
inter

• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

Guide to the iRMX® I
Interactive Configuration
Utility

Order Number: 462923-001

Guide to the iRMX® I
Interactive Configuration

Utility

Order Number: 462923-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright ~ 1980,1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent oflntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
genius intel iSSB Ripplemode
1 Intel376 iSXM RMX/80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTI BUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTI MODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks oflnternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980,1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89
~,

iii/iv

PREFACE

INTRODUCTION

This manual describes the Interactive Configuration Utility (ICU) and explains its use. It
does not explain each screen displayed by the ICU. For a description of the ICU screens
and their parameters, refer to the iRMJ(@ I Interactive Configuration Utility Reference
Manual.

READER LEVEL

The manual assumes that you are familiar with the monitor and keyboard from which you
run the ICU. It is also helpful if you are familiar with the following:

• The iRMX® I Operating System

• PL/M-86

• LINK86 and LOC86

MANUAL OVERVIEW

This manual is organized as follows:

Chapter 1 This chapter provides introductory material to configuring an
iRMX I system using the Interactive Configuration Utility (ICU).

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A

AppendixB

AppendixC

Guide to the ICU

This chapter describes how to generate a system.

This chapter describes how to prepare application jobs.

This chapter provides overview information on how to add users to
your system. For detailed information on adding users, refer to the
Operator's Guide to the iRMJ(@ Human Interface.

This chapter describes how to load and test the system.

This appendix lists files created by the ICU.

This appendix shows an example configuration session.

This appendix describes how to program a generated 286-based
system into PROM devices.

v

PREFACE

CONVENTIONS

vi

This manual uses the following conventions:

• Information appearing as UPPERCASE characters when shown in keyboard examples
must be entered or coded exactly as shown. You may, however, mix lower and .
uppercase characters when entering the text.

• Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol for variable fields.

• User input appears in one of the following forms:

as blue text

1:[t[[[[::::::.::~:~[:[[::[§P:¥4[:[::[[P::~·~~:::[[[~[~~~J.n[t[:::![:t::[!:~P~:~~:::::[::[::[::[:::::::[:t[:d
• All numbers unless otherwise stated are assumed to be decimal. Hexadecimal numbers

include the "H" radix character (for example, OFFH).

Guide to the ICU

CONTENTS

Chapter 1. Introduction to Configuration

1.1 Introduction ... 1-1
1.2 What is Configuration .. 1-1
1.3 When to Use the ICU .. 1-2
1.4 ICU Location ... 1-2
1.5 The General Process of Using the ICU .. 1-3
1.6 What to Do Before Invoking the ICU .. 1-4

1.6.1 Configuration Environment .. 1-4
1.6.2 Ensuring the ICU Files are on Your Hard Disk ... 1-5
1.6.3 Choosing Your Definition File ... 1-7
1.6.4 Checking Access Rights to Definition Files ... 1-7

1.7 Distinguishing ICU-Generated Files .. 1-10
1.7.1 Creating Directories for iRMX@ I-Based Systems ... 1-10
1.7.2 Using the Prefix Option ... 1-11

1.8 Invoking the ICU .. 1-12
1.8.1 Invocation Error Messages ... 1-13

1.9 What to Do After Invoking the ICU ... 1-15
1.9.1 Help Command ... 1-17
1.9.2 Change Command .. 1-18
1.9.3 Generate Command ... 1-20
1.9.4 List Command ... 1-20
1.9.5 Save Command .. 1-21
1.9.6 Quit Command .. 1-21
1.9.7 Exit Command ... 1-22
1.9.8 Replace Command ... 1-22
1.9.9 Detail-Level Command ... 1-23
1.9.10 Backup Command .. 1-24
1.9.11 Aborting ICU Commands ... 1-25

1.10 Changing a Definition File .. 1-25
1.10.1 Explanation of the Basic Screen Elements ... 1-26
1.10.2 Entering File Names, Address Values, and Integer Constants 1-28
1.10.3 Help Messages ... 1-29
1.10.4 Screen Formats ... 1-29

1.10.4.1 Fixed Screen Formats .. 1-29
1.10.4.2 Repetitive Screen Formats .. 1-29
1.10.4.3 Repetitive-Fixed Screen Formats .. 1-30

Guide to the leu vii

CONTENTS

Chapter 1. Introduction to Configuration (continued)

1.11 Screen Editing Commands for the ICU ... 1-31
1.11.1 Deleting Data on a Repetitive Screen Format .. 1-34
1.11.2 Inserting Data on a Repetitive Screen Format ... 1-36
1.11.3 Deleting a Repetitive-Fixed Screen .. 1-37

1.12 ICU Error Messages .. 1-42
1.12.1 Interactive Error Messages ... 1-42
1.12.2 Internal ICU Errors ... 1-43

1.13 Upgrading Definition Files ... 1-44
1.14 The ICUMRG86 Utility .. 1-46

1.14.1 Invoking ICUMRG86 .. 1-49
1.14.2 ICUMRG86 Example .. 1-50
1.14.3 ICUMRG86 Error Messages ... 1-50

Chapter 2. Generating Your System

2.1 Introduction ... 2-1
2.2 Generating Configuration Files ... 2-1
2.3 Executing the Submit File ... 2-4

2.3.1 Assembling the Configuration Files .. 2-4
2.3.2 Linking the Individual Subsystems .. 2-4
2.3.3 Warning Messages .. 2-5
2.3.4 Second-Stage of the ICU ... 2-6
2.3.5 Error Messages ... 2-7
2.3.6 Libraries for the System RAM and PROM Code .. 2-8

Chapter 3. Preparing Application Jobs

3.1 Introduction ... 3-1
3.2 Preparing Application Code ... 3-1

3.2.1 Language Requirements ... 3-2
3.2.2 Include Files ... 3-2

3.3 General System Layout ... 3-3
3.3.1 System 1"ype ... 3-4
3.3.2 Low or High Location of Modules .. 3-4

3.3.2.1 Locating Your Applications Low in RAM ... 3-4
3.3.2.2 Locating Your Applications High in RAM .. 3-5

3.3.3 Locating the Subsystems .. 3-7
3.3.4 Reading a Locate Map .. 3-8
3.3.5 Preparing a Memory Map Worksheet .. 3-10

3.4 Linking and Locating Application Jobs .. 3-13

viii Guide to the ICU

CONTENTS

Chapter 3. Preparing Application Jobs (continued)

3.4.1 Linking Application Jobs ... 3-14
3.4.2 Locating Application Jobs ... 3-16

3.5 Linking and Locating Jobs in a RAM/PROM-Based System 3-17
3.5.1 Minimizing the Memory Address Space ... 3-17
3.5.2 Locating the PROM/RAM-Based System ... 3-18

3.5.2.1 Preparing a Memory Map ... 3-19
3.5.3 Locating the Application Modules .. 3-20
3.5.4 Testing the System in RAM .. 3-20

Chapter 4. Adding Users to Your System

4.1 Introduction ... 4-1
4.2 The Resident User .. 4-1
4.3 Non-Resident Users ... 4-1

Chapter 5. Loading and Testing the System

5.1 Introduction ... 5-1
5.2 Loading Your System Into RAM ... 5-1
5.3 Initializing Your System .. 5-1

5.3.1 Initialization ... ~ 5-1
5.3.2 System Initialization Errors .. 5-3

5.3.2.1 Nucleus and Memory Initialization Errors ... 5-4
5.3.2.2 Root Task Errors .. 5-5
5.3.2.3 System Debugger Initialization .. 5-5
5.3.2.4 Basic I/O System Initialization .. 5-6
5.3.2.5 Application Loader Initialization ... 5-7
5.3.2.6 Extended I/O System Initialization ... 5-7
5.3.2.7 Universal Development Interface Initialization .. 5-7
5.3.2.8 Human Interface Initialization ... 5-8

5.4 Testing Your System .. 5-9
5.4.1 Using the Debugging Tools ... 5-9

5.4.1.1 Advantages of the iRMX@ I Dynamic Debugger .. 5-9
5.4.1.2 Advantages of the ICE™-86A and 121CE™ In-Circuit Emulator 5-9
5.4.1.3 Advantages of the iRMX@ I System Debugger ... 5-10

5.4.2 Debugging Application Jobs ... 5-10
5.4.2.1 Summary of Configuration .. 5-10
5.4.2.2 Configuration and Debugging ... 5-11
5.4.2.3 The Technique ... 5-11
5.4.2.4 Freezing the Base of the Data Segment ... 5-11
5.4.2.5 Freezing the Entry Points .. 5-13

Guide to the ICU ix

CONTENTS

Appendix A. Files Created by the ICU

A.l Introduction ... A-l
A.2 Created Files ... A-l

Appendix B. Example System Configuration

B.l Introduction .. B-l
B.2 The Intel-Supplied Definition File ... B-l
B.3 Differences Between the Target and Start-Up Systems ... B-2
B.4 Steps Performed to Create the Target System ... B-2
B.5 Using the ICU to Defme the Target System ... B-3
B.6 Booting the Example System ... B-31

Appendix C. Programming an iRMX@ I System Into PROM Devices

C.l Introduction .. C-l
C.2 Requirements ... C-l
C.3 Configuring a ROM-Based System .. C-2
C.4 Generating/Building the System .. C-9

C.4.1 Including the iSDMlM Monitor and the Bootstrap Loader
in the PROM Devices ... C-ll

C.4.1.1 Generating the iSDM Monitor ... C-12
C.4.1.2 Generating the Bootstrap Loader .. C-12

C.4.2 Setting Up the iUP 201 PROM Programmer .. C-14
C.4.3 Formatting the Operating System PROM Files .. C-14
C.4.4 Programming the PROM Devices ... C-16
C.4.5 Starting the Operating System in ROM from the iSDMlM Monitor C-20

C.S Hardware Jumper Modifications ... C-21

Index

x Guide to the leu

CONTENTS

Tables

1-1. iRMX® I ICU Files ... 1-6
1-2. Screen Names ... 1-19
1-3. Integer Constant Formats .. 1-29
1-4. Special Editing Commands .. 1-32
2-1. Files Created by the G[enerate] Command ... 2-3
3-1. Locate Map File Names ... 3-7
3-2. Interface Libraries as a Function ofPL/M-86 Models and Subsystems 3-15
5-1. Order of Initialization ... 5-3
A-I. Files Created by the ICU and SUBMIT File ... A-l

Figures

1-1. Location of the ICU Directory in an Intel-supplied System .. 1-2
1-2. First Step: Editing a Definition File .. 1-3
1-3. Second Step: Generating a Submit File and Source Files .. 1-4
1-4. ICU Flowchart ... 1-38
1-5. Merging Intel Device Drivers .. 1-47
1-6. Merging User Devices .. 1-48
3-1. Reserved Memory Locations for MUL TIBUS® I Systems ... 3-3
3-2. Locating Your Application Low in RAM ... 3-5
3-3. Locating Your Application High in RAM .. 3-6
3-4. ROOT.MP2 File .. 3-9
3-5. System Memory Map Worksheet ... 3 -11
3-6. Sample Worksheet .. 3-12
3-7. Application Job Link and Locate Procedure .. 3-13
3-8. Memory Layout of a RAM-based System .. 3-18
3-9. Memory Layout of a PROM/RAM System ... 3-19
5-1. SDB.MP2 Locate Map ... 5-6
5-2. How To Freeze The Base Of The Data Segment .. 5-12
5-3. Special Module Freezes Entry Points .. 5-13
5-4. Location Of The Special Module ... 5-14
B-1. Registration Message Screen ... B-4
B-2. Main Menu Screen ... B-5
B-3. The Intel Device Drivers Screen ... ~ B-5
B-4. Query Screen for the iSBX 350 Device .. B-6
B-5. Line Printer - iSBXN 350 Device Screen .. B-6
B-6. Completed Line Printer - iSBXN 350 Device Screen ... B-7
B-7. Query Screen for another iSBXN 350 Device .. B-7
B-8. Query Screen for iSBXN 350 Device-Unit Information ... B-7
B-9. Line Printer - iSBXN 350 Device-Unit Information Screen .. B-8
B-I0. Completed Line Printer - iSBXN 350 Device-Unit Information Screen B-8

Guide to the ICU xi

CONTENTS

Figures (continued)

B-11. Query Screen for 8251A Terminal Driver ... B-9
B-12. 8251A Terminal Driver Screen .. B-9
B-13. Completed 8251A Terminal Driver Screen ... B-10
B-14. Query Screen for another 8251A Terminal Driver .. B-10
B-15. Query Screen for 8251A Terminal Driver Units .. B-11
B-16. 8251A Terminal Driver Unit Information Screen .. B-11
B-17. Completed 8251A Terminal Driver Unit Information SCreen B-12
B-18. Query Screen for another 8251A Terminal Driver Unit ... B-12
B-19. Query Screen for 8251A Terminal Driver Dums .. B-12
B-20. 8251A Terminal Driver Device-Unit Information Screen .. B-13
B-21. Completed 8251A Terminal Driver Device-Unit Information Screen B-13
B-22. Intel Device Drivers Screen .. B-14
B-23. iSB(:®544A Driver Screen ... B-14
B-24. Completed iSBC@ 544A Driver Screen .. B-15
B-25. Intel Device Drivers Screen .. B-15
B-26. Query Screen for Deleting iSB(:®208 Driver Screens .. B-16
B-27. iSB(:®208 Driver Screen .. B-16
B-28. Query Screen for iSB(:®208 Devices ... B-16
B-29. Generate File Names Screen ... B-17
B-30. New Generate File Names Screen .. B-17
B-31. ICU Main Menu Screen .. B-18
B-32. Generation Phase ICU Screen ... B-19
B-33. Output of Submit File for SAM86.CSD ... B-21
C-1. ICULOC.CSD File ... C-10
C-2. ICUROT.CSD File ... C-11
C-3. PROM86.CSD File ... C-15
C-4. ROM.CSD File .. C-16
C-5. COPY1ST.CSD File ... C-16
C-6. COPYLAST.CSD File .. C-17

xii Guide to the ICU

INTRODUCTION TO CONFIGURATION 1
1.1 INTRODUCTION

The iRMX® I Operating System is modular in structure, enabling you to include or omit
subsystems according to your needs. It is also compatible with a variety of peripheral
boards. The Interactive Configuration Utility (ICU) is designed to help you take
advantage of this flexibility.

This chapter provides an ovetview of the ICU. It explains the configuration process,
configuration environment, ICU files, ICU commands, error messages, the utilities that
comprise the ICU, and more. The chapter includes many important details for using the
ICU. Intel recommends that you read this chapter carefully before attempting to configure
your system.

1.2 WHAT IS CONFIGURATION

Configuration is the process of selecting your application's hardware and operating system
layers and then linking and locating the entire operating system. The tool used for
configuration is the Interactive Configuration Utility (ICU). The ICU is a menu-driven
utility which presents a series of screens that prompt you for information. The information
is stored in.a definition file that is then used to generate the new system.

The objective of running the ICU is to build a definition file that contains all of the
configuration information. This file contains two kinds of information:

• Initialization parameters

• A set of variables specifying which operating system layers and device drivers are to be
linked together with your application software

Intel provides six definition files you can use as a starting point. If you run the UPDEF86
Utility supplied with this release, you can also use a definition file from iRMX 86, Release
7. As you perform the configuration process, you alter the chosen definition file to match
your target system.

Guide to the leu 1-1

INTRODUCTION TO CONFIGURATION

1.3 WHEN TO USE THE ICU

You should use the ICU whenever one of the following is true:

• You want to generate the configuration files that describe your system.

• You are using a system other than one described by an Intel-supplied definition file.

• You are changing an existing system's hardware and/or software (for example, adding
a new disk drive).

1.4 ICU LOCATION

1-2

The ICU files are located in the directory :SD:RMX86/ICU (see Figure 1-1). When
working with the ICU, you must use the full pathname in each command or create an alias
for the pathname.

:SD:

• • • ------+------- ••• -------,

800t86 RMX86

leu

W-0931-1

Figure 1-1. Location of the ICU Directory in an Intel-supplied System

Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.5 THE GENERAL PROCESS OF USING THE ICU

You configure a system in three steps:

1. Interactively modify a defmition file (see Figure 1-2). To do this, invoke the ICU
and then supply information to fill in screens that the ICU presents. (This step can
be omitted if your system matches one of the Intel-supplied definition files.)

2. When you finish configuring the operating system, use the ICU to generate new
configuration files as defmed ~ your modified definition file (see Figure 1-3). The
end product is a group of files that define the system.

3. Exit from the ICU, and at the Human Interface level, execute the submit file created
by the ICU during the generate step (see Step 2). This creates the new version of the
operating system which can then be loaded and executed.

Default or Other
Old

Description
File

Guide to the ICU

Questions Answers

Figure 1-2. First Step: Editing a Dermition File

New
Description

File

W-0932-1

1-3

INTRODUCTION TO CONFIGURATION

Final
Description File

Generate
Command

Submit
File

Configuration
Source Files

W-0933-1

Figure 1-3. Second Step: Generating a Submit File and Source Files

1.6 WHAT TO DO BEFORE INVOKING THE ICU

Before you invoke the ICU, you must perform checks on your existing system and make
several decisions. The following sections provide the information you need to know before
invoking the ICU.

1.6.1 Configuration Environment

1-4

You can run the ICU on an iRMX I-based system with 1 Mbyte of RAM memory (which
allows a user partition of 384K bytes), a hard disk, and the iRMX I Operating System. For
information on changing the amount of memory allocated to a user, see the section on
editing the :CONFIG: USER/username file in the Operator's Guide to the iRMX.@ Human
Inteiface.

Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.6.2 Ensuring the leu Files are on Your Hard Disk

Contained on the iRMX I Operating System release diskettes or tape are the files to run
the ICU. These files must be on the hard disk before you can invoke the ICU. Follow the
instructions in the iRMX® I Hardware and Software Installation Guide to copy these files to
your system.

Table 1-1 lists all of the files required to run the Interactive Configuration Utility for
iRMX I systems and for iNDX systems. Check that your hard disk contains all of the files
required by your system. If your hard disk does not contain the required files, return to the
instructions in the iRMX® I Hardware and Software Installation Guide. Following the
directions in that manual will place all the iRMX I files into the standard directory
structure.

Guide to the ICU 1-5

INTRODUCTION TO CONFIGURATION

Table 1-1. tRMX@1 ICU Files

Function Filename

ICU86 - first stage ICU86

ICU86 - second stage ICU86.862

Screen Master File ICU86.SCM

Template File for System Generation ICU86.TPL

Update Definition Utility UPDEF86

User Device Support Utility UDS86

UDS Screen Master File UDS86.SCM

Template example - (minimum UDS TEMPLATE 1.UDS
input file)

Template example - (UDS input file TEMPLATE 2.UDS
containing user help built into help text)

ICUMRG86 Utility ICUMRG86

Files containing registration information REGISTER.lCU
that is displayed when you invoke the ICU. REGISTER.MSG

Definition file for an iRMX I Multi-User System 8635.DEF
designed to run on 8086-based micro-
computers

Definition file for an iRMX I Multi-User System 18603a.DEF
designed to run on the iSBc® 186/03A board

Definition file for an iRMX I Multi-User System 18651.DEF
designed to run on the iSBC 186/51 board

Definition file for an iRMX I Multi-User System 18848.DEF
designed to run on the iSBC 186/48 board

Definition File for an iRMXI Multi-User System 28612.DEF
designed to run on the iSBC 286/1 o (A) and iSBC
286/12 boards

Definition File for an iRMX I Multi-User System 38620.DEF
designed to run on the iSBC 386/2X and
iSBC 386/3X boards

Definition file used if the input-file ICU86.DEF
specified during invocation does not exist.

1-6 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.6.3 Choosing Your Definition File

If you have never configured an iRMX-based system before, you should choose one of the
Intel-supplied, multi-user definition files (listed in Table 1-1) as input into the ICU. You
can build a definition file screen by screen, but you will save time by starting with a
standard definition file. Details on the standard defmition files are given in the iRMX® I
Hardware and Software Installation Guide.

If you created a definition file using an iRMX 86 Release 7.0 version of the ICU, you can
use this file as input to the iRMX 1.8 ICU only after running the UPDEF86 Utility. Once
you create an iRMX 1.8 definition file, you cannot use it as input into the iRMX 86
Release 7.0 ICU.

The Intel-supplied definition files define 8086-,80186-,80188-,80286- and 3861W-based
MUL TIBUS I systems. These systems are fully configured multi-user iRMX I Operating
Systems. Each layer implements all its system calls and most of the features and drivers
provided by the iRMX I Operating System. Multiple users can communicate with the
operating system interactively through a terminal or via an application program, and can
access secondary storage. The definition files include UDI so that you can run languages,
such as PL/M-86, PASCAL, and FORTRAN.

To define your own system, modify the definition file that comes closest to your needs. To
see the contents of a definition file, use the LIST command (described later in this
chapter). Details of board configuration and interrupt levels are given in the iRMX® I
Hardware and Software Installation Guide.

1.6.4 Checking Access Rights to Definition Files

If you use the ICU on an iRMX I-based system, the operating system makes sure you have
the proper access to both the definition files and their respective directories .. This check is
performed in two instances: when you invoke the ICU and when you enter the G
(generate) command (discussed in a later section). If you do not have proper access, one
or more of the following situations can occur:

• The ICU will be unable to read the input definition file.

• The ICU will be unable to save the changes you make during the ICU session.

• The ICU will be unable to create the generation files necessary to complete the
configuration process.

Following the installation instructions in the iRMX® I Hardware and Software Installation
Guide ensures that the user WORLD can generate a new version of the operating system.

Guide to the ICU 1-7

INTRODUCTION TO CONFIGURATION

1-8

To check your access rights to directories and files contained in directories, use the DIR
command followed by the E[xtended] or L[ong] options. For example, you can check your
access rights to the :SD:RMX86/ICU directory and the 28612.DEF file by using the
following commands:

- DIR :SD:RMX86 E[xtended] <CR>
- DIR :SD:RMX86/ICU E[xtended] <CR>

For more information on using the Human Interface commands, see the Operator's Guide
to the iRMX® Human Interface.

The access rights needed to use the ICU successfully vary according to the operations to be
performed. In all cases where the G (generate) command is to be used, you must have
Add Entry access to the directory containing the defmition file and to the directories you
specify in the "Generate File Names" screen. In other cases, the access required depends
on the kind of file (new or existing) and whether it is an input or output file. The following
paragraphs describe the access rights required in different circumstances.

• If you specify an existing definition file as an input file, you must have Read access to
the definition file.

• If you specify an existing definition file as an output file, you must have Delete and
Write access to the definition file. You must also have Add Entry access to the
directory containing the definition file.

• If you specify an existing definition file as the only definition file on the command line,
the file serves as both an input and an output file. In this case, you must have
Read/Write and Delete access to the definition file. (Refer to the iRMX® I Interactive
Configuration Utility Reference Manual for more information about the "Generate File
Names" screen.)

• If you specify a new file as the only file on the command line, the file serves as both an
input file and an output file. In this case, you must have Add Entry access to the
directory containing the new file.

If you do not have the correct access rights, the ICU returns an E$FILE fiCCESS error
message. Additional information about access rights can be found in the iRMX® Extended
I/O System User's Guide and the Operator's Guide to the iRMX® Human Interface.

Guide to the ICU

INTRODUCTION TO CONFIGURATION

EXAMPLES:

To use the G command without causing an error, you must have Add/Delete Entry access
to the directory in which you are working. This section describes the various ways of
invoking the leu and the access rights required.

- ICU86 :home:new.def <CR>

where:

:HOME:NEW.DEF Pathname of a new definition file. The leu uses this file as
both the input file and the output file.

You must have Add Entry access to the directory containing
NEW.DEF (:HOME:). If you donot have Add Entry
access, the leu returns the following message:

*** I/O Erro~ in file: :HOME:NEW.DEF
0026: E$FILE_ACCESS

If the directory does not exist, the leu returns the following
message:

*** I/O Error in file: :HOME:NEW.DEF
0021: E$FILE_NOT_EXIST

- ICU86 dir/old.def <CR>

where:

DIR/OLD.DEF

Guide to the ICU

Pathname of an existing definition file. The leu uses this
file as both an input and an output file. It can be a new or
existing file.

You must have Read/Write and Delete access to save
changes to OLD.DEF.

1-9

INTRODUCTION TO CONFIGURATION

- ICU86 /rmx86/icu/input.def TO dir/output.def <CR>

where:

/RMX86/ICU /INPUT.DEF Pathname of a standard definition file. The ICU uses
this file as the input file.

DIR/OUTPUT.DEF Pathname of the output definition file. This file can be a
new or existing file.

You must have Add Entry access to the directory
containing OUTPUT.DEF (DIR). In addition, if
OUTPUT.DEF is an existing file, you must have Delete
access to it.

1.7 DISTINGUISHING ICU-GENERATED FILES

Each time you generate your system, the ICU generates a set of ICU files. To help you
distinguish your generation files from each other and to determine which input definition
file generated the ICU files, you can use one of these options:

• Create a new directory to contain your definition file.

• Use the prefix option supplied by the ICU.

The following sections describe each method in more detail.

1.7.1 Creating Directories for iRMX® I-Based Systems

Intel recommends that you maintain the default directory structure by placing any new
system definition files in a new directory nested in your :HOME: directory. Before
invoking the ICU, you should create a copy of the input definition file in your working
directory to avoid corrupting the original file. The following example illustrates how to do
this using the 28612.DEF file as the starting definition file:

- CREATEDIR 28612 <CR>
- ATTACHFILE 28612 <CR>

Once you attach the new directory (28612) as the working directory, invoke the ICU. For
example

- ICU86 /rmx86/icu/28612.def TO new.def <CR>

1-10 Guide to the ICU

INTRODUCTION TO CONFIGURATION

A convenient convention to use is to create the working directory with the same name as
the definition file (without the .DEF extension). The operating system produced should
have the same name as the definition file (with no extension).

1.7.2 Using the Prefix Option

A second method to distinguish your ICU generated files from each other is to use the
prefIX option supplied by the ICU. You can select the prefix option when entering the
Generate (G) command. The ICU then displays a prompt (see Chapter 2 for the actual
screen) asking you for the prefix letter you wish to assign to the files created by the ICU.
For example, if you choose the letter "Q" as your prefix option, a "Q" will precede all the
files generated when you enter the Generate command on the menu screen. In this case,
the files generated for the Nucleus will be

QNTABL.A86
QNDEVC.A86
QNUC.CF

The files created for all other subsystems will also be preceded by the letter "Q" as in the
example above. If you want to generate configuration files for more than one system,
choose a different prefix option each time. Intel also recommends that your input
definition file start with the same prefIX letter you assign to the generated files. This allows
you to easily determine which definition files created each set of output files. If you create
a file with a prefix that already exists, the ICU overwrites the previous file.

If you do not want to use the prefix option, enter a carriage return when you are prompted
for the prefix. This causes the ICU to generate the output files without a prefix (see
Appendix A for a complete list of the ICU generated files).

Guide to the ICU 1-11

INTRODUCTION TO CONFIGURATION

1.8 INVOKING THE leu

This section lists the syntax necessary to invoke the ICU. When invoking the ICU, be sure
that the ICU86.SCM file and the ICU86.TPL file reside in the same directory as the
ICU86 file that you are invoking.

The syntax for invoking the ICU is as follows (brackets indicate optional items):

ICU86 [input-file-name TO] output-file-name

where

input-file-name Name of the definition file from which the ICU obtains
configuration information. This is typically an Intel-supplied
definition file or a definition fue from a previous use of the ICU.

output-file-name Name of the definition file to which the ICU writes updated
configuration information.

The following guidelines must be followed when specifying input and output files:

input-file-name: If both an input-file-name and an output-file-name are specified,
the input-file-name must represent an existing definition file created by the ICU.

1-12

output-file-name only: If the input-file-name is omitted, you enter only the output
file-name, the ICU uses the output-file-name as both the input and output definition
file. When the ICU session is complete, the ICU writes the updated configuration
information back to the output-file-name.

The output-file-name entered can represent a new or an existing definition file. If
the output-file-name specified does not exist, the ICU searches the directory
containing ICU for a file named ICU86.DEF. If ICU86.DEF exists, the ICU uses it
as the input file. In any case where an input file does not exist, the ICU displays the
following message among the main screen display:

NEW CONFIGURATION FILE

and the session starts with the ICU default values. After saving or exiting, the edited
file is stored in the named output fue.

Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.8.1 Invocation Error Messages

When issuing the invocation previously described, a number of error messages can occur.
These error messages are described in the following paragraphs.

Invoking the ICU with no parameters or invalid parameters causes the following message
to be displayed:

*** INVALID INVOCATION ***
USAGE: ICU86 [input-file TO] output-file

Invoking the ICU with a corrupted definition file, or a file that is not a definition file,
causes the following message to be displayed:

*** ERROR - FILE: <file name> IS NOT VALID

On invocation the ICU validates the file version numbers. ICU86.SCM, ICU86.TPL, and
each definition file have an Intel Version Number, an Update Version Number, and a User
Version Number. The Intel version number changes whenever Intel upgrades the ICU to
support a new release. The Update version number changes whenever the ICU is
upgraded, using the ICUMRG86 utility, to support an update; and the User version
number changes whenever a user device is added (using the UDS86 and ICUMRG86
utilities).

The ICU checks the version numbers when it is invoked. If there is an inconsistency in the
version numbers of either ICU86.SCM or ICU86.TPL, the ICU displays the following error
message and returns control to the operating system:

*** ERROR - INCONSISTENCY IN THE VERSION OF THE INTERNAL ICU FILES
Versions:

ICU86.SCM
ICU86.TPL

Intel Update User
<Intel> + <Update> <User version>
<Intel> + <Update> <User version>

If the inconsistency is in the definition file, the ICU displays the following warning message
and asks for permission to update the file or restore from the file. (The update process is a
simpler, faster operation than restore and requires no additional user input.)

*** WARNING - DEFINITION FILE VERSION IS NOT CORRECT.

Intel Update User
ITS VERSION IS: <the inconsistency>
VERSION EXPECTED: <correct version>

Guide to the ICU 1-13

INTRODUCTION TO CONFIGURATION

If the ICU needs to restore from a file in order to use it, you will be prompted as follows:

Do you want to restore from the file? y/[n]

A response of "No" causes the ICU to stop executing. A "Yes" response means the ICU
will restore the backup information stored in the definition ftle (discussed later in this
chapter). If the Update version number is higher than the ICU version number, you are
probably using the wrong version of the ICU. In this case, the ICU displays this warning
before the restore prompt:

*** WARNING - The Definition File version is NEWER

However, if the ICU is able to use the ftle without restoring, it prompts with

Do you want to update the file? y/[n]

A response of "No" causes the ICU to stop executing. A "Yes" response causes the ICU to
update the ftle. Since the ICU processes defmition files with inconsistent version numbers,
you can use all of the Intel-supplied defmition files as input for your own tailor-made ICU.

The ICU issues the restore prompt if it discovers any of the following in the defmition ftle:

• Inconsistency in the Intel version number.

• Inconsistency in the User version number, if the file contains user devices added with
UDS86 and ICUMRG86.

• Inconsistency in the Update version number, if the file version number is higher
(newer) than the ICU version number.

The ICU prompts for permission to use the ftle without restoring in the following cases:

• Inconsistency in the User version number, if the file does not contain user devices.

• Inconsistency in the Update version number, if the file version number is smaller than
the ICU version number.

1-14 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.9 WHAT TO DO AFTER INVOKING THE leu

After you invoke the ICU, the following registration message screen is displayed:

The string <version> represents the ICU version number. The string <years> represents
the copyrighted years of the product.

The registration screen appears each time you invoke the ICU until you obtain your
registration number and enter it at the prompt line at the bottom of the screen.

Guide to the ICU 1-15

INTRODUCTION TO CONFIGURATION

When you press < CR >, the main menu screen is displayed as follows:

The screen shown above contains the main ICU menu. Whenever you see this screen you
are in command mode.

Whenever you are in command mode, you must enter one of the commands listed or an
"H" for help. All of your responses should be followed by a carriage return. The ICU
regards all invalid input as a response of "H < CR >" and displays the "Help" screen until a
valid response is entered.

The following sections describe the choices on the menu screen.

1-16 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.9.1 Help Command

The Help command displays information about the ICU commands available to you. The
syntax of the Help command is as follows:

H <CR>

If you enter H (help) and a carriage return, the ICU will display the following screen:

Guide to the ICU 1-17

INTRODUCTION TO CONFIGURATION

1.9.2 Change Command

The Change command enables you to begin editing the definition file. The syntax of the
Change command is as follows:

where:

C or Change

screen abbrev

?

C[bange] [Screen Abbrev] <CR>
or

C[bange] ? <CR>

Starts editing the definition file from the first screen. The first time
you run the ICU you should use this option.

Begins editing at a specific screen. For example, if you enter "C", a
space, the abbreviation of an existing screen, and a carriage return,
the ICU enables you to start editing your definition file from that
particular screen.

If you enter a screen abbreviation incorrectly, the ICU displays a
screen containing all the screen names and abbreviations (see Table
1-2). The abbreviation enclosed in parentheses indicates what must
be entered for each screen.

Causes the ICU to display a screen with all the screen names and
abbreviations.

Table 1-2 lists all the possible screen names. The screens are displayed in order from left
to right, that is the "Interrupts" screen is displayed after the "Hardware" screen. Device
drivers are listed at the end of the table.

If you did not invoke the ICU with the name of an existing definition file, you should start
your edit with the "Hardware" screen. If you did invoke the ICU with the name of an
existing definition file, you can start your edit with the name of any screen that the input
definition file has already defined. If you enter a valid screen name but that screen is not
configured into your definition file, the ICU displays the next "main" screen followed by
this warning:

***Warning - The screen requested cannot be displayed

The ICU progresses from screen to screen in a logical order. Refer to Figure 1-4 for the
logical flow of the ICU.

1-18 Guide to the ICU

INTRODUCTION TO CONFIGURATION

Table 1-2. Screen Names

MAIN SCREENS

(HARD) Hardware (INT) Interrupts (SLAVE) Slave Interrupt
(A186) 80186 (MBII) MBII Hardware (RAM EM) RAM Memory
(ROM EM) ROM Memory (SUB) Sub-systems (HI) Human Interface
(HIJOB) HI Jobs (RES) Resident User (PREF) Prefixes
(HILOG) HI Logical (APPL) Application Loader (REM) Remote file Access
(REMFS) Remote Server (EIOS) EIOS (ESCS) EIOS Sys Calls
(ABOR) Auto Boot Oev (LOGN) Logical Names (IOUS) I/O Users
(IOJOB) I/O Jobs (BIOS) BIOS (NOFSC) Non-file SCalls
(PFSC) Phys file SCalls (SFSC) Stream file SCaiis (NFSC) Named file SCalls
(I o EVS) Intel Devices (USERO) User Devices (UOOM) UOS Oev Orvr Mods
(SOB) System Debugger (THOOB) DynamiC Debugger (NUC) Nucleus
(OBSC) Object SCalls (JTSC) Job & Task SCaiis (ECGSC) Exchange SCalls
(FSSC) Free Space SCalls (INTSC) Interrupt SCails (EXTSC) Extension SCalls
(EXCSC) Exception SCalls (USERJ) User Jobs (USERM) User Modules
(ROM) ROM Code (INCL) Includes & Libs (GEN) Gen. File Names
(COMNT) Comments screen

DEVICE DRIVER SCREENS

(0214) Mass Storage Controller (0350) Line Printer - iSBX 350
(0286) Line Printer - iSBC 286/10 (08848) Terminal Comm controller
(08251) 8251A Terminal (02530) 82530 Terminal
(0534) 534 Terminal (0544) 544A Terminal
(08274) 8274 Terminal (OTHO) Terminal Handler
(0220) iSBC220 (0218) iSBX218A
(0208) iSBX208 (0254) iSBC254
(DRAM) RAM Disk (0264) iSBC264
(OSCSI) SCSI

Guide to the ICU 1-19

INTRODUCTION TO CONFIGURATION

1.9.3 Generate Command

The Generate command creates all the ASM, PL/M, and submit files required to configure
the iRMX I system. The syntax of the Generate command is as follows:

G[enerate] <CR>

Refer to Chapter 2 for more information on generating a system.

1.9.4 List Command

The List command enables you to list the contents of your definition file to a file or to a
device. This command lists the contents of those screens that you selected to defme your
system. The syntax of the List command is as follows:

where:

L or List

name

L[ist] [name] <CR>

Lists the contents of your screens.

Specifies an iNDX or iRMX I device or file. If you omit the name, the
terminal (:CO:) is assumed. You should list the definition file to a fIlename
rather than to the terminal since the display scrolls rapidly. If you want to
use your terminal to review your definition file, use the Change command
to view just those screens you want.

Mter the ICU lists the definition file to the specified filename, it notifies you that the
definition file has been listed and returns to command mode. For example, if you listed the
ICU screens to a file called ICU86.LST, the ICU would display

The Definition File has been listed to file: ICU86.LST

followed by the main menu screen.

1-20 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.9.5 Save Command

The Save command updates your definition file with all of the changes you entered during
the current leu session. The syntax of the Save command is as follows:

S[ave] [name] <CR>

where:

Saves all the changes made in this session. S or Save

pathname Path name of a file to use instead of the default output-file-name to
save changes to the definition file.

When the Save command is entered (followed by a carriage return), the leu updates the
file you specified as the output-file-name. After the leu updates the definition file, it
notifies you that the specified file has been updated and returns to command mode. For
example, if you invoked the leu using 28612.DEF as the output-file-name, the leu would
display this message followed by the menu screen:

The Definition File has been written to file: 286l2.DEF

To be sure you are updating the right file, use the List command before you save your
definition file. The List command displays the name of the output definition file at the top
of each leu screen.

1.9.6 Quit Command

The Quit command enables you to stop your current leu session without updating the
definition file. The syntax of the Quit command is as follows:

Q[uit] <CR>

After you enter the Quit command (followed by a carriage return), the leu may display
the prompt "Do you want to quit without saving your changes? y /[n]" to ensure that you did
not accidentally enter the Quit command. Your response to this prompt should be either
"Yes" or "No". The leu only displays this prompt if you use the Quit command after
making changes to an existing definition file or creating a new definition file. If no changes
were made to the definition file before the Quit command was entered, no prompt is
displayed.

Guide to the ICU 1-21

INTRODUCTION TO CONFIGURATION

1.9.7 Exit Command

The Exit command exits the leu and updates the defmition fIle with all of the changes
from the current leu session. The syntax of the Exit command is as follows:

where:

E or Exit

pathname

E[xit] [pathname] <CR>

Exits the leu saving all the changes made in this session.

Pathname of a fIle to use instead of the output-fIle-name to save
changes made to the definition file.

You should always use either the Exit or Save command after using the Generate
command.

1.9.8 Replace Command

The Replace command enables you to change the control character that the leu uses in
the special editing commands. The control character precedes special editing commands.
The syntax of the Replace command is as follows:

R[eplace] <CR>

The default control character is the caret ("'). If your terminal does not support this
character, or you prefer a different character, use the Replace command to change it to
any character of your choice.

After you enter the Replace command (followed by a carriage return), the leu displays
the following screen:

Input new control character

Enter the new control character you select, followed by a carriage return.

1-22 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.9.9 Detail-Level Command

The Detail-Level command enables you to set the level of detail you want when displaying
the ICU screens. The syntax of the Detail-Level command is as follows:

D[etail-Level] <CR>

This command provides the option of selective screen displays. Rather than viewing all the
screens, you can elect to see only screens of a particular type. There are four possible
levels you may request:

All

Devices

Operating System

Jobs

Shows all the screens

Shows only device screens

Shows all non-hardware related screens

Shows only the job screens (such as User, I/O and User
Modules screen)

After you enter the Detail-Level command (followed by a carriage return), the ICU
displays the following:

The following levels of detail are available:

All
Devices
Operating-System
Jobs

ENTER Level of Detail

If you enter an invalid response, the ICU redisplays this screen until it receives a valid
response.

Guide to the ICU 1-23

INTRODUCTION TO CONFIGURATION

1.9.10 Backup Command

The Backup command writes an ASCII backup file containing a list of all the parameter
abbreviations and their current values. The syntax of the Backup command is as follows:

where:

B or Backup

filename

B[ackup] filename <CR>

Writes a backup file.

Name of the file that will contain the backup information.

The backup file is used as input to the ICU during the restore process (discussed later in
this chapter). Remember, the information in the backup file is part of the definition file.
The advantage of creating a backup file is that it is in ASCII which is easier and safer to
use with other utilities or electronic mail.

When the backup command has completed, the ICU displays a message that the filename
specified has been backed-up. It then returns to command mode. For example, if you
backed-up your definition file to a file named UPDA TE.BCK, the following screen would
be displayed.

1-24 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.9.11 Aborting ICU Commands

The ICU enables you to abort an ICU process, without losing any information, by entering
CONTROL-C. If you enter CONTROL-C during the execution of an ICU command
(Generate, List, etc.) the ICU stops executing the current command, and returns to the
main menu screen. The ICU handles CONTROL-C differently for each command.

• If entered in command mode, or during SAVE, QUIT, EXIT or BACKUP, it is
ignored.

• If entered during CHANGE, it displays the following message:

'Type C to EXIT to the Main-Menu'

• If entered during GENERATE, the ICU finishes writing the file being generated,
displays

'*** Process ABORTED.'

and returns to command mode.

• If entered during LIST, the ICU displays the Process ABORTED message, writes the
message to the file or device specified in the List command, and returns to command
mode.

• If entered during REPLACE or DETAIL-LEVEL, the ICU returns to command
mode.

• If entered while restoring, the ICU displays the following message and returns control
to the operating system.

'*** Process ABORTED - The Definition File was not restored.'

1.10 CHANGING A DEFINITION FILE

It is possible to change a definition file by entering the "Change" command on the menu
screen. The ICU then shows one screen of information at a time. Each screen pertains to
a specific area of configuration. The information displayed on the screen consists of a
series of prompts and default values. Any of the default values can be changed. However,
the changes you make are not immediately displayed on the screen. They are displayed
only when you reshow the screen using the editing command "R (or R) (discussed later in
this chapter) or just a carriage return.

Entering another carriage return after using one to reshow a screen causes you to proceed
to the next screen. The changes are recorded in the definition file when you exit the ICU
using the "E" command or when you enter the "S" command while still in the ICU.

Guide to the ICU 1-25

INTRODUCTION TO CONFIGURATION

1.10.1 Explanation of the Basic Screen Elements

The following definitions will help you understand the various parts of a screen. The
following screen illustrates the defined terms.

(SCABV) The abbreviation enclosed in parentheses identifies the
screen being displayed. This abbreviation is used with
the "Change" or "Find" commands (discussed later in this
chapter) to access a screen.

SCREEN NAME The name of the screen.

(ABV) The abbreviation enclosed in parentheses identifies the
parameter whose existing value can be replaced.

PARAMETER DEFINITION This definition briefly describes the parameter that you
can change.

[range of values] This defines the range of acceptable values for this
parameter.

:xxx The value in the current definition file. If the existing
value is not what you want, replace it with any other
value within the range of values.

< prompt line> This line is where you enter changes to the screen. The
cursor is located at the beginning of this line ready for
you to enter one of the following:

1-26

• An abbreviation, an equal sign (=) and a new value

• An abbreviation and a"?", if you need an explanation
of the parameter

Guide to the ICU

INTRODUCTION TO CONFIGURATION

• A AH (H), if you need general help in understanding
the screen types or editing commands

• A "1", if you need an explanation of the specific
screen

Data you enter on the prompt line should be followed by
a carriage return (< CR >).

The following screen shows all of the features described above. The screen abbreviation is
(HARD) and the screen name is "Hardware". There are 16 parameter lines and a prompt
line. Each parameter line includes a range of legal values which may be entered if the
default value does not meet your system requirements. The bold entries on the following
screen illustrate how you would use the prompt line to make changes to two parameter
lines.

The hardware screen chapter of the iRMX® I Interactive Configuration Utility Reference
Manual explains how to respond to the specific prompts shown in this screen. The purpose
of this section is to explain how to make entries on this and other types of screens.

Guide to the ICU 1-27

INTRODUCTION TO CONFIGURATION

1.10.2 Entering File Names, Address Values, and Integer
Constants

You can enter several types of values in response to a parameter line, depending on the
range of values for the parameter. The kinds of values you can enter include

device/file name A device or file name can be any device or file name acceptable to
the operating system. The ICU converts the name to all uppercase
characters. If you do not want the characters in a name converted
to uppercase, enclose the name in single quotes.

integer constants

addresses

1-28

Constants must be unsigned integers that you can enter in any of
three radices: decimal, hexadecimal or kilobyte. A trailing radix
character indicates the radix of the number, as shown in Table 1-3.
The default radix is decimal.

Address values must be entered in the form BASE:OFFSET. The
radix must be specified (either explicitly or by default) for both
portions of an address. For example, you must specify the selector
of 900H and an offset address of 384H as 900H:384H.

Guide to the ICU

INTRODUCTION TO CONFIGURATION

Table 1-3. Integer Constant Formats

Radix Trailing Character

Decimal None or D
Hexadecimal H orh
Kilobytes Kork

1 .10.3 Help Messages

The leu provides three types of help messages to supply information and save you time as
you are defining your definition files.

• For HELP about parameters, enter the parameter abbreviation followed by a"?".

• For HELP about the screen being displayed, enter a ?

• For HELP about editing screens, enter I\H or H.

After reading the help messages, enter a carriage return to return to the screen you were
editing.

1 .10.4 Screen Formats

Three basic types of screen formats are used in the leu: the fixed screen, the repetitive
screen, and the repetitive-fixed screen. These screen formats have similar features.

1.10.4.1 Fixed Screen Formats

The fixed screen format enables you to make changes by entering the two- or three-letter
abbreviation, the equal sign (=), the new value, and a carriage return. The "Hardware"
screen shown earlier in this chapter is a fixed format screen.

1.10.4.2 Repetitive Screen Formats

Most screens use the fixed format to display information. However, a screen such as the
"Prefixes" screen, shown below, uses a repetitive screen format. In a repetitive screen
format, the same prompt is repeated many times. Each time you enter information on the
screen, you define new system information. In the example below, each time you enter a
line of information, you define a logical name for a directory. As you can see from the
example, identifying numbers precede each line of information.

You can change this screen in the following ways:

• To delete a line, enter "I'd" followed by the number of the line you want to delete. All
lines that followed the deleted line are moved up one position in the list.

Guide to the ICU 1-29

INTRODUCTION TO CONFIGURATION

• To add a new line, enter'the line number followed by an equal sign (=), the new value,
and a carriage return. If the line number already exists, the information on the existing
line and all lines following it will be moved down one position in the list.

• To replace the information in an existing line, delete the existing line, then add a new
line using the same line number (as described above).

1.10.4.3 Repetitive-Fixed Screen Formats

The repetitive-fixed screen format combines the features of the other two screen types. It
repeats a full screen of information any number of times. In the following example, the
"User Jobs" screen, you define a user job by entering information on the screen. When you
complete this screen or any repetitive-fixed screen, a one-line query screen is displayed. In
this case the query screen asks: "Do you have any/more User Jobs?". If you answer "yes"
or "y", the ICU presents another "User Jobs" screen. Each time you make entries to one of
these screens you define a new user job. The ICU repeats this screen until you respond
with a "no", "n", and/or a carriage return to the prompt.

1-30 Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.11 SCREEN EDITING COMMANDS FOR THE ICU

Several special commands are available to simplify the editing process. They are
summarized in Table 1-4 and then explained in detail in the following paragraphs. The
commands are initiated by entering the caret "A" control character (or a character you
substituted for the caret using the "Replace" command in command mode) followed by one
or more characters. It is also possible to enter all of the commands, except Insert, Copy,
and Delete, without the control character. If you try to use Insert or Delete without the
control character, you will receive a message explaining the correct invocation of these
commands. If you try to use Copy without the control character, you will receive an error
message. Each command sequence must be terminated with a carriage return.

Guide to the ICU 1-31

INTRODUCTION TO CONFIGURATION

~creens Affected
Repetitive

Command Meaning Fixed Repetitive -fixed

"8 or 8 8ack up to previous screen X X X

"C or C Return to command mode X X X

"0 Delete a screen X

"0 < number> Delete the element with this X
number

"F <scabv> Find and display the specified X X X
or F <scabv> screen

"H or H Display the list of special X X X
commands that apply to the
current screen format

"I Insert an new screen in front X
of the current screen

"I < number> Insert a new line X

"CO Copy the current screen X

"R or R Redisplay the current screen X X X

"N or N Go to the next logical screen X X X

"S <string> Search the remaining screens X
or S < string> for the specified string

Complete descriptions of the special editing commands are as follows:

"BorB

"'CorC

"D

"'D <number>

1-32

Enables you to move backwards from the current screen to the
previous screen. The ICU displays the previous screen and enables
you to continue as usual. Moving backwards beyond the beginning
of the definition file returns you to command mode. This command
can be used on all types of screens.

Returns you to command mode from any ICU screen. It then
displays the main menu.

Enables you to delete an entire repetitive-fixed format screen. The
screen deleted is the current screen.

Enables you to delete a specific item in a repetitive screen. The
number you enter identifies the entry to be deleted.

Guide to the ICU

AF <scabv>
or F <scabv>

AI < number> =
or <number> =

Guide to the ICU

INTRODUCTION TO CONFIGURATION

Finds and displays the screen indicated by the screen
abbreviation. The syntax of the AF command is

AF (or F) screen-abbreviation

where the screen-abbreviation can be any abbreviation listed in
Table 1-2. This command enables you to jump from one screen to
another. If you specify a screen name not previously defined, this
command jumps to the next available screen, and displays this
warning message:

*** WARNING - The screen requested cannot be displayed

If you do not specify a screen abbreviation, the list of screen names
and abbreviations is displayed (see Table 1-2) and you are prompted
for a screen abbreviation. If you want to exit this command without
entering an abbreviation, press the carriage return and continue to
the next logical screen. Figure 1-4 shows a flowchart of how you
proceed from one screen to the next if you simply enter a carriage
return.

Displays the list of special editing commands.

Enables you to insert an additional repetitive-fixed screen in front of
the current screen. Otherwise, the command AI has no effect.

Enables you to add a new line to a repetitive screen.
The AI is optional. Only the line number and an equal sign are
required.

Enables you to insert an identical copy of the current screen in front
of the present screen. This command can be used only with a
repetitive-fixed screen.

Redisplays the current screen, showing any changes made. Entering
AR is the same as entering a null carriage return. The default or
previously entered responses are displayed until you enter the AR
command (or < CR >) to show the changes you have made to this
screen. If you are in a help screen, the command AR returns you to
the last non-help screen you were on.

Displays the next logical screen. For example, if you are entering
data on a unit-information screen and enter AN, the first DUIB
screen for that driver is displayed. If you enter AN again, the first
screen of the next driver is displayed, and so on. If you enter AN in
the last screen, the ICU returns to command mode.

1-33

INTRODUCTION TO CONFIGURATION

I\S < string>
or S < string>

Searches repetitive-fixed screens of the same logical
type for the specified string. When this command is entered, the
search begins in the next screen of that logical type and searches all
fields with a character range (for example, 1-31 characters). The
search continues until a match is found. If no match is found, the
cursor remains at its current position and the ICU displays the
following message:

No next match found

The syntax for this command is

I\S (or S) < string>

The following example shows how to use the I\S command. Assume
you have 20 DUIB screens for the Mass Storage Controller driver
and you want to find the screen that defines the device name as wOo
First, you would get to the first "(1214)" screen. Then you would
enter

AS ~10 <CR>

The ICU searches all the DUIB Mass Storage Controller screens. If
it finds a screen with "wO", it displays that screen. If it does not find
''wOlf, it displays the "No next match found" message.

1 .11.1 Deleting Data on a Repetitive Screen Format

To delete information from a repetitive screen, you must use the I\D < number>
command, where < number> is the number of the line to be deleted. After the line is
deleted, the remaining lines are renumbered and the screen is displayed again. The ICU
does not allow you to delete a line that is not displayed. To replace a line you must first .
delete the existing line, and then insert the new line.

An example of how to delete data on a repetitive screen follows. Assume the "Prefix"
screen is defined as shown below. The cursor is positioned under the word "Enter". If you
wish to delete line 7, you would do so as shown here.

1-34 Guide to the ICU

INTRODUCTION TO CONFIGURATION

After line 7 is deleted, the screen is redisplayed with lines 8 and 9 renumbered to 7 and 8
as shown here.

Guide to the ICU 1-35

INTRODUCTION TO CONFIGURATION

1.11.2 Inserting Data on a Repetitive Screen Format

To insert a line on a repetitive screen, enter the insert command AI (optional), the line
number, an equal sign (=), and the new value. When the new line number is inserted, the
ICU renumbers the remaining lines and displays the screen again. If the number you enter
is larger than the actual number of lines. in the screen, the ICU inserts the new line as the
last line. Assume you want to insert a new prefIX on line 7 of the "Prefix" screen displayed
previously. You can enter

7 = :confl: <CR>

or

AI 7 = :confl: <CR>

and the screen will be redisplayed with the new values as shown here.

1-36 Guide to the ICU

INTRODUCTION TO CONFIGURATION

If you are entering numerical data on a repetitive screen such as the "RAM Memory"
screen, you can enter the data in any order. However, the leu automatically arranges
your data in the proper order and displays it on the screen. For example, if you enter the
following three insert commands

AI 1 = 2000H, 4000H <CR>
AI 2 80000H, 90000H <CR>
AI 3 = lOOOOH, l2000H <CR>

on the "RAM Memory" screen (see the iRMJ(.@ I Interactive Configuration Utility Reference
Manual), the leu sorts the data in ascending order and redisplays the lines as follows:

1 - 2000H, 4000H
2 - lOOOOH, l2000H
3 - 80000H, 90000H

1.11.3 Deleting a Repetitive-Fixed Screen

The AD command enables you to delete information for an entire repetitive-fixed screen;
you delete the current screen. You can use this command to delete I/O Jobs, User Jobs,
OS Extensions, and Remote File Servers, as well as Intel and user devices. If you want to
delete a device driver, it is only necessary to delete the Driver screen for that device. The
leu automatically deletes all the Unit and DUIB screens associated with it (see the
iRMJ(.@ I Interactive Configuration Utility Reference Manual for more information).

Guide to the ICU 1-37

INTRODUCTION TO CONFIGURATION

Hardware

A
W-0934-1

Figure 1-4. leu Flowchart

1-38 Guide to the ICU

INTRODUCTION TO CONFIGURATION

Automatic Boot
Device

Recognition

o Include the Extended I/O System layer?

Figure 1-4. ICU Flowchart (Continued)

Guide to the ICU

c
W-0935-1

1-39

INTRODUCTION TO CONFIGURATION

@
W-Q936-1

Figure 1-4. ICU Flowchart (Continued)

1-40 Guide to the ICU

INTRODUCfION TO CONFIGURATION

W-0996

Figure 1-4. ICU Flowchart (Continued)

Guide to the ICU 1-41

INTRODUCTION TO CONFIGURATION

1.11.4 Inserting a Repetitive-Fixed Screen

'The AI command enables you to insert an additional screen of information between two
existing screens. (This can be used only with the repetitive-fixed screen format.) Use this
command on the screen you wish to precede. For example, if you have three User Jobs
and wish to insert a fourth job between the second and third job, use the AI command on
the screen for the third job.

The copy command (ACO) can also be used to insert an additional repetitive-fixed screen.
The copy command inserts a copy of the current screen in front of itself. The only
difference between the insert command and the copy command is that the copy command
uses the current screen values rather than the default values.

1.12 leu ERROR MESSAGES

During the interactive portion of the ICUprocess, two types of error messages can occur:

• interactive error messages

• internal ICU errors

The interactive messages are the most frequently encountered, and are self-explanatory.
The ICU internal error messages shol1ld not occur .. The following sections explain these
errors in more detail. t '. .

1.12.1 Interactive Error Messages

The leu accepts data that you enter only if it lies within the range of acceptable values.
Usually, the range of acceptable values for a given prompt appears in brackets "0" on the
prompt line. If you specify a value outsid~ the range of acceptable values, the ICU displays
one of the following messages, depending on the kind of value it requires (all of these
messages are preceded by *** ERROR -):

• number expected or number too large

• number is not within its range

• address expected

• the selector is not within its range

• offset in address is not a number

• string too long

• a prefix of a legal string expected

• 'Yes or No' expected

• the field is 'Req'; cannot be changed

1-42 Guide to the ICU

INTRODUCTION TO CONFIGURATION

• erroneous delimiter

• the line entered overlaps

When an error occurs, the ICU does not change the current value of the parameter. If the
values you specify lie within the range of acceptable values, the ICU accepts them without
checking their reasonableness. Therefore, if you enter values that cause the ICU to
generate a nonfunctional version of the operating system, neither the interactive phase nor
the generation phase of the ICU will flag these values as errors.

When the ICU leaves the change phase and returns to the initial menu screen, it performs
a number of logical tests, such as cpecking that the reselVed memory areas do not overlap.
If it detects a logical error, the ICU issues a self-explanatory error message. You must
then make the necessary corrections to your definition file or you will not be able to
generate a working system.

1.12.2 Internal leu Errors

If during execution the ICU encounters an internal error such as the Screen Master File or
the Template file being corrupted, it displays the following message:

*** leu Internal Error - <number[,s]>

where < number[,s] > can be either one number or two numbers separated by a comma.
The numbers represent an internal code for the ICU and are not meaningful for the user.
Internal ICU errors rarely occur, but if you should receive this error message, follow these
guidelines.

1. First, assume your definition file has become corrupted, and try running the ICU
again with a new definition file.

2. If Step 1 is not the solution, try running the ICU with a new Screen Master File and a
new Template file. Default versions of these files are kept in the directory
: CONFIG: default.

3. If neither of the above solve the problem, contact your local Intel sales office.

Guide to the ICU 1-43

INTRODUCTION TO CONFIGURATION

1.13 UPGRADING DEFINITION FILES

There are three reasons you may have to upgrade definition files.

• To make iRMX 86 Release 7.0 defmition files compatible with iRMX 1.8

• To add Intel-supplied changes

• To add user device drivers

To upgrade definition files created by the iRMX 86 Release 7.0 version of the ICU, use the
UPDEF86 Utility.

To upgrade your iRMX 1.8 defmition files to include Intel-supplied changes or user
devices, invoke the ICU with the definition file you want upgraded as input. iRMX 1.8
definition files can have two formats:

• ICU standard format with a specific version number

• Backup format (ASCII) used by different versions

The ICU checks the version numbers (see section, "Invocation Error Messages", earlier in
this chapter) and decides how to proceed. If it is possible to upgrade the definition file
without restoring the backup information, the ICU prompts

Do you want to update the file? y/[n]

A response of "Yes" causes the ICU to upgrade the file as you input it. You can then
proceed with the ICU as usual.

If the ICU must restore to upgrade the definition file (for example, if the ICU is invoked
with a backup file or a defmition file whose Intel version number differs from the ICU
version number), it invokes the restore process and prompts you as follows:

Do you want to restore from the file? y/[n]

A response of "No" causes the ICU to stop executing. A "Yes" response means the ICU
should restore the backup information contained in the file, and create a new version of
the definition file.

If you enter "Yes" and the input file is the same as the output file, you are prompted

Enter new output file name:

1-44 Guide to the ICU

INTRODUCTION TO CONFIGURATION

If the output file exists, the leu displays this message:

File <output_file> exists. OVERWRITE? yj[n]:

While restore is operating, the leu displays a series of asterisks (*) on the screen. If the
restore operation reaches completion with no loss of data, the leu displays the main menu
and you proceed as usual. However, if an error is encountered, the leu displays the
following message and exits.

*** ERROR while restoring
The Definition File has been restored to file: <file-name>.def
Inspect the log file: <file-name>.log

The ICU writes the backup information that was not restored to a log-file. The log-file lists
each screen name followed by any errors that occurred while restoring that screen. It also
lists abbreviations of fields which were not restored. The log-file has the same name as the
output file but with a ".log" extension. The log-file makes it easy to compare the backup
definition file and the restored file to see which values were not restored. You should then
run the ICU on the restored definition file and correct the fields in error. After that you
can proceed as usual.

Assume that while restoring from file upO.def, the leu was not able to restore the "eF"
parameter on the "Hardware" screen. The log file would look like this:

ICU86 <version number> Restoring from file : upO.def <date> <time>

Screen : HARD
*** ERROR - number expected

Screen : INT

In field CF

The error messages in the log-file are the same as the leu interactive error messages.

This example shows only a portion of the log-file. However, the actual file lists all the
screen names. The version number, date, and time in the heading are variables.

Guide to the ICU 1-45

INTRODUCTION TO CONFIGURATION

1.14 THE ICUMRG86 UTILITY

The ICUMRG86 Utility supplied with the ICU provides the ability to include configuration
support for new drivers. The ICUMRG86 Utility allows you to

• Integrate new Intel device drivers with a previous version of the operating system

• Integrate user-written device drivers into the operating system

The ICUMRG86 Utility combines the main Screen Master File (ICU86.SCM) and the
main Template File for System Generation (ICU86.TPL) with the Screen Master File
(SCM) and Template Files (TPL) for the new driver.

If you are adding an Intel-supplied driver, both the SCM and TPL files are supplied with
the update package. In addition to adding your device driver, the ICUMRG86 Utility
updates the "Intel Device" screen to include the new device, and changes the help message
that lists all the screen names. Upon completion, ICUMRG86 updates the Update version
number.

If you are adding a user-written device, the SCM and TPL files were previously generated
by the UDS86 Utility (see the iRMX® Device Drivers User's Guide for more information).
Upon completion, ICUMRG86 updates the User version number.

After running ICUMRG86, the version numbers of the new ICU and your definition files
are different. To continue using your definition files, invoke the ICU as usual. The ICU
will check for version number consistency, and if necessary issue a warning and a prompt
(see section "Invocation Error Messages", earlier in this chapter) to whichyou should
respond "Yes". The ICU then updates your definition files and continues executing.
Figures 1-5 and 1-6 give the logical flow of the ICUMRG86 Utility when adding either an
Intel device driver or a user device.

1-46 Guide to the ICU

Intel-Supplied
Device-Driver
Screen File

(SCM)

Intel-Supplied
Device-Driver
Template File

(TPL)

Current
ICU86.SCM

Current
ICU86.TPL

Guide to the ICU

INTRODUCTION TO CONFIGURATION

Input

Input

Merge
Utility

Figure 1-5. Merging Intel Device Drivers

Updated
SCM File

Updated
TPL File

W-0937-1

1-47

INTRODUCTION TO CONFIGURATION

UDS Generated
Screen File

(SCM)

UDS Generated
Template File

(TPL)

1-48

Current
ICU86.TPL

Input

Input

Merge
Utility

Figure 1-6. Merging User Devices

Updated
SCM File

Updated
TPL File

W-0938-1

Guide to the ICU

INTRODUCTION TO CONFIGURATION

1.14.1 Invoking ICUMRG86

Before invoking ICUMRG86 be sure that the ICU86.SCM, ICU86.TPL, and ICUMRG86
files are in the same directory. To invoke the ICUMRG86 Utility enter

ICUMRG86 input-file(root) TO newicu-file(root)

where

input-file(root)

newicu-file(root)

The input-file name without the extension providing the input to
ICUMRG86. All extensions included in the pathname are ignored,
and replaced by SCM and TPL. The ICUMRG86 Utility searches
the input directory for

input-file.SCM - contains all information about the new driver and
the new "Intel Device" screen.

input-file.TPL - contains information needed for generation of new
screens.

The ICUMRG86 Utility also uses ICU86.SCM and ICU86.TPL as
input.

The name of the two updated files, without their extensions, created
by the ICUMRG86 Utility. All extensions included in the pathname
are ignored, and replaced by SCM and TPL. ICUMRG86 creates

newicu-file.SCM - contains the ICU Screen Master File updated
with the new device driver.

newicu-file.TPL - contains the ICU Template File updated with the
new device driver.

Be aware that the ICUMRG86 utility always merges your .SCM and .TPL files with the
ICU files ICU86.SCM and ICU86.TPL. If you plan to add support for several drivers to
the ICU, make sure that the ICU86.SCM and ICU86.TPL files contain the latest version of
your merged ICU files. Otherwise, ICUMRG86 will merge your driver information with
outdated ICU files.

NOTE

Before changing the name of any ICUMRG86 output files to IClJ86.SCM
and ICU86.TPL, save the original files by copying them to other files (such
as ICU860LD.SCM and ICU860LD.TPL). Although ICUMRG86 allows
you to add support for new drivers, once you add that support, there is no
way to remove it. If the device driver you added contains an error, you
must revert back to the original.SCM and .TPL files.

Guide to the ICU 1-49

INTRODUCTION TO CONFIGURATION

1.14.2 leu M RG86 Example

The following example shows how to add a device - D219.

ICUMRG86 D219 TO icunev <CR>

The input files are: ICU86.SCM AND ICU86.TPL (located in same directory as
ICUMRG86)

The output files are:

D219.SCM and D219.TPL

ICUNEW.SCM and ICUNEW.TPL

Upon completion the system prompt is displayed. You are then ready to run the ICU and
generate your system.

1.14.3 ICUMRG86 Error Messages

The ICUMRG86 utility generates an error message if one of the following occurs:

• it is not invoked correctly

• an I/O error occurs

• the version numbers are inconsistent

• either the SCM or TPL files are not valid

Invalid invocation of ICUMRG86 causes one of the following self-explanatory error
messages to be displayed.

• parameters required
USAGE: ICUMRG86 infile TO outfile

• missing "TO outfile"
USAGE: ICUMRG86 infile TO outfile

• missing "TO"
USAGE: I CUMRG 86 infile TO outfile

• missing "outfile"
USAGE: ICUMRG86 infile TO outfile

• too many parameters
USAGE: ICUMRG86 infile TO outfile

1-50 Guide to the ICU

INTRODUCTION TO CONFIGURATION

In addition to the invocation error messages, ICUMRG86 issues the error messages listed
below.

• *** UDI Error - <exception-code>, <mnemonic>

An error was detected by the UDI. The mnemonic explains the cause of the error. For
example, you can receive this error message if ICUMRG86 cannot successfully change
the extension.

• *** Error - input file same as output file

The input and output files cannot be the same.

• *** I/O Error in file: <file name>
<excep-code>, <mnemonic>

An I/O error occurred. For example, the ICUMRG86 utility was not able to create,
open, read, write or seek one of the specified files.

• *** Error - <file name> is not a valid SCM file

The data in the SCM file is not valid.

• *** Error - <file name> is not a valid TPL file

The data in the TPL file is not valid.

• *** Error - inconsistency in the version of the internal ICU files

Versions:

ICU86.SCM
ICU86.TPL

INTEL UPDATE USER

<Intel> + <Update> <User Version>
<Intel> + <Update> <User Version>

There is an inconsistency in the version numbers of the ICU86 SCM and ICU86 TPL
files.

• *** Error - inconsistency in the version of the internal ICU files

Versions: INTEL UPDATE USER

Input Scm File <Intel> + <Update> <User Version>
Input Tpl File <Intel> + <Update> <User Version>

There is an inconsistency in the version numbers of the input SCM and TPL files.

Guide to the·ICU 1-51

INTRODUCTION TO CONFIGURATION

• *** Error - <screen-abbr> screen already exists in ICU86.SCM

Duplicate screen names are not allowed. You are probably merging the wrong SCM
and TPL files, thus causing a duplicate name to be created.

• *** Error - unexpected end of TPL file <file name>

An unexpected end of file in the TPL-rtle was encountered.

1-52 Guide to the ICU

GENERATING YOUR SYSTEM 2
2.1 INTRODUCTION

The process of generating your configured system consists of the following steps:

• Generating configuration files.

• Executing a SUBMIT file that compiles, assembles, links, and locates all necessary files.

2.2 GENERATING CONFIGURATION FILES

By using the ICU, you can define the operating system that best meets your individual
needs. This process takes place while you are editing your definition file. When you have
completely defined your system, return to command mode to generate your configured
system as follows:

1. Use the List command to create a file that records your system configuration.

2. Use the Generate command to generate your configuration files.

3. Use Exit to save your changes and exit the ICU.

The following screen shows the results of having used the G[enerate] command to generate
. all the required configuration files (assuming the definition file used is newfile.def).

Guide to the leu 2-1

GENERATING YOUR SYSTEM

2-2

The files listed in Table 2-1 are the configuration files that define your system. The system
processes these files during execution of your SUBMIT file. The ICU creates the SUBMIT
file with the same filename as your definition file (with a .CSD extension). For example,
the definition file used in the previous screen was labeled NEWFILE.DEF. Therefore, the
SUBMIT file is called NEWFILE.CSD.

If you use the prefix option, be sure to choose a unique prefix each time you generate your
system. If a file of the same name already exists, the ICU overwrites the old file with the
new file.

Table 2-1 shows file names created using no prefix (carriage return only). If you enter any
character other than carriage return when prompted for a prefix, that character is added as
the prefix to the file names.

Guide to the ICU

GENERATING YOUR SYSTEM

Table 2-1. Files Created by the G[enerate] Command

File Name Screens Used to Define the File

NTABLA86 Nucleus, Object Sys Calls, Job and Task Sys Calls,
Exchange Sys Calls, Free Space Sys Calls, Interrupt
Sys Calls, Extension Sys Calls, Exception Sys Calls

NDEVC.A86 Hardware, Interrupts, 80186 Initialization,
MBII Hardware

MTHn.A86 Dynamic Debugger and Terminal Handler

ITABLA86 BIOS, Non-File Sys Calls, Physical File Sys Calls,
Stream File Sys Calls, Named File Sys Calls,
Remote File Access

ICDEV.A86 and ITDEV.A86 All Intel and user devices, Remote File Access

ETABL.A86 EIOS Sys Calls

EDEVC.A86 EIOS, Automatic Boot Device, Logical Names

EJOBC.A86 I/O Users, I/O Jobs

HCONF.P86 Human Interface, HI Jobs, Resident User, Prefixes,
HI Logical Names

LTABL.A86 None

LCONF.P86 Application Loader

SDBCN.A86 System Debugger

UTABL.A86 None

UDICN.A86 UDI

ROOT.A86 Hardware, Subsystems, MBII Hardware

CAUTION

Changes made to the ICU dermition file are not reflected in your
configuration files until you generate.

Guide to the ICU 2-3

GENERATING YOUR SYSTEM

2.3 EXECUTING THE SUBMIT FILE

After you exit the ICU, execute the SUBMIT file and wait for your system to be generated.

The SUBMIT file assembles or compiles any configuration files generated by the ICU and
links the object files with any needed libraries used by a subsystem. It then builds the
system. The syntax for invoking the SUBMIT file is

SUBMIT output-file[.CSD] [TO filename] [echo]

The name of your definition file.

where:

output-file

filename A file that the system creates to contain the output of the SUBMIT
command.

e[cho] Sends a copy of the data read to the screen.

For more information on the SUBMIT command, see the Operator's Guide to theiRM}{@
Human Interface.

2.3.1 Assembling the Configuration Files

The SUBMIT file generated by the ICU identifies the configuration files that must be
assembled or compiled for each of your subsystems. The number of files assembled varies
from system to system and depends upon the features that you choose. No errors should
be encountered during this phase. Figure B-33, in Appendix B, gives an example of the
SUBMIT file output during this phase of the configuration process.

2.3.2 Linking the Individual Subsystems

As soon as ASM86 generates the object files for a given subsystem, the SUBMIT file
initiates LINK86 to link these object files together with any libraries needed by the
subsystem. Any warnings generated during this phase should be ignored. Explanations of
the various warnings appear at the end of this section. Figure B-33, in Appendix B, shows
some of the output generated during this phase of the configuration process.

Guide to the leu

GENERATING YOUR SYSTEM

2.3.3 Warning Messages

When you invoke the system generation SUBMIT file generated by the first stage of the
ICU, you might notice a number of warning messages generated by LINK86 or LOC86.
Some of these messages are normal messages that you can ignore. This section lists such
messages and the conditions under which they can be ignored.

• WARNING 12: UNRESOLVED SYMBOLS

This warning indicates that this link did not resolve all the external symbols declared.
This situation is expected when configuring a system which includes the Basic I/O
System (BIOS).

The system generation SUBMIT file created by the ICU calls LINK86 several times
when linking the BIOS. One of the last calls to LINK86 resolves the previously
unresolved external references.

• WARNING 28: POSSIBLE OVERLAP
FILE: <filename>
MODULE: <module name>
SEGMENT: <segment name>
CLASS: <class name>

This warning indicates that the linker is combining two absolute segments. Again, this
situation is expected.

• WARNING 64: PUBLIC SYMBOLS NOT SORTED DUE TO INSUFFICIENT MEMORY

This message indicates that your computer system does not have enough memory to
allow the linker to sort the public symbols for the listing. If the linker returns this
message, the public symbols are listed in the order that they occur. The iRMX I system
generated will not be adversely affected if the listing is not alphabetically sorted. If you
desire a sorted listing, you should increase the memory available to the user. The
memory available to a particular user is defined in the :CONFIG: USER/username file.
For details, refer to the Operator's Guide to the iRMX® Human Inteiface.

• WARNING 26: DECREASING SIZE OF SEGMENT
SEGMENT: <segment name>

This warning occurs because the system generation SUBMIT file specifies a SEGSIZE
control on the LOC86 command line, and the size it specifies is smaller than the actual
segment size. This warning is normal and should be expected. It usually occurs when
the SUBMIT file contains a SEGSIZE(STACK(O)) control.

Guide to the ICU 2-5

GENERATING YOUR SYSTEM

• WARNING 63: SS AND SP REGISTERS NOT INITIALIZED
WARNING 64: DS REGISTER NOT INITIALIZED

These warnings occur because the system generation SUBMIT file specifies an
INITCODE control on the LOC86 command line, but the SUBMIT file does not
initialize the SS, SP, and DS registers. This situation occurs when locating the root job,
because the ICU correctly assigns the stack segment a length of zero. These warn~gs
are normal.

• WARNING 10: DIFFERENT VALUES FOR
FILE: :F1:NUC4.LIB
MODULE: INVALID
SYMBOL: VALIDATE PARAMS

This warning indicates that you have configured a system that does not use all the
Nucleus system calls.

• WARNING 66: START ADDRESS NOT SPECIFIED IN OUTPUT MODULE

This warning indicates that there is no start address for the module being located. This
warning message is expected when locating systems configured by the ICU. The
SUBMIT file calls LOC86 several times to locate the different layers of your system.
Only the root job's object file includes a start address.

2.3.4 Second-Stage of the leu

2-6

After the SUBMIT file has directed the assembling and linking of each of the subsystems,
the SUBMIT file initiates the second stage of the ICU. During this second stage, the ICU
calculates where each module is to be located in memory blocks that you declared. The
ICU does this by sorting the memory blocks by size, and searching from largest to smallest
for the best fit for the largest module that it must locate. If any memory within the
memory block chosen for this module still remains, the ICU resorts all of the remaining
memory blocks by size (including the new block just left). The second and remaining
modules are located by the ICU from largest to smallest in the same fashion.

The second stage of the ICU, ICU86.862, generates two additional submit files:
ICULOC.CSD and ICUROT.CSD. The ICUROT.CSD submit file links and locates the
Root Job.

Guide to the leu

GENERATING YOUR SYSTEM

2.3.5 Error Messages

In addition to warning messages, the language utilities and the second stage of the ICU
(ICU86.862) can return error messages. Error messages are not normal and should not be
ignored. They indicate a serious problem that will prevent the successful generation of
your system. The following error messages can appear.

• 0021: E$FILE NOT EXIST
8042: E$NOT CONNECTION, command aborted by EH

LIB86 can return one of these error messages when it specifies an invalid pathname for
the file that it creates to contain your iRMX I library. One of these messages might
also appear if you entered an invalid pathname as input to the ICU.

• 0021: E$FILE NOT EXIST

LIB86 can return one of these error messages when the files it tries to add to the
iRMX I library do not exist. This situation might occur if you abort the system
generation SUBMIT file and delete the files to be added to the library or if an error
occurs during the assemble, link, or locate of the system modules. One of these
messages might also appear if you enter an invalid pathname as input to the ICU.

The following error messages can be returned by the second stage of the ICU.

• CANNOT CREATE FILE

The second stage of the ICU returns this message if it has difficulty creating one of files
it must produce (ICULOC.CSD or ICUROT.CSD). This problem might occur under
the Series IV operating system or iRMX I if these files already exist and have the
write-protect attribute set, if there is no write, add or delete access to the directory, or
if the disk is write-protected.

• DESCRIPTION FILE IS NOT VALID

Either the definition file appearing on the command line is not a valid definition file,
the file does not exist, or if the versions of the first and second stages aren't the same.
This situation might occur if you accidentally delete the definition file (or copy over it)
before invoking the system generation SUBMIT file.

• MAP FILE NOT FOUND

The second stage of the ICU returns this message if it cannot find one of the .MPI files
created by LINK86. Under normal circumstances the .MPI rtIe should not be missing.
However, the ICU might not find the .MPI rtIe under either of the following
conditions:

LINK86 returned an error and did not create the .MPI file.

The .MPI file was deleted after it was created and before it was needed by the
second'stage of the ICU. This situation can occur if you split the system generation
SUBMIT file into two files and then delete the .MPI file before invoking the
second SUBMIT file.

Guide to the ICU 2-7

GENERATING YOUR SYSTEM

• BAD MAP FILE

Second stage of the leu returns this error message if necessary information is not
present in .MPI file. This error may occur if the link of a subsystem fails after the map
file is created but before the link completes.

• NOT ENOUGH RAM FOR SYSTEM

The memory blocks you declared for RAM in the "RAM Memory" screen are not large
enough for the system you defined.

• NOT ENOUGH ROM FOR SYSTEM

The memory blocks you declared for PROM in the "ROM Memory" screen are not
large enough for the system you defmed.

2.3.6 Libraries for the System RAM and PROM Code

2-8

The SUBMIT file uses LIB86 to create two libraries. One library is for the system RAM
code and the other library is for the system PROM code. As a final step, the SUBMIT file
adds the subsystems generated to one of the two libraries.

Guide to the ICU

PREPARING APPLICATION JOBS 3
3.1 INTRODUCTION

After you have prepared your application jobs and the subsystems, you should locate your
first system entirely in RAM to enable you to test and debug of your programs. It is much
easier to test and debug your programs in RAM than it is to reburn your PROMs when you
detect errors. After debugging in RAM, you can locate the final system in PROM/RAM
or copy it to a secondary storage device and load it with the Bootstrap Loader.

Putting together a RAM-based system consists of the following steps:

• Using the ICU to define your system

• Preparing your application code

• Planning where to locate your code

• Linking and locating the application jobs

• Using the ICU to generate the configuration files for the application system

• Loading and testing the system

These steps have not been numbered because conclusions that you draw while laying out
your system affect where and when you locate your application jobs. This chapter
describes the strategies that you need to consider when locating your system and explains
how to use the ICU to generate your system. Both loading and testing your system are
described in Chapter 5 of this manual.

3.2 PREPARING APPLICATION CODE

You can write the code for your application tasks in either PL/M-86 or assembly language.
This manual assumes you are using PL/M-86. To use assembly language, you must adhere
to the PL/M-86 calling conventions. These are described in the ASM86 Macro Assembler
manual. The iRMX® I Programming Techniques Reference Manual also contains
information to help you write assembly language tasks.

You must use Version 2.3 or later ofPL/M-86. If you have any problems using the PL/M-
86 language or compiling PL/M-86 code, refer to the PL/M-86 User's Guide. However, to
use the features of the iRMX I Operating System, you must also follow the instructions in
this chapter when writing your code.

Guide to the leu 3-1

PREPARING APPLICATION JOBS

3.2.1 Language Requirements

Adhere to the following language requirements when writing your task code:

• Make certain that any utilities you use are linked to the UDI libraries.

• In general, you should designate all of your tasks as procedures. Designation of initial
tasks is the only exception to this recommendation. Refer to iRMX@ I Application
Loader User's Guide for details about main modules and procedures.

• If you are compiling your PL/M -86 code using any model other than LARGE, specify
the ROM compiler control. This causes the compiler to place the CONST segment in
the CODE class, where it can be more easily loaded into PROM. You do not need to
specify the ROM control for those programs compiled using the LARGE model,
because the compiler automatically does this for the LARGE model.

• Use the DATA and INITIAL statements with care. The DATA statement is valid only
if you are using the PL/M-86 LARGE model of segmentation or if you specify the
ROM compiler control. The INITIAL statement cannot be used in a procedure if you
are going to place that procedure in PROM. It can be used, however, if you are going
to use the Bootstrap Loader or the Application Loader to load the procedure into
memory.

3.2.2 Include Files

3-2

A number of files must be present on your microcomputer system to compile your
application software and to configure your operating system. The Includes and Libraries
screen, discussed in the iRMX® I Interactive Configuration Utility Reference Manual, is used
to select the files that must be present to configure your operating system. This section
discusses the files that you need to compile your application software.

Any program containing iRMX I system calls must include an external declaration for each
call used. Declarations for the system calls are provided for FORTRAN, Pascal, and
PL/M -86 in files called INCLUDE files. When you install the system as described in the
iRMX® I Hardware and Software Installation Guide, these files are located in the
/RMX86/INC directory. FORTRAN system calls are in the file RMXFOR.EXT and
Pascal system calls are in the ftIe RMXPAS.EXT. Each PL/M-86 system call is declared in
its own INCLUDE file and in an INCLUDE file for its subsystem of the operating system.
The INCLUDE files for the subsystems are:

Subsystem

Nucleus
BIOS
EIOS
Application Loader
Human Interface
UDI

File Name

NUCLUS.EXT
BIOS.EXT
EIOS.EXT
LOADER.EXT
HI.EXT
UDI.EXT

Guide to the ICU

PREPARING APPLICATION JOBS

If your PL/M application does not use all system calls in a particular subsystem, you may
want to save memory by using the individual INCLUDE file for each system call, rather
than using the INCLUDE file for the subsystem. To include the necessary fues in the
compilation of your procedures, use the PL/M-86 $INCLUDE control. The PL/M-86
User's Guide describes this control.

3.3 GENERAL SYSTEM LAYOUT

Your application system must include at least one application job or the Human Interface.
If your application system includes an application job (a frrst-Ieveljob or an I/O job), you
must decide where to locate the code for that job. When creating an initial system, you can
locate your application code either high or low in RAM. This decision, as well as the
decision to rearrange the location of your system code, is discussed in the sections that
follow.

All systems, regardless of any other decision, have a minimum memory address at which
they can st(irt. Figure 3-1 shows the standard usage of memory from locations O:OH to
119:FH for MUL TIBUS® I systems. It is recommended that you adhere to this memory
usage and start your system at 120:0H.

Notice in Figure 3-1 that addresses corresponding to the beginning and end of the interrupt
vectors have been included. The locations 40:0H through FF:FH are reserved for the
iSDMlM 86 or iSDM 286 monitors. Locations 100:0H through 119:FH are reserved for use
by Intel disk controllers. Adhering to these recommendations for reserved addresses
allows you to use the default addresses supported by the iRMX I Basic I/O System.

Free Space
120:0H

Wake-up Addresses
lOO:OH

Monitor
40:0H

Interrupt Vectors
O:OH

Figure 3-1. Reserved Memory Locations for MULTIBUS® I Systems

Guide to the ICU 3-3

PREPARING APPLICATION JOBS

3.3.1 System Type

At first, when creating an initial test system, locate all of your modules in RAM. This
allows you to layout the system on a job-by-job basis .. You can locate all segments
associated with one job (code segments, data segments, etc.) sequentially in RAM and
locate all segments of the next job following the fIrst.

Later, if you locate a final PROM/RAM system, you must locate the system by class, not
by job. You must locate the code classes from all of the jobs at PROM addresses, and the
data, stack, and memory classes at RAM addresses. For details on locating a
PROM/RAM system, refer to Appendix C and the description of the ICU's ROM Code
screen in the iRMJ(!i3> I Interactive Configuration Utility Reference Manual.

3.3.2 Low or High Location of Modules

You can locate your application software either low in memory (at 120:0H) or high in
memory (at a numeric address greater than the operating system's highest address).

3.3.2.1 Locating Your Applications Low in RAM

3-4

When you locate the application software low in memory you must:

• Assign the first application job (module) to the numerically smallest memory location

• Use the ICU to declare the first available memory at a location greater than the
highest memory used by your application code

Figure 3-2 illustrates locating your application software low in memory.

Guide to the ICU

PREPARING APPLICATION JOBS

Operating System

Application Software

Reserved

highest declared
memory

lowest declared
memory

l20:0H

O:OH

Figure 3-2. Locating Your Application Low in RAM

The major advantage in locating your application code low in memory is the ease in using
the ICU. When you use this approach, you link and locate your application code and then
run the ICU only once.

The disadvantages in locating your application code low in memory are as follows:

• First, even if you allow additional memory for growth of your application software, you
may have to rerun the ICU frequently as you debug and augment your application
software.

• Second, if your lowest address in RAM is on-board RAM, then you are not using your
memory to your best advantage. (This may not concern you if your final system is
PROM based.)

3.3.2.2 Locating Your Applications High in RAM

When you locate your application code high in memory, you must:

• use the ICU to declare 120:0H as the lowest memory for the operating system

• locate your application software at the first available address not declared for the
operating system.

Figure 3-3 illustrates locating your application software high in memory.

Guide to the ICU 3-5

PREPARING APPLICATION JOBS

3-6

Application Software

Operating System

Reserved

highest undeclared
memory

highest declared
memory

lowest declared
memory - 120:0H

O:OH

Figure 3·3. Locating Your Application High in RAM

The advantages in locating your application code high in memory are as follows:

• First, as your application software grows, the number of changes that require running
the leu is kept to a minimum. (You only have to change the addresses of your
application jobs and not the declared memory addresses for the operating system.)

• Second, you can have the leu locate part of your operating system in faster on-board
RAM.

The disadvantages of locating your application code high in memory are as follows:

• You have to run the leu twice. You run the leu once before you locate your
application code and a second time after you locate your application code. The first
time you run the leu you defme and locate just your operating system. This allows
you to determine the highest memory address used by your operating system. The
second time you run the leu to specify application code information and to redeclare
your memory blocks.

• If you make large configuration changes to your system, you may have to move your
application code.

Guide to the ICU

PREPARING APPLICATION JOBS

3.3.3 Locating the Subsystems

As explained in Chapter 2, the ICU locates the system modules in order by size. This may
not be the order in which you want your modules. In particular, if you want your Nucleus
located at the lowest address in RAM, you must take additional steps to make this happen.
The following steps summarize what you need to do.

1. Define your operating system using the lCU.

2. Locate your operating system using the ICU.

3. Use the locate maps generated in step 2 to ascertain the size of each of your system
modules. Table 3-1 lists the file names for each system module.

4. Layout a memory map of your proposed system. Allow 10 to 20 additional
paragraphs (16 bytes each) per module for ICU second stage round-off errors.

5. Link and locate your application software.

6. Redefine your memory usage using the ICU. This step includes breaking your single
block of RAM memory into a number of smaller blocks. You should declare one
block for each system module. The size of the block should equal the size of the
system module plus 20 paragraphs.

7. Specify the location of your application software using the ICU.

8. Assemble, link and locate your operating system using the ICU. This step is
explained in detail later in this chapter. .

Table 3-1. Locate Map File Names

Module

Nucleus
Terminal Handler #1
Terminal Handler #2 *
Basic I/O System
Extended I/O System
Application Loader
Human Interface
Root Job
Universal Development Interface
System Debugger

File Names

NUCLUS.MP2
MTH1.MP2
MTH2.MP2
IOS.MP2
EIOS.MP2
LOADER.MP2
HI.MP2
ROOT.MP2
UDI.MP2
SDB.MP2

Note: * Each Terminal Handler is assigned a number that corresponds to the order in which it was
specified in the ICU. You can identify the Debugger by its relative Terminal Handler
number.

Guide to the ICU 3-7

PREPARING APPLICATION JOBS

3.3.4 Reading a Locate Map

3-8

One of the LOC86 options used while locating a system or an application program is the
creation of a locate map for each module being located. These maps have filenames with
the extension "MP2". Figure 3-4 shows a partia11isting for ROOT.MP2. Note that the
Root Job code starts at location 455C:OH and stops at location 45CB:FH. The Root Job
data starts at location 4631:0H and stops at location 4632:3H. The Root Job stack starts at
location 4632:4H and stops at location 4644:FH.

Guide to the ICU

PREPARING APPLICATION JOBS

iRMX I 8086 LOCATER, V2.5

INPUT FILE: CROOT.LNK
OUTPUT FILE: ROOT
CONTROLS SPECIFIED IN INVOCATION COMMAND:

TO ROOT SEGSIZE(STACK(O» ORDER(CLASSES(DATA,STACK»
PRINT(ROOT.MP2) ADDRESSES(CLASSES(CODE(0455COH),DATA(046310H»)
INITCODE(0455COH) OC(NOLI,NOCM,NOSB) PC(NOLI,PL,NOCM,NOSB)

•
•
•

MEMORY MAP OF MODULE RBEGIN

MODULE START ADDRESS PARAGRAPH = 455CH OFFSET = OOOOH
SEGMENT MAP

START STOP LENGTH ALIGN NAME

--->455COH 45BECH 062DH W
45BEEH 45BF9H OOOCH W

45BFAH 45CBFH 00C6H W

--->46310H 46323H 0014H W
--->46324H 4644FH 012CH W

46450H 46450H OOOOH W
46450H 46450H OOOOH G
46450H 46450H OOOOH W

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
46310H DGROUP

DATA
455COH CGROUP

CODE
SAB DESCRIPTORS
U J DESCRIPTORS

CODE
SAB DESCRIPTOR

-S
U J DESCRIPTOR

-S
DATA
INIT STACK
STACK
??SEG
MEMORY

Figure 3-4. ROOT .MP2 File

Guide to the ICU

CLASS

CODE
CODE

CODE

DATA
STACK
STACK

MEMORY

OVERLAY

3-9

PREPARING APPLICATION JOBS

3.3.5 Preparing a Memory Map Worksheet

Based on the information in a memory map we can prepare a memory map worksheet.
These worksheets are used for planning memory use. Figure 3-5 shows a blank memory
map worksheet.

3-10 Guide to the ICU

PREPARING APPLICATION JOBS

i~ I RAM SYSTEM MEMORY MAP WORKSHEET

0120:0H

iSBC 215 wake-up address
0100:0H

Monitor
0040:0H

Interrupt vectpr
O:OH

Figure 3-5. System Memory Map Worksheet

Guide to the ICU 3-11

PREPARING APPLICATION JOBS

Figure 3-6 shows an example worksheet that has been filled in with the information from
the ROOT.MP2 file. Note that since Chapter 2 points out that the Root Job is linked and
located last, we can correctly assume that the Root Job has a higher address than the
remaining system module code and data segments.

iRMX® I RAM SYSTEM MEMORY MAP WORKSHEET

7FFF:FH

Free Space
1111111

Application Job
4645:0H

Root Job Stack
4632:4H

Root Job Data
4631:0H

Root Job Code
455C:OH

Operating System Data and Code
0120:0H

iSBC 215 wake-up address
0100:0H

Monitor
0040:0H

Interrupt vector
O:OH

Figure 3-6. Sample Worksheet

3-12 Guide to the ICU

PREPARING APPLICATION JOBS

3.4 LINKING AND LOCATING APPLICATION JOBS

Linking and locating your application jobs is an iterative process. That is, you must link
and locate one application job and its offspring jobs, examine the locate maps to determine
the ending address, and use that information to link and locate the next application job and
its offspring.

The most common method of linking and locating your application jobs is to link the
application job together with every job ultimately created by that application job and one
or more interface libraries. You must then locate this module at an absolute address.
Figure 3-7 illustrates this link and locate procedure.

First-Level Job
Object Code

Offspring Job
Object Code

• • •
Offspring Job
Object Code

Guide to the ICU

I
LlNK86

I
Linked Application

First-Level Job

I
LOC86

I
Located Application

First-Level Job

Figure 3-7. Application Job Link and Locate Procedure

Interface
Library

• • •
Interface
Library

W-0939-1

3-13

PREPARING APPLICATION JOBS

If you do not link your application jobs with their offspring jobs, you should link and locate
the offspring jobs fast. By doing this, you can obtain the absolute starting locations of the
offspring tasks from the locate maps and specify these values in the CREA TE$JOB (or
CREATEIOJOB) and CREATE$TASK calls of their parent tasks before compiling the
parents.

The following sections describe the individual link and locate commands in more detail,
and describe the interface libraries.

3.4.1 Linking Application Jobs

The LINK86 command is used to link your application jobs. This command is described in
detail in the 8086 Family Utilities User's Guide. The example which follows shows the
format of the LINK86 command as it is used in an iRMX I environment.

LINK86 &
app job.obj, &
interface. lib &

TO app job. Ink MAP PRINT(app job.mpl)

where:

appJob.obj

interface.lib

appJob.lnk

appJob.mpl

3-14

Pathname of the file containing the object code for your application
job. You do not need to provide this code in one file; you can link
in several files or libraries at this point.

Pathname of the file containing the interface libraries for the
subsystems that your jobs make use of. You may have to link in
several libraries at this point. These interface libraries are
described in later paragraphs of this section.

Pathname of the file in which LINK86 places the module containing
your linked application code. Use this file as the input file when
locating your application job.

Pathname of the file in which LINK86 writes the link map for the
application job.

Guide to the ICU

PREPARING APPLICATION JOBS

During the link process, you must link in a number of interface libraries. These libraries
contain the routines that satisfy external references to system calls that you make in your
application code. The number and names of the libraries that you must link in with your
application code depend on which subsystems your jobs use and which model of
segmentation the jobs were compiled under. Table 3-2 shows the correlation between
subsystems, models of segmentation, and interface libraries. Specify these libraries as the
last modules in the LINK86 input list so that they can satisfy references from all linked
modules. Notice that no library exists for the SMALL model of PL/M-86 segmentation;
except for Universal Development Interface (UDI) level applications, the iRMX I
Operating System does not support applications compiled in SMALL.

Table 3-2. Interface Libraries as a Function of PL/M-86 Models and Subsystems

Subsystem SMALL COMPACT LARGE or MEDIUM

Nucleus RPIFC.L1B RPIFLLlB

Basic I/O System IPIFC.L1B IPIFLLlB

Application Loader LPIFC.L1B LPIFLLlB

Extended I/O System EPIFC.L1B EPIFLLlB

Human Interface HPIFC.LlB HPIFLLlB

UOI SMALLLlB COMPAC.L1B LARGE.L1B

Guide to the ICU 3-15

PREPARING APPLICATION JOBS

3.4.2 Locating Application Jobs

After you have used LINK86 to generate a link module for your application job, you must
use LOC86 to bind this link module to absolute addresses. The 8086 Family Utilities User's
Guide contains specific instructions on the use of the LOC86 command.

Since you are laying out your test system by job rather than by class, use a combination of
the ORDER and ADDRESSES controls on LOC86 to simplify the location process. Use
the ORDER control to declare the order in which the classes of the job are to be located.
Then declare the absolute address of the code class with the ADDRESSES control.
LOC86 automatically locates the rest of the classes following the code class. If you do this,
a call to LOC86 appears similar to the following:

LOC86 input_file TO output_file &

where:

inputJile

outputJile

stack size

ORDER (CLASSES (CODE, DATA, STACK, MEMORY» &
SEGSIZE (STACK (stack_size» &
ADDRESSES (CLASSES (CODE (absolute_address») &
MAP PRINT (map_file) &
NOINITCODE &
OBJECTCONTROLS (NOLINES,NOCOMMENTS,NOPUBLICS, &

NOSYMBOLS)

Pathname of link file produced previously by LINK86.

Pathname of the file in which LOC86 writes the absolute module.

Size of this job's stack. Use this control for those jobs requiring a
statically allocated stack. A stack is statically allocated if you, and
not the operating system, specify a stack location and size. A
minimum value of 200H should be specified, if this control is
required; otherwise specify zero. It is recommended that you
specify zero for this parameter and let the Nucleus dynamically
allocate a stack whenever possible. This depends, however, on the
model of PL/M-86 computation that you used when compiling your
code. With dynamically allocated stacks, you specify the stack size
in the ICU.

absolute_address Absolute starting location of the code segment of the job. You can
obtain this address by examining the locate map of the previously
located module. You specify the starting location of the code
segment for first-level jobs and I/O jobs in the ICU.

mapJile Pathname of the file in which LOC86 writes the locate map. Always
generate the locate map. You need it in order to determine where
to locate the next module.

Use this form of the LOC86 command to locate each application job.

3-16 Guide to the ICU

PREPARING APPLICATION JOBS

3.5 LINKING AND LOCATING JOBS IN A RAM/PROM-BASED
SYSTEM

In order to create a final RAM/PROM system, you should take the following steps:

• Minimize the memory address space requirements of your system by eliminating any
padding factor you may have used when locating your jobs.

• Test your final system in RAM first, locate it into PROM/RAM, and burn the
appropriate parts into PROM.

To shorten the time needed to load your complete system, burn your fully tested and
completely debugged jobs into PROM while still testing and developing other jobs in RAM.
Then, each time you reload your system, you need only load the jobs on which you are still
working.

3.5.1 Minimizing the Memory Address Space

When you originally located your application jobs, you included padding factors in the
calculations used to determine starting addresses of succeeding jobs. The additional space
allocated with the padding factors allowed you to make small changes in your programs
that increased their sizes without changing the LOC86 commands used to locate them.
The modules, despite increasing in size, did not overlap each other. In your final system,
you have already debugged all of your programs; their sizes are fixed, so now you can
eliminate any extra space existing between modules, if you desire.

Follow the procedures outlined in a previous section "Locating Application Jobs" to locate
your application's first-level and I/O jobs again. This time, however, leave out the padding
factors between jobs. Then modify the ICU definition file by changing your responses as
follows:

• Change the responses to prompts (TSA), (DSB), and (SSA) on the "User Jobs" screen
and/or the "I/O Jobs" screen to reflect the new location of the job.

• Change the responses to the "RAM Memory" screen to reflect the smaller size of
reserved memory.

After you have located your system, load it into RAM and test it again to make sure that it
functions correctly.

You can perform this procedure in conjunction with the one described in the next section.
However, it might be wise to perform them separately in order to localize any possible
errors.

Guide to the ICU 3-17

PREPARING APPLICATION JOBS

3.5.2 Locating the PROM/RAM-Based .System

When you located your initial test and development system, you located it by job. That is,
if you had three jobs, they were laid out as shown in Figure 3-8.

This was relatively easy; it allowed you to use the ORDER control in LOC86 and specify
only one address for each job with the ADDRESSES control. However, when configuring
any final system that will be programmed into PROM, you should layout the system by
class, not by job. All of the PROM-resident segments from all of the jobs should be
positioned together. Likewise, all of the RAM-resident segments should be positioned
together. Thus, if you had the same three jobs and were laying out a PROM/RAM system,
you should structure your memory as shown in Figure 3-9.

high memory

Job 3 MEMORY class
Job 3 STACK class
Job 3 DATA class
Job 3 CODE class

Job 2 MEMORY class
Job 2 STACK class
Job 2 DATA class
Job 2 CODE class

Job 1 MEMORY class
Job 1 STACK class
Job 1 DATA class
Job 1 CODE class

low memory

Figure 3-8. Memory Layout of a RAM-based System

All of the code classes are located in the upper memory, or PROM, and the remainder are
located in RAM.

As you can see, in order to transform your RAM-based system into a PROM/RAM
system, you must locate your jobs again. Before you do that, however, you should prepare
a memory map.

3-18 Guide to the ICU

PREPARING APPLICATION JOBS

3.5.2.1 Preparing a Memory Map

To prepare a memory map, follow the procedures outlined in the "Locating the
Subsystems," "Reading a Locate Map," and "Preparing a Memory Map Worksheet" sections
of this chapter, with one exception. In this map, record not only the first available RAM
address and the last available RAM address, but also the frrst available PROM address and
the last available PROM address. You need this information on your memory map
because for PROM/RAM systems, you must specify a location for both the PROM
resident code classes and the RAM-resident classes.

high memory

Job 3 CODE class
Job 2 CODE class PROM
Job 1 CODE class

Job 3 MEMORY class
Job 3 STACK class
Job 3 DATA class
Job 2 MEMORY class
Job 2 STACK class RAM
Job 2 DATA class
Job 1 MEMORY class
Job 1 STACK class
Job 1 DATA class

low memory

Figure 3-9. Memory Layout of a PROM/RAM System

Guide to the ICU 3-19

PREPARING APPLICATION JOBS

3.5.3 Locating the Application Modules

The procedure for locating the application modules of a PROM/RAM system, like that for
a RAM -based system, is an iterative procedure. You locate one module, record its
addresses in the memory map, and use those values to determine where to locate the next
module. The format of the L0C86 command used to locate these modules is slightly
different from the one used to locate the RAM-resident system.

LOC86 input_file TO output_file &

where:

inputJile

outputJile

stack_size

mapJile

ORDER (CLASSES (DATA, STACK, MEMORY» &
SEGSIZE (STACK (stack_size» &
ADDRESSES (CLASSES (CODE (rom address), &

DATA (ram_address») &
MAP PRINT (map_file) &
NOINITCODE &
OBJECTCONTROLS(NOLINES, NOCOMMENTS, NOPUBLICS, &

NOSYMBOLS)

Pathname of the link file produced previously by LINK86.

Pathname of the file in which LOC86 writes the absolute module.

Size of this job's stack. Use this control for those jobs requiring a
statically-allocated stack. If this control is required, specify a
minimum value of 200H; otherwise specify zero.

Absolute starting location of the PROM-resident class (code class)
of the module.

Absolute starting location of the RAM-resident classes of the
module.

Pathname of the file in which LOC86 writes the locate map.

Use this form of the LOC86 command to locate each application first-level job and I/O
job. The ORDER and ADDRESSES controls of this command differ from those of the
RAM-based LOC86 command. In this command, the ORDER control does not mention
the code class. The ADDRESSES control requires that you enter two absolute addresses;
one to locate the code class in PROM and one to locate the remaining classes in RAM.

3.5.4 Testing the System in RAM

Before you actually locate a PROM/RAM system, it is recommended that you follow the
procedures outlined in the previous sections, but specify RAM addresses for all classes.
Then you can load the system into RAM and test it before burning code into PROM.
After doing this, you can adjust the addresses to reflect a PROM/RAM system and build
your final system.

3-20 Guide to the ICU

ADDING USERS
TO YOUR SYSTEM 4

4.1 INTRODUCTION

To function correctly, a system configured with the Human Interface requires information
about all users (operators) and terminals that intend to access the system via the Human
Interface. Two types of users exist for your system: a resident user and non-resident users.

4.2 THE RESIDENT USER

The resident user becomes part of your final system and resides in memory along with the
rest of the operating system (thus, the term "resident user"). Two types of resident users
exist: a recovery resident user and a non-recovery resident user. The recovery resident
user gains control only if an initialization error occurs during initialization of the Human
Interface. Regardless of the type, the resident user occupies one of the system terminals
and is created before non-resident users. The operating system can contain information
about only one resident user.

Including a resident user type in your system is called resident user configuration.
Resident user configuration is accomplished by supplying information to the Human
Interface (HI) screen during ICU configuration of the Human Interface. Refer to the
iRMX® I Interactive Configuration Reference Manual for detailed information needed for
resident user configuration.

4.3 NON·RESIDENT USERS

Non-resident users are users that can access the system using the Human Interface logon
procedure. If your system is to be a multiple-user system, you need to define to the
Human Interface all the non-resident users that can access the system. Configuration for
non-resident users occurs through the Human Interface PASSWORD command and
possible editing of several user definition files. These files define user names, limitations,
passwords, terminals, and terminal characteristics to the system.

The process of adding non-resident users to your system is called non-resident user
configuration. The files involved are called non-resident configuration files.

Guide to the leu 4-1

ADDING USERS TO YOUR SYSTEM

4-2

The system manager (who has user ID 0) can modify these fIles to add users or terminals,
delete users or terminals, or change characteristics of users or terminals. Depending on
the type of modifications made, the changes take effect either the next time the affected
user logs onto the system or the next time the system is initialized. To prevent
unauthorized users from changing the system confIguration, the system manager should be
the only user with change access to these rues.

Refer to the Operator's Guide to the iRMX8 Human Interface for detailed information on
non-resident user confIguration.

Guide to the leu

LOADING AND
TESTING THE SYSTEM 5

5.1 INTRODUCTION

After you run the SUBMIT file generated by the ICU, you are ready to load the system
into RAM and test it. The system RAM code is contained in the file that you specified
while running the ICU. There are several different ways in which you can load your system
into RAM.

5.2 LOADING YOUR SYSTEM INTO RAM

If you are using a Series IV development system, use the iSDM System Debug Monitor to
load your system from disk into RAM. The iSDM monitor is described in the iSDurw
System Debug Monitor Reference Manual.

If you are using your System 300 Series Microcomputer as a development tool, use the
Bootstrap Loader to load your system into RAM. The procedures for using the Bootstrap
Loader are described in the iRMX@ Bootstrap Loader Reference Manual.

5.3 INITIALIZING YOUR SYSTEM

After you load your system, you must initialize it. If you are using the Bootstrap Loader
this process takes place automatically. If you did not load your system using the Bootstrap
Loader, refer to the appropriate manual for instructions on how to initialize your system by
starting execution from the beginning of the Root Job.

5.3.1 Initialization

An iRMX I Operating System can be configured to include your own code as a first-level
job or as a first-level I/O job. When created, such a job contains only a single task. That
single task creates or starts the creation of all other objects required by the first-level job.
Thus it is referred to as the initialization task for its job, even though it may perform other
functions as well. You should synchronize the operation of each initialization task with
that of the root task to ensure proper functioning of your application system.

Guide to the ICU 5-1

LOADING AND TESTING THE SYSTEM

5-2

The root task is structured so that it creates the frrst-Ieveljobs one at a time. It contains a
programming loop that in general performs the following:

Repeat for each first-level job
Create first-level job
Suspend root task (until resumed by a first-level job)

Until finished
End

Each time the root task creates a first-level job, the root task suspends itself to allow the
initialization task in the new job to perform synchronous initialization. Synchronous
initialization consists of functions that must be performed immediately, before some other
first-level job is created. Typically, this requires creating objects or making resources
available that tasks in first-level jobs, not yet created, expect to be available when they
themselves are created. (For example, the initialization task in the Extended I/O System
job must create the entire Extended I/O System before it can allow the root task to create
other first-level jobs that might make use of Extended I/O System functions.)

When the initialization task finishes its synchronous initialization, it must inform the root
task that it is finished, so that the root task can resume execution and create another first
level job. The initialization task must always inform the root task that it has completed its
synchronous initialization process by making the following procedure call:

CALL RQENDINIT$TASK;

This procedure call requires no parameters. When you call this procedure, the root task
resumes execution, allowing it to create the next first-level job. You must include a call to
RQENDINIT$TASK in the initialization task of each of your first-level jobs, even if the
jobs require no synchronous initialization. If one of the first-level tasks does not include
this call, the root job remains suspended and cannot create any of the remaining first-level
jobs.

The amount of synchronous initialization that an initialization task must do depends on
your job structure. You may require some of your initialization tasks to create all of the
offspring jobs and a number of other objects before calling RQENDINIT$TASK. Some
others may have to perform only one or two functions, call RQENDINIT$TASK, and
then resume the process of initialization asynchronously. Still other initialization tasks may
not have any synchronous initialization requirements and so can call
RQENDINIT$TASK before performing any initialization. You must determine how the
pieces of your system interact, and how they must be synchronized.

Guide to the leu

LOADING AND TESTING THE SYSTEM

Another important factor in initialization is the order in which the root job creates the
first-level jobs (see Table 5-1). The amount of processing your initialization tasks must do
before calling RQENDINIT$TASK may depend on which jobs the root task has already
created and which jobs it has yet to create. The order in .which the root task creates fIrst
level jobs depends on the order that you specify these jobs while running the leU, not on
the priority of the tasks in those jobs.

You should always use RQENDINIT$TASK as described in this section in order to
perform your synchronous initialization. Otherwise, the root task cannot be resumed and
thus, it cannot complete system initialization in the correct order.

Order

1
2
3
4
5
6
7
8
9

10
11

Table 5-1. Order of Initialization

First-Level Job

Root Job
Nucleus
System Debugger
Terminal Handler
Basic I/O System
Application Loader
Extended I/O System
I/O User Jobs
Universal Development Interface
User Jobs
Human Interface

5.3.2 System Initialization Errors

If the system encounters an error during the initialization process, it places diagnostic
information in the processor registers and halts the processor. If the "Report Initialization
Errors" entry on the Nucleus screen is ''yes'' and your processor board contains the iSDM
monitor, a hexadecimal code and a mnemonic are displayed at the console indicating the
layer that contains the initialization error.

Errors can occur during two operations:

• Nucleus and memory initialization

• Job creation by the root task

The value placed in the AX register determines which type of error occurred. The
following sections outline these errors.

Guide to the ICU 5-3

LOADING AND TESTING THE SYSTEM

5.3.2.1 Nucleus and Memory Initialization Errors

5-4

If an error occurs during the memory initialization process, the Nucleus sets the processor
registers as follows:

Register Value Description

AX 11H A Nucleus or memory initialization error occurred. The ex register
contains a description of the error if it occurred during memory
initialization.

ex ODOO1H There are no memory blocks defined. There must be at least one.

ODOO2H Reserved.

ODOO3H Reserved.

ODOO4H There is not enough contiguous RAM available for the root job's
memory pool.

ODOO5H Reserved.

ODOOSH There is not enough RAM available for the system resources of the
Nucleus.

ODOO7H An invalid minimum transfer size was specified. Refer to the iR~ I
Interactive Configuration Utility Reference Manual for a description of
the minimum transfer size.

Guide to the leu

LOADING AND TESTING THE SYSTEM

5.3.2.2 Root Task Errors

If the root task encounters an error while it is creating the fIrst-level jobs of your
application system, it sets the processor registers as listed below. (If the "Report
Initialization Errors" prompt is "Yes", it prints the error on the screen.)

Register Value Description

AX 21H A root task error occurred. The BX, ex, and DL registers contain a
description of the error.

BX varies BX is set as an index to indicate which first-level job caused the error.
For example, 1 implies the first first-level job, 2 the second, and so
forth.

CX varies ex contains the exception code returned from the CREA TE$JOB
system call that was called to create the first-level job.

DL varies DL contains the number of the parameter for the first-level job that
caused the error. If DL is greater than 8, the parameter number is DL
+1. Otherwise, the parameter number is DL

5.3.2.3 System Debugger Initialization

The System Debugger defmes a public symbol, RQSDBINIUERROR (a WORD), in
which it returns its initialization status. If the System Debugger initializes properly, it sets
itself up as an operating system extension and sets RQSDBINIUERROR to zero. If the
System Debugger does not initialize correctly, it sets RQSDBINIUERROR to a
nonzero value.

If the "Report Initialization Errors" prompt is "Yes", errors will be written to the console.
Otherwise, you must use the SDB.MP2 file to ascertain the address of the
RQSDBINIUERROR public symbol. Figure 5-1 shows the line of the SDB.MP2locate
map that contains this address. Once you have this address, use your monitor commands
to find the initialization status of this system module.

Guide to the ICU 5-5

LOADING AND TESTING THE SYSTEM

•
•
•

SYMBOL TABLE OF MODULE SBEGIN

BASE OFFSET TYPE ·SYMBOL BASE OFFSET TYPE SYMBOL

36BFH OOOOH PUB RQSDBINITTASK 4517H OOOOH PUB RQSDBINITERROR

•
•
•

Figure 5-1. SDB.MP2 Locate Map

The initialization status codes returned by the system module are the same condition codes
that the operating system could return for any exception condition.

5.3.2.4 Basic I/O System Initialization

5-6

The Basic I/O System defines a public symbol (an array), RQAIOS$INIT$ERROR, in
which it returns its initialization status. This array uses the following structure:

rqaios$init$error STRUCTURE(
Primitive$number WORD
Status WORD)

where the first error placed in the Primitive$number is the system call in the BIOS
initialization that failed. If the Basic I/O System initializes properly, it sets itself up as an
operating system extension, and sets RQAIOS$INIT$ERROR to zero. If the Basic I/O
System does not initialize correctly, it sets RQAIOS$INIT$ERROR to a nonzero value.

If the "Report Initialization Errors" prompt is "Yes", errors will be written to the console.
Otherwise, you must use the 10S.MP2 file to ascertain the address of
RQAIOS$INIT$ERROR public symbol. Once you have this address, use your monitor
commands to find the initialization status of this system module. The initialization status
codes returned by the system module are the same condition codes that the operating
system could return for any exception condition.

Guide to the ICU

LOADING AND TESTING THE SYSTEM

5.3.2.5 Application Loader Initialization

The Application Loader defines a public symbo~ RQ$LOADER$INIT$ERROR (a
WORD), in which it returns its initialization status. If the Application Loader initializes
properly, it sets itself up as an operating system extension and sets
RQ$LOADER$INIT$ERROR to zero. H the Application Loader does not initialize
correctly, it sets RQ$LOADER$INIT$ERROR to a nonzero value.

If the "Report Initialization Errors" prompt is "Yes", errors will be written to the console.
Otherwise, you must use the LOADER.MP2 file to ascertain the address of
RQ$LOADER$INIT$ERROR public symbol. Once you have this address, use your
monitor commands to find the initialization status of this system module. The initialization
status codes returned by the system module are the same condition codes that the
operating system could return for any exception condition.

5.3.2.6 Extended I/O System Initialization

The Extended I/O System defines a public symbol, RQ$EIOS$INIT$ERROR (a WORD),
in which it returns its initialization status. If the Extended I/O System initializes properly,
it attaches all logical devices you specified with the ICU, sets itself up as an operating
system extension, and sets RQ$EIOS$INIT$ERROR to zero. If the Extended I/O System
does not initialize correctly, it sets RQ$EIOS$INIT$ERROR to a nonzero value.

If the "Report Initialization Errors" prompt, on the "Nucleus" screen, is "Yes", errors will be
written to the console. Otherwise, you must use the EIOS.MP2 file to ascertain the
address of RQ$EIOS$INIT$ERROR public symbol. Once you have this address, use your
monitor commands to find the initialization status of this system module. The initialization
status codes returned by the system module are the same condition codes that the
operating system could return for any exception condition.

Once initialization is complete, users can create and attach files on the devices specified
with the leu. If the devices are off-line, an exceptional condition code is returned. If one
of these devices is switched from on-line to off-line, the Extended I/O System
automatically detaches the device, and all file connections on that device are marked
invalid by the BIOS. When the unit is switched back on-line, the Extended I/O System
automatically attaches it the first time a user tries to create or attach a file on the device.
The Extended I/O System performs this service only for devices that it attaches.

5.3.2.7 Universal Development Interface Initialization

The Universal Development Interface defines a public symbol, RQUDIINIT$ERROR
(a WORD), in which it returns its initialization status. If the Universal Development
Interface initializes properly, it sets itself up as an operating system extension, and sets
RQUDIINIT$ERROR to zero. If the Universal Development Interface does not
initialize correctly, it sets RQUDIINIT$ERROR to a nonzero value.

Guide to the leu 5-7

LOADING AND TESTING THE SYSTEM

If the "Report Initialization Errors" prompt, on the "Nucleus" screen, is "Yes", the errors
will be written to the console. Otherwise, you must use the UDI.MP2 file to ascertain the
address of RQUDIINIT$ERROR public symbol. Once you have this address, use your
monitor commands to fmd the initialization status of this system module. The initialization
status codes returned by the system module are the same condition codes that the
operating system could return for any exception condition.

5.3.2.8 Human Interface Initialization

5-8

The Human Interface defmes a public symbol, RQHIINIT$ERROR (a WORD), in
which it returns its initialization status. If the Human Interface initializes properly, it sets
itself up as an operating system extension, and sets RQHIINIT$ERROR to zero. If the
Human Interface does not initialize correctly, it sets RQHIINIT$ERROR to a nonzero
value.

If the "Report Initialization Errors" prompt, on the "Nucleus" screen, is "Yes", the errors
will be written to the console. Otherwise, you must use the HI.MP2 file to ascertain the
address of RQHIINIT$ERROR public symbol. Once you have this address, use your
monitor commands to fmd the initialization status of this system module. The initialization
status codes returned by the system module are the same condition codes that the
operating system could return for any exception condition.

The only subsystem that handles an initialization error slightly different is the Human
Interface. In addition to the initialization error described above, the Human Interface may
issue the following warning if it does not have enough memory to fill the user's request.

*** WARNING: THE SYSTEM DID NOT HAVE YOUR MINIMUM MEMORY REQUIREMENTS
YOU WILL COME UP WITH ALL THE MEMORY THAT IS AVAILABLE IN THE
SYSTEM, CONTACT THE SYSTEM MANAGER.

In such a case, the user is assigned whatever memory is available at the time.

Guide to the ICU

LOADING AND TESTING THE SYSTEM

5.4 TESTING YOUR SYSTEM

The normal development cycle is to load your system, test it and correct any errors, then
reassemble or recompile any appropriate program code. Next, redefine and regenerate
your system using the ICU, and load the system again. You can continue this procedure
until you have created your target system. You can then copy your final system to PROM
or use the Bootstrap Loader to load it from secondary storage.

If you are going to use the Bootstrap Loader to load your system, refer to iRMX® Bootstrap
Loader Reference Manual for configuration information.

5.4.1 Using the Debugging Tools

The development of every system requires debugging and testing. To aid you in the
development of iRMX I-based application systems, Intel provides the iRMX I Dynamic
Debugger, the ICE-86A and 121CE In-Circuit Emulators, and the iRMX I System
Debugger with the iSDM System Debug Monitor. The System Debugger extends the
capabilities of the iSDM monitor. The following sections describe the advantages of these
debugging tools.

5.4.1.1 Advantages of the iRMX® I Dynamic Debugger

The iRMX I Dynamic Debugger is a debugging tool that is "sensitive" to the data structures
that the Nucleus maintains. The iRMX I Dynamic Debugger allows you to:

• Manipulate or examine any task while other tasks in the system continue to run. This
distinguishes the iRMX I Dynamic Debugger from the iRMX I System Debugger,
which requires that the application system be "frozen."

• Monitor system activity without interfering with execution.

• Examine and interpret data structures that are associated with the Nucleus and the
Nucleus objects.

5.4.1.2 Advantages of the tCEN -S6A and 121CEN In-Circuit Emulator

The ICEN -86A and 121CE emulators provide in-circuit emulation for 8086 and 8088
microprocessor-based systems, meaning that it "stands in" for the these microprocessors in
your target iRMX I-based system. The 121CE emulator also supports 80186,80286, and
386N microprocessor-based systems. The in-circuit emulators allow you to:

• Get closer to the hardware level by examining the contents of input pins and input
ports.

• Change the values at output ports.

• Examine individual components rather than an entire board.

• Look at the most recent 80 to 150 assembly language instructions executed.

Guide to the ICU 5-9

LOADING AND TESTING THE SYSTEM

• Protect memory areas from being altered and trap on· attempted access.

5.4.1.3 Advantages of the iRMX® I System Debugger

You can extend the capabilities of the iSDM monitor by including the System Debugger as
part of your operating system. In addition to retaining the features of the monitor, the
System Debugger

• Identifies and interprets iRMX I system calls.

• Displays iRMX I objects.

• Allows the user to examine the stack of a task to determine which iRMX I system calls
it has made recently.

5.4.2 Debugging Application Jobs

While you are creating your application jobs, you will probably use the following iterative
procedure to remove bugs from your code:

1. Configure your system.

2. Generate your system using ICU generated command files.

3. Test the system to find bugs.

4. If any bugs are found, modify the application code to eliminate the bugs and go to
Step 2.

To remove most of the bugs from your application software. you might have to loop several
times through these three steps. The purpose of this section is to show you how to simplify
the process of configuring your system during development. By using the techniques
presented here, you can reduce the time you spend in configuration and increase the time
available for debugging.

5.4.2.1 Summary of Configuration

Configuration is a three-phase process:

1. Using the ICU to select the iRMX I software that meets the needs of your application.

2. Decide where in memory to place your code modules and data segments, then link and
locate the code and data.

3. Tell the ICU where the code and data are located.

Once you have performed these three phases, you need only load the code and start up the
root job in order to get the entire system running.

5·10 Guide to the ICU

WADING AND TESTING THE SYSTEM

5.4.2.2 Configuration and Debugging

During the process of debugging an application, you generally perform Phase 1 of
configuration only once, and Phases 2 and 3 repeatedly. You need not repeat Phase 1
because your application generally uses the same set of iRMX I system calls throughout
debugging. On the other hand, Phases 2 and 3 are generally repeated because the
application software modules change frequently during debugging.

By using a special method during the coding of your initial task software, you can freeze
the locations of your application software modules and data segments. This reduces the
probability of your repeating Phases 2 and 3 of the configuration process.

5.4.2.3 The Technique

You must specify values for three parameters in the "I/O User Jobs" screen and the "User
Jobs" screen that are very volatile during development. These parameters are "(AEH)
Address of Exception Handler", "(TSA) Task Start Address", and "(DSB) Data Segment
Base".

During debugging, as you modify code and (consequently) change the size of your code
modules, the values that you must assign to these three parameters are very likely to
change. By heeding the following two suggestions, you can significantly reduce the
likelihood of changing these parameters and, hence, you can retest your revised application
job after merely linking and loading.

5.4.2.4 Freezing the Base of the Data Segment

If, during development, you locate your job's data segment after your job's code segment,
you can freeze the base of the data segment by padding the code segment. Consider the
following two situations.

In Job A (Figure 5-2), the code modules are located contiguously, with the data segment
immediately following the last module. If any of the modules in Job A grow or shrink as a
result of debugging, you must relocate the data segment. This involves changing the
"(DSB) Data Segment Base" parameter for the job and regenerating the system.

In contrast, Job B (Figure 5-2) is designed to accommodate modification. The modules are
still located contiguously, but some unused memory has been left between the code
segment and the data segment. This unused memory, called padding, allows the modules
in the code segment to grow without causing a change in the base address of the data
segment.

You must decide how much padding to leave between the code and data segments. In
general, the less stable the code is, the more padding you should leave. If you are
uncertain, try starting with 1000 bytes.

Guide to the ICU 5-11

LOADING AND TESTING THE SYSTEM

In order to obtain the padding between the code and data segments, you can use the
address control of the LOC86 command. For example,

ADDRESSES (CLASSES (CODE (aaaaa), DATA(bbbbb»)

where aaaaa is the address at which you want to place the job's code segment, and bbbbb is
the address at which you want to place the job's data segment. You can compute bbbbb by
adding the size of the padding to the address of the end of the code segment. It is also a
good idea to pad the data segment.

5-12

Job A

Module
1

Module
2

•
•
•

Module'
n-1

Module
n

Data
Segment

Lower Addresses

CodeSegmen

Room for
Growth

t

Higher Addre sses

Job8

I Module
1

Module
2

• •
•

Module
n-1 ,

Module
n

~ Padding

Data
Segment

Padding

W-1014

Figure 5-2. How To Freeze The Base Of The Data Segment

Guide to the leu

WADING AND TESTING THE SYSTEM

5.4.2.5 Freezing the Entry Points

The leu requires the addresses of two entry points, one for the job's initial task, and one
for the job's exception handler. Because these addresses are expressed as offsets from the
base of the job's code segment, you can freeze the addresses by preventing the offsets from
changing.

The easiest way to accomplish this is to create a special module that contains new entry
points for the initial task and the exception handler. This special module, if located at the
front of your code segment, provides entry points that are completely independent of
changes made to other modules.

Within this special module, each entry point must be coded as a procedure containing only
a procedure call followed by a return instruction. The purpose of the procedure call is to
invoke a secondary, external procedure that actually contains the initial task or the
exception handler. Figure 5-3 illustrates the special module in pseudo-code.

INIT TASK Module

Special Module

~
INIT_TASK.

NEW~NIT --.TASK.
CALL INIT_TASK. •
RETURN. •

•

EX HANDLER Module
NEWJ:XJiANDLER.

CALL E>L.HANDLER. ... E>L.HANDLER. -"..

RETURN.

•
•
•

W-1015

Figure 5-3. Special Module Freezes Entry Points

Guide to the ICU 5-13

LOADING AND TESTING THE SYSTEM

You can place the special module at the front of your code segment (Figure 5-4) by linking
it first during the linking process. This will ensure that the new entry points for the initial
task and the exception handler are ahead of the code modules that are subject to change.
This, in tum, ensures that the new entry points will remain a fixed distance from the base
of the code segment, and that yo~ will not need to modify the exception_handler_entry or
the initJask_entry parameters.

5-14

Lower
Addresses

Higher
Addresses

Special
Module

Module
1

•
•
•

Module
n

Padding

Data
Segment

~

"".

Ahead of
All Other
Modules

W-1016

Figure 5-4. Location Of The Special Module

Guide to the ICU

FILES CREATED BY THE ICU A
A.1 INTRODUCTION

The files listed in this appendix are created/recreated by the ICU or as output of the
SUBMIT file.

A.2 CREATED FILES

The table below lists the files that are created/recreated whenever you issue the G
command from the ICU and/or invoke the ICU-generated SUBMIT file. The file names
listed here do not include the prefix letter that may be added before generation.

Table A-I. Files Created by the ICU and SUBMIT File

Subsystem Created by ICU Created by SUBMIT File

Nucleus NTABL.A86 NTABL.OBJ
NTABL.LST

NDEVC.A86 NDEVC.OBJ
NDEVC.LST
NUCLS
NUCLS.LNK
NUCLS.MP1
NUCLS.MP2

Terminal Handler MTHn.A86 MTHn.OBJ
MTHn.LST
MTHn.LNK
MTHn.MP1

where n = 1 to 7

Guide to the ICU A-I

FILES CREATED BY THE ICU

Table A-I. Files Created by the ICU and SUBMIT File (continued)

Subsystem Created by ICU Created by SUBMIT File

Basic I/O System ICDEV.A86 ICDEV.OBJ
ICDEV.LST

ITABL.A86 ITABL.OBJ
ITABL.LST

ITDEV.A86 ITDEV.OBJ
ITDEV.LST
lOS
10S.LNK
IOS.MP1
IOS.MP2
IOS1.LNK
IOS1.MP1
TSC.LNK
TSC.MP1

Extended I/O EDEVC.A86 EDEVC.OBJ
System EDEVC.LST

ETABL.A86 ETABL.OBJ
ETABLLST

EJOBC.A86 EJOBC.OBJ
EJOBC.LST
EIOS
EIOS.LNK
EIOS.MP1
EIOS.MP2

Application LCONF.P86 LCONF.OBJ
Loader LCONF.LST

LOADR
LOADR.LNK
LOADR.MP1
LOADR.MP2

Human HCONF.P86 HCONF.OBJ
Interface HCONF.LST

HCLI.LNK
HCLI.MP1
HI
HI.LNK
HI.MP1
HI.MP2

A-2 Guide to the ICU

FILES CREATED BY THE ICU

Table A-I. Files Created by the ICU and SUBMIT File (continued)

Subsystem Created by ICU Created by SUBMIT File

UOI UOICN.A86 UOICN.OBJ
UOICN.LST
UDI
UOI.LNK
UOl.MP1
UOI.MP2

Root Job ROOT.A86 ROOT.OBJ
ROOT.LST
ROOT
CROOT.LNK
CROOT.MP1
ROOT.MP2

System SOBCN.A86 SOBCN.OBJ
Debugger SOBCN.LST

SOB.LNK
SOB.MP1

Others < output-file> .CSO boot-Ioadable iRMX I file
ICULOC.CSO < bootloadable-file> .MP2
ICUROT.CSO

Guide to the ICU A-3

EXAMPLE SYSTEM CONFIGURATION B
B.1 INTRODUCTION

This appendix contains an example illustrating how to use the leu to modify an Intel
supplied definition file. This example contains the following descriptions:

• The configuration defmed by the Intel-supplied defmition file (28612.DEF).

• The target system, focusing on the differences between it and the supplied
configuration.

• The ICU changes required to convert the existing definition file to one corresponding
to the target system.

B.2 THE INTEL-SUPPLIED DEFINITION FILE

The existing definition file, named 28612.DEF, defines the 80286-based multi-user system.
This particular system configuration has the following characteristics:

• The cpu board is an iSBC 286/10(A) or an iSBC 286/12 board.

• Master Interrupt levels are assigned as follows:

Level 0 - System Clock

Level 1- System Debugger

Level 2 - Available

Level 3 - Used by the Terminal Communications Controller

Level 4 - Available

Level 5 - An MSC controller

Level 6 - An 8274 Terminal Driver

Level 7 - An 8259A slave PIC

• Up to 896K bytes of RAM, at addresses OH through ODFFF:FH. Of these, addresses
120:0H through ODFFF:FH are free for use by the system.

• The system device is :SD:.

• The supplied, ready-to-bootstrap-Ioad file is /BOOT86/28612.

Guide to the ICU B-1

EXAMPLE SYSTEM CONFIGURATION

B.3 DIFFERENCES BETWEEN THE TARGET AND START-UP
SYSTEMS

The differences between the target system and the 80286-based multi-user system dictate
how you will use the ICU to alter the definition rde. These systems differ in the following
ways:

• The iSBX 350 Parallel MUL TIMODULE is an addition to the target system. This
board controls a Centronics interface line printer.

• The iSBX 351 Serial MULTI MODULE is an addition to the target system. This board
controls one RS232C serial channel when used with the 8251A Terminal Driver.

• The iSBC 544A Intelligent Communication Controller on the target system uses
interrupt level 48H, instead of interrupt level 38H.

• The iSBC 208 flexible disk controller is not part of the target system.

• The target system resides in a bootloadable file named /BOOT86/SAM86.

The name of the new definition file for the target system is SAM86.DEF.

B.4 STEPS PERFORMED TO CREATE THE TARGET SYSTEM

B-2

The steps needed to modify an existing definition file to meet the target system needs are
outlined below.

• Add the 8251A Terminal Driver (for the iSBX 351 board).

• Add the iSBX 350 Line Printer Driver.

• Change the interrupt level for the iSBC 544A Intelligent Communication Controller.

• Remove the iSBC 208 Driver.

• Change the name of the resulting bootloadable file

As you proceed through this example refer to the iRM){® I Interactive Configuration Utility
Reference manual for more information about configuring each of the above drivers.

Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

8.5 USING THE leu TO DEFINE THE TARGET SYSTEM

This section describes a dialogue between a user and the ICU. This dialogue demonstrates
the steps needed to define the target system described in the previous section. In the
dialogue, user input is shown in either blue or bold text, followed by a carriage return
(< CR ». Should you make an error in entering information as you proceed through this
example, you can re-type the information if you are currently viewing the screen in which
the error was entered. If not, you can use either the Backup (b) or Find (f) command to
access the screen you want to change, then re-type the correct information. If you are new
to the iRMX I ICU and do not want to use these commands, you can delete the
SAM86.DEF file in the SAM86 directory and start over by entering the last line of the
command sequence listed below.

Invoke the ICU, giving the name of the default file and the desired name of the modified
definition file, as follows:

- CREATEDIR sam86 <CR>
- ATTACHFlLE sam86 <CR>
- ICU86 :R}~:ICU/28612.def to sam86.def <CR>

This produces the registration message screen shown in Figure B-1. The registration
screen appears each time you invoke the ICU until you obtain your registration number
and enter it at the prompt line at the bottom of the screen.

Guide to the ICU B-3

EXAMPLE SYSTEM CONFIGURATION

Figure B-1. Registration Message Screen

B-4 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

When you press < CR >, the main menu screen is displayed as follows:

Figure B-2. Main Menu Screen

The first change in the target system is to add the iSBX 350 Line Printer Driver. To do
this, go to the "Intel Device Drivers" screen by entering"C idevs <CR>", as shown in
Figure B-2. This produces the screen shown in Figure B-3.

Figure B-3. The Intel Device Drivers Screen

Guide to the ICU B-5

EXAMPLE SYSTEM CONFIGURATION

B-6

The "Intel Device Drivers" screen, shown in Figure B-3, lists all of the available Intel
devices. The "YES" or "NO" field shown to the right of each device indicates whether or
not it is part of the current definition file. To add a device or go to the first screen of an
existing device, enter its three-letter abbreviation followed by "=y <CR>". The
abbreviation for the iSBX 350 is "1..50", so type "1..50 = Y < CR > ". This produces the screen
shown in Figure B-4.

Figure B-4. Query Screen for the iSBX 350 Device

Figure B-4 shows a query screen that asks if you want to add a device. To start the process
of adding the iSBX 350 MULTIMODULE Driver, type"y <CR>" as shown in Figure B-4.
This will produce the "Line Printer - iSBX 350" screen, as shown in Figure B-5.

Figure B-5. Line Printer - iSBXlM 350 Device Screen

Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

On this screen you need to ~nter a device name, change the interrupt level, and change the
8255A port addresses to match the hardware configuration. The commands to make these
changes are shown in Figure B-S. Typing a "<CR>" by itself, as shown at the bottom of
Figure B-5, will redisplay the screen with the changes completed. This produces the screen
shown in Figure B-6.

Figure B-6. Completed Line Printer - iSBXN 350 Device Screen

Check that you entered the changes correctly. If so, you are ready to add the iSBX 350
device unit information. Typing a "< CR > " by itself, as shown in Figure B-6, will display
the query screen in Figure B-7.

Figure B-7. Query Screen for another iSBXN 350 Device

This example requires only one iSBX MULTI MODULE, so respond with a carriage return
(< CR >) as shown in Figure B-7. This tells the ICU that you do not want another iSBX
350 Driver and displays the next screen, as shown in Figure B-8.

Figure B-S. Query Screen for iSBXN 350 Device-Unit Information

Guide to the ICU B-7

EXAMPLE SYSTEM CONFIGURATION

B-8

Figure B-8 shows a query screen that asks if you want to fill in Device-Unit Information for
an iSBX 350 MULTIMODULE. This is the fIrst time that an iSBX 350
MULTIMODULE has been added, so such information does not yet exist. Respond to
this screen by entering"y <CR>", as shown in Figure B-8. This produces the "Line Printer
- iSBX 350 Device-Unit Information" screen shown in Figure B-9.

Figure B-9. Line Printer - iSBXN 350 Device-Unit Information Screen

Notice that the "(DEV) Device Name" and "(NAM) Device-Unit Name" fields are blank.
These fields must be filled in.

To fill in the first field, enter "dev=d350 <CR>" as shown in Figure B-9. This is the same
device name you specified on the "Line Printer - iSBX 350 Device Screen." By entering the
same device name, the information on both screens is used to configure the same device.

For the second field, enter "nam=lp350 <CR>", as shown in Figure B-9. Finally, enter a
carriage return (< CR >) by itself to redisplay the screen with the changes you just made.
This produces the screen shown in Figure B-IO.

Figure B-I0. Completed Line Printer - iSBXN 350 Device-Unit Information Screen

Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

If all of the entries are correct, all of the steps to include the iSBX 350 Driver are
completed.

The next step is to add the 8251A Terminal Driver to support the iSBX 351 Serial
MULTIMODULE. To begin, return to the "Intel Device Drivers" screen by entering Iff
idevs <CR>" as shown in Figure B-I0.

To add any driver from the (IDEVS) screen, you type the device's three-letter abbreviation
and "=y <CR>". The abbreviation for the 8251A Terminal Driver is "T51", so you type
"T51 =y <CR>" as shown in Figure B-10. This produces the screen shown in Figure B-11.

Figure B-11. Query Screen for 825lA Terminal Driver

Figure B-11 shows a query screen that asks if you want to add a device. To start the
process of adding the 8251A Terminal Driver, type ''y <CR>" as shown in Figure B-11.
This will produce the "8251A Terminal Driver" screen, as shown in Figure B-12.

Figure B-12. 825lA Terminal Driver Screen

Guide to the ICU B-9

EXAMPLE SYSTEM CONFIGURATION

The default values on this screen match the target system. The only field that needs to be
filled in is "(DEV) Device Name". To fill in this field, enter "dev= d8251 < CR>" as shown
in Figure B-12. To redisplay the screen so you can check your entries, enter a carriage
return «CR» by itself as shown in Figure B-12. This produces the screen shown in B-14.

Figure B-13. Completed 825lA Terminal Driver Screen

Check that you have entered the device name correctly. If so, you are ready to add the
8251A unit information. To tell the ICU you are ready to view the next screen, enter a
carriage return (< CR >) by itself as shown in Figure B-13. This produces the screen shown
in Figure B-14.

Figure B-14. Query Screen for another 825lA Terminal Driver

This example requires only one 8251A Terminal Driver, so you should respond by entering
a carriage return «CR» as shown in Figure B-14. This tells the ICU that you do not
want another 8251A Terminal Driver and causes the "8251A Terminal Driver UNITs"
query screen to appear.

B-I0 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-15. Query Screen for 825lA Terminal Driver Units

Because this is a newly added device, you must complete all screens related to the 8251A
Terminal Driver. Respond to the query screen by entering"y <CR>", as shown in Figure
B-15 to display the screen shown in Figure B-16.

Figure B-16. 825lA Terminal Driver Unit Information Screen

Again, the default values on this screen match the values required by the target system.
However, the first two fields are blank and must be filled in. Fill in the "(DEV) Device
Name" field by entering "dev=d8251 <CR>" as shown in Figure B-16. For the second
field, "(NAM) Unit Info Name", enter "nam= uinfo 8251 <CR>". Finally, enter a carriage
return (< CR>) by itself to redisplay the screen and check the values you just entered.
This produces the screen shown in Figure B-17.

Guide to the ICU B·ll

EXAMPLE SYSTEM CONFIGURATION

Figure B-17. Completed 8251A T~rminal Driver Unit Information Screen

When you have confirmed that the values you entered are correct, enter a carriage return
(< CR >) as shown in Figure B-17. This produces the query screen shown in Figure B-18.

Figure B-18. Query Screen for another 8251A Terminal Driver Unit

This application requires only one 8251A unit. To continue completing the screens related
to the 8251A Terminal Driver, enter a carriage return «CR», as shown in Figure B-18.
This displays the query screen shown in Figure B-19.

Figure B-19. Query Screen for 8251A Terminal Driver DUIBs

B-12 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

To display the last screen you need to fill in for the 8251A Terminal Driver, enter ''y
<CR>" as shown in Figure B-19. This produces the screen shown in Figure B-20.

Figure B-20. 8251A Terminal Driver Device-Unit Information Screen

The fields with default values on this screen match the target system, but the three blank
fields must be filled in. Enter "dev=d8251 <CR>", "nam=t351 0 <CR>", and
"uin = uinfo _8251 < CR >" as shown in Figure B-20. Redisplay the screen to check your
entries by entering a carriage return «CR».

Figure B-21. Completed 8251A Terminal Driver Device-Unit Information Screen

All of the steps to include the 8251A Terminal Driver are completed. Now, return to the
"Intel Device Drivers" screen by entering "f idevs <CR>" as shown in Figure B-21.

Guide to the ICU B-13

EXAMPLE SYSTEM CONFIGURATION

Figure B-22. Intel Device Drivers Screen

Next, you must change the interrupt level of the iSBC 544A Driver to match the hardware
configuration of the target system. To display the "iSBC 544A Driver" screen, enter
"T44=y <CR>" as shown in Figure B-22. Although the iSBC 544A Driver is already
included in the system definition, setting T44 to "YES" also causes the "iSBC 544A Driver"
screen to be displayed.

Figure B-23. iSBC® 544A Driver Screen

To change the interrupt level for the iSBC 544A Driver, enter nil = 48h" as shown in Figure
B-23. Then, redisplay the screen to check your entry by entering a carriage return
«CR».

B-14 Guide to the leu

EXAMPLE SYSTEM CONFIGURATION

Figure B-24. Completed iSBC® S44A Driver Screen

Again, return to the "Intel Device Drivers" screen by entering Iff idevs <CR>" as shown in
Figure B-24. This produces the screen in Figure B-25.

Figure B-2S. Intel Device Drivers Screen

The final step in configuring the device drivers for the target system is to remove the iSBC
20B Driver. To begin removing the iSBC 20B Driver, enter "SOB=n <CR>" as shown in
Figure B-25. This causes the query screen in Figure B-26 to appear.

Guide to the ICU B-lS

EXAMPLE SYSTEM CONFIGURATION

Figure B-26. Query Screen for Deleting iSBc® 208 Driver Screens

To tell the ICU you want to delete the iSBC 208 Driver screens, enter ''y < CR >" as shown
in Figure B-26. This causes the first "iSBC 208 Driver" screen to appear.

Figure B-27. iSBC® 208 Driver Screen

To delete the iSBC 208 Driver screens, enter "Ad <CR>" as shown in Figure B-27. This
deletes all iSBC 208 screens and causes the query screen in Figure B-28 to appear.

Figure B-28. Query Screen for iSBc® 208 Devices

Now that the device drivers for the 80286-based multi-user system have been changed to
match the target system, you are ready to generate the system. To produce the "Generate
File Names" screen, type "f gen <CR>" as shown in Figure B-28.

B-16 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-29. Generate File Names Screen

On the "Generate File Names" screen, shown in Figure B-29, you must specify the
pathname of the new bootloadable file you will be generating. For this application, the file
is SAM86, and it will be a RAM code file name. Enter "raf = /boot86 / sam86 < CR > ". To
produce the changed "Generate File Names" screen (shown in Figure B-30), enter a
carriage return (< CR >).

Figure B-30. New Generate File Names Screen

You are now ready to start the generation phase of the ICU. To do this you must first
return to the ICU's main menu screen. Enter"c < CR >" on the screen shown in Figure B-
30. This displays the ICU main menu screen shown in Figure B-31.

Guide to the ICU B-17

EXAMPLE SYSTEM CONFIGURATION

Figure B-31. ICU Main Menu Screen

To begin the generation process, enter"g <CR>", as shown in Figure B-31. The ICU asks
you to enter a letter to be used as a prefix for the files created during generation. For this
example, enter HZ < CR > ". The ICU displays a message as each subsystem is generated, as
shown in Figure B-32.

B-18 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-32. Generation Phase ICU Screen

Guide to the ICU B-19

EXAMPLE SYSTEM CONFIGURATION

When the generation process is completed, the ICU displays the name of the resulting
SUBMIT file. In this case, the SUBMIT file is SAM86.CSD. The ICU then continues
automatically to the ICU main menu screen where you should enter"e <CR>" to exit the
ICU and save the defmition file. Upon receiving the Exit command, the ICU informs you
that the definition file has been written.

You are now ready to invoke the SUBMIT fue SAM86.CSD. You do this by invoking the
SUBMIT file in one of the following ways:

- SUBMIT sam86 <CR>

or

- SUBMIT sam86 TO sam86.1og <CR>

The first method of invoking SAM86.CSD sends the output from the SUBMIT file to your
screen. This lets you observe the progress of the SUBMIT file's execution, but does not
save the output for later examination. The second method sends the output from the
SUBMIT file to a file called SAM86.LOG instead of the screen.

The SUBMIT file assembles all the configuration files generated by the ICU and links the
object files with all the libraries required by the subsystems. It then locates the system.
Figure B-33 shows a listing of the output from the SUBMIT file. You may notice warning
messages. The warning messages are normal and can be ignored. Only error messages
must be heeded.

B-20 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD

Guide to the ICU B-21

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

B-22 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

Guide to the ICU B-23

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

B-24 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

Guide to the ICU B-25

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

B-26 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

Guide to the ICU B-27

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

B-28 Guide to the ICU

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

Guide to the ICU B-29

EXAMPLE SYSTEM CONFIGURATION

Figure B-33. Output of Submit File for SAM86.CSD (continued)

This ends the output from the SUBMIT file SAM86.CSD. A bootable file named
/BOOT86/SAM86 contains the entire example system. You are now ready to bootload
your new executable system.

B-30 Guide to the leu

EXAMPLE SYSTEM CONFIGURATION

B.6 BOOTING THE EXAMPLE SYSTEM

This section explains how to boot the example system from the iSD M monitor.

To boot the example system, you must shutdown the system properly by invoking the
SHUTDOWN command. To do this, invoke the SUPER command and enter the
password 'passme' when prompted. This causes you to become the system manager
without logging on as the user "super". Type:

- SUPER <CR>

Respond with the password 'passme' to the password prompt. Then type:

- SH <CR>

The command "SHit is the alias for the Human Interface command invocation
":SYSTEM:SHUTDOWN W = 0". After the SHUTDOWN command displays its shutdown
complete message, reset the system by pressing the RESET button or turning the RESET
switch on the front panel of your microcomputer.

The System Confidence Test (SCf) will start executing in a few seconds. Enter an
uppercase U in response to the x's being printed on the screen. When your system console
displays the monitor prompt, enter the following monitor command to bootstrap load the
newly created version of the operating system:

.b /boot86/sam86 <CR>

Once the operating system bootstrap loads and signs on, it indicates you have successfully
generated a version of the operating system. The logon banner and prompt will be
displayed. Now log back on to the system using the name "world" and a carriage-return for
the password.

Guide to the ICU B-31

PROGRAMMING AN iRMX® I C
SYSTEM INTO PROM DEVICES

C.1 INTRODUCTION

This appendix provides an example of the procedures used to place the iRMX I Operating
System into ROM of a 286-based system. All software generation described assumes you
are using an Intel System 300 Series Microcomputer.

The example places the iSDM monitor and the iRMX Bootstrap Loader in ROM along
with the generated operating system. A system such as this executes the iSDM monitor
code during the initial power-up sequence. This example includes the iSDM monitor and
iRMX Bootstrap Loader for several reasons. First, while you develop the ROM-based
system, you can bootstrap load RAM-based versions of the operating system rather than
having to switch PROM devices if you are using one processor board. Second, the iSDM
monitor, while not allowing breakpoints in PROM devices, does allow you to disassemble
and examine memory in both ROM and RAM. You can use this feature to determine the
correct code is in the correct locations.

C.2 REQUIREMENTS

To use the procedures outlined in this appendix, you must have the following hardware and
software:

• A system defined during configuration as residing in ROM.

• The iRMX 1.8 Operating System.

• The iPPS software for the iRMX 1.8 Operating System.

• A 286-based system.

• An iUP-200/201 Universal Programmer with a 'FAST 27/K' module with 27512
support.

• The iSDM monitor, which must be purchased separately from the iRMX I Operating
System.

• Four 27512 EPROM devices, labeled U2, U3, U5, and U6.

Guide to the ICU C-l

PROGRAMMING AN ~ I SYSTEM INTO PROM DEVICES

C.3 CONFIGURING A ROM-BASED SYSTEM

C-2

Before you can program your system into PROM devices, you must modify a number of
parameters in your defmition rtIe. These examples assume that you start with the Intel
supplied definition file 28612.DEF located in directory /RMX86/ICU.

To begin the example, you should make a 'COpy of the dermition rtIe in a separate directory.
To do this, create a new directory in which to do the system generation. The definition file
should have a .DEF extension, the boot-Ioadable system should have a .86 extension, and
the system to be loaded into ROM should have a .ROM extension. Entering the three
following commands creates a new directory called ROMSYS, attaches you to that
directory, and invokes the ICU placing a copy of the dermition rtIe 28612.DEF into the new
directory. (This example assumes your :HOME: directory is your current default
directory.)

- CREATEDIR romsys <CR>
- ATTACHFlLE romsys <CR>
- ICU86 /rmx86/icu/28612.def TO romsys.def <CR>

As part of the configuration process, you must perform the following three things in order
to fit the iRMX I system developed in these examples into ROM:

• 'Delete the System Debugger from the system.

• Replace the iRMX 1.8 CLI with the iRMX 86 R7.0 CLI.

• Delete the iSBC 254 and iSBC 544A device drivers.

Having invoked the ICU, you now can begin to make the necessary configuration changes.
Start by modifying the memory screens to derme the RAM and ROM memory locations
the system requires. Do this by first selecting the "RAM Memory" screen with the
following command:

c ramem <CR>

Entering the previous command causes the "RAM Memory" screen to appear as follows:

Guide to the ICU

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

Before entering the new memory addresses, you must delete line 1 by entering the
following command:

Ad 1 <CR>

After the screen reappears, enter the low and high addresses of reserved RAM as follows:

1 = 0120h,bfffh <CR>
<CR>

After entering the new memory locations, the "RAM Memory" screen appears as follows:

Now, display the "ROM Memory" screen by entering "<CR>", as shown in the previous
screen. You must also adjust this memory screen as a ROM-based system uses different
memory locations than the RAM-based system defined in the definition file. Change the
"ROM Memory" screen to contain the memory locations COOOH to OF7FFH. The
following screen shows the "ROM" screen after making the changes.

Guide to the ICU C-3

PROGRAMMING AN iRMX@ I SYSTEM INTO PROM DEVICES

C-4

After changing the memory screens, request the "Sub-systems" screen by entering the
following command:

f sub <CR>

Here, you must delete the System Debugger because of size considerations. Delete the
SDB by entering the following command:

sdb=no <CR>

Next, request the "Human Interface" screen by entering the following command:

f hi <CR>

Guide to the ICU

PROGRAMMING AN iRMX@ I SYSTEM INTO PROM DEVICES

Change the resident initial program (CLI) by entering the following command:

rip=/rrut86/hi/r7cli.lnk <CR>

The iRMX 1.8 CLI is considerably larger than the iRMX 86 R 7.0 CLI and cannot be used
in this example due to size restrictions.

Next, request the "Intel Device Driver" screen by entering the following command:

f idevs <CR>

Guide to the ICU C-5

PROGRAMMING AN iRMX8 I SYSTEM INTO PROM DEVICES

C-6

Delete the iSBC 254 and iSBC 544A device drivers by entering the following commands:

s54=n <CR>
First delete iSBC 254 Dinfo screens ! Do you want to delete 11
y <CR>
Ad <CR>
Do you want any/more iSBC 254 DEVICEs 1 f idevs <CR>
t44=n <CR>
First delete 544A Terminal Dinfo screens! Do you want to delete 11
y <CR>
Ad <CR>
Do you want any/more iSBC 544A DEVICEs 1
n <CR>

Next you must include the various subsystems of the operating system on the "ROM Code"
screen. Request the "ROM Code" screen by entering:

from <CR>

Guide to the ICU

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

To include the operating system subsystems in ROM, enter the following commands:

uir=yes <CR>
hir=yes <CR>
alr=yes <CR>
eir=yes <CR>
bir=yes <CR>
nir=yes <CR>
rir=yes <CR>

Now, request the "Generate File Names" screen by entering the following command:

f gen <CR>

The "Generate File Names" screen is where you define the pathname of the file containing
the ROM-based system.

Guide to the ICU C-7

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

C-8

Enter the pathname :$:ROMSYS.ROM as shown below:

rof=:$:romsys.rom <CR>
c <CR>

Entering "e < CR >" as shown above displays the ICU main menu screen.

Guide to the ICU

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

C.4 GENERATING/BUILDING THE SYSTEM

You are now ready to generate the definition file and build the system. The last step of the
previous section caused the ICU main screen to appear. From this screen, enter the
Generate (G) command to generate files.

After entering "g < CR > " with no prefix, the ICU informs you as each subsystem is
generated (see Figure B-32 for an example). When the system has been generated, the
ICU returns to the main menu screen.

Enter the Exit (E) command to write the definition file and exit the ICU as follows:

E <CR>

After entering this command, the ICU informs you that the definition file has been written.
It issues the following message before returning control to the command line:

The Definition File has been written to file: ROMSYS.DEF

You are now ready to invoke the SUBMIT file ROMSYS.CSD that builds the system. The
ICU created this SUBMIT file as part of the generation process. Execution of the
SUBMIT file generates the application system with the pathname :$:ROMSYS.ROM.

Guide to the ICU C-9

PROGRAMMING AN ~ I SYSTEM INTO PROM DEVICES

Execute ROMSYS.CSD by entering one of the following lines:

- SUBltUT romsys. csd <CR>

or

- SUBMIT romsys.csd TO romsys.log <CR>

During execution, ROMSYS.CSD invokes the second stage of the ICU (ICU86.862). The
second stage produces two other SUBMIT fIles called ICULOC.CSD and ICUROT.CSD,
which are executed immediately after the ICU's second stage. These two SUBMIT files
(shown in Figures C-l and C-2) contain addresses you will need when preparing to
program your system into PROM.

:lANG:LOC86 &
UDI.LNK TO /BOOT86/ROMSYS.ROMUDI &

SEGSIZE(STACK(O» PRINT(UDI.MP2) &
ADDRESSES(CLASSES(CODE(OFOOCOH),DATA(0013DOH») NOINITCODE OC(PURGE)
:lANG:LOC86 &
HI.LNK TO /BOOT86/ROMSYS.ROMHI &

SEGSIZE(STACK(O» PRINT(HI.MP2) &
ADDRESSES(CLASSES(CODE(OD9410H),DATA(001200H») NOINITCODE OC(PURGE)
:lANG:LOC86 &
LOADR.LNK TO /BOOT86/ROMSYS.ROMLOADR &

SEGSIZE(DATA(2),STACK(O» PRINT(LOADR.MP2) &
ADDRESSES(CLASSES(CODE(OEDABOH),DATA(001400H») NOINITCODE OC(PURGE)
:lANG:LOC86 &
EIOS.LNK TO /BOOT86/ROMSYS.ROMEIOS &

SEGSIZE(STACK(O» PRINT(EIOS.MP2) &
ADDRESSES(CLASSES(CODE(OE9D30H),DATA(001440H») NOINITCODE OC(PURGE)
:lANG:LOC86 &
IOS.LNK TO /BOOT86/ROMSYS.ROMIOS &

SEGSIZE(STACK(O» PRINT(IOS.MP2) &
ADDRESSES(CLASSES(CODE(OCOOOOH),DATA(001310H») NOINITCODE OC(PURGE)
:lANG:LOC86 &
NUCLS.LNK TO /BOOT86/ROMSYS.ROMNUCLS &

SEGSIZE(DATA(2),STACK(O» PRINT(NUCLS.MP2) &
ADDRESSES(CLASSES(CODE(OE34DOH),DATA(001420H») NOINITCODE OC(PURGE)

Figure C-l. ICULOC.CSD File

C-IO Guide to the ICU

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

:LANG:ASM86 ROOT.A86
:LANG:LINK86 &
/RMX86/NUCLEUS/CROOT.LIB(RBEGIN), &
ROOT.OBJ, &
/RMX86/NUCLEUS/CROOT.LIB &

TO CROOT.LNK NOPUBLICS EXCEPT(SAB_LIST_PTR,NUMBER_SABS, &
RQSTARTADDRESS,ROOTTASKSTATUS)
:LANG:LOC86 &
CROOT.LNK TO /BOOT86/ROMSYS.ROMROOT &

SEGSIZE(STACK(O» ORDER(CLASSES(DATA,STACK» PRINT(ROOT.MP2) &
ADDRESSES(CLASSES(CODE(OF1ECOH),DATA(001450H») INITCODE(OF1ECOH) &
OC(NOLI, NOCM, NOSB) PC (NOLI , PL, NOCM, NOSB)

Figure C-2. ICUROT.CSD File

After the SUBMIT file completes execution, create and attach a working directory for
IPPS by entering:

- CREATEDIR workdir <CR>
- ATTACHFILE workdir AS :f1: <CR>

Then use the COpy command to copy the files resulting from the SUBMIT file's execution
to the new working directory.

- COpy :sd:boot86/romsys.romudi TO :f1:udi <CR>
- COpy :sd:boot86/romsys.romhi TO :f1:hi <CR>
- COpy :sd:boot86/romsys.romloadr TO :f1:10ad <CR>
- COpy :sd:boot86/romsys.romeios TO :f1:eios <CR>
- COpy :sd:boot86/romsys.romios TO :f1:ios <CR>
- COpy :sd:boot86/romsys.romnucls TO :f1:nucl <CR>
- COpy :sd:boot86/romsys.romroot TO :f1:root <CR>

Now that the system has been generated, you can generate versions of the iSDM monitor
and the Bootstrap Loader to be programmed into the PROM devices.

C.4.1 Including the iSDM™ Monitor and the Bootstrap Loader in the
PROM Devices

This section explains how to include the iSDM monitor and iRMX Bootstrap Loader as
part of the operating system that resides in ROM. With this type of system, the iSDM
monitor code executes when the system is powered up. In order to create a system that
includes the iSDM monitor and the Bootstrap Loader you must prepare two files; one file
for each piece of software.

Guide to the leu C-ll

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

C.4.1.1 Generating the iSDM lW Monitor

First you must generate a version of the iSDM monitor for the iSBC 286/10(A) board. To
do this, copy the file 28610A.A28 to a new file called 28610A.A86, then modify the new file.
On iRMX I systems, 28610A.A28 normally resides in the directory /SDM. Invoke AEDIT
on the 28610AA86 file and make the following changes:

• Change the line:

%cpu(80286,8)
to

%cpu(8086,8)

This tells iSD M to act as if it were running on an 8086 processor.

• Comment out the extended addressing line as follows:

;%extended_addressing(286/10a)

• Ensure that the following line is not commented out:

%bootstrap(OFE40:0,manual)

This tells iSDM that the Bootstrap Loader is to be included in the PROM devices
along with the monitor.

Finally, generate the iSDM monitor by entering the following:

- SUBMIT cnf2S6(2S610a) <CR>

The iSDM monitor is always located at address OF8000H. The iSDM monitor places
values into the reset vector and receives control on power-up or reset. Refer to the iSDAJ"A
System Debug Monitor User's Guide for more information on generating the iSDM monitor.

C.4.1.2 Generating the Bootstrap Loader

Next, generate a version of the iRMX Bootstrap Loader first stage. Create and attach a
new directory, then copy the Bootstrap Loader configuration files to the new directory by
entering:

- CREATEDIR rom_examp <CR>
- ATTACHFILE rom_examp <CR>
- SUBMIT /bsl/setup.csd <CR>

Due to the limited amount of space left over for the Bootstrap Loader, you cannot leave all
available devices selected within the first stage configuration file called BS1.A86.
Consequently, you must edit BS1.A86 to retain only the MSC device driver. You must also
change the CPU type specified in the CPU macro to 80286.

C-12 Guide to the ICU

PROGRAMMING AN iRMX@ I SYSTEM INTO PROM DEVICES

To modify the rtIe, invoke AEDIT on BSIA86 and make the following changes:

• Change the line:

%cpu(80386)
to

%cpu(80286)

• At the end of the rtIe, comment out the following device macro lines by replacing the
percent characters (%) at the beginning of the lines with semi-colons (;):

%device(afO, 0, deviceinit208gen, deviceread208gen)
%device(af1, 1, deviceinit208gen, deviceread208gen)
%device(sO, 0, deviceinitscsi, devicereadscsi)
%device(sx1410aO, 0, deviceinitscsi, devicereadscsi, sasi_x1410a)
%device(sx1410bO, 0, deviceinitscsi, devicereadscsi, sasi_x1410b)
%device(smfO, 2, deviceinitscsi, devicereadscsi, sasi_x1420mf)
%device(pmfO, 0, deviceinit218A, deviceread218A)
%device(pbO, 0, deviceinit251, deviceread251)
%device(bO, 0, deviceinit254, deviceread254)
%device(baO, 0, deviceinit264, deviceread264)
%device(rO, 0, deviceinit552A, deviceread552A)

This leaves only the device macro lines that pertain to the MSC device driver.

You must also edit the first stage configuration SUBMIT file (BS1.CSD) to assemble and
link in only the MSC file. To do this, invoke AEDIT on BS l.CSD and make these changes:

• Comment out the following ASM86 invocation lines by inserting a semi-colon (;) at the
beginning of each line:

asm86 b208.a86 macro(50) object(b208.obj) print(b208.1st)
asm86 b218a.a86 macro(50) object(b218a.obj) print(b218a.1st)
asm86 b251.a86 macro(50) object(b251.obj) print(b251.1st)
asm86 b254.a86 macro(50) object(b254.obj) print(b254.1st)
asm86 b264.a86 macro(50) object(b264.obj) print(b264.1st)
asm86 b552a.a86 macro(50) object(b552a.obj) print(b552a.lst)
asm86 bscsi.a86 macro(50) object(bscsi.obj) print(bscsi.lst)

• Comment out the following lines in the LINK86 invocation by inserting an ampersand
(&) at the beginning of each line:

Guide to the ICU

b208.obj,
b218a.obj,
b251.obj,
b254.obj,
b264.obj,
b552a.obj,
bscsi.obj,

&
&
&
&
&
&
&

C-13

PROGRAMMING AN iRM~ I SYSTEM INTO PROM DEVICES

Now you are ready to generate the Bootstrap Loader. Execute the Bootstrap Loader
SUBMIT fue by entering the following command:

- SUBMIT bs1(OFE400H,OB8000h,BS1) over bs1.out echo <CR>

Complete details on these actions are available in the iRMX.f> Bootstrap Loader Reference
Manual.

At this point, the files for the iSDM monitor and the Bootstrap Loader are generated.
Copy the resulting files, BS1 and 28610A, to the IPPS working directory you created
earlier. The following commands copy the two files:

- COpy bs1 TO :f1:bs1 <CR>
- COpy /sdm/28610a TO :f1:28610a <CR>

Finally, attach the IPPS working directory as your current directory by entering:

- ATTACHFILE :f1: <CR>

The next few sections describe how to program the PROM devices.

C.4.2 Setting Up the iUP 201 PROM Programmer

Perform the following three steps to set up the iUP 201 PROM Programmer:

1. Make sure that the RS-232A line is connected from the iUP 201 programmer to the
iRMX I system.

2. Insert the 'FAST 27K' module into t~e iUP 201 28-pin socket and turn on the power
to the iUP 201 Universal Programmer.

3 Press the ONLINE button on the iUP 201 front panel.

WARNING

While following the steps outlined in this section, you must closely adhere
to any warnings or cautions given in the iUP-200/201 Universal Programmer
User's Guide.

C.4.3 Formatting the Operating System PROM Files .

Before you can program the operating system into PROM, you must split the PROM
image files into even and odd bytes. To do this, fIrst use AEDIT to create a SUBMIT file
called PROM86.CSD (shown in Figure C-3). Then create a second SUBMIT file called
ROM.CSD (shown in Figure C-4). PROM86.CSD invokes IPPS to split one PROM file
into two fues: one containing even bytes and one containing odd bytes. ROM.CSD invokes
PROM86.CSD on each of the PROM files.

C-14 Guide to the ICU

PROGRAMMING AN iRMX8 I SYSTEM INTO PROM DEVICES

--* PROM86.CSD *-*-*

Format iSDM monitor code and burn into two 27512 EPROMs.

Invocation: submit prom86(source fi1e,omf type,EPROM start address)

delete %O.evn, %O.odd

ipps

initialize %1

Format monitor code into even and odd addressed bytes.

format %0(%2) P
3
2
1
o to %O.evn
1 to %O.odd

exit

Figure C-3. PROM86.CSD File

Notice that Figure C-4 contains start addresses (shown in bold) for each PROM file.
Although these addresses are supplied in this example, normally you would have to provide
them. The start addresses shown for the iSDM monitor and the Bootstrap Loader are
always the same: OF8000H and OFE400H. The addresses for the iRMX I subsystems can
be found in the ICULOC.CSD file (shown in bold in Figure C-l). The root job starting
address can be obtained from the ICUROT.CSD file (shown in bold in Figure C-2).

Guide to the ICU C-lS

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

; This file breaks all of the files to be prommed
; into even and odd bytes

submit prom86(286l0a,86,0f8000h) over rom. log e
submit prom86(bsl,86,Ofe400h) after rom. log e
submit prom86(ios,86,OCOOOOh) after rom. log e
submit prom86(hi,86,Od9410h) after rom. log e
submit prom86(nucl,86,Oe34dOh) after rom. log e
submit prom86(eios,86,Oe9d30h) after rom. log e
submit prom86(load,86,Oeda80h) after rom. log e
submit prom86(udi,86,OfOOCOh) after rom. log e
submit prom86(root,86,0f1eCOh) after rom. log e

Figure C-4. ROM.CSD File

Once you have created the required SUBMIT files, enter the following:

- SUBMIT rom.csd <CR>

When ROM.CSD ends, the PROM image files have been split into files containing even
and odd bytes.

C.4.4 Programming the PROM Devices

Before you can copy the split PROM files into EPROM, you must create the two SUBMIT
files shown in Figures C-5 and C-6: COPYlST.CSD and COPYLAST.CSD. These
SUBMIT files invoke IPPS and issue commands that copy the PROM files into EPROM.
You will invoke each of these SUBMIT files once for the even byte files and once for the
odd byte files.

C-16

; Copies the first part of the iRMX I system into EPROM

ipps
type 27512
init 86
copy ios.%O(O) to p(O)
exit

Figure C-S. COPYlST.CSD File

Guide to the ICU

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

; Copies the last part of the iRMX I system into EPROM

ipps
type 27512
init 86
copy 286l0a.%O(O) to p(OCOOO)
copy bsl.%O(O) to p(Of200)
copy nucl.%O(O) to p(1a68)
copy eios.%O(O) to p(4e98)
copy load.XO(O) to p(6d40)
copy udi.XO(O) to p(8060)
copy root.XO(O) to p(8f60)
exit

Figure C-6. COPYLAST.CSD File

The bold parameters in Figures C-5 and C-6 are offsets that tell IPPS where to place the
code in the PROM devices. Although these offsets are supplied in this example, you would
normally calculate them yourself. To calculate the offsets, do the following:

1. Examine the ICULOC.CSD file to fmd out which subsystem file has the lowest
starting address. In this example, the lowest starting address is COOOOH for the lOS
subsystem. This subsystem will start at offset 0 in PROM. Notice that the offset for
the lOS in Figure C-5 is O.

2. Calculate the offsets for each subsystem by subtracting the lowest starting address
(COOOOH) from the subsystem's starting address and dividing the result by 2. Only
the lower four hex digits of the result are significant. If the result is larger than four
hex digits, it indicates that the subsystem must be programmed into the second set of
PROM devices.

For example, the offset for the Nucleus can be calculated as follows:

(OE34DOH - OCOOOOH) / 2 = llA68H

Because the result contains five hex digits, the Nucleus will start in the second set of
PROM devices. Only the lower four hex digits (lA68H) are significant.

The commands to copy the Human Interface file are not included in either SUBMIT file.
This is because the Human Interface does not completely fit in one EPROM and, thus,
must be copied by invoking IPPS manually.

To place the generated system into the PROM devices, begin by inserting the first PROM
device (U2) into the active socket of the PROM programmer. Then enter the following:

- SUBHIT copylst(evn) <CR>

Guide to the ICU C-17

PROGRAMMING AN m.MX@ I SYSTEM INTO PROM DEVICES

This invokes IPPS and copies the even bytes of the Basic I/O System into the U2 PROM
device.

Next, manually invoke IPPS to begin copying the Human Interface into U2. During the
copy, the IPPS software automatically determines that the contents of the file require more
than one of the specified type of PROM devices to contain the code. To copy the Human
Interface, enter the following commands (shown in blue):

- IPPS <CR>
iRMX I INTEL PROM PROGRAMMING SOFTWARE <version>
COPYRIGHT <years> INTEL CORP.
iRMX I/II UDI-Based IUP Interface <version>
PPS> type 27512 <CR>
PPS> init 86 <CR>
PPS> copy hi.evn(O) to p(ca08) <CR>
----CAUTION-----PROGRAMMING THE FULL LENGTH REQUIRES MORE THAN ONE PROM.

CHECK SUM - CB19 '
FIRST INSTALL THE NEW/NEXT PROM AND THEN CONTINUE.

When IPPS prompts you to install the next PROM, remove U2 from the PROM
programmer and replace it with U3. Then enter the following:

CONTlNUE--Y/N? Y <CR>

When the checksum value appears on the screen, enter:

PPS> e}t:it <CR>

Now, copy the remaining subsystems into U3 by invoking the second SUBMIT file as
follows:

- SUBMIT copylast(evn) <CR>

When the SUBMIT file ends, remove U3 from the PROM Programmer.

The two PROM devices you have removed contain the even (or low) bytes of the WORD
values that compose the operating system. As you remove the PROM devices from the
programmer, carefully label them; unlabeled PROM devices look very much alike. At a
later time, you will place the frrst programmed PROM device in socket U41 and the second
programmed PROM device in socket U40 of an iSBC 286/10(A) board. (Use sockets U2
and U3 of the iSBX 341 on an iSBC 286/12 board.)

C-18 Guide to the ICU

PROGRAMMING AN iRMX@ I SYSTEM INTO PROM DEVICES

Next, you need to program the US and U6 PROM devices to contain the odd (or high)
bytes of the WORD values that compose the operating system. Insert the third PROM
device (US) into the active socket of the PROM programmer and enter the following
command:

- SUBMIT copy1st(odd) <CR>

This invokes IPPS and copies the odd bytes of the Basic I/O System into the US PROM
device.

When the SUBMIT file ends, manually invoke IPPS to begin copying the Human Interface
into US. Again, IPPS automatically determines that the contents of the file requires more
than one of the specified type of PROM devices to contain the code. To copy the Human
Interface, enter the following commands (shown in blue):

- IPPS <CR>
iRMX I INTEL PROM PROGRAMMING SOFTWARE <version>
COPYRIGHT <years> INTEL CORP.
iRMX 1/11 UDI-Based IUP Interface <version>
PPS> type 27512 <CR>
PPS> init 86 <CR>
PPS> copy hi.odd(O) to p(ca08) <CR>
----CAUTIoN---~-PROGRAMMING THE FULL LENGTH REQUIRES MORE THAN ONE PROM.

CHECK SUM - CB19
FIRST INSTALL THE NEW/NEXT PROM AND THEN CONTINUE.

When IPPS prompts you to install the next PROM, remove US from the PROM
programmer and replace it with U6. Then enter the following:

CONTlNUE--Y/N? Y <CR>

When the checksum value appears on the screen, enter:

PPS> exit <CR>

Guide to the ICU C-19

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

Finally, copy the remaining subsystems into U6 by invoking the second SUBMIT rtIe as
follows:

- SUBl-IiT copylast(odd) <CR>

When the SUBMIT file ends, remove U6 from the PROM Programmer. The U5 and U6
PROM devices now contain the odd (or high) bytes of the WORD values that compose the
system. As you remove the PROM devices from the programmer, carefully label them;
unlabeled PROM devices look very much alike. At a later tune, you will place the third
programmed PROM device in socket U76 and the fourth programmed PROM device in
socket U75 of an iSBC 286/10(A) board. (Use sockets U5 and U6 of the iSBX 341 on an
iSBC 286/12 board.)

C.4.S Starting the Operating System in ROM from the iSDMN Monitor

The four PROM devices now contain the operating system, the iSDM monitor, and the
Bootstrap Loader. Perform the following steps to start the system:

1. Place the first programmed PROM device (U2) in socket U41 of the iSBC
286/10(A) board.

2. Place the second programmed PROM device (U3) in socket U40 of the iSBC
286/10(A) board.

3. Place the third programmed PROM device (U5) in socket U76 of the iSBC
286/10(A) board.

4. Place the fourth programmed PROM device (U6) in socket U75 of the iSBC
286/10(A) board.

5. Insert the iSBC 286/10(A) board into the system chassis and apply power to the
hardware.

6. Enter the following command from the iSDM monitor to activate the iRMX I
system:

.g flec:O <CR>

The address specified above is the root job starting address.

C-20 Guide to the ICU

PROGRAMMING AN iRMX® I SYSTEM INTO PROM DEVICES

C.s HARDWARE JUMPER MODIFICATIONS

To program the system into PROM devices as in the above example, the following jumpers
were changed on the iSBC 286/10(A) board:

To specify 427512 EPROM devices, set up jumpers 62 through 91 as follows;

Default Configuration Jumpers to Set for 27512 EPROMS

E62 - E63
E70-E72
E71- E73
E75 - E76
E77 - E78
E85 - E87
E86 - E88
E90 - E91

E65 - E67
E68 - E70
E71- E73
E75 - E76
E80 - E82
E83 - E85
E86 - E88
E90 - E91

To specify a starting memory address and memory size for local memory, use primary
decode option 3. The jumpers required are

Default Configuration

E218 - E219 installed
E220 - E221 removed

Jumpers for Primary Decode Option 3

E218 - E219 installed
E220 - E221 installed

To specify memory/size/justification for local memory, use secondary option 3. The
jumpers required are

Default Configuration

E51 - E59 removed
E50 - E58 removed
E49 - E57 installed

Guide to the ICU

Jumpers for Secondary Option 3

E51 - E59 removed
E50 - E58 installed
E49 - E57 installed

C-21

A
Abbreviated screen names 1-19
Aborting ICU commands 1-25
Access rights to definition files 1-7
Adding an Intel-supplied device driver B-6
Adding new device drivers 1-46 through 1-48
Adding users to your system 4-1
Application jobs 3-1

debugging 5-10
freezing entry points 5-13
freezing locations 5-11
freezing the base segment 5-11
linking 3-13,3-14
locating 3-13, 3-16
locating in PROM-based systems 3-20
memory padding 5-11
special module 5-13

ASCII backup files 1-24
Assembling configuration files 2-4, B-20, B-I0

B
Backup command 1-24
Bootstrap Loader inclusion C-ll

c
Calculating PROM file offsets C-17
Change command 1-18, 1-25, C-2
Changing definition files 1-18, 1-28
Changing the editing control character 1-22
Changing RAM memory C-2
Choosing a definition file 1-7
Code for applications 3-1
Command mode 1-16
Commands

Backup 1-24
Change 1-18, C-2
Detail-level 1-23

Guide to the ICU

INDEX

Index-!

INDEX

C (continued)

Commands (continued)
Exit 1-22,2-1, B-20
Generate 1-20, 2-1, C-9 .
Help 1-17
List 1-20, 2-1
Quit 1-21
Replace 1-22
Save 1-21,2-1

Configuration environment 1-4
Configuration files 2-1, 2-2, 2-3, A-I
Configuring users into your system 4-1
Control-C 1-25
Conventions vi
Copying the current screen 1-31, 1-33
Creating directories for your systems 1-10, C-2
Creating SUBMIT files 1-20

D
Debugging application jobs 5-10
Debugging tools 5-9
Definition file 1-1, 1-7, B-1, C-9

access rights 1-7, 1-8
editing 1-18
Intel-supplied 1-7

Deleting a re~etitive-fixed screen 1-37
Deleting a screen 1-31, 1-32, 1-37
Deleting an element 1-31, 1-32, 1-34
Deleting data on a repetitive screen format 1-34
Detail-Level command 1-23
Device drivers, adding 1-46 through 1-48
Displaying the next screen 1-31, 1-33
Displaying the previous screen 1-31
Dynamic Debugger 5-9

E
Editing a screen 1-28, 1-31
Editing control character 1-22
Editing definition files 1-18, 1-25
Elements of a screen 1-26
Ending an ICU session 1-21, 1-22

Index-2 Guide to the ICU

E (continued)

Errors
Application Loader initialization 5-7
Basic I/O System initialization 5-6
Extended I/O System initialization 5-7
Human Interface initialization 5-8
ICUMRG86 1-50
insufficient access rights for the definition ftIe 1-8
interactive 1-42
internal 1-43
invocation 1-13
memory initialization 5-4
nucleus initialization 5-4
root task 5-5
second-stage of the ICU 2-7
System Debugger initialization 5-5
system initialization 5-3
type of 1-42
UDI initialization 5-7

Example worksheet for memory map 3-12
Examples

adding an Intel-supplied device driver B-6
assembling configuration ftIes B-20, B-I0
booting the system B-31
calculating PROM file offsets C-17
changing RAM memory C-2
changing the CLI C-5
changing the resident initial program C-5
configuration C-2
deleting a device driver B-15
deleting a repetitive fixed screen 1-37
deleting data on a repetitive screen format 1-34
deleting the System Debugger from the system C-4
formatting the operating system PROM files C-14
generate 2-1, B-17, C-9
ICUMRG86 1-50
inserting a repetitive-fixed screen 1-42
inserting data on a repetitive screen format 1-36
invoking the ICU 1-9, 1-10, B-3
linking the subsystems B-20, B-I0
locating the system B-20, B-I0
memory map worksheet 3-12
programming an iRMX I system into PROM devices C-l
programming PROM devices C-14

Guide to the leu

INDEX

Index-3

INDEX

E (continued)

Examples (continued)
removing device drivers C-6
returning to command mode C-g
ROM memory adjustments C-3
splitting PROM files C-14
starting the operating system in ROM from the iSDM monitor C-20
system configuration B-1

Exit command 1-22, 1-25, 2-1, B-20

F

File locations 1-2
File version numbers 1-13, 1-44, 1-46
Files of the ICU 1-2, 1-5, 1-6,2-3, A-I
Finding a screen 1-31, 1-33
First-level job

order of initialization 5-3
Fixed screen formats 1-29
Formatting the operating system PROM files C-14
Formats of screens 1-29
FORTRAN include files 3-2
Freezing entry points 5-13
Freezing locations of application software 5-11
Freezing the base segment 5-11

G
General ICU use 1-3
General system layout 3-3
Generate command 1-20, 2-1, C-9
Generated files 2-3, A-1
Generating configuration flIes 2-1
Generating the system 2-1
Getting help 1-17, 1-29, 1-31, 1-33

H
Hardware requirements 1-4
Hardware screen 1-27
Help command 1-17, 1-29
Help for special editing commands 1-31, 1-33

Index-4 Guide to the leu

121CEN In-Circuit Emulator 5-9
ICEN -86A In-Circuit Emulator 5-9
ICU flowchart 1-38
ICU second-stage 2-6

error messages 2-7
ICU86.862 2-6
ICUMRG86 Utility 1-46

errors 1-50
example 1-50

Include files
FORTRAN 3-2
Pascal 3-2
PL/M-86 3-2

Include fIles 3-2
Including the Bootstrap Loader C-ll
Including the iSDM monitor C-ll
Initialization task 5-2
Initializing the system 5-1
Inserting a new line 1-31, 1-33, 1-36
Inserting a new screen 1-31, 1-33, 1-42
Inserting a repetitive-fixed screen 1-42
Inserting data on a repetitive screen format 1-36
Intel-supplied definition files 1-7
Interactive errors 1-42
Interface libraries 3-15
Internal errors 1-43
Invocation errors 1-13
Invoking the ICU 1-9, 1-10, 1-12, B-3
iSDM monitor

inclusion C-ll
reselVed memory 3-3

L
Language requirements 3-2
Layout of system 3-3
Level of detail for screens 1-23
Libraries, interface 3-15
LINK86, warning messages 2-5
Linking a PROM-based system 3-17
Linking application jobs 3-13, 3-14
Linking the subsystems 2-4, B-20, B-I0
List command 1-20, 2-1

Guide to the ICU

INDEX

Index-5

INDEX

L (continued)

Listing a definition file 1-20
Loading the system into RAM 5-1
LOC86, warning messages 2-5
Locating a system B-20, B-I0

PROM-based system 3-18,3-20
reading the map 3-8

Locating application jobs 3-13, 3-16
Locating the subsystems 3-7
Locating your application 3-4, 3-5
Location of ICU files 1-2
Log-file 1-45
Logical flow of the ICU 1-38

M
Main menu screen 1-16
Manual overview v
Memory

disk controllers 3-3
example worksheet 3-12
iSDM 3-3
minimizing address space 3-17
padding 5-11
worksheet 3-10

Memory map worksheet 3-10
Minimum memory address 3-3
Models of segmentation 3-15

N
Naming ICU-generated files 1-11
Non-resident users 4-1

o
Order of job initialization 5-3

p

Padding memory 5-11
Parts of a screen 1-26
Pascal include files 3-2
PL/M-86 include files 3-2
Pre-configuration requirements 1-4
Prefix option 1-11, 2-2

Index-6 Guide to the ICU

P (continued)

Preparing application jobs 3-1
Product overview 1-1
Programming PROM devices C-1, C-14
PROM-based system

linking 3-17
locating 3-17,3-18
memory map 3-19
testing in RAM 3-20

Q
Quit command 1-21

R
Reader level v
Reading a locate map 3-8
Redisplaying the current screen 1-31, 1-33
Registration message screen 1-15
Repetitive screen formats 1-29
Repetitive-fixed screen formats 1-30
Replace command 1-22
Requirements

hardware 1-4
software 1-4

Resident user 4-1
Restoring from a file 1-14, 1-24, 1-44
Returning to command mode 1-31, 1-32
ROM-based systems C-1

s
Save command 1-21, 1-25,2-1
Saving an edited definition file 1-21, 1-22, 1-25
Screen editing 1-28
Screen editing commands 1-31
Screen elements 1-26
Screen formats 1-29

fixed 1-29
repetitive 1-29
repetitive-fixed 1-30

Screen names 1-19
Searching for a string within a screen 1-31, 1-34

Guide to the leu

INDEX

Index-7

INDEX

S (continued)

Second-stage of the ICU 2-6
error messages 2-7

Software requirements 1-4
Special editing commands 1-31
Special module 5-13
Splitting PROM files C-14
Starting the operating system in ROM from the iSDM monitor C-20
SUBMIT files 1-20, 2-2, 2-4, B-20, C-9
Subsystems, locating 3-7
Synchronous initialization 5-2
System configuration example B-1
System Debugger 5-10
System layout 3-3
System type 3-4

B
Testing the system 3-20, 5-1, 5-9

u
UDI libraries 3-2
UPDEF86 Utility 1-1, 1-7, 1-44
Upgrading defmition files 1-44
Using the ICU 1-3, 1-38

v
Version numbers, files 1-13, 1-44, 1-46

w
Warning messages 2-5
Worksheet for memory map 3-10

Index-8 Guide to the leu

Guide to the iRMX€
Interactive Configuration Utili1

462923-0C

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAME/DEPARTMENT __ __

ADDRESS PHONE (
---~-----~--------------------------

CITY STATE ZIP CODE
-- ----------------------------------

(COUNTRY)

Please check here if you require a written reply 0

IE'D LIKE YOUR COMMENTS ...

,is document is one of a series describing Intel products. Your comments on the back of this form will
~Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
)mments and suggestions become the property of Intel Corporation.

you are in the United States, use the preprinted address provided on this form to return your
)mments. No postage is required. If you are not in the United States, return your comments to the Intel
lies office in your country. For your convenience, international sales office addresses are printed on
e last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3· 72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11.1 •• 1'111 ••• 11 •• 1.1.1 •• 11.1 •• 1.1 •• 1 ••• 11 •• 1 •• 1 •• 11

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

I NTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AJS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.
Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

NeveSharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

'20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi

1-23-9, Shinmachi
Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AJS

P.O. Box 92
Hvamveien 4
N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN
I ntel Sweden A. B.
Dalvaegen 24

S-17136Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
D-8000 Munchen

intJ

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• • • • • • • •
• • • • • • • •

• • • • • • •

INTEL CORPORATION
3065 Bowers Avenue

• •
• •
• •

Santa Clara, California 95051
(408) 987-8080

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

