
intJ

iRMXTM 86 RELEASE 6
DOCUMENTATION CHANGE PACKAGE:

UPDATE 3

Copyright 1985, Intel Corporation .
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Order Number: 147540-001

iRMX™ 86 RELEASE 6
DOCUMENTATION CHANGE PACKAGE:

UPDJ(rE 3

Order Number: 147540-001

I Copyright 1985, Intel Corporation
In II Cor oration 3065 Bowers Avenue Santa Clara California 95051 tE P

I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no respon
sibility for any errors that may appear in this document. Inlel Corporation makes no commitment to update nor
to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication
or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained herein.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specificati.ons before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BITBUS im
COMMputer iMDDX
CREDIT iMMX
Data Pipeline Insite
Genius Intel

A intel i
i intelBOS

I2ICE Intelevision

ICE inteligent Identifier

iCS inteligent Programming

iDBP Intellec

iDIS Intellink

iLBX iOSP
iPDS

iRMX
iSBC
iSBX
iSDM
iSXM
KEPROM
Library Manager
MCS
Megachassis
MICROMAINFRAME
MULTmUS
MULTICHANNEL
MULTIMODULE
OpenNET

Plug-A-Bubble
PROMPT
Promware
QueX
QUEST
Ripplemode
RMX/SO
RUPI
Seamless
SLD
SYSTEM 2000
UPI

MDS is an ordering code only and is not used as a product Ilame or trademark. MDS@ is a registered trade
mark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1985, Intel Corporation

=====~===

iRKKM 86 OPERATING SYSTEM RELEASE 6 CHANGE PACKAGE: UPDATE 3
1475·'flJ-flJflJ1

======~==~===::~==::==========~==~====~:~=================================~=====

Purpose

The change pages in this package correct technical errors identified in the
current version of the iRKr" 86 Release 6 documentation.

Scope

The following manuals are affected by this change package:

Introduction and Operator' s Referen(~e Hanual (146194-f6flJ1)
Programmer's Reference Hanual, Part I (146195-f6flJ1)
Programmer's Reference Hanual. Part II (146196-flJflJ1)
iRHX'" 86 Installation and Configura'l::.ion Guide (146197-flJflJ1)

iRHX'" 86 Update Change Pac.k~ge Descript:ion

The iRMX'" 86 OPERATING SYSTEM RELEASE 6 CHANGE PACKAGE: UPDATE 3 consists of a
series of corrected pages that replace "the corresponding pages in your
documentation. A change package for iRl~" 86 Release 6 documentation is
issued each quarter in conjunction with the iRHX'" 86 Release 6 Update
Package. In addition to t,he change pag1es issued for the current update, each
change package also contains an accumul;ation of the change pages from all
previous updates.

The change pages in this package are or:ganized into sections according to the
update in which they were issued. All 'change pages for the current update are
in a section at the front of the packag1e. Change pages from previous updates
are in succeeding sections.

Each update section begins with a blue cover and is subdivided into four
segments, one for each of the iRHX'" 86 Release 6.flJ documentation volumes.
Each of these volume segments is identified by a yellow, pink, green, or
orange cover sheet. Within each volume segment the change pages are organized
in the sequence in which they occur in the volume.

The Update Revision History pages--10cated immediately behind the sheet you
are now reading--maintains a history of all changes distributed through the
iRHX'" 86 Release 6.~ Updates. This page indicates the product enhancement or
the software problem report (SPR) that initiated each change. There is one
Update Revision History page for each of the four iRHX'" 86 documentation
volumes.

Installation Instructions

Change pages in the Update Package are accumulated from quarter to quarter.
The change pages for each successive updBLte are separated in this package by a
blue cover page (similar to the sheet you are now reading). Within each
update section, yellow, pink, green, and orange cover sheets segregate the
change pages according to volume.

The change pages in this package are inst.alled by removing a page from your
documentation and replacing it with the corresponding page from the change
package.

If this is the first iRMX'" 86 Release 6. gi Update to be installed in your
documentation:

1. Immediately behind the change pBLckage cover sheet (the sheet you are
now reading) are four Update Revision History pages--one for each of
the four volumes of iRMX 86~ OpE~rating System documentation. Install
each Update Revision History pa@;e in the front of the appropriate
volume.

2. Install all of the change pages in the package. Begin with the
change pages issued for Update 2:. (The Update 2 change pages are
located in the bottom half of the package, behind the second blue
cover sheet.) After installing the Update 2 change package, install
the change pages for Update 3. (The Update 3 change pages are
located immediately behind the s:heet you are now reading.) You must
install the Update 2 change pac~:age before installing the Update 3
change package. If you were to install Update 2 last, you would risk
replacing a current (Update 3) version of a page with an Update 2
version of the same page.

3. Fill out the Reader Comment Car~l--located at the bottom of the
package--and mail it to Intel Cc'rporation.

If you have installed previous i~ 86 Etelease 6.@ Updates in your
documentation:

1. Immediately behind the change pBlckage cover sheet (the sheet you are
reading) are four Update Revisicln History pages--one for each of the
four volumes of iRMX 86T" Operati.ng System documentation. In the
front of each of your volumes, ['eplace the Update History Pages from
the previous update with the Upclate History Pages for Update 3.

2. Install only the change pages fClr Update 3. These change pages are
in the first section at the top of the package.

3 . Discard the remainder of the chBLnge pages in the change package.
(These pages should already be i.n your documentaion if you installed
the previous update.)

4. Fill out the Reader Comment Cardl--located at the bottom of the
package--and mail it to Intel Cc'rporation.

UPDATE REVIS IOlr HISTORY

Introduction and Operator' s RefE~rence Manual (146194-{lj{lj1)

Manual Page Initiated By Distribution

OP 2-11/1i~ SPRII 1{lj2943 Update 2 (12/84)
OP 3-15/16 SPRII 1{lj3257,1{lj3133
OP 3-83/86 SPR/I 1{lj29{lj5
OP 3-97/1~{lj SPR/I 1{lj3155
OP 3-113/115 Addition of ZSCAN
DV 2-7/8 SPRII 1{lj3153
DV A-7/8 SPRII 1{lj3151,1{lj3152,

1{lj3154
DV Ind-1/3 SPR/I 1{lj3149,1{lj3148,

1{lj3147,1{lj315{lj

OP 3-7/8 SPR/I 1{lj3345 Update 3 (3/85)
OP 3-81/82 SPR/I 1{lj3239
OP A-9/1{lj SPR/I 1{lj3387
DV iii/iv SPR/I 1{lj3353
DV 1-1/4 SPRII 1{lj3354,1{lj337{lj
DV 2-45/46 SPR/I 1{lj3355
DV A-7/8 SPR/I 1{lj3252

IN=Introduction to i'RMX'" 86, OP=Operatc>r's Manual, DV=Disk Verification

UPDATE REVISION HISTORY

Programmer's Reference Manual, Part I (146195-0~1)

Manual Page Initiated By Distribution

NU 7-13/14 SPRII 103174 Update 2, (12/84)
NU 8-3/4 SPRII 102927
NU 12-131/132 SPRII 103173
NU 12-149/150 SPRII 1~3175
NU 12-153/154 SPRII 1~3051
BI 8-99/1~0 SPRII 1~297~
BI 8-1031106 SPRII 10297~
BI F-9/10 SPRII 103058
HI Ind 15/16 Addition of 188/48 Driver
HI Ind 17.1 Addition of 188/48 Driver
HI Ind 29130 Addition of 188/48 Driver

NU 5-3/4 SPRII 103300 Update 3, (3185)
NU 12-9/10 SPRII 103323
NU 12-21/22 SPRII 103294
NU 12-37/40 SPRII 103385
NU 12-43/44 SPRII 103324
NU 12-59/60 SPRII 1~3326
NU 12-81/82 SPRII 103328
NU 12-95/96 SPRII 103384
NU 12-137/138 SPRII 103299
BI 8-11/14 SPRII 103329,103382
BI 8-15/16 SPRII 103331
BI 8-29/30 SPRII 103380
BI 8-87/88 SPRII 1~3383
BI 8-97/100 SPRII 103332, 103333, 103334
BI 8-103/106 SPRII 103335, 103336, 103337
BI 8-109/110 SPRII 103338
BI 8-127/128 SPRII 103339
BI 8-135/136 SPRII 103340,103386
EI 7-7/8 SPRII 103398
EI C-1/2 SPRII 103352
EI Ind-3/4 SPRII 103348

NU=Nucleus, BI=BIOS, E1=EIOS

UPDATE REVISIOltf HISTORY

Programmer's Reference Manual, Part II (146196-{1Jf/J1)

Manual Page Initiated By Distribution

HI 8-45/48 SPRfl 1{1J3171., 1{1J3172 Update 2, (12/84)
UDI 2-41/42 SPRfl 1f/J3f/J59
UDI 2-53/54 SPRfl 1f/J3f/J6~
DD 6-316 SPRfl 1f/J3f/J54
PT 3-7/8 SPRfl 1f/J3121.
TH 3-1/2 SPRfl 1f/J3121
BL 2-9/1f/J SPRfI If/J3f/J81

AL 2-11/1,4 SPRfI 1f/J3342,1f/J3351 Update 3, (3/85)
AL 2-21/22 SPRfl 1f/J3343
AL 2-29/30 SPRfl 1f/J3344.
HI 5-3/4 SPRfl 1f/J3212~

HI B-9/1{1J SPRfl 1f/J33f/J4
UD 2-518 SPRfl 1f/J332{li
UD 2-53/54 Fix Update 2 Error
DD Ind-3/4 SPRfl 1f/J33491, 1f/J335f/J
PT 6-1 SPRfl 1f/J3176
TH 2-1/2 SPRfl 1f/J3368
TH 3-1/2 SPRfl 1{1J33691

AL=Application Loader, HI=Human Interface, UD=UDI, DD=Device Drivers
PT=Programming Techniques, TH=Terminal Handler, DB=Debugger,
CA=Crash Analyzer, SD=System Debugger, BT=Bootstrap Loader

UPDATE REVISION HISTORY

iRKr" 86 Installation and Configuration Guide (146197-~~1)

Manual Page Initiated B.y Distribution

-

IG 6-9/1~ SPRII 1~2944 Update 2, (12/84)
IG 6-15/16 SPRfJ 1~3f85~
IG 8-1/2 Addition of 188/48 Driver
IG 1~-5/12 SPRfJ 1~3~79J., 1~3211, 1~3255

1~3~85,1~3169
IG D-3/6 SPRII 1~2959,1~2958
IG E-l SPRfJ 102945
IG F-1/2 Addition of 188/48 Driver
IG Ind-1/2 Addition of 188/48 Driver
CG 2-15/16 Addition of 188/48 Driver
CG 4-1/2 Addition of 188/48 Driver
CG 1~-1/2 Addition of 188/48 Driver,

SPRfJ 10296~
CG 10-152.11 Addition of 188/48 Driver

152.12
CG 15-7/1~ SPRfJ 103~ 7 4
CG 18-3/4 Addition of 188148 Driver
CG B-3/4 Addition of 188/48 Driver
CG B-11/14 Addition of 188148 Driver

IG 6-15/18 SPRII 1~3272,1~3372 Update 3, (3/85)
CG 10-1/2 Fix Update 2 Error
CG 10-33/34 SPRfJ 1~3363
CG xxvlxxviii Addition of 217 Driver,

Addition of 226 Driver
CG E-1/2~ Addition of 217 Driver
CG F-1/19J Addition of 226 Driver

IG=Installation, CG=Configuration, MI=Master Index

iRMX'" 86 Release 6.f6 Ch.ange Package: Update 3

Change Pages for:

iRMX'" 86 Introduction and Operator.'s Reference Manual (146194-f6f61)

ATTACHDEVICE

ATTACHDEVICE

This conunand attaches a physical devi(~e to the Operating System and
associates a logical name with the de~lice. The command catalogs the
logical name in the root object dire,ctory, making the logical name
accessible to all users. The format of the command is as follows:

INPUT PARAMETERS

physical name

AS

:logical name:

NAMED

PHYSICAL

REPLACE

Physical device name of the device to be attached
to the system. This name must be the name used in
one of the Basic 1/0 System's Device Unit
Information Blocks (DUIB), as defined at system
configuration time (see Table 3-2).

Preposition; required for the conunand.

A 1--10 charactelC" string that represents the
logical name to be associated with the device.
Colons surrounding the logical name are optional;
however, if you use colons, you must use matching
colons.

Specifies that the volume mounted on the device is
already formatted for NAMED files. Examples of
volumes that can contain named files are diskettes
or hard disk platters. If neither NAMED nor
PHYSICAL are specified, NAMED is the default. See
the :FORMAT conunand in this chapter for a further
description of NAM.ED files.

Specifies that the volume mounted on the logical
device is considered to be a single, large file.
Examples include line printers and terminals. See
the FORMAT conunand in this chapter for a further
description of PHYSICAL volumes.

OJ)era tor 3-7 UPDATE 3, 3/85

, , 92

I

ATTACHDEVICE

WORLD

DESCRIPTION

Specifies that user ID WORLD (65535 decimal) is the
owner of the device. This implies that any user can
detach the device. If you omit this parameter, your
user ID is listed as the owner of the device. In this
case, only you and the system manager can detach the
device.

ATTACHDEVICE attaches a device to the system and catalogs a logical name
for it in the root job's object directory. The logical name is the means
by which all users can access the dE~vice. Devices must have their
characteristics listed in the Basic 1/0 System's Device Unit Information
Block (DUIB) at configuration time befolC'e they can be attached with the
ATTACHDEVICE command.

Table 3-2 and Table 3-3 list the physical device names normally used with
the Basic 1/0 System. Your system m:ight support a subset of these
devices or it might support devices not listed. If it supports the
devices listed, it might support them under different names. Therefore,
consult the person who configured your system to determine the correct
device names for your system.

One frequent use of the ATTACHDEVICE command is to attach a new device,
such as a new disk drive or a line printer, without having to reconfigure
portions of the Operating System. (See the DETACHDEVICE command in this
chapter for a description of how to detach a device from the system
without reconfiguring.)

Unless you have a user ID of WORLD (65535) or specify the WORLD
parameter, once you attach a device, only you and the system manager can
detach the device. This limitation prev1ents users from detaching devices
belonging to other users and prevents you from accidentally detaching
system volumes. However, if you have a user ID of WORLD or specify the
WORLD parameter j any device that you attach can be detached by any other
user. Refer to the DETACHDEVICE command for more information.

When the device attachment is completed, the ATTACHDEVICE command
displays the following message:

<physical name>, attached as <logical name>, id = <user id>

where <physical name> and <logical n.ame> are as specified
ATTACHDEVICE command and <user id> is your user ID (or WORLD,
specify the WORLD parameter).

REPLACE Operator 3 8 UPDATE 3,

in the
if you

3/85

PATH
I

PATH

This conunand lists the pathname of a dabi file or directory.

INPUT PARAMETERS

inpath-list

ROOT

OUTPUT PARAMETERS

TO

REPLACE

X-941

The list of files whose pathnames you want to know.
The default inpath-list file directory is the
current working directory (:$:).

Specifies that the pathname should start from the
root directory of whatever device holds the file
or directory.

Writes the pathnames of the input files to the
specified output files. The specified output file
or files should not already exist. If they do,
PATH displays the following message:

<pathname> , ::1lready exists, OVERWRITE?

Enter Y, y, R, or r if you wish to write over the
existing file. I~nter an N (upper or lower case)
or a carriage return alone if you do not wish to
overwrite the existing file. In the latter case,
the PATH conunand will pass over the corresponding
input file, and will attempt to write the pathname
of t.he next input. file to the corresponding output
file.

I

I

If you specify multiple input files and a single I
output file, PATH appends the remaining input file
pathnames to the end of the output file.

Operator 3-81 UPDATE 3, 3/85

PATH

OVER

AFTER

outpath-list

DESCRIPTION

Writes the input file pathname over (replaces) the
existing output files on a one-for-one basis,
regardless of file size. If an output file does
not already exis't., the corresponding input file
pathname is wri,t.ten to a new file with the
corresponding output file name. If you specify
multiple input files and a single output file,
PATH appends the remaining input file pathnames to
the end of the out.put file.

Appends the input file pathname(s) to the current
data in the existing output file or files. If the
output file does not already exist, all listed
input file pathnames will be concatenated into a
new file with the listed output file name.

One or more pathna.mes for the output files.

This command is useful for finding where you may be located within the
file structure. The command gives thl~ following listing when it is
invoked with no input file listing:

--PATH
:sd:user/world

REPLACE Operator 3-82 UPDATE 3, 3/85

CONDITION CODE SUMMARY

Table A--l. iRMXJ. 86 Condition Codes (continued)

Hex. Mnemonic
Value

l":luals
~ELH

Meaning

Programmer Errors (continued)

8004H

8005H

8006H

8007H

8QJ08H

8009H

800AH

800BH

8QJ0CH

E$PARAM

EBADCALL

E$ARRAY$
BOUNDS

ENDP
STATUS

E$ILLEGAL$
OPCODE

* * * * *

* *

*

*

*

E$EMULATOR$-- *
TRAP

E$INTERRUPT$- *
TABLE$LIMIT

E$CPUXFER$
DATA$LIMIT

*

ESEGWRAP$-- *
AROUND

N Nucleus Reference Manual
B Basic I/O System Ref Manual
E Extended I/O Sys Ref Manual

A pSLrameter which is neither a token
nor an offset has an invalid value.

The I/O System code has been damaged,
probably due to a bug in an
application task. Recovery is not
possible.

Hardware or software has detected an
array overflow.

An 8087 Numeric Processor Extension
error has been detected; Operating
System extensions can return the
status of the 8087 to the exception
handler.

The iAPX 186 or 286 processor tried
to execute an invalid instruction.
(Software interrupt 6)

The iAPX 186 or 286 processor tried
to execute an ESC instruction with
the "emulator" bi t set in the
relocation register (iAPX 186) or the
machine status word (iAPX 286).

An iAPX 286 LIDT instruction changed
the interrupt table limit to a value
between 20H and 42H.

For an iAPX 286 processor, the
processor extension data transfer
exceeded the offset of 0FFFFH in a
segment.

For an iAPX 286 processor, either a
word operation attempted a segment
wraparound at offset 0FFFFH; or a
PUSH, CALL, or INT instruction
attempted to execute while SP=I.

L Loader Reference Manual
H Human Interface Reference Manual

REPLACE Operator A-9 UPDATE 3, 3/85

I

Hex.
Value

8017H

8021H

8022H

8040H

8041H

8042H

8060H

8080H

8081H

8085H

CONDITION CODE SUMMARY

Table A-1. iRMXJ. 86 Condition Codes (continued)

Mnemonic Manuals
N BEL H

Meaning

Programmer Errors (continued)

E$CHECK$EX- *
CEPTION

E$NOUSER

E$NOPREFIX

ENOTLOG$
NAME

ENOT
DEVICE

ENOTCON
NECTION

EJOBPARAM

E$PARSE$
TABLES

EJOB
TABLES

E$ERROR$
OUTPUT

'* '* '*

'* '* '*

'* '*

'*

'*

'* '*

'*

'*

'*

A Pascal task has exceeded the bounds
of a CASE statement.

No default user.

No default prefix.

Specified object is not a device
connection or file connection.

A token parameter referred to an
existing object that is not, but
should be, a device connection.

A token parameter referred to an
existing object that is not, but
should be, a file connection.

The maximum job-size specified is
less than the minimum job-size.

There is an error in the internal
parse tables.

An internal Human Interface table was
overwritten, causing it to contain an
invalid value.

The command invoked by C$SEND$COKMAND
includes a call to C$SEND$EO$RESPONSE,
but t~he command connection does not
permit C$SEND$EO$RESPONSE calls.

N Nucleus Reference Manual L Loader Reference Manual
B Basic I/O System Ref Manual
E Extended I/O Sys Ref Manual

H Human Interface Reference Manual

REPLACE Operator A-10 UPDATE 3, 3/85

!

• (10) ~ ____________________ P_R_E~_~_C_E~
This manual documents the lDisk Verifica1~ion Utility, a software tool that
runs as a Human Interface command, verifying and modifying the data
structures of iRMX 86 named and physical volumes. The manual describes
the utility invocation and contains detailed descriptions of all utility
commands. Also, bec!ause users must bE~ familiar with the structure of
iRMX 86 volumes to use the Disk Verification utility features
intelligently, the manual contains (1n appendix that describes the
structure of iRMX 86 named volumes.

READER LEVEL

This manual is intended for system programmers who have had experience in
examining actual volume information. It does not attempt to teach the
user the proper proc4~dures for examining and editing volume information.

NOTATIONAL CONVENTIONS

This manual uses the following conventions to illustrate syntax.

UPPERCASE

lowercase

underscore

<variable>

Upperease information must be entered exactly as
shown. You can, however, enter this information in
upperease or lm.,ercase.

Lowerease fields contain variable information. You
must enter the appropriate value or symbol for
variable fields.

In examples of dialog at the terminal, user input is
underscored to distinguish it from system output.

Whenever an error message or the output resulting
from a DISKVERIFY command contalns a variable part,
that variable part is enclosed in angle brackets < >.

Also, this manual uses the "railroad tracktt schematic to illustrate the
syntax of the disk verifi4~ation commands. This syntax consists of what
looks like an aeri-al view of a model railroad setup, with syntactic
elements scattered along the track. To interpret the command syntax, you
start at the left side of the schematic, follow the track through all the
syntactic elements you desire (sharp turns and backing up are not
allowed), and exit at the right side of the schematic. The syntactic
elements that you encounter, separabed by spaces, comprise a valid
command. For example, a command that consists of a command name and two
optional parameters would have the following schematic representation:

REPLACE Disk Verify iii. UPDATE 3, 3/85

• Co<) PREFACE (continued)

x-285

You could enter this command in any of the following forms:

COMMAND
COMMAND paraml
COMMAND param2
COMMAND paraml param2

The arrows indicate the possible flow through the tracks; they are
omitted in the remainder of the manual.

REPLACE Disk Verify iv UPDATE 3, 3/85

r--- CHAPTER 1
~OKING THE DISK VERIFICATION UTILITY

In the process of using an iRMX 86 application system, you may have
occasion to store data on secondary storage devices, sometimes large
amounts of data. Due to the nature! of secondary storage devices,
unforseen circumstances such as power i,rregularities or accidental reset
may destroy informat:lon on these devices:, causing them to be inaccessible
to your iRMX 86 system. In some eases t, the loss of only a small amount
of data can render an entire volume, such as a disk, useless.

In such eases, it is desirable to have a mechanism to examine and modify
the damaged volume. This mechanism would allow you to determine how much
of the information on the "olume was damaged. It would also allow you to
recreate file structures on the damaged volume so that you could salvage
some of the valid data. The iRMX 86 di,sk verification utility is a tool
that allows you to perform these functions.

The disk verification utility verifies the data structures of iRMX 86
physical and named volumes. It can also be used to reconstruct the free
fnodes map, the volume free space map, and the bad blocks map of the
volume and perform absolute editing.

You can use the disk verification utility in one of two ways:

o As a single command which verifies the structures of a volume and
returns control to the Human Int'~rface.

o As an interactive program which allows you to cheek and modify
information on t.he volume by entering individual disk
verification commands.

To take full advantage of the capabilities of the disk verification
utility, you must be familiar with the structure of iRMX 86 named
volumes. Appendix.~ contains detailed information about the volume
structure. If you are unfa.miliar with 1the iRMX 86 volume structure, you
should avoid using the individual disk 'verification commands. When used
carelessly, these commands I~an make your volumes unusable.

However, even if you know nothing abou,t iRMX 86 volume structures, you
can still use the utility as a single command to verify that the data
structures on an iRMX 86 volume are valiet.

REPLACE D:lsk Verify 1-1. UPDATE 3, 3/85

INVOKING THE DISK VE;RIFICATION UTILITY

INVOCATION

The format of the Human Interface co,mmand used to invoke the disk
verification utility is as follows:

X-939

where:

: logical-name:

TO

OVER

AFTER

outpath

REPLACE

Logical name of the secondary storage device
containing the volume.

Copies the output from the disk verification
utility to the specified file. If no preposition
is specified, TO :GO: is the default.

Copies the output from the disk verification
utility over the s])ecified file.

Appends the output from the disk verification
utility to the end of the specified file.

Pathname of the file to receive the output from the
disk verification utility. If you omit this
parameter and the: TOIOVERIAFTER preposition, the
utility copies the output to the console screen (TO
: CO:) . You cannot direct the output to a file on
the volume being verified. If you attempt this,
the utility returns an E$NOT_CONNECTION error
message.

Disk Verify l-:Z UPDATE 3, 3/85

DISK

VERIFY or V

NAMEDl or Nl

NAMED or N

ALL

NAMED2 or N2

REPLACE

INVOKING THE DISK VERIFICATION UTILITY

Displays the attributes of the volume being verified.

If you specify thi!~ parameter, the utility performs
the disk function and returns control to you at the
Human Interface level. You can then enter any Human
Interface command provided that the device verified
is not the system device. Refer to the description
of the DISK con:unand in Chapter 2 for more
information. Any parameter after this one is
ignored.

Performs a verification of the volume. This
verification function and the associated options are
described in detail in the "VERIFY Command" section
of Chapter 2. If you specify this parameter and
omit the options, the utility performs the NAMED
verification.

If you specify thi~~ parameter, the utility performs
the verification function and returns control to you
at the Human Interface level. You can then enter
any Human Interface: command if the device is not the
system device (:sd:).

If you omit this p1arameter and the DISK parameter,
the utility displays a header message and the
utility prompt (*). You can then enter any of the
disk verification commands listed in Chapter 2.

VERIFY' option that applies to named volumes only.
This option checks the fnodes of the volume to
ensure that they match the directories in terms of
file type and file heirarchy. This option also
checks the information in each fnode to ensure that
it is consistent. Refer to the description of the
VERIFY' command in Chapter 2 for more information.

VERIFY' option that performs both the NAMED! and
NAMED2 verification functions on a named volume. If
you omit the VERI1~Y option, NAMED is the default
option..

VERIFY option tha.t applies to both named and
physical volumes. For named volumes, this option
performs both the NAMED and PHYSICAL verification
functions. For physical volumes, this option
performs the PHYSICAL verification function.

VERIFY option that applies to named volumes only.
This option checks the allocation of fnodes on the
volume, checks the allocation of space on the
volume, and verifies that the fnodes point to the
correct locations on the volume. Refer to the
description of the VERIFY command in Chapter 2 for
more information.

Disk Verify l-:~ UPDATE 3, 3/85

I

I

PHYSICAL

LIST

OUTPUT

INVOKING THE DISK VI~RIFICATION UTILITY

VERIFY option that applies to both named and
physical volumes. This option reads all blocks on
the volume and checlcs for I/O errors.

VERIFY option that you can use with those VERIFY
parameters that, either explicitly or implicitly,
specify the NAMEDl parameter. When you use this
option, the file information generated by VERIFY is
displayed for every file on the volume, even if the
file contains no errors. Refer to the description
of the VERIFY command in Chapter 2 for more
information.

When you enter the DISKVERIFY command, the utility responds by displaying
the following line:

iRMX 86 DISK VERIFY UTILITY, Vx.x
Copyright <year> Intel Corporation

where Vx. x is the version number of the utility. If you specify the
VERIFY or V parameter in the DISKVERIFY command, the utility performs a
verification of the volume and copies the verification information to the
console (or to the file specified by the outpath parameter). The
verification information is the same as that produced by the VERIFY
utility command. Refer to the description of the VERIFY command in
Chapter 2 for a description of the verification output. After generating
the verification output, the utility returns control to the Human
Interface, which prompts you for more Human Interface commands. The
following is an example of such a DISKVERIFY command:

-DISKVERIFY :Fl: VERIFY NAKED2
iRMX 86 DISK VERIFY UTILITY, Vx.x
Copyright <year> Intel Corporation

DEVICE NAME = wfd0

tNAKED2t VERIFICATION
BIT MAPS O.K.

: DEVICE SIZE = 0003E900 BLOCK SIZE = 0080

However, if you omit the VERIFY (or V) parameter from the DISKVERIFY
command, the utility does not return control to the Human Interface.
Instead, it issues an asterisk (*) as a prompt and waits for you to enter
individual DISKVERIFY commands. The fc,llowing is an example of such a
DISKVERIFY command:

-DISKVERIFY :Fl:
iRMX 86 DISK VERIFY UTILITY, Vx.x
Copyright <year> Intel Corporation
'/(

REPLACE Disk Verify 1-1' UPDATE 3, 3/85

EXAMPLE (continued)

*SUBSTITUTEWORD<cr>

000~: A~B~ - 0@@~<cr>
0~~2: 8~70 - ~.
00~4: E511 - <cr>.
0~~6: FFFF - 3111<cr>
~~~8: FFFF - .<cr~ 

*SUBSTITUTEWORD 35<cr> 

~~35: 0~~~ - E6FF<cr> 
0~37: 0~0~ - E6AB<cr> 
0039: ~~0~ - .<cr~ 

* 

REPLACE 

SUBSTITUTEWORD 

Disk Verify 2-45 UPDATE 3, 3/85 



VERIFY 

VERIFY COMMAND 

This command checks the structures on the volume to determine whether the 
volume is properly formatted. You can abort this command by typing a 
CONTROL-C (press the CONTROL key, and ~lile holding it down, press the C 
key). The format of the VERIFY command l-s: 

INPUT PARAMETERS 

NAMEDl or Nl 

REPLACE 

Checks named volumos to ensure that the 
recorded in the fnodes is consistent 
the information obtained from the 
themselves. VERIFY performs the 
operations during BL NAMEDl verification: 

# X-940 

information 
and matches 
directories 

following 

• Checks fnode numbers in the directories to see 
if they correspond to allocated fnodes. 

• Checks the parent fnode numbers recorded in the 
fnodes to see if they match with the information 
recorded in the directories. 

• Checks the fnodE~s against the files to determine 
if the fnodes sp1ecify the proper file type. 

• Checks the POIN'TER(n) structures of long files 
to see if the indirect blocks accurately reflect 
the number of blocks used by the file. 

• Checks each fnode to see if the TOTAL SIZE, 
TOTAL BLKS, and THIS SIZE fields are consistent. 

• Checks the bad 'blocks file to see if the blocks 
in the file correspond to the blocks marked as 
"bad" on the volume. 

Disk Verify 2-46 UPDATE 3, 3/85 



STRUCTURE OF iRMX~ 86 NAMED VOLUMES 

If thei formatting program is unable to provide this 
information, it pla(~es an ASCII space in this field. 

• The next two bytes contain a two-digit ASCII 
sequence number which is incremented by the 
formatting program each time the formatting 
program changes in a way that affects the volume 
format. The R.elease 4 FORMAT Human Interface 
command places ,~he characters tt00" in this field. 

• The right-most three bytes of the field contain 
a three-digit ASCII number specifying the 
version of the Basic I/O System that was used in 
formatting the volume (for example, the 
characters "030" would indicate version 3.0). 
If the formatting program is unable to obtain 
this information, it places ASCII spaces in this 
field. 

DEVICE$SPECIAL(8) Reserved for special device-specific information. 
When no device-specific information exists, this 
field must contain zeros. If the device is a 
Winchester disk with an iSBC 215 controller or if 
the device is a disk with an iSBC 220 controller, 
the iRMX 86 Operating System imposes a structure on 
this field and SUPlplies the following information: 

SPECIAL 
CYLINDERS 
FIXED 
REMOVABLE 
SECTORS 
SECTOR_SIZE 
AL,TERNATES 

where: 

CYLINDERS 

FIXED 

REMOVABLE 

SECTORS 

ALTERNATES 

STRUCTURE ( 
WORD, 
BYTE, 
BYTE, 
BYTE, 
WORD, 
BYTE) ; 

Total number of cylinders on the 
drive. 

Number of heads on the fixed 
disk or Winchester disk. 

Number of heads on the removable 
disk cartridge. 

Number of sectors in a track. 

Sector size, in bytes. 

Number of alternate cylinders. 

The remainder of the Volume Label (byte~; 440 through 511) is reserved and 
must be set to Zero. 

REPLACE Disk Verify A-7 UPDATE 3, 3/85 

I 



STRUCTURE OF iRMX~ 86 NAMED VOLUMES 

INITIAL FILES 

Any mechanism that formats iRMX 86 named volumes must place seven files 
on the volume during the format process. These seven files are the fnode 
file, the volume label file, the volume free space map file, the free 
fnodes map file, the bad blocks file, the root directory, and the space 
accounting file. The first of these files, the fnode file, contains 
information about all of the files on the volume. The general structure 
of the fnode file is discussed first. Then all of the files are 
discussed in terms of their fnode entries: and their functions. 

FNODE FILE 

A data structure called a file descriptor node (or fnode) describes each 
file in a named file volume. All the :fnodes for the entire volume are 
grouped together in a file called the ;fnode file. When the 110 System 
accesses a file on a named volume, it E!xamines the iRMX 86 Volume Label 
(described in the previous section) tel determine the location of the 
fnode file, and then examines the appropriate fnode to determine the 
actual location of the file. 

When a volume is formatted, the fnodE! file contains seven allocated 
fnodes and any number of un-allocated fnodes. The original number of 
un-allocated fnodes depends on the :~ILES parameter of the FORMAT 
command. These allocated fnodes reprel3ent the fnode file, the volume 
label file, the volume free space map file, the free fnodes map file, the 
bad blocks file, the root directory, and the space accounting file. 
Later sections of this chapter describe:! these files. The size of the 
fnode file is determined by the number of fnodes that it contains. The 
number of fnodes in the fnode file also determines the number of files 
that can be created on the volume. The number of files is set when you 
format the storage medium. 

The structure of an individual fnode in a, named file volume is as follows: 

DECLARE 
FNODE 

REPLACE 

FLAGS 
TYPE 
GRAN 
OWNER 
CR$TIME 
ACCESS$TIME 
MOD$TIME 
TOTAL$SIZE 
TOTAL$BLKS 

POINTR(49J) 

THIS$SIZE 
RESERVED$A 
RESERVED$B 
ID$COUNT 

ACC(9) 
PARENT 
AUX(*) 

STRUCTURE ( 

Disk Verify A-8 

WORD, 
BYTE, 
BYTE, 
WORD, 
DWORD, 
DWORD, 
DWORD, 
DWORD, 
DWORD, 

BYTE, 

DWORD, 
WORD, 
WORD, 
WORD, 

BYTE, 
WORD, 
BYTE) ; 

UPDATE 3, 3/85 



iRHl.'" 86 Release 6.flJ Cbange Package: Update 3 

Change Pa~ges for: 

iRMX'" 86 Programmer's Reference Manual, Part I (146195-flJflJ1) 





MEMORY MANAGEMENT 

MOVEMENT OF MEMORY BETWEEN JOBS 

When a task tries te) create a segment (or an object of any other type), 
and the unallocated part e)f its job's pool is not sufficient to satisfy 
the request, the Nucleus tries to borrow more memory from the job's 
parent (and then, if necessary, from its parent's parent, and so on). 
Such borrowing increases the pool size of the borrowing job and is thus 
restricted by the pool maximum attribute of the borrowing job. 

When a job is deleted, the memory in its pool becomes unallocated, and 
access to it is given back to the parent job. The smallest contiguous 
piece of memory that. a job may borrow from its parent is a configuration 
parameter. The subject of configuration is covered in the iRHX 86 
CONFIGURATION GUIDE. 

Observe that, if a job has equal pool minimum and pool maximum 
attributes, then its pool is fixed a 1:. that conunon value. This means 
that, once it has t.his amount, the job may not borrow memory from its 
parent. 

MEMORY ALLOCATION 

The memory pool of a job consists of two classes of memory: allocated 
and unallocated. M.emory in a job is unallocated unless it has been 
requested, either explicitly or implicitly, by tasks in the job or unless 
it is on loan to a child job. A task's request for memory is explicit 
when it calls the CREATE$SEGMENT system call. A request is implicit when 
the task attempts to create any type of object other than a segment. 

The Nucleus borrows small amounts of memory from a job's pool each time a 
task in that job creates an object. This memory is needed for bookkeeping I 
purposes. When the object is deleted, the borrowed memory is returned to 
the pool. Appendix B list~1 these memory requirements. 

When a task no longer needs a segment, it can return the segment to the 
unallocated part of the job's pool by using the DELETE$SEGMENT system 
call. Figure 5-2 shows how memory "moves··. 

REPLACE Nucleus 5-3 UPDATE 3, 3/85 



( 

MEMORY MA~AGEMENT 

PARENT JOB'S POOL 

CREATE$- ~ DELETES JOB CREATE$-
JOB SEGMENT 

(BORROWING) 

, .. t 
CREATE$SEGMENT 

(NORMAL) 
~ 

UNALLOCATED ALLOCATED 
MEMORY DELETESSEGMENT MEMORY .., 

...... 

CHILD JOB'S POOL 

~DELETES- , 
JOB 

DEL ETESSEGMENT 
ORROWING) (B 

i\ 
I--- ) 

x-145 

Figure 5-2. Memory Movement Diagram 

SYSTEM CALLS FOR SEGMENTS 

The following system calls manipulate se~;ments: 

• CREATE$SEGMENT creates a segment and returns a token for it. 

• DELETE$SEGMENT --- returns a segment to the pool from which it 
was allocated. 

• GET$SIZE --- returns the size, in bytes, of a segment. 

• SET$POOL$MIN enables a task to change the pool minimum 
attribute of its job's pool. 

• GET$POOL$ATTRIB --- returns the following memory pool attributes 
of the calling task's job: pool minimum, pool maximum, initial 
size, number of allocated paragraphs, and number of available 
paragraphs. 

REPLACE Nucleus 5-4 UPDATE 3, 3/85 



ACCEPT$CONTROL 

CONDITION CODES 

E$OK 

E$BUSY 

E$CONTEXT 

E$EXIST 

No exceptional conditions. 

Another task curremtly has access to the protected 
data. 

The calling task currently has access to the region 
in question. 

The region parameter is not a token for an existing 
object. 

E$NOT$CONFIGURED This system call is' not part of the present 
configuration. 

E$TYPE 

REPLACE 

The region paramet.er is a token for an object that 
is not a region. 

Nucleus 12-9 UPDATE 3, 3/85 

I 



ALTER$COMPOSITE 

ALTER$COHPOSITE 

The ALTER$COHPOSITE system call replaces components of composite objects. 

Composite objects require the creation 
of extension objects. Jobs that create 
extension objects cannot be deleted 
until all the extension objects are 
deleted. Therefore you should avoid 
creating composite f)bjects in Human 
Interface applications. If a Human 
Interface application creates extension 
objects, the application cannot be 
deleted asynchronously (via a CTRL/c 
entered at a terminal). 

CALL RQ$ALTER$COHPOSITE(extension, composite, component$index, 
replacing$obj, except$ptr); 

INPUT PARAMETERS 

extension A TOKEN for the ex1:.ension type object corresponding 
to the composite object being altered. 

composite A TOKEN for the composite object being altered. 

component$index A WORD whose value specifies the location (starting 
at 1) in the component list of the component to be 
replaced. 

replacing$obj A TOKEN for the replacement component obj ect or 
zero, which represE!nts no obj ect. 

OUTPUT PARAMETER 

except$ptr 

REPLACE 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

Nucleus 12-1flJ UPDATE 3, 3/85 



max$tasks 

max$priority 

except$handler 

REPLACE 

CREATE$JOB 

A WORD that spec:tfies the maximum number of tasks 
that can exist simultaneously in the new job. 

• If not ~FFFFH, it contains the maximum number of 
tasks that can exist simultaneously in the new 
job. 

• If ~FFFFH, it indicates that there is no limit 
to the number of tasks that tasks in the new job 
can create. 

• It cannot be zero. A value of ~H will produce I 
the E$LIMIT exc!eption. 

A BYTE that sets an upper limit on the priority of 
the tasks created in the new job. 

• If not zero, it contains the maximum allowable 
priori ty of tasks in the new job. If 
max$priority e:~ceeds the maximum priority of the 
p;a.rent job, an E$LIMIT error occurs. 

• If zero, it indicates that the new job is to 
inherit the m;aximum priority attribute of its 
parent job. 

A POINTER to a structure of the following form: 

s~rRUCTURE ( 
EXCEPTION$f~DLER$PTR 
EXCEPTION$~lODE 

POINTER, 
BYTE); 

If exception$handler$ptr is not zero, then it is a 
POINTER to the first instruction of the new job's 
own exception hanc1ler. If exception$handler$ptr is 
zero~ the new job's exception handler is the system 
default exception handler. In both cases, the 
exception handler for the new task becomes the 
default exception handler for the job. The 
exception$mode indicates when control is to be 
passed to the exception handler. It is encoded as 
foll()ws: 

~ 
1 
2 
3 

When Control Passes 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

Nucleus 12-21 UPDATE 3, 3/85 



CREATESJOB 

job$flags 

task$priority 

start$address 

data$seg 

REPLACE 

A WORD containing information that the Nucleus 
needs to create and maintain the job. The bits 
(where bit 15 is the high-order bit) have the 
following meanings: 

bit meaning 

15-2 reserved. 

1 If 0, then whenever a task in the new job 
or any of its descendent jobs makes a 
Nucleus system call, the Nucleus will 
check the parameters for validity. 

If 1, the Nucleus will not check the 
parameters of Nucleus system calls made 
by tasks in the new job. However, if any 
ancestor of the new job has been created 
with thi:~ bit set to 0, there will be 
parameter checking for the new job. 

o reserved. 

A BYTE that controls the priority of the new job's 
initial task. 

• If not zero, it contains the priority of the new 
job's initial task. If the task$priority 
parameter is greater (numerically smaller) than 
the new job's maximum priority attribute, an 
E$PARAM error occurs. 

• If zero, it indicates that the new job's initial 
task is to ha~'e a priori ty equal to the new 
job's maximum priority attribute. 

A POINTER to the first instruction of the new job's 
initial task (the t.ask created with the job). 

A WORD or SELEC~~OR that specifies which data 
segment the new j o'b' s initial task is to use. 

• If not zero, it contains the base address of the 
data segment of the new job's initial task. 

• If zero, it indicates that the new job's initial 
task assigns ib3 own data segment. Refer to the 
iRMX 86 CONFIGUliATION GUIDE for more information 
about data segmE!nt allocation. 

Nucleus 12-22 UPDATE 3, 3/85 



CONDITION CODES 

E$OK 

E$LIMIT 

E$MEM 

E$NOT$CON
FIGURED 

E$PARAM 

REPLACE 

CREATE$SEMAPHORE 

No exceptional conditions. 

The calling task's job has already reached its 
object limit. 

The memory available to the calling task's job is 
not sufficient to create a semaphore. 

This system call is not part of the present 
configuration. 

At least one of the following is true: 

• The initial$value parameter is larger than the 
maximum$value parameter. 

• The maximum$value parameter is 0. 

Nucleus 12-37 UPDATE 3, 3/85 



CREATE$TASK 

CREATE$TASK creates a task. 

task = RQ$CREATE$TASK (priority, start$address, data$seg, stack$ptr, 
stack$size, task$flags, except$ptr); 

INPUT PARAMETERS 

priority 

start$address 

data$seg 

stack$ptr 

REPLACE 

A BYTE that specifies the priority of the new task. 

• If not zero, it contains the priority of the new 
task. The priority parameter must not exceed 
the maximum alJLowable priority of the calling 
task's job. If it does, an E$PARAM error occurs. 

• If zero, it indicates that the new task's 
priority is to equal the maximum allowable 
priority of the calling task's job. 

A POINTER to the first instruction of the new task. 

A WORD or SELECTOR that specifies the new task's 
data segment. 

• If not zero, thle WORD contains the base address 
of the new task's data segment. 

• If zero, the WORD indicates that the new task 
assigns its own data segment. Refer to the iRMX 
86 CONFIGURATION GUIDE for further information 
on data segment allocation. 

A POINTER that spec:ifies the location of the stack 
for the new task. 

• If the base portion is not zero, the Nucleus 
uses the sum elf the offset portion and the 
stacksize parame,ter (declared during the call to 
CREATE$TASK) as the value of the SP register 
(the stackpointer). 

• If the base portion is zero, the Nucleus 
allocates a stal!k to the new task. The length 
of the stack is equal to the value of the 
stack$size parameter. 

Nucleus 12-38 UPDATE 3, 3/85 



stack$size 

task$flags 

OUTPUT PARAMETERS 

task 

except$ptr 

REPLACE 

CREATE$TASK 

A WORD containing the size, in bytes, of the new 
task's stack segmll~nt. The stack size must be at 
least. 16 bytes. The Nucleus increases specified 
values that are not multiples of 16 up to the next 
higher multiple of 16. 

The stack size should be at least 3f6f6 bytes if the 
new task is goinjg to make Nucleus system calls. 
Refer to the iRMX 86 PROGRAMMING TECHNIQUES manual 
for further inform:ation on assigning stack sizes. 

If you set the stack$ptr parameter to indicate a 
user-provided stack, setting the stack$size 
parameter causes the Nucleus to fill the 
user-provided stack with special characters which 
the iRMX 86 D4~bugger uses to detect stack 
overflow. Because of this situation, never specify 
a stack$size value that is larger than size of the 
user-provided stack. 

A WORD containing information that the Nucleus 
needs to create sLnd maintain the task. The bits 
(where bit 15 is the high-order bit) have the 
following meanings: 

15-1 

Heanil!1S, 

Reserved bits which should be set to 
zero 

If one, the task contains 
floating-point instructions. These 
instructions require the NPX component 
for e:x:ecution 

If z.~ro, the task does not contain 
floating-point instructions 

A TOKEN to which t.he Operating System will return a 
token for the new task. 

A POINTER to a WOJiD to which the iRMX 86 Operating 
Systelm will return the condition code generated by 
this system call. 

Nucleus 12-39 UPDATE 3, 3/85 



CREATE$TASK 

DESCRIPTION 

The CREATE$TASK system call creates a task and returns a token for it. 
The new task counts as one against the object and task limits of the 
calling task's job. Attributes of thc~ new task are initialized upon 
creation as follows: 

• priority: as specified in the call. 

• execution state: ready. 

• suspension depth: ~. 

• containing job: the job which contains the calling task. 

• exception handler: the exception handler of the containing job. 

• exception mode: the exception mode of the containing job. 

EXAMPLE 

/***************************************~:******************************** 
* This example illustrates how the CREATE$TASK system call can be * 
* used. * 
***************************************~:********************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); 

TASK_CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 

SAMPLE_PROCEDURE: 
PROCEDURE; 
start$address = @TASK_CODE; 
data$seg = (6; 
stack$pointer = (6; 
task$flags = (6; 

o 

/* Declares all system calls */ 

LITERAL.LY 'SELECTOR'; 
/* if your PL/M compiler does not 

supp,ort this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERAL,LY '66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack 

size is 512 bytes */ 
WORD; 
WORD; 

/* first instruction of the new task */ 
/* task sets up own data segment */ 
/* automatic stack allocation */ 
/* designates no floating-point 

instructions */ 

o Typical PL/M-86 Statements 
o 

REPLACE Nucleus 12-4(6 UPDATE 3, 3/85 



DELETE$COMPOSITE 

EXAMPLE 

See the example in sec.tion UThe Initialization Part" of Chapter 11. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$MEM 

No exc~eptional conditions. 

At least one of the following is true: 

• The extension type does not match the 
composite parameter. 

• One or both of the extension or composite 
parameters is not a token for an existing 
object. 

• One or both of the extension or composite 
parameters is a token for an object that is 
not of the cOlrrect type. 

The memory available to the calling task' s job is 
not sufficient to c.omplete this operation. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

REPLACE Nucleus 12-43 UPDATE 3, 3/85 



DELETE$EXTENSION 

DELETE$EXTENSION 

The DELETE$EXTENSION system call deletes an extension obj ect and all 
composites of that type. 

Jobs that create extension obj ects 
cannot be deleted until the extension 
obj ect is deleted. Therefore, you 
should avoid creatinl~ extension obj ects 
in Human Interface a.pplications. If a 
Human Interface application creates 
extension objects, the application 
cannot be deleted as~mchronously (via a 
CTRL/c entered at a terminal). 

CALL RQ$DELETE$EXTENSION(extension, (except$ptr); 

INPUT PARAMETER 

extension 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the extension object to be deleted. 

A POINTER to a WOF~D to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The DELETE$EXTENSION system call deletes the specified extension obj ect 
type and all composite objects of that type. This makes the 
corresponding type code available for reuse. 

If a deletion mailbox was specified when the extension type was created, 
then all of the composite objects created by the extension type to be 
deleted are sent to that deletion mailbclx. In this case, this call will 
not be completed until all of the composite objects have been deleted. 

If the extension type has no deletion mailbox, the composite objects 
created by the extension type to be deleted are deleted without informing 
the type manager. 

REPLACE Nucleus 12-44 UPDATE 3, 3/85 



DELETE$TASK 

o 
o Typicnl PL/M-86 statements 
o 

1************************************************************************ 
* The calling task has created a task (whose code is labeled * 
* TASK_CODE) which is not an interrupt task. When this task is no * 
* longer needed, it may be deleted by ,any task that knows its token. * 
***************************************'*********************************1 

CALL RQ$DELETE$TASK (task$token, 
@status); 

o 
o Typical PL/H-86 Statement;s 
o 

END SAMPLE_PROCEDURE j; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$NOT$CON
FIGURED 

E$TYPE 

REPLACE 

No exceptional conditions. 

The task parameter is a token for an interrupt task. 

One of the following conditions has occurred: 

• The task parameter is not a token for an 
existing object. 

• The task paramt~ter represents a task whose job 
is being deleted. 

• More than one task is trying to delete a task 
which is in a rtegion. 

This system call i:s not part of the present 
configuration. 

The task parameter is a token for an obj ect which 
is not a task. 

Nucleus 12-59 UPDATE 3, 3/85 



DISABLE 

DISABLE disables an interrupt level. 

CALL RQ$DISABLE (level, except$ptr); 

INPUT PARAMETER 

level 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD that specifies an interrupt level that is 
encoded as follows (bit 15 is the high-order bit): 

15-7 (6 

6-4 First digit of the interrupt level «(6-7) 

3 If one!, the level is a master level and 
bi ts 6--4 specify the entire level number 

If zero, the level is a slave level and 
bits 2--(6 specify the second digit 

2-(6 Second digit of the interrupt level 
«(6-7), if bit 3 is zero 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. All exceptional conditions must 
be processed in-line. Control does not pass to an 
exception handler. 

The DISABLE system call disables the sp'ecified interrupt level. It has 
no effect on other levels. To be disabled, a level must have an 
interrupt handler assigned to it. Otherwise, the Nucleus returns an 
exception code. 

You must not disable the level reserved for the system clock. You 
determine this level during system configuration (refer to the iRMX 86 
CONFIGURATION GUIDE). 

REPLACE Nucleus 12-6(6 UPDATE 3, 3/85 



FORCE$DELETE 

DESCRIPTION 

The FORCE$DELETE system call deletes objects whose disabling depths are 
zero or one. If an object has a deleltion depth of two or more, the 
calling task is put to sleep until thel deletion depth is decreased to 
one. At that time, the object is deleted and the task is awakened. If I 
the wrong extension type is specified, JrORCE$DELETE issues and E$CONTEXT 
error and returns without dE~leting the composite. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$MEM 

No exc~eptional conditions. 

The wrong extension type was used in the extension 
paramc~ter of the FORCE$DELETE system call. 

One or both of the object or extension parameters 
is not a token for an existing object. 

The memory available to the calling task's job is 
not sufficient to complete this call. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$TYPE 

REPLACE 

The extension parameter is a token for an object 
that :is not an extension object. 

Nucleus 12-81 UPDATE 3, 

I 

3/85 



GET$EXCEPTION$HANDLER 

GET$EXCEPTION$HANDLER returns information about the calling task's 
exception handler. 

CALL RQ$GET$EXCEPTION$HANDLER (exception$info$ptr, except$ptr); 

OUTPUT PARAMETERS 

exception$info$ptr A POINTER to a structure of the following form: 

except$ptr 

DESCRIPTION 

STRUCTURE ( 
EXCEPTION$~NDLER$OFFSET 
EXCEPTION$~NDLER$BASE 
EXCEPTION$MODE 

where, after the c,all, 

WORD, 
WORD, 
BYTE) ; 

• exception$handler$offset contains the offset of 
the first instruction of the exception handler. 

• exception$handler$base contains a base for the 
segment containing the first instruction of the 
exception hand,ler. If exception$handler$base 
and exception$handler$offset are both zero, the 
calling task's exception handler is the system 
default exception handler. 

• exception$mode contains an encoded indication 
of the calling. task's current exception mode. 
The value is interpreted as follows: 

f6 
1 
2 
3 

When to Pass Control 
to Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The GET$EXCEPTION$HANDLER system call returns both the address of the 
calling task' s exception handler and the current value of the task' s 
exception mode. 

REPLACE Nucleus 12-82 UPDATE 3, 3/85 



GET$TYPE 

GET$TYPE 

GET$TYPE returns the jencoded type of an object. 

type$code = RQ$GET$TYPE (object, excelpt$ptr); 

INPUT PARAMETER 

object 

OUTPUT PARAMETERS 

type$code 

except$ptr 

DESCRIPTION 

A TOKEN for an obje~ct. 

A WORD which contains the encoded type of the 
speci:fied object. The types for iRMX 86 objects 
are encoded as follows: 

1 
2 
3 
4 
5 
6 
7 

l(6(6H 
1(61H 
3(6(6H 
3(61H 

8(6(6(6H - (6FFFFH 

job 
task 
mailbox 
semaphore 
region 
segment 
extension 
composite (user) 
composite (connection) 
composite (I/O job) 
composite (logical device) 
user-created composites 

Users and connecti.ons are described in the iRMX 86 
BASIC I/O SYSTEM REFERENCE MANUAL. I/O jobs and 
logical devices are described in the iRMX 86 
EXTENDED I/O SYSTEM REFERENCE MANUAL. 

A POINTER to a WORD to which the condition code for 
the call is returned. 

The GET$TYPE system call returns the type code for an object. 

REPLACE Nucleus 12-95 UPDATE 3, 3/85 

I 



ut: 1:Ii I Y t't: 

EXAMPLE 

1************************************************************************ 
* This example illustrates how the GET:~TYPE system call can be used * 
* to return the encoded type of an objoct. * 
***************************************)~********************************1 

$INCLUDE(:Fl:SAMPLE.EXT); I)~ Declares all system calls *1 

DECLARE TOKEN LITERALLY 'SELECTOR'; 
I)~ if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD *1 

DECLARE type$code 
DECLARE mbx$token 
DECLARE ca1ling$tasks$job 
DECLARE wait$forever 
DECLARE object$token 
DECLARE response 
DECLARE status 

SAMPLE_PROCEDURE: 

PROCEDURE; 

• 

WORD; 
TOKEN; 
LITERALLY '0'; 
LITERALLY '0FFFFH'; 
TOKEN; 
TOKEN; 
WORD; 

• Typical PL/M-86 Statement~1 

• 
1***************************************1,******************************** 
* In order to invoke the GET$TYPE systE~m call, the calling task must * 
* have the token for an object. In this example, the calling task * 
* invokes the LOOKUP$OBJECT system call and then the RECEIVE$MESSAGE * 
* system call to receive the token for an object of unknown type * 
* (object$token). * 
***************************************~,********************************1 

mbx$token = RQ$LOOKUP$OBJECT 

• 

(calling$tasks$job, 
@ ( 3 , 'MBX' ) , 
W;EL i t$ forever, 
@s:tatus) ; 

• Typical PL/M-86 Statements: 

• 
I*~*************************************~:******************************** 
* The RECEIVE$MESSAGE system call returns object$token to the calling * 
* task after the calling task invoked l.OOKUP$OBJECT to receive the * 
* token for the mailbox named 'MBX'. 'MBX' had been predesignated * 
* as the mailbox another task would USE! to send an obj ect. * 
***************************************~:********************************1 

object$token = RQ$RECEIVE$MESSAGE (mbx$token, 
wSLit$forever, 
@t'esponse, 
@s:tatus) ; 

REPLACE Nucleus 12-96 UPDATE 3, 3/85 



interrupt$handler 

SET$INTERRUPT 

• if unequal to zero, indicates that the calling 
task is to be the interrupt task that will be 
invoked by the interrupt handler being set. The 
priority of the calling task is adjusted by the 
Nucleus according to the interrupt level being I 
serviced. Table 8-4 lists the levels and the 
corresponding interrupt task priorities. Be 
certain that priorities set in this manner do 
not violate the max$priority attribute of the 
containing job. 

The value of this parameter indicates the number of 
outstanding S IGNAL$ INTERRUPT requests that can 
exist. When this limit is reached, the associated 
interrupt level is disabled. The maximum value for 
this parameter is 255 decimal. Chapter 8 describes 
this feature in more detail. 

A POINTER to the first instruction of the interrupt 
handler. To obtain the proper start address for 
interrupt handlers written in PL/M-86, place the 
following instruction before the call to 
SET$INTERRUPT: 

interrupt$handler 
= interrupt$ptr (inter); 

where interrupt$ptr is a PL/M-86 
procedure and inter is the name 
interrupt handl:ing procedure. 

built-in 
of your 

interrupt$handler$ds A WORD which specifies the interrupt handler's data 
segment. 

REPLACE 

• If not zero, c.ontains the base address of the 
interrupt hand.ler's data segment. See the 
description of ENTER$INTERRUPT in this chapter 
for information concerning the significance of 
this parameter. 

It is often de:sirable for an interrupt handler 
to pass informiation to the interrupt task that 
it calls. The following PL/M-86 statements, when 
included in the interrupt task's code (with the 
first statement listed here being the first 
statement in the task's code), will extract the 
DS register value used by the interrupt task and 
ma,ke it available to the interrupt handler, 
which in turn can access it by calling 
ENTER$INTERRUPT: 

Nucleus 12-137 UPDATE 3, 3/85 



SET$INTERRUPT 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

DECLARE BEGIN WORD; 1* A DUMMY VARIABLE *1 

DECLARE DATA.$PTR POINTER; 

DECLARE DATA.$ADDRESS STRUCTURE ( 

OFFSET WORD, 

BASE WORD) AT (@DATA$PTR); 1* THIS MAKES 
ACCESSIBLE THE TWO HALVES OF THE 
POINTER DATA$PTR *1 

DATA$PTR ; @BEGIN; 1* PUTS THE WHOLE 
ADDRESS OF THE DATA SEGMENT INTO 
DATA$PTR AND DATA$ADDRESS *1 

DS$BASE ; DA.TA$ADDRESS.BASE; 

CALL RQ$SET$INTERRUPT ( ... ,DS$BASE); 

• if zero, indic8ltes that the interrupt handler 
will load its own data segment and may not 
invoke ENTER$INTERRUPT. 

A POINTER to a WORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

The SET$INTERRUPT system call is used to inform the Nucleus that the 
specified interrupt handler is to servicc~ interrupts which come in at the 
specified level. In a call to SET$INTERRUPT, a task must indicate 
whether the interrupt handler will invoke an interrupt task and whether 
the interrupt handler has its own data segment. If the handler is to 
invoke an interrupt task, the call to SET$INTERRUPT also specifies the 
number of outstanding SIGNAL$INTERRUPT rc~quests that the handler can make 
before the associated interrupt level is disabled. This number generally 
corresponds to the number of buffers used by the handler and interrupt 
task. Refer to Chapter 8 for further information. 

If there is to be an interrupt task, the calling task is that interrupt 
task. If there is no interrupt task, SET$INTERRUPT also enables the 
specified level, which must be disabled at the time of the call. 

REPLACE Nucleus 12-138 UPDATE 3, 3/85 



A$ATTACH$FILE 

A$ATTACH$FILE 

A$ATTACH$FILE creates a connection to an existing file. 

CALL RQ$A$ATTACH$FILE(user, prefix, subpath$ptr, resp$mbox, 
except$ptr) ; 

INPUT PARAMETERS 

user 

prefix 

subpath$ptr 

OUTPUT PARAMETERS 

resp$mbox 

except$ptr 

REPLACE 

A TOKEN for the user object to be inspected in any 
access checking that takes place. A zero 
specifies the default user for the calling task's 
job. This parameter is ignored when attaching 
physical or strleam files. Access checking does 
occur for named files. 

A TOKEN for the connection object to be used as 
the path prefix. A zero specifies the default 
prefix for the calling task's job. 

A POINTER to a STRING containing the subpath of 
the file to be attached. A null string indicates 
that the new connection is to the file designated 
by the prefix. The new connection will not be 
open, regardless of the open mode of the prefix. 
(This parameter is ignored for physical and stream 
filles. ) 

A TOKEN for the mailbox into which the Basic I/O 
System places a token for the result object of the 
call. This result object is a new file connection 
if the call succeeds or an I/O result segment 
otherwise (see Appendix C). To ascertain the type 
of obj ect returned, use the Nucleus system call 
GET$TYPE. 

If the object rE~ceived is an I/O result segment, 
the calling task should call DELETE$SEGMENT to 
delete the segment after examining it. 

A POINTER to a WORD where the sequential condition 
code will be returned. 

BIOS 8-11 UPDATE 3, 3/85 

I 



A$ATTACH$FILE 

DESCRIPTION 

A$ATTACH$FILE creates a connection to an existing file. Once the 
connection is established, it remains in effect until the connection 
object is deleted, or until the creatinJ~ job is deleted. Once attached, 
the file may be opened, closed, read, written, etc., as many times as 
desired. A$ATTACH$FILE has no effect on the owner 10 or the access list 
for the file. 

CONDITION CODES 

A$ATTACH$FILE returns condition codes at two different times. The code 
returned to the calling task immediately after invocation of the system 
call is considered a sequential condition code. A code returned as a 
result of asynchronous processing is a concurrent condition code. A 
complete explanation of sequential and concurrent parts of system calls 
is in Chapter 7 of this manual. 

The following list is divided into two parts -- one for sequential codes, 
and one for concurrent codes. 

Sequential Condition Codes 

The Basic 1/0 System can return the following condition codes to the word 
specified by the except$ptr parameter of this system call. 

E$OK 

E$DEV$OFF$LINE 

E$EXIST 

REPLACE 

No exceptional con~li tions. 

The prefix parameb~r in this system call refers to 
a logical connectil)n. One of the following is true 
of the device assoc.iated with the connection: 

• It has been ;physically attached but is now 
off-line. 

• It has never been physically attached. (See 
Appendix E for a more detailed explanation.) 

One of the following is true: 

• One or more of the following parameters is not 
a token for an existing object: 

The user parameter 

The prefix parameter 

The resp$mbox parameter 

• The prefix conn.ection is being deleted. 

BIOS 8-12 UPDATE 3, 3/85 



E$LIMIT 

E$MEM 

E$NO$PREFIX 

E$NO$USER 

E$NOT$CONFIGURED 

REPLACE 

A$ATTACH$FILE 

Proe,essing this call would cause one or more of 
these limits to be exceeded: 

• The object limit for this job. 

• The number of 1/0 operations that can be 
outstanding at one time for the user obj ect 
specified in the call (255 decimal). 

• The number of 1/0 operations that can be 
outstanding at one time for the caller's job 
(255 decimal). 

The memory available to the calling task's job is 
not sufficient to complete the call. 

The calling ta~)k specified a 
(prefix argument equals zero), 
prefix can be found because 
following reasons: 

default 
but no 

of one 

prefix 
default 
of the 

• When this jot) was created, a size of zero was 
specified fo[, its object directory, so the job 
cannot catalog a default prefix. 

• The job's directory can have entries but a 
default prefix is not cataloged there. 

If the user parameter in this call is not zero, 
the parameter is not a token for a user object. 

If the user parameter is zero, it specifies a 
default user. But no default user can be found 
because of one of the following reasons: 

• When this job was created, a size of zero was 
specified for its object directory, so the job 
cannot catalog a default user. 

• The job's dlrectory can have entries but a 
default user is not cataloged there. 

• The object that is cataloged with the name 
R?IOUSER is not a user object. The name 
R?IOUSER should be treated as a reserved word. 

This system call is not part of the present 
configuration. 

BIOS 8-13 UPDATE 3, 3/85 

I 



A$ATTACH$FILE 

E$TYPE One of more of the following conditions caused 
this exception: 

• The prefix parameter is a token for an object 
that is not of the correct type. It must be 
either a connection object or a logical device 
object. (Log,ical device objects are created 
by the Extendc~d 1/0 System.) 

• The resp$mbox parameter in the call is a token 
for an object that is not a mailbox. 

Concurrent Condition Codes 

The Basic 1/0 System can return the foJLlowing condition codes in an 1/0 
result segment at the mailbox specified by resp$mbox. After examining 
the segment, you should delete it. 

E$OK 

E$DEV$DETATCHING 

E$FNEXIST 

E$FTYPE 

E$INVALID$FNODE 

E$IO 

E$IO$MEM 

REPLACE 

No exceptional conditions. 

The file specifie,d is on a device that the system 
is de:taching. 

A file in the spc~cified path, or the target file 
itself t does not E~xist or is marked for deletion. 

The string pointecl to by the subpath$ptr parameter 
contains a filena,me that should be the name of a 
directory, but is not. (Except for the last file, 
each file in a path must be a named directory.) 

The fnode for the specified file is invalid. The 
file cannot be accessed; you should delete it. 

An 1/0 error occurred, which might have prevented 
the operation from completing. Examine the 
unit$status field of the 1/0 result segment for 
more information. 

The memory availa'ble to the Basic 1/0 System job 
is not sufficient to complete the call. 

BIOS 8-14 UPDATE 3, 3/85 



A$CHANGE$ACCESS 

A$CHANGE$ACCESS 

A$CHANGE$ACCESS chanl~es the access rights to a named data or directory 
file. 

CALL RQ$A$CHANGE$ACCESS(user, prefix. subpath$ptr, id, access, 
resp$mbox, e~(cept$ptr); 

INPUT PARAMETERS 

user 

prefix 

subpath$ptr 

id 

access 

REPLACE 

A TOKEN for the user object to be inspected in 
access checking. A value of zero specifies the 
default user for 1the calling task's job. 

A TOKEN for the connection object to be used as 
the path prefix. A zero specifies the default 
prefix for the calling task's job. 

A POINTER to a STRING giving the subpath of the 
file whose access is to be changed. A null string 
indicates that the prefix itself designates the 
desired file. 

A WORD containing the 10 number of the user whose 
access is to be changed. If this 10 does not 
already exist in the IO-access mask list, it is 
added. This list may contain a total of three 
IO-access pairs. 

A BYTE mask giving the new access rights for the 
10. For each bit, a one grants access, and a zero 
denies it. (Bit (6 is the low-order bit.) For a 
named data file, 1the possible bit settings are: 

BIOS 8-15 

Bit 
(6 

1 
2 
3 

4-7 

Meaning 
Delete 
Read 
Append 
Update 
Reserved (set to (6) 

UPDATE 3, 3/85 



A$CHANGESACCESS 

I 

OUTPUT PARAMETERS 

resp$mbox 

except$ptr 

DESCRIPTION 

For a named directory file, the possible bit 
settings are: 

Bit Meaning 
0 Delete 
1 Display 
2 Add Entry 
3 Change Entry 

4-7 Reserved (set to 0) 

If zero is specified for the access parameter 
(that is, no acc4~ss), the ID specified in the id 
parameter is deleted from the file's ID-access 
list. 

A TOKEN for the mailbox that receives an I/O 
result segment indicating the result of the call 
(see Appendix C). A value of zero means that you 
do not want to rec~eive an I/O result segment. 

If it receives an. I/O result segment, the calling 
task should call. DELETE$SEGMENT to delete the 
segment after examining it. 

A POINTER to a WORD where the sequential condition 
code will be retutned. 

A.$CHANGE$ACCESS system call applies to named files only. This call has 
no effect on existing connections to the file. It is called to change 
the access rights to a named data or directory file. Depending on the 
contents of the "id" and "access" par;imeters specified in the system 
call, users may be added to or deleted from the file's ID-access mask 
list, or the access privileges granted to a particular user may be 
changed. 

REPLACE 

NOTE 

The caller must be the owner of the 
file or must have change entry access 
to the file's parent directory. 
However, if the owner is t'WORLD", that 
is, 0FFFFH, then any task may change 
the access mask of the file. 

BIOS 8-16 UPDATE 3, 3/85 



granularity 

size 

must$create 

OUTPUT PARAMETERS 

resp$mbox 

except$ptr 

REPLACE 

A$CREATE$FILE 

A WORD giving the granularity of the file being 
created. This is the size (in bytes) of each 
logi,~al block to be allocated to the file. The 
value specified in this parameter is rounded up, 
if necessary, to a multiple of the volume 
granularity. Note that a contiguous file can 
become noncontiguous when it is extended. 

The granularity parameter can have the following 
values: 

Same as volume granularity 

FFFF The file must be contiguous 

Other Number of bytes per allocation 

When a contiguous file is extended, 
allocated in volume-granularity units. 
is specified, a multiple of 1024 
recommended. 

space is 
If ttOthertt 

bytes is 

This parameter is ignored for physical and stream 
files. 

A DlIllORD giving the number of bytes initially 
reserved for the file. For stream files, this 
value must equal zero. For physical files, this 
parameter is ignored. 

A BYTE whose value (0FFH for TRUE or 0 for FALSE) 
determines the handling of input paths designating 
an existing file (see following DESCRIPTION). 
This parameter applies only to named files. 

A TOKEN for the mailbox that receives the result 
object of this call. This result object is a new 
file connection l.f the call succeeded or an I/O 
result segment otherwise (see Appendix C). To 
ascertain the type of obj ect returned, use the 
Nucleus system call GET$TYPE. 

If the object re(~eived is an I/O result segment, 
the calling task. should call DEI .. ETE$SEGMENT to 
delete the segment after examining it. 

A POINTER to a WORD where the sequential condition 
code will be returned. 

BIOS 8-29 UPDATE 3, 3/85 



A$CREATE$FILE 

DESCRIPTION 

The A$CREATE$FILE system call creates a, physical, stream, or named data 
file and returns a token for the new file connection. If a named file 
designated by the prefix and subpath parameters already exists, one of 
the following occurs: 

• Error: If the ttmust$creatett pa,rameter is TRUE «(6FFH), an error 
condition code (E$FEXIST) is returned. 

• Truncate File: If the "must$creatett parameter is FALSE «(6) and 
the path designates an existing; data file, a new connection to 
that file is returned (that. is, A$CREATE$FILE acts like 
A$ATTACH$FILE) . In this case, it,he file is truncated or expanded 
according to the "sizett parameter, so data in the file might be 
lost. As in the case of A$ATTACH$FILE, the file t s owner ID and 
access list are unchanged. 

• Temporary File Created: If the ttmust$create" parameter is FALSE 
«(6), and the path designates an existing directory file or 
device, an unnamed temporary file is created on the corresponding 
device. This file is delete~d automatically when the last 
connection to it is deleted. Because this file is created 
without a path, it can be access4~d only through a connection. 

Any task can create a tempol~ary file by referring to any 
directory. This is true because temporary files are not listed 
as ordinary entries in the directory, so no add-entry access is 
required. 

Many of the parameters specified in thE~ A$CREATE$FILE call do not apply 
to physical and stream files. In these c:ases, the parameter is ignored. 

CONDITION CODES 

NOTE 

The caller must have add-entry access 
to the parent direc1tory of the new 
named file. 

A$CREATE$FILE returns condition codes at two different times. The code 
returned to the calling task immediate1y after invocation of the system 
call is considered a sequential condition code. A code returned as a 
result of asynchronous processing is a concurrent exception code. A 
complete explanation of sequential and concurrent parts of system calls is 
in Chapter 7 of this manual. 

The following list is divided into two 'Parts -- one for sequential codes, 
and one for concurrent codes. 

REPLACE BIOS 8-39J UPDATE 3, 3/85 



A$SPECIAL 

A$SPECIAL 

A$SPECIAL enables tasks to perform a variety of special functions. 

CALL RQ$A$SPECIAL(connection, spec$func, ioparm$ptr, resp$mbox, 
except$ptr) ; 

INPUT PARAMETERS 

connection 

spec$func 

ioparm$ptr 

REPLACE 

A TOKEN for a connection to the file or device for 
which the special function is to be performed. 

An encoded WORD that, with the connection argument, 
specifies the function being requested. The 
functions are described under the heading 
DESCRIPTION and arE~ summarized as follows: 

File driver Spec$func 
for connection value Function 
Physical 0 Format track 
Stream 0 Query 
Stream 1 Satisfy 
Physical or NamE~d 2 Notify 
Physical 3 Get disk/tape 

data 
Physical 4 Get terminal data 
Physical 5 Set terminal data 
Physical 6 Set signal 
Physical 7 Rewind tape 
Physical 8 Read tape file 

mark 
Physical 9 Write tape file 

mark 
Physical 10 Retention tape 

11-32767 Reserved for 
other Intel 
products 

A POINTER to a pnrameter block. The contents of 
the parameter blo(~k depends upon the requirements 
of the special function being requested and are 
described fully under the heading DESCRIPTION. 
Enter a zero value if the special function you 
request does not rE~quire a parameter block. 

BIOS 8-87 UPDATE 3, 3/85 

I 



A$SPECIAL 

OUTPUT PARAMETERS 

resp$mbox 

except$ptr 

DESCRIPTION 

A TOKEN for the mailbox that receives an 1/0 result 
segment indicatinl~ the result of the call (see 
Appendix C). A value of zero means that you do not 
want to receive an 1/0 result segment. 

If it receives an 1/0 result segment, the calling 
task should call DELETE$SEGMENT to delete the 
segment. 

A POINTER to a WORD where the sequential condition 
code will be returned. 

The A$SPECIAL system call enables tasks to perform a variety of special 
functions. 

Tasks define their requests by means of the spec$func and ioparm$ptr 
parameters. Spec$func is a code which, when combined with the file 
driver associated with the connection argument, specifies the function 
the Basic 1/0 System is to perform. When more information is needed to 
define a request, ioparm$ptr points to a parameter block containing the 
additional data. Descriptions of the available functions follow. 

Formatting a Track. This function applies to physical files only. To 
format a track on a mass storage device, call A$SPECIAL with an open file 
connection, with spec$func equal to 1'6, and with ioparm$ptr pointing to a 
structure of the form: 

DECLARE format$track STRUGTURE( 
track$number WORD, 
interleave WORD, 
track$offset WORD, 
fill$char WORD); 

In this structure, the fields are defined as follows: 

track$number 

interleave 

REPLACE 

The number of the track to be formatted. 
Acceptable values: are 1'6 to one less than the 
number of tracks on the volume. Other values 
cause an E$SPAC:e: exceptional condition. When 
formatting a RAM-disk or a tape, you must place a 
zero value in thi£: field. 

The interleave f~Lctor for the track. (That is, 
the number of physical sectors to advance when 
locating the next logical sector.) An interleave 
factor of zero or one skips no physical sectors 
between logical sectors. If the specified 

BIOS 8-88 UPDATE 3, 3/85 



REPLACE 

ASSPECIAL 

Bits Value and Meaning 

2 output medium (corresponds to OSC 
characters T:H). 

0 = Video display terminal (VDT). 

1 = Prin1:ed (Hard copy) . 

3 Modem indicator (corresponds to OSC 
characters T:M). 

0 = Not used with a modem. 

1 = Used with a modem. 

4,-5 Input parity control (corresponds to OSC 
characters T:R). The parity bit (bit 7) 
of each input byte can be used in a 
variety lof ways. A byte has even parity 
if the sum of its bits is an even 
number. Otherwise, the byte has odd 
parity. 

o = Always set parity bit to 0. 

1 = Never alter the parity bit. 

2 = Even parity is expected on input. 
Use the parity bit to indicate the 
presE~nce (1) or absence (0) of an 
error on input. That is, set the 
parity bit to 0 unless the received 
byte has odd parity or there is some 
other error, such as (a) the received 
stop bit has a value of 0 (framing 
error) or (b) the previous character 
received has not yet been fully 
procE~ssed (overrun error.) 

3 = Odd parity is expected in input. Use 
the parity bit to indicate the 
presE~nce (1) or absence (0) of an 
error on input. That is, set the 
parity bit to 0 unless the received 
byte has even parity or there is some 
other error, such as (a) the received 
stop bit has a value of 0 (framing 
error) or (b) the previous character 
received has not yet been fully 
procE~ssed (overrun error.) 

BIOS 8-97 UPDATE 3, 3/85 



ASSPECIAL 

I 

REPLACE 

Bits Value and Meaning 

6-8 Output parity control (corresponds to OSC 
characte~s T:W). The parity bit (bit 7) 
of each output byte can be used in a 
variety of ways. A byte has even parity 
if the sum of its bits is an even 
number. Otherwise, the byte has odd 
parity. 

9 

0 Always set parity bit to 0. 

1 = Always set parity bit to 1. 

2 = Set parity bit to give the byte even 
parity. 

3 = Set parity bit to give the byte odd 
parity. 

4-7 = Do not alter parity bit. 

Translation control (corresponds to OSC 
charactel:"s T:T). Translation refers to 
the ability to define certain control 
charactel:s so that whenever these 
charactel::"s are entered at or written to a 
terminal, certain actions, usually cursor 
movement:~, take place automatically. 
Trans lation is described in Appendix F of 
this manual. 

o = Do not enable translation. 

1 = Enable translation. 

10 Terminal axes sequence control 
(corresponds to OSC characters T:F). 
This sllecifies the order in which 
Cartesian-like coordinates of elements on 
a terminal's screen are to be listed or 
entered. 

11 

BIOS 

o = List or enter 
coordinate first. 

the horizontal 

1 = List or enter the vertical coordinate 
firs1:. . 

Horizontal axis orientation control 
(corresponds to OSC characters T:F). 
This spe,::ifies whether the coordinates on 
the terminal's horizontal axis increase 
or decrE~ase as you move from left to 
right across the screen. 

8-98 UPDATE 3, 3/85 



in$baud$rate 

out$baud$rate 

REPLACE 

A$SPECIAL 

}!its Value and Meaning 

(6 = Coordinates increase from left to 
righ1:.. 

1 = Coordinates decrease from left to 
righ1:.. 

12 Vertical axis orientation contr'ol 
(corresp()nds to OSC characters T:F). 
This specifies whether the coordinates on 
the terminal's vertical axis increase or 
decrease as you move from top to bot tom 
across the screen. 

(6 = Coordinates increase from top to 
bott()m. 

1 = Coor(iinates decrease from top to 
bottom. 

13-15 Reserved bits. For future compatibility, 
set to (6,. 

NOTE 

If bits 4-5 contain 2 or 3, and bits 
6-·8 also contain 2 ot' 3, then they must 
both contain the samfe value. That is, 
they must both reflect the same parity 
convention (even or 0(1d). 

The input baud rate indicator (corresponds to ose 
characters T:I). If you attempt to set this field 
to zero, the Basic I/O System ignores your entry 
and leaves the field set to its previous value. 
The word is encodl~d as follows: 

(6 = Invalid. 

1 = Perform an automatic baud rate search. 

Other = Actual lnput baud rate, such as 96(6(6. 

The output baud rate indicator (corresponds to ose 
characters T:O). If you attempt to set this field 
to zero, the Basic I/O System ignores your entry 
and leaves the field set to its previous value. 
The word is encoded as follows: 

(6 = Leave field set to previous value 

1 = Use the input baud rate for output. 

BIOS 8-99 UPDATE 3, 3/85 

I 



A$5PE(;IAL 

scroll$lines 

x$y$size 

x$y$offset 

other = Actual loutput baud rate, such as 969JfiJ. 

Most application:; require the input and output 
baud rates to 'be equal. In such cases, use 
in$baud$rate to :set the baud rate and specify a 
one for out$baud$rate. 

An operator at a terminal can enter a control 
character (defauJ.t is Control-W) when helshe is 
ready for data to appear on the terminal's display 
screen. The scroll$lines value (corresponding to 
OSC characters T:S) specifies the maximum number 
of lines that arE! to be sent to the terminal each 
time the operator enters the control character. 
If you attempt to set this 
field to zero, the Basic 1/0 System ignores your 
entry and leaves the field set to its previous 
value. 

The low-order byte of this word specifies the 
number of charact.er positions on each line of the 
terminal' s screc~n (and corresponds to OSC 
characters T:X). The high-order byte specifies 
the number of lines on the terminal's screen (and 
corresponds to OSC characters T:Y). 

The low-order byte of this word specifies the 
value that starts the numbering sequence of both 
the X and Y axes (and corresponds to OSC 
characters T:U). The high-order byte specifies 
the value to whieh the numbering of the axes must 
"fall back" after reaching 127 (and corresponds to 
OSC characters T:V). 

The remalnlng fields apply only for intelligent communications boards 
(such as the iSBC 544 board) that maintain their own input and output 
buffers separately from the ones managed by the Basic 1/0 System's 
Terminal Support Code. If you aren't sure whether you can set these 
fields, invoke A$SPECIAL with functioln code 4 to get the terminal 
attributes. If bit 15 of the flow$contr'ol field (the next one described) 
is set, your board is a buffered device and you can set the following 
fields. (If your board is not a buffered device, setting any of the 
following fields will cause the terminal support code to return an 
E$PARAH Condition Code.) 

flow$control 

REPLACE 

Specifies whether the communications board sends 
flow control characters (selected by the 
fc$on$char and fc$off$char fields, but usually XON 
and XOFF) to turn input on and off (corresponds to 
the OSC characters T:G). The low-order bit (bit 
fiJ) controls this option, as follows: 

fiJ Disable flow control. 
I Enable flow control. 

BIOS 8-1fiJ0 UPDATE 3, 3/85 



A$SPECIAL 

DELCLARE read$file$mark STRUCTURE: ( 
search BYTE) ; 

Where: 

search A value indicating the direction of the search, as 
follows: 

0~ Search forward 

0FFH Search backward (for start/stop drives 
only) 

When your task issues the A$SPECIAL system call with spec$func set to 9, 
the tape drive writes a flle mark at the current position on the tape. 
This function also terminates tape write operations. 

When your task issues: the A$SPECIAL system call with spec$func set to 10, 
the tape drive fast-forwards the tape to the end and then rewinds it to 
the load point. 

CONDITION CODES 

A$SPECIAL return condition codes at two different times. The code 
returned to the calling task inunediately after invocation of the system 
call is considered Cl sequential condition code. A code returned as a 
resul t of asynchronous pr(Dcessing is .a concurrent condition code. A 
complete explanation of sequential and concurrent parts of system calls 
is in Chapter 7 of this manual. 

The following list is divided into two parts -- one for sequential codes, 
and one for concurrent codes. 

Sequential Condition Codes 

The Basic I/O System can reiturn the following condition codes to the word 
specified by the except$ptr parameter of this system call. 

E$OK 

E$BUFFERED$CONN 

E$EXIST 

REPLACE 

No exceptional conditions. 

The connection parameter is a connection produced 
by t~he Extended I/O System. You cannot use it 
with Basic I/O Sysltem calls. 

At least one of the following is true: 

• One or more of the following parameters or 
fields is not a token for an existing object: 

BIOS 8-103 UPDATE 3, 3/85 



ASSPECIAL 

E$IFDR 

E$LIHIT 

E$HEH 

E$NOT$CONFIGURED 

E$PARAH 

E$SUPPORT 

REPLACE 

- The connection parameter 

- The resp$mbox parameter 

- The mailbox field in the notify structure. 
(Spec$func :: 2.) 

The object field in the notify structure. 
(Spec$func :: 2.) 

The semaphore field in the signal$pair 
structure. (Spec$func = 6.) 

• The connection is being deleted. 

The function requested (spec$func) is not valid 
for the type of file specified by the connection 
parameter. 

The calling task's job has already reached its 
object limit. 

The memory available to the calling task's job is 
not sufficient to complete the call. 

This system caUL is not part of the present 
configuration. 

At least one of the following is true: 

• The spec$func parameter was 6, and the 
character field was greater than 1FH. 

• The spec$func parameter was greater than 1{2J. 

• One or more of the fields related to buffered 
devices (high$water$mark, low$water$mark, 
fc$on$char, fc$off$char) was set while bit 15 
of the flow$control field was reset to zero 
(specifying an unbuffered device). 

The specified connection was not created by this 
job. 

BIOS 8-1{2J4 UPDATE 3, 3/85 



A$SPECIAL 

E$TYPE One or more of the following parameters or fields 
is a token for an existing object of the wrong 
type: 

• The connection parameter. 

• The resp$mbox parameter. 

• The mailbox field of the notify structure. 
(Spec$func = 2.) 

• The semaphore field of the signal$pair 
structure. (S]pec$func = 6.) 

Concurrent Condition Codes 

The Basic I/O System can return the following condition codes in an I/O 
result segment at the mailbox specifie:d by resp$mbox. After examining 
the segment, you should delete it. 

E$OK 

E$CONN$NOT$OPEN 

E$FLUSHING 

E$IDDR 

No exceptional conditions. 

The specified connection is not open. 
applies only to s'tream and physical files. 

This 

The specified connection was closed before the 
func,tion could be comp leted . 

The specified function is not supported by the 
device containing the file. 

E$IO An I/O error occurred which might have prevented 
the operation from completing. Examine the 
unit,$status field of the I/O result segment for 
morel information. 

E$NOT$DEVICE$CONN The function codc~ is tnotifyt, but the specified 
connection is not a device connection. This 
applies only to named and physical files. 

E$PARAM The spec$func parameter was 5 while bits fIJ-l of 
the connection$flags field was equal to fIJ. 

E$SPACE One of the following is true: 

REPLACE 

• This call attempted to format a track of a 
physical file that is beyond the end of the 
volume. 

• 'l~his call attE~mpted to format a track of a RAM 
disk other than track fIJ. 

BIOS 8-1fIJ5 UPDATE 3, 3/85 

I 



A$SPECIAL 

E$STREAM$SPECIAL One of the following is true: 

REPLACE 

• This is a UquE!ryU request, but another query is 
already queued. This applies only to stream 
files. 

• This is a "sat.isfy" request, but either a query 
request is qu,eued, or no requests are queued. 
This applies only to stream files. (See 
Artificially Satisfying a Stream File I/O 
Request in the DESCRIPTION.) 

BIOS 8-106 UPDATE 3, 3/85 



A$TRUNCATE 

E$TYPE At least one of the following is true: 

• The connection parameter is a token for an 
object that is not a connection. 

• The resp$mbo)c parameter is a token for an 
object that i:3 not a mailbox. 

Concurrent Condition Codes 

The Basic I/O System can return the following condition codes in an I/O 
result segment at the mailbox specifie!d by resp$mbox. After examining 
the segment, you should delete it. 

E$OK 

E$CONN$NOT$OPEN 

E$IO 

REPLACE 

No exceptional conditions. 

The specified fi.le is not open for writing or 
updating. 

An I/O error occurred which might have prevented 
the operation from completing. Examine the 
"unit$status field of the I/O result segment for 
mor€~ information. 

SIOS 8-109 UPDATE 3, 3/85 

I 



A$UPDATE 

A$UPDATE 

A$UPDATE updates a device by writing all partial sectors that remain in 
the Basic 1/0 System's buffers after the most recent A$WRITE call. 

CALL RQ$A$UPDATE(connection, resp$mbclx, except$ptr); 

INPUT PARAMETERS 

connection 

resp$mbox 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for a fil(~ or device connection. A$UPDATE 
updates all files on the device. 

A TOKEN for the mailbox that receives an 1/0 
result segment indicating the result of the call 
(see Appendix C). A value of zero means that you 
do not want to rec~eive an 1/0 result segment. 

If it receives an 1/0 result segment, the calling 
task should call DELETE$SEGMENT to delete the 
segment after examining it. 

A POINTER to a WORD where the sequential condition 
code will be returned. 

When the 1/0 System performs an A$WRITE operation, it writes only entire 
sectors. If part of a sector remains to be written, the 1/0 System, 
unless requested to finish the writing operation (that is, to "update the 
file"), leaves the data for a partial 13ector in an output buffer. The 
next time A$WRITE is called on behalf of that file, the 1/0 System 
combines the leftover data in the buffer with the data in the new request 
and again begins writing entire sectors. 

The A$UPDATE system call forces the Basic 1/0 System to finish the 
writing operation for a device; that is:, it writes all partial buffers 
pertaining to files on a particular device. This ensures that files on 
removable volumes (such as diskettes) are updated before the operator 
removes the volume. However, the A$UPDATE system call has no effect on 
buffers that the Extended 1/0 System manages. 

REPLACE BIOS 8-11fIJ UPDATE 3, 3/85 



CONDITION CODES 

E$OK 

E$EXIST 

INSPECT$USER 

No exceptional conditions. 

The user parameter is not a token for an existing 
object. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$PARAM 

E$TYPE 

REPLACE 

The length field (~ontains a zero value. 

The user parameter is a token for an object of the 
wron:~ type. 

BIOS 8-127 UPDATE 3, 3/85 



SET$DEFAULT$PREFIX 

SET$DEFAULT$PREFIX 

SET$DEFAULT$PREFIX sets the default prefix for an existing job. 

CALL RQ$SET$DEFAULT$PREFIX(job, prefix, except$ptr); 

INPUT PARAMETERS 

job 

prefix 

OUTPUT PARAMETERS 

except$ptr 

DESCRIPTION 

A TOKEN for the job whose default prefix is to be 
set. A zero specifies the current job. 

A TOKEN for the connection that is to become the 
default prefix. 

A POINTER to a WORD where the condition code will 
be returned. 

The SET$DEFAULT$PREFIX system call sets the default prefix for an 
existing job. It does this by catalogin@; the connection (supplied as the 
prefix parameter) in the object directory of the job (supplied as the job 
parameter) . The Basic 1/0 System catalogs the prefix under the name 
"$". If an object is already cataloged under the name "$", the Basic 1/0 
System uncatalogs that object before cataloging the new prefix. 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

REPLACE 

No exceptional conditions. 

When this job was created, a size of zero was 
specified for the object directory, so a default 
prefix cannot be cataloged 

One or more of the following parameters is not a 
token for an existing object: 

• The job parameter 

• The prefix parameter 

BIOS 8-128 UPDATE 3, 3/85 



create a segment every time an 1/0 result segment is needed. This 
provides a significant advantage because A$READ, A$WRITE, and A$SEEK are 
typically the most commonly invoked Basi.c 1/0 System calls. 

CONDITION CODES 

E$OK 

E$EXIST 

E$IO$HARD 

E$IO$MODE 

E$IO$NO$DATA 

E$IO$OPRINT 

E$IO$SOFT 

E$IO$UNCLASS 

E$IO$WRPROT 

E$NOT$CONFIGURED 

REPLACE 

No exceptional co,ndi tions . 

At least one of t.he following is true: 

• The connection parameter or the resp$mbox 
parameter (or both) did not contain a token 
for an existing object. 

• The specified connection or response mailbox 
(or both) was deleted. 

• The token rE~turned to the specified mailbox 
was for an object that had been deleted. 

A hard 1/0 error occurred. 
probably useless. 

Another retry is 

At least one of the following is true: 

• A tape drive attempted to perform a read 
operation before the previous write operation 
completed. 

• A tape drive attempted to perform a write 
operation before the previous read operation 
completed. 

A tape drive attempted to read the next record, 
but it found no data. 

The device was off-line. Operator in~ervention is 
required. 

A soft 1/0 error occurred. The Basic 1/0 System 
tried to perform the operation a number of times 
(the number is configurable for each device). All 
attempts failed. If the configurable value 
specifying the number of retries is a reasonable 
value (for exam:ple, 9) , another retry probably 
won't be successful either. 

An unknown type of 1/0 error occurred. 

The asynchronous operation was A$WRITE and the 
volume was write-protected. 

This system call is not part of the present 
configuration. 

BIOS 8-135 UPDATE 3, 3/85 

WAIT$IO 



WAIT$IO 

E$TIME 

E$TYPE 

I 

REPLACE 

One of the following is true: 

• The calling tSLsk was not willing to wait t and 
there was no 1/0 result segment at the 
specified mailbox. 

• The specified waiting period elapsed before 
the response mailbox received an 1/0 result 
segment. 

At least one of the following is true: 

• The connection parameter is a token for an 
object that is not a file connection. 

• The resp$mbox parameter is a token for an 
object that is not a mailbox. 

• The object received at the response mailbox is 
not a segment or is a segment that is not an 
1/0 result segment. 

*** 
BIOS 8-136 UPDATE 3, 3/85 



start$address 

data$seg 

stack$ptr 

stack$size 

REPLACE 

CREATE$IO$JOB 

• If equal to zero t specifies that the new job's 
ini t:tal task is t() have a priority equal to the the 
maximum priority c)f the initial job of the Extended 
1/0 :System. For more information about the initial 
job of the Extetnded 1/0 System, refer to the 
chapter of the iRMX CONFIGURATION GUIDE relating to 
the Extended 1/0 System. 

• If not equal to zero, contains the priority of the 
ini tial task of the new job. If this priority is 
higher than (numerically less than) the maximum 
priori ty of the initial job of the Extended 1/0 
System, an E$P~[ error occurs. 

.A POINTER to the first instruction of the code 
segment for the new job's initial task. This code 
segment. can be, but is not required to be, an iRMX 86 
segmenit:.. 

.A WORD which, 

• if zero, indicates one of two things. Either the 
new job's initial task uses no data segment, or it 
creates one for itself. Tasks can create their own 
data segments only under special circumstances. To 
find out more about the circumstances, refer to the 
iRMX 86 CONFIGURA1~ION GUIDE. 

• if not zero, contains the base address of the data 
segment of the nE~W job's initial task. This data 
segnu~nt can be, but is not required to be, an 
iRMX 86 segment. 

A POIN~rER which, 

• if the base port.ion is zero, specifies that the 
Nucleus should allocate a stack for the new job's 
ini t:ial task. Thle length of the allocated stack is 
determined by the stack$size parameter of this 
system call. Be aware that this stack is not an 
iRMX 86 segment. 

• if the base portion is not equal 
the base of the stack for the 
task. Because the Nucleus does 
stack, you must allocate 
configuration process, or your 
must allocate it while the system 

to zero, points to 
new job's initial 
not allocate this 
it during the 
application code 

is running. 

A WORD containing 1t:.he size, in bytes, of the stack 
for the new job's initial task. If you specify less 
than 200, the Extended 1/0 System will increase the 
size to 200. For information regarding the amount of 
stack to allocate p refer to the chapter of the 
iRMX 86 PROGRAMMING TECHNIQUES manual that discusses 
stack sizes. 

:EIOS 7-7 UPDATE 3, 3/85 



GREATE$IU$JUB 

task$flags 

msg$mbox 

:REPLACE 

If you are allocatin~~ the stack during configuration, 
or if the applicaticln code is allocating the stack 
while the system i:s running, the value of this 
parameter will be the precise amount of stack that 
the system can use ,. However, if the Nucleus is 
allocating the stack for you, it might allocate as 
many as 15 additional bytes in order to make the 
stack occupy whole 16·-byte paragraphs. 

A WORD in which all bits except the two low-order 
bits are set to zero. 

Bit Zero: Use the l()w-order bit (bit (6) to tell the 
Operating System whether the new job t s initial task 
uses floating-point instructions. A value of 1 
indicates the presence of floating-point 
instructions, while a zero indicates the absence of 
floating-point instructions. 

Bit One: Bit 1 indicates whether the initial task in 
the job should run immediately, or whether it should 
wait until a START$IO$JOB system call is issued to 
start it. Set bit 1 to zero if the task is to be 
made ready to run; set bit 1 to one if the task is to 
wait until the START$IO$JOB call is issued. 

A TOKEN for a mailbox. When a task exits (by 
invoking EXIT$IO$JOB), the Extended I/O System sends 
a message to this mailbox. If you desire no such 
message, assign msg$mbox a value of zero. 

The format of the mes2;age is as follows: 

where: 

termina
tion$code 

DECLARE message STRUCTURE ( 
termina t ion$(!ode WORD, 
user$fault$code WORD, 
job$token WORD, 
return$data$len BYTE, 
return$data(j~) BYTE) 

A WORD that indicates why an I/O 
j ob terminatE~d, as follows: 

MEANING 

Some task within the job -- the terminating 
task -- invc,ked the EXIT$IO$JOB system call, 
and indicated with this code that no problem 
caused the 1:.ermination. The job has not yet 
been deleted, and some of its tasks might still 
be ready. 

EIOS 7-8 UPDATE 3, 3/85 



APPENDIX C. 
CONDITION CODES 

The iRMX 86 Extended I/O System uses condition codes to inform your tasks 
of any problems that occur during the execution of a system call. If no 
problems occur and the system call run~; to completion, the Extended I/O 
System returns an E$OK c.ondi tion codc~. Otherwise, the Extended I/O 
System returns an exc.eptional condition c!ode. 

The meaning of a specific exceptional condition code depends upon the 
system call that ret.urns t.he code. For this reason, this appendix does 
not list any interpre!tations. 

This appendix provides you with the numeric value associated with each 
condition code that the 'Extended I/O System can return. To use the 
exception code values in a symbolic manner, you can assign (using the 
PL/M-86 "literally" statement) a meaningful name to each of the codes. 

The following list correlates the name of the condition code (as 
described in Chapter 7 of this manual) t.o the value that the Extended I/O 
System actually returns. The list is divided into three parts; one for 
the normal condition codE~, one for E~xception codes that indicate a 
programming error, and one for exception codes that indicate an 
environmental conditi.on. 

NORMAL CONDITION COD~ 

NAME OF CONDITION DECIMAL HEXADECIMAL 

E$OK f6 f6H 

PROGRAMMING ERRORS 

NAME OF CONDITION DECIMAL HEXADECIMAL 

E$ZERO$DIVIDE 32768 8f6f6f6H 
E$OVERFLOW 32769 8f6f61H 
E$TYPE 3277f6 8f6f62H 
E$PARAM 32772 8f6f64H 
E$NOT$SUPPORTED 32773 8f6f65H 
E$NOUSER 328f61 8f621H 
E$NO$PREFIX 328f62 8f622H 
E$NOT$LOG$NAME 32832 8f64f6H 
E$NOT$DEVICE 32833 8f641H 
E$NOT$CONNECTION 32834 8f642H 

REPLACE EIOS C-l UPDATE 3, 3/85 



CONDITIOlf CODES 

ENVIRONMENTAL CONDITIONS 

NAME OF CONDITION DECIMAL HEXADECIMAL 

E$TIME 1 IH 
E$HEM 2 2H 
E$LIMIT 4 4H 
E$CONTEXT 5 5H 
E$EXIST 6 6H 
E$NOT$CONFIGURED 8 8H 
E$FEXIST 32 2f6H 
E$FNEXIST 33 21H 
E$DEVFD 34 22H 
E$SUPPORT 35 23H 
E$FACCESS 38 26H 
E$FTYPE 39 27H 
E$SHARE 4f6 28H 
E$SPACE 41 29H 
E$IDDR 42 2AH 
E$FLUSHING 44 2CH 
E$ILLVOL 45 2DH 
E$IFDR 47 2FH 
E$FRAGHENTATION 48 3f6H 
E$DIR$NOT$EHPTY 49 31H 
E$NOT$FILE$CONN 5f6 32H 
E$CONN$NOT$OPEN 52 34H 
E$CONN$OPEN 53 35H 
E$ALREADY$ATTACHED 56 38H 
E$DEV$DETACHING 57 39H 
E$NOT$SAHE$DEV 58 3AH 
E$ILLOGICAL$RENAHE 59 3BH 
E$STREAM$SPECIAL 6f6 3CH 
E$INVALID$FlJODE 61 3DH 
E$PATHNAME$SYNTAX 62 3EH 
E$FNODE$LIMIT 63 3FH 
E$LOG$NAME$SYNTAX 64 4f6H 
E$IOMEM 66 42H 
E$MEDIA 68 44H 
E$LOG$NAME$NEXIST 69 45H 
E$NOT$OWNER 7f6 46H 
E$IO$JOB 71 47H 
E$IO$UNCLASS 8f6 5f6H 
E$IO$SOFT 81 51H 
E$IO$HARD 82 52H 
E$IO$OPRINT 83 53H 
E$IO$WRPROT 84 54H 
E$IO$NO$DATA 85 55H 

I E$IO$MODE 86 56H 

REPLACE EIOS C-2 UPDATE 3, 3/85 



INDEX (c()ntinued) 

local object directory 3-8 
logical device object 7-19, B-1 
logical names 3-7, ~7-1fiJ5 

devices 2-6, 3-4, 7-18, 7-2fiJ 
deletion of 7-1'~5 
files 2-6, 4-5, 4-16 

LOGICAL$ATTACH$OEVICE system call 
LOGICAL$DETACH$OEVICE system call 

3-4, 4-14, 7-18, 7-43 
4-14, 7-19, 7-2fiJ 

magnetic tape drive 7-99 
mailbox 7-9 
marking files for deletion 7-48 
maximum buffer size 2-6, B-1 
maximum number of buffers 2-6 
memory pool 7-5 
memory requirements of I/O systems 1-3 
modem 7-93 
multiple connection to same file 3-5 
multiple files on same device 4-1 

named files 2-2, 4-! 
null string, pathname 3-9:, 4-5 
number of buffers 2,-5, 7-S3, 7-66 
number of bytes read 7-7fiJ 
number of bytes written 7--1fiJ8 

object directories 3-7 , 7--1fiJ8, D-l 
objects, types B-1 
odd parity 7-93 
OFFSET data type A-I 
opening files 2-3, 7-53 
Operating System Control sequences 
order of search for logical names 
overlapped I/O operations 1-2, 2-5 
owner ID 4-1fiJ 

parent directory 7-37, 7-'75 
parity control, terminals 7-91 

(OSC) 
3-7 

7-92 

path$ptr 3-9, 4-5, 7-37, '7-41, 7-48, 7--56, 7-74 
performance of I/O systems 1-3 
physical device 7-19 
physical files 2-2, 5-1 
POINTER data type A-I 
pool, memory 7-5 
prefixes 4-4 
protocol: stream files 6-1 

R?IOJOB 
R?IOUSER 
R?MESSAGE 
RAM disk 

0-1 
3-9, 4-8 
0-1 

7-84 
random access memory (RAM) B-1 
random I/O 1-4 

EIOS Index-3 

I 



I 

INDEX (continued) 

re-attachment of devices 2-7 
Read (access control) 4-9, 7-29 
reading beyond end-of-fi1e 7-79 
renaming directories 7-74 
renaming files 4-15, 7-74 
root named file directory 4-2 
root object directory 3-8 
RQGLOBAL 0-1, see also: global object directory 

S$ATTACH$FILE system call 4-3, 4-11, 4-13, 7-23, 7-41 
S$CATALOG$CONNECTION system call 4-16, 1-26 
S$CHANGE$ACCESS system call 4-4, 4-1~, 4-12, 7-29 
S$CLOSE system call 4-3, 4-14, 7-34 
S$CREATE$DIRECTORY system call 4-4, 4-11, 4-13, 7-37 
S$CREATE$FILE system call 4-4, 4-11, 4-13, 7-41 
S$DELETE$CONNECTION system call 4-3, 4-13, 7-46 
S$OELETE$FILE system call 4-4, 4-15, 7-4~ 
S$GET$CONNECTION$STATUS system call 4-3, 7-52 
S$GET$FILE$STATUS system call 4-4, 7-56 
S$LOOK$UP$CONNECTION system call 4-16, 7-64 
S$OPEN system call 3-5, 4-3, 4-14, 7-66 
S$READ$HOVE system call 4-3, 4-14, 7-7~ 
S$RENAHE$FILE system call 4-4, 4-15, 7-7~ 
S$SEEK system call 4-3, 4-14, 7-78, 7-1~B 
S$SPECIAL system call 4-3, 4-16, 7-82 
S$TRUNCATE$FILE system call 4-3, 4-14, 7-41, 7-1~2 
S$UNCATALOG$CONNECTION system call 4-16, 7-1~5 
S$WRITE$HOVE system call 4-3, 4-15, 7-1@~ 
satisfying stream files 7-87 
scrolling 7-96 
SELECTOR data type 7-1, A-I 
semaphore 7-98 
sequence of named file calls 4-18 
sequential 1/0 2-6 
setting terminal characteristics 7-89 
signal characters at terminal 7-98 
special users 4-12 
stack 7-7 
start address for 1/0 job 7-7 
START$IO$JOB system call 4-17, 7-22 
status, connection 7-52 
status, file 7-56 
status, obtaining of 4-15, 7-14 
stream files 2-3, 6-1, 7-84 

satisfaction 7-87 
STRING data type A-I 
subpath 4-4 
synchronous 1/0 system calls 1-2 
syntax (path) 4-5 
system calls 7-1 

asynchronous 1-2 
Basic 1/0 System 4-17 
dictionary 7-2 
Nucleus 4-17 
synchronous 1-2 

EIOS Inc1ex-4 



iRKX'" 86 Release 6.flJ Change Package: Update 3 

Change PcLges for: 

iRMX'" 86 Programmer's Referenc.e Manual, Part II (146196-fijfijl) 





CONDITION CODES 

The A$LOAD system c.all can return condition codes at two different 
times. Codes returnled to the calling t~ask immediately after invocation 
of the system call are sequential condition codes. Codes returned after 
the concurrent part. of the system call has finished running are 
concurrent condition codes. The following list is divided into two parts 
-- one for sequential codes and one for c.oncurrent codes: 

Sequential Condition Codes 

The Loader can return any of the follo'wing condition codes to the WORD 
pointed to by the except$ptr parameter of this system call. 

E$OK 

E$BAD$HEADER 

E$CHECKSUM 

No exceptional conditions. 

The target file does not begin with a valid header 
record for a loadable object module. Possibly the 
file is a directory. 

The header record of the target file contains a 
checksum error. 

E$CONN$NOT$OPEN The Loader opened the connection but some other 
task closed the connection before the loading 
operation was begun. 

E$CONN$OPEN The calling task specified a connection that was 
already open. 

E$EXIST At least one of thE~ following is true: 

E$FACCESS 

E$FLUSHING 

E$IO$HARD 

E$IO$OPRINT 

REPLACE 

• The connection parameter is not a token for an 
existing object .. 

• The msg$mbox I)arameter did not refer to an 
existing object., 

• The mailbox specified 
parameter was deleted 
operation was completed. 

in the 
before 

response$mbox 
the loading 

The specified connection did not have "read" access 
to the file. 

The device containing the target file is being 
detached. 

A hard 1/0 error occurred. This means that another 
try is probably usoless. 

The device containing the target file was 
off-line. Operator intervention is required. 

Application Loader 2-11 UPDATE 3, 3/85 

A$ LOA 0 

I 



A:jiLUAU 

E$IO$SOFT 

E$IO$UNCLASS 

E$IO$WRPROT 

E$LIMIT 

A soft I/O error occurred. This means that the I/O 
System tried to perform the operation and failed, 
but another try mil;ht still be successful. 

An unknown type of I/O error occurred. 

'fhe volume is wrib~-protected. 

At least one of thH following is true: 

• The calling tas:k's job has already reached its 
object limit. 

• Either the calling task's job, or the job's 
default user object, is already involved in 255 
(decimal) I/O operations. 

E$LOADER$SUPPORT To load the target file requires capabilities not 
configured into the Loader. For example, it might 
be attempting to load PIC when configured to load 
only absolute code" 

E$MEM The memory available to the calling task's job or 
the Basic I/O System is not sufficient to complete 
the call. 

E$NOT$FILE$CONN The calling task s:pecified a connection to a device 
rather than to a named file. 

E$SHARE The calling task tried to open a connection to a 
file already being used by some other task, and the 
file's sharing attribute is not compatible with the 
open request. 

E$SUPPORT The specified connection was not created by the 
calling task's job. 

E$TYPE The connection parameter is a token for an obj ect 
that is not a connE~ction. 

Concurrent Condition Codes 

After the Loader attempts the loading operation, it returns a condition 
code in the except$code field of the Loader Result Segment. The Loader 
can return the following condition codes in this manner. 

E$OK No exceptional concli tions. 

E$BAD$GROUP The target file contains an invalid group 
definition record. 

E$BAD$SEGMENT The target file contains an invalid segment 
definition record. 

REPLACE Applieation Louder 2-12 UPDATE 3, 3/85 



E$CHECKSUM 

E$EOF' 

E$EXIST 

E$FIXUP 

E$FLUSHING 

E$IO$HARD 

E$IO$OPRINT 

E$IO$SOFT 

E$IO$UNCLASS 

E$IO$WRPROT 

E$LIMIT 

At least one record of the target file contains a 
checksum error. 

The I~all encountered an unexpected end-of-file. 

The device contalning the file to be loaded was 
detac~hed before tl"le loading operation was completed. 

The target file contains an invalid fixup record. 

The device containing the target file is being 
detac~hed. 

A hard I/O error occurred. This means that another 
try is probably us:eless. 

The device containing the target file was 
off-line. Operator intervention is required. 

A soft I/O error occurred. This means that the I/O 
System tried to lperform the operation and failed, 
but another try mi.ght still be successful. 

An unknown type of I/O error occurred. 

The volume is write-protected. 

The calling task's job has already reached its 
object limit. 

E$NO$LOADER$MEM The memory pool of the calling task does not 
currently have a block of memory large enough to 
allow the Loader t;o run. 

E$NO$MEM. The Loader attempted to load PIC or LTL groups or 
segments, but the memory pool of the calling task's 
job does not currently contain a block of memory 
large enough to acconunodate these groups or 
segments. 

E$NOSTART 'l'he target file does not specify the entry point 
for the program being loaded. 

E$PARAM The target file has a stack smaller than 16 bytes. 

E$REC$FORMA.'I~ At least one record in the target file contains a 
format error. 

E$REC$LENGTH 

REPLACE 

The target file c.ontains a record longer than the 
Load4~r' s internal buffer. The Loader's buffer 
leng1th is specifil~d during the configuration of the 
Load4~r . See Chapter 3 and the iRMX 86 
CONFIGURATION GUIDE for information about 
configuring the Loader. 

Application Loader 2-13 UPDATE 3, 3/85 

A$LOAD 

I 



A$LOAD 

E$REC$TYPE 

E$SEG$BOUNDS 

REPLACE 

At least one of the following is true: 

• At least one record in the target file is of a 
type that the Loader cannot process. 

• The Loader en(~ountered records in a sequence 
that it cannot process. 

The Loader created a segment into which to load 
code. One of the data records specified a load 
address outside of that segment. 

Application Loader 2-14 UPDATE 3, 3/85 



A$LOAD$IO$JOB 

CONDITION CODES 

This system call can return condition codes at two different times. 
Codes returned to the calling task immediately after the invocation of 
the system call are considered sequential condition codes. Codes 
returned after the concurrent part of the system call has finished 
running are considered concurrent condition codes. The following list is 
divided into two parts -- one for sequential codes and one for concurrent 
codes. 

Sequential Condition Codes 

The Loader returns one of the following condition codes to the WORD 
pointed to by the except$ptr parameter: 

E$OK 

E$BAD$HEADER 

E$CHECKSUM 

E$CONN$NOT$OPEN 

E$CONN$OPEN 

E$CONTEXT 

E$EXIST 

E$FACCESS 

E$FLUSHING 

E$IO$HARD 

E$IO$OPRINT 

REPLACE 

No exceptional c()nditions. 

The target file: does not begin with a valid 
header record for a loadable object module. 
Possibly the' file is a directory. 

The header record of the target file contains a 
checksum error. 

The Loader opened the connection, but some other 
task closed thE~ connection before the loading 
operation was bel~un. 

The specified connection was already open. 

'fhe calling task It s job is not an 1/0 job. 

At least one of i:-.he following is true: 

• The connect.ion parameter is not a token for 
an existing object. 

• The calling task's job has no global job. 

• The msg$mbox parameter does not refer to an 
existing object. 

The specified c.onnection does not have "read" 
access to the file. 

The device containing the target file is being 
detached. 

A hard 1/0 err.or occurred. This means that 
another try is pr.obably useless. 

The device containing the target file is 
off-line. Operator intervention is required. 

Application LO~lder 2-21 UPDATE 3, 3-85 



A$LOAD$IO$JOB 

E$IO$SOFT 

E$IO$UNCLASS 

E$IO$WRPROT 

E$JOB$PARAM 

E$JOB$SIZE 

E$LOADER$SUPPORT 

E$MEM 

E$NO$LOADER$MEM 

E$NOT$CONFIGURED 

E$NOT$FILE$CONN 

I E$NOUSER 

E$PARAM 

E$SHARE 

E$SUPPORT 

E$TIME 

E$TYPE 

REPLACE 

A soft I/O error occurred. This means that the 
I/O System tried to perform the operation and 
failed, but another try might still be successful. 

An unknown type of I/O error occurred. 

The volume is write-protected. 

The pool$upper$bound parameter is both non-zero 
and smaller than the pool$lower$bound parameter. 

The pool$upper$bound parameter is non-{ll and too 
small for the target file. 

The target file requires capabilities not 
configured into the Loader. For example, the 
loader might be attempting to load PIC code when 
configured to loud only absolute code. 

The memory availlible to the calling task's job or 
the Basic I/O System is not sufficient to 
complete the call. 

The memory pool (:>f the newly created I/O job does 
not currently have a block of memory large enough 
to allow the Loader to run. 

This system call is not part of the present 
configuration. 

The specified connection is to a device rather 
than to a named file. 

The calling tasl~' s job does not have a default 
user, or the obj ect cataloged under the logical 
name R?IOUSER is not a user object. 

The value of the except$mode field within the 
except$handler si:ructure lies outside the range {ll 
through 3. 

The calling task tried to open a connection to a 
file already being used by some other task, and 
the file's sharing attribute is not compatible 
with the open request. 

The specified connection was not created in this 
job. 

The calling task's job is not an I/O job. 

The connection parameter is a token for an object 
that is not a connection. 

Application LosLder 2-22 UPDATE 3, 3-85 



E$EXIST 

E$FACCESS 

E$FIXUP 

E$FNEXIST 

E$FLUSHING 

E$INVALID$FNODE 

E$IO$HARD 

E$IO$JOB 

E$IO$OPRINT 

E$IO$SOFT 

E$IO$UNCLASS 

E$IO$WRPROT 

E$JOB$PARAM 

E$JOB$SIZE 

E$LIMIT 

REPLACE 

S$LOAD$IO$JOB 

At least one of the following is true: 

o The msg$mbox parameter is not a token for an 
existing obj ec't.. 

o The calling task's job has no global job. 

o 'I'he device containing the target file was 
detached. 

The default user object for the new I/O job does 
not have "read" access to the specified file. 

The t.arget file contains an invalid fixup record. 

The specified target file, or some file in the 
specified path, aloes not exist or is marked for 
delet.ion. 

The device containing the target file is being 
detached. 

The fnode for the specified file is invalid, so the 
file must be deleted. 

A hard I/O error occurred. This means that another 
try is probably useless. 

The calling task's job is not an I/O job. 

The device containing the target file is off-line. 
Operator intervention is required. 

A soft I/O error occurred. This means that the I/O 
System tried to perform the operation and failed, 
but another try might still be successful. 

An unknown type of I/O error occurred. 

The volume is write-protected. 

The pool$upper$bound parameter is nonzero and 
smaller than the pool$lower$bound parameter. 

The pool$upper$botlnd parameter is nonzero and too 
small for the target file. 

At least one of the following is true: 

o The task$priority parameter is higher 
(numerically lower) than the newly-created I/O 
job's maximum priority. This maximum priority 
is specified during the configuration of the 
I~xtended I/O System (if the job is a descendant 
of the Extended I/O System) or of the Human 
Interface (if the job is a descendant of the 
Human Interfac,e). 

Application Loader 2-29 UPDATE 3. 3-85 

I 



S$LOAD$IO$JOB 

I 

• Either the newly created 1/0 job or its default 
user object is already involved in 255 
(decimal) 1/0 c'perations. 

E$LOADER$SUPPORT The target filc~ requires capabilities not 
configured into the Loader. For example, it might 
be attempting to load PIC when configured to load 
only absolute code. 

E$MEM The memory available to the calling task's job is 
not sufficient to c.omplete the call. 

E$NO$LOADER$MEM The memory pool of the newly created 1/0 job does 
not currently have a block of memory large enough 
to allow the Loader' to run. 

E$NOMEM The target file contains either PIC segments or 
groups, or LTL sel~ments or groups. In any case, 
the memory pool of the new 1/0 job does not have a 
block of memory 1al:"ge enough to allow the Loader to 
load these records. 

E$NOSTART The target file d4)es not specify the entry point 
for the program being loaded. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$NOUSER 

E$PARAM 

E$PATHNAHE$
SYNTAX 

E$REC$FORMAT 

REPLACE 

The calling task'!; job does not have a default 
user, or the objE!ct cataloged under the logical 
name R?IOUSER is not a user object. 

At least one of the. following is true: 

• The value of the except$mode field within the 
except$hand1er structure lies outside the range 
o through 3. 

• The target fi10 requested a stack smaller than 
16 bytes. 

The specified pathn.ame contains one or more invalid 
characters. 

At least one record in the target file contains a 
format error. 

Application Loader 2-30 UPDATE 3, 3-85 



COMMAND PROCESSING 

DELETING THE COMMAND CONNECTION 

After you have finished invoking commands programmatically. you must 
delete the command connec~tion. The C$DELETE$COMMAND$CONNECTION system 
call performs this operation. You do not need to delete the command 
connection after each command invocation. because the command connection 
is re-usable. However, you should delete the command connection after 
performing all C$SEND$COMMAND operations. This frees the memory used by 
the data structures of the command connection. 

EXAMPLE 

Figure 5-1 contains an example of a program that uses 
C$CREATE$COMMAND$CONNECTION. SEND$COMMAND. and 
DELETE$COHKAND$CONNECTION. It invokes the Human Interface COPY command 
programmatically. 

1*********************************************************************** 
* * * This example demonstrat~es the use of the following Human Interface * 
* advanced standar<l func t~ions : * 
* * * rq$C$create$command$connection * 
* rq$C$send$command * 
* rq$C$delete$command$connection * 
* * * This program uses the previous system calls to invoke the command * 
* COPY: F1 : OLD to :: F1 : NEW from wi thin and then continue normal * 
* processing. The program is invoked with the command line: * 
* * * PROG2 * 
*************************************************************************1 

prog2: DO; 

$include (hexcep.lit) 
$include (hcrccn.ext) 
$include (hsndcmd.ext) 
$include (hdlccn.ext) 
$include (iexioj.ext) 
$include (hgtincn.ext) 

. $include (hgtocn.ext) 

DECLARE (ci$token. co$token. command$connection$token) WORD, 
(excep. comexcep. exexcep) WORD; 

DECLARE output$prep BYTE; 

Figure 5-1. Command Connection Example 

REPLACE Human Interfac.e 5-3 UPDATE 3, 3-85 



I 

COMMAND PROCE:SSING 

1* Invoke utility to eopy file OLD to file NEW *1 

1* Get tokens for CI and CO *1 
ei$token = rq$C$get$input$eonneetion(@(4,':CI:'), @exeep); 
IF exeep <> E$OK THEN 

CALL rq$exit$io$job (exeep, fiJ, exexeelp); 
eo$token = rq$C$get$output$eonneetion(@(~,':CO:'), output$prep, @exeep); 
IF exeep <> E$OK THEN 

CALL rq$exit$io$job (exeep, fiJ, exexee:p); 

1* Create eommand eonneetion *1 
eommand$eonneetion$tok = rq$C$ereate$eoma~nd$eonneetion (ei$token, 

eo$token, fiJ, 
@exeep) ; 

1* Send eommand to eopy files *1 
CALL rq$C$send$command (command$connection$tok, 

@(23,'COPY :F1:0LD TO :F1:NEW'), 
@comexcep, @excep); 

IF excep <> E$OK THEN 
CALL rq$exit$io$job (excep, fiJ, exexcep); 

1* Delete command connection *1 
CALL rq$C$delete$command$connection (command$connection$tok, @excep); 
IF excep <> E$OK THEN 

CALL rq$exit$io$job (excep, fiJ, exexeep); 

Rest of program 

1* Finish I/O proeessing *1 
CALL rq$exit$io$job (excep, fiJ, @exexeep); 

END prog2; 

Figure 5-1. Command Connection Example (continued) 

*** 
REPLACE Human Interfaee 5-4 UPDATE 3, 3-85 



HUMAN INTERFACE EXC:EPTION CODES 

Table B-3. Conditions And Their Codes (continued) 

Numeric Code 
Category/ 
Mnemonic Meaning Hex Decimal 

Human Interface Environmental Conditions (continued) 

E$CONTINUED 

E$INVALID$
NUMERIC 

E$LIST 

E$WILDCARD 

ThE~ parse. buffer contains a continuation 
ch~Lracter'. 83H 

A numeric. value contains invalid 
character's. 84H 

A "alue in the value list is missing. 85H 

A wild-card character appears in an 
in"alid c.ontext, such as in an inter-
mediate component of a pathname. 86H 

E$PREPOSITION The command line contains an invalid 
preposi ti.on. 87H 

E$PATH 

E$CONTROL$C 

E$CONTROL 

E$UNMATCHED$
LISTS 

E$DATE 

E$NO$PARAM
ETERS 

E$VERSION 

E$GET$PATH$
ORDER 

The command line contains an invalid 
pathname. 

Th.~ user typed a CONTROL-C to abort the 
cOlnmand. 

The command line contains an invalid 
control. 

The number of files in the input and 
output pathname lists is not the same. 

Th.~ operator entered an invalid date. 

A command expected parameters, but 
the operator didn't supply any. 

The Human Interface is not compatible 
with the version of the command the 
operator invoked. 

A command called C$GET'$OUTPUT$PATHNAME 
before calling C$GET$INPUT$PATHNAME 

UDI Environmental. Conditions 

88H 

89H 

8AH 

8BH 

8CH 

8DH 

8EH 

8FH 

131 

132 

133 

134 

135 

136 

137 

138 

139 

14(6 

141 

142 

143 

E$UNKNOWN$EXIT The program exited normally. (6C(6H 192 

REPLACE Human Interfac.e B-9 Update 3, 3/85 



HUMAN INTERFACE EXCil!:PTION CODES 

Table B-3. Conditions And Their Codes (continued) 

Numeric Code 
Category I 
Mnemonic Meaning Hex Decimal 

UDI Environmental Conditions (continued) 

E$WARNING$EXIT The program issued warning messages. flJC1H 

E$ERROR$EXIT The program detected errors. flJC2H 

E$FATAL$EXIT A fatal error occurred in the program. flJC3H 

E$ABORT$EXIT The Operating System aborted the flJC4H 
program. 

E$UDI$INTERNAL A UDI internal error occurred. flJC5H 

* E$ZERO$
DIVIDE 

* E$OVERFLOW 

E$TYPE 

E$PARAH 

E$BAD$CALL 

* E$ARRAY$
BOUNDS 

* E$NDP$ERROR 

* E$ILLEGAL$
OPCODE 

Nucleus Programm4~r Errors 

A task attempted a divide in which 
the quotient was larger than 16 bits. 

An overflow interrupt occurred. 

A token parameter referred to an 
existing object that is not of the 
required type. 

A parameter that is neither a token 
nor an offset has an invalid value. 

An OS extension received an invalid 
function code. 

Hardware or software has detected an 
array overflow. 

A Numeric Processor Extension (NPX) 
error has occurred. OS extensions 
can return the status of the NPX to 
the exception handler. 

The iAPX 186 or 286 processor tried 
to execute an invalid instruction 

8flJflJ1H 

8flJflJ2H 

8flJflJ4H 

8flJflJ5H 

8f6flJ6H 

8f6flJ7H 

8f6f68H 

193 

194 

195 

196 

197 

32768 

32769 

3277flJ 

32772 

32773 

32774 

32775 

32776 

* For iAPX 286-based systems, a CPU trap caused this exceptional 
condition. 

REPLACE Human Interface B-lflJ Update 3, 3/85 



UDI SYSTEM CALLS IN THE iRMX' 86 ENVIRONMENT 

The key to using iRMX 86 files is the connection. A program wanting to 
use a file first obtains (a token for) a connection to the file and then 
uses the connection to perform operations on the file. Other programs 
can simultaneously have their own connections to the same file. Each 
program having a connection to a file uses its connection as if it has 
exclusive access to the file. 

A program obtains a connection by calling DQ$ATTACH (if the file already 
exists) or DQ$CREATE (to create a new file). When the program no longer 
needs the connection, it can call DQ$DE~;rACH to delete the connection. To 
delete both the connt~ction and the file, the program calls DQ$DELETE. 

Once a program has a connection, it can call DQ$OPEN to prepare the 
connection for input/output operations.. The program performs input or 
output operations by calling DQ$READ and DQ$WRITE. It can move the file 
pointer associated with the connection by calling DQ$SEEK. When the 
program has finished doing input and output to the file, it can close the 
connection by calling DQ$CLOSE. Note1:.hat the program opens and closes 
the connection, not the file. Unless the program deletes the connection, 
it can continue to open and close the connection as necessary. 

If a program calls DQ$DELETE to delete :a file, the file cannot be deleted 
while other connect:ions to the file exist. In that case, the file is 
marked for deletion and is not actually deleted until the last of the 
connections is deleted. During the time that a file is marked for 
deletion, no new connections to it may be created. 

CONDITION CODES AND EXCEPTION HANDLING CALLS 

Every UDI call except DQ$EXIT returns a numeric condition code specifying 
the result of the call. Each condition code has a unique mnemonic name 
by which it is known. For example, t.he code (6, indicating that there 
were no errors or unusual conditions" has the name E$OK. Any other 
condition means there was a problem, so these conditions are called 
exceptions. 

Exception conditions are classified as: 

• Environmental Condi tions. These are generally caused by 
conditions outside the control of a program; for example, device 
errors or insufficient memory. 

• Progranuner Jt:rrors. These are typically caused by mistakes in 
progranuning (for example, "bad parameter"), but "divide-by-zero", 
"overflow", "range check", and errors detected by the 8(687 8(6287 
Numeric Processor Extension (hereafter referred to generically as 
the NPX) are also classified as progranuner errors. 

The iRMX 86 NUCLEUS REFERENCE MANUAL contains a list of condition codes 
that the iRMX 86 Operating System can return, with the mnemonic and 
meaning of each code. 

REPLACE UDI 2-5 UPDATE 3, 3/85 



UDI SYSTEM CALLS IN THE i]um~ 86 ENVIRONMENT 

If the default value (NEVER) for the EM parameter in the Nucleus ICU 
screen is in effect when a system call generates an exception condition, 
the system simply returns the error code through the appropriate system 
call parameter. If you have specified YES as the value of the EM 
parameter in the Nucleus leu screen, th.~ default system exception handler 
(DEF.EXCEPTIONHANDLER) displays the appropriate error message at the 
console and terminates the program. Hc,wever, your program can establish 
its own exception handler by calling DQ$TRAP$EXCEPTION. The exception 
handler can interpret condition code!; that are returned by calling 
DQ$DECODE$EXCEPTION. The rest of this section provides some facts that 
you need in order to write your own exception handler. 

After an exception condition occurs and before your exception handler gets 
control, the iRMX 86 Operating System dOE~s the following: 

1. Pushes the condition code onto t.he stack of the program that made 
the system call having the exception condition. 

2. Pushes the number of the parameter that caused the exception onto 
the stack (1 for the first paramE~ter, 2 for the second, etc.). 

3. Pushes a word onto the stack (re~:erved for future use). 

4. Pushes a word for the NPX onto the stack. 

5. Ini tiates a long call to the excE~ption handler. 

If the condition was not caused by an erroneous parameter, the responsible 
parameter number is zero. If the exception code is E$NDP, the fourth item 
pushed onto the stack is the NPX status word, and the NPX exceptions have 
been cleared. 

Programs compiled under the SMALL model of segmentation cannot have an 
alternate exception handler, but must use the default system exception 
handler. This is because alternate exception handlers must have a LONG 
POINTER, which is not available in the S~~LL model. 

MAKING UDI CALLS FROM PL/M-86 AND ASM86 PROGRAMS 

This section describes how to make UDI calls from a program, using the 
DQ$ALLOCATE system call as an example. You can easily generalize from 
this example to see how to make the other UDI calls. There are two 
examples: one for a call from a PL/M-86 program and one for a call from 
an ASM86 program. 

The way this chapter shows the DQ$ALL.OCATE system call syntax is the 
following: 

base$addr = DQ$ALLOCATE (size, except.$ptr); 

There are three parameters: size (~hich has the WORD data type), 
except$ptr (which has the POINTER data type), and base$addr (which has 
WORD data type or the SELECTOR data t;~pe, depending on the version of 
PL/H-86) . 

REPLACE UDI 2-6 UPDATE 3, 3/85 



UDI SYSTEM CALLS IN THE iRMX~ 86 ENVIRONMENT 

Each of the examples that follow request 128 bytes of memory and point to 
a WORD named ttERRtt where the condition code is to be returned. 

EXAMPLE PL/M-86 CALLING SEQUENCE 

DECLARE WORD, (or SELECTOR) 
WORD; 

ARRAYBASE = DQ$ALLOCATE (128, @ERR); 

EXAMPLE ASM86 CALLING SEQUE:NCE 

MOV 
PUSH 
LEA 
PUSH 
PUSH 
CALI. 
MOV 

AX,128 
AX 
AX, ERR 

first parameter 

DS second parameter 
AX 
DQALLOCATE 
ARRAYBASE,AX ; returned value 

This example is applicable to programs assembled according to the COMPACT, 
MEDIUM, and LARGE models of segmentat~ion. For the SMALL model, omit 
pushing the DS segment regi.ster. 

DESCRIPTIONS OF SYSTI~M CALLS 

This section contains descriptions of the UDI system calls, which are 
arranged alphabetically. Every system call description contains the 
following information in this order: 

• The name of the system call. 

• A brief summary of the function of the call. 

• The form of the call as it is invoked from a PL/H-86 program, with 
symbolic names for each parameter. 

• Definition of input. and output parameters. 

• A complete explanation of the system call, including any 
information you will need to use the system call. 

REPLACE UDI 2-7 UPDATE 3, 3/85 



DQ$ALLOCATE 

UDI SYSTEM CALLS IN THE iRMXJ. 86 ENVIRONMENT 

DQ$ALLOCATE 

DQ$ALLOCATE requests a memory segment from the free memory pool. 

base$addr = DQ$ALLOCATE (size, excep1:.$ptr); 

INPUT PARAMETER 

size 

OUTPUT PARAMETERS 

base$addr 

except$ptr 

DESCRIPTION 

A WORD which, 

if not zero, contains the size, in bytes, of 
the requested segment. If the size parameter 
is not a multiple of 16, it will be rounded up 
to the nearest multiple of 16 before the 
allocation request is processed. 

if zero, indic:!ltes that the size of the request 
is 65536 (64K) bytes. 

A SELECTOR, into llihich the Operating System places 
the base address of the memory segment. If the 
request fails because the memory requested is not 
available, this value will be 0FFFFH, and the 
system will return an E$HEM exception code. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix B. 

The DQ$ALLOCATE system call is used to request additional memory from the 
free space pool of the program. Tasks lnay use the additional memory for 
any desired purpose. 

REPLACE UDI 2-8 UPDATE 3, 3/85 



UDI SYSTEM CALLS IN THE iPHX~ 86 ENVIRONMENT 

DQ$TRUNCATE 

DQ$TRUNCATE moves the end-of-file to the current position of a named file 
connection' s file poi.nter t thereby freeing the portion of the file lying 
beyond the file pointer. 

CALL DQ$TRUNCATE (connection, except$ptr); 

INPUT PARAMETER 

connection 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for a connection to the named data file 
that is to be truncated. The file pointer of this 
connection marks the place where truncation is to 
occur. The byte indicated by the pointer is the 
first byte to be (iropped from the file. 

A POINTER to a \oirORD where the system places the 
condition code. Condition codes are described in 
Appendix B. 

This system call truncates a file at the current setting of the file 
pointer and releases all file space beyond the pointer for reallocation 
to other files. If the pointer is at, or beyond the end of file, no 
truncation is performed. Unless the file pointer is already at the 
proper location, your program should use the DQ$SEEK system call to 
position the pointer before calling DQ$TRUNCATE. 

The connection should have write, or read and write access rights, 
established when the connec.tion was opened. 

REPLACE tJDI 2-53 UPDATE 3, 3/85 



s5?'!"i"" 
UDI SYSTEM CALLS IN THE iE~~ 86 ENVIRONMENT 

DQ$WRITE 

The DQ$WRITE system call copies a colleetion of bytes from a buffer into 
a file. 

CALL DQ$WRITE (connection, buff$ptr, count, except$ptrj 

INPUT PARAMETERS 

connection 

buff$ptr 

count 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A TOKEN for the cl)nnection to the file into which 
the information is to be written. 

A POINTER to a buffer containing the data to be 
written to the spe'l!ified file. 

A WORD containini~ the number of bytes to be 
written from the buffer to the file. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix B. 

This system call causes the Operating System to write the specified 
number of bytes from the buffer to the fiJLe. 

ICQnnection Requirements 

'If the connection is not open for writing or updating, DQ$WRITE returns 
an exception code. 

RBPLACE UDI 2-54 UPDATE 3, 3/85 



long-term operations 5-8 

modem 7-8 

name of device-unit 2-2 
notify procedure 2-14, 5-6 
numbering of devices 1-2 

open requests 4-2 

parity 7-7 

INDEX (continued) 

PL/H-86 iii, 5-11, 8-·1 
portable device drivers 3-14 
priority 3-9 

QUEUE$IO procedure 2-·5, 3-3, 6-3, A-5 

RA.D$ procedure-name prefix (iRHX 88 systems only) 3-2, A-I 
random access device drivers 1-3, 5-1 
random access devices 3-1 
random access driver example B-8 
read requests 4-2 
request queue 6-5 
requests 1-3, 4-1 
requirements for using the common device c1river 3-1 
retry limit 3-11 
RQ$A$PHYSICAL$ATTACH$DEVICE system call ;~-3, 3-4, 3-5, 6-4, A-I 
RQ$ELVL system call A-9 
RQ$FORHAT system callS-II 
RQ$SET$INTERRUPT system call A-9 

SEEK$COHPLETE procedure 3-11, 5-7 
seek requests 4-2 
set output waiting (XTS$SET$OUTPUT$WAITING) procedure 7-18, 7-24 
signal character 2-15 
source files, device drivers B-1 
special requests 4-2 
stack size 3-9 
support (INCUDE) files B-55 

tape drives 2-14, 5-8 
rewinding of 5-8 

terminal 
attributes 2-15 
baud rate 7-16, 7-19 
Device Information Table 2-5, 7-3, 7--27 
devices 3-3 
driver example B-·29 
drivers 7-1 
flags 7-8, 7-14 
modem 7-8 
parity 7-7 
Unit Information Table 7-6 

terminal answer (TERH$ANSWER) procedure 1-17, 7-2@, 7-27 
terminal check (TERH$CHECK) procedure 7-17, 7-22, 7-27 

REPLACE Device Drivers Index-3 UPDATE 

I 

I 

3, 3/85 



INDEX (continued) 

terminal controller data 7-14, 7-27 
terminal finish (TERM$FINISH) procedure 7-17, 7-19, 7-27 
terminal hangup (TERM$HANGUP) procedure 7-17, 7-21, 7-27 
terminal initialization (TERM$INIT) pro(~edure 7-17, 7-18, 7-27 
terminal output (TERM$OUT) procedure 7-·17, 7-24, 7-27 
terminal setup (TERM$SETUP) procedure 7'-17, 7-19, 7-27 
Terminal Support Code 7-11 
terminal unit data 7-4, 7-14, 7-27 
track size 3-11 
types of device drivers 1-3 

unit Information Table 2-5, 3-1@, 7-6 
unit number 1-2, 2-5, 2-11 
unit status codes 2-1@ 
updating output to a device 2-6 
using DUIBs 2-7 

volume granularity 2-7 

write requests 4-2 

X8274.P86 terminal driver source file B-29 
XTS$SET$OUTPUT$WAITING procedure 7-24 

*** 
REPLACE Device Drivers Index-4 UPDATE 3, 3/85 



. (,,) C CHAPTER 6 
SIMPLIFYING CONFIGURATION 

_______ -=D-=U...;;...,,;R~IN~G~D_......_E~V_=E;.=.LO ___ P.....;;..M ........... E ___ N_......T__.I 

For your convenience, the configuration information found in this chapter 
has been added to the iRMX 86 CONFIGURATION GUIDE. For any information 
that you might need concerning the following topics, refer to the iRMX 86 
CONFIGURATION GUIDE. 

• Data segments 

• Configuration 

• Freezing locations of entry points 

• The Interactive Configuration U1:.ility (ICU) 

• The LOC86 command 

• Freezing 'thEl Base of the Data S4~gment 

*** 

REPLACE Progranuning 'J~eehniques 6-1 UPDATE 3, 3/85 

I 

I 





· (,,) L CHAPTER 2 
USING A TERIVIINAL WITH THE iRMX™ 86 
____________ ~O~PE=R~~~~~IN~G~S~Y~S~T~E~M~ 

When you are using a terminal with the iRMX 86 Operating System, you must 
limit the maximum priority of your tasks or they could interfere with the 
proper functioning of your terminal. High priority processor-bound tasks can 
cause the Terminal Handler to drop input characters. 

While using a termi.nal that is under control of the Terminal Handler, an 
operator either reads an output message from the terminal's display or enters 
characters by striking keys on the terminal's keyboard. Normal input 
characters are those destined for input messages that are sent to tasks. 
Special input characters direct the Terminal Handler to take special actions. 
The special characters are RUBOUT, Carriage Return, Line Feed, ESCape, 
control-C, control-·O, control-Q, control-R, control-S, control-X, and 
control-Z. The output-only version of the Terminal Handler does not support 
any of the special characters. In the remainder of this chapter, the handling 
of these two types :is disc.ussed, and the significance of each of the special 
characters is explained. 

NOTE 

This chapter contains several references 
to mailboxes and request messages used 
by tasks to conunllnicate with the 
terminal. If you arE~ puzzled by such a 
rE~ference, look in Chapter 3 for an 
explanation. 

HOW NORMAL CHARACTERS ARE HANDLED 

The destination of a normal characte~, when entered, depends on whether 
there is an input request message at th.~ Terminal Handler's input request 
mailbox. If there is an :input request message, the character is echoed 
to the terminal's d:isplay and goes into the input request message. If 
there is not an input request message, the character is deleted. 

HOW SPECIAL CHARACTERS ARE HANDLED 

Table 2-1 lists the special characters and sununarizes the effects of each 
of them. The following text comprises complete descriptions of the 
effects of the spec!ial characters. In these descriptions, there are 
several references to ttthe current line. tt The current line consists of I 
the data, with editing, that has been entered since the last end-of-line 
character. 

REPLACE Terminal Handler 2-1 UPDATE 3, 3/85 



USING A TERMINAL WITH THE iRMX~ 86 OPERATING SYSTEM 

Table 2-1. Special Chi!lracter Summary 

Special 
Character Effect 

RUBOUT 

Carriage 
Return 

Line Feed 

ESCape 

control-C 

control-O 

control-Q 

control-R 

control-S 

control-X 

control-Z 

Deletes previously entered character. 

Signals end of line. 

Signals end of line. 

Signals end of line. 

Calls an application program. 

Kills or restarts output. 

Resumes suspended output. 

Displays current line with editing. 

Suspends output. 

Deletes the current line. 

Sends empty message. 

The following descriptions concern the special characters needed when 
entering data at the terminal. Host of these characters are for 
line-editing. Each description is di,rided into two parts: internal 
effects and external effects. The difference is that internal effects are 
those that are not directly visible I' whereas external effects are 
immediately shown on the terminal's display. 

RUBBING OUT A PREVIOUSLY-TYPED CHARACTER (RUBOUT) 

Internal Effects: Causes the most recently entered but not yet deleted 
character to be deleb~d from the current line. If the 
current line is empty, there is no internal effect. 

REPLACE Terminal Handlelt" 2-2 UPDATE 3, 3/85 



· (,') I CHAPTER 3 L ____ P_R_o_G_RA._M_M_�N_G_C_o_N_s_�D_E_R_fi.._~_IO_N_S__l 

The iRMX 86 Terminal Handler supports terminal input and output by 
providing mailbox interfaces. Figurc~ 3-1 shows the use of these 
mailboxes. In the figure, an arrow pointing from a task to a mailbox 
represents an RQ$SE:ND$MESSAGE system call. An arrow pointing from a 
mailbox to a task indicates an RQ$RECEIVE$MESSAGE system call. 

IN iRMX 86 

PI~OVIDED 
BY USER 

USER 
TASKS 

TERMINAL 
HANDLER 

IN iRMX 86 

PROVIDED 
BY USER 

USER 
TASKS 

TERMINAL 
HANDLER 

Figure 3-1. Input and output Mailbox Interfaces 

x-601 

The protocol that tasks observe is muc~h the same for input and output. 
In each case, the task initiates I/O by sending a request message to a 
mailbox. An input request mailbox (default name RQTHNORMIN) and an 
output request mailbox (default name RQTHNORMOUT) are provided. These 
mailboxes are cataloged in the root job directory. In the case of 
multiple terminals, one input and one output mailbox will be cataloged 
for each Terminal Handler. (See Chap,ter 4 for more information about 
multiple versions of the Terminal Handler.) Figure 3-2 illustrates the 
protocol for findin~~ the root job token and for obtaining the input and 
output mailbox tokens. 

REPLACE Terminal Handler 3-1 Update 3, 3/85 



PROGRAMMING CONSI1DERATIONS 

I***************************************:~******************************** 
* This example illustrates the protocol for finding the root job token * 
* and for obtaining the input and output mailbox tokens. * 
****************************************:~******************************** 

DECLARE rtjb$token WO:RD; 
DECLARE root$job LI'rERALLY , 3 ' ; 
DECLARE status WO:RD; 

DECLARE input$mbx$token WORD; 

DECLARE wait$forever LI'rERALLY '0FFFFH' ; 

I*By setting the input parameter to thre,e, the GET$TASK$TOKEN primitive 
will return the root job's TOKEN.*I 

rtjb$token = RQ$GET$TASK$TOKENS (r1oot$j ob , 
@status); 

I*The following LOOKUP$OBJECT primitives use the default mailbox names.*1 

input$mbx$token = RQ$LOOKUP$OBJECT 

output$mbx$token = RQ$LOOKUP$OBJECT 

(rtjb$token, 
@(If/J, 'RQTHNORMIN'), 
wait$forever, 
@status); 

(rtjb$token, 
@(11, 'RQTHNORMOUT'), 
wait$forever, 
@status); 

Figure 3-2. Protocol for Obtaining Root Job and Mailbox Tokens 

Refer to the iRMX 86 NUCLEUS REFERENGE MANUAL for more information 
concerning the individual primitives use,d in the previous example. When 
a task sends a message to the Terminal Handler mailbox, . the Terminal 
Handler processes the request and then l~ends a response message back to 
the requesting task. The task waits at a response mailbox for the 
message. Thus, whether a task does input or output, it first sends and 
then receives. The full details of the: input and output protocols are 
described later in this chapter. output is discussed first because it is 
somewhat easier to understand. 

For both input and output, a task sends a. message segment to the Terminal 
Handler. The format of a request messagE~ is depicted in Figure 3-3. The 
numbers in that figure are offsets, in 'bytes, from the beginning of the 
segment. The field names have differE~nt meanings for input and for 
output. For both input and output, the first four fields are WORD 
values. The MESSAGE CONTENT field can l)e up to 132 bytes in length for 
input and up to 65527 bytes in length for output. 

REPLACE Terminal Handle't" 3-2 Update 3, 3/85 







SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

Table 6-7. Controller Board Switch Settings (continued) 

Intel Board Switch Setting Description/Function 

iSBC 22f6 SI, 1·-7 OFF Selects port address If6f6H. 
(DIP Switches) 8 ON 

S2, 1-2 ON Selects a 16-bit bus and 
16-bit address decoding. 

3-1f6 OFF Selects port address If6f6h. 

iSBC 22f6 E16 - E15 Selects port address If6f6H 
(Wire Wraps) 

E18 - E17 Selects a 16-bit bus and 
E2f6 - E19 16-bit address decoding 

iSBX 251 Not applicable. 

iSBC 254 Not applicable. 

iSBC 254S Not applicable. 

iSBX 27f6 Not applicable. 

iSBX 351 Not applicable. 

iSBC 534 Not applicable. 

iSBC 544 If your board does not 
have a switch SWl, then 
refer to Table 6-3. 

SW1, 1-4 ON Selects Dual-Port RAM 
address. Also refer to 
Table 6-4. 

SWl, 5 ON Selects Dual-Port RAM size 
of 16K. 

SWl, 6 OFF 

SWl, 7 ON Selects 2732A EPROMS. 

SWl, 8 OFF Configures board for slave 
mode. 

REPLACE Installation 6·-15 UPDATE 3, 3/85 



I 

I 

I 

SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

DIP HEADER CONFIGURATIONS FOR THE RS232C PROTOCOL 

Table 6-8 lists the DIP-header configurations you need to supply to 
implement the RS232C serial protocoJ.. This configuration process 
involves either soldering wires on a s:older style header or inserting 
wires into a pin-and-socket style header. 

Table 6-8. DIP Header Configurations for the RS232C Protocol 

Intel Board 

iSBX 351 

iSBC 534 

iSBC 544 

DIP Header 
Jumpers 

3-13 
4-14 
7-8 
5-6 
11-12 
9-10 

4--5 
6-7 
8-10 
9-11 
12-13 
14-15 

2-3* 
4-5 
6-12 
7-13 
14-15 
16-17* 

Description/Function 

Board RxD to Terminal TxD. 
Board TxD to Terminal RxD. 
Board DSR to Board DTR. 
Board RTS to Board CTS. 
Terminal RTS to Terminal CTS. 
Terminal DSR to Terminal DTR. 

Board DSR to Board DTR. 
Board RTS to Board CTS. 
Board RxD to Terminal TxD. 
Board TxD to Terminal RxD. 
Terminal RTS to Terminal CTS. 
Terminal DSR to Terminal DTR. 

Board DSR to Board DTR. 
Board RTS to Board CTS. 
Board RxD to Terminal TxD. 
Board TxD to Terminal RxD. 
Terminal RTS to Terminal CTS. 
Terminal DSR to Terminal DTR 

I-----------~ -______ , ___ ... __ . __ 1-_________________ -1 

Notes: Signal Names: 

TxD: 
DTR: 
RTS: 

Transmit Data 
Data Terminal Ready 
Request To Send 

RxD: 
DSR: 
CTS: 

Receive Data 
Data Set Ready 
Clear To Send 

~------------------.--------------------------~ 

* If your terminal does not produce DSR but receives DTR, replace 
with the following: 2-16; 3-17 

MISCELLANEOUS JUMPERS 

Table 6-9 lists jumpering information not covered in the previous 
sections. The list of jumpers change different functional areas. 
Perform the changes to use default values: established by Intel. 

REPLACE Installation 6--16 UPDATE 3, 3/85 



SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

Table 6-9. Miscellaneous Jumpers 

~------------~-------------~-------------r---------------------------'-----------------

Intel Board 

iSBC 204 

Remove 
Jumper 

E75-E76 
E71-E78 

Add 
Jumper Description/Function 

Use if iSBC 204 has two 8271 
devices installed. 

~------------~-------------~-------------+----------.-------------------.--~-

iSBC 206 

iSBC 208 

iSBC 215 W4, 1-2 

iSBC 215G W4, 1-2 

iSBX 218 WI, A-B 

iSBX 218A 

iSBC 220 

iSBX 251 

W24, 1-2 

W20, 1-2 

WI, A-C 

None. 

None. 

Remove only if installing an 
iSBX 2I8A in iSBX socket 1 
(J4). 

Remove only if installing an 
iSBX 2I8A in iSBX socket 1 
(J4). 

Use if installing an iSBX 
218(A) in iSBX socket 1 (J4). 

Connects -12 volts from the 
MULTIBUS to the iSBC 215G. 

Disables iSBX 218 DMA lines. 

This board may require some 
special jumper changes 
depending on the require-
ments of your application. 
Consult the iSBX 218A 
Hardware Reference Manual for 
special considerations. 

None. 

None. 

~------------~-------------r"------------r----------------------------'------

iSBC 254 None. 

iSBC 254S None. 

REPLACE Installation 6-17 UPDATE 3, 3/85 

I 



SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

Table 6-9. Miscellaneous Jumpers (continued) 

-

Remove Add 
Intel Board Jumper Jumper Description/Function 

iSBX 270 EI1-E12 Sets up your terminal screen 
E16-E17 output. 
E21-E22 
E23-E24 

iSBX 351 None. 

iSBC 534 None. 

iSBC 544 None. 

*** 
REPLACE Installation 6--18 UPDATE 3, 3/85 



CHAPTER 10 
DEVIICE DRIVER PARAMETERS 

This chapter discusses how to respond to the prompts that appear on the Intel 
Device Driver screens. If you are using this chapter to understand a 
particular parameter. line, search Table 10-1 for the device driver that 
interests you and then tur.n to the pag1e indicated to the right of the device 
driver. 

Tablle 10-1" Intel-Supplied Device Drivers 

Device lDriver Page Number 

iSBC ,204 
iSBC ,206 
iSBC ,208 
iSBC ,215 
iSBX ,218 
iSBC .220 
iSBC .254 
iSBX ,270 
iSBC .534 
iSBC .544 
8251A Terminal Driver 
Line Printer. 
USART Terminal Handler Driver 
8274 Terminal Driver 
Line Printer. for iSBC 286/10 
iSBC 188/48 
iSBX 251 
SCSI Driver for iSBC 186/03 
iSBX 218A 
RAM Driver 
iSBC 216 
82530 Terminal Driver 

1(6-(62 
1(6-12 
1(6-21 
10-34 
1(6-5(6 
1(6-62 
10--76 
1(6-86 
10-95 
1(6-1(66 
1(6-118 
1(6-13(6 
10-133 
1(6-135 
10-152 
1(6-152.1 
1(6-156 
10-164 
1(6-179 
1(6-191 
10-2(60 
10-2(61 

If you are adding a user-supplied device driver, refer to page 10-214. 

REPLACE c::onfiguration 10-1 UPDATE 3, 3/85 



iSBC~ 2@4 DRIVER PARAMETERS 

The iSBC 2@4 flexible disk driver: 

• Supports 8-inch, single-sided, si.ngle-density diskettes. 

• Supports the READ, WRITE, SEE:K, SPECIAL, ATTACH$DEVlCE, and 
DETACH$DEVlCE functions. 

• Accepts functions OPEN and CLOSJ~ but performs no operations for 
them. 

Track formatting and volume change not.ification are supported via the 
SPECIAL function. Refer to the iRMX 86 :BASIC 1/0 SYSTEM REFERENCE MANUAL 
for further information about these speci.al functions. 

The iSBC 2@4 driver supports up to four units per controller, two for 
each 8271 flexible disk controller component. The typical controller has 
one 8271 component. This component supports two single-sided units. 

There are three screens that define tht~ interface between the iSBC 2flJ4 
random access device driver and the 1/0 system. These screens relate to 
the three device configuration tables: the device information table, the 
unit information table, and the device unit information block (DUlB). 
Refer to Appendix D for further information about these tables. 

The values shown on the screens in this: section are the same as values 
you would see if you choose option ttflJtt from the Intel-supplied device 
driver screen. 

iSBCl 2flJ4 DRIVER SCREEN 

The lCU uses the information from the following screen to create a device 
information table for the iSBC 2flJ4 driver. If your system includes more 
than one iSBC 2flJ4 controller, you must specify a unique interrupt level 
and port address for each controller. 

*** 
*** 
*** 
*** iSBC 2flJ4 Driver 
*** (IL) Interrupt Level [Encoded Level] 
*** (ITP) Interrupt Task Priority [@-flJFFH] 
*** (PA) Port Address [@-flJFFFFH] 
*** 
*** Enter Changes [Abbreviation ?I= new_value] 
****! Do you have any units for this device? 

flJ@18H 
flJflJ82H 
@@AflJH 

*** 
*** 
*** 
*** 
*** 
*** --
*** 
*** 

.*** 
!**** 

o****! !****o 
****************************************************************** 

0**************************************************************0 

REPLACE Configuration 1@-2 UPDATE 3, 3/85 



iSBC® 208 

pool, so by setting this parameter to '~FFH you allow the calling job to 
select the number of buffers based on its own memory pool size. It is 
reconunended that you use the default value. 

***********************************~************************************ 
* Do you have any more DUIBs for this device? * 
************************************************************************ 

Respond "Yes" to this prompt "Do you have any more device-unit 
information blocks for this device?" if you plan to use the iSBC 208 
controller with two devices: that have different characteristics. 

While developing YOUlt" initial systems, you can create as many device-unit 
information blocks as you want. The number of DUIBs can exceed the 
number of devices on your system. ThE~ particular DUIB associated with 
the device depends on the physical name you use when attaching it. Once 
you know that you will never need a particular DUIB, save memory by 
deleting it from your description file before you generate your 
configuration files (refer to Chapter 17 for additional information on 
generating configuration files). 

REPLACE Configuration 1.-33 UPDATE 3, 3/85 



iSBC" 215 

I 

I 

iSBC~ 215 DRIVER PARAMETERS 

The iSBC 215 Winchester disk driver: 

• Supports the READ, WRITE, SEE:K, SPECIAL, ATTACH$DEVICE, and 
DETACH$DEVICE functions. 

• Accepts the OPEN and CLOSE functions but performs no operations 
for it. 

Track formatting and volume change not.ification are supported via the 
SPECIAL function. Refer to the iRMX 86 :BASIC I/O SYSTEM REFERENCE MANUAL 
for further information about these special functions. 

There are three screens that define tht~ interface between the iSBC 215 
random access device driver and the I/O system. These screens relate to 
the three device configuration tables: the device information table, the 
unit information table, and the device unit information block (DUIB). 
Refer to Appendix D for further information about these tables. 

The three screens that are described in this section are labeled 
ttiSBC 215/218". This means that the sereen supports both the iSBC 215 
and the iSBX 218 controllers. This section describes only the 
iSBC 215-related parameter lines. Refer to the section of this chapter 
labeled "iSBX'" 218 DRIVER PROMPTS" for information on how to respond to 
iSBX 218-related parameter lines. 

The values shown on the screens in this section are the same as values 
you would see if you use the rmx86.def file when you invoke the ICU. 

iSBC~ 215 DRIVER SCREEN 

The ICU uses the information from the following screen to create a device 
information table for the iSBC 215 driver. If your system includes more 
than one iSBC 215 controller, you must :;pecify a unique interrupt level 
and wakeup I/O port address for each cont~oller. 

*** 
*** 
*** 

*** 

iSBC 215/iSBX 218 Driver 
(IL) Interrupt Level [Encoded L1avel1 
(ITP) Interrupt Task Priority [9J·-9JFFH1 
(IP) Wakeup IIO Port [9J-9JFFFFH1 

*** Enter Changes [Abbreviation 1/= new_value] 
****! 

9J9J58H 
9J9J82H 
9J19J9JH 

*** 
*** 
*** 

*** 
*** 
!~ 

o****! !****o 
*************************************~P(**************************** 
0***********************************~P(**************************0 

REPLACE Configuration 1'~-34 UPDATE 3, 3/85 



=================~=======~:==~==========:=================~========~=~========== 

iRMX'" 86 OPERATING SYSTEM RELi~ASE 6 CHANGE PACKAGE: UPDATE 2 

Purpose 

The change pages in this package correct technical errors identified in the 
current version of the iRHr" 86 Release 6 documentation. 

Scope 

The following manuals are affected by tllis change package: 

Introduction and Operator' s Referen(~e Manual (146194-QJQJ1) 
Programmer's Reference Manual, Part I (146195-QJQJ1) 
Programmer's Reference Hanual, Part II (146196-QJQJ1) 
iRMX'" 86 Installation and Configura1:.ion Guide (146197-QJQJ1) 

Installation Instructions 

Change pages in the Update Package are accumulated from quarter to quarter. 
The change pages for each successive up(iate are separated in this package by a 
blue cover page (similar to the sheet y()U are now reading). Within each 
update section, yellow, pink, green, an(i orange cover sheets segregate the 
change pages according to volume. 

The change pages in this package are in~3talled by removing a page from your 
documentation and re!placing it with the corresp.onding page from the change 
package. 

If this is the first i~" 86 Release 6.0 Update to be installed in your 
documentation: 

1. Install the change pages in thls section before installing the change 
pages for Update 3. 

If YOU have installed previous i~" 86 Release 6.@ Updates in your 
documentation: 

1. Discard this section. 





iRMr" 86 Release 6.0 Change Package: Update 2 

Change Pages for: 

iRMX'" 86 Intr()duction and Operator's Reference Manual (146194-fljfljl) 





USING THE HUMAN INTERFACE 

Another advantage of hierarchical file structure is that duplicate file 
names are permitted unless the files reside in the same directory. 
Notice in Figure 2-2 that the file tree contains two directories named 
BILL. (These directories are on the extreme left and extreme right of 
the figure.) However, the Operating System recognizes them as unique 
files because each resides in a different directory. 

Each file tree resides on a secondary storage volume -- the storage 
medium that contains the da.ta. Examples of volumes include flexible 
diskettes, hard disks, and bubble memories. Before you can place named 
files on a volume, you must format the volume to accept named files. The 
formatting process writes a number of data structures on the volume to 
aid the Operating System in creating and maintaining files. You can use 
the FORMAT command (described in Chapter 3) to format your volumes. 

The uppermost point of each file tree is a directory called the root 
directory. When formatted for named fil~~s, each secondary storage volume 
has one and only one root directory. For these reasons: 

• There can be only one file tree per secondary storage volume. 

• A file tree eannot extend to morl~ than one volume. 

PATHNAMES 

This section describes how to specify a particular file in a named-file 
tree. For simplification, it assumes that all files reside in the same 
file tree, and thus in the same volume. To identify the volume as well 
as the file, you must include a logical name for the device as the first 
portion of the file specifi,cation. Refer to the "Logical Names" section, 
later in this chapter, for more informat:lon about logical names. 

In a file tree, each file (data or directory) has a unique shortest path 
connecting it to the root directory. For example, in Figure 2-2, the 
shortest path from the root: directory to file BATCH-2 goes through 
directory DEPTl, through directory TOM, through directory TEST-DATA, and 
finally stops at data file BATCH-2. When you want to perform an 
operation on a file (for example, using the COpy command to copy one file 
to another), you must speci.fy not only the file's name, but the path 
through the file tree to the file. This description is called the file's 
pathname. For file BATCH-2 in Figure 2-2, the pathname is: 

DEPTl/TOM/TEST-DATA/BATCH-2 

REPLACE Operator 2-11 UPDATE 2, 12/84 



D::::Idirectory 

6. - data file 

L = list access 

R = read access 

N = no access 

DLAC = all access 

Figure 2-3. 

REPLACE 

USING THE HUMAN INTERFACE 

IRMX'''S6 Interface Libraries and Language libraries 

( ~O-Rt~n:rR) 

(
0:: Attaching user) 

o ""'owner 
'NORLO - L 

:50: 

Configuration 
Submit Files 

( ~O=R~~n!~) 

a WORLD 

( ~O=R~~n;.rR) 

File Structure on an Intel Supplied Start-Up System 

Operator 2-12 UPDATE 2, 12/84 

R?LOGON 
(WORLD = owner) 



ATTACH DEVIC 

• A task deletes the connection to the file via a Basic I/O System 
or Extended I/O System call (rE~fer to the iRMX 86 BASIC I/O 
SYSTEM REFERENCE MANUAL or the iRMX 86 EXTENDED I/O SYSTEM 
REFERENCE MANUAL :for more information about connections). In 
this instance, the logical namE~ remains cataloged in the global 
directory, but the connection to which it refers does not exist. 

• A user forcibly detaches the volume containing the file via the 
DETACHDEVICE command (described later in this chapter). 

• A user removes the volume from the drive. 

ERROR MESSAGES 

• (logical name), list of logicaJL names not allowed 

You entered more than one logical name as input to ATTACHFILE. 

• (pathname), list of pathnames not allowed 

You entered more than one pathname as input to ATTACHFILE. 

• (logical name), logical name not allowed 

You attempted to attach a file using a logical name :HOME:, :CI:, 
or :CO:. You cannot change the meaning of these logical names. 

• (logical na.me), not a file connection 

The logical name you specified l, (logical name), is already 
cataloged in object directory of the session and does not 
represent a connection object. 

• (pathname), not allowed as default prefix 

You attempted to attach a phys:tcal or stream file as your default 
prefix (:$:). Only named files are valid. 

• (logical name), too many logical names 

REPLACE 

Your global object directory is full. Therefore ATTACHFILE is 
unable to catalog the file's name in the object directory. 

Operator 3-1.5 UPDATE 2, 12/84 



I 

BACKUP 

This command saves files on a named volume by copying them to a physical 
volume which serves as a backup storage device. This command provides a 
way of saving a large volume (a Winchester disk, for example) onto a 
number of smaller volumes such as diske1:tes or onto another mass storage 
device such as a tape drive. Later, you can use the RESTORE command 
(described later in this chapter) to retrieve these files and copy them 
to a named volume. 

INPUT PARAMETERS 

pathname 

DATE 

mm/dd/yy 

REPLACE 

X-667A 

Pathname of a file on the source volume. BACKUP 
saves all the files starting from this point on 
the file tree. If you specify the logical name of 
the device only, BACKUP saves all files in the 
volume, beginning with the root directory. If you 
specify a file and not a directory, then only the 
specified file is saved. 

BACKUP saves all files created or modified on or 
after the date and time specified with the 
DATE/TIME parameters. If the DATE parameter is 
omitted, the date defaults to the current system 
date. If both date and time parameters are 
omitted (DATE/TINE), then the date and time 
default to 1/1/78 and 00:00:00. 

Form used to specify the DATE. 

mm Numerical designation for the month. (For 
example: 1. represents January, 2 represents 
February, E!tC.). Must be a digit. 

dd Numerical designation for the day of the 
month. Value must be in digits. 

yy Designation for the year. You enter this 
as a two dtgit number, as follows: 

Operator 3-16 UPDATE 2, 12/84 



PERMIT 

This command allows you to grant or revoke user access to files that you 
own. The format of this command is as follows: 

~me-list 

INPUT pARAMETERS 

pathname-list 

access 

REPLACE 

------~()-------~ 

x-204 

One or more pathnames, separated by commas, of the 
files that are to have their access rights or list 
of accessors changed. 

Access characters that grant or rescind the 
corresponding access to the file, depending on the 
value parameter that follows. The possible values 
include: 

Value 

D 

L or R 

A 

C or U 

N 

Access 

Delete 

List (for directories) and 
read (for data files) 

Add entry (for directories) 
and append (for data files) 

Change (for directories) and 
Update (for data files) 

Rescinds all access not 
explicitly granted (used 
without an accompanying value) 

If specified without an accompanying value, each 
access character grants the specified access. 
Specifying N alone rescinds all 

Operator 3-83 UPDATE 2, 12/84 



value 

user-list 

DATA 

DIRECTORY 

MAP 

REPLACE 

access and removes the users specified with the 
USER parameter from the file's access list. 
Specifying N with other characters grants the 
access specified by those characters and rescinds 
all other access. You can use Land R 
interchangeably for both data files and 
directories; likewise C and U. 

Value which specifies whether to grant or rescind 
the associated aceess right. Possible values 
include: 

Value 

o Rescind the access right 

1 Grant the access right 

The default value is 1. That is, specifying an 
access character without a value grants the 
corresponding access. 

User IDs for whom the previously-specified access 
rights apply. Two special values are also 
acceptable for this parameter. They are: 

WORLD 

* 

SpE~cial user ID (OFFFFh) giving all 
USE~rs access to the file. 

Designator indicating that the 
aceess rights apply to all users 
currently in the file's access list. 

The Operating System limits each file to three 
user IDs in the aecess list. If you omit this 
parameter, PERMIT assumes the user ID associated 
with your interactive job. 

Specifies that thE~ access information applies to 
the data files in the pathname list. If you omit 
both the DATA and DIRECTORY parameters, PERMIT 
assumes both. 

Specifies that the access information applies to 
the directories in the pathname list. If you omit 
both the DATA and DIRECTORY parameters, PERMIT 
asstnnes both. 

Specifies that aceess information also applies to 
the map and volume label files in the pathname 
list. If you use the MAP parameter, you must 
specify the full pathname of any map files or 
volume label fileB in the pathname list. For, 
example PERMIT :fO:R?* DLAU MAP will change the 
access rights for all map files and volume label 

Operator 3-84 UPDATE 2, 12/84 



QUERY 

DESCRIPTION 

files on the volume (with the exception of R?SAVE 
which is unaffected by the MAP parameter). Notice 
that, in this instance, the Human Interface does 
not interpret the "?" as a wild card character. 

Causes PERMIT to prompt for permission to modify 
the access rights associated with each file. It 
does this prompting by displaying the following 
message: 

<pathname), 
accessor = <new id), <new access), PERMIT?--

EntHr one of the following (followed by a carriage 
return) in response to the query: 

Entry 

Y or y 

E or e 

R or r 

Any other 
character 

Action 

Change the access. 

Exit from the PERMIT command. 

Change the access and continue 
with the command without 
further query. 

Do not change access; continue 
with PERMIT command and query 
for next access change, if any. 

You can use the PERl-lIT command to update the access information for the 
following files: 

• Files for which you are listed as the owner. 

• Files for which you have change·~ntry access to the file's parent 
directory. 

You cannot change the access information for other files. PERMIT can 
perform the following functions: 

• Adding or subtracting users from a file's list of accessors. 
This list determines which users have access to the file. 

• Setting the type of access (access rights) granted to the users 
in the accessor list. 

Currently the Operating System allows only three user IDs in the list of 
accessors, but one of these IDs can be the special ID WORLD, which grants 
access to all users. 

REPLACE Operator 3-85 UPDATE 2, 12/84 

PERMI 

I 



'ERMIT 

You specify the type of access to be granted or rescinded by means of 
access characters and values. You can concatenate access characters and 
values together or you can separate the jLndividual access specifications 
with commas. For example, if you want to grant delete access and rescind 
add and update access, you could enter any of the following combinations: 

AODUO 
AO,D,UO 
AODIUO 
AO ,DI, UO 

As you can see from the previous lines, D is equivalent to DI. Also, the 
order in which you specify access characters is not important. 

If there are mUltiple occurrences of an access character in the PERMIT 
command, PERMIT uses the last such charaeter to determine the access. 
For example, the combination: 

DO, Al , R 1 ,D 1 

is the same as the combination: 

AI,RI,DI 

In the first combination, the DI overrides the DO. 

You can use the N character to rescind all access to the file. If 
specified alone, it removes user IDs front the accessor list. However, 
the N character can also be useful when changing access rights, if you 
don't remember the specified user's currEmt access rights. In this case 
you can specify the N character first, to clear all the access rights, 
and follow it with other characters to grant the desired access. For 
example, if you want to grant list acceSf:: only, you could specify "NL" 
instead of "DOAOCOL". 

After changing the access information for a file, PERMIT displays the 
following information: 

<pathname), 
accessor <accessor ID), <access) 

where <pathname) is the pathname of the specified file, <accessor ID) is 
the user ID of one of the files accessors, and <access) indicates the 
access rights that the corresponding user has. PERMIT displays the 
access rights as access characters: DLAC for directories and DRAU for 
data files. If a particular access right is not allowed, the display 
replaces the corresponding character with a dash (-). For example, the 
display: 

-L-C 

indicates that the corresponding user has list and change access. 

REPLACE Operator 3-86 UPDATE 2, 12/84 



• output specification missing 

You did not specify a pathname to indicate the destination of the 
restored files. 

• <pathname>, READ access required 

You do not have read access to a file on the backup volume; 
therefore RESTORE cannot restore the file. 

• <pathname>, too many input pathnames 

REPLACE 

You attempted to enter a list of logical names for the backup 
devices.. You can enter only one input logical name per 
invocation of RESTORE. 

Operator 3-97 UPDATE 2, 12/84 

RESTO I 



SUBMIT 

This command reads and executes a set of commands from a file in 
secondary storage instead of from the console keyboard. 

INPUT PARAMETERS 

pathname 

parameter-list 

OUTPUT PARAMETERS 

TO 

REPLACE 

J~ 
X-205A 

Name of the file from which the commands will be 
read. This file may contain nested SUBMIT 
commands. 

Actual parameter::; that are to replace the formal 
parameters in thc~ SUBMIT file. You must surround 
this parameter list with parentheses. You can 
specify as many as 10 parameters, separated by 
commas, in the SUBMIT command. If you omit a 
parameter, you OOlst reserve its position by 
entering a comma '. If a parameter contains a 
comma, space, or parenthesis, you must enclose the 
parameter in single quotes. The sum of all 
characters in thE~ parameter list must not exceed 
512 characters. 

Causes the output from each command in the SUBMIT 
file to be written to the specified new file 
instead of the console screen. If the output file 
already exists, the SUBMIT command displays the 
following messagE~: 

(pathname), already exists OVERWRITE? 

Operator 3-98 UPDATE 2, 12/84 



OVER 

AFTER 

out-pathname 

ECHO 

DESCRIPTION 

Ent(~r Y, y, R, or r if you wish the existing 
output file to be deleted. Enter any other 
character if you do not wish the existing file to 
be deleted. A response other than Y or y causes 
the SUBMIT command to be terminated and you will 
be prompted for a new command entry. 

Causes the output for each command in the SUBMIT 
file to be written over the specified existing 
file instead of the console screen. 

Causes the output from each command in the SUBMIT 
file to be written to the end of an existing file 
instead of the console screen. 

Pathname of the file to receive the processed 
output from each command executed from the SUBMIT 
file. If no preposition or output file is 
specified, TO :CO: is the default. 

ECHO causes the a copy of the data read from the 
first level of a SUBMIT file to be sent to the 
CRT.. This parameter lets you know which action 
specified within a SUBMIT file is currently 
executing. Nested SUBMIT commands do not have 
thei.r contents sent to the console. 

To use the SUBMIT command you must first create a data file that defines 
the command sequence and formal parameters (if any). The Operating 
System first looks for the pathname ending in "CSD". If no such file is 
found, then the Operating System looks for the specified file in the 
pathname. 

Any program that reads its commands from the console input (:CI:) can be 
executed from a SUBMIT file. If another SUBMIT command is itself used in 
a SUBMIT file, it causes another SUBMIT file to be invoked. You can nest 
SUBMIT files to any level of nesting until memory is exhausted (each 
level of SUBMIT requ:ires approximately 10K of dynamic memory). When one 
nested SUBMIT file completes execution, it returns control to the next 
higher level of StffiMIT file. 

If, during the execution of SUBMIT (or any nested SUBMIT), you enter the 
CTRL/c character to abort processing, all SUBMIT processing exits and 
control returns to your user session. 

When you create a SUBMIT file, you indicate formal parameters by 
specifying the characters %n, where n ranges from 0 through 9. When 
SUBMIT executes the file, i.t replaces the formal parameters with the 
actual parameters listed in the SUBMIT command (the first parameter 
replaces all instanc(~s of %0, the second parameter replaces all instances 
of %1, and so forth). If the actual parameter is surrounded by quotes, 
SUBMIT removes the quotes before performing the substitution. If there 

REPLACE Operator 3-99 UPDATE 2, 12/84 

SUBM 



SUBMIT 

is no actual parameter that corresponds to a formal parameter, SUBMIT 
replaces the formal parameter with a null string. 

When you specify a preposition and output file (other than :CO:) in a 
SUBMIT command, only your SUBMIT command entry will be echoed on the 
console screen; the individual command entries in the submit file are not 
displayed on the screen as they are load(~d and executed. 

The SUBMIT command will display the following message when all commands 
in the submit file have been executed: 

END SUBMIT <pathname) 

You may use SUPER sub-commands (such as CHANGEID) within a SUBMIT file. 
To do so, you must include a SUPER command in the SUBMIT file. The SUPER 
command must precede any of the sub-comm.ands in the file. When the 
SUBMIT file encounters the SUPER command, you are prompted for a 
password. Execution of the remainder of the file does not resume until 
you respond. You can avoid interrupting execution of the SUBMIT file by 
invoking the file while you are in the SUPER mode. In this case, the 
SUBMIT file still requires an embedded SUPER command. However, you are 
not prompted to re-enter the password when the SUBMIT file executes. 

ERROR MESSAGES 

• (pathname), end of file reached 'before end of command 

The last command in the input file was not specified completely. 
For example, the last line might contain a continuation character. 

• <parameter), incorrectly formed parameter 

You separated the individual para.meters in the parameter list 
with a separator character other than a comma. 

• <pathname), output file same as :input file 

You attempted to place the output from SUBMIT into the input file. 

• <pathname), too many input files 

You specified more than one pathname as input to SUBMIT. SUBMIT 
can process only one file per invocation. 

• <parameter), too many parameters 

REPLACE Operator 3-100 UPDATE 2, 12/84 



ZSCAN 

This command reads an object file or an object library and displays the 
Identification Number of all ZAPs that have been applied to that file. 

INPUT PARAMETER 

input-path 

DESCRIPTION 

X-905 

The pathname of the object file or object 
library to be scanned. The pathname 
cannot contain wildcard characters. The 
pathname must specify a file, not a 
directory. 

Fixes for problems discovered in the operation system software are 
distributed through the iRHX 86 Update Service. Intel refers to these 
fixes as "ZAPs". ZAPs are patched modules that replace the corresponding 
module in the operation system. 

Each update diskette contains an accumulation of all ZAPs assured during 
the current release of the operating system. When you install the latest 
update, all ZAPs (from the current update and from previous updates) are 
automatically applied to your system. 

The ZSCAN command allows you to check which ZAPs have been applied to an 
object file or an object library. Beginning with iRMX 86, Release 6.0, 
Update 2.0 all ZAPs (including all ZAPs from previous Release 6 updates) 
are marked by a unique identifier string. Installing Update 2 -- or any 
later update -- assures that ZAP identifier strings are affixed to all 
ZAPs currently applied to iRMX 86 Release 6.0. ZSCAN finds occurrences 
of there strings and returns information about the associated ZAPs. 

When you invoke ZSCAN, you must specify an object file or an object 
library. You can not invoke the command to find all of the ZAPs applied 
within a specified directory. Furthermore, you cannot use wildcard 
characters In the pathname of the file to be scanned. 

Output from ZSCAN is automatically directed to your terminal. To 
re-direct output to any other destination, place the ZSCAN command line 
in a SUBMIT file. Then invoke the SUBMIT file specifying the desired 
output destination. 

INSERT Operator 3-113 UPDATE 2, 12/84 



~SCAN 

By default, the iRMX 86 system object files are not accessible to user 
WORLD. Therefore, if you intend to use~ ZSCAN on a bootable system object 
file, you must grant user WORLD read access rights to that file (using 
the Human Interface PERMIT command) or invoke ZSCAN from the SUPER mode. 

OUTPUT DISPLAY 

Upon successful execution, the ZSCAN command displays one of the two 
following messages. 

When ZSCAN encounters ZAPs: 

< filename> , has the following ZAP(s) applied: 
< zap id > , < class> : for iRMX 86 R6.0, < layer> < version> 

< zap id > , < class > 

where: 

<filename> 

<zap id> 

<class> 

<layer> 

<version> 

INSERT 

for iRMX 86 R6.0, < layer> < version> 

the name of the file being scanned. 

the identification code for the ZAP: 

Z BR [~]xx 

where: 

BR 

A 
B 

xx 

a iRMX 86 Release 6.0 ZAP; 

a Class A ZAP 
a Class B ZAP 

a unique ID number from ° to 99 

the class of the ZAP. Class A indicates a 
supported ZAP distributed through the iRMX 86 
update service. Class B indicates an 
un-supported ZAP with limited distribution. 

the layer of the operating system (e.g. Nucleus, 
BIOS, etc.) that the ZAP pertains to. 

the version of the operating system layer that 
the ZAP pertains to. 

Operator 3-114 UPDATE 2, 12/84 



When ZSCAN encounters no ZAPs: 

< filename > , No ZAPs applied 

where: 

< filename > the name of the file bing scanned. 

ERROR MESSAGES 

• < filename> file does not exist. 

There is no file w:i~th the pathname specified in the command. 

• < filename> is not an object module. 

INSERT 

The file specified in the command is not an object module and 
thus cannot be scanned for ZAPs. 

Operator 3-115 UPDATE 2, 12/84 

ZSCAI 





(fnodenum>, fnode out of range 

no badblocks file 

The fnode number that you specified 
was larger than the largest fnode 
number in the volume. 

Your system does not have a bad 
blocks file. This message could 
appear because you used a Release 4 
or earlier version of the Human 
Interface command, FORMAT, when you 
formatted your disk. 

REPLACE Disk Verify 2--7 UPDATE 2, 12/84 

ALLOCATI 



DISK COMMAND 

This command displays the attributes of the volume being verified. You 
can abort this command by typing a CONTROL-C (press the CONTROL key, and 
while holding it down, press the C key). The format of the DISK command 
is as follows: 

x-225 

OUTPUT 

The output of the DISK command depends on whether the volume is formatted 
as a physical or named volume. For a physical volume, the DISK command 
displays the following information: 

where: 

Device name 
Physical disk 

Device gran 
Block size 

No of blocks 
Volume size 

<devname> 

<devgran> 
<devgran> 
<n umblocks> 
<size> 

<devname> Name of the device containing the volume. This is 
the physical name of the device, as specified in the 
ATTACHDEVICE Human Interface command. 

<devgran> Granularity of the device, as defined in the device 
unit information block (DUIB) for the device. Refer 
to the iRMX 86 CONli'IGURATION GUIDE for more 
information about DUIBs. For physical devices, this 
is also the volume block size. 

<numhlocks> Number of volume blocks in the volume. 

<size> Size of the volume, in bytes. 

For a named volume, the DISK command diBplays the following information: 

Device name <devname> 
Named disk, Volume name <volname> 

Device gran <devgran> 
Block size <volgran> 

No of blocks <n umblock 13> 
No of Free blocks <numfreeblocks> 

Volume size <size> 
Interleave <inleave> 

Extension Size <xsize> 
No of fnodes <n umfnodes> 

No of Free fnodes <numfreefnodes> 
REPLACE Disk Verify 2-B UPDATE 2, 12/84 



STRUCTURE OF iRMXTH 86 NAMED VOLUMES 

If the formatting program is unable to provide this 
information, it places an ASCII space in this field. 

• The next two bytes contain a two-digit ASCII 
sequence number which is incremented by the 
formatting program each time the formatting 
program chang(~s in a way that affects the voltnne 
format. The Release 4 FORMAT Human Interface 
command places the characters "00" in this field. 

• The right~ost three bytes of the field contain 
a three-digit ASCII number specifying the 
version of the Basic I/O System that was used in 
formatting thc~ volume (for example, the 
characters "030" would indicate version 3.0). 
If the formatting program is unable to obtain 
this information, it places ASCII spaces in this 
field. 

DEVICE$SPECIAL(8) Reserved for special device-specific information. 
When no device-specific information exists, this 
field must contaIn zeros. If the device is a 
Winchester disk with an iSBC 215 controller or if 
the. device is a disk wi th an iSBC 220 controller, 
the iRMX 86 Operating System imposes a structure on 
this field and supplies the following information: 

SPECIAL 
CYLINDERS 
FIXED 
REMOVABLE 
SECTORS 
SECTOR SIZE 
ALTERNATES 

where: 

CYLINDERS 

FIXED 

REMOVABLE 

SECTORS 

SECTOR SIZE 

ALTERNATES 

STRUCTURE( 
WORD, 
BYTE, 
BYTE, 
BYTE, 
WORD, 
BYTE); 

Total number of cylinders on the 
drive. 

Number of heads on the fixed 
disk or WinGhester disk. 

Number of heads on the removable 
disk cartridge. 

Number of sectors in a track. 

Sector size, in bytes. 

Number of alternate cylinders. 

The remainder of the Volt~e Label (bytes 430 through 511) is reserved and 
must be set to zero. 

REPLACE Disk Verify A-7 UPDATE 2, 12/84 



STRUCTURE OF iRMXT" 86 NAMED VOLUMES 

INITIAL FILES 

Any mechanism that formats iRMX 86 named volumes must place seven files 
on the volume during the format process. These seven files are the fnode 
file, the volume label file, the volume free space map file, the free 
fnodes map file, the bad blocks file, the root directory, and the space 
accounting file. The first of these files, the fnode file, contains 
information about all of the files on the volume. The general structure 
of the fnode file is discussed first. Then all of the files are 
discussed in terms of their fnode entries and their functions. 

FNODE FILE 

A data structure called a file descriptor node (or fnode) describes each 
file in a named file volume. All the fnodes for the entire volume are 
grouped together in a file called the fnode file. When the I/O System 
accesses a file on a named volume, it examines the iRMX 86 Volume Label 
(described in the previous section) to determine the location of the 
fnode file, and then examines the appropriate fnode to determine the 
actual location of the file. 

When a volume is formatted, the fnode file contains seven allocated 
fnodes and any number of un-allocated fnodes. The original number of 
un-allocated fnodes depends on the FILES parameter of the FORMAT 
command. These allocated fnodes represl:!nt the fnode file, the volume 
label file, the volume free space map file, the free fnodes map file, the 
bad blocks file, the root directory, and the space accounting file. 
Later sections of this chapter describe these files. The size of the 
fnode file is determined by the number of fnodes that it contains. The 
number of fnodes in the fnode file also determines the number of files 
that can be created on the volume. The number of files is set when you 
format the storage medium. 

The structure of an individual fnode in a named file volume is as follows: 

DECLARE 
FNODE 

REPLACE 

FLAGS 
TYPE 
GRAN 
OWNER 
CR$TIME 
ACCESS$TlME 
MOD$TIME 
TOTAL$SIZE 
TOTAL$BLKS 

POINTR( 40) 

THIS$SIZE 
RESERVED$A 
RESERVED$B 
ID$COUNT 

ACC(9) 
PARENT 
AUX(* ) 

STRUCTURE( 

Disk Verify A--8 

WORD, 
BYTE, 
BYTE, 
WORD, 
DWORD, 
DWORD, 
DWORD, 
DWORD, 
DWORD, 

BYTE, 

DWORD, 
WORD, 
WORD, 
WORD, 

BYTE, 
WORD, 
BYTE) ; 

UPDATE 2, 12/84 



L_ 
Underscored entries are primary referenees. 

aborting DISKVERIFY commands 2-2 
ALL option 2-47 
ALLOCATE command 2·-5 
automatic device reeogniti.on A-4 
auxiliary bytes A-13 

bad blocks file A-I5 
bad blocks 

in FREE command 2-27 
map 2-38 

command dictionary 2-4 
command error messages 2-·3 
CONTROL-C 2-2 

density A-4 
device granularity A-5 
device recognition A-4 
directory A-16 
DISK command 1-3 
DISK command 2-8 
DISKVERIFY command 1-2 

error messages 1-5 
output 1-4 

DISPLAYBYTE command 2-10 
DISPLAYDIRECTORY command 2-13 
DISPLAYFNODE command 2-15 
DISPLAYNEXTBLOCK command 2-20 
DISPLAYPREVIOUSBLOCK command 2-21 
DISPLAYWORD command 2-22 

example volume A-2.2 
EXIT command 2-25 
file 

driver A-5 
granularity 2-15 t A-IO 
owner 2-I5 t A-II 
type 2-15 t A-I0 

fnode file A-8, A-14 t A-24 
fnodes 2-15, A-5~A-7 
FREE command 2-26 --
free fnodes map 2-38 t 2-39 t A-I5 
free space map 2-38 t 2-39, A-14 

REPLACE Disk Verify Index-l 

INDEX 

I 

I 

UPDATE 2, 12/84 



granularity 2-15, A-5, A-I0 

HELP command 2-28 

initial files A-8 
input radices 2-2 
interleave factor A-3, A-5 
invoking 1-1 

INDEX (conti:rlued) 

iRMX 86 volume label A-4, A-23 
ISO information A-I 
ISO label A-2, A-22 

keyword 2-1 

LIST option 2-47 
LISTBADBLOCKS command 2-29 
long files 2-15, A-9, A-12, A-18 

miscellaneous commands 2-30 
ADD 2-30 
ADDRESS 2-30 
BLOCK 2-31 
DEC 2-32 
DIV 2-32 
HEX 2-32 
MOD 2-33 
MUL 2-33 
SUB 2-34 
error messages 2-34 
examples 2-35 

named disk fields 2-9 
NAMED verification 1-3 
NAMED verification 2-47 
named volume structure A-I 
NAMEDI verification 1-3 
NAMEDI verification 2-46 

output 2-48 
errors 2-51 

NAMED2 verification 1-3 
NAMED2 verification 2-47 

output 2-49 
errors 2-52 

notational conventions iii 

owner 2-15, A-II 

parameters 2-1 
parent directory A-13 
PHYSICAL verification 1-3 
PHYSICAL verification 2-47 

output 2-49 
errors 2-54 

REPLACE Disk Verify Inciex-2 UPDATE 2, 12/84 



INDEX (cont:lnued) 

QUIT command 2-36 

railroad track schematic iii 
READ command 2-37 
reader level iii 
recording 

density A-4 
sides A-5 
size A-5 

related publications iv 
root directory A-5, A-16 

SAVE command 2-38 
short files 2-15, A-9, A-12, A-17 
size A-5 
structure of iRMX 86 named volumes A-I 
SUBSTITUTEBYTE command 2-40 
SUBSTITUTEWORD command 2-43 
syntax iii 

track skew A-6 

variable iii 
VERIFY command 1-3 
VERIFY command 2-46 

working buffer 2-37 
WRITE command 2-55-

REPLACE Disk Verif:r Index-3 

I 

UPDATE 2, 12/84 





iRHP 86 Release 6.(6 Change Package: Update 2 

Change Pa~ges for: 

iRHX'" 86 Progranuner' s Referenc~e Manual, Part I (146195-(6(61) 





EXCEPTIONAL CONDITION MANAGEMENT 

• A reserved (WORD) parameter. 

• A (WORD) parameter containing the Numeric Processor Extension 
(NPX) statuB word., This parameter is valid only if the condition 
code is E$NDP$ERROR. 

ASSIGNING AN EXCEPTION HANDLER 

A task may use the SET$EXCEPTION$HANDLER system call to declare its own 
exception handler. Otherwise, the task inherits the exception handler of 
its job. A job can receive its own exception handler at the time of its 
creation. If it doesn't, the job inherits the system exception handler. 
Thus, the Nucleus can always find an exception handler for the running 
task. 

A system exception handler is provided as part of the iRMX 86 Operating 
System. Depending on a configuration option, it either deletes or 
suspends any task on whosc~ behalf it is invoked. The iRMX 86 
CONFIGURATION GUIDE describes this configuration option. 

Users wanting to write their own exception handlers should compile them 
under the PL/M-86 LARGE control, specifying the PUBLIC attribute. 

Any task can have the Debugger as its exception handler; see the 
description in Chapter 12 of the SET$EXCEPTION$HANDLER system call for 
instructions on how to dynamically make such an assignment. 
Alternatively, the DebuggE~r or any othe:r routine can be made the system 
exception handler statically; see the i.RMX 86 CONFIGURATION GUIDE for 
information on how to do this. 

INVOKING AN EXCEPTION HANDLER 

An exception handler normally receives control when an exceptional 
condition occurs. However, when a task encounters an exceptional 
condition, it need not always have control passed to its exception 
handler. The factor that determines whether control passes to the 
exception handler is the task's exceptj~on mode. This attribute has four 
possible values, each of which specifies the circumstances under which 
the exception handler is to get control in the event of an exceptional 
condition. These circumstances are: 

• Programmer errors only. 

• Environmental conditions only. 

• All excepti.onal conditions. 

• No exceptional conditions. 

REPLACE Nucleus 7-13 UPDATE 2, 12/84 

I 



EXCEPTIONAL CONDITION MANAGEMENT 

When the Nucleus detects that a task has caused an exceptional condition 
in making a system call, it compares the type of the condition with the 
calling task's exception mode. If a transfer of control is indicated, 
the Nucleus passes control to the exception handler on behalf of the 
task. The exception handler then deals with the problem, after which 
control returns to the task, unless the exception handler deleted the 
task. When the exception handler returns, the task can also detect that 
an error occurred, because the system call's except$ptr parameter points 
to a word containing the condition code. While the exception handler is 
executing, the errant task is still regarded by the Nucleus to be the 
running task. 

When a task is created, its exception mode is set to its job's default 
exception mode. The task can change its exception handler and exception 
mode attributes by using the SET$EXCEPTION$HANDLER system call. 

HANDLING EXCEPTIONS IN-LINE 

If a task's exception mode attribute does not direct the Nucleus to 
transfer control to the task's exception handler, the responsibility for 
dealing with an error falls upon the task. 

Each system call has as its last parameter a POINTER to a WORD. After a 
system call, the Nucleus returns the resulting condition code to this 
WORD. By checking this WORD after each system call, a task can ascertain 
whether the call was successful. (See Table 7-1 for condition codes.) 
If the call was not successful, the task can learn which exceptional 
condition it caused. This information can sometimes enable the task to 
recover. In other cases more information is needed. 

If a system call returns an exception code to indicate an unsuccessful 
call, all other output parameters of th.9.t system call are undefined. 

NOTE 

If an exceptional condition is caused 
by an invalid parameter, an exception 
handler, which is paBsed the parameter 
number of the first :lnvalid parameter, 
should handle the condition. 

HANDLING EXCEPTIONS IN iAPX 286-BASED SYSTEMS 

The Operating System software catches and returns most of the exceptional 
conditions listed in Table 7-1. Howeve;c, a few conditions (those noted 
with asterisks in the table) occur because the microprocessor catches (or 
traps) an invalid condition. 

REPLACE Nucleus 7-14 UPDATE 2, 12/84 



iAPX86,88 
CPU 

REPLACE 

INTERRUPT MANAGEMENT 

MASTER 
PIC 

MO 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
~/ 

/ 

M1-+-.......... -
M2 
M3-+-.......... - __ 
M4 
M5 
M6 
M7 

/ 
",.--

SLAVE 1 PIC 

11 
12 
13 
14 
15 
16 
17 

SLAVE 2 PIC 

30 
31 
32 
33 
34 
35 
36 
37 

• • • 
SLAVE 6 PIC 

70 
71 
72 
73 
74 
75 
76 
77 

x-642 

Figure 8-1. iAPX 86, 88 Interrupt Lines 

Nucleus 8--3 UPDATE 2, 12/84 



INTERRUPT MANAGEMENT 

iAPX 286 Configurations 

An iAPX 286 environment is similar to an iAPX 86, 88 environment in all 
ways but one. If your iAPX 286-based system includes an 80287 NPX, you 
do not have to connect the NPX to a PIC. Instead of using the PIC, the 
NPX uses CPU interrupt traps 7 and 16 to communicate directly with the 
iAPX 286 component. This setup results in an extra interrupt level for 
you to use any way you wish. Figure 8-2 illustrates this situation. 

REPLACE 

iAPX286 
CPU 

! I 
CPU 

TRAPS 

~ 
L:.J 

MASTER 
PIC 

--/ 
I 
I 
I 
I 
J 

I 
MO- -+-_/ 
M1-+-·~----------~ 
M2-

SLAVE 1 PIC 

01 
02 
03 
04 
05 
06 
07 

M3-
M4-
MS-
M6-
M7-t-....... ----...... 

SLAVE 7PIC 

70 
71 
72 
73 
74 
75 
76 
77 

X-644A 

Figure 8-2. iAPX 286 Interrupt Lines 

Nucleus 8-4 UPDATE 2, 12/84 



SEND$UNI' 

/************************************************************************ 
* The calling task invokes the SEND$UNITS system call to send the * 
* uni ts to the semaphore just created (s em$token.) * 
************************************************************************/ 

CALL RQ$SEND$UNITS 

• 

(sern$token, 
three$units$sent, 
@status) ; 

• Typical PL/M-86 Statements 

• 
END SAMPL~PROCEDURE; 

CONDITION CODES 

E$OK 

E$EXIST 

E$LIMIT 

E$NOT$CON
FIGURED 

E$TYPE 

REPLACE 

No exceptional conditions. 

The semaphore parameter is not a token for an 
existing object. 

The number of unjlts that the calling task is trying 
to send would cause the semaphore's supply of units 
to exceed its maximum allowable supply. 

This system call is not part of the present 
configuration. 

The semaphore parameter is a token for an object 
that is not a semaphore. 

Nucleus 12-131 UPDATE 2, 12/84 



SET$EXCEPTION$HANDLER 

I 

SET$EXCEPTION$HANDLER 

SET$EXCEPTION$HANDLER assigns an exception handler to the calling task. 

CALL RQ$SET$EXCEPTION$HANDLER (exception$lnfo$ptr, except$ptr); 

INPUT PARAMETER 

exception$info$ptr 

OUTPUT PARAMETER 

except$ptr 

REPLACE 

A POINTER to a structure of the following form: 

STRUCTURE( 
EXCEPTION$HANDLER$OFFSET 
EXCEPT 10 N'$HANDLE R$BASE 
EXCEPTION$MODE 

WORD, 
SELECTOR, 
BYTE); 

where: 

• exception$handler$offset contains the offset 
of the first instruction of the exception 
handler. 

• exception$handler$base contains the base of 
the CPU segment containing the first 
instruction of the exception handler. 

• exception$mode contains an encoded indication 
of the calling task's intended exception 
mode. The v;~lue is interpreted as follows: 

Value 

o 
1 
2 
3 

'When to Pass Control 
~to Exception Handler 

'Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

If exception$handler$offset and 
exception$handler$base both contain zeros, the 
exception handlHr of the calling task's parent 
job is assigned. 

A POINTER to a l\TORD to which the iRMX 86 
Operating SysteIll will return the condition code 
generated by th:ls system call. 

Nucleus 12-132 UPDATE 2, 12/84 



SIGNALS$EXCEPTIO 

SIGNAL$EXCEPTION 

The SIGNAL$EXCEPTION system call is invoked by OS extensions to signal 
the occurrence of an exceptional condition. 

CALL RQ$SIGNAL$EXCEPTION(exception$code, param$num, stack$pointer, 
reserved, npx$status$word, except$ptr); 

INPUT PARAMETERS 

exception$code 

param$num 

stack$pointer 

reserved 

npx$status$word 

OUTPUT PARAMETER 

except$ptr 

REPLACE 

A WORD containing the code (see list in Chapter 7) 
for the exceptional condition detected. 

A BYTE containing the number of the parameter which 
caused the exceptional condition. If no parameter 
is at f aul t, param$n um e quaIs zero. 

A t-lORD which, if not zero, must contain the value 
of the stack poi.nter saved on entry to the 
operating system extension (see the entry procedure 
in Chapter 10 for an example). The top five words 
in the stack (where BP is at the top of the stack) 
must be as follows: 

FLAGS Saved by software interrupt 
CS to OS extension 
IP 
DS Saved by OS extension 
BP on entry 

Upon completion of SIGNAL$EXCEPTION, control is 
returned to either of two instructions. If 
stack$pointer contains a zero, control returns to 
th(~ instruction following the call to 
SIGNAL$EXCEPTION. Otherwise, control returns to 
the instruction identified in CS and IP. 

A lNORD reserved for Intel use. Set this parameter 
to zero. 

A WORD containing the status of the NPX. 

A POINTER to a ~TORD to which the iRMX 86 Operating 
System will return the condition code generated by 
this system call. 

Nucleus 12-1l.9 UPDATE 2, 12/84 

I 



aIGNALS$EXCEPTION 

DESCRIPTION 

Operating system extensions use the SIGNAL$EXCEPTION system call to 
signal the occurrence of exceptional conditions. Depending on the 
exceptional condition and the calling task's exception mode, control may 
or may not pass directly to the task 's (~xception handler. 

If the exception handler does not get control, the exceptional condition 
code is returned to the calling task. The task can then access the code 
by checking the contents of the word pointed to by the except$ptr 
parameter for its call (not for the call to SIGNAL$EXCEPTION). 

EXAMPLE 

/**************************************'k********************************* 
* This example illustrates how the SIGNAL$EXCEPTION system call can * 
* be used to signal the occurrence of the exceptional condition * 
* E$CONTEXT. * 
**************************************:k*********************************/ 

$INCLUDE(:F1:SAMPLE.EXT); 

DECLARE e$context 
DECLARE param$num 
DECLARE stack$pointer 
DECLARE reserved$word 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

param$num = 0; 
stack$pointer 0; 

• 

/* Deelares all system calls */ 

LITERALLY '5H'; 
BYTE; 
WORD; 
LITERALLY '0'; 
WORD; 

/* no parameter at fault */ 
/* return control to instruction 

following call */ 

• Typical PL/M-86 Statements 

• 

REPLACE Nucleus 12-150 UPDATE 2, 12/84 



SIGNAL$INTERRUP 

EXAMPLE 

/************************************************************************ 
* This example illustrates how the SIGNAL$INTERRUPT system call can * 
* be used to activate an interrupt task. * 
************************************************************************/ 

$INCLUDE(:Fl:SAMPLE.EXT); 

DECLARE the$first$word 
DECLARE interrllpt$level$7 

/* specifies master 
DECLARE interrllpt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 
DECLARE interrupt$status 
DECLARE ds$pointer 
DECLARE PTR$OVERLAY 

DECLARE ds$pointer$ovly 

/* Declares all system calls */ 

WORD; 
LITERALLY '0000 0000 0111 1000B'; 

interrupt level 7 */ 
BYTE; 
eOINTER; 
WORD; 
WORD; 
WORD; 
POINTER; 
LITERALLY 'STRUCTURE (offset 

base 
/* establishes a structure for 

overlays */ 
PTR$OVERLAY AT (@ds$pointer); 

WORD, 
WORD) , ; 

/* using the overlay structure, the 
base address of the interrupt 
handler's data segment is 
identified * / 

INTERRUPT HANDLER: PROCEDURE INTERRUPT 59 PUBLIC; /* 59 is meaningless 
value. ENTER$INTER
RUPT establishes 
actual level * / 

• 
• Typ:ical pIjM-86 Statements 

• 
/***********************s~************************************************ 
* The calling interrupt: handler invokes the ENTER$INTERRUPT system * 
* call which loads a base address value (defined by * 
* ds$pointer$ovly.base) into the data segment register. This * 
* register provides a mechanism for the interrupt handler to pass * 
* data to the interrupt task to be started up by the SIGNAL$INTERRUPT * 
* system callo * 
************************************************************************/ 

CALL RQ$ENTER$INTERRUPT 

CALL INLINE ERROR PROCESS 

• 

(interrupt$level$7, 
@interrupt$status); 
(interrupt$status); 

• Typical PL/M-86 Statements 
• 

REPLACE Nucleus 12-153 UPDATE 2, 12/84 



.IGNAL$INTERRUPT 

I 

/**************************************'k********************************* 
* The interrupt handler uses SIGNAL$INTERRUPT to start up its * 
* associated interrupt task. * 
**************************************,~*********************************/ 

CALL RQ$SIGNAL$INTERRUPT (inte:rrupt$level$ 7, 
@interrupt$status) ; 

CALL INLINE ERROR PROCESS (intel::-rupt$status); 

END INTERRUPT_HANDLER; 

INLINE ERROR PROCESS: PROCEDURE; 
IF-interrupt$status <> E$OK THEN 

DO; 

• 
• In-line Error ProcesBing PL/M-86 Statements 

• 
END; 

END INLINE _ ERRO~PROCESS; 

SAMPLE PROCEDURE: 
PROCEDURE; 

ds$pointer @the$first$word; /* a dummy identifier used to point to 
interrupt handler's data segment */ 

data$segment = ds$pointer$ovly.base:; 
/* idE~ntifies the base address of the 

interrupt handler's data segment */ 
interrupt$handler INTERRUPT$PTR (INTERRUPT HANDLER); 

/* polnts to the first instruction of 
thE~ interrupt handler */ 

interrupt$task$flag 01H; /* indicates that calling task is to be 
interrupt task */ 

• 
• Typical PL/M-86 Statements 
• 

/**************************************~:********************************* 
* By first invoking the SET$INTERRUPT system call, the calling task * 
* sets up an interrupt level and becomes the interrupted task for * 
* level 7. * 
**************************************~:*********************************/ 

CALL RQ$SET$INTERRUPT (interrupt$level$ 7, 
interrupt$task$flag, 
interr'upt$handler, 
data$segment, 
@status) ; 

• 
• Typical PL/M-86 Statements 
• 

END SAMPLE_PROCEDURE; 

REPLACE Nucleus 12-154 UPDATE 2, 12/84 



A$PHYSICAL$DETACH$DEVI( 

Note that, whether you specify a hard dE!tach or not, there will be no 
attached files on the device after the device is detached. 

CONDITION CODES 

A$PHYSICAL$DETACH$DEVICE can return condition codes at two different 
times. The code returned to the calling task immediately after 
invocation of the system call is considE~red a sequential code. A code 
returned as a result of asynchronous processing is a concurrent exception 
code. A complete explanation of sequential and concurrent parts of 
system calls is in Chapter 7 of this manual. 

The following list is divided into two parts -- one for sequential codes 
and one for concurrent codes. 

Sequential Condition Codes 

The Basic I/O System can return the following exception codes to the word 
specified by the except$ptr parameter of this system call. 

E$OK 

E$EXIST 

No exceptional conditions. 

One or more of the following parameters is not a 
token for an existing object: 

• The connection parameter 

• The resp$mbox parameter 

E$LIMIT The calling task's job has already reached its 
object limit. 

E$MEM The memory available to the calling task's job is 
not sufficient to complete the call. 

E$NOT$CONFIGURED This system call is not part of the present 
configuration. 

E$NOT$DEVICE$CONN The specified connection parameter is not a device 
connection. 

E$SUPPORT The specified connection was not created by this 
job. 

E$TYPE At least one of the following is true: 

REPLACE 

• The connection parameter is a token for an 
object that :ls not a connection. 

• The resp$mbox parameter is a token for an 
object that Is not a mailbox. 

BIOS 8-71 UPDATE 2, 12/84 



l$PHYSICAL$DETACH$DEVICE 

Concurrent Exception Codes 

The Basic I/O System will return the following codes in an I/O result 
segment at the mailbox specified by resp$mbox. After examining the 
segment, you should delete it. 

E$OK 

E$FNEXIST 

E$IO 

E$OUTSTANDING$
CONNS 

REPLACE 

No exceptional conditions. 

The device specified by the connection parameter 
is already being detached. 

An I/O error occurred during the operation, but 
the operation was successful anyway. 

The call attempted a soft detach, but connections 
to the device still existed. 

BIOS 8-72 UPDATE 2, 12/84 



in$baud$r ate 

out$baud$r ate 

REPLACE 

Bits Value and Meaning 

o = Coordinates increase from left to 
right. 

1 Coordinates decrease from left to 
right. 

12 Vertical axis orientation control 
(corresponds to OSC characters T:F). 

13-15 

This specifies whether the coordinates on 
the terminal's vertical axis increase or 
decrease as you move from top to bottom 
across the screen. 

o = Coordinates increase from top to 
bottom. 

1 Coordinates decrease from top to 
bot tom. 

Reserved bits. For future compatibility, 
set to O. 

NOTE 

If bits 4-5 contain 2 or 3, and bits 
6-8 also contain 2 or 3, then they must 
both contain the same value. That is, 
they must both reflect the same parity 
convention (even or odd). 

The input baud rate indicator (corresponds to OSC 
characters T:I). If you attempt to set this field 
to zero, the Basic I/O System ignores your entry 
and leaves the field set to its previous value. 
The word is encod4~d as follows: 

o Invalid. 

1 Perform an automatic baud rate search. 

Other Actual input baud rate, such as 9600. 

The output baud rate indicator (corresponds to OSC 
characters T:O). If you attempt to set this field 
to zero, the Basie I/O System ignores your entry 
and leaves the field set to its previous value. 
The. word is encod«~d as follows: 

o Invalid. 

1 Use the input baud rate for output. 

BIOS 8-99 UPDATE 2, 12/84 

A$SPECUI 



'$SPECIAL 

I 

scroll$lines 

x$y$size 

x$y$offset 

Other = Actual output baud rate, such as 9600. 

Most applications require the input and output 
baud rates to be equal. In such cases, use 
in$baud$rate to set the baud rate and specify a 
one for out$baud$rate. 

An operator at a terminal can enter a control 
character (default is Control-W) when he/she is 
ready for data to appear on the terminal's display 
screen. The scroJlI$lines value (corresponding to 
OSC characters T:S) specifies the maximum number 
of lines that are to be sent to the terminal each 
time the operator enters the control character. 
If you attempt to set this field to zero, the 
Basic I/O System tgnores your entry and leaves the 
field set to its previous value. 

The low-order byte of this word specifies the 
number of charactE!r positions on each line of the 
terminal's screen (and corresponds to OSC 
characters T:X). The high-order byte specifies 
the number of linE!s on the terminal's screen (and 
corresponds to ose characters T:Y). 

The'low-order byte of this word specifies the 
value that starts the numbering sequence of both 
the X and Y axes (and corresponds to OSC 
characters T:U). The high-order byte specifies 
the value to which the numbering of the axes must 
"fall back" after reaching 127 (and corresponds to 
OSC characters T:V). 

The remaining fields apply only for intelligent communications boards 
(such as the iSBC 544 board) that maintaj,n their own input and output 
buffers separately from the ones managed by the Basic I/O System's 
Terminal Support Code. If you aren't sure whether you can set these 
fields, invoke A$SPECIAL with function code 4 to get the terminal 
attributes. If bit 15 of the flow$control field (the next one described) 
is set, your board is a buffered device and you can set the following 
fields. (If your board is not a buffered device, setting any of the 
following fields will cause the terminal support code to return an 
E$PARAM Condition Code.) 

flow$control 

REPLACE 

Specifies whether the communications board sends 
flow control characters (selected by the 
fc$on$char and fc$off$char fields, but usually XON 
and XOFF) to turn input on and off (corresponds to 
the OSC characters: T:G). The low-order bit (bit 
0) controls this option, as follows: 

o Disable flow control. 
1 Enable flow control. 

BIOS 8-100 UPDATE 2, 12/84 



DELCLARE read$file$mark STRUCTURE ( 
search BYTE); 

where: 

search A value indicating the direction of the search, as 
follows: 

00 Search forward 

OFFH Search backward (for start/stop drives 
only) 

When your task issues the A$SPECIAL system call with spec$func set to 9, 
the tape drive writes a file mark at the current position on the tape. 
This function also terminates tape write operations. 

When your task issues the A$SPECIAL system call with spec$func set to 10, 
the tape drive fast-forwards the tape to the end and then rewinds it to 
the load point. 

CONDITION CODES 

A$SPECIAL return condition codes at two different times. The code 
returned to the call:ing task immediately after invocation of the system 
call is considered a sequential condition code. A code returned as a 
result of asynchronous processing is a concurrent condition code. A 
complete explanation of sequential and concurrent parts of system calls 
is in Chapter 7 of this manual. 

The following list is divided into two parts -- one for sequential codes, 
and one for concurrent codes. 

Sequential Condition Codes 

The Basic I/O System can return the following condition codes to the word 
specified by the except$ptr parameter of this system call. 

E$OK 

E$BUFFERED$CONN 

E$EXIST 

REPLACE 

No exceptional conditions. 

The connection pa.rameter is a connection produced 
by the Extended I/O System. You cannot use it 
with Basic I/O System calls. 

At least one of the following is true: 

• One or more of the following parameters or 
fields is not a token for an existing object: 

BIOS 8-103 UPDATE 2, 12/84 

A$SPECU! 



~$SPECIAL 

E$IFDR 

- The connectjLon parameter 

- The resp$mbox parameter 

- The mailbox field in the notify structure. 
(Spe c$func :: 2.) 

- The object field in the notify structure. 
(Spec$func :: 2.) 

The semaphore field in the signal$pair 
structure. (Spec$func = 6.) 

• The connection is being deleted. 

The function requE~sted (spec$func) is not valid 
for the type of file specified by the connection 
parameter. 

E$LIMIT The calling task's job has already reached its 
object limit. 

E$MEM The memory available to the calling task's job is 
not sufficient to complete the call. 

E$NOT$CONFIGURED This system call ls not part of the present 
configuration. 

E$PARAM At least one of the following is true: 

E$SUPPORT 

• The spec$func parameter was 5, and one or more 
of the following is true: 

Bits 0-1 of the connection$flags field was 
equal to O. 

Bits 6-8 of the terminal$flags field was 
greater than 4. 

• The spec$func parameter was 6, and the 
character field was greater than 1FH. 

• The spec$func parameter was greater than 10. 

• One or more of the fields related to buffered 
devices (high$~rater$mark, low$water$mark, 
fc$on$char, fc~ioff$char) was set while bit 15 
of the flow$control field was reset to zero 
(specifying an un-buffered device). 

The specified connection was not created by this 
job. 

REPLACE BIOS 8-104 UPDATE 2, 12/84 



E$TYPE One. or more of the following parameters or fields 
is a token for an existing object of the wrong 
type: 

• The connection parameter. 

• The resp$mbox parameter. 

• The mailbox f:Leld of the notify structure. 
(Spec$func = 2.) 

• The semaphore field of the signal$pair 
structure. (Spec$func = 6.) 

Concurrent Condition Codes 

The Basic I/O System can return the following condition codes in an I/O 
result segment at the mailbox specified by resp$mbox. After examining 
the segment, you should delete it. 

E$OK 

E$CONN$NOT$OPEN 

E$FLUSHING 

E$IDDR 

E$IFDR 

E$IO 

No exceptional conditions. 

The specified connection is not open. This 
applies only to stream and physical files. 

The specified connection was closed before the 
function could be completed. 

The specified function is not supported by the 
device containing the file. 

The connection refers to a named file, but the 
function is not "notify". 

An I/O error occurred which might have prevented 
the operation from completing. Examine the 
unit$status field of the I/O result segment for 
more· information~ 

E$NOT$DEVICE$CONN The function code is 'notify', but the specified 
connection is not a device connection. This 
applies only to named and physical files. 

E$SPACE One of the following is true: 

REPLACE 

• This call attempted to format a track of a 
physical file that is beyond the end of the 
volume. 

• This call attempted to format a track of a RAM 
disk other than track O. 

BIOS 8-105 UPDATE 2, 12/84 

A$SPECIJ 



~$SPECIAL 

E$STREAM$SPECIAL 

REPLACE 

One of the followtng is true: 

• This is a "query" request, but another query is 
already queued., This applies only to stream 
files. 

• This is a "sattsfy" request, but either a query 
request is queued, or no requests are queued. 
This applies only to stream files. (See 
Artificially Satisfying a Stream File I/O 
Request in the DESCRIPTION.) 

BIOS 8-106 UPDATE 2, 12/84 



USING THE iRMXTM TERMINAL SUPPORT CODE 

-----------~,--------~--------~ 

0995 

Figure F-1. Composite OSC Sequence Diagram 

REPLACE BIOS F-9 UPDATE 2, 12/84 



I 

USING THE iRMXTH TERMINAL SUPPORT CODE 

MODES THAT A TERMINAL INHERITS FROM A CONNECTION 

This section describes the modes that depend on the connection to the 
terminal, rather than on the terminal itBelf. With these modes, when 
multiple connections to a terminal exist, the terminal might operate one 
way when communicating via the first connection and a different way when 
communicating via the second connection. 

Each of these modes relates directly to one or more bits in the 
connection$flags word for the connection (as defined in the Chapter 8 
description of the A$SPECIAL system call). The names of the modes, the 
single-letter identification codes for the modes, the bits of the 
connection$flags word to which they correspond, and a brief description 
of their functions are given in Table F-2. 

Assuming that the OSC control mode is set appropriately, the modes that a 
terminal inherits from a connection can be altered. The syntax of an OSC 
sequence that will change one or more of these modes is as follows: 

where: 

C: 

mode id 

decimal number 

0997 

Indicates that this sequence applies to a 
connection. The Terminal Support Code ignores all 
but the first letter, so you can supply any group 
of characters that begins with "C". However, you 
must include the eolon (:) at the end. 

An ID letter from the list of modes given in 
Table F-2. 

The value to which you want to set the mode. This 
number must be of the character data type. 

Table F-2 contains a brief description of the modes and values. For a 
more complete description, refer to the description of A$SPECIAL in 
Chapter 8. 

REPLACE BIOS F-10 UPDATE 2, 12/84 



iRHX'" 86 Release 6.flJ Change Package: Update 2 

Change PSLges for: 

iRMX'" 86 Programmer's Referencle Manual, Part II (146196-9J9Jl) 





CSSENDSCOSRESPONS 

C$SEND$CO$RESPONSE 

C$SEND$CO$RESPONSE, a message processing call, sends a message to :Co: 
and reads a response from :CI:. 

CALL RO$C$SEND$CO$RESPONSE(response$p, response$max, message$p, 
except$ptr) ; 

INPUT PARAMETERS 

message$p 

response$max 

OUTPUT PARAMETERS 

response$p 

except$ptr 

DESCRIPTION 

A POINTER to a STRING containing the message to be 
sent to :CO:. If zero, no message is sent. 

A WORD whose value specifies the length in bytes of 
the string pointed to by the response$p parameter. 
The value in response$max must equal the length of 
the string plus one (stringlength + 1). If 
response$max is zero or one, no response from :CI: 
will be requested; control returns to the calling 
task immediately. 

A POINTER to a STRING that receives the operator's 
response from :CI:. 

A POINTER to a WORD in which the Human Interface 
returns a condition code. 

When used with all its features, C$SEND$CO$RESPONSE sends the string 
pointed to by message$p to :Co: and waits for a response from :CI:. It 
places this response in the string pointed to by response$p. However, If 
message$p is zero, C$SEND$CO$RESPONSE omits sending the message to :CO:; 
if either response$max or response$p is zero, it does not wait for a 
response from :CI:. TherE~fore, the operations performed by 
C$SEND$CO$RESPONSE depend on the values of the message$p and response$max 
parameters, as follows: 

message$p 

zero 
zero 
non-zero 
non-zero 

REPLACE 

response$max 

zero 
non'-zero 
non'-zero 
zero 

Action 

Perform no I/O 
Send no message, wait for input 
Send message, wai t for input 
Send message, don't wait 

Human Interface 8-45 UPDATE 2, 12/84 



If C$SEND$CO$RESPONSE requests a responsl~ from : CI:, output from other 
tasks can be displayed at :CO: while the system waits for a response from 
: CI: • 

The main distinction between C$SEND$CO$RESPONSE and C$SEND$EO$RESPONSE 
calls is that C$SEND$EO$RESPONSE always Bends messages to and receives 
messages from the operator's terminal; input and output cannot be 
redirected to another device. In contral,t, C$SEND$CO$RESPONSE sends 
messages to :Co: and receives messages from :CI:; therefore, programs 
such as SUBMIT can redirect this input and output. 

EXCEPTION CODES 

E$OK 

E$CONTEXT 

E$CONNECTIO N$
OPEN 

E$EXIST 

E$FLUSHING 

E$IO$HARD 

E$IO$OPRINT 

REPLACE 

No exceptional conditions were encountered. 

The calling task's job was not created by the Human 
Interface. 

At least one of thE~ following is true: 

• The connection to :CI: was not open for reading 
or the connection to :CO: was not open for 
writing. 

• The connection to :CI: or :Co: was not open. 

• The connection to :CI: or :Co: was opened with 
A$OPEN rather than S$OPEN. 

The token value for :CI: or :CO: is not a token for 
an existing object .. 

The device containlng the :CI: and :CO: files was 
being detached. 

While attempting to access the :CI: or :CO: file, 
the Operating Syst€!m detected a hard I/O error. 

While attempting to access the :CI: or :CO: file, 
this call found that the device was off-line. 
Operator interventi.on is required. 
C$FORMAT$EXCEPTION returns the value E$IO$NOT$READY 
for this code. 

Human Interface 8-46 UPDATE 2, 12/84 



E$IO$SOFT 

E$IO$UNCLASS 

E$IO$WRPROT 

E$LIMIT 

C$SEND$CO$RESPONS 

While attempting to access the :CI: or :CO: file, 
this call detected a soft I/O error. It tried 
again, but was unsuccessful. Another try might be 
successful. 

An unknown type of I/O error occurred while this 
call tried to access the :CI: or :CO: file. 

While attempting to obtain a connection to the :CO: 
file, this call found that the volume containing 
the file is write-protected. 

At least one of the following is true: 

• The calling task's job has already reached its 
object limit. 

• The calling task's job, or the job's default 
user object, is already involved in 255 
(decimal) I/O operations. 

• The calling task's job was not created by the 
Human Interface. 

E$MEM The memory available to the calling task's job is 
not sufficient to complete the call. 

E$NOT$CONNECTION The call obtained a token for an object that should 
have been a connection to :CI: or :Co: but was not 
a file connection. 

E$PARAM The call attempt,ed to write beyond the end of a 
physical file. 

E$SPACE OnE~ of the following is true: 

• The output volume is full. 

• The call attempted to write beyond the end of a 
physical file. 

E$STREAM$SPECIAL When attempting to read or write to :CI: or :CO:, 
the Extended I/O System issued an invalid stream 
file request. 

E$SUPPORT The connection to :CI: or :CO: was not created by 
this job. 

E$TlME The calling task's job was not created by the Human 
Interface. 

REPLACE Human Interf,ace 8-47 UPDATE 2, 12/84 



C$SEND$EO$RESPONSE 

C$SEND$EO$RESPONSE 

C$SEND$EO$RESPONSE, a message processing call, sends a message to and 
reads a response from the operator's terminal. 

CALL RQ$C$SEND$EO$RESPONSE(respons€:$p, response$max, message$p, 
except$ptr) ; 

INPUT PARAMETERS 

message$p 

res pons e$max 

OUTPUT PARAMETERS 

response$p 

except$ptr 

DESCRIPTION 

A POINTER to a STRING containing the message to be 
sent to the operator's terminal. If zero, no 
message is sent. 

A WORD whose value specifies the length in bytes of 
the string pointed to by the response$p parameter. 
The value in response$max must equal the length of 
the string plus one (stringlength + 1). If 
response$max is zero or one, no response from the 
operator's terminal will be requested; control 
returns to the calling task immediately. 

A POINTER to a STRING that receives the operator's 
response from the terminal. 

A POINTER to a \V'ORD in which the Human Interface 
returns a condition code. 

When used with all its features, C$SEND!?EO$RESPONSE sends the string 
pointed to by message$p to the operator's terminal and waits for a 
response from the operator. It places this response in the string 
pointed to by response$p. However, if message$p is zero, 
C$SEND$EO$RESPONSE omits sending the meBsage to the operator; if either 
response$max or response$p is zero, it does not wait for a response. 
Therefore, the operations performed by C$SEND$EO$RESPONSE depend on the 
values of the message$p and response$max parameters, as follows: 

message$p 

zero 
zero 
non-zero 
non-zero 

REPLACE 

response$max 

zero 
non-zero 
non-zero 
zero 

Action 

Perform no I/O 
Send no message, wait for input 
~end message, wait for input 
Send message, don't wait 

Human Interfac,e 8-48 UPDATE 2, 12/84 



DQ$RENAME 

The DQ$RENAME system call changes the pathname of a file. 

CALL DQ$RENAME (path$ptr, new$path$ptr, except$ptr); 

INPUT PARAMETERS 

path$ptr 

new$path$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a STRING that specifies the pathname 
for the file to bl:! renamed. 

A POINTER to a STRING that specifies the new 
patbname for the :file. This path must not refer 
to an existing file. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix B. 

This system call allows your programs to change the pathname of a data 
file or a directory. Be aware that when you rename a directory, you are 
changing the pathnames of all files contained in the directory. When you 
rename a file to whic.h a connection exists -- this is permitted -- the 
connection to the renamed file remains established. 

A file's pathname may be changed in any way, provided that the file or 
directory remains on the same volume. 

REPLACE UDI 2-41 UPDATE 2, 12/84 

DQ$RENA 



QSRESERVESIOSMEMORV 

I 

DQ$RESERVE$IO$MEMORY 

The DQ$RESERVE$IO$MEMORY lets your program reserve enough memory to 
ensure that it can open and attach the files it will be using. 

CALL DQ$RESERVE$IO$MEMORY (number$files, number$buffers, except$ptr); 

INPUT PARAMETERS 

ntnnber$files 

ntnnber$buffers 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD whose value indicates the maximum number of 
files the program will have attached 
simultaneously. This value must not be greater 
than 12. Moreover, no more than 6 of these files 
may be open simultaneously. 

A WORD whose value indicates the total ntnnber of 
buffers (up to a maximum of 12) that will be 
needed at one time. For example, if your program 
will have two files open at the same time, and 
each of them has two buffers (specified when they 
are opened), number$files should be two and 
ntnnber$buffers four. 

A POINTER to a WORD where the system places the 
condition code. Condition codes are described in 
Appendix B. 

DQ$RESERVE$IO$MEMORY sets aside memory on behalf of the calling program, 
guaranteeing that it will be available whc:!n needed later for attaching 
and opening files. This memory is used for internal UDI data structures 
when the program requests file connection:3 via DQ$ATTACH and for buffers 
when the program opens file connections v:La DQ$OPEN. Memory reserved in 
this way is not eligible to be allocated by DQ$ALLOCATE. Your program 
should call DQ$RESERVE$IO$MEMORY before making any calls to DQ$ALLOCATE. 

In the call to DQ$RESERVE$IO$MEMORY, you may specify as many as 12 files 
(that can be attached using the reserved memory) and as many as 12 
buffers (that can be requested when opening files). 

REPLACE UDI 2-42 UPDATE 2, 12/84 



WRITING A CUSTOM DEVICE DRIVER 

The format of the call to the Finish I/O procedure is as follows: 

CALL finish$io(duib$p, ddata$t); 

where: 

finish$io 

duib$p 

ddata$t 

QUEUE I/O PROCEDURE 

Name of the Finish I/O procedure. You can specify 
any name for this procedure as long as it does not 
conflict with other procedure names. You must, 
however, provide :i ts starting address in the DUIBs 
of all device-units that it services. 

POINTER to the DUIB of the device-unit of the 
device being detached. The finish$io procedure 
needs this DUIB in order to determine the device 
on which to perform the final processing. 

SELECTOR containing the location of the data 
storage area originally created by the init$io 
procedure. The finish$io procedure must delete 
this resource and any others created by driver 
routines. 

The I/O System calls the ~Leue I/O procedure to place an I/O request on a 
queue, so that it can be processed when the device is not busy. The 
Queue I/O procedure must aetually start the processing of the next I/O 
request on the queue if the device is not busy. The format of the call 
to the Queue I/O procedure is as follows: 

CALL queue$io(iors$t, duib$p, ddata$t); 

where: 

queue$io 

iors$t 

REPLACE 

Name of the Queue I/O procedure. You can use any 
name for this procedure as long as it does not 
conflict with other procedure names. You must, 
however, provide its starting address for the 
DUIBs of all device-units that it services. 

SELECTOR containing the location of an IORS. This 
IORS describes the request. When the request is 
proeessed, the driver (though not necessarily the 
queue$io procedure) must fill in the status fields 
and send the IORS to the response mailbox 
(exchange) indicated in the IORS. Chapter 2 
describes the format of the IORS. It lists the 
information that the I/O System supplies when it 
passes the IORS to the queue$io procedure and 
ind:icates the fields of the IORS that the device 
driver must fill in. 

lDevice Drivers 6-3 UPDATE 2, 12/84 



I 

duib$p 

ddata$t 

CANCEL I/O PROCEDURE 

WRITING A CUSTOM DEVICE DRIVER 

POINTER to the DUIB of the device-unit for which 
the request is intended. 

SELECTOR containing the location of the data 
storage area originally created by the init$io 
procedure. The queue$io procedure can place any 
necessary information in this area in order to 
update the request queue or status fields. 

The I/O System can call the Cancel I/O procedure in order to cancel one 
or more previously queued I/O requests. The iRMX 88 I/O System does not 
call Cancel I/O, but in the iRMX 86 environment Cancel I/O is called 
under either of the following two condittons: 

• If the user makes an RQ$A$PHYSICAL$DETACH$DEVICE system call and 
specifies the hard detach option (refer to the iRMX 86 BASIC I/O 
SYSTEM REFERENCE MANUAL for a dencription of this call). This 
system call forcibly detaches all objects associated with a 
device-unit. 

• If the job containing the task which made an I/O request is 
deleted. The I/O System calls the Cancel I/O procedure to remove 
any requests that tasks in the dE!leted job might have made. 

• If the user deletes a connection to a device. The I/O system 
calls Cancel I/O to remove any I/O requests pending for that 
device. 

If the device cannot guarantee that a request will be finished within a 
fixed amount of time (such as waiting for input from a terminal 
keyboard), the Cancel I/O procedure must actually stop the device from 
processing the request. If the device guarantees that all requests 
finish in an acceptable amount of time, the Cancel I/O procedure does not 
have to stop the device itself, but only removes requests from the queue. 

The format of the call to the Cancel I/O procedure is as follows: 

CALL cancel$io(cancel$id, duib$p, ddata$t); 

where: 

cancel$id 

cancel$id 

REPLACE 

Name of the Cancel I/O procedure. You can use any 
name for this procedure as long as it doesn't 
conflict with other procedure names. You must, 
however, provide its starting address in the DUIBs 
of all device-units that it services. 

WORD containing the id value for the I/O requests 
that are are to be cancelled. Any pending 
requests with this value in the cancel$id field of 
their IORS's must be removed from the queue of 

Device Drivers 6-4 UPDATE 2, 12/84 



duib$p 

ddata$t 

WRITING A CUSTOM DEVICE DRIVER 

requests by the Cancel I/O procedure. Moreover, 
the I/O System places a CLOSE request with the 
samea cancel$id value in the queue. The CLOSE 
request must not be processed until all other 
requests with that cancel$id value have been 
returned to the I/O System. 

POINTER to the DUIB of the device-unit for which 
the request cancellation is intended. 

SELECTOR containing the location of the data 
storage area originally created by the init$io 
procedure. This area may contain the request 
queue. 

IMPLEMENTING A REQUEST QUEUE 

Making I/O requests via system calls andl the actual processing of these 
requests by I/O devices are asynchronous: activities. When a device is 
processing one request, many more can be~ accumulating. Unless the device 
driver has a mechanism for placing I/O requests on a queue of some sort, 
these requests will become lost. The c.ommon and random access device 
drivers form this queue by creating a doubly linked list. The list is 
used by the QUEUE$IO and CANCEL$IO procedures, as well as by 
INTERRUPT$TASK. 

Using this mechanism of the doubly linke~d list, common and random access 
device drivers implement a FIFO queue for I/O requests. If you are 
writing a custom device dr:iver, you might want to take advantage of the 
LINK$FOR and LINK$BACK fields that are provided in the laRS and implement 
a scheme similar to the following for queuing I/O requests. 

Each time a user makes an I/O request, the I/O System passes an laRS for 
this request to the device driver, in particular to the Queue I/O 
procedure of the device dr:Lver. The common and random access driver 
Queue I/O procedures make use of the LINK$FOR and LINK$BACK fields of the 
laRS to link this laRS together with IORSs for other requests that have 
not yet been processed. 

This queue is set up in thea following manner. The device driver routine 
that is actually sending data to the controller accesses the first laRS 
on the queue. The LINK$FOR field in thi.s laRS points to the next laRS on 
the queue. The LINK$FOR field in the second laRS points to the third 
laRS on the queue, and so forth until, i.n the last laRS on the queue, the 
LINK$FOR field points back to the first laRS on the queue. The LINK$BACK 
fields operate in the same manner. The LINK$BACK field of the last laRS 
on the queue points to the previous laRS. The LINK$BACK field of the 
second to last laRS points to the third to last laRS on the queue, and so 
forth, until, in the first laRS on the queue, the LINK$BACK field points 
back to the last laRS in the queue. A queue of this sort is illustrated 
in Figure 6-1. 

REPLACE Device Drivers 6-5 UPDATE 2, 12/84 



WRITING A CUSTOM DEVICE DRIVER 

The device driver can add or remove requests from the queue by adjusting 
LINK$FOR and LINK$BACK pointers in the IORSs. 

IinkStor • • • 
IinkSback 

LI.t IORS 
on queue 

IInkStor 

IInkSback 

I L ___ -~_-·--_-·-··_--·-_·-··---_____ 1 

Figure 6-1. Request Queue 

To handle the dual problems of locating the queue and ascertaining 
whether the queue is empty, you can use a variable such as head$queue. 
If the queue is empty, head$queue contains the value O. Otherwise, 
head$queue contains the address of the first IORS in the queue. 

*** 

REPLACE Device Drivers 6-6 UPDATE 2, 12/84 

x-679 



TIMER ROUTINES 

$subtitle('Initialize Time') 
/************************************************************************* 
* init time * 
* * 
* This procedure zeros the timer, creates a task to * 
* maintain the timer, and a region to ensure exclusive * 
* access to the timer. This procedure must be called * 
* before the fi.rst time that get t1.me or set time is * 
* called. Also, this procedure 'Should be called only * 
* once. The ea.siest way to make sure this happens is to * 
* call init time from your initialization task. * 
* * 
* The timer task will run in the job from which this * 
* procedure is called. * 
* * 
* If your application experiences a lot of interrupts, * 
* the timer may run slow. You can rectify this * 
* problem by ra.ising the priority of the timer * 
* task. To do this, change the 128 in the * 
* rq$create$task system call to a smaller number. * 
* This change m.ay slow the processing of your * 
* interrupts. * 
*************************************************************************/ 

init_time: PROCEDURE(ret_status_p) REENTRANT PUBLIC; 

DECLARE ret_status_p 
ret status 
timer task t 
local-status 

time in sec 0; 

POINTER,. 
BASED ret_status_p WORD, 
TASK, 
WORD; 

time_region - rq$create$region /* Create a region. */ 
(PRIORITY_QUEUE, ret_status_p); 

IF (ret_status <> E$OK) THEN 
RETURN; /* Return with error. */ 

timer task t 

REPLACE 

rq$create$task 
( 128, 
@maintain_time, 
dat~_seg_p_o. base:1 

0, 
512, 
0, 
ret status -p) ; 

/* Get contents of 
DS register. */ 

/* Create timer task. 
/* priority 
/* start addr 
/* data seg base 
/* stack ptr 
/* stack size 
/* task flags 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Programming TE~chniques 3-7 UPDATE 2, 12/84 

I 



TIMER ROUTINES 

IF (ret_status <> E$OK) THEN 
CALL rq$delete$region 

(time_region, @local_status); 

END init_time; 

END timer; 

*** 

/* Since could not */ 
/* create task, */ 
/* must delete */ 
/* region. */ 

REPLACE Programming Te,chniques 3-8 UPDATE 2, 12/84 



• cO) I CHAPTER 3 
~ ___ P __ RO_G __ RA_M __ M_IN_G __ C_O_N_S_ID_E_R_AT_I_O_N_S~ 

The iRMX 86 Terminal Handler supports terminal input and output by 
providing mailbox interfaces. Figure 3-1 shows the use of these 
mailboxes. In the figure, an arrow pointing from a task to a mailbox 
represents an RQ$SEND$MESSAGE system call. An arrow pointing from a 
mailbox to a task indicates an RQ$RECEIVE$MESSAGE system call. 

PFIOVIDED 
BY USER 

USER 
TASKS 

~----~~~~~ 
INiRMX86 L IN iRMX 86 

PROVIDED 
BY USER 

USER 
TASKS 

TERMINAL 
HANDLER 

x-601 

Figure 3-1. Input and Output Mailbox Interfaces 

The protocol that tasks observe is much the same for input and output. 
In each case, the task initiates I/O by sending a request message to a 
mailbox. An input request mailbox (default name RQTHNORMIN) and an 
output request mailbox (d«~fault name RQTHNORMOUT) are provided. These 
mailboxes are cataloged in the root job directory. In the case of 
multiple terminals, one input and one output mailbox will be cataloged 
for each Terminal Handler.. (See Chapter 4 for more information about 
multiple versions of the Terminal Handler.) Figure 3-2 illustrates the 
protocol for finding the root job token and for obtaining the input and 
output mailbox tokens. 

REPLACE Terminal Handler 3-1 UPDATE 2, 12/84 



I 

PROGRAMMING CONSIDERATIONS 

/************************************************************************ 
* This example illustrates the protocol for finding the root job token * 
* and for obtaining the input and output mailbox tokens. * 
**************************************~~********************************** 

DECLARE rtjb$token \\rORD; 
DECLARE root$job LITERALLY , 3' ; 
DECLARE status \o;rORD; 

DECLARE input$mbx$token \o;rORD; 

DECLARE wait$forever LITERALLY 'OFFFFH' ; 

/ *By setting the input parameter to three, the GET$TASK$TOKEN primitive 
will return the root job's TOKEN.*/ 

rtjb$token = RQ$GET$TASK$TOKENS (root$j ob, 
~Istatus) ; 

/*The following LOOKUP$OBJECT primitives use the default mailbox names.*/ 

input$mbx$token = RQ$LOOKUP$OBJECT (rtjb$token, 
@ ( 1 0, 'RQTHNORMI N' ), 
wait$forever, 
~Istatus) ; 

output$mbx$token RQ$LOOKUP$OBJECT (rtjb$token, 
€!( 11, 'RQTHNORMOUT'), 
wait$forever, 
~Istatus) ; 

Figure 3-2. Protocol for Obtaining Root Job and Mailbox Tokens 

Refer to the iRMX 86 NUCLEUS REFERENCE MANUAL for more information 
concerning the individual primitives used in the previous example. When 
a task sends a message to the Terminal Handler mailbox, the Terminal 
Handler processes the request and then sends a response message back to 
the requesting task. The task waits at a response mailbox for the 
message. Thus, whether a task does input or output, it first sends and 
then receives. The full details of the input and output protocols are 
described later in this chapter. Output is discussed first because it is 
somewhat easier to understand. 

For both input and output, a task sends a message segment to the Terminal 
Handler. The format of a request message is depicted in Figure 3-2. The 
numbers in that figure are offsets, in bytes, from the beginning of the 
segment. The field names have different meanings for input and for 
output. For both input and output, the first four fields are WORD 
values. The MESSAGE CONTENT field can be up to 132 bytes in length for 
input and up to 65527 bytes in length for output. 

REPLACE Terminal HandlE~r 3-2 UPDATE 2, 12/84 



CONFIGURATION 

*-*-* BS1. CSD *-*-* 
Generate the iAPX 86, 88 Bootstrap Loader V5.0 first stage. 

Invocation: submit bsl(first stage location, second stage location) 

run 
; 

I asm86 : f 1 : b s 1 • a8 6 macro(90) object(:f1:bs1.obj) print(:f1:bs1.lst) 
asm86 : f 1 :bserr .a86 macro(.50) object(:fl:bserr.obj) print(:fl:bserr.lst) 
asm86 :fl :b204.a86 macro(.50) object(:fl:b204.obj) print(:fl:b204.lst) 
asm86 : f 1 :b206 .a86 macro(50) object(: fl :b206.obj) print(:fl:b206.lst) 
asm86 :fl :b208.a86 macro(.50) object(:fl:b208.obj) print(:fl:b208.lst) 
asm86 : fl :b215.a86 macro(.50) object(:fl:b215.obj) print(:fl:b215.lst) 
asm86 :fl :b21Ba.a86 macro(.50) object(:fl:b218.obj) print(:fl:b218.lst) 
asm86 : f 1 : b2 5 1 • a8 6 macro(.50) object(:fl:b251.obj) print(:fl:b251.lst) 
asm86 : f 1: b2 54. a8 6 macro(50) object(:fl:b254.obj) print(:fl:b254.lst) 
asm86 :fl:bsasi.a86 macro(50) object(:fl:bsasi.obj) print(:fl:bsasi.lst) 
asm86 :f1:bscsi.a86 macro(50) object(:fl:bscsi.obj) print(:fl:bscsi.lst) 

link86 
:fl:bsl.obj, & 
:f1:bserr.obj, & 

& :fl:bcico.obj, & ;for stand-alone serial channel 
& ;support 

:fl:b204.obj, & 
:fl:b206.obj, & 
:f1:b208.obj, & 
:fl:b215.obj, & 
:fl:b218.obj, & 
:fl:b251.obj, & 
:f1:b254.obj, & 
:fl:bsasi.obj, & 
:f1:bscsi.obj, & 
:fl:bsl.lib & 
to :fl:bsl.lnk print(:fl:bsl.mpl) & 
nopublics except(first-stage,boot_186,bootstrap entry) 

loc86 :fl :bsl.lnk & 
addresses(classes(code(%O),stack(%l))) & 
order(classes(code,code error,stack,data,boot)) & 
noinitcode - & 
start(first-stage) & 

& ; change above l:Lne to start(boot_186) if iAPX 186 INIT is invoked & 
segsize(boot(1800H)) & 
map print(:fl:bsl.mp2) & 
; Add "bootstrap'" to loc86 when locating the first stage in ROM 

Figure 2-2. First Stage Configuration File BS1.CSD 

REPLACE Bootstrap Loader 2-9 UPDATE 2, 12/84 



. , 
exit 

CONFIGURATION 

Bootstrap Loader first stage generati.on complete. 

Figure 2-2. First Stage Configurati.on File BSl.CSD (continued) 

The 16-bit address of the base port used by the 
baud rate timer. This port varies according to 
the type of the device and, if applicable, the 
channel used on the device, as follows: 

8253 
8254 
8'0130 
80186 
82530 Channel A 
82530 Channel B 

Counter 0 Count Register Port 
Counter 0 Count Register Port 
ICWI Register Port 
Use OFFOOH on all Intel boards 
Channel A Command Register Port 
Channel B Command Register Port 

counter_port_delta The number of bytes between consecutive ports 
used by the timer. 

baud counter The baud rate-generating counter on the timer. 

count 

flags 

REPLACE 

The devices and the counters you can specify for 
them are as follows: 

8253 
8254 
80130 
80186 
82530 

0, 
0, 
2 
0, 
0 

1, and 2 
1, and 2 

1 

A value that, when loaded into the timer 
register, generates the desired baud rate. The 
method of calculating this value is described in 
the paragraphs following these parameter 
definitions. 

A value that, whem present, specifies which 
channel of an 82530 Serial Communications 
Controller will serve as your serial controller. 
If you give any value except 82530 for the 
serial type parameter, omit this parameter; that 
is, write the macro as if the count parameter is 
the last parameter. If you give 82530 as the 
value of the seri,al type parameter, specify A 
(for Channel A) or B (for Channel B) for this 
parameter. 

Bootstrap LoadE~r 2-10 UPDATE 2, 12/84 







SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

Table 6-4. MULTIBUS@ Priority Selection Jumpers (continued) 

Remove Add 
Intel Board Jumper Jumper ~~scription/Function 

iSBC 254S DE~fault setting selects serial 
priority. 

EI30-I3I SEdects parallel priority. 

iSBX 270 Not applicable. 

iSBX 351 Not applicable. 

iSBC 534 Not applicable. 

iSBC 544 Not applicable. 

5 I/4-INCH DRIVE SELECTION JUMPERS 

Table 6-5 lists the jumpers you must change to incorporate a 5 I/4-inch 
flexible diskette into your system. 

Table 6·-5. 5 I/4-Inch Drive Selection Jumpers 

Remove Add 
Intel Board Jumper Jumper Description/Function 

iSBC 204 Use of 5 I/4-inch diskette 
drives controlled by the 
iSBC 204 is not supported 
by iRMX 86. 

iSBC 206 Not applicable. 

iSBC 208 EI8-EI9 E4-E5 Selects 5 I/4-inch drives. 
E6-EII 
EI7-EI9 

REPLACE Installation 6-9 UPDATE 2, 12/84 



SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

Table 6-5. 5 1/4-Inch Drive SelHction Jumpers (continued) 

Remove Add 
Intel Board Jumper Jumper Description/Function 

---

iSBC 208 E21-E22 E17-E22 Install only if using 
(continued) double sided 5 1/4-inch 

diskette drives that do 
not supply a double-sided 
signal. 

-

iSBC 215 Intel recommends that you 
use the iSBC 215G for 
controlling 5 1/4-inch 
winchester drives. 

iSBC 215G WI, 1-2 WI, 1-3 Selects 5 1/4-inch 
W2, 1-2 CMI, model 5412, 
W5, 1-2 W5, 1-3 winchester drives. 
W6, 1-2 W6, 1-3 
W7, 1-2 W7, 1-3 
W8, 1-2 W8, 1-3 

W9, 1-2 
W13, 1-3 W13, 1-2 
W14, 1-3 W14, 1-2 
W15, 1-2 
W16, 1-3 W16, 1-2 
W22, 1-3 W22, 1-2 

W27, 1-2 
W33, 1-3 W33, 1-2 

I W34, 1-2 W37, 1-2 
W35, 1-2 W38, 1-2 

r-' 

iSBX 218 Use of 5 1/4-inch diskette 
drives controlled by the 
iSBC 218 is not supported 
by iRMX 86. 

iSBX 218A Default configuration 
selects 5 1/4-inch 
diskette drives. 

--

iSBC 220 Not applicable. 

iSBX 251 Not applicable. 

REPLACE Installation 6-10 UPDATE 2, 12/84 



SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

Table 6-7. Controller Board Switch Settings (continued) 

Switch Setting 
I 

Intel Board Description/Function 

Sl, 1-7 
8 

S2, 1-2 

3-10 

OFF 
ON 

ON 

OFF 

Selects a 16-bit bus and 
16-bit address decoding. 
Selects port address 100H. 

I------------------+-.------·--·--------~~-----------------------------------

iSBC 220 
(Wire Wraps) 

iSBX 251 

iSBC 254 

iSBC 254S 

iSBX 270 

iSBX 351 

iSBC 534 

iSBC 544 

REPLACE 

E16 - E15 

E18 - E17 
E20 - E19 

SW1, 1-4 ON 

SW1, 5 ON 

SW1, 6 OFF 

SW1, 7 ON 

SW1, 8 OFF 

Installation 6-15 

Selects port address 100H 

Selects a 16-bit bus and 
16-bit address decoding 

Not applicable. 

Not applicable. 

Not applicable. 

Not applicable. 

Not applicable. 

Not applicable. 

If your board does not 
have a switch SW1, then 
refer to Table 6-3. 

Selects Dual-Port RAM 
address. Also refer to 
Table 6-4. 

Selects Dual-Port RAM 
size of 16K. 

Selects 2732A EPROMS. 

Configures board for slave 
mode. 

UPDATE 2, 12/84 

I 



SPECIFIC MODIFICATIONS TO INDIVIDUAL INTEL CONTROLLER BOARDS 

DIP HEADER CONFIGURATIONS FOR THE RS232C PROTOCOL 

Table 6-S lists the DIP-header configura:tions you need to supply to 
implement the RS232C serial protocol. 1his configuration process 
involves either soldering wires on a solder style header or inserting 
wires into a pin-and-socket style header. 

Table 6-S. DIP Header Configurations for the RS232C Protocol 

Intel Board 

iSBX 351 

iSBC 534 

iSBC 544 

Notes: Signal Names: 

TxD: Transmit 

DIP Header 
Jumpers 

3-13 
4-14 
7-S 
5-6 
11-12 
9-10 

4-5 
6-7 
S-10 
9-11 
12-13 
14-15 

2-3 
4-5 
6-12 
7-13 
14-15 
16-17 

Data 
DTR: Data Terminal Ready 
RTS: Request To Send 

MISCELLANEOUS JUMPERS 

Description/Function 

Board RxD to Terminal TxD. 
Board TxD to Terminal RxD. 
Board DSR to Board DTR. 
Board RTS to Board CTS. 
Terminal RTS to Terminal CTS. 
Terminal DSR to Terminal DTR. 

Board DSR to Board DTR. 
Board RTS to Board CTS. 
Board RxD to Terminal TxD. 
Board TxD to Terminal RxD. 
Terminal RTS to Terminal CTS. 
Terminal DSR to Terminal DTR. 

Board DSR to Board DTR. 
Board RTS to Board CTS. 
Board RxD to Terminal TxD. 
Board TxD to Terminal RxD. 
Terminal RTS to Terminal CTS. 
Terminal DSR to Terminal DTR. 

RxD: Receive Data 
DSR: Data Set Ready 
CTS: Clear To Send 

Table 6-9 lists jumpering information not covered in the previous 
sections. The list of jumpers change different functional areas. 
Perform the changes to use default values established by Intel. 

REPLACE InstallatiolCl 6-16 UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

FIRST-TIME INSTALLATION OF THE OPERATING SYSTEM 

This section details the steps that you 'must take to install the iRMX 86 
Operating System. Before you begin, make certain that you know which Intel 
microprocessor runs your system; the installation procedure is changes 
slightly depending on the processor in your system. If at any time you see an 
error massage, stop the installation procedure and correct the problem. 

THE INSTALLATION PROCEDURE DESCRIBED 
HERE AUTOMATICALLY RE-FORMATS THE 
WINCHESTER DISK DRIVE. Therefore, back 
up any files you wish to save before 
you begin the installation procedure. 

STEP 1: RUNNING THE SYSTEM CONFIDENCE TEST (SCT) 

If you are using your own custom iRMX 86 development system, you should now 
turn on the power to your system. If you have built an iAPX 86-based 
development system, you will see a series of asterisks. If you have built an 
iAPX 286-based development system, you will see no display. In either case 
you should then type in an uppercase "U". Typing in an uppercase "u" 
initializes the Monitor and causes it to sign-on. Once you see the monitor 
prompt--a period (":' )--go to Step 2. 

If you are using a System 300 product, turn on the power for your system. In 
about 5 seconds you will see a display. If you have a System 86/300 Series 
microcomputer, the display will be a series of asterisks. If you have a System 
286/300 Series microcomputE~r, the display will be a single asterisk. In 
either case, type in an uppercase "U". This will cause the System Confidence 
Test (SCT) to execute. The SCT is only provided on System 300 Series 
Microcomputers. 

After you type in an uppercase "U", you will see on the CRT display status 
reports from the SCT. For specific information on the meaning of the reports 
consult the SYSTEM 86/300 SERIES DIAGNOSTIC MAINTENANCE MANUAL or the SYSTEM 
286/300 SERIES DIAGNOSTIC MAINTENANCE MANUAL. 

Shortly after beginning the display on systems based on the iAPX 86 
microprocessor, the SCT on System 86/300 products requests you to enter an 
uppercase "I" in response to the "PIC" test. At this point you have three 
options: 1) do nothing; 2) type in an uppercase "I"; or 3) press the fron t 
panel interrupt button. On a system with an un-formatted Winchester disk, all 
three actions have the same result--you exit the SCT and enter the monitor. 

The system should respond by displaying: 

*BREAK* at (xxxx:yyyy) 

The period (".") is the monitor prompt, and (xxxx:yyyy) is the address where 
the entry into the monitor occurred. At this point you are ready to go on to 
the next step. 

REPLACE Installation 10-5 UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

Once the execution of the SCT on a System 286/300 product begins, the 
terminal requests you to enter a response to the 8274 MPSC test. After 
displaying the test prompt, the SCT watts for your response. Respond 
with a period (".") if you want to entBr the monitor at the end of the 
execution of the SCT rather than boot the iRMX 86 system. If you do not 
enter a period within six seconds, the test times out and responds with 
the message "Chb Interrupt Timeout". Normally in the enhanced mode, you 
may enter any character at the 8274 MPSC prompt and the bootstrap loader 
boots the operating system after the SCT executes. However, when 
installing the Operating System, you need to return to the monitor after 
running the SCT. Entering a period at the 8274 MPSC test prompt signals 
the SCT to do this. The system should respond by displaying: 

*BREAK* at <xxxx:yyyy> 

The period (".") is the monitor prompt!I and <xxxx: yyyy> is the address 
where the entry into the monitor occurred. At this point you are ready 
to go on to the next step. 

NOTE 

If you are installing the Release 6 
version of the Opera.ting System on 
hardware that is already running the 
Release 5 version of the iRMX 86 
Operating System, do not Ie t the SCT 
run to completion. When the SCT 
requests that you input the uppercase 
"I", you must press the front panel 
interrupt button. If you do not press 
the interrupt button, you won't enter 
the monitor. 

STEP 2: INSTALLING THE FIRST DISKETTE 

Place the diskette with the label INSTALLATION DISKETTE in the flexible 
diskette drive. If you have a system based on the iAPX 86 
microprocessor, place the diskette with the label iRMX 86 INSTALLATION 
DISKETTE FOR iAPX 86-BASED SYSTEMS into the flexible diskette drive. If 
you have a system based on the iAPX 286 microprocessor, place the 
diskette with the label iRMX 86 INSTALLATION DISKETTE FOR iAPX 286-BASED 
SYSTEMS into the flexible diskette drive. 

REPLACE Installation 10-6 UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

Enter the following monitor command depending on the hardware in your 
system: 

HARDWARE IN YOUR SYSTEM ENTER 

iSBC 218A Board mounted on 
any iSBC 215 that controls either 
a 5 1/4 or 8·-Inch Flexible Disk Drive .b :wfO: 

iSBX 208 Controller .b :afO: 

If you have any SYSTEM 300 Series Microcomputer, use the command b :wfO:. 

The Monitor command boots the file "/system/rmx86" from the INSTALLATION 
DISKETTE so that the INSTALLATION DISKETTE is the system device. The 
INSTALLATION DISKETTE only contains those Human Interface commands 
required to initiate the installation process. 

Upon completion of the bootstrap load process, the terminal displays the 
following message: 

iRMX 86 HI eLI, Vx.y: USER=65535 
Copyright <years> Intel Corporation 

Next, the system prompts you for the correct date and time. You may 
enter the date in anyone of the following three formats: 

month/date/year (11/29/1984) 
date month year (29 NOV 1984) 
date month year (29 NOVEMBER 1984) 

After you have entered the date, the system echoes the information and 
prompts you for the time. Enter the tim.e in the format 
HOURS:MINUTES:SECONDS. You may omit the minutes and seconds fields if 
you desire; the system sets them to zero. When you have completed 
entering the time, the system responds by echoing the entered time. 
After the date and time are entered and echoed, the system displays the 
line: 

END SUBMIT : PROG:R?LOGON 

STEP 3: BECOME THE SYSTEM MANAGER 

To continue the installation process, you need to gain access to the 
system manager privileges. Enter the command SUPER to gain the power of 
system manager. In response to the password prompt, enter in a carriage 
return. The system responds with the prompt "SUPER-". You now have 
access to the system manag.~r privileges and you may continue with the 
installation process. 

REPLACE Installation 10-7 UPDATE 2, 12/84 



I 

SOFTWARE INSTALLATION 

STEP 4: INSTALLING iRMXm 86 FILES ON A WINCHESTER DISK 

During this phase of the installation process you will be formatting your 
Winchester drive and copying the iRMX 86 files from the Installation 
Diskette to your formatted Winchester dlsk. Only those files necessary 
for booting the operating system from your Winchester disk are copied at 
this time. To install these essential files, enter the command: 

SUBMIT /INSTAL(device name, interlea.ve, files) 

"Device name" is the physical name of the device that boots the operating 
system after installation (this device i,s also known as the system 
device). Refer to Table 10-1 for the cClrrect device names. Do not use 
the generic name for the device. You must use the name corresponding to 
the actual device. For example, if you have an 8-inch 30MB Priam 
Winchester in your system, you must use the device name "iwO" or "iwl". 

"Interleave" is "4" for 5 1/4-inch Winchesters and "3" for 8-inch 
Winchesters. 

"Files" is the number of files you want to be able to create on your 
Winchester disk. A number between 3000 and 6000 should be selected. 
This ntunber is dependant on your applica,tion. Generally, if you have a 
10MB or 15MB Winchester drive, create 3000 files. If you have a larger 
Winchester drive, create 4000 files. If you have purchased the source 
code from Intel for the iRMX 86 Operating System, you must specify 
exactly 5000 files. 

Table 10-1. Start-Up System Devic4~ Names of Winchester Drives 

Device Device Name 

CMI 5 1/4" 10 MB Winchester 
(formatted) 

CMI 5 1/4" 15 MB Winchester 
(formatted) 

Quantum 5 1/4" 4CMB Winchester 
(un -forma t ted) 

8" 3CMB Priam Winchester 
(formatted) 

8" 70MB Priam Winichester 
(un-formatted) 

REPLACE Installation 100a 

cmO, cml 

cmbO, cmbl 

qmaO, qmal 

iwO, iwl 

iwbO, iwbl 

UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

STEP 5: BOOTING THE OPERATING SYSTEM FROM A WINCHESTER DISK 

After the system has executed the submit command des'cribed in Step 4, the 
Winchester disk cont.ains enough iRMX files to boot the Operating System 
and to use selected Human Interface comnands. However, before you can 
boot the Operating System from the Winchester disk, you must remove the 
INSTALLATION DISKETTE and reset the system. Reset the system by pressing 
the front panel RESET button or by whatE~ver means you have designed into 
the system. 

If you have a System 300 Series Microcomputer, you will see the display 
described in Step 1 in about 6 seconds. This time do not type an 
uppercase "U" in response to the asterisk(s). After about 12 seconds, 
the SCT will time out and the Terse mode:! of the SCT will execute. Allow 
the SCT to run (thi8 verifies that all your hardware is operating 
correctly). After the SCT successfully executes, the bootstrap loader 
automatically boots the iR.MX 86 Operating System that you copied to the 
Winchester disk in Step 4. 

If you are using a custom built iRMX 86 development system, you must type 
in an uppercase "U" in response to the Monitor's display described in 
Step 1. You will then see the Monitor':8 prompt ("."). At this point, 
type "b" to boot thE~ iRMX 86 Operating System tha t you copied to the 
Winchester disk in Step 4. 

Once the operating system loads, the system again prompts you for the 
date and time. Enter the correct date ,and time according to the 
instructions given in Step 2. 

To complete the Operating System installation, you need privileges of the 
system manager. Enter the SUPER command; the system prompts you for the 
correct password. In response to the R.assword prompt, enter a carriage 
return. The system responds with the prompt "super-". Now you have the 
privileges of the system manager and may complete the iRMX 86 Operating 
System installation. 

STEP 6: INSTALLING THE REMAINING iRMXm 86 FILES 

Now that you have successfully booted the operating system from the 
Winchester disk, install the iRMX 86 files from the remaining seven 
iRMX 86 Operating System diskettes. 

REPLACE 

If you are using a system equipped with 5 1/4-inch 
flexible diskette drives, YOU MUST REMEMBER TO 
PERFORM THE FOLLOWING STEPS FOR EACH DISKETTE USED: 

(1) Insert the diskette into the diskette drive. 
(2) Attach the device using the ATTACHDEVICE command. 
(3) Use the diskette. 
(4) Detach the device using the DETACHDEVICE command. 
(5) Remove the diskette from the diskette drive. 

Installation 10-9 UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

You must detach and re-attach the 5 1/4-oinch flexible diskette drives 
with each diskette installation because the I/O System cannot detect the 
"door open" condition and does not know when the I/O System buffers 
contain invalid data from a previous dis.kette. You do not need to detach 
and re-attach the device for each 8-inch diskette installation. 

A. Before installing the remaining iRMX files, you must "attach" the 
flexible diskette drive to the system by using the following command: 

super- ATTACHDEVICE device name AS :logical name: 

The physical name of the flexible di.skette drive is "device name" and 
":logical name:" is the name the system uses to address the flexible 
diskette drive. Attach a 5 1/4-inch diskette drive in a System 300 
Series Microcomputer using the command: 

super- ATTACHDEVICE wmfdxO AS :fdO: 

Attach an 8-inch flexible diskette drive in a System 300 Series 
Microcomputer using the command: 

super- ATTACHDEVICE wfdO AS :fdO: 

B. To copy the remaining iRMX 86 files from diskettes number 1 through 7 
(listed in Table 1-2), insert the next diskette into the flexible 
diskette drive and enter the following command: 

super- SUBMIT :logical name:INSTAL(:logical name:) 

Both logical names in the preceding SUBMIT command are the same: the 
system uses these names to address the device as specified in the 
preceding ATTACHDEVICE command (typically :fdO:). Each diskette has 
a file named INSTAL.CSD which, when executed, will copy the contents 
of that diskette into the correct directory on the Winchester disk. 

C. Remember, if you have 5 1/4-inch flexible disk drives, you must 
detach the device using the DETACHDEVICE command. The DETACHDEVICE 
command has the syntax "DETACHDEVICE :logical name:". 

Repeat steps A through C for all of the remaining Release Diskettes. 

As the SUBMIT command installs the Operating System files, a series of 
messages appear. If the system encounters an error during the process, 
it displays an error message but does not stop: the system continues 
executing the SUBMIT command until it reaches the end of the process. 
Watch these messages and be alert for error messages. When the system 
displays an error message, stop the system and correct the fault. 

REPLACE Installation 10-10 UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

STEP 7: INSTALLING THE LANGUAGE UTILITIES 

The next step is to install the language utilities. If you do not have a 
System 300 Series Microcomputer from Intel, you must purchase the 
language products in addition to the iRMX 86 Operating System. 

At this point you nrost still have system manager privileges. (You must 
still be in SUPER.) 

Detach the flexiblE~ disk drive before :installing the Language Utilities. 
To do this, use the DETAGHDEVICE command. 

Before beginning the installation of the language utilities, check that 
you have the proper diskettes. You should have the following diskettes: 

• iRMX 860 ASMB 6 AND NUMERICS LIBRARIES 
• iRMX 860 UTILITIES PACKAGE 
• iRMX 863 PL/M-86 

The order that you install the diskettes is important. You must install 
the diskettes in the orde~r they are presented in the list above. 

First, place the d:lskettE~ with the label iRMX 860 ASM86 AND NUMERICS 
LIBRARIES into the flexible disk drive. Enter in the following SUBMIT 
command to install the diskette: 

SUBMIT /CONFIG/CMD/INSTAL860«devicename» 

<devicename> is th4~ physical device name for the flexible disk drive. 
The device name for 8-ineh diskettes is wfdOand the device name for 
5 1/4-inch diskettes is ~mfdxO. Note, the device name is not a logical 
name so it does not have colons surrounding it. 

Second, take out the first diskette (iRMX 860 ASMB6 AND NUMERICS 
LIBRARIES) and place into the flexible disk drive the diskette with the 
label iRMX 860 UTILITIES PACKAGE. Next, enter in the following SUBMIT 
command to install the diskette: 

SUBMIT /CONFIG/CMD/INSTAL860u«devicename» 

<devicename> is the physical device name for the flexible disk drive. 

Third, take the second diskette (iRMX 860 UTILITIES PACKAGE) out of the 
disk drive and place into the drive the diskette with the label iRMX 863 
PL/M-86. Next, enter in the following SUBMIT command to install the last 
diskette: 

SUBMIT /CONFIG/CMD/INSTAL863( <devi.cename» 

<devicename> is the phys:lcal device name for the flexible disk drive. 

REPLACE Installation 10-11 UPDATE 2, 12/84 



SOFTWARE INSTALLATION 

STEP 8: INSTALLING THE UPDATE PACKAGE 

The final phase of installing the iRMX 86 Operating System is the 
installation of the current iRMX 86 Relea.se 6 update package. You must 
perform this step even if you are installing a new system. Applying the 
update package is Intel's mechanism for fixing problems identified in the 
current version of the software. Failur€~ to apply the update results in 
the installation of an un-fixed version of the iRMX 86 Operating System. 

The update package accompanies all shipmemts of the iRMX 86 Operating 
System. (The update package is shipped 1.n a separate box.) Each update 
package contains one or more update diske!ttes, one or more shrinkwrapped 
packets of documentation change pages, a customer letter, and an update 
installation guide. (Occasionally, additional documentation may be 
supplied in response to special circ umsta.nces.) 

The Update Diskettes contain all of the fixes (ZAP's) that are to be 
applied to the iRMX 86 Operating System. The diskettes are labelled: 

"RMX86w Rx. Y UP !." 

where: w is the media type (E" E, or J), 

x is the release level of the Operating System, 

Y is the revision leve~l of the Operating System, 

z is the release level of the Update Package. 

The update installation guide contains both detailed descriptions of each 
ZAP and detailed instructions on installi.ng the Update Package. 

To install the Update to your system, find the Update Package and follow 
the instructions in the update installation guide. 

REFERRING TO OTHER MANUALS BEFORE RUNNING YOUR SYSTEM 

Once you have completed the eight steps listed in the previous section 
you are ready to use your iRMX 86 Operatlng System. Refer to the 
following manuals for additional help: 

• For basic information about your system and the manuals in your 
Release 6 documentation set, refer to the INTRODUCTION TO THE 
iRMX 86 OPERATING SYSTEM. 

• For information about memory partition sizes and further insights 
into your Start-up System (includ.ing information on how to 
generate a custom Operating SystE~m), refer to the iRMX 86 
CONFIGURATION GUIDE. 

*** 
REPLACE Installation 10-12 UPDATE 2, 12/84 



FILES CONTAINED ON THE RELEASE DISKETTES 

4) Bootstrap Loader 

Libraries Includes Other 
bs1.lib bs1.inc tlOOt .060 

b204.inc b204.a86 
b206.inc b206.a86 
b208.inc b208.a86 
b215.inc b215.a86 
b218a.inc b218a.a86 
b251.inc b251.a86 
b254.inc b254.a86 
bsasi.inc bsasi .a86 
bscsi.inc bscsi.a86 
bs1dev.inc bcico.obj 
bserr.inc bs1.a86 
bcico.inc bserr.a86 

bcsdm.a86 
bs1.csd 
bs 1.mp2 
bs1 

5) System ~bugger 

Libraries Includes Other 
sdb.lib ~;db .030 

DISKETTE 4: iRMX 86 HUMAN INTERFACE COMMANDS 

1) instal.csd 

REPLACE 

had.r86 
hcopy.r86 
hdcopy.r86 
hdelet.r86 
hform.r86 
hlocdt.r86 
hmem.r86 
hrest.r86 
hsuper.r86 
hvers.r86 
hupcpy.csd 

hatach.r86 
hcrdir.r86 
hdd.r86 
hdir .r86 
histat.r86 
hlock.r86 
hpath.r86 
hrname.r86 
htime.r86 
hdvfy.r86 
hi.030 

hback.r86 
hdate .r86 
hdeb. r8 6 
hdtach.r86 
hjobdl.r86 
hlogs.r86 
hprmt .r86 
hsbmt .r86 
hucopy.r86 
hwhoam.r86 

Installation D-3 UPDATE 2, 12/84 

I 



FILES CONTAINED ON THE RELEASE DISKETTES 

DISKETTE 5: iRMX 86 ICU (part 1 of 2), FILES UTILITY AND PATCH UTILITY 

1) instal.csd 

2) ICU (Part 1 of 2) 

icu86.020 
icu86.86 
rmx86.def 

3) Files Utility 

files.041 
files 
files.lnk 
floc.csd 
f s86 .def 
fs186.def 

4) Patch Utility 

ptch86.023 
ptch86.86 
patch.csd 
patch.cmd 
patch.a86 

DISKETTE 6: iRMX 86 ICU (Part 2 of 2), UDI AND CRASH ANALYZER DISKETTE 

1) instal.csd 

2) ICU 

icu86.020 
icu86.862 
icu86.hlp 
rmx286.def 

3) UDI 

Libraries 
udi.lib 

4) Crash Analyzer 

REPLACE 

Libraries 
sdumpr.lib 

Includes 

Includes 

Other 
udi.030 

Other --
SC1C' s8 6.011 
scrs86.86 

Installation D-4 UPDATE 2, 12/84 



FILES CONTAINED ON THE RELEASE DISKETTES 

DISKETTE 7: iRMX 86 Include ~iles, Interface Libraries and ICU System 
Definition Files 

1) instal.csd 

2) All the iRMX 86 Interface Libraries are on this diskette. 

rpifc.lib 
ipifc.lib 
epifc.lib 
lpifc.lib 
hpifc.lib 
compac.lib 

rpifl.lib 
ipifl.lib 
epifl.lib 
lpifl.lib 
hpifl.lib 
large.lib small.lib 

3) All the iRMX 86 exception code literal files are on this diskette. 

nexcep.lit 
iexcep.lit 
eexcep.lit 
lexcep.lit 
hexcep.lit 
uexcep.lit 

ld.wptr.lit 
ltksel.lit 
ltkwrd.lit 

4) All the iRMX 86 System Call External Declaration Include files are 
on this diskette: 

hcrccn.ext hdlccn.ext hfmtex.ext hgtchr.ext 
hgtcmd.ext hgticn.ext hgtipn.ext hgtocn.ext 
hgtopn.ext hgtpar.ext hsncmd.ext hsncor.ext 
hsneor.ext hstpbf.ext iaatfl.ext iachac.ext 
iaclos.ext iacrdr.ext iacrfl.ext iadlcn.ext 
iadlfl.ext iagtcs.ext :iagtde .ext iagted.ext 
iagtfs.ext iagtpc.ext iaopen.ext iaread.ext 
iarnfl.ext iaseek.ext iaspec.ext iasted.ext 
iatrun.ext iawrit.ext icrioj.ext icrusr.ext 
idlusr.ext ie.xioj.ext :igtlds .ext igtpfx.ext 
igttim.ext igtusr.ext ihdtdv.ext iinusr.ext 
ilatdv.ext ildtdv.ext ipatdv.ext ipdtdv.ext 
isatfl.ext ischac.ext isclos.ext iscrdr.ext 
iscrfl.ext isctcn.ext isdlcn.ext isdlfl.ext 
isgtcs.ext isgtfs.ext islucn.ext isopen.ext 
isrdmv.ext isrnfl.ext lsseek.ext isspec.ext 
istioj.ext istpfx.ext istrun.ext isttim.ext 
istusr.ext isuncn.ext iswrmv.ext iupdat.ext 
iwtio.ext lalioj.ext laload.ext lslioj.ext 
lsovly.ext nacctl.ext nalcmp.ext ncrcmp.ext 
ncrext .ext nerjob.ext ncrmbx.ext ncrreg.ext 
ncrseg.ext ncrsem.ext ncrtsk.ext nctobj.ext 
ndlcmp.ext ndlext.ext ndljob.ext ndlmbx.ext 
ndlreg.ext ndlseg.ext ndlsem.ext ndltsk.ext 
ndsabl.ext ndsdln.ext neinit.ext nenabl.ext 
nendln.ext nenint.ext nexint.ext nfrcdl.ext 
ngtexh.ext ngtlev.ext ngtpat.ext ngtpri.ext 
ngtsiz.ext ngttok.ext ngttyp.ext nincmp.ext 
nluobj.ext noffsp.ext nrcctl.ext nrcmes.ext 
nrcuni.ext nrsint.ext nrstsk.ext nsgex.ext 

REPLACE Installation D-5 UPDATE 2 12/84 

I 



FILES CONTAINED ON THE RELEASE DISKETTES 

nsgint .. ext nsleep.ext nsnctl.ext nsnmes.ext 
nsnuni.ext nstexh.ext nstint.ext nstosx.ext 
nstpmn .. ext nstpri.ext nsutsk.ext nucobj.ext 
nwtint.ext ualloc.ext ua.tach.ext uchac.ext 
uchext.ext uclose.ext ucreat.ext udcex.ext 
udctim .. ext udelet.ext udetac.ext uexit.ext 
uflinf .. ext ufree.ext ugtarg.ext ugtcs.ext 
ugtexh.ext ugtsid.ext ugtsiz.ext ugttim.ext 
uopen.ext uovly.ext uread.ext urenam.ext 
ursiom.ext useek.ext uspecl.ext uswbf.ext 
utrapc.ext utrpex.ext utrunc.ext uwrite.ext 

5) Three of the iRMX 86 R6.0 leu System definition files are on this 
diskette. 

r18603.def 
r18651.def 
r18848.def 

*** 
REPLACE Installation D-6 UPDATE 2 12/84 



APPENDIX E 
DIRECTORY STRUCTURE 

OF THE START-UP SYSTEM 

This section shows you the Start-Up system directory structure that 
exists after you have successfully installed the operating system. This 
Start-Up directory is in Figure E-l. 

REPLACE 

(
0", Attaching user) o c: owner 

WORLD ~ L 
,SO, 

Configuration 
Submit Files 

(~O=R~~n!rR) 

o WORLD 

( JO=R~~n!rR) 

IRMX'''S6 Interface libraries and language Libraries 

(JO~Ri.~n:rR ) 

D =: directory 

/':,. ~d.t.'II. 

L "" list access 

A "'" read access 

N == no access 

DLAC '"' all access 

Figure E-l. Start-Up System Directory Structure 

*** 
Installation E-l UPDATE 2, 12/84 

R?LOGON 
(WORLD = owner) 





*** 
*** 
*** 
*** 
*** 
*** ---) *** 

HARDWARE-RELATED PARAMETERS 

Interrupts 
(MPS) Master PIC Port Separat:lon [O-OFFH] 
(SIL) Slave Interrupt Levels [0-7/None] 
(LSS) Level Sensitive Slaves [0-7/None] 
(PLI) 80186 Level Sensitive Iuts [4-5/None] 

*** 
*** 
*** 

0002H *** 
None *** 
None *** 
None *** 

***. .*** 
!**** ****! Enter Changes [Abbreviation ?/= new_value] : 

'****! !****' 
**********************************:k******************************* 

'**************************************************************' 

iAPX 186 INITIALIZATION SCREEN 

This screen allows you to c:onfigure theiAPX 186 or iAPX 188 logic that 
provides programmablE~ chip-·select generation for memories and 
peripherals. Refer to the iAPX 186 HIGH INTEGRATION 16-BIT 
MICROPROCESSOR Data Sheet for information about these parameters • 

• **************************************************************. 
****************************************************************** 

!****' '****! 
****' iAPX 186 Initialization '**** 
***' (UCS) Upper CS Size [0400H-040000H] 00000400H '*** 

(UCW) Upper CS Wait States [0,1,2,3] OOOOH 
(UCR) Upper CS Walt for Ready [Yes/No] Yes 
(LCS) Lower CS Size [0,0400H-04000H] OOOOOOOOH 
(LCW) Lower CS Walt States [0,1,2,3] OOOOH 
(LCR) Lower CS Wai.t for Ready [Yes/No] No 
(MCS) Midrange CS Size [0,0200H-080000H] OOOOOOOOH 
(MCA) Midrange CS Base Address [O-OFEOOOH] OOOOOOOOH 
(MCW) Midrange CS Wait States [0,1,2,3] OOOOH 
(MCR) Midrange CS Wai t for Ready [Yes/No] No 
(PCS) Peripheral C:S Active [Yes/No] Yes 
(PCA) Peripheral C:S Base Address [O-OFCOOH] OOOOH 
(PCM) Peripheral C:S Mapped to Memory [Yes/No] No 
(LPW) Lower Peripheral CS Wait States [0,1,2,3] 0002H 
(LPR) Lower Peripheral CS Wait for Ready [Yes/No] Yes 
(UPW) Upper Peripheral CS Wait States [0,1,2,3] 0002H 
(UPR) Upper Peripheral CS Wait for Ready [Yes/No] Yes 
(PLA) Peripheral C:S 5,6 Latch A1,A2 [Yes/No] No 

***. .*** 
****! Enter Changes [Abbreviation? /= new_value] : ! **** 
'****1 !****' 
****************************************************************** 

'**************************************************************' 

REPLACE Configuration 3-17 UPDATE 2, 12/84 



I 

I 

HARDWARE-RELATED PARAMETERS 

****************************************~~******************************* 
* (UCS) Upper CS Size [0400H-040000H] 00000400H * 
****************************************~:******************************* 

You must specify the size of the upper me~mory chip select line. The 
value you specify must be lK (400H), 2K (800H), 4K (1000H), 8K (2000H), 
16K (4000H), 32K (8000H), 64K (10000H), 128K (20000H), or 256K (40000H). 
If you are using the iSBC 186/03 or the :f.SBC 186/51 processor board, it 
is recommended that you use the default value. If you are using the 
iSBC 188/48 processor board, change the default value to 1000OH. 

The upper limit defined by this chip select line is always FFFFFH. The 
lower limit is ascertained by the ICU as the upper limit less the value 
specified for this parameter line. 

************************************************************************ 
* (UCW) Upper CS Wait States [0,1,2,3] OOOOH * 
************************************************************************ 

You must specify the number of wait states for all accesses to the upper 
memory chip select line. The value you select can be from zero to 
three. If you are using the iSBC 186/03, the iSBC 186/51, or the 
iSBC 188/48 processor board, it is recommended that you use the default 
value. 

************************************************************************ 
* (UCR) .Upper CS Wai t for Ready [Yes/No] Yes * 
************************************************************************ 

You must select whether or not the iAPX 186 should ignore external READY 
for the upper memory chip select line. If you specify "Yes", the 
iAPX 186 will wait for the number of wait states specified or will wait 
for an external READY condition. If you specify "No", the iAPX 186 will 
wait for the number of wait states specified but will not wait for an 
external READY condition. If you are using the iSBC 186703, the 
iSBC 186/51, or the iSBC 188/48 processor board, it is recommended that 
you use the default value. 

*****************************************'k****************************** 
* (LCS) Lower CS Size [0,0400H-040000] OOOOOOOOH * 
*****************************************~k****************************** 

In response to the "Lower CS Size" parameter line you must specify a 
value of zero or the size of the lower memory chip select line. The 
value of zero indicates that you do not intend to program the lower 
memory chip select line. Any non-zero value you specify must be lK 
(400H), 2K (800H), 4K (1000H), 8K (2000H), 16K (4000H), 32K (8000H), 64K 
(10000H), 128K (20000H), or 256K (40000H). If you are using the 
iSBC 186/03, the iSBC 186/51, or the iSBC 188/48 processor 

REPLACE Configuration :3-18 UPDATE 2, 12/84 



HARDWARE-RELATED PARAMETERS 

board, it is recommended that you use the default value. The lower limit 
defined by this chip select line is always OOOOOH. The upper limit is 
ascertained by the leU as the lower limit plus the value specified for 
this parameter line. 

************************************************************************ 
* (LCW) Lower CS Wait States [0,1,2,3] OOOOH * 
************************************************************************ 

If you specified a non-zero value for the "Lower CS Size" parameter line, 
you must specify the number of wait states for all accesses to the lower 
memory chip select l:ine. The value you select can be from zero to 
three. If you are using the iSBC 186/03, the iSBC 186/51, or the 
iSBC 188/48 processor board, it is recommended that you use the default 
value. 

************************************************************************ 
* (LCR) Lower CS Wait for Ready [Yes/No] No * 
************************************************************************ 

If you specified a non-zero value for the "Lower CS Size" parameter line, 
you must select whether or not the iAPX 186 should ignore external READY 
for the lower memory chip select line. If you specify "Yes", the 
iAPX 186 will wait for the number of wait states specified or will wait 
for an external READY condition. If you specify "No", the iAPX 186 will 
wait for the number of wait states specified but will not wait for an 
external READY condition. If you are using the iSBC 186/03, the 
iSBC 186/51, or the :iSBC 188/48 processor board, it is recommended that 
you use the default value. 

************************************************************************ 
* (MCS) Midrange CS Size [0,02000H-080000H] OOOOOOOOH * 
**************************,~********************************************* 

In response to the "Midrange CS Size" parameter line you must specify a 
value of zero or the size of the midrange memory chip select line. The 
value of zero indicates that you do not intend on programming the 
midrange memory chip select line. Any non-zero value you specify must be 
8K (2000H), 16K (4000H), 32K (8000H), 64K (10000H), 128K (20000H), 256K 
(40000H), or 512K (80000H) .. If you are using the iSBC 186/03, the 
iSBC 186/51, or the :iSBC 188/48 processor board, it is recommended tha t 
you use the default value. 

The iAPX 186 provides four midrange memory chip select lines. Your 
response to this parameter sets the total size of the memory block 
defined by the four midrange select lines. The size of anyone midrange 
memory chip select l:ine is one-fourth of the total. The lower limit 
defined by this chip select line is defined by the "Midrange Chip Select 
Base Address". The upper limit is ascertained by the ICU as the lower 
limit plus the value specified for this parameter line. 

REPLACE Configuration 3-19 UPDATE 2, 12/84 

I 

I 



HARDWARE-RELATED PARAMETERS 

************************************************************************ 
* (MCA) Midrange CS Base Address [O-OFEOOOR] OOOOOOOOR * 
************************************************************************ 

If you specify a non-zero value for the "Midrange CS Size" parameter 
line, you must specify the base address of the midrange memory chip 
select lines. Otherwise, specify a value of zero. If you are using the 
iSBC 186/03, the iSBC 186/51, or the iSBC 188/48 processor board, it is 
recommended that you use the default value. 

You must set the base address at any integer multiple of the size of the 
total memory block selected. For example, if you specified a total block 
size of 32K for the previous parameter (MeS), you must select a base 
address of 10000R or 18000R but not 14000H. 

If you specify MCS=080000R for the previous parameter line, you must also 
specify the base address to be OOOOOR and the "Lower CS Size" parameter 
to be zero. 

************************************************************************ 
* (MCW) Midrange CS Wait States [0,1,2,3] OOOOR * 
************************************************************************ 

If you specified a non-zero value for the "Midrange CS Size" parameter 
line, you must specify the number of wait states for all accesses to the 
midrange memory chip select lines. Otherwise, specify a value of zero. 
The value you select can be from zero to three. If you are using the 
iSBC 186/03, the iSBC 186/51, or the iSBC 188/48 processor board, it is 
recommended that you use the default value. 

************************************************************************ 
* (MCR) Midrange CS Wait for Ready [Yes/No] No * 
************************************************************************ 

If you specified a non-zero value for the "Midrange CS Size" parameter 
line, you must select whether or not the iAPX 186 should ignore external 
READY for the midrange memory chip select lines. Otherwise, specify a 
value of zero. If you specify "Yes", the iAPX 186 will wait for the 
number of wait states specified or will wait for an external READY 
condition. If you specify "No", the iAPX 186 will wait for the number of 
wait states specified but will not wait for an external READY condition. 
If you are using the iSBC 186/0~the iSBC 186/51, or the iSBC 188/48 
processor board, it is recommended that you use the default value. 

REPLACE Configuration 3-20 UPDATE 2, 12/84 



ROM CODE PARAMETERS 

The module with the highest address. Since the Root Job module is always 
the last module the second stage of the ICU locates, the information we 
need to complete this table must come from the ROOT.MP2 file. The 
contents from a sample ROOT.MP2 file is shown in Figure 15-2. 

INPUT FILE: CROOT.LNK 
OUTPUT FILE: ROOT 
CONTROLS SPECIFIED IN INVOCATION COMMAND: 

TO ROOT SEGSIZE(STACK(O)) ORDER(CI.ASSES(DATA,STACK)) 
PRINT(ROOT.MP2) ADDRESSES(CLASSES(CODE(029FFOH),DATA(02A4BOH))) 
INITCODE(029FFOH) OC(NOCM,NOSB) PC(NLOI,PL,NOXM,NOSB) OOD 

• 
• 
• 

MEMORY MAP OF MODULE RBEGIN 

MODULE START ADDRESS PARAGRAPH = 29FF'H OFFSET OOOOH 
SEGMENT MAP 

START STOP LENGTH ALIGN NAME 

--)29FFOH 2A2F3H 0304H W 
2A2F4H 2A2FFH 0OI.2H W 

--)2A300H 2A3C5H OOC6H W 

--)2A4BOH 2A4CIH OO12H W 
2A4C2H 2A5EDH 012CH W 
2A5EEH 2A5EEH OOOOR W 
2A5FOH 2A5FOH OOOOR G 
2A5FOH 2A5FOH OOOOH W 

GROUP MAP 

ADDRESS GROUP OR SEGMENT NAME 
2A4BOH DGROUP 

DATA 
2 9F FOH CGRO UP 

CODE 
SAB DESCRIPTORS 
U J DESCRIPTORS 

CODE 
SAB DESCRIPTOR 

-S 
U J DESCRIPTOR 

-S 
DATA 

INIT STACK 
STACK 
??SEG 
MEMORY 

Figure 15-2. ROOT.MP2 File 

REPLACE Configuration 15-7 

CLASS 

CODE 
CODE 

CODE 

DATA 
STACK 
STACK 

MEMORY 

UPDATE 2, 12/84 



I 

ROM CODE PARAMETERS 

The lines marked with arrows in Figure 15-2 contain the sample 
information we need to complete the table. Since the ICU has organized 
the modules in the order shown in Figure 15-3, we can also estimate the 
other needed stop addresses. (Note that the Root Job's data and stack 
segments should be treated as one block of RAM.) 

2A5EDH 
Root Job Data and Stack 

2A4BOH 
2A3C5H 

Root Job Code 
29FFOH 

? 
Other Operating System. Data 

29BAOH 
? 

Other Operating System Code 
1040H 

Figure 15-3. A Sample RAM-Based System 

The following start addresses summarize this sample information. 

System Module Code Locations Data Locations 

lOS 001040H- ? 029F30H- ? 
HI 011620H- ? 029EBOH- ? 
NUCLEUS 0177COH- ? 029FCOH- ? 
SDB 01D7AOH- ? 029BAOH- ? 
EIOS 022740H- ? 029FEOH- ? 
LOADER 025AAOH- ? o 29FAOH- ? 
UDI 02803 OH-02 9B9FH 02 9F8 OH-02 9FEFH 
ROOT 029FFOH-02A3C5H 02A4BOH-02A4C1H 

Having determined the basic size requirem.ents of the system's code and 
data segments, we can approximate the ~[ and ROM requirements of this 
sample ROM-based system. Figure 15-4 shows how we can configure our 
sample ROM-based system. 

REPLACE 

NOTE 

All data segments must be in RAM. All 
RAM and ROM code must start on a 16 
byte boundaries. 

Configuration 15-8 UPDATE 2, 12/84 



ROM CODE PARAMETERS 

Boundary +28F35H 
Root Job Code 

Boundary +28B5FH 
Other Operating Syste~m Code 

16K byte Boundary 
15CDH 

Root Job Data 
1490H 
148FH 

Other Operating System Data 
1040H 

Figure 15,-4. A Sample ROM-Based System 

Before the system code is burned into ROM, it is recommended that you 
test your ROM-based system in RAM. To do this, invoke the lCU and 
respond to the "ROM" prompt with a RAM a.ddress in the "Memory" screen. 
The following screen shows the changes 1.n our sample configuration • 

• **************************************************************. 
************************************'****************************** 

!****' 
****' 
***' 
*** 
*** 

*** • 
****! 

Memory 
Type RAM 
Type : ROM 

low, high 
low, high 

First define your RAM blocks in paragraphs 
Type RAM 0104H, DFFFH 
+d 
Type RAM o 104h, Offfh 

Type RAM 
Now define your ROM blocks in paragraphs 

Type ROM 1000h, 38F5h 

Type ROM 

'****! 
'**** 
'*** 
*** 
*** 

.*** 
!**** 

~*! !****' 
****************************************************************** 

'********************:k*****************************************' 

REPLACE Configuration 15-9 UPDATE 2, 12/84 



ROM CODE PARA~rnTERS 

Running the second stage of the ICU revea.ls that our sample ROM-based 
system would have the following RAM addresses: 

The 

System Module Code Locations Data Locations 

lOS OlOOOOH- ? 0013DOH- ? 
HI 0205EOH- ? 001350H- ? 
NUCLEUS 026780H- ? 001460H- ? 
SDB 02C760H- ? 001040H- ? 
EIOS 031700H- ? OO1480H- ? 
LOADER 034A60H- ? OO1440H- ? 
UDI 036FFOH- ? OO1420H- ? 
ROOT 038B60H-038F35H 001490H-0015CDH 

last steps you need to take to create a ROM-based system include: 

• Use LIB86 to put all generated system modules into the system 
library for boot loading or down-loading. 

• Load and test your ROM-based system in RAM. 

• Invoke the ICU to give the "Memory" screen actual ROM addresses. 

• Generate your configuration files to link and locate your new 
system. 

• Record the Start and Stop addresses of each module to be burned 
into ROM. This information is found in the memory maps LOC86 
generates for each module. 

• Burn your code into ROM. 

Appendix C illustrates how to burn your ~~cleus code into ROM. Refer to 
this appendix for more information. 

*** 
REPLACE Configuration 15-10 UPDATE 2, 12/84 



iRMX™ 86 RELEASE 6 
DOCUMENTATION CHANGE PACKAGE: 

UPDATE 3 

REQUEST FOR READER'S COMMENTS 
147540-001 

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel 
product users. This form lets you participate directly in the publication process. Your comments will help 
us correct and improve our publications. Please take a few minutes to respond. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this publication. If you have any comments on the product that this publication describes, please contact 
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see 
page ii of this manual). 

1. Please describe any errors you found in this publication (include page number). 

2. Does the publication cover the information you expected or required? Please make suggestions for 
improvement. 

. 3. Is this the right type of publication for your needs? Is it at the right level? What other types of 
publications are needed? 

----- -------------- ----------

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). 

NAME ____________ _ 

TITLE ________ _ 

COMPANY NAME/DEPARTMENT 

ADDRESS __________ _ 

CITY ________ _ STATE 
(COUNTRY) 

Please check here if you require a written reply. D 

DATE ________ _ 

ZIP CODE _______ _ 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. YOiLJr comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 N.E. Elam Young Pkwy. 
Hillsboro, Oregon 97123 

OMO Technical Publications 

'''"' 
NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 


