
FORMAT Command and Disk Verification Utility Enhancements

iRMX'" 86 Release 6. flJ, Update 1

Part Number: 'l47155-flJflJl

CONrrENTS

Section One
Backing Up and Restoring Fnodes ..
1.1 Overview •••.•..•.......••..
1.2 Using Fnode Backup and Restore .•
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

Creating the R?SAVE File•
Backing Up Fnodes •...••...•.•
Backing Up the Volume Label.
Restoring Fnc)des•...•.•
Restoring the Volume Label.
Displaying R?SAVE Fnodes

Section Two
Adding the Second Stage of the Release 6.0
Bootstrap Loader to a Formatted Disk
2.1
2.2

Overview ...•.. '•.•..........
Using the FORMAT Bootstrap Loader Switch ...•..•..•..•.•.•.....

Section Three
Reference

BACKUPFNODES ..
DISK
DISPLAYSAVEFNODE ..
HELP ...•......
RESTOREFNODE.
RESTOREVOLUMELABEI ...
FORMAT ..•..•..•.• 0 ••

PAGE

1-1
1-1
1-5
1-6
1-7
1-8
1-8
1-11
1-13

2-1
2-1
2-1

3-1
3-3
3-5
3-9
3-15
3-17
3-21
3-23

Introcluction

Update 1 offers two new iRMX 86 capabilities--the capability of backing up and
restoring volume fnodes, and the capability of addi.ng the second stage of the
Bootstrap Loader to a volume without re--formatting the volume. These features
have been implemented by adding two swi1~ches to the FORMAT system c01llmand and
by creating four new Disk 'V'erificatton utility commands.

The fnode backup and restore feature offers a minimum level of protection for
the volume label and the fnode file of n named volume. This feature is not
intended to provide extensive fnode baclrup capabilities for the volume.
However, it does offer a limited mechanism for attempting to recover data when
the volume label or the fnode file has heen damaged..

The Bootstrap Loader featu:~e allows you to take advantage of the Release 6.~
Bootstrap Loader capabilities (such as the ttdebug switchtt) without having to
back up and re-format volumes created urlder earlier releases of the iRMX 86
Operating System.

This write up is intended to serve as st~and alone documentation for these
enhancements. It is available only thrc~ugh the iRMX 86 Release 6.~ update
service. The write-up is not intended t~o replace pages in the existing
documentation. However, i·t. can be included in the same binders as the rest of
the documentation. For instance, the pages in the Reference section can
easily be inserted in the appropriate sE~ction of the iRMX 86 DISK VERIFICATION
REFERENCE MANUAL or the iRMX 86 OPERATOEt'S MANUAL.

In this write-up, Section One is devoted to the fnode backup and restore
feature. Section Two covers the Bootstrap Loader feature. Within each
section a general overview of the featut'e is presen.ted, followed by a brief
explanation of how that feature is used. In addition, Section 3 of the
write-up contains a reference section that describes the modified FORMAT
system command, the four new Disk Verifi.cation Utility commands, and two
existing Disk Verification Utility c01llmands (DISK and HELP) that have been
changed to reflect the addition of the new commands.

Section One

Backing Up and Restoring Fnodes

1.1 Overview

To access data on a named volume (such liS a disk), the iRHX 86 Op'erating
System uses a mechanism common to virtulilly all operating systems. This
approach entails maintaining an index tC) every file on the disk. The index is
created when the disk is formatted and 1thereafter it remains as a permanent
structure at a dedicated location on thc~ disk. The index consists of a system
of pointers that indicate the location of the data files on the disk. Thus,
when data must be stored or retrieved fl~om the disk, the operating system can
find the exact location of the approprilite file by looking up the filename in
the index.

In the iRMX 86 Operating System, the inc1ex consists of a volume label and an
fnode file. The volume label resides at the same location in all devices and
serves as the initial entry point into the device. The fnode file contains a
series of individual structures called file descriptor nodes or ttfnodes".
There is one fnode for each file on the disk. The fnode contains information
essential to accessi.ng and maintaining 1t:.he respective file.

The iRHX 86 file stI~cture for a named volume is organized as a hierarchical
tree. That is, there is a root directory with branches to other directories
and ultimately, to files. The organiza1t:.ion of the fnode file reflects this
hierarchical structure. The volume labc~l contains a pointer to the fnode of
the file structure's root directory. The root directory points to blocks on
the volume. These blocks may represent a first level data file or a first
level directory file.

A block that represents a data file contains data. A block that represents a
directory file contains a data structurc~ which provides the names of all of
that directory's files and identifies the fnodes associated with those files.

The Operating Systenl creates the volume label and the fnode file when the disk
is formatted. The number of un-allocatc~d fnodes in the file is controlled by
the FILES parameter of the FORMAT command. In addition to the un-allocated
fnodes, seven allocated fnodes are established when the fnode file is
created. These allocated fnodes represent the fnode file, the volume free
space map file, the free fnodes map filc~, the bad blocks file, the volume
label file, the root directory, and an accounting file. (For a full
description of these files, see the Disk Verification utility section of the
"iRMX 86 Introduction and Operator's Reference Manual for Release 6".)

iRMX 86 Release 6.~
Update 1 SEP 84 Page 1--1

FORMAT/Disk Verify
147155-~~1

Thereafter, when files or directories are: created directly subordinate to the
root, the Operating System must adjust a pointer in the root fnode to indicate
the fnode number of the new data file or directory file. Subsequently,
directories subordinate to the root must also have their pointers adjusted
when they become parents to a new data file or directory.

This method of storing and retrieving data on a disk has one major drawback.
All access to files on the disk is throug,h the volume label and the fnode
file. If either the volume label file or' the fnode file are damaged or
destroyed, there is no practical way to r'ecover data on the disk.

The backup and restore fnodes feature prclvides a means of attempting to
recover data lost as a result of catastrclphic damage to the fnode file or the
volume label. This feature allows you tCI create a backup version of the
volume label and all the fnodes on the di.sk. The backup version is stored in
one of the innermost tracks of the disk ~mere the chance of accidental loss of
data is minimal. (In normal usage, the dlisk heads do not extend to the
innermost tracks.)

To implement this feature, Intel has modi.fied the Human Interface FORMAT
system conunand. A new optional parameter--RESERVE-,",·has been added to the
conunand. This version of the FORMAT cORm\and creates a new file named R?SAVE
in the innermost track of the volume. A copy of the volume label is placed in
the front of the file (that is, at the pllysical end of the volume) and an
fnode is allocated for R?SAVE in the fnode file. (The fnode for the R?SAVE
file is allocated out of the fnodes reserved through the FILES parameter of
the FORMAT conunand. Thus t if you specify ttFILES = 39J9J9J tt when you format, only
2999 of those fnodes will remain available after the R?SAVE fnode has been
allocated.) Finally, FORMAT copies the fnode file into R?SAVE.

Notice that the new FORMAT conunand creatE~s a backup of the fnode file in its
initialized state. R?SAVE is not subsequently updated as files are written to
or deleted from the volume. Therefore, you will have to use the new
BACKUPFNODES Disk Verification Utility conunand to backup the fnode file when
the volume has been modified. If the volume label or the fnode file become
damaged, you can attempt to recover files~ on the volume by using the new Disk
Verification utility conunands (RESTOREFNODES and RESTOREVOLUMELABEL) to
rebuild the index. To assist in this prc)cess, the new DISPLAYSAVEFNODE Disk
Verification Utility conunand allows you to look at individual fnodes stored in
the R?SAVE file.

Since the contents of the volume label do not change, the copy of the volume
label in R?SAVE is always valid. Therefore, you can restore the volume label
at any time regardless of when the R?SAVg file was last updated. (When the
Disk Verification Utility encounters a damaged volume label, it now
automatically uses the backup volume labnl if the R?SAVE file is present.)

iRMX 86 Release 6.9J
Update 1 SEP 84 Page 1-;~

FORMAT/Disk Verify
147155--9J9J1

One note of caution: The fnode file is changed each time a volume is modified
(that is each time ~l file is created, written to, or deleted from the
volume) . Therefore II valid restoration 'can be assured only if the fnode file
is backed up each time the. volume is mOtdified. If the fnodes are not backed
up after each modification, the structure of the R?SAVE file will differ from
that of the fnode fi.le. That is, some fnodes in R?SAVE may 'not be associated
with the same files as the corresponding fnodes in the fnode file. Attempting
to recover fnodes under these conditions is dangerous because the
RESTOREFNODES conunand will overwrite wh:at may be a valid fnode in the fnode
file.

While the backup and restore fnodes fea1t:.ure is a useful aid in attempting to
recover data on a volume, this capabili't:.y is limited in scope. If you are
troubleshooting yOUt' system, you may want to back up the fnodes on the system
disk before taking any action that may risk the disk's integrity. You may
also decide to back up the fnodes on a routine basis (before each system
shutdown, for instance) so that the R?SAVE file is always relatively current.
However, under normal circumstances, whf~re a volume is accessed and modified
frequently, backing up the fnodes after each modification is not practical.

Therefore, the limit.ed capability of thf~ fnode backup and restore feature must
be clearly understood. This feature is not intended to provide comprehensive
protection from the loss of data associnted with damaged volume labels or
fnode files. Rather, the purpose is to offer a tool that, when properly
applied, can be useful in maintaining v()lume integrity in certain situations.

iRMX 86 Release 6.~
Update 1 SEP 84 Page 1-3

FORMAT/Disk Verify
147155-~~1

iRHX 86 Release 6.0
Update 1 SEP 84 Page 1-4

FORMAT/Disk Verify
147155-001

1.2 Using Fnode Backup and. Restore

The fnode backup and restore feature requires the use of Version 3.1 of the
Release 6.~ Human Interface FORMAT command and the Version 3.1 of the Release
6.0 Disk Verification utility. Both of these items are distributed in the
iRMX 86 Update Package (Update 1.~ and later).

Used together, the new versions of the FORMAT command and the Disk
Verification Utility allow you to (1) format a volume to create the backup
file (R?SAVE), (2) backup the fnodes of any files that are written to the
volume (3) examine the contents of the backup file (R?SAVE), (4) restore
damaged fnodes, and (5) restore the volume label.

This section describes hO~i to perform each of these operations. A brief
overview of the operation is followed by one or more examples of a typical
implementation. In the examples, boldface type (this is boldface type) is
used to indicate an entry made from your terminal. standard type (this is
standard type) is used to indicate system output to your terminal.

This section is organized as follows:

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

Creating th~ R?SAVE File
Backing Up Fn()des
Backing Up the Volume Label
Restoring Fnodes
Restoring the Volume Label
Displaying R?SAVE Fnodes

iRMX 86 Release 6.~
Update 1 SEP 84 Page 1.-5

FORMAT/Disk Verify
147155-~~1

1.2.1 Creating the R?SAVE Fnode Backup File

Description

If you intend to backup the volume label and the fnodes on a volume, you must
first create the R?SAVE backup file on the innermost track of the volume. To
do so you must invoke Release 6.91, Version 3.1 of the Human Interface FORMAT
command, specifying the RESERVE option. NOTICE THAT THE FORMAT COMMAND
OVERWRITES ALL OF THE DATA CURRENTLY ON THE DISK. Therefore, make a backup
copy of any files you wish to save.

Once the volume has been formatted, the R?SAVE file will contain a copy of the
fnode file including the allocated fnodes (R?SPACEMAP, R?FNODEMAP, etc.).
Therefore, you need not backup the fnode file immediately after formatting the
volume.

Procedure

1. From the Human Interface, invoke the FORMAT command, specifying the
RESERVE parameter.

Example

Assume that you have booted your system from a floppy diskette in order to
format the winchester disk. The disk is attached as logical device :se:. The
command listed below formats the disk and creates the R?SAVE backup file. The
initialized fnode file is copied into R?SAVE.

-format :se: il = 4 files = 3000 reserve <CR>

volume () will be formatted
granularity -
interleave =
files =
extensionsize =
save area reserved =
volume size =

TTTTTTTTTTTTTTTTT
volume formatted

as a NAMED volume
1,9124 map start

4
3919191

3
yes
15,984K

7,859

The disk has now been formatted. A file named R?SAVE has been reserved in one
of the innermost tracks of the disk. (If you use the Disk Verification
Utility DISPLAYDIRECTORY command on the volume root fnode (fnode 6), you will
find an fnode listed for R?SAVE.) R?SAVE contains a duplicate copy of the
fnodes in the fnode file. That is, R?SAVE contains eight allocated fnodes
(R?SAVE, R?SPACEMAP, R?FNODEMAP, etc.) and 2,999 un-allocated fnodes.
(Remember, the R?SAVE fnode is allocated out of the 3,919191 fnodes specified
through the FILES parameter.)

iRMX 86 Release 6.0
Update 1 SEP 84 Page 1-6

FORMAT/Disk Verify
147155--9101

1.2.2 Backing Up Fnodes on a Volume

Description

To back up the fnodes on a volume, you Imlst have previously reserved the back
up file R?SAVE when the volume was formatted. Thereafter, any modification to
the volume (creating, writing to, or deleting a file) requires that the fnodes
be backed up if the R?SAVE file is to cc)ntain an accurate copy of the fnode
file.

To back up the fnode file on a volume, you must invoke the Disk Verification
utility using the logical device name of the volume to be backed up. When the
Disk Verification utility is activated, enter the Disk Verification utility
BACKUPFNODES command. A duplicate copy of all the fnodes in the fnode file
will be written to the R?SAVE file.

Procedure

1. Invoke the Disk Verification utility using the logical device name of the
device containing the volume to be backed up.

2. When you receive the Disk Verification utility prompt (*), enter the
BACKUPFNODES command.

3. When the fnodes have been backed UP:t the Disk Verification utility returns
the message "fnode file backed up tC) save areatt

•

Example

Assume that the syst.em disk is attached as logical device : sd:. The initial
contents of the :sd: fnode file were C01)ied to R?SAVE by the FORMAT command.
A file has just been written to the volume. An fnode for this file is entered
in the fnode file. However, no correspc)nding entry has been made in R?SAVE.
The following sequence of commands will copy all fnodes in the fnode file into
the R?SAVE file.

-diskverify :sd: <CR>
iRMX 86 Disk Verifiy utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation
*backupfnooes <CR> or bf <CR>
fnode file backed up to save area

*
R?SAVE now contains a duplicate copy of all fnodes (allocated and
un-allocated) in the fnode file.

iRMX 86 Release 6.~
Update 1 SEP 84 Page 1-~7

FORMAT/Disk Verify
147155-~f61

1.2.3 Backing Up the Volume Label

Description

The volume label is initially copied to R?SAVE when the volume is formatted.
Since the contents of the volume label do not change, there are no other
volume label backup procedures required.

1.2.4 Restoring Fnodes

Description

To restore fnodes on a volume, you must have previously reserved the backup
file R?SAVE when the volume was formatted. If damage has occured to the fnode
file, you can attempt to rebuild the file (or portions of it) by using the
Disk Verification utility RESTOREFNODE command.

RESTOREFNODE allows you to restore a single fnode or a range of fnodes. You
designate the fnodes to be restored by en.tering the fnode numbers. The
specified fnodes in R?SAVE are copied into the corresponding fnodes in the
fnode file.

Prior to restoring each fnode, RESTOREFNODE prompts you with the message
"restore fnode <fnode number>?". To restore the fnode, you must enter a
letter "y" (either Y or y). If you entel:" any other response, the fnode
will not be restored.

When restoring fnodes, you must be very careful to assure that you are not
overwriting a valid fnode in the fnode file with an invalid fnode from
R?SAVE. You are assured that this will n.ot happen only if the volume has not
been modified since the fnodes were last backed up.

Procedure

1. Invoke the Disk Verification utility, using the logical device name of the
volume to be backed up.

2. When you receive the Disk Verification utility prompt (*), enter the
appropriate Disk Verification utility commands (VERIFY, DISPLAYFNODE,
etc.) to examine the fnodes file and determine which fnode must be
restored.

3. Invoke the Disk Verification utility RESTOREFNODE command to replace the
damaged fnodes. The Disk Verification utility prompts you to confirm that
the proper fnode is being restored. Check to assure that you have
specified the correct hexadecimal nurr~er for the fnode, then enter the
letter "y" in response to the prompt.

iRKX 86 Release 6.0
Update 1 SEP 84 Page 1-8

FORMAT/Disk Verify
147155-0911

4. RESTOREFNODE returns the message "rE~stored fnode < fnode number >" after
the fnode in the R?SAVE file has beE~n written over the corresponding fnode
in the fnode file.

Example 1

Assume that a disk drive is attached as logical device :sd:. The volume :sd:
contains the R?SAVE fnode 'backup file. You have not modified the disk since
the fnodes were last backed up. Subsequently, you have reason to suspect that
the fnode file has been damaged. You u~;e the Disk Verification utility
utility to confirm your suspicions:

-diskverify :84: < CR>
iRMX 86 Disk Verify utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporntion
*verify

After using the Disk Verifieation Utilit~y 'to examine the structure of the
disk, you find that fnodes 9 through 0C have probably been destroyed. You
decide to use the RESTOREF:NODE command to recover these fnodes.

*restorefnod.e 9, OC <CR> or rf 9, OC <:CR>
restore fnode 9? Y <CR>
restored fnode number: 9
restore fnode ~A? Y <CR>
restored fnode number: ~A

restore fnode 0B? Y <CR>
restored fnode number: ~B

restore fnode ~C? Y < CR>
restored fnode number: ~C

Fnodes 09 through 0C in the R?SAVE file have been copied into fnode 09 through
~C in the fnode file. Since the disk hl:lS not been modified since the last
fnode backup, restoring the damaged fnocles should now enable you to recover
the data on the disk.

iRMX 86 Release 6.0
Update 1 SEP 84 Page 1--9

FORMAT/Disk Verify
147155-~f61

Example 2

Assume the same initial conditions as example 1 with the following exception:
two files have been modified since the last time the fnodes were backed up.
In the fnode file, the new files are represented by fnodes 0D and 0E. Again,
you suspect that the fnode file has been damaged. You use the Disk
Verification utility to check the condition of data on the disk:

-diskverify :sd: < CR>
iRMX 86 Disk Verify utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation
*verify

After using the Disk Verification utility to examine the structure of the
disk, you find that fnodes 9 through 10 have probably been destroyed. You
decide to use the RESTOREFNODE command to recover these fnodes. You do not
wish to restore fnodes 0D and 0E because these fnodes were Hot backed up.
Since the data fields of fnodes 0D and 0E in R?SAVE contain all zeros, you
would be destroying possibly useful data in the corresponding fnodes. You
decide to use RESTOREFNODE to restore a range of fnodes that includes 0D and
0E. However, you intend to pass over the restoration of these two fnodes by
responding to the confirmation prompt with some character other than 'y'.

*restorefnode 9,10 <CR> or rf 9,10 <CR:>
restore fnode 9? Y < CR>
restored fnode number: 9
restore fnode 0A? Y <CR>
restored fnode number: 0A
restore fnode 0B? Y <CR>
restored fnode number: 0B
restore fnode 0C? Y <CR>
restored fnode number: 0C

Notice, that because fnodes 0D and 0E were never backed up, those fnodes in
R?SAVE are un-allocated. Therefore the Disk Verification Utility returns the
"allocation bit not set for saved fnode" message. Since you do not wish to
restore this fnode, you respond to the confirmation prompt with a 'non-y'
character.

allocation bit not set for saved fnode
restore fnode 0D? <CR>
allocation bit not set for saved fnode
restore fnode 0E? D<CR>
restore fnode 0F? Y <CR>
restored fnode number: 0F
restore fnode 10? Y <CR>
restored fnode number: 10

The R?SAVE fnodes 09 through 0C and fnodes 0F through 10 have been copied over
the corresponding fnodes in the fnode file. Fnodes 0D and 0E were not
restored.

iRMX 86 Release 6.0
Update 1 SEP 84 Page 1-lriJ

FORMAT/Disk Verify
147155-,001

1.2.S Restoring the Volume Label

Description

To restore the volume label, you must have previously reserved the backup file
R?SAVE when you formatted the volume. If the volume contains the R?SAVE file,
a backup copy of the volume label alrealdy exists. The FORMAT command
automatically places a copy of the volume label into R?SAVE when the file is
created. Thereafter, the contents of t.he volume label do not change.
Therefore, you can restore the label without fear of destroying data in the
existing label.

To restore the volume label, you must i.nvoke the Disk Verification utility
using the logical device name of the appropriate volume. If the volume label
is corrupted, the Disk Verification Uti.lity attempts to use the backup copy of
the volume label in R?SAVE. When the backup label is used, the Disk
Verification utility issues a message that reads "DUPLICATE VOLUME LABEL
USED". If this mes:sage appears when the Disk Verification Utility is
activated, then the volume label is damaged .. To restore the volume label,
enter the Disk Verification Utility RESTOREVOLUMELABEL command. The current
volume label will be overwritten with the volume label copy from R?SAVE.

Procedure

1. Invoke the Disk Verification utility, using the logical device name of the
volume to be backed up.

2. If the "DUPLICA~rE VOLUME LABEL USED" message appears when the utility is
activated, the volume label must be restored. Enter the Disk Verification
Utility RESTOREVOLUMELABEL command.

3. When the volume label has been restored, the Disk Verification Utility
returns the message "volume label restored".

iRMX 86 Release 6.0
Update 1 SEP 84 Page 1,-11

FORMAT/Disk Verify
147155-001

Example

Assume that a disk drive is attached as l'ogical device : sd:. The volume : sd:
contains the R?SAVE fnode backup file. When you attempt to access files on
:sd:, the system returns and E$ILLEGAL_VOLUME message. You suspect that the
volume label may be damaged. You decide to check your suspicions using the
Disk Verification utility. '

-diskverify :sd: < CR>
iRMX 86 Disk Verify utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation
DUPLICATE VOLUME LABEL USED
"*

The "DUPLICATE VOLUME LABEL USED" message confirms that the volume label has
been damaged. You restore the volume label using the RESTOREVOLUMELABEL
command.

"*restorevolumelabel < CR>
volume label restored
"*

or rvl <CR> or

The original volume label has been overwritten with the duplicate copy from
the R?SAVE file. Attempts to access files on volume :sd: should now be
successful.

iRHX 86 Release 6.0
Update 1 SEP 84 Page 1-12

FORMAT/Disk Verify
147155-001

1.2.6 Displaying R ?SA VE Fnodes

Description

Any fnode (both allocated and un-allocated) in the R?SAVE file can be examined
by using the Disk Verification utility])ISPLAYSAVEFNODE command. The Disk
Verification utility will display vital information about the fnode (total
blocks, total size, block pointers, parent node, etc.). The fnode will be
displayed in the same format used by thea Disk Verification utility
DISPLAYFNODE command.

To display an R?SAVE: fnode, enter the Disk Verification utility
DISPLAYSAVEFNODE command and specify thea hexadecimal number of the fnode to be
displayed.

Procedure

1. Invoke the Disk Verification utilit:r using the logical device name of the
appropriate volume.

2. When you receive the Disk Verificat:Lon utility prompt (*), enter the Disk
Verification utility DISPLAYSAVEFNODE command. Specify the hexadecimal
number of the fnode to be displayed.

3. The Disk Verification utility will lC'eturn with an fnode display.

iRMX 86 Release 6.~
Update 1 SEP 84 Page 1--13

FORMAT/Disk Verify
147155-9J~1

Example

Assume that you can not access a file on a disk attached as :sd:. You suspect
that the fnode file may be damaged. By entering the Disk Verification utility
and displaying the file's directory, you find that the file you were unable to
access is represented by fnode 3C8. You 'Use DISPLAYFNODE to display fnode 3C8
but you are not confident of the data you see. Since the fnode for the file
has been backed up since the file was last modified, you decide to use data in
the R?SAVE fnode to examine the fnode file. The following command displays
the data for fnode 3C8 in R?SAVE.

-diskverify :8d: <CR>
iRMX 86 Disk Verify utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation

*displaysavefnode 3C8 <CR> or dsf 3C8 <CR>

*

Fnode number = 3C8 (saved)
flags
type

file gran/vol gran
owner

create,access,mod times
total size

total blocks
block pointer(1)
block pointer(2)
block pointer(3)
block pointer(4)
block pointer(5)
block pointer(6)
block pointer(7)
block pointer(8)

this size
id count

accessor(1)
accessor(2)
accessor(3)

parent
aux (*)

iRHX 86 Release 6.0
Update 1 SEP 84

0025 => short file
08 => data file
01
0001
00000000, !00000000, 00000000
00002001
0000f600c
000C, 004910
0000, 0000·00
0000, 0000'0f6
f600f6, 0000·0f6
000f6, f6f600~00
f600f6, 0000·0f6
0000, 0f60f6'0f6
000f6, 0f6f60'0f6
000f630f6f6
f6001
f6F, 0001
00, 0f6f60
f60, f6f6f60
f63C4
0000f6f6

Page 1-1·4
FORMAT/Disk Verify

147155-001

Section Two

Adding the Second Stage of the New Bootstrap Loader
to a FOmlCltted Disk

2.1 Overview

The Bootstrap Loader operates in two stages. The first stage establishes a
location in RAM for the second stage, nmnes the load file, loads part of the
second stage and transfers control to thc~ second stage. The second stage
finishes loading itself, transfers the load file into memory and passes
control to the load file.

The first stage resides on ROM or is stored on a secondary storage device.
The second stage always resides on track 0 of every (Standard format) named
volume. The Human Interface FORMAT systc~m command automatically places the
second stage of the Bootstrap Loader in track 0 of every named volume it
formats.

The iRMX 86 Release 6.0 version of the Bc)otstrap Loader provides a new feature
called the ttDebug Swi.tch". The Debug Switch allows you to use the monitor
during the initialization of application jobs. Thus, you can single step
through the initialization process, establishing breakpoints, examining
register contents, etc.

In order to use this feature, you will need the first stage of the Release 6.0
Bootstrap Loader in your system. You will also need the second stage of the
Release 6.0 Bootstrap Loader on track 0 of any named volumes used to load
applications. To avoid forcing you to re-format application diskettes that do
not contain the Release 6.0 version, Intc~l has added a new parameter--the
BOOTSTRAP parameter---to the FORMAT system command. When the BOOTSTRAP
parameter is specified, FORMAT writes the second stage of the Release 6
Bootstrap Loader onte, track 0 without reo-formatting the rest of the volume.

2.2 Using the FORMAT Bootst.rap Loader Switch

Description

To install the seconcl stage of the Release 6.0 Bootstrap Loader on a named
volume, invoke the FORMAT command, indiclating the logical name of the
appropriate volume and specifying the BOOTSTRAP parameter. When the BOOTSTRAP
parameter is specified, any other parameters entered with the command are
disregarded. FORMAT writes the second stage of the Release 6.0 Bootstrap
Loader onto track 0 'Irithout re-·formatting the volume.

iRHX 86 Release 6.0
Update 1 SEP 84 Page 2--1

FORMAT/Disk Verify
147155-001

Procedure

1. Invoke the FORMAT command using the logical device name of the volume to
which the second stage of the Bootstrclp Loader is to be added. Specify
the BOOTSTRAP parameter by entering "II", "BS tt

, or ttBOOTSTRAP" on the same
logical line as the FORMAT command. (Remember, if you fail to specify the
BOOTSTRAP parameter, FORMAT will formclt the volume.)

Example

Assume that you have a number of diskettes: formatted by the Release 5.0
version of FORMAT command (V2.0). You plsln to use the Release 6.0 version of
the Bootstrap Loader with some of the filE!S on these diskettes. However, you
do not want to undergo the time consuming process of copying all of these
files onto newly formatted diskettes. ThE!refore, you are using the FORMAT
command with the BOOTSTRAP switch set to copy the second stage of the
Bootstrap Loader onto track 0 of the Release 5.0 diskettes.

In this example, assume that the logical name :f0: applies to a floppy disk
drive containing a diskette formatted UndE!r iRMX 86 Release 5.0. On the
diskette are files containing application programs. Any of the following
commands will copy the second stage of thE! Release 6.0 Bootstrap Loader onto
track 0 of the diskette without re-formatting the volume.

-FORMAT :fO: BS <CR>
-FORMAT :fO: BOOTSTRAP <CR>
-FORMAT :fO: B <CR>
-FORMAT :fO: FILES= 300 GRANULARITY=200 FORCE BOOTSTRAP <CR>

~ootstrap !,:!oader written

'When the FORMAT command has completed executing, track 0 of the diskette
contains the Release 6.0 version of the Bootstrap Loader's second stage. The
remainder of the files on the diskette arE! unaffected. (Notice, in the fourth
example, the FILES, GRANULARITY, and FORCE: switches are ignored since the
BOOTSTRAP switch has precedence over any either FORMAT switch).

iRMX 86 Release 6.0
Update 1 SEP 84 Page 2-~~

FORMAT/Disk Verify
147155-001

Section Three

Refelrence

The following section provides reference material on (1) the four new Disk
Verification utility commands, (2) the two modified Disk Verification utility
commands, and (3) the modified FORMAT command.

The section begins with the following Disk Verification utility commands
presented in alphabe11:.ical order:

BACKUPFNODES
DISK
DISPLAYSAVEFNODE
HELP
RESTOREFNODE
RESTOREVOLUMELABEL

The modified FORMAT command is at the end of the section.

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-1

FORMAT/Disk Verify
147155-001

iRMX 86 Release 6.{lj
Update 1 SEP 84 Page 3-2

FORMAT/Disk Verify
147155-{lj{ljl

BACKUPFNODES

This conunand copies the current fnode file into a designated fnode backup file
named R?SAVE. R?SAVE must have been reserved when the volume was formatted.
(That is, the RESERVE option of the FORMAT conunand must have been specified.)
The format of the BACKUPFNODES conunand is as follows:

INPUT PARAMETERS

None.

OUTPUT

BACKUPFNODES displays the following message:

fnode file backed up to save area

DESCRIPTION

The BACKUPFNODES conunand provides a means of avoiding the loss of data that
occurs when the fnode file is damaged or destroyed. To use this conunand, you
must have formatted the volume using Version 3.1 (or later) of the FORMAT
conunand to create a slpecial reserve area (R?SAVE). A switch in the FORMAT
conunand (the RESERVE switch) controls the creation of R?SAVE. If you did not
specify the RESERVE parameter when the volume was formatted, the BACKUPFNODES
conunand will be unable to copy the fnode file to R?SAVE. An error message
will be returned indicating that no save area has been reserved. (In this
case, the volume must be reformatted if you wish to use the BACKUPFNODES
conunand.)

The FORMAT system co~nand writes the initialized copy of the fnode file into
R?SAVE. Therefore you do not have to use BACKUPFNODES to back up a newly
formatted volume. Subsequently, anytime a file is created, modified, or
deleted, you will have to back up the fnodes to assure that the data in R?SAVE
matches the data in the fnode file.

When the BACKUPFNODES conunand is invoked, all of the fnodes currently in the
fnode file are copied to thE~ R?SAVE file. Any fnodes currently saved in
R?SAVE are overwritten.

iRMX 86 Release 6.~
Update 1 SEP 84 Page 3-3

FORMAT/Disk Verify
147155-9J9Jl

ERROR MESSAGES

Message

argument error

no save area reserved
when volume was
formatted

not a named disk

EXAMPLE

-diskverify :sd: <CR>
iRMX 86 Disk Verify utility, V3.1

Description

When you entered the command, you supplied an
argument., BACKUPFNODES does not accept an
argument.,

The volume has not been formatted to support
fnode ba(!kup. Re-format the volume using
Version 3.1 (or later) of the FORMAT command
with the RESERVE parameter specified.

The volume you specified when you invoked the
Disk Verification utility is a physical
volume not a named volume.

Copyright 1981, 1982, 1984 Intel Corporation
*backupfnodes <CR> or bf <CR>
fnode file backed up to save area

*

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-4

FORMAT/Disk Verify
147155-001

DISK

This command displays the attributes of the volume being verified. You can
abort this command by typing a CONTROL-C (press the CONTROL key, and while
holding it down, press the C key). The format of the DISK command is as
follows:

-----@--
2018

OUTPUT

The output of the DISK command depends on whether the volume is formatted as a
physical or named volume. For a physical volume, the DISK command displays
the following information:

Device name = <devname>
Physical disk

Device gran = <devgran>
Block size

No of blocks
Volume size

where:

<devname>

<devgran>

<numblocks>

<size>

iRMX 86 Release 6.0
Update 1 SEP 84

= <devgran>
= <numb locks>
= <size>

Name of the device containing the volume. This is
'the physical name of the device, as specified in the
ATTACHI>EVICE Human Interface conunand.

Granularity of the device, as defined in the device
unit information block (DUIB) for the device. Refer
to the iRMX 86 CONFIGURATION GUIDE for more
information about DUIBs. For physical devices, this
is also the volume block size.

Number of volume blocks in the volume.

Size of the volume, in bytes.

Page 3-5
FORMAT/Disk Verify

147155-001

For a named volume, the DISK command displays the following information:

device name <devname:>
named disk, volume name = <volname:-

device granularity = <devgran:-
block size = <volgran:.

number of blocks = <numbloclcs>
number of free blocks = <numfreeblocks>

volume size = <size>
interleave = <inleave>

extension size = <xsize>
number of fnodes = <numfnodf~s>

number of free fnodes = <numfreefnodes>
save area reserved = (yes/no)

The <devname>, <devgran>, <numb locks> , and <size> fields are the same as for
physical volumes. The remaining fields are as follows:

<volname>

<volgran>

<numfreeblocks>

<inleave>

<xsize>

<numfnodes>

<numfreefnodes>

save area reserved

Name of the volume, as specified when the volume
was formatted ..

Volume granularity, as specified when the volume
was formatted ..

Number of available volume blocks in the volume.

The interleavH factor for a named volume.

Size, in bytes, of the extension data portion of
each file descriptor node (fnode).

Number of fnodes in the volume. The fnodes were
created when the volume was formatted.

Number of avajLlable fnodes in the named volume.

Indicates whether the R?SAVE file is reserved for
volume label and fnode file backups.

Refer to THE iRMX DISK VERIFICATION UTILI1~Y REFERENCE MANUAL, Appendix A or to
the description of the FORMAT command in the iRMX 86 OPERATOR'S MANUAL for
more information about the named disk fieJLds.

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-6

FORMAT/Disk Verify
147155-001

DESCRIPTION

The DISK command displays the attributes of the volume. The format of the
output from DISK depends on whether the v'olume is formatted as a named or
physical volume.

ERROR MESSAGES

None

EXAMPLE

-disk.verify :fO: <CR>
iRMX 86 Disk Verify utility:, V3.1
Copyright 1981, 1982, 1984 Intel Corporat.ion
*disk

device name = wfd0
named disk, volume name =

device granularlty = 0100
block size = 0100

number of bloc:ks = 000007C5
number of free bloc:ks = 000006C3

volume size = 0007C50fiji
interleave 0005

extension size = 03
number lof fno(ies = 00CF

number of free fnodes = 00C2
save area reserved = yes

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-7

FORMAT/Disk Verify
147155-001

iRMX 86 Release 6.~
Update 1 SEP 84 Page 3-8

FORMAT/Disk Verify
147155-~~1

DISPLAYSAVEFNODE

This command displays the fields associated with a single fnode in the R?SAVE
file. R?SAVE must have been reserved when the volume was formatted. (That
is, the RESERVE option in the FORMAT comm.and must have been ·specified.) The
format of the DISPLAYSAVEFNODE command is as follows:

~DISPLAYSAVEFNODE)--J--r---I~nodenu7---

~

INPUT PARAMETER

fnodenum

OUTPUT

2013

The Hexadecim.al number of the fnode to be
displayed. This number can range from 0 through
(maxfnodes - 1), where maxfnodes is the maximum
number of fnodes defined when the volume was
originally formatted.

In response to this command" DISPLAYSAVEFNODE displays the fields of the
specified fnode. The format of the display is as follows:

Fnode number = <fnodenum>(saved)
flags <figs>
tYPE~ <typ>

file gran/vol gran <gran>
owner

create,access,mod times
total sizE~

total blocks
block pointer(l)
block pointer(2)
block pointer(3)
block pointer(4)
block pointer(5)
block pointer(6)
block pointer(7)
block pointer(8)

thls size
id count

accessor(l)
accessor(2)
accessor(3)

iRHX 86 Release 6.0
Update 1 SEP 84

parent
aux(*)

<own>
<crtime>, <acctime>, <modtime>
<totsize>
<totblks>
<blks> , <blkptr>
<blks> , <blkptr>
<blks> , <blkptr>
<blks> , <blkptr>
<blks> , <blkptr>
<blks> , <blkptr>
<blks> , <blkptr>
<blks> , <blkptr>
<thissize>
<count>
<access>, <id>
<access>, <id>
<access>, <id>
<prnt>
<auxbytes>

Page 3-9
FORMAT/Disk Verify

147155-001

where:

<fnodenum>

<flgs>

<typ>

<gran>

<own>

iRHX 86 Release 6.0
Update 1 SEP 84

The Hexadecimal number of the fnode being displayed.
If the fnode does n.ot describe an actual file (that is,
if it is not alloca,ted), the following message appears
next to this field:

*** ALLOCATION STA'I'US BIT IN THIS FNODE NOT SET ***
In this case, the fnode fields are normally set to zero.

A word defining the: attributes of the file.
Significant bits of this word are:

Bit Meaning

o Allocation status. This bit is set to 1
for allocated fnodes and set to 0 for
free: fnodes.

1 Long, or short file attribute. This bit
is set to 1 for long files and set to 0
for short files.

5 Modification attribute. This bit is set
to 1 whenever a file is modified.

6 Dele:tion attribute. This bit is set to
1 to· indicate a temporary file or a file
that. is going to be deleted.

The DISPLAYSAVEFNODE command displays a message next to
this field to indicate whether the file is a long or
short file.

Type of file. This field contains a value and a
message. The possible values and messages are:

00
01
02
03
04
06
08
09

Message

fnode file
volume map file
fnode map file
account file
bad block file
directory file
data file
volume label file

File granularity, specified as a multiple of the volume
granularity.

User 10 of the owne:r of the file.

Page 3-1fZi
FORMAT/Disk Verify

147155-001

<crtime>
<acctime>
<modtime>

<totsize>

<totblks>

<blks> , <blkptr>

<thissize>

<count>

<access>, <id>

<prnt>

<auxbytes>

iRMX 86 Release 6.~
Update 1 SEP 84

Time and date of file creation, last access, and
last modification. These values are expressed as
the time since January 1, 1978.

Total size, in byt.es, of the actual data in the file.

Total number of volume blocks used by the file,
including indirect block overhead.

Values which ident.ify the data blocks of the file. For
short files, each <blks> parameter indicates the number
of volume blocks in the data block and each <blkptr> is
the number of the first such volume block. For long
files, each <blks> parameter indicates the number of
volume blocks pointed to by an indirect block and each
<blkptr> is the block number of the indirect block.

Size in bytes of the total data space allocated to the
file I' minus any space used for indirect blocks.

Number of user IDs associated with the file.

Each pair of field.s indicate the access rights for the
file (access) and the ID of the user who has that
access ID. Bits in the <access> field are set to
indicate the following access rights:

Data File Directory
Bit Operation Operation

~ delete delete
1 read display
2 append add entry
3 update change entry

The first ID listed is the owning user's ID.

Fnode number of t.he directory file which contains
the file.

Auxiliary bytes a.ssociated with the file.

Page 3-11
FORMAT/Disk Verify

147155-~~1

DESCRIPTION

The DISPLAYSAVEFNODE command provides a mE~ans of exam1n1ng a single fnode in
the R?SAVE file that serves as a backup for the fnode file. Since
DISPLAYSAVEFNODE operates on the R?SAVE file, you must have reserved this file
when the volume was formatted. (You reserve R?SAVE by specifying the RESERVE
parameter when you invoke the FORMAT commcmd.) If the R?SAVE file was not
reserved when the volume was formatted, DISPLAYSAVEFNODE will return an error
message.

ERROR MESSAGES

Message

argument error

no save area reserved
when volume was
formatted

not a named disk

iRMX 86 Release 6.0
Update 1 SEP 84

Descripti.on

When you entered the command, you did not
supply an argument. DISPLAYSAVEFNODE
requires an argument.

The volume has not been formatted to support
fnode backup. Format the volume using the
Release 6,.0, Version 3.1 (or later) FORMAT
command tjlrith the RESERVE parameter specified.

The volume you specified when you invoked the
Disk Veri,fication utility is a physical
volume nelt a named volume.

Page 3-12
FORMAT/Disk Verify

147155-0S2J1

EXAMPLE

-diskveruy :8d: < CR>
iRMX 86 Disk Verify utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation
*displaysavefnode 3C8 <CR> or dsf 3C8 <CR>

Fnode number = 3CB (saved)
flags
type

file gran/vol gran
owner

create,access,mod times
total size

total blocks
block pointer(1)
block pointer(2)
block pointer(3)
block pointer(4)
block pointer(5)
block pointer(6)
block pointer(7)
block pointer(8)

this size
i<i count~

accessor(1)
accessor(2)
accessor(3)

iRMX 86 Release 6.0
Update 1 SEP 84

parent
aux (*)

0025 => short file
~8 => data file
01
0~01
000~0~0~, ~~~~~0~~, ~~~~~~~~
~~~~2D~1 
~~~~0~~C 
~~~Ct ~~491~ 
~~~~, ~~~~f6f6 
f6f6~~, ~~f6f6f6f6
~f6f6~t f6f6f6f6~f6
f6f6~~, f6f6f6f6f6~
~~~~, f6f6f6f6~f6 
f6~f6f6, f6f6f6f6f6f6 
~~f6f6, ~~~~f6~ 
~~~f63f6f6f6 
~f6f61
f6F, f6f6f61
f6f6, f6f6f6f6
f6f6, ~~f6~
~3C4

~~f6~~f6

Page 3-13
FORMAT/Disk Verify

147155-f6f61

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-1~·

FORMAT/Disk Verify
147155-001

HELP

This conunand lists all. available Disk Verification utility commands and
provides a short description of each comml:1nd. The format of this command is:

2014

OUTPUT

In response to this command, HELP displays the following information:

allocate/free
backup/restore fnodes (bf/rf)

Gontrol-C
disk

display byte/word (d,db/dw)
display directory (dd)

display fnode (df)
display next block (>,dnb)

display previous block «,dpb)
display save fnode (dsf)

exit,quit
list bad blo(~ks (lbb)

read (r)
restore volume label (rV'l)

save
substitute byte/word (s,sb/sw)

veri.fy
~frite (w)

miscellaneous command--
address

block
hex/dec

add ,+, sub ,- ,mul, *- I,div, /mod

iRMX 86 Release 6.0
Update 1 SEP 84

allocate/free fnodes, space blocks, bad blocks
backup/restore fnode file to/from save area
abort the command in progress
display disk attributes
display "the buffer in (byte/word format)
display "the directory contents
display :fnode information
read and display 'next' volume block
read and display 'previous' volume block
display :saved fnode information
quit disk verify
list bad blocks on the volume
read a disk block into the buffer
copy volume label from save area
save fre,e fnodes, free space & bad block maps
modify the 1;>uffer (byte/word format)
verify the disk
write to the disk block from the buffer

convert 'block number to absolute address
convert ,absolute address to block number
display number as hexadecimal/decimal number
arithmetic operations on unsigned numbers

Page 3-15
FORHAT/Disk Verify

147155-0f61

iRMX 86 Release 6.9J
Update 1 SEP 84 Page 3-16

FORMAT/Disk Verify
147155-9J9J1

RESTOREFNODE

This command copies an fnode or a range of fnodes from the R?SAVE file to the
fnode file. Before changing the fnode file, RESTOREFNODE displays the fnode
number to be changed and prompts you to confirm (by entering a lye) that the
fnode is to be restor4~d. R?SAVE must have been reserved when the volume was
formatted. (That is, the RESERVE option of the FORMAT command must have been
specified.) The format of the RESTOREFNODE command is as follows:

INPUT PARAMETER

fnodenum

fnodenum1

fnodenum2

OUTPUT

2016

The Hexadecimal number of the fnode to be
restored. This number must be greater than or
equal to zero and less than the maximum number of
fnodes defined when the volume was formatted.

The initial Hexadecimal fnode number in a range of
fnodes to be restored. This number must be
greater than or equal to zero and less than or
equal to the final fnode number in the range
(fnodenum2) .

The final Hexadecimal fnode number in a range of
fnodes to be restored. This number must be
greater than or equal to the initial fnode number
in the range (fnodenum1) and less than the maximum
number of fnodes defined when the volume was
formatted.

When the fnode is restored (the response to the confirmation query is lye):

restore fnode (fnodenum) ? Y < CR>
restored fnode number: (fnodenum)

'*
When the fnode is not restored (the response to the confirmation query is not
'Y') :

restore fnode

'*
(fnodenum) ? < CR>

iRHX 86 Release 6.0
Update 1 SEP 84 Page 3-17

FORMAT/Disk Verify
147155-f6f61

DESCRIPTION

'i'he RESTOREFNODE command allows you to re-build a damaged fnode file, thereby
re-establishing links to data that would cltherwise be lost. RESTOREFNODE
copys an fnode or a range of fnodes from t.he R?SAVE file (the fnode backup
file) to the fnode file. Before each of t.he specified fnodes is copied,
RESTOREFNODE displays a query prompting you to confirm that the indicated
fnode is to be restored. You must reply t.o this query with the letter • y'
(either 'Y' or 'y') to restore the fnode. If you enter any other response,
RESTOREFNODE will not restore the fnode and will pass on to the next fnode in
"the range.

Since RESTOREFNODE operates on the R?SAVE file, you must have reserved this
file when the volume was formatted. (You reserve R?SAVE by specifying the
RESERVE parameter when you invoke the FO~~T command to format the volume.)
If the R?SAVE file was not reserved when the volume was formatted,
RESTOREFNODE will return an error message.

WARNING: When using this command, be sure that any fnode you restore represents a
file that has not been modified since the last fnode backup. RESTOREFNODE overwrites
the specified fnode in the fnode file with the cOlrresponding fnode in the R?SAVE file. If
that fnode has not been backed up since the last file modification, a valid fnode may be
overwritten with invalid data. Thus, a111inks to the associated file will be destroyed, and
YOU WILL LOSE ALL OF THE DATA IN THE Fl[LE.

ERROR MESSAGES

Message

argument error

no save area reserved
when volume was
formatted

not a named disk

iRMX 86 Release 6.~
Update 1 SEP 84

Description

When you entered the command, you failed to
supply all. argument. This command requires an
argument.

The volume has not been formatted to
support fnode backup. Format the volume
using Version 3.1 (or later) of the FORMAT
command TItI'ith the RESERVE parameter specified.

The volume you specified when you invoked the
Disk Verification utility is a physical
volume not a named volume.

Page 3-18
FORMAT/Disk Verify

147155-~~1

<fnode II>, fnode ()Ut
of range

allocation bit not
set for saved fnode
restore fnode <fnode II>?

EXAMPLE

-disk.verify :sd: < CR>

(1) The fnode number specified in the
command is greater than or equal to the
maximum lnumber of fnodes defined when the
volume w;as formatted; (2) -The fnode number
specified in the command is less than zero;
or (3) the number specified for the initial
fnode in the range is greater than the number
specifie1d for the final fnode.

The fnode you specified has not been
backed up in the R?SAVE file. If you respond
to the query with a 'Y', THE DATA IN THE
ASSOCIATED FILE WILL BE LOST.

iRMX 86 Disk Verify utility,. V3.1
Copyright 1981, 1982, 1984 Intel Corporation
*restorefnode 9,08 <CR> or rf 9,08 <CR.>
restore fnode 9? Y <CR.>
restored fnode number: 9
restore fnode fiJA? y < CR>
restored fnode number: fiJA
restore fnode fiJB? Y <CR>
restored fnode number: fiJB
restore fnode fiJC? Y < CR>
restored fnode number: fiJC
allocation bit not set for saved fnode
restore fnode fiJD? < CR>
allocation bit not set for saved fnode
restore fnode fiJE? n < CR>

*

iRMX 86 Release 6.fiJ
Update 1 SEP 84 Page 3-1.9

FORMAT/Disk Verify
147155-fiJfiJ1

iRMX 86 Release 6.~
Update 1 SEP 84 Page 3-2~

FORMAT/Disk Verify
147155-~~1

RESTOREVOLUMELABEL

This command copies tIle volume label from the R?SAVE file to the volume label
offset on track~. R?SAVE n~st have been reserved when the volume was
formatted. (That is, the RESERVE option of the FORMAT command must have been
specified when the volume was formatted.) The format of the
RESTOREVOLUMELABEL cormnand i.s as follows:

-----~--<:RESTOREVOLUMELABELJ~--~--
-

1 ________ (RVL
.J

-------------~~----------------
2015

INPUT PARAMETERS

None

OUTPUT

volume label restored

DESCRIPTION

The RESTOREVOLUMELABEL command allows you to re-build a damaged volume label,
thereby re-establishing links to data that would otherwise be lost.
RESTOREVOLUMELABEL cOllies the volume label stored in the R?SAVE file to the
volume label offset 011 track zero. When you use the Human Interface FORMAT
command to create R?SAVE (by specifying the RESERVE parameter) the volume
label is automatically copied to the file. Because the contents of the volume
label do not change there is no other volume label backup required.

If an R?SAVE file has been reserved on a volume, the Disk Verification Utility
can access that volume as a Named volume even if the volume label is damaged.
When the original volume label is corrupted, the Disk Verification Utility
attempts to use the backup c~opy in R?SAVE. If the backup label is used, a
"DUPLICATE VOLUME LAB1~L USED" message appears when the utility is activated.

Since RESTOREVOLUMELABEL operates on the R?SAVE file, you must have reserved
this file when the volume was formatted. (You reserve R?SAVE by specifying
the RESERVE parameter when you invoked the FORMAT command.) If the R?SAVE
file was not reserved when the volume was formatted, RESTOREVOLUMELABEL will
return an error message.

iRHX 86 Release 6.~
Update 1 SEP 84 Page 3-21

FORMAT/Disk Verify
147155-~~1

ERROR MESSAGES

Message

argument error

no save area reserved
when volume was
formatted

not a named disk

EXAMPLE

-diskverify :sd: < CR>

Description

When you entered the command, you supplied an
argument. This command does not accept an
argument.

The volum.e has not been formatted to
support volume label backup. Format
the volum.e using the Release 6.0, Version 3.1
FORMAT command with the RESERVE parameter
specified.

The volume you specified when you invoked the
Disk Verification Utility utility is a
physical volume not a named volume.

iRMX 86 Disk Verify Utility, V3.1
Copyright 1981, 1982, 1984 Intel Corporation
DUPLICATE VOLUME LABEL USED
*restorevolumelabel <CR> or rvl <CR> or
volume label restored

*'

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-22

rv <CR>

FORMAT/Disk Verify
147155-001

FORMAT

This command format~J or re-formats a volume on an iRHX 86 secondary storage
device, such as a diskette, tape drive, hard disk, or bubble memory. The
format is as follows:

EXTENSIO~~J
num~

~NTERLEAVE
num

INPUT PARAMETERS

: logical-name:

iRMX 86 Release 6.~
Update 1 SEP 84

BOOTSTR~P . F RESERVE g
~----;BS -----j --- ~~-------~
'------; B 1-------"

2012

Logical name of the physical device-unit to be
fOt~atted. You must surround the logical name with
colons. Also, you must not leave space between the
logical name and the succeeding volume name parameter.

Page 3-23
FORMAT/Disk Verify

147155-~~1

volume-name

FILES=num

FORCE

MAP S TART =num

iRHX 86 Release 6.~
Update 1 SEP 84

Six-character, alphanumeric ASCII name, without
embedded blanks, to be assigned to the volume. If you
include this parameter, you must not leave spaces
between the logical name and the volume name.

Defines the maximum decimal number of user files that
can be created on a NAMED volume. (This parameter is
not meaningful when formatting a PHYSICAL volume and is
ignored if specified for such volumes.) FORMAT uses
the information specified in this parameter to
determine how many structures (called fnodes) to create
on the NAMED volume. The range for the FILES parameter
is 1 through 32,761, although the maximum number of
user files you can define depends on the settings of
the GRANULARITY and EXTENSIONSIZE parameters (See the
description of the FORMAT command in the iRMX 86
Operator's Manual). If no value is specified, FORMAT
uses a default value of 2~~ user files. When you use
this parameter, FORMAT creates seven additional fnodes
for internal system files. When the RESERVE parameter
is used (setting aside the R?SAVE fnode backup file),
the fnode for the R?SAVE file is allocated out of the
fnodes reserved through the FILES parameter. (Thus, if
you specify "FILES=3~~~", only 2999 fnodes remain
available after the R?SAVE fnode has been allocated.)

Forcibly deletes a~[ly existing connections to files on
the volume before formatting the volume. If you do not
specify FORCE, you cannot format the volume if any
connections to fil,es on the volume still exist.

Gives the volume block number where the fnode file, bit
map files, and the root directory should start. The
size of the block is set by the GRANULARITY parameter.
If no number is given, the Operating System puts the
fnode file in the ,~enter of the volume. If the number
is too low, the Op,erating System places the map files
at the lowest available space on the volume.

Page 3-204
FORMAT/Disk Verify

147155-~~1

GRANULARITY=num Volume granularity; the minimum number of bytes to be
allocated for each increment of file size on a NAMED
volume. (This piarameter is not meaningful for PHYSICAL
volumes, and is :ignored if specified for such
volumes.) FORMA~r rounds the value you specify up to
the next multiplle of the device granularity. Then it
places the decimal number in the header of the volume,
where it becomes the default file granularity when a
file is created jon the volume. The range is 1 through
65,535 (decimal) bytes, although the maxi~Jm allowable
volume granularity depends on the settings of the FILES
and EXTENSIONSIZ]t!: parameters. If not specified, the
default granular:ity is the device granularity. Once
the volume granularity is defined, it applies to every
file created on 'I:.hat volume.

NOTE

Using a larl~e volume granularity (in
excess of 1!?J24), might cause users to
exceed their memory limits when
executing programs that reside on the
volume. This error can occur because
the Operating System uses the volume
granularity as a minimum buffer size
when readinl~ and writing files.

EXTENSIONSIZE=num Size, in bytes, 40f the extension data portion of each
file. (This parameter is not meaningful for PHYSICAL
volumes, and is :ignored if specified for such
volumes.) The r:l1nge is 0 through 255 (decimal),
although the maximum allowable extension size depends
on the settings 4lf the FILES and GRANULARITY
parameters. If not specified, the default extension
size is 3 bytes.

INTERLEAVE=num Interleave factolt." for a NAMED or PHYSICAL volume.

iRMX 86 Release 6.0
Update 1 SEP 84

Acceptable values are 1 through 255 decimal. If not
specified, the dcafault value is 5.

Page 3--25
FORMAT/Disk Verify

147155-001

NAMED

PHYSICAL

QUERY

BOOTSTRAP

RESERVE

iRHX 86 Release 6.0
Update 1 SEP 84

The volume can stclre only named files; that is, the
volume can hold ma~ny files (up to the number of fnodes
allocated) teach clf which can be accessed by its
pathname. A diske:tte or hard disk surface are examples
of devices that wc,uld be formatted as named files. If
neither NAMED nor PHYSICAL is specified, the volume is
formatted for the file specified when you attached the
device (with the ATTACHDEVICE connnand).

The volume can be used only as a single, physical
file. The GRANULARITY and FILES parameters are not
meaningful when PIi~YSICAL is specified for the volume.
If neither NAMED nor PHYSICAL is specified, the volume
is formatted as the file type specified when you
attached the devic,e (with the ATTACHDEVICE connnand).

Prompts the user for permission to format the volume.
The Human Interfac,e displays the
following:

<volume name>, FORMAT?

If the user replie:s with a 'Y', 'y', 'R', or 'r', then
the volume is formatted. Any other response is
considered by the Human Interface to be a 'no'.

Writes the second stage of the bootstrap loader onto
track 0 without fo,rmatting the volume. When this
parameter is specified, all other parameters are
ignored.

Creates the specis.l file R?SAVE at the end of a volume
after the volume has been initialized. The volume
label file and the: fnode file are then copied to
R?SAVE. Later this file may be used in conjunction
with the Disk Verification Utility to back up the fnode
file on the volume:.

Page 3-2:6
FORMAT/Disk Verify

147155-001

DESCRIPTION

Every physical device-unit used for secondary storage must be formatted before
it can be used for storing and then accessing its files. For example, every
time you mount a prE~viously unused disk.ette into a drive, you must enter the
FORMAT command to format that diskette las a new volume before you can create,
store and access fil.es on it.

FORMAT provides a number of optional parameters that control the structure of
the formatted volume (e.g. Files=, Interleave=, etc.) or dictate the method of
formatting the volume (e.g. FORCE, QUERY, RESERVE, etc.) These parameters are
optional and may be entered in any order.

Once a volume is formatted, its name becomes a volume identifier when you
display any directory of the volume, and the name appears in the directory's
heading. Although the Human Interface uses the volume name in its own
internal processing when you access the volume, you need not specify the
volume name in any subsequent command after the volume is formatted. You must
specify only the logical name of the secondary storage device that contains
the volume.

Internal Files

When you format a nnmed volume, FORMAT creates either seven or eight
(depending on whether the RESERVE option is set) internal system files. It
places the names of four (or five) of these files in the root directory of the
volume. The remaining files are not listed in the root directory. Unless you
specify the INVISIBLE option, none of these files appear when the DIR conu\\and
is invoked. The files are:

R?SPACEMAP
R?FNODEMAP
R?BADBLOCKMAP
R?VOLUMELABEL
R?SAVE

Description

Volume free space map
Free fnodes map
Bad blocks -.map
Volume label
Save area for fnodes

The Operating System grants the user WORLD read access to these files.
Refer to the iRMX 86 DISK VERIFICATION UTILITY REFERENCE MANUAL for more
information about these fi.les.

iRHX 86 Release 6.0
Update 1 SEP 84 Page 3-27

FORMAT/Disk Verify
147155-001

Root Directory

FORMAT also uses one of the fnodes for tl1e root directory. It lists the user
who formats the volume as the owner, giving that user all access rights. No
other user has access to the root directory until the owner explicitly grants
access. The owner can grant other users access to the volume via the PERMIT
conunand. However, because the owner has all access rights to the root
directory, the owner can obtain exclusivE~ access to the volume, and can obtain
delete access to any file created on the volume, even files created by other
users.

Extension Data

Each fnode contains a field that stores oxtension data for its associated
file. An operating system extension can access and modify this extension data
by invoking the AGETEXTENSION$DATA and A$SET$EXTENSION$DATA system calls
(refer to the iRKX 86 BASIC 1/0 SYSTEM RI~FERENCE MANUAL for more
information). When you format a volume, you can use the EXTENSIONSIZE
parameter to set the size of the extension data field in each fnode. Although
you can specify any size from r6 to 255 b3rtes, the Human Interface requires all
fnodes to have at least 3 bytes of exten~don data.

output Display

The FORMAT conunand displays one of the following messages when volume
formatting is completed. For physical volumes:

volume «volume name» will be formatted as a PHYSICAL volume
device gran. = <number>
interleave = <number>
volume size = <k-number> K (or H)

TTTTTTTTTTTTTTTTTTT ...

volume formatted

While the storage device is being formatted, FORMAT displays on the console
the letter "Ttt for every lr6r6 tracks formc~tted. (This does not occur if the
storage device is a floppy diskette.) For example, if you see three T's on
the screen, the Operating System has fini.shed formatting at least 3r6r6 tracks.
Displaying the T's on the screen is useful when you format large capacity
disks. A continuous stream of T's lets you know that the system hasn't failed
during the FORMAT operation.

iRMX 86 Release 6.r6
Update 1 SEP 84 Page 3-2:8

FORMAT/Disk Verify
147155-r6r61

For named volumes:

volume «volume name»
granularity
interleave

will be formatted as a NAMED volume
= <number> map start = <number>
= <number> sides = <sides> .

files
extensionsize

= <number> density = <density>
= <number> disk size = <d-size>

save area reserved
volume size

= (yes/no)
= <k-number> lK (or M)

TTTTTTTTTTTT ...

volume formatted

Where:

<number>

<volume name>

<number>

<k-number>

<sides>

<density>

<d-size>

Posit.ion where the fnodes start.

Volume name specified in the FORMAT command.

Decimal number as specified in the command (or the
default) .

Volume size in K (lflJ24-byte units) or H
(lflJ48576-byte units). FORMAT displays the volume
size in Kbyte units unless the size is greater
than 25 Mbytes.

Number of sides of the volume that will be
formatted (lor 2). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

Density at which the volume will be formatted
(single or double). This field is displayed only
for flexible diskettes in which FORMAT can
recognize this characteristic.

Size of the volume (8 or 5.25). This field is
displayed only for flexible diskettes in which
FORMAT can recognize this characteristic.

save area reserve<l Indic,ates whether the R?SAVE file has been
reserved for backing up the volume label and the
fnode file. (Reserving the R?SAVE file is
controlled by the 'RESERVE parameter.)

When the BOOTSTRAP par.ameter is specified:

Bootstrap Loader written

iRMX 86 Release 6.flJ
Update 1 SEP 84 Page 3-29

FORMAT/Disk Verify
147155-fliflJl

ERROR MESSAGES

• <logical name>, can't attach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot attach the device for formatting, or it cannot re-attach
the device (that is, restore it to its original condition) after
formatting takes place.

• <logical name>, can't detach device
<logical name>, <exception value> : <exception mnemonic>

FORMAT cannot detach the device for formatting, which means that the
volume does not exist, the volume is busy, or the device on which the
volume is mounted is not currently attached to the system.

• <logical name>, device is in use

You cannot format the volume because there are outstanding connections
to files on the volume and you did not specify the FORCE parameter.

• map files do not fit with save area

The volume is too small for both map files and save area, or the map
start block is too high to allow room for map files and the save area.

• <vol-name>, fnode file size exceeds 65535 volume blocks

The values you specified for fnode size, granularity, and extension
data size is too large.

• <number>, invalid number

You specified an out-of-range number for any of the FILES,
GRANULARITY, EXTENSIONSIZE, or INTERLEAVE parameters.

• <logical-name>, map files do not fit

The volume is too small for the map files or the map start block
is too high to allow room for the map files.

iRMX 86 Release 6.0
Update 1 SEP 84 Page 3-30

FORMAT/Disk Verify
147155-001

• <logical name>, outstanding connelt:tions to device have been deleted

There were out:standing connections to files on the volume. However,
because you specified the FORCE parameter, FORMAT deleted those
connections. This is a warning message that does not prevent FORMAT
from formatting the volume.

• ~~85: E$LIST 9 too many values

You entered multiple logical-name/volume-name combinations separated
by commas. FORMAT can format only one volume per invocation.

• <logical-name>: <exception code> unit status <xx>

An I/O error occurred while physically formatting the volume.
<exception co(ie> informs you of the type of error.

• <volume name>:, volume name is too long

FORMAT requir.~s the volume name you specify to be 6 characters or less.

iRMX 86 Release 6.~
Update 1 SEP 84 Page 3-31

FORMAT/Disk Verify
147155-~~1

0204/1.3K10235/0SPS/AD

