

iRMX®
Bootstrap loader

Reference Manual

Order Number: 462921-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright (0 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent oflntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
Genius intel iSSB Ripplemode
~
1 Intel376 iSXM RMXJ80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTI MODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks oflnternational Business Machines. Soft·Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980,1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89

iii/iv

I

\

PREFACE

INTRODUCTION

The Bootstrap Loader enables you to generate a system that can bootload from Intel
supplied or custom devices. A bootable system gains control immediately after power-up
or system reset. This manual provides information that enables you to configure your
system to boot from specific devices, to include your own custom device drivers as part of
the system, and to place your generated system into PROM devices.

READER LEVEL

The manual assumes that you are familiar with the iRMX® Operating Systems and an
editor with which you can edit source code files. It may also be helpful if you are familiar
with the following:

• SUBMIT files.

• ASM source code files.

MANUAL OVERVIEW

The descriptions in this manual apply to both the iRMX I and the iRMX II Operating
Systems. Differences, where they exist, are highlighted in the text.

This manual is organized as follows:

Chapter 1 This chapter provides an overview of the Bootstrap Loader operations.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A

Bootstrap Loader

This chapter provides an operator's viewpoint of using the Bootstrap
Loader.

This chapter describes how to configure the first stage of the Bootstrap
Loader.

This chapter describes how to configure the third stage of the Bootstrap
Loader.

This chapter describes how to write custom first-stage drivers.

This chapter describes how to write custom third-stage drivers.

This chapter describes error handling procedures.

This appendix describes how to include automatic boot device
recognition into your system.

v

PREFACE

Appendix B This appendix describes how to load the Bootstrap Loader and the
monitor into PROM devices.

Appendix C This appendix describes use of the D-MON386 monitor in the
Bootstrap process.

CONVENTIONS

vi

The following conventions are used throughout this manual:

• Information appearing as UPPERCASE characters when shown in keyboard examples
must be entered or coded exactly as shown. You may, however, mix lower and
uppercase characters when entering the text.

• Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol for variable fields.

• User input appears in one of the following forms:

as blue text

as bolded text within a screen

• The term "iRMX II" refers to the iRMX II (iRMX 286) Operating System.

• The term "iRMX I" refers to the iRMX I (iRMX 86) Operating System.

• The terms "iRMX" or "iRMX Operating System" when used by themselves, refer to
both iRMX I and II, that is, the text applies equally to both operating systems.

• All numbers, unless otherwise stated, are assumed to be decimal. Hexadecimal
numbers include the "H" radix character (for example, OFFH).

Bootstrap Loader

,I

CONTENTS

Chapter 1. Overview of Bootstrap Loader Operations
1.1 Introduction ... 1-1
1.2 The Stages of the Bootstrap Loader .. 1-3

1.2.1 First Stage .. 1-3
Debugging the First Stage ... 1-3

1.2.2 Second Stage .. 1-4
1.2.3 Third Stage ... 1-4

Generic Third Stage ... 1-5
Device-Specific Third Stage .. 1-5
Remote Third Stage ... 1-6
Naming the Third Stage .. 1-6

1.2.4 Load File .. 1-6
1.3 Device Drivers ... 1-8
1.4 Memory Locations Used by the Bootstrap Loader .. 1-10
1.5 Configuring Your Own Bootstrap Loader ... 1-11

Chapter 2. Using the Bootstrap Loader
2.1 Introduction ... 2-1
2.2 Operator's Role in Bootstrap Loading ... 2-1

2.2.1 Specifying the Load File .. 2-1
2.2.2 Debug Option .. 2-3

2.3 Placing the Bootstrap Loader Into Memory .. 2-5
2.4 Choosing a Third Stage .. 2-7

Chapter 3. Configuring the First Stage
3.1 Introduction ... 3-1

3.1.1 First Stage Configuration Files .. 3-2
3.2 BS1.A86 and BSIMB2.A86 Configuration Files ... 3-3

3.2.1 %BIST Macro (MUL TIBUS® II Only) .. 3-9
3.2.2 %COPY Macro (MULTIBUS® II Only) .. .3-10
3.2.3 %AUTO _ CONFIGURE_MEMORY Macro (MULTIBUS® II Only) 3-11
3.2.4 %CPU Macro .. 3-12
3.2.5 %BMPS Macro (MULTIBUS® II Only) .. 3-12
3.2.6 %iAPX _186 _INIT Macro (iRMX® I MULTIBUS® I Systems Only) 3-14
3.2.7 %CONSOLE, %MANUAL, and %AUTO Macros .. 3-15
3.2.8 %LOADFILE Macro ... 3-17
3.2.9 %DEFAULTFILE Macro .. 3-17
3.2.10 %RETRIES Macro .. 3-18

Bootstrap Loader vii

Contents

Chapter 3. Configuring the First Stage (continued)
3.2.11 %CLEAR SDM EXTENSIONS Macro .. 3-18 - -
3.2.12 %CICO Macro .. 3-19
3.2.13 %SERIAL CHANNEL Macro ... 3-20
3.2.14 %DEVICE Macro .. 3-24
3.2.15 %END Macro ... 3-28

3.3 BSERR.A86 Configuration File .. 3-29
3.3.1 %CONSOLE Macro .. 3-30
3.3.2 %TEXT Macro ... 3-30
3.3.3 %LIST Macro .. 3-30
3.3.4 %AGAIN Macro .. 3-31
3.3.5 %INT1 Macro ... 3-31
3.3.6 %INT3 Macro ... 3-31
3.3.7 %HALT Macro ... 3-32
3.3.8 %END Macro ... 3-32

3.4 Device Driver Configuration Files .. 3-33
3.4.1 %B208 Macro .. 3-33
3.4.2 %BMSC and %B220 Macros ... 3-34
3.4.3 %B218A Macro ... 3-35
3.4.4 %B224A Macro ... 3-36
3.4.5 %B251 Macro .. 3-37
3.4.6 %B254 Macro .. 3-38
3.4.7 %B264 Macro .. 3-38
3.4.8 %B552A Macro ... 3-39
3.4.9 %BSCSI Macro ... 3-40
3.4.10 %SASI UNIT INFO Macro .. 3-4 2
3.4.11 User-Supplied Drivers ... 3-44

3.5 Generating the First Stage .. 3-45
3.5.1 Modifying the BS1.CSD Submit File ... 3-47
3.5.2 Invoking the BS1.CSD Submit File ... 3-48

3.6 Memory Locations of the First and Second Stages .. 3-50

viii Bootstrap Loader

Contents

Chapter 4. Configuring the Third Stage
4.1 Introduction ... 4-1
4.2 Overview of Third Stage Configuration .. 4-2
4.3 BS3.A86, BS3MB2.A86, BG3.A86, and BR3.A86 Configuration Files4-4

4.3.1 %BMPS Macro (MULTIBUS® II Only)4-8
4.3.2 %DEVICE Macro (BS3.A86 and BS3MB2.A86 Only) .. .4-9
4.3.3 %REMOTE DEVICE .. 4-10
4.3.4 %SASI _ UNIT _INFO Macro (BSCSI.A86 File) .. .4-11
4.3.5 %INTl Macro ... 4-12
4.3.6 %INTI Macro ... 4-13
4.3.7 %HALT Macro ... 4-13
4.3.8 %CPU BOARD Macro .. 4-13
4.3.9 %INSTALLATION Macro (BG3.A86 Only)4-14
4.3.10 %END Macro ... 4-15
4.3.11 User-Supplied Drivers ... 4-15

4.4 Generating the Third Stage .. 4-16
4.4.1 Modifying the Submit Files ... 4-17
4.4.2 Invoking the Submit File ... 4-18

4.5 Memory Locations of the Three Stages4-20

Chapter 5. Writing a Custom First-Stage Driver
5.1 Introduction ... 5-1
5.2 Device Initialize Procedure ... 5-3
5.3 Device Read Procedure ... 5-4
5.4 Supplying Configuration Information to the First-Stage Driver 5-6

5.4.1 Hard-Coding the Configuration Information .. 5-6
5.4.2 Providing a Configuration File ... 5-7

5.5 Using the MULTIBUS® II Transport Protocol .. 5-11
5.5.1 Message Types ... 5-12
5.5.2 Request/Response Transaction Model ... 5-12
5.5.3 Message Passing Controller Initialization .. 5-17
5.5.4 Send and Receive Transaction Models ... 5-18
5.5.5 Message Broadcasting .. 5-24
5.5.6 Transmission Modes .. 5-26
5.5.7 Interconnect Space .. 5-26
5.5.8 Driver Code Considerations .. 5-34

5.6 Changing BS1.A86 or BSIMB2.A86 to Include the New First-Stage Driver 5-38
5.7 Generating a New First Stage Containing the Custom Device Driver 5-39

Bootstrap Loader ix

Contents

Chapter 6. Writing a Custom Third-Stage Driver
6.1 Introduction ... 6-1
6.2 What a Third-Stage Device Driver Must Contain .. 6-2
6.3 Device Initialization Procedure ... 6-4
6.4 Device Read Procedure ... 6-6
6.5 Protected Mode Considerations .. 6-8
6.6 Supplying Configuration Information to the Third-Stage Driver 6-10
6.7 Using MULTIBUS® II Transport Protocol ... 6-10
6.8 Changing BS3.A86 to Include the New Third-Stage Driver ... 6-11
6.9 Generating a New Third Stage Containing the Custom Driver 6-12

Chapter 7. Error Handling
7.1 Introduction ... 7-1
7.2 Analyzing Bootstrap Loader Failures ... 7-1

7.2.1 Actions Taken by the Bootstrap Loader After an Error 7-1
7.2.2 Analyzing Errors With Displayed Error Messages ... 7-2
7.2.3 Analyzing Errors Without Displayed Error Messages ... 7-5
7.2.4 Initialization Errors .. 7-7

Appendix A. Automatic Boot Device Recognition
A.l Introduction ... A-l
A.2 How Automatic Boot Device Recognition Works .. A-2
A.3 How to Include Automatic Boot Device Recognition ... A-3
A.4 How to Exclude Automatic Boot Device Recognition .. A-6

Appendix B. PROMming the Bootstrap Loader and the iSDMN
Monitor

B.l Introduction ... B-1
B.2 Incorporating the iSDM Monitor .. B-1

Appendix C. D-MON386 Monitor
C.l Overview ... C-l

Index

x Bootstrap Loader

Contents

Tables
1-1 Intel-Supplied Bootstrap Loader Drivers .. 1-9
2-1 Supplied Third Stage Files .. 2-8
3-1 Procedure Names for Intel-Supplied First Stage Drivers ... 3-26
3-2 5.25-Inch Diskettes Supported by iSBC® 208 and MSC-Specific Drivers 3-27
3-3 8-Inch Diskettes Supported by iSBC® 208 and MSC-Specific Drivers 3-27
4-1 Names for Intel-Supplied Third Stage Drivers .. .4-10
4-2 Base Memory Locations Used by the Bootstrap Loader4-20
7-1 Postmortem Analysis of Bootstrap Loader Failure ... 7-6

Figures
3-1 Intel-Supplied BSl.A86 File ... 3-4
3-2 Intel-Supplied BS IMB2.A86 File .. 3-7
3-3 First Stage Configuration File BSERR.A86 .. 3-29
3-4 First Stage Configuration File BSl.CSD3-45
3-5 Excluding Drivers ... 3-48
4-1 Intel-Supplied BS3.A86 File ... 4-5
4-2 Intel-Supplied BS3MB2.A86 File .. 4-6
4-3 Intel-Supplied BG3.A86 File .. 4-7
4-4 Intel-Supplied BR3.A86 File .. 4-7
4-5 Device-Specific Third Stage SUBMIT File (BS3.CSD)4-16
4-6 Generic Third Stage SUBMIT File (BG3.CSD) .. .4-17
4-7 Remote Third Stage SUBMIT File (BR3.CSD) .. .4-18
5-1 Hard-Coded Configuration Information .. 5-7
5-2 Modified BS I.CSD File ... 5-10
5-3 Modified BS I.A86 File .. 5-38
6-1 Changing the BS3.A86 File ... 6-11
A-I EIOS Configuration Screen (ABR) .. A-3
A-2 ABDR Screen (DLN, DPN, DFD, DO) .. A-4
A-3 Device-Unit Information Screen (NAM and UN) ... A-5
A-4 Logical Names Screen ... A-6

Bootstrap Loader xi

OVERVIEW OF BOOTSTRAP 1
LOADER OPERATIONS

1.1 INTRODUCTION

The iRMX® Bootstrap Loader is a program that loads your custom version of the iRMX
Operating System, known as an application system, into RAM from secondary storage so it
can begin running. This process is called bootstrap loading or booting. Booting can occur
when the system is turned on, when the system is reset, or under operator control when the
monitor is active. Since it's not dependent on any particular operating system, the iRMX
Bootstrap Loader can load many different operating systems.

The Bootstrap Loader eliminates the need to place complete applications into PROM
devices. Instead, you can place the Bootstrap Loader--a small program--into PROM
devices and store your application system on a mass storage device. The Bootstrap Loader
can then be used to load the application program into RAM.

The Bootstrap Loader consists of a series of stages and is necessary for loading
iRMX applications.

The first stage is located in PROM devices. It determines the name of the file to load,
loads part of the second stage, and passes control to that part. Intel 300 Series
Microcomputers are delivered with the first stage of the iRMX Bootstrap Loader and the
iSDMN monitor already placed in PROM devices. If you are building your own
MUL TIBUS® I microcomputer systems, you can use the information in this manual to
configure a first stage and place it into PROM devices.

Intel System 520 Series Microcomputers are delivered with firmware containing a different
Bootstrap Loader than the one described in this manual. None of the information
contained in this manual applies to the System 520's Bootstrap Loader. That loader, the
MULTIBUS II Systems Architecture (MSA) Bootstrap Loader, is described in the MSA
Bootstrap Loading of the System 520 Manual.

The second stage is on track 0 of every iRMX-formatted named volume and is necessary
for leading iRMX I and iRMX II applications. That is, whenever you use the Human
Interface FORMAT command to format a volume, the second stage is copied to that
volume. When invoked, the second stage finishes loading itself into memory. Then it loads
a file from the same volume and passes control to it. This second stage does not function
in the MSA environment. Refer to the MSA Bootstrap Loading of the System 520 Manual
for more information.

Bootstrap Loader 1-1

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1-2

The contents of this load file depend on the type of system you are loading. If you are
loading an iRMX I system, the file loaded by the second stage contains the application
system itself. If you are loading an iRMX II system, the file loaded by the second stage
contains the third stage of the Bootstrap Loader, which finishes the loading process.

The third stage is necessary only for loading iRMX II applications, because these
applications require the 80286/3861\1 processor to be running in protected mode and
because they use the OMF-286 object module format. The OMF-286 format is different
from the OMF-86 format and therefore cannot be handled by the second stage. The third
stage places the processor in protected mode, loads the iRMX II application system, and
transfers control to that application system. The third stage is in a named file on the same
volume as the second stage. Your Bootstrap Loader package contains a configured third
stage that can load applications from selected devices. The instructions in this manual can
help you configure your own third stage to add support for other devices.

The bootstrap loading process cannot be accomplished without a device driver. The device
driver is a small program that provides the interface between the Bootstrap Loader and a
device controller. When you configure the Bootstrap Loader (a task that is independent of
iRMX Operating System configuration), you specify the device drivers that the Bootstrap
Loader requires. During configuration, these device drivers, which are distinct from the
drivers needed by the application system, are linked to the Bootstrap Loader.

Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.2 THE STAGES OF THE BOOTSTRAP LOADER

The Bootstrap Loader has a number of stages that control the loading of the application
system. iRMX I applications load with a two-stage process. iRMX II applications use
these two stages but also require a third stage.

1.2.1 First Stage

The Bootstrap Loader's first stage consists of two parts. One part is the code for the first
stage. The other part is a set of minimal device drivers used by the first and second stages
to initialize and read from the device that contains the system to be booted.

The Bootstrap Loader package contains device drivers for many common Intel devices. To
support other devices, you can write your own drivers and configure them into the first
stage.

To use the Bootstrap Loader, the first stage must be in one of two places. The natural
place for the first stage is in PROM devices, either as a standalone product or combined
with a monitor. Intel 300 Series Microcomputers are delivered with the Bootstrap
Loader's first stage, the iSDM monitor, and the System Confidence Test (SCT) in the
PROM devices.

When the first stage begins running, it first identifies the bootstrap device and the name of
the file to boot. It can identify the device from a command line you enter at the monitor,
or it can use default characteristics established when the first stage was configured. The
Bootstrap Loader then calls its internal device driver for the device, to initialize the device
and read the first portion of the second stage into memory. This occurs for all devices
except when the device is located in a remote system (for example, over a Local Area
Network). After calling the internal device driver, the first stage passes control to the
second stage. When the bootstrap device is a remote device, the remote system does not
load the second stage.

Debugging the First Stage

Because the first stage works on both 8086/186- and 80286/386-based computers, it
operates in real address mode when running in an 80286/386-based system. This means
that any device drivers you write for the first stage must operate in real address mode.

If you have a system that includes the iSDM monitor and you are adding your own device
driver to the Bootstrap Loader's first stage, you will find it useful to load the first stage into
the target system's RAM using a development system iSDM loader. Then you can activate
the first stage under iSDM control from the development system. After activating the first
stage, you can then debug driver code.

Bootstrap Loader 1-3

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.2.2 Second Stage

Unlike the first stage, the second stage of the Bootstrap Loader is not configurable. Its size
is always the same (less than 8K bytes), and it does not depend on the application it will
load in any way. The code for the second stage is located on all volumes formatted with the
iRMX lor iRMX II Human Interface FORMAT commands. Therefore, the second stage
is always available for loading applications residing on random access devices. The second
stage is always on track 0 and block 0 of the named volume, so it can be accessed easily by
the first stage. '

When the second stage receives control, it finishes loading itself into memory and then
loads the file determined by the first stage. When loading the file, it uses the same device
driver used by the first stage. In iRMX I systems, the load file is the application system
itself. In iRMX II systems, this file is the third stage of the Bootstrap Loader.

NOTE

You cannot bootstrap load the iRMX II Operating System from a volume that
was formatted using the iRMX 86 Release 6 or 7 FO RMA T command.
However, you can make the volume bootable without reformatting the entire
volume and losing the data stored on it. To be able to boot both the iRMX I
and iRMX II Operating Systems from the same volume, invoke the iRMX 1.8
or iRMX II FORMAT command and specify the BOOTSTRAP control. With
BOOTSTRAP specified, FORMAT just replaces the second stage on track 0 of
the volume while leaving the remaining data untouched. When the FORMAT
command finishes, you can bootstrap load both the iRMX I and iRMX II
Operating Systems from the same volume.

1.2.3 Third Stage

1-4

The third stage of the Bootstrap Loader is used for loading iRMX II -based applications
into memory. The third stage is in a named file on the bootstrap device. Both the third
stage and the application system to be loaded must be in the same directory on the volume.

There are three types of third stages: a generic third stage, a device-specific third stage and
a remote third stage. The type needed for your system depends on the size of the
application system you intend to load, and if you are booting from a local or remote disk.

Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

Generic Third Stage

The generic third stage is so named because it can load application systems from any
device that the first stage recognizes. This stage contains no device driver of its own.
Instead, it uses the same device driver used by the first and second stages. This means that
you won't need to write a separate device driver to work in protected mode, but it also
means that the generic third stage runs in real address mode. In real address mode,
addressability is restricted to the first (lowest) megabyte of memory. Therefore, the
generic third stage can load only those application systems that are smaller than 840K
bytes. The remaining space is used by the Bootstrap Loader, the monitor and the SCT. To
load larger applications, you must use a device-specific third stage.

When the generic third stage receives control, it uses the device driver supplied in the first
stage to load the application system. It then switches the processor into protected virtual
address mode and passes control to the application.

Device-Specific Third Stage

The device-specific third stage switches the processor to protected virtual address mode
before loading the application system. This enables this stage to load into memory
addresses higher than one megabyte. However, because this stage switches the processor
into protected mode, it cannot use the first stage's device drivers (which operate only in
real mode). Instead, it must contain its own device driver, operating in protected mode, to
control the device from which the application system is loaded.

The device-specific third stage supplied in your Bootstrap Loader package supports the
following devices:

• iSBC® 215G/iSBXN 218A winchester and diskette controller combination or the
iSBC 214 controller, or the iSBC 221 controller

• iSBC 264 bubble memory controller

• iSBC 186/224A multi-peripheral controller

• SCSI (Small Computer Systems Interface) and SASI (Shugart Associates Systems
Interface) peripheral bus controllers having the iSBC 286/100A CPU board as the
host.

If you want to boot from any other device, you must write a protected mode device driver
for the device and link the driver in when you configure the device specific third stage (see
Chapter 6).

When the device-specific third stage receives control, it performs the same operations as
the generic third stage. However, before invoking the device driver to load the application
system, it switches the processor into protected mode. This enables the third stage to load
applications that are located outside the first megabyte.

Bootstrap Loader 1-5

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

Remote Third Stage

The remote third stage is similar to the generic third stage in that it only runs in real
address mode and can only load applications in the first 840K of memory. This third stage
works with the iSBC 552A first stage device driver to load the operating system from a
remote device using the Ethernet Local Area Network (LAN).

The remote third stage is different from the generic third stage in that it is loaded by a
combination of the first stage iSBC 552A device driver and the firmware executing on the
iSBC 552A board, not the second stage.

Naming the Third Stage

Both the generic and the device-specific third stages are stored as executable files. The
base portion of this file's name -- the filename minus any extension -- must be the same as
the base portion of the file containing the application system to be loaded. Because the
name of the third stage and the name of the application system must match, you must
provide a separate third stage file for each bootable system on the volume. To provide
additional third stage files, simply make a copy of the third stage file you are now using.
Name the copy so it matches the application system you intend to load.

1.2.4 Load File

1-6

The load file is a file containing the application system you are booting. The load file
should be on an iRMX 1- or iRMX II-formatted named volume. This volume must have
been formatted by the Human Interface FORMAT command. If the load file is an iRMX
II application, the volume must also have a file containing the third stage of the Bootstrap
Loader.

If your load file is an iRMX II application, the name of that file must correspond to the
name of the Bootstrap Loader third stage, as follows:

• The base portion of the load file's name (the filename minus the extension) must be
the same as that of the file containing the third stage.

• The extension portion of the load file's name must consist of the characters ".286".

Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

The following are examples of valid and invalid third stage/load file combinations:

Valid Combinations

Third stage-
Load file--

Third stage -
Load file--

Invalid Combinations

Third stage -
Load file--

Third stage -
Load file--

MYSYS
MYSYS.286

SYS1.3RD
SYS1.286

MYSYS
YOURSYS.286

MYSYS.3RD
MYSYS.LOD

When you configure the first stage of the Bootstrap Loader, you can choose the file name
that will be used if the operator doesn't specify a filename when invoking the Bootstrap
Loader. By default, the file name is /SYSTEM/RMX86 for iRMX I load files. For iRMX
II systems, /SYSTEM/RMX86 is the default name of the Bootstrap Loader's third stage
and /SYSTEM/RMX86.286 is the default name of the iRMX II load file. This name was
chosen for iRMX II systems to enable it to use the defaults in the Intel microcomputer
system firmware.

NOTE

Because of the way the Bootstrap Loader interprets filenames, the only period
(.) allowed in the entire pathname for the load file is the one that precedes the
extension 286. For example, the pathname /SYSTEM.l/MYSYS.286 is invalid
because it contains more than one period.

If your loadfile is located on a remote system, you do not specify the actual name of the
load file. Instead, you must specify a word value called the class code. The remote system
must create a class code file which contains the mapping of class code values to sets of files
to be loaded. In addition, the files to be loaded from a remote system must be processed
with utilities provided with the iRMX-NET software product before they can be loaded.
Refer to the iRMX®-NET Software Installation and Configuration Guide for a description of
preparing an application system to be remote booted.

Bootstrap Loader 1-7

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.3 DEVICE DRIVERS

1-8

When the Bootstrap Loader starts running, there is no software in place to enable the
processor to communicate with the device from which you want to load the system. Part of
the task of the Bootstrap Loader is to establish communications with the boot device. To
communicate with devices, the Bootstrap Loader must include "programs", called device
drivers, for the devices from which you want to boot. When configuring the Bootstrap
Loader, you specify the device drivers you want to include. The configuration process links
the drivers to the Bootstrap Loader code.

Both the first stage and the device-specific third stage require their own drivers. The first
stage drivers operate in real address mode and are used to load iRMX I applications and
the third stage of the Bootstrap Loader. The generic third stage also uses the first-stage
drivers to load iRMX II applications.

The third-stage drivers operate in protected virtual address mode and are used by the
device-specific third stage to load iRMX II applications into the full 16 megabyte address
space.

The first stage must include a real mode device driver for each device from which you want
to boot. The generic and remote third stage include no drivers of their own, but the device
specific third stage must include a protected mode driver for each of the boot devices.
Intel includes several real and protected mode drivers in the Bootstrap Loader package, as
listed in Table 1-1. All the real mode drivers can be used with the first stage and with the
generic third stage. All the protected mode drivers can be used with the device-specific
third stage.

If you want to boot from a device not supported by these device drivers, you can write your
own device driver. See Chapter 5 for information on writing a new device driver.

Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

*

Table 1-1. Intel-Supplied Bootstrap Loader Drivers

Driver Type

iSBC 208 Flexible Disk Drive Controller. Real Mode. Also used with the
generic third stage.

Mass Storage Controller (MSC), supporting the iSBC 214, Both Real and Protected Mode.
iSBC 215G, and iSBC 221 controller boards. Also
supports the iSBX 218A controller when it is mounted
on the iSBC 215G board.

iSBX 218A Flexible Disk Controller (used on a processor Real Mode only. Also used
board) with the generic third stage.

iSBC 220 SMD Disk Controller Real Mode only. Also used
with the generic third stage.

iSBC 186/224A Both Real and Protected Mode.

iSBX 251 Bubble Memory Controller Real Mode Only.

iSBC 254 Bubble Memory Controller Real Mode Only.

iSBC 264 Bubble Memory Controller Both Real and Protected Mode.

iSBC 552A Ethernet Controller** Real Mode Only.

SCSI (Small Computer Systems Interface) and SASI Both Real and Protected Mode.
(Shugart Associates Systems Interface) Peripheral Bus
Controllers when the host for these controllers is the
iSBC 286/100A CPU board. *

SCSI (Small Computer Systems Interface) and SASI Real Mode Only.
(Shugart Associates Systems Interface) Peripheral Bus
Controllers when the host for these controllers is the
iSBC 186/03A CPU board. *

No SCSI device driver is supplied in the iRMX Bootstrap Loader for the iSBC 386/258 board. You
must use the MSA Bootstrap Loader on the iSBC 386/258 board.

** The iSBC 552 board cannot be used in either the remote boot consumer system or the remote boot
server system: you must use the newer iSBC 552A board for any facet of remote booting on
MULTIBUS I.

Bootstrap Loader 1-9

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

1.4 MEMORY LOCATIONS USED BY THE BOOTSTRAP LOADER

All three stages of the Bootstrap Loader reside in or are loaded into memory. This section
discusses the memory locations for different types of systems.

NOTE

When you configure your own version of the Bootstrap Loader, you must
ensure that the memory locations occupied by the three stages do not overlap.
In addition, when you configure the application system, you must ensure that it
will not be loaded into the memory occupied by the stage that is loading it.
However, you can configure this memory so the iRMX I and iRMX II free
space manager has access to it once the application begins running.

The code for the first stage is normally located in PROM devices in the upper part of the
memory address space. The iSDM R3.2 Monitor reserves memory locations OFE400H to
OFFF7FH for the Bootstrap Loader. The first stage data and stack are located in
conjunction with the second stage code at address OB8000H. The second stage uses the
same data and stack as the first stage. The first stage data and stack plus the second stage
code require 8K bytes of memory. You can change the locations of the first stage data and
stack, and the second stage code by selecting a different address for the second stage when
you invoke the SUBMIT file, BS1.CSD, to configure the first stage. Chapter 3 describes
the BS1.CSD file.

The device-specific third stage is located by default at address OBCOOOH. It requires 16K
bytes of memory, and it uses its own stack and data segments. You can change the location
of the device-specific third stage by using the BS3.CSD SUBMIT file to generate your own
version. Chapter 4 describes the BS3.CSD file.

The generic third stage is located by default at address OBCOOOH. Unlike the device
specific third stage, it uses the data and stack of the first stage (because it uses the first
stage device drivers). You can change the location of the generic third stage by using the
BG3.CSD SUBMIT file to generate your own version of it. Chapter 4 describes the
BG3.CSD file.

When you use the second stage and generic third stage loaded into memory at their default
addresses (OB8000H and OBCOOOH), blocks of memory beginning at these two addresses
are used to load the application. The generic third stage uses 16K bytes of memory. Thus,
if your application were to occupy memory between OB8000H and OBFFFFH, the generic
third stage would fail to load the application.

The remote third stage is located by default at OBCOOOH and uses 4K bytes of memory. It
also uses an absolute location in memory for an indirect jump instruction. The default
absolute memory location is 1050H and is 32 bytes in length.

1-10 Bootstrap Loader

OVERVIEW OF BOOTSTRAP LOADER OPERATIONS

You can change the location of the remote third stage by using the BR3.CSD SUBMIT file
to generate your own version. Chapter 4 describes the BR3.CSD SUBMIT file.

1.5 CONFIGURING YOUR OWN BOOTSTRAP LOADER

If you intend to create your own version of the Bootstrap Loader, you use the Bootstrap
Loader configuration and generation files supplied by Intel. These files are located in the
directory /BSL in both iRMX I and iRMX II systems. This is a change from previous
releases of iRMX 86 where they were located in /RMX86/BOOT and from previous
releases of iRMX II where they were in /RMX286/BOOT. Information about configuring
the first and third stages is available in Chapters 3 and 4, and information on writing new
device drivers is available in Chapters 5 and 6.

Bootstrap Loader 1-11

USING THE BOOTSTRAP LOADER 2
2.1 INTRODUCTION

The procedure for using the Bootstrap Loader depends on where you locate the first stage,
and for iRMX II users, which third stage you choose. This chapter explains the operator's
role, methods of defining the first stage, and options to consider when choosing a third
stage.

2.2 OPERATOR'S ROLE IN BOOTSTRAP LOADING

The operator's main role in the bootstrap loading process is to specify the pathname of the
file that is to be loaded. For iRMX I systems, this is the pathname of the application
system. For iRMX II systems, this is the pathname of the Bootstrap Loader's third stage.
If you are using the Intel-supplied first stage, you can enter the load file specifications in
one of the following ways:

• By specifying neither the device name nor the file name

• By specifying both the device name and the file name

• By specifying the device name only

• By specifying the file name only

In addition, if you have the iSDM monitor, you can also use the Debug option to pass
control to the monitor after loading is complete.

2.2.1 Specifying the Load File

An operator can specify a load file when the first stage of the Bootstrap Loader displays an
asterisk (*) prompt. When this prompt appears, the first stage waits for an operator to
enter the name of the load file. The method used to determine which file to load depends
on the configuration of the Bootstrap Loader's first stage. Refer to Chapter 3 for more
information about first stage configuration. For information on using the D-MON386
Monitor refer to Appendix C.

Bootstrap Loader 2-1

USING THE BOOTSTRAP LOADER

2-2

When entering the monitor's B command or responding to the Bootstrap Loader's asterisk
prompt, you must specify the load file. One way to do this is to simply press Carriage
Return. This causes the Bootstrap Loader to search for a default file on the default device
(these defaults are set up when you configure the first stage). The Intel-supplied first stage
uses the following pathname as its default:

/SYSTEM/RMX86

If you were using the default first stage and you wanted to load the file called
/SYSTEM/RMX86 from the default device, you could simply type the B command with no
parameters (if you boot from the monitor) and press Carriage Return, or type a Carriage
Return only (if the Bootstrap Loader displays its own prompt).

If you need to specify a load file that is different from the default one, use the following
format for the specification:

:device:pathname

Where:

: device:

path name

This is the name of the secondary storage device that contains the load
file. If you omit the device name, the default device is used (as
established during first stage configuration).

When loading iRMX I applications, this is the full pathname of the file
you want to load. When loading iRMX II applications, this is the full
pathname of the Bootstrap Loader's third stage. For iRMX II systems,
the file to be loaded is assumed to have the same pathname as the third
stage except the filename extension (assumed to be .286).

For loading from a remote system, enter the class code value. If you
omit this name, the Bootstrap Loader attempts to load the files
associated with the default class code from a remote system. The
default class code for loading from remote systems is 4000H. A space
must precede the class code.

To invoke the Bootstrap Loader with the monitor's B command, the processor must be
running in real address mode. If your processor is running in real address mode, you can
simply break to the monitor and enter the boot command.

However, if the processor is running in protected mode (as it is when the iRMX II
Operating System is in control), you cannot boot another system by breaking to the
monitor and entering a boot command. You must first reset the system. After resetting
the system, you can invoke the Bootstrap Loader at the monitor prompt.

Bootstrap Loader

USING THE BOOTSTRAP LOADER

Example: Assume that an iRMX I application system is in the file /BOOT86/MYSYS on
drive :WFO:. You can boot this system by entering the following command at the iSDM
monitor prompt:

.b :wfO:/boot86/mysys

For an example using the D-MON386 monitor, refer to Appendix C.

2.2.2 Debug Option

If the iSDM monitor is present in the system, you can include a debug option when
specifying a load file. This option instructs the Bootstrap Loader to do the following
immediately after loading is complete:

• Set the CPU registers as described in Appendix A so the iRMX Operating System can
detect that the debug option was set. iRMX will then execute an interrupt 3 instruction
to enter the monitor. Set a breakpoint at the first instruction to be executed by the
application system. For iRMX I systems, the breakpoint will be set in the load file.
For iRMX II systems, the load file (the third stage) will be loaded as always and it will
load the application system. The breakpoint will then be set in the application system.

• Pass control to the iSDM monitor, which displays an "Interrupt 3 at <xxxx:xxxx>"
message at the terminal, displays its prompt and waits for a command from the
terminal. (The monitor prompt is a single period for real-mode iRMX I systems or two
periods for protected-mode iRMX II systems.) At this poinfyou can invoke any of the
iSDM monitor commands that are appropriate for real or protected mode. (To
continue running the loaded program, enter G < cr > .)

One advantage of the Debug switch is that the monitor's interrupt message tells you that
the loading process was successful. If a system you are booting fails, you might not
otherwise be able to tell whether the bootstrap load itself was unsuccessful, or whether the
system loaded successfully and then failed during initialization. The presence or absence of
the interrupt message when you use the Debug option clarifies whether the loading was
successful.

Because the Debug option leaves you in the monitor, you can alter the contents of specific
memory locations and do other monitor actions (such as debugging) before you start your
system running with the monitor's G command.

To use the Debug option when you are invoking the Bootstrap Loader from the iSDM
monitor, include the letter D in the command line immediately after the B (boot)
command. Specify any load file pathname after the Band D characters.

Bootstrap Loader 2-3

USING THE BOOTSTRAP LOADER

2-4

For example, any of the following command lines invoke the Bootstrap Loader (from the
iSDM monitor) with the Debug option:

.bd

.b d

.bd /boot86/28612

.b d :wO:boot86/28612

Notice that the "D" and any pathname must be separated by at least one space.

You can also use the Debug option on systems in which the Bootstrap Loader is configured
to request the load file name. These systems display the Bootstrap Loader's first stage
asterisk (*) prompt. Place the "D" and at least one space in the command line before the
load file specification. Examples of this are:

*d
* d
*d /boot86/28612
* d :wO:boot86/28612

Bootstrap Loader

USING THE BOOTSTRAP LOADER

2.3 PLACING THE BOOTSTRAP LOADER INTO MEMORY

Before you can invoke the Bootstrap Loader, you must place it into memory. Several ways
exist to place the Bootstrap Loader into memory:

1. Place the first stage, configured for standalone operation, in PROM devices. In this
case, the first stage begins to run on power-up or reset. Depending on its
configuration, the standalone Bootstrap Loader may display an asterisk prompt so
you can enter the name of the load file. To configure the fITst stage for standalone
operation, refer to Chapter 3.

2. Configure the iSDM monitor to include the Bootstrap option and reconfigure the first
stage of the Bootstrap Loader to include the first stage device driver(s) needed for
bootstrap loading. This is necessary because not all the device drivers supplied with
the Bootstrap Loader will fit into the memory range provided by the monitor. Then
program new PROM devices with the combination of the monitor and the first stage
of the Bootstrap Loader. With this method, you begin bootstrap loading via the
monitor's 'B' (boot) command. To use this method, refer to Appendix B for
information on programming a monitor and the Bootstrap Loader into the same set
of PROM devices.

3. Place the first stage in secondary storage. Then, using the iSDM monitor or ICE in
circuit emulator, invoke the first stage. This procedure is particularly useful when you
are adding a new device driver to the first stage and you need to debug the code. To .
configure the first stage for standalone operation where loading will be done with the
iSDM monitor or ICEN in-circuit emulator, refer to Chapter 3.

NOTE

If your system includes the D-MON386 monitor, you cannot download
the first stage from one system to another and then invoke it using
D-MON386 as described above. The previous description applies only
to a system configured with the iSDM monitor or ICE in-circuit
emulator.

4. Place the first stage in secondary storage, and then load it programmatically. This
applies only to iRMX I systems. Because the iRMX II Operating System cannot
switch back to real mode from protected mode, it cannot load the first stage, which
runs in real mode. (These systems can load the first stage in real mode only.)

The rest of this section gives instructions for using the fourth method.

Bootstrap Loader 2-5

USING THE BOOTSTRAP LOADER

2-6

Although bootstrap loading usually occurs in response to an external event (such as a
system reset or a monitor command), an executing program can also initiate it. Such a
program can load another system by calling the PUBLIC symbol BOOTSTRAP_ENTRY.
To prepare for such a call, do the following:

1. Define BOOTSTRAP_ENTRY as an EXTERNAL symbol in the code of the
invoking program.

2. Place a call to BOOTSTRAP_ENTRY in the code of the invoking program. The
form of the call is

CALL BOOTSTRAP _ ENTRY(@filename)

where:

filename An ASCII string containing either the pathname of the
target file followed by a CARRIAGE RETURN, or a
CARRIAGE RETURN only. If the string contains a
pathname, the named file is loaded. If the string
contains a CARRIAGE RETURN only, the default file,
as defined by the %DEFAULTFILE macro in the
BS1.A86 or BSIMB2.A86 configuration file, is loaded.
(Chapter 3 describes the BS1.A86 and BS1MB2.A86
files.)

The call must follow the PL/M-86 LARGE model of segmentation. (Even though
this is a call, rather than a jump, it does not return.)

3. Link the calling program to a version of the first stage of the Bootstrap Loader. You
can do this by using the BS1.CSD file as a model and making the following changes:

• Add the calling program to the list of modules that are linked in BS 1.CSD.

• "Comment out" the locate sequence if you want to use any code other than
absolute code. To comment out a line, precede it with a semicolon. For more
details on absolute code, refer to the iAPX 86,88 Family Utilities Guide.

Refer to Chapter 3 for more information on the BS 1.CSD file.

Bootstrap Loader

USING THE BOOTSTRAP LOADER

2.4 CHOOSING A THIRD STAGE

If you plan to load iRMX II applications, you must include a version of the Bootstrap
Loader's third stage on the secondary storage device from which you are loading your
application. You can use the following types of third stages, depending on the type of
system you are loading.

• A generic third stage

• A default device-specific third stage

• A remote third stage

• Your own configuration of the device-specific third stage containing customized device
drivers.

The rest of this section should help you decide which third stage best suits your needs.

The important elements to consider when you choose a third stage are the size of your
system, the type of mass storage devices used to boot your system, and the CPU board you
are using.

If you plan to load your system from any of the Intel-supplied devices, you can use:

1. the default device-specific third stage regardless of the size of your system, or

2. a default generic or remote third stage for systems up to 840K bytes.

All third stages are supplied for 80286 and 386N CPU boards.

If you plan to load your system from a custom device, the size of the system determines
which third stage you should use.

• For systems that are not expected to exceed 840K bytes, use the generic third stage. In
this case, you do not need to supply a custom device driver for the third stage. You will
already be supplying a custom first stage driver; the generic third stage will use that
same driver to access the custom device.

• If your application exceeds 840K bytes, you must use the device-specific third stage,
because it switches the processor into protected mode before loading the application.
This enables the third stage to load into the entire 16 megabyte address space
supported by protected mode. However, to load applications from your custom device,
you must write a third stage device driver for your device. This driver can be a
modification of your first stage driver that runs in the processor's protected mode. For
information on writing a third stage driver, refer to Chapter 6.

• If your application will be loaded from a remote device, you must use the remote third
stage.

Bootstrap Loader 2-7

USING THE BOOTSTRAP LOADER

*

2-8

NOTE

The 840K byte limit on systems loaded by the generic and remote third
stages applies to the boot file only. Once the boot file is loaded and has
control, the entire 16 megabytes of memory address space is available
for the system (both the free space manager and the Application
Loader).

Table 2-1 lists the versions of the third stage that are supplied on the Bootstrap Loader
Release Diskettes. This table enables you to pick the appropriate third stage for your
system. After you install your system, these files are available in the /BSL directory.

Table 2-1. Supplied Third Stage Files

Device-Specific Generic Remote
CPU Board Third Stage Third Stage Third Stage

iSBC 286/10 28612 28612.GEN 28612.REM
iSBC 286/10A 28612 28612.GEN 28612.REM
iSBC 286/12 28612 28612.GEN 28612.REM
iSBC386/12 38612 38612.GEN 38612.REM
iSBC 286/100A 286100A 2861ooA.GEN
iSBC386/2X 38620 38620.GEN 38620. REM
iSBC386/3X 38620 38620.GEN 38620. REM
iSBC 386/116* 386100 3861oo.GEN
iSBC 386/120* 386100 3861oo.GEN

This usage of any third stage with these CPU boards is possible only if they do not use the MSA
Bootstrap Loader.

Bootstrap Loader

CONFIGURING THE FIRST STAGE 3
3.1 INTRODUCTION

There are three stages to the Bootstrap Loader. Two of these stages (the first stage and
the third stage) can be configured to match your application system. The second stage is
constant and does not need to be configured. This chapter describes how to configure the
first stage.

Configuring the first stage of the Bootstrap Loader involves the following operations:

1. Create a directory in which to generate the first stage and attach it as your default
directory.

2. Invoke a SUBMIT file to obtain a local copy of the configuration source files.

3. Edit one or more assembly language source files to include the configurable options
and device drivers in the first stage.

4. Edit, then invoke a SUBMIT file to assemble the source files, link them together with
the code for the first stage, and assign absolute addresses to the code in preparation
for placing it into PROM devices.

Default versions of the assembly language source files and the SUBMIT file are placed in
the /BSL directory during iRMX installation. Do not modify these files in the /BSL
directory. Obtain a local copy by creating a directory in your :home: directory. An
example for a 286/12 System is:

CREATEDIR :HOME:28612.BSL
ATTACHFILE :HOHE:28612.BSL
SUBMIT /BSL/SETUP

Bootstrap Loader 3-1

CONFIGURING THE FIRST STAGE

3.1.1 First Stage Configuration Files

3-2

BS1.A86

BSIMB2.A86

BSERR.A86

B208.A86
BMSC.A86
B218A.A86
B224A.A86
B251.A86
B254.A86
B264:A86
B552A.A86
BSCSI.A86

BS1.CSD

For MUL TIBUS® I systems, this assembly language source file
contains macros that specify information about the processor and
the bus, how the boot device and load file are selected, and which
devices can be booted from.

For a MULTIBUS® II system which does not use the MSA
Bootstrap Loader, this assembly language source file contains
macros that specify information about the processor and the bus,
how the boot device and load file are selected, and which devices
can be booted from.

This assembly language source file contains macros that tell the
Bootstrap Loader what to do if errors occur during bootstrap
loading.

These assembly language source files contain configuration
information about the first stage device drivers. Each file describes
one device driver. For each device driver that you want to include
in the first stage, you must set up the appropriate file and link it to
the rest of the first stage.

This SUBMIT file contains the commands needed to assemble the
preceding source files and link the resulting modules (and any
others that you supply). It then locates the resulting object module
containing the configured first stage.

As shipped on the release diskettes, these files are set up to generate the default version of
the Bootstrap Loader's first stage. If you decide to configure your own version of the first
stage, you will edit your local copy of either the BS l.A86 or BS IMB2.A86 configuration file
(depending upon your system), possibly the BSERR.A86 configuration file, and the
BS1.CSD submit file. Make changes in the device driver configuration files only if you
want to change the Intel-supplied defaults in those files.

The following sections describe how to modify all the configuration files to tailor the first
stage of the Bootstrap Loader to meet your specifications.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

NOTE

It's important that the BS1.A86 or BSIMB2.A86 configuration file and the
BS 1.CSD SUBMIT file agree about the device drivers included in the first
stage. Whenever you change the device driver specifications in one of these
files, be sure to check the other file as well. The individual file descriptions
discuss specific areas that you should check.

3.2 BS1.A86 AND BS1 MB2.A86 CONFIGURATION FILES

Figures 3-1 and 3-2 show the BS1.A86 and BSIMB2.A86 files as they are delivered from
Intel. These files consist of four INCLUDE statements and several macros. The
definitions of the macros that can appear in these files are contained in the INCLUDE file
BS 1.INC. The macros themselves are discussed in the next few sections.

NOTE

Depending on your system, you must choose between BS 1.A86 and
BS 1MB2.A86 as the correct configuration file. If your system is a
MUL TIBUS I system, choose the BS 1.A86 configuration file. If your system is
a MUL TIBUS II system, choose the BS IMB2.A86 configuration file.

Bootstrap Loader 3-3

CONFIGURING THE FIRST STAGE

3-4

name bs1

$inc1ude(:f1:bcico.inc)
$inc1ude(:f1:bmb2.inc)
$inc1ude(:f1:bmps.inc)
$inc1ude(:f1:bs1.inc)

%cpu(80386)

iSBC 188/48 initialization of the iAPX 188
; iAPX_186_INIT(y,Ofc38h,none, 80bbh,none,003bh)

iSBC 186/03(A) and iSBC 186/51 initialization of the iAPX 186
;iAPX_186_INIT(y,none,none,80bbh,none,0038h)

%conso1e
%manua1
%auto

%loadfi1e

%defau1tfi1e('/system/rmx86')

%retries(5)

;cico

iSBC 86/05/12a/14/30/35
;seria1_channe1(8251a,Od8h,2,8253,OdOh,2,2,8)

iSBX 351 (on iSBX #0)
;seria1_channe1(8251a,OAOh,2,8253,OBOh,2,2,8)

Figure 3-1. Intel-Supplied BSl.A86 File

Bootstrap Loader

CONFIGURING THE FIRST STAGE

iSBX 354 Channel A (on iSBX #0)
;serial_channe1(82530,084H,2,82530,084H,2,0,Oeh,a)

iSBX 354 Channel B (on iSBX #0)
;serial_channe1(82530,080H,2,82530,080H,2,0,Oeh,b)

8 MHz iSBC 186/03A Channel A
;serial_channe1(8274,Od8h,2,80186,OffOOh,2,0,Odh)

8 MHz iSBC 186/03A Channel B
;seria1_channe1(8274,Odah,2,80186,OffOOh,2,1,Odh)
;seria1_channe1(8274,Odah,2,80130,OeOh,2,2,034h)

6 MHz iSBC 186/03/51 Channel A
;seria1_channe1(8274,Od8h,2,80186,OffOOh,2,0,Oah)

6 MHz iSBC 186/03/51 Channel B
;seria1_channe1(8274,Odah,2,80186,OffOOh,2,1,Oah)
;seria1_channe1(8274,Odah,2,80130,OeOh,2,2,027h)

iSBC 188/48/56 SCC #1 Channel A
;seria1_channe1(82530,OdOh,1,82530,OdOh,1,0,Oeh,a)

iSBC 188/48/56 SCC #1 Channel B
;seria1_channe1(82530,Od2h,1,82530,Od2h,1,0,Oeh,b)

iSBC 286/10(A)/12 and iSBC 386/12 Channel A
;seria1_channe1(8274,Od8h,2,8254,OdOh,2,2,8)

iSBC 286/10(A)/12 and iSBC 386/12 Channel B
;seria1_channe1(8274,Odah,2,8254,OdOh,2,1,8)

iSBC 386/2X and iSBC 386/3X
;seria1_channe1(8251a,Od8h,2,8254,OdOh,2,2,8)

Figure 3-1. Intel-Supplied BS1.A86 File (continued)

Bootstrap Loader 3-5

CONFIGURING THE FIRST STAGE

3-6

, , """ , '" " """ , " " , " "" " , , , " , '" , " " , " "" , '" , , ,
MULTI BUS I devices ..

, '" , '" " , '" """ , , , '" , , "" " " , " , , " " '" " , , , , , '" , , , ,

%device(afO, 0, deviceinit208gen, deviceread208gen)
%device(afl, 1, deviceinit208gen, deviceread208gen)
%device(wO, 0, deviceinitmscgen, devicereadmscgen)
%device(wl, 1, deviceinitmscgen, devicereadmscgen)
%device(wfO, 8, deviceinitmscgen, devicereadmscgen)
%device(wfl, 9, deviceinitmscgen, devicereadmscgen)
%device(sO, 0, deviceinitscsi, devicereadscsi)
%device(sxI410aO, 0, deviceinitscsi, devicereadscsi, sasi_xI410a)
%device(sxI410bO, 0, deviceinitscsi, devicereadscsi, sasi_xI410b)
%device(smfO, 2, deviceinitscsi, devicereadscsi, sasi_xI420mf)
%device(pmfO, 0, deviceinit218A, deviceread218A)
%device(pbO, 0, deviceinit251, deviceread251)
%device(bO, 0, deviceinit254, deviceread254)
%device(baO, 0, deviceinit264, deviceread264)
%device(rO, 0, deviceinit552A, deviceread552A)

%end

Figure 3-1. Intel-Supplied BSl.A86 File (continued)

Bootstrap Loader

CONFIGURING THE FIRST STAGE

name bs1

$inc1ude(:f1:bcico.inc)
$inc1ude(:f1:brnb2.inc)
$inc1ude(:f1:brnps.inc)

;bist(OFFFFH:OFFFFH)

;copy(08000H,00FFH,08000H,000FH,08000H,OH)

(LBX) , (PSB,addr) or (LBX+PSB)
;auto_configure~memory(LBX)

$inc1ude(:f1:bs1.inc)

%cpu(80386)

;MPC and ADMA configuration for iSBC 286/100 with iEXM 100 MPC module
;bmps(OOH, 4, 08BH, 200H, 3, 2, OAOH, 16)

MPC and ADMA configuration for iSBC 286/100A
;bmps(OOH, 4, 08BH, 200H, 2, 3, OEOH, 16)

MPC and ADMA configuration for iSBC 386/100
%brnps(OOH, 4, 089H, 200H, 2, 3, OOOH, 16)

%conso1e
%manua1
%auto

%loadfi1e

%defau1tfi1e('/system/rmx86')

%retries(S)

;cico

Figure 3-2. Intel-Supplied BSIMB2.A86 File

Bootstrap Loader 3-7

CONFIGURING THE FIRST STAGE

3-8

iSBX 351 (on iSBX #0)
;seria1_channe1(8251a,OAOh,2,8253,OBOh,2,2,8)

iSBX 354 Channel A (on iSBX #0) for iSBC 386/116/120
;seria1_channe1(82530,084H,2,82530,084H,2,0,Oeh,a)

iSBX 354 Channel B (on iSBX #0) for iSBC 386/116/120
;seria1_channe1(82530,080H,2,82530,080H,2,0,Oeh,b)

iSBC 286/100A Channel A
;seria1_channe1(82530,Odch,2,82530,Odch,2,0,Oeh,a)

iSBC 286/100A Channel B
;seria1_channe1(82530,Od8h,2,82530,Od8h,2,0,Oeh,b)

..
" " , " ", " ", , ", ", , "" ", " , " , , , " , " , " , ", , """ , , , , ,

MULTIBUS II devices .. , , """ " , , , " , " ", """", "" , " " , "" ", , , ", " , " , , " ,

%device(sO, 0, deviceinitscsi, devicereadscsi)
%device(sx1410aO, 0, deviceinitscsi, devicereadscsi, sasi_x1410a)
%device(sx1410bO, 0, deviceinitscsi, devicereadscsi, sasi x1410b)
%device(smfO, 2, deviceinitscsi, devicereadscsi, sasi_x1420mf)
%device(pmfO, 0, deviceinit218A, deviceread218A)
%device(wO, 0, device_init_224a, device_read_224a)
%device(w1, 1, device_init_224a, device_read_224a)
%device(wfO, 4, device_init_224a, device_read_224a)
%device(wf1, 5, device_init_224a, device_read_224a)
%end

Figure 3-2. Intel-Supplied BSIMB2.A86 File (continued)

To configure your own version of the Bootstrap Loader first stage, edit either the BS l.A86
or BS IMB2.A86 file if you need to include or exclude macros. A percent sign (%)
preceding the macro name includes (invokes) the macro. A semicolon (;) preceding the
macro name excludes the macro, treating it as a comment.

NOTE

When you exclude a macro, you must replace the percent sign with a semicolon.
Do not simply add a semicolon in front of the percent sign.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

The order in which the macros should appear is the same order that they are listed in the
BS l.A86 or BS IMB2.A86 file.

The following sections describe the macros that can appear in the BS1.A86 and
BS IMB2.A86 files. Because the Bootstrap Loader supports both iRMX I and iRMX II
Operating Systems, some of these macros apply to one Operating System and not the
other. In such cases, the section heading notes the operating system to which the macro
applies. When no operating system designation appears, the macro is valid for both the
iRMX I and iRMX II Operating Systems. The macros are described in the order they are
listed in the BS l.A86 and BS IMB2.A86 files.

If you make a syntax error when entering macros into the BS l.A86 or BS IMB2.A86 file, an
error message appears when assembling the file. For example, if you misspell a macro
name in a macro call, the following type of message may be returned:

*** ERROR #301 IN 129, (MACRO) UNDEFINED MACRO NAME
INSIDE CALL: BAD NAME *** _______________________________ t

*** ERROR #1 IN 129, SYNTAX ERROR

If an error such as this occurs, check for correctness in the BS l.A86 or BS IMB2.A86 file
and attempt to reassemble the file.

3.2.1 %BI5T Macro (MUL TIBU5® II Only)

MULTIBUS II systems include a Built-In Self Test (BIST) program in PROM devices that
verifies MUL TIBUS II hardware when the hardware is powered up. The %BIST macro
causes the Bootstrap Loader to invoke the BIST program on the CPU board during
Bootstrap Loader initialization. The BIST program then tests the hardware.

If the BIST program finds an error condition, it places an error code in the AX register and
loops. It does not call the Bootstrap Loader's BSERROR routine because an error of this
type implies that the system hardware is inoperable.

The %BIST macro should be included only for MUL TIBUS II systems, and only for those
systems that don't also include a monitor in PROM devices. In systems that include a
monitor, the monitor becomes active before the Bootstrap Loader, and it invokes the BIST
program. Therefore, invoking the BIST program from the Bootstrap Loader is
unnecessary.

Bootstrap Loader 3-9

CONFIGURING THE FIRST STAGE

The syntax of the macro is

%BIST (address)

where:

address Address of the CPU board's BIST program. This parameter must be
entered in the form BASE:OFFSET (for example, 1234:5678). To
determine the address of your CPU board's BIST program, refer to the
hardware reference manual for that board.

3.2.2 %COPV Macro (MULTIBUS® II Only)

The %COPY macro is used with 386/116- and 386/120-based systems. If your system is
not of this type, do not include the %COPY macro in the BS 1MB2.A86 file.

Both iSBC 386/116- and iSBC 386/120-based systems locate EPROM memory at the top
of the 4 gigabyte address space supported by the 803861101 upon reset. However, the first
stage of the Bootstrap Loader must execute within the first megabyte of address space
(real mode). Because the first stage must be repositioned within memory, you must use
the %COPY macro for any application where the EPROM memory is mapped outside of
the first megabyte of address space upon reset.

In contrast, the iSBC 386/2X and iSBC 386/3X systems locate EPROM memory at the top
of the first megabyte of memory space upon reset. Thus, the %COPY macro is
unnecessary.

This macro copies the first stage of the Bootstrap Loader from EPROM devices to the low
megabyte of RAM. You should only specify this macro if you do not have a monitor
installed and the Bootstrap loader executes first upon system reset.

The syntax of the %COPY macro is as follows:

where:

3-10

src 10
src hi

dest 10
dest hi

count 10
count hi

The low word of the 24-bit physical source address.
The high byte of the 24-bit physical source address.

The low word of the 24-bit physical destination address.
The high byte of the 24-bit physical destination address.

The low word of the number of bytes in the first stage.
The high byte of the number of bytes in the first stage.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.2.3 %AUTO CONFIGURE MEMORY Macro (MULTIBUS® II
Only) - -

You should include the %AUTO _CONFIGURE_MEMORY macro only for MULTIBUS
II systems, and only for those systems in which the Bootstrap Loader is invoked upon
system reset (as opposed to under program control). In systems that include the monitor
in PROM devices, the monitor becomes active before the Bootstrap Loader, and it should
invoke its own %AUTO _ CONFIGURE_MEMORY macro. Therefore, invoking the
macro from the Bootstrap Loader is unnecessary.

The syntax of the macro is

%AUTO _ CONFIGURE _ MEMO RY(interface _ type [,start_address])

where:

interface _ type A string representing the bus interface of the memory
board(s) to be configured. Valid strings are LBX, PSB,
orLBX+PSB.

start address The starting 64K page of memory when PSB memory is
being configured.

Three possible configuration options exist: iLBX only, iPSB only, or iLBX and iPSB. You
must specify the required parameters using one of the following three methods:

%AUTO _ CONFIGURE_MEMORY (LBX)

This option configures memory boards accessible to the processor via the iLBX bus.
Using this configuration option, the macro assigns sequential consecutive addresses
beginning with zero for the start and stop addresses of each iLBX memory board.
Board configuration proceeds from the board occupying the lowest slot number to the
board occupying the highest slot number.

%AUTO _ CONFIGURE_MEMORY (PSB, start address)

This option configures memory boards accessible to the CPU via the iPSB bus. Using
this configuration option, the macro assigns sequential consecutive addresses for the
start and stop addresses of each iPSB memory board. The assigned addresses begin
with the supplied starting address. Board configuration proceeds from the board
occupying the lowest slot number to the board occupying the highest slot number.

%AUTO _ CONFIGURE_MEMORY (LBX + PSB)

This option configures memory in the same manner as the first option, with one
additional configuration. All boards on the iLBX bus that also have iPSB interfaces
have the same starting and ending addresses for both interfaces.

Bootstrap Loader 3-11

CONFIGURING THE FIRST STAGE

The following syntax errors can occur if you enter incorrect parameters or incorrect
combinations of parameters.

ERROR - <type>, invalid interface type
ERROR - invalid parameter combination

3.2.4 %CPU Macro

The %CPU macro identifies the type of CPU that executes the bootstrap loading
operation. You must include this macro in the BS1.A86 or BS1MB2.A86 file once (and
only once).

The syntax of the CPU macro is

%CPU(cpu type)

where:

The type of CPU executing the bootstrap operation. Valid types are:

Type

8086
8088
80186
80188
80286
80386

Description

8086 processor (iRMX I only)
8088 processor (iRMX I only)
80186 processor (iRMX I only)
80188 processor (iRMX I only)
80286 processor (iRMX I and iRMX II)
386® processor (iRMX I and iRMX II)

3.2.5 %BMPS Macro (MULTIBUS® II Only)

The %BMPS macro configures the message passing system used during bootstrap loading.
This macro identifies the base address of the Message Passing Coprocessor (MPC),
address distance between MPC ports, and information that defines how direct memory
access (DMA) transfers occur. If you have a MULTIBUS II system that bootloads from a
device whose driver uses MULTIBUS II transport protocol (i.e. the 186/224A driver), you
must use this macro. If you have a MUL TIBUS I system or a system that bootloads from a
device whose driver does not use MUL TIBUS II transport protocol, you must not use this
macro.

The syntax of the %BMPS macro is

3-12

%BMPS (mpc$base$addr, port$sep, duty$cycle, dma$base$addr, dmain, dmaout,
dma$trans, data$width)

Bootstrap Loader

where:

mpc$base$addr

port$sep

duty$cycle

dma$base$addr

dma$in

dma$out

dma$trans

data$width

CONFIGURING THE FIRST STAGE

The base I/O port address of the MPC. Refer to the
appropriate single board computer user's guide for this
address.

The number of addresses separating individual MPC
ports. For example, if the mpc$base$addr is OOOOH and
the next three I/O port addresses are 0004H, 0008H,
and OOOCH, respectively, the port$sep is 4H. Refer to
the appropriate single board computer user's guide for
the I/O port address map.

The MPC duty cycle for the local bus. (The rate at
which data packets are generated.) For information on
how to calculate a duty cycle suitable for the local bus,
refer to the MPC User's Manual. For duty cycles suitable
for Intel single board computers, refer to the appropriate
single board computer user's guide.

The base I/O port address for the Advanced Direct
Memory Access (ADMA) controller. Refer to the
appropriate single board computer user's guide for this
address.

The channel used to receive (input) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

The channel used to send (output) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

The I/O port address used for DMA data transfers.
Refer to the appropriate single board computer user's
guide for this address.

The data width in bits of the local bus. This value must
be either 16 or 32 (decimal). If the width is set to 32 bits
on an iSBC 386/116- or 386/120 board, flyby (one cycle)
DMA mode is enabled.

The %BMPS macro can generate errors if the local bus width is not 16 or 32 bits wide.

Bootstrap Loader 3-13

CONFIGURING THE FIRST STAGE

3.2.6 %iAPX _186 _INIT Macro (iRMX® I Systems Only)

The %iAPX_186 _ INIT macro specifies the initial chip select and mode values for 80186
and 80188 CPUs. Include this macro only for systems that use the 80186 or 80188
processor and do not include a monitor in PROM devices. In systems that include the
iSDM monitor, the monitor becomes active before the Bootstrap Loader, and the monitor
must initialize the cpu. An iSDM configuration macro is available for this purpose. See
the iSDAr System Debug Monitor Reference Manual for more information.

The syntax of the iAPX _186 _ INIT macro is

%iAPX 186 INIT(rmx, umcs, lmcs, mmcs, mpcs, pacs)

where:

rmx

umcs

lmcs

mmcs

mpcs

pacs

The initial mode of the 80186 Programmable Interrupt Controller
(PIC). Acceptable values are as follows:

Value

y

n

Description

The 80186 PIC is initialized in iRMX compatibility
mode.

The 80186 PIC is initialized in default mode.

Initial value for the upper-memory chip-select control register.

Initial value for the lower-memory chip-select control register.

Initial value for the midrange-memory chip-select control register.

Initial value for the memory-peripheral chip-select control register.

Initial value for the peripheral-address chip-select control register.

In all parameters except the first one (rmx), NONE is also an acceptable value. A value of
NONE places no initialization value in the corresponding register. For information on the
chip-select control registers, and the values to place in them, see the data sheets for the
80186 and 80188 processors.

All the default parameter values for this macro (in the Intel-supplied BS1.A86 file shown in
Figure 3-1) are appropriate to initialize the CPUs on the iSBC 186/03(A), iSBC 186/51
and iSBC 188/48/56 boards.

The iRMX I Operating System does not allow you to move the 80186 relocation register to
I/O addresses other than OFFOOH, its default register.

3-14 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.2.7 %CONSOLE, %MANUAL, and %AUTO Macros

The CONSOLE, MANUAL, and AUTO macros specify how the first stage identifies the
file that the second stage will load (either the load file or the third stage) and the device on
which the file is found.

The syntax of the %CONSOLE, %MANUAL, and %AUTO macros is

%CONSOLE

% MANUAL

%AUTO

There are no parameters associated with any of these macros.

Depending on the action you want the Bootstrap Loader to take, you can include none,
any, or all these macros, and the combination you choose defines the set of actions taken.
Because the %MANUAL macro automatically includes both the %CONSOLE and
%AUTO macros, five functionally-distinct combinations are possible. Each of these
combinations requires that the device list at the end of the BS l.A86 or BS IMB2.A86 file
be set up in a certain way. For more information on the device list, see the discussion of
the %DEVICE macro later in this chapter. The following paragraphs list the possible
macro combinations, the device requirements, and the actions that the Bootstrap Loader
takes when each combination is invoked.

No
%CONSOLE,
% MANUAL,
or%AUTO
macro

%CONSOLE
only

Bootstrap Loader

(Requires that the device list defined with %DEVICE macros have
only one entry.)

• The Bootstrap Loader tries once to load from the active device.

• The Bootstrap Loader tries once to load the file with the default
pathname (the one you define with the %DEFAULTFILE macro).

(Requires that the device list have only one entry.)

o The Bootstrap Loader tries once to load from the device in the device
list.

• The Bootstrap Loader displays an asterisk (*) prompt at the console
terminal and waits for you to enter the pathname of the file to load. It
tries once to load the file you specify.

If you enter a pathname, the Bootstrap Loader loads the file
with that pathname.

3-15

CONFIGURING THE FIRST STAGE

% MANUAL
only

%AUTO
only

%AUTO,
% MANUAL,
and
%CONSOLE

3-16

-- If you enter a CARRIAGE RETURN only, the file with the
default pathname loads.

(Requires a device list with at least one entry.)

• The Bootstrap Loader displays an asterisk (*) prompt for a pathname at
the console terminal.

• The Bootstrap Loader chooses a device depending on your response.

-- If you enter a device name, the Bootstrap Loader loads from
that device. It tries to load until the device becomes ready or
until no more tries are allowed (as limited by the optional
% RETRIES macro).

-- If you enter only a CARRIAGE RETURN, the Bootstrap
Loader looks for a ready device by searching through the list of
devices (in the order the %DEVICE macros are listed in the
BS l.A86 or BS IMB2.A86 file). The search continues until a
ready device is found or until no more tries are allowed (as
limited by the optional %RETRIES macro). If the Bootstrap
Loader finds a ready device, it loads from that device.

• The Bootstrap Loader chooses a file depending on your response.

-- If a pathname is entered, it tries once to load the file with that
pathname.

-- If no file name is entered, it tries once to load the file with the
default pathname.

(Requires a device list with at least one entry.)

• The Bootstrap Loader looks for a ready device by searching through the
list of devices (in the order the %DEVICE macros are listed in the
BS l.A86 or BS IMB2.A86 file). The search continues until a ready
device is found or until no more tries are allowed (as limited by the
optional %RETRIES macro).

• If the Bootstrap Loader finds a ready device, it tries once to load the
file with the default file name.

(Requires a device list with at least one entry.)

• The Bootstrap Loader displays an asterisk (*) prompt for a pathname at
the console.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

• If you respond with a pathname that contains no device name, the
Bootstrap Loader looks for a ready device by searching through the list
of devices (in the order the %DEVICE macros are listed in the
BS1.A86 or BSIMB2.A86 file). The search continues until a ready
device is found or until no more tries are allowed (as limited by the
optional %RETRIES macro).

• If the Bootstrap Loader finds a ready device or you respond with a
pathname containing a device name, the Bootstrap Loader tries once to
load the file you requested.

-- If you entered a pathname is, it tries to load the file with that
pathname.

If you entered only a CARRIAGE RETURN, it tries to load the
file with the default pathname.

Whenever the Bootstrap Loader's asterisk prompt appears, you can include a Debug
Switch along with a device and/or filename specification. Chapter 2 describes the Debug
Switch.

3.2.8 %LOADFILE Macro

The %LOADFILE macro causes the Bootstrap Loader to display the pathname of the file
it loads. If you are loading an iRMX I system, this will be the pathname of the load file. If
you are loading an iRMX II system, the pathname of the Bootstrap Loader's third stage
will be displayed. The macro displays the pathname at the console after loading the second
stage but before loading the load file (or third stage).

If you include the %LOADFILE macro, you must also include either the %CONSOLE or
%MANUAL macros to enable the Bootstrap Loader to access the console.

The syntax of the %LOADFILE macro is

%LOADFILE

There are no parameters associated with this macro.

3.2.9 %DEFAULTFILE Macro

The %DEFAULTFILE macro specifies the complete pathname of the default file. The
default file is the file that the second stage loads whenever no other file is specified.

The syntax of the %DEFAULTFILE macro is

%DEF A UL TFILE('pathname')

Bootstrap Loader 3-17

CONFIGURING THE FIRST STAGE

where:

pathname Hierarchical pathname of the default file, starting at the root directory.
The pathname must be enclosed in single quotes. For example, the
name' /BOOT /RMX286 12' might be used.

If you omit this macro from the BS l.A86 or BS 1MB2.A86 file, the Bootstrap Loader first
stage assumes a NULL pathname. In this case, the second stage assumes the default name
is /SYSTEM/RMX86. The Intel-supplied BS l.A86 and BS 1MB2.A86 files include a
%DEFAULTFILE macro and assign /SYSTEM/RMX86 as the default file.

3.2.10 %RETRIES Macro

The %RETRIES macro, when included with the %AUTO or %MANUAL macros, limits
the number of times that the first stage searches the device list for a ready device.

NOTE

If you omit the %RETRIES macro when including the %AUTO or
%MANUAL macros and no device in the list is ready, then the search for a
ready device continues indefinitely.

The syntax of the %RETRIES macro is

% RETRIES (number)

where:

number Maximum number of times the first stage checks each device for a ready
condition. You can specify any number in the range of 1 through
OFFEH.

3.2.11 %CLEAR SOM EXTENSIONS Macro

The %CLEAR _ SDM _EXTENSIONS macro causes the Bootstrap Loader to clear the
iSDM monitor command extensions (the U, V, and W commands). Once cleared, a
monitor extension, such as the iRMX I or iRMX II System Debugger (SDB) or the System
300 System Confidence Test (SCT), must be reinitialized before you can use it again.

This macro is useful when adding monitor-level debugging command extensions. It
prevents you from inadvertently attempting to invoke a monitor extension that was loaded
in a previous debugging session and overwriting application or Operating System code.

3-18 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The syntax of this macro is

%CLEAR SDM EXTENSIONS - -

The Intel-supplied versions of the BS 1.A86 and BS IMB2.A86 files do not invoke this
macro. This macro must not be invoked if you are configuring a standalone Bootstrap
Loader.

3.2.12 %CICO Macro

The CICO macro specifies that console input and output are to be done by standalone CI
and CO routines; that is, routines that are not part of the monitor. If you include the
CICO macro, you must do some other operations as well, depending on whether the CI
and CO routines you want to use are your own or those supplied by Intel.

If you use the Intel-supplied standalone CI and CO routines:

1. Change the line in the BS1.CSD file (Figure 3-3) that reads

& :fl:bcico.obj, &

to

:fl:bcico.obj, &

2. Include exactly one instance of the %SERIAL CHANNEL macro (described in the
next section) in the BS1.A86 or BSIMB2.A86 file.

If you supply your own standalone CI and CO routines:

1. Change the line in the BS1.CSD file (Figure 3-3) that reads

& :fl:bcico.obj, &

to

:fl:mycico.obj, &

where:

mycico.obj An object file that you supply containing procedures
named CI, CO, and CINIT. CINIT must do
initialization functions required to prepare the console
for input and output operations.

2. Do not include the %SERIAL CHANNEL macro in the BS 1.A86 or BS IMB2.A86
file. -

Bootstrap Loader 3-19

CONFIGURING THE FIRST STAGE

The syntax of the %CICO macro is

%CICO

There are no parameters associated with this macro. The CICO macro is not invoked in
the Intel-supplied BS l.A86 or BS 1MB2.A86 file. This macro must be invoked if you are
configuring a standalone Bootstrap Loader which prompts for the load file pathname.

3.2.13 %SERIAL CHANNEL Macro

The %SERIAL _ CHANNEL macro identifies the type and characteristics of the serial
channel used to communicate with your system console.

You must omit this macro if any of the following conditions are true:

• Your system includes a monitor.

• Your system does not use a terminal during bootstrap loading.

• You supply your own CI and CO routines.

NOTE

You cannot use the %SERIAL CHANNEL macro unless the serial device is
local to the CPU board. Also, the %SERIAL CHANNEL macro does not
support the on-board diagnostic serial port on-the iSBC 386/116/120 board.

You must include this macro if you are configuring a standalone Bootstrap Loader to use
the Intel-supplied CI and CO routines (see the description of the %CICO macro in the
previous section). Here, use the %SERIAL CHANNEL macro to describe the serial
controller device that handles the communication to and from the terminal accessed by the
Bootstrap Loader.

The Bootstrap Loader permits serial communication via an 8251A USART, an 8274 Multi
Protocol Serial Controller, or an 82530 Serial Communications Controller. The Intel
supplied BS l.A86 and BS 1MB2.A86 files list appropriate invocations of the
%SERIAL CHANNEL macro for each of these serial channel controllers. To choose one
of these versions of the macro, replace the semicolon on the appropriate line with a
percent sign. Including more than one %SERIAL _ CHANNEL macro causes an assembly
error in BS l.A86 or BS 1MB2.A86.

3-20 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The syntax of the %SERIAL _ CHANNEL macro is as follows:

% SERIAL_ CHANNEL (serial_type, serial_base yort, serialyort_ delta,
counter_type, counter_base yort, counter yort_ delta,
baud_counter, count, flags)

where:

serial_type

serial_ base yort

serialyort _ delta

Bootstrap Loader

The serial controller device you are using. Valid values
are 8251A, 8274, and 82530.

The 16-bit port address of the base port used by the
serial channel. This port varies according to the type of
serial controller device and, if applicable, the channel
used on the device. To determine the port whose
address you should specify here, look at the left column
of the following list. Pick the item that corresponds to
the serial device on your CPU board and the channel
through which the CPU communicates with your
terminal. Then specify the port address of the
corresponding port listed in the right column. The
hardware reference manual for your CPU board lists the
port addresses for these serial devices.

Serial Channel

8251A
8274 Channel A
8274 Channel B
82530 Channel A

82530 Channel B

Base Port

Data Register Port
Channel A Data Register Port
Channel B Data Register Port
Channel A Command Register
Port
Channel B Command Register
Port

The number of bytes separating consecutive ports used
by the serial device.

The type of device containing the timer your CPU board
uses to generate a baud rate for the serial device defined
by this macro. Valid values are:

8253
80130
82530

8254
80186
NONE

Specifying NONE implies that the baud rate timer is
automatically initialized and the Bootstrap Loader does
not need to do this function.

3-21

CONFIGURING THE FIRST STAGE

counter _base yort

counter yort_ delta

baud counter

count

3-22

The 16-bit port address of the base port used by the
baud rate timer. The port whose address you specify
varies according to the type of timer device and, if
applicable, the channel used on the device. The following
list shows the ports for each of the valid timers. Specify
the address of the port that corresponds to your timer
device. The hardware reference manual for the CPU
board lists the port addresses for these serial devices.

Timer Type

8253
8254
80130
80186
82530 Channel A

82530 Channel B

Base Port

Counter 0 Count Register Port
Counter 0 Count Register Port
ICW1 Register Port
Use OFFOOH for all boards
Channel A Command Register
Port
Channel B Command Register
Port

The number of bytes separating consecutive ports used
by the timer.

The number of the counter that is used for baud-rate
generation. The following list identifies the possible
counter numbers you can specify for each of the timers.

Timer Type

8253
8254
80130
80186
82530

Counter Numbers

0,1, or 2
0,1, or 2
2
o or 1
o

A value that when loaded into the timer register
generates the desired baud rate. The method of
calculating this value follows these parameter
definitions.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

flags Applies only when the serial type parameter is defined
as 82530. For other serial controllers, omit this
parameter.

This parameter specifies which channel of an 82530
Serial Communications Controller will serve as the serial
controller. Valid values are

Value

A
B

Channel

Channel A
Channel B

To derive the correct value for the count parameter, you must do five computations. The
starting values for these computations are the desired baud rate at which you want the
serial port to operate and the clock input frequency to the timer. The clock input
frequency is listed in the data sheet for the timer.

First, do one of the following calculations to obtain a temporary value for use in later
calculations:

If the timer is an 8253, 8254, 80130, or 80186,

temporary_value = (clock frequency in Hz)/(baud rate x 16)

If the timer is an 82530,

temporary_value = ((clock frequency in Hz)/(baud rate x 2)) - 2

Next, do the following calculation to obtain the fractional part of the temporary value
found in the first calculation:

fraction = temporary value - INT(temporary value) - -
The INT function gives the integer portion of temporary_value.

The third and fourth calculations yield the desired count value and another value, called
error fraction. The error fraction value determines if the calculated count value is
acceptable, given the clock frequency specified in the first calculation. These calculations,
performed according to the size of the value of "fraction" from the second calculation, are
as follows:

If the value of "fraction" is greater than or equal to .5,

count = INT (temporary value) + 1
error fraction = 1 - fraction

Bootstrap Loader 3-23

CONFIGURING THE FIRST STAGE

If the value of "fraction" is less than .5,

count = INT (temporary value)
error fraction = fraction

The fifth and final calculation yields the percentage of error that occurs when the clock
frequency is used to generate the baud rate, as follows:

% error = (error_fraction / count) x 100

If the % error value is less than 3, then the calculated count value is appropriate, and the
desired baud rate will be generated by the specified clock frequency. However, if the %
error value is 3 or greater, you must do one or both of the following:

• Provide a higher clock frequency

• Select a lower baud rate

After choosing one or both of these options, go through the series of computations again to
get a new "count" value and to see whether the revised value of "% error" is less than 3.
Continue this process until the "% error" value is less than 3.

The %SERIAL CHANNEL macro can generate the following error messages:

ERROR - invalid port delta for the (ser_type) Serial Device
ERROR - <ser_type> is an invalid Serial Channel type
ERROR - Invalid port delta for the Baud Rate Timer
ERROR - 8253/4 Baud Rate Counter is not 0, 1 or 2
ERROR - Counter 2 is the only valid 80130 Baud Rate Counter
ERROR - 80186 counter counter_type is not a valid Baud Rate Counter
ERROR - <counter type> is an invalid Baud Rate Timer type
ERROR - Counter 0 is the only valid 82530 Baud Rate Counter
ERROR - 82530 channel must be specified as A or B only
ERROR - Max Baud Rate Count must be greater than 1

3.2.14 %DEVICE Macro

The %DEVICE macro defines a device unit from which your application system can be
bootstrap loaded. If the BS l.A86 or BS IMB2.A86 file contains multiple %D EVICE
macros, their order in the file is the order in which the first stage searches for a ready
device unit.

All %DEVICE macros that select device units on the same controller must be listed
consecutively in BS1.A86 or BSIMB2.A86, or assembly errors will occur. Recall that
multiple %DEVICE macros may be included only if the %AUTO or %MANUAL macro
is included (otherwise, an error occurs during the assembly of BS1.A86 or BSIMB2.A86).

3-24 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The syntax of the %DEVICE macro is

%DEVICE(name, unit, device$init, device$read, unit_info)

where:

name The physical name of the device, not enclosed in quotes or between
colons. Enter this name to specify this device when invoking the
Bootstrap Loader from the keyboard. (However, when invoking the
Bootstrap Loader, you would surround this name with colons.)

After the Bootstrap Loader loads from a device, it passes the physical
name of the device, as listed here, to the load file. To enable the
Operating System's Automatic Boot Device Recognition capability (see
Appendix A) to function, this physical name must match a device-unit
name for the device as specified during the configuration of the
Operating System. Refer to the iRMX® I or the iRMX® II Interactive
Configuration Utility Reference Manual for more information about
configuring the Operating Systems.

unit The number of this unit on this device. Unit numbering is the same as
that used for devices by the Basic I/O System. Refer to the
iRMX® Device Driver User's Guide for more information about unit
numbering.

device$init The name of the device initialization procedure that is part of the first
stage device driver for this device-unit. Before attempting to read from
the device-unit, the Bootstrap Loader calls this procedure to do
initialization functions. If the device-unit has an Intel-supplied device
driver, specify the name of the device initialization procedure as listed
in Table 3-1. If you supply your own driver (written as described in
Chapter 5), enter the name of the initialization procedure.

device$read The name of the device read procedure that is part of the first stage
device driver for this device-unit. To read from this device-unit, the
first and second stages of the Bootstrap Loader call this procedure. If
your Bootstrap Loader uses a generic third stage, it too uses this device
read procedure to read from the device unit. If the device-unit has an
Intel-supplied device driver, specify the name of the device read
procedure as listed in Table 3-1. If you supply your own driver (written
as described in Chapter 5), enter the name of the device read
procedure.

Bootstrap Loader 3-25

CONFIGURING THE FIRST STAGE

unit info An ASM86 label that marks the location of an array of BYTEs
containing specific device-unit information required by the mass storage
device defined by this invocation of the %DEVICE macro.

This parameter is used only by the SCSI device driver. If you include it
for any other device, the Bootstrap Loader will fail to load your
application from that device. Refer to the "First Stage Device Driver
Files" section of this chapter, under the descriptions of the %SCSI and
%SASI UNIT INFO macros for information about how and when to
specify this unit information and for examples of its use.

Table 3-1 lists the names of the device initialization and device read procedures for Intel
supplied first stage device drivers.

Table 3-1. Procedure Names for Intel-Supplied First Stage Drivers

Device Initialize Device Read
Device Driver Procedure Procedure

iSBC 208 Specific Driver deviceinit208 deviceread208
iSBC 208 General Driver deviceinit208gen deviceread208gen
MSC Specific Driver· deviceinitmsc devicereadmsc
MSC General Driver· deviceinitmscgen devicereadmscgen
SCSI Driver deviceinitscsi devicereadscsi
iSBX 218A Driver deviceinit218A deviceread218A
iSBC 224A Driver deviceinit224A deviceread224A
iSBC 251 Driver deviceinit251 deviceread251
iSBC 254 Driver deviceinit254 deviceread254
iSBC 264 Driver deviceinit264 deviceread264
iSBC 552A Driver·· deviceinit552A deviceread552A

* The MSC drivers support the iSBC 214, iSBC 215G, iSBC 220 and iSBC 221 controllers, and the
iSBX 218A controller mounted on the iSBC 215G board. The drivers must be reconfigured to support
the iSBC 220 controller.

** The iSBC 552 board cannot be used in either the remote boot consumer system or the remote boot
server system: you must use the newer iSBC 552A board for any facet of remote booting on Multibus I.

Table 3-1 lists both specific and general procedures for the iSBC 208 and MSC devices.
Configurations of the Bootstrap Loader that use the general version of either driver will be
larger.

One difference between the two versions of these device drivers is that the general versions
will bootstrap load applications from any of the standard types of diskettes as defined in
the Installation Systems. The specific versions will bootstrap load applications only from
specific types of diskettes listed in Tables 3-2 and 3-3. These tables apply to the specific
versions of both the iSBC 208 and MSC device drivers.

3-26 Bootstrap Loader

CONFIGURING THE FIRST STAGE

Table 3-2. 5.25-Inch Diskettes Supported by iSBC@208 and MSC-Specific Drivers

Sector Size Density Sectors per Track

256 Single 9
256 Double 16

NOTE: The diskettes can be formatted with either 48 tracks per inch or 96 tracks per inch, and
can be either single- or double-sided.

Table 3-3. 8-Inch Diskettes Supported by iSBC@ 208 and MSC-Specific Drivers

Sector Size Density Sectors per Track

128 Single 26
256 Double 26

NOTE: The diskettes may be either single- or double-sided.

The Intel-supplied BS1.A86 and BSIMB2.A86 configuration files include %DEVICE
macros for all the supported devices, and include mUltiple instances of some of the macros
to indicate multiple units on the same device. It doesn't hurt to include support for all of
these devices, even if your application system won't contain all of them. If you add a new
device later, you'll be able to boot from the device without generating new boot PROM
devices. However, you can reduce the size of your Bootstrap Loader by excluding support
for devices that you never intend to use. Release 3.2 of the iSDM monitor provides space
from OFE400H to OFFF7FH for use by the Bootstrap Loader. This requires you choose
only the devices you need when you reconfigure the Bootstrap Loader so it will fit into the
space allocated by the iSDM monitor. If the Bootstrap Loader does not fit into the space
allocated by the monitor, you must locate it below the monitor.

To exclude a device driver from the Bootstrap Loader,

1. Exclude all the %DEVICE macros in BS1.A86 or BSIMB2.A86 that apply to
device units on that controller. To do this, edit BS1.A86 or BSIMB2.A86 and
replace the percent sign (%) in front of the macro with a semicolon (;). The
edited version of such a macro would look similar to:

;device(baO, 0, deviceinit264, deviceread264)

The semicolon replacing the percent sign turns the %DEVICE macro for the
iSBC 264 driver (in this case) into a comment.

2. Edit the file BS 1.CSD as described later in this chapter.

Bootstrap Loader 3-27

CONFIGURING THE FIRST STAGE

3.2.15 %END Macro

The %END macro is required at the end of the BS l.A86 or BS IMB2.A86 file. The syntax
of this macro is

%END

There are no parameters associated with the %END macro.

3-28 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.3 BSERR.A86 CONFIGURATION FILE

The BSERR.A86 file, shown in Figure 3-3, defines what the first stage of the Bootstrap
Loader does if it cannot load the load file.

$include(:fl:hserr.inc)

; console
; text
%list

; again
; intI
%int3
;halt

%end

Figure 3-3. First Stage Configuration File BSERR.A86

The BSERR.A86 file consists of an INCLUDE statement and several macros. The
BSERR.INC file in the INCLUDE statement contains the definitions of the macros in the
BSERR.A86 file.

The following sections describe the functions of the macros in the BSERR.A86 file. For
each macro, if a percent sign (%) precedes the name, then the macro is included (invoked).
If a semicolon (;) replaces the percent sign, then the macro is treated as a comment and is
not included.

The first three macros, %CONSOLE, %TEXT, and %LIST, determine what the Bootstrap
Loader displays at the console whenever a bootstrap loading error occurs. The other four
macros, %AGAIN, %INTl, %INTI, and %HALT, determine what recovery steps, if any,
the Bootstrap Loader takes whenever a bootstrap loading error occurs. Only one of the
latter four macros can be included in the BSERR.A86 file.

Bootstrap Loader 3-29

CONFIGURING THE FIRST STAGE

3.3.1 %CONSOLE Macro

The %CONSOLE macro causes the Bootstrap Loader to display a brief message at the
console whenever a bootstrap loading error occurs. The message indicates the nature of
the error (see Chapter 7 for the message list).

The syntax of the %CONSOLE macro is

% CONSOLE

There are no parameters associated with this macro.

This %CONSOLE macro is completely unrelated to the %CONSOLE macro used in the
BS l.A86 or BS IMB2.A86 file. Be careful not to confuse them.

3.3.2 % TEXT Macro

The %TEXT macro is similar to the %CONSOLE macro in that it causes the Bootstrap
Loader to display a message at the console whenever a bootstrap loading error occurs. The
advantage of the %TEXT macro is that its messages are longer and more descriptive. The
disadvantage of the % TEXT macro is that it generates more code and makes the first stage
of the Bootstrap Loader larger.

The syntax of the % TEXT macro is

%TEXT

There are no parameters associated with this macro. If you include the % TEXT macro,
the %CONSOLE macro is included automatically.

3.3.3 %LIST Macro

The %LIST macro causes the Bootstrap Loader to display a list of the included device
units at the console whenever you enter an invalid device-unit name. You can include this
macro only if you include the %MANUAL macro in the BS1.A86 or BSIMB2.A86 file, as
described earlier in this chapter.

The syntax of the %LIST macro is

%LIST

There are no parameters associated with this macro. If you include the %LIST macro, the
%CONSOLE and %TEXT macros are automatically included.

3-30 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.3.4 %AGAIN Macro

The %AGAIN macro causes the bootstrap loading sequence to return to the beginning of
the first stage whenever a bootstrap loading error occurs. You should include this macro if
you include the %CONSOLE macro in the BSERR.A86 file, either directly or by including
the %TEXT or %LIST macro.

The syntax of the %AGAIN macro is

%AGAIN

Exactly one of the %AGAIN, %INT1, %INTI, and %HALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

3.3.5 %INT1 Macro

The %INTl macro causes the Bootstrap Loader to execute an INT 1 (software interrupt)
instruction whenever a bootstrap loading error occurs. This macro useful for passing
control to the D-MON386 monitor. The iSDM monitor does not support this macro.

The syntax of the %INTl macro is

%INTl

There are no parameters associated with this macro.

Exactly one of the %AGAIN, %INT1, %INTI, and %HALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

3.3.6 %INT3 Macro

The %INTI macro causes the Bootstrap Loader to execute an INT 3 (software interrupt)
instruction whenever a bootstrap loading error occurs. If you are using the iSDM monitor,
the INT 3 instruction passes control to the monitor. Otherwise, the INT 3 instruction has
no effect unless you have placed the address of your custom interrupt handler in position 3
of the interrupt vector table.

The syntax of the %INTI macro is

% INTI

There are no parameters associated with this macro.

Exactly one of the %AGAIN, %INT1, %INTI, and %HALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

Bootstrap Loader 3-31

CONFIGURING THE FIRST STAGE

3.3.7 %HALT Macro

The %HAL T macro causes the Bootstrap Loader to execute a halt instruction whenever a
bootstrap loading error occurs.

The syntax of the %HAL T macro is

%HALT

There are no parameters associated with this macro.

Exactly one of the %AGAIN, %INT1, %INTI, and %HALT macros must be included, or
an error will occur when BSERR.A86 is assembled.

The %HALT macro, and the %INTl and %INTI macros, are reasonable choices if none
of the %CONSOLE, %TEXT, or %LIST macros are included in the BSERR.A86 file.

3.3.8 %END Macro

The %END macro is required at the end of the BSERR.A86 file.

The syntax of this macro is

% END

There are no parameters associated with the %END macro.

3-32 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.4 DEVICE DRIVER CONFIGURATION FILES

A separate configuration file is included for each device driver provided with the Bootstrap
Loader. These files are named B208.A86, BMSC.A86, B218A.A86, B224A.A86, B251.A86,
B254.A86, B264.A86, B552A.A86, and BSCSI.A86. Each consists of an include statement
and a macro call. The source file always has the form

$include(:fl: bxxx.inc)

%bxxx(parameters)

where:

xxx Either 208, MSC, 218A, 224A, 251, 254, 264, 552A or SCSI, depending
on the device driver.

The number and type of parameters that are included with each macro depend on the
device driver. The parameters for each macro are discussed in the following sections.
Additionally, when a SASI controller board is used with the SCSI device driver, it requires
another macro. Refer to the "%BSCSI Macro" and "%SASI UNIT INFO Macro" sections
for details and for invocation examples. The default parameter vahles for the macros in
these sections are compatible with the default parameter values of the iRMX Start-up
Systems.

You should examine one of these files for each type of device you want the first stage of
the Bootstrap Loader to support. Usually, you can use the Intel-supplied files. The
following sections describe the individual macros so you can make changes to them, if
necessary.

3.4.1 %8208 Macro

The %B208 macro is used to configure the Bootstrap Loader driver for the iSBC 208
controller board.

The %B208 macro has the form

%B208(io _base)

where:

io base I/O port address selected Gumpered) on the iSBC 208 controller board.

The default invocation of this macro in the B208.A86 file is

%B208(180H)

Bootstrap Loader 3-33

CONFIGURING THE FIRST STAGE

3.4.2 %BMSC and %B220 Macros

The %BMSC and %B220 macros are used to configure the Bootstrap Loader driver for
the iSBC 214, iSBC 215G, iSBC 220 and iSBC 221 controller boards.

The BMSC.A86 file contains two macros, %BMSC and %B220. However, you can use
only one. If you have one of the drivers listed in the Note at the bottom of Table 3-1, you
should use the %BMSC macro. If you have the iSBC 220, you should use the %B220
macro. Both macros have the form

%Bxxx (wakeup, cylinders, fixed_heads, removable_heads, sectors,
dev _gran, alternates)

where:

3-34

xxx Either MSC or 220.

wakeup Base address of the controller's wakeup port.

The remaining parameters are used to specify the characteristics of the disk drives. If
the %DEVICE macro you used for MSC or iSBC 220 devices in the BS l.A86 or
BSIMB2.A86 file has deviceinitmsc (rather than deviceinitmscgen) as its third
parameter, then all MSC or iSBC 220 drives used by the Bootstrap Loader must have
the characteristics listed in the following parameters. That is, they must have the same
number of cylinders per platter, fixed heads, removable heads, sectors per track, bytes
per sector, and alternate cylinders. However, if the %DEVICE macro specifies
deviceinitmscgen,these restrictions do not apply and the following parameters are not
used by the Bootstrap Loader.

cylinders

fixed heads

removable heads

sectors

alternates

Number of cylinders on the disk drive or drives.

Number of heads on fixed platters.

Number of heads on removable platters.

Number of sectors per track.

Number of bytes per sector.

Number of cylinders set aside as backups for cylinders
having imperfections.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

In the BMSC.A86 file, the default invocation of the %BMSC macro is

%BMSC(100H, 256, 2, 0, 9, 1024, 5)

and the default form of the uninvoked %B220 macro is

;B220(100H, 256, 2, 0, 9, 1024,5)

3.4.3 %B218A Macro

The %B218A macro is used to configure the Bootstrap Loader driver for the iSBX 218A
controller board.

The %B218A macro has the form

%B218A(base yort_ address, motor_flag)

where:

base yort _ address The base port address of this device unit, as selected on
the iSBX 218A controller board.

A value indicating whether the motor of a 5 1/4" flexible
diskette drive should be turned off after bootstrap
loading. Valid values are:

Value

OFFH

OOH

Description

The drive will be turned off after
bootstrap loading. Specify this value only
if this device is not to become the system
device. Turning off the drive slows slows
bootstrap loading.

The drive will not be turned off after
bootstrap loading.

The default invocation of this macro in the B218A.A86 file is

%B218A(80H, DOH)

This allows you to mount the iSBX 218A module in the SBX 1 socket of your CPU board.

Bootstrap Loader 3-35

CONFIGURING THE FIRST STAGE

3.4.4 %B224A Macro

The %B224A macro is used to configure the Bootstrap Loader driver for the
iSBC 186/224A controller board.

The %B224A macro has the form

%B224A (instance, board _id, cylinders, heads, sectors, device_gran,
slip$sectors, %(reserved))

where:

instance

board id

A value indicating which iSBC 186/224A controller the driver should
use if the system contains mUltiple iSBC 186/224A boards. During
initialization the driver calculates the instance by scanning the
MULTIBUS II slots in ascending order and sequentially assigning
numbers to each iSBC 186/224A controller found. For example, 1 is
assigned to the iSBC 186/224A board in the lowest-numbered slot, and
2 to the iSBC 186/224A in the next-lowest-numbered slot. This method
of identifying the board provides slot independence.

A ten-byte string identifying the board. The board-id is found in
registers 2-11 of the header record in the interconnect space. For the
iSBC 186/224A controller board, the board _id is ASCII 186/224A
followed by two ASCII NULL (0) characters. Enter it in the
B224A.A86 file using the following form:

186/224AXX

where 'XX' are ASCII NULL (0) characters.

The following parameters are used for initializing Winchester disk drives but not floppy
disk drives:

3-36

cylinders

heads

sectors

device _gran

slip$sectors

A word specifying the number of cylinders on the disk.

A byte specifying the number of fixed data heads on Winchester disk
drives.

A byte specifying the number of sectors per track.

A word specifying the number of bytes per sector for the device.

A byte specifying the number of sectors per track to be used as alternate
sectors when bad sectors are found during formatting. This feature is
enabled only when the sector-slipping option is used. At present,
sector-slipping is unsupported; therefore, set this value to zero.

Bootstrap Loader

CONFIGURING THE FIRST STAGE

reserved This parameter is reserved for future use. It consists of 10 one-byte
values, separated by commas. The driver uses these bytes as the last ten
bytes of the parameter buffer it uses to initialize the drive. For
example, the iSBC 186/224A expects these ten bytes to be zero. This
parameter may be specified as either

~(O,O,O,O,O,O,O,O,O,O)

or

~(10 dup(O))

The iSBC 186/224A device driver sends an initialize command to the iSBC 186/224A
controller, which uses the preceding values to initialize the Winchester disk drive. Then
the volume label is read. If the volume label has valid device characteristics, the drive is
reinitialized with those characteristics.

Intel assumes the floppy disks are in standard format: track 0 formatted as 128
bytes/sector, 16 sectors/track. The disk characteristics are read from the volume label and
the drive is reinitialized with those characteristics.

The default invocation of this macro in the B224A.A86 file is

~B224A (,186/224A??', 132H, 4, 9, 1024, 0, ~(10 dup (0)))

Note, the characters '??' represent two ASCII NULL characters entered using AEDIT. To
input an ASCII NULL character, invoke AEDIT, position the cursor on top of the second
single quote mark, press the key 'H' for hex input, press the key'!' for input, press the key
'0' for the value. After inserting one ASCII NULL character, enter a second one.

3.4.5 %8251 Macro

The ~B251 macro is used to configure the Bootstrap Loader driver for the iSBX 251
controller board.

~B251 (io base, dev gran) - -

where:

io base

dev_gran

I/O port address selected Gumpered) on the iSBX 251 controller board.

Page size, in bytes.

The default invocation of this macro in the B251.A86 file is

~B251 (80H, 64)

Bootstrap Loader 3-37

CONFIGURING THE FIRST STAGE

3.4.6 %8254 Macro

The %B254 macro is used to configure the Bootstrap Loader driver for the iSBC 254
controller board.

The %B254 macro has the form

%B254 (io base, dev gran, num boards, board size) - - - -
where:

io base I/O port address selected Gumpered) on the iSBC 254 controller board.

Page size, in bytes.

num boards Number of boards grouped in a single device unit.

board size Number of pages in one iSBC 254 board.

The default invocation of this macro in the B254.A86 file is

%B254 (0880H, 256, 8, 2048)

3.4.7 %8264 Macro

The %B264 macro is used to configure the Bootstrap Loader driver for the iSBC 264
controller board.

%B264 (io base, dev gran, num boards, board size) - - - -
where:

io base I/O port address selected Gumpered) on the iSBC 264 controller board.

dev _gran Page size, in bytes.

num boards Number of boards grouped in a single device unit.

board size Number of pages in one iSBC 264 board.

The default invocation of this macro in the B254.A86 file is

%B264 (0880H, 256, 4, 8192)

3-38 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.4.8 %B552A Macro

The B552A macro is used to configure the Bootstrap Loader driver for the iSBC 552A
controller board.

The B552A macro has the form

%B552A (boot_ addr _list_count, boot_ addr _list, bootyort_list_ count,
bootyort_list, indirect_address _ cs, def_ class_code)

where:

boot addr list count - --

boot addr list - -

indirect address cs - -

Bootstrap Loader

The number of entries in the list for the different
possible iSBC 552A memory addresses given in the
boot addr list. For a particular version of the iSBC
552A firmware only one of these addresses will be valid
and only one is required.

The list of addresses for each entry delimited by a
comma. Each entry is a word. The iSBC 552A
controller in Intel System 300 Microcomputers uses
address 1040H. (The default value of 104H represents
absolute address 1040H.)

The number of entries in the list for the different
possible iSBC 552A I/O ports given in the bootyort_list
field. For a particular version of the iSBC 552A
firmware only one of these addresses will be valid and
only one is required.

The list of addresses for each entry delimited by a
comma. Each entry is a word. The iSBC 552A
controller in Intel System 300 Microcomputers uses port
address BB4H. Old versions of the Intel
Microcomputers used port address BA4H so both are
included in the list.

The iSBC 552A bootstrap driver will check each of the
combinations of the "port" (bootyort_list) and "address"
(boot addr list) to determine if the iSBC 552A is
present. This allows one set of PROMs to be placed on
CPU boards which can be used in systems where the
configuration of the iSBC 552A changes.

The base portion of the Real mode address which is used
to pass control to the third stage. This is necessary since
the first stage does not know where the third stage will
be located when the first stage is configured. (The
default value 106H represents absolute address 1060H.)

3-39

CONFIGURING THE FIRST STAGE

def class code - - The default remote class code assumed for auto booting.
(04000H is the default class code for iRMX II.)

The default invocation of this macro in the B552A.A86 file is

%B552A (1, 104H, 2, 8B4H, 8A4H, 106H, 4000H)

3.4.9 %BSCSI Macro

This macro allows you to specify the details of a SCSI host board, such as the
iSBC 186/03A, or iSBC 286/100A board, when an 8255A Programmable Peripheral
Interface component is used to implement the host interface.

The %BSCSI macro has the form

%BSCSI (a yort, b yort, c yort, controlyort, reserved, reserved,
dma _controller, dma _channel, dma _base_address, dma _separation,
scsi info, info)

The END command at the end of this file is an ASM86 statement and it does not require a
%.

where:

3-40

ayort

byort

cyort

controlyort

reserved

reserved

dma controller

The WORD address of Port A of the 8255
Programmable Peripheral Interface (PPI) used by this
SCSI driver.

The WORD address of Port B of the 8255 PPI used by
this SCSI driver.

The WORD address of Port C of the 8255 PPI used by
this SCSI driver.

The WORD address of the control word register of the
8255 PPI used by this SCSI driver.

Reserved for future use. Set it to zero.

Reserved for future use. Set it to zero.

The type of DMA controller used. Possible values are

Value

01
02

Controller Type

80186 DMA controller
82258 Advanced DMA controller

Other values are reserved for future use.

Bootstrap Loader

dma channel

dma base address - -

dma _separation

scsi info

info

CONFIGURING THE FIRST STAGE

A BYTE that indicates which channel on the DMA
controller will be used. Specify the number of the DMA
channel as listed in the appropriate Intel data sheet.

A WORD that indicates the base I/O port address of
the DMA controller's registers.

A BYTE that indicates the number of bytes separating
consecutive ports on the DMA controller.

This parameter is iSBC-board-specific; it does not
depend on the SCSI driver's requirements. This
parameter is a BYTE which has the following meaning:

Value

o

1

2-255

Meaning

Indicates that no additional
information is needed to
configure the Bootstrap Loader
for the iSBC board you are using.

Indicates this configuration of the
Bootstrap Loader is used on the
iSBC 286/1 OOA board.

Reserved for future use.

Varies depending on the value of scsi_info.

If scsi_info is 0, then no other information is needed and
info is left blank.

If scsi info is 1, then info is a single WORD that
specifies the port address of the iSBC 286/100A port
used for multiplexing DMA sources into the on-board
82258 DMA component.

The SCSI driver can be used to bootstrap load from any random-access device on the SCSI
bus. The SCSI driver can also be used to bootstrap load from specific random-access
devices on the SASI bus. When using the SASI bus, you must select a specific device,
because the SASI devices require unique initialization information. Do this by specifying
unique unit information for each device on the SASI bus (the %SASI_ UNIT_INFO macro
is used for this purpose).

The %BSCSI macro can be invoked only once in the BSCSI.A86 configuration file. The
%SASI _ UNIT _INFO macro (described in the next section) can be invoked multiple times
to allow specification of the units on the SASI bus. Refer to the description of the
%SASI _ UNIT _INFO macro to see how to specify unique unit information for devices on
the SASI bus.

Bootstrap Loader 3-41

CONFIGURING THE FIRST STAGE

In the BSCSI.A86 file, the default versions of the %BSCSI macro are

BSCSI(OC8H, OCAR, OCCH, OCEH, 0, 0, 2, 0, 0200H, 2,1, OD1H)

;%BSCSI(OC8H, OCAH, OCCH, OCEH, 0, 0, 1, 0, OFFCOH, 2, 0)

The SCSI host board interface defined by the first instance (which is invoked) is the
iSBC 186/03A board and uses the 80186 DMA controller.

The SCSI host board interface defined by the second instance (which is not invoked) is the
iSBC 286/100A MULTIBUS II board and uses the on-board 82258 Advanced DMA
controller. If you want to invoke this board, replace the ";" with a "%", and replace the "%"
with a ";" to comment out the interface defined by the first instance (iSBC 186/03A board
using the 80186 DMA controller).

An important feature to note about devices that use an SCSI controller is the configuration
information is device-independent. That is, only the host board interface to the controller
needs to be specified in the configuration file. The configuration values contain no
information about the actual device(s) in use.

3.4.10 %SASI UNIT INFO Macro

The SCSI device driver provides an interface to mass storage devices through either SASI
or SCSI controllers. If using devices controlled by a SASI controller, you must specify a
sequence of initialization bytes for the controller. This information is not required by SCSI
controllers. The initialization sequence identifies the type of device you have assigned to
the particular unit of the SASI controller. The sequence will be different depending on the
manufacturer and model of the hard disk or flexible diskette drive, and the manufacturer
and model of the SASI controller board itself.

This macro enables you to define the initialization sequences required by your devices on
the SASI bus. For each instance of the %DEVICE macro (in the BS l.A86 or
BS 1MB2.A86 file) that defines a device on the SASI bus, you must also include the
%SASI_ UNIT _INFO macro (in the %BSCSI.A86 file) to define that device's initialization
sequence. The label specified for the unit info field of the %DEVICE macro must match
the label field of the corresponding %SASI _ UNIT _INFO field.

The information supplied by an occurrence of the %SASI UNIT INFO macro is not used
by devices on the SCSI bus. Therefore in the BS1.A86 or BS1MB2.A86 file, %DEVICE
macros for devices controlled by the SCSI bus should never specify a value for the unit info
parameter. There is only one pair of device initialization/device read procedures for the
SCSI driver regardless of whether the controller is SCSI or SASI.

3-42 Bootstrap Loader

CONFIGURING THE FIRST STAGE

The %SASI UNIT INFO macro can be included only in the SCSI/SASI driver
configuration file, BSCSI.A86. The macro has the form

%SASI UNIT INFO (label, init command, init count, init data) - - - - -
where:

label A valid ASM86 label name matching the one you
specified in the unit info field of the %DEVICE macro
for your device (in the file BS1.A86 or BSIMB2.A86).

init command A WORD that is the initialization command for your
particular SASI controller.

init count A BYTE specifying the number of initialization BYTEs
that your SASI controller requires.

init data The array of BYTEs of initialization data required by
your SASI controller. The length of this array must be
equal to the value in the init count parameter.

The default invocations of this macro in BSCSI.A86 are

iSBC 186/03A SCSI Host
%bscsi(OC8H, ° CAR , OCCH, OCEH, 0, 0, 1, 0, OFFCOH, 2, 0)

iSBC 286/100A SCSI Host
;bscsi(OC8H, o CAR , OCCH, OCEH, 0, 0, 2, 0, 0200H, 2, 1, OD1H)

Xebec S1420 SASI controller and a Teac model F55B, 5 1/4-inch
flexible diskette drive.

%sasi_unit_info(sasi_x1420mf, 11h,10,O,28h,2,90h,3,Ofh,SOh,Ofh,014h,O)

Xebec S1410 SASI controller and a Quantum model Q540, 5 1/4-inch
Winchester disk drive.

%sasi_unit_info(sasi_x1410b, Och, 8, 2, 0, 8, 2, 0, 0, 0, Obh)

Xebec S1410 SASI controller and a Computer Memories, Inc.
model CMI-5619 5 1/4-inch Winchester disk drive.

%sasi_unit_info(sasi_x1410a, Och, 8, 1, 32h, 6, 0, Ob4h, 0, 0, Obh)

Bootstrap Loader 3-43

CONFIGURING THE FIRST STAGE

3.4.11 User-Supplied Drivers

If you want to bootstrap load your system from a device other than one for which Intel
supplies a first stage device driver, you must write your own device initialization and device
read device driver procedures that the first stage will call. Chapter 5 describes how to do
this. In addition, take the following actions to add the procedures to the Bootstrap Loader:

• Specify the names of the device initialization and device read procedures in a
%DEVICE macro in the BS1.A86 or BSIMB2.A86 file.

• If there are configurable parameters associated with your device (such as base
addresses or wakeup ports), you might want to create your own configuration macro
and include it in a special configuration file, just like the Intel devices do. Chapter 5
describes how to set up such a macro.

• Assemble your device initialization procedure, your device read procedure, and your
configuration file (if you have one), and link the resulting object code to the rest of the
Bootstrap Loader object files and libraries.

3-44 Bootstrap Loader

CONFIGURING THE FIRST STAGE

3.5 GENERATING THE FIRST STAGE

The submit file BS 1.CSD does the assembly, linkage, and location of the first stage of the
Bootstrap Loader. Often you will need to modify it to generate the particular
configuration of the Bootstrap Loader you specified in BS1.A86 or BSIMB2.A86. Figure
3-4 shows commands in the Intel-supplied BS l.CSD file.

attachfile fbsl as :fl:

asm86 %2.a86 macro(lOO) object(%2.obj) print(%2.1st)
asm86 bserr.a86 macro(50) object(bserr.obj) print(bserr.lst)

asm86 b208.a86 macro(50) object(b208.obj) print(b208.1st)
asm86 bmsc.a86 macro(50) object(bmsc.obj) print(bmsc.lst)
asm86 b218a.a86 macro(50) object(b218a.obj) print(b218a.lst)
asm86 b251.a86 macro(50) object(b251.obj) print(b251.1st)
asm86 b254.a86 macro(50) object(b254.obj) print(b254.1st)
asm86 b264.a86 macro(50) object(b264.obj) print(b264.1st)
asm86 552A.a86 macro(50) object(552a.obj) print(552a.lst)
asm86 bscsi.a86 macro(50) object(bscsi.obj) print(bscsi.lst)

Figure 3-4. First Stage Configuration File BSl.CSD

Bootstrap Loader 3-45

CONFIGURING THE FIRST STAGE

3-46

Mu1tibus II configuration

;asm86 b224a.a86 macro(50) object(b224a.obj) print(b224a.1st)

1ink86
&
&

&
%2.obj,
bserr.obj,
bcico.obj,
b208.obj,
bmsc.obj,
b218a.obj,
b251.obj,
b254.obj,
b264.obj,
b224a.obj,
bscsi.obj,

& ;for standalone serial channel support
&

:f1:bs1.1ib
to %2.1nk print(%2.mp1) &
&nopub1ics except(firststage,

&
&
&
&
&
&
&
&

& firststage_186,
&

&
&

&
&
&
&

Remove the '&' from the beginning of the previous line if the
iAPX 186 IN!T macro is invoked in the configuration file.

bootstrap_entry)

loc86 %2.1nk &

&

&

addresses(c1asses(code(O%O),stack(O%1») &
order(c1asses(stack,data,boot,code,code_error» &

noinitcode
start(firststage)

&
&

& Change the previous line to 'start(firststage_186)' if the
& iAPX 186 IN!T macro is invoked in the configuration file.
&

segsize(boot(1800H» &

Figure 3-4. First Stage Configuration File BSl.CSD (continued)

Bootstrap Loader

(
I,

CONFIGURING THE FIRST STAGE

map print(%2.mp2)
;bootstrap

&

Remove the';' from the line' ;bootstrap' when generating a
a standalone Bootstrap Loader in PROM for all configurations
except those for 386-based CPU boards.

;*-*
Bootstrap Loader first stage generation complete.

;*-*

Figure 3-4. First Stage Configuration File BSl.CSD (continued)

3.5.1 Modifying the BS1.CSD Submit File

To generate your own version of the Bootstrap Loader first stage

1. Obtain a local copy of the configuration files as described at the beginning of this
chapter.

2. Make any changes you might need to the local version of those files.

First, if you have excluded any device drivers from the Bootstrap Loader (by excluding
%DEVICE macros from the BS1.A86 or BSIMB2.A86 file), you won't want to link the
code for those drivers into the the first stage. To prevent the linking of a device driver, edit
the LINK86 command in the BS 1.CSD file and place an ampersand (&) in front of any file
name that corresponds to a driver you want to exclude. Figure 3-5 is an example that
shows a portion of the BS1.CSD file after excluding the iSBC 208, iSBX 218A, iSBX 251,
iSBC 254, iSBC 186/224A, iSBC 552A, and SCSI device drivers.

Bootstrap Loader 3-47

CONFIGURING THE FIRST STAGE

1ink86
%2.obj,
bserr.obj,

& :f1:bcico.obj,
& b208.obj,

bmsc.obj,
& b218a.obj,
& b251.obj,
& b254.obj,

b264.obj,
& b224a.obj
& b552a.obj,
& bscsi.obj,

:f1:bs1.1ib
to %2.1nk print(:f1:%2.mp1) &
&nopub1ics except(firststage,

&
&

&

& ;for standalone serial channel support
&
&
&
&
&
&
&

&
&

&

& firststage_186,
&

&
&
&
&
&

Remove the '&' from the beginning of the previous line if the
iAPX 186 INIT macro is invoked in the configuration file.

Figure 3-5. Excluding all except M~C and 264 Drivers

NOTE

If you exclude a device driver, do NOT include any %DEVICE macros for it in
the BS1.A86 or BSIMB2.A86 configuration file or errors from LINK86 will
occur.

3.5.2 Invoking the BS1.CSD Submit File

After you have obtained a local copy of the configuration files and have modified the
BS 1.CSD file to correspond to your configuration:

1. Invoke the submit file to assemble the Bootstrap Loader files.

2. Link them together.

3. Assign absolute addresses.

3-48 Bootstrap Loader

(
\

CONFIGURING THE FIRST STAGE

The format for invoking the submit file is as follows:

where:

first_stage _ address

second stage address - -

The starting address of the first stage of the Bootstrap
Loader. This can be a RAM address if you intend to run
the Bootstrap Loader from RAM, or it can be a PROM
devices address if you intend to place the Bootstrap
Loader into PROM devices. The address you specify
should be a full 20-bit address. Do not use the
base:offset form to indicate the address. The iSDM
Release 3.2 monitor allocates the address range from
OFE400H to OFFF7FH to the Bootstrap Loader. If your
configuration of the Bootstrap Loader will not fit in this
space, locate it at a lower address than FF8000H.

The address in RAM where the second stage of the
Bootstrap Loader will be loaded. The data area for the
first and second stages is also located here. The size of
this second stage area consists of less than 8K contiguous
bytes. The default address for the second stage is
OB8000H. This address has been chosen to be
compatible with the default address of the third stage
which is OBCOOOH.

The first-stage configuration file to use. If your system is
a MUL TIBUS I system, set this parameter equal to the
string 'bsl'. Setting this parameter to 'bsl' causes the file
BS l.A86 to be assembled and the located Bootstrap
Loader file to be named 'bs 1'. If your system is a
MUL TIBUS II system, set this parameter equal to the
string 'bslmb2'. Setting this parameter to 'bslmb2'
causes the file BS IMB2.A86 to be assembled and the
located Bootstrap Loader file to be named 'bslmb2'.

To invoke the BS1.CSD SUBMIT file with the default addresses for combining with the
iSDM monitor, type one of the two sets of commands below:

- SUBMIT BSl(OFE400H, OB8000H, bsl) <CR>

- SUBMIT BSl(OFE400H, OB8000H, bslmb2) <CR>

Bootstrap Loader 3-49

CONFIGURING THE FIRST STAGE

3.6 MEMORY LOCATIONS OF THE FIRST AND SECOND STAGES

When you invoke the BS l.CSD file, you assign memory locations to the first and second
stages. It is important that the addresses you assign do not cause the stages to overlap,
either with themselves or with the files they load. Chapter 4 discusses the memory
locations of all three stages of the Bootstrap Loader and the steps to take to ensure that
they don't overlap. Also inspect the map file, BS 1. MP2, to ensure the segments are
properly laid out. If too many device drivers have been configured into the Bootstrap
Loader, some segments will be located in low memory starting at 200H. This is
unacceptable and you must remove some more device drivers from your configuration.
You also have the option of using bigger PROMs.

3-50 Bootstrap Loader

I

~.

(

(

CONFIGURING THE THIRD STAGE 4
4.1 INTRODUCTION

The third stage of the Bootstrap Loader is used only for loading iRMX II systems. It
provides the capability of loading modules that use the 80286 object module format (such
as those produced using BND286 and BLD286) and those that require the processor's
protected virtual address mode. This chapter describes how to configure the third stage.

There are three different types of third stages that can be used to load iRMX II files: the
generic third stage, the device-specific third stage and the remote third stage. Allload
OMF-286 modules, but the generic and remote third stages leave the processor in real
address mode while they load. This permits it to use the first-stage device drivers to access
the storage devices. The device-specific third stage switches the processor into protected
mode before calling the device driver. Although this permits the device driver to load into
the entire 16 megabyte address space, special device drivers that work in protected mode
must be included in the third stage.

Configuration of the third stage differs slightly depending on whether you configure the
generic, remote or device-specific third stage. However, the differences are small enough
that all will be described together throughout most of this chapter. The next two sections
provide overviews of configuring each type of third stage. The rest of the chapter provides
the details of third-stage configuration, noting any options that apply specifically to one
type of third stage.

Bootstrap Loader 4-1

CONFIGURING THE THIRD STAGE

4.2 OVERVIEW OF THIRD STAGE CONFIGURATION

4-2

Configuring the third stage (either the generic, remote, or device-specific third stage) is
very similar to configuring the first stage. It involves the following operations:

1. Create a directory in which to generate the third stage and attach it as your default
directory.

2. Invoke a SUBMIT file to obtain a local copy of the configuration source files. If you
did this step during configuration of the first stage, you do not need to repeat it.

3. Edit an assembly language source file to indicate which CPU board to run on and
what to do if errors occur during bootstrap loading. If you are using the device
specific third stage, you must also indicate which devices the third stage supports.

4. Invoke a SUBMIT file to assemble one or more assembly language source files, link
them with code for the third stage, and assign absolute addresses to the code. This
executable module remains in a file to be loaded by the second stage.

Like the first stage, the device-specific third stage requires its own device drivers.
Therefore, you might expect to modify, assemble, and link configuration files for each of
the devices, as you do for the first stage. The SUBMIT file assembles and links the device
configuration files, and you do not need to do any additional work on these files. Because
device-specific information (such as the I/O port address, the number of cylinders, etc.) is
the same regardless of which stage accesses the device, the SUBMIT file uses the same
device configuration files used for first-stage configuration.

The generic third stage uses the first-stage device drivers to communicate with mass
storage devices. Therefore there is no need to supply configuration information about
devices to the generic third stage.

The remote third stage does not use any device drivers, real or protected mode. When the
first stage transfers control to the remote third stage, the entire application system has
been loaded into the host's memory. The configuration information supplied about the
remote third stage does not specify device parameters, it only specifies data for the third
stage that it could not otherwise obtain.

Bootstrap Loader

CONFIGURING THE THIRD STAGE

Default versions of the assembly language source files and the SUBMIT file are placed in
the /BSL directory during installation. These files include the following:

BS3.A86
BS3MB2.A86
BG3.A86
BR3.A86

BMSC.A86
B264.A86

BS3.CSD
BG3.CSD
BR3.CSD

These assembly language source files contain macros that specify
the devices supported by the third stage (for device-specific third
stage only). They identify the CPU board and tell what to do if
errors occur during bootstrap loading. The BS3.A86 file applies to
the device-specific third stage for MUL TIBUS® I systems, the
BS3MB2.A86 file applies to the device-specific third stage for
MUL TIBUS II systems. The BG3.A86 file applies to the generic
third stage on either MUL TIBUS I or MUL TIBUS II systems. The
BR3.A86 applies to the remote third stage on MULTIBUS I
systems.

These assembly language source files apply only to the device
specific third stage. They contain configuration information about
the devices in your system. These are the same files that were used
during the configuration of the first stage. You do not need to
modify them for the device-specific third stage.

These SUBMIT files contain the commands you need to assemble
the source files, link the resulting modules (and any other you
supply) with the code for the third stage, and locate the resulting
object module. The BS3.CSD file applies to the device-specific third
stage. The BG3.CSD file applies to the generic third stage and the
BR3.CSD file applies to the remote third stage.

As shipped on the release diskettes, these files are set up to generate the default versions
of the Bootstrap Loader's device-specific, remote, and generic third stages.

Bootstrap Loader 4-3

CONFIGURING THE THIRD STAGE

4.3 BS3.AS6, BS3MB2.AS6, BG3.AS6, AND BR3.AS6
CONFIGURATION FILES

4-4

Figures 4-1,4-2,4-3 and 4-4list the assembly language configuration files for the device
specific third stage files BS3.A86 and BS3MB2.A86, the generic third stage file BG3.A86,
and the remote third stage file BR3.A86. Each of these files consists of an INCLUDE
statement and several macros. The definitions of the macros that can appear in these files
are contained in the INCLUDE file (BS3CNF.lNC). These macros are similar to the
macros that can appear in the first stage configuration file.

To configure your own version of the generic or device-specific third stage, you should edit
the BS3.A86, BS3MB2.A86, BG3.A86 or BR3.A86 file to include or exclude macros. For
each macro, a percent sign (%) preceding the name includes (invokes) the macro. A
semicolon (;) preceding the name excludes the macro, treating it as a comment.

NOTE

When you exclude a macro, you must replace the percent sign with a semicolon.
Don't just add a semicolon in front of the percent sign.

The following sections describe the macros that can appear in the BS3.A86, BS3MB2.A86,
BG3.A86 and BR3.A86 files. Unless otherwise specified, the macros can appear in either
of the three files (the %DEVICE macro is the only one that applies only to the device
specific third stage).

Bootstrap Loader

CONFIGURING THE THIRD STAGE

name bs3

$inc1ude (:f1:bs3cnf.inc)
$inc1ude(:f1:bmps.inc)

", , ", " ", " """""" , ", "", " "", , ", " "" "", " ",
MULTI BUS I devices ..

"" , " " , " " """" ", """", " "" " , , , "", , , ", ", " "

%device (O,wO,deviceinitmscgen,devicereadmscgen,data_msc)
%device (1,w1,deviceinitmscgen,devicereadmscgen,data_msc)
%device (8,wfO,deviceinitmscgen,devicereadmscgen,data_msc)
%device (9,wf1,deviceinitmscgen,devicereadmscgen,data_msc)
%device (O,pmfO,deviceinit218Agen,deviceread218Agen,data_218)
%device (O,baO,deviceinit264,deviceread264,data_264)

;int1
%int3
;halt

%cpu_board (286/12)

%end

Figure 4-1. Intel-Supplied BS3.A86 File

Bootstrap Loader 4-5

CONFIGURING THE THIRD STAGE

name bs3

$inc1ude (:f1:bs3cnf.inc)
$inc1ude(:f1:bmps.inc)

MPC and ADMA configuration for iSBC 286/100 with iEXM 100 MPC module
;bmps(OOH, 4, 08BH, 200H, 3, 2, OAOH, 16)

MPC and ADMA configuration for iSBC 286/100A
;bmps(OOH, 4, 08BH, 200H, 2, 3, OEOH, 16)

MPC and ADMA configuration for iSBC 386/100
%bmps(OOH, 4, 089H, 200H, 2, 3, OOOH, 16)

, " , """ " , , , " , " , " , , " , , , , , , , , , " " , , , , , , "'" '" , ""'"
MULTIBUS II devices

'" """" " , , , , , " '" , , " , , , , , , , , '" " , , , " , , "" "" , '" '"

%device (O,sO,deviceinitscsi, devicereadscsi,data_scsi)
%device (0,sx1410aO,deviceinitscsi,devicereadscsi,data_scsi,sasi_x1410a)
%device (0,sx1410bO,deviceinitscsi,devicereadscsi,data_scsi,sasi_x1410b)
%device (2 ,smfO, deviceinitscsi ,devicereadscsi , data_scsi ,sasi_x 1420mf)
%device(O, wO, device_init_224a, device_read_224a, data_bs_drivers)
%device(l, wI, device_init_224a, device_read_224a, data_bs_drivers)
%device(2, wfO, device_init_224a, device_read_224a, data_bs_drivers)
%device(3, wf1, device_init_224a, device_read_224a, data_bs_drivers)

; intI
%int3
;ha1t

%cpu_board (386/100)

%end

Figure 4-2. Intel-Supplied BS3MB2.A86 File

4-6 Bootstrap Loader

(

/
I,

(
I
\

CONFIGURING THE THIRD STAGE

name bg3

$inc1ude (:f1:bs3cnf.inc)

;int1
%int3
;ha1t

%cpu board (286/12)

%insta11ation(n)

%end

Figure 4-3. Intel-Supplied BG3.A86 File

$inc1ude (:f1:bs3cnf.inc)

" '" , , '" " , , " , , , " '" , , " " , '" , , , " , , " , , , " , , , , '" , , , , , , " , "
Remote devices

"" , " ", " , ", " , '" , """ "" " , , " , , " , , " , , , , , , , , " , , " " ",

%remote device (rO,thirdstage552A, data_552A)

%int3
;ha1t

%cpu_board (286/12)

%end

Figure 4-4. Intel-Supplied BR3.A86 File

Bootstrap Loader 4-7

CONFIGURING THE THIRD STAGE

4.3.1 %BMPS Macro (MULTIBUS@ II Only)

4-8

The %BMPS macro configures the message passing system used during bootstrap loading.
This macro identifies the following:

• The base address of the Message Passing Coprocessor (MPC)

• The address distance between MPC ports

• Information that defines how direct memory access (DMA) transfers occur.

The syntax of the %BMPS macro is

%BMPS (mpc$base$addr, port$sep, duty$cycle, dma$base$addr, dmain, dmaout,
dma$trans, data$width)

where:

mpc$base$addr

port$sep

duty$cycle

dma$base$addr

dma$in

dma$out

dma$trans

The base I/O port address of the MPC. Refer to the
appropriate single board computer user's guide for this
address.

The number of addresses separating individual MPC
ports. For example, if the mpc$base$addr is OOOOH and
the next three I/O port addresses are 0004H, 0008H,
and OOOCH, respectively, the port$sep is 4H. Refer to
the appropriate single board computer user's guide for
the I/O port address map.

The MPC duty cycle for the local bus. (The rate at
which data packets are generated.) For information on
how to calculate a duty cycle suitable for the local bus,
refer to the MPC User's Manual. For duty cycles
suitable for Intel single board computers, refer to the
appropriate single board computer user's guide.

The base I/O port address for the Advanced Direct
Memory Access (ADMA) controller. Refer to the
appropriate single board computer user's guide for this
address.

The channel used to receive (input) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

The channel used to send (output) DMA message
passing transfers. Refer to the appropriate single board
computer user's guide for this channel number.

The I/O port address used for DMA data transfers.
Refer to the appropriate single board computer user's

Bootstrap Loader

data$width

CONFIGURING THE THIRD STAGE

guide for this address.

The data width in bits of the local bus. This value must
be either 16 or 32 (decimal). If the width is set to 32 bits
on a 386/116- or 386/120-based board, flyby (one cycle)
mode is enabled.

The %BMPS macro can generate errors if the local bus width is not 16 or 32 bits wide.

4.3.2 %DEVICE Macro (BS3.A86 and BS3MB2.A86 Only)

The %DEVICE macro applies only to the device-specific third stage (BS3.A86 and
BS3MB2.A86 files). It associates a device with a particular third stage device driver. The
syntax of the %DEVICE macro is as follows:

%DEVICE (unit, name, device$init, device$read, device$data,unit_info)

where:

unit The unit number of this device. Unit numbering should be the same as
that used in the BSl.A86 or BS1MB2.A86 file described in Chapter 3.

name The name of the device. You should always specify the same name that
you used for the device in the BS l.A86 or BS 1MB2.A86 file.

device$init Public name of the third stage device driver's initialization procedure.
Table 4-1 lists the names used for Intel-supplied device drivers. If you
supply your own driver (written as described in Chapter 6), enter the
name of its initialization procedure.

device$read Public name of the third stage device driver's read procedure. Table 4-1
lists the names used for Intel-supplied device drivers. If you supply your
own driver (written as described in Chapter 6), enter the name of its
read procedure.

device$data Public name of a label that marks the first byte of the data segment used
by the third stage device driver. Table 4-1 lists the names used for Intel
supplied device drivers. If you supply your own driver (written as
described in Chapter 6), you must create such a label and enter its name
here.

unit info An ASM86 label that marks the location of an array of BYTEs
containing specific device-unit information required by the mass storage
device defined by this invocation of the %DEVICE macro.

Bootstrap Loader 4-9

CONFIGURING THE THIRD STAGE

Table 4-1 lists the names of the device initialization procedures, device read procedures,
and data segments for Intel-supplied third stage device drivers.

Table 4-1. Names for Intel-Supplied Third Stage Drivers

Device Initialize Device Read
Device Driver Procedure Procedure Data Segment

MSC Driver deviceinitmscgen devicereadmscgen data msc
iSBC 264 Driver deviceinit264 deviceread264 data-264
iSBC 186/224A Driver device init 224A device read 224A data -bs drivers
SCSI Driver devicelnitsesi devicereadsesi data-scSI
iSBC552A third stage 552A N/A data-552A

4.3.3 %REMOTE DEVICE

The %REMOTE DEVICE macro applies only to the remote third stage (BR3.A86 file).
It associates a deVice with a particular third stage device driver. The syntax of the
%REMOTE DEVICE macro is as follows:

%REMOTE_DEVICE (name, device$driver, device$data)

where:

name: The name of the device you use to invoke the Bootstrap Loader. You
should always specify the same name that you used for the device in the
BS1.A86 file.

device$driver: Public name of the remote third stage device driver. For the
iSBC 552A, this name is thirdstage552A and cannot be changed.

device$data: Name of the driver's data segment. For the iSBC 552A, this name is
data_552A and cannot be changed.

4-10 Bootstrap Loader

(

(
'I

CONFIGURING THE THIRD STAGE

4.3.4 %SASI_ UNIT _INFO Macro (BSCSI.A86 File)

The SCSI device driver provides an interface to mass storage devices through either SASI
or SCSI controllers. If using devices controlled by a SASI controller, you must specify a
sequence of initialization bytes for the controller. SCSI controllers do not require this
information. The initialization sequence identifies the type of device you have assigned to
the particular unit of the SASI controller. The sequence will be different depending on the
manufacturer and model of the hard disk or flexible diskette drive and the SASI controller
board.

This macro enables you to define the initialization sequences required by your devices on
the SASI bus. For each instance of the %DEVICE macro (in the BS1.A86 or
BS IMB2.A86 file) that defines a device on the SASI bus, you must also include the
%SASI_ UNIT _INFO macro (in the %BSCSI.A86 file) to define that device's initialization
sequence. The label specified for the unit info field of the %DEVICE macro must match
the label field of the corresponding %SASI _ UNIT _INFO field.

The information supplied by an occurrence of the %SASI UNIT INFO macro is not used
by devices on the SCSI bus. Therefore in the BS1.A86 or BSIMB2.A86 file, %DEVICE
macros for devices controlled by the SCSI bus should never specify a value for the unit info
parameter. Note there is only one pair of device initialization/device read procedures for
the SCSI driver regardless of whether the controller is SCSI or SASI.

The %SASI_ UNIT _INFO macro can be included only in the SCSI/SASI driver
configuration file, BSCSI.A86. The macro has the form

where:

label

init command

init count

init data

Bootstrap Loader

A valid ASM86 label name matching the one you
specified in the unit info field of the %DEVICE macro
for your device (in the file BS l.A86 or BS IMB2.A86).

A WORD that is the initialization command for your
particular SASI controller.

A BYTE specifying the number of initialization BYTEs
that your SASI controller requires.

The array of BYTEs of initialization data required by
your SASI controller. The length of this array must be
equal to the value in the init count parameter.

4-11

CONFIGURING THE THIRD STAGE

The default invocations of this macro in BSCSI.A86 are

iSBC l86/03A SCSI Host
;bscsi(OC8H, OCAH, OCCH, OCEH, 0, 0, 1, 0, OFFCOH, 2, 0)

iSBC 286/100 SCSI Host
%bscsi(OC8H, OCAH, OCCH, OCEH, 0, 0, 2, 0, 0200H, 2, 1, ODlH)

Xebec S1420 SASI controller and a Teac model FSSB, 5 l/4-inch
flexible diskette drive.

%sasi_unit_info(sasi_xl420mf, llh,lO,0,28h,2,90h,3,Ofh,SOh,Ofh,Ol4h,0)

Xebec Sl4l0 SASI controller and a Quantum model QS40, 5 1/4-inch
Winchester disk drive.

%sasi_unit_info(sasi_x14l0b, Och, 8, 2, 0, 8, 2, 0, 0, 0, Obh)

Xebec S14l0 SASI controller and a Computer Memories, Inc.
model CMI-S6l9 5 1/4-inch Winchester disk drive.

%sasi_unit_info(sasi_x140a, Och, 8, 1, 32h, 6, 0, Ob4h, 0, 0, Obh)

4.3.5 %INT1 Macro

The %INTI macro causes the third stage to execute an INT 1 (software interrupt)
instruction whenever a bootstrap loading error occurs. This enables you to pass control to
a user-written program if loading fails. However, to pass control to another program, you
must place the address of that program in position 1 of the interrupt vector table. This
macro is supported by only the D-MON386 monitor. The iSDM monitor does not support
this macro.

The syntax of the %INTI macro is

%INTI

There are no parameters associated with this macro.

Exactly one of the %INTl, %INTI, and %HAL T macros must be included, or an error will
occur when the third stage configuration files are assembled.

4-12 Bootstrap Loader

;'

i
"

CONFIGURING THE THIRD STAGE

4.3.6 %INT3 Macro

The %INTI macro causes the third stage to execute an INT 3 (software interrupt)
instruction whenever a bootstrap loading error occurs. If you are using the iSDM monitor,
the INT 3 instruction passes control to the monitor. Otherwise, the INT 3 instruction has
no effect unless you have placed the address of your custom interrupt handler in position 3
of the interrupt vector table.

The syntax of the %INTI macro is

% INTI

There are no parameters associated with this macro.

Exactly one of the %INTl, %INTI, and %HALT macros must be included, or an error will
occur when the third stage configuration files are assembled.

4.3.7 %HALT Macro

The %HALT macro causes the third stage to execute a halt instruction whenever a
bootstrap loading error occurs. The syntax of the %HAL T macro is as follows:

%HALT

There are no parameters associated with this macro.

Exactly one of the %INTl, %INTI, and %HALT macros must be included, or an error will
occur when the third stage configuration files are assembled.

4.3.8 %CPU BOARD Macro

The %CPU _ BOARD macro specifies the type of processor board in your system. The
third stage needs this information so it can properly initialize the board when switching
into protected virtual address mode. The syntax of the %CPU BOARD macro is as
~~: -

%CPU_BOARD (type)

Bootstrap Loader 4-13

CONFIGURING THE THIRD STAGE

where:

type The type of processor board in your system. The following are the valid
values:

Processor Board

iSBC 286/10 board
iSBC 286/1 OA board
iSBC 286/12 board
iSBC 386/12 board
iSBC 286/ 100A board
iSBC 386/2X board or iSBC 386/3X Board
iSBC 386/116 board or iSBC 386/120 Board

286/12
286/12
286/12
386/12
286/100A
386/20
386/100

4.3.9 %INSTALLATION Macro (BG3.AS6 Only)

The %INSTALLATION macro specifies whether the generic third stage will enter the
monitor after loading the application system or not. The syntax of the %INSTALLATION
macro is:

%INSTALLATION (monitor_entry)

where:

monitor_entry The type of action the Bootstrap Loader is to take upon
loading the application system. If monitor entry is 'n' the
system loads and then executes with no monitor entry in
between. If it is 'y', the monitor is entered after the
system loads. You must type in the monitor GO
command to continue.

When the monitor is entered, as a result of specifying 'y' for the monitor entry parameter,
the Bootstrap Loader prints the following message to the terminal instructing you how to
proceed with the loading:

Insert the Start-up System Commands Diskette and type "G<RETURN>"

This is an example. The actual message will differ according to the type of system you are
booting.

4-14

NOTE

If your system has the D-MON386 monitor rather than the iSDM monitor, type
"GO < RETURN>" instead of "G < RETURN>.

Bootstrap Loader

CONFIGURING THE THIRD STAGE

This macro is used to generate the generic third stage used to boot the Operating System
from diskettes. The %INSTALLA nON macro allows one diskette, which contains only
the Operating System boot file and the third stage to be used to load the system from
diskette into memory. In entering the monitor, it allows a second diskette, which contains
the necessary system commands, to be used as the system device when the system is
initialized.

4.3.10 %END Macro

The %END macro is required at the end of the BS3.A86, BS3MB2.A86, BG3.A86, and
BR3.A86 files. The syntax of this macro is as follows:

%END

There are no parameters associated with the %END macro.

4.3.11 User-Supplied Drivers

If you want to use the device-specific third stage to load your system from a device other
than one for which Intel supplies a third-stage driver, you must write your own device
driver procedures that the third stage will call. Chapter 6 describes how to do this. In
addition, take the following actions to add the procedures to the Bootstrap Loader:

• Specify the names of the device initialization procedure, the device read procedure,
and the driver's data segment in a %DEVICE macro in the BS3.A86 file.

• If there are configurable parameters associated with your device (such as base
addresses or wakeup ports), you might want to create your own configuration macro
and include it in a special configuration file, just like the Intel devices do. Chapter 5
describes how to set up such a macro. You will probably use the same configuration
file for both the first- and third-stage drivers.

• Assemble your device initialization procedure, your device read procedure, and your
configuration file (if you have one), and link the resulting object code to the rest of the
Bootstrap Loader object files and libraries.

Bootstrap Loader 4-15

CONFIGURING THE THIRD STAGE

4.4 GENERATING THE THIRD STAGE

SUBMIT files (BS3.CSD and BG3.CSD) are used to generate the two types of third stages.
BS3.CSD does the assembly, linkage, and location of the device-specific third stage.
BG3.CSD does the same operations for the generic third stage. Figures 4-5, 4-6 and 4-7
show the Intel-supplied BS3.CSD and BG3.CSD files.

4-16

attachfile bsl as :fl:

asm86 %0.a86
asm86 bmsc.a86
asm86 b2l8a.a86
asm86 b264.a86
asm86 bscsi.a86
asm86 b224a.a86

link86 &
%O.obj, &
bs3.lib, &
bmsc.obj, &
b2l8a.obj, &
b264.obj &

& bscsi.obj, &
& b224a.obj &
to %O.lnk print(%O.mp1) notype nolines nosymbo1s

loc86 %O.lnk &
addresses(c1asses(code(%1))) &
order(classes(code,data)) &
noinitcode purge &
start(bs3) &
map print(%0.rnp2)

The Third Stage, located at address %1, is in the file %0

Figure 4-5. Device-Specific Third Stage SUBMIT File (BS3.CSD)

Bootstrap Loader

(
"

(

CONFIGURING THE THIRD STAGE

attachfile bsl as :fl:

asm86 bg3.a86

link86 &
bg3.obj, &
:fl:bg3.lib &

to bg3.lnk notype nolines nosymbols

loc86 bg3.lnk &
addresses(classes(code(%2))) &
order(classes(code,data)) &
noinitcode &
start(bs3) purge &
to :Fl:%O.%l map print(%0.mp2)

;The Generic Third Stage is located at address %2 and is
;in the file %0.%1.

Figure 4-6. Generic Third Stage SUBMIT File (BG3.CSD)

4.4.1 Modifying the Submit Files

Before generating your own version of the third stage, you should modify the appropriate
submit file to match your intended configuration.

If you are using the device-specific third stage and you have excluded any device drivers
from it (by excluding %DEVICE macros from the BS3.A86 or BS3MB2.A86 file), you
won't want to link the code for those drivers into the third stage. To prevent the linking of
a device driver, edit the LINK86 command in the BS3.CSD file and place an ampersand
(&) in front of any file name that corresponds to a driver you want to exclude.

If you are not using an iRMX I or iRMX II system to configure the third stage, you must
comment out the line where the directory containing the Bootstrap Loader files is attached
as :fl: before invoking the other commands in the BS3.CSD or BG3.CSD file. Change the
line:

ATTACHFILE bsl AS :Fl:

to

;ATTACHFILE bsl AS :Fl:

Bootstrap Loader 4-17

CONFIGURING THE THIRD STAGE

attachfile /bsl as :fl:

asm86 %0.a86

link86 &
%O.obj, &
:fl:br3.lib &

to %O.lnk print(%O.mpl) notype nolines nosymbols initcode

loc86 %O.lnk to %O.loc &
addresses(segments(code(%l))) noinitcode &
order(segments(CODE,DATA,DATA_ENTP)) &
segsize(stack(200H)) start(106H,0) &
objectcontrols (purge) &

Convert the located module to remote boot format.
The Xlate86 program is supplied with iRMX-NET,
Release 3.0 or newer

delete %2
xlate86 %O.loc over %2 ran d

Figure 4-7. RemoteThird Stage SUBMIT File (BR3.CSD)

4.4.2 Invoking the Submit File

After you have modified either the BS3.CSD, BG3.CSD or BR3.CSD file to correspond to
your configuration, invoke the appropriate SUBMIT file to assemble the third stage files,
link them together, and assign absolute addresses. The format for invoking either
SUBMIT file is as follows:

Device-specific third stage

SUBMIT BS3 (filename, third _stage _ addr)

4-18 Bootstrap Loader

CONFIGURING THE THIRD STAGE

Generic third stage

SUBMIT BG3 (filename, extension, third_stage _ addr)

where:

filename

extension

Remote third stage

The name of the file in which to store the generated
third-stage. Also, the name of the third-stage
configuration file you are using (BS3.A86 for
MULTIBUS I systems and BS3MB2.A86 for
MUL TIBUS II systems). The generic third stage
appends the next parameter (extension) to the filename.

The extension the generic third stage is to have. This
does not apply to the device specific third stage. Normal
generic third stages usually have the extension 'GEN'.
Generic third stages used for Operating System
installation should use the extension 'INS'.

The address in RAM where the third stage will be
loaded. The address you specify should be a full 20-bit
address. Do not use the base:offset form to indicate the
address.

If you have no special requirements for loading the third
stage, specify a value of OBCOOOH for this parameter.

SUBMIT BR3 (filename, third _stage _ addr, output_filename)

where:

filename

output_filename

The name of the third-stage configuration file you are
using (BS3.A86 for MUL TIBUS I systems).

The address in RAM where the third stage will be
loaded. The address you specify should be a full 20-bit
address. Do not use the base:offset form to indicate the
address.

If you have no special requirements for loading the third
stage, specify a value of OBCOOOH for this parameter.

The final name of the remote third stage.

This submit file invokes the Xlate86 utility which is provided with iRMX-NET or INA 960.
This requires that you have already installed the Xlate86 utility.

Bootstrap Loader 4-19

CONFIGURING THE THIRD STAGE

4.5 MEMORY LOCATIONS OF THE THREE STAGES

When you configure the first and third stages of the Bootstrap Loader, you can assign the
addresses at which the three stages will be located. Before setting these addresses, you
must understand how default memory is assigned in the Bootstrap Loader.

Table 4-2 lists the default memory locations used by the Bootstrap Loader. It also names
the SUBMIT files you invoke to change the memory assignments.

Table 4-2. Base Memory Locations Used by the Bootstrap Loader

Maximum Configuration
Description Default Size* File

1st Stage Application Dependent * 14K Bytes BS1.CSD
Code OFE400H for iSDM R3.2

2nd Stage OBBOOOH 8K Bytes BS1.CSD
Code, 1st/2nd
Data and Stack

3rd Stage OBCOOOH 16K Bytes BS3.CSD
(specific)
Code, Data
and Stack

3rd Stage OBCOOOH 8K Bytes BG3.CSD
(generic)
Code

3rd Stage OBCOOOH 4K Bytes BR3.CSD
(remote)
Code

Third Stage OBBOOOH - BS1.CSD
(generic)
Data and Stack

* Maximum size is a function of the size of the device drivers included in the Bootstrap loader.

The Bootstrap Loader Release Diskettes contain a standalone version of the Bootstrap
Loader, in the file named BS 1, which selects all the supported Intel device drivers. The
map file, BS 1.MP2, is supplied to show the layout of the segments in BS 1. The first stage is
located at OCOOOOR and the second stage is located at OB8000R. All default third stages
are located at OBCOOOH.

4-20 Bootstrap Loader

('

WRITING A CUSTOM
FIRST-STAGE DRIVER 5

5.1 INTRODUCTION

You can configure the Bootstrap Loader to run with many kinds of devices. If you plan to
use one of the devices for which Intel supplies a device driver, you can skip this chapter. If
you plan to write a driver for the MULTIBUS@II System Architecture (MSA) Bootstrap
Loader, refer to the MULTIBUS@ II System Architecture (MSA) Bootstrap Loader
Specification rather than this manual.

If you want to use the Bootstrap Loader with a device other than those supported by Intel,
you must write your own first-stage device driver. (If you want to load iRMX II
applications past the first megabyte of address space, you must also write a custom third
stage driver. Chapter 6 describes how to write third-stage drivers.) This chapter provides
you with guidelines for writing a custom first-stage driver.

You must include two procedures in every first-stage device driver: a device initialize
procedure and a device read procedure. The device initialize procedure must initialize the
bootstrap device. The device read procedure must load information from the device into
RAM.

The rest of this chapter refers to the two procedures as DEVICE$INIT and
DEVICE$READ. However, you can give them any names you want, provided no other
first-stage driver procedure uses the chosen names. To check the names of the Intel
supplied first-stage procedures, use LIB86 to list the modules in the object library
/BSL/BS l.LIB.

You must write both procedures in an 8086 language (either PL/M-86 or ASM86) and
conform to the LARGE model of segmentation of the PL/M-86 programming language.
This means that you must declare the two procedures as FAR (not NEAR) and all pointers
must be 32 bits long. You must adhere to the interfacing and referencing conventions of
the PL/M-86 LARGE model even if you write the procedures in assembly language.

Bootstrap Loader 5-1

WRITING A CUSTOM FIRST-STAGE DRIVER

If your driver code is going to operate in a MUL TIBUS II environment which does not use
the MUL TIBUS II System Architecture bootstrap protocol, two additional driver code
constraints exist. First, you must follow the MUL TIBUS II transport protocol for
communication between the driver and the device controller you bootstrap load from. You
can accomplish this by using Bootstrap Loader Communication System utility calls within
your driver code. Second, you must organize your driver code so that it belongs to the
BSL-Drivers COMPACT sub-system. This last requirement is necessary because the
Bootstrap Loader Communication System utilities are all NEAR calls.

5-2

The next two sections describe the interface these two procedures must present to the first
stage Bootstrap Loader code. Later sections describe how to supply configuration
information to the driver, how to use Bootstrap Loader Communication System utilities in
your driver code, and how to generate first-stage Bootstrap Loader code that includes the
new driver.

Bootstrap Loader

(

(

WRITING A CUSTOM FIRST-STAGE DRIVER

5.2 DEVICE INITIALIZE PROCEDURE

The device initialize procedure must present the following PL/M-86 interface to the
Bootstrap Loader:

device$init: PROCEDURE (unit) WORD PUBLIC;
DECLARE unit WORD;

(code as described below)

END device$init;

where:

device$init The name of the device initialize procedure. You can choose any name
you wish for this procedure, as long as it does not conflict with the
names of any other first-stage procedure.

unit The device unit number, as defined during Bootstrap Loader
configuration.

The WORD value returned by the procedure must be the device granularity (fu bytes) if
the device is ready, or zero if the device is not ready.

To be compatible with the Bootstrap Loader, the device initialize procedure must do the
following steps:

1. Test to see if the device is present. If not, return the value zero.

2. Initialize the device for reading. This operation is device-dependent. For guidance in
initializing the device, refer to the hardware reference manual for the device.

3. Test to see if device initialization is successful. If not, return the value zero.

4. Obtain the device granularity. For some devices, only one granularity is possible,
while for other devices several granularities are possible. The hardware reference
manual for your device explains this device-dependent issue.

5. Return the device granularity.

NOTE

Besides the above five steps, the procedure must follow MUL TIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a non-MSA MULTIBUS II environment. Refer to Section
5.5 for more information on these two requirements.

Bootstrap Loader 5-3

WRITING A CUSTOM FIRST-STAGE DRIVER

5.3 DEVICE READ PROCEDURE

5-4

The device read procedure must present the following PL/M -86 interface to the Bootstrap
Loader:

device$read: PROCEDURE (unit, blknum, bufptr) PUBLIC;
DECLARE unit WORD,

blk$num DWORD,
buf$ptr POINTER;

(code as described below)

END device$read;

where:

device$read The name of the device read procedure. You can choose any name you
wish for this procedure, as long as it does not conflict with the names of
any other first-stage procedure.

unit The device unit number, as defined during Bootstrap Loader
configuration.

blk$num

buf$ptr

A 32-bit number specifying the block number the Bootstrap Loader
wants the procedure to read. The size of each block equals the device
granularity, with the first block on the device being block number o.
A 32-bit POINTER to the buffer in which the device read procedure
must copy the information it reads from the secondary storage device.

The device read procedure does not return a value to the caller.

To be compatible with the Bootstrap Loader, the device read procedure must do the
following steps:

1. Read the block specified by blk$num from the bootstrap device specified by unit into
the memory location specified by buf$ptr.

2. Check for I/O errors. If none occur, return to the caller. Otherwise, combine the
device code, if any, for the device with 01 (in the form <device code>01), push the
resulting word value onto the stack, and call the BSERROR procedure. For example,
if the device code is OB3H, push B301H onto the stack, and call BSERROR. If no
device code exists, use 00.

Bootstrap Loader

I
I

\,

(

WRITING A CUSTOM FIRST-STAGE DRIVER

Adding the following statements accomplish this in PL/M-86:

DECLARE BSERROR EXTERNAL;
DECLARE 10 ERROR LITERALLY 'OB301H';
CALL BSERROR(IO_ERROR);

If you call the BSERROR procedure from assembly language, note that BSERROR
follows the PL/M-86 LARGE model of segmentation; that is, declare BSERROR as

extrn BSERROR:far

NOTE

Besides the above two steps, the procedure must follow MUL TIBUS II
transport protocol and belong to the BSL-Drivers COMPACf sub-system if the
driver functions in a MUL TIBUS II environment. Refer to Section 5.5 for
more information on these two requirements. BSERROR takes the action
specified in the file BSERR.A86. None of these actions return to the caller.

Bootstrap Loader 5-5

WRITING A CUSTOM FIRST-STAGE DRIVER

5.4 SUPPLYING CONFIGURATION INFORMATION TO THE
FIRST-STAGE DRIVER

Any custom device driver you write needs some configuration information about the device
it supports, such as the address of the device wakeup port. (To determine what device
specific information your driver needs, consult the hardware reference manual for the
device.) You can provide this information to the custom device driver one of two ways:

• Place the information directly into the driver (hard-coding)

• Create a configuration file similar to those provided with the Intel-supplied drivers.

5.4.1 Hard-Coding the Configuration Information

5-6

One way to supply configuration information to a custom device driver is to place it
directly into the code. This method works, but if any of the configuration information
changes, or if you want to support a similar device that has a slightly different
configuration, you must change the driver and reassemble it. Fortunately, first-stage device
drivers are usually small enough that the time required to reassemble them is negligible.

Figure 5-1 illustrates how to place the configuration information directly into the code.
This figure lists the "Constants and Data" section that could be used to supply the MSC
first-stage driver with device-specific configuration information.

Bootstrap Loader

I

I
\,

(

WRITING A CUSTOM FIRST-STAGE DRIVER

", ", """""", " " , " " "", " """"", " ",

Constants and Data

", ", """" "" , " " , " " """ """", ", , " "

data bsmsc segment ;Static Data

wakeup_newdrvl dw lOOH ;MSC wakeup address

device newdrvl db 0

drtab newdrvl dw 256 ; number of cylinders
db 2 ; number of fixed heads
db 0 ; number of removable heads
db 9 ; number of sectors
db 1024 ; device granularity
db 5 ; number of alternate cylinders

Figure 5-1. Hard-Coded Configuration Information

5.4.2 Providing a Configuration File

The second way to supply configuration information is to declare all device-specific
parameters as variables that are external to your device driver. A separate small module
can declare these parameters as public variables. You can incorporate this second module
into the Bootstrap Loader by placing assembly and link commands in the first-stage
SUBMIT file BS1.CSD. To use this approach, follow the steps below:

1. In the code for the device driver, declare the device-specific parameters as external
variables. For example, the following code could be used instead of the hard-coding
shown in Figure 5-1.

name bpmsc
;Configuration information:

extrn

extrn
extrn

Bootstrap Loader

wakeup_newdrvl

device newdrvl
drtab newdrvl

word

byte
byte

;Wakeup port
; address
;Device number
;Device Table

5-7

WRITING A CUSTOM FIRST-STAGE DRIVER

5-8

2. Create an INCLUDE file containing a macro definition. The macro definition must
declare the device-specific parameters as public variables (matching the external
declarations from the previous step). This file should be named as "xxx.inc" where xxx
is any name you choose. For example, you could place the following code into a file
called NEWDRV1.INC to define a macro for the device-specific parameters declared
in Step 1.

%*DEFINE (bnewdrv1(wakeup,ncy1,nfsur,nrsur,nsec,secsize,na1t)) (
name bnewdrv1
public wakeup_newdrv1, device_newdrv1, drtab newdrv1

code_newdrv1 segment byte public 'CODE'
wakeup_newdrv1 dw %wakeup

device newdrv1 db 0

drtab newdrv1 dw %ncy1
db %nfsur
db %nrsur
db %nsec
dw %secsize
db %na1t

code newdrv1 ends)

%* DEFINE (end) (end)

3. Create another file that contains the macro invocation. You should name this file
"xxx.a86", where xxx is any name you choose. The file must also contain an INCLUDE
directive for the INCLUDE file created in the previous step. To be consistent with
the Intel-supplied device drivers, the INCLUDE directive should use the logical name
:Fl: as a prefix to the name of the include file. For example, the file NWDRV1.A86
could contain the following information to invoke the macro defined in Step 2.

$inc1ude(:f1:newdrv1.inc)

%bnewdrv1(100H, 256, 2, 0, 9, 1024, 5)
%end

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

If the device-specific configuration information ever changes, you can change the
macro invocation in this file to reflect those changes. This is normally easier than
changing the source code of the driver, especially for users who are not familiar with
assembly language.

4. Store the files created in Steps 2 and 3 in the directory /BSL where the Bootstrap
Loader configuration files are located. For example, the following Human Interface
commands can be used to copy the files created in Steps 2 and 3.

- copy newdrvl.inc, nwdrvl.a86 to jbsl

newdrvl.inc copied to jbsl/newdrvl.inc
nwdrvl.a86 copied to jbsl/nwdrvl.a86

5. Create a directory in which to generate the first stage and attach to it. Then use the
SUBMIT file /BSL/SETUP.CSD to obtain a local copy of the configuration files. Also
copy your new configuration source file, NWDRVl.A86. Because the BSl.CSD
SUBMIT file attaches /BSL as :Fl:, NWDRV1.A86 will reference
/BSL/NWDRV.lNC.

6. Edit the first-stage SUBMIT file (BS1.CSD) to cause it to assemble your configuration
file and link it to the first stage. To the list of ASM86 invocations, add an ASM86
invocation for the file created in Step 3 (xxx.a86). To the list of modules to be linked
(immediately below the LINK86 invocation), add the name of the object module
created when your file (xxx.a86) is assembled. Unless you have reason to do otherwise,
use the same ASM86 and LINK86 options shown for other files assembled and linked
by BS1.CSD.

Figure 5-2 shows modifications to BS1.CSD that add support for the driver
configuration files just created. Arrows at the left of the figure show the lines that were
added. Notice that only the configuration file is being assembled each time BS1.CSD is
invoked, not the entire driver. BS l.CSD assumes the use of the configuration file
BS l.A86 and that you have assembled your driver and added the resulting object
module into the library BSl.LIB.

Bootstrap Loader 5-9

WRITING A CUSTOM FIRST-STAGE DRIVER

;asm86 bsl.a86 macro(90) object(bsl.obj) print(bsl.lst)

asm86 b264.a86 macro(SO) object(b264.obj) print(b264.lst)
asm86 bscsi.a86 macro(SO) object(bscsi.obj) print(bscsi.lst)

--> asm86 nwdrvl.a86 macro(50) object(nwdrvl.obj print(nwdrvl.lst)

link86
bsl.obj,
bserr.obj,

&
&
&

& :fl:bcico.obj, &;standalone serial channel support

bscsi.obj, &
b264.obj, &

--> nwdrvl.obj, &
:fl:bsl.lib &

to bsl.lnk print(bsl.mpl) &

Figure 5-2. Modified BS1.CSD File

5-10 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

5.5 USING THE MULTIBUS® II TRANSPORT PROTOCOL

If the driver you are creating functions within a MUL TIBUS I environment, you need not
read this section. Skip to Section 5.6.

If the driver you are creating functions within a MUL TIBUS II environment, you must
write the driver code to use the MUL TIBUS II message transport protocol. To help you
accomplish this task, Intel provides a small, single-thread communication system that
enables Bootstrap Loader drivers to communicate with device controllers within a
MUL TIBUS II environment. This communication system is called the Bootstrap Loader
Communication System.

The following paragraphs provide an overview of the Bootstrap Loader Communication
System, which uses concepts similar to the Nucleus Communication System. Should you
desire a more complete description of these communication system concepts, refer to the
iRMX® II Nucleus User's Guide.

The Bootstrap Loader Communication System can be thought of as a subset of the Nucleus
Communication System. It fully conforms to the MUL TIBUS II transport protocol
suitable for a limited bootloading environment. Unlike the Nucleus Communication
System, the Bootstrap Loader Communication system is designed to handle bootstrap
loading only. As a result, the system is synchronous in nature. In other words, procedures
execute to completion one after the other; no multitasking or need to handle asynchronous
events exists.

MUL TIBUS II transport protocol functions supported by the Bootstrap Loader
Communication System include:

• control and data message types,

• a subset of the request/response transaction model,

• send and receive transaction models,

• message broadcasting,

• access to device interconnect space.

To support these functions, Intel supplies a set of system utilities grouped together in a
Bootstrap Loader Message Passing System Module. As a programmer, you have access to
these utilities through system calls you place in your driver code. The remainder of this
section explains the supported functions in the Bootstrap Loader Communications System
and shows you how to use each of the utilities.

Bootstrap Loader 5-11

WRITING A CUSTOM FIRST-STAGE DRIVER

5.5.1 Message Types

The Bootstrap Loader Communication System supports two types of messages: control
messages and data messages.

Control messages consist of only a control portion. These messages occur between the
sender and receiver requiring no explicit buffer resource allocation. The reason for no
buffer allocation is because a control message has no data part. The maximum length of a
control message is 20 bytes. Also, a one-to-one correspondence exists between control
messages and MUL TIBUS II unsolicited messages (all unsolicited messages are control
messages).

Data messages consist of both a 16-byte control portion and a variable length data portion.
These messages do require explicit buffer allocation between the sender and receiver. The
reason buffer allocation is required is because this type of message contains a variable
amount of data. The maximum length of the data portion is 64K-l bytes.

5.5.2 Request/Response Transaction Model

The Bootstrap Loader Communication System supports a subset of the request/response
transaction model that the Nucleus Communication System uses. This subset has the
following characteristics:

• Because the Bootstrap Loader Communication System functions within a bootloading
environment, request messages originate only from the host CPU board. The specific
device controllers then match responses to requests on a one-to-one basis.

• No support exists for multiple outstanding requests.

• Fragmentation and transmission of response messages into specific application buffers
can occur. Because this fragmentation is completely transparent to the user, the
fragmented response is considered as a single response to a single request.

• The Bootstrap Loader Communication System receives messages in the order in which
they are sent.

Communication between the CPU host board executing the driver and the bootable device
controller uses the basic transmission model of send and receive. The driver sends a
request to the device controller and then receives a response back. When the driver
initiates the message, an internal transaction ID is generated that logically associates the
request with the response. This ID remains valid until the device controller responds, thus
completing the transaction.

5-12 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

For messages that require data as part of the response, the driver can initiate the allocation
of an rsvp data message buffer in which to receive the response data. The data can then
arrive either whole or fragmented. Regardless of fragmentation, the host CPU board views
the response message as one message. If the request message requires no data as a
response, the response must be a control message.

The utility the Bootstrap Loader Communication System uses to support the
request/response transaction model is BS$SEND$RSVP. The following utility description
presents BS$SEND$RSVP:

CALL BS$SEND$RSVP (socket,control$ptr,data$adr,data$length,

Input Parameters
socket

control$ptr

data$adr

data$length

rsvp$control$p

rsvp$data$adr

Bootstrap Loader

rsvp$control$p,rsvp$data$adr,rsvp$data$length,
flags,exception$ptr)

A DWORD of the form host$id:port$id identifying the
remote destination.

A POINTER to a control message. If data$adr = NULL
(0) or data$length = 0, then the control message is 20
bytes long. Otherwise, the control message is 16 bytes
long.

A DWORD containing the absolute address of a data
message. If data$adr is NULL (0), then a control
message is sent. Otherwise, data$adr points to a
contiguous buffer.

A WORD defining the length of the data message. If
data$length is equal to zero, the control message length
is assumed to be 20 bytes.

A POINTER to the received control message. If
rsvp$data$adr = NULL (0) or rsvp$data$length = 0, then
the control message is 20 bytes long. Otherwise, the
control message is 16 bytes long.

A DWORD containing the absolute address of a data
message buffer for the return response that is expected.
If rsvp$data$adr is NULL (0), then a control message is
expected as a reply. Otherwise, rsvp$data$adr points to
a contiguous buffer in which the data message arrives.

5-13

WRITING A CUSTOM FIRST-STAGE DRIVER

rsvp$da ta$length

flags

Output Parameters
exception$ptr

Description

A WORD defining the length of the rsvp data buffer.

WORD reserved for future use. Although this
parameter is ignored, you must supply a "0" value as a
placeholder.

A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.

The BS$SEND$RSVP utility sends a message from a port to a remote socket with an
explicit request for a return response. This call is synchronous with respect to both the
request and the response.

Example

This example illustrates the fundamentals of the request/response transaction model
between the host CPU board and bootable device controller board. This example is
written in PL/M -86 code and is intended to be generic in nature.

5-14 Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

1**
* This example sends a 20-byte control message to the *
* bootable device controller board located in slot 1 *
* at port lF4H of the MULTIBUS II system. This message *
* solicits data from the device as part of the *
*
*
*
*
*
*
*
*

response. *
* The control message sent is contained in the 20-byte *

data array p$command$msg (Peripheral Command *
Message). The control message received is captured *
in the 20-byte data array p$status$msg (Peripheral *
Status Message). *

* * The solicited data is received from the device via *
* an rsvp buffer. Note that the address pointing to *
* the rsvp buffer must be an absolute address before *
* it is passed to BS$SEND$RSVP. Thus, the need for *
* calling a conversion routine. In this example, a *
* routine (not shown) called CONVERT_ADDRESS handles *
* the address conversion. It is up to the programmer *
* to supply the conversion routine. *
* * * Setting data$length and data$adr to NULL (0) *
* indicates that only a control message is being sent *
* from the host CPU board to the controller board. *
**1

Bootstrap Loader 5-15

WRITING A CUSTOM FIRST-STAGE DRIVER

5-16

SAMPLE_BS$SEND$RSVP: DO;

DECLARE socket DWORD;
DECLARE socket$o structure

(host$id WORD,
port$id WORD) AT (@socket);

DECLARE p$control$msg(20) BYTE;
DECLARE p$status$msg(20) BYTE;
DECLARE send$data(IOO) BYTE;
DECLARE rsvp$data(I024) BYTE;
DECLARE rsvp$data$adr DWORD;
DECLARE rsvp$data$length DWORD;
DECLARE flags WORD;
DECLARE exception WORD;
DECLARE slot LITERALLY 'IH';
DECLARE port LITERALLY 'IF4H';
DECLARE null LITERALLY , OH' ;

CODE: DO;
socket$o.host$id = slot;
socket$o.port$id = port;
rsvp$data$length = 400H;
flags = null;

rsvp$data$adr = CONVERT ADDRESS (@rsvp$data(O));

(Typical code to define
the 20-byte p$control$msg block
with the control message.)

CALL BS$SEND$RSVP
(socket,@p$control$msg(O),null,
null,@p$status$msg(O),
rsvp$data$adr,rsvp$data$length,
flags,@exception);

IF exception <> 0
THEN CALL BSERROR;

END CODE;
END SAMPLE_BS$SEND$RSVP;

Bootstrap Loader

(

"

I

I,

(
\

Condition Codes

E$OK

BSEBUFFER$SIZE

BSETRANSMISSION

WRITING A CUSTOM FIRST-STAGE DRIVER

OOOOH

OOE2H

OOE1H

No exceptional conditions.

The rsvp buffer posted is too
small.

An error occurred while
transmitting a MUL TIBUS II
message.

5.5.3 Message Passing Controller Initialization

Before any Bootstrap Loader Communication System calls can be made, you must
initialize certain parts of the hardware in preparation for message passing. You
accomplish this initialization through the BSMPSINIT utility. You must make this call
from your driver's initialization procedure before making any other Bootstrap Loader
Communication utility calls. The following utility description presents BSMPSINIT:

CALL BSMPSINIT

Input Parameters

This utility has no input parameters.

Output Parameters

This utility has no output parameters.

Description

The BSMPSINIT utility provides hardware initialization for the Message Passing
Controller (MPC) and the Advanced Direct Memory Access (ADMA) devices. You must
call this utility before attempting any other Bootstrap Loader Communication System
utility calls.

Condition Codes

This utility has no condition codes.

Bootstrap Loader 5-17

WRITING A CUSTOM FIRST-STAGE DRIVER

5.5.4 Send and Receive Transaction Models

Besides the request/response transaction model, the Bootstrap Loader Communication
System supports send and receive transaction models. Normally, communication between
a driver and a device in a bootloading environment uses the request/response or send
models. However, if your host CPU board can capitalize on a receive transaction model
initiated from the driver, the utility is available.

You can make calls to the send and receive utilities, respectively when you need the driver
to send a message with no request for a response., You can also call them when you need
the driver to wait for spontaneous communication from a specific device controller.

The two utilities available to you that support the send and receive transaction models are
BS$SEND and BS$RECEIVE. The following utility descriptions present BS$SEND and
BS$RECEIVE:

CALL BS$SEND (socket,control$ptr,data$adr,data$length,

Input Parameters
socket

control$ptr

data$adr

data$length

flags

5-18

flags,exception$ptr)

A DWORD of the form host$id:port$id identifying the
remote destination.

A POINTER to a control message. If data$adr = NULL
(0) or data$length = 0, then the control message is 20
bytes long. Otherwise, the control message is 16 bytes
long.

A DWORD containing the absolute address of a data
message. If data$adr is NULL (0), then a control
message is sent. Otherwise, data$adr points to a
contiguous buffer.

A WORD defining the length of the data message. If
data$length is equal to zero, the control message length
is assumed to be 20 bytes.

WORD reserved for future use. Although this
parameter is ignored, you must supply a "0" value as a
placeholder.

Bootstrap Loader

(

Output Parameter
exception$ptr

Description

WRITING A CUSTOM FIRST-STAGE DRIVER

A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.

The BS$SEND utility sends either a control or a data message to a MUL TIBUS II board
identified by the parameter socket.

Example

This example illustrates the fundamentals of message passing from the host CPU board to
the bootable device controller board. This example is written in PL/M -86 code and is
intended to be generic in nature.

1**
* This example sends a data message to the bootable *
* controller board located in slot 1 at port lF4H of *
* the MULTI BUS I I sys tern. *
* * * The control portion of the message sent is located *
* in the l6-byte data array p$control$msg (Peripheral *
* Command Message). The data portion of the message *
* sent is located in the lOO-byte data array *
* send$data. *
* * * Note that the programmer is responsible for ensuring *
* p$control$msg and the area containing the data *
* portion of the message are initialized with correct *
* data. *
**1

Bootstrap Loader 5-19

WRITING A CUSTOM FIRST-STAGE DRIVER

5-20

SAMPLE_BS$SEND: DO;

DECLARE socket
DECLARE socket$o structure

(host$id
port$id

DECLARE p$control$msg(16)
DECLARE send$data(IOO)
DECLARE data$adr
DECLARE data$length
DECLARE flags
DECLARE exception
DECLARE slot LITERALLY
DECLARE port LITERALLY
DECLARE null LITERALLY
DECLARE length LITERALLY

CODE: DO;

DWORD;

WORD,
WORD) AT (@socket);
BYTE;
BYTE;
DWORD;
WORD;
WORD;
WORD;
, IH' ;
, IF4H' ;
'OH' ;
'64H' ;

socket$o.host$id = slot;
socket$o.port$id = port;
data$length = length;
flags = null;

data$adr = CONVERT ADDRESS (@send$data(O));

(Typical code to define
the 16-byte p$control$msg block
holding the control message.)

(Typical code to define
the IOO-byte message
portion.)

CALL BS$SEND
(socket,@p$control$msg(O),data$adr,
data$length,flags,@exception);

IF exception <> 0
THEN CALL BSERROR;

END CODE;
END SAMPLE_BS$SEND;

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

Condition Codes

E$OK

BSETRANSMISSION

OOOOH

00E1H

No exceptional conditions.

An error occurred while
transmitting a MUL TIBUS II
message.

CALL BS$RECElVE (socket,control$ptr,data$adr,data$length,
exception$ptr)

Input Parameters
socket

control$ptr

data$adr

data$length

Output Parameters
exception$ptr

Description

A DWORD of the form host$id:port$id identifying the
remote sender.

. A POINTER to the area in memory that receives the
control message.

A DWORD containing the absolute address of a data
message received. If data$adr is NULL (0), then the
host CPU board expects a control message. Otherwise,
data$adr points to a contiguous buffer that receives the
data portion of the message.

A WORD defining the length of the data message
received.

A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.

The utility BS$RECEIVE enables a host CPU board to receive a message from a specific
device controller. The utilities call identifies the MBII slot to wait for, the type of message,
and addresses for the control portion and, if necessary, the data portion of the message.

To receive data messages, you must provide a buffer containing adequate space in which to
capture the data. If you do not supply a large enough buffer, the receiving CPU host
rejects the message. Also, your application must make a call to BS$RECEIVE before the
actual message is sent. No facility for queuing asynchronously received messages exist.

Bootstrap Loader 5-21

WRITING A CUSTOM FIRST-STAGE DRIVER

Example

This example illustrates the fundamentals of message passing from the bootable device
controller board to the host CPU board. This example is written in PL/M-86 code and is
intended to be generic in nature.

5-22

1**
* This example illustrates how a host CPU board *
* receives a data message from the bootable *
* controller board located in slot 1 at port lF4H of *
* the MULTIBUS II system. *
* * * The control portion of the message received is *
* located in the l6-byte array p$status$msg *
* (Peripheral Status Message). The data portion of *
* the message received is located in the l024-byte *
* data array sent$data. *
**1

SAMPLE_BS$RECEIVE: DO;

DECLARE socket
DECLARE socket$o structure

(host$id
port$id

DECLARE p$status$msg(l6)
DECLARE data$adr
DECLARE data$length
DECLARE flags
DECLARE exception
DECLARE sent$data(1024)
DECLARE slot LITERALLY
DECLARE port LITERALLY
DECLARE length LITERALLY
DECLARE null LITERALLY

CODE: DO;

DWORD;

WORD,
WORD) AT (@socket);
BYTE;
DWORD;
WORD;
WORD;
WORD;
BYTE;
'lH' ;
, lF4H' ;
, 400H' ;
'OH' ;

socket$o.host$id = slot;
socket$o.port$id = port;
data$length = length;
flags = null;

data$adr = CONVERT ADDRESS (@sent$data(O));

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

CALL BS$RECEIVE
(socket,@p$status$msg(O),data$adr,
data$length,flags,@exception);

IF exception <> 0
THEN CALL BSERROR;

END CODE;
END SAMPLE_BS$RECEIVE;

Condition Codes

(Typical code to execute
for successful status.)

OOOOH No exceptional conditions. E$OK

BSEBUFFER$SIZE OOE2H The receive data buffer posted is
too small.

BSETRANSMISSION OOEIH

Bootstrap Loader

An error occurred while
transmitting a MUL TIBUS II
message.

5-23

WRITING A CUSTOM FIRST-STAGE DRIVER

5.5.5 Message Broadcasting

Message broadcasting enables one control message to go out simultaneously to all boards
(bus agents) in the MULTIBUS II system. Recall that the identification scheme for boards
employs sockets, which have the host$id:port$id form. Host$id indicates the board
involved and port$id indicates the unique I/O port within the board. During message
broadcasting, the host$id portion of the socket is uninterpreted. Thus, the message arrives
at every board having a port identified by port$id.

The Bootstrap Loader Communication System uses the bs$broadcast utility to support
message broadcasting. The following utility description presents BS$BROADCAST:

CALL BS$BROADCAST (socket,control$ptr,exception$ptr)

Input Parameters

socket A DWORD of the form host$id:port$id identifying the remote destination.
The host$id component is ignored.

control$ptr A POINTER to the control message sent.

Output Parameter
exception$ptr

Description

A POINTER to a WORD to which the Operating
System returns the exception code generated by this
Bootstrap Loader Communication System call.

The bs$broadcast utility transmits a single control message to the MUL TIBUS II boards
having a port whose ID matches the port$id portion of the parameter socket. This
message goes out on all MULTIBUS II buses (iPSB parallel system bus and/or iSSB serial
system bus) connected to the broadcasting CPU host board.

Example

This example illustrates the fundamentals of broadcasting control messages over a
MUL TIBUS II system. This example is written in PL/M -86 code and is intended to be
generic in nature.

5-24 Bootstrap Loader

(

(

WRITING A CUSTOM FIRST-STAGE DRIVER

/**
* This example illustrates how a host CPU board *
* broadcasts a control message to all system boards *
* having a port$id of IF4H. During message *
* broadcasting, the host$id portion of socket is *
* ignored. *
* * * The control message sent is located in p$control$msg *
* (Peripheral Command Message. *
**/

SAMPLE_BS$BROADCAST: DO;

DECLARE socket DWORD;
DECLARE socket$o structure

(host$id WORD,
port$id WORD) AT (@socket);

DECLARE p$control$msg(20) BYTE;
DECLARE exception WORD;
DECLARE slot LITERALLY 'IH' ;
DECLARE port LITERALLY 'IF4H';

CODE: DO;
socket$o.host$id
socket$o.port$id

slot;
port;

CALL BS$BROADCAST
(socket,@p$control$msg(O),@exception);

Bootstrap Loader 5-25

WRITING A CUSTOM FIRST· STAGE DRIVER

IF exception <> 0
THEN CALL BSERROR;

(Typical code to execute
for successful status.)

END CODE;
END SAMPLE_BS$BROADCAST;

Condition Codes

E$OK

BSETRANSMISSION

5.5.6 Transmission Modes

OOOOH

OOE1H

No exceptional conditions.

An error occurred while
transmitting a MUL TIBUS II
message.

Data message transmissions are synchronous in that the sender of the message waits for
the receiver of the message to return a transmission status value. This value indicates
whether the receiver successfully acquired the message. Control messages, however, are
not synchronous in this manner. There is no indication to the sender that a control
message has been received. Also, related to each type of message transmission is a
transaction ID value. The communication system uses this value internally to match
requests with responses and to indicate whether the message is an rsvp message or a
non-rsvp message. If the message sent is not an rsvp message, the associated transaction
ID value is zero. If the message sent is an rsvp message, the associated transaction ID
value is a nonzero value matched to both the request and the response.

5.5.7 Interconnect Space

The Bootstrap Loader Communication System supports access to board interconnect
space. This access enables the driver to determine critical device status information. The
Bootstrap Loader Communication System provides interconnect space access through two
system utilities: BS$GEUINTERCONNECT and BS$SEUINTERCONNECf. When
you use these calls within your driver code, you must verify the value read or written from
or to the interconnect space is what you expect. The Bootstrap Loader code does not know
what "correct" values should be.

5-26 Bootstrap Loader

(

WRITING A CUSTOM FIRST-STAGE DRIVER

The following utility description presents BSGETINTERCONNECT:

value = BS$GEUINTERCONNECT (slot$number,reg$number,

Input Parameters
slot$number

reg$number

Output Parameters
value

exception$ptr

Description

exception$ptr)

A BYTE that specifies the MBII slot whose interconnect
space is to be read. You must specify this value as
follows:

0-19
20-23
24-29
30
31

Meaning

specifies iPSB slot numbers 0-19
illegal values
specifies iLBX slot numbers 0-5
illegal
specifies the iPSB slot of the CPU
that the calling software is
executing on, regardless of the
actual iPSB slot number of the
CPU

32-255 illegal values

A WORD identifying the interconnect register to be
read. This value must be between OOOOH and 01FFH
(the interconnect space definition).

A BYTE containing the contents of the interconnect
register read.

A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.

The utility BS$GEUINTERCONNECT reads the contents of the interconnect register
specified by reg$number from the board specified by slot$number and returns the contents
in the parameter value.

Example

This example illustrates the fundamentals of reading interconnect space registers. The
example is written in PL/M -86 code and is intended to be generic in nature.

Bootstrap Loader 5-27

WRITING A CUSTOM FIRST-STAGE DRIVER

5-28

/**
* This example reads the general purpose register of the *
* unit definition record within the interconnect space *
* found on the board in slot number three. Note that *
* this code does no checking of status after each call to *
* BSGETINTERCONNECT. The programmer must ensure the *
* value returned is correct. *
**/

SAMPLE_BSGETINTERCONNECT: DO;

DECLARE slot$number BYTE;
DECLARE record$offset WORD;
DECLARE unitdefrec BYTE;
DECLARE rec$length$reg$off BYTE;
DECLARE gen$status$reg$off BYTE;
DECLARE record$found BYTE;
DECLARE eot$rec BYTE;
DECLARE status WORD;
DECLARE value BYTE;
DECLARE slot LITERALLY '3R';
DECLARE udr LITERALLY 'OFER';
DECLARE gsro LITERALLY 'OAH' ;
DECLARE eotrec LITERALLY , OFFH' ;
DECLARE rlro LITERALLY 'OIR';
DECLARE ro LITERALLY '020H';

CODE: DO;
slot$number
unitdefrec
gen$status$reg$off =
eot$rec
rec$length$reg$off =

slot;
udr;
gsro;
eotrec;
rlro;

/***
* Set up to read the first nonheader record within the *
* interconnect space. This is done by establishing *
* record$offset past the interconnect space header *
* record, which in this case is 32 bytes long. *
***/

record$offset = ro;

Bootstrap Loader

(

(
\

(

WRITING A CUSTOM FIRST-STAGE DRIVER

1***
* Read the record type register (the first register *
* within a record) of the first nonheader record into *
* the variable record$found. *
***1

record$found - BS$GET$INTERCONNECT
(slot$number,
record$offset,
@status);

1**
* Determine if this first record is the record we want to *
* read from. If so, bypass the DO WHILE loop and get *
* right to reading the specific register. If not, *
* and the record is not the EOT (End Of Template) record, *
* execute the DO WHILE loop to get at the next record. *
**1

DO WHILE (record$found <> unit$def$rec) AND
(record$found <> eot$rec);

1**
* Position record$offset to read the next sequential *
* record. This is done by calling BSGETINTERCONNECT *
* to read the current record length, adding 2 (for the *
* two bytes used for the record type and record length *
* registers), and finally adding the current *
* record$offset value. Note that record$offset + *
* rec$length$reg$off yields the interconnect register *
* that holds the current record length. *
**1

record$offset = record$offset + 2 +
BSGETINTERCONNECT

(slot$number,
record$offset +
rec$length$reg$off,
@status);

1***
* Read the next record-type register into the variable *
* record$found. *
***/

Bootstrap Loader 5-29

WRITING A CUSTOM FIRST-STAGE DRIVER

record$found = BS$GET$INTERCONNECT
(slot$number,
record$offset,
@status);

END;

1**
* Call BSGETINTERCONNECT to read the general status *
* register. The exact register location is determined by *
* adding the register offset value gen$status$reg$off to *
* record$offset *
**1

value = BSGETINTERCONNECT(slot$number,
record$offset + gen$statusregoff,
@status);

END CODE;
END SAMPLE_BSGETINTERCONNECT;

Condition Codes

E$OK OOOOH No exceptional conditions.

5-30 Bootstrap Loader

(

(

\

WRITING A CUSTOM FIRST-STAGE DRIVER

The following utility description presents BSSETINTERCONNECT:

CALL BS$SEUINTERCONNECT (value,slot$number,reg$number,
exception$ptr)

Input Parameters
value

slot$number

reg$number

Output Parameters
exception$ptr

Description

A BYTE containing the value to be written into the
interconnect register.

A BYTE specifying the MBII slot whose interconnect
space is to be written. You must specify this value as
follows:

0-19
20-23
24-29
30
31

32-255

Meaning

specifies iPSB slot numbers 0-19
illegal values
specifies iLBX slot numbers 0-5
illegal value
specifies the iPSB slot of the CPU
that the calling software is
executing on, regardless of the
actual iPSB slot number of the
CPU
illegal values

A WORD identifying the interconnect register to be
written. This value must be betweem OOOOH and 01FFH
(the interconnect space definition).

A POINTER to a WORD in which the Bootstrap
Loader returns the exception code generated by this
Bootstrap Loader Communication System call.

The utility BSSETINTERCONNECT writes the interconnect register specified by
reg$number on the board specified by slot$number with the contents in the parameter
value.

Example

This example illustrates the fundamentals of writing interconnect space registers. The
example is written in PL/M-86 code and is intended to be generic in nature.

Bootstrap Loader 5-31

WRITING A CUSTOM FIRST-STAGE DRIVER

5-32

1**
* This example writes the controller initialization *
* register of the parallel system bus control record *
* within the interconnect space found on the board in *
* slot number three. Note that this code does no *
* checking of status after each call to *
* BSGETINTERCONNECT and BSSETINTERCONNECT. The *
* programmer must ensure values returned and written are *
* correct. *
* * * This example uses the same record-searching scheme *
* shown in the example for BSGETINTERCONNECT. *
**1

SAMPLE _ BS$ S ET$ INTERCONNECT: DO;.

DECLARE slot$number
DECLARE status
DECLARE record$offset
DECLARE psb$ctrl$rec
DECLARE rec$length$reg$off
DECLARE contr$init$reg$off
DECLARE record$found
DECLARE eot$rec
DECLARE host$mess$id
DECLARE slot LITERALLY
DECLARE psbcr LITERALLY
DECLARE ciro LITERALLY
DECLARE eotrec LITERALLY
DECLARE rlro LITERALLY
DECLARE hmid LITERALLY
DECLARE ro LITERALLY

CODE: DO;
slot$number
psb$ctrl$rec
contr$init$reg$off
eot$rec
rec$length$reg$off
host$mess$id

BYTE;
WORD;
WORD;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;
, 3H' ;
, 6H' ;
'DH' ;
, OFFH' ;
'OIH' ;
, AH' ;
, 020H' ;

slot;
psbcr;

= ciro;
eotrec;
rlro;

= hmid;

Bootstrap Loader

I

\

I
I
I

(
\

(

WRITING A CUSTOM FIRST-STAGE DRIVER

1***
* Set up to read the first nonheader record within the *
* interconnect space. This is done by establishing *
* record$offset past the interconnect space header *
* record, which in this case is 32 bytes long. *
***1

record$offset = ro;

1***
* Read the record type register (the first register *
* within a record) of the first nonheader record into *
* the variable record$found. *
***1

record$found = BS$GET$INTERCONNECT
(slot$number,
record$offset,
@status);

1**
* Determine if this first record is the record we want to *
* write. If so, bypass the DO WHILE loop and proceed *
* writing the specific register. If not, and the record *
* is not the EOT (End Of Template) record, execute the DO *
* WHILE loop to get at the next record. *
**1

DO WHILE (record$found <> psb$ctrl$rec) AND
(record$found <> eot$rec);

1**
* Position record$offset to read the next sequential *
* record. This is done by calling BSGETINTERCONNECT *
* to read the current record length, adding 2 (for the *
* two bytes used for the record type and record length *
* registers), and finally adding the current *
* record$offset value. Note that record$offset + *
* rec$length$reg$off yields the interconnect register *
* that holds the current record length. *
**1

record$offset = record$offset + 2 +
BSGETINTERCONNECT

(slot$number,
record$offset +
rec$length$reg$off,
@status);

Bootstrap Loader 5-33

WRITING A CUSTOM FIRST-STAGE DRIVER

1***
* Read the next record-type register into the variable *
* record$found. *
***1

END;

record$found = BS$GET$INTERCONNECT
(slot$number,
record$offset,
@status);

1**
* Call BSSETINTERCONNECT to write the controller *
* initialization register. The exact register location *
* is determined by adding the register offset value *
* contr$init$reg$off to record$offset. *
**1

CALL BSSETINTERCONNECT(host$mess$id, slot$number,
record$offset + contr$initregoff, @status);

END CODE;
END SAMPLE_BSSETINTERCONNECT;

Condition Codes

E$OK OOOOR No exceptional conditions.

5.5.8 Driver Code Considerations

When writing the first-stage driver, you must provide two procedures to the Bootstrap
Loader: a device initialization procedure and a device read procedure. To be compatible
with the Bootstrap Loader, these procedures must do the same steps as the initialization
and read procedures listed in Sections 5.2 and 5.3.

An additional requirement for driver code used in a MUL TIBUS II environment stipulates
that code using any of the utilities shown in Sections 5.5.2 through 5.5.6 belong to the
Bootstrap Loader Drivers COMPACT sub-system. The reason for this requirement is
because all the utilities are accessible as NEAR calls.

5-34 Bootstrap Loader

/

~,

('

(

WRITING A CUSTOM FIRST-STAGE DRIVER

The following partial code provides an example of how to ensure your driver code is part of
the Bootstrap Loader Driver COMPACT sub-system. In this example, the coding is shown
using the ASM86 programming language.

name bs2pci

public device init 224A
public device_read_224A

bsl_drivers_cgroup
bsl_drivers_dgroup

group
group

assume cs: bsl_drivers_cgroup
assume ds: bsl_drivers_dgroup

bsl drivers code - -bsl drivers data - -

bsl drivers data - - segment word public 'DATA'

(Typical code)

bsl drivers data ends - -
segment byte public 'CODE' bsl drivers code - -device_init_224A proc far

(Typical code)

ends

In the above example, bs2pci is the name of the driver module. You can name your driver
module any unique name you desire.

The two following public statements declare the device initialization and device read
procedures as public. These public statements enable the Bootstrap Loader code to access
them as FAR calls. Again, you can name your device initialization and read procedures
any unique name you desire.

Next, the two group statements ensure that this driver module is grouped together with the
Bootstrap Loader utilities as part of the same COMPACT sub-system. You must use the
two group names bsl drivers cgroup and bsl drivers dgroup and the two segment names
bsl drivers code and-bsl drivers data. - -- - --

Bootstrap Loader 5-35

WRITING A CUSTOM FIRST-STAGE DRIVER

Finally, the two assume statements establish the correct values for the code segment base
address and the data segment base address, cs and ds.

The following algorithm is an example that illustrates both a method of using the Bootstrap
Loader Communication System as a way of verifying a certain board is present in the
system and of using the utility BSGETINTERCONNECT. The example is written using
a pseudo code that is not meant to represent any particular programming language.

5-36

*BEGIN COMMENTS:

* * Parameters received are BOARD$ID and INSTANCE.

*
*
*
*

BOARD$ID is the identification value
of the board being looked for.

* INSTANCE is the instance of a particular
* board on the parallel bus system. This
* parameter allows for mUltiple occurrences of
* the same board within the MULTIBUS II system.

* * Parameters returned are iPSB$SLOT

* * iPSB$SLOT is the MULTIBUS II board slot when the board
* is found, or the value OFFH when the board is
* not found.

*
*
*
*
*

Note that the variable VENDOR_ID points to the
specific interconnect space register that
contains the board identification value.

*END COMMENTS:
**

* *BEGIN CODE:

* * DO until all MULTIBUS II board slots on the PSB are
* sequentially examined. Use the variable
* iPSB$SLOT as the looping variable to indicate
* the slot number for the board being examined.

*
*
*

VENDOR$ID = BS$GET$INTERCONNECT(iPSB$SLOT,
VENDOR_ID, STATUS)

Bootstrap Loader

WRITING A CUSTOM FIRST-STAGE DRIVER

* * If
* the VENDOR$ID returned is nonzero,
* a board exists in the examined slot
* then
* If
* VENDOR$ID matches BOARD$ID
* then
* If
* INSTANCE is the desired instance of
* BOARD$ID
* then
* return the iPSB$SLOT looping index to
* indicate the slot number of BOARD$ID
* else
* else
* else
* If we have checked all board slots
* then
* Return the value OFFH as the iPSB$SLOT
* parameter indicating the device
* to boot from does not exist.
* else
* Loop back to beginning to check the next
* board slot.

*
* END DO

* *END CODE:

Bootstrap Loader 5-37

WRITING A CUSTOM FIRST-STAGE DRIVER

5.6. CHANGING BS1.A86 OR BS1 MB2.A86 TO INCLUDE THE NEW
FIRST-STAGE DRIVER

The first stage of the Bootstrap Loader obtains information about the devices and their
associated device drivers from the Bootstrap Loader configuration file BS l.A86 or
BS1MB2A86. To support a custom device driver, you must add to that file a %DEVICE
macro for each unit on the device that your first-stage device driver supports. For
example, if two flexible diskette drives are attached to the device, you must add two
%DEVICE macros to the list (one for each drive). Chapter 3 describes the syntax of the
%DEVICE macro.

As an example, Figure 5-3 shows a portion of the BS l.A86 file that was changed to add
%DEVICE macros for two units supported by a custom first-stage driver (changes to
BS1MB2.A86 would occur similarly). The units have numbers 0 and 1, and their physical
names are YZO and YZ1, respectively. The name of the custom driver device initialization
procedure is NEWDEVICEINIT, and the name of the device read procedure is
NEWDEVICEREAD. Arrows to the left of the figure show the added lines.

5-38

name bsl

$inc1ude(:fl:hsl.inc)

%cpu(80386)

;iSBC 188/48 initialization of the iAPX 188
; iAPX_186_INIT(y,Ofc38h, none , 80bbh,none,003bh)

%device(bO, 0, deviceinit254, deviceread254)
%device(baO, 0, deviceinit264, deviceread264)

--> Xdevice(yzO, 0, newdeviceinit, newdeviceread)
--> Xdevice(yzl, 1, newdeviceinit, newdeviceread)

%end

Figure 5-3. Modified BSl.A86 File

Bootstrap Loader

(
\

(

WRITING A CUSTOM FIRST-STAGE DRIVER

5.7. GENERATING A NEW FIRST STAGE CONTAINING THE
CUSTOM DEVICE DRIVER

Once you have written the custom device driver and changed the Bootstrap Loader
Configuration files, you must generate a new first stage that includes the custom device
driver. To do so, follow the steps below.

1. Compile or assemble the first-stage device initialization and device read procedures.
For example, the following command assembles device read and device initialize
procedures that are assumed to be in the file NEWDRV1.A86.

- asm86 newdrvl.a86 object(newdrvl.obj)
iRMX <1/11> 8086/87/186 MACRO ASSEMBLER, V < >
Copyright 1980, 1981, 1982, INTEL CORP.
ASSEMBLY COMPLETED, NO ERRORS FOUND

2. Insert the object modules for the device read and the device initialize procedures into
the object library of the Bootstrap Loader. This library is named BS 1.LIB and is in the
directory /BSL. The following commands add the object modules generated in Step 1.

- LIB86
iRMX <1/11> 8086 LIBRARIAN V < >
Copyright < > INTEL CORPORATION
*add newdrv1.obj to jbs1.1ib
*exit

3. Attach the directory containing your local copy of the Bootstrap Loader configuration
files as the current default directory:

- attachfile :home:mybsl
:horne:rnybs1 attached AS :$:

Bootstrap Loader 5-39

WRITING A CUSTOM FIRST-STAGE DRIVER

4. Generate a new first stage by invoking the SUBMIT file named BS1.CSD. Chapter 2
describes the details of the invocation. As an example, the following command assumes
that you have chosen OCOOOH as the memory location of the first stage and OBCOOOH
as the memory location of the second stage.

- submit bsl(OCOOOH, OBCOOOH)

This step assumes that you have made appropriate changes to the BSl.CSD file as
described earlier in this chapter.

The BS1.CSD file places the resulting located Bootstrap Loader in the file BS1.

One thing to remember about this procedure is that because you added your device driver
to the object library of the Bootstrap Loader, the device driver is automatically included in
all future versions of the first stage created by BS1.CSD until BS1.LIB is upgraded in a
future release of the iRMX Bootstrap Loader.

5-40 Bootstrap Loader

WRITING A CUSTOM
THIRD-STAGE DRIVER 6

6.1 INTRODUCTION

If you plan to use the Bootstrap Loader to load iRMX II applications from a device for
which no Intel-supplied third-stage driver exists, you can make one of two choices
dependent upon the size of your loadfile:

• For loadfiles smaller than 840K bytes, use the generic third stage. The generic third
stage uses the first-stage device drivers you have already supplied. Since the loadfile
fits in the 1 megabyte address space supported in real mode, and first-stage device
drivers are able to place the load file, there is no need for you to create new device
drivers for the third stage.

• For loadfiles larger than 840K bytes, use the device-specific third stage. The device
specific third stage uses new device drivers that you must supply. These device drivers
run in protected virtual address mode enabling the loadfile to be placed using the full
16 megabyte range of addresses.

This chapter outlines the procedure for writing a third-stage driver needed for the device
specific third stage. To help you in writing your own drivers, your iRMX Operating System
package contains the source code for a working third stage driver. After installing your
iRMX system, you can find the source code in the file /BSL/BPMSCG.A86.

Bootstrap Loader 6-1

WRITING A CUSTOM THIRD-STAGE DRIVER

6.2 WHAT A THIRD-STAGE DEVICE DRIVER MUST CONTAIN

The third stage device driver, like the first stage, must contain a device initialization and a
device read procedure. For the most part, these procedures are similar to their first-stage
counterparts. However, two differences exist.

• Both procedures must be in the same code segment.

• You must also create a PUBLIC symbol that contains a pointer to the device driver
data segment. The third stage needs this information so it can create a descriptor for
the data segment, enabling the driver to access the segment in protected mode.

i
\,

When developing code for your third stage driver, you must remember that the second
stage always loads the third stage, including the drivers you write. The only type of code
that the second stage can load is code that uses the 8086 object module format (OMF-86).
Therefore, you must use 8086 tools (ASM86, PL/M-86, LINK86, etc.) to develop the third-
stage device initialization and read procedures. (

6-2

Even though you use 8086 tools to develop your driver code, the resulting initialization and
read procedures must be able to run in protected mode. One ramification of running in
protected mode is that all long pointers produced by PL/M-86 (or by any other means)
that were correct in real mode cause an ILLEGAL SELECTOR exception in protected
mode. Therefore, if you must use long pointers, your device initialization and read
procedure must determine if the processor is in protected mode. If protected mode is
active, the procedure must replace all the selector portions of long pointers with a new
selector that is valid in protected mode.

You can determine the processor mode by using the following assembly code:

DB OFH,OlH,OE3H ;Opcode for the ASM286 instruction
;SMSW BX. You must use
;DB OFH,OlH,OE3H because SMSW is an
;ASM286 instruction unrecognized by
;ASM86.

AND BX, OlH ;Examine lowest bit of MSW to see if
; CPU is running in PVAM.

JZ REAL ;No, not running in PVAM .

. code to override ;Yes, running in PVAM.
selectors of

. long pointers ;

Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

If your driver code is going to operate in a non-MSA MULTIBUS II environment, two
additional driver code constraints exist. First, you must follow the MUL TIBUS II
transport protocol for communication between the driver and the device controller you
bootstrap load from. You can accomplish this by using Bootstrap Loader Communication
System utility calls within your driver code. Second, you must organize your driver code so
it belongs to the BSL-Drivers COMPACT sub-system. This last requirement is necessary
because the Bootstrap Loader Communication System utilities are all NEAR calls.

The next two sections describe the interface these procedures must present to the third
stage. The sections after that describe how to supply configuration information to the
driver and how to generate a third stage that includes the new driver.

Bootstrap Loader 6-3

WRITING A CUSTOM THIRD-STAGE DRIVER

6.3 DEVICE INITIALIZATION PROCEDURE

6-4

The device initialization procedure must present the following PL/M-86 interface to the
third stage:

device$init: PROCEDURE (unit) WORD PUBLIC;
DECLARE unit WORD;

(code as described below)

END device$init;

where:

device$init

unit

The name of the device initialization procedure. You can choose any
name you wish for this procedure, as long as the names of other third
stage procedures do not conflict.

The device unit number as defined during Bootstrap Loader
configuration.

The WORD value returned by the procedure must be the device granularity, in bytes, if the
device is ready, or zero if the device is not ready.

The third-stage device driver initialization procedure, (like the first-stage device
initialization procedure) must do the following operations:

1. Test to see if the device is present. If the device is not present, return the value zero.

2. Initialize the device for reading. This is a device-dependent operation. For guidance
in initializing the device, refer to the hardware reference manual for the device.

3. Test to see if device initialization was successful. If it was not, return the value zero.

4. Read the device volume label to obtain the device granularity. (For information on
the location and organization of the volume label, see the iRM)(® Disk Verification
Utility Manual.)

5. If the attempt to obtain the device granularity was successful, return the device
granularity. Otherwise, return the value zero.

NOTE

Besides the above five steps, the procedure must follow MUL TIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these two requirements.

Bootstrap Loader

(
I ,

I
I

(

WRITING A CUSTOM THIRD-STAGE DRIVER

Notice that the functions of the first-stage and the third-stage device initialization
procedures are the same. Therefore, you can take two courses of action to provide a
device initialization procedure for the third-stage custom driver.

1. You can allow the first-stage custom driver and the third-stage custom driver to share
the same data segment. Here, the third-stage device initialization procedure is
redundant because the device was initialized by the first stage and any data in the data
segment remains valid.

Because the third stage calls the device initialization procedure regardless of your
intentions, you must supply a third-stage driver device initialization procedure even if
it is redundant. However, the device initialization procedure can be an empty routine
whose only function is to return the device granularity read from the common data
segment.

2. You can require the first-stage and third-stage drivers to use different data segments.
Then, the first-stage and third-stage initialization procedures must independently
initialize their respective data segments. With this arrangement, you must provide
two complete device initialization routines. However, because their functions are
identical (except for assigning a value for the data segment), you can use the same
code for both procedures.

Bootstrap Loader 6-5

WRITING A CUSTOM THIRD-STAGE DRIVER

6.4 DEVICE READ PROCEDURE

6-6

The device read procedure must present the following PL/M-86 interface to the third
stage:

device$read: PROCEDURE (unit, blknum, bufptr) PUBLIC;
DECLARE unit WORD;
DECLARE blk$num DWORD;
DECLARE buf$ptr POINTER;

(code as described below)

END device$read;

where:

device$read The name of the device read procedure. You can choose any name you
wish for this procedure, as long as it does not conflict with the names of
any other third-stage procedure.

unit

blk$num

buf$ptr

The device unit number as specified during Bootstrap Loader
configura tion.

A 32-bit value specifying the number of the block that the Bootstrap
Loader wants the procedure to read. Each block is of device granularity
size, with the first block on the device being block o.
A 32-bit pointer to the buffer in which the device read procedure must
copy the information it reads from the secondary storage device.

The device read procedure does not return a value to the caller. It simply reads data from
the bootstrap device and places it in the memory location specified by the buf$ptr
parameter.

The third-stage and first-stage device read procedures do similar functions. Therefore, you
may want to create the third-stage read procedure by doing modifications on the first-stage
read procedure (if, for instance, it has already been written and is located in PROM). If
the first-stage read procedure does not yet exist, you can write the third-stage read
procedure first. Then modify it to create the first-stage procedure.

Unlike the Bootstrap Loader first stage, the third stage has no built-in facilities for
reporting I/O errors. That is, the device driver cannot call BS$ERROR. Therefore, if you
require I/O error reporting, you must write a complete custom error-checking mechanism
and include it in the device read procedure. (For an explanation of BS$ERROR, refer to
Chapter 3.)

Bootstrap Loader

\

/
(
\

(

WRITING A CUSTOM THIRD-STAGE DRIVER

To be compatible with the Bootstrap Loader, the device read procedure must do the
following steps:

1. Save the third stage DS (the data segment selector of the calling routine), and then
copy the driver data segment selector from the AX register into the DS register.
(When calling the device read procedure, the third stage puts the driver data segment
selector in the AX register.) The device read procedure must do this function
immediately.

Because register manipulation is not possible with high-level languages (such as
PL/M -86), you must write this portion of the device read procedure in assembly
language (ASM86).

2. Check whether the processor is in real or protected mode. If the processor is in
protected mode, you may want to initialize other selectors to appropriate values
(buf$ptr for example). Assuming Step 1 has already been accomplished, you need not
initialize the code (CS), data (DS), and stack (SS) registers. These registers will
already be set correctly.

3. Read the block (specified by the blk$num parameter) from the bootstrap device
(specified by the unit parameter) and place the data in the memory location specified
by the buf$ptr parameter.

4. Restore the third stage data segment selector to the DS register. As with Step 1, you
must write this code in assembly language, because it involves register manipulation.

NOTE

In addition to the above steps, the procedure must follow MUL TIBUS II
transport protocol and belong to the BSL-Drivers COMPACT sub-system if the
driver functions in a MULTIBUS II environment. Refer to Section 5.5 for
more information on these two requirements.

Bootstrap Loader 6-7

WRITING A CUSTOM THIRD-STAGE DRIVER

6.5 PROTECTED MODE CONSIDERATIONS

6-8

Because you develop your driver procedures using 8086 tools and run the procedures in
protected mode, you should keep several items in mind:

• When the third stage calls the device read procedure, it puts the driver data segment
selector in the AX register. When first called, the device read procedure must save the
DS used by the caller (the third stage data segment selector), and then copy the driver
data segment selector from the AX register into the DS register. Before exiting, the
procedure must restore the original contents of the DS register. If you are writing in
assembly language, you can do this operation as follows:

THE$DEVICE$READ PROC FAR
PUSH BP ;Get Addressability to

MOV BP, SP
PUSH DS
MOV DS, AX.

POP DS
POP BP
RET 8

THE$DEVICE$READ ENDP

; arguments

;Save third stage DS
;Get local data segment

;Perform the device read
; functions

;Restore third stage DS
;Restore BP
; Return

If you are writing code in a high-level language (such as PL/M-86), you still must code this
function in assembly language. The reason for this restriction is because higher level
languages do not allow you to manipulate registers directly. You can, however, combine
assembly language with your high-level language by writing an assembly language "shell"
that handles the register manipulation and then calls a PL/M-86 procedure to do the other
device read functions. For instance, the following example saves the third stage DS, calls a
high-level language routine to do the device read, and restores the third stage DS register
before returning.

Bootstrap Loader

,I
I

(

WRITING A CUSTOM THIRD-STAGE DRIVER

THE$OEVICE$REAO PROC FAR
PUSH BP ;Get Addressability to

MOV BP, SP
PUSH OS
MOV OS, AX

CALL PLMREAO

POP OS
POP BP
RET 8

THE$OEVICE$REAO ENOP

; arguments

;Save third stage OS
;Get local data segment

;Call a PLM procedure to
;perform the
;device functions

;Restore third stage OS
;Restore BP
; Return

• Be careful when changing DS, SS, CS, or ES registers while in protected mode. They
point to valid entries in the global descriptor table (GDT) that were prepared for your
driver by the third stage. If you change any of these registers, the new value must be a
valid GDT entry or an ILLEGAL SELECTOR or a GENERAL PROTECTION
exception will occur.

• Do not link your code to PLM86.LIB, because the compiler issues long calls to
procedures in that library. These long calls cause exceptions when the calls are
attempted in protected mode.

• The buf$ptr parameter the third stage passes to the device read procedure is a valid
pointer in real mode only. You can pass this value to the device as a physical address,
but do not try to use it as a pointer in protected mode. If you require a pointer, replace
the buff$ptr selector with the third stage DS value. This DS value is intact when the
device read procedure is called.

Bootstrap Loader 6-9

WRITING A CUSTOM THIRD-STAGE DRIVER

6.6 SUPPLYING CONFIGURATION INFORMATION TO THE
THIRD-STAGE DRIVER

Like a first-stage device driver, all third-stage drivers require configuration information
about the devices they support. You can provide this information either by hard-coding it
into the driver or by creating a special configuration file for the device. Both of these
techniques are the same for the first and third stages. Refer to the section in Chapter 5
entitled "Supplying Configuration Information to the First Stage" for descriptions of these
techniques.

If you decide to create configuration files for your first-stage and third-stage drivers, you
should probably use a single configuration file for each device and link it to both the first
stage and third-stage drivers. The device-specific information is the same for both drivers,
and keeping the information in a single file prevents you from giving conflicting
information to the two drivers. You can include the configuration file by editing BS3.CSD
to assemble and link the configuration file to the third stage. Refer to Section 5.4.2 for an
example that shows the similar first-stage process.

6.7 USING MULTIBUS® II TRANSPORT PROTOCOL

If the driver you are creating functions within a MUL TIBUS I environment, you need not
read this section. Skip to Section 6.8.

If the driver you are creating functions within a MUL TIBUS II environment, you must
write the driver code to use the MUL TIBUS II message transport protocol. To help you
with this task, Intel provides a small, single-thread communication system. This enables
Bootstrap Loader drivers to communicate with device controllers within a MUL TIBUS II
environment. This system is called the Bootstrap Loader Communication System, and is a
subset of the Nucleus Communication System.

Concerning adherence to the MUL TIBUS II transport protocol, requirements for third
stage device drivers and first-stage device drivers are identical. Thus, you should refer to
Section 5.5 for an overview of the Bootstrap Loader Communication System, the available
Bootstrap Loader Communication System utilities, and guidance in writing the device
initialization and device read procedures.

For a more complete description of Bootstrap Loader Communication System concepts
similar to Nucleus Communication System concepts, refer to the iRM)(® II Nucleus User's
Guide.

6-10 Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

6.8 CHANGING BS3.A86 TO INCLUDE THE NEW THIRD-STAGE
DRIVER

The device-specific third stage obtains information about the device and its associated
device driver from the Bootstrap Loader configuration file BS3.A86. To support a custom
device driver, you must add to that file a %DEVICE macro for each unit on the device that
your first-stage device driver supports. For example, if two flexible diskette drives are
attached to the device, you must add two %DEVICE macros to the list (one for each
drive). Chapter 4 describes the syntax of the %DEVICE macro.

Figure 6-1 shows a portion of the BS3.A86 file that was changed to add %DEVICE macros
for two units supported by a custom third-stage driver. The arrows in the figure indicate
the changes. The new units have numbers 0 and 1, and their physical names are YZO and
YZl, respectively. (These physical names must match the names used in the %DEVICE
macros in the first-stage configuration file BS l.A86 or BS IMB2.A86.) The name of the
custom driver device initialization procedure is NEWDEVICEINIT, and the name of the
device read procedure is NEWDEVICEREAD. The public name of the driver data
segment is DATA _ NEWDEV.

$include (:fl:bs3cnf.inc)

%device (O,wO,deviceinitmscgen,devicereadmscgen,data_msc)
%device (l,wl,deviceinitmscgen,devicereadmscgen,data_msc)
%device (8,wfO,deviceinitmscgen,devicereadmscgen,data_msc)
%device (9,wfl,deviceinitmscgen,devicereadmscgen,data_msc)
%device (O,baO,deviceinit264,deviceread264,data_264)

--> %device(O, yzO, newdeviceinit, newdeviceread, data_newdev)
--> %device(l, yzl, newdeviceinit, newdeviceread, data_newdev)

;int1
%int3
;ha1t

%cpu_board (286/12)

%end

Figure 6-1. Changing the BS3.A86 File

Bootstrap Loader 6-11

WRITING A CUSTOM THIRD-STAGE DRIVER

6.9 GENERATING A NEW THIRD STAGE CONTAINING THE
CUSTOM DRIVER

Once you have written the custom device driver and changed the Bootstrap Loader
Configuration files, you must generate a device-specific third stage that includes the
custom device driver. To do so, do the following steps. (These steps assume that you use
an iRMX system to develop your code.)

1. Compile or assemble the third-stage device initialization and device read procedures.
For example, the following command assembles the device read and device
initialization procedures in the file NWDRV3.A86.

- asm86 nwdrv3.a86 object(nwdrv3.obj)
iRMX II 8086/87/186 MACRO ASSEMBLER, V < >
Copyright <years> INTEL CORP.
ASSEMBLY COMPLETED, NO ERRORS FOUND

2. Insert the object modules for the device read and the device initialize procedures into
the Bootstrap Loader object library. This library is named BS3.LIB and is in the
directory /BSL. The following commands add the object modules generated in Step
1.

- LIB86
iRMX II 8086 LIBRARIAN V < >
Copyright <years> INTEL CORPORATION
*add nwdrv3.obj to fbslfbs3.1ib
*exit

3. Attach the directory containing the Bootstrap Loader configuration files as the
current default directory:

6-12

- attachfile :home:mybsl
:home:mybsl, attached AS .$. ..

Bootstrap Loader

WRITING A CUSTOM THIRD-STAGE DRIVER

4. Generate a new third stage by invoking the SUBMIT file named BS3.CSD. Chapter 3
describes the details of invoking BS3.CSD. As an example, the following command
names the new third stage "NEW3STG," and locates it at memory location OBCOOOH.

- submit BS3(new3stg, OBCOOOH)

This step assumes that you have made any appropriate changes to the BS3.CSD file
that are required to support any configuration files you might have designed.

Bootstrap Loader 6-13

ERROR HANDLING 7
7.1 INTRODUCTION

If the bootstrap loading process is unsuccessful, the Bootstrap Loader initiates error
handling procedures. Notification of failures occurring during the loading process depends
on the configuration of the first and third stages. This chapter describes the Bootstrap
Loader's error handling facilities.

7.2 ANALVZING BOOTSTRAP LOADER FAILURES

The Bootstrap Loader can display messages at the terminal when bootstrap loading is
unsuccessful. As discussed in Chapter 3, the %CONSOLE, %TEXT, and %LIST macros
in the BSERR.A86 file determine if messages are displayed when errors occur during the
first and second stages, how detailed the messages are, and under what circumstances they
are displayed. As Chapter 4 explains, the third stage automatically determines if a monitor
is present, and if so, displays error messages at the terminal regardless of the first stage
configuration.

The following sections describe what happens when a bootstrap loading error occurs and
how to analyze the error. There are two situations described: error analysis when messages
are displayed, and error analysis when no messages are displayed.

7.2.1 Actions Taken by the Bootstrap Loader After an Error

After responding to an error by pushing a word onto the stack and optionally displaying a
message, the Bootstrap Loader either tries again, passes control to a monitor, or halts. If
the error is detected in the first or second stage, the action taken depends on whether your
BSERR.A86 file contains an %AGAIN, %INTl, %INTI, or %HALT macro. If the error
is detected in the third stage, the action taken depends on whether your third stage
configuration file contains an %INTl, %INTI, or %HALT macro.

Bootstrap Loader 7-1

ERROR HANDLING

The only difference between the device-specific and generic third stages is that the generic
third stage never generates the error code "Device Not Supported" (refer to error code 34
later in this chapter). This is because the generic third stage supports all the devices
supported by the first stage. If you invoke the Bootstrap Loader with a device name not
supported by the first stage, the generic third stage will never even get loaded into memory.

7.2.2 Analyzing Errors With Displayed Error Messages

7-2

If your BSERR.A86 file contains the %CONSOLE, %TEXT, or %LIST macro, then the
Bootstrap Loader displays an error message at the terminal whenever a failure occurs in
the bootstrap loading process. The message consists of one or two parts. The first part,
always displayed, is a numerical error code. The second part is a short description of the
error. Although the second part is always displayed for third stage errors, it is displayed
for first and second stage errors only if the % TEXT or %LIST macro is included.

Each numerical error code has two digits. The first digit indicates, if possible, the stage of
the bootstrap loading process in which the error occurred. The second digit distinguishes
the types of errors that can occur in a particular stage. There are four possible values for
the first digit.

First Digit

o
1
2
3

Can't tell
First
Second
Third

The error codes, their abbreviated display messages, and their causes and meanings are as
follows.

Error Code: 01
Description: I/O ~rror

An I/O error occurred at some undetermined time during the bootstrap loading
process.

Bootstrap Loader

ERROR HANDLING

If the %CONSOLE macro is included, the Bootstrap Loader places a code in the high
order byte of the word it pushes onto the stack, so you can further diagnose the
problem. This byte identifies the driver for the device that produced the error, as
follows:

08H
15H

18H
25H
51H
54H
OEOR
other (in range AOH-DFH)

Driver

208
MSC (with or
without 218A)
218A on CPU board
186/224A
251
254 or 264
SCSI
driver for your custom
board

Note that this device code is overwritten when the description is printed if the %TEXT
or %LIST macro is included.

The last entry in the list of device codes assumes that you have written a device driver
for your device and have identified the driver by some code in the indicated range -
other values are reserved for Intel drivers. For information about how to incorporate
this code into the driver, see Chapter 5.

Error Code: 11
Description: Device not ready.

Th,e specific device designated for bootstrap loading is not ready. This error occurs
only when your BSERR.A86 file does not contain the %AUTO macro. Therefore,
either the operator has specified a particular device or only one device is in the
Bootstrap Loader's device list, and the device is not ready.

Error Code:
Description:

12
Device does not exist. (If BSERR.A86 contains the %LIST macro,
the display then shows the list of known devices.)

The device name entered at the console has no entry in the Bootstrap Loader's device
list. This error occurs only when your BSERR.A86 file contains the %MANUAL
macro and you enter a device name, but the device name you enter is not known to the
Bootstrap Loader. After displaying the message, the Bootstrap Loader displays the
names of the devices in its device list.

Bootstrap Loader 7-3

ERROR HANDLING

7-4

Error Code: 13
Description: No device ready.

None of the devices in the Bootstrap Loader's device list are ready. This error occurs
only when your BSERR.A86 file contains the %AUTO or %MANUAL macro and you
do not enter a device name at the console.

Error Code: 21
Description: File not found.

The Bootstrap Loader could not find the indicated file on the designated bootstrap
device. This is the default file if no pathname was entered at the console. Otherwise, it
is the file whose pathname was entered. In iRMX II systems, the Bootstrap Loader
could not find the third stage.

Error Code: 22
Description: Bad checksum.

While trying to load the target file (the application system for iRMX I systems, or the
third stage for iRMX II systems), the Bootstrap Loader encountered a checksum error.

Each file consists of mUltiple records. Associated with each record is a checksum value
that specifies the numerical sum (ignoring overflows) of the bytes in the record. When
the Bootstrap Loader loads a file, it computes a checksum value for each record and
compares that value to the recorded checksum value. If there is a discrepancy for any
record in the file, it usually means that one or more bytes of the file have been
corrupted, so the Bootstrap Loader returns this message instead of continuing the
loading process.

Error Code: 23
Description: Premature end of file.

The Bootstrap Loader did not find the required end-of-file records at the end of the
target file (the application system for iRMX I systems, or the third stage for iRMX II
systems).

Error Code: 24
Description: No start address found in input file.

The Bootstrap Loader successfully loaded the target file but was unable to transfer
control to the file, because initial CS and IP values were not present.

Bootstrap Loader

(

(
\

(

ERROR HANDLING

Error Code: 31
Description: File not found.

The third stage was unable to find the target file on the designated bootstrap device.
Regardless of the way you invoked the Bootstrap Loader, the target file is expected to
have a .286 extension.

Error Code: 32
Description: Bad checksum.

The third stage encountered a checksum error while trying to load the target file.

Error Code: 33
Description: Premature end of file.

The third stage reached end-of-file earlier than expected while attempting to load the
target file.

Error Code: 34
Description: Device not supported.

The specified device is not supported by the device-specific third stage. That is, there
is no %DEVICE macro invocation for this device in the BS3.A86 file.

Error Code: 35
Description: Invalid file type.

The target file is not a protected mode bootloadable file (usually produced by
BLD286).

7.2.3 Analyzing Errors Without Displayed Error Messages

In most cases, you can determine the cause of a Bootstrap Loader failure by observing the
behavior of the Bootstrap Loader when it fails to load the application successfully. You
can then take steps to correct the failure. Table 7-1 lists some common behaviors and
possible causes for failure. The table assumes that the Bootstrap Loader is set up to halt if
it detects an error. Before halting on entering the monitor, the Bootstrap Loader places
the error code into the CX register.

Another possible cause of failure, the effects of which are unpredictable, is that the device
controller block (as determined by the device's wake-up address) can be corrupted. To
avoid this type of failure, ensure that neither the Bootstrap Loader nor the target file
overlaps the device controller block for the device.

Bootstrap Loader 7-5

ERROR HANDLING

Table 7-1. Postmortem Analysis of Bootstrap Loader Failure

Behavior of Loader Possible Causes

Bootstrap loading fails in The indicated device is not ready or is not
the first stage. known to the Bootstrap Loader.

An I/O error occurred during the first stage
operation.

Bootstrap loading fails in The indicated file is not on the device.
the second stage.

The file has no end-of-file record or no start
address.

The file contains a checksum error.

An I/O error is occurring during the second
stage operation.

Bootstrap Loader enters The Bootstrap Loader is attempting to load
second stage, but does not the system, or third stage, on top of the
halt or pass control to the second stage.
file it loads.

The second stage is attempting to load the
, file into nonexistent memory.

Bootstrap loading fails in The designated file with a .286 extension was
the third stage. not found on the device.

The third stage reached an end-of-file earlier
than expected.

The file contained a checksum error.

An I/O error occurred during the third stage
operation.

The Bootstrap Loader is attempting to load
the second stage on top of the Protected
Mode third stage.

7-6 Bootstrap Loader

ERROR HANDLING

7.2.4 Initialization Errors

If an error occurs during the initialization of one of the layers of the iRMX I or II
Operating System, an error message will be displayed at the console. The message lists the
name of the layer whose initialization failed, and gives the iRMX exceptional condition
code that indicates the cause of the failure. The following is an example of the type of
message that will be displayed:

HI INITIALIZATION: 0021H

Interrupt 3 at 0280:54D8

The messages you see will be similar to this one.

Refer to the Operator's Guide to the iRMX® Human Inteiface for more information about
the condition codes.

Bootstrap Loader 7-7

(

AUTOMATIC A
BOOT DEVICE RECOGNITION

A.1 INTRODUCTION

Automatic Boot Device Recognition (ABDR) allows the iRMX I or iRMX II Operating
System to recognize the device from which it was bootstrap loaded and to assign a logical
name (normally :SD:) to represent that device.

If you use this feature, you can configure versions of the Operating System that are device
independent, that is, versions you can load and run from any device your system supports.

This section describes the ABDR feature in detail. It combines information found in other
iRMX manuals and answers the following questions:

• How does Automatic Boot Device Recognition work?

• How do you configure a version of the Operating System that includes this feature?

Bootstrap Loader A-I

AUTOMATIC BOOT DEVICE RECOGNITION

A.2 HOW AUTOMATIC BOOT DEVICE RECOGNITION WORKS

The Nucleus, the Extended I/O System, and the Bootstrap Loader combine to provide the
Automatic Boot Device Recognition feature, as follows:

1. The Bootstrap Loader, after loading the Operating System, places a pointer in the
DI:SI register pair. This pointer points to a string containing the name of the device
from which the system was loaded. The name it uses is the one supplied as a
parameter in the %DEVICE macro when the Bootstrap Loader was configured.

2. The Bootstrap Loader sets the CX and DX registers to the value 1234H. This value
signifies that the pointer contained in the DI:SI register pair is valid.

3. The root job checks CX and DX and then, if both contain 1234H, uses the pointer in
DI:SI to obtain the device name. The Root Job sets a Boolean variable to indicate
whether it found the name of the boot device. If CX contains 1234H and DX contains
1235H, the iRMX root job will execute an INT3 instruction before any other code in
the Operating System is executed (the debug switch was set).

4. The Nucleus checks the Root Job's Boolean variable and, if true (equal to OFFH),
places the device name in a segment and catalogues that segment in the root job's
object directory under the name RQBOOTED. If it is false (equal to 0), nothing is
catalogued in the Root Job's directory. The absence of RQBOOTED from the Root
Job's directory indicates the system was not bootloaded or that ABD R was not
selected.

5. The Extended I/O System looks up the name RQBOOTED and, if successful, obtains
the device name from the segment catalogued there. If the name RQBOOTED is not
catalogued in the root directory, the Extended I/O System uses a default device name
specified during the configuration of the Extended I/O System (DPN prompt of the
"ABDR" screen).

6. The Extended I/O System attaches the device as the system device. It assigns it the
logical name that you must have specified during the configuration of the Extended
I/O System (DLN prompt on the "ABDR" screen).

A-2 Bootstrap Loader

AUTOMATIC BOOT DEVICE RECOGNITION

A.3 HOW TO INCLUDE AUTOMATIC BOOT DEVICE RECOGNITION

This section describes the operations you must perform to include the ABDR feature in
your application. The operations include

• The ABR prompt on the "EIOS" screen (Figure A-1) affects whether the ABDR
feature will be included in your application. If you set ABR to "no," the Extended I/O
System does not attach a system device. If you set ABR to "yes," the Extended I/O
System automatically attaches the system device. The ICU displays another screen
(shown in Figure A-2) that lets you specify the characteristics of the system device.

EIOS
--> (ABR) Automatic Boot Device Recognition [Yes/No]

(IBS) Internal Buffer Size [O-OFFFFh]
(DDS) Default 10 Job Directory Size [5-3840]
(ITP) Internal EIOS Task's Priorities [0-255]
(PMI) EIOS Pool Minimum [O-OFFFFH]

Yes
0400H
50
131
0180H

(PMA) EIOS Pool Maximum [O-OFFFFH]
(CD) Configuration directory [1-45 characters]

OFFFFFH
:SD:RMX286/CONFIG or
:SD:RMX86/CONFIG

Figure A-I. EIOS Configuration Screen (ABR)

• If you set ABR to "yes," the ICU displays the screen shown in Figure A-2. On this
screen, you must specify the characteristics of the system device via the DLN, DPN,
DFD, and DO prompts. For the DLN, DFD, and DO prompts, you must not supply
this information later in the "Logical Names" screen.

With the DLN prompt, you can specify the logical name for your system device. The
Extended I/O System creates the logical name you specify only if you set ABR to ''yes.''
Intel recommends not changing from the default.

With the DPN prompt, you specify the physical name of a device you want to use as
your system device if the Extended I/O System cannot find the name RQBOOTED
catalogued in the root object directory. This normally occurs when you load your
system using a means other than the Bootstrap Loader. For example, if you transfer
the Operating System to your target system via the iSDM monitor, there is no
bootstrap device. Then, the Extended I/O System uses the device name specified in
the DPN prompt as the system device.

Bootstrap Loader A-3

AUTOMATIC BOOT DEVICE RECOGNITION

A-4

With the DFD and DO prompts, you set other characteristics associated with the
system device. For most cases, the defaults (DFD = Named and DO = OOOOH) are the
preferred values.

(ABDR)
--->(DLN)
--->(DPN)
--->(DFD)
--->(DO)

Automatic Boot Device Recognition
Default System Device Logical Name [1-12 chars]
Default System Device Physical Name [1-12 chars]
Default System Device File Driver [P/S/N/R]
Default System Device Owners ID [O-OFFFFH]

Figure A-2. ABDR Screen (DLN, DPN, DFD, DO)

SD
wO
Named
OOaOH

• During configuration of the Basic I/O System, you must specify device-unit
information for the devices you wish to support. One of the prompts on each "Device
Unit Information" screen (NAM) requires you to specify the name of the device-unit.
Another parameter (UN) requires you to specify the unit number. (See Figure A-3 for
an example of these prompts.) To enable the ABDR feature to work correctly, you
must assign device-unit names and unit numbers that match the device names and unit
numbers assigned during Bootstrap Loader configuration.

• You assign the Bootstrap Loader device names and unit numbers by including or
modifying %DEVICE macros in the first-stage configuration file (BS1.A86 or
BSIMB2.A86). With the ICU, you can define device-unit names and unit numbers
other than those that are valid for the Bootstrap Loader. However, each Bootstrap
Loader device name must have a corresponding device-unit name, and the unit
numbers must be the same.

Before you can use the ABDR feature, you must format your system device using the
FORMAT command. The iRMX® Interactive Configuration Utility Guide describes how to
set up your system device for use with the current release.

Bootstrap Loader

(

/
\

"

(
\

(,

AUTOMATIC BOOT DEVICE RECOGNITION

(IMSC) Mass Storage Controller Device-Unit Information
(DEV) Device Name [1-16 Characters]

--->(NAM) Device-Unit Name [1-14 chars]
(PFD) Physical File Driver Required [Yes/No]
(NFD) Named File Driver Required [Yes/No]
(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFI) 8 or 5 inch Disks [8/5]
(SUF) Standard or Uniform Format [StandardjUniform]
(GRA) Granularity [O-OFFFFH]
(DSZ) Device Size [O-OFFFFFFFFH]

--->(UN) Unit Number on this Device [O-OFFH]
(UIN) Unit Info Name [1-16 Chars]
(RUT) Request Update Timeout [O-OFFFFH]
(NB) No. of Buffers [nonrand = O/rand = l-OFFFFH]
(CUP) Common Update [True/False]
(MB) Max Buffers [O-OFFH]

YES
YES
DOUBLE
DOUBLE
8
STANDARD
OIOOH
07C500H
OOOOH

0096H
0008H
TRUE
OFFH

Figure A-3. Device-Unit Information Screen (NAM and UN)

Bootstrap Loader A-5

AUTOMATIC BOOT DEVICE RECOGNITION

A.4 HOW TO EXCLUDE AUTOMATIC BOOT DEVICE RECOGNITION (

A-6

To configure a system that does not include the ABDR feature, set the ABR prompt in the
"EIOS" screen to "no" (see Figure A-I). This disables the ABDR feature.

When you set ABR to "no", the ICU will not display the ABDR screen. Therefore, you
must provide information for the DLN, DPN, DFD, and DO prompts as input to the
"Logical Names" screen. Figure A-4 shows an example of this screen after it has been filled
in to include a logical name for the system device. The boldfaced information in Figure A-
4 is the information you would supply if you set the ABR prompt in Figure A-I to "no" and
you want the system device to be a flexible diskette drive controlled by an iSBC 208 device
controller.

(LOGN) Logical Names
Logical Name - log_name,device_name,file_driver,owners-id

[1-12 Chars], [1-14 Chars], [P/S/N/R],[O-OFFFFH]
[1] Logical Name - BB BB, PHYSICAL, OR
[2] Logical Name - STREAM ,STREAM, STREAM OR
[3] Logical Name - LP LP, PHYSICAL, OR

--->[4] Logical Name = SD ,AFO, NAMED OH

Figure A-4. Logical Names Screen

Bootstrap Loader

(

(

PROMMING THE BOOTSTRAP B
LOADER AND THE iSDM lM MONITOR

B.1 INTRODUCTION

Chapter 2 stated that one of the ways to prepare the Bootstrap Loader for use is to
combine it with one of the Intel monitor packages and burn the combined code into
PROM. This appendix supplies information about combining the Bootstrap Loader and
the iSDM monitor. The iSDAr System Debug Monitor User's Guide also contains
information about this process.

B.2 INCORPORATING THE iSDM MONITOR

This section gives the instructions required to place the first stage and the iSDM monitor
into two 27128 EPROM devices. You can modify this example to suit your own ,purposes,
or you can follow it exactly. Refer to the iPPS@ PROM Programming Software User's Guide
for detailed information about the commands. The step-by-step procedure is as follows:

1. Attach the directory in which you generated the first stage as your default directory.

2. Enter the name of the (version 1.4 or later) software used with the iUPP Universal
PROM Programmer:

ipps

3. Specify that the PROMs are 27128 EPROM devices:

type 27128

4. Initialize the file type to be loaded:

initialize 86

This says that the load file is an 8086 Object Module Format file (which the first stage
and the iSDM monitor are).

Bootstrap Loader B-1

PROMMING THE BOOTSTRAP LOADER AND THE iSDMN MONITOR

5. Specify that the even-numbered bytes of the BS1 (first stage) file are to go into (
EPROM 0 and the odd-numbered bytes are to go into EPROM 1. (The address

. FE400H is an example value which is compatible with most configurations of the
iSDM R3.2 monitor. The upper bound of the format range is OFFF7FH, the highest
memory location the Bootstrap Loader can use when combining it with the iSDM
monitor. The upper bound also applies to all previous versions of the iSDM 86 or
iSDM 286 monitors. Always check the monitor and Bootstrap Loader memory maps
before burning the addresses into the PROM devices. Also, be sure that the
addresses you use do not collide. The numbers 3, 2, and 1 match IPPS prompts for
defining the information.)

format :fl:bsl(OFE400H,OFFF7FH)
3
2
1
o to bsl.evn
1 to bsl.odd
<cr>

6. Program the PROMs with the iSDM monitor before you program the Bootstrap
Loader. This process is described in the iSDAr System Debug Configuration and
Installation Manual.

7. Tell the software to program one EPROM with even-addressed bytes. Use the
following formula to determine the address to use:

address = «address of first stage) - (start address of EPROM pair))/2

Therefore:

address = (FE400H - F8000H)/2 = 3200H

The IPPS command is as follows:

copy :fl:bsl.evn to prom(3200H)

8. Do the same for the odd-numbered bytes.

copy :fl:bsl.odd to prom(3200H)

9. Exit the IPPS program.

exit

As a further example for step number six above, the formula below determines the address
to specify when using 27512 EPROM devices:

address = (FE400H - OEOOOOH)/2 = OF200H

B-2 Bootstrap Loader

(

(

\

D-MON386 MONITOR C
C.1 OVERVIEW

Intel Modules Development Platforms are delivered with the Bootstrap Loader's first
stage, the D-MON386 monitor, and the SCT in the PROM devices.

You can specify a load file:

• When the monitor has issued a prompt. In this case, you can enter the monitor's
BOOT (bootstrap) command, followed by the name of the load file (include the name
within double quotes if you are using the D-MON386 monitor).

If you need to specify a load file that is different from the default one, use the following
format for the specification:

':device:pathname' (D-MON386)

However, if the processor is running in protected virtual address mode (as it is when the
iRMX II Operating System is in control), you cannot boot another system by breaking to
the monitor and issuing a boot command. You must first reset the system. After resetting
the system, you can invoke the Bootstrap Loader at the monitor prompt.

Example: Assume that an iRMX II system resides in the file /SYSTEM/MYSYS.286 on
drive: WFO:, and that the third stage of the Bootstrap Loader resides in the file
/SYSTEM/MYSYS. If the processor is in real address mode, you can boot this system by
issuing the following command at the D-MON386 monitor prompt:

boot ':wfO:/system/mysys'

Bootstrap Loader C-l

./
\

/.1
\

(

"

(

%Again 3-29, 3-31
%Auto 3-15
%Auto configure memory 3-11
%B2083-33
%B2153-34
%B218A3-35
%B220 3-34
%B2513-37
%B2543-38
%B2643-38
%Bist 3-9
%BMPS3-12
%BSCSI3-40
%BSERR.A86 3-29
%CICO 3-19
%Clear SDM extensions 3-18
%Console 3-15, 3-29, 3-30
%Console 7-1, 7-2
%CPU 3-12
%CPU board 4-7,4-13
%Defaultfile 3-17
%Device 3-24,4-9,5-38,6-11
%End 3-28, 3-29, 3-32, 4-7, 4-15
%Halt 3-29, 3-32, 4-7, 4-13
%iAPX 186 INIT3-14
%Installation 4-7, 4-14
%INT1 3-29, 3-31, 4-7, 4-12
%INTI 3-29, 3-31, 4-7, 4-13
%List 3-29, 3-30, 7-1, 7-2
%Loadfile 3-17
%ManuaI3-15
%Retries 3-18
%SASI unit info 3-42, 4-11
%Serial channel 3-20
%Text 3-29, 3-30
%Text 7-1, 7-2

Bootstrap Loader

INDEX

Index-l

INDEX

A
Actions taken by the Bootstrap Loader after an error 7-1
Altering BS3.A86, custom drivers 6-11
Analyzing Bootstrap Loader Failures 7-1, 7-6
Analyzing errors with displayed error messages 7-2
Analyzing errors without displayed error messages 7-5
Automatic boot device recognition A-1
Automatically configuring memory 3-11

B
B204.A86 3-33
B206.A86 3-33
B208.A86 3-2, 3-33
B215.A86 3-2, 3-33, 4-3
B218A.A86 3-2, 3-33
B251.A86 3-2, 3-33
B254.A86 3-2, 3-33
B264.A86 3-2, 3-33, 4-3
B552A.A86 3-2
BG3.A86 4-3, 4-4

default file 4-7
editing 4-4
excluding macros 4-4

BG3.CSD 4-3
default file 4-17
invocation 4-18
modification 4-17

Board-scan algorithm 5-36
Boot device recognition A-1
Booting iRMX I and iRMX II Operating Systems from the same volume 1-4
Bootstrap Loader Communication System 5-11, 6-10
Bootstrap Loader Driver COMPACT sub-system 5-35
BR3.A864-3

default file 4-7
BR3.CSD 4-3

default file 4-18
invocation 4-18

BS$BROADCAST 5-24
BS$GEUINTERCONNECT 5-26, 5-27
BS$RECEIVE 5-21

Index-2 Bootstrap Loader

I
I

/
I

'\

(

(

BS$SEND 5-18, 5-19
BS$SEND$RSVP 5-13, 5-14
BSSETINTERCONNECf 5-26,5-31
BS l.A86 3-2, 3-3, 5-38

custom drivers 5-38
editing 3-8

BS l.CSD 3-2, 3-45
default file 3-45
invocation 3-48
modification 3-47

BS3.CSD
modification 4-17

BS3.A86 4-3, 4-4, 6-11
editing 4-4
excluding macros 4-4

BS3.CSD 4-3, 4-16
default file 4-16
invocation 4-18

BSCSI.A86 3-2, 3-33
BSERR.A86 3-2
BSERR.A867-1
Built-In Self Test (BIST) 3-9

C
Chip mode configuration 3-14
Chip select configuration 3-14
Choosing a third stage 2-7
CI routines 3-19, 3-20
Clearing the iSDM monitor command extensions 3-18
CO routines 3-19,3-20
Condition codes

BS$BROADCAST 5-26
BSGETINTERCONNECf 5-30
BS$RECEIVE 5-23
BS$SEND 5-21
BS$SEND$RSVP 5-17
BSSETINTERCONNECf 5-34

Configuration files for custom drivers 5-7
Configuration 3-1, 4-1
Configuring the Message Passing System 4-8
Configuring the third stage 4-1

Bootstrap Loader

INDEX

Index-3

INDEX

Configuring memory 3-11
Configuring the processor board type 4-13
Configuring the Message Passing System 3-12
Configuring the first stage 3-1
Controlling error message display 3-29
Conventions vi
CPU board configuration 4-13
CPU type 3-12
CS register integrity 6-9
Custom drivers

altering BS3.A86 6-11
BS 1.A86 alterations 5-38
configurCustom first stage drivers 5-1

Custom third stage drivers 6-1

D
Debug option 2-3
Default BG3.csd file 4-17
Default BG3.A86 file 4-7
Default BR3.A86 file 4-7
Default BR3.csd file 4-18
Default BS l.CSD 3-45
Default BS3.CSD file 4-16
Default BSERR.A86 file 3-29
Defining a bootable device, third stage 4-9
Defining bootable devices, first stage 3-24
Defining SASI bus initialization sequences 3-42, 4-11
Device driver configuration files 3-33
Device drivers,first stage 3-26
Device drivers 1-2, 1-8, 1-9
Device initialize procedure 5-1, 5-3, 6-2, 6-4
Device initialization requirements, first stage 5-3
Device initialize requirements, third stage 6-4
Device read requirements, first stage 5-4
Device read procedure 5-1, 5-4, 6-2, 6-6
Device read requirements, third stage 6-7
Device-specific third stage 1-5

SUBMIT file (BS3.CSD) 4-16
Displayed error messages 7-2
Displaying error messages 3-29
Displaying the load file pathname 3-17
Driver code considerations 5-34
Drivers, custom 5-1

Index-4 Bootstrap Loader

E
Editing BSl.A86 3-8, 5-38
Error codes

01 7-2
11 7-3
127-3
137-4
21 7-4
227-4
237-4
247-4
31 7-5
327-5
337-5
347-5
357-5

Error message display 3-29
Error procedures 3-2,3-9,3-29, 7-1
Errors during initialization 7-7
ES register integrity 6-9
Example

board-scan algorithm 5-36
BS$BROADCAST 5-24
BSGETINTERCONNECf 5-27
BS$RECEIVE 5-22
BS$SEND 5-19
BS$SEND$RSVP 5-14
BSSETINTERCONNECf 5-31
maintaining DS register integrity 6-8
modified BSl.A86 file 5-38

Excluding a device driver 3-27,3-48
Excluding automatic boot device recognition A-6
Excluding BS l.A86 macros 3-8

F
Failures 7-1
First stage 1-1, 1-3

BS1.CSD 3-45
BS l.CSD configuration file 3-45
configuration 3-1
configuration file

Bootstrap Loader

INDEX

Index-S

INDEX

configuration files 3-2
custom drive
default BSERR.A86 file 3-29
defining a bootable device 3-24
device driver configuration files 3-2

G
Generating a new third stage containing the custom driver 6-12
Generating a new first stage containing the custom device driver 5-39
Generating the third stage 4-16
Generating the first stage 3-45
Generic third stage 1-5

SUBMIT file (BG3.CSD) 4-17

H
Halting the Bootstrap Loader during errors, first stage 3-32
Halting the Bootstrap Loader during errors, third stage 4-13
Handling errors 7-1

during bootloading 3-29
Hard-coding custom driver configuration information 5-6
How automatic boot device recognition works A-2
How to choose a third stage 2-7
How to configure the third stage 4-1
How to configure the first stage 3-1
How to define a device to boot from, first stage 3-24
How to display the load file pathname 3-17
How to exclude automatic boot device recognition A-6
How to include automatic boot device recognition A-3
How to indicate a default load file 3-17
How to write a custom third stage driver 6-1
How to write a custom first stage driver 5-1

Identifying the serial channel 3-20
Including automatic boot device recognition A-3
Incorporating the iSDM monitor B-1
Initialization errors 7-7

Index-6 Bootstrap Loader

(
\

/'

(

(

Intel-supplied first stage drivers 3-26
Intel-supplied device drivers 3-33
Intel-supplied BR3.A86 file 4-7
Intel-supplied BG3.A86 file 4-7
Intel-supplied Bootstrap Loader device drivers 1-9
Intel-supplied third stage drivers 4-10
Intel-supplied third stage files 2-8
Interconnect space 5-26
Interrupt

INTI 3-31, 4-12
INT3 3-31, 4-13

Invocation from the iSDM monitor 2-2
Invoking the BS l.CSD submit file 3-48
Invoking the BS3.CSD, BG3.CSD BR3.CSD submit files 4-18
ISBC 204 Driver 3-26
ISBC 206 driver 3-26
ISBC 208 General Driver 3-26
ISBC 208 Specific Driver 3-26
ISBC 215 Driver 4-10
ISBC 215 General Driver 3-26
ISBC 215 Specific Driver 3-26
ISBC 251 Driver 3-26
ISBC 254 Driver 3-26
ISBC 264 Driver 3-26,4-10
ISBX 218A Driver 3-26
ISDM extensions, clearing 3-18
ISDM monitor B-1

L
Load file 1-6

pathname specification 2-1
Loading the Bootstrap Loader into memory 2-5
Location of second stage 1-3
Location of first stage 1-3

M
Memory locations of the first and second stages 3-50

of the three stages 4-20
used by the Bootstrap Loader 1-10

Bootstrap Loader

INDEX

Index-7

INDEX

Message broadcasting 5-24
Message Passing System configuration 3-12, 4-8
Message types 5-12
Modifying the BS1.CSD submit file 3-47
Modifying the BS3.CSD and BG3.CSD submit files 4-17
Monitor entry after third stage 4-14
MUL TIBUS II environment 5-34, 6-3
MUL TIBUS II transport protocol 5-2, 5-11, 6-3, 6-10

N
Naming the load file 1-6
Naming the third stage 1-6

o
Operator's role 2-1

p
Placing the Bootstrap Loader into memory 2-5
Programmatically loading the fIrst stage 2-5
PROMing the Bootstrap Loader and the iSDM monitor B-1
Protected mode considerations 6-8
PS4-8

R
Receive transition model 5-18
Remote third stage SUBMIT file (BR3.CSD) 4-18
Request/response transition model 5-12
Retries for ready devices 3-18

S
SASI bus initialization sequence definition 3-42, 4-11
SASI controller 3-42, 4-11
SCSI controller 3-42, 4-11
SCSI driver 3-26
Searching for a ready device 3-18
Second stage 1-1, 1-4

error procedures 7-2
failure 7-6
location 1-3
location 1-10
location 3-50
location 4-20
size 1-4

Index-8 Bootstrap Loader

(

(
\ ,

(

Send transition model 5-18
Serial channel identification 3-20
Serial communication 3-20

base port 3-21
baud counter 3-22
counter base port 3-22
counter type 3-21
error messages 3-24
flags 3-23

Serial controller device 3-21
Software interrupt (INT1) 3-31, 4-12
Software interrupt (INTI) 3-31, 4-13
Specifying a default load file 3-17
Specifying how the first stage identifies the file the second stage loads 3-15
Specifying standalone CI and CO routines 3-19
Specifying the booting CPU type 3-12
Specifying the processor board type 4-13
Specifying the load file pathname 2-1
Specifying the device on which the load file exists 3-15
SS register integrity 6-9
Supplying configuration information to the first stage driver 5-6
Supplying configuration information to the third stage driver 6-10
Supplying your own device driver 3-44, 4-15
Supported 5.25-inch diskettes 3-27
Supported 8-inch diskettes 3-27
Supported device drivers 3-33
Supported devices 1-9
Supported first stage device drivers 3-26

T
Third stage 1-2, 1-4

altering BS3.A86, custom drivers 6-11
BG3.CSD configuration file 4-17
choosing 2-7
device drivers 1-8
device-specific support 1-5
device-specific1 -5
generic 1-5
Intel-supplied 2-8
location 1-4, 1-10
naming 1-6

Bootstrap Loader

INDEX

Index-9

INDEX

Third-stage device driver
initialization procedure 6-4

Transaction ID value 5-26
Transmission status 5-26
Transmission modes 5-26

U
User-supplied drivers 3-44, r-supplied drivers 4-15
Using the Bootstrap Loader 2-1
Using the iSDM debug option 2-4

W
Writing a custom first stage driver 5-1
Writing a custom third stage driver 6-1

Index-lO

!
I
\

(

(

Bootstrap Loader

REQUEST FOR READER'S COMMENTS

i RMX~ Bootstrap Loa(
Reference Mam

462921-C

Intel's Technical Publications Departments attempt to provide publications that meet the needs of a
Intel product users. This form lets you participate directly in the publication process. Your commen"
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of th
publication. If you have any comments on the product that this publication describes, please contac
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestior
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types 0

publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAM~DEPARTMENT ___ ~

ADDRESS PHONE (
--~--~--------~

CITY STATE ZIP CODE --------------------------- -------------------
(COUNTRY)

Please check here if you require a written reply. 0

E'D LIKE YOUR COMMENTS ...

is document is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
mments and suggestions become the property of Intel Corporation.

'ou are in the United States, use the preprinted address provided on this form to return your
mments. No postage is required. If you are not in the United States, return your comments to the Intel
les office in your country. For your convenience, international sales office addresses are printed on
~ last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OM SO Technical Publications, MS: HF3·72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11.1 •• 1 ••• 1 ••• 11 •• 111.1'111.1'1111 •• 11'111 •• 1'11 •• 11

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

(

(

(

(

(

INTERNATIONAL SALES OFFICES

INTEL CORPORATION
3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris
1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

Neve Sharet

P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN

Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN
Intel Sweden A.B.

Dalvaegen 24
S-171 36 Sol na

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
0-8000 M u nchen

(

(

inter

•
•
•
•
•
•
•
•
•
•
•
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• •
• •
• •
• •

•

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

INTEL CORPORATION
3065 Bowers Avenue

•
•
•
•
•

Santa Clara, California 95051
(408) 987-8080

• •
• •
• •
• •
• •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

