
intJ

• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • ••

,.
• • • • • • • • • • • • •
• • • • • • • • • • • • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

iRMX®
UDI System Calls
Reference Manual

Order Number: 462919-001

iRMX®
UDI System Calls

Reference Manual

Order Number: 462919-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright <0 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are locateddirectly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no ~ommitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
genius inte1 iSSB Ripplemode
1 Inte1376 iSXM RMXJ80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PCI AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trade mar k of Concurrent Sciences.

Copyright<O 1980, 1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION illSTORY DATE

-001 Original Issue. 03/89

iii/iv

PREFACE

This manual describes Intel's Universal Development Interface as it applies to the
iRMX@ I and the iRMX II Operating Systems. The manual includes a brief introduction
to the UDI and its relationship to the iRMX Operating Systems.

UDI System Calls v

CONTENTS

iRMX® UDI System Calls
1.1 Introduction .. 1
1.2 Descriptions Of System Calls .. 3
1.3 UDI System Calls Dictionary .. 4

DQ$ALLOCATE ... 7
DQ$ATIACH ... :8
DQ$CHANGE$ACCESS ... 10
DQ$CHANGE$EXTENSION .. 13
DQ$CLOSE .. 15
DQ$CREATE ... 16
DQ$DECODE$EXCEPTION .. 17
DQ$DECODE$TIME .. 18
DQ$DELETE ... 20
DQ$DETACH .. 21
DQ$EXIT .. 22
DQ$FILE$INFO .. 24
DQ$FREE ... 28
DQGETARGUMENT ... 29
DQGETCONNECTION$STATUS ... 32
DQGETEXCEPTION$HANDLER .. 34
DQGETMSIZE .. 36
DQGETSIZE .. 37
DQGETSYSTEM$ID ... 38
DQGETTIME .. 39
DQ$MALLOCATE ... 40
DQ$MFREE ... 42
DQ$OPEN .. 43
DQ$OVERLA Y ... 46
DQ$READ .. 48
DQ$RENAME ... 50
DQ$RESERVE$IO$MEMORY .. 52
DQ$SEEK ... 54
DQ$SPECIAL .. 56
DQ$SWITCH$BUFFER .. 59
DQ$TRAP$CC ... 62
DQ$TRAP$EXCEPTION ... 63
DQ$TRUNCATE .. 64
DQ$WRITE .. 65

UDI System Calls vii

Contents

Index

Tables
1. Standard UDI Condition Codes and Their Meanings ... 1
2. UDI System Calls Dictionary ... 4

viii UDI System Calls

iRMX® UDI SYSTEM CALLS 1
1.1 INTRODUCTION

This manual describes the requirements and behavior of UDI system calls in the iRMX® I
and iRMX II Operating System environments.

Table 1. Standard UDI Condition Codes and Their Meanings

Hex
Value Mnemonic UDI Calls Meaning

OOOOH E$OK All but DQ$EXIT No exceptional conditions.

·OOO2H E$MEM DQ$ALLOCATE Insufficient memory for
DQ$ATTACH the requested operation.
DQ$CREATE
DQ$OPEN
DQ$RESERVE$IO$-
MEMORY

DQ$MALLOCATE

0020H E$FEXIST DQ$RENAME The specified file exists.

0021H E$FNEXIST DQ$ATTACH The specified file
DQ$DELETE does not exist.
DQ$RENAME
DQ$CHANGE$ACCESS

(continued)

UDI System Calls 1

iRMX® UDI SYSTEM CALLS

Table 1. Standard UDI Condition Codes and Their Meanings (continued)

Hex
Value Mnemonic UOI Calls Meaning

0023H E$SUPPORT DQ$ATTACH An unsupported operation was
DQ$CHANGE$ACCESS attempted.
DQ$CREATE
DQ$DECODE$TIME
DQ$FILE$INFO
DQGETCONNECTION$-
STATUS
DQ$OPEN
DQ$OVERLAY
DQ$READ
DQ$RENAME
DQ$RESERVE$IO$MEMORY
DQ$SEEK
DQ$SPECIAL
DQ$TRUNCATE
DQ$WRITE

0026H E$FACCESS DQ$CHANGE$ACCESS Access to the specified file
DQ$DELETE is denied.

DQ$OPEN

0028H E$SHARE DQ$OPEN The specified file may not be shared.

0029H E$SPACE DQ$CREATE The operation attempted to add

DQ$WRITE a directory entry to a full directory.

0081H E$STRING- DQ$GET$ARGUMENT A string is over 45 characters long

$BUFFER DQ$CHANGE$EXTENSION or an argument is over 80
characters long.

2 UDI System Calls

iRMX® UDI SYSTEM CALLS

1.2 DESCRIPTIONS OF SYSTEM CALLS

This section describes the individual UDI calls in detail. Immediately preceding the
detailed descriptions, the UDI Call Dictionary (Table 2) arranges the calls in functional
groups, and lists the page numbers of the more detailed descriptions.

Every system call description contains the following information in this order:

• The name of the system call.

• A brief summary of the function of the call.

• The form of the call as it is invoked from a PL/M program, with symbolic names for
each parameter.

• Definition of input and output parameters.

• A complete explanation of the system call, including any information you will need to
use it.

• Condition codes--a list of the error codes that can be incurred.

UDI System Calls 3

iRMX® UDI SYSTEM CALLS

1.3 UDI SYSTEM CALLS DICTIONARY

Table 2. UDI System Calls Dictionary

UDI Call Function Performed Page

PROGRAM CONTROL CALLS

DQ$EXIT Exits from the current application job. 22

DQ$OVERLAY Causes the specified overlay to be loaded. 46

DQ$TRAP$CC Captures control when CONTROL-C is typed. 62

FILE-HANDLING CALLS

DQ$ATTACH Creates a connection to a specified file. 8

DQ$CHANGE$- Changes access rights associated with a
ACCESS file or directory. 10

DQ$CHANGE$- Changes the extension of a file name
EXTENSION in memory. 13

DQ$CLOSE Closes the specified file connection. 15

DQ$CREATE Creates a file for use by the application. 16

DQ$DELETE Deletes a file. 20

DQ$DETACH Closes a file and deletes its connection. 21

DQ$FILE$INFO Returns data about a file connection 24

DQGETCON-
NECTION$STATUS Returns status of a file connection. 32

DQ$OPEN Opens a file for a particular type
of access. 43

DQ$READ Reads the next' sequence of bytes
from a file. 48

4 UDI System Calls

iRMX® UDI SYSTEM CALLS

Table 2. UDI System Calls Dictionary (continued)

UDICall Function Performed Page

FILE-HANDLING CALLS (continued)

DQ$RENAME Renames the specified file. 50

DQ$SEEK Moves the current position pointer
ofa file. 54

DQ$SPECIAL Sets terminalline-editjtransparent mode. 56

DQ$TRUNCATE Truncates a file to the specified length. 64

DQ$WRITE Writes a sequence of bytes to a-file. 65

MEMORY MANAGEMENT CALLS

DQ$ALLOCATE Requests a memory segment of a specified
size. 7

DQ$FREE Returns a memory segment to the system. 28

DQGETMSIZE Returns the size of the specified
memory block. 36

DQGETSIZE Returns the size of the specified segment. 37

DQ$MALLOCATE Requests a logically contiguous memory
segment of a specified size. 40

DQ$MFREE Returns memory allocated by DQ$MALLOCATE
to the Free Space Pool. 42

DQ$RESERVE$- Requests memory to be set aside for
10$MEMORY overhead to be incurred by I/O operations. 52

UDI System Calls 5

iRMX® UDI SYSTEM CALLS

Table 2. UDI System Calls Dictionary (continued)

UDICali Function Performed Page

EXCEPTION-HANDLING CALLS

DQ$DECODE$- Converts an exception numeric code into its

EXCEPTION equivalent mnemonic. 17

DQGETEXCEPT - Returns a POINTER to the address of the
ION$HANDLER program currently being used to process

errors. 34

DQ$TRAP$- Identifies a custom exception processing
EXCEPTION program for a particular type of error. 63

UTILITY AND COMMAND PARSING

DQ$DECODE$- Returns system time and date in both

TIME binary and ASCII-character format 18

DQGETARGU MENT Returns an argument from a STRING. 29

DQGET- Returns the identity of the environment
SYSTEM$ID for the UDI. 38

DQGETTIME Obsolete: included for compatibility. 39

DQ$SWITCH$- Selects a new buffer from which to process

BUFFER commands. 59

6 UDI System Calls

DQ$ALLOCATE

DQ$ALLOCATE requests a memory segment from the free memory pool.

seg$t = DQ$ALLOCATE (size, except$ptr);

Input Parameter

size

Output Parameters
seg$t

except$ptr

Description

A WORD which,

• if not zero, contains the size, in bytes, of the requested segment.

• if zero, indicates that the size of the request is 65536 (64K)
bytes.

A TOKEN, into which the operating system places the base address
of the memory segment. If the request fails because the memory
requested is not available, this value will be undefined and the
system will return an E$MEM exception code.

A POINTER to a WORD where the system places the condition
code.

The DQ$ALLOCATE system call is used to request additional memory from the free
space pool of the program. Tasks may use the additional memory for any desired purpose.

Condition Codes
E$OK

E$MEM

OOOOR

0002R

No exceptional conditions.

Insufficient memory to create a segment of the
desired size.

In addition to the condition codes listed above, DQ$ALLOCA TE can return the condition
codes associated with the Nucleus system calls RQGETPOOL$A TTRIBUTES and
RQ$CREATE$SEGMENT. See the iRM)(® II Nucleus System Calls Reference Manual or
the iRMX I® Nucleus Systern Calls Reference Manual for details.

UDI System Calls 7

DQ$ATTACH

The DQ$ATTACH system call creates a connection to an existing file.

connection$t = DQ$ATTACH (path$ptr, except$ptr);

Input Parameter
path$ptr A POINTER to a STRING containing the pathname of the file to

be attached.

Output Parameters

connection$t

except$ptr

A TOKEN for the connection to the file.

A POINTER to a WORD where the system places the condition
code.

Description

8

This system call allows a program to obtain a connection to any existing file. When the
DQ$ATTACH call returns a connection, all existing connections to the file remain valid.

Your program can use the DQ$RESERVE$IO$MEMORY call to reserve memory that
the UDI can use for its internal data structures when the program calls DQ$A TTACH and
for buffers when the program calls DQ$OPEN. The advantage of reserving memory is that
the memory is guaranteed to be available when needed. If memory is not reserved, a call
to DQ$A TTACH might not be successful because of a memory shortage. See the
description ofDQ$RESERVE$IO$MEMORY later in this chapter for more information
about reserving memory.

UDI System Calls

DQ$ATTACH

Condition Codes

E$OK OOOOH No exceptional conditions.

E$FNEXIST 0021H The specified file does not exist.

E$MEM 0002H Insufficient memory for the requested operation.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$ATTACH can return the exception
codes associated with the Extended I/O System call RQSATTACH$FILE. See the
iRM)(® Extended I/O System Calls Reference Manual for details.

UDI System Calls 9

DQ$CHANGE$ACCESS

The DQ$CHANGE$ACCESS enables you to change the access rights of the owner of a
file (or directory), or the access rights of the WORLD user.

CALL DQ$CHANGE$ACCESS (path$ptr, user, access, except$ptr);

Input Parameters
path$ptr A POINTER to a STRING containing a pathname of the file.

A BYTE specifying the user whose access is to be changed. user

access

10

o Owner of the file

1 WORLD (all users on the system)

2 G ROUP (ignored by iRMX II Operating System

3-255 Reserved

If you specify a value of 3-255, an E$SUPPORT exception will be
returned.

A BYTE specifying the type of access to be granted the user. This
WO RD is to be encoded as follows. (Bit 0 is the low-order bit.)

o

1

2

3

4

5-7

Meaning

User can delete the file or directory

Read (the file) or List (the directory)

Append (to the file) or Add entry (to the directory)

Update (read and write to the file) or
Change Access (to the directory)

User can execute the file. Set to the value of bit one for
compatibility with other operating systems.

Reserved. If you specify bits 5-7, an E$SUPPO RT
exception will be returned.

VOl System Calls

DQ$CHANGE$ACCESS

Output Parameter

except$ptr

Description

A POINTER to a WORD where the system places the condition
code.

In the general iRMX environment, every program is associated with a user object, usually
referred to as the default user for the program. The default user consists of one or more
user IDs. Each file has an associated collection of user ID-access mask pairs, where each
mask defines the access rights the corresponding user ID has to the file. When the
program calls DQ$CREATE to create a file or DQ$ATTACH to get another connection
to a file, the resulting connection receives all access rights corresponding to user IDs that
are both associated with the file and in the default user. The purpose of the
DQ$CHANGE$ACCESS system call is to change, for a particular file, the access rights
associated with a particular user ID. This has the effect of changing the access granted
when the program makes subsequent calls to DQ$ATTACH to get further connections to
the file.

In the UDI subset of the iRMX environment, a default user has two IDs. One of them,
called the owner ID, is associated with the program. The other, called the WORLD, is
associated universally with all programs. DQ$CHANGE$ACCESS can change the access
mask of either the owner ID or the WORLD.

Changing the access rights for a user ID has no effect on connections already obtained by
the program. However, all subsequently obtained connections reflect the changed access
rights.

For more information about user IDs, default users, access masks, WORLD, access rights,
owner IDs, and how connections are related to all of these entities, refer to the iRM)(!8J
Basic I/O Systent User's Guide.

NOTE

DQ$CHANGE$ACCESS affects only connections made after the call is
issued. It does not affect existing connections to the file.

UDI System Calls 11

DQ$CHANGE$ACCESS

Condition Codes

12

E$OK

E$SUPPORT

E$FACCESS

OOOH No exceptional conditions.

0023H The value specified for the user parameter is
greater than two.

You tried to set bits 5-7 of the access parameter.

0026H Access to the specified file is denied.

In addition to the condition codes listed above, DQ$CHANGE$ACCESS can return the
same condition codes as the Extended I/O System call RQSCHANGE$ACCESS. See
the iRMX® Extended I/O System Calls Reference Manualfor details.

UDI System Calls

DQ$CHANGE$E}ITENSION

DQ$CHANGE$EXTENSION changes or adds the extension at the end of a file name
stored in memory (not the file name on the mass storage volume).

CALL DQ$CHANGE$EXTENSION (path$ptr, extension$ptr, except$ptr);

Input Parameters
path$ptr

extension$ptr

Output Parameter

except$ptr

Description

A POINTER to a STRING containing a pathname of the file to be
renamed.

A POINTER to a series of three bytes containing the characters to
be added to the pathname. This is not a STRING. You must
include three bytes, even if some are blank.

A POINTER to a WORD where the system places the condition
code.

This is a facility for editing strings that represent file names in memory. If the existing file
name has an extension, DQ$CHANGE$EXTENSION replaces that extension with the
specified three characters. Otherwise, DQ$CHANGE$EXTENSION adds the three
characters as an extension.

For example, a compiler can use DQ$CHANGE$EXTENSION to edit a string containing
the name, such as :AFDl:FILE.SRC, of a source file to the name, such as
:AFDl:FILE.OBJ, of an object file, and then create the object file.

Note that iRMX file names may contain multiple periods, but if they do, the extension, if
any, consists of the characters following the last period. Note also that an extension may
contain more than three characters, but any extension created or changed by
DQ$CHANGE$EXTENSION has at most three (non-blank) characters.

The three-character extension may not contain delimiters recognized by
DQGETARGUMENT but may contain trailing blanks. If the first character pointed to
by extension$ptr is a space, DQ$CHANGE$EXTENSION deletes the existing extension
including the period, if any, preceding the extension.

UDI System Calls 13

OQ$CHANGE$EXTENSION

Condition Codes

14

E$OK

E$STRING$BUFFER

OOOH No exceptional conditions.

0081H The filename is more than 14 characters
(including the "." and extension, if any).

UDI System Calls

DQ$CLOSE

DQ$CLOSE waits for completion of I/O operations (if any) taking place on the file,
empties the output buffers, and frees all buffers associated with the connection.

CALL DQ$CLOSE (connection$t, except$ptr);

Input Parameter
connection$t

Output Parameter
except$ptr

Description

A TOKEN for a file connection that is currently open.

A POINTER to a WORD where the system places the condition
code.

The DQ$CLOSE system call closes a connection that has been opened by the DQ$OPEN
system call. It performs the following actions, in order:

1. Waits until all currently running I/O operations for the connection are completed.

2. Ensures that information, if any, in a partially filled output buffer is written to the
file.

3. Releases all buffers associated with the connection.

4. Closes the connection. The connection is still valid, and can be re-opened if
necessary.

Condition Codes

E$OK OOOH No exceptional conditions.

In addition to the condition code listed above, DQ$CLOSE can return the same condition
codes associated with the Extended I/O System call RQSCLOSE. See the iRM)(®
Extended I/O Systeln Calls Reference Manual for details.

UDI System Calls 15

DQ$CREATE

DQ$CREATE creates a new file and establishes a connection to the file.

connection$t = DQ$CREATE (path$ptr, except$ptr);

Input Parameter
path$ptr A POINTER to a STRING containing a pathname for the file to be

created.

Output Parameters
connection$t

except$ptr

A TOKEN for the connection to the file.

A POINTER to a WORD where the system places the condition
code.

Descri ption

This call creates a new file with the name you specify and returns a connection to it. If a
file of the same name already exists, it is truncated to a length of zero and the data in it is
destroyed.

To prevent accidentally destroying a file, call DQ$ATTACH before calling DQ$CREATE.
If the file does not exist, DQ$A TT ACH returns an E$FNEXIST exception code.

Condition Codes

E$OK OOOOH No exceptional conditions.

16

E$MEM

E$SPACE

E$SUPPORT

0002H Insufficient memory remains to complete the
call.

0029H Insufficient space exists on a direct-access device.

0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$CREA TE can return the condition
codes associated with the Extended I/O system calls RQSCREATE$FILE and
RQSDELETE$FILE. See the iRM)(® Extended I/O System Calls Reference Manual for
details.

UDI System Calls

DQ$DECODE$E}{CEPTION

DQ$DECODE$EXCEPTION translates an exception code into its mnemonic.

CALL DQ$DECODE$EXCEPTION (exception$code, buff$ptr, except$ptr);

Input Parameter
exception$code

Output Parameters
buff$ptr

except$ptr

Description

A WORD containing the numeric exception code that is to be
translated.

A POINTER to a STRING (at least 81 bytes long) into which the
system returns the mnemonic.

A POINTER to a WORD where the system places the condition
code.

Your program can call DQ$DECODE$EXCEPTION to exchange a numeric exception
code for its hexadecimal equivalent followed by its mnemonic. For example, if you pass
DQ$DECODE$EXCEPTION a value of 2 in the except$code parameter, the system
returns the f~llowing string to the area pointed to by the buff$ptr parameter:

0002H: E$MEM

The hexadecimal values and mnemonics for condition codes are listed in Table 1. This
system call can decode any iRMX exception code value. See the Operator's Guide To The
iRMX® Human Interface for more details.

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$DECODE$EXCEPTION can return
the condition codes associated with the Human Interface system call,
RQCFORMAT$EXCEPTION. See the iRMX® Human Interface System Calls Reference
Manual for details.

UDI System Calls 17

DQ$DECODE$TIME

DQ$DECODE$TIME returns the current system time and date as ASCII date and time
strings. You can also use DQ$DECODE$TIME to return the current time and date in
binary format or as a decoded ASCII string.

CALL DQ$DECODE$TIME (date$time$ptr, except$ptr);

Output Parameters
date$time$ptr

except$ptr

,18

A POINTER to a structure of the following form:

DECLARE DT STRUCTURE(
SYSTEM$TIME DWORD,
DATE (8) BYTE,
TIME (8) BYTE);

where

SYSTEM$TIME is an operating-system-dependent DWORD
containing the current time and date. To get the current time and
date, the value in SYSTEM$TIME must be zero when the
DQ$DECODE$TIME call is issued. To decode a binary time value,
the time value must be stored in SYSTEM$TIME before making
the call. (See the following Description section for format
information.)

SYSTEM$TIME receives the time as the number of seconds
since midnight, January 1, 1978.

DATE receives the date portion of the time, in the form of
ASCII characters.

TIME receives the time-of-day portion of the time, in the form
of ASCII characters.

If the value in SYSTEM$TIME is not 0 when
DQ$DECODE$TIME is called, DQ$DECODE$TIME accepts that
value as the number of seconds since midnight, January 1, 1978,
decodes the value, and returns it in the DATE and TIME fields.

A POINTER to a WORD where the system places the condition
code.

VDI System Calls

DQ$DECODE$TIME

Description

This system call returns the indicated date and time, each as a series of ASCII bytes. (Note
that they are not STRINGs.)

DATE has the form MM/DD /YY for month, day, and year. The two slashes (/) are in the
third and sixth bytes. For example, the date January 15th of 1982 would be returned as

01/15/82

TIME has the form HH:MM:SS for hours, minutes, and seconds, with separating colons
(:). The value for hours ranges from 0 through 23. For example, the time 20 seconds past
3:12 PM would be returned as

15:12:20

If, when you call DQ$DECODE$TIME, the SYSTEM$TIME parameter is zero, the call
first gets the system time (number of seconds since midnight, January 1, 1978) and then
decodes it into the series of bytes as just described.

But if SYSTEM$TIME is not zero on input, DQ$DECODE$TIME uses it as the time to
decode.

One thing your program can do with DQ$DECODE$TIME is first to call
DQ$FILE$INFO to get two DWORD values associated with a file (the last time the file
was updated and the time the file was created). Then the program can call
DQ$DECODE$TIME to interpret the times.

Condition Codes

E$OK OOOOH No exceptional conditions.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition code listed above, DQ$DECODE$TIME can return the
condition codes associated with the Basic I/O System call RQGETTIME, see the iRM)(!BJ
Basic I/O Systent Calls Reference Manual for details.

UDI System Calls 19

DQ$DELETE

DQ$DELETE deletes an existing file.

CALL DQ$DELETE (path$ptr, except$ptr);

Input Parameter

path$ptr A POINTER to a STRING containing a pathname of the file to be
deleted.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

A program can use this system call to delete a file. The immediate action this call takes is
to mark the file for deletion. It does this rather than abruptly deleting the file, because it
will not delete any file as long as there are existing connections to the file. DQ$DELETE
will delete the file only when there are no longer any connections to the file, that is, when
all existing connections have been detached. On the other hand, once the file is marked for
deletion, no more connections may be obtained for the file by way of DQ$A TTACH.

Condition Codes

20

E$OK

E$FNEXIST

E$FACCESS

OOOOH No exceptional conditions.

0021H The specified file does not exist.

0026H Access to the specified file is denied.

In addition to the condition codes listed above, DQ$DELETE can return the condition
codes associated with the Extended I/O System call RQSDELETE$FILE. See the
iRMX® Extended I/O System Calls Reference Manual for details.

un I System Calls

DQ$DETACH

DQ$DETACH deletes a connection (but not the file) established by DQ$A TTACH or
DQ$CREATE.

CALL DQ$DETACH (connection$t, except$ptr);

Input Parameter
connection$t

Output Parameter
except$ptr

Description

A TOKEN for the file connection to be deleted.

A POINTER to a WORD where the system places the condition
code.

This system call deletes a file connection. If the connection is open, the DQ$DETACH
system call automatically closes it first (see DQ$CLOSE). DQ$DETACH also deletes the
file if the file has been marked for deletion, and this is the last existing connection to the
file. The results of specifying an invalid connection are operating-system-dependent.

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$DETACH can return the condition
codes associated with the Universal Development Interface system call DQ$CLOSE and
the Extended I/O system call RQSDELETE$CONNECTION. See the DQ$CLOSE
system call in this manual, or the iRMX® Extended I/O System Calls Reference Manual for
details.

UDI System Calls 21

OQ$E}{lT

DQ$EXIT transfers control from your program to the iRMX Operating System. It does
not return any value to the calling program, not even a condition code.

CALL DQ$EXIT (completion$code);

Input Parameter
completion$code

Description

A WORD containing the encoded reason for termination of the
program. See the following description for information about this
value.

DQ$EXIT terminates a program. Before the actual termination, all of the program's
connections are closed and detached, and all memory allocated to the program by
DQ$ALLOCATE is returned to the memory pool.

DQ$EXIT does not return a condition code to the calling program.

If the calling program is running as an I/O job, the calling task, normally the command line
interpreter (CLI), receives an iRMX condition code based on the value your program
supplied in the completion$code field when it called DQ$EXIT. This assumes the
following sequence of events:

1. The CLI calls RQ$CREATE$IO$JOB, specifying a response mailbox in the call.

2. Your program, running as a task in the created I/O job, performs its duties and then
calls DQ$EXIT, specifying an completion$code value.

3. DQ$EXIT converts the completion$code value into an iRMX condition code, as
follows:

completion- iRMX
$code Condition Associated
Value Code Mnemonic Meaning

0 OOOOH E$OK T erminatio(l was normal.

OC1H E$WARNING$EXIT Warning messages were issued.

2 OC2H E$ERROR$EXIT Errors were detected.

3 OC3H E$FATAL$EXIT Fatal errors were detected.

4 OC4H E$ABORT$EXIT The job was aborted.

5-65535 OCOH E$UNKNOWN$EXIT Cause of termination not known.

22 UDI System Calls

OQ$EXIT

4. DQ$EXIT calls RQ$EXITIOJOB, specifying the iRMX condition code in the
user$fault$code field.

5. RQ$EXIT$IO$JOB places the condition code into the user$fault$code field of a
message. Then RQ$EXIT$IO$JOB sends the message to the response mailbox set
up by the earlier call to RQ$CREA TE$IO$JOB.

6. The CLI, when it obtains the message from the response mailbox, can take
appropriate actions. Note that it can call DQ$DECODE$EXCEPTION first, to
convert the condition code into its associated mnemonic.

The CLI program supplied with the iRMX Operating Systems ignores these UDI condition
codes when they are returned in the user$fault$code field of the response message. These
condition codes are ignored because the UDI is not required to be in iRMX Operating
Systems, so the iRMX CLI assumes that it is not. Therefore, if you want the CLI to take
actions based on that code, you must provide your own CLI.

For more information about RQ$CREATE$IO$JOB and RQ$EXITIOJOB see the
iRMX® Extended I/O System Calls Reference Manual; for more information on the format
of the response message, see the iRMX Extended I/O System User's Guide.

UDI System Calls 23

OQ$FILE$INFO

DQ$FILE$INFO returns information about a file.

CALL DQ$FILE$INFO (connection$t, mode, file$info$ptr, except$ptr);

Input Parameters
connection$t

mode

Output Parameters
file$info$ptr

24

A TOKEN containing a connection for the file.

An encoded BYTE specifying whether DQ$FILE$INFO is to return
the User ID of the owner of the file. Encode as follows:

Meaning

o Do not return owner's User ID.

1 Return the owner's User ID.

2-255 Return E$SUPPORTexception.

A POINTER to a structure into which the requested information is
to be returned. The form of the structure is

DECLARE FILE$INFO STRUCTURE(
OWNER(15)
LENGTH
TYPE
OWNER$ACCESS
WORLD$ACCESS
CREATE$TIME
LASTMODTIME
GROUP$ACCESS
RESERVED(19)

BYTE,
DWORD,
BYTE,
BYTE,
BYTE,
DWORD,
DWORD,
BYTE,
BYTE) ;

UDI System Calls

DQ$FILE$INFO

where

OWNER A STRING containing (if requested) the User ID
of the file's owner.

LENGTH A DWORD that gives the size of the file in bytes.

TYPE A value indicating the type of file, as follows:

Value File Type

0 Data file

1 Directory file

2 System-specific file

3-255 Reserved

OWNER$ACCESS An encoded BYTE whose bits specify the
type of access granted to the owner, as
follows. When a bit is set, it means the type
of access is granted; otherwise the type of
access is denied. (Bit 0 is the low-order bit.)

Bit Associated Access Type

o Delete

1 Read (a data file) or Display (a directory)

2 Append (to a data file) or Add Entry (to the directory)

3 Update (read and write to a file) or Change Access (to
the directory)

4 Execute the specified file. (Set to the value of bit 1 for
compatibility with other operating systems.)

5-7 Reserved

WORLD$ACCESS An encoded BYTE whose bits specify the
type of access granted to the WORLD (all
users on the system). When a bit is set, it
means the type of access is granted;
otherwise the type of access is denied. (Bit 0
is the low-order bit.)

UDI System Calls 25

DQ$FILE$INFO

except$ptr

Description

Bit Associated Type of Access

o I>elete

1 Read (a data file) or Display (a directory)

2 Write (to a data file) or Add Entry (to a directory)

3 Update (read and write to a file) or Change Access (to a
directory)

4 Execute the specified file. (Set to the value of bit 1 for
compatibility with other operating systems.)

5-7 Reserved

CREATE$TIME The date and time that the file or directory
was created, expressed as the number of
seconds since midnight, January 1, 1978.
(You can convert this date/time to ASCII
characters by calling DQ$DECODE$TIME.)

LAST$MOI>$TIME The date and time that the file or directory
was last modified. For data files, modified
means written to or truncated; for
directories, modified means an entry was
changed or an entry was added. (You can
convert this date/time to ASCII characters
by calling DQ$DECOI>E$TIME.)

G ROUP$ACCESS An encoded byte that is always set to the
value ofWORLD$ACCESS. The iRMX
UDI does not use GROUP$ACCESS.

A POINTER to a WORI> where the system places the condition
code.

The DQ$FILE$INFO system call returns information, as described above, about a data file
or a directory file.

26 VDI System Calls

OQ$FILE$INFO

Condition Codes

E$OK

E$SUPPORT

OOOOH No exceptional conditions.

0023H The mode parameter has a value greater than 1.

In addition to the condition codes listed above, DQ$FILE$INFO can return the condition
codes associated with the Nucleus system calls RQ$CREA TE$MAILBOX and
RQ$RECEIVE$MESSAGE and the Basic I/O system call RQAGEUFILE$STATUS.
See the iRMX® II Nucleus System Calls Reference Manual or the iRMX® I Nucleus System
Calls Reference Manual and the iRMX® Basic I/O System Calls Reference Manual for
details.

UDI System Calls 27

DQ$FREE

DQ$FREE returns to the system a segment of memory obtained earlier by
DQ$ALLOCATE.

CALL DQ$FREE (seg$t, except$ptr);

Input Parameter
seg$t A TOKEN containing the memory segment to be deleted. The

TOKEN is returned by a DQ$ALLOCATE call and is no longer
valid for this procedure once this call is made.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

The DQ$FREE system call returns the specified segment to the memory pool from which
it was allocated. A subsequent attempt to use this deleted segment may cause errors or
unexpected results, since the memory may have been otherwise allocated.

Condition Codes

E$OK OOOOR No exceptional conditions.

28

In addition to the condition code listed above, DQ$FREE can return the condition codes
associated with the Nucleus system call RQ$DELETE$SEGMENT. See the iRMX® II
Nucleus System Calls Reference Manual or the iRMX® I Nucleus System Calls Reference
Manual for details.

VDI System Calls

OQGETARGUMENT

The DQGETARGUMENT system call returns arguments, one at a time, from a
command line entered at the system console. This command line is either that which
invoked the program containing the DQGETARGUMENT call or a command line
entered while the program was running.

delimit$char = DQ$GET$ARGUMENT (argument$ptr, except$ptr);

Input Parameter
argument$ptr

Output Parameters
delimit$char

except$ptr

Description

A POINTER to a STRING (at least 81 bytes long) that will receive
the argument.

A BYTE which receives the delimiter character.

A POINTER to a WORD where the system places the condition
code.

Your program can call GET$ARGUMENT to get arguments from a command line. Each
call returns an argument and the delimiter character following the argument.

Your program can use this command in two ways. One way is to get arguments from the
command line used to invoke the program at the console. In this case, you can assume that
the command line is already in a buffer that has automatically been provided for this
purpose.

The other way to use this command is to get arguments from command lines that are
entered in response to requests from your program. In this case, your program must
supply a buffer when calling DQ$READ. This is the buffer you want used when your
program calls DQGETARGUMENT. To set this up, your program must call
DQ$SWITCH$BUFFER before the call to DQGETARGUMENT.

UDI System Calls 29

DQGETARGUMENT

A delimiter is returned only if the exception code is zero. The following delimiters are
recognized by the iRMX Operating System:

,) (= #! % + - &; < > [] \' 1--

as well as a space () and all characters with ASCII values in the range 0 through 20H, or
between 7FH and OFFH.

Before returning arguments in response to DQGETARGUMENT, the system does the
following editing on the contents of the command buffer:

• It strips out ampersands (&) and semicolons (;).

• Where multiple blanks are adjacent to each other between arguments, it replaces them
with a single blank. (Tabs are treated as blanks.)

• It converts lowercase characters to uppercase unless they are part of a quoted string.

• It treats the command line and the buffer (after a DQ$SWITCH$BUFFER system
call) as if they were preceded by a null delimiter.

When returning arguments in response to DQGETARGUMENT, the system considers
strings enclosed between matching pairs of single or double quotes to be literals. The
enclosing quotes are not returned as part of the argument.

Example

30

The following example illustrates the arguments and delimiters returned by successive calls
to DQGETARGUMENT. The example assumes that the contents of the buffer are

PLM286 LlNKER.PLM PRlNT(:LP:) NOLlST

The following shows what is returned if DQGETARGUMENT is called five times.

Call Number Argument Returned Delimiter Returned

1 (06H)PLM286 space
2 (OAH)LINKER.PLM space
3 (05H)PRINT (
4 (04H):LP:)
5 (06H)NOLIST cr

Note that the argument returned has the form of an iRMX string, with the first byte
devoted to specifying the length of the string. In the second call, there are ten characters in
the argument, so the first byte contains OAH.

Note that the last delimiter for the example is a carriage return (cr). This is how your
program can determine that there are no more arguments in the command line.

UDI System Calls

Condition Codes

E$OK

E$STRING$BUFFER

UDI System Calls

DQGETARGUMENT

OOOOH No exceptional conditions.

0081H An argument has been found that is longer than
80 characters. This only indicates that another
call to DQGETARGUMENT is needed to
obtain the rest of the argument.

31

DQGETCONNECTION$STATUS

The DQGETCONNECTION$STATUS system call returns information about a file
connection.

CALL DQGETCONNECTION$STATUS (connection$t, info$ptr, except$ptr);

Input Parameter
connection$t

Output Parameters
info$ptr

32

A TOKEN containing the connection whose status is desired.

A POINTER to a structure into which the operating system is to
place the status information. The structure has the following
format:

DECLARE INFO STRUCTURE(
OPEN BYTE,

BYTE,
BYTE,
DWORD) ;

where

ACCESS
SEEK
FILE$PTR

OPEN A Boolean that is OFFH (TRUE) if the connection is
open; OOOOH (FALSE) otherwise.

ACCESS Access privileges of the connection. The right is
granted if the corresponding bit is set to 1. (Bit 0 is
the low-order bit.)

Bit
o
1
2
3
4

5-7

Access
Delete
Read
Write
Update (read and write)
Execute (Set to the value
of bit 1 for compatibility
with other operating systems.)
Reserved

UDI System Calls

DQGETCONNECTION$STATUS

except$ptr

Description

SEEK Types of seek supported.

o
3

Meaning

No seek allowed
Seek forward and backward

Other values are not meaningful.

FILE$PTR This DWORD integer marks the current position in
the file. The position is expressed as the number of
bytes from the beginning of the file, the first byte
being byte o. This field is undefined if the file is not
open or if seek is not supported by the device. (For
example, seek operations are not valid for a line
printer.)

A POINTER to a WORD where the system places the condition
code.

DQGETCONNECTION$STATUS returns information about a file. You might use this
system call, for example, if your program has performed several read or write operations
and you must determine where the file pointer is now located.

Condition Codes

E$OK

E$SUPPORT

OOOOH No exceptional conditions.

0023H An unsupported operation was attempted.

In addition to the condition code listed above, DQGETCONNECTION$STATUS can
return the condition codes associated with the Extended I/O system call
RQSGET$CONNECTION$STA TUS. See the iRMX® Extended I/O System Calls
Reference Manual for details.

UDI System Calls 33

DQGETE}{CEPTION$HANDLER

DQGETEXCEPTION$HANDLER returns the address of the current exception
handler.

CALL DQGETEXCEPTION$HANDLER (current$handler$ptr, except$ptr);

Output Parameters
current$handler$ptr A POINTER to a STRUCTURE into which this system call returns

the entry point of the current exception handler. This
STRUCTURE has the same form as a long POINTER.
DQ$TRAP$EXCEPTION specifies this entry point if it is called.

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

34

DQGETEXCEPTION$HANDLER is a system call that returns the address of the
current exception handler to your program.· This is the address specified in the most recent
call, if any, to DQ$TRAP$EXCEPTION. Otherwise, the value returned is the address of
the system default exception handler.

This routine always returns a long POINTER, even if called from a program compiled
under the SMALL model of segmentation. You can use this long POINTER in two ways:

• You can use it to make an indirect call to the current exception handler.

• After temporarily substituting another exception handler, you can use it to restore the
current exception handler.

DQGETEXCEPTION$HANDLER is used in conjunction with
DQ$TRAP$EXCEPTION and DQ$DECODE$EXCEPTION. See the descriptions of
these calls for more information.

VDI System Calls

DQGETEXCEPTION$HANDLER

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$GEUEXCEPTION$HANDLER can
return the condition codes associated with the Nucleus system call
RQGETEXCEPTION$HANDLER. See the iRMX® II Nucleus System Calls Reference
Manual or the iRMX® I Nucleus System Calls Reference Manual for details.

un I System Calls 35

DQGETMSIZE

DQGETMSIZE returns the size, in BYTES, of the memory block specified.

size = DQGETMSIZE(seg$ptr, exception$ptr);

Input Parameter
seg$ptr A POINTER that indicates an area of memory that was allocated

earlier by a call to DQ$MALLOCA TE.

Output Parameters
size

exception$ptr

A DWORD which receives the size (in BYTES) of the memory
block previously allocated by DQ$MALLOCATE.

A POINTER to a WORD where the system call places the
condition code.

Description

The DQGETMSIZE system call returns the size, in bytes, of a segment allocated by the
DQ$MALLOCA TE system call.

Condition Codes

36

E$OK OOOOR No exceptional conditions.

E$SUPPORT 0023R An unsupported operation was attempted.

In addition to the condition codes listed above, DQGETMSIZE can return the condition
codes associated with the Nucleus system call RQGETSIZE. See the iRMX® II Nucleus
System Calls Reference Manual or the iRMX® I Nucleus System Calls Reference Manual for
details.

UDI System Calls

OQGETSIZE

DQGETSIZE returns the size of a previously allocated memory segment.

size = DQGETSIZE (seg$t, except$ptr);

Input Parameter
seg$t

Output Parameters

size

except$ptr

Description

A TOKEN for a segment of memory allocated by the
DQ$ALLOCA TE call.

A WORD which,

if not zero, contains the size, in bytes, of the segment identified by
the seg$t parameter.

if zero, indicates that the size of the segment is 65536 (64K) bytes.

A POINTER to a WORD where the system places the condition
code.

The GET$SIZE system call returns the size, in bytes, of a segment.

Condition Codes

E$OK OOOOR No exceptional conditions.

In addition to the condition code listed above, DQGETSIZE can return the condition
codes associated with the Nucleus system call RQGETSIZE. See the iRM)(® II Nucleus
System Calls Reference Manual or the iRM)(® I Nucleus System Calls Reference Manual for
details.

UDI System Calls 37

OQGETSYSTEM$ID

DQGETSYSTEM$ID returns the identity of the operating system providing the
environment for the UDI.

CALL DQGETSYSTEM$ID (id$ptr, except$ptr);

Output Parameters
id$ptr

except$ptr

Description

A POINTER to a 21-BYTE buffer into which
DQGETSYSTEM$ID places a STRING identifying the operating
system.

A POINTER to a WORD where the system places the condition
code.

This system call returns the strings

RMXl or RMXII indicating iRMX lor iRMX II respectively.

Condition Codes

E$OK OOOOR No exceptional conditions.

38 UDI System Calls

DQGETTIME

DQGETTIME returns the current date and time in character format. This procedure is
obsolete.

CALL DQGETTIME (date$time$ptr, except$ptr);

This system call is included only for compatibility with previous versions of the UDI. Use
the more general DQ$DECODE$TIME system call for this function.

VDI System Calls 39

DQ$MALLOCATE

DQ$MALLOCATE requests that a specific amount of logically contiguous free memory
be added to the existing memory available to the calling program.

seg$ptr = DQ$MALLOCATE (size, except$ptr);

Input Parameter
size A DWORD that specifies the number of BYTES of memory being

requested.

Output Parameters
seg$ptr

except$ptr

A POINTER that indicates the starting address of the acquired
memory.

A POINTER to a word in which the system places the condition
code.

Description

40

The DQ$MALLOCA TE system call requests a specific amount of logically contiguous
memory be added to the memory pool of the calling program. If the call is successful, the
procedure returns a POINTER to the first byte of the acquired memory. If the call fails,
the procedure returns a POINTER of undefined value and an exception code.

Multiple calls to DQ$ MALLO CA TE will result in multiple segments being allocated.

NOTE

DQ$MALLOCATE cannot be used in the PL/M SMALL model of
compilation.

UDI System Calls

Condition Codes

E$OK

E$MEM

E$SUPPORT

DQ$MALLOCATE

OOOOH No exceptional conditions.

0002H Insufficient memory is available to fill the
request.

0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$MALLOCA TE can return the
condition codes associated with the Nucleus system calls RQGETPOOL$ATIRIBUTES
and RQ$CREATE$SEGMENT. See the iRMX® II Nucleus System Calls Reference Manual
or the iRMX® I Nucleus System Calls Reference Manual for details.

UDI System Calls 41

DQ$MFREE

DQ$MFREE returns memory allocated, by DQ$MALLOCATE, to the available memory
pool.

CALL DQ$MFREE (seg$ptr, exception$ptr);

Input Parameters
seg$ptr A POINTER to a block of memory that is to be returned to the

available memory pool.

Output Parameters
exception$ptr A POINTER to a WORD where the system places the condition

code.

Description

The DQ$MFREE system call is used to return to available memory space a block of
memory that was previously allocated using the DQ$MALLOCA TE system call. Any
memory freed by this call is no longer available to the calling program. Further attempts to
use this area of memory may result in unexpected results since the memory referenced may
have reallocated to another process.

In using the DQ$MFREE system call you must return an entire block of memory; it is not
possible to return a portion of the memory allocated by a previous call to
DQ$MALLOCA TE.

Condition Codes
E$OK OOOOH No exceptional conditions.

42

In addition to the condition code listed above, DQ$MFREE can return the condition codes
associated with the Nucleus system call RQ$DELETE$SEGMENT. See the iRM)(® II
Nucleus System Calls Reference Manual or the iRM)(® I Nucleus System Calls Reference
Manual for details.

UDI System Calls

OQ$OPEN

The DQ$OPEN system call opens a file for I/O operations, specifies how the file will be
accessed, and specifies the number of buffers needed to support the I/O operations.

CALL DQ$OPEN (connection$t, mode, nurn$buf, except$ptr);

Input Parameters
connection$t

mode

num$buf

Output Parameter
except$ptr

Description

A TOKEN for the file connection to be opened.

A BYTE specifying how the connection will be used to access the
file. This value is encoded as follows:

Value
1
2
3
4

5-7

8-255

Meaning
Read only
Write only
Update (both reading and writing)
Reserved
Available for Xenix systems;
ignored by iRMX systems
Reserved

A BYTE containing the number of buffers needed for this
connection. Specifying a value larger than 0 implicitly requests that
"double buffering" (that is, read-ahead and/or write-behind) is to be
performed automatically. Specifying a value greater than 2, results
in an E$SUPPORTerror.

A POINTER to a WORD where the system places the condition
code.

This system call prepares a connection for use with DQ$READ, DQ$WRlTE, DQ$SEEK,
and DQ$TRUNCATE commands. Your program can have up to six connections open
simultaneously.

UDI System Calls 43

OQ$OPEN

The DQ$OPEN system call does the following:

• Creates the requested buffers.

• Sets the connection's file pointer to zero. This is a place marker that tells where in the
file the next I/O operation is to begin.

• Starts reading ahead if num$buf is greater than zero and the access parameter is "Read
only" or "Update."

Selecting Access Rights

The system does not allow reading using a connection open for writing only nor writing
using a connection open for reading only. If you are not certain how the connection will be
used, specify updating. However, if the specified connection does not support the specified
type of access, an exception code is returned.

Selecting the Number of Buffers

44

The process of deciding how many buffers to request is based on three considerations-
compatibility, memory, and performance.

COMPATIBILITY. If you expect to run your UDI program on other systems, which
support the UDI, you should request no more than two buffers.

MEMORY. The amount of memory used for buffers is directly proportional to the number
of buffers. You can save memory by using fewer buffers.

PERFORMANCE. The performance consideration is more complex. Up to a certain
point, the more buffers you allocate, the faster your program can run. The actual break
even point, where more buffers don't improve performance, depends on many variables.
Often, the only way to determine the break-even point is to experiment. However, the
following statements are true of every system:

• To overlap I/O with computation, you must request at least two buffers.

• If performance is not at all important but memory is, request no buffers.

Requesting zero buffers means that no buffering is to occur. That is, each DQ$READ or
DQ$WRITE is followed immediately by the physical I/O operation necessary to perform
the requested reading or writing. Interactive programs should open :CI: and :Co: with a
request for no buffers.

If your program normally calls DQ$SEEK before calling DQ$READ or DQ$WRITE, it
should request one buffer.

UDI System Calls

DQ$OPEN

Your program can use the DQ$RESERVE$IO$MEMORY call to reseIVe memory that
the UDI can use for its internal data structures when the program calls DQ$A TIACH and
for buffers when the program calls DQ$OPEN. The advantage of reseIVing memory is that
the memory is guaranteed to be available when needed. If memory is not reseIVed, a call
to DQ$OPEN might not be successful because of a memory shortage. See the description
ofDQ$RESERVE$IO$MEMORY later in this chapter for more information about
reseIVing memory.

Condition Codes

E$OK

E$SUPPORT

E$FACCESS

E$SHARE

E$MEM

OOOOH No exceptional conditions.

0023H At least one of the following is true:

• The mode parameter is 4 or 8-255.

• The num$buffs parameter is greater than
two.

0026H Access to the specified file is denied.

0028H The specified file may not be shared.

0002H Insufficient memory remains to complete the
call.

In addition to the condition codes listed above, DQ$OPEN can return the condition codes
associated with the Extended I/O system call RQSOPEN. See the iRMX® II Extended
I/O System Calls Reference Manual for details.

UDI System Calls 45

OQ$OVERLAY

In systems using overlays, the root module calls DQ$OVERLA Y to load an overlay
module.

CALL DQ$OVERLAY (narne$ptr, except$ptr);

Input Parameter
name$ptr A POINTER to a STRING containing the name of an overlay

module. The name must be in uppercase.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

46

A root module, in an overlay system, calls DQ$OVERLA Y each time it wants to load an
overlay module.

If your assembly language or PL/M-286 program uses the DQ$OVERLA Y procedure, you
should ensure that you bind the UDI library to your program correctly. The 80286 Utilities
manual describes the OVL286 utility in detail. The following steps describe the process for
loading iRMX programs in overlay form.

1. Use BND286 to create linkable overlay files from compiled modules belonging to
each overlay.

2. Use BND286 to create a nonpacked STL module from the linkable overlay files. The
BND286 NOPACK control must be used.

3. Write an overlay definition file to describe the structure of the overlays in the
program.

4. Use OVL286 to create an overlaid executable file from the linkable overlay files, the
loadable module, and the overlay definition file.

To maintain portability to other operating systems that support the UDI, you should call
no more than one level of overlay invoked only from the root of the application.

UDI System Calls

Oa$OVERLAY

Condition Codes

E$OK

E$SUPPORT

OOOOH No exceptional conditions.

0023H An supported operation was attempted.

In addition to the condition code listed above, DQ$OVER$LA Y can return the condition
codes associated with the Extended I/O system call RQSOVERLA Y. See the iRMX® II
Extended I/O System Calls Reference Manual for details.

un I System Calls 47

DQ$READ

The DQ$READ system call copies bytes from a file into a buffer.

bytes$read = DQ$READ (connection$t, buff$ptr, count, except$ptr);

Input Parameters
connection$t A TOKEN for the connection to the file. This connection must be

open for reading or for both reading and writing, and the file
pointer of the connection must point to the first byte to be read.

buff$ptr

count

A POINTER to the buffer that is to receive the data from the file.

A WORD containing the requested number of bytes to be read
from the file.

Output Parameters
bytes$read

except$ptr

A WORD containing the number of bytes actually read. This
number is always equal to or less than count.

A POINTER to a WORD where the system places the condition
code.

Description

This system call reads a collection of contiguous bytes from the file associated with the
connection. The bytes are placed into the buffer specified in the call. If bytes$read is less
than count and the exception code returned from the DQ$READ system call is E$OK, an
end of file was encountered. If you type an interrupt or a terminate character from the
console, for example a CONTROL-C, while the operating system performs a read
operation, an E$OK exception code is returned and bytes$read is set to zero.

The Buffer

48

The buff$ptr parameter tells the operating system where to place the bytes when they are
read. Your program must provide this buffer. DQ$READ copies as many bytes as it is
instructed to copy (unless it encounters the end of the file). If the buffer is not long
enough, copying continues beyond the end of the buffer.

UDI System Calls

DQ$READ

Number of Bytes Read

The number of bytes that your program requests is the maximum number of bytes that
DQ$READ copies into the buffer. However, there are circumstances under which the
system reads fewer bytes.

• If the DQ$READ detects an end of file before reading the number of bytes requested,
it returns only the bytes preceding the end of file. In this case, the bytes$read
parameter is less than the count parameter, yet no exceptional condition is indicated.

• If an exceptional condition occurs during the reading operation, information in the
buffer and the value of the bytes$read parameter are meaningless and should be
ignored.

• If a CONTROL-C (interrupt or terminate) character is typed at the console (see
description) .

Connection Requirements

The connection must be open for reading or updating. If it is not, DQ$READ returns an
exceptional condition.

Condition Codes

E$OK OOOOR No exceptional conditions.

E$SUPPORT 0023H An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$READ can return the condition codes
associated with the Extended I/O system call RQSREAD$MOVE (except
E$FLUSHING). See the iRM)(® II Extended I/O System Call Reference Manual for details.

UDI System Calls 49

DQ$RENAME

The DQ$RENAME system call changes the pathname of a file.

CALL DQ$RENAME (path$ptr, new$path$ptr, except$ptr);

Input Parameters

path$ptr A POINTER to a STRING that specifies the pathname of the file to
be renamed.

new$path$ptr A POINTER to a STRING that specifies the new pathname for the
file. This path must not refer to an existing file.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

so

This system call allows your programs to change the pathname of a data or a directory file.
Be aware that when you rename a directory, you are changing the pathnames of all files
contained in the directory. When you rename a file to which a connection exists--this is
permitted--the connection to the renamed file remains established.

A file's pathname may be changed in any way, provided the file or directory remains on the
same volume. Successfully renaming a file without appropriate access permission depends
on the operating system.

If your operating system does not allow renaming a file to another volume or storage
device, an E$SUPPORT exception is returned.

UDI System Calls

OQ$RENAME

Condition Codes

E$OK

E$FEXIST

E$SUPPORT

E$FNEXIST

OOOH No exceptional conditions.

0020H The file represented by new$path$ptr already
exists.

0023H The file represented by new$path$ptr exists on
another volume.

0021H The file represented by path$ptr does not exist.

In addition to these condition codes, DQ$RENAME can return the condition codes
associated with the Extended I/O System call RQSRENAME$FILE. See the iRM)(® II
Extended I/O System Calls Reference Manual for details.

UDI System Calls 51

DQ$RESERVE$IO$MEMORY

The DQ$RESERVE$IO$MEMORY system call lets your program reserve enough
memory to ensure that it can open and attach the files it will be using.

CALL DQ$RESERVE$IO$MEMORY (number$files, number$buffers, except$ptr);

Input Parameters
number$files A WORD whose value indicates the maximum number of files the

program will have attached simultaneously. This value must not be
greater than 12. Moreover, no more than 6 of these files may be
open simultaneously.

number$buffers A WORD whose value indicates the total number of buffers (up to a
maximum of 12) that will be needed at one time. For example, if
your program will have two files open at the same time, and each of
them has two buffers (specified when they are opened),
number$files should be two and number$buffers four.

If you specify a value for number$files or number$buffers that
exceeds the limits explained above, an E$SUPPORT exception will
be returned. If you specify a zero for both number$files and
number$buffers, the memory reserved earlier will be returned to the
memory pool.

Output Parameter

except$ptr A POINTER to a WORD where the system places the condition
code.

Description

S2

DQ$RESERVE$IO$MEMORY sets aside memory on behalf of the calling program,
guaranteeing that it will be available when needed later for attaching and opening files.
This memory is used for internal UDI data structures when the program requests file
connections via DQ$ATTACH and for buffers when the program opens file connections
via DQ$OPEN. Memory reserved in this way is not eligible to be allocated by
DQ$ALLOCATE or DQ$MALLOCATE. Your program should call
DQ$RESERVE$IO$MEMORY before making any calls to DQ$ALLOCATE or
DQ$MALLOCATE.

UDI System Calls

OQ$RESERVE$IO$MEMORY

For an application to be portable across all operating systems that support UDI, it should
not allow I/O without first explicitly reserving the memory by calling
DQ$RESERVE$IO$MEMORY. In the call to DQ$RESERVE$IO$MEMORY, you may
specify as many as 12 files (that can be attached using the reserved memory) and as many
as 12 buffers (that can be requested when opening files).

NOTE

If a program calls DQ$RESERVE$IO$MEMORY after making one or
more calls to DQ$A TTACH or DQ$OPEN, the memory used by those calls
is immediately applied against the file and buffer counts specified in the
DQ$RESERVE$IO$MEMORY call, possibly exhausting the memory
supply being requested.

If your program calls DQ$RESERVE$IO$MEMORY more than once in a program, it
simply increases or decreases the amount of memory reserved, unless your requests total
more than 12 files or 12 buffers. If the requests exceed the maximum number of files or
buffers, the maximum is reserved and no error is returned.

Restriction

This system call is effective only if your program uses exclusively UDI system calls to
communicate with the iRMX Operating System.

Portability across operating systems that support the UDI cannot be guaranteed if your
application requires more than 12 files attached simultaneously or a group of
simultaneously open files whose total number of buffers exceeds 12.

Condition Codes

E$OK

E$MEM

E$SUPPORT

UDI System Calls

OOOOH No exceptional conditions.

0002H Insufficient memory remains to complete the
call.

0023H At least one of the following is true:

• The value specified for number$files is
grea ter than 12.

• The value specified for number$buffers is
grea ter than 12.

53

DQ$SEEI(

DQ$SEEK moves the file pointer associated with the specified connection.

CALL DQ$SEEK (connection$t, mode, offset, except$ptr)

Input Parameters

connection$t

mode

offset

Output Parameter

except$ptr

54

A TOKEN for the open connection whose file pointer is to be
moved.

A BYTE indicating the type of file pointer movement being
requested, as follows:

1

2

3

4

Meaning

Move the pointer backward by the specified
move count. If the move count is large
enough to position the pointer past the
beginning of the file, the pointer is set to
the first byte of the file (position zero).

Set the pointer to the position specified by
the move count. Position zero is the first
position in the file. Moving the pointer
beyond the end of the file is permitted.

Move the file pointer forward by the
specified move count. Moving the pointer
beyond the end of the file is permitted.

First move the pointer to the end of the
file and then move it backward by the
specified move count. If the specified move
count would position the pointer beyond the
front of the file, the pointer is set to the
first byte in the file (position zero).

A DWO RD specifying either how far, in bytes, the file pointer is to
be moved, or the exact position in the file to which the pointer is to
be moved.

A POINTER to a WORD where the system places the condition
code.

UDI System Calls

OQ$SEEK

Description

When performing non-sequential I/O, your programs can use this system call to position
the file pointer before using the DQ$READ, DQ$TRUNCA TE, or DQ$WRITE system
calls. The location of the file pointer specifies where in the file a DQ$READ,
DQ$WRITE, or DQ$TRUNCA TE operation is to begin. If your program is performing
sequential I/O on a file, it need not use this system call.

You can position the file pointer beyond the end of a file. If your program does this and
then invokes the DQ$READ system call, DQ$READ behaves as though the read
operation began at the end of file. If your program calls DQ$WRITE when the file pointer
is beyond the end of the file, the file is extended and the data is written as requested. A
subsequent DQ$READ returns an end of file condition. Attempting a seek past the end of
a file without performing an explicit DQ$WRITE call and subsequently expecting the file
to be lengthened, will produce indeterminate results.

Condition Codes

E$OK

E$PARAM

OOOOR No exceptional conditions.

0023R The mode parameter was set to 0 or 5-255.

In addition to the condition code listed above, DQ$SEEK can return the condition codes
associated with the Extended I/O system call RQSSEEK. See the iRMX® Extended I/O
System Calls Reference Manual for details.

unr System Calls 55

OQ$SPECIAL

DQ$SPECIAL sets options or specifies actions to be performed in the program execution
environment.

CALL DQ$SPECIAL (mode, parameter$ptr, except$ptr);

Input Parameters
mode

parameter$ptr

Output Parameter

except$ptr

Descri ption

A BYTE used to specify the options to be set or the actions to be
performed. Values and meanings of mode are

Value Meaning

1 Transparent

2 Line editing (default value)

3 Polling

4-5 Reserved

6 Baud rate

Each of these modes is explained in the Description section.

A POINTER. See complete explanation in the Description section.

A POINTER to a WORD where the system places the condition
code.

This system call changes the mode in which your program receives input from a console
input device. When your system starts to run, the mode is line editing (mode 2). By using
DQ$SPECIAL, you can change to either of the other two modes, or back to line editing.

56 UDI System Calls

DQ$SPECIAL

The meanings of the mode parameter values are as follows:

Value Meaning

1

2

3

4-5

6

UDI System Calls

Transparent. Interactive programs must often obtain characters from the
console exactly as they are typed. DQ$READ returns control to the calling
program when the number of characters entered equals the number of
characters specified in the read request.

Line Editing. This option enables you to correct typing errors with special
keys before the application program receives the characters typed.
Characters used for editing are operating-system-dependent. The
RETURN character is always converted to CARRIAGE-RETURN-LINE
FEED (CRLF).

Polling. This option is nearly the same as Transparent (1) mode, except
that in Polling mode DQ$READ returns control to your program
immediately after it is called, regardless of whether any characters have
been typed since the last call to DQ$READ. If no characters have been
typed, this is indicated by the bytes$read parameter of the DQ$READ call.
Characters typed between successive calls to read the terminal are held in
the "type-ahead" buffer.

where

parameter$ptr A POINTER to a TOKEN for a connection
to the :CI: file previously established by
DQ$ATTACH.

Reserved, E$SUPPO RT will be returned.

Baud Rate

where

Specifies baud rate selection for an asynchronous line.

parameter$ptr points to this structure:

DECLARE LINE BASED parameter$ptr STRUCTURE (
conn TOKEN,
in$baud$rate BYTE,
out$baud$rate BYTE);

57

DQ$SPECIAL

where

LINE. Conn is a connection previously established by a
DQ$ATTACH call.

LINE.in$baud$rate specifies the desired input baud rate.

LlNE.out$baud$rate specifies the desired output baud rate.

These values specify baud rate:

Byte Value Baud Rate

0 Unspecified
1 300
2 600
3 1200
4 2400
5 4800
6 9600
7 19200

8-255 Reserved

Condition Codes

58

E$OK

E$SUPPORT

OOOH No exceptional conditions.

0023H The mode parameter represents an unsupported
mode.

In addition to the condition codes listed above, DQ$SPECIAL can return the condition
codes associated with the Extended I/O system call RQSSPECIAL. See the iRMX®
Extended I/O System Calls Reference Manual for details.

UDI System Calls

DQ$SWITCH$BUFFER

DQ$SWITCH$BUFFER substitutes a new command line for the existing one.

char$offset = DQ$SWITCH$BUFFER (buff$ptr, except$ptr);

Input Parameter
buff$ptr

Output Parameters

A POINTER to a buffer containing the "new" command line. That
is, the one whose arguments are to be returned by subsequent calls
to DQGETARGUMENT. The buffer must not exceed 32 K
bytes in length.

char$offset A WORD into which the UDI places a number. This number
represents the number of bytes from the beginning of the "old"
command line to the last character of the last argument so far
processed by DQGETARGUMENT. In other words, the value in
char$offset tells how many characters in the old command line have
been processed by the time of this call.

except$ptr

Description

A POINTER to a WORD where the system places the condition
code.

When your program is invoked from the console, the operating system places the
invocation command into a buffer. Typically, your program will use
DQGETARGUMENT to obtain the arguments in that command. If your program
subsequently calls DQ$READ to obtain an additional command line from the console, it
can call DQ$SWITCH$BUFFER to designate the buffer with the new command line as
that from which arguments are to be obtained when DQGETARGUMENT is called.

You can use DQ$SWITCH$BUFFER any number of times to point to different strings in
your program. However, you cannot use DQ$SWITCH$BUFFER to return to the
command line that invoked the program, because only the operating system knows the
location of that buffer. Therefore, you should use DQGETARGUMENT to obtain all
arguments of the invocation command line before issuing the first call to
DQ$SWITCH$BUFFER.

UDI System Calls 59

OQ$SWITCH$BUFFER

60

A second service of DQ$SWITCH$BUFFER is that it returns the location of the last byte
of the last argument so far obtained from the old buffer by calls to
DQGETARGUMENT. Therefore, in addition to using DQ$SWITCH$BUFFER to
switch buffers, you can use it after one or more DQ$GEUARGUMENT calls to
determine where in the buffer the next argument starts. However, doing this "resets" the
buffer, in the sense that the next call to DQ$GEUARGUMENT would return the first
argument in the buffer. To return to the desired point in the buffer, where you can
continue to extract arguments, call DQ$SWITCH$BUFFER again, but when doing so, use
the sum of the starting address of the buffer and the value returned by the previous call to
DQ$SWITCH$BUFFER. The following is an example showing how to use the second
service of DQ$SWITCH$BUFFER:

DECLARE
E$OK LITERALLY '0'
E$ FATAL$ EXIT LITERALLY '3'
mybuffer$ptr POINTER,
buff$ptr POINTER,
arg$ptr POINTER,
buff STRUCTURE (

offset WORD,
segment WORD) AT (@buff$ptr),

next$char
char$offset
condition$code
delimit$char

•
•
•

WORD,
WORD,
WORD,
BYTE;

1* initialize buff$ptr and next$char *1

buff$ptr = mybuff$ptr;
next$char = 0;

•
•
•

1* determine where in the buffer the next argument starts *1

char$offset = DQ$SWITCH$BUFFER(buff$ptr, @condition$code);
IF condition$code <> E$OK THEN 1* do error processing *1

CALL DQ$EXIT(E$FATAL$EXIT)
next$char = char$offset + next$char;

(Example continued on next page)

UDI System Calls

DQ$SWITCH$BUFFER

"1* return to desired point in buffer *1

buff.offset = buff.offset + char$offset;
char$offset = DQ$SWITCH$BUFFER(buff$ptr, @condition$code);

IF condition$code <> E$OK THEN 1* do error processing *1
CALL DQ$EXIT(E$FATAL$EXIT)

1* get next argument *1

delimit$char = DQ$GET$ARGUMENT(arg$ptr, @condition$ptr);
IF condition$code <> E$OK THEN 1* do error processing *1

CALL DQ$EXIT(E$FATAL$EXIT)
•
•
•

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$SWITCH$BUFFER can return the
condition codes associated with the Human Interface system call
RQCSET$PARSE$BUFFER. See the iRMX!IDHuman Interface System Calls Reference
Manual for details.

UDI System Calls 61

OQ$TRAP$CC

DQ$TRAP$CC lets you specify a procedure that gains control if an operator enters an
interrupt character (such as CONTROL-C) at the console.

CALL DQ$TRAP$CC (cc$routine$ptr, except$ptr);

Input Parameter
cc$routine$ptr A POINTER to the entry point of your interrupt procedure.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

The action the default interrupt procedure takes depends on the operating system. Using
the DQ$TRAP$CC system call lets you substitute an alternate interrupt procedu"re that
will automatically receive control when you enter an interrupt character on the console.
(See the iRMX® Human Interface User's Guide for more information.) The context of the
program executing at the time you invoke DQ$TRAP$CC is saved by the operating system.
Due to this context switch, the contents of the CPU registers at the time the interrupt
procedure receives control may not be those associated with your program. The CPU
registers may contain values for an internal task that was executing when the interrupt
character was entered.

To ensure portability across other operating systems, a GOTO statement (PL/M, C,
FORTRAN, etc.) must not branch outside the DQ$TRAP$CC procedure's routine.

Condition Codes

E$OK OOOOR No exceptional conditions.

62 UDI System Calls

DQ$TRAP$EXCEPTION

DQ$TRAP$EXCEPTION substitutes an alternate exception handler for the default
exception handler provided by the operating system.

CALL DQ$TRAP$EXCEPTION (handler$ptr, except$ptr);

Input Parameter
handler$ptr

Output Parameter
except$ptr

Description

A POINTER to a STRUcruRE containing a long pointer to the
entry point of the alternate exception handler. The STRUCTURE
has the form

DECLARE handler$ptr STRUCTURE (
offset WORD,
base TOKEN) ;

A POINTER to a WORD where the system places the condition
code.

DQ$TRAP$EXCEPTION designates an alternate exception handler as the one to which
control should pass when an exceptional condition occurs. The DQ$TRAP$EXCEPTION
routine should restore the default exception handler before it terminates. Therefore, your
program should call DQGETEXCEPTION$HANDLER before calling
DQ$TRAP$EXCEPTION to get the default exception handler address.

See the section Condition Codes and Exception-Handling Calls at the beginning of this
manual for an explanation of the conditions of the stack when your alternate exception
handler receives control.

Condition Codes

E$OK OOOOH No exceptional conditions.

In addition to the condition code listed above, DQ$TRAP$EXCEPTION can return the
condition codes associated with the Nucleus system call
RQSETEXCEPTION$HANDLER. See the iRM)(® II Nucleus System Calls Reference
Manual or the iRMX® I Nucleus System Calls Reference Manual for details.

VDI System Calls 63

DQ$TRUNCATE

DQ$TRUNCATE moves the end-of-file to the current position of a named file
connection's file pointer, thereby freeing the portion of the file lying beyond the file
pointer.

CALL DQ$TRUNCATE (connection$t, except$ptr);

Input Parameter
connection$t A TOKEN for an open connection to the named data file that is to

be truncated. The file pointer of this connection marks the place
where truncation is to occur. The byte indicated by the file pointer
is the first byte to be dropped from the file.

Output Parameter
except$ptr A POINTER to a WORD where the system places the condition

code.

Description

This system call truncates a file at the current setting of the file pointer and releases all file
space beyond the pointer for reallocation to other files. If the pointer is at or beyond the
end of file, no truncation is performed. Unless the file pointer is already at the proper
location, your program should use the DQ$SEEK system call to position the pointer before
calling DQ$TRUNCATE. .

The connection should have write, or read and write access rights, established when the
connection was opened.

Condition Codes

64

E$OK

E$SUPPORT

OOOOR No exceptional conditions.

0023R An unsupported operation was attempted.

In addition to the condition codes listed above, DQ$TRUNCATE can return the condition
codes associated with the Extended I/O system call RQSTRUNCA TE$FILE. See the
iRM)(® Extended I/O System Calls Reference Manual for details. .

UDI System Calls

DQ$WRITE

The DQ$WRlTE system call copies a collection of bytes from a buffer into a file.

CALL DQ$WRITE (connection$t, buff$ptr, count, except$ptr);

Input Parameters
connection$t

buff$ptr

count

Output Parameter
except$ptr

Description

A TOKEN containing the connection to the file into which the
information is to be written.

A POINTER to a buffer containing the data to be written to the
specified file.

A WORD containing the number of bytes to be written from the
buffer to the file.

A POINTER to a WORD where the system places the condition
code.

This system call causes the operating system to write the specified number of bytes from
the buffer to the file.

Number of Bytes Written

Occasionally, DQ$WRlTE writes fewer bytes than requested by the calling program. This
happens under the following two circumstances:

• When DQ$WRlTE encounters an I/O error.

• When the volume to which your program is writing becomes full.

Where the Bytes Are Written

DQ$WRITE starts writing at the location specified by the connection's file pointer. After
the writing operation is completed, the file pointer points to the byte immediately following
the last byte written.

If your program must reposition the file pointer before writing, it can do so by using the
DQ$SEEK system call.

UDI System Calls 65

OQ$WRITE

Condition Codes

66

E$OK

E$SUPPORT

E$SPACE

OOOOH No exceptional conditions.

0023H An unsupported operation was attempted.

0029H Inadequate memory space remains to complete
the write.

In addition to the condition code listed above, DQ$WRlTE can return the condition codes
associated with the Extended I/O system call RQSWRlTE$MOVE. See the iRMX®
Extended I/O System Calls Reference Manual for details.

UDI System Calls

A
Access mask 11
Access rights 10

from the ACCESS field of DQGETCONNECTION$STATUS 32
needed to perform DQ$TRUNCATE 64
OWNER$ACCESS field in DQ$FILE$INFO 25
selecting 44

8
Baud rate

how to set using DQ$SPECIAL 57
value for mode parameter of DQ$SPECIAL 56

BND286, using to create overlay files 46
Buffer 29

DQ$CLOSE 15
for DQGETSYSTEM$ID 38
for DQ$READ 29
for the buff$ptr parameter of DQ$READ 48
number required for DQ$OPEN 43
the buff$ptr parameter of DQ$SWITCH$BUFFER 59
the buff$ptr parameter of DQ$WRITE 65
the number$buffers parameter of DQ$RESERVEIOMEMORY 52

C
CI (console input) 44
CO (console output) 44
Command line 30

parsing with DQGETARGUMENT 29
Compa tibility

DQGETTIME system call 39
number of buffers permitted in the DQ$OPEN system call 44
setting the ACCESS bit of DQ$CHANGE$ACCESS for 10

INDEX

setting the ACCESS field of the DQGETCONNECTION$STA TUS system call 32
setting the WORLD$ACCESS field of DQ$FILE$INFO system call 25

Condition codes 3
Condition codes, table of 1, 2
Connection

Boolean test for state 32
creating using DQ$CREATE 16
default access rights 11
deleting using DQ$DETACH 21

un I System Calls Index -1

Index

freeing buffers associated with a connection 15
getting information using DQGETCONNECTION$STATUS 32
moving the file pointer 54
requirements for DQ$READ 49
truncating the associated file 64

Connection, specifying the number of buffers required for 43
CONTROL-C 4, 48, 49, 57, 62

D
Data structure

for DQ$DECODE$TIME 18
for DQ$FILE$INFO 24
for DQGETCONNECTION$STATUS 32
for DQ$SPECIAL 57
for DQ$TRAP$EXCEPTION 63

DATE 18, 19, 39
Default user 11
Delimiter 29, 30

example of delimiters returned from DQGETARGUMENT 30
DQ$ALLOCATE 7
DQ$ATIACH 8
DQ$CHANGE$ACCESS 10
DQ$CHANGE$EXTENSION 13
DQ$CLOSE 15
DQ$CREATE 16
DQ$DECODE$EXCEPTION 17
DQ$DECODE$TIME 18
DQ$DELETE 20
DQ$DETACH 21
DQ$EXIT 22
DQ$FILE$INFO 24
DQ$FREE 28
DQGETARGUMENT 29
DQGETCONNECTION$STATUS 32
DQGETEXCEPTION$HANDLER 34
DQGETMSIZE 36
DQGETSIZE 37
DQGETSYSTEM$ID 38
DQGETTIME 39
DQ$MALLOCATE 40
DQ$MFREE 42
DQ$OPEN 43
DQ$OVERLA Y 46
DQ$READ 48
DQ$RENAME 50

Index - 2 UDI System Calls

DQ$RESERVE$IO$MEMORY 52
DQ$SEEK 54
DQ$SPECIAL 56

baud rate 57
line editing 57
polling 57

DQ$SWITCH$BUFFER 59
DQ$TRAP$CC 62
DQ$TRAP$EXCEPTION 63
DQ$TRUNCATE 64
DQ$WRITE 65

E
End of file 48, 49, 55, 64
Examples

delimiters returned by DQGETARGUMENT 30
DQ$SWITCH$BUFFER 60

Exception handling
getting the address of the current exception handler 34
using your own exception handler 63

F
File

changing the pathname 50
creation 16
deletion 20
extension 13
information 24, 32
operations 43, 48, 52, 64, 65
pointer 54, 64
size 25

Free space pool, requesting additional memory from 7

Interactive programs
getting characters from the console 57
opening CI and CO for interactive programs 44

Interrupt procedure 62

L
Line editing mode 57

M
Memory

block 36,42
pool 7,28,40,42,52

UDI System Calls

Index

Index - 3

Index

reservation 45,52
Mode

file pointer seeks 54
parameter of DQ$FILE$INFO 24
parameter of DQ$OPEN 43
terminal 56

Model of segmentation 34, 40

o
Object

file 13
user 11

Object file 13
Operating system identification 38
OSC sequences 57
OVL286, using to create programs that use overlays 46
Owner ID 11
Owner of a file 10

p
Performance 44
PL/M 3,40
PL/M-286 46
Polling 56
Portability 46, 53, 62
Program control

DQ$EXIT 22
DQ$OVERLA Y 46
DQ$TRAP$CC 62
system calls 4

R
Reserving memory 45, 52
Root module 46

S
Segment 7,28,36,37
System calls

descriptions 3
dictionary 4
exception-handling 6
file-handling 4
memory management 5
program control 4
utility and command parsing 6

Index - 4 UDI System Calls

T
Task 7, 22, 62
Terminal modes

polling 56
Terminating programs 22
TIME 18,39
Transparent mode 57

U
UD I library 46
User

default 11
ID 11,24
object 11
WORLD 10

User object 11

W
WORLD 10,11,25
WORLD user 10

UDI System Calls

Index

Index - 5

REQUEST FOR READER'S COMMENTS

i RMX~ U DI System Call
Reference Manuel

462919-00

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ DATE

TITLE
COM~NYNAM~DEPARTMENT __ _

ADDRESS __ P_H_O_N_E_(~~ __________ _

CITY STATE ZIP CODE
----------------------------------- --------------------

(COUNTRY)

Please check here if you require a written reply. D

VE'D LIKE YOUR COMMENTS, , ,

'his document is one of a series describing Intel products. Your comments on the back of this form will
lelp us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
omments and suggestions become the property of Intel Corporation,

: you are in the United States, use the preprinted address provided on this form to return your
omments. No postage is required. If you are not in the United States, return your comments to the Intel
ales office in your country. For your convenience, international sales office addresses are printed on
1e last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporati on SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE
Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4
20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvaegen 24

S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.
Seidlestrasse 27
0-8000 Munchen

inter

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

Santa Clara, California 95051
(408) 987-8080

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

