
intJ

• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

iRMX®
Extended 1/0 System Calls
Reference Manual

Order Number: 462916-001

iRMX®
Extended I/O System Calls

Reference Manual

Order Number: 462916-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copynght © 1980,1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
Genius intel iSSB Ripplemode
~
1 Intel376 iSXM RMXJ80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980,1989, Intel Corporation. All Rights Reserved.

ii

(

(

(

(

(

)
REV. REVISION mSTORY DATE

-001 Original Issue. 02/89

iii/iv

(

(

(

)
PREFACE

INTRODUCTION

This manual documents the system calls of the Extended I/O System, one of the
subsystems of the iRMX® I and iRMX II operating systems. The information provided in
this manual is intended as a reference to the system calls and provides detailed
descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the iRMX® I Nucleus User's Guide or the iRMX® II Nucleus
User's Guide and with the PL/M programming language.

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in blue ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
S$CREA TE$FILE instead of RQSCREATE$FILE). This convention is used to allow
easier alphabetic arrangement of the calls. The actual PL/M external-procedure names
must be used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the PL/M
calling sequences when doing so. For more information on these calling sequences, refer
to the iRMX® I Programming Techniques Reference Manual or the iRMX® II Programnting
Techniques Reference Manual.

EIOS System Calls v

(

(

(

(

) CONTENTS

Chapter 1. iRMX® Extended I/O System Calls Page

1.1 Introduction ... 1
1.2 System Call Dictionary .. 2
CREATEIOJOB .. 5
E$CREATE$IO$JOB (iRMX® II only) .. 13
EXITIOJOB .. 21
GET$LOGICAL$DEVICE$STATUS .. 23
GET$USER$IDS ... 25
HYBRID$DETACH$DEVICE .. 28
LOGICAL$ATTACH$DEVICE .. 30
LOGICAL$DETACH$DEVICE ... 33
STARTIOJOB .. 35
S$A TTACH$FILE ... 36
S$CATALOG$CONNECTION .. 40
S$CHANGE$ACCESS ... 43
S$CLOSE .. 50
S$CREATE$DIRECTORY .. 52
S$ CREATE$ FILE ... 57
S$DELETE$CONNECTION .. 63
S$DELETE$FILE ... 65
SGETCONNECTION$STATUS ... 70
SGETDIRECTORY$ENTRY (iRMX II only) ... 74
SGETFILE$STATUS ... 76
SGETPATH$COMPONENT (iRMX II only) ... 85
S$LOOK$UP$CONNECTION ... 87
S$OPEN ... 89
S$READ$MOVE ... 93
S$RENAME$FILE ... 97
S$SEEK .. 102
S$SPECIAL ... 106
S$TRUNCATE$FILE .. 139
S$UNCATALOG$CONNECTION ... 142
S$WRITE$MOVE ... 144
VERIFY$USER ... 148

Index

EIOS System Calls vii

(

(

(

\

l
.I

iRMX®
EXTENDED I/O SYSTEM CALLS

1.1 INTRODUCTION

1
This manual describes the system calls provided by the iRMX® Extended I/O System. The
manual contains:

• A brief explanation of condition codes.

• A system call dictionary listing the system calls by function.

• Complete descriptions of each system call.

iRMX I Note: The information presented in this manual applies to both the iRMX I
and iRMX II Operating Systems. However, a few of the system calls do
not exist or operate differently in the iRMX I Operating System. These
differences are described in note boxes such as this one.

Throughout this manual, PL/M data types, such as BYTE, WORD, and SELECTOR are
used. In addition, the iRMX data type TOKEN is used. These words are always
capitalized. If your compiler supports the SELECTOR data type, a TOKEN can be
declared literally as SELECTO R. Because TOKEN is not a PL/M data type, you must
declare it to be literally a SELECTO R every place you use it. Definitions of both PL/M
and iRMX data types are given ill the iRMX® Extended I/O System User's Guide. The word
"token" in lowercase refers to a value that the operating system returns to a TOKEN (the
data type) when it creates the object.

NOTE

The values NIL and SELECTOR$OF(NIL) are used throughout this
manual. For the iRMX I Operating System, you may also use a value of
zero in place of NIL and SELECTOR$OF(NIL). However, Intel
recommends that you use NIL and SELECTOR$OF(NIL) in your iRMX I
code to maintain upward compatibility with the iRMX II Operating System.
For a description of the SELECTOR$OF and NIL built-in functions, refer
to the PL/M-86 or PL/M-286 user's guides.

In each description of a system call, you will find a list of possible condition codes. This list
is intended to help you debug your application system.

EIOS System Calls 1

iRMX® EXTENDED I/O SYSTEM CALLS

1.2 SYSTEM CALL DICTIONARY

2

The system call dictionary on the next few pages lists system calls by function rather than
alphabetically.

The following abbreviations identify types of files for which a particular system call can be
used:

PF means physical file
SF means stream file
NF means named file
ND means named dire~tory

I/O JOBS

Call Description

CREATEIOJOB Creates an I/O job with a memory pool
of up to 1 M byte.

RQE$CREATE$IO$JOB Creates an I/O job with a memory pool
of up to 16M bytes. This system call
is not supported in the iRMX I
Operating System.

EXITIOJOB Sends a message to a mailbox and
deletes the calling task.

STARTIOJOB Starts (makes ready) the initial task
in an I/O job; the task was not
started when the job was created.

LOGICAL NAMES

HYBRID$DETACH$- Temporarily removes the correspondence
DEVICE between a logical name and a physical

device established via LOGICAL$ATTACH$DEVICE.

LOGICAL$A IT ACH$- Creates and catalogs a logical name for
DEVICE a device.

LOGICAL$DETACH$- Deletes a logical name created with
DEVICE LOGICAL$ATTACH$DEVICE.

S$CATALOG$- Creates a logical name for a connection
CONNECTION by cataloging the connection in the

object directory of a specific job.

Page

5

13

21

35

28

30

33

40

EIOS System Calls

(

(

(

iRMX® EXTENDED I/O SYSTEM CALLS

1
/

LOGICAL NAMES (continued)

Call Description Page

SGETDIRECTORY$- Returns a directory entry name to the 74
ENTRY caller. This system call is not supported

in the iRMX I Operating System.

SGETPATH$- Returns the name of a named file as 85
COMPONENT the file is known in its parent directory.

This system call is not supported
in the iRMX I Operating System.

S$LOOK$UP$- Searches through an I/O job's object 87
CONNECTION directories to find the connection

associated with a logical name

S$UNCATALOG$- Deletes a logical name from the object 142
CONNECTION directory of a specific job.

CREATING FILES AND CONNECTIONS

Call Description Files Page

S$A IT ACH$FILE Creates a connection to an All 36
existing file.

S$CREATE$DI- Creates a new directory file. NO 52
RECTORY

S$CREATE$FILE Creates a new physical, stream, PF,SF,NF 57
or named data file. It cannot
create a named directory file.

CHANGING ACCESS AND RENAMING

S$CHANGE$ACCESS Changes the access list for named file. ND,NF 43

S$RENAME$FILE Changes the path of a named file. ND,NF 97

MANIPULATING DATA IN FILES

S$CLOSE Closes an open connection to a file. All 50

S$OPEN Opens a connection to a file. All 89

S$READ$MOVE Reads a number of bytes from a file All 93
to a buffer.

EIOS System Calls 3

iRMX® EXTENDED I/O SYSTEM CALLS

(
MANIPULATING DATA IN FILES (continued)

Call Description Files Page

S$SEEK Moves the file pointer. PF,ND,NF 102

S$TRUNCATE$FILE Removes information from the end of NF 139
a named data file.

S$WRITE$MOVE Writes a collection of bytes from a All 144
buffer to a file.

DEVICES

S$SPECIAL Allows your task to perform PF,SF 106
functions pertaining to a specific (
device.

OBTAINING STATUS

GET$LOGICAL$- Provides status information about 23
DEVICE$STATUS logical devices.

SGETCON- Provides status information about All 70
NECTION$STATUS file and device connections. (

SGETFILE$STATUS Allows a task to obtain information All 76
about a file.

DELETING FILES AND CONNECTIONS

S$DELETE$CON- Deletes a file connection. It cannot All 63
NECTION delete a device connection.

S$DELETE$FILE Deletes a stream, physical, or named All 65
file. (

USERS

VERIFY$USER Verifies a user's name and password. 148

GET$USER$IDS Returns the user 10 as defined in 25
the User Definition File.

4 EIOS System Calls

)

CREATEIOJOB

CREA TEIOJOB creates an I/O job containing one task.

io$job = RQ$CREATEIOJOB(pool$min, pool$max, except$handler,
job$flags, task$priority, start$address,
data$seg, stack$ptr, stack$size,
task$flags, msg$mhox, except$ptr);

Input Parameter~
pool$min

pool$max

EIOS System Calls

A WORD containing the minimum allowable size of the new job's
pool, in 16-byte paragraphs. For example, a value of 35 indicates
thirty-five 16-byte paragraphs. The Extended I/O System also uses
this value as the initial size of the memory pool for the new job.

You must not assign pool$min a value less than 32. Furthermore, if
the base of the stack$ptr parameter is equal to zero, you should
ensure that pool$min is no less than 32 + (number of 16-byte
paragraphs required to contain the stack). If you set pool$min to a
value smaller than these minimums, the Extended I/O System will
return an E$PARAM exceptional condition.

The purpose of the pool$min parameter in this system call is
identical to the purpose of the pool$min parameter of the
CREA TE$JOB system call provided by the iRMX Nucleus. For
additional information on the pool$min parameter, see the
CREA TE$JOB decription in the iRM)(® I Nucleus System Calls
Reference Manual or the iRM)(® II Nucleus System Calls Reference
Manual. For general information regarding memory pools, refer to
the iRM)(® I Nucleus User's Guide or the iRM)(® II Nucleus User's
Guide.

A WORD containing the maximum allowable size of the new job's
pool, in 16-byte paragraphs. For example, a value of 40 indicates
forty 16-byte paragraphs.

You must set pool$max to a value no less than pool$min, or the
Extended I/O System will return an E$PARAM exceptional
condition.

5

CREATEIOJOB

except$handler

6

The purpose of the pool$max parameter in this system call is
identical to the purpose of the pool$max parameter of the
CREA TE$JOB system call provided by the iRMX Nucleus. For
additional information on the pool$max parameter, see the
CREA TE$JOB decription in the iRM)(® I Nucleus System Calls
Reference Manual or the iRM)(® II Nucleus Systel1t Calls Reference
Manual. For general information regarding memory pools, refer to
the iRM)(® I Nucleus User's Guide or the iRM)(® II Nucleus User's
Guide.

A POINTER to a structure of the following form:

DECLARE handler STRUCTURE (
exception$handler$offset
exception$handler$base
exception$mode

WORD,
SELECTOR,
BYTE);

The Extended I/O System expects you to designate an exception
handler to be used as the new job's default exception handler. If you
wish to designate the system default exception handler, you can do
so by setting exception$handler$base to SELECTOR$OF(NIL). If
you set the base to any other value, then the Extended I/O System
assumes that the first two words of this structure point to the first
instruction of your exception handler.

(

(

Set the exception$mode to tell the Extended I/O System when to (
pass control to the new task's exception handler. Encode the mode
as follows:

When Control Passes
To Exception Handler

o Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers and exception
modes, refer to the iRM)(® I Nucleus User's Guide or the iRMX® II
Nucleus User's Guide.

Eros System Calls

(

) job$flags

task$priority

start$address

data$seg

EIOS System Calls

CREATEIOJOB

A WORD that tells the Nucleus whether to check the validity of
objects used as parameters in system calls. If bit 1 (where bit 0 is
the low-order bit) is zero, the Nucleus will validate objects.

All bits other than bit 1 must be set to zero. This parameter serves
precisely the same purpose as the job$flags parameter of the
CREA TE$JOB system call provided by the Nucleus. For additional
information on the job$flags parameter, see the CREATE$JOB
decription in the iRMX® I Nucleus System Calls Reference Manual or
the iRMX® II Nucleus System Calls Reference Manual.

A BYTE which establishes the priority of the initial task in the new
job.

• If equal to zero, specifies that the new job's initial task is to have
a priority equal to the the maximum priority of the initial job of
the Extended I/O System. For more information about the
initial job of the Extended I/O System, refer to the
configuration reference manual included with the operating
system.

• If not equal to zero, contains the priority of the initial task of the
new job. If this priority is higher than (numerically less than)
the maximum priority of the initial job of the Extended I/O
System, an E$PARAM error occurs.

A POINTER to the first instruction of the code segment for the new
job's initial task. This code segment can be, but is not required to
be, an iRMX segment.

A SELECTOR which,

• if SELECTOR$OF(NIL), indicates one of two things. Either
the new job's initial task uses no data segment, or it creates one
for itself. Tasks can create their own data segments only under
special circumstances. To find out more about these
circumstances, refer to the Extended I/O System parameters
section of the configuration reference manual included with the
operating system.

• if not SELECTOR$OF(NIL), contains the base address of the
data segment of the new job's initial task. This data segment can
be, but is not required to be, an iRMX segment.

7

CREATEIOJOB

stack$ptr

stack$size

task$flags

msg$mbox

8

A POINTER which,

• if the stack pointer is NIL, specifies that the Nucleus should
allocate a stack for the new job's initial task. The length of the
allocated stack is determined by the stack$size parameter of this
system call. Be aware that this stack is not an iRMX segment.

• if the stack pointer is not equal to NIL, points to the base of the
stack for the new job's initial task. Because the Nucleus does
not allocate this stack, you must allocate it during the
configuration process, or your application code must allocate it
while the system is running.

A WORD containing the size, in bytes, of the stack for the new job's
initial task. If you specify less than 200, the Extended I/O System
will increase the size to 200. For information regarding the amount
of stack to allocate, refer to the discussion of stack sizes in the
iRMX® I Programming Techniques Reference Manual or the iRMX®
II Programming Techniques Reference Manual.

If you are allocating the stack during configuration, or if the
application code is allocating the stack while the system is running,
the value of this parameter will be the precise amount of stack that
the system can use. However, if the Nucleus is allocating the stack
for you, it might allocate as many as 15 additional bytes in order to
make the stack occupy whole 16-byte paragraphs.

A WORD in which all bits except the two low-order bits must be set
to zero. The upper 14 bits are reserved for Intel's use.

Bit Zero: Use the low-order bit (bit 0) to tell the operating system
whether the new job's initial task uses floating-point instructions. A
value of 1 indicates the presence of floating-point instructions, while
a zero indicates the absence of floating-point instructions.

Bit One: Bit 1 indicates whether the initial task in the job should
run immediately, or whether it should wait until a STARTIOJOB
system call is issued to start it. Set bit 1 to zero if the task is to be
made ready to run; set bit 1 to one if the task is to wait until the
STARTIOJOB call is issued.

A TOKEN for a mailbox. When a task exits (by invoking
EXITIOJOB), the Extended I/O System sends a message to this
mailbox. If you desire no such message, assign msg$mbox a value of
SELECfOR$OF(NIL).

Eros System Calls

(

(

(

(

)

Eros System Calls

CREATEIOJOB

The format of the message is as follows:

DECLARE message STRUCTURE(
termination$code
user$fault$code
job$token
return$data$len
return$data(*)

WORD,
WORD,
TOKEN,
BYTE,
BYTE) ;

where:

termination$code A WORD that indicates why an
I/O job terminated, as follows:

user$fault$code

job$token

return$data$len

CODE

o
MEANING

Some task within the job--the
terminating task--invoked the
EXITIOJOB system call, and
indicated with this code that no
problem caused the termination. The
job has not yet been deleted, and
some of its tasks might still be ready.

1 The job was deleted because some
task invoked the DELETE$JOB
system call.

any Some task within the job invoked
other the EXITIOJOB system call and
code indicated that the job was terminated

because some problem occurred. The
job has not yet been deleted and
some of its tasks might still be ready.

A WORD that contains an encoded reason for
termination of the new job. Whenever the
termination$code has a value other than 0 or 1,
this parameter contains an error code that the
terminating task specified when invoking the
EXITIOJOB system call. The precise
meaning of this code is provided by the
terminating task, not by the operating system.

A TOKEN for the job that was terminated.

A BYTE that specifies the length (in bytes) of
the return$data parameter described below.
The maximum length is 89 (decimal) bytes.

9

CREATEIOJOB

return$data A sequence of BYTES that contain data
specified by the terminating task when it
invoked the EXITIOJOB system call.

Output Parameters
io$job

except$ptr

A TOKEN that represents the newly created job. The operating
system returns a valid token only if the Extended I/O System
returns an E$OK condition code.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

10

This system call creates a job whose tasks can invoke the system calls provided by the
Extended I/O System. Such jobs are called I/O jobs, and they differ from other jobs in
these ways:

• Job parameter defaults: Many of the parameters required by the Nucleus's
CREA TE$JOB system call are not required by the CREA TEIOJOB system call.
These parameters include

directory$size
param$obj ect
max$objects
max$tasks
max$priority

The Extended I/O System allows you to specify values for some of these parameters
during the system configuration process. The precise instructions for defining these
values are provided in the configuration reference manual included with the operating
system.

• Default job attributes: The CREA TEIOJOB system call provides default values for
the following I/O job attributes:

global job
default user
default prefix

The values for these attributes are passed from parent job to child job. For instance, if
Job A uses the CREATEIOJOB system call to spawn Job B, then the Extended I/O
System copies the values of the Job A attributes into the Job B attributes. Be aware
that if you change the Job A attributes after Job B has been created, the changed values
are not copied into Job B.

EIOS System Calls

(

(

(

(

CREATEIOJOB

) You can set the values for these attributes for the "first parent" job during the process
of configuring your system.

• Notification of job termination: The CREA TEIOJOB system call provides a
mechanism for notifying the parent job of the termination of the I/O job. The
Extended I/O System implements this mechanism by sending a termination message to
a mailbox of your choice whenever a task in the I/O job terminates (calls
EXIUIO$JOB). You specify the mailbox by using the msg$mbox parameter of this
system call.

The CREATEIOJOB system call can be called only from another I/O job. You can set
up one or more initial I/O jobs while configuring the operating system. For more
information about configuration, refer to the configuration reference manual included with
the operating system.

Do not delete a task in an I/O job if the task is using a connection (that is, if the
connection has not been deleted). If you do so, the connection will not be available to any
other task.

Condition Codes
E$OK

E$CONTEXT

E$EXIST

E$MEM

OOOOH No exceptional conditions.

OOOSH The calling task's job is not an I/O job.

0006H At least one of the following is true:

0002H

• The token cataloged under the name
RQGLOBAL (the global job) is not a token for
an existing object. (See the iRMX® Basic I/O
System User's Guide for information on the global
object directory.)

• The value assigned to the msg$mbox parameter is
not a token for an existing mailbox.

• The user TOKEN is not valid.

The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0008H This system call is not part of the present
configura tion.

E$NOUSER

EIOS System Calls

8021H The calling task's job does not have a default user, or
the object cataloged under the logical name
R ?IOUSER is not a user object. (See the iRM)(®
Basic I/O System User's Guide for information on
R?IOUSER.)

11

CREATEIOJOB

E$PARAM

EIOJOB

12

8004 H At least one of the following is true:

• The value assigned to the pool$min parameter is
less than 32 decimal, or it is greater than the value
assigned to the pool$max parameter.

• The value assigned to task$priority is not zero
and is greater than (numerically less than) the
maximum priority of the calling I/O job.

• The value assigned to the exception$mode
parameter is outside the range 0-3, inclusive.

0047H The calling task's job is not an I/O job.

EIOS System Calls

(

(

RQE$CREATE$IO$JOB (iRMX® II only)

E$CREA TE$IO$JOB creates an I/O job containing one task with a maximum of 16M
bytes of memory pool.

iRMX I Note: The RQE$CREA TE$IO$JOB system call is not supported in the
iRMX I Operating System.

io$job = RQE$CREATEIOJOB(pool$min, pool$max, except$handler,
job$flags, task$priority, start$address,
data$seg, stack$ptr, stack$size,
task$flags, msg$mbox, except$ptr);

Input Parameters
pool$min

EIOS System Calls

A DWORD containing the minimum allowable size of the new job's
pool, in 16-byte paragraphs. For example, a value of 35 indicates
thirty-five 16-byte paragraphs. The Extended I/O System also uses
this value as the initial size of the memory pool for the new job. The
memory initially allocated is always c,?ntiguous. If additional
memory is requested, it is not necessarily contiguous.

You must not assign pool$min a value less than 32. Furthermore, if
the base of the stack$ptr parameter is equal to zero, you should
ensure that pool$min is no less than 32 + (number of 16-byte
paragraphs required to contain the stack). If you set pool$min to a
value smaller than these minimums, the Extended I/O System will
return an E$PARAM exceptional condition.

The purpose of the pool$min parameter in this system call is
identical to the purpose of the pool$min parameter of the
RQE$CREA TE$JOB system call provided by the iRMX II Nucleus.
For additional information on the pool$min parameter, see the
RQE$CREA TE$JOB description in the iRM)(® II Nucleus Systen'l
Calls Reference Manual. For general information regarding memory
pools, refer to the iRM)(® II Nucleus User's Guide.

13

RQE$CREATE$IO$JOB (iRMX® II only)

pool$max

except$handler

A DWORD containing the maximum allowable size of the new job's
pool, in 16-byte paragraphs. For example, a value of 40 indicates
forty 16-byte paragraphs.

You must set pool$max to a value no less than pool$min, or the
Extended I/O System will return an E$PARAM exceptional
condition.

The purpose of the pool$max parameter in this system call is
identical to the purpose of the pool$max parameter of the
RQE$CREATE$JOB system call provided by the iRMX II Nucleus.
For additional information on the pool$max parameter, see the
RQE$CREATE$JOB description in the iRMX® II Nucleus Syste111
Calls Reference Manual. For general information regarding memory
pools, refer to the iRMX® II Nucleus User's Guide.

A POINTER to a structure of the following form:

DECLARE handler STRUCTURE (
exception$handler$offset
exception$handler$base
exception$mode

WORD,
SELECTOR,
BYTE)

The Extended I/O System expects you to designate an exception
handler to be used as the new job's default exception handler. If you

(
....

(

wish to designate the system default exception handler, you can do (
so by setting exception$handler$base to SELEcrOR$OF(NIL). If

14

you set the base to any other value, then the Extended I/O System
assumes that the first two words of this structure point to the first
instruction of your exception handler.

Set the exception$mode to tell the Extended I/O System when to
pass control to the new task's exception handler. Encode the mode
as follows:

Value

o
1
2
3

When Control Passes
To Exception Handler

Control never passes to handler
On programmer errors only
On environmental conditions only
On all exceptional conditions

For more information regarding exception handlers and exception
modes, refer to the iRMX® II Nucleus User's Guide.

Eros System Calls

) job$flags

task$priority

start$address

data$seg

Eros System Calls

RQE$CREATE$IO$JOB (iRMX® lI·only)

A WORD that tells the Nucleus whether to check the validity of
objects used as parameters in system calls. If bit 1 (where bit 0 is
the low-order bit) is zero, the Nucleus will validate objects.

All bits other than bit 1 must be set to zero. This parameter serves
precisely the same purpose as the job$flags parameter of the
CREATE$JOB system call provided by the Nucleus. For additional
information on the job$f1ags parameter, see the CREA TE$JOB
decription in the iRMX® II Nucleus System Calls Reference Manual.

A BYTE which establishes the priority of the initial task in the new
job.

• If equal to zero, specifies that the new job's initial task is to have
a priority equal to the the maximum priority of the initial job of
the Extended I/O System. For more information about the
initial job of the Extended I/O System, refer to the
configuration reference manual included with the operating
system.

• If not equal to zero, contains the priority of the initial task of the
new job. If this priority is higher than (numerically less than)
the maximum priority of the initial job of the Extended I/O
System, an E$PARAM error occurs.

A POINTER to the first instruction of the code segment for the new
job's initial task. This code segment can be, but is not required to
be, an iRMX segment.

A SELECTOR which,

• if SELECTOR$OF(NIL), indicates one of two things. Either
the new job's initial task uses no data segment, or it creates one
for itself. Tasks can create their own data segments only under
special circumstances. To find out more about these
circumstances, refer to the Extended I/O System parameters
section of the configuration reference manual included with the
operating system.

• if not SELECTOR$OF(NIL), contains the base address of the
data segment of the new job's initial task. This data segment can
be, but is not required to be, an iRMX segment.

15

RQE$CREATE$IO$JOB (iRMX® II only)

stack$ptr

stack$size

task$flags

msg$mbox

16

A POINTER which,

• if the stack pointer is NIL, specifies that the Nucleus should
allocate a stack for the new job's initial task. The length of the
allocated stack is determined by the stack$size parameter of this
system call. Be aware that this stack is not an iRMX segment.

• if the stack pointer is not equal to NIL, points to the base of the
stack for the new job's initial task. Because the Nucleus does
not allocate this stack, you must allocate it during the
configuration process, or your application code must allocate it
while the system is running.

A WORD containing the size, in bytes, of the stack for the new job's
initial task. If you specify less than 200, the Extended I/O System
will increase the size to 200. For information regarding the amount
of stack to allocate, refer to the chapter of the iRMX® II
Programming Techniques manual that discusses stack sizes.

If you are allocating the stack during configuration, or if the
application code is allocating the stack while the system is running,
the value of this parameter will be the precise amount of stack that
the system can use. However, if the Nucleus is allocating the stack
for you, it might allocate as many as 15 additional bytes in order to
make the stack occupy whole 16-byte paragraphs.

A WORD in which all bits except the two low-order bits are set to
zero.

Bit Zero: Use the low-order bit (bit 0) to tell the operating system
whether the new job's initial task uses floating-point instructions. A
value of 1 indicates the presence of floating-point instructions, while
a zero indicates the absence of floating-point instructions.

Bit One: Bit 1 indicates whether the initial task in the job should

(

(

(

run immediately, or whether it should wait until a STARTIOJOB (
system call is issued to start it. Set bit 1 to zero if the task is to be
made ready to run; set bit 1 to one if the task is to wait until the
STARTIOJOB call is issued.

A TOKEN for a mailbox. When a task exits (by invoking
EXITIOJOB), the Extended I/O System sends a message to this
mailbox. If you desire no such message, assign msg$mbox a value of
zero.

EIOS System Calls

)

EIOS System Calls

RQE$CREATE$IO$JOB (iRMX® II only)

The format of the message is as follows:

DECLARE message STRUCTURE (

where:

termination$code
user$fault$code
job$token
return$data$len
return$data(*)

WORD,
WORD,
TOKEN,
BYTE,
BYTE) ;

termination$code A WORD that indicates why an I/O job
terminated, as follows:

user$fault$code

job$token

return$data$len

CODE

o
MEANING

Some task within the job--the
terminating task--invoked the
EXITIOJOB system call, and
indicated with this code that no
problem caused the termination. The
job has not yet been deleted, and
some of its tasks might still be ready.

1 The job was deleted because some
task invoked the DELETE$JOB
system call.

any Some task within the job invoked
other the EXITIOJOB system call and
code indicated that the job was terminated

because some problem occurred. The
job has not yet been deleted and
some of its tasks might still be ready.

A WORD that contains an encoded reason for
termination of the new job. Whenever the
termination$code has a value other than 0 or 1,
this parameter contains an error code that the
terminating task specified when invoking the
EXITIOJOB system call. The precise
meaning of this code is provided by the
terminating task, not by the operating system.

A TOKEN for the job that was terminated.

A BYTE that specifies the length (in bytes) of
the return$data parameter described below.
The maximum length is 89 (decimal) bytes.

17

RQE$CREATE$IO$JOB (iRMX® II only)

return$data A sequence of BYTES that contain data
specified by the terminating task when it
invoked the EXITIOJOB system call.

Output Parameters
io$job

except$ptr

The TOKEN that represents the newly created job. The operating
system returns a valid token only if the Extended I/O System
returns an E$OK condition code.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

18

This system call creates a job whose tasks can invoke the system calls provided by the
Extended I/O System. Such jobs are called I/O jobs, and they differ from other jobs in
these ways:

• Job parameter defaults: Many of the parameters required by the Nucleus's
CREA TE$JOB system call are not required by the E$CREA TE$IO$JOB system call.
These parameters include

directory$size
param$object
max$objects
max$tasks
max$priority

The Extended I/O System allows you to specify values for some of these parameters
during the system configuration process. The precise instructions for defining these
values are provided in the configuration reference manual included with the operating
system.

• Default job attributes: The E$CREATE$IO$JOB system call provides default values
for the following I/O job attributes:

global job
default user
default prefix

The values for these attributes are passed from parent job to child job. For instance, if
Job A uses the E$CREATE$IO$JOB system call to spawn Job B, then the Extended
I/O System copies the values of the Job A attributes into the Job B attributes. Be
aware that if you change the Job A attributes after Job B has been created, the changed
values are not copied into Job B.

You can set the values for these attributes for the "first parent" job during the process
of configuring your system.

EIOS System Calls

(

(

(

I
\

RQE$CREATE$IO$JOB (iRMX® II only)

• Notification of job termination: The E$CREA TE$IO$JOB system call provides a
mechanism for notifying the parent job of the termination of the I/O job. The
Extended I/O System implements this mechanism by sending a termination message to
a mailbox of your choice whenever a task in the I/O job terminates (calls
EXITIOJOB). You specify the mailbox by using the msg$mbox parameter of this
system call.

The E$CREA TE$IO$JOB system call can be called only from another I/O job. You can
set up one or more initial I/O jobs while configuring the operating system. For more
information about configuration, refer to the configuration reference manual included with
the operating system.

Do not delete a task in an I/O job if the task is using a connection (that is, if the
connection has not been deleted). If you do so, the connection will not be available to any
other task.

Condition Codes
E$OK

E$CONTEXT

E$EXIST

E$MEM

OOOOH

OOOSH

0006H

No exceptional conditions.

The calling task's job is not an I/O job.

At least one of the following is true:

• The token cataloged under the name
RQGLOBAL (the global job) is not a token for
an existing object. (See the iRMX® Basic I/O
System User's Guide for information on the global
object directory.)

• The value assigned to the msg$mbox parameter is
not a token for an existing mailbox.

0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0008H This system call is not part of the present
configura tion.

E$NOUSER

EIOS System Calls

8021H The calling task's job does not have a default user, or
the object cataloged under the logical name
R?IOUSER is not a user object. (See the iRMX®
Basic I/O System User's Guide for information on
R?IOUSER.)

19

RQE$CREATE$IO$JOB (iRMX® II only)

E$PARAM

EIOJOB

20

8004H At least one of the following is true:

• The value assigned to the pool$min parameter is
less than 32 decimal, or it is greater than the value
assigned to the pool$max parameter.

• The value assigned to task$priority is not zero
and is greater than (numerically less than) the
maximum priority of the calling I/O job.

• The value assigned to the exception$mode
parameter is outside the range 0-3, inclusive.

0047H The calling task's job is not an I/O job.

EIOS System Calls

(

(

E)(ITIOJOB

) EXITIOJOB sends a message to a previously designated mailbox and deletes the calling
task.

CALL RQ$EXIT$IO$JOB(user$fault$code, return$data$ptr, except$ptr);

Input Parameters
user$fa ult$code

return$data$ptr

Output Parameter
except$ptr

Description

A WORD containing the encoded reason for terminating the job. If
you terminate the job under normal circumstances, you should enter
a value of zero. If you terminate the job because of a problem, you
should enter an error code that identifies the problem. The
Extended I/O System sends a structure containing the value you
enter to the mailbox specified in the CREATEIOJOB system call.

A POINTER to a buffer containing a STRING containing data
(provided by the calling task) to be returned to the message mailbox
specified in the CREATEIOJOB system call. If you enter NIL,
no data is returned. If the string is longer than 89 (decimal) bytes,
only the first 89 bytes are returned.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

The EXITIOJOB system call complements the CREATEIOJOB system call. Using
the EXITIOJOB system call, a task can delete itself and have the Extended I/O System
notify the parent job of the deletion.

When a task in an I/O job (a job created by the CREA TEIOJOB system call) invokes
the EXITIOJOB system call, two things happen:

• The Extended I/O System deletes the task (but not the job containing the task) that
invoked the EXITIOJOB system call.

• The Extended I/O System sends a termination message to the mailbox specified in the
CREA TEIOJOB system call.

EIOS System Calls 21

EXITIOJOB

Special Circumstances

Your application code can use this system call to bring about an orderly deletion of an I/O
job. To do this, have a task within the I/O job invoke this system call. Then have a task in
the parent job receive the message and delete the I/O job. Under certain circumstances,
this system call does not delete the calling task or does not send a termination message.

Calling Task Not Deleted: Although the EXITIOJOB system call generally deletes the
calling task, this deletion does not occur in the following circumstances:

• If the DELETE$TASK system call (which the Extended I/O System calls) returns an
exception code to the Extended I/O System.

• If the calling task is an interrupt task.

In both cases, the Extended I/O System returns control to the calling task and issues an
exceptional condition code to indicate the nature of the problem. Under any other
circumstance, the Extended I/O System deletes the calling task.

Termination Message Not Sent: Even if it fails to delete the task, the Extended I/O
System sends the termination message if one has been requested, except for the following
circumstances:

• If the msg$mbox parameter of the CREA TEIOJOB was set to
SELECfOR$OF(NIL).

• If the mailbox specified in the msg$mbox parameter of the CREA TEIOJOB system
call no longer exists.

Condition Codes
E$CONTEXT OOOSH The task invoking the EXITIOJOB system call is

an interrupt task and cannot be deleted.

22

ENOTCON
FIGURED

0008H This system call is not part of the present
configuration.

Eros System Calls

(

(

(

GET$LOGICAL$DEVICE$STATUS

) The GET$LOGICAL$DEVICE$STATUS system call provides status information about a
logical device.

CALL RQGETLOGICAL$DEVICE$STATUS(log$name$ptr, dev$info$ptr,
except$ptr);

Input Parameter
log$name$ptr A POINTER to a STRING containing the logical name under which

the logical device object is cataloged in the root object directory.

Output Parameters
dev$info$ptr

EIOS System Calls

A POINTER to a structure in which the Extended I/O System
returns the status information. You can allocate memory for this
structure by requesting an iRMX segment or by reserving the
memory in your code. The structure must have the following form:

DECLARE dev$info STRUCTURE (
device$name(15)
file$driver
nwn$conns
owner$id

where:

device$name

file$driver

num$conns

BYTE,
BYTE,
WORD,
WORD) ;

A STRING containing the physical name
associated with the device. This is the name
established during Basic I/O System
configuration.

The file driver associated with the device.
Possible values include

Value File Driver

1 physical
2 stream
4 named
5 remote

The current number of connections to the
device.

23

GET$LOGICAL$DEVICE$STATUS

except$ptr

Description

owner$id The owner ID for this device. This ID is the
first ID listed in the default user object of the
attaching task's job.

A POINTER to a WORD in which the Extended I/O System
returns the condition code.

The GET$LOGICAL$DEVICE$STA TUS system call allows a task to obtain status
information about logical names that represent devices. The Extended I/O System does
not check access before returning status information.

Condition Codes
E$OK

24

E$EXIST

E$LIMIT

ELOGNAME$
NEXIST

ELOGNAME$
SYNTAX

ENOTCON
FIGURED

ENOTDEVICE

OOOOH No exceptional conditions.

0006H The device connection corresponding to the logical
name is being deleted.

0004H Either the user object or the calling task's job is
already involved in 255 (decimal) I/O operations.

0045H The logical name was not found in the
root object directory.

0040H The syntax of the specified logical name
is incorrect because at least one of the following
conditions is true:

• The name was missing matching colons (:).

• The STRING pointed to by the log$name$ptr
parameter is of zero length or has a length greater
than 12 (not including colons (:)).

• The logical name contains invalid characters.

0008H This system call is not part of the present
configura tion.

8041H The specified logical name does not represent a valid
device connection.

EIOS System Calls

(

(

(

(

GET$USER$IDS

') The GET$USER$IDS system call returns the user ID(s) associated with a USER defined
in the User Definition File (UDF).

CALL RQGETUSER$IDS(name$ptr, ids$ptr, except$ptr);

Input Parameter
name$ptr

Output Parameters
ids$ptr

where:

except$ptr

EIOS System Calls

A POINTER to a STRING containing the user name. (Only the
first eight characters are significant.)

A POINTER to a structure where the ID(s) associated with the user
name will be placed. The structure has the following form:

DECLARE ids

length

count

id

STRUCTURE (
length
count
id(*)

WORD,
WORD,
WORD);

Should be set by the caller to the maximum
number of ID(s) desired.

Will contain the number of valid IDs in the ID
array after GET$USER$IDS has returned to
the caller. This value will never be greater than
the ids.length. The user does not need to
initialize this value.

Is an array of IDs obtained from the UDF. The
length of this array is contained in ids.count.
The user does not need to initialize this array.

A POINTER to a WORD where the Extended I/O System returns
a condition code.

25

GET$USER$IDS

Description

This system call returns the user ID(s) associated with a user name defined in the User
Definition File (UDF). It searches the file :CONFIG:UDF for the user name pointed to
by the name$ptr parameter and if found, returns that user's ID(s). For details, refer to the
I/O Users screen description in the configuration reference manual included with the
operating system.

Condition Codes
E$OK OOOOH No exceptional conditions.

EBADCALL 8005H A task wrote over the interface library or over the
EIOSjob.

E$CONTEXT 0OO5H The calling job is not an I/O job.

EDEVDETACHING 0039H An I/O operation could not be performed on the
device (:SD:) because it was being detached.

E$DEVFD 0022H The device (:SD:) cannot be used with the file driver
as specified in the preceding logical attach operation.

EUDFFORMAT 0048H The UDF is not in the correct format.

E$FACCESS 0026H The user does not have the proper access rights for
the requested operation.

E$FLUSHING 002CH The device (:SD:) is being detached.

E$FNEXIST 0021H At least one of the following is true:

• The file or a file in its path does not exist.

• The specified physical device was not found .

E$FTYPE 0027H A path component is not a directory file.

E$ILLVOL 002DH The file driver given in the volume label conflicts with
the file driver specified in the preceding logical attach
operation.

E$INVALID$FNODE 003DH The fnode associated with a file is either marked not
allocated, or the fnode number is out of range.

EIOHARD 0052H A hard error occurred; the BIOS cannot retry the
request.

EIOMEM 0042H The BIOS job did not have enough memory to
perform the requested function.

EIOOPRINT 0053H The device is off-line; operator intervention is
required.

26 EIOS System Calls

(

(

(

GET$USER$IDS

) EIOSOFT 0051H A soft error occurred and the BIOS has retried the
operation and has failed; a retry is not possible.

EIOUNCLASS 0050H An unclassified I/O error occurred.

EIOWR$PROT 0054H The volume specified in this call is write protected.

E$LIMIT 0OO4H The root job object directory is full.

ELOGNAME$- 0045H The logical name was not found in the
NEXIST caller's object directory, the global job object

directory, or the root job object directory.

E$MEDIA 0044H The device associated with the system call is off-line.

E$NAME$NEXIST 0049H The name specified in this call is not defined.

E$NOPREFIX 8022H The caller's job does not have a default prefix, or it is
invalid.

E$NOUSER 8021H The caller's job does not have a default user or it is
invalid.

ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

E$PARAM 8004H At least one of the following is true:

• The name$ptr parameter is equal to NIL.

• The length field of the ids structure is equal to
zero.

• The name contains invalid characters.

E$SHARE 0028H The file is not sharable with the requested access.

EIOS System Calls 27

HYBRID$DETACH$DEVICE

The HYBRID$DETACH$DEVICE system call removes the correspondence between a (
logical name and a physical device without removing the logical name from the root object
directory.

CALL RQ$HYBRID$DETACH$DEVICE(log$name$ptr, except$ptr);

Input Parameter
log$name$ptr

Output Parameter
except$ptr

Description

A POINTER to a STRING containing the logical name under which
the logical device object is cataloged in the root object directory.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

(

HYBRID$DETACH$DEVICE removes the linkage between a logical name and a physical (

28

device without removing the logical name from the root object directory. When a task calls
HYBRID$DETACH$DEVICE, the Extended I/O System detaches the device by issuing
the Basic I/O Syst~m A$PHYSICAL$DETACH$DEVICE call. In so doing, the Extended
I/O System specifies the hard detach option which deletes all connections to files on the
device.

A device detached using HYBRID$DETACH$DEVICE can be reattached in one of two
ways:

• A task can issue the Basic I/O System A$PHYSICAL$ATTACH$DEVICE system
call.

• A task can use the device's logical name (which is still cataloged in the root object
directory) as the prefix portion of a path name when issuing an Extended I/O System
call. In this case, the Extended I/O System physically attaches the device using the
parameters originally specified when the logical name was established (via
LOGICAL$ATTACH$DEVICE).

A task cannot use LOGICAL$ATTACH$DEVICE to reattach a device that
HYBRID$DETACH$DEVICE detached. Before reattaching a device with
LOGICAL$ATTACH$DEVICE, a task must first issue LOGICAL$DETACH$DEVICE.

EIOS System Calls

HYBRID$DETACH$DEVICE

) The HYBRID$DETACH$DEVICE system call is particularly useful for tasks that must
temporarily detach a device and attach it in a different way (for example, attaching a disk
as a physical device when formatting a volume). These tasks can call
HYBRID$DETACH$DEVICE to detach the device, attach the device using
A$PHYSICAL$A ITACH$DEVICE, perform the special processing on the device, and
detach the device using A$PHYSICAL$DETACH$DEVICE. Later, when a task includes
the device's logical name in an Extended I/O System call, the Extended I/O System
automatically reattaches the device in the previous manner.

The HYBRID$DETACH$DEVICE system call can be issued as follows:

• By the task ("attaching task") that created the logical name by issuing
LOGICAL$A IT ACH$DEVICE, or by some other task in the same job as the
attaching task.

• By any task in a job whose default user object contains the file's owner ID in its ID list.

• By the System Manager.

Condition Codes
E$OK

E$EXIST

E$LIMIT

ELOGNAME$
NEXIST

ELOGNAME$
SYNTAX

ENOTCON
FIGURED

ENOTDEVICE

ENOTOWNER

Eros System Calls

OOOOH

0006H

0004H

0045H

0040H

No exceptional conditions.

The device connection corresponding to the logical
name is being deleted.

Either the user object or the calling task's job is
already involved in 255 (decimal) I/O operations.

The logical name was not found in the root
object directory.

The syntax of the specified logical name
is incorrect because at least one of the following
conditions is true:

• The STRING pointed to by the log$name$ptr
parameter is of zero length, has a length greater
than 12 not including colons (:), or is missing
matching colons.

• The logical name contains invalid characters.

0008H This system call is not part of the present
configuration.

8041H The specified logical name does not represent a valid
device connection.

0046H The user (specified by the default user object) is not
the user that attached the device.

29

LOGICAL$ATTACH$DEVICE

The LOGICAL$ATIACH$DEVICE system call assigns a logical name to a physical
device.

CAUTION

Any task that uses this system call loses its device independence. To
maintain as much device independence as possible in your application, a
few selected tasks should perform all attaching and detaching of devices.

CALL RQ$LOGICAL$ATTACH$DEVICE(log$nameptr, devname, file$driver,
except$ptr);

Input Parameters
log$name$ptr A POINTER to a STRING (of 1 to 12 characters) containing the

logical name to be assigned to a device. The name can be delimited
with colons (:). The operating system removes the colons so that a
logical name with colons is the same as one without (e.g., :FO: is
effectively the same as FO), and colons do not count in the length of
the name. If you intend to use this logical name as part of a path
name in other system calls, enclose it in colons.

dev$name

file$driver

Output Parameter
except$ptr

30

A POINTER to a STRING containing the name of the device to
which the logical name is assigned. This device name is the name of
a Device-Unit Information Block (DUIB) specified during Basic
I/O System configuration.

A BYTE specifying which Basic I/O System file driver to use with
the device. Possible values are as follows:

Value File Driver

1 physical
2 stream
4 named
5 remote

A POINTER to a WORD where the Extended I/O System returns
the condition code.

EIOS System Calls

(

(

(

LOGICAL$A TT ACH$DEVICE

) Description

LOGICAL$ATIACH$DEVICE assigns a logical name to a physical device. This system
call creates a Logical Device Object that corresponds to a physical device. This Logical
Device Object is cataloged in the root object directory under the logical name pointed to by
log$name$ptr. The Logical Device Object must be cataloged before the Extended I/O
System can make connections to files on the device.

The first Extended I/O System call that uses the logical name as a prefix in a path name
causes the physical device to be attached. (The Extended I/O System uses the Basic I/O
System callA$PHYSICAL$ATIACH$DEVICE.) The logical name can be used as a
prefix in other system calls and can be deleted by LOGICAL$DETACH$DEVICE.

If the first attempt to attach the device fails, the Extended I/O System will try again if you
select the retry feature during configuration. You select the retry feature by specifing a
non-zero value for the "(RPA) Retries on Physical Attachdevice" parameter on the EIOS
screen of the Interactive Configuration Utility. The Extended I/O System will continue
trying to attach the device until the device is attached successfully or the Extended I/O
System has retried the number of times specified in the RPA parameter, whichever comes
first.

iRMX I Note: The iRMX I Interactive Configuration Utility does not support the
"(RPA) Retries on Physical Attachdevice" parameter.

Because of the nature of LOGICAL$ATIACH$DEVICE, some exception codes that
result because of errors in this system call are not returned until the Extended I/O System
tries to attach the device with A$PHYSICAL$ATIACH$DEVICE.

Condition Codes
E$OK -

E$CONTEXT

E$LIMIT

E$MEM

EIOS System Calls

OOOOH

0005H

No exceptional conditions.

The root object directory already contains an entry
with the name pointed to by the log$name$ptr
parameter.

0004H At least one of the following is true:

• The calling task's job object directory is full.

• The root object directory is full.

• The calling task's job is not an I/O job.

0002H The memory available to the calling task's job is not
sufficient to complete this call.

31

LOGICAL$ATTACH$DEVICE

32

ELOGNAME$
SYNTAX

E$NOnCON
FIGURED

0040H The specified logical name is syntactically incorrect
because at least one of the following conditions
is true:

• The STRING pointed to by the log$name$ptr
parameter is of zero length or has a length of
greater than 12 (including the colons).

• The logical name contains invalid characters.

0008H This system call is not part of the present
configuration.

EIOS System Calls

(

(

(

)

LOGICAl$DETACH$DEVICE

The LOGICAL$DETACH$DEVICE system call removes the correspondence between a
logical name and a physical device, and removes the logical name from the root object
directory.

CA~L RQ$LOGICAL$DETACH$DEVICE(log$name$ptr, except$ptr);

Input Parameter
log$name$ptr A POINTER to a STRING containing the logical name under which

the logical device object is catalogued in the root object directory.

Output Parameter
except$ptr

Description

A POINTER to a WORD where the Extended I/O System returns
the condition code.

LOGICAL$DETACH$DEVICE severs an association created by a call to
LOGICAL$ATTACH$DEVICE and deletes the corresponding entry in the root object
directory. After LOGICAL$DETACH$DEVICE is issued, users cannot create new
connections using the logical name as a prefix. When the last file connection on the
physical device is severed, the Extended I/O System detaches the device (issues the Basic
I/O System call A$PHYSICAL$DETACH$DEVICE).

The LOGICAL$DETACH$DEVICE system call can be issued as follows:

• By the task ("attaching task") that created the logical name by issuing
LOGICAL$ATTACH$DEVICE, or by some other task in the same job as the
attaching task.

• By another job having the same owner ID in its default user object.

• By the System Manager.

Condition Codes
E$OK

E$EXIST

EIOS System Calls

OOOOR No exceptional conditions.

0006H The device connection corresponding to this logical
name is being deleted.

33

LOGICAL$DETACH$DEVICE

E$LIMIT 0OO4H One of the following is true: (
• The job has reached the object limit of the calling

task's object directory.

• Either the user object or the calling task's job is
already involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job.

ELOGNAME$- 0045H The logical name was not found in the root
NEXIST object directory.

ELOGNAME$- 0040H The syntax of the specified logical name
SYNTAX is incorrect because at least one of the following

conditions is true:

• The STRING pointed to by the log$name$ptr (
parameter is of zero length or has a length greater
than 12 (not including colons (:)).

• The logical name contains invalid characters.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

ENOTDEVICE 8041H The specified logical name does not represent a valid
device connection.

ENOTOWNER 0046H The user (specified by the default user object) is not
the user that attached the device.

34 EIOS System Calls

STARTIOJOB

STARTIOJOB starts the execution of a task in an I/O job. The task was not started
when the I/O job was created.

CALL RQ$START$IO$JOB(io$job, except$ptr);

Input Parameter
io$job

Output Parameter
except$ptr

Description

TOKEN for the I/O job to be started. This is the TOKEN that was
returned by the call to CREATEIOJOB.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

When you call CREA TEIOJOB you can specify (with the task$f1ags parameter) that the
task in the new job not start running until the STARTIOJOB call is issued. In this way
you can initialize any items that need to be set before the initial task in the new job starts
running. For example, you can create a job, catalog a logical name in the new job's object
directory, and then issue STARTIOJOB.

Condition Codes
E$OK

ENOTCON
FIGURED

E$TIME

EIOS System Calls

OOOOH No exceptional conditions.

0008H This system call is not part of the present
configuration.

OOOIH The job cannot be started yet, probably because the
operating system has not finished processing the
CREA TEIOJOB call that created this job.

35

S$ATTACH$FILE

The S$ATTACH$FILE system call creates a connection to an existing file.

connection = RQSATTACH$FILE(path$ptr, except$ptr);

Input Parameter
path$ptr A POINTER to a STRING containing the path name of the file to

be attached.

Output Parameters
connection

except$ptr

The TOKEN that represents the new connection to the file.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

This system call allows a task to obtain a connection to any named, physical, or stream file.

The Extended I/O System allows any task to attach any file. However, if the file being
attached is a named file, the Extended I/O System computes access rights for the
connection. These access rights are based on the file's access list and the user IDs in the
default user object of the calling task's job. (Refer to the iRMX Operating System user
guides for more information.) If the file's access list allows no access to the users listed in
the default user object, the call creates the connection, but it allows no access.

Special Considerations for iRMX®-NET

36

Unlike a local named file, the access rights of a remote named file are not checked when a
connection to the file is created. Instead, the remote named file's access rights are checked
during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

EIOS System Calls

(

(

S$ATTACH$FILE

) Condition Codes
E$OK OOOOH No exceptional conditions.

E$ALREADY$- 0038H The Extended I/O System cannot attach the
ATTACHED device containing the file because the Basic I/O

system has already attached the device.

E$CONTEXT OOOSH The calling task's job is not an I/O job.

EDEVDETACHING 0039H The device containing the specified file is in the
process of being detached.

E$DEVFD 0022H The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specified in the logical
attachment were incompatible.

E$EXIST 0OO6H The device connection TOKEN is invalid.

E$FACCESS 0026H The default user object is not allowed access to the
file. See the Description section for more
information.

E$FNEXIST 0021H A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

E$FTYPE 0027H The specified path is attempting to use a data file as a
directory.

E$ILLVOL 002DH The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. During this process, it examined
the volume label and found that the volume does not
contain named files. This prevented the Extended
I/O System from completing physical attachment
because the named file driver was requested during
logical attachment.

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMEM 0042H The BIOS job did not have enough memory to
perform the requested function.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOS System Calls 37

S$A TT ACH$FI LE

EIOSOFf 0051H A soft I/O error occurred. The Basic I/O System (
tried to perform the operation a number of times and
failed (the number of retries is a configuration
parameter). Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task reached the object limit.

• The user object or the calling task's job is already
involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job.

• Processing this call would deplete the remote
server's resources. For a list of remote server (
resources, refer to the iRMX® Networking
Software User's Guide.

ELOGNAME$- 0045H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this name

in the object directories of the calling task's local job,
the global job, or the root job.

ELOGNAME$- 0040H The specified logical name contains at
SYNTAX least one of the following syntax errors: (

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters (including
colons), has no characters, or contains invalid

(characters.

E$MEDIA 0044H The device containing the specified file is not on-line.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

E$NOPREFIX 8022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device connection
or file connection.

38 EIOS System Calls

S$ATTACH$FILE

) ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

ENOTLOG$NAME 8040H The specified path contains a logical name that
represents an object that is neither a device
connection nor a file connection.

E$NOUSER 8021H The calling task's job does not have a default user, or
its default user is not a user object.

E$PARAM 8004H The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred to
a file driver (named, physical, or stream) that is not
configured into your system, so physical attachment is
not possible.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PATHNAME$- 003EH The specified path name contains invalid
SYNTAX characters.

EUDFIO 02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

EIOS System Calls 39

S$CATALOG$CON N ECTION

The S$CATALOG$CONNECTION system call creates a logical name for a connection by (
cataloging the connection in the object directory of a specific job.

CALL RQSCATALOG$CONNECTION(job, connection, log$name$ptr,
except$ptr);

Input Parameters

job

connection

log$name$ptr

Output Parameter
except$ptr

40

A TOKEN for the job in whose object directory the logical name is
to be cataloged. If the value of this parameter is
SELECTOR$OF(NIL), the Extended I/O System cataluus the
connection in the object directory of the calling task's job.

A TOKEN for the connection to be assigned the logical name. If
the value of this parameter is SELECTOR$OF(NIL), the Extended
I/O System obtains the connection by looking up the name in the
object directory of the calling task's job.

A POINTER to a buffer containing the logical name, which must be
a STRING of 12 or fewer characters. The name can be delimited
with colons (:). The operating system removes the colons so that a
logical name with colons is the same as one without (e.g., :FO: is
effectively the same as Fa); colons do not count in the length of the
name. If you expect to use this logical name in other Extended I/O
System calls, delimit the name with colons.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

EIOS System Calls

(

(

(

S$CATALOG$CONNECTION

) Description

The Extended I/O System converts the characters in the log$name$ptr STRING to
uppercase and catalogs the connection in the object directory of the specified job.
However, two special situations affect the outcome of this system call:

• If the job's object directory already contains the logical name, the new connection
replaces the existing object in the directory. The Extended I/O System considers this
to be a normal circumstance and, consequently, does not return an exception code.

• If your task sets the connection parameter to SELECfOR$OF(NIL), the Extended
I/O System looks up the logical name in the object directory of the calling task's job.
The system then copies the logical name and its definition into the object directory of
the specified job.

Condition Codes
E$OK

E$CONTEXT

OOOOH No exceptional conditions.

0005H The job in which your task is attempting to catalog
the connection has an object directory that is zero
bytes long.

E$EXIST 0006H The job or connection parameter is not a token for an
existing object.

E$LIMIT

ELOGNAME$
NEXIST

ELOGNAME$
SYNTAX

E$MEM

EIOS System Calls

0004H At least one of the following is true:

• The object directory for the specified job is
already full.

• The calling task's job is not an I/O job.

0045H The Extended I/O System was unable to find the
specified logical name in the object directory of the
calling task's job.

0040H The specified logical name contains at
least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters, has no
characters, or contains invalid characters.

0002H The memory available to the calling task's job is not
sufficient to complete the call.

41

S$CATALOG$CONNECTION

42

ENOTCON
FIGURED

ENOTCON
NECTION

E$TYPE

0008H This system call is not part of the present
configuration.

8042H The connection parameter is a token for an
object that is not a connection.

8002H The job parameter is a token for an object that is not
a job.

EIOS System Calls

(

(

(

S$CHANGE$ACCESS

) The S$CHANGE$ACCESS system call changes the access list for a named file. This
system call can be used for either data or directory files.

CALL RQSCHANGE$ACCESS(path$ptr, id, access, except$ptr);

Input Parameters
path$ptr

id

access

EIOS System Calls

A POINTER to a STRING containing a path to the file whose
access is to be changed.

A WORD containing the ID of the user whose access to the file is to
be changed. This value can differ from the owner ID of the calling
task's default user object. If the file's access list contains the ID, the
Extended I/O System changes the ID's current access. If the access
list does not contain the ID, the Extended I/O System adds the ID
to the file's access list, unless the access list is full (contains three
entries). If the access parameter described in the next paragraph is
zero, this call removes the ID from the access list.

A BYTE defining the new access rights to be assigned to the
specified user. If the entire BYTE is set to zero, the Extended I/O
System removes the specified ID from the access list of the fIle. If
the BYTE is nonzero, the meaning of the various bit settings
depend upon whether the file is a data file or a directory file. The
following two tables correlate the bit position and the kind of access.
(System calls that start with "A$", like A$READ, are part of the
Basic I/O System.)

If the bit is set to 1, access is to be granted. If the bit is set to 0,
access is to be denied. (Bit 0 is low-order bit.)

43

S$CHANGE$ACCESS

DATA FILE ACCESS RIGHTS (
Bit Access

0 Delete--permission to delete the entire file by
using the S$DELETE$FILE or
A$DELETE$FILE system calls. Also allows
changing the name of the file by using the
S$RENAME$FILE or A$RENAME$FILE
system call.

This bit is ignored for remote files.

t Read--permission to read data from the file by
using the S$READ$MOVE or A$READ
system call.

2 Append--permission to write information only (
at the end of the file by using the
S$WRITE$MOVE or A$WRITE system call.
This does not include permission to write over
information already in the file or permission to
truncate the file.

This bit must be set to the same value as bit 3
(Update) for remote files.

(3 Update--permission to write over any
information in the file by using the
S$WRITE$MOVE or A$WRITE system calls,
and permission to truncate the file using the
S$TRUNCATE$FILE or A$TRUNCATE
system call. This does not include permission to
add information to the end of the file.

This bit must be set to the same value as bit 2
(Append) for remote files.

4-7 Reserved. Set to zero.

44 EIOS System Calls

)

Output Parameter

except$ptr

EIOS System Calls

S$CHANGE$ACCESS

DIRECfORY ACCBSS RIGHTS

Bits

o

1

2

3

4-7

Access

Delete--permission to delete the directory by
using the A$DELETE$FILE or
S$DELETE$FILE system call. Also allows
changing the name of the directory by using the
A$RENAME$FILE or S$RENAME$FILE
system call.

This bit is ignored for remote directories.

Display--permission to read information from
the directory by using the A$READ,
A$GEUDlRECfORY$ENTRY, or
S$READ$MOVE system call.

Add entry--permission to add files to the
directory by using the A$CREA TE$FILE,
A$CREATE$DIRECTO RY,
A$RENAME$FILE, S$CREATE$FILE,
S$CREATE$DIRECfORY, or
S$RENAME$FILE system call. This does not
include permission to change existing entries.

Change entry--permission to change the access
list associated with a file contained in the
directory. In other words, permission to use the
A$CHANGE$ACCESS or
S$CHANGE$ACCESS system call. This does
not include permission to add new entries or
change the access list of the directory in which
the file is cataloged.

This bit is ignored for remote directories.

Reserved. Set to zero.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

45

S$CHANGE$ACCESS

Description

The S$CHANGE$ACCESS system call allows a task to change the access rights associated
with named data or directory files. This system call can be used on any named file,
including those created by the Basic I/O System.

For a task to be able to change the access rights associated with a file, the task's job must
meet at least one of the following criteria:

• One of the IDs in the job's default user object is the owner of the file, or is the System
ManagerlD.

• One of the IDs in the job's default user object has change-entry access to the parent
directory of the file.

For more information about owners, access rights, and default user objects, refer to the
iRM){® Extended I/O System User's Guide.

Special Considerations for iRMX®-NET

You cannot change the access rights of a virtual root directory, because a virtual root
directory has no assigned owner. If you attempt to change the access rights of a virtual
root directory, an E$FACCESS condition code is returned.

Condition Codes
E$OK

E$ALREADY$-
ATTACHED

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$FACCESS

46

OOOOH

0038H

0OO5H

0039H

0022H

No exceptional conditions.

The Extended I/O System cannot attach the
device containing the file because the Basic I/O
System has already attached the device.

The calling task's job is not an I/O job.

The device containing the specified file is being
detached.

The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specified in the logical
attachment were incompatible.

0026H The job containing the calling task meets none of the
prerequisites for using this system call. None of the
IDs in the job's default user object is the owner of the
file, nor does any have change-entry access to the
file's parent directory.

EIOS System Calls

(

(

(

(

S$CHANGE$ACCESS

) E$FNEXIST 0021H One of the following conditions is true:

• A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

• The physical device was not found. The device
was specified by the original call to
A$PHYSICAUATIACH$DEVICE and is
indicated in this call by the path$ptr parameter.

E$FTYPE 0027H The specified path is attempting to use a data file as a
directory.

E$IFDR 002FH The file driver associated with this connection is the
physical or stream file driver. However, the call is
compatible with the named file driver only.

E$ILLVOL 002DH The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it examined the
volume label and found that the volume does not
contain named files. This prevented the call from
completing physical attachment because the named
file driver was requested during logical attachment.

E$INVALID$FNODE 003DH The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFT 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EIOMEM 0042H The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

EIOS System Calls 47

S$CHANGE$ACCESS

E$LIMIT 0OO4H At least one of the following is true: (
• The user object or the calling task's job is already

involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job.

• Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking
Software User's Guide.

ELOGNAME$- 0045H The specified path contains an explicit logical name,
NEXIST but the call was unable to find this name in the object

directories of the calling task's local job, the global
job, or the root job.

ELOGNAME$- 0040H The specified logical name contains at (
SYNTAX least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters (including (colons), has no characters, or contains invalid
characters.

E$MEDIA 0044H The device containing the specified file is not on-line.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote

(server's User Definition File (UDF).

E$NOPREFIX 8022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device connection
or file connection.

ENOTFILE$CONN 0032H In the path pointed to by path$ptr, the subpath
portion is null and the prefix portion is not a file
connection.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configuration.

48 EIOS System Calls

S$CHANGE$ACCESS

) ENOTLOG$NAME 8040H The specified path contains a logical name that refers
to an object that is neither a device connection nor a
file connection.

E$NOUSER 8021H The calling task's job does not have a default user, or
its default user is not a user object.

E$PARAM 8004H The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred to
a file driver (named, physical, or stream) that is not
configured into your system. Therefore, physical
attachment is not possible.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PATHNAME$- 003EH The specified path name contains invalid
SYNTAX characters.

E$SUPPORT 0023H At least one of the following is true:

• The calling task attempted to change access for a
file other than a named file.

• The calling task attempted to add another user ID
to the file's access list, but the list already contains
three entries. The task must delete an entry
before it can add another.

• The connection specified in the call is not
contained in the job making the call.

EUDFIO 02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

EIOS System Calls 49

S$CLOSE

The S$CLOSE system call closes an open connection to a named, physical, or stream file. (

CALL RQSCLOSE(connection, except$ptr);

Input Parameter
connection A TOKEN for a file connection that is currently open and was

opened by the S$OPEN system call.

Output Parameter (
except$ptr A POINTER to a WORD where the Extended I/O System returns

the condition code.

Description

The S$CLOSE system call closes a connection that has been opened by the S$OPEN
system call. It performs the following steps:

1. It waits until all currently running I/O operations for the file are completed.

2. It ensures that any information in a partially filled output buffer is written to the file.

3. It releases any buffers associated with the file.

4. It closes the connection to the file, deleting neither the file nor the connection.

The Extended I/O System performs no access checking before closing the connection.

The S$CLOSE system call cannot be used to close connections that were opened by the
Basic I/O System. If your task attempts to do this, the Extended I/O System returns an
E$CONN$NOT$OPEN exception code.

Condition Codes
E$OK OOOOH No exceptional conditions.

E$ CANNOT$ CLOSE

50

0041H An error occurred while flushing data from EIOS
buffers to an output device.

EIOS System Calls

(

(

S$CLOSE

) E$CONN$NOT$OPEN 0034H One of the following conditions is true:

• The connection is not open.

• The connection was opened by A$OPEN rather
than S$OPEN.

E$EXIST 0OO6H The connection parameter is not a token for an
existing object.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 0056H One of the following is true:

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but it
found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job is not an I/O job.

• The calling task's job is already involved in 255
(decimal) I/O operations.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOT CONFIGU RED 0OO8H This system call is not part of the present
configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a connection.

E$SUPPORT 0023H The specified connection was not created by a task in
the calling task's job.

EIOS System Calls 51

S$CREATE$DIRECTORY

The S$CREATE$DIRECTORY system call creates a new directory file.

connection = RQSCREATE$DIRECTORY(path$ptr, except$ptr);

Input Parameter
path$ptr A POINTER to a STRING containing the path name of the new

directory.

Output Parameters
connection

except$ptr

A TOKEN that represents a connection to the new directory. You
can use this TOKEN as a parameter in system calls that access the
directory.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

A task invokes this system call to create a new named-file directory. After creation, the
new directory contains no entries. This system call automatically adds a new entry to the
parent directory. The new directory is compatible with directories created by the Basic
I/O System.

Positioning the Directory

52

The calling task must use the path$ptr parameter to specify the location of the new
directory within the named file structure. The location indicated by the path must not be
occupied. In other words, this system call can be used only to obtain connections to new,
rather than existing, directories.

The default user object for the calling task's job must have add-entry access to the parent
of the new directory. If the creation is successful, the first ID in the job's default user
object (the owner ID) becomes the owner of the file.

The entry in the parent directory for the newly created directory provides the owner of the
new directory with full access (the ability to Delete, List, Add, and Change entries) to the
new directory.

EIOS System Calls

(

(

(

(

S$CREATE$DIRECTORY

) Special Considerations for iRMX®-NET

You cannot create a remote directory with a virtual root directory as its parent. A virtual
root directory has no owner and, thus, you cannot have write access to it. If an attempt is
made to create such a remote directory, an E$FACCESS condition code is returned.

Condition Codes
E$OK

E$ALREADY$-
ATTACHED

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$FACCESS

E$FEXIST

E$FNEXIST

E$FNODE$LIMIT

OOOOH

0038H

OOOSH

0039H

0022H

No exceptional conditions.

The Extended I/O System cannot attach the
device containing the file because the Basic I/O
System has already attached the device.

The calling task's job is not an I/O job.

The device containing the specified file is in the
process of being detached.

The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached. In the process, it found that the device and
the device driver specified in the logical attachment
were incompatible.

0026H The user object associated with the calling task's job
does not have add-entry access to the parent
directory.

0020H The file already exists.

0021H At least one of the following is true:

• A file in the specified path does not exist or is
marked for deletion.

• The device specified in the call is not part of the
current configuration.

003FH The volume already contains the maximum number
of files. No more fnodes are available for new files.

E$FTYPE 0027H The specified path is attempting to use a data file as a
directory.

E$ILLVOL

EIOS System Calls

002DH The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the volume does not contain
named files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

S3

S$CREATE$DIRECTORY

E$INV ALID$FNODE 003DH The fnode for a directory in the specified path name
is invalid. The file cannot be accessed; you should

(
delete it.

EIOHARD 0052H A hard I/O error occurred. This means that a retry is
probably useless.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFT 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected. (
EIOMEM 0042H The Basic I/O System job does not currently have a

block of memory large enough to allow this system
call to run to completion.

E$LIMIT 0OO4H At least one of the following is true:

• The user object or the calling task's job is already
involved in 255 (decimal) I/O operations.

(• The calling task's job is not an I/O job.

• Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking
Software User's Guide.

ELOGNAME$- 0045H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this name

in the object directories of the calling task's local job,
the global job, or the root job.

ELOGNAME$- 0040H The specified logical name contains at
SYNTAX least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters (excluding
colons), has a length of zero characters, or
contains invalid characters.

54 EIOS System Calls

) E$MEDIA

E$MEM

E$NAME$NEXIST

E$NOPREFIX

S$CREATE$DIRECTORY

0044H The device containing the specified file is not on-line.

0002H The memory available to the calling task's job is not
sufficient to complete the call.

0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

8022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device connection
or file connection.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ENOTLOG$NAME

E$NOUSER

E$PASSWORD$
MISMATCH

E$PARAM

E$PA THNAME$
SYNTAX

E$SUPPORT

E$SPACE

EIOS System Calls

8040H The specified path contains a logical name that refers
to an object that is neither a device connection nor a
file connection.

8021H The calling task's job does not have a default user, or
its default user is not a user object.

004BH The password of the user object does not
match the password of the corresponding user
defined on the remote server.

8004H The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. The logical attachment referred to
a file driver (named, physical, stream, or remote) that
is not configured into your system, so physical
attachment is not possible.

003EH The specified path name contains invalid
characters.

0023H The NO ALLOCATE option is configured into the
BIOS. You cannot create any directories on this
volume.

0029H At least one of the following is true:

• The volume is full.

• No more files can be created on the remote
server's volume. The Remote File Driver cannot
distinguish between an E$FNODE$LIMIT and
an E$SPACE condition code.

55

S$CREATE$DIRECTORY

EUDFIO

56

02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

EIOS System Calls

(

(

(

(

S$CREATE$FILE

) The S$CREATE$FILE system call creates a new physical, stream, or named data file. It
cannot create a named directory file.

connection = RQSCREATE$FILE(path$ptr, except$ptr);

Input Parameter
path$ptr A POINTER to a STRING that contains the path name of the file

to be created. The format of this path name depends on the kind of
file being created. Refer to the iRMX® Extended I/O Systeln User's
Guide for a discussion of named, remote, physical, and stream file

Output Parameters
connection

except$ptr

Description

paths. .

The TOKEN that represents the connection to the new file.

A POINTER to a WORD where the Extended I/O System returns
a condition code.

A task invokes this system call to create a physical, stream, or named data file, or to attach
an existing file. This system call cannot be used to create or to attach a directory. (The
Extended I/O System provides the S$CREATE$DIRECTORY system call for that
purpose.) The file created by this system call is compatible with files created by the Basic
I/O System.

If the file specified by the path$ptr parameter already exists, the Extended I/O System
attempts to truncate the file to zero length and return a connection to the empty file. That
is, S$CREATE$FILE acts exactly as an S$ATTACH$FILE followed by a call to
S$TRUNCATE$FILE. The owner and the accessor list for the file remain unchanged.

If the file already exists, the call succeeds only if both of the following conditions are true:

• All connections to the file that are currently open allow sharing with writers.

• An ID in the default user object of the calling task's job has update access to the
existing file. (This requirement applies to named files only.)

EIOS System Calls 57

S$CREATE$FILE

If you wish to prevent the file from being truncated accidentally, use the (
S$ATIACH$FILE system call; if the call to S$ATIACH$FILE returns an exception code
indicating the file does not exist, you can safely use S$CREA TE$FILE.

Specifying the Kind of File to be Created

The path$ptr parameter does more than simply indicate the path of the file being created.
It also tells the Extended I/O System what kind of file (stream, physical, or named data) to
create. The correlation between file paths and the kinds of files is discussed in detail in
Chapters 4, 5, and 6 of the iRM)(® Extended I/O System User's Guide.

Special Considerations for Named Files

These special considerations relate to named files:

• Your task must tell the Extended I/O System which directory is to be the parent of the (
new named file.

• To create a named file, an ID in the default user object for the calling task's job must
have add-entry access to the parent directory.

• The first ID in the default user object of the calling task's job becomes the owner of the
new file. The owner has full access (the owner can delete, read, append, and update
the file).

Temporary Named Files

58

If your task invokes this system call with the path of an existing directory file, the Extended
I/O System creates a temporary named data file on the device that contains the directory
file. This temporary file differs from other named data files in two ways. First, the file is
automatically marked for deletion, so that the Extended I/O System deletes the file as
soon as your application code deletes all connections to the file. Second, the file is created
without a path, so it can be accessed only through a connection.

Two access considerations apply to temporary files:

• First, any task can create a temporary file by referring to any directory. This is true
because the temporary files are not listed as ordinary entries in the directory, so no
add-entry access is required for the directory.

• Second, the owner of the temporary file (the first ID in the default user object of the
calling task's job) has full access to the file.

Unlike local files, when you create a remote file, the remote temporary file is entered in
the directory in which you are creating the remote file. Therefore, the task creating the
remote file must have write access to this directory. Tasks can access this remote
temporary file through its path name, as well as through connections to the file. The
remote temporary file is deleted when all connections to it are deleted.

EIOS System Calls

(

(

S$CREATE$FILE

Device Considerations

Every file, regardless of kind, has an associated device. Even stream files, which have no
physical devices, use the device connection to the stream file pseudo-device.

Before any file can be created, its associated device must be attached to the system.

There are two ways to attach devices to the system. One is to specify the attachment
during configuration. (For more information, refer to iRMX Operating System user
guides).

The second way is to attach a device while the system is running using the
LOGICAL$ATIACH$DEVICE system call.

Special Considerations for iRMX®-NET

You cannot create a remote file with a virtual root directory as its parent. A virtual root
directory has no owner and, thus, you cannot have write access to it. If an attempt is made
to create such a remote file, an E$F ACCESS condition code is returned.

Codes
E$OK

E$ALREADY$
ATIACHED

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$FACCESS

EIOS System Calls

OOOOH

0038H

0005H

0039H

0022H

0026H

No exceptional conditions.

The Extended I/O System cannot attach the
device containing the file because the Basic I/O
System has already attached the device.

The calling task's job is not an I/O job.

The device containing the specified file is being
detached.

The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the device and the device
driver specified in the logical attachment were
incompatible.

At least one of the following is true:

• The default user object associated with the calling
task's job does not have add-entry access to the
parent directory.

• The default user object associated with the calling
task's job does not have update access to the
existing file with the specified path name.

59

S$CREATE$FILE

E$FNEXIST 0021H At least one of the following is true: (
• A file in the specified path does not exist or is

marked for deletion.

• The physical device specified in the call was not
found.

E$FNODE$LIMIT 003FH The volume already contains the maximum number
of files. No more fnodes are available for new files.

E$FTYPE 0027H The specified path is attempting to use a data file as a
directory.

E$ILLVOL 002DH The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the volume does not contain

(named files. This prevented the call from completing
physical attachment.

E$INV ALID$FNODE 003DH The fnode for a directory in the specified path name
is invalid. The file cannot be accessed; you should
delete it.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOOPRINT 0053H The device was off-line. Operator intervention is (
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected. (
EIOMEM 0042H The Basic I/O System job does not currently have a

block of memory large enough to allow this system
call to run to completion.

60 EIOS System Calls

S$CREATE$FILE

) E$LIMIT 0OO4H At least one of the following is true:

• The calling task has reached the object's limit.

• The user object or the calling task's job is already
involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job.

• Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking
Software User's Guide.

ELOGNAME$- 0045H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this name

in the object directories of the calling task's local job,
the global job, or the root job.

ELOGNAME$- 0040H The specified logical name contains at
SYNTAX least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters (including
colons), does not contain at least one character,
or contains invalid characters.

E$MEDIA 0044H The device containing the specified file is not on-line.
The media maybe inserted incorrectly (upside down).

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

E$NOPREFIX 8022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device connection
or file connection.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configura tion.

ENOTLOG$NAME 8040H The specified path contains a logical name that refers
to an object that is neither a device connection nor a
file connection.

EIOS System Calls 61

S$CREATE$FILE

E$NOUSER 8021H The calling task's job does not have a default user (
object, or the object cataloged in R ?IOUSER is not a
user obj ect.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PARAM 8004H The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached. The logical attachment referred to a file
driver (named, physical, or stream) that is not
configured into your system, so the physical
attachment is not possible.

E$PA THNAME$- 003EH The specified path name contains invalid (SYNTAX characters.

E$SHARE 0028H You are trying to create a file that already exists. The
Extended I/O System must truncate the existing file
to zero length to do the create. This truncate to zero
length failed for one or more of the following reasons:

• Another open connection does not allow sharing
with writers.

• The default user for the calling task's job does not (
have update access to the file.

E$SPACE 0029H At least one of the following is true:

• The volume is full.

• No more files can be created on the remote
server's volume. The Remote File Driver cannot
distinguish between an E$FNODE$LIMIT and
an E$SPACE condition code. (

E$SUPPORT 0023H One of the following is true:

• The NO CREATE FALSE option is configured
into the BIOS.

• The NO TRUNCATE option is configured into
the BIOS.

EUDFIO 02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

62 EIOS System Calls

S$ D ELETE$CO N N ECTI 0 N

) The S$DELETE$CONNECfION system call deletes a file connection. It cannot delete a
device connection.

CALL RQSDELETE$CONNECTION(connection, except$ptr);

Input Parameter
connection

Output Parameter
except$ptr

Description

A TOKEN for the file connection to be deleted.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

This system call deletes a file connection, but it cannot delete a device connection. If the
connection is open, the S$DELETE$CONNECfION system call automatically closes it
before deleting it.

If the file has been marked for deletion (by a previous system call) and there are no more
connections to the file, then S$DELETE$CONNECTION deletes the file.

The Extended I/O System does not check access before deleting a connection.

The S$DELETE$CONNECTION system call can be used with connections that were
created by the Basic I/O System as long as the connections meet the requirements
discussed in the iRM)(® Extended I/O System User's Guide, Appendix E.

Condition Codes
E$OK

E$EXIST

EIOHARD

EIOS System Calls

OOOOH No exceptional conditions.

0006H The connection parameter is not a token for an
existing object.

0052H A hard I/O error occurred. A retry is probably
useless.

63

S$DELETE$CONNECTION

EIOMODE 0056H One of the following is true: (
• A tape drive attempted to perform a read

operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but it
found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
(perform the operation a number of times and failed

(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The associated job or the job's default user object
is already involved in 255 (decimal) I/O
operations.

• The calling task's job is not an I/O job.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection.

E$SUPPORT 0023H The specified connection was not created by a task in
this job.

64 EIOS System Calls

)

S$DELETE$FILE

The S$DELETE$FILE system call deletes a stream, named data, or named directory file.
This system call cannot delete a physical file.

CALL RQSDELETE$FILE(path$ptr, except$ptr);

Input Parameter
path$ptr

Output Parameter
except$ptr

Description

A POINTER to a STRING that specifies the path for the file to be
deleted. The form of the path depends upon the kind of file. (See
the iRMX® Basic I/O System User's Guide for information on path
syntax.)

A POINTER to a WORD where the Extended I/O System returns
a condition code.

A task can use this system call whenever the task needs to delete a stream, named data, or
named directory file. This system call marks the specified file for deletion, but the
Extended I/O System postpones deletion until the following conditions are met:

• For stream and named data files, there is only one condition. The deletion occurs as
soon as no connections to the file remain. Your tasks can use the
S$DELETE$CONNECTION system call to delete connections.

• For named directories there are two conditions. The directory must be empty, and no
connections to the directory can remain. The Extended I/O System returns an
EDIRNOT$EMPTY condition code if a task attempts to delete a non-empty
directory. This system call can delete files created by the Basic I/O System as well as
those created by the Extended I/O System. Refer to the iRMX® Extended I/O Syste11'l
User's Guide, Appendix E, for a general discussion of compatibility between the
Extended and Basic I/O Systems.

If the task attempts to delete a named data or directory file, the default user object of the
task's job must have deletion access to the file.

EIOS System Calls 65

S$DELETE$FILE

Special Considerations for iRMX®-NET

You cannot delete a remote file which has a virtual root directory as its parent, because a
virtual root directory has no assigned owner. To delete a file, you must have write access
to its parent directory. If you attempt to delete a remote file whose parent directory is a
virtual root directory, an E$F ACCESS condition code is returned.

Condition Codes
E$OK OOOOH No exceptional conditions.

E$ALREADY$- 0038H The specified device is already attached.
ATTACHED

E$CONTEXT 0OO5H The calling task's job is not an I/O job.

EDEVDETACHING 0039H The device containing the specified file is in the
process of being detached.

E$DEVFD 0022H The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached, and found that the device and the device
driver specified in the logical attachment were
incompatible.

EDIRNOT$EMPTY 0031H Your task is attempting to delete a directory that is
not empty.

E$FACCESS 0026H At least one of the following is true:

• The default user object associated with the calling
task's job does not have delete access to the
specified file.

• The call is attempting to delete a bit map file or
the root directory.

E$FNEXIST 0021H At least one of the following is true:

• A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

• The physical device was not found. The device
was specified by the original call to
A$PHYSICAL$ATTACH$DEVICE and is
indicated in this call by the path$ptr parameter.

E$FfYPE 0027H The specified path contains a file name that should be
the name of a directory, but is not. (Except for the
last file, each file in a path must be a directory.)

66 EIOS System Calls

(

(

(

(

S$DELETE$FILE

\
I E$ILLVOL 002DH The Extended I/O System attempted to physically)

attach a device that had formerly been only logically
attached, and found that the volume does not contain
named files. This prevented the call from completing
physical attachment because the named file driver
was requested during logical attachment.

E$IFDR 002FH The specified file is a physical file.

E$INV ALID$FNODE 003DH The fnode associated with a file is either marked not
allocated, or the fnode number is out of range.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EIOMEM 0042H The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

E$LIMIT 0OO4H At least one of the following is true:

• Either the user object or the calling task's job is
already involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job.

• Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRM)(® Networking
Software User's Guide.

ELOGNAME$- 0045H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this name

in the object directories of the calling task's local job,
global job, or the root job.

EIOS System Calls 67

S$DELETE$FILE

ELOGNAME$- 0040H The specified logical name contains at (
SYNTAX least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters (including
colons), contains no characters, or contains
invalid characters.

E$MEDIA 0044H The device containing the specified file is off-line.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call. (

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

E$NOPREFIX 8022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device connection
or file connection.

ENOTCONFIGURED 0OO8H This system call is not part of the present (
configura tion.

ENOTFILE$CONN 0032H In the path pointed to by path$ptr, the subpath
portion is null and the prefix portion is not a file
connection.

ENOTLOG$NAME 8040H The specified path contains a logical name that refers
to an object that is neither a device connection nor a
file connection.

E$NOUSER 8021H The calling task's job does not have a default user
object, or the object cataloged in R?IOUSER is not a
user object.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PARAM 8004H The Extended I/O System attempted to physically
attach a device that is logically attached. That logical
attachment refers to a file driver (named, physical, or
stream) that is not configured into your system.
Therefore, physical attachment is not possible.

68 EIOS System Calls

) E$PA THNAME$
SYNTAX

E$SUPPORT

EUDFIO

EIOS System Calls

S$DELETE$FILE

003EH The specified path name contains invalid
characters.

0023H The task is attempting to delete a physical file.

02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

69

SGETCONNECTION$STATUS

The SGETCONNECTION$STATUS system call provides status information about file
and device connections.

CALL RQSGET$CONNECTION$STATUS(connection, info$ptr, except$ptr);

Input Parameter
connection A TOKEN for the connection whose status is desired.

(

Output Parameters (

70

info$ptr A POINTER to a structure in which the Extended I/O System
places the status information. You can provide the memory for this
structure by requesting an iRMX segment, or by reserving it in your
code. The structure must have the following form:

DECLARE connection$info STRUCTURE(
file$driver BYTE,

BYTE,
BYTE,
BYTE,
DWORD,
BYTE,
BYTE,
WORD,
BOOLEAN)

where

file$driver

flags

flags
open$mode
share$mode
file$pointer
access
number$buffers
buffer$size
seek

Identifies the kind of file associated with the
connection.

1 physical file
2 stream file
4 named file
5 remote

Indicates the kind of connection this is. If Bit 1
is one, the connection is capable of being
opened. If Bit 2 is one, the connection is a
device connection. (Bit zero is the low-order
bit.)

EIOS System Calls

(

(

open$mode

share$mode

file$pointer

access

EIOS System Calls

SGETCONNECTION$STATUS

Indicates the purpose for which the connection
was opened. This applies only to file
connections.

o closed
1 open for reading only
2 open for writing only
3 open for both reading and

writing

Indicates who can share the connection.
Applies to both device and file connections.

o cannot be shared
1 share with readers only
2 share with writers only
3 share with anybody

A 32-bit offset from the beginning of the file
where the next I/O operation will be
performed.

The access rights that were computed when the
connection was created. (The access rights for
remote files are computed during operations on
the connection, not at creation time.) This
information applies only to connections for
named files, and the interpretation of the
information depends upon whether the file is a
data file or a directory. Acces~ is represented as
a bit mask. In the following tables, access is
granted if a bit is set to one (bit zero is the low
order bit.).

Bit Data File Directory

0 Delete Delete
1 Read List
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved

71

SGETCONNECTION$STATUS

except$ptr

number$buffers

buffer$size

seek

For remote files, the access bits are interpreted
as follows:

Bit Data File Directory

0 Ignored Ignored
1 Read Display
2 Write (must be Write

set the same as
bit 3)

3 Write (must be Ignored
set the same as
bit 2)

4-7 Reserved Reserved

The number of buffers used with this
connection. This applies only to file
connections.

The size, in bytes, of each buffer used with the
connection.

Tells whether or not the SEEK function can be
used with this connection. Zero means no, and
OFFh means yes.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

72

The SGETCONNECTION$STA TUS system call allows a task to obtain status
information about file connections and device connections that were created by either the
Basic I/O System or the Extended I/O System. The nature of the returned information
depends upon whether the connection is for a file or a device. Some of the information
also depends on the kind of file associated with the connection.

The Extended I/O System does not check access before returning status information.

Although you can use this system call with connections created by the Basic I/O System,
you must adhere to the restrictions described in the iRMX® Extended I/O System User's
Guide, Appendix E.

EIOS System Calls

(

(

(

(

SGETCONNECTION$STATUS

Special Considerations for iRMX®-NET

When the status of a file connection to a virtual root directory is requested, display
permission is granted and write permission is denied. As a result, bit 1 of the access field is
set to 1 and bit 2 is set to o.

Also, unlike a local named file, the access rights of a remote named file are not checked
when a connection to the file is created. Instead, the remote named file's access rights are
checked during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes

E$OK OOOOH No exceptional conditions.

E$CONN$NOT$OPEN 0034H The connection was opened by the A$OPEN system
call rather than the S$OPEN system call.

E$EXIST 0006H The connection parameter is not a token for an
existing job.

E$IFD R 002FH An invalid file driver request occurred.

E$LIMIT 0004 H At least one of the following is true:

E$MEM 0002H

ENOTCON- 0008H
FIGURED

ENOTCONNECTION 8042H

ENOTFILE$CONN 0032H

E$SUPPORT 0023H

Eros System Calls

• The calling task has reached its object limit.

• Either the calling task's job, or the job's default
user object, is already involved in 255 (decimal)
I/O operations.

• The calling task's job is not an I/O job.

The memory available to the calling task's job is not
sufficient to complete the call.

This system call is not part of the present
configuration.

The connection parameter is a token for an object
that is not a connection.

For remote files, the connection parameter must be a
file connection, not a device connection.

The specified connection was not created by a task in
the calling task's job.

73

SGETDIRECTORY$ENTRY (iRMX® II only)

The SGETDIRECTORY$ENTRY system call returns a directory entry name to the
caller. A directory entry name is a single path component for a file whose parent is the
directory.

iRMX I Note: The SGETDIRECTORY$ENTRY system call is not supported in the
iRMX I Operating System.

CALL RQSGET$DIRECTORY$ENTRY(dir$name$ptr, entry$num, name$ptr,
except$pt);

Input Parameters
dir$name$ptr A POINTER to a STRING containing the directory path name.

This path name can be up to 255 characters long.

entry$num A WORD giving the entry number of the desired file name. Entries
in a directory are numbered sequentially starting from zero. The
E$EMPTY$ENTR Y condition code will be returned if there is no
directory entry associated with the number.

Output Parameter
name$ptr A POINTER to a buffer where the system will return the entry

name. This name, a maximum length of 14 BYTES, corresponds to
the entry number given by the user in the entry$num parameter.

except$ptr A POINTER to a WORD where the condition code will be
returned.

Description

74

The SGETDIRECTORY$ENTRY system call applies to named files only. When called,
it returns the file name associated with a specified directory entry. This name is a single
sUbpath component for a file whose parent is the designated directory. As an alternative to
using this system call, an application task can open and read a directory file.

NOTE

The caller must have List access to the designated directory.

EIOS System Calls

(

(

SGETDIRECTORY$ENTRY (iRMX® II only)

Special Considerations for iRMX®-NET

The SGETDIRECfORY$ENTRY system call is not supported for remote directories.
However, remote directories can be read with the A$OPEN, A$READ, S$OPEN, and
S$READ$MOVE system calls.

Condition Codes
E$OK

EDIREND

E$EMPTY$ENTRY

E$FACCESS

E$FTYPE

E$IFDR

E$IO

E$LIMIT

E$MEM

OOOOH

0025H

0024H

0026H

0027H

002FH

No exceptional conditions.

The entry$num parameter is greater than the number
of entries in the directory.

The file entry designated in the call is empty.

The caller's default user object is not qualified for list
access to the directory.

The specified connection does not refer to a
directory.

One of the following is true:

• This system call applies only to named directories,
but the STRING pointed to by dir$name$ptr
specifies another type of file.

• This system call is not supported for remote files.

002BH An I/O error occurred that might have prevented the
operation from completing.

0004H The calling task's job has already reached its object
limit.

0002H The memory available to the calling task's job is not
sufficient to complete this call.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

EIOS System Calls 75

SGETFILE$STATUS

The SGETFILE$STA TUS system call allows a task to obtain information about a
physical, stream, or named file.

CALL RQSGET$FILE$STATUS(path$ptr, info$ptr, except$ptr);

Input Parameter

path$ptr

Output Parameters
info$ptr

76

A POINTER to a STRING that contains the path for the file. The
format of this path varies from one kind of file to another. Refer to
the iRM)(® Extended I/O System User's Guide for path syntax.

A POINTER to a structure where the Extended I/O System returns
the status information. You must allocate this memory, either in
your program code space or as an iRMX segment. The structure
has the form described here.

The information in the first part of this structure--down to the
device$connections field--is returned for any file (physical, stream,
or named), but information from the file$id field to the end of the
structure is present only for named files. The contents of the
named$file field indicate whether the file is a named file.

DECLARE file$info STRUCTURE(
device$share
nurnber$connections
nurnber$reader
nurnber$writer
share
named$file
device$name(l4)
file$drivers
functions
flags
device$granularity
device$size
device$connections

WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
BYTE,
WORD,
BYTE,
BYTE,
WORD,
DWORD,
WORD,

EIOS System Calls

(

(

)

SGETFILE$STATUS

Information from this point on is returned only if the file is a named file.

file$id
file$type
file$granularity
owner$id
create$time
access$time
modify$time
file$size
file$blocks
volume$name(6)
volume$granularity
volume$size
accessor$count
owner$access

WORD,
BYTE,
BYTE,
WORD,
DWORD,
DWORD,
DWORD
DWORD,
DWORD,
BYTE,
WORD,
DWORD,
WORD,
BYTE) ;

The meanings of these fields are:

device$share Indicates whether or not the device can be shared.

number$connections

number$reader

number$writer

EIOS System Calls

Currently, this word is always set to 1, indicating that all
devices can be shared.

The number of connections to the file.

For remote files, this field indicates the number of
connections the calling job has to the file.

The number of connections currently open for reading.

For remote files, this field is set as follows:

Connection

No connection
Connection open - read
Connection open - write
Connection open - read/write

number$reader

o
1
o
1

The number of connections currently open for writing.

For remote files, this field is set as follows:

Connection

No connection
Connection open - read
Connection open - write
Connection open - read/write

number$writer

o
o
1
1

77

SGETFILE$STATUS

share

named$file

device$name

file$drivers

78

The current shared status of the file; possible values are

o Private use only
1 Share with readers only
2 Share with writers only
3 Share with all users

For remote files, a value of 3 is returned if the specified
remote file connection is not open. If the remote file is
open, the share mode used to open the connection is
returned.

Tells whether this structure contains any information beyond
the device$connections field. OFFh means yes and 0 means
no. OFFh is always returned for remote files.

The name of the physical device where this file resides. This
name is padded with blanks. To ensure the uniqueness of
device names, they should not be more than 14 characters in
length.

For remote files, the name of the remote server on which
the file resides is returned.

A bit map that tells what kinds of files can reside on this
device. If bit n is on, then file driver n + 1 can be used. Bit 0
is the low-order bit.

Bit Driver No. Driver

0 1 Physical file
1 2 Stream file
2 3 Reserved
3 4 Named file
4 5 Remote file

EIOS System Calls

(

(

(

(

functions

flags

device$ granularity

device$size

device$connections

EIOS System Calls

SGETFILE$STATUS

A bit map that describes the functions supported by the
device where this file resides. A bit set to one indicates the
corresponding function is supported. Bit 0 is the low-order
bit.

This field is not supported by iRMX-NET. A value of 0 is
always returned for remote files.

Bit Function

o F$READ
1 F$WRITE
2 F$SEEK
3 F$SPECIAL
4 F$ATTACH$DEV
5 F$DETACH$DEV
7 F$CLOSE

Meaningful only for diskette drives. This field is interpreted
as follows. (Bit 0 is the low-order bit.)

This field is not supported by iRMX-NET. A value of 0 is
always returned for remote files.

Bit Meaning

o 0 = bits 1-7 not significant
1 = bits 1-7 are significant

1 0 = single density
1 = double density

2 0 = single sided
1 = double sided

3 0 = 8-inch diskette
1 =5 1/4-inch diskette

4 0 = standard diskette, meaning that
track 0 is single-density with 128
byte sectors
1 = a nonstandard diskette or not a
diskette

5-7 reserved

The granularity, in bytes, of the device where this file
resides.

The storage capacity of the device, in bytes.

The number of connections to the device.

For remote files, this field contains the number of
connections that local users have to files on the remote
server.

79

SGETFILE$STATUS

80

The information from here to the end of the structure is returned only for named files, as
indicated by a value of OFFh in the named$file field.

file$id A number that distinguishes this file from all other files on
the same device.

file$type

file$granularity

owner$id

create$time

access$time

modify$time

file$size

file$blocks

volume$name

volume$granularity

volume$size

accessor$count

The file type: 6 means directory file and 8 means data file.

The file granularity, as a multiple of volume$granularity.
For example, if file$granularity is 2 and volume$granularity
is 256, then the file's granularity is 512.

A value of 1 is always returned for remote files.

The first ID in the creating task's default user object.

The time and date when the file was created. Whether the
operating system maintains this field is a configuration
option.

The time and date when the file was last accessed. Whether
the operating system maintains this field is a configuration
option.

The time and date when the file was last modified. Whether
the operating system maintains this field is a configuration
option.

The total size of the file, in bytes.

The number of volume blocks allocated to this file. A
volume block is a contiguous area of storage that contains
volume$granularity bytes of data.

The left-adjusted, null-padded ASCII name for the volume
containing this file.

The volume granularity, in bytes.

The storage capacity, in bytes, of the volume on which this
file is stored.

The number of IDs in the file's accessor list.

Eros System Calls

(

(

(

owner$access

except$ptr

Description

SGETFILE$STATUS

The access rights to this file that are currently held by the
owner. The access rights are encoded in a bit mask that you
can interpret by using the following table. Remember that
Bit 0 is the low-order bit, and that access is granted if the
corresponding bit is set to 1.

Bit Data File

o
1
2
3
4-7

Delete
Read
Append
Update
Reserved

Directory

Delete
List
Add Entry
Change Entry
Reserved

A POINTER to a WORD where the Extended I/O System
returns the condition code.

This system call provides the calling task with information about the status of a file. Fields
through the device$connections field are always returned if the call is successful. Fields
following the device$connections field are returned only when the file being referred to is a
named file, as indicated by the named$file field being OFFh.

The Extended I/O System does not check access before returning file status information.

This system call can be used with any file, including those created by the Basic I/O System.
However, because of the asynchronous nature of some of the Basic I/O System calls, there
is some chance that the information returned might be inaccurate. For instance, if your
application code invokes the SGETFILE$STATUS system call while the Basic I/O
System is processing an A$WRITE for the same file, the values returned in the file size
fields might be incorrect. Refer to the iRM)(® Extended I/O System User's Guide, Appendix
E for a more general discussion of compatibility between the Extended and Basic I/O
Systems.

Condition Codes
E$OK

E$ALREADY$
ATTACHED

E$CONTEXT

EDEVDETACHING

EIOS System Calls

OOOOH

0038H

OOOSH

0039H

No exceptional conditions.

The Extended I/O System is unable to
attach the device containing the file because the Basic
I/O System has already attached the device.

The calling task's job is not an I/O job.

The device containing the specified file is in the
process of being detached.

81

SGETFILE$STATUS

E$DEVFD 0022H The Extended I/O System attempted the physical (
attachment of a device that had formerly been only
logically attached. In the process, it found that the
device and the device driver specified in the logical
attachment were incompatible.

E$FNEXIST 0021H At least one of the following is true:

• A file in the specified path, or the target file itself,
does not exist or is marked for deletion.

• The physical device specified in the call was not
found.

E$FTYPE 0027H The specified path contains a file name that should be
the name of a directory, but is not. (Except for the
last file, each file in a path must be a directory.) (

E$ILLVOL 002DH The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it examined the
volume label and found that the volume does not
contain named files. This prevented the Extended
I/O System from completing physical attachment
because the named file driver was requested during
logical attachment. (

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 0056H One of the following is true:

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but it
found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

82 EIOS System Calls

SGETFILE$STATUS

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOMEM 0042H The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

E$LIMIT 0OO4H At least one of the following is true:

• The user object or the calling task's job is already
involved in 255 (decimal) I/O operations.

• The calling task's job is not an I/O job.

• The calling task's object limit has been reached.

ELOGNAME$- 0045H The specified path contains an explicit
NEXIST logical name, but the call was unable to find this name

in the object directories of the calling task's local job,
the global job, or the root job.

ELOGNAME$- 0040H The specified logical name contains at
SYNTAX least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• contains a logical name that is either longer than
12 characters (including colons), has no
characters, or contains invalid characters.

E$MEDIA 0044H The device containing the specified file is not on-line.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

E$NOPREFIX 8022H You did not specify an explicit prefix (logical name),
and the default prefix for the calling task's job is
either undefined, or it is not a valid device connection
or file connection.

ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

ENOTFILE$CONN 0032H For remote files, the connection parameter must be a
file connection, not a device connection.

EIOS System Calls 83

SGETFILE$STATUS

ENOTLOG$NAME 8040H The specified path contains a logical name that refers (
to an object that is neither a device connection nor a
file connection.

E$NOUSER 8021H The calling task's job does not have a default user, or
its default user is not a user object.

E$PARAM 8004H The Extended I/O System attempted the physical
attachment of a device that had formerly been only
logically attached. In the process, it found that the
logical attachment referred to a file driver (named,
physical, or stream) that is not configured into your
system. Therefore the physical attachment is not
possible.

E$PA THNAME$- 003EH The specified path name contains invalid (SYNTAX characters.

EUDFIO 02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

(

(

84 EIOS System Calls

SGETPATH$COMPONENT (iRMX® II only)

SGETPATH$COMPONENT returns the name of a named file as the file is known in its
parent directory.

iRMX I Note: The SGETPATH$COMPONENT system call is not supported in the
iRMX I Operating System.

CALL RQSGET$PATH$COMPONENT(connection, name$ptr, except$ptr);

Input Parameters
connection

Output Parameter
name$ptr

except$ptr

Description

A TOKEN for the file connection whose name is desired.

A POINTER to a STRING where the system returns the path
component. The maximum length of the STRING is 14 BYTES.

A POINTER to a WORD where the Extended I/O System returns
condition codes.

The format of the component returned by this call is dependent on the type of file driver
employed by the call. A null string is returned under the following circumstances:

• If the file driver is Named or Remote and the connection is to the root directory of a
volume.

• If the file driver's connection accesses either Stream or Physical files.

Condition Codes
E$OK

E$CONTEXT

E$FNEXIST

E$INV ALID$FNODE

EIOS System Calls

OOOOH No exceptional conditions.

0005H The name$ptr parameter is equal to NIL.

0021H The file is marked for deletion. (In this case, the
string is undefined.)

003DH The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

85

SGETPATH$COMPONENT (iRMX® II only)

E$IO

EIOMEM

ENOTFILE$CONN

86

002BH An I/O error occurred that might have prevent.ed the
operation from completing.

0042H The memory available to the EIOS is not sufficient to
complete the call.

0032H For remote files, the connection parameter must be a
file connection, not a device connection.

EIOS System Calls

(

(

(

(

S$LOOK$UP$CONNECTION

The S$LOOK$UP$CONNECTION system call accepts a logical name from the calling
task and returns a token for the connection associated with the logical name.

connection = RQSLOOKUPCONNECTION(log$name$ptr, except$ptr);

Input Parameter
log$name$ptr

Output Parameters
connection

except$ptr

Description

A POINTER to a STRING (of 1 to 12 characters) containing the
logical name to be looked up. The name can be delimited with
colons (:). The operating system removes the colons so that a
logical name with colons is the same as one without (e.g., :FO: is
effectively the same as FO). Colons do not count in the length of the
name.

The TOKEN that represents the connection associated with the
logical name.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

After converting any lowercase letters in the logical name to uppercase, the Extended I/O
System searches for the logical name. It first checks the object directory of the local job,
then the global job, and finally the root job. (This progressively more global search
sequence is described more completely in the iRMX\ Extended I/O System User's Guide.)
When it finds the logical name, the Extended I/O System returns the token for the
connection.

Your tasks can invoke this system call to look up logical names created by the Nucleus
system call CATALOG$OBJECT. However, CATALOG$OBJECT does not convert from
lowercase to uppercase. So if you desire compatibility, use uppercase characters when you
use the CATALOG$OBJECT system call.

Condition Codes
E$OK

E$CONTEXT

EIOS System Calls

OOOOH No exceptional conditions.

OOOSH The calling task's job is not an I/O job.

87

S$LOOK$UP$CONNECTION

E$LIMIT 0OO4H The calling task's job is not an I/O job. (
ELOGNAME$- 0045H The specified path contains an explicit

NEXIST logical name, but the call was unable to find this name
in the object directories of the calling task's local job,
the global job, or the root job.

ELOGNAME$- 0040H The specified logical name contains at
SYNTAX least one of the following syntax errors:

• The specified path starts with a colon (:),
indicating that it contains a logical name. But the
call was unable to find a second colon to delimit
the logical name.

• The specified path contains a logical name that is
either longer than 12 characters, has no (
characters, or contains invalid characters.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

ENOTCONNECTION 8042H The logical name refers to an object that is not a
connection. (

E$TIME 000lH The calling task's job is not an I/O job.

(
"

88 Eros System Calls

S$OPEN

) The S$OPEN system call opens a file connection so that your tasks can access the file.

CALL RQSOPEN(connection, mode, number$buffers, except$ptr);

Input Parameters
connection

mode

number$buffers

EIOS System Calls

A TOKEN for the file connection to be opened. The connection
must have been created in the calling task's job. If the connection
was created in a different job, use S$ATTACH$FILE to obtain a
new connection.

A BYTE telling how your task is going to use the connection and
with whom it will share the connection. You should set the BYTE
as follows:

Value

IH
2H
3H

4H
5H
6H

How Connection is Used

For reading only; share with all.
For writing only; share with all.
For both reading and writing; share with
all.
For reading only; private use.
For writing only; private use.
For both reading and writing; private
use.

7H For reading only; share with readers.

8H For writing only; share with readers.

9H For both reading and writing; share with
readers.

OAH For reading only; share with writers.

OBH For writing only; share with writers.

OCH For both reading and writing; share with
writers.

Remote directories must be opened with the mode parameter set
to 1.

A BYTE containing the number of buffers that you want the
Extended I/O System to allocate for this connection. This number
must be between zero and a maximum value that you specified when
you configured the Basic I/O System.

89

S$OPEN

Output Parameter (
except$ptr A POINTER to a WORD where the Extended I/O System returns

the condition code.

Description

This system call performs the following functions:

• It creates the number of buffers requested.

• It sets the connection's file pointer to NIL.

• It starts reading ahead if the number of buffers is greater than zero and the mode
parameter includes reading.

Access Rights and Selecting a Mode

When you specify the mode, you must be accurate or err on the side of generosity. If you
are not certain how the connection will be used, specify both reading and writing.

(

In the case of named files, the mode that you specify must match the access rights of the
connection. (These are the access rights that the Extended I/O System assigned the
connection when the connection was created.) For example, if your task attempts to open
for reading a connection that has access for writing only, the Extended I/O System returns
an E$F ACCESS exception code. (

Selecting the Number of Buffers

90

Deciding how many buffers to allocate for file I/O is based on two considerations--memory
and performance. The amount of memory used for buffers is directly proportional to the
number of buffers. So you can save memory by using fewer buffers.

The performance consideration is more complex. Up to a certain point, the more buffers
you allocate, the faster your task can run. The actual break-even point, the point where
more buffers don't improve performance, depends on many variables. Be aware that in
order to overlap I/O with computation, you must specify at least two buffers.

If performance is important, and you have no idea how many buffers to specify, start with
two. Once your task is running successfully, you can experiment, adding or removing
buffers until you have found the optimum number of buffers.

If your application performs a great deal of random access file I/O (for example, many
seek/read or seek/write combinations), performance may be enhanced by specifying zero
buffers.

If performance is not so important and memory is, use zero buffers.

EIOS System Calls

(

S$OPEN

Special Considerations for iRMX®-NET

Unlike a local named file, the access rights of a remote named file are not checked when a
connection to the file is created. Instead, the remote named file's access rights are checked
during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes
E$OK OOOOR No exceptional conditions.

E$CONN$OPEN 0035H The connection is already open.

EDEVOFF$LlNE 002EH The device being accessed is now offline.

E$EXIST 0OO6H The connection parameter is not a token for an
existing object.

E$FACCESS 0026H The access rights embedded in the connection
prohibit opening the file in the specified mode.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 0056H One of the following is true:

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but it
found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFT 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EIOS System Calls 91

S$OPEN

E$LIMIT 0OO4H At least one of the following is true: (
• The calling task's job is not an I/O job.

• The calling task's job, or the job's default user
object, is already involved in 255 (decimal) I/O
operations.

• Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRM)(® Networking
Software User's Guide.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0OO8H This system call is not part of the present
(FIGURED configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection.

ENOTFILE$CONN 0032H The connection is a device connection.

E$PARAM 8004H The mode parameter is set to a value other than 1
through C hexadecimal.

E$SHARE 0028H At least one of the following is true:
(

• The call attempted to open a directory file or a
bit-map file for writing.

• The file's sharing attribute is currently not
compatible with the mode specified in this call.

• The call attempted to open a remote directory
with the mode parameter set to a value other than
1.

E$SUPPORT 0023H The specified connection was not created by a task in (
the calling task's job.

92 EIOS System Calls

)

S$READ$MOVE

) The S$READ$MOVE reads a number of bytes from a file to a buffer.

bytes$read = RQ$S$READ$MOVE(connection, buffer$ptr, bytes$desired,
except$ptr);

Input Parameters
connection

bytes$ desired

Output Parameters
bytes$read

buffer$ptr

except$ptr

Description

A TOKEN for the connection to the file. This connection must be
open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

A WORD containing the maximum number of bytes you want to
read from the file.

A WORD containing the actual number of bytes that the Extended
1/ a System reads from the file.

A POINTER to a buffer that will receive the information that the
Extended I/O System reads from the file.

A POINTER to a WORD where the Extended I/O System returns
a condition code.

This system call reads a collection of contiguous bytes from the file associated with the
connection. These bytes are placed in a buffer specified by the calling task.

Creating the Buffer

The buffer$ptr parameter tells the Extended I/O System where to place the bytes after
they are read. You must create this buffer because the Extended I/O System does not. To
create the buffer, make an iRMX segment, or create a buffer during the compilation of
your program. You must ensure that the buffer is long enough.

EIOS System Calls 93

S$READ$MOVE

In the iRMX II Operating System, if you use an iRMX segment as your buffer, the 80286 (
microprocessor's built-in abilities will detect when a task attempts to write beyond a buffer.
If you create a buffer at compilation time, the Extended I/O System will not sense when
overwriting occurs. If your task attempts to read more bytes than the buffer is capable of
holding, the information immediately following the buffer could be overwritten.

iRMX I Note: The iRMX I Operating System does not run in protected mode on the
80286 microprocessor. Therefore, the iRMX I Operating System cannot
detect when a task attempts to write beyond the end of a buffer.

The number of bytes that your task requests (bytes$desired) is the maximum number of
bytes that the Extended I/O System places in the buffer. However, there are two
circumstances under which the Extended I/O System reads fewer bytes.

• First, if the Extended I/O System detects an end-of-file before reading the number of
bytes requested, it returns only those bytes preceding the end-of-file. In this case, the
bytes$read parameter can be less than the bytes$desired parameter without generating
an exceptional condition.

• Second, if an exceptional condition occurs during the reading operation. In this case,
the information in the buffer and the value of the bytes$read parameter are
meaningless.

If your task performs random-access reads of the file, it must identify which bytes to read
from the file by using the S$SEEK system call to position the connection's file pointer to
the first byte that it wants to read.

In contrast, if your task reads from the file sequentially, the Extended I/O System
maintains the connection's file pointer automatically.

Effects of Priority

The priority of the task invoking this system call can greatly affect the performance of the
application system. For better performance, the priority of the invoking task should be
equal to or lower than (numerically greater than) 130. If the priority of the calling task is
greater than 130, the operating system cannot overlap the read operation with computation
or with other I/O operations. (To find out how to set priorities for application tasks, refer
to the iRM)(® I Nucleus User's Guide or the iRM)(® II Nucleus User's Guide.)

Special Considerations for iRMX®-NET

94

iRMX-NET's remote file driver does not perform fragmentation and reassembly. For
optimal performance, reading and writing should begin at offsets that are integral multiples
of the remote server's buffer size. The device$granularity parameter returned by the
SGETFILE$STATUS system call indicates the buffer size of a remote server.

EIOS System Calls

(

(

(

(

Condition Codes
E$OK

EBADBUFF

S$READ$MOVE

OOOOH No exceptional conditions.

8023H This condition code is not supported in the iRMX I
Operating System.

One of the following is true:

• The specified memory buffer is not writeable.

• The specified memory buffer crosses a segment
boundary.

E$CONN$NOT$OPEN 0034H At least one of the following is true:

E$EXIST

E$FLUSHING

E$IDDR

EIOHARD

EIOMODE

EIONO$DATA

EIOOPRINT

EIOSOFf

EIOS System Calls

• The connection is not open for reading or for
both reading and writing.

• The connection is closed.

• The connection was opened by the A$OPEN
system call rather than the S$OPEN system call.

0006H The connection is not a token for an existing object.

002CH The specified device is being detached.

002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

0052H A hard I/O error occurred. A retry is probably
useless.

0056H One of the following is true:

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

0055H A tape drive attempted to read the next record, but it
found no data.

0053H The device was off-line. Operator intervention is
required.

0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

95

S$READ$MOVE

EIOUNCLASS 0050H An unknown type of I/O error occurred. (
E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job, or the job's default user
object, is already involved in 255 (decimal) I/O
operations.

• The calling task's job is not an I/O job.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCON- 0OO8H This system call is not part of the present
FIGURED configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection. (

E$SPACE 0029H At least one of the following is true:

• This call attempted to read beyond the end of the
volume.

• Another task is writing to the file using the same
connection and is attempting to write beyond the
end of the volume or the end of the available
space on the volume.

(
E$SUPPORT 0023H The connection parameter was not created by a task

in the calling task's job.

(

(

96 EIOS System Calls

S$RENAME$FILE

) The S$RENAME$FILE system call changes the name of a directory or data file. It cannot
be used for stream or physical files.

CALL RQSRENAME$FILE(path$ptr, new$path$ptr, except$ptr);

Input Parameters
path$ptr

new$path$ptr

Output Parameter
except$ptr

Description

A POINTER to a STRING that specifies the current path for an
existing file that is to be renamed. The syntax of this path is
described in Chapter 4 of the iRM)(® Extended I/O System User's
Guide.

A POINTER to a STRING that specifies the new path for the file.
This path must comply with the syntax and semantics of paths for
named files as discussed in Chapter 4 of the iRM)(® Extended I/O
System User's Guide. Furthermore, this path cannot refer to an
existing file.

A POINTER to a WORD where the Extended I/O System returns
a condition code.

This system call, which can be used only with named files, allows your task to change the
path for a file. You can rename directory files as well as data files.

NOTE

When you rename a directory, you change the paths for all files and other
directories contained in the directory.

EIOS System Calls 97

S$RENAME$FILE

Restrictions

If your task is renaming a file, the task can change any aspect of the file's path so long as
the file remains on the same volume. If you are renaming a directory, it must still have the
same parent directory (the directory above the one being renamed).

To be able to rename a file, the default user object of the calling task's job must have two
kinds of access:

• Deletion access to the original file

• Add-entry access to the file's new parent directory

Special Considerations for iRMX@·NET

(

The S$RENAME$FILE system call cannot rename the following files and directories on a (
remote server:

• a file in a virtual root directory

• a virtual root directory

• a public directory

If an attempt is made to rename any of these files and directories, an E$F ACCESS
exceptional condition is returned.

Also, unlike a local named file, the access rights of a remote named file are not checked
when a connection to the file is created. Instead, the remote named file's access rights are
checked during operations on the connection.

The above discrepancy won't affect your programs if you do the following:

• Open, delete, and rename files prior to changing their access lists.

• Establish connections to files after changing their access lists.

Condition Codes
E$OK

E$ALREADY$
ATTACHED

OOOOH

0038H

No exceptional conditions.

The Extended I/O System is unable to
attach the device containing the file because the Basic
I/O System has already attached the device.

98

E$CONTEXT

EDEVDETACHING

OOOSH

0039H

The calling task's job is not an I/O job.

The device containing the specified file is in the
process of being detached.

EIOS System Calls

(

(

E$DEVFD

E$FACCESS

E$FEXIST

E$FNEXIST

E$FfYPE

E$IFDR

E$ILLOGICAL$
RENAME

E$ILLVOL

E$INV ALID$FNODE

EIOHARD

EIOOPRINT

EIOS System Calls

S$RENAME$FILE

0022H The Extended I/O System attempted to physically
attach a device that had been only logically attached,
and found that the device and the device driver
specified in the logical attachment were incompatible.

0026H At least one of the following is true:

0020H

0021H

0027H

002FH

003BH

002DH

003DH

0052H

0053H

• The call is trying to rename a bit-map file or the
root directory.

• The default user object associated with the calling
task's job does not have add-entry access to the
parent directory of the new$path$ptr file.

• The default user object associated with the calling
task's job does not have delete access to the file to
be renamed.

The new$path$ptr parameter refers to a file that
already exists.

A file in the specified path, or the file being renamed,
does not exist or is marked for deletion.

The specified path contains a file name that should be
the name of a directory, but is not. (Except for the
last file, each file in a path must be a directory.)

The specified file is a stream or physical file.

The call attempted to rename a directory
to a new path containing itself.

The Extended I/O System attempted to physically
attach a device that had formerly been only logically
attached. In the process, it found that the volume
does not contain named files. This prevented the
Extended I/O System from completing physical
attachment because the named file driver was
requested during logical attachment.

The fnode for the specified file is invalid. The file
cannot be accessed; you should delete it.

A hard I/O error occurred. A retry is probably
useless.

The device was off-line. Operator intervention is
required.

99

S$RENAME$FILE

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to (
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EIOMEM 0042H The Basic I/O System job does not currently have a
block of memory large enough to allow this system
call to run to completion.

E$LIMIT 0OO4H At least one of the following is true:

• The user object or the calling task's job is already
involved in 255 (decimal) I/O operations.

(
• The calling task's job is not an I/O job.

• The calling task's object limit has been reached.

• Processing this call would deplete the remote
server's resources. For a list of remote server
resources, refer to the iRMX® Networking
Software User's Guide.

ELOGNAME$- 0045H At least one of the specified paths
NEXIST contains an explicit logical name, but the call was

unable to find this name in the object directories of
the calling task's local job, the global job, or the root
job.

ELOGNAME$- 0040H At least one of the specified paths
SYNTAX contain one or more of the following logical name

syntax errors:

• A path starts with a colon (:), indicating that it
contains a logical name. But the call was unable
to find a second colon to delimit the logical name.

• A path contains a logical name that is either
longer than 12 characters (including colons), has
no characters, or contains invalid characters.

E$MEDIA 0044H The device containing the specified file is not on-line.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

E$NAME$NEXIST 0049H The user object does not represent a verified user or
the user object is not properly defined in the remote
server's User Definition File (UDF).

100 EIOS System Calls

S$RENAME$FILE

) E$NOPREFIX 8022H At least one of the specified paths contains no explicit
prefix (no logical name), and the default prefix for the
calling task's job is either undefined, or it is not a
valid device connection or file connection.

ENOT CONFIGU RED 0OO8H This system call is not part of the present
configuration.

ENOTFILE$CONN 0032H In the path pointed to by path$ptr, the subpath
portion is null and the prefix portion is not a file
connection.

ENOTLOG$NAME 8040H At least one of the specified paths contains a logical
name that refers to an object that is neither a device
connection nor a file connection.

ENOTSAME$DEV 003AH The two paths refer to different devices.

E$NOUSER 8021H The calling task's job does not have a default user
object, or the object cataloged in R?IOUSER is not a
user object.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PA THNAME$- 003EH One or both of the specified path names
SYNTAX contain invalid characters.

E$PARAM 8004H The specified task$priority for an 10 job is unequal to
o and is greater than the max$priority of the 10 job.

E$SPACE 0029H At least one of the following is true:

• The volume is full .

• No more files can be created on the remote
server's volume. The Remote File Driver cannot
distinguish between an E$FNODE$LIMIT and
an E$SPACE condition code.

EUDFIO 02DOH An error occurred while accessing the remote server's
User Definition File (UDF). The server's UDF must
have world read permission.

E$SUPPORT 0023H The task attempted to rename a physical or stream
file.

EIOS System Calls 101

S$SEEK

Using the S$SEEK system call, your tasks can move the file pointer for any open physical
or named-file connection. This system call cannot be used with stream files.

CALL RQSSEEK(connection, mode, move$count, except$ptr);

Input Parameters
connection

mode

move$count

Output Parameter

except$ptr

102

A TOKEN for an open connection whose file pointer you wish to
move.

A BYTE containing a value that controls the nature of the
movement of the file pointer. Any of the following values are valid:

~ode ~eaning

1 Move the pointer backward by the number of
bytes specified in move$count. If the move
count is large enough to position the pointer
past the beginning of the file, the pointer moves
to the first byte (position zero).

2

3

Set the pointer to the position specified by the
move count. Position zero is the first position
in the file. Moving the pointer beyond the end
of the file is valid for named files only.

Move the file pointer forward by the specified
amount. Moving the pointer beyond the end
of-file is valid for named files.

4 First move the pointer to the end of the file and
then move it backward by the specified amount.
If the value specified by move$count would
position the pointer beyond the front of the file,
the pointer moves to the first byte in the file
(position zero).

A DWORD integer that tells the Extended I/O System how far, in
bytes, to move the pointer.

A POINTER to the WORD where the Extended I/O System
returns the condition code.

EIOS System Calls

(

(

(

(

S$SEEK

) Description

When performing random I/O, your tasks must use this system call to position the file
pointer before using the S$READ$MOVE, S$TRUNCA TE$FILE, and S$WRlTE$MOVE
system calls. The location of the file pointer tells the Extended I/O System where in the
file to begin reading, truncating, or writing information.

If your tasks are performing sequential I/O on a file, they do not need to use this system
call.

Access Control

Two requirements relate to access control. First, the connection must be open for reading
only, writing only, or both reading and writing. If this is not the case, your task can use the
S$OPEN system call to open the file.

The second access requirement is that the connection must have been created by a task
within the calling task's job. If this is not the case, use the existing connection as a prefix,
and have the calling task obtain a new connection by invoking the S$A TT ACH$FILE
system call. This newly created connection satisfies the second requirement.

Reading and Writing Beyond the End of File

It is legitimate to position the file pointer beyond the end-of-file for a named file. If your
task does this and then invokes the S$READ$MOVE system call, the Extended I/O
System behaves as though the reading operation began at the end-of-file.

Also, it is possible to invoke the S$WRlTE$MOVE system call with the file pointer beyond
the end of the file. If your task does this, the Extended I/O System attempts to expand the
file. If the Extended I/O System does expand your file in this manner, the file contains
random information between the old end-of-file and the position of the file pointer when
the S$WRITE$MOVE call was invoked.

Condition Codes
E$OK

EBADBUFF

EIOS System Calls

OOOOH

8023H

No exceptional conditions.

This condition code is not supported in the iRMX I
Operating System.

One of the following is true:

• The specified memory buffer is not writeable.

• The specified memory buffer crosses a segment
boundary.

103

S$SEEK

E$ CONNNOT OPEN 0034H At least one of the following is true: (
• The connection is not open.

• The connection was opened by an A$OPEN
rather than an S$OPEN.

E$EXIST 0OO6H The connection parameter is not a token for an
existing object.

E$FLUSHING 002CH The specified device is being detached.

E$IDDR 002AH This request is invalid for the device driver. For
example, it is not valid to use this call with a line
printer.

E$IFDR 002FH The call attempted to seek in a stream file. The
S$SEEK system call can be used only with named and (
physical files.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMODE 0056H A tape drive attempted a read (write) operation
before the previous write (read) completed.

EIONO$DATA 0055H A tape drive attempted to read the next record, but it
found no data. (

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

E$LIMIT 0OO4H At least one of the following is true: (

• Either the calling task's job, or the job's default
user object, is already involved in 255 (decimal)
I/O operations.

• The calling task's job is not an I/O job.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configura tion.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection.

104 EIOS System Calls

E$PARAM

E$SPACE

E$SUPPORT

EIOS System Calls

S$SEEK

8004 H At least one of the following is true:

• The value of the mode parameter is not 1, 2, 3, or
4.

• The calling task was attempting to seek past the
end of a physical file.

0029H This seek operation forced the Extended I/O System
to attempt to empty the connection's buffer(s) by
writing their contents to the volume. However, the
volume is full.

0023H The connection parameter refers to a connection that
was created by a task outside of the calling task's job.

IDS

S$SPECIAL

The S$SPECIAL system call allows your tasks to perform functions that pertain to a
specific device.

CALL RQSSPECIAL(connection, function, data$ptr, iors$ptr,
except$ptr);

Input Parameters
connection

function

106

A TOKEN for a connection to the file for which the special function
is to be performed.

To access a remote server, this parameter must be a connection to
the server's virtual root directory.

A WORD that specifies the special function being requested. Each
function is described in detail under the "Description" heading, but
the following table summarizes the values to be assigned to this
parameter.

Only function value 2 (Notify) is supported for remote servers.

EIOS System Calls

(

(

(

(

)

data$ptr

EIOS System Calls

S$SPECIAL

Function T~l1e of file Effect of
Value for connection Function

0 Physical Format disk track
0 Stream Query
1 Stream Satisfy
2 Physical or

Named Notify
3 Physical Get disk special data
4 Physical Get terminal data
5 Physical Set terminal data
6 Physical Set signal character
7 Physical Rewind tape
8 Physical Read tape file mark
9 Physical Write tape file mark
10 Physical Retention tape
11-15 Reserved for other Intel

products
16 Physical Get terminal status
17 Physical Cancel terminal I/O
18 Physical Resume terminal I/O
19-32767 Reserved for other Intel

products
32768-65555 Reserved for user

devices

A POINTER to a parameter block that your task uses to supply the
Extended I/O System with information, or to receive information
from the Extended I/O System. The contents and form of the
parameter block depend upon the function being requested, so the
form of the parameter block is described later, under the
"Description" heading. If the function requires no parameter block,
set data$ptr to NIL.

107

S$SPECIAL

Output Parameters (

108

iors$ptr A POINTER to a structure of the form described below. The
Extended I/O System uses this structure to return information that
might be of use to the calling task. If you set this POINTER to NIL,
the Extended I/O System does not return the information. Be
aware that this is relatively obscure information that most
applications do not need.

DECLARE iors$data STRUCTURE (

where:

actual

actual$fill

device

unit

funct

subfunct

device$loc

buf$ptr

count

count$fill

aux$ptr

actual WORD,
actual$fill WORD,
device WORD,
unit BYTE,
funct BYTE,
sub func t WORD,
device$loc DWORD,
buf$ptr POINTER,
count WORD,
count$fill WORD,
aux$ptr POINTER)

Number of bytes that were actually transferred
during the special function, if any.

Reserved for Intel's use.

Device number identifying the device. For an
explanation of device numbers, refer to the
configuration reference manual included with
the operating system.

Number of the unit that contains the file on
which the special function is being performed.

Code recognized by the driver, usually meaning
that this is a special operation.

Function code you code into the call.

Location on the device where the operation was
performed ..

POINTER to a buffer used for this operation, if
any buffer is used.

Number of bytes transferred, if any were
transferred.

Reserved for future use.

Same as data$ptr in the call to S$SPECIAL.

EIOS System Calls

(

(

(

S$SPECIAL

except$ptr A POINTER to a WORD where the Extended I/O System returns
the condition code.

Description

This system call allows your tasks to communicate with devices, device drivers, and the
stream file driver to perform operations that are less device-independent than other
Extended I/O System operations.

S$SPECIAL allows your task to perform several special functions. The Extended I/O
System decides which function to perform by examining the function parameter and the
kind of connection provided in the connection parameter. The following sections explain
each function in detail.

Special Considerations for iRMX@·NET

iRMX-NET only supports function value 2 (Notify) for remote servers. When a task
invokes S$SPECIAL with a connection to a remote server and function equal to 2, the
calling task is notified of a communication failure immediately after an unsuccessful
attempt to access the remote server, or when the device connection to the remote server is
physically detached. Communication failures can result from resetting the server, faults in
the consumer or server, or line transmission errors.

To restore the availability of a remote server, perform the following steps:

1. Fix the communication problem.

2. Call A$PHYSICAL$DETACH$DEVICE to detach the server's device connection.

3. Call A$PHYSICAL$ATIACH$DEVICE to reattach the server.

Formatting a Track (Function Code 0)

To use the S$SPECIAL system call to format a track on a disk, the calling task must supply
the following information:

connection A TOKEN for a connection to a physical file. This connection must
be open for reading, writing or both.

function Must be set to zero.

EIOS System Calls 109

S$SPECIAL

data$ptr Must point to a STRUCTURE of the following form:

DECLARE track$formatter STRUCTURE(
track$number
interleave
track$offset
fill$char

'WORD,
'WORD,
'WORD,
BYTE)

where:

track$number

interleave

track$offset

fill$char

Number of the track to be formatted.
Acceptable values are 0 to one less than the
number of tracks on the volume. Other values
cause an E$SPACE exception code. When
formatting a tape or a RAM-disk, you must
place a zero value in this field.

The number of physical sectors between
consecutive logical sectors. (This field does not
apply to tapes or to RAM -disks.) If the
interleave factor is zero or one, no physical
sectors are skipped. If the specified interleave
value is greater than the number of physical
sectors on a track, the operating system divides
that interleave value by the number of physical
sectors and uses the remainder as the interleave
factor. A remainder of zero has the same effect
as an interleave of zero.

Number of physical sectors to skip between the
index mark and the first logical sector. (This
field does not apply to tapes or to RAM -disks.)

The character with which the sector will be
written; some drivers ignore this field and fill
the sectors with a character the driver
establishes.

Also see the description of Function Code 3, Getting Special Disk Data.

110 EIOS System Calls

(

(

S$SPECIAL

Obtaining Information About Stream File Operations (Function Code 0)

Occasionally, a task using a stream file must find out what is being requested by another
task using the same stream file. For example, the task reading a stream file might need to
know how many bytes are being sent by a task writing to the same file. Tasks can obtain
this kind of information by calling S$SPECIAL with the following information:

connection

function

data$ptr

A TOKEN for a connection to a stream file.

Set to O.

Set to NIL.

If a task is reading from or writing to a stream file, the Extended I/O System returns
information in the structure to which iors$ptr points. The following four fields contain
valid information:

actual The number of bytes already transferred.

count The number of bytes remaining to be transferred.

buf$ptr A POINTER to the memory location to be used for the next byte to
be transferred.

funct A value that indicates the purpose of the queued request. The value
is zero for' read requests and one for write requests.

If no task is reading from or writing to the stream file, the Extended I/O System queues
the S$SPECIAL request. The request remains queued until a task issues a read or write
request. If, before a read or write request is issued, another S$SPECIAL request arrives,
the Extended I/O System cancels both S$SPECIAL requests and returns
E$STREAM$SPECIAL exception codes to the tasks that issued the S$SPECIAL calls.

Satisfying Stream File Transactions (Function Code 1)

Stream files provide two tasks with the ability to communicate. When one task tries to
read or write to a stream file, the task does not run again until the complementary task
issues a matching request.

For example, suppose that Task A wants to read 512 bytes, but Task B writes only 256
bytes. Task A stops running until Task B issues one or more requests which supply at least
256 more bytes.

The S$SPECIAL system call enables tasks to force a stream file transaction to complete,
even if the number of bytes written does not match the number of bytes read.

EIOS System Calls 111

S$SPECIAL

To force this completion, a task must invoke the S$SPECIAL system call with the (
parameters set as follows:

connection A TOKEN for a connection to the stream file. This connection
must be open for the operation that has not satisfied the matching
requirement. For example, if the reading task wants to force the
Extended I/O System to consider the transaction completed, the
connection must be open for reading.

function Set to 1.

data$ptr Set to NIL.

After requesting this satisfy function, the only information that your task can obtain is the
condition code returned by the Extended I/O System. If the task invoking the S$SPECIAL
system call has already completed the transaction, the Extended I/O System returns an (
E$STREAM$SPECIAL condition code.

Requesting Notification that a Volume is Unavailable (Function Code 2)

This function applies to named and physical files only. When a person opens a door to a
flexible disk drive or presses the STOP button on other mass storage drives, the volume
mounted on that drive becomes unavailable. A task can request notification of such an
event by calling S$SPECIAL. For flexible disk drives attached to an iSBC 208 or iSBC
218A controller, and for some 5-1/4" flexible disk drives, notification occurs when the Basic
I/O System first tries to perform an operation on the unavailable volume. For most other
drives, notification occurs immediately. The reason for this difference is that
controller/drive combinations that include the iSBC 208 or iSBC 218A controller, or that
include some 5-1/4" drives, cannot generate an interrupt when the drive ceases to be ready.
In contrast, most other controller/drive combinations do.

On those drives where no notification occurs until the Basic I/O System attempts to access
the drive, a dangerous situation occurs whenever you change a volume without first
detaching the device. If you do not first detach the device and then reattach it, the Basic
I/O System accesses the device using the directory information from the old volume.
Unless the new volume is write-protected, this process corrupts the entire volume,
rendering it useless. The correct sequence of events when changing volumes on one of
these devices is as follows:

1. Detach the unit (via A$PHYSICAL$DETACH$DEVICE).

2. Remove the old volume.

3. Install the new volume.

4. Reattach the unit (via A$PHYSICAL$A ITACH$DEVICE).

112 EIOS System Calls

(

(

S$SPECIAL

For devices that can perform notification, a task requests notification by calling
S$SPECIAL with a token for a device connection, with function set to 2, and with data$ptr
pointing to a structure of the following form:

where:

mailbox

object

DEClARE notify STRUCTURE (
mailbox
object

A TOKEN for a mailbox.

TOKEN,
TOKEN) ;

A TOKEN for an object. When the Basic I/O System detects that
the implied volume is unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic I/O System remembers the
object and mailbox tokens until either the volume is detected as being unavailable or until
the device is detached by the A$PHYSICAL$DETACH$DEVICE system call. When the
volume becomes unavailable, the object is sent to the mailbox. Note that this implies that
some task should be dedicated to waiting at the mailbox.

If the volume is detected as being unavailable, the Basic I/O System will not execute I/O
requests to the device on which the volume was mounted. Such requests are returned with
the status field of the I/O request/result segment set to E$IO and the unit$status field set
to 10$OPRINT (value = 3). The latter code means that operator intervention is required.

If any task issues a subsequent notification request for the same device connection, the
Basic I/O System replaces the old mailbox and object values with the new ones specified.
It does not return an exception code.

To restore the availability of a volume, perform the following steps:

1. Close the door of the diskette drive or restart the hard disk drive.

2. Call A$PHYSICAL$DETACH$DEVICE. It may be necessary to do a IIhard li detach
of the device.

3. Call A$PHYSICAL$A TfACH$DEVICE and reattach the device.

4. Create a new file connection.

To cancel a request for notification, make a dummy request using the same connection
with a SELECTOR$OF(NIL) value in the mailbox parameter.

EIOS System Calls 113

S$SPECIAL

Getting Disk Special Data (Function Code 3)

You can write your own program to format a disk, rather than using the FORMAT
command (part of the iRMX Human Interface). If you do so, you must place some special
device data into the last bytes of the label on the iRMX named volume. Currently, this
field in the label is eight (8) bytes long, although Intel reserves the right to add to its length
later. (The structure of an iRMX named file volume is described in the iRMX® Disk
Verification Utility Reference Manual.)

You can obtain the data in this field by issuing S$SPECIAL with a function code of three.
You can then save the data and write it into the label field when you format the disk.

To use the S$SPECIAL system call to obtain the special data for the label, the calling task
must supply the following information:

connection

function

data$ptr

A TOKEN for a connection to a physical file. This connection must
be open for reading, for writing, or for both reading and writing.

Set to 3.

A POINTER to a STRUCTURE of the following form:

DECLARE disk$label$data
label$data(8)

STRUCTURE (
WORD) ;

Getting Terminal Characteristics (Function Code 4)
Setting Terminal Characteristics (Function CodeS)

114

These two functions are complements of each other. They use the same type of data
structure with identical meanings for each field in the structure. A function code of four
returns the current characteristics of a particular terminal; a function code of five allows
you to set the characteristics of a terminal.

Intel recommends that before setting the terminal characteristics, you first invoke
S$SPECIAL with function code 4 to get the current characteristics. Then, modify the
returned structure to reflect your desired changes. Finally, invoke S$SPECIAL with
function code 5 to set the characteristics, using your modified structure as input.

In this section, certain terms unique to terminal devices (for example, line editing,
Operating System Command (OSC) sequences, translation) are described only briefly. If
you are unfamiliar with these terms refer to the iRMX® Basic I/O System Calls Reference
Manual and the iRMX® Device Driver User's Guide.

EIOS System Calls

(

(

(

(

)

S$SPECIAL

To use the S$SPECIAL system call to get or to set terminal characteristics, the calling task
must supply the following information:

connection

function

data$ptr

where:

EIOS System Calls

A TOKEN for a connection to a terminal.

Set to 4 (get characteristics) or 5 (set characteristics).

A POINTER to a STRUCTURE of the following form:

DECLARE terminal$attributes STRUCTURE(

num$words

num$used

num$words WORD,
num$used WORD,
connection$flags WORD,
terminal$flags WORD,
in$baud$rate WORD,
out$baud$rate WORD,
scroll$lines WORD,
xysize WORD,
xyoffset WORD,
special$modes WORD,
high$water$mark WORD,
low$water$mark WORD,
fconchar WORD,
fcoffchar WORD,
link$parameter WORD,
spchiwater$mark WORD,
special$char(4) BYTE);

The number of words, not including num$words
and num$used, that are reserved for the
remainder of the terminal$attributes data
structure. To access all of the information, set
this field to at least 16. Intel reserves the right
to expand the length of this structure in later
releases.

The number of fields, following the num$used
field, that are actually being used for getting or
setting terminal characteristics.

In getting and setting terminal information, the
amount of data returned or sent is governed by
the num$used field. For example, if function is
4 and num$used is 2, then an S$SPECIAL call
returns data in the connection$flags and
terminal$flags fields, but not in the remainder
of the fields.

However, when setting terminal attributes,
specifying a zero value for any of the next five

115

S$SPECIAL

116

fields (connection$f1ags through scroll$lines) (
causes the I/O System to skip over the zeroed
field, leaving it at its previous setting. For
example, if num$used is 2, while
connection$f1ags is 0 and terminal$flags is not 0,
then S$SPECIAL uses the contents of the
terminal$flags field to set terminal attributes,
but it ignores the contents of connection$flags
field. In this way, you can set some parameters
without affecting others.

For the functions represented by the remaining fields in this structure, invoking
S$SPECIAL is not the only way to set the functions. You can also set them with OSC
sequences. The description of each field mentions, in parentheses, the OSC characters you
can use. (OSC sequences are described in the iRM)(® Device Drivers User's Guide.) You (
can also use the OSC Query sequence when debugging, to ensure that your tasks invoked
S$SPECIAL correctly.

connection$flags This word applies only to this connection to the terminal. (All other
parameters apply to the terminal itself and therefore to all
connections to the terminal.) If you attempt to set this field to zero,
the I/O System ignores your entry and leaves the field set to its
previous value.

Changes you make with connection$flags don't take effect until a
read is processed using the connection. Therefore, to ensure the
changes take effect, you should read from the connection
immediately after using connection$flags to change the connection's
attributes. (If you don't expect input at the terminal, set the
connection to flush mode, then read 255 characters from the
connection. The read will return immediately with whatever
characters were available.)

(

The flags in this word are encoded as follows. (Bit 0 is the low-order (
bit.)

Bits

0-1

Value and Meaning

Line editing control (corresponds to OSC
characters C:T). Line editing refers to how the
TSC (Terminal Support Code) handles control
characters such as those that delete characters
entered at a terminal, scroll terminal output,
and others. Refer to the iRM)(® Device Drivers
User's Guide for more information.

Eros System Calls

S$SPECIAL

NOTE

Line editing is supported on input only (that is, the stream of data entered
at, but not sent to, a terminal).

EIOS System Calls

Bits Value and Meaning

o = Invalid Entry.

2

1 = Transparent mode (no line editing). Input
is transmitted to the requesting task
exactly as entered at the terminal *. Before
being transmitted, data accumulates in a
buffer until the requested number of
characters has been entered.

2 = Normal mode (line editing). Edited data
accumulates in a buffer until a line
terminator is entered.

3 = Flush mode (no line editing). Input is
transmitted to the requesting task exactly
as entered at the terminal*. Before being
transmitted, data accumulates in a buffer
until an input request is received. At that
time, the contents of the buffer (or the
number of characters requested, if the
buffer contains more than that number) is
transmitted to the requesting task. If any
characters remain in the buffer, they are
saved for the next input request.

Echo control (corresponds to OSC characters
C:E).

o = Echo. Characters entered at the terminal
are "echoed" to the terminal's display
screen.

1 = Do not echo.

* Except (1) signal characters (e.g., the Human
Interface CONTROL-C) set by specifying "set
signal" in the function parameter of
A$SPECIAL or S$SPECIAL, and (2) any
enabled output control characters or OSC
sequences.

117

S$SPECIAL

3 Input parity control (corresponds to OSC (
characters C:R). Characters entered into the
termmal have their parity bits (bit 7) set to 0 or
not set by the Terminal Support Code,
according to the value of the input parity
control bit.

0= Set parity bit to O.

1 = Do not alter parity bit.

4 Output parity control (corresponds to OSC
characters C: W). Characters being output to
the terminal have their parity bits (bit 7) set to
o or not set by the Terminal Support Code,
according to the value of the output parity (control bit.

o = Set parity bit to O.

1 = Do not alter parity bit.

5 Output control character control (corresponds
to OSC characters C:O). This bit specifies
whether output control characters are effective
when entered at the terminal. The value of this
bit applies only to output through this (
connection. Control characters are described in
the iRM)(® Device Drivers User's Guide.

Note that the output control characters are
supported only on input from a terminal, not as
output to a terminal.

o = Accept output control characters in the
input stream.

(
1 = Ignore output control characters in the

input stream.

118 EIOS System Calls

6-7

8

9

10-15

EIOS System Calls

S$.SPECIAL

OSC control sequence enable/disable
(corresponds to OSC characters C:C). These
bits specify whether OSC control sequences
should be acted upon when they appear in the
input stream and, separately, when they appear
in the output stream. These bits apply only to
input or output through this connection. OSC
control sequences are described in iRMX®
Device Drivers User's Guide.

D = Act upon OSC sequences that appear in
either the input or output stream.

1 = Act upon OSC sequences in the input
stream only.

2 = Act upon OSC sequences in the output
stream only.

3 = Do not act upon any OSC sequences.

Specifies whether characters in the raw input
buffer are moved to the type-ahead buffer by
the interrupt task or the service task. The raw
input and type-ahead buffers are discussed in
the iRMX® Device Drivers User's Guide.

o = Characters are moved from the raw input
buffer to the type-ahead buffer by the
interrupt task.

1 = Characters are moved from the raw input
buffer to the type-ahead buffer by the
service task.

Specifies whether the type-ahead buffer is used
to process characters in the raw input buffer.

o = Characters are moved from the raw input
buffer to the type-ahead buffer.

1 = Characters are moved directly from the
raw input buffer to the application task's
buffer, thus bypassing the type-ahead and
line-edit buffers. This disables all
Terminal Support Code features.

Reserved bits. For future compatibility, set to
O.

119

S$SPECIAL

terminal$flags

120

This word applies to the terminal and therefore to all connections to
the terminal. If you attempt to set this field to zero, the Basic I/O
System ignores your entry and leaves the field set to its previous
value. The flags in this word are encoded as follows. (Bit 0 is the
low-order bit.)

Bits Value and Meaning

0 Reserved bit. Set to 1.

1 Line protocol indicator (corresponds to OSC
characters T:L). Full-duplex terminals support
simultaneous and independent input and
output. Half-duplex terminals support
independent inpu.t and output, but not
simultaneously.

0= Full duplex.

1 = Half duplex.

2 Output medium (corresponds to OSC
characters T:H).

0= Video display terminal (VDT).

1 = Printed (Hard copy).

3 Modem indicator (corresponds to OSC
characters T:M).

0= Not used with a modem.

1 = Used with a modem.

EIOS System Calls

(

(

(

(

4-5

S$SPECIAL

Input parity control bits (corresponding to OSC
characters T:R) determines how the terminal
driver handles input parity. The parity bit (bit
7) of each input byte can be used in a variety of
ways. A byte has even parity if the sum of its
bits is an even number. Otherwise, the byte has
odd parity.

o = Terminal driver always sets parity bit to O.

1 = Terminal driver never alters the parity bit.

2 = Even parity is expected on input. The
terminal driver uses the parity bit to
indicate the presence (1) or absence (0) of
an error on input. That is, the driver sets
the parity bit to 0 unless the received byte
has odd parity or there is some other
error, such as (a) the received stop bit has
a value of 0 (framing error) or (b) the
previous character received has not yet
been fully processed (overrun error).

3 = Odd parity is expected on input. The
terminal driver uses the parity bit to
indicate the presence (1) or absence (0) of
an error on input. That is, the driver sets
the parity bit to 0 unless the received byte
has even parity or there is some other
error, such as (a) the received stop bit has
a value of 0 (framing error) or (b) the
previous character received has not yet
been fully processed (overrun error).

EIOS System Calls 121

S$SPECIAL

6-8 Output parity control bits (corresponding to (
OSC characters T: W). Determines how the
terminal driver handles output parity. The
parity bit (bit 7) of each output byte can be used
in a variety of ways. A byte has even parity if
the sum of its bits is an even number.
Otherwise, the byte has odd parity.

0= Terminal driver always sets parity bit to O.

1= Terminal driver always sets parity bit to 1.

2= Terminal driver sets parity bit to give the
byte even parity.

3= Terminal driver sets parity bit to give the
byte odd parity. (

4= Terminal driver does not alter the parity
bit.

5-7 Invalid values.

9 Translation control (corresponds to OSC
characters T:T). Translation refers to the
ability to define certain control characters so
that whenever these characters are entered at (or written to a terminal, certain actions, usually
cursor movements, take place automatically.
Translation is described in the iRMX® Device
Drivers User's Guide.

0= Do not enable translation.

1 = Enable translation.

10 Terminal axes sequence control (corresponds to
(OSC characters T:F). This specifies the order

in which Cartesian-like coordinates of elements
on a terminal's screen are to be listed or
entered.

0= List or enter the horizontal coordinate
first.

1= List or enter the vertical coordinate first.

122 Eros System Calls

) 11

12

13-15

S$SPECIAL

Horizontal axis orientation control
(corresponds to OSC characters T:F). This
specifies whether the coordinates on the
terminal's horizontal axis increase or decrease
as you move from left to right across the screen.

o = Coordinates increase from left to right.

1 = Coordinates decrease from left to right.

Vertical axis orientation control (corresponds
to OSC characters T:F). This specifies whether
the coordinates on the terminal's vertical axis
increase or decrease as you move from top to
bottom across the screen.

o = Coordinates increase from top to bottom.

1 = Coordinates decrease from top to bottom.

Reserved bits. For future compatibility, set to
O.

NOTE

If bits 4-5 contain 2 or 3, and bits 6-8 also contain 2 or 3, then they must
both contain the same value. That is, they must both reflect the same parity
convention (even or odd).

in$baud$rate The input baud rate indicator (corresponds to OSC characters T:I).

out$baud$rate

EIOS System Calls

If you attempt to set this field to zero, the Basic I/O System ignores
your entry and leaves the field set to its previous value. The word is
encoded as follows:

o = Leave field set to the previous value.

1 = Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

The output baud rate indicator (corresponds to OSC characters
T:O). If you attempt to set this field to zero, the Basic I/O System
ignores your entry and leaves the field set to its previous value. The
word is encoded as follows:

o = Leave field set to the previous value.

1 = Use the input baud rate for output.

Other = Actual output baud rate, such as 9600.

123

S$SPECIAL

scroll$lines

xysize

xyoffset

special$modes

124

M,?st applications require the input and output baud rates to be
equal. In such cases, use in$baud$rate to set the baud rate and
specify a one for out$baud$rate.

An operator at a terminal can enter a control character (default is
CONTROL-W) when he/she is ready for data to appear on the
terminal's display screen. The scroll$lines value (corresponding to
OSC characters T:S) specifies the maximum number of lines that
are to be sent to the terminal each time the operator enters the
control character. If you attempt to set this field to zero, the Basic
I/O System ignores your entry and leaves the field set to its previous
value.

The low-order byte of this word specifies the number of character
positions on each line of the terminal's screen (and corresponds to
OSC characters T:X). The high-order byte specifies the number of
lines on the terminal's screen (and corresponds to OSC characters
T:Y).

The low-order byte of this word specifies the value that starts the
numbering sequence of both the X and Y axes (and corresponds to
OSC characters T: U). The high-order byte specifies the value to
which the numbering of the axes must "fall back" after reaching 127
(and corresponds to OSC characters T: V).

This and the following fields apply only to buffered devices (such as
the iSBC 544A and the iSBC 188/48 boards). These devices
maintain their own input and output buffers separately from the
ones managed by the Basic I/O System's Terminal Support Code. If
you aren't sure whether you can set these fields, invoke S$SPECIAL
with function code 4 to get the terminal attributes. If bit 15 of the
special$modes field is set, your board is a buffered device and you
can set the bits in special$modes and the following fields. (If your
board is not a buffered device, setting any of the following fields will
cause the Terminal Support Code to return an E$PARAM
Condition Code.)

EIOS System Calls

(

(

(

(

Bits

o

1

2-14

15

S$SPECIAL

Value and Meaning

Flow control mode specifies whether the
communications board sends flow control
characters (selected by the fconchar and
fcoffchar fields, but usually XON and XOFF)
to turn input on and off (corresponds to the
OSC characters T:G). The low-order bit (bit 0)
controls this option, as follows:

o = Disable flow control.

1 = Enable flow control.

When flow control is enabled, the
communication board can control the amount
of data sent to it to prevent buffer overflow.
This is especially important when
communicating with another computer.

With the Special Character Mode (corresponds
to OSC characters T:D) you can define up to
four special characters. These special
characters are different from the signal
characters provided by the Terminal Support
Code, though they may be signal characters. If
your driver supports special characters, it
processes these characters differently when the
Special Character Mode is on.

o = Disable Special Character Mode.

1 = Enable Special Character Mode.

Reserved bits. Set to O.

Buffered Device Control. This bit is set by the
Terminal Support Code to show if a device is
buffered. If invoking the S$SPECIAL system
call to get terminal attributes shows that this bit
is set, then the special$modes bits and the data
fields following are valid. If the Buffered
Device Control bit is not set and you attempt to
alter these data fields, an E$P ARAM error is
returned

o = Not a buffered device.

1 = Buffered device.

The remaining fields in the structure apply only to buffered devices.

Eros System Calls 125

S$SPECIAL

high$water$mark

low$water$mark

fconchar

fcoffchar

link$parameter

126

When the communication board's buffer fills to contain the number
of bytes represented by this field, the board's firmware sends the
flow control XOFF character to stop input. (This field corresponds
to the OSC characters T:J.)

The high-water mark of the iSBC 544A board is not configurable;
therefore, setting this field has no effect on that board.

When the number of bytes in the communication board's input
buffer drops to the number represented by this field, the board's
firmware sends the flow control "on" character to start input. (This
field corresponds to the OSC characters T:K.)

The low-water mark of the iSBC 544A board is not configurable;
therefore, setting this field has no effect on that board.

An ASCII character that the communication board sends to the
connecting device when the number of bytes in its input buffer drops
to the low-water mark. Normally this character tells the connecting
device to resume sending data. (This field corresponds to the OSC
characters T:P.)

The fconchar for the iSBC 544A board is set to the XON
(CONTROL-Q) character and is not configurable; therefore, setting
this field has no effect on that board.

An ASCII character that the communication board sends to the
connecting device when the number of characters in its input buffer
rises to the high-water mark. Normally this character tells the
connecting device to stop sending data. (This field corresponds to
the OSC characters T:Q.)

The fcoffchar for the iSBC 544A board is set to the XOFF
(CONTROL-S) character and is not configurable; therefore, setting
this field has no effect on that board.

(Corresponds to the OSC characters T:N) This word specifies the
characteristics of the physical link between the terminal and a
device. Not all device drivers support link$parameter. This field is
supported by those boards supported by the Terminal
Communications Controller driver, including the iSBC 188/48,
iSBC 188/56, iSBC 546, iSBC 547, iSBC 548, and iSBC 548
controllers.

EIOS System Calls

The meaning of the bits in this field are as follows:

Bits

0-1

2-3

4-5

6-14

15

Value and Meaning

Parity
o = No parity
1 = Invalid Value
2 = Even parity
3 = Odd parity

Character length
o = 6 bits/character.
1 = 7 bits/character.
2 = 8 bits/character.
3 = Invalid Value

Number of stop bits.
o = 1 stop bit.
1 = 1 1/2 stop bits.
2 = 2 stop bits.

Reserved

Check if this word is to be used
o = not used
1 = used

S$.SPECIAL

If parity is enabled, an additional bit position beyond those specified
in the Character Length control is added to the transmitted data
and expected in received data. The received parity bit is transferred
to the CPU as part of the data unless 8 bits/character is selected. If
a parity error is detected on input, the character is discarded.

In the 6 and 7 bits/character modes unused bit positions in transmit
data are ignored. Unused bits in receive data are set to 1. If a
framing error is detected on input, the character is returned as an 8-
bit null (OOH).

Bit 15 is checked to see if this word is to be used. If set to 1, the
driver passes the low-order byte to the controller, which sets the
parity, character length, and stop bits. If set to 0, this word is
skipped and the terminal$flags field is used.

spchiwater$mark This word specifies the high-water mark used by the special
character mode (bit 1 of special$modes) and is ignored if the special
character mode is off. If your device driver supports the special
character mode, the driver processes special characters differently
when the number of characters in the input buffer reaches the high
water mark. You can define up to four special signal characters
(corresponds to the OSC characters T:A).

EIOS System Calls 127

S$SPECIAL

special$char(4) This array holds the characters you define as special characters (and
corresponds to the OSC characters T:Z). If you define less than
four special characters, then you must fill the remaining slots in the
array with duplicates of the last character you define.

Designating Characters for Signaling from a Terminal Keyboard (Function Code 6)

You can use the S$SPECIAL system call to associate a keyboard character with a
semaphore, so that whenever the character is entered into the terminal, the Basic I/O
System automatically sends a unit to the semaphore. Up to 12 character-semaphore pairs
can be so associated simultaneously; each character being associated with a different
semaphore, if desired. Character-semaphore pairs are called Signal Characters.

To set up a signal character, call S$SPECIAL with a device connection, with function equal

(

to 6, and with data$ptr pointing to a structure of the following form:.i.structure:signal$pair; (

where:

semaphore

character

DECLARE signal$pair STRUCTURE(
semaphore
character

TOKEN,
BYTE) ;

A TOKEN for the semaphore that is to be associated with the
character.

If the character value is in the range 0 to 1FH, or is 7FH, the
terminal support code sends a unit to the associated semaphore
when it receives the ASCII equivalent of this value.

If you add 20H to the character values in the 0 to 1FH range
(making this range 20H to 3FH), or if the value is 40H, then the
type ahead buffer (and the input buffer if this is a buffered device)
is cleared and a unit is sent to the associated semaphore.

To delete a signal character, call S$SPECIAL with the semaphore field set to 0 and
character set to the signal character to be deleted.

Tape Drive Functions (Function Codes 7, 8, 9, and 10)

128

The S$SPECIAL system call performs four different functions that apply to tape drives
only. These functions include rewinding a tape, searching for file marks, writing file marks,
and retentioning a tape.

To rewind a tape, call S$SPECIAL with the following information:

connection

function

data$ptr

A TOKEN for a connection to a physical file.

Set to 7.

Set to NIL.

EIOS System Calls

(

S$SPECIAL

This function terminates tape read and write operations and rewinds a tape to its load
point. If the tape drive is performing a write operation when you invoke this call, the tape
drive writes a file mark before it rewinds the tape.

To search for a file mark, call S$SPECIAL with the following information:

connection

function

A TOKEN for a connection to a physical file.

Set to 8.

data$ptr Set to NIL.This function terminates tape read operations and moves the tape to
the next file mark. Any outstanding requests are completed before this call takes effect.

To write a file mark, call S$SPECIAL with the following information:

connection

function

data$ptr

A TOKEN for a connection to a physical file.

Set to 9.

Set to NIL.

This function terminates tape write operations and writes a file mark at the current
position on the tape.

To retention a tape, call S$SPECIAL with the following information:

connection

function

data$ptr

A TOKEN for a connection to a physical file.

Set to 10.

Set to NIL.

This function fast-forwards the tape to the end and then rewinds it to the load point.

EIOS System Calls 129

S$SPECIAL

Getting Terminal Status (Function Code 16)

130

This function applies only to physical files. You can get the status of a terminal that is
being driven by a terminal device driver by issuing a call to S$SPECIAL.

In this section, certain terms unique to terminal devices (for example, line-editing, OSC
sequences, translation) are described only briefly. If you are unfamiliar with these terms,
refer to the iRMX® Device Drivers User's Guide.

To get a terminal's status, call S$SPECIAL with a connection for the terminal, with
function equal to 16, and with data$ptr pointing to a structure of the form:

DECLARE terminal$status STRUCTURE(
terminal$flags
input$conn$flags
input$state
input$conn
input$count
input$actual
rawbufcount
typeahead$count
num$input$requests
output$conn$flags
output$state
output$conn
output$count
output$actual
outbufcount
num$output$requests

WORD,
WORD,
WORD,
TOKEN,
WORD,
WORD,
WORD,
BYTE,
BYTE,
WORD,
WORD,
TOKEN,
WORD,
WORD,
WORD,
BYTE) ;

where:

terminal$f1ags The current attributes associated with the terminal. For the
meaning of the bits in this word, see the terminal$f1ags parameter in
the description of function codes 4 and 5 of the S$SPECIAL system
call.

input$conn$f1ags The current attributes associated with the terminal's active input
connection. For the meaning of the bits in this word, see the
connection$f1ags parameter in the description of function codes 4
and 5 of the S$SPECIAL system call.

EIOS System Calls

(

input$state

EIOS System Calls

S$SPECIAL

The internal state of this terminal's input connection. The bits in
this WORD are encoded as follows. (Bit a is the low-order bit.)

o

1

2

3

4

5

Value and Meaning

Indicates whether an input request has been set
up.

o = An input request has not been set up.

1 = An input request has been set up.

Indicates whether the current input request has
completed.

o = The current input request has not
completed.

1 = The current input request has completed.

Reserved

Indicates whether an Operating System
Command (OSC) sequence is being processed.

o = An OSC sequence is not being processed.

1 = An OSC sequence is being processed.

Indicates whether a complete line has been
processed and is ready for transfer from the
line-edit buffer to the application task's buffer.
Only applies to terminals in line-edit mode.

a = A complete line has not been processed.

1 = A complete line has been processed.

Indicates whether the current character was
preceded by a CONTROL-P (quoting
character) and is being interpreted as data,
rather than as a line-editing character. Output
control characters, such as CONTROL-S and
CONTROL-Q perform their normal functions
even if preceded by CONTROL-Po Only
applies to terminals in line-edit mode.

o = The current character was not preceded by
a CONTROL-Po

1 = The current character was preceded by a
CONTROL-Po

131

S$SPECIAL

6

7

8

9

10

132

Indicates whether an escape sequence is being
processed.

o = An escape sequence is not being
processed.

1 = An escape sequence is being processed.

Indicates whether a CONTROL-R is being used
to recall the last line. Only applies to terminals
in line-edit mode.

o = The last line is not being recalled.

1 = The last line is being recalled.

Indicates whether this terminal is on-line and
available for use. Only applies to terminal
configured for use with a modem.

o = The terminal is not available for use.

1 = The terminal is available for use.

Indicates whether this terminal is waiting for a
ring interrupt as a result of a modem query
OSC command. Only applies to terminals
configured for use with a modem.

o = The terminal is not waiting for a ring
interrupt.

1 = The terminal is waiting for a ring interrupt.

Indicates whether this terminal is waiting for a
carrier loss interrupt as a result of a modem
query OSC command. Only applies to
terminals configured for use with a modem.

o = The terminal is not waiting for a carrier
loss interrupt.

1 = The terminal is waiting for a carrier loss
interrupt.

EIOS System Calls

(,

'~
/

S$SPECIAL

11

12, 13

Indicates whether this terminal has a modem
query pending as a result of a modem query
OSC command. Only applies to terminals
configured for use with a modem.

D = The terminal does not have a modem
query pending.

1 = The terminal does have a modem query
pending.

Reserved.

14 Indicates whether the current line has been
cancelled. Only applies to terminals in line-edit
mode.

o = The current line has not been cancelled.

1 = The current line has been cancelled.

15 Indicates whether the type-ahead buffer is full.

input$conn

input$count

input$actual

rawbufcoun t

typeahead$count

D = The type-ahead buffer is not full.

1 = The type-ahead buffer is full.

A TOKEN for the most recently used input connection associated
with this terminal.

The number of characters requested by the latest input request.

The number of characters that were moved from the raw input or
type-ahead buffer to the application task's buffer during the latest
request.

The number of characters available in the raw input buffer.

The number of characters available in the type-ahead buffer.

num$input$requests The number of input requests in the input queue for this terminal.

output$conn$flags The current attributes associated with the terminal's active output
connection. For the meaning of the bits in this word, see the
connection$flags parameter in the description of function codes 4
and 5 of the S$SPECIAL system call.

output$state

EIOS System Calls

The internal state of this terminal's output connection. This
parameter can be used to determine if a terminal's output is
hindered in some way (for example, because an XOFF was
received). To check for hindered output, AND output$state with
the value lEOH. If the result is non-zero, output is hindered. You
can resume terminal output by invoking S$SPECIAL with function
code 18.

133

S$SPECIAL

134

The bits in this WORD are encoded as follows. (Bit 0 is the low
order bit.)

Bits

0-1

Value and Meaning

o = Output character processing is
occurring normally without an escape
character being encountered.

1 = An ESC character has been encountered
in the output stream. This requires special
handling because it may be part of an
escape or OSC sequence or it may need to
be translated.

2 = The previously encountered escape

(

character is part of an OSC sequence that (
is being processed.

2

3

4

5

3 = The previously encountered escape
character is part of an escape sequence
that is being translated.

Indicates whether an output request has been
set up.

o = An output request has not been set up.

1 = An output request has been set up.

Indicates whether the terminal controller is
transmitting characters from the current output
request or is ready to transmit a character from
the next output request. Only applies to non
buffered devices.

o = The terminal controller is busy
transmitting characters from the current
request on an interrupt-driven basis.

1 = The terminal controller is ready to
transmit a character once the next output
request arrives.

Reserved.

Indicates whether this terminal's output is being
discarded (in discarding mode).

o = Not in discarding mode.

1 = In discarding mode.

EIOS System Calls

output$conn

output$count

output$actual

outbufcount

num$out
put$requests

EIOS System Calls

S$SPECIAL·

6

7

8

Indicates whether this terminal's output is
blocked because an XOFF was received or a
page scroll has completed (placing output into
stopped mode).

o = Output is not blocked.

1 = Output is blocked.

Indicates whether this terminal's output is in
scroll mode.

o = Not in scroll mode.

1 = In scroll mode.

Indicates whether the terminal's output is
blocked because an XOFF was received.

o = Output is not blocked.

1 = Output is blocked.

9 Indicates whether the terminal's current output
request has been cancelled and is being flushed.

10-15

o = The terminal request has not been
cancelled.

1 = The terminal request has been cancelled.

Reserved.

A TOKEN for the most recently used output connection associated
with this terminal.

The number of characters requested by the latest output request.

The number of characters moved from the application task's buffer
into the output buffer during the latest output request.

The number of characters still awaiting output from the output
buffer of the Terminal Support Code or the buffered device.

The number of output requests in the output queue for this
terminal.

135

S$SPECIAL

Cancelling Terminal I/O (Function Code 17)

The S$SPECIAL system call allows a program to cancel all requests associated with a
specified connection to a terminal.

To cancel all requests associated with a connection to a terminal, call S$SPECIAL with a
connection for the terminal, with function equal to 17, and with data$ptr pointing to a
structure of the form:

DECLARE canceliostruc STRUCTURE(cancel$conn$t TOKEN);

where:

cancel$conn$t A TOKEN for the connection whose requests are to be cancelled.
Setting cancel$conn$t to SELECTOR$OF(NIL) cancels all input
requests associated with the connection specified by S$SPECIAL's
connection parameter. To determine which connection is active and
can be cancelled, invoke S$SPECIAL with function equal to 16 (get
terminal status) and check the TOKEN returned in the input$conn
parameter.

NOTE

The cancel terminal I/O function cancels all requests that are using the
specified connection. Therefore, unless you have a reason to do otherwise,
each task using a particular terminal device should have its own connection
to the device. Then the requests associated with a private connection can
be cancelled without affecting other input requests on the same terminal
device.

Resuming Terminal I/O (Function Code 18)

136

The S$SPECIAL system call allows a program to resume an output request that is blocked
because an output control character was entered at the terminal. To resume an output
request that is blocked, call S$SPECIAL with any connection for the blocked terminal and
with function equal to 18. The data$ptr parameter is ignored.

EIOS System Calls

(

S$SPECIAL

Condition Codes
E$OK OOOOH No exceptional conditions.

E$CONN$NOT$OPEN 0034H At least one of the following is true:

• The connection is not open.

• The connection was opened by A$OPEN rather
than S$OPEN.

E$EXIST 0OO6H The connection parameter is not a token for an
existing object.

E$FLUSHING 002CH The specified device is being detached.

E$IDDR 002AH The requested function is not supported by the device
containing the specified file.

E$IFDR 002FH The Extended I/O System does not support the
requested function for the file driver associated with
the connection.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOMEM 0042H The BIOS memory pool on the remote server does
not have a block of memory large enough to allow the
system call to run to completion.

EIOMODE 0056H One of the following is true:

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

EIONO$DATA 0055H The tape drive attempted to read the next record, but
it found no data.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EIOS System Calls 137

S$SPECIAL

E$LIMIT 0OO4H At least one of the following is true: (
• Either the calling task's job or the job's default

user object is already involved in 255 (decimal)
I/O operations.

• The calling task's job is not an I/O job.

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0OO8H This call is not part of the present configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection.

E$PARAM 8004H The function code is not a legitimate value.

E$SPACE 0029H At least one of the following is true:

• The call attempted to format a track that is
beyond the end of the volume.

• When formatting a RAM-disk or a tape, the call
attempted to format a track other than track zero.

E$STREAM$SPECIAL 003CH At least one of the following is true:

• The calling task is attempting to satisfy a stream
file request, but there is no request queued at the
stream file.

• The calling task attempted to satisfy a stream file
request, but the only queued request is a query.

• The calling task is querying a stream file, but the
only request queued at the file is another query.
The Extended I/O System removes both queries
from the queue and returns this exception code.

E$SUPPORT 0023H The specified connection was created by a task
outside of the calling task's job.

138 EIOS System Calls

S$TRUNCATE$FILE

The S$TRUNCATE$FILE system call removes information from the end of a named data
file. This system call can be used only with named files.

CALL RQSTRUNCATE$FILE(connection, except$ptr);

Input Parameter
connection

Output Parameter
except$ptr

Description

A TOKEN for a connection to the named data file that is to be
truncated. The file pointer for this connection tells the Extended
I/O System where to truncate the file. The byte indicated by the
pointer is the first byte to be dropped from the file.

A POINTER to a WORD where the Extended I/O System returns
a condition code.

This system call applies to named data files only. When called, it truncates a file.
"Truncate" means to get rid of the data in the file from the current location of the file
pointer to the end of the file.

Unless the file pointer is already where you want it, your task should use the S$SEEK
system call to position the pointer before using the S$TRUNCATE$FILE system call.

Truncation will occur immediately, regardless of the status of other connections to the
same file. If the pointer is at or beyond the end-of-file, no truncation occurs.

File pointers for other connections to the file are not affected by the truncation operation.
Thus, it is possible that file pointers for other connections to the file will be beyond the new
end-of-file after the S$TRUNCA TE$FILE call. If a task invokes the A$READ or
S$READ$MOVE system calls with a file pointer beyond the end-of-file, the Basic I/O
System behaves as though the reading operation began at the end-of-file. If a task invokes
the A$WRITE or S$WRlTE$MOVE system calls with a file pointer beyond the end-of-file,
the Basic I/O System attempts to expand the file. If the Basic I/O System does expand
your file in this manner, the file contains random information between the old end-of-file
and the point in the file where the write begins.

Eros System Calls 139

S$TRUNCATE$FILE

Access Requirements

Three access requirements pertain to this system call. First the connection must be open
for writing only or for both reading and writing. If this is not the case, your task can use
the S$OPEN system call to open the connection.

Second, the connection must have update access to the file. Recall that the Extended I/O
System computes a connection's access when the connection is created.

Third, the connection must have been created by a task within the calling task's job. If this
is not the case, use the existing connection as a prefix, and have the calling task invoke the
S$ATIACH$FILE system call.

Condition Codes
E$OK OOOOH No exceptional conditions.

E$ CONNNOT OPEN 0034H At least one of the following is true:

• The connection is open in the wrong mode. It
must be open for writing or for both reading and
writing.

• The connection is not open.

• The connection was opened by an A$OPEN
rather than an S$OPEN.

E$FACCESS 0026H The connection does not have update access to the
file.

E$EXIST 0OO6H The connection parameter is not a token for an
existing object.

E$IFDR 002FH Your task is attempting to truncate a stream or
physical file. The S$TRUNCATE$FILE system call
can be used only on named files.

EIOHARD 0052H A hard I/O error occurred. A retry is probably
useless.

EIOOPRINT 0053H The device was off-line. Operator intervention is
required.

EIOSOFf 0051H A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

140 EIOS System Calls

(

S$TRUNCATE$FILE

E$LIMIT

E$MEM

0004 H At least one of the following is true:

• The calling task's job is not an I/O job.

• Either the calling task's job, or the job's default
user object, is already involved in 255 (decimal)
I/O operations.

0002H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection.

E$SPACE

E$SUPPORT

EIOS System Calls

0029H The truncation required writing the contents of a
buffer to the file, but the volume was full.

0023H The connection was created by a task outside the
calling task's job.

141

S$UNCATALOG$CONNECTION

The S$UNCATALOG$CONNECTION deletes a logical name from the object directory of (
ajob.

CALL RQSUNCATALOG$CONNECTION(job, log$name$ptr, except$ptr);

Input Parameters
job

log$name$ptr

Output Parameter
except$ptr

Description

A TOKEN for a job. The Extended I/O System deletes the logical
name from this job's object directory. Setting the job parameter to
SELECTOR$OF(NIL) specifies the calling task's job.

A POINTER to a STRING (of 1 to 12 characters) containing the
logical name to uncatalog. The name can be delimited with colons
(:). The operating system removes the colons so that a logical name
with colons is the same as one without (e.g., :FO: is effectively the
same as FO). Colons do not count in the length of the name.

A POINTER to a WORD where the Extended I/O System returns
the condition code.

Your tasks should invoke this system call to delete logical names that were added to the
object directory by the S$CATALOG$CONNECTION system call.

Condition Codes
E$OK

E$EXIST

E$LIMIT

ELOGNAME$
NEXIST

142

OOOOH No exceptional conditions.

0006H The job parameter is not a token for an existing
object.

0004H The calling task's job is not an I/O job.

0045H The call could not find the logical name
in the job's object directory.

EIOS System Calls

S$UNCATAlOG$CONNECTION

I ELOGNAME$- 0040H The syntax of the specified logical name /

SYNTAX is incorrect because at least one of the following
conditions is true:

• The STRING pointed to by the log$name$ptr
parameter is of zero length or has a length greater
than 12 (not including colons (:)).

• The logical name contains invalid characters .

E$MEM 0OO2H The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configuration.

E$TYPE 8002H The job parameter is a token for an object that is not
ajob.

Eros System Calls 143

S$WRITE$MOVE

The S$WRlTE$MOVE system call writes a collection of bytes from a buffer to a file.

bytes$written = RQ$S$WRITE$MOVE(connection, buf$ptr, count,
except$ptr);

Input Parameters
connection

buf$ptr

count

A TOKEN for the connection to the file in which the information is
to be written.

A POINTER to a contiguous collection of bytes that are to be
written to the specified file.

A WORD containing the number of bytes to be written from the
buffer to the file.

Output Parameters
bytes$written

except$ptr

A WORD containing the number of bytes that were actually written
to the file. This number will always be equal to or less than the
number specified in the count parameter.

A POINTER to a WORD where the Extended I/O System returns
a condition code.

Description

This system call causes the Extended I/O System to write the specified number of bytes
from the buffer to the file.

Access Control

144

To write information into a file, the connection parameter must satisfy the following two
requirements:

• The connection must have been created by a task within the calling task's job. If this is
not the case, the Extended I/O System returns an E$SUPPORT exception code.

• The connection must be open for writing or for both reading and writing.

EIOS System Calls

(

(

)

S$WRITE$MOVE

If the file is a named data file, the access rights associated with the connection must permit
the kind of writing being performed. That is, if you are writing over data in the file, the
connection must have update access or you will get an exception code; if you are writing
data beyond the end-of-file, the connection must have append access or you will receive an
exception code.

The connection can have access rights for updating, appending, or both. For information
regarding the process of assigning access to a connection, see the descriptions for the
S$A TfACH$FILE and S$CREA TE$FILE system calls.

Number of Bytes Actually Written

Occasionally, the Extended I/O System writes fewer bytes than requested by the calling
task (upon return from the call, bytes$written is less than count). This happens under two
circumstances:

• When the Extended I/O System encounters an I/O error. Your task will be informed
of this circumstance because the Extended I/O System returns an exception code.

• When the volume to which your task is writing becomes full. The Extended I/O System
informs your task of this condition by returning an E$SPACE exception code.

Where the Bytes are Written

The Extended I/O System writes the first byte starting at the byte pointed to by the file
pointer. As the Extended I/O System writes the bytes, it also updates the pointer. After
the writing operation is complete, the file pointer points to the byte immediately following
the last byte written.

Use the S$SEEK system call to position the file pointer if you are performing random
access operations.

If your task is using a connection that has append access, the task can start a writing
operation beyond (rather than at) the EOF. The Extended I/O System extends the file
and performs the writing operation. If the file is extended, the extended section of the file
contains unknown, random information (you can write data into this area later). For
example, if the EOF is at location 200 and your task positions the file pointer at 250 and
begins writing, locations 200 through 249 contain undetermined information.

EIOS System Calls 145

S$WRITE$MOVE

Effects of Priority

The priority of the task invoking this system call can greatly affect the performance of the
application system. For better performance, the priority of the invoking task should be
equal to or lower than (numerically greater than) 130. If the priority of the calling task is
greater than 130, the operating system cannot overlap the write operation with
computation or with other I/O operations. (To find out how to set priorities for
application tasks, refer to the iRMX® I Nucleus User's Guide or the iRMX® II Nucleus User's
Guide.)

Special Considerations for iRMX®-NET

iRMX-NET's remote file driver does not perform fragmentation and reassembly. For

(

optimal performance, reading and writing should begin at offsets that are integral multiples (
of the remote server's buffer size. The device$granularity parameter returned by the
S$GEUFILE$STA TUS system call indicates the buffer size of a remote server.

Condition Codes
E$OK OOOOH No exceptional conditions.

EBADBUFF 8023H This condition code is not supported in the iRMX I
Operating System.

One of the following is true: (

• The specified source memory buffer is not
writeable.

• The specified source memory buffer crosses
segment boundaries.

E$ CONNNOT OPEN 0034H At least one of the following is true:

• The connection is not open for writing.

• The connection is not open.
(

• The connection was opened with A$OPEN rather
than with S$OPEN.

E$EXIST 0006H The connection parameter is not a token for an
existing object.

E$FACCESS 0026H The call tried to write beyond the end-of-file, but the
connection specified does not have append access to
the file.

E$FLUSHING 002CH The specified device is being detached.

E$FRAGMENTATION 0030H The file is too fragmented to be extended.

146 EIOS System Calls

EIOHARD

EIOMODE

EIOOPRINT

EIOSOFf

EIOUNCLASS

EIOWRPROT

E$LIMIT

E$MEM

S$WRITE$MOVE

0052H A hard I/O error occurred. Another retry is probably
useless.

0056H One of the following is true:

0053H

0051H

0050H

0054H

0004H

0002H

• A tape drive attempted to perform a read
operation before the previous write operation
completed.

• A tape drive attempted to perform a write
operation before the previous read operation
completed.

The device was off-line. Operator intervention is
required.

A soft I/O error occurred. The I/O System tried to
perform the operation a number of times and failed
(the number of retries is a configuration parameter).
Another retry might still be successful.

An unknown type of I/O error occurred.

The volume is write-protected.

At least one of the following is true:

• The calling task's job is not an I/O job.

• The calling task's job, or the job's default user
object, is already involved in 255 (decimal) I/O
operations.

The memory available to the calling task's job is not
sufficient to complete the call.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ENOTCONNECTION 8042H The connection parameter is a token for an object
that is not a file connection.

E$PARAM

E$SPACE

E$SUPPORT

EIOS System Calls

8004H The calling task is attempting to write beyond the end
of a physical file.

0029H The volume is full.

0023H The connection parameter refers to a connection that
was created by a task outside of the calling task's job.

147

VERIFY$USER

The VERIFY$USER system call validates a user's name and password.

CALL RQ$VERIFY$USER(user$t, name$ptr, password$ptr, except$ptr);

Input Parameters
user$t A TOKEN for the user object to be verified.

name$ptr

password$ptr

A POINTER to a STRING containing the user name. This name
would typically be entered from the console during dynamic logon.
Only the first eight characters are used; any additional characters
are ignored.

A POINTER to a STRING containing the unencrypted user
password. This password would typically be entered from the
console at the same time as the name$ptr parameter. Only the first
eight characters are used.

Output Parameter
except$ptr A POINTER to a WORD where the Extended I/O System returns

the condition code.

Description

148

The VERIFY$USER system call validates a non-resident user's name and password.
Validation means determining if the name and password supplied as parameters identify a
predefined user of an iRMX system. This system call searches the file :CONFIG:UDF
(User Definition File) for a matching user name and password. (See the Operator's Guide
To The iRMX® Human Interface for information on the :CONFIG: UDF file.) The name
must have the exact same form as it appears in the UDF for a match to occur. The
password parameter is encrypted and then compared to the encrypted version in the UDF.
The ID defined in the UDF is also compared with the ID contained in the user object.

If a matching name, password, and ID are found, the user object is modified to indicate the
user has been verified. If iRMX-NET is configured into your system and the
VERIFY$USER call succeeds, then you also gain access to remote files. (See the iRMX®
Networking Software User's Guide for more information on iRMX-NET.)

If the name is not found or if the password, once encrypted, does not match the encrypted
password associated with the name in :CONFIG:UDF, or if the IDs are not the same, an
error is returned and the user object is not modified.

EIOS System Calls

(

(

VERIFY$USER

) The Human Interface can use the VERIFY$USER system call to check a dynamic logon
process.

NOTE

The remote file driver will reject all user tokens created by the
CREA TE$USER system call unless the VERIFY$USER system call is used
to verify the user tokens created.

Condition Codes
E$OK OOOOH No exceptional conditions.

EBADCALL 8005H A task wrote over the interface library or over the
EIOSjob.

E$CONTEXT 0OO5H The user TOKEN has already been verified.

E$DEVFD 0022H The device cannot be used with the file driver as
specified in the preceding logical attach operation.

E$DEVICE$- 0039H An I/O operation could not be performed on
DETACHING the device because it was being detached.

E$EXIST 0OO6H The user TOKEN parameter is not valid.

E$FACCESS 0026H The user does not have the proper access rights for
the requested operation.

E$FLUSHING 002CH The device is being detached.

E$FNEXIST 0021H One of the following is true:

• The file or a file in its path does not exist.

• The specified physical device was not found .

E$FTYPE 0027H A path component is not a directory file.

E$ILLVOL 002DH The file driver given in the volume label conflicts with
the file driver specified in the preceding logical attach
operation.

E$INV ALID$FNODE 003DH The fnode associated with a file is either marked not
allocated, or the fnode number is out of range.

EIOHARD 0052H A hard error occurred; the BIOS cannot retry the
request.

EIOMEM 0042H The BIOS job did not have enough memory to
perform the requested function.

EIOS System Calls 149

VERIFY$USER

EIOOPRINT 0053H The device is off-line; operator intervention is (
required.

EIOSOFf 0051H A soft error occurred and the BIOS has retried the
operation and failed; a retry is not possible.

EIOUNCLASS 0050H An unclassified I/O error occurred.

EIOWR$PROT 0054H The volume is write protected.

E$LIMIT 0OO4H The caller's job is not an I/O job.

ELOGNAME$- 0045H The logical name was not found in the
NEXIST caller's object directory, the global job object

directory, or the root job object directory.

ELOGNAME$- 0040H One of the following was true:
SYNTAX (

• A leading colon in the path name STRING
indicated the start of a logical name, but a
terminate colon was not found.

• The logical name STRING has a length of 0 or
more than 12 characters.

• The logical name STRING contains invalid
characters. (

E$MEDIA 0044H The device associated with the system call is off-line.

E$MEM 0OO2H The caller's job does not have enough memory to
perform the requested operation.

E$NAME$NEXIST 0049H The name specified in this call is not defined.

E$NOPREFIX 8022H The caller's job does not have a default prefix, or it is
invalid.

E$ NOT$ CONFIGU RED 0OO8H This call is not part of the present configuration. (
ENOTLOG$NAME 8040H The token referred to by the logical name supplied

does not refer to a valid device or file connection.

E$NOUSER 8021H The caller's job does not have a default user or it is
invalid.

E$PARAM 8004H The name or the password contain invalid characters
or the name length is equal to zero.

E$PASSWORD$- 004BH The password is incorrect.
MISMATCH

E$SHARE 0028H The file cannot be shared using the requested access.

150 EIOS System Calls

E$TYPE

EUDFFORMAT

EUIDNEXIST

EIOS System Calls

VERIFY$USER

8002H The user$t parameter is not a TOKEN for a user
object.

0048H The UDF is not in the correct format.

004AH The user ID present in the user token does not match
that specified in the UDF.

151

(

(

A
A$SPECIAL

fields for TCC-supported devices 126
Access rights 36, 43, 46, 71, 81, 145
Access rights and selecting a mode 90

8
Bit map for functions supported by GET$FILE$STATUS 79
Buffer 72, 89, 93, 108
Buffered device control 125

c
Condition codes

see also each system call 1
CREA TE$FILE

device considerations 59
special considerations for named files 58
specifying the kind of file to be created 58
temporary named files 58

CREATEIOJOB 5
message structure 9
termination codes 9

D

Data file access rights 44
Directory access rights 45

E

E$CREATE$IO$JOB 13
message structure 17
termination codes 17

EXITIOJOB 21
special circumstances 22

EIOS System Calls

INDEX

Index-l

INDEX

F

File$drivers bit map·for GET$FILE$STATUS 78

G

GET$ FILE$ STATUS
flags for diskette drives 79
share modes 78

GET$LOGICAUDEVICE$STA TUS 23
GET$USER$IDS 25

H

HYBRID$DETACH$DEVICE 28

iRMX-NET
S$ATTACH$FILE 36
S$CHANGE$ACCESS 46
S$CREATE$DIRECTORY 53
S$CREATE$FILE 59
S$DELETE$FILE 66
SGETCONNECTlON$STA TUS 73
SGETDIRECTORY$ENTRY 75
S$OPEN 91
S$READ$MOVE 94
S$RENAME$FILE 98
S$SPECIAL 109
S$WRITE$MOVE 146

L

LOGICAL$ATTACH$DEVICE 30
LOGICAL$DETACH$DEVICE 33

M

Modes for passing control to an exception handler 6

Index-2

(

(

(

(

EIOS System Calls

s
S$ATIACH$FILE 36

iRMX-NET considerations 36
S$CATALOG$CONNECTION 40
S$CHANGE$ACCESS 43

iRMX-NETconsiderations 46
S$CLOSE 50

steps in closing a file 50
S$CREATE$DIRECTORY 52

iRMX-NET considerations 53
positioning the directory 52

S$CREATE$FILE 57
iRMX-NET considerations 59

S$DELETE$CONNECTION 63
S$DELETE$FILE 65

iRMX-NET considerations 66
SGETCONNECTlON$STA TUS 70

iRMX-NETconsiderations 73
SGETDIRECTORY$ENTRY 74

iRMX-NET considerations 75
SGETFILE$STATUS 76
SGETPATH$COMPONENT 85
S$LOOK$UP$CONNECTION 87
S$OPEN 89

access rights 90
iRMX-NETconsiderations 91
modes for using a connection 89
selecting the number of buffers 90

S$READ$MOVE 93
effects of priority 94
iRMX-NETconsiderations 94
number of bytes read 94

S$READMODE
creating the buffer 93

S$RENAME$FILE 97
iRMX-NETconsiderations 98
restrictions 98

S$SEEK 102
access control 103
modes for seeking 102
reading and writing beyond the end of file 103

EIOS System Calls

INDEX

Index-3

INDEX

S (continued) (

S$SPECIAL 106
cancelling terminal I/O (function code 17) 136
designating characters for signaling from a terminal keyboard (function code 6) 128
getting disk special data (function code 3) 114
getting terminal characteristics (function code 4) 114
getting terminal status (function code 16) 130
iors$data 108
iRMX-NET considerations 109
obtaining information about stream file operations (function code 0) 111
requesting notification that a volume is unavailable (function code 2) 112
resuming terminal I/O (function code 18) 136
satisfying stream file transactions (function code 1) 111
setting terminal characteristics (function code 5) 114
tape drive functions (function codes 7, 8, 9, and 10) 128
values for special functions 106

S$TRUNCATE$FILE 139
access requirements 140

S$UNCATALOG$CONNECTION 142
S$WRITE$MOVE 144

access control 144
effects of priority 146
iRMX -NET considerations 146
number of bytes actually written 145
where the bytes are written 145

Special circumstances for EXITIOJOB 22
STARTIOJOB 35
Structure

connection information for GET$CONNECTlON$STATUS 70
device information 23
exception handler 6, 14
file$info for GET$FILE$STA TUS 76
for label information 114
formatting a track 110
iors$data 108
notification of volume availability 113
terminal information 115
user name IDs 25

T

Two conditions needed to create an existing file 57

Index-4 EIOS System Calls

(

(

\
I

j v
Values for file$driver parameter 23
Values for file$driver parameter of GET$CONNECTlON$STATUS 70
Values for the files$driver parameter 30
VERIFY$USER 148

w
What tasks can call HYBRID$DETACH$DEVICE 29
When control passes to the exception handler 14

EIOS System Calls

INDEX

Index-S

(

(

(

(

\
I

)

iRMX® Extended I/O System Cal
Reference Manu

462916-0(

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of al
Intel product users. This form lets you participate directly in the publication process. Your comment~
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of thi!
publication. If you have any comments on the product that this publication describes, please contac1
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestiom
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ DATE

TITLE
COMPANYNAM~DEPARTMENT __ ~

ADDRESS PHONE (
---~--~------------

CITY STATE ZIP CODE --------------------------- -------------------
(COUNTRY)

Please check here if you require a written reply. D

IE'D LIKE YOUR COMMENTS ...

,is document is one of a series describing Intel products. Your comments on the back of this form will
~Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
)mments and suggestions become the property of Intel Corporation.

you are in the United States, use the preprinted address provided on this form to return your
)mments. No postage is required. If you are not in the United States, return your comments to the Intel
lies office in your country. For your convenience, international sales office addresses are printed on
e last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3· 72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11.1 .. 1 ... 1 ••• 11 .. 1.1.1 •• 11.1 •• 1.1 •• 1 ... 11 •• 11111111

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

I
I

(

I"

(

(

)
INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intel Corporati on SA
Rue des Cottages 65

B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U .K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris
1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN

Intel Japan K. K.
Flower-Hill Shin-machi

1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvaegen 24

S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.
Seidlestrasse 27

0-8000 Munchen

(

(

(

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

