
inter

• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

iRMX®
System Debugger
Reference Manual

Order Number: 462920-001

iRMX®
System Debugger
Reference Manual

Order Number: 462920-001

Intel Corporation
·3065 Bowers Avenue

Santa Clara, California 95051

Copyrrght © 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back ofthe manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update orto keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
genius intel iSSB Ripplemode
1 Intel376 iSXM RMXJ80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTI MODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980,1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89

iii/iv

PREFACE

INTRODUCTION

The iRMX® System Debugger is a memory-resident extension of the iSDMTIof System
Debug Monitor. The System Debugger gives you a static debugging tool that can recognize
and display all iRMX objects. It enables you to examine your iRMX system interactively
so you can find and correct errors.

READER LEVEL

This manual is intended for application engineers familiar with the concepts and
terminology introduced in the iRM)(® II Nucleus User's Guide or the iRM)(® I Nucleus
User's Guide and the system programmers implementing device drivers, object managers,
and operating system extensions.

MANUAL OVERVIEW

This manual consists of the following chapters:

Chapter 1 INTRODUCTION--This chapter describes the features of the
System Debugger, illustrates how the System Debugger relates to
EPROM-based debugging tools, and explains how to use the System
Debugger. Read this chapter if you are going through the manual
for the first time.

Chapter 2

Chapter 3

System Debugger

SYSTEM DEBUGGER COMMANDS--This chapter contains
detailed descriptions of the System Debugger commands, presented
in alphabetical order. When debugging your system, refer to this
chapter for specific information about the format and parameters of
the commands.

SAMPLE DEBUG SESSION--This chapter shows in a step-by-step
fashion how to use System Debugger features. The chapter contains
a sample debugging session showing how to use iSDM monitor and
System Debugger commands to locate an application-code error,
correct it, and test the change. Separate examples showing
additional debugging techniques are also included. Use this chapter
as a hands-on introduction to the System Debugger.

v

PREFACE

Appendix A

Appendix B

iSDM MONITOR COMMANDS--This appendix briefly describes
the function of all basic iSDM monitor commands. Use this
appendix as a quick reference to the iSDM monitor. For more
information see the iSD~ System Debug Monitor User's Guide.

D-MON386 MONITOR COMMANDS--This appendix briefly
describes the function of all basic D-MON386 monitor commands.
For more information, refer to the D-MON386 Debug Monitor for
the 80386 User's Guide.

CONVENTIONS

vi

This manual uses the following format conventions:

• User input appears in one of the following forms:

as blue text

as bolded text within a screen

• The text < CR > appears where you must enter a carriage return. When pressing the
carriage return key, the text < CR > does not appear on the console.

• Although all syntax diagrams show uppercase letters (e.g., VR), you can also use
lowercase letters.

• All numbers unless otherwise stated are assumed to be decimal. Hexadecimal numbers
include the "H" radix character (for example, OFFH).

• The term "iRMX II" refers to the iRMX II (iRMX 286) Operating System.

• The term "iRMX I" refers to the iRMX I (iRMX 86) Operating System.

• The terms "iRMX" or "iRMX Operating Systems" when used by themselves, refer to
both iRMX I and II, that is, the text applies equally to both operating systems.

System Debugger

CONTENTS

Chapter 1. iRMX® System Debugger Overview
1.1 Introducing the iRMX® System Debugger ... 1-1
1.2 Supporting the System Debugger ... 1-2
1.3 Configuring the System Debugger ... 1-2
1.4 Invoking the System Debugger ... 1-3
1.5 Using the System Debugger .. 1-4
1.6 Returning to Your Application .. 1-4

Chapter 2. System Debugger Commands
2.1 Introduction ... 2-1
2.2 Checking Validity of Tokens ... 2-2
2.3 Pictorial Representation of Syntax .. 2-3
2.4 Leaving the Monitor ... 2-4
2.5 Command Directory ... 2-5

VB--Display DUIB Information ... 2-6
VC--Display System Call Information ... 2-10
VD--Display a Job's Object Directory ... 2-13
VF--Display Number of Free Slots .. 2-16
VH--Display Help Information ... 2-18
VJ--Display Job Hierarchy .. 2-20
VK--Display Ready and Sleeping Tasks .. 2-24
VMF--Toggle MPC Fail-Safe Timeout ... 2-26
VMI--Display Input Message Buffer ... 2-28
VMO--Display Output Message Buffer .. 2-32
VO--Display Objects in a Job .. 2-36
VR--Display I/O Request/Result Segment ... 2-39
VS--Display Stack and System Call Information ... 2-43
VT--Display iRMX® Object .. 2-48

Job Display ... 2-49
Task Display .. 2-51
Mailbox Display .. 2-54
Semaphore Display .. 2-57
Region Display .. 2-58
Segment Display ... 2-59
Extension Object Display .. 2-60
Composite Object Display .. 2-60
Buffer Pool Display .. 2-73

VU--Display System Calls in a Task's Stack ... 2-74

System Debugger vii

CONTENTS

Chapter 3. Sample Debug Session
3.1 Introduction ... 3-1
3.2 Sample Program .. 3-1
3.3 Debugging the Program ... 3-11
3.4 Viewing System Objects .. 3-20

Appendix A. iSDMTM Monitor Commands
A.1 Introduction ... A-1
A.2 Command Directory .. A-I
A.3 Command Descriptions ... A-3

A.3.1 B--Bootstrap Load .. A-3
A.3.2 C--Compare ... A-4
A.3.3 D--Display Memory/Descriptor Tables/Disassembled Instructions A-4
A.3.4 E--Exit ... A-4
A.3.S F--Find .. A-S
A.3.6 G--Go .. A-S
A.3.7 I--Port Input ... A-S
A.3.8 K--Echo File .. A-5
A.3.9 L--Load Absolute Object File .. A-6
A.3.10 M--Move ~ ... A-6
A.3.11 N--Execute Single Instructions ... A-6
A.3.12 O--Port Output .. A-7
A.3.13 P--Print ... A-7
A.3.14 Q--Enable Protection (80286 or 386™ only) ... A-7
A.3.1S R--Load and Go .. A-7
A.3.16 S--Substitute Memory/Descriptor Table Entry .. A-8
A.3.17 X--Examine/Modify Registers ... A-9
A.3.18 Y--Symbols (80286 or 386™ only) ... A-9

Appendix B. D-MON386 Commands
B.1 Introduction ... B-1
B.2 Entering Commands ... B-1
B.3 Command Directory ... B-2
B.4 Command Descriptions ... B-S

B.4.1 $.. B-S
B.4.2 ASM .. B-6
B.4.3 BOOT .. B-6
B.4.4 BASE ... B-6
B.4.S BYTE .. B-6
B.4.6 COUNT /ENDCOUNT ... B-6
B.4.7 CREGS ... B-6

viii System Debugger

CONTENTS

Appendix B. D-MON386 Commands (continued)
B.4.8 DPORT ... B-7
B.4.9 DT .. B-7
B.4.10 DWORD ... B-7
B.4.11 EVAL .. B-7
B.4.12 FLAGS .. B-7
B.4.13 GDT ... B-7
B.4.14 GO ... B-8
B.4.15 HELP .. B-8
B.4.16 HOST .. B-8
B.4.17 IDT .. B-8
B.4.18 INTn .. B-8
B.4.19 ISTEP .. B-8
B.4.20 LDT ... B-9
B.4.21 NO-N9 .. B-9
B.4.22 ORDn .. B-9
B.4.23 PD .. B-9
B.4.24 PORT .. B-9
B.4.25 Register-name .. B-10
B.4.26 REGS .. B-10
B.4.27 SREGS .. B-10
B.4.28 SWBREAK .. B-I0
B.4.29 SWREMOVE .. B-11
B.4.30 TSS ... B-11
B.4.31 USE ... B-11
B.4.32 VERSION .. B-ll
B.4.33 WORD .. B-11
B.4.34 WPORT .. B-11

Index

System Debugger ix

CONTENTS

Figures
2-1 Format of VB Output .. 2-6
2-2 Format of VC Output .. 2-10
2-3 Format of VD Output ... 2-13
2-4 Format ofVF Output .. 2-17
2-5 Format of VH Output ... 2-19
2-6 Format ofVJ Output ... 2-20
2-7 iRMX® Job Tree .. 2-22
2-8 Format of VK Output .. 2-24
2-8a Format of VMI Output ... 2-29
2-8b Format of VMO Output ... 2-33
2-9 Format of VO Output ... 2-36
2-10 Format of VR Output ... 2-40
2-11 Format of VS Output .. 2-44
2-12 Format ofVT Output: Job Display .. 2-49
2-13 Format ofVT Output: Non-Interrupt Task ... 2-51
2-14 Format ofVT Output: Interrupt Task .. 2-51
2-15 Format ofVT Output: Mailbox with No Queue ... 2-54
2-16 Format ofVT Output: Mailbox with Task Queue .. 2-54
2-17 Format of VT Output: Mailbox with Object Queue ... 2-55
2-18 Format of VT Output: Mailbox with Data Message Queue 2-55
2-19 Format of VT Output: Semaphore with No Queue .. 2-57
2-20 Format of VT Output: Semaphore with Task Queue .. 2-57
2-21 Format ofVT Output: Region with No Queue ... 2-58
2-22 Format of VT Output: Region with Task Queue .. 2-58
2-23 Format ofVT Output: Segment ... 2-59
2-24 Format of VT Output: Extension Object .. 2-60
2-25 Format of VT Output: Composite Object Other Than BIOS 2-61
2-26 Format ofVT Output: BIOS User Object Composite ... 2-61
2-27 Format of VT Output: BIOS Physical File Connection ... 2-62
2-28 Format of VT Output: BIOS Stream File Connection ... 2-66
2-29 Format of VT Output: BIOS Named File Connection .. 2-67
2-30 Format of VT Output: BIOS Remote File Connection ... 2-69
2-31 Format of VT Output: Signal Protocol Port .. 2-69
2-32 Format of VT Output: Data Transport Protocol Port ... 2-70
2-33 Format of VT Output: Data Transport Protocol Port ... 2-71
2-34 Format of VT Output: Buffer Poo!.. .. 2-73
2-35 Format of VU Output ... 2-75
3-1 Example PL/M-286 Application (Init) ... 3-3
3-2 Example PL/M-286 Application (Alphonse) .. 3-6
3-3 Example PL/M-286 Application (Gaston) .. 3-8
3-4 MOVW in Gaston Code ... 3-13

x System Debugger

iRMX® SYSTEM DEBUGGER 1
OVERVIEW

1.1 INTRODUCING THE iRMX® SYSTEM DEBUGGER

When you develop application systems, you need debugging capabilities on your
development system. Besides the iSDM lW System Debug Monitor, Intel provides the iRMX
System Debugger (SDB) for debugging your iRMX-based application system.

NOTE

The remainder of this manual uses the term "monitor" to refer to the iSD M
System Debug Monitor.

The System Debugger is a memory-resident extension of the monitor; therefore, you must
have the monitor if you have the System Debugger configured into your system. The
monitor provides code disassembly, execution breakpoints, memory display, and program
download capabilities. The System Debugger extends the monitor's disassembly functions
by interpreting iRMX calls, data structures, and stacks.

Monitor and System Debugger commands are entered in response to the iSDM Monitor's
protected-mode prompt (..) or the iRMX I real mode prompt (.). When you invoke the
monitor, both the operating system and your application system are frozen. As you use
monitor commands to set breakpoints while the application code is executed, you can
inspect system objects, change system call parameters and registers, and test changes.
Refer to Appendix A for more information on iSDM Monitor commands and Appendix B
for D-MON386 Monitor commands.

System Debugger 1-1

iRMX® SYSTEM DEBUGGER OVERVIEW

1.2 SUPPORTING THE SYSTEM DEBUGGER

To use the System Debugger, you must have one of the following hardware configurations
with all the required support hardware:

• An Intel Microcomputer connected to an 8086-,80186-,80188-,80286- or 3861lo1-based
board

• A terminal connected directly to an 8086-,80186-, 80188-, 80286- or 3861lo1-based board

• An IntelleC® Development System connected to an 8086-, 80286- or 3861lo1-based board

Besides the above hardware, you must have both of the following:

• The EPROM portion of the iSDM System Debug Monitor

• An iRMX operating system configuration

1.3 CONFIGURING THE SYSTEM DEBUGGER

1-2

You cannot use the System Debugger until you include it in your system through the
Interactive Configuration Utility (ICU). To include the System Debugger, begin by
invoking the ICU. Next, provide the following information the ICU requires to configure
the System Debugger:

1. In the ICU's "Sub-Systems" screen, respond "yes" to the SDB prompt.

2. In the ICU's "System Debugger" screen, set the interrupt level you want to use to
invoke the monitor manually (by pressing a hardware interrupt button).

To use the Non-Maskable Interrupt (NMI) for debugging device drivers, see the
iRMX® II Hardware and Software Installation Guide or the iRMX® I Hardware and
Software Installation Guide.

For detailed information on configuring the System Debugger, consult the iRMX® II
Interactive Configuration Utility Reference Manual or the iRMX® I Interactive Configuration
Utility Reference Manual.

System Debugger

iRMX® SYSTEM DEBUGGER OVERVIEW

1.4 INVOKING THE SYSTEM DEBUGGER

You must enter the monitor to use the System Debugger. You can invoke the monitor in
three ways:

1. Use a hardware switch physically connected to the interrupt level you specified during
configuration. Activating this switch halts the application system, saves the system's
contents, and passes control to the monitor.

2. Use the Human Interface DEBUG command. DEBUG loads your specified
application program into main memory and transfers control to the monitor.

3. Use the Bootstrap Loader DEBUG switch. When you specify this switch, the monitor
comes up after the system is loaded but before the system starts running. The CS:IP
points to the first instruction of the application system. At this point the system has not
been initialized; therefore, you can run only monitor commands. Using the MAP286
output (or MAP86 in iRMX I), you can identify where you want to insert breakpoints.
(For more information on BIND, MAP, and OVL, see the 80286 Utilities User's Guide
for iRM)(® II Systems or the 86, 88 Utilities Reference Manual in iRMX I). Use the
break address parameter in the monitor's GO (G) command to set breakpoints in the
application system code. When you enter "G < CR> ", the system starts and is
initialized. The monitor is invoked when CS:IP reaches a breakpoint. For more
information on booting with DEBUG, consult the iRM)(® Bootstrap Loader Reference
Manual.

When you invoke the monitor, the application system stops running and all system activity
freezes. The appropriate prompt appears (the " .. " for the iSDM Monitor, or a single "." in
iRMX I), and you can begin entering System Debugger and monitor commands to examine
system objects.

System Debugger 1-3

iRMX® SYSTEM DEBUGGER OVERVIEW

1.5 USING THE SYSTEM DEBUGGER

The System Debugger uses monitor procedures to parse the command line and to output
to the console; therefore, you run both System Debugger and monitor commands from the
monitor. The syntax for System Debugger commands is a "V" or "v" followed by another
letter, an optional space, and an optional parameter.

The fifteen System Debugger commands (described in Chapter 2) fall into four categories:

1. Eight commands extend the monitor memory display functions by displaying iRMX
data structures and objects.

2. Three commands extend the monitor disassembly functions by recognizing and
displaying iRMX calls.

3. Three commands add the ability to display features of the Message passing
Coprocessor (MPC) ORMX II only).

4. A help command provides a short description of all the commands.

All commands either display information as hexadecimal numbers or try to interpret the
information. If the System Debugger cannot interpret the information, it displays the
actual hexadecimal value, followed by two question marks.

iRMX II provides two features that enable you to leave the monitor without resetting your
system: warm-start and CLI-restart. The warm-start feature reinitializes the system and
returns control to the Human Interface at the login level. The CLI-restart feature deletes
the current job then returns control to the Command Line Interpreter. Refer to Chapter 2
for more information on these features (iRMX II only).

1.6 RETURNING TO YOUR APPLICATION

Use the monitor's GO command (G) to resume execution of the application

• When you finish debugging your application system with the System Debugger.

• If you want to test the changes you made to the application code.

1-4 System Debugger

SYSTEM DEBUGGER COMMANDS 2
2.1 INTRODUCTION

This chapter contains detailed descriptions of the iRMX System Debugger commands.
Commands appear in alphabetical order, with the first occurrence of each command
appearing in blue at the top of the page. A directory of the commands, divided into
functional groups, precedes the command descriptions.

This chapter uses the following conventions:

• "CS:IP" is the Code Segment:Instruction Pointer--The pointer to the instruction that
would be executed next if the application system were running. If you specify an IP
value (one four-digit hexadecimal number) but not a CS value, the System Debugger
uses the current CS as the default base.

• "SS:SP" is the Stack Segment:Stack Pointer--The pointer to the current stack location.

• Entering zero (0) as a value for an optional parameter is the same as omitting the
parameter; the default value of the parameter is used.

• All terminal examples assume that the iSDM System Debug Monitor is being used.
Thus, example input lines show the iSDM monitor prompt " .. " (or a single "." in
iRMX I).

System Debugger 2-1

System Debugger Commands

2.2 CHECKING VALIDITY OF TOKENS

2-2

Many System Debugger commands use iRMX tokens as parameters or display tokens as
part of the command output. The iRMX Operating Systems maintain tokens in doubly
linked lists. When you enter a token as a parameter, the System Debugger checks the
validity of the token by looking at the forward and backward links of the token.

If one of the links is bad, the System Debugger generates an error message along with the
standard command output. The token you enter as a parameter always appears as the
center value in euch line of the token display. The displays for forward- and backward-link
errors are as follows:

Forward link ERROR: 4111-->4E85 4111 <--4E85-->4155 ?FFFF < --4155

Backward link ERROR: 4111-->410F? 4111 <--4E85-->4155 4E85 < --4155

Arrows to the left indicate backward links; arrows to the right indicate forward links. A
question mark before or after a value signifies a forward or backward link error,
respectively.

If both links are bad, the System Debugger considers the token invalid. A token may also
be invalid

• if it belongs to an object in the deletion process

• if an incorrect token is entered as a parameter in a system call

• if a deleted or unused token is entered as a parameter.

When the token is invalid, the System Debugger displays the following message:

*** INVALID TOKEN ***

A link error indicates that iRMX data structures have been corrupted. The most common
reason for this problem is a task might have accidentally written over part of the system
data structures. However, (in the case of the iRMX II Operating System) the iRMX II
protection mode feature protects against such overwriting under normal circumstances.
Data structure corruption can also occur if you are using the Non-Maskable Interrupt
(NMI). The Nucleus may have been interrupted while it was setting up the links. (The
NMI is a hardware interrupt. For more information on the NMI, see the 8086 Hardware
Reference Manual, the 80286 Hardware Reference Manual or the 386N Hardware Reference
Manual.)

System Debugger

System Debugger Commands

2.3 PICTORIAL REPRESENTATION OF SYNTAX

This chapter uses a schematic device to illustrate command syntax. The schematic consists
of what looks like an aerial view of a model railroad, with syntactic elements (appearing in
circles) scattered along the track. To construct a valid command, imagine that a train
enters the system at the far left, travels from left to right only (backing up is not allowed),
chooses one branch at each fork, and finally departs at the far right. The command
generated consists of the syntactic elements it encounters on its journey. The following
schematic shows two valid sequences: AC and BC.

W-0940

These schematics do not show spaces as elements, but you may include one or more spaces
between the command and parameter. For example, even though the syntax for VR is as
follows:

--------~~~----~~~------------------V ~~~
W-0941

The following command is valid:

.. VR xxxx <CR>

The space between "VR" and "xxxx" is optional.

System Debugger 2-3

System Debugger Commands

2.4 LEAVING THE MONITOR

2-4

iRMX I Note: The discussion of warm-start and CLI-restart below applies to iRMX II
only.

Two features enable you to leave the monitor without resetting your system: warm-start
and CLI-restart. You will also leave the monitor when your application terminates
normally.

The warm-start feature is the process of sta.rting a system without reloading it from
secondary storage. Warm-start reinitializes the system. It begins executing the application
system at the same point where the Bootstrap Loader passes control to the system.

To warm-start an iRMX II system from the iSDM monitor, enter the following command:

.. g 284:0a <CR>

If no system code or data segments were corrupted, the system reinitializes. If segment
corruption has occurred, the application system will not run; you must reboot the system.

If your system contains a Command Line Interpreter, and running your application
program causes an exception that breaks to the monitor (for example, a General
Protection exception), enter the following command to CLI-restart an iRMX II system
from the iSDM monitor:

.. g 284: 14 <CR>

These commands causes the system to attempt to delete the job tree of the running task. If
the running task is part of the application's job (not a subsystem task running for the job)
control returns to the Command Line Interpreter. Otherwise, you must reboot the system.

System Debugger

System Debugger Commands

2.5 COMMAND DIRECTORY

Command

DISPLAYING iRMX DATA STRUCTURES

VB--Display DUIB Information .. 2-6

VD--Display a Job's Object Directory .. 2-13

VF--Display Number of Free Slots ... 2-16

VJ--Display Job Hierarchy ... 2-20

VK--Display Ready and Sleeping Tasks .. 2-24

VO--Display Objects in a Job ... 2-36

VR--Display I/O Request/Result Segment .. 2-39

VT--Display iRMX Object ... 2-48

RECOGNIZING AND DISPLAYING iRMX SYSTEM CALLS

VC--Display System Call Information .. 2-10

VS--Display Stack and System Call Information .. 2-43

VU--Display System Calls in a Task's Stack ... 2-74

MULTIBUS® II MESSAGE PASSING COMMANDS

VMF--Toggle MPC Fail-Safe Timeout .. 2-26

VMI--Display Input Message Buffer .. 2-28

VMO--Display Output Message Buffer ... 2-32

OTHER COMMANDS

VH--Display Help Information ... 2-18

System Debugger 2-5

VB--DISPLAY DUIS INFORMATION

The VB command displays the DUIB information for the specified physical device. For
additional information about Device-Unit Information Blocks (DUIBs), refer to Chapter 4
of the iRM)(® Device Drivers User's Guide.

W-0942

Parameter
Physical device The name of the physical device for which you want to view the

DUIB information (e.g., WMFO). This device must be part of the
system configuration.

Description

2-6

The VB command displays the DUIB information for the specified physical device. Figure
2-1 illustrates the output from the VB command.

Device name: <physical device name>

Functs: xx DUIB address xxxx:xxxx
Dev$gran xxxx Max$buffers xx
Dev$size xxxxxxxx Device xx
Unit xx Dev$unit xxxx
Device$info$p xxxx:xxxx Unit$info$p xxxx:xxxx
Update$timeout xxxx Num$buffers xxxx
Priority xx Fixed$update xx
Init$io xxxx:xxxx Finish$io xxxx:xxxx
Queue$io xxxx:xxxx Cancel$io xxxx:xxxx

Flags: xx Valid
Density xxxxxx Sides xxxxxx
Size x Format xxxxxxxx

File driver: xxxx Named xxxx
Physical xxxx Stream xxxxx

Figure 2-1. Format of VB Output.

System Debugger

VB--DISPLAY DUIB INFORMATION

The fields displayed in Figure 2-1 are as follows:

Functs

DUIB address

Dev$gran

Max$buffers

Dev$size

Device

Unit

Dev$unit

Device$info$p

Unit$info$p

Update$timeout

Num$buffers

Priority

Fixed$update

Init$io

Finish$io

Queue$io

System Debugger

A BYTE used to specify the I/O function validity for this device
unit.

The starting address in memory of the specified DUIB.

A WORD that specifies the device granularity, in bytes. This
parameter applies to random access devices, and to some common
devices, such as tape drives. It specifies the minimum number of
bytes of information that the device reads or writes in one
operation.

The maximum number of buffers that the EIOS can allocate for a
connection to this device-unit when the connection is opened by a
call to S$OPEN.

The number of bytes of information that the device-unit can store.

The number of the device with which this device-unit is associated.

The number of this device-unit, which distinguishes this unit from
other units of the device.

The device-unit number, which distinguishes this device-unit from
other device-units in the hardware system.

A POINTER to a structure that contains additional information
about the device. The common, random, and terminal device
drivers require a Device Information Table in a specific format, for
each device.

A POINTER to a structure that contains additional information
about the unit. Random access, common device (such as tape
drives), and terminal device drivers require this Unit Information
Table in a specific format.

The number of system time units that the I/O System must wait
before writing a partial sector, after processing a write request for a
disk device.

The number of buffers of device-granularity size that the I/O
System allocates.

The priority of the I/O System service task for the device.

Indicates whether the fixed update option was selected for this
device-unit when the application system was configured.

The address of the Initialize I/O procedure associated with this
unit.

The address of the Finish I/O procedure associated with this unit.

The address of the Queue I/O procedure associated with this unit.

2-7

VB--OISPLAY OUIB INFORMATION

2-8

Cancel$io

Flags

Valid

Density

Sides

Size

Format

File driver:

Named

Physical

Stream

The address of the Cancel I/O procedure associated with this unit.

Specifies the characteristics of diskette devices.

Indicates whether the Flags field is "Valid" or "Not Valid" for this
device.

The density of the device. If the flags for this DUIB are invalid, this
field is marked "N / A".

The number of media sides that the device can write to. If the flags
for this DUIB are invalid, this field is marked "N/ A".

The physical size of the device (5 1/4-inch or 8-inch). If the flags for
this DUIB are invalid, this field is marked "N/A".

Indicates whether track 0 of a disk is to be formatted as a
STANDARD diskette (128 bytes/sector) or as a UNIFORM
diskette (all sectors formatted as specified). This parameter applies
only to flexible diskettes. Hard disks are always specified as
UNIFORM. If the flags for this DUIB are invalid, this field is
marked "N/A".

A WORD that indicates the BIOS file driver to which this
connection is attached.

Indicates whether this device is configured to use the Named file
driver.

Indicates whether this device is configured to use the Physical file
driver.

Indicates whether this device is configured to use the Stream file
driver.

System Debugger

Error Messages
Syntax Error

VB not supported

DUIB not found

System Debugger

VB--OISPLAY OUIB INFORMATION

An error was made when entering the command. The correct syntax
is VB <physical device>. Any other syntax produces this message.

VB couldn't find the byte bucket DUIB entry in the BIOS code
segment. If no DUIB entry for the byte bucket exists, VB is
unsupported.

If the BIOS has not been configured into the system, or if the BIOS
code segment has execute-only attributes, this error message is
returned.

VB returns this error message under these conditions:

1. The DUIB is not configured into the system.

2. The DUIB entry for the specified device is located before
the byte bucket DUIB entry.

3. The user made an error while entering the physical device
name.

2-9

VC--DISPLAV SYSTEM CALL INFORMATION

The VC command checks to see if a CALL instruction is an iRMX system call. The VC
command identifies system calls for all iRMX Operating System layers.

Parameter
pointer

Description

@ lGointe~ I
W-0943

The address of the CALL instruction to be checked. This
parameter can be any valid monitor address (two four-digit
hexadecimal numbers separated by a colon).

If you are using the iSDM monitor and you do not supply a pointer
(or you specify 0), this parameter defaults to the current CS:IP. If
you specify an IP value (one four-digit hexadecimal number) but not
a CS value, the System Debugger uses the current CS as the default
base.

If the CALL instruction is an iRMX system call, the VC command displays information
about the CALL instruction as shown in Figure 2-2.

2-10

gate 11NNNN
(subsystern)systern call

Figure 2-2. Format of VC Output

System Debugger

VC--DISPLAY SYSTEM CALL INFORMATION

The fields in Figure 2-2 are as follows:

gate#NNNN The gate number associated with the iRMX system call at the
address specified in the command.

(subsystem)

system call

The iRMX Operating System layer corresponding to the system call.

The name of the iRMX system call.

NOTE

The System Debugger uses the gate number to determine whether the CALL
instruction represents a system call. Since the System Debugger does not
disassemble the code, but rather examines a byte value at a particular offset
from the CALL instruction, in rare cases a non-system call can be displayed as
an iRMX system call. However, the System Debugger does recognize and
display all iRMX system calls.

Error Messages
Syntax Error

Not a system CALL

Not a CALL instruction

Examples

An error was made in entering the command.

The parameter specified points to a CALL instruction
that is not an iRMX system call.

The CS:IP specified does not point to any type of call
instruction.

Suppose you disassembled the following code using the iSDM monitor's Display Memory
(DX) command:

18AO:006D 50 PUSH AX
18AO:006E E8ADIE CALL A= IFIE ;$+7856
18AO:0071 E8DD03 CALL A= 0451 ;$+992
18AO:0074 B80000 MOV AX,O
18AO:0077 50 PUSH AX
18AO:0078 8D060600 LEA AX ,WORD PRT 006
18AO:007C IE PUSH DS
18AO:007D 50 PUSH AX
18AO:007E E8411E CALL A = lEC2 ;$+7748
18AO:0081 A30000 MOV WORD PTR OOOOH,AX

System Debugger 2-11

VC--DISPLAY SYSTEM CALL INFORMATION

If you use the VC command on the CALL instruction at address 18AO:006E by entering
the following command:

.. VC 18AO:006E <CR>

The System Debugger displays the following information:

gate 110468
(Nucleus) set exception handler

Gate number 0468 corresponds to an RQSETEXCEPTION$HANDLER system call, a
Nucleus call.

Now, suppose you want to see if the CALL instruction at 18AO:0071 is a system call. Enter
the following command:

.. VC 18AO:0071 <CR>

The System Debugger responds with the following:

Not a system CALL

Finally, if you use the VC command on the instruction at 18AO:0074, the System Debugger
responds with the following:

Not a CALL instruction

2-12 System Debugger

VD--DISPLAV A JOB'S OBJECT DIRECTORY

The VD command displays a job's object directory.

------1@ GbtOk~~---------

Parameter
job token

Description

W-0944

The token for the job having the object directory you want
displayed. To obtain the job token, use the VJ command.

If you specified a valid job token, the System Debugger displays the job's object directory,
as shown in Figure 2-3.

Directory size: xxxx Entries used: xxxx

name!
name2

namej
namek

namen

System Debugger

token!
tasks waiting

tokenj
tokenk

tokenn

token2 ... tokeni

Figure 2-3. Format of VD Output

2-13

VD--DISPLAY A JOB'S OBJECT DIRECTORY

Figure 2-3 shows these fields:

Directory size The maximum number of entries this job can have in its object
directory.

Entries used The number of entries in the directory.

name1. .. namen The names under which objects are catalogued. These names were
assigned at the time the objects were catalogued with
RQ$ CATALOG$ OBJECT.

token 1. .. tokenn

tasks waiting

Tokens for the catalogued objects.

Signifies that one or more tasks have done an
RQ$LOOKUP$OBJECT on an object not catalogued. The tokens
following this field identify the tasks still waiting for the object to be
catalogued.

For more information on object directories, see the iRM)(® II Nucleus User's Guide or the
iRM)(® I Nucleus User's Guide.

Error Messages
Syntax Error No parameter was specified for the command, or an

error was made in entering the command.

TOKEN is not a Job A valid token was entered that is not ajob token.

*** INVALID TOKEN *** The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

Example

Suppose you want to look at the object directory of job "2280". Enter the following
command:

.. VD 2280 <CR>

The System Debugger responds with

2-14

Directory size: OOOA

$
R?IOUSER
RQGLOBAL

2228
2200
2280

Entries used: 0003

System Debugger

VD--DISPLAY A JOB'S OBJECT DIRECTORY

The symbols "$", "R?IOUSER", and "RQGLOBAL" are the names of objects the system
creates; their respective tokens are 2228,2200, and 2280. There are no waiting tasks or
invalid entries.

System Debugger 2-15

VF--DISPLAV NUMBER OF FREE SLOTS

The VF command displays the number of free Global Descriptor Table slots available to
the user.

------~~~-------
W-0945

Parameters

The VF command has no parameters.

2-16 System Debugger

VF--DISPLAY NUMBER OF FR.EE SLOTS

Description

The VF command displays the number of free Global Descriptor Table (GDT) slots
available to the user, in the format shown in Figure 2-4.

Number of free slots = xxxxxxxx

Error Messages
Syntax Error

System Debugger

Figure 2-4. Format of VF Output

An error was made in entering the command.

2-17

VH--DISPLAY HELP INFORMATION

The VH command displays and briefly describes the System Debugger commands (iRMX
II displays 15 commands; iRMX I displays 12 commands.)

------~~~--------
W-0946

Parameters

This command has no parameters.

Description

The VH command lists all the System Debugger commands, along with their parameters
and descriptions.

Error Message
Syntax Error

Example

An error was made in entering the command.

If you enter the following command:

.. VH <CR>

The System Debugger responds as shown in Figure 2-5.

2-18 System Debugger

VH--DISPLAY HELP INFORMATION

iRMX II SYSTEM DEBUGGER, Vx.y
Copyright <year> Intel Corporation

Displays DUIB for physical device.
Display system call.
Display job's object directory.

vb <Dev Name>
vc [<POINTER>]
vd <Job TOKEN>
vf
vh

Displays number of free slots available to user.
Display help information.

vj [<Job TOKEN>]
vk
vo <Job TOKEN>
vr <Seg TOKEN>
vs [<count>]
vt <TOKEN>
vu <task TOKEN>
vrni [<msg II>] [,]
vrno [<msg #>] [,]
vrnf

Display job hierarchy from specified level.
Display ready and sleeping tasks.
Display list of objects for specified job.
Display I/O Request/Result Segment.
Display stack and system call information.
Display iRMX object.
Unwind task stack, displaying system calls.
Display the MPC input message buffer.
Display the MPC output message buffer.
Toggle the MPC fail-safe timeout.

Figure 2-5. Format of VH Output

< >
[< >]

Angle brackets surround required variable fields.
Square and angle brackets surround optional fields.

iRMX I Note: The last three lines in the display above apply only to iRMX II. They do
not appear in the iRMX I display.

NOTE

The system uses default values if you specify zero (0) for any of the optional
parameters in Figure 2-5. Using zero for required parameters causes the
system to display the following message:

Syntax Error

System Debugger 2-19

VJ--DISPLAY JOB HIERARCHY

The VJ command displays the portion of the job hierarchy that descends from the level you
specify.

@ L~btOk~ J
W-0947

Parameter
job token The token of the job for which you want to display descendant jobs.

If you do not specify a job token, or you specify zero (0), VJ displays
the root job and its descendant jobs.

If the job has more than 44 generations of job descendants, the
System Debugger stops the display at the 44th descendant level,
displays an error message, and prompts for another command.

Description

The VJ command displays the token of the specified job and the tokens of all its
descendant jobs. It also displays the tokens of jobs (and their descendants) at the same
level as the specified job. The tokens for descendant jobs are indented three spaces to
show their job's position in the hierarchy. Figure 2-6 shows the format of the job hierarchy
display.

2-20

iRMX® <1/11> Job Tree

token!
token2

token3
token4

tokens
token6
token7

Root Job
Human Interface
Command Line Interpreter
Application
EIOS
iRMX-NET (ifpresent)
BIOS

Figure 2-6. Format of VJ Output

System Debugger

VJ--DISPLAY JOB HIERARCHY

The fields in Figure 2-6 are

The token you specified as job token (recall that the root job token
is the default).

The tokens for the descendant jobs oftokenl.

In Figure 2-6, the Human Interface, EIOS, and BIOS Jobs are indented three spaces to
signify that they are children of the Root Job. Similarly, the Command Line Interpreter
Job is the child of the Human Interface Job (as are all first level user jobs), and the
Application Job is the child of the Command Line Interpreter Job.

Error Messages
Syntax Error

TOKEN is not a Job

*** INVALID TOKEN ***

SDB job nest limit
exceeded

Examples

An error was made in entering the command.

A valid token was entered that is not a job token.

The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

The specified job (or the default job) has more than 44
generations of job descendants.

If you want to examine the hierarchy of the root job, enter the following command:

.. VJ <CR>

Suppose the System Debugger responds with the following job tree:

0258
OF38

OE88
OEOO

System Debugger

iRMX® <1/11> Job Tree

1670
2460

2-21

VJ--DISPLAY JOB HIERARCHY

Figure 2-7 shows this job tree:

Root Job
(0258)

/~
Human Interface

(OF38)

/
Command Line Interpreter

(1670)

/
Application

(2460)

EIOS
(OE88)

Figure 2-7. iRMX® Job Tree

BIOS
(OEOO)

W-0948

If you want to display the descendant jobs of "OE88", enter the following command:

.. VJ OE88 <CR>

2-22 System Debugger

The System Debugger displays the following:

OE88
OEOO
OF38

iRMX® Job Tree

1670
2460

VJ--DISPLAV JOB HIERARCHY

Note that the tokens for all jobs at the same level as the specified token (OEOO and OF38),
and their descendants (1670 and 2460), are also displayed.

System Debugger 2-23

V~(--DISPLAY READY AND SLEEPING TASKS

The VK command displays the tokens for tasks in the ready and sleeping states.

------~~~-------
W-0949

Parameters
This command has no parameters.

Description

The VK command displays the tokens for tasks that are ready and asleep, in the format
shown in Figure 2-8.

Ready tasks: xxxx xxxx

Sleeping tasks: xxxx xxxx

Figure 2-8. Format of VK Output

The fields in Figure 2-8 show the following:

Ready tasks The tokens for all tasks in the ready state. The first token in this list
represents the running task.

Sleeping tasks The tokens for all tasks in the sleeping state.

Error Messages

Syntax Error

Ready tasks: Can't locate

Sleeping tasks: Can't locate

2-24

An error was made in entering the command.

The system is corrupted.

The most common reason for this type of error is
not initializing the Nucleus. To recover from this
error, reinitialize the system.

System Debugger

VK--DISPLAY READY AND SLEEPING TASKS

Example

To display a list of all the ready and sleeping tasks in your system, enter the following
command:

.. VK <CR>

The System Debugger responds with the following:

Ready tasks: 2FOO

Sleeping tasks: 26FO
2020
20DO

System Debugger

2588
lFF8
0300

26B8
2698

2200
2238

21BO
2118

2090
2668

25E8
2638

2050
2768

2-25

VMF--TOGGLE MPC FAIL-SAFE TIMEOUT

iRMX I Note: This command applies only to MULTIBUS® II systems (iRMX II) ..

The VMF command enables or disables the Message Passing Coprocessor (MPC) fail-safe
timeout feature. This command can be used only in a MUL TIBUS II system.

------~~~-------
W-0608

Parameters

This command has no parameters.

Description

The VMF command enables and disables the fail-safe timer on the Message Passing
Coprocessor (MPC). Multiple invocations of this command will alternately enable and
disable the fail-safe timer.

The MPC fail-safe timer limits how long (about two seconds on an iSBC® 386/116 or
iSBC® 386/120 board) the MPC will wait between sending a buffer request message and
receiving a buffer grant or buffer reject message. This hardware timeout ensures that the
MPC will not wait forever when trying to communicate with another host that has failed
during the buffer negotiation phase. When debugging a message-passing application, it is
useful to disable the fail-safe timer so either host may be stopped for indefinite periods
while debugging commands are executing. When you are finished debugging, you must use
the VMF command to re-enable the fail-safe timer before re-starting your application.

2-26

NOTE

The MPC fail-safe timer must be re-enabled before re-starting an application
after debugging. Otherwise, your application may not function properly.

System Debugger

VMF--TOGGLE MPC FAIL-SAFE TIMEOUT

NOTE

To use the VMF command, you must specify at least one trace message on the
Nucleus Communication Service screen in the ICU. For details on the Number
of Trace Messages configuration parameter, see the iRMX® II Interactive
Configuration Utility Reference Manual.

Error Messages
Syntax Error

Example

An error was made in entering the command.

If you enter the following command:

.. Vl1F <CR>

one of these two messages will be displayed:

MPC Failsafe Timer Is Enabled

or

MPC Failsafe Timer Is Disabled

System Debugger 2-27

VMI--DISPLAY INPUT MESSAGE BUFFER

iRMX I Note: This command applies only to MULTIBUS II systems (iRMX II).

The VMI command displays the contents of the messages received from the Message
Passing Coprocessor (MPC). This command can be used only in a MULTIBUS II system.

Parameters

msg#

Description

W-0609

The number of the message to display. If this parameter is omitted,
the most recent message is displayed. If the comma (,) parameter is
also entered, this field specifies the first message to display.

Specifies that you want to view more than one message in the input
message buffer. When you specify this parameter, SDB displays the
first message and then displays a special prompt, a dash (-), at the
end of the line. If you enter another comma, SDB displays the next
most recent message in the input message buffer. The debugger
then issues another special prompt (-) and waits for you to either
enter another comma or to end the command. You can end the
VMI command by entering a carriage return in response to the
special prompt (-).

The VMI command displays the field values associated with the input messages received
from the MPC input message buffer. These fields are used by the iRMX Nucleus
Communication Service, an implementation of the MUL TIBUS II Transport Protocol.
This section briefly describes each field. For a more detailed description of the fields, refer
to the MULTIBUS® II Transport Protocol Specification and Designer's Guide.

2-28 System Debugger

VMI--DISPLAY INPUT MESSAGE BUFFER

NOTE

The VMI command displays the most recent messages in the input message
buffer. The number of messages you can display depends on how many trace
messages you allocate on the Nucleus Communication Service screen in the
ICU. For example, if you specify five trace messages, you will be able to display
the five most recent messages. To use the VMI command, you must specify at
least one trace message. For details on the Number of Trace Messages
configuration parameter, see the iRM~ II Interactive Configuration Utility
Reference Manual.

The format of the VMI output depends on the type of message. Figure 2-8.3 shows the
fields that may be displayed.

message type req_id: xx src_hid: xx dest hid: xx len: xxxxxx
trans control trans id: xx src_pid: xxxx dest_pid: xxxx xmit_c: xx
len: xxxxxxxx

Figure 2-8a. Format of VMI Output

The first line of the display contains hardware-level information about the message. The
fields on this line are:

message type

re~id

src hid

dest hid

len

System Debugger

The message number.

The type of message (hardware-level protocol). Possible values are
Unsolicited, Broadcast, Buf Request, and Unknown Type.

Request Id. This ID defines a particular message transfer.

Host ID of the sender of the message.

Host ID of the receiver of the message.

The length (in bytes) of the requested transfer. This field is only
displayed for buffer request messages. For other types of messages,
this field is blank.

2-29

VMI--DISPLAY INPUT MESSAGE BUFFER

The second line of the display contains software protocol information about the message.
If the protocol of the message is not the data trasport protocol, the following is displayed:

Unknown Protocol

If the protocol being used is the data transport protocol, the following fields are displayed:

trans control

trans id

2-30

A representation of the transaction control field of the message. If
the message is not a request or response message, this field is blank;
otherwise, this field indicates the type of request or response
message. Possible values for this field are:

Resp/EOT Response message, end-of-transaction
(EaT). Indicates that this is the last
fragment of a reply.

Resp/Not EaT Response message, not end-of
transaction (EaT). Indicates that more
fragments of the reply will follow.

Resp/Cancel Response message with cancellation.
Indicates that the sender of the reply
(the server) is cancelling the transaction.

Resp/Reserved Reserved type. Undefined at present.

Req/Frag Off Request message with fragmentation
disallowed. The request cannot be sent
in fragments.

Req/Frag On Request message with fragmentation
allowed. The request can be sent in
fragments, if necessary.

Req/Send Frag Request message, send next fragment.
The next fragment of a fragmented
transfer can be sent.

Req/Next Frag Request message containing the next
fragment of a fragmented transfer.

Transaction ID. A number that uniquely identifies a transaction.
This field will be zero for transactionless messages (unsolicited or
solicited messages with no reply expected).

System Debugger

srcyid

destyid

xmit c

VMI--DISPLAY INPUT MESSAGE BUFFER

The port ID of the sender of the message.

The port ID of the receiver of the message.

Transmission control. The high-order two bits of this field indicate
the protection level of the message. Level 0 is the most privileged
level and level 3 is the least.

If the trans control field indicates that the message is a Req/Send Frag message, the third
line of the display contains the following field:

len The length (in bytes) of the requested fragment.

Otherwise, the third line shows the user data portion of the control message in
hexadecimal words. If the message type or software protocol are unknown, the entire
message is displayed in hexadecimal words, beginning on the third line.

NOTE

You cannot use the VMI command to view the contents of short-circuit
messages.

Error Messages
Syntax Error

Message Information Is
Not Available

System Debugger

An error was made in entering the command.

The system is not a MUL TIBUS II system or no trace
messages were specified during configuration. The number
of trace messages is specified on the Nucleus
Communication Service screen in the ICU. For details,
refer to the iRMX® II Interactive Configuration Utility
Reference Manual.

2-31

VMO--DISPLAY OUTPUT MESSAGE BUFFER

iRMX I Note: This command applies only to MULTIBUS II systems (iRMX II).

The VMO command displays the contents of the output messages sent by the Message
Passing Coprocessor (MPC). This command can be used only in a MULTIBUS II system.

Parameters
msg#

Description

W-061 0

The number of the message to display. If this parameter is omitted,
the most recent message is displayed. If the comma (,) parameter is
also entered, this field specifies the first message to display.

Specifies that you want to view more than one message in the
output message buffer. When you specify this parameter, SDB
displays the first message and then displays a special prompt, a dash
(-), at the end of the line. If you enter another comma, SDB
displays the next most recent message in the output message buffer.
The debugger then issues another special prompt (-) and waits for
you to either enter another comma or to end the command. You
can end the VMO command by entering a carriage return in
response to the special prompt (-).

The VMO command displays the field values associated with the output messages sent by
the MPC. These fields are used by the iRMX Nucleus Communication Service, an
implementation of the MULTIBUS II Transport Protocol. This section briefly describes
each field. For a more detailed description of the fields, refer to the MULTIBUS® II
Transport Protocol Specification and Designer's Guide.

2-32 System Debugger

VMO--DISPLAV OUTPUT MESSAGE BUFFER

NOTE

The VMO command displays the most recent messages in the output message
buffer. The number of messages you can display depends on how many trace
messages you allocate on the Nucleus Communication Service screen in the
ICU. For example, if you specify five trace messages, you will be able to display
the five most recent messages. To use the VMO command, you must specify at
least one trace message. For details on the Number of Trace Messages
configuration parameter, see the iRMX® II Interactive Configuration Utility
Reference Manual.

The format of the VMO output depends on the type of message. Figure 2-8.2 shows the
fields that may be displayed.

/111 message type
trans control
len: xxxxxxxx

reCLid: xx
trans id: xx

xx
xxxx

yyyyyyy
xmit c: xx

Figure 2-8b. Format ofVMO Output

The first line of the display contains hardware-level information about the message. The
fields on this line are:

message type

re~id

src hid

dest hid

System Debugger

The message number.

The type of message (hardware-level protocol). Possible values are
Unsolicited, Broadcast, Buf Request, Buf Grant, Buf Reject, and
Unknown Type.

Request Id. This ID defines a particular message transfer.

Host ID of the sender of the message.

Host ID of the receiver of the message.

2-33

VMO--DISPLAY OUTPUT MESSAGE BUFFER

yyyyyyy This part of the first line is only displayed for buffer request, buffer
grant, and buffer reject messages. It can consist of one of two fields.
For buffer request messages, the following field is displayed:

len The length (in bytes) of the requested
transfer.

For buffer grant and buffer reject messages, this field is displayed.

I id Liaison ID. This ID binds a buffer·
grant or buffer reject message to a
buffer request message.

The second line of the display contains software protocol information about the message.
If the protocol of the message is not the data transport protocol, the following is displayed:

Unknown Protocol

If the protocol being used is the data transport protocol, the following fields are displayed:

trans control

2-34

A representation of the transaction control field of the message. If
the message is not a request or response message, this field is blank;
otherwise, this field indicates the type of request or response
message. Possible values for this field are:

Resp/EOT

Resp/Not EOT

Resp/Cancel

Resp /Reserved

Req/Frag Off

Req/FragOn

Response message, end-of-transaction
(EOT). Indicates that this is the last
fragment of a reply.

Response message, not end-of
transaction (EOT). Indicates that more
fragments of the reply will follow.

Response message with cancellation.
Indicates that the sender of the reply
(the server) is cancelling the transaction.

Reserved type. Undefined at present.

Request message with fragmentation
disallowed. The request can not be
sent in fragments.

Request message with fragmentation
allowed. The request can be sent in
fragments, if necessary.

System Debugger

trans id

srcyid

destyid

xmit c

VMO--DISPLAY OUTPUT MESSAGE BUFFER

Req/Send Frag Request message, send next fragment.
The next fragment of a fragmented
transfer can be sent.

Req/Next Frag Request message containing the next
fragment of a fragmented transfer.

Transaction ID. A number that uniquely identifies a transaction.
This field will be zero for transactionless messages (unsolicited or
solicited messages with no reply expected).

The port ID of the sender of the message.

The port ID of the receiver of the message.

Transmission control. The high-order two bits of this field indicate
the protection level of the message. Level 0 is the most privileged
level and level 3 is the least.

If the trans control field indicates that the message is a Req/Send Frag message, the third
line of the display contains the following field:

len The length (in bytes) of the requested fragment.

Otherwise, the third line shows the user data portion of the message in hexadecimal words.
If the message type or software protocol are unknown, the entire message is displayed in
hexadecimal words, beginning on the third line.

NOTE

You cannot use the VMI command to view the contents of short-circuit
messages.

Error Messages

Syntax Error

Message Information Is
Not Available

System Debugger

An error was made in entering the command.

The system is not a MUL TIBUS II system or no trace
messages were specified during configuration. The number
of trace messages is specified on the Nucleus
Communication Service screen in the ICU. For details,
refer to the iRM)(® II Interactive Configuration Utility
Reference Manual.

2-35

VO--DISPLAY OBJECTS IN A JOB

The VO command displays the tokens for the objects in the specified job.

--------~~ ~tOk~~----------------
W-0950

Parameter
job token The token of the job for which you want to display objects.

Description

The VO command lists the tokens for a job's:

• child jobs

• tasks
• mailboxes

• semaphores

• regions

• segments

• extensions

• composites

• buffer pools

It uses the format shown in Figure 2-9.

Child Jobs: xxxx xxxx xxxx
Tasks: xxxx xxxx xxxx
Mailboxes: xxxx xxxx xxxx
Semaphores: xxxx xxxx xxxx
Regions: xxxx xxxx xxxx
Segments: xxxx xxxx xxxx
Extensions: xxxx xxxx xxxx
Composites: xxxx xxxx xxxx
Buffer Pools: xxxx xxxx xxxx

Figure 2-9. Format ofVO Output

2-36 System Debugger

VO--DISPLAY OBJECTS IN A JOB

The fields in Figure 2-9 are as follows:

Child Jobs

Tasks

Mailboxes

Semaphores

Regions

Segments

Extensions

Composites

Buffer Pools

Error Messages

The tokens for the specified job's offspring jobs.

The tokens for the tasks in the specified job.

The tokens for the mailboxes in the job. An "0" following a mailbox
token means that one or more objects are queued at the mailbox. A
"t" following a mailbox token means that one or more tasks are
queued at the mailbox.

The tokens for the semaphores in the specified job. A "t" following
a semaphore token means that one or more tasks are queued at the
semaphore.

The tokens for the regions in the specified job. A "b" (busy)
following a region token means that a task has access to information
guarded by the region.

The tokens for the segments in the specified job.

The tokens for the extensions in the specified job.

The tokens for the composites in the specified job. A "s" following a
composite signifies a port with a signal waiting. An "m" signifies a
port with a message waiting. A "t" signifies a port with a task
waiting.

The tokens for the buffer pools in the specified job.

Syntax Error No parameter was specified for the command or an error
was made in entering the command.

TOKEN is not a Job A valid token was entered; however, it is not a job token.

*** INVALID TOKEN *** The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

Example

If you want to look at the objects in the job having the token "1670", enter the following
command:

.. va 1670 <CR>

System Debugger 2-37

VO--DISPLAY OBJECTS IN A JOB

The System Debugger responds with the following:

Child jobs: 2460
Tasks: 1688 1778 17B8 1940 1950 2FF8
Mailboxes: 1720 1728 1738 t 1740 t 1760 t 1768 t
Semaphores: 17AO 17A8 t
Regions:
Segments: 16D8 1750 1958 1960 2FE8 2FC8
Extensions:
Composites: 1690 16FO 1710 1828 1848 1980
Buffer pools:

This display shows the tokens for the job, as described earlier. It also tells you that tasks
are waiting at four mailboxes and one semaphore.

2-38 System Debugger

VR--DISPLAY I/O REQUEST/RESULT SEGMENT

The VR command displays information about the iRMX Basic I/O System I/O
Request/Result Segment (laRS) that corresponds to the segment token you enter.

--------~~~----~~~------------------V ~

Parameter
Segment token

Description

W-0941

The token for a segment containing the laRS you want to display.
If this segment is not an laRS, the VR command returns invalid
information. To obtain a list of the segment tokens in a job, use the
va command.

The VR command displays the names and values for the fields of a specific laRS. The
contents of the laRS reflect the most recent I/O operation in which this laRS was used.
The System Debugger ensures the specified segment is between 45 and 65 bytes long. It
cannot tell whether the segment contains a valid laRS, so you must ensure that it does. If
the parameter is a valid segment token for a segment containing an laRS, the System
Debugger displays information about the laRS as shown in Figure 2-10. For more
information on I/O Request/Result Segments, see the iRMX® Basic I/O System User's
Guide.

For more detailed information about the laRS contents, see the iRMX® Device Drivers
User's Guide.

System Debugger 2-39

VR--DISPLAY I/O REQUEST/RESULT SEGMENT

I/O Request Result Segment

Status xxxx Unit status xxxx
Device xxxx Unit xx
Function xxxxxxx Subfunction xxxxxxx
Count xxxx Actual xxxx
Device location xxxxxxxx Buffer pointer xxxx:xxxx
Resp mailbox xxxx Aux pointer xxxx:xxxx
Link forward xxxx:xxxx Link backward xxxx:xxxx
Done xxxxx Cancel ID xxxx
Connection token xxxx

Figure 2-10. Format of VR Output

The fields in Figure 2-10 are as follows:

Status

Unit status

Device

Unit

Function

2-40

The condition code for the I/O operation.

Additional status information. The contents of this field are
significant only when the Status field is set to the E$IO condition
(002BH). If the Status field is not set to E$IO, the Unit Status field
displays liN/Ali.

The number of the device for which this I/O request is intended.

The number of the unit for which this I/O request is intended.

The operation done by the Basic I/O System. The possible
functions are

Function

Read
Write
Seek
Special
Au Dev
Det Dev
Open
Close

System Call

RQAREAD
RQAWRITE
RQASEEK
RQASPECIAL
RQAPHYSICAL$ATIACH$DEVICE
RQAPHYSICAL$DETACH$DEVICE
RQAOPEN
RQACLOSE

If the Function field contains an invalid value, the System Debugger
displays the actual value in this field, followed by a space and two
question marks.

System Debugger

Subfunction

Count

Actual

Device location

Buffer pointer

Resp mailbox

Auxpointer

Link forward

Link backward

System Debugger

VR--DISPLAY I/O REQUEST/RESULT SEGMENT

An added specification of the function that applies only when the
Function field contains "Special" from the BIOS RQASPECIAL
system call. Possible subfunctions and their descriptions are

Subfunction

For/Que
Satisfy
Notify
Device char
Get Term Attr
Set Term Attr
Signal
Rewind
Read File Mark
Write File Mark
Retention Tape
Set Font

Description

Format or Query
Stream file satisfy function
Notify function
Device characteristics
Get terminal attributes
Set terminal attributes
Signal function
Rewind tape
Read file mark on tape
Write file mark on tape
Take up slack on tape
Set character font

Set Bad Info
Get Bad Info
Get term status
Cancel I/O
Resume I/O

Set bad track/sector information
Get bad track/sector information
Get terminal status
Cancel terminal I/O
Resume terminal I/O

If the Function field doesn't contain "Special," then the Subfunction
field contains "N/ A." If the Subfunction field contains an invalid
value, the System Debugger displays the value of the field followed
by a space and two question marks.

The number of bytes of data called for in the I/O request.

The number of bytes of data transferred in response to the request.

The eight-digit hexadecimal address of the byte or logical block
where the I/O operation began on the specified device.

The address of the buffer the Basic I/O System read from, or wrote
to, in response to the request.

A token for the response mailbox to which the device sent the 10RS
after the operation.

The pointer to the location of auxiliary data, if any. This field is
significant only when the Function field contains "Special."

The address of the next 10RS in the queue where the 10RS waited
to be processed.

The address of the previous 10RS in the queue where the 10RS
waited to be processed.

2-41

VR--DISPLAY I/O REQUEST/RESULT SEGMENT

Done

CancellD

Connection token

Error Messages

This field is always present but applies only to 10RSs for I/O
operations on random-access devices. When applicable, it indicates
whether the I/O operation has been completed. The possible values
are TRUE (OFFH) and FALSE (OOH).

A word used by device drivers to identify I/O requests that need to
be canceled. A value of zero (0) indicates a request that cannot be
canceled.

The token for the file connection used to issue the request for the
I/O operation.

Syntax Error No parameter was specified for the command or an error
was made in entering the command.

TOKEN is not a SEGMENT The token entered is valid but not a segment token.

*** INVALID TOKEN ***

SEGMENT wrong size -
not an 10RS

2-42

The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

The specified segment is not between 45 and 65 bytes long,
so it is not an I/O Request/Result Segment.

System Debugger

VS--DISPLAY STAC~(AND SYSTEM CALL INFORMATION

The VS command identifies system calls (as does the VC command) and displays the stack.

Parameter
count

Description

@ l0ount~ J
W-0952

A decimal or hexadecimal value that specifies the number of words
from the stack to be included in the display. A suffix of T, as in 16T,
means decimal. No suffix or a suffix of H indicates hexadecimal.

If you do not specify a count, or you specify a count of zero (0), the
number of words in the display depends on the number of
parameters for the system call at the CS:IP. When CS:IP is not
pointing to a system call, the entire contents of the stack are
displayed.

The VS command identifies iRMX system calls for all iRMX subsystems (as does the VC
command). It interprets the system call parameters on the stack. If the stack does not
contain a system call, the VS command displays either the number of stack elements you
specify or all the stack contents, whichever is least. If a parameter is a string, the System
Debugger displays the string. For additional system call information, see the appropriate
iRMX Volume 3 system call manual.

The VS command interprets the CALL instruction at the current CS:IP. If you want to
interpret a CALL instruction at a different CS:IP value, you must move the CS:IP to that
value. To move the CS:IP using the iSDM monitor, use the GO (G) command or the
EXAMINE/MODIFY REGISTER command (X with CS or IP specified as the 8086,
80286 or 386TW register).

If the instruction is not a CALL instruction, VS displays the contents of the words on the
stack and no message. If the instruction is a CALL but not a system call (for example, a
PL/M call to a procedure), VS displays the stack contents. It also displays a message
telling you that the CALL was not a system call.

The VS command uses current values of the SS:SP (Stack Segment:Stack Pointer) registers
to display the current stack values. If the instruction is an iRMX system call, VS displays
the system call and the stack information as shown in Figure 2-11.

System Debugger 2-43

VS--DISPLAY STACK AND SYSTEM CALL INFORMATION

gate IINNNN
xxxx:xxxx xxxx
xxxx:xxxx xxxx

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

(subsystem)system call

I parameters I

Figure 2-11. Format of VS Output

The fields in Figure 2-11 are as follows:

xxxx:xxxx The contents of the SS:SP (stack memory addresses).

xxxx

parameters

Values (tokens) now on the stack. The number of stack values
varies, depending on the number of parameters in the system call.

The names of the stack values. The parameters correspond to the
stack values directly above them. The maximum number of
displayed parameters is 24.

The three remaining fields in Figure 2-11 are the same as those in the VC command:

gate #NNNN The gate number associated with the system call. (iRMX II only).

(subsystem)

system call

Error Messages
Syntax Error

Not a system CALL

Unknown entry
code

2-44

The iRMX Operating System layer that the system call is part of.

The name of the iRMX system call.

An error was made in entering the command.

The CS:IP is pointing to a CALL instruction that is not an iRMX
system call.

This message indicates that one of two infrequent events has
occurred. One is that the System Debugger has mistaken an
operand belonging to some instruction in the object code for the
FAR CALL instruction. The other event is that a software link
from user code into iRMX code has been corrupted. To recover
from system corruption, reboot the system.

System Debugger

VS--DISPLAY STACK AND SYSTEM CALL INFORMATION

Examples

Suppose you determine that the SS:SP is 1906:07CA (using the iSDM Monitor's X
command, for example) then use the VS command by entering the following command:

.. vs <CR>

The System Debugger responds with the following:

gate 110360
1906:07GA OB08 1980 lEA8 1980 1980 0000 OBOO 1908
1906:07DA 19AO OB20 0580 lEA8 lEAO lEE8 0000 0000

(Nucleus) delete mailbox

I .. excep$p .. I .mbox. I

The parameter names identify the stack values directly above them. That is, the "excep$p"
parameter name signifies that the first two words represent a pointer (1980:0B08) to the
exception code. Similarly, the "mbox" parameter signifies that the third word (lEA8) is the
token for the mailbox being deleted.

Now, suppose that you move the SS:SP to 2906:07DO. If you invoke the VS command by
entering the following command:

.. VS <CR>

The System Debugger displays the following stack and a message informing you that the
instruction is a CALL instruction but not an iRMX system call:

2906:07DO 2980 2980 0000 0600 2908 29AO 0020 1580
2906:07EO 27G8 27G8 25G8 25G8 25G8 25G8 25G8 25G8

Not a system GALL

When an iRMX system call is executed, its parameters are pushed onto the current stack,
and then a CALL instruction is issued with the appropriate stack address. If the call has
more parameters than will fit on one line, the System Debugger automatically displays
multiple lines of stack values. It shows corresponding mUltiple lines of parameter
descriptions directly below them.

System Debugger 2-45

VS--DISPLAY STACK AND SYSTEM CALL INFORMATION

For example, suppose you use the VS command as follows:

.. vs <CR>

gate 110310
27GG:OF9A 0158 20G8 0000 20G8 20G8 0000 0600 17G8
27CG:OFAA 20E8 0028 0000 0000 20G8 OOEO 2FF8 2FF8
27GG:OFBA 2608 1A58 1AF8 2608 0000 0000 0000 0000

(Nucleus) create job

I ... excep$p ... 1 .t$f1gs. Istkszel .. sp .. 1 .. ss .. 1 .. ds .. I .. ip .. 1
1 .. cs .. I .. pri. I .j$f1gs. I .exp$info$p .. Imaxprilmaxtsklmaxobjl
Ipoo1mxlpoo1mnl .param .. Idirsizl

This display indicates that the CALL instruction is a Nucleus RQ$CREA TE$JOB system
call with 18 parameters. The names of these parameters are shown between the vertical
bars (I). The words on the stack correspond to the parameters directly below them.

The following display shows that the CALL instruction is a Basic I/O System (BIOS)
RQAA ITACH$FILE system call with five parameters. The "subpath$p" parameter
points to a string seven characters long: the word "example."

.. VS <GR>

gate 110500
27CC:OF4E OF88 17G8 25F8 0000 2600 29AO 0000 2600
27CC:OF5E 2608 1G10 2600 1320 26DO OF78 ODF8 2FF8

(BIOS) attach file

I.· .. excep$p ... 1 .mbox. I .. subpath$p .. I .prefixl .userl
subpath--> 07'examp1e'

The following display indicates that the CALL instruction at CS:IP is an Extended I/O
System RQSRENAME$FILE system call with three parameters. Two of the parameters
have strings: the "new$path$p" parameter points to a string four characters long ("XY70");
the "path$p" parameter points to another string four characters long ("temp") .

.• VS <CR>

2-46 System Debugger

VS--DISPLAV STACK AND SYSTEM CALL INFORMATION

gate 1I06E8

27GG:OF98 0148 20G8 0858 20E8 06AO 20E8 0000 0600
27GG:OFA8 17G8 20E8 0028 1320 0000 20G8 0008 2600

(EIOS) rename file

I .. excep$p .. I .. new$path$p .. I· .. path$p ... I
new path--> 04'XY70'
path--> 04'temp'

NOTE

If a string is more than 50 characters long, the System Debugger displays only
the first 50 characters. If the pointer is pointing to a nonreadable segment, the
System Debugger does not display the string.

System Debugger 2-47

VT--DISPLAY iRM)(® OBJECT

The VT command displays information about the iRMX object associated with the token
you enter.

------1@ C!oken ~;----------
W-0953

Parameter
token The token of the object for which you want to display information.

Description

The VT command determines the type of iRMX object represented by the token and
displays information about that object. Both the information and the format in which the
System Debugger displays the information depend on the type of object.

The following sections are divided into display groups illustrating the display format for
these iRMX objects:

• Jobs • Segments

• Tasks • Extensions

• Mailboxes • Composite objects (six types)

• Semaphores • Buffer Pools (iRMX II only)

• Regions

Error Messages
Syntax Error No parameter was specified for the command or an

error was made in entering the command.

*** INVALID TOKEN *** The value entered for the token is not a valid token (as
defined in "Checking Validity of Tokens" earlier in this
chapter).

2-48 System Debugger

VT--DISPLAV iRMX@ OBJECT

Job Display

If the parameter you specify is a valid job token, the System Debugger displays information
about the job having that token, as Figure 2-12 shows.

Object type = I Job

Current tasks xxxx Max tasks xxx x Max priority xx
Current objects xxxx Max objects xxxx Parameter obj xxxx
Directory size xxxx Entries used xxxx Job flags xxxx
Except handler xxxx:xxxx Except mode xx Parent job xxxx
Pool min xxxxx Pool max xxxxx Initial size xxxxx
Borrowed xxxxx

Byte range 1 Number chunks 1 Largest chunk 1 Total memory
----------------1-------------------1-------------------1--------------

22-44H 1 xxxxxxxx 1 xxxxxxxx 1 xxxxxxxx
44 - 84H I xxxxxxxx I xxxxxxxx 1 xxxxxxxx
84-200H I xxxxxxxx I xxxxxxxx I xxxxxxxx
200H-IK I xxxxxxxx 1 xxxxxxxx I xxxxxxxx
IK-2K 1 xxxxxxxx 1 xxxxxxxx 1 xxxxxxxx
2K -4K I xxxxxxxx 1 xxxxxxxx 1 xxxxxxxx
4K- 8K I xxxxxxxx I xxxxxxxx I xxxxxxxx
8K-32K I xxxxxxxx 1 xxxxxxxx I xxxxxxxx
+32K 1 xxxxxxxx 1 xxxxxxxx 1 xxxxxxxx

Figure 2-12. Format ofVT Output: Job Display

The fields in Figure 2-12 (from left to right) are as follows:

Current tasks The number of tasks currently existing in the job. If the Max tasks is
not OFFFFH (no limit), the number of Current tasks is equal to the
Current tasks of this job plus all its children Max tasks.

Max tasks

Max priority

Current objects

Max objects

System Debugger

The maximum number of tasks that can exist in the job
simultaneously. This value was set when the job was created.

The maximum (numerically lowest) priority allowed for anyone task
in the job. This value was set when the job was created.

The number of objects currently existing in the job.

The maximum number of objects that can exist in the job
simultaneously. This value was set when the job was created.

2-49

VT--DISPLAY iRMX@ OBJECT

Parameter obj

Directory size

Entries used

Job flags

Except handler

Except mode

Parent job

Pool min

Pool max

Initial size

Borrowed

Free Space

2-50

The token for the object that the parent job passed to this job. This
value was set when the job was created.

The maximum number of entries the job can have in its object
directory. This value was specified by the first parameter when the
job was created with the Nucleus RQ$CREA TE$JOB system call or
the RQE$CREA TE$JOB system call CiRMX II only).

The number of objects now catalogued in the job's object directory.

The job flags parameter specified when the job was created. It
contains information the Nucleus needs to create and maintain the
job.

The start address of the job's exception handler. This address was
set when the job was created.

The value that indicates when control is to be passed to the new
job's exception handler. This value was set when the job was
created.

The token for the specified job's parent.

The minimum size (in 16-byte paragraphs) of the job's memory
pool. This value was set when the job was created.

The maximum size (in 16-byte paragraphs) of the job's memory
pool. This value was set when the job was created.

The initial size (in 16-byte paragraphs) of the job's memory pool.

The current amount (in 16-byte paragraphs) of memory that the job
has borrowed from its ancestor(s).

All free memory in a job's pool is accounted for, via several double
linked lists. Each list contains a range of chunk sizes. A chunk is a
piece of contiguous memory. Column one of the free space table
shows the size ranges for the list. Column two shows the number of
chunks on each list. Column three displays the largest chunk on
each list. Column four shows the total amount of memory on each
list.

System Debugger

VT--DISPLAY iRMX® OBJECT

Task Display

The System Debugger displays information about tasks in two different ways. Figure 2-13
shows the display for non-interrupt tasks, and Figure 2-14 shows the display for interrupt
tasks.

Object type = 2 Task

Static pri xx Dynamic pri xx Task state xxxxxxxxx
Suspend depth xx Delay req xxxx Last exchange xxxx
Except handler xxxx:xxxx Except mode xx Task flags xx
Containing job xxxx Interrupt task no K-saved SS:SP xxxx:xxxx

Figure 2-13. Format ofVT Output: Non-Interrupt Task

Object type 2 Task

Static pri xx Dynamic pri xx Task state xxxxxxxxx
Suspend depth xx Delay req xxxx Last exchange xxxx
Except handler xxxx:xxxx Except mode xx Task flags xx
Containing job xxxx Interrupt task yes Int level xx
Master mask xx Slave mask xx Pending int xx
Max interrupts xx K-saved SS:SP xxxx:xxxx

Figure 2-14. Format ofVT Output: Interrupt Task

The fields in Figures 2-13 and 2-14 (from left to right) are as follows:

Static pri

System Debugger

The maximum priority value of the task. This value was set by the
max$priority parameter when the task's containing job was created
with RQ$CREATE$JOB or RQE$CREATE$JOB. (iRMX II only)

2-51

VT--DISPLAY iRMX® OBJECT

Dynamicpri

Task state

Suspend depth

Delay req

Last exchange

2-52

A temporary priority that the Nucleus sometimes assigns to the task
to improve system performance. For example, if a higher priority
task wants control of a region that belongs to a currently executing
lower priority task, the Nucleus assigns the lower priority task a
priority equal to that of the higher priority task. This increasing of a
task's priority improves the total system performance here.

The state of the task. The twelve possible states, as they are
displayed, are

ready

asleep
susp
aslp/susp

deleted
on exch Q

aslp/exch

sl/xc/susp

on port Q
aslp/port

on trans Q

aslp/trans

Description

task is ready for
execution
task is asleep
task is suspended
task is both asleep and
suspended
task is being deleted
task is waiting at an
exchange
task is asleep waiting
at an exchange
task is asleep and
suspended waiting at
an exchange
task is queued at a port
task is asleep waiting at
a port
task is queued at a port
on transaction queue
task is asleep and
queued at port on
transaction queue

If this field contains an invalid value, the System Debugger displays
the value followed by a space and two question marks.

The number of RQ$SUSPEND$TASK system calls that have been
applied to this task without corresponding RQ$RESUME$TASK
system calls.

The number of sleep units the task requested when it last specified a
delay at a mailbox or semaphore, or when it last called RQ$SLEEP.
If the task has not done any of these, this field contains zeros.

The token for the mailbox, region, or semaphore at which the task
most recently began to wait.

System Debugger

Except handler

Except mode

Task flags

Containing job

Interrupt task

K-saved SS:SP

Int level

Master mask

Slave mask

Pending int

System Debugger

VT--DISPLAV iRMX® OBJECT

The start address of the job's default exception handler. This value
was set either when the task was created with
RQ$CREATE$TASK, RQ$CREATE$JOB, RQE$CREATE$JOB,
or later with RQSETEXCEPTION$HANDLER.

The value that indicates the exceptional conditions under which
control is to be passed to the new task's exception handler. This
value was set either when the task was created with
RQ$CREATE$TASK, RQ$CREATE$JOB, RQE$CREATE$JOB,
or later with RQSETEXCEPTION$HANDLER.

The task flags parameter used when the task was created with
RQ$CREATE$TASK. It contains information the Nucleus needs
to create and maintain the job's initial task.

The token of the job that this task belongs to.

Indicates whether this task is an interrupt task. "No" signifies that
the task is not an interrupt task. Here, only the K-saved field
follows in the display. (See Figure 2-13.)

"Yes" signifies that the task is an interrupt task. In this case,
additional fields appear in the display. (See Figure 2-14.)

The contents of the SS:SP registers when the task last left the ready
state.

The level that the interrupt task services. This level was set when
this task called RQSETINTERRUPT.

The value associated with the interrupt mask for the master
interrupt controller. This value represents the master interrupt
levels disabled by the interrupt level that the task services.

For example, if the task services master interrupt level 68H, then
master levels 6 and 7 are disabled, so the master mask field is
11000000B (= OCOH). For more information about interrupt levels,
see the iRMX® II Nucleus User's Guide or the iRM)(® I Nucleus
User's Guide.

The value associated with the interrupt mask for a slave interrupt
controller. This value represents the slave interrupt levels disabled
by the level that the task services.

For example, if the task services slave interrupt level 62H, then slave
levels 2 through 7 are disabled, so the slave level field is 11111100B
(= OFCH). For more information about interrupt levels, see the
iRMX® II Nucleus User's Guide or the iRMX® I Nucleus User's Guide.

The number of RQ$SIGNAL$INTERRUPT calls pending for the
Intlevel.

2-53

VT--DISPLAY iRMX® OBJECT

Max interrupts The maximum number of RQ$SIGNAL$INTERRUPT calls that
can be pending for the Int level.

Mailbox Display

The System Debugger displays information about mailboxes in three different ways:

2-54

• Figure 2-15 shows the display when nothing is queued at the mailbox.

• Figure 2-16 shows the display when tasks are queued at the mailbox.

• Figure 2-17 shows the display when objects are queued at the mailbox.

• Figure 2-18 shows the display when data messages are queued at the mailbox.

Object type = 3 Mailbox

Mailbox type
Queue discipline
Containing job

xxxxxx
xxxx
xxxx

Task queue head xxxx
Object queue head 0000
Object cache depth xx

Figure 2-15. Format ofVT Output: Mailbox with No Queue

Object type = 3 Mailbox

Mailbox type
Queue discipline
Containing job

Task queue

xxxxxx Task queue head zzzz
xxxx Object queue head 0000
xxxx Object cache depth xx

zzzz xxxx

Figure 2-16. Format ofVT Output: Mailbox with Task Queue

System Debugger

VT--DISPLAY iRMX® OBJECT

Object type = 3 Mailbox

Mailbox type
Queue discipline
Containing job

xxxxxx
xxxx
xxxx

Task queue head xxxx
Object queue head zzzz
Object cache depth xx

Object cache queue zzzz xxxx

Object overflow queue xxxx xxxx

Figure 2-17. Format ofVT Output: Mailbox with Object Queue

Object type = 3 Mailbox

Mailbox type
Queue discipline
Containing job

xxxxxx
xxxx
xxxx

Task queue head zzzz
Data queue head xxxx:xxxx

Data message queue xxxx:xxxx xxxx:xxxx xxxx:xxxx
xxxx:xxxx xxxx:xxxx

Figure 2-18. Format of VT Output: Mailbox with Data Message Queue

The fields in Figures 2-15, 2-16, 2-17, and 2-18 are as follows:

Mailbox type The type of mailbox: object or data. Mailbox type is either
Object or Data. The mailbox type is defined when the
mailbox is created.

Task queue head

Object queue head

System Debugger

The token for the task at the head of the queue. If the task
queue for this mailbox is empty, this field contains the
mailbox token.

The token for the object at the head of the queue. If the
object queue for this mailbox is empty, this field contains
"0000". If the mailbox type is "Data", this field contains
"N/A".

2-55

VT--DISPLAY iRMX® OBJECT

2-56

Queue discipline

Object cache depth

Containing job

Task queue

Object cache queue

Object overflow queue

Data queue head

Data message queue

Indicates how tasks are queued at the mailbox. Tasks are
queued as "FIFO" (first-in-first-out) or by "PRI" (priority),
depending on how the mailbox was defined when it was
created with RQ$CREA TE$ MAILB OX. If the System
Debugger can't interpret this field, it displays the actual
value followed by a space and two question marks.

The size of the high-performance cache portion of the
object queue associated with the mailbox. This size was
specified when the mailbox was created with
RQ$CREA TE$MAILBOX. If the mailbox type is "Data",
this field contains "N/A".

The token for the job that contains this mailbox.

A list of tokens for the tasks queued at the mailbox in the
order they are queued. If there are no tasks in the task
queue, this field is not displayed.

A list of tokens for the objects queued in the object cache
queue, in the order they are queued. If there are no
objects in the object cache queue or the mailbox type is
Data, this field is not displayed.

A list of tokens for the objects queued in the object
overflow queue, in the order they are queued. If there are
no objects in the object overflow queue or the mailbox type
is Data, this field is not displayed.

The pointer for the first data message at the head of the
message queue.

Pointers for the data messages residing at the mailbox.

System Debugger

VT--DISPLAV iRMX® OBJECT

Semaphore Display

The System Debugger displays information about semaphores in two ways. The first
display appears when no tasks are queued at the semaphore (Figure 2-19). The second
appears when tasks are queued at the semaphore (Figure 2-20).

Object type = 4 Semaphore

Task queue head
Current value
Containing job

xxxx
xxxx
xxxx

Queue discipline
Maximum value

xxxx
xxxx

Figure 2-19. Format ofVT Output: Semaphore with No Queue

Object type = 4 Semaphore

Task queue head
Current value
Containing job

Task queue

xxxx
xxxx
xxxx

xxxx xxxx

Queue discipline
Maximum value

xxxx
xxxx

Figure 2-20. Format of VT Output: Semaphore with Task Queue

The fields in Figures 2-19 and 2-20 are as follows:

Task queue head The token for the task at the head of the queue. If the task queue is
empty, this field contains zeros.

Queue discipline

Current value

System Debugger

Indicates how tasks are queued at the semaphore. Tasks are
queued as "FIFO" (first-in-first-out) or by "PRI" (priority),
depending on how the semaphore was specified when it was created
with RQ$CREATE$SEMAPHORE.

The number of units currently held by the semaphore.

2-57

VT--DISPLAY iRMX® OBJECT

Maximum value The maximum number of units the semaphore can hold. This
number was specified when the semaphore was created with
RQ$CREA TE$SEMAPHORE.

The token for the job that the semaphore belongs to. Containing job

Task queue A list of tokens for the tasks queued at the semaphore, in the order
they are queued. If no tasks are queued, this list does not appear.

Region Display

If the parameter you supply is a valid token for a region, the System Debugger displays
information about the associated region as shown in Figures 2-21 and 2-22.

Object type = 5 Region

Entered task xxxx Queue discipline xxxx
Containing job xxxx

Figure 2-21. Format of VT Output: Region with No Queue

Object type = 5 Region

Entered task xxxx Queue discipline xxxx
Containing job xxxx

Task queue xxxx xxxx

Figure 2-22. Format of VT Output: Region with Task Queue

2-58 System Debugger

VT--DISPLAY iRMX® OBJECT

The fields in Figures 2-21 and 2-22 are as follows:

Entered task

Queue discipline

Containing job

Task queue

Segment Display

The token for the task currently accessing information guarded by
the region.

Indicates how tasks are queued at the region. Tasks are queued as
"FIFO" (first-in-first-out) or by "PRI" (priority), depending on how
the region was specified when it was created with
RQ$CREATE$REGION.

The token for the job that the region belongs to.

Tokens for the tasks waiting to gain access to data guarded by the
region. This line is displayed only if a task is already in the region
and another task is waiting.

If the parameter that you supply is a valid token for a segment, the System Debugger
displays information about the associated segment as shown in Figure 2-23.

Object type = 6 Segment

Segment size xxxx Containing job xxxx

Figure 2-23. Format of VT Output: Segment

The fields in Figure 2-23 are as follows:

Segment size The number of bytes in this segment. The size of the segment was
specified when the segment was created with
RQ$CREA TE$SEGMENT.

Containing job The token for the job that the segment belongs to.

System Debugger 2-59

VT--DISPLAV iRMX@ OBJECT

Extension Object Display

If the parameter that you supply is a valid token for an extension, the System Debugger
displays information about the associated extension as shown in Figure 2-24.

Object type = 7 Extension

Extension type
Containing job

xxxx
xxxx

Deletion mailbox xxxx

Figure 2-24. Format of VT Output: Extension Object

The fields in Figure 2-24 are as follows:

Extension type The type code associated with composite objects licensed by this
extension. This code was specified when the extension type was
created with RQ$CREA TE$EXTENSION. See the iRM)(® II
NucleUs User's Guide or the iRMX® I Nucleus User's Guide for more
information about extension types.

Deletion mailbox The token for the deletion mailbox associated with this extension.
This mailbox was specified when the extension type was created with
RQ$CREATE$EXTENSION.

Containing job The token for the job that the extension belongs to.

Composite Object Display

The VT command displays the following kinds of composite information:

• All composites except those defined in the Basic I/O System (BIOS) and the port
connection

• BIOS user objects

• BIOS physical file connections

• BIOS stream file connections

• BIOS named file connections

• BIOS remote file connections

• Port connection (iRMX II only)

Figure 2-25 shows the format for the display of non-BIOS objects.

2-60 System Debugger

VT--DISPLAY iRMX® OBJECT

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

Extension obj xxxx
Num of entries xxxx

Component list xxxx xxxx xxxx xxxx

Deletion mbox xxxx

Figure 2-25. Format ofVT Output: Composite Object Other Than BIOS

The fields in Figure 2-25 are as follows:

Extension type The code for the extension type of the extension object used to
create this composite. This code was specified when the extension
object was created with RQ$CREA TE$EXTENSION.

Extension obj

Deletion mbox

Containing job

Num of entries

Component list

The token for the extension object used to create this composite
object.

The token for the mailbox to which this composite goes when the
composite is to be deleted. This mailbox was specified when the
extension was created with RQ$CREA TE$EXTENSION.

The token for the job that the composite object belongs to.

The number of component entries in the composite object.

The list of tokens for the components of the composite.

Figure 2-26 shows the format for the Basic I/O System user object display.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

BIOS USER OBJECT:

Extension obj xxxx
Num of entries xxxx

User segment xxxx Number of IDs xxxx

User ID list xxxx xxxx

Deletion mbox xxxx

Figure 2-26. Format ofVT Output: BIOS User Object Composite

System Debugger 2-61

VT--DISPLAY iRMX® OBJECT

Figure 2-26 uses the composite display described in Figure 2-25 as a base and appends the
following fields:

User segment

Number of IDs

User ID list

The token for the segment containing the user IDs for the user
object.

The number of user IDs associated with the user object.

List of the user IDs associated with the user object.

Figure 2-27 shows the format for a (file) connection to a physical file.

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx
Containing job xxxx Num of entries xxxx

T$CONNECTlON OBJECT:
File driver Physical Conn flags xx Access xxxx
Open mode xxxxxx Open share xxxxxxx File pointer xxxxxxxx
laRS cache xxxx File node xxxx Device desc xxxx
Dynamic DUlB xxxxx DUlB pointer xxxx:xxxx Num of conn xxxx
Num of readers xxxx Num of writers xxxx File share xxxxxxx
File drivers xxxx Device gran xxxx Device size xxxxxxxx
Device functs xxxx Num dev conn xxxx Device name xxxxxxxxxx

Figure 2-27. Format ofVT Output: BIOS Physical File Connection

Figure 2-27 uses the composite display described in Figure 2-25 as a base and appends the
following fields:

File driver

2-62

The BIOS file driver to which this connection is attached. The four
possible values are Physical, Stream, Named, and Remote. If this
field contains an invalid value, the System Debugger displays the
value followed by a space and two question marks.

System Debugger

Conn flags

Access

Open mode

System Debugger

VT--DISPLAY iRMX® OBJECT

The flags for the connection. To determine how the flag is set,
convert the hexadecimal value to binary. The following description
shows the connection state when a bit (0 is the rightmost bit) is set
to 1:

o
1

2
3
4

5-7

Condition

The connection is being detached
The connection is active and can be
opened
This is a device connection
Reserved
The connection was forcibly
detached
Reserved

The access rights for this connection. This display uses a single
character to represent each access right. If the connection has the
access right, the character appears. If the connection does not have
an access right, a hyphen (-) appears in the character position. The
access rights and the characters that represent them are

Delete
List

Directory files: Add
r- Change

D L A C

D R A U

I

I
I L- Update

Append
Read
Delete

Data Files:

The mode established when this connection was opened. The
possible modes are

Open Mode

Closed
Read

Write

R/W

Description

Connection is closed
Connection is open for
reading
Connection is open for
writing
Connection is open for
reading and writing

2-63

VT--DISPLAY iRMX@ OBJECT

Open share

File. pointer

IORS cache

File node

Device desc

Dynamic DUIB

DUIB pointer

Num of conn

Num of readers

Num of writers

2-64

If this field contains an invalid value, the System Debugger displays
the value, followed by a space and two question marks. If this value
is Read, Write, or R/W, this value was specified when the
connection was opened.

The sharing status established for this connection when it was
opened. The sharing status for a connection is a subset of the
sharing status of the file (see the File share field). The possible
modes are

Share Mode

Private
Readers

Writers
ALL

o

Description

File cannot be shared
File can be shared with
readers
File can be shared with writers
File can be shared with all
users
Connection is not open

If this field contains an invalid value, the System Debugger displays
the value, followed by a space and two question marks. This
probably indicates that the connection data structure has been
corrupted.

The current location of the file pointer for this connection.

The token for the segment at the head of the BIOS list of used
IORSs. These IORSs are being saved for the RQ$WAIT$IO system
call to use again. This list is empty if zeros appear in this field.

The token for a segment that the operating system uses to maintain
information about the connection. The information in this segment
appears in the next two fields.

The token for the segment that contains the device descriptor. The
device descriptor is used by the operating system to maintain
information about connections to a device.

Indicates whether a Device Unit Information Block (DUIB) was
created dynamically when the device associated with this connection
was attached.

The address of the DUIB for the device unit containing the file. See
the iRM)(® Device Drivers User's Guide for more information about
DUIBs.

The number of connections to the file.

The number of connections now open for reading.

The number of connections now open for writing.

System Debugger

File share

File drivers

Device gran

Device size

System Debugger

VT--DISPLAY iRMX® OBJECT

The share mode of the file. This parameter defines how other
connections to the file can be opened. The share mode of a file is a
superset of the sharing status of each of the connections to the file
(see the Open share field description). The possible modes are

Share Mode

Private
Readers
Writers
All

Description

File cannot be shared
File can be shared with readers
File can be shared with writers
File can be shared with all users

If this field contains an invalid value, the System Debugger displays
the value, followed by a space and two question marks. This
probably means that the internal data structure for the file or the
fnode for the file has been corrupted. See the iRMX® Basic I/O
System User's Guide for more information about sharing modes for
files and connections.

The file drivers that connect the file. If the file can be connected to
a given file driver, then the bit in the display is set to 1. Bit 0 is the
rightmost bit.

Bit Driver

0 Physical file
1 Stream file
2 Reserved
3 Named file
4 Remote file

The granularity (in bytes) of the device. This is the minimum
number of bytes that can be written to or read from the device in a
single (physical) I/O operation.

The capacity (in bytes) of the device.

2-65

VT--DISPLAY iRMX@ OBJECT

Device functs

Num devconn

Device name

Describes the functions supported by the device where this file is
stored. Each bit in the low-order byte of the field corresponds to
one of the possible device functions. If that bit is set to 1, then the
corresponding function is supported by the device.

Bit Function

o F$READ
1 F$WRITE
2 F$SEEK
3 F$SPECIAL
4 F$ATIACH$DEV
5 F$DETACH$DEV
6 F$OPEN
7 F$CLOSE

The number of connections to the device.

The 14-character (or fewer) name of the device where this file is
stored.

Figure 2-28 shows the format for a (file) connection to a stream file.

Object type = 8 Composite

Extension type xxxx Extension obj xxxx Deletion mbox xxxx
Containing job xxxx Num of entries xxxx

T$CONNECTlON OBJECT:
File driver Stream Conn flags xx Access xxxx
Open mode xxxxxx Open share xxxxxx File pointer xxxxxxxx
IORS cache xxxx File node xxxx Device desc xxxx
Dynamic DUlB xxxxx DUlB pointer xxxx:xxxx Num of conn xxxx
Num of readers xxxx Num of writers xxxx File share xxxxxxx
File drivers xxxx Device gran xxxx Device size xxxx
Device functs xxxx Num dev conn xxxx Device name Stream
Req queued xxxx Queued conn xxxx Open conn xxxx

Figure 2-28. Format of VT Output: BIOS Stream File Connection

Figure 2-28 uses the physical display described in Figure 2-27 as a base and appends the
following fields:

Req queued The number of requests now queued at the stream file.

2-66 System Debugger

- ---

Queued conn

Open conn

VT--DISPLAY iRMX® OBJECT

The number of connections now queued at the stream file.

The number of connections to the stream file now open.

Figure 2-29 shows the format for a file connection to a named file.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

Extension obj xxxx
Num of entries xxxx

Deletion mbox xxxx

T$CONNECTlON OBJECT:
File driver Named Conn flags xx Access xxxx
Open mode xxxxxx Open share xxxxxx File pointer xxxxxxxx
IORS cache xxxx File node xxxx Device desc xxxx
Dynamic DUlB xxxxx DUlB pointer xxxx:xxxx Num of conn xxxx
Num of readers xxxx Num of writers xxxx File share xxxx
File drivers xxxx Device gran xxxx Device size xxxxxxxx
Device functs xxxx Num dev conn xxxx Device name xxxx
Num of buffers xxxx Fixed update xxxx Update timeout xxxx
Fnode number xxxx File type xxxxxxxxx Fnode flags xxxx
Owner xxxxx FilejVol gran xxxx Fnode PTR(s) xxxx:xxxx
Total blocks xxxxxxxx Total size xxxxxxxx This size xxxxxxxx
Volume gran xxxx Volume size xxxxxxxx Volume name xxxxxx

Figure 2-29. Format of VT Output: BIOS Named File Connection

Figure 2-29 uses the physical display described in Figure 2-27 as a base and appends the
following fields:

Num of buffers

Fixed update

Update timeout

Fnode number

System Debugger

The number of buffers allocated for blocking and unblocking I/O
requests involving the device. A value of zero (0) indicates that the
device is not a random-access device.

TRUE or FALSE indicates whether the device uses the fixed
update timeout feature. For more information about update
timeout, see the iRMX® Basic I/O System User's Guide.

The length of the time for the update timeout feature, measured in
Nucleus time units. For more information about fixed updating, see
the iRMX® Basic I/O System User's Guide.

The fnode number of this file. For more information about fnodes,
see the iRMX® Disk Verification Utility Reference Manual.

2-67

VT--DISPLAY iRMX® OBJECT

File type

Fnode flags

Owner

File/Vol gran

Fnode PTR(s)

Total blocks

Total size

This size

Volume gran

Volume size

Volume name

2-68

The type of named file. The possible values are

File type

DIR
DATA
SPACEMAP

FNODEMAP
BADBLOCKMAP

Description

Directory file
Data file
Volume free space map
file
Free fnodes map file
Bad blocks file

If this field contains an invalid value, the System Debugger displays
the value, followed by a space and two question marks.

A word containing flag bits. If a bit is set to 1, the following
description applies. Otherwise, the description does not apply. (Bit
o is the rightmost bit.)

o
1
2

3-4
5

6

7-15

Description

This fnode is allocated
The file is a long file
Primary fnode
Reserved
This file has been
modified
This file is marked for
deletion
Reserved

The ID of the owner of the file. If this field has a value of OFFFFH,
then the field is displayed as "WORLD". See the iRMX® Basic I/O
System User's Guide for more information about file ownership.

The granularity of the file (in volume granularity units).

The addresses of the fnode pointers. See the iRMX® Disk
Verification Utility Reference Manual for more information about
fnode pointers.

The total number of volume blocks used for the file at present; this
includes indirect blocks. See the iRMX® Disk Verification Utility
Reference Manual for more information about blocks.

The total size (in bytes) of the file; this includes actual data only.

The total number of bytes allocated to the file for data.

The granularity (in bytes) of the volume.

The size (in bytes) of the volume.

The name of the volume.

System Debugger

-- - ---------------

VT--DISPLAY iRMX® OBJECT

Figure 2-30 shows the format for a file connection to a remote file.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

T$CONNECTlON OBJECT:
File driver Remote
Open mode xxx xxx
laRS cache xxxx
Dynamic DUlB xxxxx
Num of readers xxxx
File drivers xxxx
Device functs xxxx

Extension obj xxxx
Num of entries xxxx

Conn flags xx
Open share xxxxxx
File node xxxx

Deletion mbox

Access
File pointer
Device desc

DUlB pointer xxxx:xxxx Num of conn
Num of writers xxxx File share
Device gran xxxx Device size
Num dev conn xxxx Device name

Figure 2-30. Format of VT Output: BIOS Remote File Connection

xxxx

xxxx
xxxxxxxx
xxx x
xxxx
xxx x
xxx xxx xx
xxxx

The fields in Figure 2-30 are the same as the fields in Figure 2-27, except for the File driver
field, which is "Remote" rather than "Physical."

Figure 2-31 shows the display format for a port having signal protocol type.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

T$PORT OBJECT:

Extension obj xxxx
Num of entries xxxx

Deletion mbox

Protocol type Signal Queue discipline xxxx Signal count
source id xxxx

Task queue xxxx xxxx

Figure 2-31. Format ofVT Output: Signal Protocol Port

System Debugger

xxxx

xxxx

2-69

VT--DISPLAY iRMX® OBJECT

Figure 2-31 uses the composite display described in Figure 2-23 as a base and appends the
following fields:

Protocol type

Queue discipline

Signal count

Source id

Task queue

The message protocol. This value is "Signal" to indicate signal
service The type is determined when the port is created through
RQ$CREATE$PORT.

Indicates how tasks are queued at the port. Tasks are queued as
"FIFO" (first-in-first-out) or by "PRI" (priority), depending on how
the port was specified when it was created with
RQ$CREATE$PORT. If this field is uninterpretable, the actual
BYTE value followed by a space and two question marks appears.

The number of signals now waiting to be received at the port.

The board (agent) identification number for which this port was
created to send messages to or receive messages from. This
identification number matches the slot number of the remote board.
The number is established through the "message$id" field when the
port is created using the utility RQ$CREATE$PORT.

The tokens for the list of tasks (if any) queued at the port.

Figure 2-32 shows the display format for a port having data transport protocol type.

Object type = 8 Composite

Extension type xxxx
Containing job xxxx

T$PORT OBJECT:
Protocol type
Fragmentation
Destination msg

Transaction id
Transaction id

Data T
xxx

id xxxx

xxxx
xxxx

Extension obj
Num of entries

Queue discipline
Max Port Transctns
Destination port

Task token
Message pointer

id

Message queue xxxx:xxxx xxxx:xxxx

xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx:xxxx

Deletion rnbox

Buffer pool
Sink port
Source port id

Figure 2-32. Format of VT Output: Data Transport Protocol Port

xxxx

xxxx
xxxx
xxxx

2-70 System Debugger

VT--DISPLAY iRMX® OBJECT

Object type = 8 Composite

Extension type
Containing job

T$PORT OBJECT:

xxxx
xxxx

Protocol type Data T
Fragmentation xxx
Destination msg id xxxx

Extension obj
Nurn of entries

xxxx
xxxx

Queue discipline xxxx
Max Port Transctns xxxx
Destination port id xxxx

Transaction id xxxx Task token xxxx
Transaction id xxxx Message pointer xxxx:xxxx

Task queue xxxx xxxx

Deletion mbox xxxx

Buffer pool xxxx
Sink port xxxx
Source port id xxxx

Figure 2-33. Format of VT Output: Data Transport Protocol Port

Figures 2-32 and 2-33 use the composite display described in Figure 2-23 as a base and
append the following fields:

Protocol type The message protocol. This value is "Data T" to indicate Data
Transport service The type is determined when the port is created
through RQ$CREATE$PORT.

Queue discipline Indicates how tasks are queued at the port. Tasks are queued as
"FIFO" (first-in-first-out) or by "PRI" (priority), depending on how
the port was specified when it was created with
RQ$ C REATE$ PO RT.

Buffer pool The token of the attached buffer pool (if any). The utility
RQ$ATIACH$BUFFER$POOL attaches a buffer pool to a port.

Fragmentation The fragmentation protocol. This value is either "Yes" if the port
can handle message fragmentation, or "No" if the port does not
handle message fragmentation. Port fragmentation protocol is
defined through the utility RQ$CREATE$PORT.

Max Port Transctns The maximum number of simultaneous outstanding transactions for
the port. This limitation is defined when the port is created using
RQ$CREATE$PORT.

Sink port The token of the sink port (if any) associated with the port. Sink
ports are connected to ports through the RQ$ATIACH$PORT
utility.

System Debugger 2-71

VT--DISPLAV iRMX® OBJECT

Destination msg id The host$id portion of the socket identifying the remote port that
this port is connected. This value is established through the
RQ$CONNECT utility.

Destination port id The port$id portion of the socket identifying the remote port that
this port is connected. This value is established through the
RQ$CONNECT utility.

Source port id The board (agent) identification number for which this port was
created to send messages to or receive messages from. The number
is established through the "port$id" field when the port is created
using the utility RQ$CREATE$PORT.

Transaction id Outstanding transaction identification numbers at this port.

Task token The token(s) of the task or tasks with outstanding transactions at
this port.

Message pointer The pointer of the message(s) with outstanding transactions at this
port.

Message queue The list of pointers representing the messages queued at this port.

2-72

This field appears only if the port has queued messages.

NOTE

Besides the display forms shown in Figures 2-32 and 2-33, the VT output for a
Data Transport protocol port can appear with the following combinations of
fields:

• Transaction information with no Message Queue or Task Queue
information

• Message Queue information with no Transaction or Task Queue
information

• Task Queue information with no Transaction or Message Queue
information

• No Transaction, Message Queue, or Task Queue information

System Debugger

VT--DISPLAY iRMX® OBJECT

Buffer Pool Display

If the parameter that you supply is a valid token for a buffer pool, the System Debugger
displays information about the buffer pool as shown in Figure 2-34.

Object type = 10 Buffer pool

Max Buffers xxxx
Containing job xxxx

Total buffer count
Data Chaining

xxxx Total size count xxxx
xxx

Buffer pool contents:

Buffer size xxxx
Buffer size xxxx

Buffer count
Buffer count

xxx x
xxxx

Figure 2-34. Format of vr Output: Buffer Pool

Figure 2-34 display fields are defined as follows:

Max buffers

Total buffer count

Total size count

Containing job

Data Chaining

Buffer size

Buffer count

System Debugger

The total number of buffers allowed in this buffer pool. This
maximum value is determined when the buffer pool is created using
RQ$CREATE$BUFFER$POOL.

The number of buffers now in the buffer pool. This number is
equivalent to the number of buffers created in the pool using
RQ$CREA TE$SEG ME NT.

The number of different buffer sizes in the buffer pool. The
maximum number of different buffer sizes is eight.

The token for the job that created this buffer pool.

YES or NO indicates whether this buffer pool supports data
chaining.

The available buffer sizes for this buffer pool. These sizes are
determined when the individual buffers are created through
RQ$CREA TE$SEGMENT.

The number of buffers that are of the buffer size displayed in the
field directly to the left.

2-73

VU--DISPLAY SYSTEM CALLS IN A TAS~('S STAC(

The VU command displays (unwinds) the iRMX system calls in the stack of the task having
the token you enter.

--------~~ ~ktOk~~-------------------

Parameter

token

Description

W-0954

The token for the task having the stack to be searched for system
calls.

The VU command accepts a token for a task and then searches the task's stack for iRMX
system calls, starting at the top of the stack. For each system call it finds in the stack, it
displays

• The return address for the call. This is the address of the next instruction to be
executed for the task after the system call has finished running.

• The VS display with two lines of stack values (or more if required for parameters of the
system call). They are shown as if the CALL instruction for the system call were in the
CS:IP register and the displayed stack values were at the top of the stack.

This command requires the task stack to be inside an iRMX segment.

The VU command uses internal iRMX data structures to get some of its information. The
data structures are updated immediately after the system call at the top of the task's stack
runs to completion. Since the monitor interrupt might come after the system call is
completed, but before the data structures are updated, some of the information the VU
command uses may be obsolete. Therefore, the first system call the VU command displays
may not be valid.

Figure 2-35 illustrates the format of one system call display by the VU command. System
calls can be nested, with one calling another, so some invocations of the VU command
produce multiple displays of the type shown in the figure.

2-74 System Debugger

VU--DISPLAY SYSTEM CALLS IN A TASK'S STACK

If the stack of the indicated task has no system calls, the VU command displays the
following message:

No system calls on stack

gate flNNNN

Return cs:ip
xxxx:xxxx
xxxx:xxxx

(subsystem)

- yyyy:yyyy
xxxx xxxx
xxxx xxxx

system call

xxxx xxxx
xxxx xxxx

I parameters I

xxx x
xxxx

Figure 2-35. Format of VU Output

xxxx
xxxx

xxxx xxx x
xxxx xxx x

The fields in Figure 2-34 are as follows:

gate #NNNN The gate number associated with the system call.

Return cs:ip

xxxx:xxxx

xxxx

(subsystem)

system call

parameters

System Debugger

The return address for the system call of this display (yyyy:yyyy).

The address of the stack portion devoted to this call.

Values now on the stack.

The iRMX Operating System layer containing the system call.

The name of the iRMX system call.

The parameter names associated with the stack values. The
parameters correspond to the stack values directly above them. If
one of the parameters is a string, it displays the string contents
below the parameters.

2-75

VU--DISPLAY SYSTEM CALLS IN A TASK'S STACK

Error Messages
Syntax Error An error was made in entering the command.

*** INVALID TASK TOKEN *** The value entered for the token is not a valid
task token.

Stack not an iRMX segment The stack of the task is not an iRMX segment, as
is required.

TOKEN is not a TASK The value entered for the token is valid;
however, it is not a task token.

Example

This example shows how the VU command responds when system calls are nested. The
task for the example has called RQSWRITE$MOVE of the Extended I/O System.
RQSWRITE$MOVE has called RQ$A$WRITE of the Basic I/O System.
RQAWRITE has called RQ$RECEIVE$MESSAGE to wait for the data transfer to be
completed.

Suppose that before the message arrives signaling the completion of the transfer, you enter
the System Debugger and invoke the following VU command:

.. VU 21CB <CR>

2-76 System Debugger

VU--DISPLAY SYSTEM CALLS IN A TASK'S STACK

The System Debugger responds by displaying the following:

gate 110430

Return cs:ip -09B8:576A
216A:01B2 01G8 216A 01G8 216A FFFF 1768 1760 1988
216A:01G2 1550 0000 2148 1FF8 1440 2558 2000 2050

(Nucleus) receive message

, ... excep$p , resp$p ... , . time. , . mbox. ,

gate 1I05BO

Return cs:ip -09D8:08E7
216A:01D4 01E8 216A 1F58 0400 0000 20E8 2098 2088
216A:01E4 1430 2048 01F8 20F8 1400 0218 0000 01F8

(BIOS) write

, ... excep$p ... , .. mbox. , . count' ... buffer$p .. , . conn. ,

gate 110710

Return cs:ip -09F8:06FA
216A:0218 0020 19FO 0400 0030 19FO 2098 2080 2140
216A:0228 2058 0000 0000 20G8 20G8 20G8 20G8 20G8

(ErOS) write move

, ... excep$p ... ' .. count , ... buffer$p ... , .conn.'

System Debugger 2-77

SAMPLE DEBUG SESSION 3
3.1 INTRODUCTION

This chapter provides a sample PL/M-286 program that was developed on an Intel 310
system running on an iSBC® 286/10 processor board with the iRMX 11.4 Operating
System. The terminal was a Hazeltine 1510. The code has compiled without errors;
however, it does not run. The step-by-step process for using iSDM monitor and System
Debugger commands to locate and fix the bug, then to test the corrected code is described
in section 3.2. A scenario examining debugging techniques and additional commands is
provided in section 3.3.

3.2 SAMPLE PROGRAM

This program includes three tasks.

• An initialization task (called Init) creates a mailbox and the other two tasks.

• Two tasks (called Alphonse and Gaston) exchange messages via mailboxes.

The source code is listed in Figures 3-1, 3-2, and 3-3. For information on compiling and
binding this code, see the iRMX® II Programming Techniques Reference Manual or the
iRMX® I Programming Techniques Reference Manual. The following description explains
how the program is supposed to work.

The application code runs as a Human Interface (HI) program; therefore, the < name of
the OBJECT file specified in BND286> is entered at the HI prompt. The task called Init
runs first, creating a mailbox it catalogs in the root directory under the name "master." It
creates the tasks Alphonse and Gaston then suspends itself.

System Debugger 3-1

SAMPLE DEBUG SESSION

3-2

When Gaston receives control, it gets the token for the mailbox created by Init (by looking
up the name "master" in the root job's object directory). It then creates a segment (in
which it will place a message) and a response mailbox (to which Alphonse will send a
reply). Next it goes into a loop in which it places a message in the segment (after
displaying it on the screen), sends the segment to the master mailbox, then waits at the
response mailbox for a reply.

When Alphonse receives control, it also gets the token for the mailbox created by Init (by
looking up the name in the root job's object directory). It then goes into a loop in which it
waits at the mailbox for a message and checks to see if the token it received is a segment.
If it is a segment, Alphonse places its own message in the segment (after displaying it on
the screen), then sends the segment to the response mailbox. If it isn't a segment,
Alphonse drops out of the loop and deletes itself.

By using the two mailboxes, the tasks Alphonse and Gaston are synchronized. Gaston
sends a message to the first mailbox and waits at the second one before continuing.
Alphonse waits at the first mailbox. When it receives a message, i~ sends a reply to the
second mailbox and waits at the first for another message. This cycle continues for 6
messages.

After sending its sixth message, Gaston drops out of the loop. Instead of sending a
segment to the master mailbox, Gaston displays a final message to the screen then sends
the task token (the token for the Init task) to the mailbox. When Alphonse receives this
token and finds it is not a segment, Alphonse drops out of its loop and deletes itself.

To finish the processing, Gaston causes the Init task to resume processing (remember, the
Init task suspended itself earlier). When Init takes over, it deletes both offspring tasks and
issues an EXITIOJOB system call to return control to the Human Interface level.

System Debugger

compact
init: DO;

DECLARE token
DECLARE fifo
DECLARE self
DECLARE task$priority
DECLARE calling$task
DECLARE calling$tasks$job
DECLARE master$mbox
DECLARE status
DECLARE init$task$token
DECLARE gaston$task$token
DECLARE alphonse$task$token
DECLARE alphonse$start$add
DECLARE gaston$start$add
DECLARE gaston$ds
DECLARE alphonse$ds
DECLARE stack$pointer
DECLARE stack$size
DECLARE task$flags

gaston:
PROCEDURE EXTERNAL;

END gaston;

alphonse:
PROCEDURE EXTERNAL;

END alphonse;

LITERALLY
LITERALLY
LITERALLY
BYTE;
TOKEN;
TOKEN;
TOKEN;
WORD;
TOKEN;
TOKEN;
TOKEN;
POINTER;
POINTER;
WORD EXTERNAL;
WORD EXTERNAL;
POINTER;
WORD;
WORD;

SAMPLE DEBUG SESSION

, SELECTOR' ;
'0' ;
'0' ;

Figure 3-1. Example PL/M-286 Application (Init)

System Debugger 3-3

SAMPLE DEBUG SESSION

$include(:rmx:inc/nuclus.ext)
$include(:rmx:inc/eios.ext)

calling$tasks$job = SELECTOR$OF(NIL);
calling$task = SELECTOR$OF(NIL);

gaston$start$add = @gaston;
alphonse$start$add = @alphonse;
stack$pointer = NIL;
stack$size 500;
task$flags = 0;

init$task$token = RQGETTASK$TOKENS(
self,
@status);

CALL RQ$CATALOG$OBJECT (
calling$tasks$job,
init$task$token,
@(4,'init'),
@status);

master$mbox = RQ$CREATE$MAILBOX (
fifo,
@status);

CALL RQ$CATALOG$OBJECT (
calling$tasks$job,
master$mbox,
@(6, 'master'),
@status);

task$priority = RQ$GET$PRIORITY (
calling$task,
@status);

task$priority task$priority + 1;

1* Directory obj cataloged in *1
1* Task whose priority will *1
1* be gotten *1
1* Set up start addresses for *1
1* tasks *1
1* Values for creating tasks *1

1* Get token for init task

1* Catalog task token in
1* directory of calling
1* task's job *1

1* Create mailbox tasks
1* to pass messages

1* Catalog mailbox in
1* directory of calling
1* task's job

use

1* Get priority of calling
1* task *1

1* Pick lower priority for
1* new tasks

*1

*1
*1

*1
*1

*1
*1
*1

*1

*1
*1

Figure 3-1. Example PL/M-286 Application (Init) (continued)

3-4 System Debugger

END;

SAMPLE DEBUG SESSION

alphonse$task$token = RQ$CREATE$TASK (1* Create tasks
task$priority,

*1

alphonse$start$add,
SELECTOR$OF(@alphonse$ds),
stack$pointer,
stack$size,
task$flags,
@status);

gaston$task$token = RQ$CREATE$TASK (
task$priority,
gaston$start$add,
SELECTOR$OF(@gaston$ds),
stack$pointer,
stack$size,
task$flags,
@status);

CALL RQ$SUSPEND$TASK (
calling$task,
@status);

CALL RQ$DELETE$TASK (
gaston$task$token,
@status);

CALL RQ$DELETE$TASK (
alphonse$t~sk$token,
@status);

CALL RQ$EXIT$IO$JOB (
0,
NIL,
@status);

1* Suspend self and let other *1
1* tasks run *1

1* Clean up and exit *1

1* Init *1

Figure 3-1. Example PL/M-286 Application (In it) (continued)

System Debugger 3-5

SAMPLE DEBUG SESSION

$compact
alphonse$code: DO;

DECLARE token

$include(:rmx:inc/nuclus.ext)
$include(:rmx:inc/eios.ext)
$include(:rmx:inc/hi.ext)

alphonse:
PROCEDURE PUBLIC;

DECLARE CR
DECLARE LF
DECLARE wait$forever
DECLARE FOREVER
DECLARE calling$tasks$job
DECLARE master$mbox
DECLARE response$mbox
DECLARE status
DECLARE type$code
DECLARE time$limit
DECLARE count
DECLARE alphonse$ds
DECLARE seg$token
DECLARE seg$size
DECLARE display$message(*)

CR,LF, 'After you, Gaston',

DECLARE message BASED seg$token

time$limit = 25;

LITERALLY

LITERALLY
LITERALLY
LITERALLY
LITERALLY
TOKEN;
TOKEN;
TOKEN;
WORD;
WORD;
WORD;
WORD;
WORD PUBLIC;
TOKEN;
WORD;
BYTE

CR, LF);

STRUCTURE (
count
text(25)

, SELECTOR' ;

, 13' ;
'10' ;
'OFFFFH' ;
'WHILE 1';

DATA (

BYTE,
BYTE);

seg$size = 32;
calling$tasks$job SELECTOR$OF(NIL);

1* Delay factor for message *1
1* display *1
1* Size of message segment *1
1* Directory in which to look *1
1* up obj *1

Figure 3-2. Example PL/M-286 Application (Alphonse)

3-6 System Debugger

SAMPLE DEBUG SESSION

master$mbox = RQ$LOOKUP$OBJECT (
ca11ing$tasks$job,
@(6, 'master'),
wait$forever,
@status);

DO FOREVER;

seg$token = RQ$RECEIVE$MESSAGE (
master$mbox,
wait$forever,
@response$mbox,
@status);

type$code = RQ$GET$TYPE(
seg$token,
@status);

IF type$code <> 6 THEN
CALL RQ$EXIT$IO$JOB (

0,
NIL,
@status);

message.count = 21;

1* Look up message
1* mailbox

1* Receive response
1* from Gaston

1* See what kind of
1* object it is

1* If it isn't a
1* segment, exit

*1
*1

*1
*1

*1
*1

*1
*1

CALL MOVB(@disp1ay$message, @message.text, size(disp1ay$message));

CALL RQCSENDCORESPONSE (
NIL,
0,
@message.count,
@status);

CALL RQ$SLEEP(
time$limit,
@status);

CALL RQ$SEND$MESSAGE (
response$mbox,
seg$token,
SELECTOR$OF(NIL) ,
@status);

END;
END alphonse;

END a1phonse$code;

1* Send message to *1
I*screen *1

1* Wait a while to *1
1* give user time to *1
1* see the message *1

1* Send message to *1
1* response mailbox *1

1* FOREVER *1
1* Alphonse *1

Figure 3-2. Example PL/M-286 Application (Alphonse) (continued)

System Debugger 3-7

SAMPLE DEBUG SESSION

$compact
gaston$code: DO;

DEClARE token

$include(:rmx:inc/nuclus.ext)
$include(:rmx:inc/eios.ext)
$include(:rmx:incfhi.ext)

gaston:
PROCEDURE PUBLIC;

DEClARE CR
DEClARE LF
DEClARE fifo
DEClARE wait$forever
DEClARE parent$task
DEClARE calling$tasks$job
DEClARE master$mbox
DEClARE response$mbox
DEClARE status
DEClARE time$limit
DEClARE count
DEClARE final$count
DEClARE gaston$ds
DEClARE seg$token
DEClARE seg$size
DEClARE main$message(*)

CR,LF, 'After you, Alphonse',

LITERALLY

LITERALLY
LITERALLY
LITERALLY
LITERALLY
TOKEN;
TOKEN;
TOKEN;
TOKEN;
WORD;
WORD;
WORD;
WORD;
WORD PUBLIC;

. TOKEN;
WORD;
BYTE

CR, LF);

, SELECTOR' ;

, 13' ;
'10' ;
'0' ;
'OFFFFH' ;

DATA (

DEClARE final$message(*) BYTE DATA (
CR,LF, 'If you insist, Alphonse', CR, LF);

DEClARE message BASED seg$token STRUCTURE (
count
text(27)

3-8

count = 0;
final$count = 6;
time$limit = 25;

seg$size = 32;
calling$tasks$job SELECTOR$OF(NIL);

BYTE,
BYTE);

/* Initialize count */
/* Set number of loops */
/* Delay factor for display */
/* to screen */
/* Size of message segment */
/* Directory in which to look */
/* up object */

Figure 3-3. Example PL/M-286 Application (Gaston)

System Debugger

master$mbox ~ RQ$LOOKUP$OBJECT (
calling$tasks$job,
@ (6 , ' mas te r') ,
wait$forever,
@status);

response$mbox
fifo,
@status);

RQ$CREATE$MAILBOX (

seg$token = RQ$CREATE$SEGMENT(
seg$size,
@status);

DO WHILE count < final$count;
message.count = 23;

SAMPLE DEBUG SESSION

/* Look up message mailbox */

/* Create response mailbox */

/* Create message segment */

CALL MOVW(@main$message, @message.text, SIZE(main$message»;

CALL RQCSENDCORESPONSE (
NIL,
0,
@message.count,
@status);

CALL RQ$SLEEP(
time$limit,
@status);

CALL RQ$SEND$MESSAGE (
master$mbox,
seg$token,
response$mbox,
@status);

seg$token = RQ$RECEIVE$MESSAGE(
response$mbox,
wait$forever,
NIL,
@status);

count = count + 1;
END;

message.count = 27;

/* Send message to screen */

/* Wait a while to give user */
/* time to see the message */

/* Send message to mailbox

/* Receive response from
/* Alphonse

/* WHILE

*/

*/
*/

*/

CALL MOVB(@final$message,@message.text,SIZE(final$message»;

Figure 3-3. Example PL/M-286 Application (Gaston) (continued)

System Debugger 3-9

SAMPLE DEBUG SESSION

CALL RQCSENDCORESPONSE (
NIL,
0,
@message.count,
@status);

CALL RQ$SEND$MESSAGE (
master$mbox,
master$mbox,
SELECTOR$OF(NIL) ,
@status);

parent$task = RQ$LOOKUP$OBJECT(
calling$tasks$job,
@(4,'init'),
wait$forever,
@status);

CALL RQ$RESUME$TASK(
parent$task,
@status);

END gaston;
END gaston$code;

/* Send final message to */
/* screen */

/* Send token for mailbox */
/* to mailbox. This will */
/* stop other task. */

/* Look up token for
/* calling task

/* Resume calling task
/* for cleanup

/* Gaston

*/
*/

*/
*/

*/

Figure 3-3. Example PL/M-286 Application (Gaston) (continued)

3-10 System Debugger

SAMPLE DEBUG SESSION

3.3 DEBUGGING THE PROGRAM

Although it's a good idea to include error checking when developing programs, we did not
include any in our sample program so we could demonstrate more features of the System
Debugger. The sample program contains one error. We will show two approaches to
finding and correcting it using the System Debugger.

The addresses and token values appearing in the following examples are those the system
assigned in this debugging session. Most of these values will change from session to
session. It's helpful to keep paper and pencil handy to note the various addresses and
tokens.

When the iSDM monitor is invoked, both the application code and the operating system
code freeze. However, by using iSDM monitor and System Debugger commands you can
disassemble and execute the application instructions. Thus, in a debugging session you will
move the CS:IP through your code, examining system objects, possibly changing stack or
register values. These changes are valid for only one pass through the code. To re-execute
the code, kill the current job by using the CLI-restart feature, then re-enter the iSDM
monitor by using the Human Interface DEBUG command.

Example #1:

When < name of OBJECT file specified in BND286> runs, the system displays the
following message:

Interrupt 13 at 2C38:0l99 General Protection ECODE=OOOO

The values 2C38:0199 are where the CS:IP was pointing when the program halted. The
protected-mode prompt (..) indicates that we are in the iSDM monitor. However, since the
program has been executed, we must re-enter the iSDM monitor to re-execute the code.
We can use the CLI-restart feature to return to the Command Line Interpreter. Enter the
following command:

.. g 284:14 <CR>

The system responds with the Human Interface prompt (-). Next, enter the following
command:

-Debug <name of OBJECT file specified in BND286> <CR>

System Debugger 3-11

SAMPLE DEBUG SESSION

The system responds with the following:

Interrupt 3 at 2A70:FFFF

Use the iSDM monitor's GO (G) command to set a breakpoint at the instruction where the
program halted (remember the CS:IP value is given in the interrupt message displayed
when the program halts). The code segment (CS) value will change each time you re-enter
the iSDM monitor, but the instruction pointer (IP) will remain the same. Enter the
following command:

.. g,199 <CR>

To find out where we are in the code, use the iSDM monitor's D (DISPLAY
MEMORY /DESCRIPTO R TABLES) command to display a disassembled block of code.
Enter the following command:

.. 10 dx, <CR>

The system displays the following code:

2500:0199 F2A5 REP MOVSW
2500:019B B80000 MOV AX,OOOO
2500:019E 8BDO MOV DX,AX
2500:01AO 52 PUSH DX
2500:01Al 50 PUSH AX
2500:01A2 680000 PUSH 0000
2500:01A5 8E063EOO MOV ES,[003E]
2500:01A9 B80000 MOV AX,OOOO
2500:01AC 06 PUSH ES
2500:01AD 50 PUSH AX -

3-12 System Debugger

SAMPLE DEBUG SESSION

The instruction at address 2500:0199 is a MOVE STRING WORD command. The only
move word instruction in the sample program is the PL/M-286 MOVW call when Gaston
enters the loop after creating the segment. The following display shows this section of
code:

response$mbox = RQ$CREATE$MAILBOX (
fifo,
@status;

seg$token = RQ$CREATE$SEGMENT(
seg$size,
@status;

DO WHILE count < final$count;
message.count, = 23;

/* Create response mailbox */

/* Create message segment */

CALL MOVW(@main$message, @message.text, SIZE(main$message»;

CALL RQCSENDCORESPONSE (
NIL,
0,
@message.count,
@status);

/* Send message to screen */

Figure 3-4. MOVW in Gaston Code

If displaying the instruction doesn't provide enough information about why the program
halted, we can look at the surrounding code by displaying forward or backward from the
CS:IP. The comma we specified in the DX command enables us to enter just a comma (,)
now to display forward another ten instructions from the current CS:IP. (Displaying
backward from the CS:IP is shown in Example #2.) To see the register contents, enter the
following command:

•• Jt: <CR>

System Debugger 3-13

SAMPLE DEBUG SESSION

The system displays the following:

AX=OOOO
BX=0034
CX=0017
DX=2680

CS=2500
SS=2638
DS=2530
ES=2680

IP=0199 FL=0293 RGDT .BASE=002000 .LIMIT=2FFF
SP=01F2 BP=01F2 RIDT .BASE=005000 .LIMIT=03FF
SI=0042 MSW=FFFB
DI=OOOl TR=0278 RLDT=02AO

To execute the MOVSW instruction, enter the following command:

.. n, <CR>

The system displays the following:

2500:0199 F2A5 REP MOVSW

Enter a comma (,).

The system responds with the following:

Interrupt 13 at 2500:0199 General Protection ECODE=OOOO

To see how executing this instruction changed register contents, enter the following
command:

.. x <CR>

3-14 System Debugger

SAMPLE DEBUG SESSION

The system displays the following:

AX=OOOO
BX=0034
CX=0006
DX=26CO

CS=2800
SS=26D8
DS=28B8
ES=26CO

1P=0199 FL=0293 RGDT .BASE=002000 .LIM1T=2FFF
SP=01F2 BP=01F2 RIDT .BASE=OOSOOO .LIM1T=03FF
SI=0062 MSW=FFFB
D1=0021 TR=0278 RLDT=02AO

In the ASM286 Assembly language MOVSW instruction, DS:SI represents the source data
is moving from; ES:DI is the destination. (For more information on MOVSW, see the
ASM286 Assembly Language Reference Manual.) To check the limit of the ES register,
enter the following command:

· . ddt(es) <CR>

The system displays the following:

GDT (1427T) DSEG BASE=090484 LIMIT=001F P=1 DPL=O ED=O W=1 A=1
SR=OOOO(ES)

The LIMIT parameter shows that the segment limit is IFH (31 decimal). Since the system
counts from zero, the limit is 32 decimal which is the value assigned to seg$size in Gaston.
The DI register (shown in the previous display) contains 21H (33 decimal), indicating the
system was trying to write past the segment limit when the program halted. This fact
suggests the PL/M-286 MOVW call should be changed to MOYB. Here we could exit the
iSDM monitor, change the PL/M-286 code, then recompile and run it.

However, we can use the iSDM monitor's EXAMINE/MODIFY REGISTERS (X)
command to change a register value and the GO (G) command to execute the program.
Making changes with the X and S (SUBSTITUTE MEMORY) commands enables us to
test code without having to recompile and bind it.

The ex register contains the count of bytes or words moved. If we decrease the count in
the ex register to 15 before we execute the MOVSW instruction, we should be able to
move all the data. Re-enter the iSDM monitor and set a breakpoint at the MOVSW
instruction by entering the following commands:

· . g 284: 14 <CR>
-debug <name of OBJECT file specified in BND286> <CR>
· . g, 199 <CR>

System Debugger 3-15

SAMPLE DEBUG SESSION

Set the CX register to 15. Enter the following command:

.. x cx=f <CR>

Now, execute the rest of the program by entering the following command:

.. g <CR>

The system responds with the following:

After you, Alphonse

After you, Gaston

Interrupt 13 at 2A70:0199 General Protection ECODE=OOOO

Since our change was valid for one pass through the code, the first pass through the Gaston
loop worked. The next pass failed. To return to the Command Line Interpreter, enter the
following command:

.. g 284:14 <CR>

This partially successful run shows that if we reduce the number of words moved, the
program works. Therefore, to make a permanent fix, we should change the PL/M-286
MOVW call to MOVB in the sample code, then recompile and bind it.

Example #2:

We can also make changes in the disassembled code. Suppose we have run the program
for the first time, and the system displayed the following message:

Interrupt 13 at 2A70:0l99 General Protection ECODE=OOOO

Restart the system using the CLI-restart feature as you did in Example #1, then re-enter
the iSDM monitor by entering the following command:

-Debug <name of OBJECT file specified in BND286> <CR>

3-16 System Debugger

SAMPLE DEBUG SESSION

Set a breakpoint at the instruction that was executing when the program failed and display
a block of disassembled code by entering the following commands:

· . g, 199 <CR>
· .5 dJt: <CR>

The system displays the following:

1258:0199
1258:019B
1258:019E
1258:01AO
1258:01A1

F2A5 REP
B80000 MOV
8BDO MOV
52 PUSH
50 PUSH

MOVSW
AX,OOOO
DX,AX
DX
AX

To look at the instructions preceding MOVSW, enter the following command:

· .15 dx cs:ip - 25 <CR>

System Debugger 3-17

SAMPLE DEBUG SESSION

The system displays the following code:

1258:0174 8B063800 MOV AX, [0038]
1258:0178 3B063AOO CMP AX, [003A]
1258:017C 7203 JB A=0181
1258:017E E97600 JMP A=01F7
1258:0181 Bl17 MOV CL,17
1258:0183 8E063EOO MOV ES,[003E]
1258:0187 26880EOOOO MOV ES : [0000] ,CL
1258:018C B500 MOV CH,OO
1258:018E 8E063EOO MOV ES,[003E]
1258:0192 BF0100 MOV DI,OOOl
1258:0195 BE4200 MOV SI,0042
1258:0198 FC CLD
1258:0199 F2A5 REP MOVSW
1258:019B B80000 MOV AX,OOOO
1258:019E 8BDO MOV DX,AX

MOVSW is a repetitive move from DS:SI to ES:DI. Looking at the preceding instructions,
we see 1258:0181 moves 17H into CL, which is the low-order register of CX. Remember
that CX is the count of bytes or words moved. (For more information on the register set,
see the ASM286 Assembly Language Reference Manual). Ifwe display the ES register
contents using "ddt(es) < CR >" as we did in the last example, we can check the limit. Since
the limit is 32 (decimal) and the system is trying to write 17H words, the system fails when
it tries to write past the segment limit. If we reduce this count we should be able to move
the data. We must re-enter the iSDM monitor, then using the iSDM monitor's
SUBSTITUTE (S) command, we can change the code at 1258:0181. Semicolons (;)
precede the explanations in the following code; enter the information appearing in blue:

3-18

.. g 284:14 <CR>
-Debug <name of OBJECT file specified in BND286> <CR>
.. s cs:181 <CR> ;enter monitor command to substitute

;memory at Ip=0181
1258:0181 B1 -
1258:0182 17 - f <CR>
.. g <CR>

;enter a comma to step to the count
;enter the new count
;re-start code execution

System Debugger

The system responds with six iterations of the following:

After you, Alphonse
After you, Gaston

SAMPLE DEBUG SESSION

After six iterations of the previous screen, the monitor displays the following:

If you insist, Alphonse

System Debugger 3-19

SAMPLE DEBUG SESSION

3.4 VIEWING SYSTEM OBJECTS

Consider that we have a deadlock problem. By looking at system objects at various stages
of execution, we can observe how synchronization (or lack of it) is occurring.

We can view any object in ajob using the VO command (specifying the job's token) to
provide the broad picture of the system state, then the VT command to focus on individual
elements. Suppose, we want to view the state of the objects before entering the loop in
which Gaston and Alphonse exchange messages. Assume we have stepped through the
code, verifying system calls until we located the CS:IP for the Nucleus create$segment
system call in Gaston. Re-enter the iSDM monitor and set a breakpoint at this CS:IP by
entering the following commands:

-Debug <name of OBJECT file specified in BND286> <CR>
· . g, l6d <CR>

To get the job token, enter the following command:

· .vj <CR>

The system displays the following:

iRMX® <1/11> Job Tree

0258
OF38

OE88
OEOO

1670
2460

Note that "2460" is the token for the application job. To view objects for this job, enter the
following command:

· . vo 2460 <CR>

3-20 System Debugger

SAMPLE DEBUG SESSION

The system displays the following:

Child Jobs:
Tasks: 26DO 26FO 1AC8 1900
Mailboxes: 25CO t 1AB8
Semaphores:
Regions:
Segments: 25BO 25E8 25EO 2650 2528 2480 2478
Extensions:
Composites: 24AO

At this stage of program execution, two mailboxes exist. The "t" following mailbox 25CO
means one or more tasks are waiting at it (Alphonse was created first and is waiting for a
message from Gaston). Examine mailbox 25CO by entering the following command:

.. vt 25CO <CR>

The system responds with the following:

Object type = 3

Task queue head
Queue discipline
Containing job

Task queue

Mailbox

1900
FIFO
2460

1900

Object queue head
Object cache depth

0000
08

Use the System Debugger's VU command to view the waiting task's stack. To unwind the
stack, enter the following command:

.. vu 1900 <CR>

System Debugger 3-21

SAMPLE DEBUG SESSION

The system displays the following:

gate 110430

Return cs:ip - lD18:029F
l6C8:0lE6 0086 lD28 0084 lD28 FFFF l7EO 0000

(Nucleus)receive message

I ..• excep$p ... 1 resp$p 1. time. 1 .mbox. 1

We can continue to examine objects or set a breakpoint at the return CS:IP. Setting the
CS:IP (g, 29f <CR» in the sample program causes the iSDM monitor to display the
following:

Interrupt 13 at 2lFO:0199 General Protection ECODE=OOOO

This message indicates that the program halts in Gaston and that 21FO:0199 is the
instruction executing when it dies.

This chapter has shown two ways to find an error and two ways to make temporary fixes
from the System Debugger. The message displayed when the program halts contains the
CS:IP of the last instruction executing. If setting the CS:IP at this instruction and
displaying the surrounding code doesn't give you enough information about where this
point is in your application code, you can use combinations of VI, VO, VT, VU, and VS to
locate the running task. Then set the breakpoint at the CS:IP of the last executing
instruction and display code, objects, and registers to determine how the system is
executing that instruction.

3-22 System Debugger

iSDMlN MONITOR COMMANDS A
A.1 INTRODUCTION

This appendix briefly describes the iSDM System Debug Monitor commands in
alphabetical order. A command directory listing the functional groups and page references
precedes the command descriptions. For examples and more detailed information about
the commands, see the iSDAr System Debug Monitor User's Guide.

A.2 COMMAND DIRECTORY

This section provides a brief summary of all iSDM monitor commands listed by functions.
Each entry in the following summary contains along with the command name a brief
description of the command and a page reference where you can find more information on
the command.

Command Function Performed

PROGRAM LOADING AND EXECUTION

B Bootstrap load code from the target system's
secondary storage into the target system's memory A-3

G Begin executing application program " A-5

L * Load an 8086 absolute object file or an 80286
object file from a development system into
target system memory ... A-6

N Execute one or more instructions at a time .. A-6

R * Load and execute an 8086 absolute object file or an
80286 absolute object file in target system memory A-7

System Debugger A-I

iSDMN MONITOR COMMANDS

Command Function Performed

I/O PORT INPUT AND OUTPUT COMMANDS

I Input and display a byte or word from the specified
port ... A-5

o Output a byte or word to the specified port.. .. A-7

BLOCK MANIPULATION

C Compare the contents of one block of memory with
that of another block ... A-4

F Search the specified block of memory for a sequence
of hexadecimal digits ... A-5

M Copy the content of a block of memory to another
block of memory .. A-6

MEMORY/REGISTER DISPLAY AND MODIFICATION

D Display the contents of memory and descriptor table
entries .. A-4

S Display and (optionally) modify memory locations and
descriptor table entries ... A-8

X Display and/or modify CPU/NPX register or task state
segment contents ... A-9

A-2 System Debugger

iSDMTloI MONITOR COMMANDS

Command Function Performed

MISCELLANEOUS COMMANDS

E * Exit the loader program. Return control to the
development system .. A-4

K* Echo all console output to a file .. A-5

P Display the base and offset portion of an address
or an expression ... A-7

Q Enable Protected Virtual Address Mode (protected
mode) ... A-7

y* Display and define symbol information ... A-9

* Command requires an attached development system.

A.3 COMMAND DESCRIPTIONS

This section provides brief descriptions for iSDM monitor commands in an easily
referenced alphabetical order. For more information on command parameters, syntax, and
options, refer to the iSDMTloI System Debug Monitor User's Guide.

A.3.1 B--Bootstrap load

The B command passes control to the bootstrap loader to load absolute object code from
secondary storage into your target system memory. The Bootstrap Loader loads the file
into the target system at the memory address specified in the file. After the bootstrap
loader finishes loading the file, the code begins executing. To use the B command
correctly, you must be operating in real mode.

If either the file you specified or the default file does not exist, the bootstrap loader halts
and takes action according to how it is configured.

System Debugger A-3

iSDMN MONITOR COMMANDS

A.3.2 C--Compare

The C command compares the contents of one block of memory defined by a range with
the contents of another block of memory that begins at a destination address. The iSDM
monitor expects the blocks to be equal in length. If the iSDM monitor encounters any
mismatched bytes, it displays them in the following format:

aaaa:bbbb xx yy aaaa:bbbb

where "aaaa:bbbb" are the addresses of the bytes that do not match and "xx" and "yy" are
the bytes themselves.

A.3.3 D--Display Memory/Descriptor Tables/Disassembled
Instructions

The D command is actually three commands in one. You can use it to display the contents
of a specified block of memory, the contents of an 80286/386 descriptor table, or the
contents of a specified block of memory in disassembled form. If you are operating in real
mode, you cannot display descriptor table entries. However, if you are operating in
protected mode, you can use both functions of this command.

A.3.4 E--Exit

A-4

The E command enables you to exit the loader program by returning control from the
loader program to the development operating system. Upon return, the iSDM monitor
loses all symbol information.

When using the E command, you must use it on a line by itself; do not use multiple
commands on a line with the E command. Also, your system must include an attached
development system before you can use this command.

When you reinvoke the iSDM monitor after exiting the loader program, one of two things
happens:

• The iSDM monitor prints either a single or double prompt depending upon whether
you were operating in real or protected mode when you exited.

• The iSDM monitor prints its usual sign-on message and re-initializes itself if you reset
your target system between the time you exited the loader and the time you reinvoked
the iSDM monitor.

System Debugger

iSDMN MONITOR COMMANDS

A.3.S F--Find

The F command searches the block of memory you specified to determine if it contains the
sequence of hexadecimal digits you chose in the data parameter. Each time the iSDM
monitor finds a match, it displays the address of the first matching byte.

A.3.6 G--Go

The G command instructs the iSDM monitor to begin executing your application program.
In response to the G command, the iSDM monitor single steps the first instruction, then
executes all succeeding instructions at full speed.

Your application program must have at least 12 bytes of stack available for the iSDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iSDM monitor to use.

With 80286 and 386 boards, a special situation arises when you execute the G command
and you specify a breakpoint address but not a starting address. If the breakpoint is in an
interrupt handler and the current CS:IP is at a software interrupt instruction (INT x,
INTO, BOUND), the iSDM monitor single steps the interrupt instruction, executing the
interrupt handler at full speed and bypassing the breakpoint you set. To get around this
80286/386 operational anomaly, make sure that the CS:IP is pointing to the (or any)
instruction preceding the software interrupt instruction before you execute the
Gcommand.

A.3.7 I--Port Input

The I command retrieves and displays a byte or word from the port you specify. Byte and
word formats are different. (See the iSDAr System Debug Monitor User's Guide for byte
and word format descriptions).

A.3.8 K--Echo File

The K command copies all console output to a development system file you specify.
Repeating the K command without specifying a file causes the iSDM monitor to stop
copying console output. Your system must include an attached development system in
order to use this command.

System Debugger A-S

iSDMN MONITOR COMMANDS

A.3.9 L--Load Absolute Object File

The L command loads absolute 8086 or 80286 object files into target system memory. The
iSDM monitor loads the data from the file into the memory location that you specified
when you used the LOC86 or BLD286 commands. When loading the data, the iSDM
monitor discards all previously loaded symbol information and loads the new symbol
information, but it retains all user-defined symbols. If the file contains a register
initialization record, the iSDM monitor sets the appropriate registers to the values the file
specifies. Your system must include an attached development system in order to use this
command.

The L command cannot load relocatable modules. If you are operating in real mode, you
can load only 8086 absolute object files. If you are operating in protected mode, you can
load only 80286 absolute object files.

When you load an 80286 object file, the iSDM monitor initializes the first 40 global
descriptor table (GDT) entries for its own use. In addition, the iSDM monitor initializes
any uninitialized interrupt descriptor table (IDT) entries. If the access byte is equal to
zero, the iSDM monitor assumes that the descriptor table entry is not initialized. Refer to
Intel's Microprocessor and Peripheral Handbook, Microsystem Components Handbook, or
80286 Operating System Writer's Guide for more information about the descriptor tables.

A.3.10 M--Move

The M command copies the contents of a block of memory to a memory address you
specify.

A.3.11 N--Execute Single Instructions

A-6

The N command displays and executes one or more disassembled instructions at a time.
Going through your application line-by-line is called "single-stepping." Single-stepping
allows you to begin at a CS:IP you specify and check your application for problems in an
instruction-by-instruction manner.

Your application program must have at least 12 bytes of stack available for the iSDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iSDM monitor to use.

When you are single-stepping instructions, you should be aware of some special
considerations. See the iSDW System Debug Monitor User's Guide for more information
about these special considerations when using the N command.

System Debugger

iSDMN MONITOR COMMANDS

A.3.12 O--Port Output

The 0 command allows you to enter data (a byte or word) at the console and send it to a
port you select.

A.3.13 P--Print

The P command allows you to display either the value of an expression or the value of the
base (or selector) and offset portions of an address. The values are displayed on your
console terminal screen. The iSDM monitor always displays an address in hexadecimal
form. If you enter "P" plus an expression, the iSDM monitor prints the value in
hexadecimal. If you enter "PT" or "PS" plus an expression, the iSDM monitor prints the
value in decimal or signed decimal form, respectively.

In this command, the comma acting as a separator also causes the iSDM monitor to add a
space between the addresses or expressions it displays.

A.3.14 Q--Enable Protection (80286 or 386N Only)

The Q command changes the 80286- or 386-based system from real mode to protected
mode. The iSDM monitor displays the following message when you use the Q command:

Now in Protected Mode

When you invoke this command, the iSDM monitor initializes the entries it needs in the
GDT and the IDT. The iSDM monitor then places itself at privilege level zero. If you are
already operating in protected mode when you invoke this command, the iSDM monitor
re-initializes the GDT and IDT entries. The only way you can return to real mode is to
reset the 80286 or 386 hardware.

A.3.15 R--Load and Go

The R command is a combination of the Load command (L) and the Go command (G).
This command loads an absolute object file from a development system into target system
memory then executes this program. This command causes the iSDM monitor to discard
all previously loaded symbol information and load new symbol information; however, the
iSDM monitor retains all user-defined symbols. Your system must include an attached
development system in order to use this command.

System Debugger A-7

iSDM™ MONITOR COMMANDS

The iSDM monitor loads the data from the file into the memory location that you specified
when you used the LOC86 or BLD286 commands. If the file contains a register
initialization record, the iSDM monitor sets the appropriate registers to the values the file
specifies.

The R command cannot load relocatable modules. If you are operating in real-addressing
mode, you can load only 8086 absolute object files. If you are operating in protected mode,
you can load only 80286 bootloadable (absolute) files.

When you load an 80286 object file, the iSDM monitor initializes the first 40 global
descriptor table (GDT) entries for its own use. In addition, the iSDM monitor initializes
any uninitialized interrupt descriptor table (IDT) entries. Refer to Intel's Microprocessor
and Peripheral Handbook, Microsystem Components Handbook, or 80286 Operating System
Writer's Guide for more information about the 80286 component's descriptor tables.

After the iSDM monitor loads the file and sets the appropriate registers to the values the
file specifies, it begins to execute the program at the location specified by the CS and IP
registers.

Your application program must have at least 12 bytes of stack available for the iSDM
monitor to use. If you are operating in protected mode, each task in your program must
contain at least 12 bytes of stack at privilege level 0 for the iSDM monitor to use.

A.3.16 S--Substitute Memory/Descriptor Table Entry

A-8

The S command is actually two commands in one. You can use it to display and
(optionally) modify either the contents of memory or the contents of descriptor table
entries. If you are operating in real mode, you cannot display and modify descriptor table
entries. However, if you are operating in protected mode, you can use both functions of
this command.

If you enter the S command without an equal sign (=), the iSDM monitor displays a
special hyphen (-) prompt. Then, it W(l its for you to enter either

• A continuation comma instructing the iSDM monitor to display the next memory
location.

• A single expression or a list of expressions separated by slashes (/). By entering an
expression (or expressions), you instruct the iSDM monitor to substitute these values in
place of those already in the memory location you specified.

The iSDM monitor continues to issue hyphen prompts until you enter a carriage return.

System Debugger

iSDMN MONITOR COMMANDS

A.3.17 X--Examine/Modify Registers

The X command allows you to examine and (optionally) modify the contents of your
system's NPX and microprocessor registers.

If you use the X command with no parameters, the iSDM monitor displays all the 8086,
286, and 386 registers (except for control and debug registers).

If you use both the register name and an expression, (for example, CS = XXXX), the value
you entered (XXXX) is placed in the specified register.

You can use the X command to set the 8086 family and NPX registers and the task state
segment contents to any value. If you used any invalid values, the iSDM monitor reports
them when you execute the application program.

A.3.18 Y--Symbols (80286 or 386N Only)

The Y command allows you to display and define symbol information generated by 80286
translators. If you use the Y command with no parameters, the iSDM monitor displays all
the symbols stored in the current domain module or in all modules if you set no domain.
You can also choose to have the iSDM monitor display the symbols and their values in a
particular module or you can use this command to define your own symbols. To use this
command, you must be operating in protected mode, with an attached development
system.

System Debugger A-9

D-MON386 COMMANDS B
B.1 INTRODUCTION

This appendix briefly describes the 386TW Debug Monitor (D-MON386) commands in
alphabetical order. A command directory listing the functional groups and page references
precedes the command descriptions. For examples and more detailed information about
the commands, see the D-MON386 Debug Monitor for the 80386 User's Guide.

B.2 ENTERING COMMANDS

To enter D-MON386 commands, follow the guidelines below:

• End a command line by pressing the ENTER key or the RETURN «CR» key. A
command line can consist of one or more commands.

• Separate multiple commands on a single line using a semicolon (;).

• Continue commands from one line to another by entering the slash (/) just before
terminating the line with the ENTER key or RETURN key.

• Enter commands using upper or lower case characters.

• Use CTRL-C (pressing the control key down while at the same time pressing the C
key) to abort a command being constructed on the command line.

System Debugger B-1

D-MON386 COMMANDS

8.3 COMMAND DIRECTORY

B-2

This section provides a brief summary of all D-MON386 commands listed by functions.
Each entry in the following summary contains along with the command name a brief
description of the command and a page reference where you can find more information on
the command.

Command Function Performed

BLOCK

COUNT /ENDCOUNT Provides monitor command control
structures. These structures enable you
to enter and repeat execution of several

CONTROL VARIABLES

$

BASE

NO-N9

EXPRESSION DISPLAY

EVAL

monitor commands .. B-5

Display or set the current execution point. B-5

Display or set the base number system to
to either binary, octal, decimal, or
hexadecimal ... B-5

Display or set scratch registers zero
through nine .. B-8

Evaluates an expression and displays the
results ... B-7

System Debugger

D-MON386 COMMANDS

Command Function Performed

EXECUTION ENVIRONMENT

GO

ISTEP

SWBREAK

SWREMOVE

Controls high-level execution environment B-8

Enables single-step execution .. B-9

Displays and sets software code breaks B-10

Removes software code breaks ... B-11

DESCRIPTOR TABLE ACCESS

DT

GDT

IDT

LDT

MEMORY ACCESS

ASM

BYTE

DWORD

INTn

ORDn

System Debugger

Displays the Global or Local Descriptor
tables .. B-7

Displays the Global Descriptor Table or
specific entries .. B-8

Displays the Interrupt Descriptor Table or
specific entries .. B-8

Displays the Local Descriptor Table or
specific entries .. B-9

Disassembles memory as 386 assembler
mnemonics .. B-6

Reads or writes bytes of memory B-6

Reads or writes double words of memory B-7

Reads or writes 1-, 2-, or 4-byte integers
in memory ... B-8

Reads or writes 1-, 2-, or 4-byte ordinals
in memory ... B-9

B-3

D-MON386 COMMANDS

B-4

Command

USE

WORD

PAGE TABLE ACCESS

PD

PORT I/O

DPORT

PORT

WPORT

REGISTER ACCESS

CREGS

FLAGS

Register-name

REGS

SREGS

Function Performed

Initializes the default for disassembling
code to 16-bit or 32-bit .. B-ll

Reads or writes words of memory B-ll

Displays the Page Table Directory or page
table entries ... B-I0

Reads or writes 32-bit ports ... B-B

Reads or writes B-bit ports .. B-l1

Reads or writes 16-bit ports ... B-13

Displays the control registers ... B-8

Displays the lower 16 bits of the EFLAGS
register in mnemonic form ... B-8

Displays or modifies individual registers B-l1

Displays a set of selected registers as a
group ... B-ll

Displays the segment registers as a group B-ll

System Debugger

D-MON386 COMMANDS

Command Function Performed

TASK STATE SEGMENT ACCESS

TSS Displays the contents of a task state
segtnent ... B-12

USER AID

BOOT Executes a real mode interface program B-7

HELP Displays the help screen ... B-9

HOST Provides the capability for operation with
PMON host software .. B-9

VERSION Displays the version of D-MON386 B-12

8.4 COMMAND DESCRIPTIONS

This section provides brief descriptions for D-MON386 commands in an easily referenced
alphabetical order. For on-line syntax help, refer to the HELP command. For more
information on command parameters, syntax, and options, refer to the D-MON386 Debug
Monitor for the 80386 User's Guide.

8.4.1 $

This command displays or modifies the current execution point via the execution address
register (CS:EIP). The contents of CS:EIP determine which ASM386 statement executes
next. Entering $ by itself displays the current contents of CS:EIP.

System Debugger B-5

D-MON386 COMMANDS

8.4.2 ASM

This command disassembles code into ASM386 opcode mnemonics. Using this command
and the addresses you supply with it, you can disassemble from one to several lines of code.
Disassembled code appears on the screen in column form. Each row of columns contains
an address, a hexadecimal object value, an opcode mnemonic, any operands, and
comments appended to the operands.

8.4.3 BOOT

This command invokes a user-supplied real mode interface program. The B command is
intended primarily for including a bootstrap loader program.

B.4.4 BASE

This command displays or modifies the number base. Available number bases include
binary, octal, decimal, and hexadecimal. The hexadecimal base is the monitor default base.
Entering BASE by itself displays the current base. Entering BASE followed by an
expression that evaluates to 2, 8, 10, or 16 (all decimal numbers) sets the base to binary,
octal, decimal, or hexadecimal, respectively.

8.4.5 BYTE

This command displays or modifies partitions of memory using a byte format. You can
specify the partition as a single byte or a range of bytes. Entering the command BYTE
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command BYTE as an equation causes the partition of memory
on the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

8.4.6 COUNT jENDCOUNT

This command executes groups of D-MON386 commands in a specified order for a
specified number of times. After entering COUNT expr, simply enter commands you wish
to execute. After entering END COUNT, one iteration of the commands will have already
been executed. The entire group of commands then continues to execute for expr-l
number of times.

B.4.7 CREGS

B-6

This command displays the contents of the control registers and the EFLAGS register
when the processor is in real mode. If the processor is in protected mode, the CREGS
command also displays the system address registers TR and LDTR. The display appears
using a hexadecimal number base.

System Debugger

D-MON386 COMMANDS

8.4.8 OPORT

This command reads or writes a 32-bit port. Entering DPORTwith the physical
input/ output address space as a 16-bit unsigned quantity causes the specified port to be
read and the contents to appear on the screen. If you supply an expression to the right of
the equal sign when entering this command, the addressed port is written with the value
the expression equals.

8.4.9 OT

This command displays descriptors from either the LDT or the GDT depending upon the
index supplied with the command.

8.4.10 OWORO

This command displays or modifies partitions of memory using a double word format. You
can display a specific double word or a range of double words by entering DWORD
followed by the single address or the range of addresses. Entering the DWORD command
as an equation causes the partition of memory specified on the left-hand side of the
equation to be replaced with the contents of memory or value of the right-hand side of the
equation.

8.4.11 EVAL

This command evaluates the expression entered after the keyword EV AL. The results of
the expression appear on the screen in binary, octal, decimal, hexadecimal, and ASCII
formats.

8.4.12 FLAGS

This command displays the contents of the lower 16 bits of the EFLAGS register. The
display appears in a mnemonic form. The presence of a mnemonic indicates a flag is set.
The absence of a mnemonic in the display indicates a flag is not set.

8.4.13 GOT

This command displays the entire Global Descriptor Table (GDT) or individual GDT
descriptors. Entering the keyword GDT by itself causes the entire GDT to appear.
Entering GDT followed by an index expression causes a specific descriptor to appear.

System Debugger B-7

D-MON386 COMMANDS

8.4.14 GO

This command supplies high-level execution control. Use of the GO command enables you
to begin and end program execution using specific points in the application. You can also
clear and specify break conditions using the GO command.

8.4.15 Help

This command displays the major D-MON386 commands along with their general syntax.
For examples and more detailed information about the commands, see the D-MON386
Debug Monitor for the 80386 User's Guide.

8.4.16 HOST

This command provides the capability for operation with PMON host software. When
entering this command, be sure to press only the ENTER key or a carriage return < CR >
immediately after HOST.

8.4.17 lOT

This command displays the entire Interrupt Descriptor Table (IDT) or individual IDT
descriptors. Entering the keyword IDT causes the entire IDT to appear. Entering IDT
followed by an index causes a specific descriptor from the IDT to appear.

8.4.18 INTn

This command displays or modifies partitions of memory using an integer format. When
entering the command, you can substitute the numbers 1, 2, or 4 for n. Thus, the integer
type(s) referenced in memory are either 1-, 2-, or 4-byte integers. You can specify the
partition as a single INTn value or a range of INTn values. Entering the command INTn
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command INTn as an equation causes the partition of memory on
the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

8.4.19 ISTEP

B-8

This command does single-step execution. You can use this command to single-step
through the executable code from one to 255 executable statements. ISTEP also provides
the capability to begin execution from a point other than the current execution point.

System Debugger

D-MON386 COMMANDS

8.4.20 LOT

This command displays the entire Local Descriptor Table (LDT) or individual LDT
descriptors. Entering the keyword LDT causes the entire LDT to appear. Entering LDT
followed by an index causes a specific descriptor from the LDT to appear.

8.4.21 NO-N9

This command displays or alters scratch registers zero through nine. Entering Nn (where n
is a number 0 through 9) by itself causes the value of the appropriate register to appear on
the screen. You can enter Nn followed by an equal sign and an expression to alter the
contents of the appropriate scratch register.

8.4.22 OROn

This command displays or modifies partitions of memory using an ordinal format. When
entering the command, you can substitute the numbers 1, 2, or 4 for n. Thus, the ordinal
type(s) referenced in memory are either 1-, 2-, or 4-byte ordinals. You can specify the
partition as a single ORDn value or a range of ORDn values. Entering the command
o RDn followed by an address or range of addresses causes that partition of memory to
appear on the screen. Entering the command ORDn as an equation causes the partition of
memory on the left side of the equation to be replaced with the contents of memory or
value of the right side of the equation.

8.4.23 PO

This command examines the Page Table Directory and page tables. When paging is
enabled, the 386 uses two levels of tables to translate a linear address into a physical
address: the Page Table Directory and the page tables themselves. Entering the PD
command by itself causes the entire 4K Page Table Directory to scroll to the screen. You
can, however, supply an index with the PD command to view a particular directory entry
within the Page Table Directory. Also, you can use the additional .PT option with an index
to view a particular page table entry.

8.4.24 PORT

This command reads or writes a 8-bit port. Entering PORT with the physical input/output
address space as a 16-bit unsigned quantity causes the specified port to be read and the
contents to appear on the screen. If you supply an expression to the right of the equal sign
when entering this command, the addressed port is written with the value the expression
equals.

System Debugger B-9

D-MON386 COMMANDS

8.4.25 Register-name

D-MON386 enables you to display or alter the contents of 386N registers. To gain register
access, enter the name of the register Entering the name of the register only causes the
contents of the register to appear on the screen. Entering the name of the register
followed by an equal sign and a valid expression causes the contents of the register to be
written with the value of the expression. For a complete list of register names, refer to the
D-MON386 Debug Monitor for the 80386 User's Guide.

NOTE
Register modification is dependent on the current processor protection model.
You cannot modify protected registers.

8.4.26 REGS

This command displays the contents of a set of registers as a group. The register set
depends on which mode the processor is operating under (real or protected). The display
is always in hexadecimal, and it provides less detail for the segment and control registers
than the command that are specifically designed for those groups of registers, that is
SREGS and CREGS, respectively.

8.4.27 SREGS

This command displays, in hexadecimal, the contents of the segment registers (CS, DS, SS,
ES, FS, and GS).

8.4.28 SW8REAK

This command displays or sets code patch breaks. Entering SWBREAK by itself causes all
current software break definitions to appear. If you enter SWBREAK followed by an
equal sign and one or more addresses, the command sets a software break at the specified
address or addresses.

B-IO

NOTE
When specifying software break addresses, the address must be able to be
written, present in physical memory, and on an instruction boundary. A
maximum of 16 software breaks may be in effect at one time.

System Debugger

D-MON386 COMMANDS

8.4.29 SWREMOVE

This command removes all or selected code patch breaks. Entering this command followed
by ALL removes all current software breaks. If you supply one or more addresses with the
command, the software breaks at those addresses alone are removed.

8.4.30 TSS

This command displays the contents of a task state segment. TSS supports both 386 and
80286 task state segments. Task state segments appear using the component names.

8.4.31 USE,

This command specifies the default (16-bit or 32-bit code) for disassembling code from
physical or linear addresses. When entering the command, the expression to the right of
the equal sign must evaluate to either 16 or 32 (decimal).

8.4.32 VERSION

This command displays the version number of the D-MON386 software you are using.

8.4.33 WORD

This command displays or modifies partitions of memory using a word format. You can
specify the partition as a single word or a range of words. Entering the command WORD
followed by an address or range of addresses causes that partition of memory to appear on
the screen. Entering the command WORD as an equation causes the partition of memory
on the left side of the equation to be replaced with the contents of memory or value of the
right side of the equation.

8.4.34 WPORT

This command reads or writes a 16-bit port. Entering WPORTwith the physical
input/ output address space as a 16-bit unsigned quantity causes the specified port to be
read and the contents to appear on the screen. If you supply an expression to the right of
the equal sign when entering this command, the addressed port is written with the value
the expression equals.

System Debugger B-ll

A
Altering descriptor table entries A-8
Altering memory contents A-8, B-6,7,8,9, B-11
Altering register contents 3-9, 3-16, A-9, B-10

8
Bootloading from the monitor A-3, B-6
Bootstrap Loader DEBUG switch 1-3
Breakpoints 1-3, 3-12, B-I0,11

C
Changing current instruction pointer B-5
Changing descriptor table entry contents A-8
Changing disassembled code 3-16, 3-18
Changing memory contents A-8, B-6,7,8,9,11
Changing modes A-7
Changing register contents 3-16, A-9, B-9,10
CLI-restart 1-4, I-restart 2-4,3-11
Code blocks, displaying 3-13, 3-17
Commands 1-4, 2-1

D-MON386 B-1
Directory 2-5
iSDMA-1
Overview 1-4
Syntax 1-4
Syntax for debugger 2-3
Token validity 2-2
VB 2-6
VC 2-10
VD 2-13
VF2-16
VH2-18
VJ 2-20
VJ 3-20
VK2-24
VMF2-26
VMI2-28
VM02-32
VO 2-36

System Debugger

INDEX

Index-l

INDEX

VO 3-20
VR2-39
VS 2-43
VT2-48
VT 3-20,3-21
VU 2-74
VU3-21

Comparing blocks of memory A-4
Configuration 1-2
Contents of the stack 2-43
Conventions 2-1
Copying blocks of memory A-6
Current instruction, displaying 3-12, B-5

D
D-MON386 monitor commands

$ B-5
ASMB-6
BB-6
Base B-6
Byte B-6
Count/Endcount B-6
CREGSB-6
Directory B-2
DPORTB-7
DTB-7
DWORDB-7
EVALB-7
FLAGSB-7
GDTB-7
GoB-8
Help B-8
Host B-8
IDTB-8
INTn B-8
Istep B-8
LDTB-9

Index-2

NO-N9 B-9
ORDnB-9
Overview B-l,5
PDB-9
Port B-9
Register name B-I0
Regs B-I0
Sregs B-I0
Swbreak B-I0

System Debugger

Swremove B-ll
Syntax B-1
TSS B-ll
Use B-ll
Version B-ll
Word B-ll
Wport B-ll

Deadlock 3-20
DEBUG command 1-3,3-11
Debug session, sample 3-1
Descriptor tables, displaying A-4, B-7,9
Determining the base and offset of an address A-7
Disassembled code, displaying 3-17, A-4, B-6,11
Display symbol information A-9
Displaying blocks of code 3-13, A-4
Displaying the number base B-6
DUIB information, displaying 2-6

E
Echoing console output A-5
ES register limit, checking 3-15
Examining a mailbox 3-21
Examining page table directory and tables using D-MON386 B-9
Examining register contents 3-13,3-14, B-6,7,10
Examining stack contents 3-21
Example debug session 3-1
Executing a program 3-16, A-5,7, B-8
Executing a single line of code 3-14, A-6, B-8
Exiting the monitor A-4
Expression evaluation A-7, B-7

F
Fail-safe timeout 2-26
Finding text A-5

G
GDT slots, displaying free amount 2-17
Getting help 2-18, B-8

H
Hardware/Software requirements 1-2
Help 2-18, B-8

I/O Result Segment (IORS) 2-39
Identifying system call parameters on the stack 2-43

System Debugger

INDEX

Index-3

INDEX

Interpreting system call parameters on the stack 2-43
Invocation 1-3, 3-11
IORS, displaying 2-39
ISDM monitor commands

B - bootstrap load A-3
C - compare A-4
D - Display A-4
D3-12
Directory A-I
E - exitA-4
F - findA-5
G - goA-5
G 3-11, 3-12, 3-16
I - port input A-5
K - echo file A-5
L -load A-6
M - moveA-6
N - single instruction execution A-6
N3-14
o -port output A-7
Overview A-I
P - print A-7
Q - enable protection A-7
R -load and go A-7
S - substitute A-8
X - examine/modify A-9
X 3-13,3-14,3-16
Y - symbols A-9

J
Job and decendent job tokens, displaying 2-20

L
Loading object files A-6, 7
Locating running tasks 3-22
Looping within D-MON386 B-6

M
Mailbox examination 3-21
Manual Overview v
Message Passing Coprocessor (MPC) 2-26, 2-28, 2-32
Mode changing A-7
Modifying the number base B-6

Index-4 System Debugger

Monitor 1-1
commands

D-MON386 B-1
iSDMA-l

Moving blocks of memory A-6
MPC 2-26, 2-28
MPC input message queue 2-28
MULTIBUS II 2-26,2-28,2-32

o
Object directory, displaying 2-13
Objects, displaying 2-36, 3-20

p
Ports

Displaying data A-5, B-7,9,11
Entering data A-7, B-7,9,11

Product Overview v,I-1
Program code execution 3-14

Q
Quitting the debugger 1-4, A-4

R
Re-entering the iSDM monitor 3-16
Re-entering the monitor 3-11
Reader level v
Redirecting console output A-5
Register contents, examining 3-13, 3-14
Removing Breakpoints with D-MON386 B-11
Returning to your application 1-4

S
Sample debug session 3-1
Searching for text A-5
Setting breakpoints 1-3,3-12, B-I0
Single-step execution A-6, e-step execution B-8
Stack contents 2-43, 3-21
Starting the debugger 1-3
Strings, display limitations 2-47
Support 1-2
Symbol information, displaying A-9
Syntax for debugger commands 1-4, 2-3
Syntax for D-MON386 commands B-1
System call information, displaying 2-10
System call parameters on the stack, displaying 2-43

System Debugger

INDEX

Index-5

INDEX

System requirements 1-2

T
Task system calls, displaying 2-74
Task tokens, displaying 2-24
Tokens, displaying 2-48, 3-20

U
Using PMON host software with D-MON386 B-8
Using the debugger 1-4,3-11

v
VB command 2-6
VC command 2-10
VD command 2-13
Version number ofD-MON386, displaying B-11
VF command 2-16
VH command 2-18
VJ command 2-20
VK command 2-24
VMF2-26
VMI2-28
VM02-32
VO 2-36
VO command 3-20
VR command 2-39
VS command 2-43
VTcommand

Buffer pool display 2-73
Composite object display 2-60
Extension object display 2-60
Job display 2-49
Mailbox display 2-54
Mailbox display 3-21
Region display 2-58
Segment display 2-59
Semaphore display 2-57
Task display 2-51

VT command 2-48
VU command 2-74

W
Warm-start 1-4,2-4

Index-6 System Debugger

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303
78054 St.-Quenti n-en-Yvel i nes Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.
Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN

Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9,Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013,Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN

Intel Sweden A.B.

Dalvaegen 24
5-171 36 Sol na

SWITZERLAN 0

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27

0-8000 Munchen

REQUEST FOR READER'S COMMENTS

i RMX~ System Debugg
Reference ManL

462920-0

Intel's Technical Publications Departments attempt to provide publications that meet the needs of al
Intel product users. This form lets you participate directly in the publication process. Your comment
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of thi
publication. If you have any comments on the product that this publication describes, please contac
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestion
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types o'
publications~ are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE

COM~NYNAM~DEPARTMENT ____ ~------------------------------------~
ADDRESS PHONE (

--~-----~--------------------------
CITY STATE ZIP CODE

---------------------------------~------------ --
(COUNTRY)

Please check here If you require a written reply. D

'E'D LIKE YOUR COMMENTS ...

lis document is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
mments and suggestions become the property of Intel Corporation.

,ou are in the United States, use the preprinted address provided on this form to return your
mments. No postage is required. If you are not in the United States, return your comments to the Intel
les office in your country. For your convenience, international sales office addresses are printed on
~ last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124-9978

11.11111111 ••• 11111.1.1 •• 11.1 • .1.111111.11111 •• 11111

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•
•
•
•
•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

INTEL CORPORATION
3065 Bowers Avenue

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

Santa Clara, California 95051
(408) 987-8080

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • •
• • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • •
• • • • •
• • • • • • •
• • • • • • •
• • • • • • •

