

iRMX® I
Application Loader

System Calls
Reference Manual

Order Number: 462917-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright © 1980,1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
Genius intel iSSB Ripplemode
~ Intel376 iSXM RMX/80 1

i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

Copyright<O 1980,1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89

iii/iv

PREFACE

This manual documents the system calls of the Application Loader, a subsystem of the
iRMX® I Operating System. The information provided in this manual is intended to serve
as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the PL/M -86
programming language and with the concepts and terminology introduced in the iRM)(® I
Nucleus User's Guide and the iRMX® I Application Loader User's Guide

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in blue ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
A$LOAD instead of RQ$A$LOAD). This convention is used to allow easier alphabetic
arrangement of the calls. The actual PL/M-86 external procedure names must be used in
all calling sequences.

You can also invoke the system calls from assembly language programs, but you must
adhere to the PL/M-86 calling sequences when doing so. For more information on these
calling sequences refer to the iRM)(® I Programming Techniques Reference Manual.

Application Loader System Calls v

CONTENTS

Chapter 1. iRMX® I Application Loader System Calls

1.1 Introduction ... 1
1.2 Response Mailbox Parameter .. 1
1.3 Condition Codes ... 1

1.3.1 Condition Codes For Synchronous System Calls .. 2
1.3.2 Condition Codes For Asynchronous System Calls ... 2

1.3.2.1 Sequential Condition Codes ... 2
1.3.2.2 Concurrent Condition Codes .. 3

1.4 System Call Dictionary .. 3
A$LOAD .. 4
A$LOAD$IO$JOB ... 15
S$LOAD$IO$JOB .. 26
S$OVERLA Y .. 34

Index

Application Loader System Calls vii

iRMX® I 1
APPLICATION LOADER SYSTEM CALLS

1.1 INTRODUCTION

This manual describes the PL/M-86 calling sequences for the system calls of the
Application Loader.

Throughout this manual, PL/M-86 data types, such as BYTE, WORD, and SELECTOR
are used. In addition, the iRMX® I data type TOKEN is used. Data types always appear
in capital letters. If your compiler supports the SELECTOR data type, a TOKEN can be
declared literally as SELECTOR. Because TOKEN is not a PL/M-86 data type, you must
declare it to be literally a SELECTO R every place you use it. Definitions of both PL/M -86
and iRMX I data types are given in the iRMX® I Nucleus User's Guide, Appendix A. The
word "token" in lowercase refers to a value that the iRMX I Operating System returns to a
TOKEN (the data type) when it creates an object.

NOTE

The values NIL and SELECTOR$OF(NIL) are used in this manual. For
the iRMX I Operating System, you may also use a value of zero in place of
NIL and SELECTOR$OF(NIL). However, Intel recommends that you use
NIL and SELECTOR$OF(NIL) in your iRMX I code to maintain upward
compatibility with the iRMX II Operating System. For a description of the
SELECTOR$OF and NIL built-in functions, refer to the PL/M-86 user's
guide.

1.2 RESPONSE MAILBOX PARAMETER

Two system calls described in this manual are asynchronous. These are the A$LOAD and
A$LOAD$IO$JOB system calls. Your task must specify a mailbox whenever it invokes an
asynchronous system call. The purpose of this mailbox is to receive a Loader Result
Segment.

In general, the Loader Result Segment indicates the result of the loading operation. The
format of a Loader Result Segment depends on which system call was invoked, so details
about Loader Result Segments are included in descriptions of the A$LOAD and
A$LOAD$IO$JOB system calls.

Application Loader System Calls 1

iRMX® I APPLICATION LOADER SYSTEM CALLS

Avoid using the same response mailbox for more than one concurrent invocation of
asynchronous system calls. This is necessary because it is possible for the Application
Loader to return Loader Result Segments in an order different than the order of
invocation. On the other hand, it is safe to use the same mailbox for mUltiple invocations
of asynchronous system calls if only one task invokes the calls and the task always obtains
the result of one call via RQ$RECElVE$MESSAGE before making the next call.

1.3 CONDITION CODES

The Application Loader returns a condition code whenever a system call is invoked. If the
call executes without error, the Application Loader returns the code E$OK. If an error
occurs, the Application Loader returns a condition code.

This manual includes, for each of the Application Loader's system calls, descriptions of the
condition codes that the system call can return. The system call manuals for the other
layers of the iRMX I Operating System do the same thing for those layers. You can use
the condition code information to write code to handle exceptional conditions that arise
when system calls fail to perform as expected. See the iRM){® I Nucleus User's Guide for a
discussion of condition codes and how to write code to handle them.

1 .3.1 Condition Codes For Synchronous System Calls

For system calls that are synchronous (S$LOAD$IO$JOB and S$OVERLA Y), the
Application Loader returns a single condition code each time the call is invoked. If your
system has an exception handler, it will receive this code when an exceptional condition
occurs, depending on how the exception$mode parameter is set. For more information see
the iRM){® I Nucleus User's Guide and the iRM){® I Interactive Configuration Utility
Reference Manual.

1.3.2 Condition Codes For Asynchronous System Calls

2

For system calls that are asynchronous (A$LOAD and A$LOADIOJOB), the
Application Loader returns two condition codes each time the call is invoked. One code is
returned after the sequential part of the system call is executed, and the other is returned
after the concurrent part of the call is executed. Your task must process these two
condition codes separately.

The iRMX® I Application Loader User's Guide describes the sequential and concurrent
portions of asynchronous system calls.

Application Loader System Calls

iRMX® I APPLICATION LOADER SYSTEM CALLS

1.3.2.1 Sequential Condition Codes

The Application Loader returns the sequential condition code in the word pointed to by
the except$ptr parameter. If your system has an exception handler, it will receive this code
when an exceptional condition occurs, depending upon how the exception$mode parameter
is set.

1.3.2.2 Concurrent Condition Codes

The Application Loader returns the concurrent condition code in the Loader Result
Segment it sends to the response mailbox. If the code is E$OK, the asynchronous loading
operation ran successfully. If the code is other than E$OK, a problem occurred during the
asynchronous loading operation, and your task must decide what to do about the problem.
Regardless of the exception mode setting for the application, the exception handler is not
invoked by concurrent condition codes, so your program must handle it.

1.4 SYSTEM CALL DICTIONARY

The following list is a summary of the iRMX I Application Loader system calls, together
with a brief description of each call and the page where the description of the call begins.

Call Description Page

ASYNCHRONOUS CALLS

A$LOAD Loads object code or data into memory 4

A$LOAD$IO$JOB Creates an I/O job, loads the job's code, and causes 15
the job's task to run.

SYNCHRONOUS CALLS

S$LOAD$IO$JOB Creates an I/O job, loads the job's code, and causes 26
the job's task to run.

S$OVERLAY Loads an overlay into memory. 34

Application Loader System Calls 3

A$LOAD

The A$LOAD system call loads an object file from secondary storage into memory.

CALL RQALOAD(connection, response$mhox, except$ptr);

Input Parameters
connection A TOKEN for a connection to the file that is to be loaded. The

connection must satisfy all of the following requirements:

• It must have been created in the calling task's job.

• It must be a connection to a named file.

• The calling user must have had READ access to the file.

• It must be closed.

If all of these connection requirements are not met, the Application
Loader returns an exception code.

Output Parameter
response$mbox A TOKEN for the mailbox to which the Application Loader sends

the Loader Result Segment after the concurrent part of the system
call finishes running. The format of the Loader Result Segment is
given in the following DESCRIPTION section.

except$ptr A POINTER to a WORD where the Application Loader will place
the condition code generated by the sequential part of the system
call.

Description

4

A$LOAD allows your task to load object code files from secondary storage into memory.
The object code to be loaded must be of the Single Task Loadable (STL) type with
LODFIX records.

Unlike the A$LOAD$IO$JOB and S$LOADIOJOB system calls, A$LOAD cannot
automatically cause the code to be executed as a task. The caller must explicitly cause the
code to be executed.

Application Loader System Calls

A$LOAD

Using A$LOAD to Load a Main Module

If you use A$LOAD to load a main module that will run as a task, there are two cases to
consider.

1. The usual case is when you are loading PIC or L TL code, or you are loading absolute
code generated with the NOINITCODE control of the LOC86 command. In this
case, the Application Loader returns, in the Loader Result Segment, parameters
defining the entry point and stack requirements for the loaded code. Your
application needs these parameters when invoking the CREA TE $ TASK,
CREATE$JOB, or CREATE$IO$JOB system call.

If the Application Loader has been configured to load only absolute code, it will not
load main modules generated with the NOlNITCODE control. In this event, the
Application Loader returns the E$LOADER$SUPPORT condition code. (See the
iRMX® I Interactive Configuration Utility Reference Manual for information about
configuring the Application Loader.)

2. If your object code is absolute code generated without the NOlNITCODE control of
the LOC86 command, you must allow the iRMX I Nucleus to create a stack for you.
To do this, specify NIL for the stack pointer parameter of the CREA TE$TASK or
the CREATE$JOB system call.

This action causes the Nucleus to create a stack for the loaded code. However,
because the loaded code contains a main module, it also contains code that switches
the stack register values so the Nucleus-created stack is ignored. This stack switching
allows the loaded code to use the stack allocated by the SEGSIZE control.

To minimize the amount of memory wasted by stack switching, specify a small stack
size (128 decimal bytes) in the CREATE$TASK, CREATE$JOB, or
CREA TEIOJOB system calls. This stack need not be large because it is used only
if the task is interrupted and stack switching occurs.

Stack switching has an undesirable but avoidable side effect. If you use the iRMX I
Dynamic Debugger, it will always indicate that the stack for the loaded code has
overflowed. The overflow indication is caused by the main module switching stacks,
rather than by an actual overflow. This means that you cannot tell whether overflow
actually has occurred. To avoid this side effect, write your source code as a
procedure or use the LOC86 NOlNITCODE control.

Application Loader System Calls 5

A$LOAD

Using A$LOAD To Load A Procedure

If you write code as a procedure that you intend to load and run, it can be loaded only by
A$LOAD. Although the process of loading a procedure is more restrictive than that of
loading a main module, you can avoid the stack-switching side effects described in the
previous section.

To successfully load code that is written as a procedure, adhere to the following rules:

• Generate the procedure as absolute code and do not use the NOlNITCODE control
of the LOC86 command.

• Adhere to the PL/M-86 LARGE model of segmentation. This means that you must
either compile the procedure using the LARGE size control, or you must follow the
calling conventions of the LARGE model. For information about the PL/M-86
LARGE model of segmentation, refer to the PL/M-86 user's guide.

• When invoking the LOC86 command to assign absolute addresses to your object
code, use the START control to select one of the PUBLIC symbols in your
procedure as an entry point. Also specify SEGSIZE(STACK(O)) to set the stack to
zero length. For more information about the START and SEGSIZE controls, refer
to the 8086 Family Utilities User's Guide.

• When you invoke the CREATE$TASK, CREATE$JOB, or CREATEIOJOB
system call, allow the operating system to allocate a stack for the new task. Do this
by setting the stack pointer parameter to NIL. Be certain that you specify a stack
size parameter that is large enough for the task. For guidelines to determining stack
sizes, refer to the iRMX® I Programming Techniques Reference Manual.

• When you invoke the CREATE$TASK, CREATE$JOB, or CREATEIOJOB
system call, set the data segment base parameter to SELECTOR$OF(NIL). The
reason for this is that a procedure adhering to the LARGE model of segmentation
always initializes its own data segment.

For information about the CREA TE$TASK or the CREA TE$JOB system calls, refer to
iRMX® I Nucleus System Calls Reference Manual.

For information about the CREA TEIOJOB system call, refer to the iRMX® Extended
I/O System Calls Manual. For information about the iRMX I Dynamic Debugger, refer to
the iRMX® I Dynamic Debugger Reference Manual.

Asynchronous Behavior

6

The A$LOAD system call is asynchronous. It allows the calling task to continue running
while the loading operation is in progress. When the loading operation is finished, the
Application Loader sends a Loader Result Segment to the mailbox designated by the
response$mbox parameter. Refer to the iRMX® I Application Loader User's Guide for an
explanation of how asynchronous system calls work.

Application Loader System Calls

A$LOAD

File Sharing

The Application Loader does not expect exclusive access to the file. However, other tasks
sharing the file are affected by the following:

• The other tasks should not attempt to share the connection passed to the Application
Loader, but instead should obtain their own connections to the file.

• The Application Loader specifies "share with readers only" when opening the
connection, so, during the loading operation, other tasks can access the file only for
reading.

Considerations Relating To Code Type

If the file being loaded contains absolute code, the Application Loader will not create
iRMX I segments for the code. Rather, it will simply load the program into the memory
locations specified for the target file. It is the user's responsibility to prevent code from
loading over existing information, including the operating system code. Refer to the
iRMX® I Interactive Configuration Utility Reference Manual to see how to do this by
reserving areas of memory.

In contrast, if the file being loaded is position-independent code (PIC) or load-time
locatable code (L TL), the Application Loader will create iRMX I segments for containing
the loaded program. However, the Application Loader does not delete these segments;
when your task no longer needs the loaded program, your task should delete the segments.

Effects Of Model Of Segmentation

The Application Loader will return (in the Loader Result Segment) a token for each of the
code, data, and stack segments.

This is enough segment information for programs compiled as COMPACT, because only
one segment of each type will be created. But if the program adheres to the LARGE or
MEDIUM model of segmentation, more than one code segment and more than one data
segment can be created, although only one token will be returned for each in the Loader
Result Segment.

This means that if the code follows the LARGE or MEDIUM model, the calling task
cannot know the location of all of the loaded program's code or data segments.
Consequently, the calling task cannot delete all of the data or code segments after the
program has executed. You can avoid this problem in either of two ways. Either be certain
that the program being loaded adheres to the COMPACT model of segmentation, or use
the A$LOAD$IO$JOB or S$LOADIOJOB system calls instead of the A$LOAD system
call.

Application Loader System Calls 7

A$LOAD

The A$LOAD Loader Result Segment

8

The Application Loader uses memory from the pool of the calling task's job to create the
Loader Result Segment for this system call. The calling task should delete the segment
after it is no longer needed. Creating multiple segments without deleting them can
eventually result in an E$MEM exception code.

The Loader Result Segment has the following form:

STRUCTURE

where:

except$code

record$count

errorrectype

undefined$ref

(except$code
record$count
errorrectype
undefined$ref
init$ip
codesegbase
stack$offset
stacksegbase
stack$size
datasegbase

WORD,
WORD,
BYTE,
WORD,
WORD,
TOKEN,
WORD,
TOKEN,
WORD,
TOKEN) ;

A WORD containing the condition code for the concurrent part of
the system call. If the code is other than E$OK, some problem
occurred during the loading operation.

A WORD containing the number of records read by the Application
Loader on this invocation of A$LOAD. If the loading operation
terminates prematurely, record$count contains the number of the
last record read.

A BYTE identifying the type of record causing premature
termination of the loading operation, except that a value of 0 means
no record caused premature termination. Object record types are
documented in the Intel publication 8086 Relocatable Object Module
Fonnats.

A WORD specifying whether the Application Loader found
undefined external references while loading the job. An undefined
external reference usually results from a linking error. The
Application Loader continues to run even if a target file contains
undefined external references.

Application Loader System Calls

init$ip

codesegbase

stack$offset

A$LOAD

The value of undefined$ref depends upon your configuration of the
Application Loader. (See the iRMX® I Interactive Configuration
Utility Reference Manual for information about configuring the
Application Loader.)

• If the Application Loader is configured to load L TL and overlay
code, as well as PIC and absolute code, undefined$ref contains
the number of undefined external references detected during
the loading operation. (Note that undefined$ref equals the
number of undefined external references even if the Application
Loader is loading PIC or absolute code.)

• If the Application Loader is configured to load only absolute
code or only PIC or absolute code, the Application Loader sets
undefined$ref to 1 or to o. It is 1 if the Application Loader finds
undefined external references; otherwise, it is o.

A WORD containing the initial value for the loaded program's
instruction pointer (IP register). The calling task can use this
information in either of two ways:

• When invoking the CREATE$TASK, CREATE$JOB, or
CREATEIOJOB system call.

• As the destination of a jump within the code segment of the
loaded program.

Init$ip is 0 if the file does not specify an initial value for the
instruction pointer, as can happen when the file contains no main
module.

A TOKEN containing the base address for the code segment with
the entry point. The value in codesegbase can be used with init$ip
as a POINTER to the entry point of the loaded program. The
Application Loader places 0 into this field if the loaded program
does not contain a main module.

A WORD containing the offset of the bottom of the stack, relative
to the beginning of the stack segment. The calling task can use the
sum of this value and the stack$size to initialize the stack pointer
(SP register).

The Application Loader sets stack$offset to zero under each of
these circumstances:

• The stack actually starts at offset o.
• There is no main module.

• The loaded code is a main module that dynamically initializes
the SP and SS registers.

Application Loader System Calls 9

A$LOAD

stacksegbase

stack$size

datasegbase

A TOKEN containing the base of the stack segment for the loaded
program. The calling task can use this value to initialize the stack
segment (SP register).

The Application Loader sets stacksegbase to 0 under each of
these circumstances:

• If there is no main module. (In this case, the target file does not
specify a stack base).

• If the loaded code is a main module that dynamically initializes
the SP and SS registers.

A WORD specifying the number of bytes required for the loaded
program's stack. The calling task can initialize the stack pointer (SP
register) to the sum of stack$offset and stack$size when invoking
the CREATE$TASK, CREATE$JOB, or CREATEIOJOB
system call.

The Application Loader sets this value to 0 whenever both the
stack$offset and stack$seg$base are o. When all three stack-related
parameters are 0 and the target file contains a main module, the
loaded code must set the stack pointer (SP register) and stack
segment (SS register).

A TOKEN containing the initial base address of the data segment
(DS register).

The Application Loader sets this value to 0 under each of these
circumstances:

• If the target file contains no main module.

• If the main module dynamically sets the DS register after the
program starts running.

Condition Codes

10

The A$LOAD system call can return condition codes at two different times. Codes
returned to the calling task immediately after invocation of the system call are sequential
condition codes. Codes returned after the concurrent part of the system call has finished
running are concurrent condition codes. The following list is divided into two parts, one
for sequential codes and one for concurrent codes.

Application Loader System Calls

A$LOAD

Sequential Condition Codes

The Application Loader can return any of the following condition codes to the WORD
pointed to by the except$ptr parameter of this system call.

E$OK

EBADHEADER

E$CHECKSUM

E$ CONNNOT OPEN

E$CONN$OPEN

E$EOF

E$EXIST

E$FACCESS

E$FLUSHING

EIOHARD

EIOOPRINT

EIOSOFf

EIOUNCLASS

Application Loader System Calls

OOOOH No exceptional conditions.

0062H The object file contains an invalid header record.

0064H The header record of the target file contains a
checksum error.

0034H The Application Loader opened the connection
but some other task closed the connection before
the loading operation was begun.

0035H The calling task specified a connection that was
already open.

0065H The Application Loader encountered an
unexpected End-Of-File while reading a record.

0006H At least one of the following is true:

• The connection parameter is not a token for
an existing object.

• The msg$mbox parameter did not refer to an
existing object.

0026H The specified connection did not have "read"
access to the file.

002CH The device containing the target file is being
detached.

0052H A hard I/O error occurred. This means that
another try is probably useless.

0053H The device containing the target file was off-line.
Operator intervention is required.

0051H A soft I/O error occurred. This means that the
I/O System tried to perform the operation and
failed, but another try might still be successful.

0050H An unknown type of I/O error occurred.

11

A$LOAD

EIOWRPROT 0054H The volume is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• Either the calling task's job, or the job's
default user object, is already involved in 255
(decimal) I/O operations.

E$LOADER$SUPPORT 006FH To load the target file requires capabilities not
configured into the Application Loader. For
example, it might be attempting to load PIC
when configured to load only absolute code.

E$MEM 0OO2H The memory available to the calling task's job or
the Basic I/O System is not sufficient to
complete the call.

ENOTFILE$CONN 0032H The calling task specified a connection to a
device rather than to a named file.

E$SHARE 0028H The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

E$SUPPORT 0023H The specified connection was not created by the
calling task's job.

E$TYPE 8002H The connection parameter is a token for an
object that is not a connection.

Concurrent Condition Codes

12

After the Application Loader attempts the loading operation, it returns a condition code in
the except$code field of the Loader Result Segment. The Application Loader can return
the following condition codes in this manner.

E$OK

EBADGROUP

EBADSEGDEF

OOOOH No exceptional conditions.

0061H The target file contains an invalid group
definition record.

0063H The target file contains an invalid segment
definition record.

Application Loader System Calls

A$LOAD

E$CHECKSUM 0064H At least one record of the target file contains a
checksum error.

E$EOF 0065H The call encountered an unexpected End-Of-
File.

E$EXIST 0OO6H At least one of the following is true:

• The mailbox specified in the response$mbox
parameter was deleted before the loading
operation was completed.

• The device containing the file to be loaded
was detached before the loading operation
was completed.

E$FIXUP 0066H The target file contains an invalid fixup record.

E$FLUSHING 002CH The device containing the target file is being
detached.

EIOHARD 0052H A hard I/O error occurred. This means that
another try is probably useless.

EIOOPRINT 0053H The device containing the target file was off-line.
Operator intervention is required.

EIOSOFT 0051H A soft I/O error occurred. This means that the
I/O System tried to perform the operation and
failed, but another try might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

E$LIMIT 0OO4H The calling task's job has already reached its
object limit.

ENOLOADER$MEM 0067H The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to allow the Application Loader to run.

ENOMEM 0068H The Application Loader attempted to load PIC
or L TL groups or segments, but the memory pool
of the calling task's job does not currently contain
a block of memory large enough to accommodate
these groups or segments.

Application Loader System Calls 13

A$LOAD

E$NOSTART 006CH The target file does not specify the entry point
for the program being loaded.

E$PARAM 8004H The target file has a stack smaller than 16 bytes.

ERECFORMAT 0069H At least one record in the target file contains a
format error.

ERECLENGTH 006AH The target file contains a record longer than the
Application Loader's internal buffer. The
Application Loader's buffer length is specified
during the configuration of the Application
Loader. See the iRMX® I Interactive
Configuration Utility Reference Manual for
information about configuring the Application
Loader.

ERECTYPE 006BH At least one of the following is true:

• At least one record in the target file is of a
type that the Application Loader cannot
process.

• The Application Loader encountered records
in a sequence that it cannot process.

ESEGBOUNDS 0070H The Application Loader created a segment into
which to load code. One of the data records
specified a load address outside of that segment.

14 Application Loader System Calls

A$LOAD$IO$JOB

The A$LOAD$IO$JOB system call reads the header record of an executable file in
secondary storage and creates an I/O job. The job's initial task then performs the
concurrent part of the call, which is the loading of the remainder of the file.

job = RQALOADIOJOB(connection, pool$min, pool$max,
except$handler, job$flags, task$priority,
task$flags, msg$mbox, except$ptr);

Input Parameters
connection

pool$min

pool$max

except$handler

job$flags

A TOKEN for a connection to the file that the Application Loader
will load. The connection must he a connection to a named file.
Also, the connection must be closed, the user object specified when
the connection was created must have had READ access, and the
connection must have been created in the calling task's job.

The Application Loader opens the connection for sharing with
readers only, so, during the loading operation, other tasks may
access the file only for reading.

A WORD containing a value the Application Loader uses to
compute the pool$min size for the new I/O job that will be created
for the loaded program.

A WORD containing a value the Application Loader uses to
compute the pool size for the new I/O job.

A POINTER to a structure of the following form:

STRUCTURE (
exception$handler$offset
exception$handler$base
exception$mode

WORD,
TOKEN,
BYTE);

This parameter is used as the input to RQ$CREA TE$IO$JOB,
when it is called to create a new job for the loaded code. If the
exception handler pointer field is NIL, the new job will have the
same exception handler as its parent. For more details, see the
description of this parameter in RQ$CREA TE$IO$JOB in the
iRM)(® Extended I/O System Calls Manual.

A WORD specifying whether the Nucleus is to check the validity of
objects used as parameters in system calls. Setting bit 1 (where bit 0
is the low-order bit) to 0 specifies that the Nucleus is to check the
validity of objects. All bits other than bit 1 must be set to o.

Application Loader System Calls 15

A$LOAD$IO$JOB

task$priority

task$flags

msg$mbox

16

A BYTE which,

• if equal to 0, indicates that the new job's initial task is to have a
priority equal to the maximum priority of the initial job of the
Extended I/O System.

• if not equal to 0, contains the priority of the initial task of the
new job. If this priority is higher (numerically lower) than the
maximum priority of the initial job of the Extended I/O System,
an E$PARAM error occurs.

A WORD indicating whether the initial task uses floating-point
instructions, and whether to start the task immediately.

Set bit ° (the low-order bit) to 1 if the task uses floating-point
instructions; otherwise set it to o.
Bit 1 indicates whether the initial task in the job should run
immediately, or whether it should be suspended until a
STARTIOJOB system call is issued to start it. Set it to 0 if the
task is to be made ready immediately; set it to 1 if the task is to be
suspended.

Set bits 2 through 15 to O.

A TOKEN for a mailbox that receives the Loader Result Segment
after the loading operation is completed. This parameter is similar
to the corresponding parameter in the CREA TEIOJOB system
call in the Extended I/O System, with these exceptions:

• You must always specify a valid mailbox TOKEN for this
parameter.

• SELECTOR$OF(NIL) or zero may not be used as a value for
the TOKEN.

• Each call to A$LOAD$IO$JOB requires a unique mailbox.

The second purpose of this parameter is to receive an exit message
from the newly created I/O job. The description of the
CREATEIOJOB system call in the iRMX® Extended I/O System
Calls manual shows the format of an exit message.

The format of the Loader Result Segment is provided later in this
description.

Application Loader System Calls

A$LOAD$IO$JOB

Output Parameters
job A TOKEN, returned by the Application Loader, for the newly

created I/O job. This token is valid only if the Application Loader
returns an E$OK condition code to the WORD pointed to by the
except$ptr parameter.

except$ptr A POINTER to a WORD where the Application Loader is to place
the condition code generated by the sequential part of the system
call.

Description

This system call operates in two phases. The first phase occurs during the sequential part
of this system call. (Refer to the iRMX® I Application Loader User's Guide for a discussion
of the sequential and concurrent parts of an asynchronous system call.) During this first
phase, the Application Loader does the following:

• Checks the validity of the header record of the target file and calculates the required
memory pool that will be given to the new job.

• Creates an I/O job. This I/O job is a child of the calling task's job. The initial task of
this job is a loader task that will asynchronously load the object file.

• Returns a condition code reflecting the success or failure of the first phase. The
Application Loader places this condition code in the WORD pointed to by the
except$ptr parameter. If the condition code is not E$OK, ·the job token returned is not
valid and the asynchronous part of the call did not execute.

The second phase occurs during the concurrent part of the system call. This part runs as
the initial task in the new job and does the following:

• Loads the file designated by the connection parameter.

• Creates the task that will execute the loaded code. If there are no errors while the file
is being loaded and if bit 1 of the task$flags parameter is 0, the concurrent part makes
the task in the new job ready to run. If bit 1 of task$flags is 1, the task will be
suspended until an RQ$START$IO$JOB is issued for this task.

• Sends a Loader Result Segment to the mailbox specified by the msg$mbox parameter.
One element in this segment is a condition code indicating the success or failure of the
second phase.

• If the object file does not contain overlays, the loader task will delete itself at this point.
If it does contain overlays, the loader task will be suspended, until a request to load an
overlay is issued.

Application Loader System Calls 17

A$LOAD$IO$JOB

NOTE

This system call should be invoked only by tasks running within I/O jobs.
Failure to heed this restriction causes the Application Loader to return an
E$CONTEXT exception code.

Pool Size For The New Job

18

The Application Loader uses the following information to compute the size of the memory
pool for the new I/O job:

• The pool$min parameter, as a number of 16-byte paragraphs.

• The pool$max parameter, as a number of 16-byte paragraphs.

• An Application Loader configuration parameter specifying the default dynamic
memory requirements. (Refer to the iRMX® I Interactive Configuration Utility Reference
Manual for information about configuring the Application Loader.)

• Memory requirements specified in the target file.

The Application Loader gives you three options for setting the size of the I/O job's
. memory pool:

1. You can set both pool$min and pool$max to o. If you do this, the Application
Loader decides how large a pool to allocate to the new I/O job. The Application
Loader uses the requirements of the target file and the default memory pool size -
established when the system is configured -- to make this decision. Unless you have
unusual requirements, you should choose this option.

2. You can use either pool$min or pool$max or both to override the Application
Loader's decision on pool size. If the Application Loader's decision lies outside the
bound(s) that you specify, the Application Loader adjusts its decision so it complies
with your bounds.

3. If you set pool$max to OFFFFH, the Application Loader allows the new I/O job to
borrow memory from the calling task's job. The initial size of the memory pool is
based on the pool$min parameter.

If you select Option 1 or 2, the Application Loader creates an I/O job with the minimum
pool size equal to the maximum pool size. This means that the new I/O job will not be able
to borrow memory from the calling task's job. If you want the I/O job to be able to borrow
memory, select Option 3.

This system call is asynchronous. It allows the calling task to continue running while the
loading operation is in progress. When the loading operation is finished the Application
Loader sends a Loader Result Segment to the mailbox designated by the msg$mbox
parameter. Refer to the iRMX® I Application Loader User's Guide for a detailed
description of asynchronous system call behavior.

Application Loader System Calls

A$LOAD$IO$JOB

Format Of The Loader Result Segment

The Loader Result Segment has the form described below. This structure is deliberately
compatible with the structure of the message returned when an I/O job exits. (See the
iRMX® Extended I/O System User's Guide for a description of exit messages.)

STRUCTURE

where:

(termination$code
except$code
job$token
return$data$len
record$count
errorrectype
undefined$ref
rnern$requested
rnern$received

WORD,
WORD,
TOKEN,
BYTE,
WORD,
BYTE,
WORD,
WORD,
WORD) ;

termina tion$code A WORD indicating the success or failure of the loading operation.

except$code

job$token

return$da ta$len

• A value of 100H indicates that the loading operation succeeded.

• A value of 2 indicates that the loading operation failed. In this
case, your system should delete the newly created I/O job; the
Application Loader doesn't do so.

A WORD containing the concurrent condition code. Codes and
interpretations follow this description.

A TOKEN for the newly created I/O job.

A BYTE that indicates the length of the remainder of the data
structure minus 13 bytes. This BYTE is always set to 9.

record$count A WORD containing the number of records read by the Application
Loader. If the load operation terminates prematurely, this value
indicates the last record read.

errorrectype A BYTE identifying the type of record causing the termination of
the loading operation.

• A value of 0 means that no record caused termination.

• A non-O value indicates the type of the record that caused
premature termination. Object record types are documented in
the Intel publication 8086 Relocatable Object Module Formats.

Application Loader System Calls 19

A$LOAD$IO$JOB

undefined$ref

mem$requested

mem$received

This value tells whether the Application Loader found undefined
external references while loading the job. An undefined external
reference usually results from a linking error. The Application
Loader continues to run even if a target file contains undefined
external references. The value of undefined$ref depends upon the
configuration of the Application Loader. (See the iRMX® I
Hardware and Software Installation Guide and the iRMX® I
Interactive Configuration Utility Reference Manual for information
about configuring the Application Loader.)

• If the Application Loader is configured to load LTL code, as
well as PIC and absolute code, undefined$ref contains the
number of undefined external references the Application
Loader detected during the loading operation. (Note that
undefined$ref equals the number of undefined external
references even if the Application Loader is loading PIC or
absolute code.)

• If the Application Loader is configured to load only PIC or
absolute code or only absolute code, the Application Loader sets
undefined$ref to 1 or to o. It is 1 if the Application Loader
found undefined external references; otherwise, it is o.

A WORD indicating the number of 16-byte paragraphs the target
file requested for the new job, including the memory needed for all
segments and that needed for the job's memory pool.

A WORD indicating the number of 16-byte paragraphs actually
allocated to the new job.

Condition Codes

This system call can return condition codes at two different times. Codes returned to the
calling task immediately after the invocation of the system call are considered sequential
condition codes. Codes returned after the concurrent part of the system call has finished
running are considered concurrent condition codes. The following list is divided into two
parts -- one for sequential codes and one for concurrent codes.

Sequential Condition Codes

20

The Application Loader returns one of the following condition codes to the WORD
pointed to by the except$ptr parameter:

E$OK

EBADHEADER

OOOOH No exceptional conditions.

0062H The object file contains an invalid header record.

Application Loader System Calls

A$LOAD$IO$JOB

E$CHECKSUM 0064H The header record of the target file contains a
checksum error.

E$CONN$NOT$OPEN 0034H The Application Loader opened the connection,
but some other task closed the connection before
the loading operation was begun.

E$CONN$OPEN 0035H The specified connection was already open.

E$CONTEXT 0OO5H The calling task's job is not an I/O job.

E$EOF 0065H The Application Loader encountered an
unexpected End-Of-File while reading a record.

E$EXIST 0OO6H At least one of the following is true:

• The connection parameter is not a token for
an existing object.

• The calling task's job has no global job.
Refer to the iRMX® Extended I/O System
User's Guide for a definition of global job.

• The msg$mbox parameter does not refer to
an existing object.

E$FACCESS 0026H The specified connection does not have "read"
access to the file.

E$FLUSHING 002CH The device containing the target file is being
detached.

EIOHARD 0052H A hard I/O error occurred. This means that
another try is probably useless.

EIOOPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

EIOSOFf 0051H A soft I/O error occurred. This means that the
I/O System tried to perform the operation and
failed, but another try might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EJOBPARAM 8060H The pool$max parameter is both non-zero and
smaller than the pool$min parameter.

Application Loader System Calls 21

A$LOAD$IO$JOB

EJOBSIZE 006DH The pool$max parameter is non-O and too small
for the target file.

E$LOADER$SUPPORT 006FH The target file requires capabilities not
configured into the Application Loader. For
example, the Application Loader might be
attempting to load PIC code when configured to
load only absolute code.

E$MEM 0OO2H The memory available to the calling task's job or
the Basic I/O System is not sufficient to
complete the call.

ENOLOADER$MEM 0067H The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to allow the Application Loader to run.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configura tion.

ENOTFILE$CONN 0032H The specified connection is to a device rather
than to a named file.

E$ PA RAM 8004H At least one of the following is true:

• The task$priority parameter is higher
(numerically lower) than the newly created
I/O job's maximum priority. This maximum
priority is specified during the configuration
of the Extended I/O System (if the job is a
descendant of the Extended I/O System) or
of the Human Interface (if the job is a
descendant of the Human Interface).

• The value of the except$mode field within
the except$handler structure lies outside the
range 0 through 3.

E$SHARE 0028H The calling task tried to open a connection to a
file already being used by some other task, and
the file's sharing attribute is not compatible with
the open request.

E$SUPPORT 0023H The specified connection was not created in this
job.

E$TIME OOOlH The calling task's job is not an I/O job.

22 Application Loader System Calls

E$TYPE

Concurrent Condition Codes

A$LOAD$IO$JOB

8002H The connection parameter is a token for an
object that is not a connection.

After the Application Loader attempts the loading operation, it returns a condition code in
the except$code field of the Loader Result Segment. The Application Loader can return
the following condition codes:

E$OK

EBADGROUP

EBADSEGDEF

E$CHECKSUM

E$EOF

E$EXIST

E$FACCESS

E$FIXUP

E$FLUSHING

EIOHARD

EIOOPRINT

Application Loader System Calls

OOOOH No exceptional conditions.

0061H The target file contains an invalid group
definition record.

0063H The target file contains an invalid segment
definition record.

0064H At least one record of the target file contains a
checksum error.

0065H The call encountered an unexpected End-Of
File.

0006H At least one of the following is true:

• The mailbox specified in the msg$mbox
parameter was deleted before the loading
operation was completed.

• The device containing the target file was
detached before the loading operation was
completed.

0026H The default user of the newly created I/O job
does not have "read" access to the target file.

0066H The target file contains an invalid fixup record.

002CH The device containing the target file is being
detached.

0052H A hard I/O error occurred. This means that
another try is probably useless.

0053H The device containing the target file is off-line.
Operator intervention is required.

23

A$LOAD$IO$JOB

EIOSOFf 0051H A soft I/O error occurred. This means that the
I/O System tried to perform the operation and
failed, but another try might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The task$priority parameter is higher
(numerically lower) than the newly created
I/O job's maximum priority. This maximum
priority is specified during the configuration
of the Extended I/O System (if the job is a
descendant of the Extended I/O System) or
during configuration of the Human Interface
(if the job is a descendant of the Human
Interface).

• Either the newly created I/O job, or its
default user, is already involved in 255
(decimal) I/O operations.

• The calling task's object directory is full.

• The root object directory is full.

ENOLOADER$MEM 0067H There is not sufficient memory available to the
newly created I/O job or the Basic I/O System to
allow the Application Loader to run.

ENOMEM 0068H The Application Loader is attempting to load
PIC or L TL groups or segments, but the memory
pool of the newly created I/O job does not
currently contain a block of memory large
enough to accommodate these groups or
segments.

E$NOSTART 006CH The target file does not specify the entry point
for the program being loaded.

E$PARAM 8004H The target file has a stack smaller than 16 bytes.

ERECFORMAT 0069H At least one record in the target file contains a
format error.

24 Application Loader System Calls

ERECLENGTH

ERECTYPE

ESEGBOUNDS

Application Loader System Calls

A$LOAD$IO$JOB

006AH The target file contains a record longer than the
Application Loader's internal buffer. The
internal buffer length is specified during the
configuration of the Application Loader. Refer
to the iRMX® I Hardware and Software
Installation Guide and the iRMX® I Interactive
Configuration Utility Reference Manual for
information about configuring the Application
Loader.

006BH At least one of the following is true:

• At least one record in the target file is of a
type that the Application Loader cannot
process.

• The Application Loader encountered records
in a sequence that it cannot process.

0070H The Application Loader created a segment into
which to load code. One of the data records
specified a load address outside of the new
segment.

25

S$LOAD$IO$JOB

The S$LOAD$IO$JOB system call synchronously loads an object file from secondary
storage to memory and creates an I/O job for it.

RQSLOADIOJOB creates a new job using RQ$CREA TE$IO$JOB and loads the
specified object file. The loaded file's code becomes the initial task of the new job. The
calling task is suspended during the loading operation. If the task$f1ags parameter
specifies delayed activation, a STARTIOJOB call must be issued to start the new task. If
the task$f1ags parameter specifies immediate activation, the task becomes ready at the end
of the loading operation.

job = RQSLOADIOJOB(path$ptr, pool$min, pool$max,
except$handler, job$flags, task$priority,
task$flags, msg$mbox, except$ptr);

Input Parameters
path$ptr A POINTER to a STRING containing a path name for the named

file with the object code to be loaded. The path name must conform
to the Extended I/O System path name syntax for named files. If
you are not familiar with iRMX I path name syntax, refer to the
iRMX® Extended I/O System User's Guide.

pool$min

pool$max

except$handler

26

A WORD containing a value that the Application Loader uses to
compute the pool size for the new I/O job. See the DESCRIPTION
section for details.

A WORD containing a value that the Application Loader uses to
compute the pool size for the new I/O job. See the DESCRIPTION
section for details.

A POINTER to a structure of the following form:

STRUCTURE (
exception$handler$offset
exception$handler$base
exception$mode

WORD,
TOKEN,
BYTE)

The Application Loader expects you to designate an exception
handler to be used both for the new task and for the new job's
default exception handler. If you want to designate the system
default exception handler, do so by setting exception$handler$base
to o. If you set the base to any other value, then the Application
Loader assumes that the first two words of this structure point to
the first instruction of your exception handler.

Application Loader System Calls

job$flags

task$priority

task$flags

S$LOAD$IO$JOB

Set the exception$mode to tell the Application Loader when to pass
control to the new task's exception handler. Encode the mode as
follows:

When Control Passes
To Exception Handler

o Control never passes to handler
1 On programmer errors only
2 On environmental conditions only
3 On all exceptional conditions

For more information regarding exception handlers and the
exception mode, refer to the iRMX® I Nucleus User's Guide.

A WORD specifying whether the Nucleus is to check the validity of
objects used as parameters in system calls. Setting bit 1 (where bit 0
is the low-order bit) to 0 specifies that the Nucleus is to check the
validity of objects. All bits other than bit 1 must be set to O.

A BYTE which,

• if equal to 0, indicates that the new job's initial task is to have a
priority equal to the maximum priority of the initial job of the
Extended I/O System.

• if not equal to 0, contains the priority of the initial task of the
new job. If this priority is higher (numerically lower) than the
maximum priority of the initial job of the Extended I/O System,
an E$PARAM error occurs.

A WORD indicating whether the initial task uses floating-point
instructions, and whether to start the task immediately.

Set bit 0 (the low-order bit) to 1 if the task uses floating-point
instructions; otherwise set it to o.
Bit 1 indicates whether the initial task in the job should run
immediately, or whether it should be suspended until a
STARTIOJOB system call is issued to start it. Set bit 1 to 0 if the
task is to be made ready immediately; set it to 1 if the task is to be
suspended.

Set bits 2 through 15 to o.

Application Loader System Calls 27

S$LOAD$IO$JOB

msg$mbox A TOKEN for a mailbox that receives an exit message from the
newly created I/O job. This parameter is similar to the
CREA TEIOJOB system call documented in the iRM)(® Extended
I/O System Calis manual, with these exceptions:

• You must always specify a valid mailbox TOKEN for this
parameter.

• SELECTOR$OF(NIL) or zero may not be used as a value for
the TOKEN.

• Each call to S$LOAD$IO$JOB requires a unique mailbox.

Output Parameters
job

except$ptr

A TOKEN, returned by the Application Loader, for the newly
created I/O job. This token is valid only if the Application Loader
returns an E$OK condition code to the WORD specified by the
except$ptr parameter.

A POINTER to a WORD where the Application Loader is to place
a condition code.

Description

28

This system call performs the same function as A$LOAD$IO$JOB. The only difference
between the calls is that S$LOAD$IO$JOB is synchronous. That is, the calling task
resumes running only after the call has completed its attempt to create an I/O job and a
user task in that job.

The Application Loader does not necessarily have exclusive access to the file being loaded.
During the loading operation, however, if other tasks are also using the file, they may
access the file only for reading.

NOTE

This system call should be invoked only by tasks running within I/O jobs.
Failure to heed this restriction causes the Application Loader to return an
E$CONTEXT exception code.

Application Loader System Calls

S$LOAD$IO$JOB

Pool Size For The New Job

The Application Loader uses the following information to compute the size of the memory
pool for the new I/O job:

• The pool$min parameter, as a number of 16-byte paragraphs.

• The pool$max parameter, as a number of 16-byte paragraphs.

• An Application Loader configuration parameter specifying the default dynamic
memory requirements. (Refer to the iRMX@ I Hardware and Software Installation
Guide and the iRMX® I Interactive Configuration Utility Reference Manual for
information about configuring the Application Loader.)

• Memory requirements specified in the target file.

The Application Loader gives you three options for setting the size of the I/O job's
memory pool:

1. You can set both pool$min and pool$max to zero. If you do this, the Application
Loader decides how large a pool to allocate to the new I/O job. The Application
Loader uses the requirements of the target file and the default memory pool size-
established when the system is configured--to make this decision. Unless you have
unusual requirements, you should choose this option.

2. You can use either pool$min or pool$max or both to override the Application
Loader's decision on pool size. If the Application Loader's decision lies outside the
bound(s) that you specify, the Application Loader adjusts it to comply with your
bounds.

3. If you set pool$upper$bound to OFFFFH, the Application Loader allows the new
I/O job to borrow memory from the calling task's job.

If you select Option 1 or 2, the Application Loader creates an I/O job with the minimum
pool size equal to the maximum pool size. This means that the new I/O job will not be able
to borrow memory from the calling task's job. If you want the I/O job to be able to borrow
memory, select Option 3.

Condition Codes

The Application Loader returns one of the following condition codes to the WORD
specified by the except$ptr parameter of this system call:

E$OK

EBADGROUP

EBADHEADER

Application Loader System Calls

OOOOH No exceptional conditions.

0061H The target file contains an invalid group
definition record.

0062H The object file contains an invalid header record.

29

S$LOAD$IO$JOB

EBADSEGDEF 0063H The target file contains an invalid segment
definition record.

E$CHECKSUM 0064H At least one record in the target file contains a
checksum error.

E$CONTEXT 0OO5H The calling task's job is not an I/O job.

E$EOF 0065H The call encountered an unexpected End-Of-
File.

E$EXIST 0OO6H At least one of the following is true:

• The msg$mbox parameter is not a token for
an existing object.

• The calling task's job has no global job.
(Refer to the iRMX® Extended I/O System
User's Guide for a definition of global job.)

• The device containing the target file was
detached.

E$FACCESS 0026H The default user object for the new I/O job does
not have "read" access to the specified file.

E$FIXUP 0066H The target file contains an invalid fixup record.

E$FNEXIST 0021H The specified target file, or some file in the
specified path, does not exist or is marked for
deletion.

E$FLUSHING 002CH The device containing the target file is being
detached.

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid, so the
file must be deleted.

EIOHARD 0052H A hard I/O error occurred. This means that
another try is probably useless.

EIOJOB 0047H The calling task's job is not an I/O job.

EIOOPRINT 0053H The device containing the target file is off-line.
Operator intervention is required.

30 Application Loader System Calls

S$LOAD$IO$JOB

EIOSOFf 0051H A soft I/O error occurred. This means that the
I/O System tried to perform the operation and
failed, but another try might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

EIOWRPROT 0054H The volume is write-protected.

EJOBPARAM 8060H The pool$max parameter is nonzero and smaller
than the pool$min parameter.

EJOBSIZE 006DH The pool$max parameter is nonzero and too
small for the target file.

E$LIMIT 0OO4H Either the newly created I/O job or its default
user object is already involved in 255 (decimal)
I/O operations.

E$LOADER$SUPPORT 006FH The target file requires capabilities not
configured into the Application Loader. For
example, it might be attempting to load PIC
when configured to load only absolute code.

E$MEM 0OO2H The target file contains either PIC segments or
groups, or L TL segments or groups. In any case,
the memory pool of the new I/O job does not
have a block of memory large enough to allow
the Application Loader to load these records.

ENOLOADER$MEM 0067H The memory pool of the newly created I/O job
does not currently have a block of memory large
enough to allow the Application Loader to run.

ENOSTART 006CH The target file does not specify the entry point
for the program being loaded.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configuration.

Application Loader System Calls 31

S$LOAD$IO$JOB

32

E$PARAM 8004H At least one of the following is true:

• The task$priority parameter is higher
(numerically lower) than the newly created
I/O job's maximum priority. This maximum
priority is specified during the configuration
of the Extended I/O System (if the job is a
descendant of the Extended I/O System) or
of the Human Interface (if the job is a
descendant of the Human Interface).

• The value of the except$mode field within
the except$handler structure lies outside the
range 0 through 3.

• The target file requested a stack smaller than
16 bytes.

E$PATHNAME$SYNTAX 003EH The specified pathname contains one or more
invalid characters.

ERECFORMAT 0069H At least one record in the target file contains a
format error.

ERECLENGTH 006AH The target file contains a record longer than the
Application Loader's internal buffer. The
Application Loader's buffer length is specified
during the configuration of the Application
Loader. (See the iRMX® I Hardware and
Software Installation Guide and the iRMX® I
Interactive Configuration Utility Reference" Manual
for information about configuring the
Application Loader.)

ERECTYPE 006BH At least one of the following is true:

ESEGBOUNDS

• At least one record in the target file is of a
type that the Application Loader cannot
process.

• The Application Loader encountered records
in a sequence that it cannot process.

0070H The Application Loader created a segment into
which to load code. One of the data records
specified a load address outside of the new
segment.

Application Loader System Calls

E$TIME

E$TYPE

Application Loader System Calls

S$LOAD$IO$JOB

DDDIH The calling task's job is not an I/O job.

8DD2H The connection parameter is a token for an
object that is not a connection.

33

S$OVERLAY

In programs with overlays, the root module of the program calls S$OVERLA Y to load
overlay modules. The root module must be loaded using one of the system calls that create
an I/O job.

CALL RQS OVERLAY (name$ptr, except$ptr);

Input Parameter
name$ptr A POINTER to a STRING containing the name of an overlay. The

overlay name should have only uppercase letters, both in this string
and when you specify the name in the LINK86 OVERLAY control.
For information about LINK86, refer to the 8086 Family Utilities
User's Guide.

Output Parameter
except$ptr A POINTER to a WORD in which the Application Loader will

place a condition code.

Description

Root modules issue this system call when they want to load an overlay module. This call
can be used with L TL code or PIC, but it cannot be used with absolute code. The iRM)(® I
Application Loader User's Guide describes overlays.

Synchronous Behavior

This system call is synchronous. The calling task resumes running only after the system call
has completed its attempt to load the overlay.

File Sharing

34

The Application Loader does not expect exclusive access to the file containing the overlay
module. However, while the overlay is being loaded, if other tasks are also using the file,
they can access the file only for reading.

Application Loader System Calls

S$OVERLAY

Condition Codes

The Application Loader returns one of the following condition codes to the calling task:

E$OK OOOOH No exceptional conditions.

E$CHECKSUM 0064H At least one record in the target overlay contains
a checksum error.

E$EOF 0065H The call encountered an unexpected End-Of-
File.

E$EXIST 0OO6H The specified device does not exist.

E$FIXUP 0066H The target file contains an invalid fixup record.

E$FLUSHING 002CH The device containing the target file is being
detached.

EIOHARD 0052H A hard I/O error occurred. This means that
another try is probably useless.

EIOOPRINT 0053H The device containing the target overlay is off-
line. Operator intervention is required.

EIOSOFT 0051H A soft I/O error occurred. This means that the
I/O System tried to perform the operation and
failed, but another try might still be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred.

E$LIMIT 0OO4H Either the calling task's job, or its default user
object, is already involved in 255 (decimal) I/O
operations.

E$NOMEM 0068H The overlay module contains either PIC
segments or groups, or LTL segments or groups.
In any case, the memory pool of the new I/O job
does not have a block of memory large enough to
allow the Application Loader to load the overlay
module.

ENOTCONFIGURED 0OO8H This system call is not part of the present
configura tion.

ERECFORMAT 0069H At least one record in the target overlay contains
a format error.

Application Loader System Calls 35

S$OVERLAY

ERECLENGTH 006AH The target overlay contains a record longer than
the Application Loader's maximum record
length. The Application Loader's maximum
record length is a parameter specified during the
configuration of the Application Loader.

ERECTYPE 006BH At least one of the following is true:

• At least one record in the target overlay is of
a type that the Application Loader cannot
process.

• The Application Loader encountered records
in a sequence that it cannot process.

E$OVERLAY 006EH The overlay name indicated by the name$ptr
parameter does not match any overlay module
name, as specified with the OVERLA Y control
of the LINK86 command.

ESEGBOUNDS 0070H The Application Loader created a segment into
which to load code. One of the data records
specified a load address outside of the new
segment.

36 Application Loader System Calls

A
A$LOAD 3,4

condition codes 10
loader result segment 8

A$LOAD$IO$JOB 3, 15
condition codes 21
loader result segment 19
memory pool size 18
two phases 17

Absolute code 7

c
Code type considerations 7
COMPACT model 7
Condition codes 2

A$LOAD 10
A$LOAD$IO$JOB 21
concurrent 3
for asynchronous system calls 2
for synchronous system calls 2
S$LOAD$IO$JOB 30
S$OVERLA Y 35
sequential 3

F
File sharing 7, 34

L
LARGE model 7
Load-time locatable code (LTL) 7
Loader Result Segment 1, 3

A$LOAD 8
A$LOAD$IO$JOB 19

Loading a main module 5
Loading a procedure 6
Loading object code 4
Loading overlays 34

Application Loader System Calls

INDEX

Index-l

INDEX

M
Main module, loading 5
MEDIUM model 7
Memory pool size 18, 29
Models of segmentation 7

o
Overlays 34

p

Position-independent code (PIC) 7
Procedure, loading 6

R

Response mailbox parameter 1
Root modules 34
RQ$RECEIVE$MESSAGE 2

S
S$LOAD$IO$JOB 3, 26

condition codes 30
memory pool size 29

S$OVERLA Y 3, 34
condition codes 35
file sharing 34
loading overlays 34
restrictions 34

Segmentation model 7
System call dictionary 3

Index-2 Application Loader System Calls

iRMX~ I Application Loader System Call
Reference Manua

462917-00

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. .Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAME/DEPARTMENT __ _

ADDRESS PHONE (
---~-----~-----------------------------

CITY STATE ZIP CODE
-- --

(COUNTRY)

Please check here if you require a written reply. D

VE'D LIKE YOUR COMMENTS ...

his document is one of a series describing Intel products. Your comments on the back of this form will
elp us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
:>mments and suggestions become the property of Intel Corporation.

you are in the United States, use the preprinted address provided on this form to return your
)mments. No postage is required. If you are not in the United States, return your comments to the Intel
lies office in your country. For your convenience, international sales office addresses are printed on
Ie last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124-9978

11.1"111.1,"11 •• 1.1.1 •• 11.1 •• 1.1 •• 1".11111111 •• 11

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

I NTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS
Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet

P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

N ETH ERLAN DS

Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AlS
P.O. Box 92

Hvamveien 4
N-20 13, Skj etten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvaegen 24

S-171 36 Sol na

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
D-8000 Munchen

