
inter

• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

iRMX®
Basic 1/0 System Calls
Reference Manual

Order Number: 462915-001

iRMX®
Basic I/O System Calls

Reference Manual

Order Number: 462915-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright 0 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
genius intel iSSB Ripplemode
1 Intel376 iSXM RMX/80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980,1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89

iii/iv

PREFACE

This manual documents the system calls of the Basic I/O System, one of the subsystems of
the iRMX® I and iRMX II Operating Systems. The information provided in this manual is
intended as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the iRMX® I Nucleus User's Guide or the iRMX® II Nucleus
User's Guide and with the PL/M programming language.

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in blue ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
A$CREA TE$FILE instead of RQACREA TE$FILE). This convention is used to allow
easier alphabetic arrangement of the calls. The actual PL/M external-procedure names
must be used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the PL/M
calling sequences when doing so. For more information on these calling sequences, refer
to the iRMX® I Programming Techniques Reference Manual or the iRMX® II Programming
Techniques Reference Manual.

BIOS System Calls v

CONTENTS

Chapter 1. iRMX® Basic I/O System Calls

1.1 Introduction ... 1-1
1.2 System Call Command Dictionary ... 1-3

A$ATIACH$FILE ... 1-6
A$CHANGE$ACCESS ... 1-11
A$CLOSE ... 1-19
A$CREATE$DIRECTORY ... 1-22
A$CREATE$FILE ... 1-28
A$DELETE$CONNECTION .. 1-36
A$DELETE$FILE .. 1-39
AGETCONNECTlON$STA TUS .. 1-45
AGETDIRECTORY$ENTRY .. 1-49
AGETEXTENSION$DATA .. 1-52
AGETFILE$STATUS ... 1-55
AGETPATH$COMPONENT .. 1-64
A$OPEN ... 1-68
A$PHYSICAL$A TIACH$DEVICE .. 1-72
A$PHYSICAL$DETACH$DEVICE ... 1-76
A$READ .. 1-79
A$RENAME$FILE .. 1-83
A$SEEK .. 1-89
ASETEXTENSION$DATA ... 1-92
A$SPECIAL ... 1-95
A$TRUNCATE ... 1-129
A$UPDATE ... 1-132
A$WRITE ... 1-136
CREA TE$USER .. 1-140
DELETE$USER ... 1-142
ENCR ypT .. 1-143
GET$DEFAULT$PREFIX .. 1-145
GET$DEFAULT$USER , ... 1-147
GET$GLOBAL$TIME .. 1-149
GET$TIME .. 1-151
INSPECT$USER .. 1-152
SET$DEFAULT$PREFIX ... 1-154
SET$DEFAULT$USER ... 1-156
SET$GLOBAL$TIME ... 1-158
SET$TIME ... 1-160
WAIT$IO .. 1-161

BIOS System Calls vii

CONTENTS

Appendix A. I/O Request/Result Segment

A.I Overview .. A-I
A.2 Structure of I/O Request/Result Segment. ... A-2

Index

viii BIOS System Calls

iRMX® BASIC I/O SYSTEM CALLS 1
1.1 INTRODUCTION

The iRMX® Basic I/O System Calls manual provides a detailed description of each Basic
I/O System call, listed alphabetically.

BIOS system calls can be divided into two categories according to their names. The first
category consists of system calls having names of the form

RQ$XXXXX

where XXXXX is a brief description of what the system call does. The second category
consists of system calls having names of the form

RQAXXXXX

System calls of the first category, without the A, are synchronous calls. They begin running
as soon as your application invokes them, and continue running until they detect an error
or accomplish everything they must do. Then they return control to your application.

System calls of the second category (those with the A) are called asynchronous because
they accomplish their objectives by using tasks that run concurrently with your application.
This allows your application to accomplish some work while the Basic I/O System deals
with devices such as disk drives and tape drives.

This manual describes the PL/M calling sequences to the Basic I/O System calls. Basic
I/O operations are declared as typed or untyped external procedures for PL/M. PL/M
programs perform I/O operations by making external procedure calls.

The information for each system call is organized in this order:

• A brief sketch of the effects of the call.

• The PL/M calling sequence for the system call.

• Definitions of the input parameters, if any.

• Definitions of the output parameters, if any.

• A detailed description of the effects of the call.

• The condition codes that can result from using the cali, with a description of the
possible causes of each condition.

BIOS System Calls 1-1

iRMX® BASIC I/O SYSTEM CALLS

1-2

Throughout this manual, PL/M data types, such as BYTE, WORD, and SELECTOR are
used. In addition, the iRMX® data type TOKEN (always capitalized) is used. If your
compiler supports the SELECTOR data type, a TOKEN can be declared literally as
SELECTOR or WORD. Because TOKEN is not a PL/M data type, you must declare it to
be literally a SELECTOR or a WORD every place you use it. An asterisk (*) is used as a
STRUCTURE and ARRAY size indicator. You must substitute a value for the asterisk in
STRUCTURE and ARRAY declarations.

NOTE

The values NIL and SELECTOR$OF(NIL) are used throughout this
manual. For the iRMX I Operating System, you may also use a value of
zero in place of NIL and SELECTOR$OF(NIL). However, Intel
recommends that you use NIL and SELECTOR$OF(NIL) in your iRMX I
code to maintain upward compatibility with the iRMX II Operating System.
For a description of the SELECTOR$OF and NIL built-in functions, refer
to the PL/M-86 or PL/M-286 user's guides.

The Basic I/O System does not distinguish between upper and lowercase letters. For
example, file "xyz" is equal to file "XYZ".

The system call dictionary on these next few pages lists system calls by function rather than
alphabetically. This dictionary includes short descriptions and page numbers of the
complete descriptions that follow.

BIOS System Calls

iRMX® BASIC I/O SYSTEM CALLS

1.2 SYSTEM CALL COMMAND DICTIONARY

This dictionary summarizes the Basic I/O System calls by function and, where applicable,
indicates the file types to which they apply:

PF Physical file
SF Stream file
NF Named data file
ND Named directory file

The page reference listed with each call points to the detailed description for the call.

JOB-LEVEL SYSTEM CALLS

Call Description Page

ENCRYPT Encodes user password. 1-143

GET$DEFAULT$- Inspect default prefix. 1-145
PREFIX

GET$DEFAULT$USER Inspect default user. 1-147

SET$DEFAULT$- Set default prefix for job. 1-154
PREFIX

SET$DEFAULT$USER Set default user for job. 1-156

DEVICE-LEVEL SYSTEM CALLS

A$PHYSICAL$- Attach device. 1-72
AITACH$DEVICE

A$PHYSICAL$- Detach device. 1-76
DETACH$DEVICE

A$SPECIAL Perform device-level function. 1-95

FILE/CONNECTION-LEVEL SYSTEM CALLS

Call Description Files Page

A$A IT ACH$FILE Attach file. All 1-6

A$CREATE$- Directory file creation. ND 1-22
DIRECTORY

BIOS System Calls 1-3

iRMX® BASIC I/O SYSTEM CALLS

FILE/CONNECTION-LEVEL SYSTEM CALLS (continued)

Call Description Files Page

A$CREATE$FILE Data file creation. PF,SF,NF 1-28

A$DELETE$CON- Delete file connection. All 1-36
NECTION

A$DELETE$FILE Data or directory file deletion. SF,NF,ND 1-39

FILE-MODIFICATION SYSTEM CALLS

A$CHANGE$ACCESS Change access rights to file. NF,ND 1-11

A$RENAME$FILE Rename file. NF,ND 1-83

A$TRUNCATE Truncate file. NF 1-129

FILE INPUT/OUTPUT SYSTEM CALLS

A$CLOSE Close file. All 1-19

A$OPEN Open file. All 1-68

A$READ Read file. All 1-79

A$SEEK Move file pointer. PF,NF,ND 1-89

A$UPDATE Finish writing to output device. PF,NF,ND 1-132

WAIT$IO Wait for status after I/O. All 1-161

A$WRITE Write file. PF,SF,NF 1-136

GET STATUS/ATTRIBUTE SYSTEM CALLS

AGETCON- Get connection status. All 1-45
NECTION$STATUS

AGETDIREC- Inspect directory entry. NO 1-49
TORY$ENTRY

AGETFILE$STATUS Get file status. All 1-55

AGETPATH$- Obtains path name from connection token. NF,ND 1-64
COMPONENT

1-4 BIOS System Calls

iRMX® BASIC I/O SYSTEM CALLS

USER OBJECT SYSTEM CALLS

Call Description Files Page

CREATE$USER Create a user object. 1-140

DELETE$USER Delete a user object. 1-142

INSPECT$USER Get IDs in a user object. 1-152

EXTENSION DATA SYSTEM CALLS

AGETEXTENSION$- Receive a file's extension data. NF,ND 1-52
DATA

ASETEXTENSION$- Store a file's extension data. NF,ND 1-92
DATA

TIME/DATE SYSTEM CALLS

GET$TIME Get date/time value in internally-stored format. 1-151

SET$TIME Set date/time value in internally-stored format. 1-160

CALLS FOR ACCESSING THE GLOBAL TIME-Of-DAY CLOCK

GET$GLOBAL$TIME Obtains the time of day from the battery 1-149
backed-up hardware clock.

SET$GLOBAL$TIME Sets the battery backed-up hardware clock 1-158
to a specified time.

BIOS System Calls 1-5

A$ATTACH$FILE

A$A TIACH$FILE creates a connection to an existing file.

CALL RQAATTACH$FILE(user, prefix, sUbpath$ptr, resp$rnbox,
except$ptr) ;

Input Parameters
user

prefix

subpath$ptr

Output Parameters
resp$mbox

except$ptr

1-6

A TOKEN for the user object to be inspected in any access checking
that takes place. A SELECTOR$OF(NIL) specifies the default
user for the calling task's job. This parameter is ignored when
attaching physical or stream files. Access checking does occur for
named files.

A TOKEN for the connection object to be used as the path prefix.
A SELECTOR$OF(NIL) specifies the default prefix for the calling
task's job.

A POINTER to a STRING containing the subpath of the file to be
attached. A null string indicates that the new connection is to the
file designated by the prefix. The new connection will not be open,
regardless of the open mode of the prefix.
(This parameter is ignored for physical and stream files.)

A TOKEN for the mailbox into which the Basic I/O System places a
token for the result object of the call. This result object is a new file
connection if the call succeeds or an I/O request/result segment
(laRS) otherwise (for details on the laRS, see Appendix A). To
ascertain the type of object returned, use the Nucleus system call
GET$TYPE.

If the object received is an laRS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

A$ATTACH$FILE

Description

A$A TIACH$FILE creates a connection to an existing file. Once the connection is
established, it remains in effect until the connection object is deleted, or until the creating
job is deleted. Once attached, the file may be opened, closed, read, written, etc., as many
times as desired. A$ATIACH$FILE has no effect on the owner ID or the access list for
the file.

Special Considerations for iRMX®-NET

Unlike a local named file, the access rights of a remote named file are not checked when a
connection to the file is created. Instead, the remote named file's access rights are checked
during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

A$A TIACH$FILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRM)(® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EDEVOFFLlNE

BIOS System Calls

OOOOH

002EH

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device associated with the connection:

• It has been physically attached but is now off
line.

• It has never been physically attached. (See
Appendix E in the iRM)(® Basic I/O User's Guide
for a more detailed explanation.)

1-7

A$ATTACH$FILE

E$EXIST 0006H

E$LIMIT 0004H

E$MEM 0002H

E$NOPREFIX 8022H

1-8

One of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The user parameter

- The prefix parameter

- The resp$mbox parameter

• The prefix connection is being deleted.

• The connection for a remote driver is no longer
active.

Processing this call would cause one or more of these
limits to be exceeded:

• The object limit for this job.

• The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (25~ decimal).

• The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

The calling task specified a default prefix (prefix
argument equals SELECTOR$OF(NIL)), but no
default prefix can be found because of one of the
following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but a default
prefix is not cataloged there.

BIOS System Calls

E$NOUSER

ENOTCON
FIGURED

E$PA THNAME$
SYNTAX

E$TYPE

BIOS System Calls

8021H

0008H

003EH

8002H

A$ATTACH$FILE

If the user parameter in this call is not
SELECTOR$OF(NIL), the parameter is not a token
for a user object.

If the user parameter is SELECTOR$OF(NIL), it
specifies a default user, but no default user can be
found because of one of the following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

• The job's directory can have entries but a default
user is not cataloged there.

• The object that is cataloged with the name
R ?IOUSER is not a user object. The name
R ?IOUSER should be treated as a reserved
word.

• The user parameter is a token for an object that
is not a user object.

This system call is not part of the present
configuration.

One or more of the following conditions caused this
exception:

• The specified path name contains invalid
characters or has a length of zero. The path
name can include any printable ASCII character
except the slash (I), up-arrow (t), and circumflex
(A).

• The sUbpath of the specified remote file exceeds
127 bytes in length.

One or more of the following conditions caused this
exception:

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object.
(Logical device objects are created by the
Extended 110 System.)

• The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

1-9

A$ATTACH$FILE

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

EDEVDETACHING 0039H

E$FNEXIST 0021H

E$FTYPE 0027H

E$INV ALID$FNODE 003DH

E$IO 002BH

EIOMEM 0042H

E$LIMIT 0004H

E$NAME$NEXIST 0049H

E$PASSWORD$- 004BH
MISMATCH

E$PATHNAME$- 003EH
SYNTAX

EUDFIO 02DOH

1-10

The file specified is on a device that the system is
detaching.

A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

The string pointed to by the sUbpath$ptr parameter
contains a filename that should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

The fnode for the specified file is invalid. The file
cannot be accessed.

An I/O error occurred, which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

The memory available to the Basic I/O System job is
not sufficient to complete the call.

Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRM)(® Networking Software
User's Guide.

The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

The password of the user object does not
match the password of the corresponding user
defined on the remote server.

The syntax of the specified remote file path name is
illegal. Path names for remote files must follow the
naming conventions of the server.

An error occurred while accessing the remote
server's User Definition File (UDF).

BIOS System Calls

A$Ct-JANGE$ACCESS

A$CHANGE$ACCESS changes the access rights to a named data or directory file.

CALL RQACHANGE$ACCESS(user, prefix, sUbpath$ptr, id, access,
resp$rnbox, except$ptr);

Input Parameters
user

prefix

subpath$ptr

id

access

BIOS System Calls

A TOKEN for the user object to be inspected in access checking. A
value ofSELECTOR$OF(NIL) specifies the default user for the
calling task's job.

A TOKEN for the connection object to be used as the path prefix.
A SELECTOR$OF(NIL) specifies the default prefix for the calling
task's job.

A POINTER to a STRING giving the subpath of the file whose
access is to be changed. A null string indicates that the prefix itself
designates the desired file.

A WORD containing the ID number of the user whose access is to
be changed. If this ID does not already exist in the ID-access mask
list, it is added. This list may contain a total of three ID-access
pairs.

A BYTE mask giving the new access rights for the ID. If the entire
BYTE is set to zero, the Basic I/O System removes the specified ID
from the access list of the file. If the BYTE is nonzero, the meaning
of the various bit settings depend upon whether the file is a data file
or a directory file. The following two tables correlate the bit
position and the kind of access. (System calls that start with "S$",
like S$READ$MOVE, are part of the Extended I/O System.)

If the bit is set to 1, access is to be granted. If the bit is set to 0,
access is to be denied. (Bit 0 is low-order bit.)

1-11

A$CHANGE$ACCESS

DATA FILE ACCESS RIGHTS

1-12

Bit

o

1

2

3

4-7

Access

Delete--permission to delete the entire file by
using the A$DELETE$FILE or
S$DELETE$FILE system calls. Also allows
changing the name of the file by using the
A$RENAME$FILE or S$RENAME$FILE
system calls.

This bit is ignored for remote files.

Read--permission to read data from the file by
using the A$READ or S$READ$MOVE
system calls.

Append--permission to write information only
at the end of the file by using the A$WRITE or
S$WRITE$MOVE system calls. This does not
include permission to write over information
already in the file or permission to truncate the
file.

This bit must be set to the same value as bit 3
(Update) for remote files.

Update--permission to write over any
information in the file by using the A$WRITE
or S$WRITE$MOVE system calls, and
permission to truncate the file using the
A$TRUNCATE or S$TRUNCATE$FILE
system calls. This does not include permission
to add information to the end of the file.

This bit must be set to the same value as bit 2
(Append) for remote files.

Reserved. Set to zero.

BIOS System Calls

Output Parameters
resp$mbox

except$ptr

BIOS System Calls

A$CHANGE$ACCESS

DIRECTORY ACCESS RIGHTS

o

1

2

3

4-7

Access

Delete--permission to delete the directory by
using the S$DELETE$FILE or
A$DELETE$FILE system calls. Also allows
changing the name of the directory by using the
S$RENAME$FILE or A$RENAME$FILE
system calls.

This bit is ignored for remote directories.

Display--permission to read information from
the directory by using the A$READ,
AGETDIRECTORY$ENTRY, or
S$READ$MOVE system calls.

Add entry--permission to add files to the
directory by using the A$CREATE$FILE,
A$CREA TE$DIRECTORY,
A$RENAME$FILE, S$CREA TE$FILE,
S$CREATE$DIRECTORY, or
S$RENAME$FILE system calls. This does not
include permission to change existing entries.

Change entry--permission to change the access
list associated with a file contained in the
directory. In other words, permission to use the
A$CHANGE$ACCESS or
S$CHANGE$ACCESS system calls. This does
not include permission to add new entries or
change the access list of the directory in which
the file is cataloged.

This bit is ignored for remote directories.

Reserved. Set to zero.

A TOKEN for the mailbox that receives an IORS indicating the
result of the call (for details on the IORS, see Appendix A). A value
of SELECTOR$OF(NIL) means that you do not want to receive an
IORS.

If it receives an IORS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

1-13

A$CHANGE$ACCESS

Description

A$CHANGE$ACCESS system call applies to named files only. This call has no effect on
existing connections to the file. It is called to change the access rights to a named data or
directory file. Depending on the contents of the "id" and "access" parameters specified in
the system call, users may be added to or deleted from the file's ID-access mask list, or the
access privileges granted to a particular user may be changed.

NOTE

The caller must be the owner of the file or must have change entry access to
the file's parent directory. However, if the owner is "WORLD", that is,
OFFFFH, then any task may change the access mask of the file. If system
manager support is configured, user 0 may change the access rights of any
file regardless of which user is the owner.

Special Considerations for iRMX®-NET

You cannot change the access rights of a virtual root directory, because a virtual root
directory has no assigned owner. If you attempt to change the access rights of a virtual
root directory, an E$F ACCESS condition code is returned.

Condition Codes

A$CHANGE$ACCESS returns condition codes at two different times. The code returned
to the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRMX® Basic I/O Syste11'l User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

1-14 BIOS System Calls

A$CHANGE$ACCESS

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EDEVOFFLINE

E$EXIST

E$IFDR

E$LIMIT

E$MEM

BIOS System Calls

OOOOH

002EH

0006H

002FH

0004H

0002H

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

• It has been physically attached but is off-line.

• It has never been physically attached. (For
example, LOGICAL$ATTACH$DEVICE, an
EIOS call, was used. This call does not cause the
device to be physically attached until another
EIOS call references the logical device object.)

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The user parameter
- The prefix parameter
- The response mailbox parameter

• The prefix connection is being deleted.

• The remote driver connection is no longer active.

This system call applies only to named files, but the
prefix and subpath parameters specify some other
type of file.

Processing this call would cause one or more of these
limits to be exceeded:

• The object limit for this job.

• The maximum number of outstanding I/O
operations for the user object specified in the call
(255 decimal).

• The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

• The number of outstanding I/O operations for a
remote file has been exceeded.

The memory available to the calling task's job is not
sufficient to complete this call.

1-15

A$CHANGE$ACCESS

E$NOPREFIX 8022H The calling task specified a default prefix (prefix
parameter equals SELECTOR$OF(NIL)), but no
default prefix can be found because of one of the
following:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but no
default prefix is cataloged there.

E$NOUSER 8021H If the user parameter in this call is not
SELECTOR$OF(NIL), then the parameter is not a
token for a user object.

If the user parameter is SELECTOR$OF(NIL), it
specifies a default user, but no default user can be
found because of one of the following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

• The job's directory can have entries but no
default user is cataloged there.

• The object which is cataloged with the name
R ?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

E$PA THNAME$- 003EH One or more of the following conditions caused this
SYNTAX exception:

• The specified path name contains invalid
characters or has a length of zero. The path
name can include any printable ASCII character
except the slash (/), up-arrow (t), and circumflex
(").

• The subpath of the specified remote file exceeds
127 bytes in length.

E$SUPPORT 0023H The connection was not created by this job.

1-16 BIOS System Calls

E$TYPE 8002H

Concurrent Condition Codes

A$CHANGE$ACCESS

One or more of the following conditions caused this
exception:

• The user token designates a connection of the
wrong type.

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

• The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the IORS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOR

EDEVDETACHING 0039H

No exceptional conditions.

The file specified is on a device that the system is
detaching.

E$FACCESS 0026H The user object in the parameter list is not the owner
of the specified file, nor does it have "change entry"
access to the parent directory.

E$FNEXIST 0021H A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

E$FTYPE 0027H The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid. The file
cannot be accessed.

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the IORS for more information.
For information on 10RS structures, see Appendix
A.

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete this call.

BIOS System Calls 1-17

A$CHANGE$ACCESS

E$LIMIT 0OO4H Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRM)(® Networking Software
User's Guide.

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

ENOTFILE$CONN 0032H The subpath$ptr parameter is a null pointer and the
prefix parameter is not a file connection.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PA THNAME$- 003EH The syntax of the specified remote file path name is
SYNTAX illegal. Path names for remote files must follow the

naming conventions of the server.

E$SUPPORT 0023H The call attempted to add another access ID to the
list of access ID's. The access list already contained
the limit of three such ID's.

EUDFIO 02DOH An error occurred while accessing the remote
server's User Definition File (UDF).

1-18 Bros System Calls

A$CLOSE

A$CLOSE closes an open file connection.

CALL RQACLOSE(connection, resp$mbox, except$ptr);

Input Parameter
connection

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for the file connection to be closed.

A TOKEN for the mailbox that receives an I/O request/result
segment (lORS) indicating the result of the call (for details on the
10RS, see Appendix A). A value of SELECTOR$OF(NIL) means
that you do not want to receive an 10RS.

If it receives an 10RS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$CLOSE system call closes an open file connection. It is called when the application
needs to change the open mode or shared status of the connection. The Basic I/O System
will not close the connection until all existing I/O requests for the connection have been
satisfied. In addition, the Basic I/O System will not send a response to the response
mailbox until the file is closed.

Condition Codes

A$CLOSE returns condition codes at two different times. The code returned to the calling
task immediately after invocation of the system call is considered a sequential condition
code. A code returned as a result of asynchronous processing is a concurrent condition
code. A complete explanation of sequential and concurrent parts of system calls is in the
iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls 1-19

A$CLOSE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$SUPPORT

E$TYPE

1-20

OOOOH

0006H

0004H

0002H

0008H

0023H

8002H

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

At least one of the following is true.

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete this call.

This system call is not part of the present
configuration.

The connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

BIOS System Calls

A$CLOSE

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) Mter
examining this segment, you should delete it.

E$OK OOOOH

E$CONN$NOT$OPEN 0034H

E$IO 002BH

BIOS System Calls

No exceptional conditions.

The specified connection is not open.

An I/O error occurred, but the operation was
successful anyway.

1-21

A$CREATE$DIRECTORV

A$CREATE$DIRECTORY creates a directory file.

CALL RQACREATE$DIRECTORY(user, prefix, subpath$ptr, access,
resp$mbox, except$ptr);

Input Parameters
user

prefix

sUbpath$ptr

access

Output Parameters
resp$mbox

1-22

A TOKEN for the user object of the new directory's owner. The
user object is inspected to make sure the caller has proper access to
the new directory's parent. A SELECTOR$OF(NIL) specifies the
default user for the calling task's job.

A TOKEN for the connection to be used as the path prefix. A
SELECTOR$OF(NIL) specifies the default prefix for the calling
task's job.

A POINTER to a STRING containing the subpath of the directory
to be created. The subpath string must not be null, and it must point
to an unused location in the directory tree.

A BYTE mask giving the owner's initial access rights to the
directory. For each bit in the mask, a one grants access and a zero
denies it. The possible bit settings are:

Bit Meaning

0 Delete
1 List
2 Add Entry
3 Change Entry
4-7 Reserved (set to 0)

A TOKEN for the mailbox that receives the result object of this call.
This result object is a directory file connection if the call succeeded,
or an I/O request/result segment (laRS) otherwise (for details on
the laRS, see Appendix A). To determine the type of object
returned, use the Nucleus system call GET$TYPE. If the object
received is an laRS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

BIOS System Calls

except$ptr

Description

A$CREATE$DIRECTORY

A POINTER to a WORD where the sequential condition code will
be returned.

The A$CREATE$DlRECTORY system call is applicable to named directory files only.
When called, it creates a new directory file and returns a token for the new file connection.
This system call cannot be used to create a connection to an existing directory. To attach
to an existing file you should use the A$A IT ACH$FILE system call.

NOTE

The caller must have add-entry access to the parent of the new directory.

Special Considerations for iRMX®-NET

You cannot create a remote directory with a virtual root directory as its parent. A virtual
root directory has no owner and, thus, you cannot have write access to it. If an attempt is
made to create such a remote directory, an E$FACCESS condition code is returned.

Condition Codes

A$CREATE$DIRECTORY returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the iRMX® Basic I/O System User's Guide.

The list on the following pages is· divided into two parts--one for sequential codes, and one
for concurrent codes.

BIOS System Calls 1-23

A$CREA TE$DIRECTORY

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EDEVOFF$LlNE

E$EXIST

E$IFDR

E$LIMIT

1-24

OOOOH

002EH

0006H

002FH

0004H

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

• It has been physically attached but is now off
line.

• It has never been physically attached. (See
iRMX® Basic I/O System User's Guide, Appendix
E for a more detailed explanation.)

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The user parameter

- The prefix parameter

- The response mailbox parameter

• The prefix connection is being deleted.

• The connection for a remote driver is no longer
active.

This system call applies only to named directory files,
but the prefix and sUbpath parameters specify some
other type of file.

Processing this call would cause one or more of these
limits to be exceeded:

• The object limit for this job.

• The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

• The number of outstanding I/O operations for a
remote connection has been exceeded.

BIOS System Calls

E$MEM

E$NOPREFIX

E$NOUSER

ENOTCON
FIGURED

E$PATHNAME$
SYNTAX

BIOS System Calls

0002H

8022H

8021H

0008H

003EH

A$CREATE$DIRECTORY

The memory available to the calling task's job is not
sufficient to complete this call.

The task specified a default prefix (prefix parameter
equals SELECTOR$OF(NIL)), but no default prefix
can be found because of one or more of the following
reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not
SELECTOR$OF(NIL), then the parameter is not a
user object.

If the user parameter is SELECTOR$OF(NIL), it
specifies a default user, but no default user can be
found because of one of the following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

• The job's directory can have entries but no
default user is cataloged there.

• The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

This system call is not part of the
present configuration.

One or more of the following conditions caused this
exception:

• The specified path name contains invalid
characters or has a length of zero. The path
name can include any printable ASCII character
except the slash (/), up-arrow (t), and circumflex
(A).

• The sUbpath of the specified remote file exceeds
127 bytes in length.

1-25

A$CREATE$DIRECTORY

E$TYPE 8002H

Concurrent Condition Codes

At least one of the following is true:

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

• The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

EDEVDETACHING 0039H The file specified is on a device that the system is
detaching.

E$F ACCESS 0026H The user object in the parameter list is not qualified
for "add-entry" access to the parent directory.

E$FEXIST 0020H A file with the specified path name already exists.

E$FNEXIST 0021H A file in the specified path does not exist or is
marked for deletion.

E$FNODE$LIMIT 003FH The volume already contains the maximum number
of files. No more fnodes are available for new files.

E$FTYPE 0027H The string pointed to by the subpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INV ALID$FNODE 003DH The fnode for the specified file (or for a directory in
the file's path) is invalid. The file with the invalid
fnode cannot be accessed.

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete this call.

E$LIMIT 0004H Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking Software
User's Guide.

1-26 BIOS System Calls

A$CREATE$DIRECTORY

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PA THNAME$- 003EH The syntax of the specified remote file path name is
SYNTAX illegal. Path names for remote files must follow the

naming conventions of the server.

E$SPACE 0029H At least one of the following is true:

• The volume is full .

• No more files can be created on the remote
server's volume. The Remote File Driver cannot
distinguish between an E$FNODE$LIMIT and
an E$SPACE condition code.

E$SUPPORT 0023H The Basic I/O System is not configured to support
space allocation.

EUDFIO 02DOH An error occurred while accessing the remote
server's User Definition File (UDF).

BIOS System Calls 1-27

A$CREATE$FILE

A$CREA TE$FILE creates a physical, stream, or named file.

CALL RQACREATE$FILE(user, prefix, subpath$ptr, access,
granularity, size, must$create,
resp$mbox, except$ptr);

Input Parameters
user

prefix

subpath$ptr

1-28

A TOKEN for the user object of the owner of the new file. It also
furnishes the user ID for any access checking that might occur. A
SELECTOR$OF(NIL) specifies the default user for the calling
task's job. This parameter is ignored for physical or stream files.

A TOKEN for a device or file connection. The file created by this
call is of the type (physical, stream, or named) that is associated
with this parameter. A SELECTOR$OF(NIL) for this parameter
specifies the default prefix for the job.

For stream files, if the prefix is a device connection, a new stream
file is created. If the prefix is a file connection, a new file
connection to the same stream file is created.

For named files, the prefix acts as the starting point in a directory
tree scan.

A POINTER to a STRING containing the subpath for the named
file being created. This parameter does not apply to physical and
stream files.

Entering NIL for this parameter, when using a named file driver,
causes an unnamed file to be created. This file is automatically
deleted when the last connection to it is deleted.

BIOS System Calls

access

granularity

size

must$create

BIOS System Calls

A$CREATE$FILE

A BYTE mask giving the owner's initial access rights to the new file.
For each bit, a one grants access and a zero denies it. (Bit 0 is the
low-order bit.)

Bit Meaning

o !)elete
1 Read
2 Append
3 Update
4-7 Reserved (set to 0)

This parameter does not apply to physical or stream files.

A WaR!) giving the granularity of the file being created. This is the
size (in bytes) of each logical block of volume space to be allocated
to the file. The value specified in this parameter is rounded up, if
necessary, to a multiple of the volume granularity. Note that a
contiguous file can become noncontiguous when it is extended.

The granularity parameter can have the following values:

o Same as volume granularity
FFFFH The file must be contiguous
Other Number of bytes per allocation

When a contiguous file is extended, space is allocated in volume
granularity units. If "Other" is specified, a multiple of 1024 bytes is
recommended. This parameter is ignored for physical, stream, and
remote files.

A !)WOR!) giving the number of bytes initially reserved for the file.
For stream files and existing remote files, this value must equal
zero. If you make this value greater than zero for stream files, the
reserved space may contain unknown data. For physical files and
non-existent remote files, this parameter is ignored.

A BYTE with values of 1 for TRUE, or 0 for FALSE. Only the least
significant bit is checked. This BYTE determines the handling of
input paths designating an existing file (see following !)escription).
This parameter applies only to named files.

1-29

A$CREATE$FILE

Output Parameters
resp$mbox A TOKEN for the mailbox that receives the result object of this call.

This result object is a new file connection if the call succeeded;
otherwise, it is an IORS (for details on the IORS, see Appendix A).
To determine the type of object returned, use the Nucleus system
call GET$TYPE.

If the object received is an IORS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

The A$CREA TE$FILE system call creates a physical, stream, or named data file and
returns a token for the new file connection. If a named file designated by the prefix and
subpath parameters already exists, one of the following occurs:

• Error: If the "must$create" parameter is TRUE (1), an error condition code
(E$FEXIST) is returned.

• Truncate File: If the "must$create" parameter is FALSE (0) and the path designates
an existing data file, a new connection to that file is returned (that is,
A$CREATE$FILE acts like A$ATTACH$FILE). In this case, the file is truncated or
expanded according to the "size" parameter, so data in the file might be lost. As in the
case of A$ATTACH$FILE, the file's owner ID and access list are unchanged.

• Temporary File Created: If the "must$create" parameter is FALSE (0), and the path
designates an existing directory file or device, an unnamed temporary file is created on
the corresponding device. This file is deleted automatically when the last connection to
it is deleted. Because this file is created without a path, it can be accessed only through
a connection.

Any task can create a temporary file by referring to any directory. This is true because
temporary files are not listed as ordinary entries in the directory, so no add-entry
access is required.

Unlike local files, when you create a remote file, the remote temporary file is entered
in the directory in which you are creating the remote file. Therefore, the task creating
the remote file must have write access to this directory. Tasks can access this remote
temporary file through its path name, as well as through connections to the file. The
remote temporary file is deleted when all connections to it are deleted.

Many of the parameters specified in the A$CREA TE$FILE call do not apply to physical
and stream files. In these cases, the parameter is ignored.

1-30 BIOS System Calls

A$CREATE$FILE

NOTE

The caller must have add-entry access to the parent directory of the new
named file.

Special Considerations for iRMX®-NET

You cannot create a remote file with a virtual root directory as its parent. A virtual root
directory has no owner and, thus, you cannot have write access to it. If an attempt is made
to create such a remote file, an E$F ACCESS condition code is returned.

Condition Codes

A$CREA TE$FILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EDEVOFF$LINE

BIOS System Calls

OOOOH

002EH

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device associated with the connection:

• It has been physically attached but is now off
line.

• It has never been physically attached. (See
iRMX® Basic I/O System User's Guide, Appendix
E for a more detailed explanation.)

1-31

A$CREATE$FILE

E$EXIST 0006H

E$LIMIT 0004H

E$MEM 0002H

E$NOPREFIX 8022H

1-32

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The user parameter

- The prefix parameter

- The resp$mbox parameter

• The prefix connection is being deleted.

• The connection for a remote driver is no longer
active.

Processing this call would cause one or both of the
following limits to be exceeded:

• The object limit for this job.

• The number of outstanding I/O operations for a
remote connection.

The memory available to the calling task's job is not
sufficient to complete this call.

The call specified a default prefix (prefix argument
equals SELECfOR$OF(NIL)), but no default prefix
can be found because of one of the following
reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but a default
prefix is not cataloged there.

BIOS System Calls

E$NOUSER

ENOTCON
FIGURED

E$PA THNAME$
SYNTAX

E$TYPE

BIOS System Calls

8021H

0008H

003EH

8002H

A$CREATE$FILE

If the user parameter in this call is not
SELECfO R$OF(NIL), then the parameter is not a
token for a user object.

If the user parameter is SELECTOR$OF(NIL), it
specifies a default user, but no default user can be
found because of one of the following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

• The job's directory can have entries but a default
user is not cataloged there.

• The object that is cataloged with the name
R?IOUSER is not a user object. Another task
cataloged an object (not a user object) under the
name R?IOUSER.

This system call is not part of the
present configuration.

At least one of the following is true:

• The specified path name contains invalid
characters or has a length of zero. The path
name can include any printable ASCII character
except the slash (/), up-arrow (t), and circumflex
(").

• The subpath of the specified remote file exceeds
127 bytes in length.

At least one of the following is true:

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

• The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

1-33

A$CREATE$FILE

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

EDEVDETACHING 0039H The file specified is on a device that the system is
detaching.

E$FACCESS 0026H One of the following is true:

• No file with the specified pathname exists, and
the specified user object does not have "add
entry" access to the parent directory.

• A file with the specified pathname exists, but the
specified user object does not have "update"
access to the file.

E$FEXIST 0020H The "must$create" parameter in the call is TRUE,
and the file already exists. (See the Description
section.)

E$FNEXIST 0021H A file in the specified path does not exist or is
marked for deletion.

E$FNODE$LIMIT 003FH The volume already contains the maximum number
of files. No more fnodes are available for new files.

E$FTYPE 0027H The string pointed to by the sUbpath$ptr parameter
contains a filename which should be the name of a
directory, but is not. (Except for the last file, each
file in a path must be a named directory.)

E$INV ALID$FNODE 003DH The fnode for the specified file (or for a directory in
the file's path) is invalid. The file with the invalid
fnode cannot be accessed.

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete this call.

E$LIMIT 0004H Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking Software
User's Guide.

1-34 BIOS System Calls

A$CREATE$FILE

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PA THNAME$- 003EH The syntax of the specified remote file path name is
SYNTAX illegal. Path names for remote files must follow the

naming conventions of the server.

E$SHARE 0028H The file this call is attempting to create already exists
and is open. It was opened with the characteristic
"no share with writers." (See the A$OPEN call in
this manual.)

E$SPACE 0029H At least one of the following is true:

• The volume is full.

• No more files can be created on the remote
server's volume. The Remote File Driver cannot
distinguish between an E$FNODE$LIMIT and
an E$SPACE condition code.

E$SUPPORT 0023H One of the following is true:

• The file exists and the must$create parameter is
FALSE. When the Basic I/O System was
configured, an option was chosen that prevented
this combination, so that files could not be
automatically truncated to zero size. See the
Description section for this system call.

• The Basic I/O System is not configured to allow
space allocation on volumes.

• The Remote File Driver does not support
creation of a contiguous file.

• The Remote File Driver does not support
truncating existing remote files to zero size.

EUDFIO 02DOH An error occurred while accessing the remote
server's User Definition File (UDF).

BIOS System Calls 1-35

A$DELETE$CONNECTION

A$DELETE$CONl\T£CTION deletes a named file connection created by
A$CREATE$FILE, A$CREATE$DIRECTORY, or A$ATIACH$FILE.

CALL RQADELETE$CONNECTION(connection, resp$mhox, except$ptr);

Input Parameter
connection

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for the file connection to be deleted.

A TOKEN for the mailbox that receives an I/O request/result
segment (IORS) indicating the result of the call (for details on the
10RS, see Appendix A). A value of SELECTOR$OF(NIL) means
that you do not want to receive an 10RS.

If it receives an 10RS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$DELETE$CONNECTION system call deletes a connection object. It also deletes
the associated file if both of the following are true:

• The file is already marked for deletion (by a previous A$DELETE$FILE call) or is an
unnamed file.

• The specified connection is the only connection to the file.

If a connection is open when A$DELETE$CONNECTION is called, it is closed before
being deleted.

NOTE

Connections should be deleted when no longer needed.

1-36 BIOS System Calls

A$DELETE$CONNECTION

Condition Codes

A$DELETE$CONNECTION returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the iRM)(® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON-
FIGURED

ENOTFILE$CONN

E$SUPPORT

E$TYPE

BIOS System Calls

OOOOH

0006H

0OO4H

0OO2H

0OO8H

0032H

0023H

8002H

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete this call.

This system call is not part of the
present configuration.

The connection parameter is a device connection,
not a file connection.

The specified connection was not created by this job.

One or more of the following is a token for an object
that is not of the correct type:

• The connection parameter.

• The resp$mbox parameter.

1-37

A$DELETE$CONNECTION

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK

E$IO

1-38

OOOOH

002BH

No exceptional conditions.

An I/O error occurred, but the connection was still
deleted.

BIOS System Calls

A$DELETE$FILE

A$DELETE$FILE marks a file for deletion.

CALL RQADELETE$FILE(user, prefix, sUbpath$ptr, resp$rnbox,
except$ptr);

Input Parameters
user

prefix

subpath$ptr

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for the user object to be inspected in access checking. A
SELECTOR$OF(NIL) specifies the default user for the calling
task's job. This parameter does not apply to stream files.

A TOKEN for the connection object to be used as the path prefix.
A SELECTOR$OF(NIL) specifies the default prefix for the calling
task's job.

A POINTER to a STRING giving the subpath for the file being
deleted. A null string indicates that the prefix itself designates the
desired file. In this instance, the user parameter is ignored, since
access checking was already performed when the file was attached.
This parameter does not apply to stream files.

A TOKEN for a mailbox that receives an I/O request/result
segment (lORS) when the file is marked for deletion (for details on
the 10RS, see Appendix A). The file will not actually be deleted
until all connections to the file are deleted, as explained under the
Description below. A value of SELECTOR$OF(NIL) means that
you do not want to receive an 10RS.

If it receives an 10RS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$DELETE$FILE system call applies to stream and named files only. When called, it
marks the designated file for deletion and removes the file's entry from the parent
directory. The entry is removed immediately, but the file is not actually deleted until all
connections to the file have been severed (by A$DELETE$CONNECTION calls).
Directory files cannot be deleted unless they are empty.

BIOS System Calls 1-39

A$DELETE$FILE

NOTE

The caller must have delete access to the file.

Special Considerations for iRMX®-NET

You cannot delete a remote file which has a virtual root directory as its parent, because a
virtual root directory has no assigned owner. To delete a file, you must have write access
to its parent directory. If you attempt to delete a remote file whose parent directory is a
virtual root directory, an E$F ACCESS condition code is returned.

Condition Codes

A$DELETE$FILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequenti~l
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EDEVOFF$LlNE

1-40

OOOOH

002EH

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

• It has been physically attached but is now off
line.

• It has never been physically attached. (See
Appendix E in the iRMX® Basic I/O System
User's Guide for a more detailed explanation.)

BIOS System Calls

E$EXIST 0006H

E$IFDR 002FH

E$LIMIT 0004H

E$MEM 0002H

E$NOPREFIX 8022H

BIOS System Calls

A$DELETE$FILE

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The user parameter

- The prefix parameter

- The response mailbox parameter

• The prefix connection is being deleted.

• The connection for a remote driver is no longer
active.

This system call applies only to named or stream
files, but the prefix and sUbpath parameters specified
a physical file.

Processing this call would exceed one or more of the
following limits:

• The object limit for this job.

• The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of I/O operations that can be
outstanding at one time for the caller's job (255
decimal).

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete this call.

The call specified a default prefix (prefix argument
equals SELECTOR$OF(NIL)), but no default prefix
can be found because of one of the following
reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but no
default prefix is cataloged there.

1-41

A$DELETE$FILE

E$NOUSER

ENOTCON
FIGURED

E$PA THNAME$
SYNTAX

E$SUPPORT

E$TYPE

1-42

8021H

0008H

003EH

0023H

8002H

If the user parameter in this call is not
SELECTOR$OF(NIL), then the parameter is not a
token for a user object.

If the user parameter is SELECTOR$OF(NIL), it
specifies a default user, but no default user can be
found because of one of the following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

• The job's directory can have entries but no
default user is cataloged there.

• The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

This system call is not part of the present
configura tion.

At least one of the following is true:

• The specified path name contains invalid
characters or has a length of zero. The path
name can include any printable ASCII character
except the slash (/), up-arrow (t), and circumflex
(").

• The subpath of the specified remote file exceeds
127 bytes in length.

The specified connection was not created by this job.

At least one of the following is true:

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object.
(Logical device objects are created by the
Extended I/O System.)

• The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

BIOS System Calls

A$DELETE$FILE

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

EDEVDETACHING 0039H

EDIRNOT$EMPTY 0031H

E$FACCESS 0026H

E$FNE~ST 0021H

E$FfYPE 0027H

E$IO 002BH

EIOMEM 0042H

E$LIMIT 0004H

E$NAME$NEXIST 0049H

ENOTFILE$CONN 0032H

E$PASSWORD$- 004BH
MISMATCH

BIOS System Calls

No exceptional conditions.

The file specified is on a device that the system is
detaching.

The call is attempting to delete a directory
containing entries.

At least one of the following is true:

• The user object does not have delete access to
the file.

• The call attempted to delete the root directory or
a bit map file.

A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

The string pointed to by the sUbpath$ptr parameter
contains a string that should be the name of a
directory, but is not. (Except for the last file, each
file in a pathname must be a named directory.)

An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

The memory available to the Basic I/O System is not
sufficient to complete the call.

Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRM)(® Networking Software
User's Guide.

The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

The subpath$ptr parameter is a null pointer and the
prefix parameter is not a file connection.

The password of the user object does not
match the password of the corresponding user
defined on the remote server.

1-43

A$DELETE$FILE

E$PA THNAME$
SYNTAX

EUDFIO

1-44

003EH The syntax of the specified remote file path name is
illegal. Path names for remote files must follow the
naming conventions of the server.

02DOH An error occurred while accessing the remote
server's User Definition File (UDF).

BIOS System Calls

AGETCONNECTION$STATUS

AGETCONNECTlON$STATUS returns information about a file connection.

CALL RQAGET$CONNECTION$STATUS(connection, resp$mhox, except$ptr);

Input Parameter
connection

Output Parameters
resp$mbox

BIOS System Calls

A TOKEN for the file connection whose status is desired.

A TOKEN for the mailbox that is to receive a connection-status
segment. The calling task is responsible for deleting the connection
status segment after examining it.

The information in this segment is structured as follows:

DECLARE conn$status STRUCTURE(
status
file$driver
flags
open$mode
share$mode
file$ptr
access

These fields are interpreted as follows:

WORD,
BYTE,
BYTE,
BYTE,
BYTE,
DWORD,
BYTE);

status A condition code giving the outcome of the
status-fetch operation. If this code is not
E$OK, the remaining fields must be considered
invalid.

file$driver

flags

Tells the type of file driver to which this
connection is attached. Possible values are:

Value Type

1 Physical
2 Stream
4 Named
5 Remote

Contains two flag bits. If bit 1 is set to one, this
connection is active and can be opened. If bit 2
is set, this connection is a device connection.
(Bit 0 is the low-order bit.)

1-45

AGETCONNECTION$STATUS

except$ptr

1-46

open$mode

share$mode

file$ptr

access

The mode established when this connection was
opened. Possible values are:

o Connection is closed
1 Open for reading
2 Open for writing
3 Open for reading and writing

The sharing mode established when this
connection was opened. Possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

The current byte location of the file pointer for
this connection.

The access rights for this connection. For each
bit, a one grants access and a zero denies it.
(Bit 0 is the low-order bit.)

Bit Data File Directory

0 Delete Delete
1 Read List
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved

For remote files, the access bits are interpreted
as follows:

Bit

o
1
2

3

4-7

Data File

Ignored
Read
Write (must be
set the same as
bit 3)
Write (must be
set the same as
bit 2)
Reserved

Directory

Ignored
Display
Write

Ignored

Reserved

A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

AGETCONNECTION$STATUS

Description

The AGETCONNECTlON$STA TUS system call returns a segment containing status
information about a file connection.

Special Considerations for iRMX®-NET

When the status of a file connection to a virtual root directory is requested, display
permission is granted and write permission is denied. As a result, bit 1 of the access field is
set to 1 and bit 2 is set to o.

Also, unlike a local named file, the access rights of a remote named file are not checked
when a connection to the file is created. Instead, the remote named file's access rights are
checked during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

AGETCONNECTION$STATUS returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

BIOS System Calls

OOOOH

0006H

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

1-47

AGETCONNECTION$STATUS

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$SUPPORT

E$TYPE

0004H

0002H

0008H

0023H

8002H

Concurrent Condition Codes

• The connection for a remote driver is no longer
active.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK

E$IO

OOOOH

002BH

ENOTFILE$CONN 0032H

1-48

No exceptional conditions.

An I/O error occurred, which might or might not
have prevented the operation from being completed.
Examine the unit$status field of the IORS for more
information.

For remote files, the connection parameter must be
a file connection, not a device connection.

BIOS System Calls

AGETDIRECTORV$ENTRV

AGETDIRECfORY$ENTRY returns the file name associated with a named directory
file entry.

CALL RQAGET$DIRECTORY$ENTRY(connection, entry$num, resp$mhox,
except$ptr);

Input Parameters
connection

entry$num

Output Parameters
resp$mbox

except$ptr

BIOS System Calls

A TOKEN for the directory file with the desired entry.

A WORD giving the entry number of the desired file name. Entries
within a directory are numbered sequentially starting from zero.
The E$EMPTY$ENTRY condition code will be returned if there is
no entry associated with this number.

A TOKEN for the mailbox that will receive a directory-entry
segment. The task making the AGETDIRECfORY$ENTRY
call is responsible for deleting this segment after examining it.

Information in this segment is structured as follows:

DECLARE dir$entry$info STRUCTURE (

where

status

name

status 'WORD,
name (14) BYTE);

Indicates how the operation was completed.
EOK, EEMPTY$ENTRY, and E$DIR$END
condition codes all indicate successful
completion.

File name contained in the specified entry. The
file name is left-justified and padded with
blanks to the right. This field is valid only if
status = E$OK.

A POINTER to a WORD where the sequential condition code will
be returned.

1-49

AGETDIRECTORY$ENTRY

Description

The AGETDIRECfORY$ENTRY system call applies to named files only. When
called, it returns the file name associated with a specified directory entry. This name is a
single subpath component for a file whose parent is the designated directory. As an
alternative to using this system call, an application task can open and read a directory file.

NOTE

The caller must have display access to the designated directory.

Special Considerations for iRMX®-NET

The AGETDIRECfORY$ENTRY system call is not supported for remote directories.
However, remote directories can be read with the A$OPEN, A$READ, S$OPEN, and
S$READ$MOVE system calls.

Condition Codes

AGETDIRECTORY$ENTRY returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

1-50

OOOOH

0006H

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

BIOS System Calls

E$IFDR 002FH

E$LIMIT 0OO4H

E$MEM 0OO2H

ENOTCON- 0OO8H
FIGURED

E$SUPPORT 0023H

E$TYPE 8002H

Concurrent Condition Codes

AGETDIRECTORY$ENTRY

At least one of the following is true:

• This system call applies only to named
directories, but the connection parameter
specifies another type of file.

• The connection parameter specifies a remote
directory, but the Remote File Driver does not
support this system call.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete this call.

This system call is not part of
the present configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK

EDIREND

E$EMPTY$ENTRY

E$FACCESS

E$FTYPE

E$IO

BIOS System Calls

OOOOH

0025H

0024H

0026H

0027H

002BH

No exceptional conditions.

The entry$num parameter is greater than the
number of entries in the directory.

The file entry designated in the call is empty.

The specified connection is not qualified for "display"
access to the directory.

The specified connection does not refer to a
directory.

An I/O error occurred which might have prevented
the operation from completing.

1-51

AGETE}ITENSION$DATA

The AGETEXTENSION$DATA system call returns extension data stored with a Basic
I/O System file.

CALL RQAGET$EXTENSION$DATA(connection, resp$mhox, except$ptr);

Input Parameters
connection

Output Parameter
resp$mbox

except$ptr

1-52

A TOKEN of a connection to a file whose extension data is desired.

A TOKEN for the mailbox that will receive a segment containing
the named file-status information. The calling task is responsible
for deleting this segment after examining it.

Structure of the named file-status information is as follows:

DECLARE ext$data$seg STRUCTURE (
status
count
info(*)

WORD,
BYTE,
BYTE) ;

These fields are interpreted as follows:

status

count

info

A condition code indicating the outcome of the
status-fetch operation. If this code is not
E$OK, the remaining fields must be considered
invalid.

A number (from 0 to 255 decimal) indicating
the number of bytes returned. This field is
always set to 0 for remote files.

The extension data.

A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

AGETEXTENSION$DATA

Description

Associated with each file created through the Basic I/O System is a file descriptor
containing information about the file. Some of that information is used by the Basic I/O
System and can be accessed by tasks through the AGETFILE$STATUS system call. Up
to 255 additional bytes of the file descriptor, known as extension data, are available for use
by Operating System extensions. For named volumes, the first three bytes of this extension
data is reserved for use by the Basic I/O System. OS extensions can write extension data
by using ASETEXTENSION$DATA and they can read extension data by using
AGETEXTENSION$DATA.

When a task calls AGETEXTENSION$DATA, it specifies a response mailbox to which
the system returns a segment with the extension data. The information is located in the
low-memory portion of the segment. AGETEXTENSION$DATA can only be applied
to connections created via the named file driver.

Condition Codes

AGETEXTENSION$DATA can return condition codes at two different times. The
code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the iRMX® Basic I/O Systen1, User's Guide.

The following list is divided into two parts--one for sequential codes and one for concurrent
codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

BIOS System Calls

OOOOH

0006H

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

1-53

AGETEXTENSION$DATA

E$IFDR 002FH

E$LIMIT 0004H

E$MEM 0OO2H

E$NOnCON- 0OO8H
FIGURED

E$SUPPORT 0023R

E$TYPE 8002H

Concurrent Condition Codes

This system call applies only to named files, but the
prefix and subpath parameters specify another type
of file.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of
the present configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an IORS at the
mailbox specified by resp$mbox. (For details on the IORS, see Appendix A.) After
examining this segment, you should delete it.

E$OK

E$IO

1-54

OOOOR

002BH

No exceptional conditions.

An I/O error occurred which might have prevented
the operation from completing.

BIOS System Calls

AGETFILE$STATUS

AGETFILE$STATUS returns status and attribute information about a file.

CALL RQAGET$FILE$STATUS(connection, resp$mhox, except$ptr);

Input Parameter
connection

Output Parameters
resp$mbox

BIOS System Calls

A TOKEN for a connection to the file whose status is sought.

A TOKEN for the mailbox that receives a segment containing a data
structure with the status information for the specified file. The
information in the first part of this structure--down to the dev$conn
field--is returned for any file (physical, stream, or named), but
information from the file$id field down to the end of the structure is
provided only for named files. The contents of the named$file field
indicates whether the file is a named file.

DECLARE file$info STRUCTURE(
status
num$conn
num$reader
num$writer
share
named$file
dev$name(l4)
file$drivers
functs
flags
dev$gran
dev$size
dev$conn

WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
BYTE,
WORD,
BYTE,
BYTE,
WORD,
DWORD,
WORD,

1-55

AGETFILE$STATUS

Information from this point on is returned only if the file is a named
file.

file$id
file$type
file$gran
owner$id
create$time
access$time
modify$time
file$size
file$blocks
vol$name(6)
vol$gran
vol$size
accessor$count
first$access
first$ID
second$access
second$ID
third$access
third$ID
vol$flags

WORD,
BYTE,
BYTE,
WORD,
DWORD,
DWORD,
DWORD,
DWORD,
DWORD,
BYTE,
WORD,
DWORD,
WORD,
BYTE,
WORD,
BYTE,
WORD,
BYTE,
WORD,
BYTE);

These fields are interpreted as follows:

status

num$conn

num$reader

A condition code indicating how the get file
status operation was completed. If this code is
not E$OK, the remaining fields must be
considered invalid.

The number of connections to the file.

For remote files, this field indicates the number
of connections the calling job has to the file.

The number of connections currently open for
reading.

For remote files, this field is set as follows:

Connection num$reader

No connection 0
Connection open - read 1
Connection open - write 0
Connection open - read/write 1

1-56 BIOS System Calls

num$writer

share

named$file

dev$name

file$drivers

BIOS System Calls

AGETFILE$STATUS

The number of connections currently open for
writing.

For remote files, this field is set as follows:

Connection num$writer

No connection 0
Connection open - read 0
Connection open - write 1
Connection open - read/write 1

The current shared status of the file. Possible
values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

For remote files, a value of 3 is returned if the
specified remote file connection is not open. If
the remote file is open, the share mode used to
open the connection is returned.

Tells whether this structure contains any
information beyond the dev$conn field. OFFH
means yes and 0 means no. OFFh is always
returned for remote files.

The name of the physical device where this file
resides (same name as in the DUIB). This
name is left-justified and padded with blanks to
the right.

For remote files, the name of the remote server
on which the file resides is returned.

A bit map that tells what kinds of files can
reside on this device. If bit n is on, then file
driver n + 1 can be used. Bit 0 is the low-order
bit.

Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 reserved
3 4 Named file
4 5 Remote file

1-57

AGETFILE$STATUS

functs

flags

1-58

A bit map that describes the functions
supported by the device where this file resides.
A bit set to one indicates the corresponding
function is supported. Bit 0 is the low-order bit.

This field is not supported by iRMX-NET. A
value of 0 is always returned for remote files.

Bit Function

o F$READ
1 F$WRITE
2 F$SEEK
3 F$SPECIAL
4 F$ATTACH$DEV
5 F$DETACH$DEV
6 F$OPEN
7 F$CLOSE

For details on these functions, refer to the
iRMX® Device Drivers User's Guide.

Meaningful only for diskette drives. This field
is interpreted as follows. (Bit 0 is the low-order
bit.)

This field is not supported by iRMX-NET. A
value of 0 is always returned for remote files.

Bit Meaning

o 0 = bits 1-7 are not significant
1 = bits 1-7 are significant

1 0 = single density
1 = double density

2 0 = single sided
1 = double sided

3 0 = 8-inch diskette
1 = 5 1/4-inch diskette

4 0 = standard diskette,
meaning that track 0 is
single-density with 128-byte sectors

1 = a non-standard diskette or
not a diskette

5-7 reserved

BIOS System Calls

Bros System Calls

dev$gran

dev$size

dev$conn

AGETFILE$STATUS

The device granularity, in bytes, of the device
where this file resides.

For remote files, this field indicates the buffer
size of the server associated with the remote
file.

The storage capacity of the device, in bytes.

For remote files, this field indicates the total
storage capacity of all server devices containing
public files. The total capacity includes the
portions of those devices that contain private
files.

The number of connections to the device.

For remote files, this field contains the number
of connections that local users have to files on
the remote server.

The information from here to the end of the structure
is returned only for named files, as indicated by a
value of OFFH in the named$file field.

file$id

file$type

file$gran

owner$id

create$time

A number that distinguishes this file from all
other files on the same device. The Disk
Verification Utility refers to this number as an
FNODE. For information on the disk verify
utility, see iRMX® Disk Verification Utility
Reference Manual.

Indicates the type of the file: 6 means directory
file; and 8 means data file.

The file granularity, as a mUltiple of vol$gran.
For example, if file$gran is 2 and vol$gran is
256, then the file's granularity is 512.

A value of 1 is always returned for remote files.

The first ID in the user object that was
presented to the Basic I/O System when the file
was created.

The date and time when the file was created.
Whether the Basic I/O System maintains this
field is a configuration option. The Basic I/O
System maintains the date/time value as the
number of seconds since midnight, January 1,
1978.

1-59

AGETFILE$STATUS

1-60

access$time

modify$time

file$size

file$blocks

vol$name

vol$gran

vol$size

accessor$count

first$access
second$access
third$access

first$ID
second$ID
third$ID

The date and time when the file was last
accessed. Whether the Basic I/O System
maintains this field is a configuration option.
The Basic I/O System maintains the date/time
value as the number of seconds since midnight,
January 1, 1978.

The date and time when the file was last
modified. Whether the Basic I/O System
maintains this field is a configuration option.
The Basic I/O System maintains the date/time
value as the number of seconds since midnight,
January 1, 1978.

The total size of the file, in bytes.

The number of volume blocks allocated to this
file. A volume block is a contiguous area of
storage that contains vol$gran bytes of data.

The left-adjusted, null-padded ASCII name for
the volume containing this file.

The volume granularity, in bytes.

The storage capacity, in bytes, of the volume on
which this file is stored.

The number of IDs in the file's accessor list.
(This may have been added after file creation.)

Access masks for as many ID's as are indicated
by accessor$count. The bits of the access
masks are defined in the following table. An
access right is granted if the appropriate bit is
set to 1; otherwise, that right is denied. Bit 0 is
the low-order bit.

Bit Data File Directo~ File

0 Delete Delete
1 Read Display
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved

ID values for the accessors.

BIOS System Calls

AGETFILE$STATUS

iRMX I Note: The iRMX I Volume Label does not contain a vol$flags field.

vol$flags Contains flags for general volume information.
The following flags are defined:

Flag Bit Meaning

vf$integerity 0 0 = The volume
has been properly
shut down.

1 = Indicates
possible disk
corruption (The
volume was attached
but was not
subsequently shut
down).

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

The AGETFILE$STA TUS system call returns status and attribute information about
the designated file. Certain information is returned for all file driver types. Additional
information is returned for named files.

Note that this call returns device-dependent information.

Condition Codes

AGETFILE$STATUS returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls 1-61

AGETFILE$STATUS

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON-
FIGURED

E$SUPPORT

E$TYPE

OOOOH

0006H

0004H

0OO2H

0OO8H

0023H

8002H

Concurrent Condition Codes

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection was not created by this job.

One or more of the following parameters is a token
for an object of the wrong type:

• The connection parameter

• The resp$mbox parameter

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$IO 002BH

ENOTFILE$CONN 0032H

1-62

No exceptional conditions.

An I/O error occurred which might have prevented
the operation from completing.

For remote files, the connection parameter must be
a file connection, not a device connection.

BIOS System Calls

EUDFIO

BIOS System Calls

AGETFILE$STATUS

02DOH An error occurred while accessing the remote
server's User Definition File (UDF).

1-63

AGETPATH$COMPONENT

AGETPA TH$COMPONENT returns the name of a named file as the file is known in its
parent directory.

CALL RQAGET$PATH$COMPONENT(connection, resp$mhox, except$ptr);

Input Parameter
connection

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for the file connection whose name is sought.

A TOKEN for the mailbox that will receive the file$name segment.
This segment contains the file name associated with the designated
connection and is structured as follows:

DECLARE file$name STRUCTURE (
status WORD,
name STRING);

These fields are interpreted as follows:

status

name

A condition code indicating the outcome of the
operation.

A STRING giving the desired .file name. This
name is the same as the last item in the subpath
string specified when the file was created or
renamed.

The task that makes the AGETPATH$COMPONENT call is
responsible for deleting the file$name segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

A caller who knows the token for a connection to a file can invoke this system call and
receive the name of the file in return. This name is the name by which the file is cataloged
in its parent directory. If the connection is to the root directory of a volume (that is, if no
parent directory exists), a null string is returned. A null string is also returned if the file is
marked for deletion or is a temporary file.

1-64 BIOS System Calls

AGETPATH$COMPONENT

AGETPA TH$COMPONENT can be called no matter what type of file is supported, but
if a connection to a physical or stream file is specified, the call simply returns a null string.

The AGETPA TH$COMPONENT system call can be used in combination with the
A$A ITACH$FILE system call to derive all of the components of a path name. Suppose,
for example, that a file has the path name AlBIC, and that your task has only a token for
the file. The following sequence of calls will reveal all of the components for the path:

1. Call AGETPATH$COMPONENT to obtain the file name C.

2. Call A$A IT ACH$FILE with the prefix parameter equal to the token for file C and
the subpath equal to a circumflex C'). This call will return a token for a connection
to directory file B.

3. After calling GET$TYPE to verify that the token is indeed for a connection, call
AGETPA TH$COMPONENT to obtain the file name B.

4. Call A$AITACH$FILE with the prefix parameter equal to the token for file Band
the subpath equal to a circumflex ("). This call will return a token for a connection
to directory file A.

5. Mter calling GET$TYPE to verify that the token is indeed for a connection, call
AGETPATH$COMPONENT to obtain the file name A.

6. Call A$A IT ACH$FILE with the prefix parameter equal to the token for file A and
the subpath equal to a circumflex ("). This call will return a token for a connection
to the root of the file tree.

7. After calling GET$TYPE to verify that the token is indeed for a connection, call
AGETPA TH$COMPONENT again. This time, the null string will be returned,
and this tells you that you now have all of the components of the desired path name.

Condition Codes

AGETPATH$COMPONENT returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls 1-65

AGETPATH$COMPONENT

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON-
FIGURED

ENOTFILE$CONN

E$SUPPORT

E$TYPE

OOOOH

0006H

0OO4H

0OO2H

0OO8H

0032H

0023H

8002H

Concurrent Condition Codes

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficien t to complete this call.

This system call is not part of the
present configuration.

For remote files, the connection parameter must be
a file connection, not a device connection.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an laRS at the
mailbox specified by resp$mbox. (For details on the laRS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH No exceptional conditions.

E$FNEXIST 0021H The file is marked for deletion. (In this case, the
string is undefined.)

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid. The file
cannot be accessed.

1-66 BIOS System Calls

E$IO

EIOMEM

BIOS System Calls

AGETPATH$COMPONENT

002BH An I/O error occurred which might have prevented
the operation from completing.

0042H The memory available to the Basic I/O System job is
not sufficient to complete the call.

1-67

A$OPEN

A$OPEN opens an asynchronous file connection for I/O operations.

CALL RQAOPEN(connection, mode, share, resp$mhox, except$ptr);

Input Parameters
connection

mode

share

Output Parameters
resp$mbox

except$ptr

1-68

A TOKEN for the connection to be opened.

A BYTE giving the mode desired for the open connection; possible
values are:

1 Open for reading
2 Open for writing
3 Open for both reading and writing

Remote directories must be opened with the mode parameter set
to 1.

A BYTE specifying the kind of sharing desired for the file to which
you are opening a connection; possible values are:

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

A TOKEN for the mailbox that receives an I/O request/result
segment (IORS) indicating the result of the call (for details on the
10RS, see Appendix A). A value of SELECTO R$ OF (NIL) means
that you do not want to receive an 10RS.

If it receives an 10RS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

A$OPEN

Description

The A$OPEN system call opens a connection for I/O operations. The connection must be
opened before reading, writing, and seeking can be performed on the associated file.

A$OPEN also initializes the file pointer to byte-position zero. Subsequent Basic I/O
System calls (A$SEEK, A$READ, and A$WRITE) will move this pointer.

The mode and share parameters are compared to the current sharing status of the file
(which may have been set by a previous A$OPEN system call). If they are not compatible,
an E$SHARE exceptional condition is returned. No deadlock occurs, however, because
open calls are not queued. The system does not notify callers when the sharing status of
the file changes. If such notification is important, users of the file should arrange a suitable
protocol.

If the file is attached by multiple connections, the file might be open for reading by some
connections and open for writing by others at the same time. Any modification of the file
by a writer will be seen by readers that subsequently read the modified part of the file.

NOTE

Directory files can be opened and read, but only by specifying a one (read)
for the mode parameter and a three (share all) for the share parameter.
Any other combination will return an error.

Special Considerations for iRMX®-NET

Unlike a local named file, the access rights of a remote named file are not checked when a
connection to the file is created. Instead, the remote named file's access rights are checked
during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

A$OPEN returns condition codes at two different times. The code returned to the calling
task immediately after invocation of the system call is considered a sequential condition
code. A code returned as a result of asynchronous processing is a concurrent condition
code. A complete explanation of sequential and concurrent parts of system calls is in the
iRMX® Basic I/O System User's Guide.

BIOS System Calls 1-69

A$OPEN

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

E$NOnCON-
FIGURED

E$PARAM

E$SUPPORT

E$TYPE

1-70

OOOOH

0006H

0004H

0002H

0008H

8004H

0023H

8002H

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The mode or share parameter has an invalid value
(out of range 1-3 or 0-3, respectively.)

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

BIOS System Calls

A$OPEN

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$CONN$OPEN 0035H

ENOTFILE$CONN 0032H

E$SHARE 0028H

E$FACCESS 0026H

E$IO 002BH

E$LIMIT 0004H

E$FfYPE 0027H

BIOS System Calls

No exceptional conditions.

The connection is a file or directory connection that
is already open.

The connection is a device connection, not a file
connection.

At least one of the following is true:

• The file's sharing attribute currently is not
compatible with the mode or the share
parameter in this call.

• This call is attempting to open a directory for
some operation other than "read" (mode
parameter) or "share with all users" (share
parameter). (See Description for more
information on sharing files.)

The connection does not have access compatible with
the mode specified in this call.

An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking Software
User's Guide.

The requested operation is not valid for this file type.

1-71

A$PHYSICAL$A IT ACH$DEVICE

The A$PHYSICAL$ATIACH$DEVICE system call attaches a device to the Basic I/O
System.

CAUTION

Any task that uses this system call loses its device independence. To
maintain as much device independence as possible in your application, a
few selected tasks should perform all attaching and detaching of devices,
passing tokens for the devices to other tasks as necessary.

Also, if a task uses this system call to attach devices, the devices are
automatically detached (and connections to files on the device are
automatically deleted) when the containing job is deleted. If you want to
prevent the device from being detached in these circumstances, use the
Extended I/O System's LOGICAL$ATTACH$DEVICE system call instead.

CALL RQAPHYSICAL$ATTACH$DEVICE(dev$name$ptr, file$driver,
resp$mhox, except$ptr);

Input Parameters
dev$name$ptr A POINTER to a STRING containing the name (as specified

during configuration) of the device to be attached. The maximum
string length is 14 characters. If you specify a longer string, the
Basic I/O System truncates the string to 14 characters. To prevent
possible duplication of names, do not specify a string longer than 14
characters.

file$driver

1-72

For remote devices, specify the name of the server to be attached.

A BYTE specifying which file driver is to supply the connection to
the device. Possible values are as follows:

Value File Driver

1 Physical
2 Stream
4 Named
5 Remote

BIOS System Calls

A$PHYSICAL$A IT ACH$DEVICE

resp$mbox A TOKEN for the mailbox that receives the result object of the call.
This result object is a new connection if the call is successful, or an
I/O request/result segment (laRS) otherwise (for details on the
laRS, see Appendix A). To ascertain the type of object returned,
use the Nucleus system call GEUTYPE.

If the object received is an laRS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

Output Parameter

except$ptr A POINTER to a WORD where the sequential condition code will
be returned.

Description

A$PHYSICAL$A TIACH$DEVICE returns a device connection to the device specified by
the dev$name$ptr parameter. The file$driver parameter specifies the kind of files
(physical, stream, named, or remote) that the device will create when the returned device
connection is used in subsequent calls to A$CREA TE$FILE.

The device connection object is returned to the response mailbox if the call is successful;
otherwise an laRS is returned to the response mailbox. The returned connection object
can be used as a prefix in other system calls. It can be deleted only by calling
A$PHYSICAL$DETACH$DEVICE.

In the case of a connection to a disk device, where the file$driver parameter specifies
named files for the device, the connection is actually to a volume mounted on the disk
hardware. Such volumes must be properly formatted. If they are not, an E$ILL VOL
exceptional condition is returned. Refer to the Operator's Guide To The iRM)(® Human
Interface for information about formatting disks.

Condition Codes

A$PHYSICAL$A TIACH$DEVICE can return condition codes at two different times.
The code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the iRM)(® Basic I/O System User's Guide. The
following list is divided into two parts--one for sequential codes and one for concurrent
codes.

BIOS System Calls 1-73

A$PHYSICAL$A TT ACH$DEVICE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$PARAM

E$TYPE

OOOOH

0006H

0004H

0002H

0008H

8004H

8002H

Concurrent Condition Codes

No exceptional conditions.

The resp$mbox parameter is not a token for an
existing object.

Processing this call would cause one or more of the
following limits to be exceeded:

• The object limit for this job.

• The number (255 decimal) of I/O operations
that can be outstanding at one time for the
caller's job.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

At least one of the following is true:

• The number representing the file driver is not
valid.

• A value ofSELECTOR$OF(NIL) was specified
for the response mailbox.

The resp$mbox parameter in the call is a token for
an object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$ALREADY$
ATTACHED

E$DEVFD

E$FNEXIST

1-74

0038H

0022H

0021H

The specified device is already attached.

The specified device is not compatible with the
specified file driver.

The device specified by the device$name parameter
does not exist.

BIOS System Calls

A$PHYSICAL$ATTACH$DEVICE

E$ILLVOL 002DH At least one of the following is true:

• The specified device is a disk volume not
properly formatted for use with the named file
driver. The volume being attached must have a
valid iRMX volume label with FD$NAMED in
the FILE$DRIVER field.

• The device could not be attached because the
fnode for the root directory of the device is
invalid.

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete the call.

E$LIMIT 0004H Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRM)(® Networking Software
User's Guide.

E$PROTOCOL 02E9H The iNA 960 version on the local system does not
have the iNA R1.0 to R3.0 compatibility code and
the server to be attached has iNA RI.O loaded.

BIOS System Calls 1-75

A$PHYSICAL$DETACH$DEVICE

The A$PHYSICAL$DETACH$DEVICE system call detaches a device from the Basic I/O
System.

CAUTION

Any task that uses this system call loses its device independence. To
maintain as much device independence as possible in your application, a
. few selected tasks should perform all attaching and detaching of devices,
passing tokens for the devices to other tasks as necessary.

CALL RQAPHYSICAL$DETACH$DEVICE(connection, hard, resp$mbox,
except$ptr);

Input Parameters
connection

hard

resp$mbox

Output Parameter

except$ptr

Description

A TOKEN for the connection object for the device that is to be
detached. .

A BYTE containing a value that specifies whether (OFFH) or not
(0) a hard detach of the device is desired.

A TOKEN for the mailbox to which the 10RS is sent when the
operation has finished (for details on the 10RS, see Appendix A).
A value of SELECTOR$OF(NIL) indicates that no response is
desired.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$PHYSICAL$DETACH$DEVICE system call breaks connections established by
calls to A$PHYSICAL$ATTACH$DEVICE. It also deletes the file connection objects
associated with those device connections. Devices that are detached in this manner must
be reattached before any files on the device can be attached or reattached.

When detaching a device, you can choose to detach all attached files on the device. A hard
detach deletes the connection objects for all such files on the device. To specify a hard
detach, assign the value OFFH to the hard parameter.

1-76 BIOS System Calls

A$PHYSICAL$DETACH$DEVICE

If you choose not to request a hard detach, there must not be any attached files on the
device. To specify that you do not want a hard detach, assign the value 0 to the hard
parameter.

Note that, whether you specify a hard detach or not, there will be no attached files on the
device after the device is detached.

Condition Codes

A$PHYSICAL$DETACH$DEVICE can return condition codes at two different times.
The code returned to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of asynchronous
processing is a concurrent condition code. A complete explanation of sequential and
concurrent parts of system calls is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes and one for concurrent
codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$LIMIT

E$MEM

ENOTCON-
FIGURED

ENOTDEVICE$-
CONN

E$SUPPORT

BIOS System Calls

OOOOH

0006H

0OO4H

0OO2H

0OO8H

0033H

0023H

No exceptional conditions.

One or more of the following parameters is not a
token for an existing object:

• The connection parameter

• The resp$mbox parameter

• The connection for a remote driver is no longer
active.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection parameter is not
a device connection.

The specified connection was not created by this job.

1-77

A$PHYSICAL$DETACH$DEVICE

E$TYPE 8002H

Concurrent Condition Codes

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) Mter
examining this segment, you should delete it.

E$OK OOOOH

E$F~XlST 0021H

E$IO 002BH

E$OUTSTANDING$- 0037H
CONNS

1-78

No exceptional conditions.

The device specified by the connection parameter is
already being detached.

An I/O error occurred during the operation, but the
operation was successful anyway.

The call attempted a soft detach, but
connections to the device still existed.

BIOS System Calls

A$READ

A$READ reads the requested number of bytes, starting with the current position of the
pointer for the specified file connection.

CALL RQAREAD(connection, buff$ptr, count, resp$mbox, except$ptr);

Input Parameters
connection

buff$ptr

count

Output Parameters
resp$mbox

except$ptr

BIOS System Calls

A TOKEN for the open file connection to be read.

A POINTER to the buffer that receives the data.

A WORD giving the number of bytes to be read.

A TOKEN for the mailbox that receives an I/O request/result
segment (lORS) indicating the result of the call. (For details on the
10RS, see Appendix A.) A value ofSELECTOR$OF(NIL) means
that you do not want to receive an 10RS (you do not want to check
the status of the READ operation).

If your task receives an 10RS, it should call DELETE$SEGMENT
to delete the segment after examining it.

If you use the (Basic I/O SYSTEM) RQ$WAIT$IO system call to
check the concurrent condition code after A$READ executes, the
10RS is deleted for you.

The number of bytes read is in the "actual" field of the 10RS. If a
read operation is requested with the file pointer set at or beyond the
end of the file, an actual value of zero is returned.

If all the connections to a stream file are requesting read operations,
an actual value of zero is returned along with an E$FLUSHING
condition code.

A POINTER to a WORD where the sequential condition code will
be returned.

1-79

A$READ

Description

The A$READ system call initiates a read operation on an open connection. The data is
read as a string of bytes, starting at the current location of the connection's file pointer.
Any number of bytes can be requested. Some efficiency may be gained by starting reads on
device block boundaries. After the read operation is finished, the file pointer points just
past the last byte read.

The buffer specified by the "buff$ptr" parameter can be in a segment allocated by, the
Nucleus, but this is not a requirement.

NOTE

A call to A$READ will not be successful unless the mode of the open
connection permits reading (see A$OPEN).

Special Considerations for iRMX®-NET

iRMX-NET's Remote File Driver does not perform fragmentation and reassembly. For
optimal performance, reading and writing should begin at offsets that are integral multiples
of the remote server's buffer size. The device$gran parameter returned by the
AGETFILE$STATUS system call indicates the buffer size of a remote server.

Condition Codes

A$READ returns condition codes at two different times. The code returned to the calling
task immediately after invocation of the system call is considered a sequential condition
code. A code returned as a result of asynchronous processing is a concurrent condition
code. A complete explanation of sequential and concurrent parts of system calls is in the
iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

1-80 BIOS System Calls

A$READ

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EBADBUFF

OOOOH

8023H

E$BUFFERED$CONN 0036H

E$EXIST

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$SUPPORT

E$TYPE

BIOS System Calls

0006H

0004H

0002H

0008H

0023H

8002H

No exceptional conditions.

This condition code is returned only in the iRMX II
Operating System.

At least one of the following is true:

• The target memory buffer is not a writeable
segment.

• The target memory buffer crosses a segment
boundary.

The connection parameter you supplied was opened
with an Extended I/O System call. You cannot use it
with the A$READ system call.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

1-81

A$READ

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the IORS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH No exceptional conditions.

E$CONN$NOT$OPEN 0034H This connection is not open for reading or updating.

At least one of the following is true: E$FLUSHING

E$IDDR

E$IO

1-82

002CH

• The specified connection was closed before the
read operation was completed.

• The file is a stream file and all other connections
to the file are also attempting to read the file.

002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

BIOS System Calls

A$RENAME$FILE

A$RENAME$FILE changes the path name of a named data or directory file.

CALL RQARENAME$FILE(connection, user, prefix, subpath$ptr,
resp$mbox, except$ptr);

Input Parameters
connection

user

prefix

sUbpath$ptr

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for a connection to the file being renamed. This
connection and all other connections to the file will remain in effect
after the file is renamed.

A TOKEN for the user object to be inspected in access checking. A
SELECTOR$OF(NIL) specifies the default user for the job.

A TOKEN for the connection to be used as the starting point in a
path scan. A SELECTOR$OF(NIL) specifies the default prefix for
the job.

A POINTER to a STRING containing the new subpath for the file.
Prefix and subpath must not lead to an already-existing file. The
string pointed to by the subpath parameter cannot be a null string.

A TOKEN for the mailbox that receives an I/O request/result
segment (IORS) indicating the result of the call. (For details on the
10RS, see Appendix A.) A value ofSELECTOR$OF(NIL) means
that you do not want to receive an 10RS.

If it receives an 10RS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$RENAME$FILE system call applies to named files only. It is called to change the
path name of a file. For named data or directory files, A$RENAME$FILE can be used to
recatalog files in different parent directories, as long as the new directory is on the same
volume as the file's original parent directory.

BIOS System Calls 1-83

A$RENAME$FILE

There is one restriction concerning the manner in which a directory can be renamed. Any
attempt to rename a directory as its own parent causes the Basic I/O System to return an
exception code. Also, be aware that renaming a directory changes the paths of any files
contained in the directory.

NOTE

In order to rename a file, the caller must have delete access to the file and
must have add-entry access to the file's parent directory.

Special Considerations for iRMX®-NET

The A$RENAME$FILE system call cannot rename the following files and directories on a
remote server:

• a virtual root directory

• a file in a virtual root directory

• a public directory

If an attempt is made to rename any of these files and directories, an E$F ACCESS
exceptional condition is returned.

Also, unlike a local named file, the access rights of a remote named file are not checked
when a connection to the file is created. Instead, the remote named file's access rights are
checked during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

A$RENAME$FILE returns condition codes at two different times. The code returned to
the calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

1-84 BIOS System Calls

A$RENAME$FILE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EDEVOFF$LlNE

E$EXIST

E$IFDR

E$LIMIT

BIOS System Calls

OOOOH

002EH

0006H

002FH

0004H

No exceptional conditions.

The prefix parameter in this system call refers to a
logical connection. One of the following is true of
the device that is associated with the connection:

• It has been physically attached but is now off
line.

• It has never been physically attached. (See the
iRMX® Device Drivers User's Guide for a more
detailed explanation.)

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

The connection parameter

The user parameter

The prefix parameter

The resp$mbox parameter

• One or more of the following is being deleted:

The connection specified by the prefix.

The connection specified by the connection
parameter.

• The connection for a remote driver is no longer
active.

This system call applies only to named files, but the
connection parameter specifies some other type of
file.

Processing this call would cause one or more of the
following limits to be exceeded:

• The object limit for this job.

• The number of I/O operations that can be
outstanding at one time for the user object
specified in the call (255 decimal).

• The number of outstanding I/O operations for a
remote connection has been exceeded.

1-85

A$RENAME$FILE

E$MEM

E$NOPREFIX

E$NOUSER

ENOTCON
FIGURED

ENOTSAME$
DEVICE

E$PA THNAME$
SYNTAX

1-86

0002H

8022H

8021H

The memory available to the calling task's job is not
sufficient to complete the call.

The call specified a default prefix (prefix argument
equals SELECTOR$OF(NIL)), but no default prefix
can be found because of one of the following:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but a default
prefix is not cataloged there.

If the user parameter in this call is not
SELECTOR$OF(NIL) then the parameter is not a
user object.

If the user parameter is SELECTOR$OF(NIL), it
specifies a default user object, but no default user
object can be found because of one of the following:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user object.

• The job's directory can have entries but a default
user object is not cataloged there.

• The object cataloged with the name R?IOUSER
is not a user object. The name R ?IOUSER
should be treated as a reserved word.

0008H This system call is not part of the
present configuration.

003AH The connection and the prefix in the call
refer to different devices. You cannot

003EH

simultaneously rename a file and move it to another
device.

One or more of the following conditions caused this
exception:

• The specified path name contains invalid
characters or has a length of zero. The path
name can include any printable ASCII character
except the slash (/), up-arrow (t), and circumflex
(").

• The subpath of the specified remote file exceeds
127 bytes in length.

BIOS System Calls

E$SUPPORT

E$TYPE

0023H

8002H

Concurrent Condition Codes

A$RENAME$FILE

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection object.

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object
(Logical device objects are created by the
Extended I/O System.)

• The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the IORS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

EDEVDETACHING 0039H

E$FACCESS 0026H

E$FEXIST 0020H

E$FNEXIST 0021H

E$FTYPE 0027H

E$ILLOGICAL$- 003BH
RENAME

E$INV ALID$FNODE 003DH

BIOS System Calls

No exceptional conditions.

The file specified is on a device that the system is
detaching.

At least one of the following is true:

• The specified file does not have "add entry"
access to the parent directory.

• The specified connection does not have "delete"
access to the file.

• The call is attempting to rename the root
directory or a bit-map file.

A file with the specified path name already exists.

A file in the specified path does not exist or is
marked for deletion.

The string pointed to by the subpath$ptr parameter
contains a file that should be the name of a directory,
but is not. (Except for the last file, each file listed in
a pathname must be a named directory.)

The call is attempting to rename the
directory to a new path containing itself.

The fnode for the specified file (or for a directory in
the file's path) is invalid. The file with the invalid
fnode cannot be accessed.

1-87

A$RENAME$FILE

E$IO 002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

EIOMEM 0042H The memory available to the Basic I/O System job is
not sufficient to complete the call.

E$LIMIT 0OO4H Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking Software
User's Guide.

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

ENOTFILE$CONN 0032H The subpath$ptr parameter is a null pointer and the
prefix parameter is not a file connection.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PATHNAME$- 003EH The syntax of the specified remote file path name is
SYNTAX illegal. Path names for remote files must follow the

naming conventions of the server.

EUDFIO 02DOH An error occurred while accessing the remote
server's User Definition File (UDF).

E$SPACE 0029H At least one of the following is true:

• The volume is full .

• No more files can be created on the remote
server's volume. The Remote File Driver cannot
distinguish between an E$FNODE$LIMIT and
an E$SPACE condition code.

E$SUPPORT 0023H As configured, the Basic I/O System does not allow
allocation of space on volumes.

1-88 BIOS System Calls

A$SEEK

A$SEEK moves the file pointer of an open connection.

CALL RQASEEK(connection, mode, move$size, resp$mhox, except$ptr);

Input Parameters
connection

mode

move$size

Output Parameters
resp$mbox

except$ptr

BIOS System Calls

A TOKEN for the open file connection whose file pointer is to be
moved.

A BYTE describing the movement of the file pointer. Possible
values are:

1 Move pointer back by move$size bytes; if this action moves the
pointer past the beginning of the file, the pointer is set to zero
(first byte).

2 Set the pointer to the location specified by move$size.

3 Move the file pointer forward by move$size bytes.

4 Move the pointer to the end of the file, minus move$size bytes.

A DWORD giving the number of bytes involved in the seek. The
interpretation of move$size depends on the mode setting, as just
explained.

A TOKEN for the mailbox that receives an I/O request/result
segment (laRS) indicating the result of the call. (For details on the
laRS, see Appendix A.) A value of SELECTOR$OF(NIL) means
that you do not want to receive an laRS (you do not want to check
the status of the SEEK operation).

If your task receives an laRS, it should call DELETE$SEGMENT
to delete the segment after examining it. If you use the
RQ$WAIT$IO BIOS system call to check the concurrent condition
code after A$SEEK executes, the laRS is deleted for you.

A POINTER to a WORD where the sequential condition code will
be returned.

1-89

A$SEEK

Description

The A$SEEK system call applies to physical and named files only. This call moves the file
pointer for an open connection, allowing file contents to be accessed randomly. The file
pointer can be moved to any byte position in the file; the first byte is byte zero.

It is legitimate to position the file pointer beyond the end-of-file for a named file. If your
task does this and then invokes the A$READ system call, the Basic I/O System behaves as
though the reading operation began at the end-of-file.

Also, it is possible to invoke the A$WRITE system call with the file pointer beyond the end
of the file. If your task does this, the Basic I/O System attempts to expa,nd the file. If the
Basic I/O System does expand your file in this manner, the file contains random
information between the old end-of-file and the point in the file where the write begins.

Condition Codes

A$SEEK returns condition codes at two different times. The code returned to the calling
task immediately after invocation of the system call is considered a sequential condition
code. A code returned as a result of asynchronous processing is a concurrent condition
code. A complete explanation of sequential and concurrent parts of system calls is in the
iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK OOOOH

E$BUFFERED$CONN 0036H

E$EXIST 0006H

1-90

No exceptional conditions.

The connection parameter was produced by the
Extended I/O System. You cannot use this
parameter with Basic I/O System calls.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

BIOS System Calls

E$IFDR 002FH

E$LIMIT 0004H

E$MEM 0OO2H

ENOTCON- 0OO8H
FIGURED

E$PARAM 8004H

E$SUPPORT 0023H

E$TYPE 8002H

A$SEEK

This system call applies only to named and physical
files, but the connection is to a stream file.

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The mode parameter value is out of the valid range
(1 to 4).

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$CONN$NOT$OPEN 0034H

No exceptional conditions.

The connection is not open.

E$FLUSHING

E$IDDR

E$IO

E$PARAM

BIOS System Calls

002CH The specified connection was closed before the seek
operation could complete.

002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

002BH An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

8004H This call attempted to seek beyond the end of the
physical device. This applies only to physical files.

1-91

ASETEXTENSION$DATA

The ASETEXTENSION$DATA system call writes the extension data for a Basic I/O
System file.

CALL RQASET$EXTENSION$DATA(connection, data$ptr, resp$mbox,
except$ptr);

Input Parameters
connection

data$ptr

resp$mbox

Output Parameter
except$ptr

1-92

A TOKEN for a connection to a file whose extension data is to be
set.

A POINTER to a structure of the following form:

DECLARE ext$data$seg STRUCTURE (
count BYTE,
info(*) BYTE);

where

count Number (up to 255) of bytes of extension data
being written. For remote files, this field must
be set to o.

info(*) The extension data.

A TOKEN for the mailbox that receives an I/O request/result
segment (laRS) indicating the result of the call. (For details on the
laRS, see Appendix A.) A value ofSELECTOR$OF(NIL) means
that you do not want to receive an laRS.

If it receives an laRS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

BIOS System Calls

ASETEXTENSION$DATA

Description

Associated with each file created through the Basic I/O System is a file descriptor
containing information about the file. Some of that information is used by the Basic I/O
System and can be accessed by tasks through the AGETFILE$STA TUS system call. Up
to 255 additional bytes of the file descriptor, known as extension data, are available for use
by Operating System extensions, depending upon how the volumes were formatted. For
named volumes, the first three bytes of this extension data is reserved for use by the Basic
I/O System. OS extensions can write extension data by using
ASETEXTENSION$DATA and they can read extension data by using
AGETEXTENSION$DATA. The maximum number of bytes of extension data may be
less than 255 since the limit is specified when the secondary storage devices are formatted.

Mter the new extension data is set, an 10RS returns to the response mailbox.

ASETEXTENSION$DATA can only be applied to asynchronous connections created
via the named file driver.

Condition Codes

ASETEXTENSION$DATA returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system call is considered a
sequential condition code. A code returned as a result of asynchronous processing is a
concurrent condition code. A complete explanation of sequential and concurrent parts of
system calls is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes and one for concurrent
codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$IFDR

BIOS System Calls

OOOOH

0006H

002FH

No exceptional conditions.

At least one of the following is true:

• One or more of the following parameters is not a .
token for an existing object:

The connection parameter.

The resp$mbox parameter.

• The connection is being deleted.

This system call applies only to named files, but the
connection parameter specifies another type of file.

1-93

ASETEXTENSION$DATA

E$LIMIT

E$MEM

ENOTCON
FIGURED

E$SUPPORT

E$TYPE

0004H

0002H

0008H

0023H

8002H

Concurrent Condition Codes

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete the call.

This call is not part of the present
configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK

E$IO

E$PARAM

1-94

OOOOH

002BH

8004H

No exceptional conditions.

An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

At least one of the following is true:

• The count field in the ext$data$seg data
structure contains a value greater than the value
specified when the disk was formatted.

• The connection parameter references a remote
file and the count field does not contain a value
ofO.

BIOS System Calls

A$SPECIAL

A$SPECIAL enables tasks to perform a variety of special functions.

CALL RQASPECIAL(connection, spec$func, ioparm$ptr, resp$mhox,
except$ptr);

Input Parameters
connection

spec$func

BIOS System Calls

A TOKEN for a connection to the file or device for which the
special function is to be performed. To access a remote server, this
parameter must be a connection to the server's virtual root
directory.

An encoded WORD that, with the connection argument, specifies
the function being requested. Only function value 2 (Notify) is
supported for remote servers. The functions are described under
the heading Description and are summarized as follows:

File driver Spec$func
for connection value
Physical 0
Stream 0
Stream 1
Physical or Named 2
Physical 3
Physical 4
Physical 5
Physical 6
Physical 7
Physical 8
Physical 9
Physical 10
Physical 11
Physical 12

Physical

Physical
Physical
Physical

13

14, 15
16
17
18
19-32767

Function
Format track
Query
Satisfy
Notify
Get disk/tape data
Get terminal data
Set terminal data
Set signal
Rewind tape
Read tape file mark
Write tape file mark
Retension tape
Set Character Font
Set bad track/sector

information
Get bad track/sector
information

Reserved
Get terminal status
Cancel terminal I/O
Resume terminal I/O
Reserved for other Intel
products

32768-65555 Reserved for user devices

1-95

A$SPECIAL

ioparm$ptr

Output Parameters
resp$mbox

except$ptr

Description

A POINTER to a parameter block. The contents of the parameter
block depends upon the requirements of the special function being
requested and are described fully under the heading Description.
Enter a NIL value if the special function you request does not
require a parameter block.

A TOKEN for the mailbox that receives an I/O request/result
segment (laRS) indicating the result of the call. (For details on the
laRS, see Appendix A.) A value of SELECTOR$OF(NIL) means
that you do not want to receive an laRS.

If it receives an laRS, the calling task should call
DELETE$SEGMENTto delete the segment.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$SPECIAL system call enables tasks to perform a variety of special functions.

Tasks define their requests by means of the spec$func and ioparm$ptr parameters.
Spec$func is a code which, when combined with the file driver associated with the
connection argument, specifies the function the Basic I/O System is to perform. When
more information is needed to define a request, ioparm$ptr points to a parameter block
containing the additional data. Descriptions of the available functions follow.

Special Considerations for iRMX®-NET

iRMX-NET only supports function value 2 (Notify) for remote servers. The calling task is
notified of a communication failure immediately after an unsuccessful attempt to access a
remote file or if the device connection to the remote server is physically detached.
Communication failures can result from resetting the server, faults in the consumer or
server, or line transmission errors. The Remote File Driver returns an E$IO status and an
10$PRINT unit status to requests that attempt to access a file on an unavailable remote
server.

To restore the availability of a remote server, perform the following steps:

1. Fix the communication problem.

2. Call A$PHYSICAUDETACH$DEVICE to detach the server's device connection.

3. Call A$PHYSICAL$A TTACH$DEVICE to reattach the server.

1-96 BIOS System Calls

A$SPECIAL

Formatting a Track (Function Code 0)

This function applies to physical files only. To format a track on a mass storage device, call
A$SPECIAL with an open file connection, with spec$func equal to 0, and with ioparm$ptr
pointing to a structure of the form:

DECLARE forrnat$track STRUCTURE(
track$nurnber WORD,
interleave WORD,
track$offset WORD,
fill$char WORD);

In this structure, the fields are defined as follows:

track$number The number of the track to be formatted. Acceptable values are 0
to one less than the number of tracks on the volume. Other values
cause an E$SPACE exceptional condition. When formatting a
RAM-disk or a tape, you must place a zero value in this field.

interleave The interleave factor for the track. (That is, the number of physical
sectors to advance when locating the next logical sector.) An
interleave factor of zero or one skips no physical sectors between
logical sectors. If the specified interleave factor is greater than the
number of physical sectors on a track, the Operating System divides
the specified value by the number of physical sectors and uses the
remainder as the actual interleave value.

track$offset

fill$char

This field does not apply to tapes.

The number of physical sectors to advance when locating the first
logical sector. This field does not apply to tapes.

A byte value with which each sector is to be filled. Some drivers
ignore this value and fill the sector with a character they establish.

Obtaining Information On Stream File Operations
(Function Code 0)

Occasionally, a task using a stream file needs to know what is being requested by the other
task using the same stream file. For example, the task doing a read operation on a stream
file might need to know how many bytes are being sent by the task doing a write operation
on the same file. Tasks can obtain this kind of information by calling A$SPECIAL, using
the connection for the stream file, with spec$func set to 0 (query). The ioparm$ptr
argument is ignored.

BIOS System Calls 1-97

A$SPECIAL

If a read or write request is queued at the file, the information requested is returned in the
10RS for the call to A$SPECIAL. In the 10RS, the ACfUAL field contains the number
of bytes being sent, the COUNT field contains the number of bytes still remaining in the
buffer, and the BUFF$P field points to the buffer. For details on the 10RS fields, refer to
the iRMX® Device Driver User's Guide.

If no read or write request is queued at the file, the calling task's request for information is
queued at the file. If a second request for information is made before the first one is
satisfied, the 10RSs for both requests are returned with E$STREAM$SPECIAL in the
status field.

Satisfying Stream File Transactions
(Function Code 1)

When a task tries to read or write to a stream file, the request is not satisfied until the
other task makes a request that matches the first request.

For example, if task A wants to read 512 bytes, but task B only wants to write 256 bytes,
only 256 bytes are transferred. Task A continues to wait for the other 256 bytes, even
though Task B may never write them.

By using A$SPECIAL, with a stream file connection and with spec$func set to 1
(ioparm$ptr is ignored), either task can force the data transfer request to be satisfied, even
though the reading task is requesting more bytes than the writing task is providing. After
the transfer, the tasks can ascertain the number of bytes sent by checking the actual field in
their respective 10RSs. A task trying to satisfy an I/O request in this way will receive an
E$STREAM$SPECIAL exceptional condition if no request is queued at the stream file or
if a request for information is queued. In the latter case, the task that submitted the
request for information also receives an E$STREAM$SPECIAL condition.

Requesting Notification that a Volume is Unavailable (Function Code 2)

This function applies to named and physical files only. When a person opens a door to a
flexible disk drive or presses the online/offline button on other mass storage drives, the
volume mounted on that drive becomes unavailable. A task can request notification of
such an event by callingA$SPECIAL. For some 5-1/4" flexible disk drives, notification
occurs when the Basic I/O System first tries to perform an operation on the unavailable
volume. For most other drives, notification occurs immediately. The reason for this
difference is that controller/drive combinations that include some 5-1/4" drives cannot
generate an interrupt when the drive ceases to be ready. In contrast, most other
controller/drive combinations do.

1-98 BIOS System Calls

A$SPECIAL

On those drives where no notification occurs until the Basic I/O System attempts to access
the drive, a dangerous situation occurs whenever you change a volume without first
detaching the device. If you do not first detach the device and then reattach it, the Basic
I/O System accesses the device using the directory information from the old volume.
Unless the new volume is write-protected, this process corrupts the entire volume,
rendering it useless. The correct sequence of events when changing volumes on one of
these devices is as follows:

1. Detach the unit (via A$PHYSICAL$DETACH$DEVICE).

2. Remove the old volume.

3. Install the new volume.

4. Reattach the unit (via A$PHYSICAL$A TTACH$DEVICE).

For devices that can perform notification, a task requests notification by calling
A$SPECIAL with a token for a device connection, with spec$func set to 2, and with
ioparm$ptr pointing to a structure of the form:

DECLARE notify STRUCTURE(
mailbox
object

A TOKEN for a mailbox.

TOKEN,
TOKEN) ;

where

mailbox

object A TOKEN for an object. When the Basic I/O System detects that
the implied volume is unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic I/O System remembers the
object and mailbox tokens until either the volume is detected as being unavailable or until
the device is detached by the A$PHYSICAUDETACH$DEVICE system call. When the
volume becomes unavailable, the object is sent to the mailbox. Note that this implies that
some task should be dedicated to waiting at the mailbox.

If the volume is detected as being unavailable, the Basic I/O System will not execute I/O
requests to the device on which the volume was mounted. Such requests are returned with
the status field of the IORS set to E$IO and the unit$status field set to IO$OPRINT
(value = 3). The latter code means that operator intervention is required.

If any task issues a subsequent notification request for the same device connection, the
Basic I/O System replaces the old mailbox and object values with the new ones specified.
It does not return an exception code.

BIOS System Calls 1-99

A$SPECIAL

To restore the availability of a volume, perform the following steps:

1. Close the door of the diskette drive or restart the hard disk drive.

2. Call A$PHYSICAL$DETACH$DEVICE. It may be necessary to do a "hard" detach
of the device.

3. CallA$PHYSICAL$ATIACH$DEVICE and reattach the device.

4. Create a new file connection.

To cancel a request for notification, make a dummy request using the same connection
with a SELECTOR$OF(NIL) value in the mailbox parameter.

Obtaining Information About Winch esters and Certain Other Disks
(Function Code 3)

This function applies only to physical files. If your device is a Winchester drive with an
iSBC® 214/215G/221 disk controller or a drive with an iSBC 220 SMD controller, you can
obtain specification information about it by calling A$SPECIAL with a token for a device
connection, with spec$func set to 3, and with ioparm$ptr pointing to a structure of the
form:

DECLARE disk$drive$data STRUCTURE(
cylinders WORD,
fixed BYTE,
removable BYTE,
sectors BYTE,
sector$size WORD,
alternates BYTE);

A$SPECIAL returns information to the fields of this structure, as follows:

cylinders The total number of cylinders on the drive.

fixed The number of heads on the fixed disk or Winchester disk.

removable

sectors

sector$size

alternates

1-100

The number of heads on the removable disk cartridge.

The number of sectors in a track.

The number of bytes in a sector.

The number of alternate cylinders on the drive.

BIOS System Calls

Obtaining Information About Tapes
(Function Code 3)

A$SPECIAL

This function applies only to physical files. Function code 3 can be used if your device is a
tape drive connected to an iSBC 214 controller, an iSBC 221 controller, or an iSBX® 217C
board mounted on an iSBC 215G controller. You can obtain specific information about
the tape drive by calling A$SPECIAL with a token for the device connection, with
spec$func set to 3, and with ioparm$ptr pointing to a structure of the form:

DECLARE tape$drive$data STRUCTURE(
tape BYTE,
reserved(7) BYTE);

A$SPECIAL returns information to the tape field of this structure. The information in the
tape field is encoded as follows (bit 0 is the low-order bit):

Bits Value and Meaning

o Indicates whether the unit is present.

o = The unit is not present.

1 = The unit is present.

1-3 Reserved bits.

4-7 Number of tracks on the tape.

Getting or Setting Attributes of a Terminal
(Function Codes 4 and 5)

These functions apply only to physical files. You can get (receive) or set the characteristics
of a terminal that is being driven by a terminal device driver by issuing a call to
A$SPECIAL. In each case, you supply a token for a connection to a terminal. To get the
data, set spec$func equal to 4, and to set the data, set spec$func equal to 5.

Before setting the terminal characteristics, you should invoke A$SPECIAL with function
code 4 to get the current characteristics. Then, modify the returned structure to reflect
your desired changes. Finally, invoke A$SPECIAL with function code 5 to set the
characteristics, using your modified structure as input.

In this section, certain terms unique to terminal devices (for example, line editing, OSC
sequences, translation) are described only briefly. If you are unfamiliar with these terms,
refer to the iRM)(® Device Drivers User's Guide.

BIOS System Calls 1-101

A$SPECIAL

For both getting and setting terminal characteristics, ioparm$ptr should point to a structure
of the form:

DECLARE terminal$attributes STRUCTURE(

where

num$words

num$used

1-102

num$words WORD,
num$used WORD,
connection$flags WORD,
terminal$flags WORD,
in$baud$rate WORD,
out$baud$rate WORD,
scroll$lines WORD,
xysize WORD,
xyoffset WORD,
special$modes WORD,
high$water$mark WORD,
low$water$mark WORD,
fconchar WORD,
fcoffchar WORD,
link$parameter WORD,
spchiwater$mark WORD,
special$char(4) BYTE);

The number of words, not including num$words and num$used
fields, that are reserved for the remainder of the terminal$attributes
data structure. To access all of the information, set this field to at
least 16. Intel reserves the right to expand the length of this
structure in later releases.

Tells how many of the attribute words are valid. The special
subfunction get$terminal$attributes fills in the structure with up to
num$words of the current values and sets num$used to the number
of words returned.The subfunction set$terminal$attributes sets the
structures first num$used attributes to the values specified.

However, if any of the first five attributes (connection$flags through
scroll$lines) is zero, the Basic I/O System skips over the zeroed
field, leaving it at its previous setting. For example, if num$used is
2, while connection$flags is 0 and terminal$flags is not 0, then
A$SPECIAL uses the contents of the terminal$flags field to set
terminal attributes, but it ignores the contents of connection$flags
field. In·this way, you can set some parameters without affecting
others.

BIOS System Calls

A$SPECIAL

For the functions represented by the remaining fields in this structure, invoking
A$SPECIAL is not the only way to set the functions. You can also set them with OSC
sequences. The description of each field mentions, in parenthes~s, the OSC characters you
can use. (OSC sequences are described in the iRMX® Device Drivers User's Guide.) You
can also use the OSC Query sequence when debugging, to ensure that your tasks invoked
A$SPECIAL correctly.

connection$f1ags

BIOS System Calls

This word applies only to this connection to the terminal. (All other
parameters apply to the terminal itself and therefore to all
connections to the terminal.) If you attempt to set this field to zero,
the Basic I/O System ignores your entry and leaves the field set to
its previous value.

NOTE
Changes you make with connection$flags don't take effect
until a read is processed using the connection. Therefore, to
ensure that the changes take effect, you should read from the
connection immediately after using connection$f1ags to
change the connection's attributes. (If you don't expect input
at the terminal, set the connection to flush mode, then read
255 characters from the connection. The read will return
immediately with whatever characters were available.)

The next few pages describe the bit flags in this word. (Bit 0 is the
low-order bit.)

1-103

A$SPECIAL

1-104

Bits

0-1

2

Value and Meaning

Line editing control (corresponds to OSC
characters C:T). Line editing refers to how the
Operating System handles control characters
such as those that delete characters entered at a
terminal, scroll terminal, output, and others.
Refer to the iRM)(® Basic I/O System User's
Guide for more information.

o = Invalid Entry.

1 = Transparent mode (no line editing). Input
is transmitted to the requesting task
exactly as entered at the terminal, except
for signal characters (e.g., the Human
Interface CONTROL-C) set by specifying
"set signal" in the spec$func parameter of
A$SPECIAL, and any enabled output
control characters or OSC sequences.
Before being transmitted, data
accumulates in a buffer until the requested
number of characters has been entered.

2 = Normal mode (line editing). Edited data
accumulates in a buffer until a carriage
return is entered.

3 = Flush mode (no line editing). Input is
transmitted to the requesting task exactly
as entered at the terminal, except for
signal characters (e.g., the Human
Interface CONTROL-C) set by specifying
"set signal" in the spec$func parameter of
A$SPECIAL, and any enabled output
control characters or OSC sequences.
Before being transmitted, data
accumulates in a buffer until an input
request is received. At that time, the
contents of the buffer (or the number of
characters requested, if the buffer contains
more than that number) is transmitted to
the requesting task. If any characters
remain in the buffer, they are saved for the
next input request.

Echo control (corresponds to OSC characters
C:E).

BIOS System Calls

2

3

4

5

A$SPECIAL

Echo control (corresponds to OSC characters
C:E).

o = Echo. Characters entered into the
terminal are "echoed" to the terminal's
display screen.

1 = Do not echo.

Input parity control (corresponds to OSC
characters C:R). Characters entered into the
terminal have their parity bits (bit 7) set to 0 or
not set by the terminal support, according to the
value of the input parity control bit.

o = Set parity bit to O.

1 = Do not alter parity bit.

Output parity control (corresponds to OSC
characters C:W). Characters being output to
the terminal have their parity bits (bit 7) set to
o or not set by the terminal support, according
to the value of the output parity control bit.

o = Set parity bit to O.

1 = Do not alter parity bit.

Output control character control (corresponds
to OSC characters C:O). This bit specifies
whether output control characters are effective
when entered at the terminal. The value of this
bit applies only to output through this
connection. Control characters are described in
the iRMX® Device Drivers User's Guide.

o = Accept output control characters in the
input stream.

1 = Ignore output control characters in the
input stream.

BIOS System Calls 1-105

A$SPECIAL

6-7

8

9

10-15

1-106

OSC control sequence control (corresponds to
OSC characters C:C). These bits specify
whether OSC control sequences should be acted
upon when they appear in the input stream and,
separately, when they appear in the output
stream. These bits apply only to input or output
through this connection. OSC control
sequences are described in the iRMX® Device
Drivers User's Guide.

o = Act upon OSC sequences that appear in
either the input or output stream.

1 = Act upon OSC sequences in the input
stream only.

2 = Act upon OSC sequences in the output
stream only.

3 = Do not act upon any OSC sequences.

Specifies whether characters in the raw input
buffer are moved to the type-ahead buffer by
the interrupt task or the service task. The raw
input and type-ahead buffers are discussed in
the iRMX® Device Drivers User's Guide.

o = Characters are moved from the raw input
buffer to the type-ahead buffer by the
interrupt task.

1 = Characters are moved from the raw input
buffer to the type-ahead buffer by the
service task.

Specifies whether the type-ahead buffer is used
to process characters in the raw input buffer.

o = Characters "are moved from the raw input
buffer to the type-ahead buffer.

1 = Characters are moved directly from the
raw input buffer to the application task's
buffer, thus bypassing the type-ahead and
line-edit buffers. This disables all
Terminal Support Code features.

Reserved bits. For future compatibility, set to
o.

BIOS System Calls

terminal$flags

BIOS System Calls

A$SPECIAL

This word applies to the terminal and therefore to all connections to
the terminal. If you attempt to set this field to zero, the Basic I/O
System ignores your entry and leaves the field set to its previous
value. The flags in this word are encoded as follows. (Bit 0 is the
low-order bit.)

Bits

o
1

2

3

Value and Meaning

Reserved bit. Set to 1.

Line protocol indicator (corresponds to OSC
characters T:L). Full-duplex terminals support
simultaneous and independent input and
output. Half-duplex terminals support
independent input and output, but not
simultaneously.

o = Full duplex.

1 = Half duplex.

Output medium (corresponds to OSC
characters T:H).

o = Video display terminal (VDT).

1 = Printed (Hard copy).

Modem indicator (corresponds to OSC
characters T:M).

o = Not used with a modem.

1 = Used with a modem.

1-107

A$SPECIAL

4-5 Input parity control bit (corresponding to OSC
characters T:R) determines how the terminal
driver handles input parity. The parity bit (bit
7) of each input byte can be used in a variety of
ways. A byte has even parity if the sum of its
bits is an even number. Otherwise, the byte has
odd parity.

NOTE
If bits 4-5 contain 2 or 3, and bits 6-8
also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

o = Terminal driver always sets parity bit to o.
(7 bits of data)

1 = Terminal driver never alters the parity bit.
(8 bits of data)

2 = Even parity is expected on input (7 bits of
data). The terminal driver uses the eighth
bit to indicate the presence (1) or absence
(0) of an error on input. That is, the driver
sets the parity bit to 0 unless the received
byte has odd parity or there is some other
error, such as (a) the received stop bit has
a value of 0 (framing error) or (b) the
previous character received has not yet
been fully processed (overrun error.)

3 = Odd parity is expected on input (7 bits of
data). The terminal driver uses the eighth
bit to indicate the presence (1) or absence
(0) of an error on input. That is, the driver
sets the parity bit to 0 unless the received
byte has even parity or there is some other
error, such as (a) the received stop bit has
a value of 0 (framing error) or (b) the
previous character received has not yet
been fully processed (overrun error.)

1-108 BIOS System Calls

6-8

9

BIOS System Calls

A$SPECIAL

Output-parity control bit (corresponding to
OSC characters T: W). determines how the
terminal driver handles output parity. The
parity bit (bit 7) of each output byte can be used
in a variety of ways. A byte has even parity if
the sum of its bits is an even number.
Otherwise, the byte has odd parity.

NOTE
If bits 4-5 contain 2 or 3, and bits 6-8
also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

o = Terminal driver always sets parity bit to 0
(7 bits of data).

1 = Terminal driver always sets parity bit to 1
(7 bits of data).

2 = Terminal driver sets parity bit to give the
byte even parity (7 bits of data)

3 = Terminal driver sets parity bit to give the
byte odd parity (7 bits of data).

4 = Terminal driver does not alter the parity
bit (8 bits of data).

5-7 Invalid values.

Translation control (corresponds to OSC
characters T:T). Translation refers tothe
ability to define certain control characters so
that whenever these characters are entered at
or written to a terminal, certain actions, usually
cursor movements, take place automatically.
Translation is described in the iRM)(® Device
Drivers User's Guide.

o = Do not enable translation.

1 = Enable translation.

1-109

A$SPECIAL

in$baud$rate

1-110

10

11

12

13-15

Terminal axes sequence control (corresponds to
OSC characters T:F). This specifies the order
in which Cartesian-like coordinates of elements
on a terminal's screen are to be listed or
entered.

o = List or enter the horizontal coordinate
first.

1 = List or enter the vertical coordinate first.

Horizontal axis orientation control
(corresponds to OSC characters T:F). This
specifies whether the coordinates on the
terminal's horizontal axis increase or decrease
as you move from left to right across the screen.

o = Coordinates increase from left to right.

1 = Coordinates decrease from left to right.

Vertical axis orientation control (corresponds
to OSC characters T:F). This specifies whether
the coordinates on the terminal's vertical axis
increase or decrease as you move from top to
bottom across the screen.

o = Coordinates increase from top to bottom.

1 = Coordinates decrease from top to bottom.

Reserved bits. For future compatibility, set to
o.

The input baud rate indicator (corresponds to OSC characters T:I).
If you attempt to set this field to zero, the Basic I/O System ignores
your entry and leaves the field set to its previous value. The word is
encoded as follows:

o = Ignore.

1 = Perform an automatic baud rate search.

Other = Actual input baud rate, such as 9600.

BIOS System Calls

out$baud$rate

scroll$lines

xysize

xyoffset

special$modes

BIOS System Calls

A$SPECIAL

The output baud rate indicator (corresponds to OSC characters
T:O). If you attempt to set this field to zero, the Basic I/O System
ignores your entry and leaves the field set to its previous value. The
word is encoded as follows:

o = Leave field set to the previous value.

1 = Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

Most applications require the input and output baud rates to be
equal. In such cases, use in$baud$rate to set the baud rate and
specify a one for out$baud$rate.

An operator at a terminal can enter a control character (default is
CONTROL-W) when he/she is ready for data to appear on the
terminal's display screen. The scroll$lines value (corresponding to
OSC characters T:S) specifies the maximum number of lines that
are to be sent to the terminal each time the operator enters the
control character. If you attempt to set this field to zero, the Basic
I/O System ignores your entry and leaves the field set to its previous
value.

The low-order byte of this word specifies the number of character
positions on each line of the terminal's screen (and corresponds to
OSC characters T:X). The high-order byte specifies the number of
lines on the terminal's screen (and corresponds to OSC characters
T:Y).

The low-order byte of this word specifies the value that starts the
numbering sequence of both the X and Y axes (and corresponds to
OSC characters T: U). The high-order byte specifies the value to
which the numbering of the axes must "fall back" after reaching 127
(and corresponds to OSC characters T: V).

This and the following fields apply only to buffered devices (such as
the iSBC 544A and the iSBC 188/48 boards). These devices
maintain their own input and output buffers separately from the
ones managed by the Basic I/O System's Terminal Support Code. If
you aren't sure whether you can set these fields, invoke
A$SPECIAL with function code 4 to get the terminal attributes. If
bit 15 of the special$modes field is set, your board is a buffered
device and you can set the bits in special$modes and the following
fields.

1-111

A$SPECIAL

1-112

Bits

o

1

Value and Meaning

Flow control mode specifies whether the
communications board sends flow control
characters (selected by the fconchar and
fcoffchar fields, but usually XON and XOFF)
to turn input on and off (corresponds to the
OSC characters T:G). The low-order bit (bit 0)
controls this option, as follows:

o = Disable flow control.

1 = Enable flow control.

When flow control is enabled, the
communication board can control the amount
of data sent to it to prevent buffer overflow.
This is especially important when
communicating with another computer.

Special Character Mode (corresponds to OSC
characters T:D). If your device supports special
characters (currently, the iSBC 188/48/56,546,
547, 548, and 549 boards do), the device is
capable of sending an interrupt whenever a
special character (defined later in the special
array) is typed. When Special Character Mode
is on, the device uses interrupts to inform the
Terminal Support Code that special characters
have been entered.

If a special character has also been defined as a
signal character, the Terminal Support Code
sends a unit to the appropriate signal
semaphore as soon as it receives the special
character interrupt.

When Special Character mode is off, the device
sends special characters through the normal
input stream. If the characters are signal
characters, the Terminal Support Code sends
units to the appropriate semaphores when the
characters reach the line-edit buffer.

The setting of this bit is as follows:

o = Disable Special Character Mode.

1 = Enable Special Character Mode.

BIOS System Calls

2-14

15

A$SPECIAL

The Special Character High Water mark
(corresponds to OSC characters T:A) is used in
conjunction with this field to control Special
Character Mode.

Reserved bits. Set to o.
Buffered Device Control. This bit is set by the
terminal support to show if a device is buffered.
If invoking the A$SPECIAL system call to get
terminal attributes shows that this bit is set,
then the special$modes bits and the data fields
following are valid.

o = Not a buffered device.

1 = Buffered device.

The remaining fields in the structure apply only to buffered devices.

high$water$mark When the communication board's buffer fills to contain the number
of bytes represented by this field, the board's firmware sends the
flow control "off' character to stop input. (This field corresponds to
the OSC characters T:J.)

low$wa ter$mark

fconchar

BIOS System Calls

The high-water mark of the iSBC 544A board is not configurable;
therefore, setting this field has no effect on that board.

When the number of bytes in the communication board's buffer
drops to the number represented by this field, the board's firmware
sends the flow control "on" character to start input. (This field
corresponds to the OSC characters T:K.)

The low-water mark of the iSBC 544A board is not configurable;
therefore, setting this field has no effect on that board.

An ASCII character that the communication board sends to the
connecting device when the number of bytes in its buffer drops to
the low-water mark. Normally this character tells the connecting
device to resume sending data. (This field corresponds to the OSC
characters T:P.)

The fconchar for the iSBC 544A board is set to the XON
character and is not configurable; therefore, setting this field has no
effect on that board.

1-113

A$SPECIAL

fcoffchar

link$parameter

1-114

An ASCII character that the communication board sends to the
connecting device when the number of characters in its buffer rises
to the high-water mark. Normally this character tells the connecting
device to stop sending data. (This field corresponds to the OSC
characters T:Q.)

The fcoffchar for the iSBC 544A board is set to the XOFF
character and is not configurable; therefore, setting this field has no
effect on that board.

(Corresponds to the OSC characters T:N) This word specifies the
characteristics of the physical link between the terminal and a
device. Not all device drivers support link$parameter. This field is
supported by those boards supported by the Terminal
Communications Controller driver, including the iSBC 188/48,
iSBC 188/56, iSBC 546, iSBC 547, iSBC 548, and iSBC 549
controllers.

The meaning of the bits in this field are as follows:

Bits Value and Meaning

0-1 Parity
o = No parity
1 = Invalid value
2 = Even parity
3 = Odd parity

2-3 Character length
o = 6/bits/character.
1 = 7 bits/character.
2 = 8 bits/character.
3 = invalid value

4-5 Number of stop bits.
o = 1 stop bit.
1 = 1 1/2 stop bits.
2 = 2 stop bits.
3 = invalid value

6-14 Reserved

15 Check if this word is to be used
o = not used
1 = used

BIOS System Calls

A$SPECIAL

If parity is enabled, an additional bit position beyond those specified
in the Character Length control is added to the transmitted data
and expected in received data. The received parity bit is transferred
to the CPU as part of the data unless 8 bits/character is selected. If
a parity error is detected on input, the character is discarded.

In the 6 and 7 bits/character modes, unused bit positions in transmit
data are ignored. Unused bits in receive data are set to 1. If a
framing error is detected on input, the character is returned as an 8-
bit null (OOH).

Bit 15 is checked to see if this word is to be used. If set to 1, the
driver passes the low-order byte to the controller, which sets the
parity, character length, and stop bits. If set to 0, this word is
skipped and the terminal$f1ags field is used.

spchiwater$mark (Corresponds to the OSC characters T:A). This field is used in
conjunction with the Special Characters field (corresponds to the
OSC characters T:D) to control Special Character Mode. When the
device's input buffer fills to contain the number of characters
specified in this field, Special Character Mode is enabled (assuming
the Special Character field is turned on). If the number of
characters in the device's input buffer is less than the high water
mark, Special Character Mode is disabled, even if the Special
Character field is turned on.

special$char(4)

If the Special Character field is turned off, this field has no effect.

This array holds the characters you define as special characters (and
corresponds to the OSC characters T:Z). If you define less than
four special characters, then you must fill the remaining slots in the
array with duplicates of the last character you define.

Designating Characters for Signaling from a Terminal Keyboard (Function Code 6)

You can use the A$SPECIAL system call to associate a keyboard character with a
semaphore, so that whenever the character is entered into the terminal, the Basic I/O
System automatically sends a unit to the semaphore. Up to 12 character-semaphore pairs
can be so associated simultaneously; each character being associated with a different
semaphore, if desired. Character-semaphore pairs are called Signal Characters.

To set up a signal character, call A$SPECIAL with a device connection, with spec$func
equal to 6, and with ioparm$ptr pointing to a structure of the form:

DECLARE signal$pair STRUCTURE(
semaphore TOKEN,
character BYTE);

BIOS System Calls 1-115

A$SPECIAL

where

semaphore

character

A TOKEN for the semaphore that is to be associated with the
character.

If the character value is in the range 0 to IFH, or is 7FH, the
terminal support sends a unit to the associated semaphore when it
receives the ASCII equivalent of this value.

If you add 20H to the character values in the 0 to IFH range
(making this range 20H to 3FH), or if the value is 40H, then the
type ahead buffer (and the input buffer if this is a buffered device)
is cleared and a unit is sent to the associated semaphore.

To delete a signal character, call A$SPECIAL with the semaphore field set to NIL and
character set to the signal character to be deleted.

Tape Drive Functions (Function Codes 7, 8, 9 and 10)

You can use the A$SPECIAL system call to perform four different functions that apply to
tape drives only. These functions include rewinding a tape, searching for file marks,
writing file marks, and retensioning a tape.

When your task issues the A$SPECIAL system call with spec$func set to 7, the tape drive
rewinds a tape to its load point. This function also terminates tape read and write
operations. If the tape drive was performing a write operation when you initiated this call,
the tape drive writes a file mark before rewinding the tape.

When your task issues the A$SPECIAL system call with spec$func set to 8, the tape drive
moves the tape to the next file mark on the tape. This function also terminates tape read
operations.

When your task issues the A$SPECIAL system call with spec$func set to 9, the tape drive
writes a file mark at the current position on the tape. This function also terminates tape
write operations.

When your task issues the A$SPECIAL system call with spec$func set to 10, the tape drive
fast-forwards the tape to the end and then rewinds it to the load point.

Set Font (Function Code 11)

You can use the A$SPECIAL system call with other Intel products to specify a font to be
used in graphics.

1-116 BIOS System Calls

A$SPECIAL

Get and Set Bad Track or Bad Sector Information
(Function Codes 12 and 13)

You can use the A$SPECIAL system call to set (write) or get (read) the bad track/sector
information of a volume. To perform either of these operations set the spec$func
parameter to the correct value (12 to set; 13 to get). The ioparm$ptr parameter must point
to a structure of the following form:

DECLARE bad$track$info STRUCTURE(
reserved WORD,
count WORD,
bad$tracks (255) DWORD),

badtracks (255) STRUCTURE (
cylinder WORD,
head BYTE,
sector BYTE)

AT (@bad$track$info.bad$tracks);

In this structure, the fields are defined as:

reserved

count

bad$tracks

BIOS System Calls

A WORD that is reserved for use by the driver.

A WORD containing the number of bad tracks/sectors listed in the
bad$tracks STRUCTURE, up to the maximum of 255.

A STRUCTURE used to store the bad track/sector list. For each
bad track/sector, the structure defines the cylinder and surface as
follows:

cylinder

head

sector

A WORD that gives the cylinder number of the
bad track or sector.

A BYTE that gives the head (surface) number
of the bad track or sector.

A BYTE that gives the sector number of the
bad sector on a track. On devices that only
support bad track information this value should
be set to zero.

1-117

A$SPECIAL

Once you have correctly set the parameters for the A$SPECIAL call, perform either the
get or set operation as follows:

Set

Get

You Set (write) the Bad Track Information by performing the
A$SPECIAL call (with the correct parameters) and specifying the
number of bad tracks or sectors to be entered in the Bad
Track/Sector Information Block and supplying a list of bad tracks or
sectors in ascending order.

Any information already existing in the volume's Bad Track/Sector
Information Block will be overwritten. If you wish to modify
existing information, first Get the Bad Track/Sector Information
and modify it, then Set the Bad Track/Sector Information.

You Get (read) the Bad Track Information by performing the
A$SPECIAL call (with the correct parameters) and examining the
contents of the bad$track$info structure. A value of zero in the
count field indicates that no valid information is available or that
there are no bad tracks.

Getting Terminal Status (Function Code 16)

This function applies only to physical files. You can get the status of a terminal that is
being driven by a terminal device driver by issuing a call to A$SPECIAL.

In this section, certain terms unique to terminal devices (for example, line-editing, OSC
sequences, translation) are described only briefly. If you are unfamiliar with these terms,
refer to the iRM)(® Device Drivers User's Guide.

1-118 BIOS System Calls

A$SPECIAL

To get a terminal's status, call A$SPECIAL with a connection for the terminal, with
spec$func equal to 16, and with ioparm$ptr pointing to a structure of the form:

DECLARE terminal$status STRUCTURE(
terminal$flags
input$conn$flags
input$state
input$conn
input$count
input$actual
rawbufcount
typeahead$count
num$input$requests
output$conn$flags
output$state
output$conn
output$count
output$actual
outbufcount
num$output$requests

WORD,
WORD,
WORD,
TOKEN,
WORD,
WORD,
WORD,
BYTE,
BYTE,
WORD,
WORD,
TOKEN,
WORD,
WORD,
WORD,
BYTE);

where

terminal$f1ags The current attributes associated with the terminal. For the
meaning of the bits in this word, see the terminal$f1ags parameter in
the description of function codes 4 and 5 of the A$SPECIAL system
call.

input$conn$f1ags

BIOS System Calls

The current attributes associated with the terminal's active input
connection. For the meaning of the bits in this word, see the
connection$f1ags parameter in the description of function codes 4
and 5 of the A$SPECIAL system call.

1-119

A$SPECIAL

input$state

1-120

The internal state of this terminal's input connection. The bits in
this WORD are encoded as follows. (Bit 0 is the low-order bit.)

Bits

o

1

2

3

4

5

Value and Meaning

Indicates whether an input request has been set
up.

o = An input request has not been set up.

1 = An input request has been set up.

Indicates whether the current input request has
completed.

o = The current input request has not
completed.

1 = The current input request has completed.

Reserved

Indicates whether an Operating System
Command (OSC) sequence is being processed.

o = An OSC sequence is not being processed.

1 = An OSC sequence is being processed.

Indicates whether a complete line has been
processed and is ready for transfer from the
line-edit buffer to the application task's buffer.
Only applies to terminals in line-edit mode.

o = A complete line has not been processed.

1 = A complete line has been processed.

Indicates whether the current character was
preceded by a CONTROL-P (quoting
character) and is being interpreted as data,
rather than as a line-editing character. Output
control characters, such as CONTROL-S and
CONTROL-Q perform their normal functions
even if preceded by CONTROL-Po Only
applies to terminals in line-edit mode.

o = The current character was not preceded by
a CONTROL-Po

1 = The current character was preceded by a
CONTROL-Po

BIOS System Calls

6

7

8

9

10

BIOS System Calls

A$SPECIAL

Indicates whether an escape sequence is being
processed.

o = An escape sequence is not being
processed.

1 = An escape sequence is being processed.

Indicates whether a CONTROL-R is being used
to recall the last line. Only applies to terminals
in line-edit mode.

o = The last line is not being recalled.

1 = The last line is being recalled.

Indicates whether this terminal is on-line and
available for use. Only applies to terminal
configured for use with a modem.

o = The terminal is not available for use.

1 = The terminal is available for use.

Indicates whether this terminal is waiting for a
ring interrupt as a result of a modem query
OSC command. Only applies to terminals
configured for use with a modem.

o = The terminal is not waiting for a ring
interrupt.

1 = The terminal is waiting for a ring interrupt.

Indicates whether this terminal is waiting for a
carrier loss interrupt as a result of a modem
query OSC command. Only applies to
terminals configured for use with a modem.

o = The terminal is not waiting for a carrier
loss interrupt.

1 = The terminal is waiting for a carrier loss
interrupt.

1-121

A$SPECIAL

input$conn

input$count

input$actual

rawbufcount

typeahead$count

11

12, 13

14

15

Indicates whether this terminal has a modem
query pending as a result of a modem query
OSC command. Only applies to terminals
configured for use with a modem.

o = The terminal does not have a modem
query pending.

1 = The terminal does have a modem query
pending.

Reserved.

Indicates whether the current line has been
cancelled. Only applies to terminals in line-edit
mode.

o = The current line has not been cancelled.

1 = The current line has been cancelled.

Indicates whether the type-ahead buffer is full.

o = The type-ahead buffer is not full.

1 = The type-ahead buffer is full.

A TOKEN for the most recently used input connection associated
with this terminal.

The number of characters requested by the latest input request.

The number of characters that were moved from the raw input or
type-ahead buffer to the application task's buffer during the latest
request.

The number of characters available in the raw input buffer.

The number of characters available in the type-ahead buffer.

num$input$requests The number of input requests in the input queue for this terminal.

output$conn$flags The current attributes associated with the terminal's active output
connection. For the meaning of the bits in this word, see the
connection$flags parameter in the description of function codes 4
and 5 of the A$SPECIAL system call.

output$state

1-122

The internal state of this terminal's output connection. This
parameter can be used to determine if a terminal's output is
hindered in some way (for example, because an XOFF was
received). To check for hindered output, AND output$state with
the value lEOH. If the result is non-zero, output is hindered. You
can resume terminal output by invoking A$SPECIAL with function
code 18.

BIOS System Calls

BIOS System Calls

A$SPECIAL

The bits in this WORD are encoded as follows. (Bit 0 is the low
order bit.)

Bits

0-1

2

3

4

Value and Meaning

o = Output character processing is
occurring normally without an escape
character being encountered.

1 = An ESC character has been
encountered in the output stream.
This requires special handling because
it may.be part of an escape or OSC
sequence or it may need to be
translated.

2 = The previously encountered escape
character is part of an OSC sequence
that is being processed.

3 = The previously encountered escape
character is part of an escape sequence
that is being translated.

Indicates whether an output request has been
set up.

o = An output request has not been set up.

1 = An output request has been set up.

Indicates whether the terminal controller is
transmitting characters from the current output
request or is ready to transmit a character from
the next output request. Only applies to non
buffered devices.

o = The terminal controller is busy
transmitting characters from the
current request on an interrupt
driven basis.

1 = The terminal controller is ready to
transmit a character once the next
output request arrives.

Reserved.

1-123

A$SPECIAL

output$conn

output$count

output$actual

outbufcount

1-124

5

6

7

8

9

10-15

Indicates whether this terminal's output is being
discarded (in discarding mode).

o = Not in discarding mode.

1 = In discarding mode.

Indicates whether this terminal's output is
blocked because an XOFF was received or a
page scroll has completed (placing output into
stopped mode).

o = Output is not blocked.

1 = Output is blocked.

Indicates whether this terminal's output is in
scroll mode.

o = Not in scroll mode.

1 = In scroll mode.

Indicates whether the terminal's output is
blocked because an XOFF was received.

o = Output is not blocked.

1 = Output is blocked.

Indicates whether the terminal's current output
request has been cancelled and is being flushed.

o = The terminal request has not been
cancelled.

1 = The terminal request has been
cancelled.

Reserved.

A TOKEN for the most recently used output connection associated
with this terminal.

The number of characters requested by the latest output request.

The number of characters moved from the application task's buffer
into the output buffer during the latest output request.

The number of characters still awaiting output from the output
buffer of the Terminal Support Code or the buffered device.

BIOS System Calls

A$SPECIAL

num$out
put$requests

The number of output requests in the output queue for this
terminal.

Cancelling Terminal I/O (Function Code 17)

The A$SPECIAL system call allows a program to cancel all requests associated with a
specified connection to a terminal.

To cancel all requests associated with a connection to a terminal, call A$SPECIAL with a
connection for the terminal, with spec$func equal to 17, and with ioparm$ptr pointing to a
structure of the form:

DECLARE canceliostruc STRUCTURE(cancel$conn$t TOKEN);

where

cancel$conn$t A TOKEN for the connection whose requests are to be cancelled.
Setting cancel$conn$t to SELECTOR$OF(NIL) cancels all input
requests associated with the connection specified by A$SPECIAL's
connection parameter. To determine which connection is active and
can be cancelled, invoke A$SPECIAL with spec$func equal to 16
(get terminal status) and check the TOKEN returned in the
input$conn parameter.

NOTE

The cancel terminal I/O function cancels all requests that are using the
specified connection. Therefore, unless you have a reason to do otherwise,
each task using a particular terminal device should have its own connection
to the device. Then the requests associated with a private connection can
be cancelled without affecting other input requests on the same terminal
device.

Resuming TerminalljO (Function Code 18)

The A$SPECIAL system call allows a program to resume an output request that is blocked
because an output control character was entered at the terminal. To resume an output
request that is blocked, call A$SPECIAL with any connection for the blocked terminal and
with spec$func equal to 18. The ioparm$ptr parameter is ignored.

BIOS System Calls 1-125

A$SPECIAL

Condition Codes

A$SPECIAL returns condition codes at two different times. The code returned to the
calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRM)(® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK OOOOH

E$BUFFERED$CONN 0036H

E$EXIST 0006H

E$IFDR. ·002FH

E$LIMIT 0004H

1-126

No exceptional conditions.

The connection parameter you supplied was opened
with an Extended I/O System call. You cannot use it
with the A$READ system call.

At least one of the following is true:

• One or more of the following parameters or
fields is not a token for an existing obj ect:

The connection parameter

The resp$mbox parameter

The mailbox field in the notify structure.
(Spec$func = 2.)

The object field in the notify structure.
(Spec$func = 2.)

The semaphore field in the signal$pair
struCture. (Spec$func =6.)

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

The function requested (spec$func) is not valid for
the type of file specified by the connection
parameter.

The calling task's job has already reached its object
limit.

BIOS System Calls

E$MEM

ENOTCON
FIGURED

E$PARAM

E$SUPPORT

E$TYPE

0002H

0008H

8004H

0023H

8002H

Concurrent Condition Codes

A$SPECIAL

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the present
configuration.

At least one of the following is true:

• The spec$func parameter was greater than 18 but
less than 32K.

• The entire user-provided structure does not have
the correct read/write accesses as described in
the following list:

Not Readable
format· track
notify
set terminal data
set signal
set bad track

information

Not Writeable
get disk/tape date
get terminal data
get bad track information

The specified connection was not created by this job.

One or more of the following parameters or fields is
a token for an existing object of the wrong type:

• The connection parameter.

• The resp$mbox parameter.

• The mailbox field of the notify structure.
(Spec$func = 2.)

• The semaphore field of the signal$pair structure.
(Spec$func = 6.)

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the IORS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$CONN$NOT$OPEN 0034H

E$FLUSHING 002CH

E$IDDR 002AH

BIOS System Calls

No exceptional conditions.

The specified connection is not open. This applies
only to stream and physical files.

The specified connection was closed before the
function could be completed.

The specified function is not supported by the device
containing the file.

1-127

A$SPECIAL

E$IO 002BH

EIOALT$ASSIGNED 0058H

EIOMEM

EIONO$SPARES

ENOTDE
VICE$CONN

E$SPACE

0042H

0057H

0033H

0029H

E$STREAM$SPECIAL 003CH

1-128

An I/O error occurred that might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

A warning that an alternate has been assigned for a
bad track.

The memory pool of the Basic I/O System on the
server does not have a block of memory large
enough to allow the system call to finish.

An attempt was made to assign an alternate track,
but no more alternate tracks were available.

The function code is 'notify', but the specified
connection is not a device connection. This applies
only to named and physical files.

One of the following is true:

• This call attempted to format a track of a
physical file that is beyond the end of the volume.

• This call attempted to format a track of a RAM
disk other than track o.

One of the following is true:

• This is a "query" request, but another query is
already queued. This applies only to stream files.

• This is a "satisfy" request, but either a query
request is queued, or no requests are queued.
This applies only to stream files. (See Artificially
Satisfying a Stream File I/O Request in the
Description.)

BIOS System Calls

A$TRUNCATE

A$TRUNCATE truncates a named file at the current setting of the file pointer, freeing all
allocated space beyond the pointer.

CALL RQATRUNCATE(connection, resp$mbox, except$ptr);

Input Parameter
connection

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for an open connection to the file being truncated.

A TOKEN for the mailbox that receives an I/O request/result
segment (lORS) indicating the result of the call (for details on the
IORS, see Appendix A). A value of SELECTOR$OF(NIL) means
that you do not want to receive an IORS.

If it receives an IORS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$TRUNCATE system call applies to named files only. This call truncates afile at
the current setting of the file pointer, freeing all allocated space beyond the pointer.
A$SEEK can be called to position the pointer before A$TRUNCATE is called. If the file
pointer is at or beyond the end-of-file, no operation is performed.

Truncation is performed immediately, rather than waiting until connections to the file are
deleted.

NOTE

The designated file connection must be open for writing and must have
update access to the file.

BIOS System Calls 1-129

A$TRUNCATE

File pointers for other connections to the file are not affected by the truncation operation.
Thus, it is possible that file pointers for other connections to the file will be beyond the new
end-of-file after the A$TRUNCATE call. If a task invokes the A$READ system call with a
file pointer beyond the end-of-file, the Basic I/O System behaves as though the reading
operation began at the end-of-file. If a task invokes the A$WRITE system call with a file
pointer beyond the end-of-file, the Basic I/O System attempts to expand the file. If the
Basic I/O System does expand your file in this manner, the file contains random
information between the old end-of-file and the point in the file where the write begins.

Condition Codes

A$TRUNCATE returns condition codes at two different times. The code returned to the
calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK OOOOH

E$BUFFERED$CONN .0036H

E$EXIST 0006H

E$IFDR 002FH

1-130

No exceptional conditions.

The connection is a connection produced by the
Extended I/O System. You cannot use it with Basic
I/O System calls.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
. active.

This system call applies only to named files, but the
connection parameter specified some other type of
file.

BIOS System Calls

E$LIMIT 0004H

E$MEM 0OO2H

ENOTCON- 0OO8H
FIGURED

E$SUPPORT 0023H

E$TYPE 8002H

Concurrent Condition Codes

A$TRUNCATE

At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the present
configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection. .

• The resp$mbox parameter is a token for an
object that is not a mailbox.

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the IORS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$CONN$NOT$OPEN 0034H

E$FACCESS 0026H

E$IO 002BH

BIOS System Calls

No exceptional conditions.

The specified file is not open for writing or updating.

An attempt was made to truncate a file that was
created with no update access.

An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

1-131

A$UPDATE

A$UPDA TE updates a device by writing all partial sectors that remain in the Basic I/O
System's buffers after the most recent operation that involved writing to the volume. Such
operations include creating, truncating, and writing operations.

CALL RQAUPDATE(connection, resp$mhox, except$ptr);

Input Parameters
connection

resp$mbox

Output Parameter
except$ptr

Description

A TOKEN for a file or device connection. A$UPDATE updates all
files on the device.

A TOKEN for the mailbox that receives an I/O request/result
segment (lORS) indicating the result of the call. (For details on the
10RS, see Appendix A) A value ofSELECTOR$OF(NIL) means
that you do not want to receive an 10RS.

If it receives an 10RS, the calling task should call
DELETE$SEGMENT to delete the segment after examining it.

A POINTER to a WORD where the sequential condition code will
be returned.

When the I/O System performs an A$WRITE operation, it writes only entire sectors. If
part of a sector remains to be written, the I/O System, unless requested to finish the
writing operation (that is, to "update the file"), leaves the data for a partial sector in an
output buffer. The next time A$WRITE is called on behalf of that file, the I/O System
combines the leftover data in the buffer with the data in the new request and again begins
writing entire sectors.

The A$UPDATE system call forces the Basic I/O System to finish the writing operation
for a device; that is, it writes all partial buffers pertaining to files on a particular device.
This ensures that files on removable volumes (such as diskettes) are updated before the
operator removes the volume. However, the A$UPDA TE system call has no effect on
buffers that the Extended I/O System manages.

1-132 BIOS System Calls

A$UPDATE

Three different events can cause the Basic I/O System to "update" a file. One, of course, is
a call to A$UPDA TE. The other two, called fixed updating and timeout updating, are
triggered by the passing of (possibly different) amounts of time. You specify the time
periods, and the devices to which they apply, when you configure the Basic I/O System.

Fixed updating occurs when an amount of time, which is specified for an entire system,
passes. At that time, all devices to which updating applies are "updated". When
configuring the Basic I/O System, you specify, for each I/O device, whether fixed updating
applies to that device.

Timeout updating is just like fixed updating, except in two respects. First, the time period
is defined separately for each device, rather than applying to the system as a whole. When
configuring the Basic I/O System, you specify, for each I/O device, whether timeout
updating applies to that device, and if it does, what the timeout period is to be for that
device.

The second difference between timeout updating and fixed updating is that, in timeout
updating, the timeout period starts at the end of each I/O operation, while fixed updating
is independent of I/O activity. In I/O intensive systems, updating can be delayed if the
timeout period is longer than the average time between I/O functions.

Condition Codes

A$UPDA TE returns condition codes at two different times. The code returned to the
calling task immediately after invocation of the system call is considered a sequential
condition code. A code returned as a result of asynchronous processing is a concurrent
condition code. A complete explanation of sequential and concurrent parts of system calls
is in the iRMX® Basic I/O System User's Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls 1-133

A$UPDATE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

E$EXIST

E$IFDR

E$LIMIT

E$MEM

ENOTCON-
FIGURED

E$SUPPORT

E$TYPE

1-134

OOOOH

0006H

002FH

0004H

0OO2H

0OO8H

0023H

8002H

No exceptional conditions.

At least one of the following is true: ..

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

• The connection for a remote driver is no longer
active.

An attempt was made to update a stream file
connection.

At least one of the following is true:

• The calling task's job has alre~dy reached its
object limit.

• The number of outstanding I/O operations for a
remote connection has been exceeded.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

BIOS System Calls

A$UPDATE

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the IORS, see the Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$IO 002BH

ENOTFILE$CONN 0032H

BIOS System Calls

No exceptional conditions.

An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

The connection parameter is a device connection,
not a file connection.

1-135

A$WRITE

A$WRITE writes data from the calling task's buffer to a connected file.

CALL RQAWRITE(connection, buff$pt~, count, resp$mbox,
except$ptr) ;

Input Parameters
connection

buff$ptr

count

Output Parameters
resp$mbox

except$ptr

Description

A TOKEN for the open connection through which the write
operation is to take place.

A POINTER to the buffer that contains the data to be written.

A WORD giving the number of bytes to be written.

A TOKEN for the mailbox that receives an I/O request/result
segment (IORS) indicating the result of the call. (For details on the
IORS, see Appendix A.) A value of SELECTOR$OF(NIL) means
that you do not want to receive an 10RS (you do not want to check
the status of the WRITE operation).

If your task receives an 10RS, it should call DELETE$SEGMENT
to delete the segment after examining it. If you use the
RQ$WAIUIO BIOS system call to check the concurrent condition
code after A$WRITE executes, the 10RS is deleted for you.

If all the other connections to a stream file are requesting write
operations, an actual value of zero and a status value of
E$FLUSHING are returned in the 10RS.

A POINTER to a WORD where the sequential condition code will
be returned.

The A$WRITE call writes data from the caller's buffer to a connected file. The data is
written starting at the current location of the connection's file pointer. After the write
operation, the file pointer is positioned just after the last byte written. SaDie efficiency
may be gained by starting writes on device block boundaries and writing an integral
number of device blocks.

1-136 BIOS System Calls

A$WRITE

It is possible to use the A$SEEK system call to position the file pointer beyond the end of
the file and commence writing. (This applies to named files only.) If a task does this, the
Basic I/O System will extend the file to accommodate the writing operation. However, the
data located between the old end of file and the beginning of the writing operation is
undefined.

NOTES

The buffer supplying the data to be written should not be modified until the
write request has been acknowledged at the response mailbox.

The designated file connection must be open for writing, and it must have
append or update access to the file.

Update access is used if you are writing over existing data. Append access
is used if you are extending a file.

Special Considerations for iRMX@·NET

iRMX-NET's Remote File Driver does not perform fragmentation and reassembly. For
optimal performance, reading and writing should begin at offsets that are integral mUltiples
of the remote server's buffer size. The device$gran parameter returned by the
A$GEUFILE$STA TUS system call indicates the buffer size of a remote server.

Condition Codes

A$WRITE returns condition codes at two different times. The code returned to the calling
task immediately after invocation of the system call is considered a sequential condition
code. A code returned as a result of asynchronous processing is a concurrent condition
code. A complete explanation of sequential and concurrent parts of system calls is in the
iRMX® Basic I/O System User Guide.

The following list is divided into two parts--one for sequential codes, and one for
concurrent codes.

BIOS System Calls 1-137

A$WRITE

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word specified by the
except$ptr parameter of this system call.

E$OK

EBADBUFF

OOOOH

8023H

E$BUFFERED$CONN 0036H

E$EXIST

E$LIMIT

E$MEM

E$NOnCON
FIGURED

E$SUPPORT

E$TYPE

1-138

0006H

0004H

0002H

0008H

0023H

8002H

No exceptional conditions.

This condition code is returned only in the iRMX II
Operating System.

At least one of the following is true:

• The user-provided memory buffer is not readable
or crosses memory boundaries.

• The target memory buffer crosses a segment
boundary.

The connection parameter you supplied was opened
with an Extended I/O System call. You cannot use it
with the A$READ system call.

At least one of the following is true:

• One or more of the following parameters is not a
token for an existing object:

- The connection parameter

- The resp$mbox parameter

• The connection is being deleted.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the
present configuration.

The specified connection was not created by this job.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

BIOS System Calls

A$WRITE

Concurrent Condition Codes

The Basic I/O System returns one of the following condition codes in an 10RS at the
mailbox specified by resp$mbox. (For details on the 10RS, see Appendix A.) After
examining this segment, you should delete it.

E$OK OOOOH

E$CONN$NOT$OPEN 0034H

E$FACCESS 0026H

E$FLUSHING 002CH

E$FRAGMENTATION 0030H

E$IO 002BH

E$SPACE 0029H

E$SUPPORT 0023H

BIOS System Calls

No exceptional conditions.

The connection is not open for writing or updating.

The specified connection does not have "update" or
"append" access to the file.

At least one of the following is true:

• The specified connection was closed before the
write operation could be performed.

• The file specified by the connection parameter is
a stream file, and all other connections are also
requesting to write to the file. (See the
description of resp$mbox.)

The file is too fragmented to be extended. Try
copying the file to a temporary file, deleting the
original file, and renaming the temporary file to the
original name.

An I/O error occurred which might have prevented
the operation from completing. Examine the
unit$status field of the 10RS for more information.

At least one of the following is true:

• The volume is full.

• The operation attempted to write beyond the end
of the device. This applies only to physical files.

The write operation, if carried out, would extend the
file, but as the Basic I/O System is configured,
extending a file is not allowed.

1-139

CREATE$USER

The CREA TE$USER system call creates a user object.

CAUTION

This system call overrides the file access protection mechanism provided
by the Basic I/O System. It should be used only by system programmers in
charge of security management.

user = RQ$CREATE$USER(ids$ptr, except$ptr);

Input Parameter
ids$ptr

Output Parameters
user

except$ptr

1-140

A POINTER to a structure of the following form:

DECLARE ids STRUCTURE(
length WORD,
count WORD,
id(*) WORD);

where

length

count

id

Number of elements in the ID array.

Number of IDs (from the ID array) that are to
be included in the user object. This number
must be less than or equal to length, but greater
than or equal to one.

Array of IDs, each of which is included in the
user object. The first ID is to be used as the
owner ID for any file created with reference to
this user object.

A TOKEN where a token for the new user object will be returned.

A POINTER to a WORD where the condition code will be
returned.

BIOS System Calls

CREATE$USER

Description

The CREA TE$USER system call creates a user object. It accepts a list of IDs and returns
a token for the new object.

If the number of ID slots, as specified by the length field, is greater than the number of
IDs, as specified by the count field, the effect is as if length had been reduced to equal
count.

Condition Codes
E$OK

E$LIMIT

E$MEM

E$PARAM

BIOS System Calls

OOOOH

0004H

0002H

8004H

No exceptional conditions.

The calling task's job has already reached its object
limit.

The memory available to the calling task's job is not
sufficient to complete the call.

The count field in the ids structure either is zero or is
greater than the length field.

1-141

DELETE$USER

The DELETE$USER system call deletes a user object.

CAUTION

This system call overrides the file access protection mechanism provided
by the Basic I/O System. It should be used only by system programmers in
charge of security management.

CALL RQ$DELETE$USER(user, except$ptr);

Input Parameter
user

Output Parameter
except$ptr

Description

A TOKEN for the user object to be deleted.

A POINTER to a WORD where the condition code will be
returned.

The DELETE$USER system call deletes a user object. Deleting a user object has no
effect on connections created with the user object.

Condition Codes
E$OK

E$EXIST

E$LIMIT

ENOTCON
FIGURED

E$TYPE

1-142

OOOOH

0006H

0004H

0008H

8002H

No exceptional conditions.

The user parameter is not a token for an existing
object.

The call cannot be processed without exceeding the
number (255 decimal) of I/O operations which can
be outstanding at one time for the user object
specified in the call.

This system call is not part of the
present configuration.

The user parameter is a token that is not a user
object.

BIOS System Calls

ENCRYPT

The ENCRYPT system call encodes a specified string of characters. This system call is
typically used to encrypt a password supplied by a user during logon or other system access
verification.

CALL RQ$ENCRYPT(password$ptr, key$ptr, encryption$ptr, except$ptr);

Input Parameters
password$ptr

key$ptr

Output Parameters
encryption$ptr

except$ptr

Description

A POINTER to a STRING containing the data to be encrypted.
The length of this STRING may be between one and eight bytes.

A POINTER to two ASCII characters that serve as an encryption
key. These two characters become the second and third BYTES of
the STRING pointed to by encryption$ptr. The two characters must
be used in subsequent encryptions of the same (unencrypted)
password to yield the same encryption.

A POINTER to a 15 character iRMX STRING where the encrypted
password will be placed. The first character is the length of the
STRING. The second and third characters are the key used to
encrypt the password. The next 11 characters are the encrypted
password. The last character is a null terminater.

A POINTER to a WORD where the condition code will be
returned.

ENCRYPT encodes a string (typically a password) pointed to by the password$ptr
parameter. It places the encrypted string in the 15 character buffer pointed to by
encryption$ptr. The encryption is done using the Data Encryption Standard (DES)
algorithm. See the Federal Information Processing Standard Publication #46, January 15,
1977, for more information. Note that there is no way to decrypt the encrypted string with
this system call. The key$ptr parameter allows the input parameter to be encrypted to the
same string each time ENCRYPT is called, provided the key$ptr parameter is identical.
Using any other key will cause the input parameter to be encrypted differently. When a
string is initially encrypted, the key should be randomly generated.

BIOS System Calls 1-143

ENCRYPT

Condition Codes
E$OK

E$LIMIT

E$MEM

E$ NOT$ CON
FIGURED

1-144

OOOOH

0004H

0002H

0008H

No exceptional conditions.

The calling task's job object limit is too small.

The memory of the calling task's job is exhausted.

This call is not part of the present
configuration.

BIOS System Calls

GET$DEFAULT$PREFD{

GET$DEFAULT$PREFIX returns the default prefix of a job.

connection = RQGETDEFAULT$PREFIX(job, except$ptr);

Input Parameter
job

Output Parameters
connection

except$ptr

Description

A TOKEN for the job whose default prefix is sought. A
SELECTOR$OF(NIL) specifies the calling task's job.

A TOKEN that receives a token for the connection object that is the
default prefix for the designated job.

A POINTER to a WORD where the condition code will be
returned.

The GET$DEFAULT$PREFIX system call allows the caller to ascertain the default prefix
for the specified job.

Condition Codes
E$OK

E$NOPREFIX

BIOS System Calls

OOOOR

8022R

No exceptional conditions.

You requested a default prefix, but no default prefix
can be found for of one of the following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

• The job's directory can have entries but a default
prefix is not cataloged. there.

• The job parameter is not a token for an existing
object.

• The prefix that is cataloged is not of the correct
type. The default prefix must be a connection
object or logical device object. (Logical device
objects are created by the Extended I/O System.)

1-145

GET$DEFAUL T$PREFIX

ENOTCON
FIGURED

1-146

0008H

• The job parameter contains a token for an object
that is not a job.

This system call is not part of the
present configuration.

BIOS System Calls

GET$DEFAULT$USER

GET$DEFAULT$USER returns the default user object of a job.

user$id = RQ$GET$DEFAULT$USER(job, except$ptr);

Input Parameter
job

Output Parameters
user$id

except$ptr

Description

A TOKEN for the job whose default user object is sought. A
SELECTOR$OF(NIL) specifies the calling task's job.

A TOKEN for the user object that is the default user for the
designated job.

A POINTER to a WORD where the condition code will be
returned.

The GET$DEFAULT$USER system call allows the calling task to ascertain the default
user object associated with the designated job.

Condition Codes
E$OK

E$NOUSER

BIOS System Calls

OOOOR

8021R

No exceptional conditions.

No default user can be found because of one of the
following reasons:

• When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

• The job's directory can have entries but a default
user is not cataloged there.

• The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

• The job parameter contains a token for an object
that is not a job.

1-147

GET$DEFAULT$USER

ENOTCON
FIGURED

1-148

0008H

• The job parameter is not a token for an existing
object.

This system call is not part of the
present configuration.

BIOS System Calls

GET$GLOBAL$TIME

The GET$GLOBAUTIME system call reads the time of day from a battery-backed up
hardware clock. This system call supports the Global Time of Day Clock on the iSBC 546
Terminal Communications Controller board, the MUL TIBUS® II iCSM board, the iSBC
86C38 board, and the System 120.

CALL RQGETGLOBAL$TIME (date$time$ptr, except$ptr);

Input Parameters

None.

Output Parameters
date$time$ptr

except$ptr

BIOS System Calls

A POINTER to a structure in which the Basic I/O System returns
the date and time information. The structure must have the
following form:

DECLARE date$time STRUCTURE (
seconds
minutes
hours
days
months
years

BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
WORD) ;

where

seconds

minutes

hours

days

months

years

The current value of the seconds counter.

The current value of the minutes counter.

The current value of the hours counter.

The current value of the days counter.

The current value of the month counter.

The current value of the year counter.

A POINTER to a WORD in which the Basic I/O System returns
the condition code for this system call.

1-149

GET$GLOBAL$TIME

Description

The GET$GLOBAL$TIME system call returns the date and time value stored in the
hardware clock. The Basic I/O System accesses the appropriate registers on the hardware
clock to read the global date and time values.

Condition Codes
E$OK

E$EXIST

ENOTCON-
FIGURED

E$SHARE

E$SUPPORT

1-150

OOOOH

0OO6H

0OO8H

0028H

0023H

No exceptional conditions.

This call was made from an environment that did not
contain a hardware clock.

This system call is not part of the
present configuration.

The hardware clock was busy (i.e., another task was
accessing it).

The clock type specified in the configuration file is
not a supported type.

BIOS System Calls

GET$TIME

The GET$TIME system call returns the date/time value from the Basic I/O System's local
clock.

date$tirne = RQ$GET$TIME(except$ptr);

Input Parameters

None.

Output Parameters
date$time

except$ptr

Description

A DWORD containing a date/time value expressed as the number
of seconds since a fixed point in time.

A POINTER to a WORD where the condition code will be
returned.

The GET$TIME system call returns the date/time value for the Basic I/O System. The
Basic I/O System maintains the date/time value as the number of seconds since midnight,
January 1, 1978. The iRMX UDI and Human Interface follow the convention that January
1, 1978 is equal to 0 seconds. When the date$time value reaches its maximum
(OFFFFFFFFH), it will stop incrementing and will not roll over to start again from zero.

Condition Codes
E$OK

ENOTCON
FIGURED

BIOS System Calls

OOOOH

0008H

No exceptional conditions.

This system call is not part of the
present configuration.

1-151

INSPECT$USER

The INSPECf$USER system call returns a list of the IDs contained in a user object.

CALL RQ$INSPECT$USER(user, ids$ptr, except$ptr);

Input Parameter
user

Output Parameters
ids$ptr

except$ptr

Description

A TOKEN for the user object being inspected.

A POINTER to a structure of the following form:

where

length

DECLARE ids STRUCTURE (
length WORD,
count WORD,
id(*) WORD);

The upper limit on the number of IDs that are
to be returned. (You must supply this when you
invoke the system call. Zero values are not
permitted.)

count Actual number of IDs that are being returned.

id(*) The IDs being returned.

A POINTER to a WORD where the condition code will be
returned.

The INSPECf$USER system accepts a token for a user object and returns a list of the IDs
in the user object.

The calling task must supply the length value in the data structure pointed to by the ids$ptr
parameter. The BASIC I/O System fills in the remaining fields in that structure.·

If the length value is smaller than the actual number of IDs in the user object, only the
specified number of IDs will be returned.

1-152 BIOS System Calls

Condition Codes
E$OK

E$EXIST

ENOTCON
FIGURED

E$PARAM

E$TYPE

BIOS System Calls

OOOOH

0006H

0008H

8004H

8002H

INSPECT$USER

No exceptional conditions.

The user parameter is not a token for an existing
object.

This system call is not part of the
present configuration.

The length field contains a zero value.

The user parameter is a token for an object of the
wrong type.

1-153

SET$DEFAUL T$PREFD{

SEUDEFAULT$PREFIX sets the default prefix for an existing job.

CALL RQSETDEFAULT$PREFIX(job, prefix, except$ptr);

Input Parameters
job

prefix

Output Parameter
except$ptr

Description

A TOKEN for the job whose default prefix is to be set. A
SELECTOR$OF(NIL) specifies the current job.

A TOKEN for the connection that is to become the default prefix.

A POINTER to a WORD where the condition code will be
returned.

The SEUDEFAULT$PREFIX system call sets the default prefix for an existing job. It
does this by cataloging the connection (supplied as the prefix parameter) in the object
directory of the job (supplied as the job parameter). The Basic I/O System catalogs the
prefix under the name "$". If an object is already cataloged under the name "$", the Basic
I/O System uncatalogs that object before cataloging the new prefix.

Condition Codes
E$OK

E$CONTEXT

E$EXIST

E$LIMIT

E$NOUCON
FIGURED

1-154

OOOOH

0005H

0006H

0004H

0008H

No exceptional conditions.

When this job was created, a size of zero was
specified for the object directory, so a default prefix
cannot be cataloged.

One or more of the following parameters is not a
token for an existing object:

• The job parameter

• The prefix parameter

The prefix parameter cannot be cataloged because
the calling job's object directory is full.

This system call is not part of the
present configuration.

BIOS System Calls

E$TYPE 8002H

BIOS System Calls

SET$DEFAULT$PREFIX

At least one of the following is true:

• The job parameter is a token for an object that is
not a job.

• The prefix parameter is a token for an object that
is not of the correct type. It must be either a
connection object or a logical device object.
(Logical device objects are created by the
Extended 110 System-.)

1-155

SET$DEFAULT$USER

SET$DEFAULT$USER sets the default user object for a job.

CAUTION

This system call overrides the file access protection mechanism provided
by the Basic I/O System. It should be used only by system programmers in
charge of security management.

CALL RQSETDEFAULT$USER(job, user, except$ptr);

Input Parameters
job

user

Output Parameter
except$ptr

Description

A TOKEN for the job whose default user object is to be set. A
SELECTOR$OF(NIL) designates the calling task's job.

A TOKEN for the user object that is to become the default user.

A POINTER to a WORD where the condition code will be
returned.

The SET$DEFAULT$USER system call sets the default user for an existingjob.

Condition Codes
E$OK

E$CONTEXT

E$EXIST

E$LIMIT

1-156

OOOOH

OOOSH

0006H

0004H

No exceptional conditions.

When this job was created, a size of zero was
specified for the object directory, so a default prefix
cannot be cataloged.

One or more of the following parameters is not a
token for an existing object:

• The job parameter

• The user parameter

The user object cannot be cataloged because the
calling job's object directory is full.

BIOS System Calls

ENOTCON
FIGURED

E$TYPE

BIOS System Calls

0008H

8002H

SET$DEFAULT$USER

This system call is not part of the
present configuration.

The job or user argument is a token for an object of
the wrong type.

1-157

SET$GLOBAL$TIME

The SEUGLOBAL$TIME system call sets the battery backed-up hardware clock to a
specified value. This system call supports the Global Time of Day Clock on the iSBC 546
Terminal Communications Controller board, the MUL TIBUS® II iCSM board, the iSBC
86C38 board, and the System 120.

CAUTION

This system call overrides the global timing mechanism provided by the
hardware clock. It should be used only by system programmers setting the
initial system time.

CALL RQSETGLOBAL$TIME (date$time$ptr, except$ptr);

Input Parameter

date$time$ptr A POINTER to a structure that contains the date and time
information to which the hardware clock is set. The structure must
have the following form:

1-158

DECLARE date$time STRUCTURE (

where

seconds

minutes

hours

days

months

seconds
minutes
hours
days
months
years

BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
WORD) ;

The value to which the seconds counter is to be
set. This value cannot exceed 59.

The value to which the minutes counter is to be
set. This value cannot exceed 59.

The value to which the hours counter is to be
set. This value cannot exceed 23.

The value to which the days counter is to be set.
This value cannot exceed 31.

The value to which the months counter is to be
set. This value cannot exceed 12.

BIOS System Calls

Output Parameter
except$ptr

Description

years

SET$GLOBAL$TIME

The value to which the years counter is to be
set.

A POINTER to a WORD in which the Basic I/O System returns
the condition code for this system call.

The SET$GLOBAL$TIME system call sets the global date and time values in the battery
backed-up hardware clock. The Basic I/O System writes the new values into the
appropriate registers on the clock board.

Condition Codes
E$OK

E$EXIST

ENOTCON
FIGURED

E$PARAM

E$SHARE

E$SUPPORT

BIOS System Calls

OOOOH

0006H

0008H

8004H

0028H

0023H

No exceptional conditions.

This call was made from an environment that did not
contain a hardware clock.

This system call is not part of the
present configuration.

One or more of the values specified in the date$time
structure is illegal.

The global time-of-day clock was busy (i.e., another
agent was accessing it).

The clock type specified in the configuration file is
not a supported type.

1-159

SET$TIME

The SET$TIME system call sets the date and time for the Basic I/O System's local clock.

CAUTION

This system call overrides the timing mechanism provided by the Basic 1/0
System. It should be used only by system programmers setting the initial
system time.

CALL RQSETTIME(date$time, except$ptr);

Input Parameter
date$time

Output Parameter
except$ptr

Description

A DWORD containing a date/time value expressed as the number
of seconds since a fixed, user-determined point in time.

A POINTER to a WORD where the condition code will be
returned.

The SET$TIME system call sets the date/time value for the I/O system. The I/O System
maintains the date/time value as a double word containing the number of seconds since a
fixed point in time. Any time in the past can be used as the "beginning of time", but we
recommend that you use 12:00 am (midnight), January 1, 1978. This convention is used by
the Universal Development Interface and the Human Interface. When the date$time
value reaches its maximum (OFFFFFFFFH), it will stop incrementing and will not roll over
to start again from zero.

Condition Codes
E$OK

ENOTCON
FIGURED

1-160

OOOOH

0008H

No exceptional conditions.

This system call is not part of the
present configuration.

BIOS System Calls

WAIT$IO

W AlT$IO can be called following a call to A$READ, A$WRlTE, or A$SEEK. When
called, it returns to the calling task the concurrent condition code for the prior call. If
applicable, WAIT$IO also returns the number of bytes read or written.

actual = RQ$WAIT$IO(connection, resp$mbox, time$limit, except$ptr);

Input Parameters
connection

resp$mbox

time$limit

Output Parameters
actual

except$ptr

Description

A TOKEN for the connection that was specified as the connection
in the prior asynchronous system call. (See Description.)

A TOKEN for the mailbox that was specified as the response
mailbox for the prior asynchronous system call. (See Description.)

A WORD specifying the number of Nucleus system clock units that
the task calling W AlUla is willing to wait for the I/O
request/result segment (laRS) to arrive at the response mailbox.
(For details on the laRS, see Appendix A.) A value of 0 means
that the task is not willing to wait at all, and a value of OFFFFH
means that the task will wait indefinitely.

A WORD to which the Basic I/O System returns the number of
bytes read or written in the prior asynchronous system call. This
value is undefined if the prior call was to A$SEEK. (See
Description.) .

A POINTER to a WORD where either the (concurrent) condition
code for the prior asynchronous system call or the (sequential)
condition code for the W AlT$IO system call is to be returned. (See
Description.)

There are two ways in which a task calling A$READ, A$WRlTE, or A$SEEK can receive
the result of the concurrent portion of the call from the designated response mailbox. One
way is for the task to wait at the mailbox, receive an laRS there, and extract the
information from the segment. It is then incumbent upon the task to delete the segment,
so that memory reserves are not needlessly depleted.

BIOS System Calls 1-161

WAIT$IO

The other way for the task to receive this information is to call WAInIO. After the
concurrent portion of the previous I/O call has been completed, the WAInIO system call
returns the result of that call as follows:

• To the actual word, the number of bytes read or written, depending upon whether the
previous call was to A$READ or A$WRITE, respectively. If the previous call was to
A$SEEK, the value in the actual word is undefined.

• To the word pointed to by the except$ptr parameter, the concurrent condition code
from the previous I/O call or the sequential condition code from the call to WAlT$IO.
That is, if either of these condition codes is not E$OK, then that code is returned; if
both of the condition codes are not E$OK, then the code that is returned is the code
from the call to WAInIO. You should take note of the following:

There are three condition codes--E$LIMIT, E$MEM, and E$SUPPORT--that can
be returned by either the sequential or the concurrent portion of a system call.
However, WAIT$IO does not return any of these codes, so if one of them is
returned, it came from the previous I/O call.

If the concurrent portion of the previous I/O call caused an E$IO exceptional
condition, WAIT$IO does not return this code. Instead (in this case only),
WAInIO determines the error by examining the lower four bits of the unit$status
field of the 10 RS for the previous I/O call. Based on the content of the unit$status
field, WAIT$IO returns one of the following condition codes (described under
Condition Codes):

Mnemonic
EIOUNCLASS
EIOSOFf
EIOHARD
EIOOPRINT
EIOWRPROT
EIONO$DATA
EIOMODE
EIONO$SPARES
EIOALT$ASSIGNED

Value
50H
5tH
52H
53H
54H
55H
56H
57H
58H

The benefit of W AIT$IO is that, in applications that use it, tasks do not always have to deal
directly with 10RSs. In particular, those tasks do not have to delete 10RSs. Because of
this, the Basic I/O System, in applications using WAInIO, maintains a supply of 10RSs
that can be used repeatedly. This means that performance is enhanced because the Basic
I/O System does not have to create a segment every time an 10RS is needed. This
provides a significant advantage because A$READ, A$WRITE, and A$SEEK are typically
the most commonly invoked Basic I/O System calls.

1-162 BIOS System Calls

WAIT$IO

Condition Codes
E$OK OOOOH No exceptional conditions.

E$EXIST 0OO6H At least one of the following is true:

• The connection parameter or the resp$mbox
parameter (or both) did not contain a token for
an existing object.

• The specified connection or response mailbox (or
both) was deleted.

• The token returned to the specified mailbox was
for an object that had been deleted.

EIOHARD 0052H A hard I/O error occurred. Another retry is
probably useless.

EIOMODE 0055H At least one of the following is true:

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0056H A tape drive attempted to read the next record, but it
found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The Basic I/O System
tried to perform the operation a number of times
(the number is configurable for each device). All
attempts failed. If the configurable value specifying
the number of retries is a reasonable value (for
example, 9), another retry probably won't be
successful either.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The asynchronous operation was A$WRITE and the
volume was write-protected.

E$ NOT$ CON- 0OO8H This system call is not part of the
FIGURED present configuration.

BIOS System Calls 1-163

WAIT$IO

E$TIME OOOlH

E$TYPE 8002H

1-164

One of the following is true:

• The calling task was not willing to wait, and there
was no IORS at the specified mailbox.

• The specified waiting period elapsed before the
response mailbox received an IORS.

At least one of the following is true:

• The connection parameter is a token for an
object that is not a file connection.

• The resp$mbox parameter is a token for an
object that is not a mailbox.

• The object received at the response mailbox is
not a segment or is a segment that is not an
IORS.

BIOS System Calls

I/O REQUEST/RESULT SEGMENT A
A.1 OVERVIEW

Certain asynchronous Basic I/O System calls return a data structure called an I/O
Request/Result Segment (IORS) to the mailbox specified by the resp$mbox parameter.
The following system calls can return such a segment:

A$ATIACH$FILE A$CHANGE$ACCESS
A$CLOSE A$CREATE$DIRECTORY
A$ CREATE$ FILE A$DELETE$CONNECTION
A$DELETE$FILE A$OPEN
A$PHYSICAL$ATIACH$DEVICE A$PHYSICAL$DETACH$DEVICE
A$READ A$RENAME$FILE
A$SEEK A$SPECIAL
A$TRUNCATE A$UPDATE
A$WRlTE

Before waiting at the response mailbox to receive the IORS, your application task should
examine the condition code returned in the word pointed to by the except$ptr parameter.
If this code is E$OK, the task can wait at the mailbox. However, if the code is not E$OK,
an exceptional condition exists and nothing is sent to the mailbox.

Immediately after receiving the IORS, the task should examine the status field. This field
contains an E$OK if the system call was completed successfully or an exceptional condition
code if an error occurred. The result segment also contains the actual number of bytes
read or written, if appropriate.

BIOS System Calls A-I

I/O REQUEST/RESULT SEGMENT

A.2 STRUCTURE OF I/O REQUEST/RESULT SEGMENT

A-2

The IORS is structured as follows:

DECLARE iors
status
unit$status
actual

STRUCTURE (
WORD,
WORD,
WORD) ;

where

status

unit$status

actual

Condition code indicating the outcome of the call.

The lower four bits of this field contain device-dependent error code
information that is meaningful only if the status is E$IO. Certain devices
also use the upper 12 bits of unit$status to provide more information about
the error (for details, see Appendix E in the iRMX® Device Drivers User's
Guide). The codes, meanings, and associated mnemonics for the lower four
bits are as follows:

Code Mnemonic Meaning

0 10$UNCLASS An error occurred for which
it was impossible to ascertain
the cause.

10$SOFT Soft error; the I/O system
has retried the operation and
failed; another retry is not
possible.

2 10$HARD Hard error; a retry is not
possible.

3 10$OPRINT Operator intervention is
required.

4 10$WRPROT Write-protected volume.

S 10NODATA No data on the next tape
record.

6 10$MODE A read (or write) was
attempted before the
previous write (or read)
completed.

7 10NOSPARES An I/O error occurred
during disk formatting; no
alternate tracks were
available.

8 10ALTAS- An I/O error occurred
SIGNED during disk formatting; an

alternate track was assigned.

The actual number of bytes transferred.

BIOS System Calls

I/O REQUEST/RESULT SEGMENT

The lORS contains other fields which are of interest only to the designer of a device driver.
Refer to the iRMX® Device Drivers User's Guide for information about the remaining fields
in the lORS.

BIOS System Calls A-3

A
A$ATfACH$FILE 1-6

iRMX®-NET considerations 1-7
A$CHANGE$ACCESS 1-11

iRMX-NETconsiderations 1-14
A$CLOSE 1-19
A$CREATE$DIRECTORY 1-22

iRMX-NETconsiderations 1-23
A$CREATE$FILE 1-28

iRMX-NETconsiderations 1-31
A$DELETE$CONNECTION 1-36
A$DELETE$FILE 1-39

iRMX-NETconsiderations 1-40
AGETCONNECTION$STATUS 1-45

iRMX -NET considera tions 1-47
AGETDIRECTORY$ENTRY 1-49

iRMX-NETconsiderations 1-50
AGETEXTENSION$DATA 1-52
AGETFILE$STATUS 1-55

device functions supported 1-58
diskette drive flags 1-58
file types supported on a device 1-57
named file portion of status structure 1-56
status information structure 1-55
volume information flags 1-61

AGETPATH$COMPONENT 1-64
file name segment structure 1-64

AGETPHYSICAL$ATfACH$DEVICE 1-72
A$OPEN 1-68

iRMX-NETconsiderations 1-69
mode values 1-68
share mode values 1-68

A$PHYSICAUATfACH$DEVICE
file$driver field values 1-72

A$PHYSICAUDETACH$DEVICE 1-76

BIOS System Calls

INDEX

Index-l

INDEX

A (contin'ued)

A$READ 1-79
iRMX-NETconsiderations 1-80

A$RENAME$FILE 1-83
iRMX-NETconsiderations 1-84

A$SEEK 1-89
mode field values 1-89

A$SEUEXTENSION$DATA 1-92
extension data structure 1-92

A$SPECIAL 1-95
bad track or sector information 1-117
buffered device fields 1-113
changing volumes 1-99
connection flags for terminal attributes 1-104
formatting a track structure 1-97
functions 1-95
hard disk information structure 1-100
iRMX-NET considerations 1-96
iSBC® 188/48 1-111
iSBC 544A 1-111
set font 1-116
signal characters 1-115
signal semaphore structure 1-115
stream file information 1-97
stream file transactions 1-98
tape drive functions 1-116
tape information 1-101
tape information structure 1-101
TCC-supported device fields 1-114
terminal attributes 1-101
terminal flags field 1-107
terminal information structure 1-102
terminalstatus 1-118
terminal status structure 1-119
volume unavailable notification 1-98
volume unavailable structure 1-99

A$TRUNCATE 1-129
A$UPDATE 1-132
A$WRITE 1-136

iRMX-NET considerations 1-137

B
Bad track or sector information 1-117

Index-2 BIOS System Calls

c
Changing volumes 1-99
Connection access byte 1-46
Connection mode values 1-46
Connection status structure 1-45
CREATE$USER 1-140

D
Data Encryption Standard (DES) 1-143
Data file access rights 1-12
DELETE$USER 1-142
Deleting a file 1-36
Directory access rights 1-13, 1-22
Directory entry segment structure 1-49

E
ENCRYPT 1-143
Encrypted password

length 1-143
Encryption standard 1-143

F
Federal Information Processing Standard Publication #46 1-143
File access mask 1-29
File driver values 1-45
File types supported on a device 1-57

G
GETSDEFAULTSPREFIX 1-145
GETSDEFAULTSUSER 1-147
GETSGLOBAL$TIME 1-149
GETSTIME 1-151

I/O Request/Result Segment (IORS) A-I
INSPECT$USER 1-152
10RS A-I
iRMX-NET considerations

A$AITACH$FILE 1-7
A$CHANGE$ACCESS 1-14
A$CREATE$DlRECfORY 1-23
A$CREATE$FILE 1-31

BIOS System Calls

INDEX

Index-3

INDEX

I (continued)

iRMX-NET considerations (continued)
A$DELETE$FILE 1-40
A$GEUCONNECTlON$STATUS 1-47
A$GEUDIRECTORY$ENTRY 1-50
A$OPEN 1-69
A$READ 1-80
A$RENAME$FILE 1-84
A$SPECIAL 1-96
A$WRITE 1-137

R
Restoring volume availability 1-100

5
Set font function 1-116
SEUDEFAULUPREFIX 1-154
SEUDEFAULUUSER 1-156
SEUGLOBALSTIME 1-158
SEUTIME 1-160
Share mode values 1-46
Signal characters 1-115
Stream file information 1-97
Stream file transactions 1-98
Structure

bad track or sector information 1-117
connection status 1-45
date and time for GEUGLOBAL$TIME 1-149
date and time for SEUGLOBAL$TIME 1-158
directory entry segment 1-49
extension data 1-92
file name segment 1-64
file status information 1-55
formatting a track 1-97
hard disk information 1-100
named file portion of status structure 1-56
signal semaphore for keyboard characters 1-115
terminal information 1-102
terminal status 1-119
user ID 1-140
user object for INSPECT$USER 1-152
volume unavailable 1-99

System call dictionary 1-3

Index-4 BIOS System Calls

T
Tape drive functions 1-116
Tape information 1-101
Terminal attributes 1-101
Terminal status 1-118
Time

beginning convention 1-160
getting 1-151
getting from battery backed-up clock 1-149
setting 1-160
setting battery backed-up clock 1-158

u
Updating files

calling A$UPDA TE 1-132
differences 1-133
fixed updating 1-133
timeout updating 1-133

User ID access mask 1-11

v
Volume unavailable notification 1-98

W

WAIT$IO 1-161
Winchester disks, obtaining information 1-100
Writing bad track/sector information 1-118

BIOS System Calls

INDEX

Index-S

)
I

)

)

iRMX~ . Basic I/O System Cal
Reference Manuc

462915-00

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE

COMPANY NAME/DEPARTMENT ---
ADDRESS PHONE (

--~--~-----------
CITY STATE ZIP CODE ------------------------ -------------------

(COUNTRY)

Please check here if you require a written reply. D

VE'D LIKE YOUR COMMENTS ...

his document is one of a series describing Intel products. Your comments on the back of this form will
elp us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
::>mments and suggestions become the property of Intel Corporation.

you are in the United States, use the preprinted address provided on this form to return your
::>mments. No postage is required. If you are not in the United States, return your comments to the Intel
:lIes office in your country. For your convenience, international sales office addresses are printed on
Ie last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3· 72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11.1111 ••• 1 ••• 11 •• 1.1.11111.1 •• 1.111111111111 •• 11111

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

,

(

(

(

I

(.,

(

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.
Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet

P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi

1-23-9, Shi nmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN
Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN
Intel Sweden A.B.

Dalvaegen 24

S-17136Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27

0-8000 M u nchen

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

