SEND$MESSAGE system call, to the
output request mailbox. It is advisable, but not necessary, to
specify a response mailbox in the system call.

• Wait indefinitely, via the RQ$RECEIVE$MESSAGE system call, at
the response mailbox. When received, the message contains the
results of the transmission in the EXCEPTION CODE and ACTUAL
fields.

Terminal Ha.ndler 3-4

PROGRAMMING CONSIDERATIONS

INPUT

The protocol for obtaining input is much the same as that for
outputting. A message is prepared and sent to a request mailbox; then,
after the data has been input, the message is received at a response
mailbox. There is a significant difference, however, between input and
output protocols. Because the input :is contained in the message segment
at the response mailbox, it is necessary to designate a response mailbox
and then wait there.

When multiple tasks use the same
mailbox for input from the terminal, it
is possible for a task to get input
that is intended for another task.

A task needing input first prepares an input request message. It must
fill in the FUNCTION and COUNT fields prior to sending its request. The
FUNCTION field must contain F$READ. The COUNT field reflects the maximum
possible number of input characters in the input message. The value of
COUNT must not exceed 132; moreover, COUNT + 8 must not exceed the length
of the input request message segment.

When sending the input request message, the task must specify the
response mailbox in its call to RQ$SEND$MESSAGE. The Terminal Handler
obtains character s from the terminal and place s them in the MESSAGE
CONTENT field. The message is terminated by an end-of-line character
(Carriage Return, Line Feed, or ESCap1e). The lone exception is when the
end-of-line character has been "normalized" by being preceded by a
control-P; then the end-of-1ine character is treated as a normal
character.

NOTE

If more than COUNT characters are
entered prior to the end-of-line
character, the extra characters are
ignored, and the contro1-G character is
activated. This character usually
causes the terminal to emit a beep tone.

After the message is complete, the Terminal Handler fills in the
EXCEPTION CODE and ACTUAL fields as follows:

• EXCEPTION CODE _._- the encoded resul t of the input operation,
which is one of the following:

E$OK --- the operation was successful.

Terminal Handler 3-5

PROGRAMMING CONSIDERATIONS

E$PARAM --- either the FUNCTION field in the message did not
contain F$READ or the COUNT field was greater
than 132.

E$BOUNDS --- COUNT + 8 is greater than the length of the
message segment.

• ACTUAL --- the number of bytes actually entered and placed in the
MESSAGE CONTENT field.

The requesting task must wait indefinitely (that is, it must make a
RQ$RECEIVE$MESSAGE system call with a time limit of OFFFFH) at the
designated response mailbox immediately after sending the input request.

In summary, the input protocol is as follows:

• Prepare the input request message segment, filling in the
FUNCTION and COUNT fields.

• Send the segment, via the RQ$SEND$MESSAGE system call, to the
input request mailbox. In the call, specify a response mailbox.

• Wait indefinitely, via the RQ$RECEIVE$MESSAGE system call, at the
response mailbox. When received, the message segment will
contain the results of the input operation in the MESSAGE
CONTENT, EXCEPTION CODE, and .~CTUAL fields.

Terminal Handler 3-6

• c·,> CHAPTER 4
CONFIGURATION

The Terminal Handler is a configurable layer of the Operating System. It
contains several options that you can adjust to meet your specific
needs. To make configuration choices, Intel provides three kinds of
information:

• A list of configurable options.

• Detailed information about thj~ options.

• Procedures to allow you to spl~cify your choices.

The balance of this chapter provides the first category of information.
To obtain the second and third categories of information, refer to the
iRMX 86 CONFIGURATION GUIDE.

CONFIGURABLE OPTIONS

Some Terminal Handler features, charac:teristics, and identifiers are
configurable. Configurability is important for applications with unusual
characteristics, such as a component hardware environment or multiple
terminal handlers. The following sections describe the configurable
options available on the Terminal Handler.

SELECTING A VERSION OF THE TERMINAL HANDLER

The iRMX 86 Terminal Handler is available in two different versions:

• Input and Output

• Output-only

The input and output version allows you to enter characters at the
terminal as well as receive data. ThE~ output-only version is useful in
applications in which tasks send output to a terminal but do not receive
input from the terminal.

Terminal Handler 4-1

CONFIGURATION

BAUD RATE

You can set the baud rate for the Ternrlnal Handler to any of the
following values:

110
150
300
600

1200
2400
4800
9600

19200

The default baud rate for the Terminal Handler is 9600.

Baud Count

The baud count provides a way to calculate internal timer values given
the clock input frequency. If your system's programmable interval timer
(PIT) has a clock input frequency other than 1.2288 megahertz, you must
set the baud count. The default ValUE! for the baud count is 4.

RUB OUT MODE AND BLANKING CHARACTER

As previously mentioned, there are two ways to rubout a character:

• Copying mode

• Blanking mode

In the copying mode, the character belng deleted from the current line is
re-echoed to the display. For eXamplE!, entering "CAT" and then striking
RUBOUT three times results in the display "CATTAC".

In the blanking mode, the deleted character is replaced on the CRT screen
with the blanking character. For example, entering "CAT" and then
striking RUBOUT three times deletes all three characters from the display.

The copy mode is the default mode. The default blanking character for
the blanking mode is a space (20H).

Terminal Handler 4-2

CONFIGURATION

USART

The USART is a device that, depending upon the application, can be used
either to convert serial data to parallel data or to convert parallel
data to serial data. The Terminal Handler requires a 8251A USART as a
terminal controller. You can specify

PIT

• The port address of the USART. The default value for the port
address is OD8H

• The interval between the port addresses for the USART.

• The number of bits of valid data per character that can be sent
from the USART. The default value for the number of bits is 7.

The Terminal Handler requires a PIT as an input to the USART. You can
specify the following information about the programmable interval timer
(PIT) :

• The port address of the PIT. The default value for the port
address is ODOHe

• The interval between the port addresses for the PIT.

• The number of the PIT counter connected to the USART clock
input. The default value is 2.

MAILBOX NAMES

You can change the default names of both the input mailbox (RQTHNOTMIN)
and the output mailbox (RQTHNORMOUT). The new names must not be over 12
alphanumeric characters in length.

INTERRUPT LEVELS

You can specify the interrupt levels used by the Terminal Handler for
input and output. You choose interrupt levels by selecting a value that
corresponds to a particular interrupt value. The default value for the
input interrupt level is 68H and the default value for the output
interrupt level is 78H.

Terminal Handler 4-3

CONFIGURATION

CREATING MULTIPLE VERSIONS OF THE TERNINAL HANDLER

Your iRMX 86 system can contain multiple version of the Terminal
Handler. This may be desirable if, for example, you have two tasks that
use the Terminal Handler and you want to communicate with these tasks
from separate terminals. In order to create multiple versions of the
Terminal Handler, you must obey the following rules:

• Each Terminal Handler must use different input and output mailbox
names.

• Each Terminal Handler must use a unique USART.

• Each Terminal Handler mus t USE~ differen t interrupt levels.

• The code for the Terminal Handlers must be located in different,
non-overlapping areas; each T€:rminal Handler must have its own
data area.

• Each Terminal Handler must have a separate job.

Refer to the iRMX 86 CONFIGURATION GUIDE for detailed information about
the previously described rules. If you adhere to these rules, you can
create multiple versions of the Terminal Handler in your application
system.

Terminal Handler 4-4

Primary references are underscored.

ABORT$AP system call 2-5

baud count 4-2
baud rate 4-1

carriage return character 2-2, 2-3
configurable options 4-1
configuration 4-1

Control-C command 2-2, 2·-5
Control-O command 2-2, 2·-4
Control-Q command 2-2, 2-4
Control-S command 2-2, 2-4
Control-X command 2-2, 2--3
Control-Z command 2-2, 2·-3
current line 2-1

DISABLE$DELETION system call 3-4

escape (ESC) character 2-2, 2-3
exception codes 3-4, 3-5

input request mailbox 3-1
input request message 3-5
interrupt levels 4-3

line feed character 2-2, 2-3

mailbox names 4-3
multiple Terminal Handlers 4-3

normal character 2-1
normal mode 2-4

output request mailbox 3-1
output request message 3-3
output-only Terminal Handler 1-1, 4-1

Programmable Interval Timer (PIT) 4-2

queuing mode 2-4

Terminal Handler Index-l

INDEX

INDEX (continued)

RECEIVE$MESSAGE system call 3-4
request message 3-3
RQTHNORMIN 3-1, 4-3
RQTHNORMOUT 3-1, 4-3
rubout 2-2
rubout mode 4-2

SEND$MESSAGE system call 3-4
special character 2-1
supression mode 2-4

USART 4-2

version of the Terminal Handler 4-1

Terminal Handler Index-2

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	idx01
	idx02

