

April 1996
Order Number: 312486-005

Paragon™ System
Commands

Reference Manual

Intel® Corporation

Copyright ©1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems...without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document. '

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 1386 Intel iPSC
287 387 Intel386 Paragon
i 1486 Intel387

487 Intel486

1860 Intel487

Other brands and names are the property of their respective owners.

Copyright ® The University of Texas at Austin, 1994

All rights reserved.

This software and documentation constitute an unpublished work and contain valuable trade secrets and proprietary information belonging to the
University. None of the foregoing material may be copied, duplicated or disclosed without the prior express written permission of the University.
UNIVERSITY EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES CONCERNING THIS SOFTWARE AND DOCUMENTATION,
INCLUDING ANY WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR ANY PARTICULAR PURPOSE, AND WARRAN-
TIES OF PERFORMANCE, AND ANY WARRANTY THAT MIGHT OTHERWISE ARISE FROM COURSE OF DEALING OR USAGE OF
TRADE. NO WARRANTY IS EITHER EXPRESS OR IMPLIED WITH RESPECT TO THE USE OF THE SOFTWARE OR DOCUMENTA-
TION. Under no circumstances shall University or Intel be liable for incidental, special, indirect, direct or consequential damages or loss of profits,
interruption of business, or related expenses which may arise from the use of, or inability to use, software or documentation, including but not limited
to those resulting from defects in the software and/or documentation, or loss or inaccuracy of data of any kind.

WARNING

Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in-
stalled, and the front of the diagnostic station. There are no user service-
able areas inside the system. Refer any need for such access only to tech-
nical personnel that have been qualified by Intel Corporation.

CAUTION

This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer-
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. lll shall apply. Unpub-
lished—rights reserved under the copyright laws of the United States.

Preface

This manual describes the ParagonTM system commands. The system commands let you run
applications and manage partitions. You issue system commands at your shell prompt.

In this manual, “operating system” refers to the operating system that runs on the nodes of the
™
Paragon supercomputer.

This manual assumes you are proficient with the use of the operating system.

Organization

This manual contains a “manual page” for each system command, organized alphabetically. Each
manual page provides the following information: ' '

e Command syntax including all switches and arguments.

¢ Descriptions of all switches and arguments.

* Description of what the command does (including hints on using the command).
e Examples of using the command.

e List of related commands.

Notational Conventions

This section describes the following notational conventions:

¢ Type style usage.

e Command syntax descriptions.

Preface Paragon™ System Commands Reference Manual

Type Style Usage
The text of this manual uses the following type style conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Italic Identifies variables, filenames, directories, partitions, and user names. Italic
type style is also occasionally used to emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys.(which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

vi

Paragon™ System Commands Reference Manual Preface

Command Syntax Descriptions

In this manual, the syntax of each system command is described in the “Syntax” section of the
command’s manual page. The following notational conventions apply to these syntax descriptions:

Bold Identifies command names and switches (i.e., items that you must use exactly
as shown).
Italic Identifies arguments (that is, items whose values you must supply when you

invoke the command).
[1 (Brackets) Surround optional items (that is, items that can be omitted).
| (Vertical bar) Separates two or more items of which you may select only one.

{ 1} (Braces) Surround two or more items (separated by vertical bars) of which
you must select only one.

(ellipsis) Indicates that the previous item may be repeated.

For example, consider the syntax description of the mkpart command:

mkpart [-sz size | -sz hXw | -nd nodespec] [-ss | [[-sps | -rq time] [-epl priority]]]
[-mod mode] partition

This syntax description shows the following:
¢ You may choose one of -sz size, -sz hXw, or -nd nodespec.

¢ You may choose -ss. If you do not choose -ss, you may choose one or both of -rq time and -epl
priority.

¢ You may choose -mod mode.

e The partition argument is required. It is in italics because it is a variable name.

Applicable Documents

For more information about the Paragon system documentation, refer to the ParagonTM System
Technical Documentation Guide.

vii

Preface Paragon™ System Commands Reference Manual

Comments and Assistance

Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

U.S.A./Canada Intel Corporation
Phone: 800-421-2823
Internet: support@ssd.intel.com

United Kingdom Intel Corporation (UK) Ltd.

France Intel Corporation Scalable Systems Division

1 Rue Edison-BP303 Pipers Way
78054 St. Quentin-en-Yvelines Cedex Swindon SN3 IRJ
France England
0590 8602 (toll free) 0800 212665 (toll free)
(44) 793 491056
(44) 793 431062
(44) 793 480874
(44) 793 495108
Intel Japan K.K. Germany Intel Semiconductor GmbH
Scalable Systems Division Dornacher Strasse 1
5-6 Tokodai, Tsukuba City 85622 Feldkirchen bei Muenchen
Ibaraki-Ken 300-26 Germany
Japan 0130 813741 (toll free)

0298-47-8904

World Headquarters
Intel Corporation
Scalable Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006
U.S.A.
(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs @ssd.intel.com
(Internet)

viii

Table of Contents

ALLOGCATOR ..ottt sttt st st e e saesae st n e bt se e e e s Ee s ae e neer e st ese s R e R e saesbe s he e s e sanesaneneanes 1
= oo ToT 11 o o B PP PP P PSPPI 5
ASYNC ...ttt et e b e s e AR e e e e sRe e R e nRe e RE e R n e nn e aenre s nrenheene 20
AUTODDB........coeiiiiitii it ree et b e sttt et s e s e e s e s s e e e saesessese e Rt e ab et et e s srensesbe s nresrneae 22
BOOTMESH......coiiitit ettt a et e ke e e see s b e e s e s et sa e b e ss e e aesre e e es s e s ennesbesmseanesaes 27
=10 L0 0 I o ST 29
107 1 ST RSO TSUPTPRRRURPN 35
CHPART .ttt ettt s e ae ettt s st e s be e b et e e e s ae et s an s e e e R e e e e rene st rae e srennea 40
CONSOLE......ccoitieiiei sttt ettt e et e s e e s s st eae e s e s e e e e saee e s e ne e b e e RE e Re s s s e e renaesbe s anenrenne 45
COREINFOcoiiiiteeeietese sttt ese e st a et sre e s e s e e et s s be e s eE e s e s hesae et et e e e b e s arenssnReneesre s snennesneanrens 46
CREATE _PF ...ttt et et ettt e e s e e sae e e e b et e be s e e seenbeneesme e et nanesmeenean 49
DEV ST AT .ttt sttt st s e s e e e s e e s e s e e e R e e e AR e e R e e R e R e e e R R R e R e R e R R r e e n e 51
DIF ettt ettt e et E e Ae R £ e eE e teRe R e A At A £ eheeR £ eR e eR £ e £ e ARt eReeRe R £ e RE e AR e s enn e ne b e e R e e aes 53
EXPORTPAGINGccooiiiiitirieneesieieis e s ass e se e s esess e sb e es e et s s es e s s e ae s s e e b en b e e b er e nan e be s 55
FIND ...ttt st r e et b e e e e e b st st e st et e sa e e e et e et e ne e Rt eae et eReeaneeeReeebe s beeesrenanenereene 57
FSCAN ..ttt sttt e e e e et e e s e st e s et st e bt et e neeaes ek e e R R e ebenbenr e s aR e e s e e s e e et e ebennneennenane 63
S O - GO U RSP UPYPR PR 75
L] o I O EOUT T U SO SYPPTRUPURRI 80
GETMAGIC ...ttt ettt s be s e st e e ae s sat st e saee e e et e an e beaaseeabesatesbeseeaneesnneebeens 84
GPROF ..ottt et sttt e e R e R e st et eR e R R e n e R seeae e sreenean 87
L€ S SOOI o1
HOSTINFO......c.coteeteet ettt sttt sttt s e s s e et a e et s s e se e e ea e e s et e s e et en e nae s e e s s e e resse e e ers s benne s 101

Table of Contents Paragon™ System Commands Reference Manual

HO T AT e s 104
IFCONFIG ...t e bbb e st et s b e e ens 112
INITPART .ot e e b b s b e e s b e s e se e s b s s st nae e e 116
INQUIRE ..ottt s e e s b e s b e s b b r e b e s R e s b e e e b e st st sbnenas 118
o 5 TP 120
LOAD_LEVELD ..ottt st b s b n e et 134
U 139
LSIZE ..o e er e £ e e e 145
LOPART . e 148
MACHID ..o s 153
MAKEDEV ..ot e 155
VD . e e e a s 157
MIPART L e bbb s e ns 160
MOUNT Lt e e b e e e e e e e R e e S b e e bR e R e s e e s b b e s e seene s nenes 170
LS e e e e e s b e e e sae e e e r e ne s 179
NE T ST AT e e s sa e b e e raa e s s e e e e e r e e 181
NEWFES . e e e ns 186
NQS . e 191
N L 5 ST 193
PARAGRAPH.....ooii e e e s nes 197
PARAIDE ...t e b e e s e n e et nen e e 203
PARSEMAGIC ...ttt e s s e e s sr e e b e 207
PESCK . e e e st n e e eae e e nnens 209
PGS e e e s ne e r e s e nen e eeenee e renas 212
PMAKE oo e 214
PROF . s 229

POPART ..ot e s e re s 231
RESET ..ottt e e e e e e eh e e e e ne e n e e nReeneenenreeaeen 236
RIMEKNOD ...ttt e s e st e s g e b st s an s st st e n e r e n e e e e e s eaeensenean 244
RMPART L. e e e s e se e ne snenne 246
7L PR 248
SCANIO .t b 255

Parag¢>nTM System Commands Reference Manual Table of Contents

SEC_CLOSE.... .ottt e s e e 259
SEC_CREATE ... s s 261
SEC_FORCE ...ttt e a e ba e 264
SEC_MAX_LOGRAILS ...ttt s s b s a e s sa e s 266
SEC_MIN_MAX ... e e e e s b 269
SEC_NOPASSWD......ooctiittiii et e e b b e eha e s s b e b b e 272
SEC_OPEN. ..ottt e e s e a e 274
SEC _RESET ...ttt e e e e 276
SEC_SHOW...... ittt s bbb e s sa e s e 278
RS o 1O T s R 281
S 1O T o 285
SNAMES ... e e e e e e e e e s e s s b r e 293.
ST R 205
L2 2 299
LI OO SPS 306
LI 72007 =1 T L N 308
R 1 RS 313
WH e e e e e R e e e ane s 316
D€ T (O O 320
D 5 S 323
D 1 329
4 o o {1 RS 332

Xi

Table of Contents Paragon™ System Commands Reference Manual

Appendix A

Files Manual Pages
ALLOCATOR.CONFIGouiiiireeiiiiiiissreresin s e s sses s nressseessssst e s s sree s seessaseessneessseesasnsesssssessanseanne A-2
BADNODES. TXT ...oiiiciiiiciirieeie e e s srre s e s s e e e sse e e s s s b e e s snsneenranessnsereneeesnsnenesnnnseensneesass A-6
BOOTMAGIC ...ttt e e e e s s sere e s saee e e s s s et n e e e e essbee e s seansasee s s raneeaeesasnnensssannees A-8
(010 = 3 PO PSR PRSP OP A-18
DEV O ON . TXT ... cctiisteetreee it riee s st s e s s s ae et e r e s e e seesbessaee e s be e e s aaaessbseesaseeessnanasbtessnarnesenrensnnes A-26
FSCAN.CFG ...ttt sireee s s st e e s s s esrte e s s e e e s se et e e e s sa e e e s s s s bae s e e e e s aeee e e s e aesessaaasne s e e eenaesenssasnees A-32
R 17N TS PP PP PP PSPPI A-34
MAGIC.MASTER ... oottt e e e e s s s s s e e e s s abae e e s s e s bee s s sbneeeeessasnntenssnsns A-38
PARAMETERS ...ttt s e tn e e s s e e e s e e ran e s s nane e e e e e snneeeeesssnnenaeesnnnens A-42
Lo S Y = 2T TSSOSO PPPPTRPI A-47
RP M e e e e e e e s e e e e e s rre e e se s an e s enrree e e e e aarnreeaanees A-49
SY SCONFIG. TXT ..eieiiciiseirieeneisitre s s seressre e e s asaasserreeesaresssesessanesesasesessasesssssasssasserasenesssssnesansensasenans A-55
172\ PSPPSR A-61

Xii

Paragon™ System Commands Reference Manual Manual Pages

ALLOCATOR ALLOCATOR

Starts and stops the allocator daemon which allocates nodes and controls access to partitions on a Paragon system.

Syntax

Arguments

Description

allocator start | stop

start Starts the allocator daemon.

stop Stops the allocator daemon.

You can execute the allocator command to start or stop the allocator daemon. You must be root to
use this command.

The allocator daemon handles requests to create partitions, remove partitions, or change partition
characteristics. It allocates nodes for partitions in the .compute partition and controls how
applications load and execute in the partitions. The allocator daemon starts when the system boots
in multiuser mode and runs in the .service partition of a Paragon system.

The allocator start command does the following:

* Copies the allocator log file /etc/nx/allocator.log to /etc/nx/allocator.log.last.

¢ Reads the allocator configuration file /etc/nx/allocator.config.

e Starts the allocator daemon.

* Logs allocator internal errors in the file /etc/nx/allocator.log.

¢ Reads in the file /etc/nx/.badnodes and removes the bad nodes from the set of nodes available
in the root partition.

Manual Pages Paragon™ System Commands Reference Manual

ALLOCATOR (cont.) ALLOCATOR (cont.)

Configuration File

The allocator start command reads the configuration file /etc/nx/allocator.config for configuration
information. Configuration strings within this file allow you to enable or disable gang-scheduling,
set the number of gang-scheduled partitions in the system, specify the maximum depth to which
subpartitions or active entities can overlap in a gang-scheduled partition, specify the minimum
permissible rollin quantum, specify whether the application switch -plk can be used in a
gang-scheduled partition, and specify whether the allocator must validate user accounts with the
Paragon Multi-User Accounting and Control System (MACS).

The configuration strings are as follows:

* SPACE_SHARE=boolean

* NUM_GANG_PARTS=integer

e DEGREE_OF_OVERLAP=num

* MIN_RQ_ALLOWED=time

e REJECT_PLK=boolean

o USE_MACS=boolean

For detailed information on the configuration strings in allocator.config, see the allocator.config
manual page.

Space Sharing

‘When you specify space sharing, the allocator daemon denies requests to create a partition or load
an application that would overlap with an existing partition. Overlap is defined as follows:

* Partitions overlap each other if the intersection of their set of nodes is not empty.
* Applications overlap each other if the intersection of their set of nodes is not empty.

e A partition overlaps an application if the intersection of their set of nodes is not empty and the
partition contains at least one application.

Paragon™ System Commands Reference Manual Manual Pages

ALLOCATOR (cont) ALLOCATOR (con:.)

Space sharing prevents overlapping partitions or applications as follows:

* When you try to create a partition that overlaps another partition or an application, the allocator
rejects the partition creation and the mkpart command returns an error.

* When you attempt to execute an application that overlaps another application or an active
partition, the allocator rejects the request. The application returns an error message and does not
execute.

Examples
Enter the following to stop the allocator daemon:
/sbin/init.d/allocator stop
Enter the following to restart the allocator daemon:
/sbin/init.d/allocator start
Files
/sbin/init.d/allocator Command path.
Jusr/sbin/allocator Binary file for the allocator daemon.
/etc/nx/allocator.log The allocator log file.
/etc/nx/allocator.log.last Previous allocator log file.
letc/nx/.badnodes Lists nodes that failed to boot.
/etc/nx/allocator.config Allocator configuration file.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

Manual Pages Paragon™ System Commands Reference Manual

ALLOCATOR (cont.) ALLOCATOR (cont.)

See Also
commands: chpart, Ispart, mkpart, pspart, rmpart, showpart
files: allocator.config

ParagonTM System User’s Guide

Paragon™ System Commands Reference Manual Manual Pages

application application

Executes a parallel application.

Syntax

application [-sz size | -sz hXw | -nd hXw:n] [-rIx]

[-pri priority] [-pt ptype] [-on nodespec] [-pn partition]
[-nt nodetype] [-pkt packet_size] [-mbf memory_buffer]
[-mex memory_export] [-mea memory_each]

[-sth send_threshold)] [-sct send_count]

[-gth give_threshold] [-noc correspondents)

[-pIK] [application_args] |\; file [-pt ptype]
[-on nodespec] [application_args]] ...

Arguments

application File name of the application. The application must be either linked using the -nx
switch, or be linked using the -Inx switch and contain the nx_initve() system call.

-SZ size Specifies the size of the node set on which to run the application. The argument
size must be an integer that ranges from 1 to the number of nodes in the partition.
By default, the application runs on a rectangular set of nodes. If no rectangle of
size nodes is available, the application runs on any available node set.

-sz hXw Specifies a rectangular, contiguous node set on which to run the application. The
argument & is an integer representing the rectangle’s height. The argument w is an
integer representing the rectangle’s width. The character X is a separator that can
be upper or lower case. If the application cannot be allocated as specified, the
application fails immediately.

-nd AXw:n Specifies a rectangular, contiguous node set that is £ nodes high by w nodes wide
on which to run the application. The upper left corner of the set of nodes is node
number ». The values for £, n, and w must be a positive integers. You can use an
uppercase or lowercase letter X between the 4 and w.

Specifying neither the -sz switch nor the -nd switch causes the default application
size to equal the value of the NX_DFLT_SIZE environment variable, or all the
nodes in the partition if the NX_DFLT_SIZE environment variable is not defined
or does not equal a positive integer.

Manual Pages

application (con:)

-rlx

-pri priority

-pt ptype

-on nodespec

Paragon™ System Commands Reference Manual

application (con:.)

NOTE

If your default number of nodes, as specified by the environment
variable NX_DFLT_SIZE, is greater than the number of nodes
available in the specified partition, you may get a “exceeds
partition resources” or “request overlaps with nodes in use” error.

Relaxes the requirement that the exact specified number of nodes be available for
an application to run. With the -rlx switch, the application runs on as many nodes
as possible, up to the number of requested nodes. Note that there must be at least
one available node for the application to attempt to execute. If no available nodes
exist, the application fails immediately.

NOTE

The -rix switch can be used to relax the default size, the -sz size
switch, or the -nd switch. It cannot be used to relax the switch
-sz hXw.

Sets the application’s priority level. The argument priority must be an integer
ranging from O (low priority) to 10 (high priority). The default is a priority of 5.
The priority level determines how much processor time an application gets when
more than one application is allocated on a node.

Sets the process type of each process in the application. The argument ptype must
be an integer greater than or equal to 0. The default is a process type of 0.

Specifies a subset of nodes on which to load the application. By default, the
application is loaded on all the application’s nodes. This switch allows you to
specify certain nodes from the entire node set on which to run a program. Use this
switch when you are running multiple programs as a single application.

NOTE

Do not use the -on switch if you just want to run a single program
on a specific number of nodes. Use the -sz switch or the -nd
switch instead.

Paragon™ System Commands Reference Manual Manual Pages

application (con:.)

-pn partition

application (cont.)

The nodespec must be one of the following node specifiers:

X Node number.
Xy Range of node numbers from x to y, inclusive.
n The last node of the partition.

nspec[,nspec]... List of nodes for the application. Each nspec argument
is a node specifier. You can list nodes using any
combination of the node specifiers x, x..y, or n. Do not
put spaces in this list.

The numbers you use with the -on switch are node numbers within the application.
The range of node numbers is from 0 to one less than the number of nodes
allocated to the application.

NOTE

Do not specify the same node number in nodespec more than
once. If you specify the same node twice, two processes are
created on the specified node, but one of the processes is
terminated shortly after creation with the error “setptype: Ptype
already in use.”

Care needs to be exercised when using the -on, -sz, and -nd switches. If you use
the -on switch when you really should be using the -sz or -nd switch, the
application will be allocated more nodes than it needs.

Additionally, you need to be careful when using the -on and -rlx switches
together. Using these switches together can create situations where it is not known
whether a program is running on all nodes. Recall that use of global synchronizing
operations such as gopen() and gdsum() in situations where the program is not
running on every node in the application causes the synchronizing operations to
hang. They hang because these operations block until every node calls them.

Specifies the partition in which the application runs. The partition argument must
be a pathname of an existing partition. You must have execute permission on the
partition. If you do not use this switch, the default partition used is the value of the
NX_DFLT_PART environment variable, or the .compute partition if the
NX_DFLT _PART variable is not set.

Manual Pages

application (con:.)

Paragon System Commands Reference Manual

application (con:.)

-nt nodetype Specifies nodes having the attributes defined by nodetype as the node set on which
to run the application. The nodetype argument is one of the following:

attribute

lattribute

Selects nodes having the specified attribute. For example,
when attribute equals the string mp, only MP nodes are
selected. The standard node attributes are shown in the
“Node Attributes” section.

Selects nodes rot having the specified attribute. For
example, when attribute equals the string !io, only nodes
that are not I/O nodes are selected. Note that no white space
may appear between the ! and artribute.

[relop]l[value]lattribute

ntypel[,ntype]...

Selects nodes having a specified value or range of values
for the attribute. For example, the string >=16mb selects
nodes with 16M bytes or more of RAM. The string 32mb
selects nodes with exactly 32M bytes of RAM. And, the
string >1proc selects nodes with more than one processor.

The relop canbe =, >, >=, <, <=, !=, or ! (!= and ! mean the
same thing). If the relop is omitted, it defaults to =.

The value can be any nonnegative integer. If the value is
omitted, it defaults to 1.

The attribute can be any attribute shown in the “Node
Attributes” section, but is usually either proc or mb. (Other
attributes have the value 1 if present or 0 if absent.)

No white space may appear between the relop, value, and
attribute.

Selects nodes having all the attributes specified by the list
of ntypes, where each ntype is a node type specifier of the
form attribute, !attribute, or [relop][valuelattribute. For
example, the string 32mb, lio selects non-io nodes with
32M bytes of RAM.

You can use white space (space, tab, or newline) on either
side of each comma, but not within an ntype.

Paragon™ System Commands Reference Manual Manual Pages

application (con:) application (con:)

-pkt packet_size
Sets the number of bytes in each packet size (packet_size) used for sending
messages. The packet_size argument is an integer value. If a message is larger
than the packet_size value, the application sends messages in several packets that
are each packet_size bytes long. The minimum, maximum, and default values for
packet_size are as follows:

* minimum: sizeof(xmsg_t)
e maximum: 8192

e default:
8192 bytes or (memory_each / 2) - sizeof(xmsg_t) (whichever is less)

NOTE

For the default, minimum, and maximum values of the
message-passing configuration switches -pkt, -mbf, -mex, -mea,
-sth, -sct, and -gth, the name full_packet_size represents the
value packet_size + sizeof(xmsg_t). The type xmsg_t is defined
in the include file <memsg/memsg_xmsg.h>, and defines the
message header sent with each packet. The size of this type is
currently 64 bytes.

-noc correspondents
Sets the total number of other processes from which each process expects to
receive messages. The argument correspondents is an integer value. The default
value for correspondents is numnodes().

-mbf memory_buffer
Sets the total memory allocated in bytes for message buffers in each process
(memory_buffer). The argument memory_buffer is an integer value. Its minimum,
maximum, and default values are as follows:

¢ minimum:
(8 * sizeof(xmsg_t)) * (correspondents + 2)) + 20 * sizeof(xmsg_t))

* maximum: 32MB + (10 * full_packet_size)

e default: 1MB + 128K bytes

Manual Pages Paragon™ System Commands Reference Manual

application (con:.) application (con:.)

-mex memory_export
Sets the total memory in bytes allocated for buffering messages received from
other nodes. The argument memory_export is an integer value. The minimum,
maximum, and default values for memory_export are as follows:

e minimum: 2 * (correspondents + 2) * (2 * full_packet_size)
* maximum: memory_buffer - 128K bytes
e default: memory_buffer - 128K bytes

-mea memory_each
Sets the memory in bytes allocated to each node in the application for buffering
messages received from other nodes (memory_each). The argument
memory_each is an integer value. The application uses memory in the
memory_buffer segment that is outside of the correspondents multiplied by the
memory_each value for buffering messages from any sending node, when needed.
The minimum, maximum, and default values for memory_each are as follows:

e minimum: 2 * full_packet_size

* maximum:
(memory_export | 2) | (correspondents + 2) or IMB - 31 (whichever is
less)

e default:
10 * (full_packet_size) or maximum memory_each (whichever is less)

-sth send_threshold
Sets the threshold in bytes for sending multiple packets (send_threshold). The
argument send_threshold is an integer value. If a sending node has at least
send_threshold bytes of memory free in its memory_each segment on the
receiving node, it will send multiple packets of a message right away. Otherwise,
it will send one packet and wait for an acknowledgment that a receive has been
posted. The minimum, maximum, and default values for send_threshold are as
follows:

e minimum: none
¢ maximum: memory_each -1

e default: memory_each /2

10

Paragon" System Commands Reference Manual Manual Pages

application (con:.)

application (con:.)

-sct send_count Sets the number of bytes to immediately send (send_count) when the memory

available is above the send_threshold value. The argument send_count is an
integer value. The minimum, maximum, and default values for send_count are as
follows:

e minimum: packet_size

* maximum: memory_each

e default: memory_each [2

-gth give_threshold

-plk

Sets the lower bounds in bytes for forward-flow control information
(give_threshold). As messages on a receiving node are consumed by the user's
program, the message memory becomes available to store new messages. The
receiving node tells its sending nodes about the newly available free memory by
“piggy-backing” the information on other messages going to the sender. This
communication between sending and receiving nodes is known as forward-flow
control. The sender only sends a message when it knows the receiving node has
enough memory available in which to store the message. The receiver keeps track
of how much memory it has told the sender is available. When there are no other
messages to “piggy-back” information on and the amount of memory the receiver
has told the sender is available goes below give_threshold, the receiver sends a
special message to the sender telling it how much memory is actually available.
The argument give_threshold is an integer value whose minimum, maximum, and
default values are as follows:

e default: packet_size

e maximum: memory_each/?2

e minimum: packet_size
Locks the data area of each process into memory. This switch functions like the
plock() function. See the OSF/1 Programmer’s Reference for information on the
plock() function. This switch also conditions message-passing code to run more
efficiently by assuming that all data buffers are locked into memory. The default

behavior is to not lock.

The -plk switch locks the following parts of your application into physical
memory:

11

Manual Pages Paragon™ System Commands Reference Manual

application (cont.) application (con:.)

e The entire data segment. This is the part of memory that contains global
variables. This area is locked when the program is loaded.

* The area from the beginning of the stack or heap to the end of the buffer.
One of these areas is locked the first time you use the buffer in a
message-sending or message receiving call. The area locked depends on
where you use the application buffer. If its used on the stack, the area
from the beginning of the stack to the end of the buffer is locked. If you
use an application buffer that is located on the heap, the area from the
beginning of the Aeap to the end of the buffer is locked. The stack is the
part of memory that contains local variables, while the heap is the part of
memory that is allocated by the malloc() function (C) or the
ALLOCATE statement (Fortran).

All areas of memory not mentioned in this list, including the node segment (the

part of memory that contains executable instructions), are not locked and are still
subject to paging. Note that locking is done a page at a time. To lock a single byte,
the system must lock the entire 8K byte virtual memory page containing that byte.

application_args
Additional arguments specific to the application.

file Loads the executable file specified by the file argument onto some or all of the
same nodes as the application specified by the application argument. The file must
be compiled and ready to execute. It can be linked with or without the -nx switch,
but it must not call nx_initve().

The -pt and -on switches following the file argument specify the process type and
nodes for file. The application_args following the file argument specifies
additional application-specific arguments for the executable file. The
command-line switches you can use with the files are as follows:

* Any application switches with the first file. The switches you use with
the first file affect the entire application. The -pt and -on switches you
use with the first file affect the first file only.

e Only the -pt and -on switches with the second and subsequent files.
These switches affect the second and subsequent files only.

NOTE

The escaped semicolon (\;) before the file argument must be
preceded and followed by a space or tab. Otherwise, it will be
considered part of the preceding or following argument.

12

Paragon™ System Commands Reference Manual Manual Pages

application (con:.) application (cont.)

Description

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

The switches described in this manual page are available for applications linked with the -nx switch
or for applications linked with the -Inx switch that call nx_initve() or nx_initve_rect().

An application linked with the -Inx switch that calls either the nx_initve() or the nx_initve_rect()
function can override the command line switches.

When you specify the -sz size switch, the operating system attempts to allocate the application in a
square group of nodes. If this is not possible, the operating system attempts to allocate the
application in a rectangular group of nodes that is either twice as wide as it is high or twice as high
as it is wide. If this is not possible, the operating system attempts to allocate the application in any
available nodes. In this case, nodes allocated to the application may not be contiguous (that is, they
may not all be physically next to each other). No matter what the shape of the application, node
numbers within the application (as returned by mynode()) will always be sequential from 0.

To get better performance from an application that uses parallel loops you can control the number
of CPUs per board used to process these loops. You can specify the number of CPUs by using the
DFLT_NCPUS environment variable. For example, setting DFLT_NCPUS to 2 causes each node to
use two CPUss to process parallel loops regardless of any setting determined during boot time. Use
of this environment variable allows you to see the effects that multiple CPUs can have on looping
code for debugging or performance purposes. Note that when DFLT_NCPUS is zero, an application
compiled with -Mconcur uses the maximum number of CPUs available on each node. For more
information on how to use the DFLT_NCPUS environment variable, see the Paragon User’s Guide.

Parallel applications can be gang-scheduled to make more efficient use of system resources. In gang
scheduling, an application is allowed to run for a time period, called the rollin quantum, and then is
“rolled out”. Once this application is “rolled out”, another application is “rolled in” in to take its
place. If the rollin quantum is long, much time may pass before you see any response to a
<Ctrl-c> or <Ctrl-z>.

NOTE

Interrupting or suspending an application that is “rolled out” will not
take effect until the application is “rolled in” again.

13

Manual Pages Paragon™ System Commands Reference Manual

application (con:.) application (con:.)

Node Attributes

The hardware characteristics of each node are described by a comma-separated series of strings
called attributes. The following shows the most common node attributes. An attribute that is
indented is a more specific version of the attribute from the previous level of indentation. For
example, net and scsi nodes are specific types of io node; enet and hippi nodes are specific types of
net node (and also specific types of io node).

Attribute Meaning
bootnode Boot node.
gp GP (two-processor) node.
mp MP (three-processor) node.
mcp Node with a message coprocessor.
nproc Node with n application processors (not counting the message coprocessor).
nmb Node with nM bytes of physical RAM.
io Any I/O nodes.
net I/O node with any type of network interface.
enet Network node with Ethernet interface.
hippi Network node with HIPPI interface.
scsi I/0 node with a SCSI interface.
disk SCSI node with any type of disk.
raid Disk node with a RAID array.
tape SCSI node with any type of tape drive.
3480 Tape node with a 3480 tape drive.
dat Tape node with a DAT drive.
IDstring SCSI node whose attached device returned the specified IDstring. For example, a

disk node might have the IDstring NCR ADP-92/01 0304.

Node attributes are not case sensitive, therefore, GP, gp, and Gp are equivalent.

Using Node Attributes with an
Application Size

If you use the -nt switch together with the -sz switch, the -nd switch, or the environment variable
NX_DFLT _SIZE, the application runs on the specified nodes with the specified attributes, as
follows:

¢ For -sz size or NX_DFLT_SIZE, at least the specified number of nodes with the specified
attributes must be available in the partition.

* For -sz hXw, at least one rectangle of nodes of the specified size and shape, all of which have
the specified attributes, must be available somewhere in the partition.

14

Paragon™ System Commands Reference Manual Manual Pages

application (cont.) application (con:)

Examples

* For -nd AXw:n, the specified rectangle of nodes must be available and all the nodes must have
the specified attributes.

If the specified nodes with the specified attributes are not available in the partition, the command
fails with an error message and the application does not run. You can use the -rlx switch with the
-sz or -nd switches to relax the requirement that a specified number of nodes must be available. In
these cases, nodes that qualify (meet the specified attributes) in the partition are used to run the

application. The number of nodes used can range from a single node up to one less than the full set
of requested nodes.

The following examples assume that myapp, mymgr, and myworker are parallel applications that
linked with the -nx switch.

1. To run myapp on all nodes in the default partition, enter the following:
% myapp

This application runs only if all the nodes in the default partition are available. To relax the
requirement that all the nodes you request must be available, enter the following:

% myapp -rlx

The -rlx switch allows the application to run even when all the nodes requested for the
application are not available.

2. To run myapp with a priority of 7 on 50 nodes in the default partition, enter the following:
$ myapp -pri 7 -8z 50

3. To run myapp on an 8x8 rectangular node set in the default partition, enter the following:
% myapp -sz 8X8

4. To run myapp on an 8x8 rectangular node set anchored at node 0 (zero) in the default partition,
enter the following:

% myapp -nd 8X8:0

15

Manual Pages

Paragon™ System Commands Reference Manual

application (con:.) | application (con:.)

5.

10.

16

To allocate all the nodes of the mypart partition to the application mymgr, load mymgr onto node
0 (zero) of the default partition with process type 1, and load myworker onto all nodes but node
0 with process type 0, enter the following:

% mymgr -on 0 -pt 1 -pn mypart \; myworker -on 1..n

To run myapp on all the MP nodes in the default partition (it fails if less than all the MP nodes
in the default partition are available), enter the following:

$ myapp -nt mp

To relax the requirement that all the MP nodes you request must be available, enter the
following:

$ myapp -nt mp -rlx

To run myapp on all the MP nodes in the default partition that have greater than 16M bytes of
memory, enter the following:

% myapp -nt “mp, >16mb”
Remember, if any characters special to your shell (such as >, <, or white space) appear in the
nodetype string of the -nt switch, you must enclose the nodetype string in quotes, or you must

precede the special characters with a backslash character.

To run myapp on 5 MP nodes in the default partition (it fails if less than 5 MP nodes are
available), enter the following:

% myapp -sz 5 -nt mp

To run myapp on 5 MP nodes in the default partition (it fails if less than 5 MP nodes are
available), enter the following:

% setenv NX DFLT SIZE 5
% myapp -nt mp

To run myapp on a 2-by-4-node rectangle of MP nodes in the default partition (it fails if no such
rectangle of MP nodes is available anywhere in the partition), enter the following:

% myapp -8z 2x4 -nt mp

Paragon™ System Commands Reference Manual Manual Pages

application (con:.) application (cont.)

11. To run myapp on a 3-by-3-node rectangle of MP nodes in the upper left corner of the default
partition (it fails if the specified rectangle is not available or does not consist entirely of MP
nodes), enter the following:

% myapp -nd 3x3:0 -nt mp

Errors

Bad node specification

You specified a node number that is greater than the largest node number in the partition with the
-sz switch, or you used an improperly-formatted nodespec with the -on switch.

Exceeds partition resources
You specified an application size with -sz size that is greater than the partition size, or the
NX_DFLT_SIZE environment variable specifies a size greater than the partition size. If you did not

specify a partition with the -pn switch, check the size of the partition specified by NX_DFLT_PART
environment variable.

Give count invalid or out of range

You specified a give_threshold argument with the -gth switch that is invalid or out of range.

Invalid priority

You specified a priority that is not between 0 (zero) and 10.

Memory buffer invalid or out of range

You specified a buffer size with the -mbf switch that is invalid or out of range.

Memory each invalid or out of range

You specified a buffer size with the -mea switch that is invalid or out of range.

Memory export invalid or out of range

You specified a buffer size with the -mex switch that is invalid or out of range.

17

Manual Pages Paragon™ System Commands Reference Manual

application (con:.) application (con:.)

Packet size invalid or out of range

You specified a packet size with the -pkt switch that is invalid or out of range.

Partition not found

You specified a partition with the -pn switch that does not exist. If you did not use the -pn switch,
check the value of the NX_DFLT _PART environment variable.

Partition permission denied

You specified a partition with the -pn switch that you do not have execute permission for. If you did
not use the -pn switch, check the value of NX_DFLT_PART environment variable.

Request overlaps with nodes in use

You tried to load an application in a partition that may overlap an existing partition in the compute
partition.

Send threshold invalid or out of range

You specified a send threshold with the -sth switch that is invalid or out of range.

Send count invalid or out of range

You specified a send count with the -sct switch that is invalid or out of range.

The application and the 0OS are of incompatible revisions

Your application is out of date. You need to recompile and relink your application.

Use of -plk not allowed in gang-scheduled partition.
You tried to use the -plk switch in a gang-scheduled partition or a partition that has a gang-scheduled

ancestor. The use of the -plk switch is controlled in the allocator configuration file. See the allocator
and allocator.config manual pages for more information about the allocator configuration file.

18

Paragon™ System Commands Reference Manual Manual Pages

application (con:.) application (con:.)

Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.
See Also
commands: Ispart, mkpart, pspart, showpart
calls: mynode(), nx_initve(), nx_initve_rect(), nx_load()

OSF/1 Programmer’s Reference: plock(2)

19

Manual Pages

ASYNC

Paragon™ System Commands Reference Manual

ASYNC

Diagnostic station: Connects a console device for asynchronous communications between the diagnostic station and

the Paragon system.

async [-f] [-k] [-s] [-t] device

Syntax
Arguments
-f
-k
=S
-t
device
Description

Uses the fscan interface for asynchronous communications. Makes sure the kernel
is downloaded before it exits.

Sends a a carriage return to the boot node to start the node.

Spins between the keyboard and serial line. This supports diagnostic systems that
do not provide the select() call for non-stream devices.

Returns 1 if the device is available (not locked), else returns 0. The return value
can be checked using the Bourne shell variable $?.

Name of the device to be used for asynchronous communications. The device
name can be either an absolute pathname, relative pathname, or a simple name for
a TTY device. If you use a relative pathname or a simple name for a device, the
pathname or name is assumed to be relative to the /dev directory.

The async command runs on the diagnostic station and is for use by the system administrator only.

The async command provides serial communications to the Paragon system console with the
following communication parameters: 19.2K baud, 8 data bits, 2 stop bits, and no parity. These
communications parameters cannot be changed.

‘When the async command connects to a device, the command creates a file named /fmp/LOCK. XXX.
The XXX variable is the device name minus the directory. For example, when connected to
/dev/ttyla, the async command creates a file called /tmp/LOCK.ttyla. This file is a lock so one user
only can use the async command with this device. However, other commands such as the cu
command may use the device, causing unpredictable results.

20

Paragon™ System Commands Reference Manual Manual Pages

, ASYNC (cont.) ASYNC (conz.)

The lock file contains the process ID (PID) of the process that owns the lock. The async command
first checks to make sure the process still exists on the system. If the process does not exist, the lock
is ignored.

When the async command is running, entering a tilde (~) begins a command sequence. The
following command sequences have special meaning:

~! Allows command execution on the diagnostic station. After the command
completes, control is returned to the console. You can use the sh command to
create a shell if you want to enter more than one command.

~. (dot) Exits the program. Be careful using this when using rlogin to log in to the
diagnostic station. Use two tildes and a dot (~~.) when logged in via the rlogin
command.

~q Exits the program. The ~q sequence is identical to ~. (dot). Use when logged in

via the rlogin command to avoid killing the rlogin process.

These command sequences work only after entering a carriage return on the command line.

Files
/usr/local/bin/async Contains the executable for the async command.

/tmp/LOCK. XXX Lock file used to lock the device so no other users
can use the async command on the device.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

console, fscan, scanio

21

Manual Pages

AUTODDB

Paragon™ System Commands Reference Manual

AUTODDB

Diagnostic station: Collects system debug information after a crash.

Syntax

autoddb [-Aq] [-f file | -F file] [-n nodes] [-N nodes] [-t number] [-m "list"] [-s] [-S]

Arguments

-A

-f file

-F file

-n nodes

-N nodes

-q

-t number

22

Directs autoddb to collect debug information from the system nodes that are
running an alternate operating system (for example, SUNMOS) as well as the
nodes running the default operating system. The default is to check the nodes that
are running the default operating system only. The alternate operating system on
a node must be capable of responding to a ping from the fscan command.

Specifies a log file for reporting debug information. The default is a log file with
the name autoddb.date-time. The date-time suffix has the format
DD-MMM-YY-HH.MM.SS, where DD-MMM-YY is the date, month, and year and
HH.MM.SS is the hour, minute, and second when the file was created. This allows
for the existence of multiple log files reflecting different runs of autoddb. The log
file(s) resides in the /iw/autoddb directory.

Same as the -f switch except the debug information is appended to the file
specified by the file argument if the file exists. The default is that file is
overwritten.

Specifies a single node or node list from which to collect debug information. The
default is the boot node, any failed nodes, the nodes listed in the DEBUG_NODES
variable in /usr/paragon/boot/autoddb, and the nodes listed in SERVICE_NODES
when there are no failed nodes. The -n switch overrides the default; debug
information is only reported for the node specified by the node argument.

Adds node(s) to the default list of nodes that will be investigated.

Suppresses output of debug information to the terminal. The default is that debug
information is displayed on the terminal and reported to a log file.

Specifies the last task number that performs a #/uT on each node. By default, task
information is returned for $task0 and $task2. You can use this switch when the
system hangs to get #/uT information beyond these tasks. For example, setting the
number argument to five returns information for $task0, $task2, $task3, $task4,
and $rask5.

Paragon™ System Commands Reference Manual Manual Pages

AUTODDB (con.) AUTODDB (con.)

Description

-m "'list" Mail resulting log file to given user e-mail lisz.

-S

-S

Simple run. Does not allow additional nodes to be investigated. Does not print
stack traces for $task[2,0].0 (ddb command: trace/uT). The -s switch should only
be used if you are planning to follow up with ddb commands.

REAL Simple run. Operates the same as the -s switch, except does not do node
follow-up. This switch should only be used if you are planning to follow up with
ddb commands.

The autoddb command runs on the diagnostic station and is intended for use by the system
administrator only.

To execute the autoddb command you need to be in the /usr/paragon/boot directory. When
autoddb executes the following occurs:

Opens a log file for the debug information.

Uses fscan to poll each node to see if it is in the running, dead, or debugger state.
Displays a message about any dead nodes that are found.

Runs the diagnostic utility, statusutl.

Collects debug information about the boot node (unless it is dead), nodes that are in debugger
state, nodes listed in the DEBUG_NODES string, and nodes specified using the -n or -n and -N
switches. Directs all output to the log file (in the /w/autoddb directory) and the terminal (unless
the -q switch is specified). Note that if no nodes are in debugger state, autoddb checks nodes
listed in SERVICE_NODES as well. After debug information is collected from a node, the node
resumes its operations.

Before running the autoddb command, you can use the DEBUG_NODES and SERVICE_NODES
strings in the command script /usr/paragon/boot/autoddb to specify from which nodes the command
collects debug information. For information on these strings, see the “Specifying Nodes for Which
Information is Returned” section of this manpage.

23

Manual Pages Paragon™ System Commands Reference Manual

AUTODDB (cont.) AUTODDB (con.)

You should also check that the variables CONFIGURATION and TOP_BACKPLANE are set
correctly in the autoddb command script. The values should be the same as the variables in the reset
script. For example, the following lines show typical values for these variables:

SCONFIGURATION="full";
STOP_BACKPLANE="D";

This specifies a full system configuration and the top backplane as backplane D.
The autoddb script tries to determine the settings for SCONFIGURATION and

$TOP_BACKPLANE by looking for the RST_TOP_BACKPLANE and RST_CONFIGURATION
settings in the MAGIC.MASTER file. If they are there, you do not need to customize autoddb.

Also before running auteddb, check that the bootmagic string BOOT_CONSOLE is set as follows
in the magic file (MAGIC.MASTER):

BOOT_CONSOLE=£

This setting requests booting with the fscan console. If BOOT_CONSOLE is not set to f, edit the
magic file to make this change.

To make sure that debug information gets collected when an autoreboot occurs, modify the
specification for the reboot command in the file /usr/paragon/boot/fscan.cfg as follows:

define reboot ”sh /usr/paragon/boot/autoddb; \
ksh /usr/paragon/boot/reset skip ignorelock autoreboot”

This modification runs the autoddb command after the system watchdog detects a node error but
before the system is booted.

As of R1.3, autoddb is implemented in a Perl script. The /bin/sh version of auteddb is called
autoddb.sh and is in the same location of autoddb. If the Perl version does not seem to be working
correctly, you can use the autoddb.sh script.

Specifying Nodes

DEBUG_NODES=node_list
Specifies additional nodes on the Paragon system from which autoddb collects
debug information. By default, debug information is collected for the boot node
and nodes in the debugger state. The default value for node_list is a null string.
For example, this setting checks the boot node and all nodes in the debugger state.

SDEBUG_NODES="";

24

Paragon™ System Commands Reference Manual Manual Pages

AUTODDB (con.)

AUTODDB (cont.)

When you specify a list of nodes for the node_list argument, debug information is
also collected for node_list. To specify a list of nodes supply one or more numbers
with individual nodes separated by blanks. Usually, node_list consists of service
nodes other than the boot node. You can also include I/O nodes and any suspected
problem nodes. For example, this setting returns debug information for nodes 1
through 4; nodes 6, 8, and 9; the boot node; and any nodes in the debugger state.
The boot node and any nodes in the debugger state always have information
returned.

SDEBUG_NODES="1 2 3 4 6 8 9";
Note that the more nodes autoddb collects information about, the longer it takes

to run. The autoddb command will add at least 60 seconds to its execution time
for each additional node.

SERVICE_NODES=node_list

List of service nodes examined whenever no machine nodes are discovered in the
debugger state. By default, autoddb returns information on the boot node, and
any failed nodes, and the nodes listed in the DEBUG_NODES variable in
/usr/paragon/boot/autoddb. By setting this string you instruct autoddb to check
the specific nodes in node_list whenever it fails to find machine nodes in the
debugger state.

The default value for node_list is a null string. For example, this setting instructs
autoddb to not check nodes beyond the default set.

SSERVICE_NODES="";
To specify a list of nodes, supply one or more numbers with individual nodes
separated by blanks. For example, this setting returns debug information for nodes

6, 8, and 9 when autoddb can’t find any machine nodes in the debugger state:

SSERVICE_NODES="6 8 9";

Examining Output

After you run autoddb you can review the output for some easy-to-spot problems: out of memory
and NIC errors. Look at the summary section first for any problems autoddb has noticed.

Out of memory

Review the /db_sys output and look for the number of free pages. If this number is 29 (or very near
29), the node being examined is out of memory.

25

Manual Pages Paragon™ System Commands Reference Manual

AUTODDB (con:.) AUTODDB (cont.)

NIC errors

Look at the machine comm output and find the line ‘errors’. If anything follows the word 'errors' then
the NIC has detected either a hardware or software error. Some of the various errors (and your
options) are:

pr-par0 -- pr-par7
These are processor-port parity errors. These errors are caused by parity
inconsistencies between the NIC and the i860. To fix this problem, replace
the node.

net-par0 or net-parl,
These are network parity errors. These errors are occur when data is passed
between the local MRC and the local NIC. To fix this problem, reseat the
local node. If re-seating the node doesn't work, check for bent backplane
connectors by running the PSD mesh test. If no backplane connectors are
bent, replace the local node. If replacing the local node fails to fix the
problem, replace the local MRC. Finally, if none of this works, replace the
local backplane.

Xmt-overrun, Icv-overrun, or rcv-underrun
These three errors are the most common and most difficult to diagnose. They
could originate from either hardware or software errors. To diagnose these
errors, further examination beyond autoddb, is required.

Files
/usr/paragon/boot/autoddb Specifies the command path.
/usr/paragon/boot/fscan.cfg Specifies the fscan configuration file on the
diagnostic station.
/usr/paragon/boot/MAGIC.MASTER Specifies the default magic file on the diagnostic
station.
/u/autoddb/autoddb .date-time Log file(s) containing debug information.
See Also

commands: fscan, fscan.cfg, reset

files: MAGIC.MASTER

26

Paragon System Commands Reference Manual Manual Pages

BOOTMESH

BOOTMESH

Loads files for the operating system onto the system’s nodes.

Syntax

bootmesh [-bdDEGHKMoRSvVwWZ] [-e file] [-k file] [-m file]
[-n node] [-s file] [-t millisecs] [-z seconds]

Arguments

-b

-d,-D

-e file

-H

-k file

-K

-m file

-n node

-0

Broadcasts the operating system image to all nodes. The default is to download
each node individually.

Displays debug messages.

Specifies the emulator file to use for booting on the Paragon system. The default
is the pathname specified by the bootmagic file (see the bootmagic manual page
for more information).

Does not download the emulator(s).

Does not send the goto command.

Displays help messages.

Specifies the kernel file to use for booting on the Paragon system. The default is
the pathname specified by the bootmagic file (see the bootmagic manual page for
more information)

Does not download the kernel file.

Specifies the bootmagic file to use for booting. The default is the memory-resident
bootmagic file. See the bootpp and parsemagic manual pages.

Does not download the bootmagic file.

Specifies a single node to boot. The default is to boot all nodes specified in the
bootmagic file (see the bootmagic manual page for more information).

Boots the same kernel/server file on all nodes.

Does not reset the NIC memory loader.

27

Manual Pages

BOOTMESH (con.)

Description

-s file

-S

-t millisecs
-v, -V

-w

=Z msecs

Z

Paragon™ System Commands Reference Manual

BOOTMESH (cons.)

Specifies the server file for booting. The default is to boot all nodes specified in
the bootmagic file (see the bootmagic manual page for more information).

Does not download the server file.

Specifies timeout value for polling nodes.

Displays all messages (verbose mode).

Does not display warning messages.

Specifies the number of microseconds to sleep between goto commands. The
msecs parameter is an integer value that specifies the number of microseconds to

sleep.

Sends goto commands to each node in turn. The default is to broadcast these
commands to all nodes.

The bootmesh command runs during the booting sequence on the boot node only. Note that the
/sbin/bootmesh.sh script executes the bootmesh command. You can edit this script to change the
bootmesh command-line arguments. The bootmesh command does the following:

¢ Reads the information in the bootmagic file.

* Downloads the files for the operating system, including files for the microkernel, server,
emulator, and alternate operating system (if the bootmagic string BOOT_ALT_NODE_LIST is
specified in the bootmagic file). For information about setting the bootmagic string
BOOT_ALT_NODE_LIST, see the bootpp manual page.

e Starts the kernel on each system node.

Limitations and Workarounds

See Also

28

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

bootpp, parsemagic

Paragon™ System Commands Reference Manual Manual Pages

BOOTPP

BOOTPP

Diagnostic station: Preprocesses information for the bootmagic file.

Syntax

bootpp [-dDHuvVWZ?] [-a file] [-b file] [-c file] [-e file] [-k file] [-K file]
[-] node_list] [-m file] [-M file] [-n node] [-p string] [-P num] [-s file] [-S file]
[-x size] [-y size] [-z file]

Arguments

-a file

-b file

-c file

-d
-D

-e file

-H

k file

K file

-1 node_list

-m file

Creates a new DEVCONF.TXT file. The default is
/usr/paragon/boot/DEVCONF.TXT.

Specifies the bootmagic file on the diagnostic station to use for booting. The
bootmagic file is the output file created by bootpp. The default is
fusr/paragon/boot/bootmagic.

Specifies the hardware configuration file on the diagnostic station to use for
booting a Paragon system. The default is /usr/paragon/boot/SYSCONFIG.TXT.

Specifies debug support.
Provided for backward compatibility. Creates a DEVTAB bootmagic string.

Specifies the emulator file on the Paragon system to use for booting. The default
is /mach_servers/emulator.

Displays help messages during execution.

Specifies the kernel file on the Paragon system to use for booting the I/O nodes.
The default is /mach_servers/mach_kernela.

Specifies the kernel file on the Paragon system to use for booting the compute
nodes. The default is /mach_servers/mach_kernela.

Specifies the list of nodes on a Paragon system to use for booting. The node_list
is a string that is list of node numbers separated by commas.

Specifies the magic file on the diagnostic station to use for booting a Paragon

system. This file is an input file for bootpp and overrides the defaults. The default
magic file is /usr/paragon/boot/MAGIC.MASTER.

29

Manual Pages Paragon™ System Commands Reference Manual

BOOTPP (con.) BOOTPP (conz.)

-M file Specifies the file on the diagnostic to use for verifying bootmagic strings. The
default is /usr/paragon/boot/magic.lis. Use this switch with the -V switch.

-n node Specifies the first node to boot on a Paragon system. The default is O.
-p string Specifies a value for a bootmagic string. The string has the following form:
name=value
The name is the name of the bootmagic string and the value is the value of the
bootmagic string. For example, the following switch specification specifies a
bootmagic string:
-p "BOOT_FIRST_NODE=7"
This specifies the boot node to be node 7.
You can specify the -p switch multiple times in a bootpp command line. No
checking is done to validate the bootmagic string. See the bootmagic manual page
for list of valid bootmagic strings.
-P num Specifies whether to generate pager node information. The default is the value of

the bootmagic string PAGER_NODE as specified in the MAGIC.MASTER file.
The value for the num argument indicates the following:

0 Specifies that the boot node is the pager node. This is
the default and it creates a two-level paging tree.

1 Requests the bootpp command to generate the pager
node information. This creates a three-level paging
tree.

See the ParagonTM System Administrator’s Guide for more information on paging
trees.

-8 file Specifies the server file on the diagnostic station for booting the I/O nodes on a
Paragon system. The default is /mach_servers/startup.

-S file Specifies the server file on the diagnostic station for booting the compute nodes
on a Paragon system. The default is /mach_servers/startup.

-u Specifies booting the boot node only (boots the system like a single-node system).
This may be useful for system maintenance.

30

Paragon™ System Commands Reference Manual Manual Pages

BOOTPP (con.)

Description

-V

v

W

-X size
-y size

-z file

-Z

BOOTPP (con:.)

Displays all help messages.

Verifies the bootmagic strings. The magic.lis file must exist on the diagnostic
station.

This switch has no function, but is provided for compatibility with previous
versions of the command.

Specifies the number of nodes in the system’s X dimension.

Specifies the number of nodes in the system’s Y dimension.

Specifies a kernel file on the diagnostic station that is used for a checksum with
the kernel on the Paragon system’s nodes. The default is

/usr/paragon/boot/mach_kernel.

Suppresses the kernel checksum operation, but read access to the kernel file is
validated.

NOTE

The checksum operation compares a copy of the kernel file on the
diagnostic node with the kernel file downloaded to the Paragon
system’s nodes. If the kernel file on the diagnostic station does not
match the kernel file on the system’s nodes, booting cannot
complete.

Same as the -H switch.

The reset command executes the bootpp command on the diagnostic station immediately before
booting a Paragon system. Users do not execute this command directly.

The bootpp command creates the bootmagic file /usr/paragon/boot/bootmagic. This file contains
hardware and software configuration information for the Paragon system being booted. The
bootmagic file consists of a set of strings with the following form:

name=value

The string values are terminated with a new line and the bootmagic file is terminated with a null
character. See the bootmagic manual page for a list of the bootmagic strings.

31

Manual Pages Paragon™ System Commands Reference Manual

BOOTPP (con.) BOOTPP (con.)

Generating Bootmagic Strings

The bootpp command uses the following information to prepare the bootmagic file:

1. Default configuration parameters are used in the absence of any other inputs.

2. The hardware configuration file SYSCONFIG.TXT provides a description of the Paragon
hardware. The default file is /usr/paragon/boot/SYSCONFIG.TXT. You can specify an alternate
hardware configuration file with the -¢ switch. Values in this file override the master magic file
and default conﬁguration values (such as, mesh_x, mesh_y, bootnode, node_list).

3. The file MAGIC.MASTER provides bootmagic strings that override the default configuration
parameters. The default file is /usr/paragon/boot/MAGIC.MASTER. You can specify an
alternate magic file with the -m switch.

4. The file BADNODES.TXT contains the list of nodes on a Paragon system that have failed or are
nonfunctional. This file contains node numbers for each node that caused three successive
reboots.

5. Command-line switches such as -e, -n, -s, -S, -x, and -y override the configuration files.

6. Strings for new configuration parameters can be specified on the bootpp command line with
the -p switch or inserted into the bootmagic file with the following form:

name=value
The following cases are exceptions to the rules for bootmagic strings:
1. 'When using defaults to generate a bootmagic file, you still have to use the following bootpp
command switches to specify the hardware configuration: the -1, -n, -x, and -y switches. There

are no defaults for these switches.

2. Pathnames of the bootmagic file, master magic file, and the hardware configuration file can only
be specified using the defaults or bootpp command switches.

3. The list of operational nodes in the root partition on a Paragon system is always computed from
the available information, for example the BADNODES.TXT file.

4. The time-of-day value is always determined by a direct query (time(3)) to the diagnostic station.

32

Paragon™ System Commands Reference Manual Manual Pages

BOOTPP (con.) BOOTPP (cont.)

Files

Booting an Alternate Operating System

The bootmesh command can boot an alternate operating system (for example, SUNMOS) on the
subset of nodes specified by the bootmagic string BOOT_ALT_NODE_LIST. This list of nodes can
be generated by the bootpp command in two ways:

1. Inthe master magic file, use the bootmagic string BOOT_ALT_NODE_LIST to specify the list
of nodes on which the alternative operating system is booted.

2. Specify the keyword ALTOS in the node description lines in the file SYSCONFIG.TXT. The
specified nodes are put in BOOT_ALT _NODE_LIST.

The nodes listed in BOOT_ALT_NODE_LIST are removed from the bootmagic string
BOOT_NODE_LIST, which specifies the set of nodes on which the Paragon OSF/1 server and kernel
are booted. The nodes on which the alternate operating system is booted will be in the root partition.
The pathname of the alternate operating system’s kernel file is specified by the bootmagic string
BOOT_ALT_KERNEL_NAME. The default alternate kernel file is /mach_servers/sunmos.

NOTE

The alternate kernel file, for example /mach_servers/sunmos, is
by default not available as part of the Paragon system software.
The alternate kernel file must be installed on the system before
you can boot with the alternate operating system.

/usr/paragon/boot/bootmagic Specifies the bootmagic file. This is the output of
the bootpp command.

Jusr/local/bin/bootpp Specifies the command path.
/usr/paragon/boot/DEVCONF.TXT Specifies the device configuration file.
fusr/paragon/boot/MAGIC.MASTER Specifies the master magic configuration file.
Jusr/paragon/boot/SYSCONFIG.TXT Specifies the system configuration file.

33

Manual Pages Paragon™ System Commands Reference Manual

BOOTPP (con.) BOOTPP (con.)

Errors

Invalid syntax on line num for ‘Cabinet’ command!

The cabinet number is missing or is out of range in a CABINET command line in the
SYSCONFIG.TXT file.

Invalid syntax on line num for ‘Backplane’ command!

The backplane name is missing or is not A, B, C, or D in a BP command line in the
SYSCONFIG.TXT file.

Invalid syntax on line num for ‘Slot’ command!

The slot number is missing or is out of range in a S command line in the SYSCONFIG.TXT file.

Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
commands: bootmesh, cbs, parsemagic, reset

files: bootmagic, BADNODES.TXT, DEVCONF.TXT, MAGIC.MASTER,
SYSCONFIG.TXT

34

Paragon™ System Commands Reference Manual Manual Pages

CBS CBS

Displays the cabinet, backplane, slot (CBS) node numbering for a Paragon system.

Syntax
cbs [-b number] [-¢c number] [-h] [-m path] [-X width]
[-y height] [-w number] [node ...] [cbs_number ...]
Arguments
-b number Specifies that there are number backplanes in each cabinet.
-c number Specifies that there are number cabinets in a Paragon system.
-h Help
-m path Pathname of bootmagic file. The path can be a relative or absolute pathname.
-w number Specifies to use number of columns in the output.
-X width Specifies the mesh width (cabinets*4). The width must be multiple of 4.
-y height Specifies the mesh height (backplanes*4). The height must be multiple of 4.
node Specifies the root-partition node number of a node on a Paragon system.
cbs_number Specifies the CBS number of a node on a Paragon system.
Description

CBS is a node numbering system for the Paragon system. Cabinet numbering starts on the cabinet's
front right with 00 and increments across to the cabinet's front left. Backplane numbering starts with
the letter A at the bottom of the cabinet and increments to the letter D at the top of the cabinet. Slot
numbering starts with the number 0 (zero) on the right side of each backplane and goes to the number
15. A node number combines the two-digit cabinet number, the one-character backplane name, and
the two-digit slot number.

35

Manual Pages

CBS (cont.)

Examples

36

Paragon™ System Commands Reference Manual

CBS (cont.)

If you execute the chs command without arguments, the command prints the CBS information for
all the available nodes in the Paragon system. By default there are four columns of output that shows
both the root-partition node numbering and the CBS numbering.

For example, in the following diagram the CBS number indicated by the two stars (**) is specified
as 01B10.

o it +
D | 12 11 4 3 | 12 11 4 3 |
13 10 52	13 10 5 2
14 96 1	14 9 6 1
15 8 70	15 8 7 0
Fomm e e it +	
c	12 11 4 3
13 10 52	13 10 5 2
14 96 1	14 96 1
15 8 70	15 8 7 0
fomm Fommm - +	
B	12 11 4 3
13 ** 5 2	13 10 5 2
14 961	14 96 1
15 8 70	15 8 7 0
fommm fomm - -	
A	12 11 4 3
13 10 52	13 10 5 2
14 961	14 96 1
15 8 70	15 8 7 0
fomm e fomm - +
01 00

The following example shows how to display node-number information about specific nodes on a
Paragon system using the root partition node number:

% /sbin/cbs 23 43
ROOT = 23, CBS = 00DO1
ROOT = 43, CBS = 01cC02

This example shows that node 23 has the CBS number 00D01 and node 43 has the CBS
number 01CO02.

Paragon™ System Commands Reference Manual Manual Pages

CBS (cont.) CBS (cont.)

The following example shows how to display node-number information about a specific node on a
Paragon system using the CBS number for the node:

% /sbin/cbs 00D01
CBS = 00D01, ROOT = 23, DELTA = 49

This example shows that the node with the CBS number 00D01 has a root partition node number of
23 and a Touchstone DELTA System node number of 49.

The following example shows how to display CBS information for all the available nodes in the
system:

% /sbin/cbs
Configuration = Cabinets 2, Backplanes 4, Mesh 8 X 16

Root ID = CBS ID
7 = 00DO03 15 = 00DO02 23 = 00DO1 31 = 00DOO

41 = 01cC10 42 = 01cCO05 43 01co02 44 00cC13
45 = 00C10 46 = 00CO05 49 = 01C09 50 = 01cC06

1l
1}

51 = 01c01 52 = 00C14 53 = 00C09 54 = 00CO06
57 = 01cC08 58 = 01c07 59 = 01co0 60 = 00C15
61 = 00C08 62 = 00C07 64 = 01B12 65 = 01Bl1
66 = 01B04 67 = 01BO3 68 = 00B12 69 = 00B11
70 = 00BO4 73 = 01B10 74 = 01BO5 75 = 01B02
76 = 00B13 77 = 00B10O 78 = 00BO5 81 = 01BO9
82 = 01BO6 83 = 01BO1 84 = 00B14 85 = 00BO9
86 = 00BO6 87 = 00BO1 89 = 01BO8 90 = 01B07
91 = 01B0O 92 = 00B15 93 = 00BOS8 94 = 00BO7
96 = 01Al2 97 = 01al1 98 = 01A04 99 = 01A03
100 = 00Al12 101 = 00Al11 102 = 00A04 103 = 00A03
105 = 01Al0 106 = 01A05 107 = 01A02 108 = 00A13
109 = 00AlQ 110 = 00AQ05 113 = 01A09 114 = 01A06
115 = 01A01 116 = 00Al14 117 = 00A09 118 = 00A06

121 = 01A08 122 = 01A07 123
125 = 00A08 126 = 00A07

01A00 124 = 00Al5

The following example shows how to display CBS information about specific node in a system
configuration that has one cabinet and four backplanes by specifying the number of cabinets and
backplanes in the system:

% /sbin/cbs -¢ 1 -b 4 8
ROOT = 8, CBS = 00D14

37

Manual Pages Paragon™ System Commands Reference Manual

CBS (cont.) CBS (cont.)

If the node number is outside the configuration, then asterisks (*) will be printed for CBS number
as follows:

% /sbin/cbs -c 1 -b 4 128
ROOT = 8, CBS = **%*%x*

The following example shows how to display information for all the nodes in a non-standard system
configuration by specifying number of cabinets and backplanes:

% /sbin/cbs -c 1 -b 4
Configuration = Cabinets 1, Backplanes 4, Mesh 4 X 16

Root ID = CBS ID

0 = 00D12 1 = 00D11 2 = 00D04 3 = 00D03
4 = 00D13 5 = 00D10 6 = 00DO5 7 = 00D02
8 = 00D14 9 = 00D09 10 = 00DO6 11 = 00DO1

12 = 00D15 13 = 00DO0O8 14 = 00DO7 15 = 00DOO
16 = 00C12 17 = 00C11 18 = 00c04 19 = 00C03
20 = 00C13 21 = 00C10 22 = 00C05 23 = 00c02
24 = 00C14 25 = 00C09 26 = 00C06 27 = 00cO01
28 = 00C15 29 = 00cCo08 30 = 00c07 31 = 00co0
32 = 00B12 33 = 00B11 34 = 00BO4 35 = 00BO3
36 = 00B13 37 = 00B10 38 = 00BO5 39 = 00BO2
40 = 00B14 41 = 00BO9 42 = 00BO6 43 = 00BO1
44 = 00B15 45 = 00BOS8 46 = 00BO7 47 = 00BOO
48 = 00A12 49 = 00All 50 = 00A04 51 = 00AO03
52 = 00A1l3 53 = 00Al0 54 = 00AO05 55 = 00A02
56 = 00Al4 57 = 00AO09 58 = 00A06 59 = 00A01
60 = 00Al5 61 = 0OAQ8 62 = 00AQ7 63 = 00A00

38

Paragon™ System Commands Reference Manual Manual Pages

CBS (cont.) CBS (cont.)

Files

/sbin/cbs Specifies the command path.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

bootpp, parsemagic

39

Manual Pages

CHPART

Paragon™ System Commands Reference Manual

CHPART

Changes a partition’s characteristics.

Syntax

Arguments

40

chpart [-epl priority] [-g group] [-mod mode] [-nm name] [-0 owner][. group]]
[-rq time | -sps] partition

-epl priority

-8 group

-mod mode

-nm name

-0 owner|.group]

Changes the partition’s effective priority limit to the value of the priority
argument. The priority argument is an integer from 0 to 10 inclusive. The -epl
switch can be used on a gang-scheduled or space-shared partition only. You must
have write permission on the specified partition.

Changes the partition’s group. The group argument can be either a group name or
number. You must be the owner of the specified partition and a member of the
specified new group, or the system administrator.

Changes the partition’s protection modes. The mode value can be specified as a
three-digit octal number with the form nnn (see the chmod command) or a
nine-character string with the form rwxrwxrwx, where a letter (r, w, or x)
represents a permission granted and a dash (-) represents a permission denied (see
the Is command’s -1 switch). You must be the owner of the partition or root to use
this switch. See the OSF/I Command Reference for more information about the
chmod and Is commands.

Changes the partition’s name. This switch changes the partition’s name only. The
name argument must be a simple name (without dots). You must have write
permission on the parent partition of the specified partition.

You can only change the partition’s name “in place;” there is no way to move a
partition to a different parent partition.

Changes the partition’s owner to owner. If the group argument is specified, this
also changes the partition’s group to the value of the group argument. The owner
and group values can be either user/group names or numeric user/group IDs. You
must be root to use this switch.

Paragon™ System Commands Reference Manual Manual Pages

CHPART (conz.)

-rq time

-sps

partition

CHPART (cont.)

Specifies gang scheduling for the partition and changes the partition’s rollin
quantum to the value of the time argument. If the -rq switch is used on a
space-shared partition, this switch changes the partition’s scheduling to gang
scheduling. The value of the time argument is one of the following:

n n milliseconds. If 7 is not a multiple of 100, it is
rounded up to the next multiple of 100.

ns n seconds.

nm n minutes.

rh n hours.

0 Infinite time. When an application is rolled in, it runs

until it exits.

The time value must be less than 24 hours; the minimum rollin quantum for your
system is determined by your system administrator.

The -rq switch can be used only on a gang-scheduled or space-shared partition,
and cannot be used together with the -sps switch. To use the -rq switch, you must
have write permission on the specified partition.

Changes the partition to a space-shared partition.

The -sps switch can be used only on a space-shared or gang-scheduled partition,
and cannot be used together with the -rq switch. If the partition is currently
gang-scheduled, it must not contain any overlapping subpartitions or any
applications. To use the -sps switch, you must have write permission on the

specified partition.

Absolute or relative pathname of a partition.

41

Manual Pages

Paragon™ System Commands Reference Manual

CHPART (con.) CHPART (conz.)

Description

Examples

42

The chpart command lets you change the following partition characteristics:
* Rollin quantum.
e Effective priority limit.

e Protection modes.

e Name.
s Owner.
¢ Group.

* Scheduling type (gang scheduling or space sharing).
You can use the chpart command to change a partition’s scheduling type from gang scheduling to
space sharing, or change the scheduling from space sharing to gang scheduling. If a partition uses

standard scheduling, you cannot change its scheduling characteristic.

You cannot change a partitions size or parent partitions. These characteristics are set when the
partition is created.

The following changes the mypart partition to a gang-scheduled partition and sets the rollin quantum
to 20 minutes:

$ chpart -rg 20m mypart
The following changes the mypart partition to a space-shared partition:
% chpart -sps mypart
The following changes the effective priority limit for the mypart partition to 2:

o)

% chpart -epl 2 mypart

Paragon™ System Commands Reference Manual Manual Pages

CHPART (con.) CHPART (con.)

The following changes the protection modes of the mypart partition so that it is readable, writable,
and executable by everyone:

chpart -mod 777 mypart
The following changes the owner of mypart to smith, but does not affect the group:

[

% chpart -o smith mypart

Errors

Allocator internal error

An internal error occurred in the node allocation server.

Change to space shared partition not allowed.

You tried to change a gang-scheduled partition to a space-shared partition, but the partition has an
application running in it or the partition contains overlapping partitions.

Exceeded allocator configuration parameters.

You specified too many gang-scheduled partitions. See the allocator manual page for information
about the maximum number of gang-scheduled partitions.

Invalid group.

You specified an invalid group name for the -g or -0 switch.

Invalid partition rename.

You specified a partition name for the -nm switch that was not a simple name.

Invalid priority.

You specified an invalid priority limit for the -epl switch.

43

Manual Pages Paragon™ System Commands Reference Manual

CHPART (cont.) CHPART (con.)

Invalid user.

You specified an invalid user name for the -0 switch.

Partition lock denied.

You specified a partition that is currently in use and being updated by someone else. You cannot
change the characteristics of a partition that is currently being updated.

Partition not found.

You specified a partition that does not exist.

Partition permission denied.

You specified a partition for which you do not have the appropriate permissions or ownership for
the operation you are trying to perform.

Scheduling parameters conflict with allocator configuration.
You specified a rollin quantum that is less than what is allowed. See the allocator manual page for
information about the minimum rollin quantum.

Files

/usr/bin/chpart
Specifies the command path.

Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

commands: application, Ispart, mkpart, pspart, rmpart, showpart

calls: nx_chpart_epl(), nx_chpart_mod(), nx_chpart_name(), nx_chpart_owner(),
nx_chpart_rq(), nx_chpart_sched()

Paragon™ System Commands Reference Manual Manual Pages

CONSOLE CONSOLE

Diagnostic station: Starts a console connection to the Paragon system.

Syntax
console
Description
The console command runs on the diagnostic station and is intended for use by the system
administrator only.
The console command is a script that the reset command creates on the diagnostic station when the
system is rebooted. The console command is created using the last console connection to the
Paragon system. The console command supports the asyne, fscan, and the scanio console interfaces.
Example
The following shows an example console script:
#!/bin/sh
echo "mysys was last booted on Sun Oct 31 14:13:12 PDT 1993"
/usr/local/bin/fscan -bD -c full
Files

fusr/paragon/boot/console
Script file for the console command.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

async, fscan, reset, scanio

45

Manual Pages

Paragon™ System Commands Reference Manual

COREINFO COREINFO

Displays summary information of a core file or core directory.

Syntax

Arguments

Description

46

coreinfo [corename]

corename Pathname of a core file or core directory.

The coreinfo command displays summary information about a core file or the core files located in
a core directory. See the core(4) manual page for more information about core files and core
directories. If corename is omitted, the command searches for a file or directory called core in the
directory defined in the environment variable CORE_PATH. If CORE_PATH is undefined, the
command searches the current working directory. An error is returned if the command fails to find
a core file or core directory to report on.

The summary information includes the following:

¢ The number of nodes in the partition on which the failed application was loaded. This is omitted
if a core file for a non-parallel application is specified.

e A table containing one line for each core file found in the core directory. If a single core file
within a core directory is specified, a single line will be displayed.

The table contains the following information about the core files:

* The time that the process terminated (that is, faulted or killed). The table is ordered
chronologically using the Date/Time column.

* The process ID (PID) of the faulting process,
¢ The node and process type of the process (for parallel applications only).
e The location in the program where the precess execution was halted. This address has an

asterisk (*) next to it if the execution point being reported is for a thread other than the main
user thread.

Paragon™ System Commands Reference Manual Manual Pages

COREINFO (cont.) COREINFO (cont.)

e The signal that terminated the process.
e The type of core file (FULL or TRACE).

e The name of the éxecutable.

Examples

This example displays summary information about the default core directory. It indicates that the application myapp
was running on four nodes when three of the processes encountered a segmentation violation (SIGSEGV). The fourth
process (process zero on node two) was killed by the system. The three faulting processes dumped complete core files
(FULL), while the non-faulting process dumped only stack trace data (TRACE). It is presumed from this output that
the core action environment variables were defined as CORE_ACTION_FIRST=FULL,
CORE_ACTION_FAULT=FULL, and CORE_ACTION_OTHER=TRACE when the application was executed. The
following displays summary information about the default core directory.

coreinfo

Summary information for directory: /usr/joe/core

Number of nodes: 4

Date/Time pPid Node Ptype Signal Location Type Executable
Oct 20 10:12 327684 3 0 SIGSEGV 0x000108fc FULL /home/joe/myapp
Oct 20 10:12 9 0 0 SIGSEGV 0x0001085c FULL /home/joe/myapp
Oct 20 10:12 65541 1 0 SIGSEGV 0x0001085c FULL /home/joe/myapp
Oct 20 10:12 262153 2 0 SIGKILL 0x000108e8 TRACE /home/joe/myapp

This next example displays information about core file core_save. In this case, a non-parallel (or UNIX) application
testprog encountered a bus error (SIGBUS) at 0x000102dc and dumped a complete core file. The absence of node and
ptype information are the indicators of a non-parallel application.

coreinfo core_save
Summary information for file: /usr/fred/core_save
Date/Time Pid Signal Location Type Executable

Oct 25 10:44 196973 SIGBUS 0x000102dc FULL /home/fred/testprog

47

Manual Pages Paragon™ System Commands Reference Manual

COREINFO (cont.) COREINFO (cont.)

This final example displays information about a single process in a parallel core dump. The process of interest has pid
65541.

coreinfo core/core.65541
Summary information for file: /usr/joe/core/core.65541
Number of nodes: 4

Date/Time Pid Node Ptype Signal Location Type Executable
Oct 20 10:12 65541 1 0 SIGSEGV 0x0001085c FULL /home/joe/myapp
See Also

core, pspart

48

Paragon™ System Commands Reference Manual Manual Pages

CREATE_PF CREATE_PF

Creates a paging file.

Syntax

Arguments

Description

Examples

create_pf size[M] [file]

size Specifies the size of the paging file in blocks. The size argument must be an
integer greater than 0 (zero).

M Specifies that the block size is 1M byte. The default block size is
1K byte.

file Specifies the file name of the paging file. The default is a the file paging_file, and

itis created in the current directory. The file name may be an absolute or relative
pathname.

The create_pf command creates a paging file with a size of size blocks. A paging file is a file that
provides additional paging space for the boot node. The additional disk space of the paging file
allows the boot node to handle paging requests that are larger than the default paging space. If you
append an M to the size argument, the create_pf command creates a paging file with a size of size
megabyte blocks.

After creating the paging file, the create_pf command displays a message that the paging file is
created.

The following example creates a paging file with the default name paging_file and a size of
10K bytes:

/sbin/create pf 10
The following message is printed when paging file is created:

Creating ‘paging file’ of size (0 Meg) 10 blocks.

49

Manual Pages Paragon System Commands Reference Manual

CREATE_PF (cont.) CREATE_PF (cont.)

The following example creates a paging file with the pathname /home/pf.new and a size of
20M bytes:

/sbin/create pf 20M /home/pf.new
The following message is printed when the paging file is created:

Creating ‘/home/pf.new’ of size (20 Meg) 20480 blocks.

Errors

create_pf: Invalid block count <n>

You specified an invalid size for the paging file.

Files

/sbin/create_pf Specifies the command path

50

Paragon™ System Commands Reference Manual Manual Pages

DEVSTAT DEVSTAT

Displays the node numbers for the node to which a device is attached.

Syntax
devstat [-v] file ...
Arguments
-V Specifies verbose mode. All messages are displayed.
file Specifies the device file name.
Description
The devstat command outputs the root partition node number for the node that a device is attached
to. Using the -v flag outputs device name and node number.
Examples
The following example displays the node number for the node the device /dev/io0/rz0a is attached
to:
/sbin/devstat /dev/io0/rz0a
3
The command returns the root-partition node number 3.
Errors

<file>: No such file or directory

Specified device does not exist.

<file>: Invalid argument

Specified device is not a valid device, it may be a regular file.

51

Manual Pages Paragon™ System Commands Reference Manual

DEVSTAT (cont) DEVSTAT (con.)

Files

/sbin/devstat Specifies the command path

See Also
rmknod

OSF/1 Command Reference: 1s(1), mknod(8),

52

Paragon™ System Commands Reference Manual Manual Pages

Display statistics on free disk space.

Syntax

df [-ikn] [-t type] [file | file_system]

Arguments
-

-k

-n

-t type

file

file_system

Includes statistics on the number of free inodes.

Causes the numbers to be reported in kilobytes. By default, all reported numbers
are in 512-byte blocks.

Prints out the previously obtained statistics from all mounted file systems. Use this
flag if it is possible that one or more file systems are in a state such that they will
not be able to provide statistics without a long delay (for example, a remote file
system on a server that has crashed).

When this flag is specified, df does not request new statistics from the file
systems; for some remote file systems, the statistics displayed may be too old to
be useful.

Displays statistics for the specified file system type only. If the -t flag is specified
and a file or filesystem is specified, the -t flag is ignored. Available file system
types include the following:

ufs UNIX File System (Berkeley Fast File System)
(default)

pfs Parallel File System (PFS)

nfs Network File System

If the -t flag is specified and a file or file_system argument is specified, the -t flag
is ignored.

Pathname of a file.

Pathname of a mounted file system.

53

Manual Pages

DF (cont.)

Description

Paragon™ System Commands Reference Manual

DF (cont.)

Using the df command on a PFS file system gives information about the single disk partition on
which the PFS file system is mounted. The df command does not give information about how much
cumulative space is actually available for PFS file striping. Use the showfs command to get
information about the cumulative amount of free space in a PFS file system.

If neither a file nor a file system is specified, statistics for all mounted file systems are displayed.

When file system disk usage exceeds 100% of the allowed space for users, the df command displays
anegative number of free blocks. The allowed space for users is typically 90% of disk capacity, with
10% reserved for use by root only. However, system administrators may specify either less or more
reserved space for use by root.

Limitations and Workarounds

See Also

54

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

Commands: du(1), mount(8), showfs(1), quot(8).
Functions: fstatfs(2), getmntinfo(3), getpfsinfo(3), mount(2), statfs(2), statpfs(3).

Files: fstab(4), pfstab(4).

Paragon™ System Commands Reference Manual Manual Pages

EXPORTPAGING EXPORTPAGING

Exports a Vrode pager service from the non-boot nodes listed in the EXPORT_PAGING bootmagic string.

Syntax

Arguments

Description

exportpaging [-vdn]

-V Displays all messages.
-d Displays debug information at runtime.

-n Displays intended actions, but does not perform the swapon() system calls.

The EXPORT_PAGING bootmagic string lists the MIO nodes (nodes with disks) that export a Vrode
paging service. Paired with the EXPORT_PAGING bootmagic string is the PAGER_NODE
bootmagic string. The PAGER_NODE bootmagic string lists the nodes that import their default
paging service and the specific node that supplies this service. The boot node always exports a Vnode
paging service and uses /mach_servers/pagingfile as its default paging service. The boot node is the
root of all paging trees, single or multi level. Using the correct definition of the EXPORT _PAGING
and PAGER_NODE bootmagic strings, you can construct a multi-level paging tree. The purpose of
a multi-level paging tree is to distribute the virtual memory (VM) page-out traffic over multiple
disks, thus, reducing system paging bottlenecks.

The exportpaging command does the following:

* For each non-boot node listed in the bootmagic string EXPORT_PAGING, the exportpaging
command finds the block-special paging device for that node and exports a Vnode paging
service from that node.

¢ The default block-special device files /dev/io*/rz[0123456]b are searched. The exportpaging
command attempts to match the node numbers from the EXPORT_PAGING bootmagic string
with the node numbers stored in the device special file. For more information, see the
rmknod(3) manual page in the OSF/I Programmer’s Reference.

* When a match is detected the swapon(2) system call is called using the block-special device
pathname. The swapon(2) system call instructs the Vnode pager at the specific node to register,
with that node’s UNIX server, a Mach port as an exported paging port. It is this exported paging
port that will be utilized by other nodes as their default paging port.

55

Manual Pages Paragon™ System Commands Reference Manual

EXPORTPAGING (cont.) EXPORTPAGING (cont.)

You can change the default block special paging partition/device rz0b by adding an entry to the file
/usr/paragon/boot/DEVCONF.TXT on the diagnostic station. In the DEVCONF.TXT file line which
identifies the MIO node, add the PAGE_TO string plus the device argument using the following
format:

MIO cbs rev PAGE_TO pagingdevice

The device argument specifies a block special disk dev ice (partition) at the MIO node. The
following example specifies using the block special device (partition) rz0d instead of rz0b:

MIO 01D12 HO04 PAGE_TO r20d

NOTE

The PAGE_TO string has no affect on the boot node. The boot
node uses the default paging device r20b.

A specific MIO can be excluded from paging by the addition of the NO_PAGER string to the line in
the SYSCONFIG.TXT file describing the MIO node.

MIO 01D12 HO04 NO_PAGER

Limitations and Workarounds
Exit status is normally 0.

If a node that exports a Vnode paging service does not boot, all nodes that import their paging service
from the dead node will hang.

For more information about limitations and workarounds, see the release notes files in

/usr/share/release_notes.

See Also
commands: bootpp
files: DEVCONF.TXT, SYSCONFIG.TXT

OSF/1 Programmer’s Reference: swapon(2), rmknod(3)

56

Paragon™ System Commands Reference Manual Manual Pages

FIND FIND

Finds files matching an expression.

Syntax

find pathname ... expression

Description
The find command recursively searches the directory tree for each specified pathname, seeking files

that match a Boolean expression written using the terms given later. The output from find depends
on the terms used in expression.

Expressions

In the following descriptions, the argument number is a decimal integer that can be specified as
+number (more than number), -number (less than number), or number (exactly number).

-fstype type TRUE if the file system to which the file belongs is of the type type as follows:

nfs Network File System
pfs Parallel File System (PFS).
ufs UNIX file system (Berkeley fast file system). This is
the default.
-i number TRUE fif file has inode number.

-inum number TRUE if file has inode number.

-name pattern TRUE if pattern matches a filename. You can use pattern-matching characters,
provided they are quoted.

-perm [-loctal_number
TRUE if the file permission code of the file exactly matches octal_number (see
the chmod command). If the optional - (dash) is present, this expression evaluates
to TRUE if the file permission code of the file meets or exceeds octal_number.

The octal_number argument may be up to three octal digits.

57

Manual Pages

FIND (cont.)

-perm [-]mode

-prune

-type type

-links number

-user user
-nouser
-group group

-nogroup

58

Paragon™ System Commands Reference Manual

FIND (cont.)

The mode argument is identical to the chmod command syntax. This expression
evaluates to TRUE if the file has exactly these permissions. If the optional - (dash)
is present, this expression evaluates to TRUE if the file meets or exceeds these
permissions.

Always TRUE. Prunes the search tree at the file. That is, if the current pathname
is a directory, find does not descend into that directory. In a networking
environment, this flag keeps the find command from searching through remote
file systems.

TRUE if the file type is of the specified type as follows:

b Block special file

c Character special file
d Directory

f Plain file

1 Symbolic link

p FIFO (a named pipe)
s Socket

TRUE if the file has number links. The argument number is a decimal integer that
can be specified as +number (more than number), -number (less than number), or
number (exactly number). See the In command.

TRUE if the file belongs to user. If user is numeric and does not appear as a login
name in the /etc/passwd file, it is interpreted as a user ID.

TRUE if the file belongs to a user ID for which the getpwuid() function returns
null.

TRUE if the file belongs to group. If group is numeric and does not appear as a
group name in the /etc/group file, it is interpreted as a group ID.

TRUE if the file belongs to a group ID for which the getgrgid() function returns
null.

Paragon™ System Commands Reference Manual Manual Pages

FIND (cont.)

FIND (cont.)

-size number{c | k]

-atime number

-mtime number

-ctime number

-exec command

-0k command

-print

-cpio device
-ncpio size

-newer file

TRUE if the file is number blocks long (512 bytes per block). For this comparison,
the file size is rounded up to the nearest block. If the ¢ argument is present, the
expression evaluates to TRUE if the file is number bytes long. If the k argument
is present, the expression evaluates to TRUE if the file is number kilobytes long.
For this comparison, the file size is rounded up to the nearest kilobyte.

The argument number is a decimal integer that can be specified as +number (more
than number), -number (less than number), or number (exactly number).

TRUE if the file was accessed in the past number days. The argument number is
a decimal integer that can be specified as +number (more than number), -number
(less than number), or number (exactly number).

TRUE if the file was modified in the past number days. The argument number is
a decimal integer that can be specified as +number (more than number), -number
(less than number), or number (exactly number).

TRUE if the file inode was changed in the past number days. The argument
number is a decimal integer that can be specified as +number (more than number),
-number (less than number), or number (exactly number).

TRUE if the command runs and returns a 0 (zero) value as exit status. The end of
command must be punctuated by a quoted or escaped ; (semicolon). The
command parameter { } is replaced by the current pathname. If shell quoting is
used in command, each word in the command must be quoted separately. Also, the
characters ; (semicolon) and { } (braces) must appear as separate words on a
command line.

This expression is equivalent to -exec, except that the find command first asks you
whether it should start command. If your response begins with y, or the locale’s
equivalent of a 'y, command is started. The end of command must be punctuated
by a quoted or escaped semicolon. If shell quoting is used in command, each word
in the command must be quoted separately. Also, the characters ; (semicolon) and
{ } (braces) must appear as separate words on a command line.

Always TRUE,; causes the current pathname to be displayed. The find command
assumes a -print expression, unless the -exec, Is, or -ok expressions are present.

Writes the current file to device in cpio format. See the cpio command.
Sets the input/output size (5120 bytes by default) to size.

TRUE if the current file was modified more recently than the file indicated by file.

59

Manual Pages

FIND (cont.)

Examples

60

Paragon™ System Commands Reference Manual

FIND (cont.)

-depth Always TRUE. This causes the descent of the directory hierarchy to be done so

that all entries in a directory are affected before the directory itself. This can be
useful when find is used with cpio to transfer files that are contained in directories
without write permission.

e(expression €) TRUE if expression is TRUE.

-Is

Always TRUE; causes pathname to be printed together with its associated
statistics. These include, respectively, inode number, size in kilobytes (1024
bytes), protection mode, number of hard links, user, group, size in bytes, and
modification time. If the file is a special file, the size field will instead contain the
major and minor device numbers. If the file is a symbolic link, the pathname of
the linked-to file is printed preceded by ->. The format is identical to that of Is
-gilds (note that formatting is done internally, without executing Is.)

-xdev Always TRUE; causes find to not traverse down into a file system different from

the one on which current pathname resides.

The primaries may be combined using the following operators (in descending order of precedence):

1.

4.

A parenthesized group of primaries and operators (parentheses are special to the shell and must
be escaped).

The negation of a primary (! is the unary not operator).

Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries
or may be explicitly stated as -a).

Alternation of primaries (-o is the or operator).

To avoid unpredictable results when using a range expression to match a class of characters, use a
character class expression rather than a standard range expression. For information about character
class expressions, see the grep command.

To list all files in the file system with a given base filename, enter:
find / -name .profile

This searches the entire file system and writes the complete pathnames of all files named
.profile. The / (backslash) tells find to search the root directory and all of its subdirectories.
This may take a while, so it is best to limit the search by specifying the directories where you
think the files might be.

Paragon™ System Commands Reference Manual Manual Pages

FIND (cont.)

FIND (cont.)

To list the files with a specific permission code in the current directory tree, enter:

find . -perm 0600
This lists the names of the files that have only owner-read and owner-write permission. The .
(dot) tells find to search the current directory and its subdirectories. See the chmod command
for details about permission codes. Alternatively, you could enter the following:

find . -perm u+rw
To search several directories for files with certain permission codes, enter:

find manual clients proposals -perm -0600
This lists the names of the files that have owner-read and owner-write permission and possibly
other permissions. The directories manual, clients, and proposals, and their subdirectories, are
searched. Note that -perm 0600 in the previous example selects only files with permission
codes that match 0600 exactly. In this example, -perm -0600 selects files with permission codes
that allow at least the accesses indicated by 0600. This also matches the permission codes 0622
and 2744.
To search for regular files with multiple links, enter:

find . -type £ -links +1
This lists the names of the ordinary files (-type f) that have more than one link (-links +1). Note
that every directory has at least two links: the entry in its parent directory and its own . (dot)

entry. See the In command for details about multiple file links.

To remove all files named a.out or *.0 that have not been accessed for a week and that are not
mounted using nfs, enter:

find / e(-name a.out -o -name (aa*.o(aa e) -atime +7 \
-exec \rm {} e; -o -fstype nfs -prune

61

Manual Pages Paragon™ System Commands Reference Manual

FIND (cont.) FIND (cont.)

6. To use the find command on PFS:
find /pfs -fstype pfs -print
/pts
/pfs/fl
/pfs/f2
/pfs/£f3
/pfs/dl
/pfs/dl/f1
/pfs/dl/f2

/pfs/dl/£3
/pfs/dl/f4

Files
letc/group Contains group information.

letc/passwd Contains user information.

Return Values

The find command returns a 0 (zero) if all of the paths were visited without error. find returns a
nonzero value if it encountered an error.

See Also
Commands: chmeod(1), cpio(1), grep(1)/ egrep(1)/ fgrep(1), In(1), sh(1), test(1).
Functions: stat(2).

Files: fs(4).

62

Paragon™ System Commands Reference Manual Manual Pages

FSCAN

FSCAN

Diagnostic station: Provides fast-scan console communications between a diagnostic station and a Paragon system

Syntax

Arguments

fscan [-Aqvwx] [-b backplane] [-B file] [-c configuration] [-F file] [-s string] [node]

-b backplane

-B file

-¢ configuration

-q

Specifies that the fscan utility can communicate with the nodes specified in the
bootmagic strings BOOT_NODE_LIST and BOOT_ALT_NODE_LIST. By
default, the fscan utility communicates with the nodes specified in the bootmagic
string BOOT_NODE_LIST only.

Specifies the top backplane in the system. The backplane argument must be either
A, B, C, or D. The default value is D. Use this switch whenever the Paragon
system does not have four backplanes. For example, if a system has three
backplanes A, B, and C, then specify -bC for the top backplane C.

Specifies the name of the bootmagic file to read. The default is the file bootmagic
in the current directory. The fscan utility reads the bootmagic file to determine
boot parameters such as the boot node, node lists, and mesh size.

Specifies the system configuration. The configuration argument can be one of the
following: condo, full, or multi. The default is full. The condo system is
contained within one backplane consisting of between 1 and 16 nodes. (Some sites
have multiple systems within the same cabinet. Although this is not a supported
configuration, the fscan utility provides support for this configuration.) The full
system has four backplanes. The multi system has two or three backplanes.

Specifies that warning and informational messages be suppressed. Error messages
are still reported.

63

Manual Pages

FSCAN (cont.)

Description

64

-S string

-V

-Ww

=X

node

Paragon™ System Commands Reference Manual

FSCAN (cont.)

Sends the value of the string argument to the specified node, then resumes
communications to the node. The default value is a space (\b). Sending the string
argument to a node starts communications with a node and causes the node to send
back a prompt. The string argument can be one of the following values:

\b Space (0x20)

\n Carriage return (0x13)
Line feed (0x0A)

\t Tab (0x09)

\ Single backslash (\)

Displays all messages. Use this switch for debugging your node connection.

Specifies running the fscan utility with the system watchdog without the console
interface. Use this switch when the diagnostic station is not connected as a
console, but the system watchdog is needed. Redirect standard output to a file and
run the fscan utility in the background.

Connects to the boot node using a soft connect. A soft connect is a connection
where initial handshaking is bypassed. Use this when the boot node is coming up

and is vulnerable to interrupts.

Node number of the node to connect the console to. The default is the boot node.

The fscan utility runs on the diagnostic station and is used by the system administrator to establish
fast-scan console communications with a Paragon system.

The fscan utility combines a fast console interface and the system watchdog. This is a diagnostic
utility that evaluates the system’s nodes and detects when nodes crash in the system. The fscan
utility provides the following features:

* A console interface that lets you connect to any system node from your terminal.

* A system watchdog that starts when the system boots, detects when nodes crash, and
automatically reboots the system.

* A command interface for accessing nodes from the console.

Paragon™ System Commands Reference Manual Manual Pages

FSCAN (cont.) FSCAN (cont.)

The fscan utility can run with a console interface and the system watchdog, or run the system
watchdog by itself. Running the system watchdog by itself improves performance in checking for
node crashes. You run the system watchdog by itself using the -w switch with the fscan utility. The
system watchdog can only be run by itself if the node connection is through the serial line. You can
set up the serial connection using the async command. See the async manual page for more
information.

NOTE

The fscan and scanio utilities cannot be used at the same time.

Console Commands
You can enter the following commands at your console prompt:

~% Invokes the fscan command interface and returns the FSCAN> prompt. At the
prompt, you can use the fscan commands to change command settings, define
new commands, and query the state of the Paragon system. The following
example shows how to invoke the fscan prompt and execute an fscan command:

~%

FSCAN> ping
FSCAN>

#

At the FSCAN> prompt, the example uses the ping command to check the status
of the node. Entering a carriage return without entering a command exits fscan
and the console prompt returns.

~! Invokes a prompt that lets you execute a diagnostic station command on the node
from the console. After the operating system command completes, control returns
to the console. You can use the sh command to create a shell if you want to enter
more than one command. After invoking this command from the console prompt,
you should see the following prompt:

~!
UNIX>

After entering a command, console prompt returns.

65

Manual Pages

FSCAN (cont.)

~q

Paragon™ System Commands Reference Manual

FSCAN (cont.)

Exits the fscan utility and the console. Be careful using this when you are
remotely logged in to the diagnostic station. Use ~~. or ~q when remotely logged
in.

Exits the fscan utility and the console. This command is identical to ~., but does
not cause problems when you are remotely logged in to the diagnostic station.

Invokes a NODE> prompt that lets you switch the console connection to another
node. This is the same as the fscan utility’s switch and node commands. After
executing this command from the console prompt, you get a special prompt from
which you can enter a node number. For a system with valid nodes O to 15, the
following shows how to change the node the console is connected to:

~#
Valid Nodes - 0..15
Node: 2

Switching to node 2 (00A04)

After entering ~#, the fscan utility returns the valid node numbers available. Enter
a valid node number at the prompt (in this example node 2). After a carriage
return, the console is connected to the specified node. If you are connected to the
boot node, a console prompt is return. Otherwise, no prompt is returned.

fscan Commands

You can enter the following commands at the FSCAN> prompt or in the fscan configuration file
(default fscan.cfg):

adjust [skew_factor]

calibrate

Adjusts the skew factor of the square-wave signal generated by the calibrate
command. The skew_factor argument specifies the width of the diagnostic signal.
If you do not specify a skew_factor argument, a skew factor based on the last
calibrate command is used.

Generates a square-wave signal between the connected node and the diagnostic
station. The wave form, the wave frequency, the measured high and low pulse
widths, and the calculated skew factor are displayed. This command helps to
evaluate backplane skew when communicating with nodes in cabinets whose
number is greater than 0 (zero).

define cmd string

66

Defines new commands you can execute from the fscan prompt. Enclose the
string argument within double quotes if embedded spaces are used. The string
argument must be a shell script or an executable.

Paragon™ System Commands Reference Manual Manual Pages

FSCAN (cont.)

flush [time]

global string

local string

FSCAN (cont.)

Flushes output from the scan lines to the console, until the node connected to the
console goes silent. The time argument specifies the number of seconds to wait for
output after the node goes silent. The default is one second.

Sends the string argument to every node in the system. The string argument can
be a sequence of the following characters:

rX The caret (*) specifies sending the control character
for the letter specified by the X variable. The X
variable can be any character from A to Z.

\n Carriage return (0x13)
Line feed (0x0A)

\A Tab (0x09)

\ Single backslésh I\

For example, to send a control-P character to every node in the system, use the
following command:

FSCAN> global 4P

Sends the string argument to the node connected to the console. The string
argument can be a sequence of the following characters:

rX The caret (*) specifies sending the control character
for the letter specified by the X variable. The X
variable can be any character from A to Z.

\n Carriage return (0x13)
Line feed (0x0A)

\A Tab (0x09)

\ Single backslash (\)

For example, to send a carriage return to the node connected to the console, use
the following command:

FSCAN> local \n

67

Manual Pages

FSCAN (cont.)

68

more on | off

node [node]
ping
rc [count]

rollcall [count]

Paragon™ System Commands Reference Manual

FSCAN (cont.)

Turns scrolling on or off for the rollcall command. The default is off, which is no
scrolling. When this is turned on, a more command prompt is displayed and you
can scroll the output one screen at a time.

Same as the switch command.

Gets status of a node that is currently connected to the system.

Same as the rollcall command.

Checks the status of each node in the system and displays the node number, CBS
number, and the state of the node. The count argument specifies how many times
to check the status of a node if it does not respond. The default for the count

argument is 1.

set option on | off
Turns options on or off. Any other value entered will generate an error message.
The option argument can be one of the following:

autobucket

autoreboot

autoswitch

notify

polling

Setting this to on automatically disables the processor
port on the MRC for any node that is not in a running
state. A disabled processor port can be enabled again
when the system is reset.

Setting this to on causes the reboot command to be
executed if a node is in a dead or debugger state. This
reboots the system even if a node drops into the
debugger. This option has no effect if the polling
option is off.

Setting this option to on causes fscan to automatically
switch to any node that drops into the debugger. Once
this switch happens, this option is turned off to prevent
fscan from alternating between 2 or more nodes.

Setting this option to on generates a message
whenever a node is detected in the dead state or in the
debugger state.

Setting this to on activates polling in the system
watchdog. The system watchdog begins checking the
operations of the node the console is connected to.
Setting this to off prevents polling. This is usually set
in the fscan configuration file.

Paragon™ System Commands Reference Manual Manual Pages

FSCAN (cont.)

switch [node] [*]

wait [time]

Node States

FSCAN (cont.)

Switches the console connection to any node in the system. If node is not
specified, the default is the boot node. If the specified node value is ? (question
mark), the list of valid nodes is displayed. If you specify an asterisk (*) as an
argument, the FSCAN> prompt is returned. Otherwise, the console prompt is
returned.

Waits until a node drops into the debugger state, then it connects the console to
that node. The time argument specifies the amount of time to poll every node.
Entering any key aborts the wait and returns you to the FSCAN> prompt.

The system watchdog queries and determines the state of each node on the system. Nodes in the
system can have one of the following states:

running

debugger

dead

The kernel is operating normally.

The kernel enters the debugger because of a panic in the kernel or the server. The
node is effectively dead and the system is rebooted (if the system is configured for
autoreboot). When the server panics and enters the debugger, the server must use
the kernel debugger and set the node state to debugger. You can also use
<Ctrl-P> to enter the debugger.

The node does not respond to three attempts to get its state. This means the node
is dead or the node is configured with the scanio console. Either way, the node is
flagged as dead and the system is rebooted (if the system is configured for
autoreboot).

In addition, there are two transient node states:

suspicious

comatose

The node did not respond to the first request for its state. Because the fscan utility
is interrupt driven, the node should respond. However, declaring a node as dead is
serious so the node is given two more chances.

The node did not respond to the second request for its state. The next time the node
does not respond it is flagged as dead and the system is rebooted (if the system is
configured for autoreboot).

These states are transient, because the next time the node status is taken the state changes.

69

Manual Pages

Paragon™ System Commands Reference Manual

FSCAN (cont.) FSCAN (cont.)

70

Configuration File

The configuration file fscan.cfg contains fscan commands that specify how to start the fscan utility
when the system is booted. The reset command looks for this file in your current directory (usually
/usr/paragon/boot). If the reset command does not find the file, it automatically creates one in your
current directory. The default configuration file contains the following commands:

set polling on
set autoreboot off
set autoswitch off
set autobucket off
set notify off
define reboot \
“ksh /usr/paragon/boot/reset skip ignorelock autoreboot”

The default configuration file sets polling and automatic rebooting to on; sets automatic node
switching, automatic processor disabling, and notification of dead processors to off; and defines the
reboot command.

You can edit the fscan.cfg file with any standard editor (for example, vi). The comment character #

(pound sign) can be used in column one. All characters to the right of the comment character are
ignored.

Starting a Console Interface and the
System Watchdog

Do the following on the diagnostic station to boot up the system with a console interface and the
system watchdog:

1. [Edit the MAGIC.MASTER file in the directory /usr/paragon/boot on the diagnostic station.
Change the BOOT_CONSOLE string as follows:

BOOT_CONSOLE=f
This requests booting with the fscan console.

2. Edit the fscan.cfg file in the directory /usr/paragon/boot on the diagnostic station. Change
polling to on as follows:

set polling on

This requests to start the system watchdog with polling on.

Paragon™ System Commands Reference Manual Manual Pages

FSCAN (cont.)

3.

FSCAN (cont.)

Use the reset utility to reset the system.
DS# reset

The reset script calls the fscan utility during the reboot and establishes the console connection
to the boot node of the system.

When the system completes booting, the console prompt (#) is returned, the console is
connected to the boot node, and the system watchdog is started automatically. You now have
console communications with the boot node. By default, the fscan utility always connects to the
boot node first. You can change this in the fscan command line by specifying which node to
connect to first.

As long as the system is up and running, the system watchdog continues to run. The only way to stop
the watchdog is to stop the fscan utility. If you are using fscan as a console, use the ~q command to
stop fscan and kill the system watchdog. Otherwise, use the kill command with the process ID (PID)
for the fscan job. You can find the PID for the fscan job in the file /tmp/FSCAN.LOCK.

Setting Up a Serial Interface with
the System Watchdog

Do the following on the diagnostic station to set up a serial interface running the system watchdog
only:

1.

Edit the MAGIC.MASTER file in the directory /ust/paragon/boot on the diagnostic station.
Change the BOOT_CONSOLE string as follows:

BOOT_CONSOLE=cm
In the argument cm the ¢ requests a serial connection if an MIO board is present and the m
requests an interface to the system mesh. If the MIO board is not present, the ¢ is ignored and
you are connected to the mesh. If necessary, change the options in the configuration file
Jscan.cfg to turn autoreboot on or off.
Invoke the reset command with the watchdog argument to start the system watchdog:

DS# reset watchdog
The reset script does the following:

¢ Executes the fscan utility with the -w switch to start the system watchdog only.

¢ Executes the async command to set up serial communications with the boot node.

71

Manual Pages

Paragon™ System Commands Reference Manual

FSCAN (cont.) FSCAN (cont.)

72

Rebooting the System Automatically

You can reboot a Paragon system either automatically or using the reboot command. Do the
following to set up an automatic reboot:

e Set the autoreboot option to on in the fscan configuration file.
¢ Define the reboot command in the fscan configuration file or on the fscan command line.
* Reset the system using the reset command with the watchdog switch.

When the system watchdog detects that a node is either in the dead or debugger state, it causes the
system to reboot.

NOTE

When the Paragon system is booting, the async command is
invoked for a short period of time to ensure the kernel was
downloaded correctly and starts. The async command displays
the following message when the kernel is downloaded correctly:

COFF header addr

The async command exits with a status of 2 and fscan is invoked.

Setting Up the reboot Command

For a Paragon system to automatically reboot, you must define the reboot command. You define the
reboot command either in the fscan.cfg file or on the fscan command line. For example, the
following line in an fscan.cfg file defines a reboot command:

define reboot “ksh /usr/paragon/boot/reset skip ignorelock \
autoreboot”

The reboot command must always be defined to use the reset command with the autoreboot
argument.

Paragon™ System Commands Reference Manual Manuat Pages

FSCAN (cont.) FSCAN (cont.)

Defining the reboot command allows you to change how a system is rebooted. For example, the
reboot command can be defined to execute autoddb before rebooting the system, for example:

define reboot ”"sh /usr/paragon/boot/autoddb; ksh
/usr/paragon/boot/reset skip ignorelock autoreboot”

If you have a problem with the return status when invoking scripts in the reboot command, use the
Korn shell (ksh) to invoke commands in the script because other shells may cause problems.

Lock File

The fscan utility creates a lock file, /mp/FSCAN.LOCK, to make sure only one user at a time uses
the utility. If the lock file exists when you execute the fscan utility, the fscan utility exits and
displays the following message:

ERROR: FSCAN is locked by pid #XXXX
When fscan exits successfully, the lock file is removed. The lock file will remain if fscan is killed

with the kill command or the system crashes. The lock file contains the PID for the fscan job. You
can use this PID to kill the fscan job if fscan is not being used as a console.

Bad Nodes File

The bad nodes file identifies the nodes in the system that have failed. This is an ASCII file that has
a single node entry per line. This file has the name BADNODES.TXT and is located in the
Jusr/paragon/boot directory. This file is updated by the system watchdog as it finds bad nodes or
potentially bad nodes. You can edit this file as needed with a standard system editor (for example,
vi). Any node that has an entry in this file has it processor port disabled.

The BADNODES.TXT file has the following format:

cbs_number reason_for_removal

The following example BADNODES.TXT file contains two entries:

01A12 <watchdog> Node failed 3 times.
The following bad node information added on 8/30/93.
01Aa11 removed to test some code.

73

Manual Pages

FSCAN (cont.)

Files

Paragon System Commands Reference Manual

FSCAN (cont.)

The example shows that node 01A12 caused the system watchdog to reboot the system three times.
This node is listed as a bad node by the system watchdog. The information on node 01A11 was
added by editing the file. The node was removed to perform tests. Comments are added by placing
a# (pound sign) in the first column of a line in the file. Text in a comment line is ignored.

The following files are on the diagnostic station:

fust/local/bin/fscan

/tmp/FSCAN.LOCK

Jusr/paragon/boot/fscan.cfg

Jusr/paragon/boot/MAGIC.MASTER
/usr/paragon/boot/tBADNODES.TXT
The following file is on the Paragon system:

/sbin/watchdog

Limitations and Workarounds

See Also

74

Contains the executable for the fscan utility.

Contains the lock that prevents multiple users
from running the fscan utility.

Contains fscan commands that specify the fscan
configuration. This fscan utility looks for this file
in the current directory or in the file specified by
the -F switch.

Contains system booting information.

Contains the list of bad nodes in the system.

Contains the executable for the watchdog
command.

For information about limitations and workarounds, see the release notes files in

/usr/share/release_notes.

commands: async, cbs, reset, scanio

files: BADNODES.TXT, MAGIC.MASTER

Paragon™ System Commands Reference Manual Manual Pages

FSCK

FSCK

Provides file system consistency check and interactive repair

fsck -p [-m mode] [-Ps]..e]] [-R]

fsck [-b block#] [-¢] [-y] [-n] [-0] [-m mode]
[file_system] ...

Syntax

Arguments
-b
|
-m
-y
-n
-0

-C

Use the block specified immediately after the flag as the super block for the file
system. Block 4, 8, or 32 is usually the alternate super block.

Limit the number of parallel checks to the number specified in the following
argument. By default, the limit is the number of disks, running one process per
disk. If a smaller limit is given, the disks are checked round-robin, one file system
at a time.

Use the mode specified in octal immediately after the flag as the permission bits
to use when creating the lost+found directory rather than the default 1777. In
particular, systems that do not want to have lost files accessible by all users on the
system should use a more restrictive set of permissions such as 700.

Assume a yes response to all questions asked by fsck; this should be used with
great caution as this is a free license to continue after essentially unlimited trouble
has been encountered.

Assume a no response to all questions asked by fsck except for ‘“CONTINUE?’,
which is assumed to be affirmative; do not open the file system for writing.

Check the file system, even if it has been marked clean.

If the file system is in the old (static table) format, convert it to the new (dynamic
table) format. If the file system is in the new format, convert it to the old format
provided the old format can support the file system configuration. In interactive
mode, fsck will list the direction the conversion is to be made and ask whether the
conversion should be done. If a negative answer is given, no further operations are
done on the file system. In preen mode, the direction of the conversion is listed
and done if possible without user interaction. Conversion in preen mode is best
used when all the file systems are being converted at once. The format of a file
system can be determined from the first line of output from dumpfs.

75

Manual Pages

FSCK (cont.)

Description

76

Paragon™ System Commands Reference Manual

FSCK (cont.)

-Ps[..e] Process the /etc/fstab file starting with pass s and continuing through the optional
pass e. If pass e is not specified, the end-of-file of the /etc/fstab file ends the
processing. This flag is not active when one or more file_system names are
specified on the command line. The fsck command passes are organized in the
/etc/fstab file as follows:

Pass File system(s) type
1 Root (/)
2 Required for single-user operation
3 Boot-node local file system

4 and above Remote-node file system, NFS and PFS.

The -P flag is not valid if one or more file_system names are specified on the
command line. This flag is only valid for the default list of file systems read from
the /etc/fstab file.

-R Use the fork() call instead of the operating system’s internal remote fork when file
system is checking disks in parallel.

The fsck command checks file systems in parallel if they are on different drives. For example, drives
/dev/ioO/rz0f and /dev/ioO/rz1f can be checked in parallel.

The first form of fsck preens a standard set of file systems or the specified file systems. It is normally
used in the run command script during automatic reboot. Here fsck reads the /etc/fstab table to
determine which file systems to check. Only partitions in fstab that are mounted ‘‘rw’’ or ‘‘ro’’ and
that have non-zero pass number are checked. File systems with pass number 1 (normally just the root
file system) are checked one at a time. When pass 1 completes, all remaining file systems are
checked, running one process per disk drive. The disk drive containing each file system is inferred
from the longest prefix of the device name that ends in a digit; the remaining characters are assumed
to be the partition designator.

The system takes care that only a restricted class of innocuous inconsistencies can happen unless
hardware or software failures intervene. These inconsistencies include unreferenced inodes, link

counts in inodes that are too large, missing blocks in the free map, blocks in the free map that are
also in files, and wrong counts in the super-block.

Paragon™ System Commands Reference Manual Manual Pages

FSCK (cont.) FSCK (cont.)

The preceding inconsistencies are the only ones that fsck with the -P argument corrects; if it
encounters other inconsistencies, it exits with an abnormal return status and an automatic reboot will
then fail. For each corrected inconsistency one or more lines are printed identifying the file system
on which the correction takes place, and the nature of the correction. After successfully correcting a
file system, fsck prints the number of files on that file system, the number of used and free blocks,
and the percentage of fragmentation.

If sent a QUIT signal, fsck finishes the file system checks, then exits with an abnormal return status
that causes an automatic reboot to fail. This is useful when you want to finish the file system checks
during an automatic reboot but do not want the machine to come up multiuser after the checks
complete.

Without the -P argument, fsck audits and interactively repairs inconsistent conditions for file
systems. If the file system is inconsistent, you are prompted for concurrence before each correction
is attempted. Note that some of the corrective actions which are not correctable under the -P
argument will result in some loss of data. The amount and severity of data lost can be determined
from the diagnostic output. The default action for each consistency correction is to wait for you to
respond yes or no. If you do not have write permission on the file system fsck defaults to a no action.

The fsck has more consistency checks than its predecessors check, dcheck, fcheck, and icheck
combined.

If no file systems are given to fsck, then a default list of file systems is read from the file /etc/fstab.
Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free map.

2. Blocl;s claimed by an inode outside the range of the file system.

3. Incorrect link counts.

4. Size checks: directory size not of proper format; partially truncated file.

5. Bad inode format.

6. Blocks not accounted for anywhere.

7. Directory checks: file pointing to unallocated inode; inode number out of range; . (dot) or .. (dot
dot) not the first two entries of a directory or having the wrong inode number.

8. Super Block checks: more blocks for inodes than there are in the file system.

9. Bad free block map format.

77

Manual Pages ParagonTMI System Commands Reference Manual

FSCK (cont.) FSCK (cont.)

10. Total free block and/or free inode count incorrect.
Orphaned files and directories (allocated but unreferenced) are, with your concurrence, reconnected
by placing them in the lost+found directory. The name assigned is the inode number. If the

lost+found directory does not exist, it is created. If there is insufficient space its size is increased.

Because of inconsistencies between the block device and the buffer cache, the raw device should
always be used.

Examples

1. The following command line starts the fsck command processing the /etc/fstab file starting with
pass 2 and continuing until the end-of-file.

fsck -P2

2. The following command line starts the fsck command processing the /etc/fstab file starting with
pass 2 and ending with pass 2.

fsck -P2..2

3. The following command line starts the fsck command processing the /etc/fstab file starting with
pass 2 and ending with pass 4.

fsck -P2..4

Files
fusr/sbin/fsck Specifies the command path

fetc/fstab Contains default list of file systems to check

Limitations And Workarounds

For information about limitations and workarounds, see the release notes files in
/Jusr/share/release_notes.

78

Paragon™ System Commands Reference Manual

FSCK (cont.)

See Also
Commands: fsdb(8), newfs(8), reboot(8)

Files: fs(5), fstab(5)

Manual Pages

FSCK (cont.)

79

Manual Pages Paragon™ System Commands Reference Manual

FSPLIT FSPLIT

Splits one file containing several Fortran program units into several files containing one program unit each.

Syntax
fsplit [filename]
Arguments
filename Identifies the file that you want to split into individual files. If you omit this
argument, fsplit reads standard input.
Description

Use fsplit to split a single file containing several Fortran program units (program, subroutine,
function, or block data) into several files, each of which contains only one program unit. The first
non-comment line of each program unit (usually a program, subroutine, function, or block data
statement) marks the beginning of each kind of program unit; the end statement marks the end.

The original file remains unchanged; the new files are named as follows:

¢ Each named program unit (one that specifies a name in its program, subroutine, function, or
block data statement) is put in a file named name.f, where name is the name of the program unit.

* Anunnamed block data subprogram is put in a file named blockdataXXX.f, where XXX is a
number that corresponds to the order of the unnamed block data subprogram in the original file.

* A main program that does not contain a program statement is put in a file named mainXXX.f,
where XXX is a number that corresponds to the order of the unnamed main program in the
original file.

* Afile with the same name as a program unit that already exists in the current directory is put in

a file named zzzXXX.f, where XXX is a number that corresponds to the order of the duplicate
program unit in the original file.

WARNING

If your file defines multiple program units with the same name, the
resulting name.ffile will contain only the first program unit defined.

80

Paragon™ System Commands Reference Manual Manual Pages

FSPLIT (cont.) FSPLIT (cont.)

Examples
Consider the following source file (named file.f):

program a
¢ This 1s the first main program named a.
end

program a
¢ This is the second main program named a.
end

integer a-m
c¢ This is the first unnamed main program unit.
end

¢ This is the second unnamed main program unit.
integer n-z
end

subroutine b
¢ This 1is the first subroutine named b.
end

subroutine b
¢ This is the second subroutine named b.
end

¢ This is the function named c.
function c
end

block data d
¢ This is the block data program unit named d.

end
block data

¢ This is the first unnamed block data program unit.
end
block data

c¢ This is the second unnamed block data program unit.
end

81

Manual Pages Paragon™ System Commands Reference Manual

FSPLIT (cont.) FSPLIT (cont.)

Before using fsplit, the directory contains the following:

% 1ls
file.f

After using fsplit, the directory contains the following:

% fsplit file.f

a.f

a.f already exists, put in zzz000.f

main000.f

main001.f

b.f

b.f already exists, put in zzz001.f

c.f

d.f

blkdtal00.f

blkdtalO01.f

zzz002.f

% 1s

a.f blkdta000.f c.f file.f main00l.f zzz001l.f
b.f blkdta00l.f d.f main000.f zzz000.f zzz002.f

Examining the various files reveals the following:

% cat blockdata000.f

block data

¢ This is the first unnamed block data program unit.
end

% cat blockdata001.f
block data

c This is the second unnamed block data program unit.
end

oe

cat main000.f
integer n-m
end
% cat main001.f
integer n-z
end
% cat a.f
program a
¢ This is the first main program named a.
end
% cat b.f
subroutine b

82

Paragon™ System Commands Reference Manual Manual Pages

FSPLIT (cont.)

(¢}

oo

o

FSPLIT (cont.)

This is the first subroutine named b.
end

cat c.f
function ¢
end

cat d.f
block data d

This is the block data program unit named d.
end

cat zzz000.f
program a

This is the second main program named a.
end

cat zzz001.f
subroutine b

This is the second subroutine named b.
end

The files a.f, b.f, and main000.f contain the first program units defined in the original source file.
The file main000.f contains the second unnamed program unit. The file zzz000.f contains the first
duplicate unit and the file zzz001.f contains the second duplicate unit. This example highlights some
of the problems in using the fsplit command.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

83

Manual Pages Paragon™ System Commands Reference Manual

GETMAGIC GETMAGIC

Displays the bootmagic strings.

Syntax
getmagic [-m file] [-w] [name ...]
Arguments

-m file Specifies the bootmagic master file to use for listing bootmagic strings. By default
the command displays the bootmagic strings that are resident in memory.

-w Expands the node numbers for bootmagic strings that contain lists of node
numbers. Spaces are added to replace commas in the node list specification. Lists
that use the dot notation (..) to list consecutive nodes are expanded to display the
complete list nodes. Spaces separate the node numbers. See the “Examples”
section for an example.

name Specifies a bootmagic string. If the bootmagic string does not exist, the command
displays a blank line. See the bootmagic manual page for a list of the bootmagic
strings.
Description

Use the getmagic command to display the values of the bootmagic strings that are loaded on a

Paragon system when the system is booted. This command does not list all the bootmagic variables

a system supports. It only lists the bootmagic strings that are loaded on the system when the system

is booted. These bootmagic strings are downloaded to the system when the system is reset.

Examples

The following example displays a specific bootmagic string.

getmagic BOOT NODE_LIST
0..5,8..9

The following example uses the -w switch to display the value for a specific bootmagic string. The
values are expanded with white spaces.

getmagic -w BOOT _NODE_ LIST
0123452829

Paragon™ System Commands Reference Manual Manual Pages

GETMAGIC (cont.) GETMAGIC (con.)

The following example lists of all the bootmagic strings loaded on a system:

getmagic

BOOT_FIRST_NODE=3

BOOT_CONSOLE=f
BOOT_STARTUP_NAME=/mach_servers/startup
BOOT_EMULATOR_NAME=/mach_servers/emulator
BOOT_KERNEL_NAME=/mach_servers/mach_kernel.db
BOOT_ROOT_DEV=rz0a

BOOT_HOWTO=0x0
BOOT_COMPUTE_STARTUP_NAME=/mach_servers/startup.compute
BOOT_COMPUTE_KERNEL_NAME=/mach_servers/mach_kernel.compute.db
BOOT_ALT_KERNEL_NAME=/mach_servers/sunmos
BOOT_ARCH=paragon

BOOT_MY_NODE=3

ROOT_FS_NODE=3

ROOT_DEVICE_NODE=3

NETSERVER=3

ALLOCATOR_NODE=3

BOOT_NUM_NODES=8

BOOT_MESH_X=4

BOOT_MESH_Y=4

BOOT_IO_NODE_LIST=0,3
BOOT_COMPUTE_NODE_LIST=1..2,4..5,8..9
BOOT_NODE_LIST=0..5,8..9

EXPORT_PAGING=3

PAGER_NODE=<0..2,4..9>3

BOOT_TIME=758584809
BOOT_REMOTE_KERNEL=137.46.14.189: /usr/paragon/boot/mach_kernel.db
DEFER_REFRESH=startup

BOOT_GREEN_LED=Dci

BOOT_RED_LED=Dcgl

DISABLE_BOOTMESH=0

BOOT_LOAD_SYMBOLS=1

BOOT_DISK_NODE_LIST=0,3

BOOT_DAT_NODE_LIST=3

BOOT_ENET_NODE_LIST=0,3

85

Manual Pages

Paragon™ System Commands Reference Manual

GETMAGIC (con.) GETMAGIC (conz.)

Files

Errors

getmagic:

bootmagic
getmagic:

bootmagic
getmagic:

bootmagic
getmagic:

See Also

86

/sbin/getmagic Specifies the command path.

Error: cannot get bootmagic from kernel.

The bootmagic file must be readable by the user and the getmagic command must be executable by
all users.

file: No such file or directory
Error: cannot open bootmagic file

The bootmagic file does not exists.

file: Permission denied
Error: cannot open bootmagic file

You do not have read permission on the bootmagic file.

file: Error 0
Error: cannot read bootmagic file

The bootmagic file is empty or unreadable.

bootmagic, bootmesh, bootpp, parsemagic, reset

Paragon™ System Commands Reference Manual Manual Pages

GPROF

GPROF

Displays a call-graph execution profile for an application.

Syntax

gprof [-absz] [-e routine | -f routine]...
[-E routine | -F routine]...

[object_file [profile_file]...]

Arguments

-a

-b

-e routine

-E routine

-f routine

-F routine

=S

-Z

Do not print statically-declared functions. If the -a switch is given, all
relevant information about the static function such as time samples, calls to
other functions, and calls from other functions belongs to the function loaded
immediately before the static function in the a.out file.

Do not print a description of each field in the profile.

Do not print the graph profile entry for routine and all its descendants (unless
they have other ancestors that are not suppressed). More than one -e switch
may be given. Only one routine may be given with each -e switch.

Do not print the graph profile entry for routine and its descendants, (same as
the -e switch) and also exclude the time spent in routine and its descendants
from the total and percentage time computations. More than one -E switch
may be given. Only one routine may be given with each -E switch.

Print the graph profile entry only for routine and its descendants. More than
one -f switch can be given. Only one routine may be given with each -f
switch. The -f switch overrides the -e switch.

Print the graph profile entry only for routine and its descendants (same as -f)
and also use only the times of the printed routines in total time and percentage
computations. More than one -F switch may be given. Only one routine may
be given with each -F switch. The -F switch overrides the -E switch.

Produce a profile file, gmon.sum,that represents the sum of the profile
information in all the specified profile files. This summary profile file may be
given to subsequent executions of the gprof command (possibly also with the
-s switch) to accumulate profile data across several runs of an application.

Display routines that have zero usage, as indicated by call counts and
accumulated time.

87

Manual Pages

GPROF (cont.)

88

object_file

profile_file

Paragon™ System Commands Reference Manual

GPROF (cont.)

Specify the name of the executable file used by the gprof command to extract
symbol table information. The object file should match the executable used
to produce the profile file being analyzed. The default is a.out.

Specify the name of a directory containing profile files generated by a parallel
application run or the name of a single profile file. The default is gmon.out.
The gprof command checks whether profile_file specifies a directory or a
file. If a directory is specified, the gprof command expects to find an INFO
file in that directory. The INFO file contains information about the
application that generated the profile files. The INFO file has the following
format:

Controlling process: executable_name pid_value

pid node ptype Executable
XXXXXXX XXXXX XXXX full_path
XXXXXXX XXXXX XXXX full_path

The gprof command expects the directory to contain one profile file for every
process listed in the INFO file. The individual data files are named
executable_name.pid.node.ptype, where pid is the process id, ptype is the
process type and node is the node number as given in the INFO file. By
default, the gprof command chooses the lowest node:ptype pair data file for
the specified object_file as the profile_file. To view gprof output on other
node:ptype pairs, the specific executable_name.pid.node.ptype data file must
be specified as a profile_file.

More than one profile_file may be given, but only the first profile_file
specified is assumed to be a directory containing multiple files. For example,
to produce a summary profile of all the data files for the application binary
tst, you would use the following command:

% gprof -s tst gmon.out/tst*

To view the summary, enter the following:

% gprof tst gmon.sum

Paragon™ System Commands Reference Manual Manual Pages

GPROF (cont.) GPROF (cont.)

Description

NOTE

Any routine names specified with the -e, -f, -E, and -F switches
must be valid COFF symbols without the leading underscore
generated by the compiler. For C symbols, the name of the
function is valid. For Fortran symbols, it is necessary to add an
underscore to the end of the routine name, since the Paragon
Fortran compiler adds a trailing underscore for Fortran routines.

Use the gprof command to produce a call-graph execution profile of applications processed with the
Interactive Parallel Debugger (IPD) instrument -gprof command. A program creates profile files if
it has been loaded under IPD and processed with the instrument command. Only programs that
execute the write-location point of the instrument command will cause profile files to be written.
For a complete description of the IPD instrument command, refer to the ParagonTM System
Interactive Parallel Debugger Reference Manual.

The symbol table in the executable object_file is read and correlated with a profile_file, and the
gprof command produces a flat profile, a call graph profile, and a cycle listing. The flat profile is
similar to that provided by the prof command. The call graph profile provides total execution times
and call counts for each function in the program, sorted by decreasing time.

The gprof command displays the call graph profile as follows:

* Anapplication’s call graph and any flow cycles within the call graph.

* Execution times on the edges of the call graph.

* Function names within the application. The names are sorted according to the amount of time
they were used.

* Alist of the children of each function with the propagation times for each function.

e Above each function entry, the amount of time for the function and when its descendants are
propagated to the function’s parents.

The cycle listing displays the cycles within the call graph and the members within the cycle. This
includes the amount of time and call counts of each cycle.

89

Manual Pages Paragon™ System Commands Reference Manual

GPROF (cont.) GPROF (cont.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

There is a possibility of quantization errors with the gprof command. The granularity of the
sampling is shown in the gprof output, but the granularity is statistical at best. The time for each
execution of a function can be expressed by the total time for the function, divided by the number of
times the function is called. This means that the time propagated along a call graph arc to parents of
that function is directly proportional to the number of times that arc is traversed.

Parent functions that are not themselves profiled have the time of their profiled children propagated
to them, but they do not have their own time propagated further. The call graph listing makes it
appear as if they are spontaneously invoked.

Similarly, signal handlers, even though profiled, appear to be spontaneously invoked. Any profiled

children of signal handlers have their times propagated accurately, unless the signal handler is
invoked during the execution of a profiling routine. In this case, propagation cannot occur.

See Also
prof

ParagonTM System Interactive Parallel Debugger Reference Manual

90

Paragon™ System Commands Reference Manual

GPS

Manual Pages

GPS

Displays the current process status for all the nodes on a system.

Syntax

gps [-adejflm] [-00 specifier]|[=header],... [-g glist]
[-p plist] [-s slist] [-t tlist] [-u ulist]

BSD Compatible Syntax:

eps [aAeghklemsSTuvwx] [00 specifierl[=header],...
[t tty] [process_number]

The gps command displays the current process status. It is similar to the ps command except it can
be used to display processes running on all the nodes.

Arguments

The following arguments can be used with gps:

-a

-d

-e
-f

-g glist

1

-m

Prints information to standard output about all processes, except the process group
leaders and processes not associated with a terminal.

Prints information to standard output about all processes, except the process group
leaders.

Prints information to standard output about all processes, except kernel processes.
Generates a full listing.

Prints only information about processes that are in the process groups listed in
glist. The glist is alist of process-group identifiers enclosed in ““‘ (double quotes)
and separated from one another by a comma or one or more spaces (or tabs), or
both. Because of the way the shell treats spaces and tabs, you need to quote

space-separated lists.

Produces job control information, with fields specified for user, pid, ppid, pgid,
sess, jobc, state, tname, cputime and comm.

Generates a long listing.

Prints all threads in a task, if the task has more than one.

91

Manual Pages

GPS (cont.)

92

Paragon™ System Commands Reference Manual

GPS (cont.)

-0 specifier[=header],...

Specifies a list of format specifiers to describe the output format.

-O specifier[=header],...

-p plist

-s slist

-t tlist

-u ulist

Same as o, except it displays the fields specified by pid, state, tname, cputime,
and comm in addition to the specifiers supplied on the command line.

Displays only information about processes with the process numbers specified in
plist. The plist argument is either a list of process ID numbers or a list of process
ID numbers enclosed in ““¢ (double quotes) and separated from one another by a
comma or one or more spaces (or tabs), or both. Because of the way the shell treats
spaces and tabs, you need to quote space-separated lists.

Displays information about processes belonging to the sessions specified in slisz.
The slist argument is either a list of session ID numbers or a list of session ID
numbers enclosed in ““* (double quotes) and separated from one another by a
comma or one or more spaces (or tabs), or both. Because of the way the shell treats
spaces and tabs, you need to quote space-separated lists.

Displays only information about processes associated with the terminals listed in
tlist. The tlist argument is either a list of terminal identifiers or a list of terminal
identifiers enclosed in “““ (double quotes) and separated from one another by a
comma Or one or more spaces, or both. Because of the way the shell treats spaces
and tabs, you need to quote space-separated lists.

Displays only information about processes with the user ID numbers or login
names specified in ulist. The ulist argument is either a list of user IDs or a list of
user IDs enclosed in ““¢ (double quotes) and separated from one another by a
comma or one or more spaces, or both. Because of the way the shell treats spaces
and tabs, you need to quote space-separated lists.

In the listing, ps displays the numerical user ID unless the -f flag is used; then it
displays the login name.

The following BSD compatible flags can be used with ps (note that these flags are not prefixed with
a - (dash) character):

a

Asks for information regarding processes associated with terminals (ordinarily
only one’s own processes are displayed).

Increases the argument space.

Asks for the environment to be printed, as well as the arguments to the command.

Paragon System Commands Reference Manual Manual Pages

GPS (cont.)

L

m

GPS (cont.)

Asks for all processes. Without this flag, ps only prints interesting processes.
Processes are deemed to be uninteresting if they are process group leaders. This
normally eliminates top-level command interpreters and processes waiting for
users to log in on free terminals.

Repeats the header after each screenful of information.

Produces job control information, with fields specified by user, ppid, pgid, sess,
and jobc.

Asks for a detailed list, with fields specified by ppid, cp, pri, nice, vsize, rssize
and wchan.

Lists all available format specifiers.

Prints all threads in a task, if the task has more than one.

o specifier[=header],...

Specifies a list of format specifiers to describe the output format.

O specifier[=header),...

trry

Same as o, except it displays the fields specified by pid, state, tname, cputime,
and comm in addition to the specifiers supplied on the command line.

Gives signal states of the processes, with fields specified by uid, cursig, sig,
sigmask, sigignore, and sigcatch.

Prints usage summaries (total usage of a command, as opposed to current usage).
Lists only processes for the specified tty.
Lists all processes on your tty.

Produces a user oriented output. This includes fields specified by user, pcpu,
pmem, vsize, rssize, and start.

Produces a version of the output containing virtual memory statistics. This
includes fields specified by cputime, sl, pagein, vsize, rssize, pcpu, and pmem.

Uses a wide output format (132 columns (bytes) rather than 80); if this flag is
doubled (ww), uses an arbitrarily wide output. This information determines how

much of long commands to print.

Asks even about processes with no terminal.

93

Manual Pages

GPS (cont.)

Description

94

ParagonTM System Commands Reference Manual

GPS (cont.)

process_number
Restricts output to the specified process. This argument must be entered last on
the command line.

This command can only be used by super user.

The ps command shows only processes running in the service partition, but the gps command can
be used to display processes running on all the nodes in the system.

Output formats for each process include the process ID (pid), control terminal of the process
(tname), CPU time used by the process (cputime) (this includes both user and system time), the
state of the process (state), and an indication of the command that is running (comm).

The state is given by a sequence of letters, for example, RWN. The first letter indicates the status of
the process:

R Runnable process.

U Uninterruptible sleeping process.

S Process sleeping for less than about 20 seconds.

I Idle (sleeping longer than about 20 seconds) process.
T Stopped process.

H Halted process.

Additional characters after these, if any, indicate additional state information:
w Process is swapped out (shows a blank space if the process is loaded (in-core)).

> Process has specified a soft limit on memory requirements and is exceeding that
limit; such a process is (necessarily) not swapped.

Paragon™ System Commands Reference Manual

GPS (cont.)

Manual Pages

GPS (cont.)

An additional letter may indicate whether a process is running with altered CPU scheduling priority

(nice):
N
<

+

Process priority is reduced.

Process priority has been artificially raised.

Process is a process group leader with a controlling tty.

Format Specifiers

The following list contains all format specifiers that can be used with ps:

Specifier

comm
ucomm
logname
flag
status
uid

ruid
svuid
rgid
svgid
pid

ppid

cp

wchan

nwchan

cursig
sig
sigmask
sigignore

Header

COMMAND
COMMAND
LOGNAME
F

STATUS
UID

RUID
SVUID
RGID
SVGID

PID

PPID

Cp

WCHAN

WCHAN

CURSIG
PENDING
BLOCKED
IGNORED

Meaning

Command arguments (and environment with BSD e flag)

Command name for accounting
User's login name

Process flags

Process status

Process user ID (effective UID)
Process user ID (real UID)

Saved process group ID

Process group (real GID)

Saved process group ID

Process ID

Parent process ID

Short-term CPU utilization factor
(used in scheduling)

Address of event on which a process is
waiting (an address in the system). A
symbol is chosen that classifies the
address, if available, from the system;
otherwise, it is printed numerically.
In this case, the initial part of the
address is trimmed off and is printed
hexadecimally, for example, 0x80004000
prints as 4000.

Current signal

Signals pending to this process
Current signal mask

Signals being ignored

95

Manual Pages

GPS (con.)

96

Specifier

sigcatch
user
ruser
pgid
jobc

sess

tdev
tname
longtname
tpgid
tsession
state

pr1

usrpri
nice

vsize
rssize

u_procp
umask
acflag
start

Istart
cputime
usertime
systime
pcpu

pmem
sl
pagein

Header

CAUGHT
USER
RUSER
PGID
JOBC

SESS
TDEV
TT

TT
TPGID
TSESS
STAT
PRI

UPR
NI

vSsz
RSS

UPROCP
UMASK
ACFLG
STARTED

STARTED
TIME
USER
SYSTEM
%CPU

%MEM
SL
PAGEIN

Paragon™ System Commands Reference Manual

GPS (cont.)

Meaning

Signals being caught

Username

User ID

Process group ID

Current count of processes qualifying
PGID for job control

Session ID

Major/minor device for controlling tty
Controlling tty device name

Long controlling tty device name
Foreground process group associated with tty
Session associated with tty
Symbolic process status

Process priority (nonpositive when
in non-interruptible wait)

Base scheduling priority

Process scheduling increment
(see the setpriority() call).
Process virtual address size

Real memory (resident set) size
of the process (in 1024 byte units)
Address of process in user area
Process umask

Process accounting flag

Start time of process. If

start time was more than 24

hours ago, gives the date.

Start time and date of process
Current CPU time used

Time spent in user space

Time spent in system

Percent CPU usage. Thisis a
decaying average of up to a
minute of previous (real) time.
Since the time base over which
this is computed varies (since
processes may be very young),

it is possible for the sum of

all %CPU fields to exceed 100%.
Percent real memory usage

Sleep time

Number of disk I/Os resulting
from references by the process

to pages not loaded in core.

Paragon™ System Commands Reference Manual

GPS (cont.)

Specifier

minflt
majflt
nswap
inblock
oublock
msgsnd
msgrev
nsignals
nvesw
nivesw
scount

Header

MINFLT
MAJFLT
NSWAP
INBLK
OUBLK
MSGSND
MSGRCV
NSIGS
VCSW
IVCSW
SCNT

Meaning

Page reclaims

Page faults

Swaps

Block input operations
Block output operations
Messages sent

Messages received

Signals received

Voluntary context switches
Involuntary context switches
Suspend count

Manual Pages

GPS (cont.)

Compound format specifiers are made up of groups of individual format specifiers, as follows:

Specifier

RUSAGE

DFMT (default printing format)

LEMT (BSD 1 format)

JFMT (j format)

SFMT (BSD s format)

VFMT (BSD v format)

Meaning

minflt, majflt, nswap,
inblock, oublock,
msgsnd, msgrcv, nsigs,
NVCSW, NiVCSW

user, pcpu, pri, scnt,
wchan, usertime, sys-
time

pid, tname, state,
cputime, comm

uid, pid, ppid, cp,

pri, nice, vsz, 1ss,
wchan, state, tname,
cputime, comm

user, pid, ppid, pgid,
sess, jobc, state,
tname, cputime, comm
uid, pid, cursig, sig,
sigmask, sigignore,
sigcatch, stat, tname,
comm

pid, tt, state, cpu-

time, sl, pagein, vsz,
1sS, pcpu, pmem, comm

97

Manual Pages

GPS (cont.)

98

Specifier

UFMT (BSD u format)

FSFMT (f format)

L5SFMT (1 format)

FLSFMT (If format)

process_flags

Symbolic
Constant

SLOAD
SSYS
STRC
SWTED
SOMASK
SWEXIT
SPHYSIO
SPAGV
SSEQL
SUANOM
STIMO
SOUSIG
SOWEUPC
SCTTY
SXONLY

SNOCLDSTOP

SEXEC

Flag
Value (Hex)

0x00000001
0x00000002
0x00000010
0x00000020
0x00000200
0x00000400
0x00000800
0x00008000
0x00010000
0x00020000
0x00040000
0x00100000
0x00200000
0x00800000
0x02000000
0x40000000
0x80000000

Paragon™ System Commands Reference Manual

GPS (con.)

Meaning

uname, pid, pcpu,
pmem, Vsz, 1ss, tt,
state, start, cputime,
comm
uname, pid, ppid,
pcpu, start, tt, cpu-
time, comm
flag, state, uid, pid,
ppid, pcpu, pri, nice,
1ss, wchan, tt, cpu-
time, ucomm
flag, state, uid, pid,
ppid, pcpu, pri, nice,
rss, wchan, start,
cputime, comm
Flags associated with
process as in
<sys/proc.h>

The flags associated with process as in <sys/proc.h> (see process_flags in the preceding table) are
as follows:

Meaning

In core

Swapper or pager process

Process is being traced

Another tracing flag

Restore old mask after taking signal
Working on exiting

Doing physical /O

Init data space on demand, from vnode
User warned of sequential v behavior
User warned of random vm behavior
Timing out during sleep

Using old signal mechanism

Owe process an addupc() call

Has a controlling terminal

Process image read-protected

No SIGCHLD when children stop
Process called exec

Paragon™ System Commands Reference Manual Manual Pages
g

GPS (cont.) GPS (cont.)
<defunct> A process that has exited but whose parent process has not waited for it is marked
<defunct>.
<exiting> A process that is blocked trying to exit is marked <exiting>.

The ps program examines memory to get the filename and arguments given when the process was
created. The method is inherently somewhat unreliable because a process can destroy this
information, so the names cannot be counted on too much.

Examples

This first example shows how to list all processes running in the system. Displaying this information may take some
time if the system is large.

gps -deaf

This example displays processes running in a subpartition by specifying the group ID:

gps ~g PGID

The PGID variable is the process group ID of the application which you can get using the pspart command output
under the PGID column. Use the pspart command as follows to list the processes running in the compute partition and

to find the PGID value:

pspart .compute

PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
197281 root 4 5 14:37:36 0:24.59 100% 0:24.59 test -sz 2
Enter the following:

gps -g 197281
This may display the following:
PID TT STAT TIME COMMAND
65548 p0 RW + 1:59.41 test -sz 2

197281 p0 SW + 0:00.04 test -sz 2
327692 p0 RW + 1:59.38 test -sz 2

99

Manual Pages Paragon"'I System Commands Reference Manual

GPS (cont.) GPS (cont.)

This final example displays a long listing of processes running in the compute partition. By using the above pspart
command output, you may enter:

gps -1lg 197281

This may display the following:

F STAT UID PID PPID %CPU PRI NI RSS WCHAN TT TIME COMMAN

808001 RW + 0 65548 197281 99.0 -13 0 1.62 * p0 2:22.37
testin

808001 SW + 0 197281 197280 0.0 -13 0 496K * p0 0:00.04
testin

808001 RW + 0 327692 197281 99.0 -13 0 1.62 * PO 2:22.35
testin
Files

/sbin/gps Specifies the command path.

See Also

OSF/I Command Reference: ps(1)
commands: pspart, Ispart, showpart

calls: nx_pspart()

100

ParagonWI System Commands Reference Manual Manual Pages

HOSTINFO HOSTINFO

Displays information about a Paragon system node that is running the Mach kernel.

Syntax
hostinfo [node]
Arguments
node Root partition node number that is running the Mach kernel. The default is the
node on which the hostinfo command is currently is running.
Description

The hostinfo command displays the following information about a node that is running the Mach
kernel:

* The root partition node number of the node.

* The Mach kemnel version number. This is not the version number of the Paragon operating
system.

e The maximum number of processors the Mach kernel was configured for.
* The actual number of processors physically available in the hardware configuration.
e The amount of physical memory available on the node.

e The node’s processor type.

101

Manual Pages Paragon™ System Commands Reference Manual

HOSTINFO (con:.) HOSTINFO (cont.)

Examples

The following example shows a four node service partition.

% showpart .service
USER GROUP ACCESS SIZE FREE RQ EPL

root daemon 754 4 4 - -
o —mm - +

0l |

4] I

8| I

12] .. I

Fommm +

You can use the hostinfo command to get kernel information as follows:

% /sbin/hostinfo

node 7, Mach kernel version 3.0.

Kernel configured for a single processor only.
1 processor is physically available.

Primary memory available: 16.00 megabytes.

CPU 0: 1860XP (Paragon XP/S) UP

This shows kernel information about the node 7 which is the node that the hostinfo command is
running on. This node has 16M bytes of memory available and is currently up and running.

You can use the hostinfo command to find out information about a specific host node, as follows:

% /sbin/hostinfo 3

node 3, Mach kernel version 3.0.

Kernel configured for a single processor only.
1 processor is physically available.

Primary memory available: 32.00 megabytes.
CPU 0: 1860XP (Paragon XP/S) UP

This shows that node 3 has 32M bytes of memory available and is currently up and running.

Files

/sbin/hostinfo Specifies the command path.

102

Paragon™ System Commands Reference Manual Manual Pages

HOSTINFO (con:.) HOSTINFO (conz.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

103

Manual Pages Paragon™ System Commands Reference Manual

HSTAT HSTAT

Displays HiPPI device driver statistics.

Syntax
hstat [-brnode] [-a] [-V]
Arguments
-b node Number of the node board whose statistics you want to display.
-a Show all statistics (rhippi, ifhip, hctlr).
-V Verbose mode.
Description

The hstat command returns statistics for the HiPPI controller interface, raw driver interface, and
network driver interface.

104

Paragon™ System Commands Reference Manual Manual Pages

HSTAT (cont.)

HSTAT (cont.)

HiPPI Controller Interface Statistics

The hstat command returns the following SRC (source channel) statistics:

packets
Kbytes
intr
960busy
gfull
qnull
ghits
gmiss
chains
maxchain
ovrrun
align
shtwrd
gflush
€rTors
no_intc
seqs
seqd
timeout

parity

packets sent

total Kbytes sent

SRC channel interrupts
controller too busy for new SRC PD
PD queue is full

PD queue NULL head ptr
something to do in PD queue
nothing to do in PD queue
requests sent to 1960 in chains
largest chain sent to i960

SRC fifo full and no DST readys
not even number of HiPPI words
last word short, not HiPPI size
flushed queue in re-init cycle
SRC channel errors

interconnect deasserted

source sequence error
destination sequence error
timeout waiting for ready

parity error

105

Manual Pages

HSTAT (cont.)

106

The hstat command returns the following DST (destination channel) statistics:

packets
Kbytes
intr
960busy
gfull
qnull
ghits
gmiss
undrun
qflush
errors
no_intc
seqgs
seqd
towb
parity
lirc
exbf
arbt
algn
cerr

cabrt

Paragon™ System Commands Reference Manual

packets received

total Kbytes received

DST channel interrupts

controller to busy for new DST PD
PD queue is full

PD queue NULL head ptr
something to do in PD queue
nothing to do in PD queue

DST fifo empty and no bursts
flushed queue in re-init cycle
DST channel errors

interconnect deasserted

source sequence error

destination sequence error
timeout waiting for burst

parity error

LLRC error on burst of data

DST data exceeded buffer resource
aborted destination connection
buffer addr and len was unaligned
CONT error, connection aborted

CONT host aborted connection

HSTAT (cont.)

Paragon™ System Commands Reference Manual Manual Pages

HSTAT (cont.) HSTAT (cont.)
The hstat command returns the following OTHER statistics:
src_intr SRC interrconnect asserted
dst_intr DST interrconnect asserted
timeouts watchdog, no controller response
init controller init passes
resets controller reset count
dmsg_intr controller debug msg interrupts
ctlr_intr controller type interrupts
filters filters on DST filter list

HiPPI Raw Driver Statistics

The hstat command returns the following WRITES statistics:

packets packets sent

bytes total Kbytes sent

chains requests sent to 1960 in chains
errors Write errors on SRC channel
gfull PD queue is full

ghit something to do in PD queue
qmiss nothing to do in PD queue
reqfail hctir driver request failed

107

Manual Pages Paragon™ System Commands Reference Manual

HSTAT (cont.) HSTAT (cont.)
The hstat command returns the following READS statistics:

packets packets received
bytes total Kbytes received
€rTors READ errors on DST channel
Aborted total READ requests aborted
timeouts reason: timed out
deadport reason: deadport (user app)
noFilters reason: noFilter was set
unsetFilter reason: Filter was being unset
ctlrAbort reason: ctirAborted connection

The hstat command returns the following OTHER statistics:

filter_gfull hit max allowed filter setting
dn_errs deadname notification from proxy port
no_rd_reqs packet arrived but no request posted

108

Paragon™ System Commands Reference Manual

HSTAT (cont.)

HiPPI Network Driver Statistics

The hstat command returns the following OUTPUT statistics:

packets
bytes

intr

errors

large pkts
medium pkts
small pkts

req_fail

packets sent

total Kbytes sent

SRC channel (HiPPI-LE) interrupts
Input errors on SRC channel

total pkts, size greatef than 60000 bytes
total pkts, size = 10000-60000 bytes
total pkts, size = less than 10000 bytes

hctlr driver request failed

The hstat command returns the following INPUT statistics:

packets
bytes

intr

errors

large pkts
medium pkts
small pkts
no_smbufs

no_lgbufs

packets received

total Kbytes received

DST channel (HiPPI-LE) interrupts

Input errors on DST channel

total pkts, size greater than 60000 bytes
total pkts, size = 10000-60000 bytes

total pkts, size = less than 10000 bytes

no small 1KB buffer for DST, pkt dropped

no large 64KB buffer for DST, pkt dropped

Manual Pages

HSTAT (cont.)

109

Manual Pages Paragon™ System Commands Reference Manual

HSTAT (cont.) HSTAT (cont.)

Examples

./hstat -b5 -a

HiPPI Interface stats from Node (5):

SRC: packets= 3197 Kbytes = 295 errors = 2
intr = 3199 960busy= 0 chains = 0 gflush = 0
gfull =0 gempty = 3199 ghits =1 gmiss = 3198
no_intc= 0 seqgs =0 seqgd =0 parity = 0
timeout= 2 align =0 shtwrd = 0 ovrrun = 0
maxchain=0

DST: packets= 6316 Kbytes = 1601036 errors = 0
intr = 9443 960busy= 5106 gflush = 0
gfull =0 gempty = 0 ghits = 6325 gmiss =1
no_intc= 0 parity = 0 llrc =0 segs =0
seqd =0 undrun = 0 towb =0 exbf =0
abrt =0 algn =0 cabrt =0 cerr =0

OTHER: timeout=0 dmsg=0 ctlr_intr=1 src_intr=1 dst_intr=1
reset=1 init=1 filters=1

HiPPI RAW Driver (rhippi) stats from Node (5):

WRITE: packets=0 bytes=0 KB chains=0 errors=0
gfull=0 ghigh=0 ghit=0 gmiss=0 reqfail=0

READ: packets=0 bytes=0 KB errors=0
Aborted(0) : timeouts=0 deadport=0
noFilters=0 unsetFilter=0 ctlrAbort=0

OTHER: filter_gfull=0 ghigh=0 dn_errs=0 no_rd_reqgs=0

HiPPI Network Driver (ifhip) stats from Node (5):

OUTPUT: packets=44 bytes=5 KB intr=0 errors=2
large pkts=0 medium pkts=0 small pkts=44
ghit=1 gmiss=45 reqg fail=0

INPUT: packets=36 bytes=4 KB intr=0 errors=0

large pkts=0 medium pkts=0 small pkts=36
no_smbufs=0 no_lgbufs=0

110

Paragon™ System Commands Reference Manual Manual Pages

HSTAT (cont.) HSTAT (cont.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

111

Manual Pages

IFCONFIG

Paragon™ System Commands Reference Manual

IFCONFIG

Configures or displays network interface parameters.

Syntax

Description

112

ifconfig interface_id [address_family] [address [dest_address] | [parameters]

The ifconfig command assigns and displays an address to a network interface, and configures
network interface parameters.

You use the ifconfig command at boot time to define the network address of each interface. You can
also use the ifconfig command at other times to redefine the address of an interface or to set other
operating parameters.

Any user can query the status of a network interface; only the superuser can modify the
configuration network interfaces.

You specify an interface with the ifconfig interface_id syntax. The interface_id may be a string of
the form nameunit (for example, em0) or <node>nameunit (for example, ‘<11>em0’). The node
argument is the node number where the network controller is installed (using the root node
numbering scheme).

If you do not specify an address or optional parameters, the ifconfig program displays the current
configuration for the specified network interface only.

If a protocol family is specified by the address_family parameter, ifconfig reports only the
configuration details specific to that protocol family.

When changing an interface configuration, an address family, which may alter the interpretation of
succeeding parameters, must be specified. This family is required because an interface can receive
transmissions in different protocols, each of which may require a separate naming scheme.

For the inet family, the address_family parameter is either a hostname or an Internet address in the
standard dotted-decimal notation.

For the Xerox Network Systems family, addresses are net:a.b.c.d.e.f, where net is the assigned
network number (in decimal), and each of the 6 bytes of the host number, a to f, are specified in
hexadecimal. The host number may be omitted on 10-Mbps (Megabits per second) Ethernet
interfaces, which use the hardware physical address, and on interfaces other than the first.

Paragon™ System Commands Reference Manual Manual Pages

|FCONF|G (cont.)

IFCONFIG (cont.)

The destination address (dest_address) argument specifies the address of the correspondent on the
remote end of a point-to-point link.

Parameters

netmask mask

trailers

~trailers

up

down

Specifies how much of the address to reserve for subdividing networks into
sub-networks. This parameter can only be used with an address family of inet.

The mask variable includes both the network part of the local address and the
subnet part, which is taken from the host field of the address. The mask can be
specified as a single hexadecimal number beginning with 0x, in the standard
Internet dotted-decimal notation, or beginning with a name.

The mask contains 1s (ones) for the bit positions in the 32-bit address that are
reserved for the network and subnet parts, and Os (zeros) for the bit positions that
specify the host. The mask should contain at least the standard network portion.

Requests the use of a trailer link-level encapsulation when sending messages.

If a network interface supports trailers, the system will, when possible,
encapsulate outgoing messages in a2 manner that minimizes the number of
memory-memory copy operations performed by the receiver. On networks that
support the Address Resolution Protocol (see arp), this flag indicates that the
system should request that other systems use trailers when sending to this host.
Similarly, trailer encapsulations will be sent to other hosts that have made such
requests. Currently used by Internet protocols only.

Disables the use of a trailer link-level encapsulation. The use of -trailers may be
disabled by default (check your vendor documentation).

Marks an interface as working (up). This parameter is used automatically when
setting the first address for an interface, or can be used to enable an interface after
an ifconfig down command. If the interface was reset when previously marked
with the parameter down (see the following section for a description of this
parameter), the hardware will be reinitialized.

Marks an interface as not working (down), which keeps the system from trying to
transmit messages through that interface. If possible, the ifconfig command also
resets the interface to disable reception of messages. Routes that use the interface,
however, are not automatically disabled.

Enables the use of the Address Resolution Protocol (ARP) in mapping between
network-level addresses and link-level addresses. This parameter is on by default.

113

Manual Pages

|FCONF|G (cont.)

114

-arp

Paragon™ System Commands Reference Manual

IFCONF'G (cont.)

Disables the use of the ARP. Use of this parameter is not recommended, however,
as your system will then only be able to communicate with other hosts that are
configured with the parameter -arp.

-broadcast address

debug

-debug
dest_address

ipdst

alias

delete

metric number

Specifies the address to use to represent broadcasts to the network. The default
broadcast address is the address with a host part consisting of all 1s (ones). Note
that the computation of the host part is dependent on netmask (see the description
of the netmask parameter).

Enables driver-dependent debug code. This might turn on extra console error
logging. (See your hardware documentation for further information.)

Disables driver-dependent debug code.
Specifies the correspondent on the other end of a point-to-point link.

Specifies an Internet host willing to receive IP packets encapsulating packets
bound for a remote network. For an Network Systems (NS) case, an apparent
point-to-point link is constructed, and the address specified will be taken as the NS
address and network of the destinee.

Establishes an additional network address for this interface. This is sometimes
useful when changing network numbers and one wishes to accept packets
addressed to the old interface.

Removes the network address specified. This would be used if you incorrectly
specified an alias, or if it was no longer needed. If you have incorrectly set an NS
address having the side effect of specifying the host portion, removing all NS
addresses will allow you to respecify the host portion.

Sets the routing metric, or number of hops, for the interface to the value of
number. The default value is 0 (zero) if number is not specified, indicating that
both hosts are on the same network. The routing metric is used by the routed
daemon, with higher metrics indicating that the route is less favorable.

Paragon " System Commands Reference Manual Manual Pages

IFCONFIG (conz.) IFCONFIG (cont)

Examples

Files

See Also

The following example configures a HIPPI network interface on node 10, setting the network
address to 192.9.2.5, the netmask to 255.255.255.0, and disabling trailer link-level encapsulation.

ifconfig ‘<10>ifhip0’ 192.9.2.5 netmask 255.255.255.0 -trailers
To query the status of serial line interface sl0 , enter:
$ ifconfig s10

s81l0: flags=51<UP, POINTOPOINT, RUNNING>
inet 192.9.201.3 ---> 192.9.354.7 netmask Oxff£f£f££00

To configure the local loopback interface, enter:
ifconfig 1lo0 inet 127.0.0.1 up

Only a user with superuser authority can modify the configuration of a network interface.

fusr/sbin/ifconfig Specifies the command path

Commands: netstat(1)

115

Manual Pages Paragon™ System Commands Reference Manual

INITPART INITPART

Initializes configuration files for the default root partition.

Syntax
initpart

Description

The initpart command is run automatically when the system goes into multiuser mode. This
command creates the following files:

e The partition information file /etc/nx/.partinfo for the default root partition. This file helps
creates the root partition.

* The initial allocator configuration file /etc/nx/allocator.config. The file /etc/nx/allocator.config
specifies the defaults that the allocator daemon uses for configuration information.

The file /etc/nx/.partinfo is created using the information provided in bootmagic strings such as
BOOT_MESH_X, BOOT_MESH_Y, and BOOT_NODE_LIST.

Examples

The following example creates new default files for the /etc/nx/.partinfo and /etc/nx/allocator.config
files:

/sbin/initpart

Errors

<boot-magic-name> not found in bootmagic

The specified bootmagic string is not in the bootmagic file.

Files

/sbin/initpart Specifies the command path.

116

ParagonTM System Commands Reference Manual Manual Pages

INITPART (cont.) INITPART (cont.)
Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

allocator, allocator.config, mkpart

117

Manual Pages Paragon™ System Commands Reference Manual

INQUIRE INQUIRE

Displays SCSI device information.

Syntax

inquire [-p] device

Arguments
-p Reports the device information for a RAID controller and its RAID drives. If the
device is not a RAID, the inquire command prints the device information and

indicates that the device is not a RAID.

device Specifies the device special file of the SCSI peripheral to inquire about. Only
SCSI pass-through devices may be used successfully, for example:

% inquire /dev/io*/scsi?

Description
Use the inquire command to display information from a SCSI peripheral regarding the device type,
vendor and product identification, and revision level. The information displayed is in the following
format:
device_type vendor_ID product_ID revision_level
The device type displayed may be one of the following: disk, tape, printer, worm, cdrom, or
medium changer. All other fields are vendor specific and are displayed as returned from the device.

Examples

The following example invokes the inquire command on the SCSI device 0 (zero) attached to I/O
node 0 (zero):

inquire /dev/io0/scsil
disk NCR ADP-92/01 0302

This command displays that the device at SCSI device 0 (zero) is a RAID controller.

118

Paragon™ System Commands Reference Manual Manual Pages

INQUIRE (cont.) |NQU|RE (cont.)

The following example uses the -p option to get device information from the RAID and its
individual disks attached to SCSI device 1.

inquire -p /devfiol/scsil

disk NCR ADP-92/01 0306
disk MAXTOR MXT-1240S8 I1.
disk MAXTOR MXT-1240S I1.
disk MAXTOR MXT-1240S TI1.
disk MAXTOR MXT-1240S Il.
disk MAXTOR MXT-1240S I1l.

DD

In this example, the inquire command displays that SCSI devicel is a RAID controller with five
disk drives attached.

Files

/sbinfinquire Specifies the command path.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

ace, acf, amd, apc, apr, arc, can

119

Manual Pages

IPD

Paragon™ System Commands Reference Manual

IPD

Starts the Interactive Parallel Debugger.

Syntax

Description

120

ipd

The ipd command starts the Interactive Parallel Debugger (IPD) program. IPD is a complete
symbolic, source-level debugger for parallel programs that run under the operating system operating
system. Beyond the standard operations that allow the debugging of serial programs, IPD offers
custom features that allow you to debug parallel programs. IPD lets you debug parallel programs
written in C, C++, Fortran, and assembly language. IPD also allows you to examine core files for
post-mortem debugging. '

IPD consists of a set of debugging commands, for which help is available from within IPD. After
running IPD, entering either help or ? at the IPD prompt returns a summary of all IPD commands.

IPD Commands

The following commands are available when you start IPD. Refer to the Paragon™ System
Interactive Parallel Debugger Reference Manual for complete command descriptions.

alias Display or set aliases.
alias [alias_name [command_string]]
assign Assign a value to a program variable, address, or register.
Assign a value to a program variable:
assign [context] [file{}] [procedure()] [#line] variable [,count] =

expression

Assign a value to a program address:
assign [context] [-size_switch] address[:addressl|,count] = expression

Assign a value to a register:
assign [context] [-size_switch] register_switch = expression

Paragon™ System Commands Reference Manual Manual Pages

IPD (cont.) IPD (cont.)

break Set a breakpoint or display current breakpoints.

Display breakpoint information:
break [context] [-full]

Set code breakpoint at procedure:
break [context] [file{}] procedure() [-after count]

Set code breakpoint at source line number:
break [context] [file{}] [procedure()] #line [-after count]

Set code breakpoint at instruction address:
break [context] address [-after count]

commshow Display the handles (names) for communicators assigned by the debugger.

List all handles for communicators:
commshow

Display the handle for a communicator specified by a variable or
expression in the current scope of context:
commshow [context] expression

Display the handle for a communicator specified by an expression
containing global or static C variables:
commshow [context] file{} expression

Display the handle for a communicator specified by an expression
containing local procedure variables:
commshow [context] [file{}] procedure() expression

Display the handle for a communicator specified by an expression
containing variables local to a block in C or C++:

commshow [context] [file{}] #line expression

Display the handle for a communicator specified at a memory location:
commshow [context] address

121

Manual Pages

IPD (cont.)

122

context

continue

coreload

disassemble

Paragon™ System Commands Reference Manual

IPD (cont.)

Set the debug context, defining the default set of processes and nodes to
which debug commands apply.

Set the debug context to compute partition processes:
context ({all | nodes | nodelist} : {all | ptypelist})

Set the debug context to the host process (host-node model):
context (host)

Set the debug context to service partition processes (host-node model):
context (host : {all | prypelist })

Set the debug context using rank values as process identifiers (MPI
applications):

context (communicator : {all | ranklist})

Display the context in which the application was loaded:
context [-pid]

Continue execution of processes stopped by command or breakpoint in the
current context.

continue [context] [-nosignal]
Load core files for examination.

coreload [-all | -fault | -first | -nonfault | context] [core_name]
[-pn partition] [-sz size]

Display machine code listing of process instructions.

Disassemble from current execution point:
disassemble [context] [,count]

Disassemble starting from an instruction address:
disassemble [context] address [.address | ,count]

Disassemble starting from procedure:
disassemble [context] [file{}] procedure() [,count]

Disassemble starting from a source line number:
disassemble [context] [file{}] [procedure()] #line [: #line |,count]

Paragon™ System Commands Reference Manual Manual Pages

IPD (cont.) IPD (cont.)

display Display the value of the specified variable, memory address, or processor
registers.

Display the value of variable or expression in current scope of context:
display [context] [-format_switch] [variable | expression] [,count]

Display the value of an expression containing global or static C
variables:
display [context] [-format_switch] file{} [variable | expression] [,count]

Display the value of an expression containing a local procedure variable:
display [context] [-format_switch] [file{}] procedure()
[variable | expression] [,count]

Display the value of an expression containing variables local to a block
in C or C++:
display [context] [-format_switch] [file{}] #line [variable | expression]

[,count]

Display the value of a memory address:
display [context] address [:addressl,count]

Display the contents of all processor registers:
display [context] -register

Display the contents of one processor register:
display [context] [-format_switch] -register_name

exec Read and execute IPD commands from the specified file.

exec [-echo | -step] filename

exit Terminate a debug session and exit IPD.
exit

flush Set performance monitoring instrumentation flush policy.
List current flush policy:

flush [context]

Change performance monitoring event trace buffer flush policy:
flush [context] [-stop | -wrap | -continue]

123

Manual Pages

IPD (cont.)

frame

help

instrument

list

124

Paragon™ System Commands Reference Manual

IPD (cont.)

Display the stack traceback(s) of the current or specified context.
frame [context]
Display IPD commands and syntax.

List all commands:
{helpl?}

Obtain syntax help:
{ help | ? } command

Add, remove, or display program instrumentation for performance
monitoring.

Instrument program:
instrument [context] [[-on] perf_name [start_location [,stop_location

[,write_location]]] [-bufsize value] [[-force] path_name]]

Immediately write performance data and terminate monitoring:
instrument [context] -write

Remove performance monitoring instrumentation:
instrument [context] -off [-nowrite | -write] [perf_name]

List performance monitoring instrumentation information:
instrument [context]

Terminate and remove processes in the current or specified context.
kill [context] [-force] [-fault | -nonfault | -notfirst]
Display source code lines.

List from current execution point:
list [context] [,count]

List starting from procedure:
list [context] [file{}] procedure() [,count]

List starting from a source line number.
list [context] [file{}] [procedure()] #line[: #line | ,count]

Paragon™ System Commands Reference Manual Manual Pages

IPD (cont.)

load

log

more

msgqueue

msgstyle

process

quit

recvqueue

remove

rerun

IPD (cont.)

Load an application under debugger control.
load filename [<infile] [program_args]

Turn debug session logging on or off, or display the name of the current log
file.

log [[-on] filename | -off]

Control scrolling of IPD information on the display.
more [-on | -off]

Display messages sent but not yet received.
msgqueue [context] [type]

Set or display how process identifiers within contexts are displayed and
interpreted.

msgstyle [-nx | -mpi]
Display information about user processes controlled by IPD.
process [context] [-change] [-loadfile] [- full]
Terminate a debug session and exit IPD.
quit
Display pending receives.
recvqueue [context] [type]
Remove breakpoints, watchpoints, and tracepoints.
remove [context] [actionpoint_number [actionpoint_number] ...] | -all

Reload and restart the execution of the program, clearing previous command
line arguments.

rerun [<infile] [program_args]

125

Manual Pages

IPD (cont.)

run

set

signal

source

status

126

Paragon™ System Commands Reference Manual

IPD (cont.)

Reload and restart execution of a program, reusing previous command line
arguments.

run [<infile] [program_args]
Set or display IPD variables.

List all set variables:
set

List variable definition:
set variable_name

Define new or redefine old variable:
set variable_name string

Set or display the set of signals that is reported.

Display the current signal-reporting mask:
signal [context]

Enable signal reporting for specified signals:
signal [context] -on [signo [signo]... | -all]

Disable signal reporting for specified signals:
signal [context] -off signo]... | -all]

Set or display the current source directory search paths.

Display source directory search path:
source [filename]

Set new source directory search path:
source filename directory [directory] ...

Add directories to source directory search path:
source filename -add directory [directory] ...

Remove directories from source directory search path:
source filename -remove directory [directory] ...

Display the debugger status and partition information.

status

Paragon™ System Commands Reference Manual Manual Pages

|PD (cont.)

step

stop

system

threads

trace

IPD (cont.)

Single step through the processes in the current or specified debug context.

Step through source line(s):
step [context] [-call] [,count]

Step one machine instruction:
step [context] -instruction [-call] [,count]

Stop program execution in the current context.
stop [context]

Execute a shell command.
system shell_command
or

! shell_command

Control number of threads displayed for each process with the display,
frame, process, and type commands.

threads [-off | -on]
Set a tracepoint or display current tracepoints.

Display tracepoint information:
trace [context] [-full]

Set tracepoint at procedure:
trace [context] [file{}] procedure() [-after count]

Set tracepoint at source line number:
trace [context] [file{}] [procedure()] #line [-after count]

Set tracepoint at instruction address:
trace [context] address [-after count]

127

Manual Pages Paragon™ System Commands Reference Manual

IPD (cont.) IPD (cont.)

type Display the type of variables in the current or specified context.

Display type of variable in current scope of context:
type [context] variable

Display type of global or static C variable:
type [context] file{} variable

Display type of a C++ class member variable:
type [context] class::[class::]...variable

Display type of local procedure variable:
type [context] [file{}] procedure() variable

Display type of a variable local to a block (in C or C++):
type [context] [file{}] [#line] variable

unalias Delete previously defined aliases.
unalias {alias_name [alias_name ...] | -all}

unset Delete previously defined command line variables.
unset {variable_name [variable_name] ...] | -all}

wait Wait until all processes within the context have stopped running.
wait [context]

watch Set a watchpoint (data breakpoint) or display current watchpoints.

Display Watchpoint information:
watch [context] [-full]

Set Watchpoint on variable:
watch [context] [-access | -write] [file{}] [procedure()] variable [#line]

[-after count]

Set Watchpoint on a memory address:
watch [context] [-access | -write] address [-after count]

128

Paragon™ System Commands Reference Manual Manual Pages

IPD (cont.)

IPD (cont.)

The IPD command parameters are defined in general as follows. Some commands may have
exceptions or special argument requirements:

alias_name

command_string

context

variable

A string (the first character must be a letter) that you choose to represent a
command.

The IPD command string that an alias_name represents. All of the text
following the alias_name to the end of the command line, including spaces,
the pound sign (#), and semicolons, are part of the command_string.

Defines the nodes and process types that the command affects. If you do not
specify a context, the default context applies. Specify the context as one of
the following:

({ all I host | nodelist }:{ all | ptypelist })
(host)
context (communicator : {all | ranklist})

The nodelist is the list of nodes, and the ptypelist is the list of processes on
those nodes to which the command will apply. These can be specified as a
single value, a comma-separated list, a range, a combination, or the special
value all, indicating all nodes and/or process types.

The host argument sets the context to the host process (host-node model).

The communicator is the name of an MPI communicator group to which the
ranks in a ranklist apply. The ranklist is an identifier for a process within an
MPI communicator’s group of processes. A single value indicates a single
process. You can specify a range of ranks with the syntax rankl..rank2,
where rank2 > rankl. Specify alist of ranks by separating rank numbers with
commas, using the syntax rank, rank, rank... The ranklist may include both a
range of tanks and a list of ranks.

The symbolic name of a variable. For assembly language programs, you can
use symbolic names if you have used the proper assembler directives to
produce the symbolic debug information. For C, C++, or Fortran programs,
IPD follows the scoping rules of the language. IPD looks for the variable in
the following four places, in order: in the current code block, in the current
procedure, in the static variables local to the current file, and finally, in the
global program variables. For C++ programs, IPD searches for class
members after looking in the current procedure. To specify variables not in
the current scope, prefix the variable name with the file{ }, procedure() and/or
#line qualifiers.

129

Manual Pages

IPD (cont.)

130

file{}

procedure()

size_switch

address

count

register_switch

Paragon™ System Commands Reference Manual

IPD (cont.)

The name of the source module in which a variable resides. To refer to a file
other than the location of the current execution point, you must prefix the
variable name with file{}. When you refer to a procedure, you can omit the
file{} name unless there are duplicate procedure names, because IPD can find
the source file from the symbol table information.

The name of the procedure in which a variable resides. You need to specify
the procedure when the execution point is not in that procedure.

Use size_switch when you assign a value to an address. It specifies how many
bytes (1, 2, 4, or 8) are to be assigned to the given address. You may only
assign whole numbers an address; these may be hexadecimal, octal, or
decimal. Floats, complex, characters, and strings are not allowed. The
size_switch can be one of the following:

byte 1 byte

short 2 bytes
long 4 bytes
double 8 bytes

A valid memory address. You can specify a range of addresses either as
start_address:end_address (for example 0x208:0x21b) or as address,count,
where count is the desired number of bytes in the address range (for example
0x208,20).

A positive integer used to denote a range of an array variable or address. First,
you designate the beginning array element or address followed by a comma
and the count, for example, x(10),10, or 0x208,8. The count may be negative
for the list and disassemble commands.

The register_switch can be used to assign a value to a register or a
floating-point register pair. The value must be numeric. When assigning to a
single-word register, the default size is long. You can override the default
with the -double size specification to assign to a floating-point register pair.
Similarly, the default size is double for double-word registers (-KI, -KR, -T),
but can be overridden with the -long switch. Other size specifications (-byte
and -short) are not allowed.

Paragon™ System Commands Reference Manual Manual Pages

IPD (cont.)

#line

format_switch

register_name

IPD (cont.)

When assigning to a floating-point register pair, always specify the
even-numbered register of the pair. The register switches recognized for the
assign command are -r0, -rl1, -sp, -fp, and -r4 through -r31 for the integer
registers, and -f0 through -f31 for the floating-point registers. You may also
assign to the dual-operation floating-point registers, -KI, -KR and -T, and to
the control registers, -psr, -epsr, -fir, -fsr, and -db. When assigning to the
control registers, IPD reports a warning if you try to change the supervisor
bits of those registers.

A source line number. The line number must be preceded with a pound sign
(#). You only need to specify a line number if the variable is hidden by a
variable with the same name in the current scope.

The format_switch overrides the symbol table information that would
normally determine how a symbol’s value would be printed. For variable
displays, the format_switch can be one of the following:

alphanumeric double real (equivalent to the C float type)
complex float string

dcomplex hexadecimal logical

decimal octal

For register displays, the format_switch can be one of the following:

decimal hexadecimal
double real
float

A specific processor register. The register names follow the processor naming
conventions. The following is a list of register names.

-r0, -rl, -sp, -fp, -r4 .. -r31 Integer register file

-0 .. -f31 Floating-point register file

-psr and -epsr Processor status register and
extended processor status register

-db Data breakpoint register

-dirbase Directory base register

-fsr Floating-point status register

-fir Fault instruction register

-KI, -KR, and -T “Konstant” registers and
“temporary register”

-merge Merge register

131

Manual Pages

IPD (cont.)

perf_name

start_location

stop_location

write_location

path_name

filename

132

Paragon™ System Commands Reference Manual

IPD (cont.)

perf_name is the name of the performance utility that will be used to analyze
the resulting performance data. The three supported performance utilities are
prof, gprof and paragraph and the corresponding switches are -prof, -gprof
and -paragraph.

The start_location is the point in the code at which performance data
collection begins. This can be an entry or exit point to a procedure, a line
number, or an address. The syntax for the start_location specification is one
of the following:

[-entryl-exit] [file{}] procedure()

[file{ }] [procedure()] #line

address
The location at which performance data collection ends. The stop_location
can be an entry or exit point of a procedure, a line number, or an address. The
syntax for the stop_location specification can be one of the following:

[-entryl-exit] [file{}] procedure()

[file{]] [procedure()] #line

address
The location at which all performance data is written and performance
monitoring is terminated. The write_location can be an entry or exit point of
a procedure, a line number, or an address. The syntax for the write_location
specification can be one of the following:

[-entryl-exit] [file{}] procedure()

[file{ }] [procedure()] #line

address
path_name can either be a single event trace file for all nodes and processes
or path_name can be a directory name where a data file exists for each

process in the application.

The file name of the program that you want to load. Specify the path name if
the file is not in the current directory.

Paragon™ System Commands Reference Manual Manual Pages

IPD (cont.) IPD (cont.)

infile A program’s input file argument. All of the program’s standard input (stdin)
will be read from infile. The infile is read during a wait command.

program_args Arguments to be passed to the program. Anything following infile is assumed
to be an argument. This includes any semicolons.

If the program was compiled with the -nx option, program_args should
include any operating system command line arguments necessary for loading

the application (such as -pn partition, -sz num_nodes, -pt process_type,
-nd node_list, and so on).

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
Paragon™ System Interactive Parallel Debugger Reference Manual

Paragon™ System Application Tools User’s Guide

133

Manual Pages

LOAD_LEVELD

Paragon™ System Commands Reference Manual

LOAD_LEVELD

load_leveld, loadlevel: Balances the system load across the service nodes of a Paragon system.

Syntax

load_leveld [-s] [-p file]

loadlevel start | stop

Arguments

=S

-p file

start

stop

Description

Specifies static load-leveling. By default, load-leveler daemons exchange
information only. If this switch is not supplied, the load-leveler dacmons do not
attempt to distribute processes in an attempt to even out the processing load across
the system. To enable static load-leveling, remote process creation must also be
enabled. By default, remote process creation is enabled. You enable remote
process creation by setting the bootmagic string ENABLE_FORK_REMOTEto T
or t. If this string is set to F or f, static load-leveling is disabled.

Specifies an alternate parameters file for load-leveling. The default file is
/etc/load_level/parameters. The parameters file contains load-leveler parameters
that specify the load leveler’s behavior. See the parameters manual page for more
information about the parameters file and the load-leveler parameters.

Instructs the loadlevel script to starts the load-leveler daemons.

Instructs the loadlevel script to stop the load-leveler daemons.

Both the load_leveld and loadlevel commands control the load-leveler daemons on service nodes
in the Paragon system. The loadlevel command is a script that can start or stop the daemons. The
load_leveld command is the command within the loadlevel script that enables static load leveling
and can specify an alternate parameters file. Typically, the load_leveld command is executed
indirectly by the loadlevel script. However, it is possible to execute load_leveld directly from the
command line. Both these commands can be run on a Paragon system by the system administrator

only.

134

ParagonTM System Commands Reference Manual Manual Pages

LOAD_LEVELD (com) LOAD_LEVELD (con)

The load_leveld command starts the load-leveler daemon on each of the service nodes of a Paragon
system or on a subset of nodes specified by the nodes_to_use parameter in the parameters file. The
load leveler improves system performance by balancing the load across the service nodes. The load
leveler behaves identically on each service node. Specifically, no master/slave relationship exists
among the nodes, no central repository for load-leveler information exists, and the nodes using Mach
IPC messages passes load-leveler information among themselves.

The loadlevel script starts or stops the load-leveler daemons. When daemons are started, the -s and
-p switches are applied in accordance to the embedded load_leveld command. To start the load
leveler, enter the following:

/sbin/init.d/loadlevel start

This command starts the load-leveler daemons with static load-leveling. A daemon is started on each
service node in the service partition. The loadlevel start command is executed automatically during
multi-user start up. You should only use this command if the load leveler has been stopped.

To stop the load leveler, use the loadlevel stop command as follows:
/sbin/init.d/loadlevel stop

This command finds the processes for the load-leveler daemons and kills them.

Static Load-Leveling

The Paragon system supports static load-leveling only. During static load-leveling the system
computes the loads on each node and then starts processes accordingly. This behavior is unlike
dynamic load-leveling where processes that are currently running can be migrated to nodes with
lighter loads.

‘When you start the load leveler, a load-leveler daemon runs on each service node. Each load-leveler
daemon locally maintains load information about the service node it is running on (the local node)
and the other service nodes (remote nodes). The OSF server uses the load information to determine
whether the fork() function will create new processes on the local node or on a remote node. Each
load-leveler daecmon determines the load information as follows:

+ The load average of all the service nodes is calculated.

* The load of the local node is compared against the load average. If the load of the local node is
lower than or equal to the load average, the local node is the lightest-loaded node. If the load of
the local node is higher than the load average plus the minimum_overload, the local node is
considered overloaded.

¢ The nodes that are underloaded are identified. All nodes with load values lower than the load

average minus the minimum_underload are considered underloaded.

135

Manual Pages Paragon™ System Commands Reference Manual

LOAD_LEVELD (cont) LOAD_LEVELD (cont)

¢ Each underloaded node is assigned a probability value proportional to the difference between
its load and the local node’s load.

The load-leveler daemon periodically updates this load information to determine the lightest-loaded
node, or “fastnode.” The “fastnode” can be either the local node or a remote node. The load leveler
hands the “fastnode” value to the local OSF server. Until the “fastnode’ value changes, all new
processes originating on the local node are created on the “fastnode.”

The OSF server’s “fastnode” changes if the server receives a new value from the load-leveler
daemon. This is controlled by the fast_node_timeout parameter. The OSF server discards old
“fastnode” values after FORK_REMOTE_TIMEOUT seconds, and the server creates all processes
on the local node if there is no new “fastnode” value. The bootmagic string
FORK_REMOTE_TIMEOUT specifies the time-out period when the “fastnode” changes to the local

node if the “fastnode” value is not updated. The default value for FORK_REMOTE_TIMEOUT is
60 seconds.

Load Information Exchange
Information exchange about load levels is controlled through the information exchange algorithm as
described in the paper ““A Distributed Load-balancing Policy for a Multicomputer”. For information

on where to get this paper, see the “See Also” section of this manual page.

You can use the following parameters in the parameters file to tune the load information exchange
between load-leveler daemons:

* minimum_overload, minimum_underload
* number_vector_elements

e re_dispatch_timeout

e send_timeout

o static_min_load_delta

See the parameters manual page for more information about these parameters.

136

ParagonTM System Commands Reference Manual Manual Pages

LOAD_LEVELD (cont) LOAD_LEVELD (cont)

When the loadlevel script is executed, a load-leveler daemon is started on each service node. The
load for the current node is calculated using a combination of weighted averages of three separate
load values obtained from the Mach kernel and paging information. A load value for a node is
determined as follows:

cpu_utilization + (page-ins per second * pagein_load) + (page-outs per second * pageout_load)

The calculation of cpu_utilization is based on the kernel's 5-second, 30-second, and 1-minute load
averages. The relative weight for each of these values is specified with the parameters
first_weight_factor, second_weight_factor, and third_weight_factor. Page loads are determined by
the parameters pagein_load and pageout_load. Paging statistics are sampled according to an interval
determined by the parameters pgstat_max_interval and pgstat_pref_interval.

A load average is a positive floating point value, typically less than 10. The load average represents
the average number of processes that simultaneously want to use the processor. A node number and
its corresponding load value are called a node/load pair.

Each load-leveler daemon uses a load vector to store and exchange load information. The load vector
contains a fixed number of node/load pairs that are ordered. The size of the load vector size is
specified in the parameter number_vector_elements. After the current node’s node/load pair is
calculated, the node/pair information is placed into the first slot (slot 0) of the load vector. The first
half of the vector is sent periodically to the load-leveler daemon on a randomly selected node.

Because message-passing overhead can be expensive, each load-leveler daemon only exchanges
load information with the load-leveler daemon on one randomly chosen node. Every send_timeout
seconds the load-leveler daemons send load information. Between sends, the load-leveler daemons
receive half-size load vector messages from other nodes. The received node/load pairs are shuffled
together with those in the first half of the existing load vector to produce a new load vector.
Specifically, the received pairs are sequentially placed in the odd-numbered slots of the new vector,
and the existing pairs are sequentially placed in the even-numbered slots of the new vector. Thus at
each shuffle, all node/load pairs move to a higher-numbered slot. The exception is the node/load pair
in slot 0, which always contains information for the current node.

As new node/load pairs are received and combined with existing pairs, newer information replaces

older information. The lower the slot number in which a node/load pair appears, the more recent that
load information is. The pair in slot 0 is always that of the current node, and is the most recent of all.

NOTE

When the load-leveler daemon is running, the inet daemon uses
the load information to determine which service node a login
process is started on.

137

Manual Pages Paragon™ System Commands Reference Manual

LOAD_LEVELD (con) LOAD_LEVELD (com)

Files

/sbin/init.d/loadlevel
Specifies the command path of the loadlevel script.

Jusr/sbinfload_leveld
Specifies the command path of the load_leveld command.

/etc/load_level/parameters
Specifies load leveler configuration parameters.
Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.
See Also
files: bootmagic, parameters

Amnon Barak and Amnon Shiloh, “A Distributed Load-balancing Policy for a Multicomputer,” in
Software—Practice and Experience, Vol. 15 (September 1985).

138

Paragon™ System Commands Reference Manual Manual Pages

Lists and generates statistics for files.

Syntax

Is [-aAbcCdfFgilLmnopPqrRstux1] [file ... | directory ...]

Arguments

-a

-b

-C

-f

-F

-8

-i

Lists all entries in the directory, including the entries that begin with a . (dot).
Entries that begin with a . (dot) are not displayed unless 1) they are explicitly
referenced, or 2) the -a flag is specified.

Lists all entries, except . (dot) and .. (dot dot).

Displays nonprintable characters in octal notation.

Uses the time of last modification (file created, mode changed, and so on) for
sorting (when used with -t) or for displaying (when used with -1). This flag has no

effect when not used with either -t or -1 or both.

Sorts output vertically in a multicolumn format. This is the default when output is
to a terminal.

Displays only the information for the directory that is named, rather than for its
contents. This is useful with the -1 flag to get the status of a directory.

Lists the name in each slot for each named directory. This flag turns off -1, -t, -s,
and -r, and turns on -a; this flag uses the order in which entries appear in the
directory.

Puts a/ (slash) after each filename if the file is a directory, an * (asterisk) after
each filename if the file can be executed, an = (equal sign) after each filename if
the file is a socket, an @ (at sign) for a symbolic link, and a | (vertical bar) for a
FIFO.

Displays the same information as -1, except for the owner.

Displays the i-number in the first column of the report for each file.

139

Manual Pages

LS (cont.)

-L

=-m

-n
-0

P

-P

-q

-r

140

Paragon" System Commands Reference Manual

LS (cont.)

Displays the mode, number of links, owner, group, size, time of last modification
for each file, and pathname. If the file is a special file, the size field contains the
device’s node number and the major and minor device numbers. If the file is a
symbolic link, the pathname of the linked-to file is also printed preceded by ->.
The attributes of the symbolic link are displayed. The -n flag overrides the -1 flag.

Lists the file or directory the link references rather than the link itself, if the
argument is a symbolic link.

Uses stream output format (a comma-separated series).

Displays the same information as -1, except that it displays the user and the group
IDs instead of the usernames and group names.

Displays the same information as with -1, except for the group. The -n flag
overrides the -o flag.

Puts a slash after each filename if that file is a directory.

Displays the stripe attributes for a PFS file. The stripe attributes displayed consist
of:

* The file’s stripe unit size, in bytes. This is the unit of data interleaving
used in the PFS file.

» Thefile’s stripe factor. This is the size of the PFS file’s stripe group. The
stripe factor is equal to the number of stripe directories, and when
multiplied by the stripe unit equals the size of one PFS file stripe.

e The file’s stripe group. The stripe group is a list of stripe directories in
the UFS or NFS file systems (typically UFS mount points) that are the
storage locations for the PFS file.

The stripe attributes of an individual PFS file can also be retrieved and set
programmatically with the fentl() system call. See the fentl(2) manual page for
more information.

Displays nonprintable characters in filenames as a ? (question mark) character, if
output is to a terminal (default).

Reverses the order of the sort, giving reverse collation or the oldest first, as
appropriate.

Paragon™ System Commands Reference Manual Manual Pages

LS (cont.)

Description

-S

-t

-u

-X

-1

LS (cont.)

Lists all subdirectories recursively.

Gives space used in 512-byte units (including indirect blocks) for each entry.
Sorts by time of last modification (latest first) instead of by name.

Uses the time of the last access instead of time of the last modification for sorting
(when used with -t) or for displaying (when used with -1). This flag has no effect
when not used with either -t or -1 or both.

Sorts output horizontally in a multicolumn format.

Forces one entry per line output format; this is the default when output is not
directed to a terminal.

The Is command writes to standard output the contents of each specified directory or the name of
each specified file, along with any other information you ask for with flags. If you do not specify a
file or a directory, Is displays the contents of the current directory.

By default, Is displays all information in collated order by filename. The collating sequence is
determined by the LC_COLLATE environment variable (see the ctab command).

There are three main ways to format the output:

1.

2.

3.

List entries in multiple columns by specifying either the -C or -x flags. -C is the default format,
when output is to a terminal.

List one entry per line.

List entries in a comma-separated series by specifying the -m flag.

The Is command uses ioctl() to determine the number of byte positions in the output line. If Is cannot
get this information, it uses a default value of 80. Note that columns may not be smaller than 20 bytes
or larger than 400 bytes.

141

Manual Pages Paragon™ System Commands Reference Manual

LS (cont.) LS (cont.)

Modes

The mode displayed with the -1 flag is interpreted by the first character, as follows:

b Block special file

c Character special file

d Directory

1 Symbolic link

p First-In-First-Out (FIFO) special file
s Local socket

- Ordinary file

Permissions

The next nine characters are divided into three sets of three characters each. The first three characters
show the owner’s permission. The next set of three characters show the permission of the other users
in the group. The last set of three characters show the permission of everyone else. The three
characters in each set show read, write and execute permission of the file. Execute permission of a
directory lets you search a directory for a specified file.

Permissions are indicated as follows:

r Read

w Write

X Execute or search (directories)
- No access

The group-execute permission character is s if the file has set-group-ID mode. The user-execute
permission character is s if the file has set-user-ID mode. The last character of the mode (normally
x or -) is t if the 01000 (octal) bit of the mode is set; see the chmod command for the meaning of
this mode. The indications of set-ID and the 01000 bit of the mode are capitalized (S and T,
respectively) if the corresponding execute permission is not set.

142

Paragon"" System Commands Reference Manual Manual Pages

LS (cont.) LS (cont.)

When the sizes of the files in a directory are listed, the Is command displays a total count in 512-byte
units, including indirect blocks.

The LC_TIME environment variable controls the format of the date and time.

Examples
1. To list all files in the current directory, enter:
ls -a
This lists all files, including . (dot), .. (dot dot), and other files with names beginning with a dot.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>