b4

[

&

b

oo Lo Lo

‘ [HR B T b Loy Lo Lo

b

e B e,
L N T

May 1995
Order Number: 312644-002

Paragon' System

Fortran Language Reference Manual

Intel® Corporétion

Copyright ©1995 by Intel Scalable Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or copied in
any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems...without
the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any cxrcum'y other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (¢)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 1386 Intel iPSC
287 1387 Intel386 Paragon
i 1486 Intel387

1487 Intel486

1860 Intel487

APSO is a service mark of Verdix Corporation

DGL is a trademark of Silicon Graphics, Inc.

Ethemnet is a registered trademark of XEROX Corporation

EXABYTE is a registered trademark of EXABYTE Corporation

Excelan is a trademark of Excelan Corporation

EXOS is a trademark or equipment designator of Excelan Corporation

FORGE is a trademark of Applied Parallel Research, Inc.

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.

GVAS is a trademark of Verdix Corporation

IBM and IBM/VS are registered trademarks of International Business Machines

Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.

NFS is a trademark of Sun Microsystems

OpenGL is a trademark of Silicon Graphics, Inc.

OSF, OSF/1, OSF/Motif, and Motif are trademarks of Open Software Foundation, Inc.

PGI and PGF77 are trademarks of The Portland Group, Inc.

PostScript is a trademark of Adobe Systems Incorporated

ParaSoft is a trademark of ParaSoft Corporation

SCO and OPEN DESKTOP are registered trademarks of The Santa Cruz Operation, Inc.

Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate Technology, Inc.
SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.

Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd.
VADS and Verdix are registered trademarks of Verdix Corporation

VAST2 is a registered trademark of Pacific-Sierra Research Corporation

VMS and VAX are trademarks of Digital Equipment Corporation

VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.

XENIX is a trademark of Microsoft Corporation

L
"

7
-

”W

oA

e

Fo3

B4
i

F a4 =a
.

4

SN R S N T R ¢

4

R

[

E}

i 4 { 3 L

A

L

i

|] e |)] L] P

3

4

Lo Lo b

£ i

i |

&

4

-

B

WARNING

Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of atool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in-
stalled, and the front of the diagnostic station. There are no user service-
able areas inside the system. Refer any need for such access only to tech-
nical personnel that have been qualified by Intel Corporation.

CAUTION

This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer-
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. lil shall apply. Unpub-
lished—rights reserved under the copyright laws of the United States.

L
-

h il

B

{

"

G|

L T =
ik

B4

]
| |

El

4

4 i

4

t

§ 3

3

4

.4

3

3
[

4

E

A

b i ; ! 3 Lo Lo ‘

k.

e

Preface

This manual describes the implementation of FORTRAN 77, the language accepted by the if77
compiler, and is part of a set of manuals describing the Fortran and C compilers and the compilation
tools available from Intel Scalable Systems Division. This manual presents a description of the
statements and intrinsics accepted by if77 FORTRAN 77. The Fortran compilation system consists
of an ANSI-conformant Fortran compiler, macro-processor, assembler, linker, utilities, a debugger
and a profiler. You can use these tools to create, debug, optimize and profile your software. Refer to
the section “Related Publications” for a list of the other manuals in the manual set.

Audience Description

This manual is intended for people who are writing programs in Fortran and are familiar with the
language. To use if77, you should be aware of the role of Fortran and of assembly-language
programs in the software development process. The if77 compiler runs on a variety of host systems.
To use if77, you need to be familiar with the basic commands available on your host system.

Compatibility and Conformance to Standards

The if77 compiler accepts an enhanced version of FORTRAN 77 and runs on a variety of host
systems. This version of FORTRAN 77 conforms to the ANSI standard for FORTRAN 77 and
includes various extensions from VAX/VMS Fortran, IBM/VS Fortran, and MIL-STD-1753.

For further information, you can also refer to the following:

» American National Standard Programming Language Fortran, ANSI X3.-1978 (1978).

* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

* Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI X3.-1978, MIL-STD-1753 (November 9, 1978).

Preface ! Paragon™ System Fortran Language Reference Manual 4 o
A
.
ol
-
, o
Organization .
This manual is divided into the following chapters and appendices: ' f' i
e
Chapter 1 “Language Overview” provides a description of the language structures and -
the overall language features. N m 1
Chapter 2 “Data Types” describes the Fortran data types and constants that if77 -
supports. L
W
Chapter 3 “Fortran Statements” provides an alphabetical listing of each statement, with ~
a summary of each statement, a syntax description, and a complete ’"
description. s
Chapter 4 “Input and Output” describes the types of input and output available with if77 o
Fortran. -
Appendix A “Intrinsics” specifies the if77 intrinsic functions. E 1
Appendix B “VAX System Subroutines and Built-in Functions” discusses the VAX/VMS .
system subroutines and the built-in functions. {:
n W -
Hardware and Software Constraints a -
This manual describes a version of Fortran that is accepted by if77, operates on a variety of host o
systems and produces object code for the i860™ XR and the i860™ XP microprocessors. Details P
concerning environment-specific values and defaults and host-specific features or limitations are
presented in the release notes and installation instructions sent with the if77 software. o
-
N R
.
&)
E)
é

4

{ I

vi

B3

| B

£

A

B

3

)’
@

A

&

Paragon"" System Fortran Language Reference Manual Preface
Conventions
This manual uses the following conventions:
italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width
is used in examples and for language statements in the text.

[iteml] square brackets indicate optional items. In this case item! is optional.

{item2 | item3}
braces indicate that a selection is required. In this case, you must select either
item2 or item3.

filename ... ellipsis indicates a repetition. Zero or more of the preceding item may occur.
In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown using upper-case characters.

<TAB> non-printing characters, such as TAB, are shown enclosed in greater than and
less than characters.

§ this symbol indicates an area in the text that describes a FORTRAN 77
enhancement. Enhancements may be VAX/VMS FORTRAN enhancements,
IBM/VS enhancements or military standard MIL-STD-1753 enhancements.

Related Publications

The following documents contain additional information related to the if77 compiler.

ParagonTM System Fortran Compiler User’s Guide
Paragon™" System i860"" 64-Bit Microprocessor Assembler Reference Manual

System V Application Binary Interface i860 Intel i860™ Processor Supplement by AT&T Unix
System Laboratories, Inc (available from Prentice Hall, Inc.).

American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI X3.-1978, MIL-STD-1753 (November 9, 1978).

vii

Preface

ParagonTM System Fortran Language Reference Manual

Comments and Assistance

Intel Scalable Systems Division is eager to hear of your experiences with our new software product.
Please call us if you need assistance, have questions, or otherwise want to comment on your Paragon

system.

U.S.A./Canada Intel Corporation
Phone: 800-421-2823
Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

20090 Assago

Milano

Italy

1678 77203 (toll free)

France Intel Corporation

1 Rue Edison-BP303

78054 St. Quentin-en-Yvelines Cedex
France

0590 8602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division

Pipers Way

Swindon SN3 IRJ

England

0800 212665 (toll free)

(44) 793 491056 (answered in French)

(44) 793 431062 (answered in Italian)

(44) 793 480874 (answered in German)

(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

Japan 0130 813741 (toll free)
0298-47-8904
World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006

US.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

viii

1 t

4

¥

1

3

i

4

L

4

|] | ==] | == = = | == Ea [
b 3 !

B

e
4

Table of Contents

Chapter 1

Language Overview

Elements of @ FOrtran Module ...t e snssee s 1-1
Statements and COMIMENEScccevrerrsreresieirerrre s rress s see s e e s re st e sn s sesres s sesmesrasstesanesassas s s aseanssans 1-1
DebUG STAEMENES ...t e e sne s e e e s e s s 1-1
StAtEMENTt OFAEIING ...eevveireereriiicie e rre s ce s s s e s e s e s st e ae saae s saae e sans e b e e e e saassraessn s e se s nnesnenses 1-2

The Fortran Character Set ...ttt st sstsnane 1-3

FOIMAtHING ...ttt e s s s s 1-4
L0017 0T 8 o 441 (T 1-4
SR 1oJ T 1= 11 (14 o RSP 1-5
Iz o7 =Y o YOS SN 1-5
CoNtiNUALION FIEIAoeieeeeieecererciecrtrecesrre e st e st e s e e e sres s s e e e e s s e aesemessnesrsesnsnssnn e snenssnensnenann 1-5
SEAEMENT FIIAeoeeireirie et rrer et sr s s s e s se s s s eane e st sre s e e e s e as s saessamneseesrnesrannansessanssnansnnessns 1-5
InCluding FOrtran SOUICE FlEScucrreuiiicrercerrircecrseraerere s s sae s tresres e s e sssessseesseesanssssssmanesnsanssnes 1-6
§ Input File Format — Summary of EXtENSIONSooicicerniiiciiiricsr st s se e ans 1-6

The Components of Fortran Statements ... seeneenns 1-7
SYMDBDONC NAITIES ...ceeirceerere et steese s sae s s s s s reasssaas e st s s e e srassae s ssssssnsssesssmasssesens s snnast sennenssnnssssessns 1-7
SYMDOIIC NAME SCOPE ...cecveeeimreiecrierireeriessesrareeseneseesanssseseseesresssesssressseassssesnesssesessassnsans assenssressssesses 1-8

Table of Contents Paragon™ System Fortran Language Reference Manual
EXPIESSIONS ...ttt s sm st st st s s st s bt s s st st s et et se s s et susenananes 1-8
ArithmEtiC EXPreSSIONSuiviriererreiicriiiiniirseeseinessstsesssssssnnsssassrassesessssssssanenasssssssssssssssssnssassesssnssesnenses 1-9
Relational EXPrESSIONSccvvivererrmrieirisnissererinrsssss s ssnssssssssssse s s sstssse sesssnssssssessssssssassenasans nsessnnas 1-10
LOQICAl EXPrESSIONS ...cccivireiisrinirisiensnsiisrresstemsstsesssensssssnesssssessnssassssssssssssnessnnassssnsssssessssnssssanssnnssssns 1-11
Character EXPrESSIONScoucvcveereisseisimssiorisssssessessssissss s snes s e samessesasssssa e saessssssessassasssns s assss e sssanss 1-11
Character CONCAtENALIONcccereceerrrisniisnicsteinrsressaresseesseesansessessesssnsssnsssnesssesssansserssanesssesnsessenssns 1-12
Precedence RUIES ...ttt sesss s sn s st st s saen s s s 1-12
AsSSIgNMENt STAEMENTS ... e 1-13
Arithmetic ASSIGNMENE ...cc.eiiececertec et e s s s e e e s as s sreesr e ssnessanssne s aessrassnsessnnesssnsnsnsrenanns 1-13
Logical Assignment Statement ..o s 1-14
Character aSSIGNMENLccocveeeiiieiiie et sess s st e sas e s sr s e s sesran st srae s e s sass st sessananns 1-14
LiSHING CONIIOIS ...ttt st s s s s s s s et et s s 1-15

Chapter 2
Data Types

CONSTANLS ...ttt er e s se s e s s es s st e e b e s 2-3
INtEger CONSEANESciviiiiiiie e e s s s s s s e st e s e e s e s st s 2-3
REAI CONSLANEScovererriiriiiininneseesnsesssiseesesssessssssssat e s s s ssssasssssss s saesesssssssssesesssesnssssesasnansans sesnessesens 2-4
Double Precision CONSIANESccccviriirinniieiin it as e st s s sasns s s st s 2-4
Logical Constants eetsemseessmressseressaresnaieemeneessntesann raseraserEanere s nne s et Re et e enanmearane s as suaas se e narnecnn 2-5
COMPIEX CONSTANIScvereirieiierseirererctriatrseissnes st rsssessaessnesessesssesaessasssssessessrnessnsesssesssssrnsssnnsasessarssens 2-5
Character CONSLANEScccceviiceeseiiirrertir et s n s s sa st s s e st snarmna s snnanons 2-5
Octal and Hexadecimal CONSIANEScccoceeeenrereicimsneseesse s s csamssnesesassse st ssesssssesssesseessansenssssnessens 2-6
HOllErith CONSIANESccuieieiiiiietiist i s s st b e e s s sre e e s san s 2-7

ATTQYS ...ttt e s e s s e s et e s e e e AR e s e Rt s 2-8
An Array Declaration EIBMENT ...ttt et e st s se s et s nme e s sn e 2-8
SUDSCHIPLS .ceiiiiiereecrrceseretsressessasss e restesenser e rasesssssnasnessssnnsas sasassssnessness sesssseesnessssaseessssnnsssenenssrnssnasans 2-8
Character SUDSEIINGccciiciiiricinn ettt et st e s s s s em e sam e s snens 29

X

=
"

o
& ow

rm
&

m

=R
4 4

4

wa

l

| =
B4

4

9

£

P

*

B

|

B

b

b

i

B

d

i
A

L2

i
)

E

&

4

i

A

¢ { [[

[

sl

sl

[

Paragonm System Fortran Language Reference Manual Table of Contents
§SITUCTUIES ...ttt bbb e e s bbb s s bab s ar bt nr s en 29
§ REBCOIAS ..t r st et e e e s e ee et e s et e se et e e e e s s e mee s s ne e e e e n e e e e snneere e s seneeaeensnrnen 2-10
§ UNION and MAP DECIArationsc.cceeccerrererseesiiescsssssseessseeesssssssessenssssessssesssssesssssssssssssssssssssnns 2-12
(D72 ez W T aT) 7= 2= (1o o O T OSSPSR SRPUOROt 2-13
§ POINtEr Variables ...ttt et 2-14
ey 01 0] = 2-15
Chapter 3
Fortran Statements
Definition of Termsccccoeecuueee. eeareete et s s ee e E e s Rt s ea e R E R 3-1
L VO 0 = PR 3-2
§ ALLOGCATE ..coiceiiiineiiin e seersscar s steesssnesasas s sran s s s s st e sn s s snnmssase s eesnnenssasssesessesnenssnas anaessnnnessesnanes 3-3
ASSIGN ..ttt e st s st a e e e eb e R Rt e sae R e s s an e e ne e s e e R ean 3-4
BACKSPACGE ...ttt sss e et s s s s s s st s et saesr s s e s s e s s e s sassnnt et shesnnnesn 3-5
BLOCGK DATA .ottt et se et e st ese e ettt s s e e ss e as s s sa s st hms s as s st sanane e s s ennnns e sansanss 3-6
§ BYTE ittt st s e e e e s ea e e e R et R e s ne et et sassnennes 3-7
CALL ettt st sae s sae s e e b saee e e e eae e e e e e eR e e es e e eE e aRe e e e aaneaeearenesensnanane 3-8
CHARAGTER ...ootiiteccectrte e st st stesssse s s e st satssen s s s e st ssssssn s sssasssstssssssssensesssensssnnesssssseneen 39
CLOSE ...ttt e s e s sr e s s s see s e es st e se e sme s s sb e sm e s s Re b e enenbe e st sraeaesne e sanann 3-10
COMMON (Static and DYNAMIC)ccerceieimrirreisisiissner s sns e esssss st se s sess s sssts st s sss st s sasss s ssssssnans 3-11
COMPLEX ...ttt se s esn s e sn s sessese s e s et ss e s st s e e s et s seenesmea s e s s e s assas s snsnesesnantennen 3-14
(070 1 I LN P 3-15
DATA ettt et et s e s s ae s SRR Sae R R R R e e en e eEea e se e R R eR e e R et e AR R e s nE et nee 3-16
§ DEALLOGCATE ...t ceces st st sae st st et e s s s e s e sne st ers s e sens s s b s s e e s s sntsana 3-17
§ DECGODE ...ttt et sne s sresaese s a s seas e s e e s s st sas st ese st e s menense s rensens e e e e sanaanas 3-18
DIMENSION ...ttt st sesae st sasse s s e s s s se s sr s s sae s easassanass e sesa e e s s snsneens 3-19
(51O T (1 (=T - 1111/ S RN 3-21
§ DO WHILE ...ttt st e e s et sae st et st s s s s s sne st eas 3-23
DOUBLE COMPLEX ...ooouciietitetetnses st sssssssssssssssssssesesnssesnsssmsssssssssssesanssssnsss ssasssssesessassasensssssnassensns 3-24
Xi

Table of Contents F’aragon"‘l System Fortran Language Reference Manual
DOUBLE PRECISION ..ottt s e ss st sas s s saas e saas s sssan s st s s e snmasnas 3-25
] N 3-26
] | 3-27
§ ENGODE ..ottt s sn e b sa s e sh e sa e e sa e sr e e s eh st s b e sh st snesaeen 3-28
END o e s e e e a R e R b 3-29
§ END DO ettt st s st sa s sa e s s s h e e SR b e s eR R e 3-30
END FILE ottt s s s s sn s e sa s ss s e s sa s sa e b s b e an b 3-31
= 0 | TPt 3-32
§ END MAP ettt s s e s e sb e b s s s e s e s e e s e e 3-33
§ END STRUGCTURE ...ttt st e ssa s st st e s s s sre s sms s st samn s s et 3-34
§ END UNION .ttt s s e s e sass e s s s s sas s s e e st eneu b n e s b b se st sesna s 3-35
L VI TSRS 3-36
EQUIVALENGE ...ttt et s st s s s sm e e st s st s st hes st s sae s sa s mnsnennnan 3-39
) I8 RS 3-40
L 1 1 OO 3-41
FUNCTIONcoriiririintcintccn e ssenens erereeeeiesreer e ae e a e ee s e R e s a R e sa R e a e e e e e e s an e 3-43
GOTO (COMPULE)eeeeiceirreeerierisniesierrssseeessssesssssessseesessessssassssmsssssesssssesssnessesanensesesanssasnsenssnsssanns 3-45
GOTO (Unconditional)cccceerererersercneessresssnssseersnrsssessseessesssmnsnnens trererseeeseresnreesere e saeeenarare s aeenneas 3-46
GOTO (ASSIGNEA) oveeeerereceeerreriesrssresesseres s s s s s ssrsssnasesssss st s snessnssesas e e sen s ssssnssssaseassnssnesneosssssansnnnes 3-47
IE (ATIMEHC) <.vvrvrevses e srssssssssses s sesssssss s sssssssss s ssssss s s sssssesss e 348
L (o 3-49
L (10 To [1) 3-50
Y Lo I TR 3-51
L1 (O 3-52
INQUIRE ..ottt sttt ettt sn s st sa e s s e s s e e st e s e bbb m e ansSab e S e ae s e s sa b annne st ens 3-53
L I =L = PN 3-56
INTRINSIC et st s s b s sa s sr e e sus s sa s e s sanea s s anssunis 3-57
[0 1117 3-59
§ MAP eSS e b ee R A saa e e 3-60
§ NAMELIST .ottt it e s s s e ea e sa s sasn e sab b sa R st sam e s s s saearaas 3-62
L 3-63
§ OPTIONS ...t erreseesesne s e et s st s eme s sarereen e seesm s s e se st s e ene s s s sraes e annnans srnenaensn 3-66

xii

r
i

rFm
-

4

=3

4

b4

=]

L]
L

]
4

rd ba oo

Paragonm System Fortran Language Reference Manual Table of Contents
PARAMETERvevteeeertiererstieeeseesseessssssssssssesssssssseessesaessnssensasassesassessnesssesaasssestessesseessensenssesnssnesnnes 3-68
PAUSE ... ittt ittt ten s srsssssres et e s s se s st as e e e ee s sasanmmnnes s aesasssssassananss sassnsssnnssnesssasersnansasssesssnssnsnsnenss 3-69
§ POINTER ..teeieecereieeeseetre e sneerae st eme s st eesesesb e teen e sae s s e sn e s meas s enaase s saessanannsaessesssssnesanseestansssssessans 3-70
PRINT oot iiiceisriseesiesreesstesessassssessssessns s s s sesss s e s e sassas e s e s sessnssasas srnensssenssessasssssstesssnsssensesansrenanes 3-72
PROGRAM ... ccecteceesrte st e e seessssssessntae st eesaesse e s se e s as sasea st aesssssntsantesn s s sran st s sesesantstesnsenssnennenastasanes 3-73
READ ceetiiecceeeitseeectesassssess s s sessss s ssrsssassssrsssssessasessas snssessesessssasssans sentesstensassesesanessnesssesnassanassnassnne 3-74
REAL coeeiieeceestrseeerresesssessss e s e e ssss s sassasan st s snesseessnessss sunesanasssssanseanes sentenssensnesesesantssessssesnensnnansneassne 3-75
§ RECORD ..occcvererrereetereereteseresssesssssssessssesssesessasse st e sssssnsssesssasssas ssstassnsssnsesssassessnsassessnenssnesssnassns 3-76
RETURN .. ceirtrcceereesesssessses s sessssssssernssesesssnsssesssensas sasssssanssssnsesnes seneesstensessssessssessesssessnessnsassrasssne 3-78
REWIND .ot rrrcrrerresrssersreses e s sssseseseseese s e s s s e s s s en s e s snssnsssasssssnsarasnsnssenassssesenarsnssssnsasisssenes 3-79
SAVE ...eoieeerieeeseeserestsesteestesat s st ae st s s e e s s nssa e e s et e ae s e e e e aseRee et e At eaeseRt e aReean e e e e eRtearne e e saeesaneesenenn 3-80
STOP e cceetreteese s e e s esss s eesa e e s st ae st e e s ese s e e e e s s e saae s st e e e eR e e e aR e R RS e Rb e eR e e ReeRa e E e aeene s nenan e saseen 3-81
§ STRUGCTURE ...eceveireerrtirreeeriesis s ressssesseesssesstssassasessssassessesssssssnssssssssnessssesssssnsssssesssessassnnnesanessns 3-82
SUBROUTINE ...ooiirtreerereerintesteessesssessssssssssssssssssesesseessassassssesssssssessssessnsssssessssssssnsessssssaasensessnssnns 3-84
1= 1 3-86
§ TYPE e eeeceetere st rrtr e et s e sa s eras e s e s e e st sa e e e s ss e et e aneea e e an e aeat e eme et e sAe e Rt aAee e aesr e e ae st e e R neReaaE e nenerenanan 3-87
§ UNION ..ceeeeeieereectr s ersts s st esas st seae e st eas s sesae e seemesse s e ena s sas st e saae st s aases st nranssnasnessesensssenns saensssinsasses 3-88
§ VOLATILE ..eeoiceeeceereercenrcteseveesessestssnsas st e sanesnes st essas sassssnesssessnsssses senesssesssnesenesanessnassssssnansnnesssenases 3-90
WRITE .eoeiiieecestisiresseesieesssnessessassssse samsassessssssssssssssnsensesasssssnesas sesassssessasasssassseessnsasesastassessnsessnsnsnenss 3-91

Chapter 4

Input and Output

File ACCESS METROMAS ...ttt eres s s r s s e ee e e e st st s nas 4-2
Standard PreConNNECIEd UNIEScovccveeecerrerirrereeceeecseeescrerssmssssse e sesssssasessnessesessssnsssssnsssssensssassssanans 4-2

Opening and CloSING FileS ... sasas s 4-2
DIrECE ACCESS FlES «eeviieeiiri ettt re st cree e eecraneee s s sresee s sres s ee s e ann e s e s e nr s e ssmnn e sranessssnsnenssessnnnnssas 4-3
L0 10T g To = TN 1 4-4

Unformatted Data TranSTer ...ttt s s sess e sesssss e s s snas 4-4

xiii

L

Table of Contents Paragonm System Fortran Language Reference Manual i =
r
"
Y-
& ol
r
Formatted Data TranSfer ... ssssse s saees 4-5 .
Implied DO List INput OUIPUL LIStceeeceriereieeriree e isereres e et es s e e e s e seseresen s e e e e ssesasen e e eae e 4-6 .
FOrmat SPECIfiICAtIONSccceeeeerrrrirriieeesseeisensssnrineeesneesseseaessasssresssessssssnrsssesssesssnessnsssaesssnesasesssssnnnesnees 4-6 “ .
A Format Control — Character DAtaccccceviiemiiinininiiniensnisssnscss s ssns s sssesssnesses 4-8 -
D Format Control — Real Double Precision Data with EXponentc.ccovvenveinsinnenncnssnisnnnnen, 4-8 H -
E Format Control — Real Single Precision Data with EXponentc.cecninveivicnnnnscsnsnnnnns 49 -
F Format Control - Real Single Precision Dataccccccccmmminnniiincnnec e cssnesccnnes 4-9 o
G Format Control — Real DAtaccccererrnrecrinniniinsnsine s e s sssse s sses s sessssasennns 4-10 -
| Format Control — Integer Datac.cciveicciincnnnniiene e san s 4-10 e
L Format Control — LOGICal DAtacvureriiiirninisins sttt 4-10 o
QuOtE FOrmMat CONMIOLccueveiniiicsiresinsese st s s e s s sa s sa e sr e sanesans 4-11 m i
BN and BZ Format Control — Blank CONEIOlccccccievrercriererreeessnneresssnseresssnnesersnssenssssssssenenes 4-11 -
H Format Control — Hollerith CONIIOlccceevciiiicrrenirieeerirsnnrerscsnnese s csresssssssenessessasessesnsansans 4-11 "
O and Z Format Control — Octal and Hexadecimal Valuesc.ccocvueiennerinieneeseneneniesscnnnnns 4-12 _—
P Format SPeCifier — SCAIE CONTONvuvucvuceeeursesseescsesssssscsssssssssssssssssssssssessessssssssssessansessassases 4-12 o
Q Format Control - QUANTIEYccccvrerverecriererrseniessereessssscnesssrsssane s ssesasssasessassssssssssssssssessassananss 4-13 -
S Format Control — Sign COMIOIccceeureeereeeresessssserssesssesssssssssssssssesesssessssssssssssnssssssssssssssass 4-13 i
T, TL, TR, and X Format Controls — Spaces and Tab Controlscccccccvnviinnnicnicinnniinennnen. 4-13 .-
Slash Format Control — ENnd of RECOIAcccceveereimminnrenierenseneee s sssensnssssessnsessssssansssnssnenssenas 4-14 P
The : Format Specifier — Format Terminationcccccevcerinnnnmnsnniie s e 4-14 B
S FOMAE COMIO ..uvuveeirieceeririessersssenssensseenesesasssessasssssassansensassssssesenssssseesessensssenssnsnsessnsnenans 4-14 K
Variable Format EXPreSSioNs KBXPISccceiiiisiemisiinesnnninesssse s sssss e esssesssssssssesssssasssnsssns 4-15 -
List-Directed FOrmatting ... ssssssssssssses 4-15 A
LiSt-DIrECLEA INPUL .euvvvveevervecessessssssscsssssssesssssssssssessssas ssssssssssssssessessessssssssssssssnssssasssssesessssssssessesssnes 4-15 w\
LTS LB T=To7 (=T H 1o QTP 4-17 -
Commas in EXtErNal FIBIAccccirvmreeeiriccceerstnnseesn e ssmrse s saes st sses st s et s s s e sssms sassse st sssmssns 4-18 L
§ NAMEIIST GIOUDS ..ooee oo eeemeeessee s ssesesseessesssssssesses st ssssses s sesenssssssssss 418 ‘-
§ NAMEESE INPUL 1..vveeveesretevesessesee s sesssssssessssssssssssssssessessassssesssssss s sasseesassses s sesssessrssessrssassssssenees 4-18 ﬂm‘
§ NaMEISt QUIPUL ..ot re e rrenes s e s e crsee s e s es s s ersasn e s an e s seens s bssesanenssnassssansasnessnassnn 4-19
i
1

xiv

=
2

Paragon" System Fortran Language Reference Manual Table of Contents

Appendix A
Intrinsics

Appendix B

VAX Built-in Functions and
System Subroutines

BUIIt=-IN FUNCHIONS ...ttt ettt ase st st a st s s s s aes B-1
VAX/VMS System SUDFOULINES ...ttt ssesesesse e ssssssssessnns B-1
XV

Table of Contents

Figure 1-1. Order of Statements

xvi

Paragonm System Fortran Language Reference Manual

List of lllustrations

--

”]
-

N"\
.

o o

A

|

o
B

|

5|

| I | A

i

Paragon"‘ System Fortran Language Reference Manual Table of Contents

Table 1-1.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 1-8.
Table 1-9.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 3-1.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.

List of Tables

o gL IO g T r=Tor (=T RN 1-3
Record Positions and Fields ...t s s 1-4
ArithmMEtiC OPEIALOrScccceeveercerectreitrerrsrs s s s seseassssesesseestesssressresssnssnensnsessessassrssnsnsasssas 1-9
OPErator PrECEABNCEuuvecreieiieiritieeceerestesreceseee e e sessssssesessae s s esssaesssnesesseesessansssnsessssnassnnes 19
Relational OPEratOrsccccceeereerricrreserssnessessseerseessrsssresssessssessssssssessnessensssesonrsssnesesnassssss 1-10
LOGICAl OPEIALOIS ...ceiveieeirecmeiinrrreseescseersseessssnesssasessenssssaesessesssssesssnnssssasssssssssssensssssnesssnnsanaes 1-11
Character CONCAtENALIONcciviniiiiniriise st s e s b e 1-12
OPErator PIECEUEINCEcocveeveirrrreerisiesrnsssesesesssesssesesessssssssessnnesssessressssssnsesssassessenesesasssanssss 1-12
Fortran Standard DAta TYPES ...ecvcciereerermrereereseeiinnssnnsssssaessnssssnessesssesssssssassssessaseasnessnssasssenn 2-1
(D7 1= N o T= T = (= o] o TR 2-2
Data TYPE RANKS ...ooiiiiieereeritceeee s rens e et s s e seesr e e e e e s se e sasssrsnssnese e s snsannasseesessanansesane 2-3
REAI CONSIANESeoiiieieiecrrceeeee s e s rere s e e senr s s s snese e s e e e ssme s samssrs e s sr e s e ensmsear s seeeesbeesnssenes 2-4
Double Precision CONSIaNtScceiiieniiniiiiiin ittt sssnsse sesssesssssnees 2-4
OPTIONS SttEMENEooieeeeeiiceeirseeeiresetre e e s s s s sn s srassn s sr s s ss s srbsanssan et aan 3-66
LT o S o= (1= ¢ 4-3
Format Character CONtrols for @ PHNEETcoceiieicerie st ssne e e s 4-7
List Directed INPUt VAIUBSccvriireeiie ittt e nae s ar s 4-15
Default List Directed Output FOrmattingcccceecerienennniessenirersstes s s saeenaes 417
Zero Extend FUNCHONScccuiiiiiieriiinnisnte et ss s sses s sses s sasn s s s s e as s sssasne s e sasanenen A-1
Math INtrinSiC FUNCHONScoiviieiiiiiiiiriss s st e e A-2
TrigoNOMELriC FUNCHONS ..cccceeiieeerisierireecccennscnnssssssssssssaneesmnesessasessnesessensssssnsssensssanessnsnnnssnes A-2
Arithmetic FUNCHONS ...ttt e et A-5
Type Conversion FUNCHONSccccvveieeiereciiiinniinssrsssss s sesnnnsssssssssassssssssssssssssesssssasssssnsassans A-8
BitWiS€ FUNCHONS ...ccoueiiiiieieceesiii ettt ettt s st s e e s eaasssnn s A-9

xvii

Table of Contents

xviii

Paragon™ System Fortran Language Reference Manual

-

. s

= oa
Ko

E! i

5

4

k

E b4

- == | [| - = |
LI 1

3

lm
d

Language Overview

|
i

This chapter describes the basic elements of the Fortran language, the format of Fortran records and
the types of expressions and assignments accepted by if77 Fortran.

Elements of a Fortran Module
A Fortran module is either a SUBROUTINE, FUNCTION, BLOCK DATA or PROGRAM.

Fortran source consists of a sequence of modules which are to be compiled into object modules.
Every module consists of statements and optionally comments beginning with the module statement,
either a SUBROUTINE, FUNCTION, BLOCK DATA or PROGRAM statement, and finishing with
an END statement.

In the absence of a module statement, the compiler will insert a PROGRAM statement.

.‘ i!

Statements and Comments

A‘l
O

Statements are either executable statements or specification statements. Each statement consists of
a single line or source record, possibly followed by one or more continuation lines. Comments may
appear anywhere in the source.

o

To append a comment to a Fortran statement line, precede the comment with an exclamation mark
(") followed by the comment on the same line.

R | b |
«on

Debug Statements

The letter “D” in column 1 designates the statement on that line to be a debugging statement. The
compiler will treat the debugging statement as a comment unless the command line option -Mdlines
is set during the compilation. In that case, the compiler acts as if the “D” were a blank and compiles
the line according to the standard rules.

ed [

[j 1-1

Language Overview Paragon™ System Fortran Language Reference Manual

Statement Ordering

The rules defining the order in which statements appear in a program unit have been relaxed, as
compared to the ANSI standard, as follows:

» DATA statements can be freely interspersed with PARAMETER statements and other
specification statements.

+ NAMELIST statements are supported and have the same order requirements as FORMAT and
ENTRY statements.

+ The IMPLICIT NONE statement can precede other IMPLICIT statements.

Figure 1-1 shows the required order of statements in a Fortran subprogram. In Figure 1-1, read from
top to bottom and left to right. For example, since the column for comments spans the entire table,
up to the END row, this indicates that comments may occur anywhere within a Fortran subprogram,
before an END statement.

OPTIONS statement §

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statements

IMPLICIT NONE statement §
C°";':§"ts NAMELIST § IMPLICIT statements
FORMAT " atements |
INCLUDE § Other specification
statements and statements
ENTRY
statements DATA . —
statements Statement Function Definitions
Executable Statements
END Statement

Figure 1-1. Order of Statements

il

v
i

£
Lo

B4
B

r

P

oA

o4

B
3 |

4

E

i

L = B3
B4

R

(o
|

i

B
§

3

r | = BN — B — B =
4 B o B £ £

l«rm
sl

S p—
[N B S

Paragon™ System Fortran Language Reference Manual

The Fortran Character Set

Language Overview

Table 1-1 shows the Fortran character set. Character variables and constants can use any ASCII

character.

Table 1-1. Fortran Characters

Character Description
A-Z az alphabetic
0-9 numeric
<space> space character
= equals
+ plus
- minus
* asterisk
/ slash
(left parenthesis
) right parenthesis
, comma
_ underscore character
decimal point
! exclamation mark
<TAB> tabulation character
<CR> carriage return

Language Overview

Paragon™ System Fortran Language Reference Manual

Table 1-2 shows C language character escape sequences that are recognized in if77 Fortran character
string constants. The if77 option -Mbackslash enables and disables this enhancement.

§ Table 1-2. C Compatibility Characters
Character Description
A\% vertical tab
\a alert (bell)
\n newline
\t tab
\b backspace
\f formfeed
\r carriage return
\O null
\ apostrophe (does not terminate a string)
\" double quotes (does not terminate a string)
\ \
\x X, where x is any other character
\ddd character with the given octal representation.
Formatting

A Fortran record may be formatted with tabs or by column formatting.

Column Formatting

A Fortran record consists of a sequence of up to 73 ASCII characters, the last being <CR>. It has a

fixed layout as shown in Table 1-3.

Table 1-3. Record Positions and Fields

Position Field
1-5 Label field
6 Continuation field
7-72 Statement field

1-4

[
i

o B S
L i

i v

E

L

S

4

b

4

paa pa Ea pa pEa
P

¥

E 3 B4

[»
o
™
el

E

=

H

o B
[|

L

i
H

i | ¢

L

3

Lood Lo L4

i b

¥

J

S Wem mes Sees
b 4

|

Paragon™ System Fortran Language Reference Manual Language Overview

Characters beyond position 72 on a line are ignored. Extended lines containing up to 132 charactegs
are valid if you use the if77 -Mextend option. For information on this option, refer to the Paragon
System Fortran Compiler User’s Guide.

§ Tab Formatting

A tab formatted record consists of up to 72 ASCII characters. It is made up of a label field, an
optional continuation indicator and a statement field. The label field is terminated by a tab character.
The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a digit. The statement
field starts after a continuation indicator, when one is present. The 73rd and subsequent characters
are ignored. Extended lines containing up to 132 characters are valid if you use the if77 ~-Mextend
option. For information on this option, refer to the ParagonTM System Fortran Compiler User’s
Guide.

Label Field

The label field holds up to five characters. The characters C or * in the first character position of a
label field indicate a comment line.

§ In addition, to C or *, either of the characters D or ! in the first character position of a label field also
indicate a comment line.

When a numeric field drawn from digits O to 9 is placed in the label field, the field is a label. A line
with no label, and with five space characters or a <TAB> (the tab is an extension §) in the label
field, is an unlabeled statement. Each label must be unique in its module. Continuation lines must
not be labeled. Labels can only be jumped to when they are on executable statements.

Continuation Field

The sixth character position, or the position after the tab, is the continuation field. This field is
ignored in comment lines. It is invalid if the label field is not five spaces. A value of O, <space> or
<TAB:> indicates the first line of a statement. Any other value indicates a subsequent (continuation)
line to the preceding statement.

Statement Field

This consists of valid identifiers and symbols, possibly separated by <space> or <TAB> and
terminated by <CR>.

§ Within the statement field tabs and spaces are ignored as are characters following a ! or beyond the
72nd character. Extended lines containing up to 132 characters are valid if you use the if77 -Mextend
option. For information on this option, refer to the ParagonTM System Fortran Compiler User’s
Guide.

Language Overview

Paragon™ System Fortran Language Reference Manual

Including Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. This is carried out using the INCLUDE statement which takes the
following form:

INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that
source the file is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same
COMMON block data mappings are used in several modules.

For example the following statement includes the file MYFILE.CMN.

INCLUDE "MYFILE.CMN"

s Input File Format — Summary of Extensions

1-6

Input source file format has been extended from FORTRAN 77 to allow the following extensions:

A continuation line may also be indicated by using an ampersand (&) in column one of a line.

Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins
an optional continuation indicator field. If a non-zero digit follows the tab character, the
continuation field exists and indicates a continuation field. If anything other than a non-zero
digit follows the tab character, the statement body begins with that character and extends to the
end of the source statement. Note that this does not override FORTRAN 77's source line
handling since no valid Fortran statement can begin with a non-zero digit. The tab character is
ignored if it occurs in a line except in Hollerith or character constants.

Input lines may be of varying lengths. If there are fewer than 72 characters, the line is padded
with blanks; characters after the 72nd are ignored unless you use the ~Mextend option on the
command line.

If the —Mextend option is used on the command line then the input line can extend to 132
characters. The line is padded with blanks if it is fewer than 132; characters after the 132nd are
ignored. Note that use of this option extends the statement field to position 132.

Blank lines are allowed at the end of a program unit.

The number of continuation lines allowed is extended to 99.

-~

——
[S

Paragon"' System Fortran Language Reference Manual Language Overview

4

E

|

[

The Components of Fortran Statements

Fortran modules are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its elements combined with
operators. Hence the basic building block of a statement is an element. An element takes one of the
following forms:

E

* A constant represents a fixed value.
* Avariable represents a value which may change during program execution.
« Anarrayis a group of values, stored contiguously, that can be referred to as a whole or

separately. The separate values are known as the elements of the array. The array has a symbolic
name.

[R T]

* A function reference is the name of a function followed by an argument list. The reference
causes the code specified at function definition to be executed and the result substituted for the
function reference.

~< “‘ -

b
&

Symbolic Names

Symbolic names identify different entities in Fortran source. A symbolic name is a string of letters
and digits, which must start with a letter and is terminated by a character not in the symbolic names
set (for example a <space> or a <TAB> character). Underscore (_) characters may appear within
symbolic names. Symbolic names may start with a dollar sign ($) or underscore (_) character (this
is a if77 extension). Only the first thirty-one characters identify the symbol. Below are several
symbolic names:

,,
Lo

4

{

NUM

CRA9

Y
numericabcdefghijklmnopgrstuvwxyz

3

The last example is identified by its first 31 characters and is equivalent to:

numericabcdefghijklmnopgrstuvwx

4

The following are examples are invalid symbolic names.

L

80

3

£

This is invalid because it begins with a number.

- ;
) FIVE. 4

[m This is invalid because it contains a period which is an invalid character.
-

T

Language Overview

Paragonm System Fortran Language Reference Manual

Symbolic Name Scope

Symbolic names may be declared locally or globally.

Names of COMMON blocks, SUBROUTINESs and FUNCTION:S are global to those modules that
reference them. They must refer to unique objects, not only during compilation, but also in the link
stage.

The scope of names other than these is local to the module in which they occur, and any reference
to the name in a different module will imply a new local declaration. This includes the arithmetic
function statement.

Expressions

1-8

Each data item, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary or
unary operators, so that the expression itself yields a value.
An expression is formed as:
expr binary-operator expr
or
unary-operator expr
where an expr is formed as
expression or element
For example,
A+B
-C

+D

These are simple expressions whose components are elements. Expressions fall into one of four
classes: arithmetic, relational, logical or character.

3

b4 !

4

b

¢ Lo

__ _

[LS

(S ..

4

L.

Paragon"‘I System Fortran Language Reference Manual Language Overview

Arithmetic Expressions

Arithmetic expressions are formed from arithmetic elements and arithmetic operators. An arithmetic
element may be:

+ anarithmetic expression
« avariable

» aconstant

+ anarray element

« afunction reference

a field of a structure or union

won
(]

The arithmetic operators specify a computation to be performed on the elements. The result is a
numeric result. Table 1-4 shows the arithmetic operators.

Table 1-4, Arithmetic Operators

Operator Function
*k Exponentiation
* Multiplication
/ Division
+ Addition or unary plus
- Subtraction or unary minus

Note that a value should be associated with a variable or array element before it is used in an
expression. Arithmetic expressions are evaluated in an order determined by a precedence associated
with each operator. Table 1-5 shows the precedence of each arithmetic operator.

Table 1-5. Operator Precedence

Operator Precedence
*k First
*and / Second
+and - Third

Language Overview Paragon"‘l System Fortran Language Reference Manual

This following example is resolved into the arithmetic expressions (A) + (B * C) rather than
(A + B) * (C).

A+ B * C

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed to
be evaluated first.

(A + B) *C
The compiler resolves this into the expressions (A + B) * (C).

The type of an arithmetic expression is:

INTEGER if it contains only integer elements.

REAL if it contains only real and integer elements.

DOUBLE PRECISION
if it contains only double precision, real and integer elements.

COMPLEX if any element is complex. Any element which needs conversion to complex
will be converted by taking the real part from the original value and setting
the imaginary part to zero.

DOUBLE COMPLEX

if any element is double complex.

Relational Expressions

A relational expression is composed of two arithmetic expressions separated by a relational operator.
The value of the expression is true or false (. TRUE. or .FALSE.) depending on the value of the
expressions and the nature of the operator.

Table 1-6 shows the relational operators.

Table 1-6. Relational Operators

Operator Relationship
.LT. Less than
.LE. Less than or equal to
.EQ. ' Equal to
.NE. Not equal to
.GT. Greater than
.GE. ‘ Greater than or equal to

.

" |
F

T
e

A
P

N“ﬂ
a

| ™

[
i El

£t 4 t

#

H

4 3

Y

iy Ea gea A &3 A Ea §Fa & 3
¥ 4 ¥ 4 B4 !

»

m—
oA

LT |

b4

; !
B4

—
£ 4

4

f—

-

3

4

— fianil) | Tty N f——
3 tod b L oo

¢

b

i

i * k

£

—_— —m By F.- ——] asse] L]

2l

Paragon"' System Fortran Language Reference Manual Language Overview

In relational expressions the arithmetic elements are evaluated to obtain their values. The
relationship is then evaluated to obtain the true or false result. Thus the relational expression:

TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is less than the value of LAST, then the result is true,
otherwise it is false.

Logical Expressions

A logical expression is composed of two relational or logical expressions separated by a logical
operator. Each logical expression yields the value true or false (. TRUE. or .FALSE.).

Table 1-7 shows the logical operators.

Table 1-7. Logical Operators

Operator Relationship
.AND. True if both expressions are true.
.OR. True if either expression or both is true.
.NOT. This is a unary operator; it is true if the expression that follows is
false, otherwise it is false.
.NEQV. False if both expressions have the same logical value
XOR. Same as .NEQV.
.EQV. True if both expressions have the same logical value

In the following example, TEST will be . TRUE. if 2 is greater than B or I is not equal to J+17.

TEST = A .GT. B .OR. I .NE. J+17

Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Its length is
the number of characters in the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

‘ab_&'

'AGHJ12'
‘var[1l,12]"'

1-11

L

Language Overview Paragon™ System Fortran Language Reference Manual "
¥
"
Fm
o
‘P Bt}
Character Concatenation -~
A character expression can be formed by concatenating two (or more) valid character expressions rF
using the concatenation operator //. .
Table 1-8 shows several examples of concatenation E
Table 1-8. Character Concatenation
w
!
Expression Value o
"ABC'//'YZ' "ABCYZ" —
'"JOHN '//'SMITH' "JOHN SMITH" . =
'J '//'JAMES '//'JOY' "J JAMES JOY" o
-
Precedence Rules e
Arithmetic, relational and logical expressions may be identified to the compiler by the use of -
parentheses, as described in the section on arithmetic expressions. When no guidance is given to the ‘u ‘
compiler it will impose a set of precedence rules to identify each expression uniquely. Table 1-9 e
shows the operator precedence rules for expressions. -
Table 1-9. Operator Precedence .
Operator Evaluated & ‘
* % ‘ First -
* and / Second E B
+ and - Third)
Relational operators Fourth K “
.NOT. Fifth
.AND. Sixth ﬁ R
.OR. 4 Seventh
LA
.NEQV. and .EQV. Eighth '

|

Operators of equal rank are evaluated left to right. Thus:

¥

A*B+B**C .EQ. X+Y/Z .AND. .NOT. K-3.0 .GT. T

is equivalent to:

4

((((A*B)+(B**C)) .EQ. (X+(¥/2Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

= @ pa s
'S |

Y]
—
o4

-

Paragon"’I System Fortran Language Reference Manual Language Overview

A

B

4

|

4

b

Assignment Statements

d
A

A Fortran assignment statement can be any of the following:

B

« An arithmetic assignment

4

[

» Alogical assignment

A character assignment

t

+ A statement label assignment

(222
.

A structure field assignment (if the field is a scalar data type)

4

Arithmetic Assignment

3

The arithmetic assignment statement has the following form:

Lo

4

object = arithmetic-expression

where object is one of the following:

4

L L Lo 8
.

* Variable

[

Function name (within a function body)

« Subroutine argument

i

§ [
L]

k

» Array element

Field of a structure

1
L3

t

The type of object determines the type of the assignment INTEGER, REAL, DOUBLE
PRECISION or COMPLEX) and the arithmetic-expression is coerced into the correct type if
necessary.

In the case of:

Kl

complex = real-expression

e

the implication is that the real part of the complex number becomes the result of the expression and
the imaginary part becomes zero. The same applies if the expression is double precision, except that
the expression will be coerced to real.

L

po—
B

The following are examples of arithmetic assignment statements.

L A=(P+Q)* (T/V)
B=R**T% %2

l“ 1-13

Language Overview

Paragonm System Fortran Language Reference Manual

Logical Assignment Statement

The logical assignment statement has the following form:

object = logical-expression

where object is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

A field of a structure

The type of object must be logical.

In the following example, FLAG takes the logical value .TRUE. if P+Q is greater than R;
otherwise FLAG has the logical value .FALSE.

FLAG=(P+Q) .GT. R

Character assignment

The form of a character assignment is

object = character-expression

where object is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

Character substring

A field of a structure

The object must be of type character.

[E

a p o=

3

El

5

a pa
oo

4

L B
4 i

E

- e
3 E 4

S B4

i |

B4 S | F

3

L

L i

E]

Gl

{

el B}
l] (GO |

3]

i

{

! L3

Lo 4 {

[

A4

o

.

Paragon™ System Fortran Language Reference Manual Language Overview

None of the character positions being defined in object can be referenced in the character expression
and only such characters as are necessary for the assignment to object need to be defined in the
character expression. The character expression and object can have different lengths. When
object is longer than the character expression trailing blanks are added to the object; and if object is
shorter than the character expression the right-hand characters of the character expression are
truncated as necessary.

In the following example, note that all the variables and arrays are assumed to be of type character.
FILE = 'BOOKS'

PLOT(3:8) = 'PLANTS'
TEXT(I,K+1)(2:B-1) = TITLE//X

Listing Controls

if77 recognizes three VAX/VMS compiler directives that affect the program listing process:

SLIST Turns on the listing process beginning at the following source code line.
$NOLIST Turns off the listing process (including the $NOLIST line itself).
$EJECT Causes a new listing page to be started.

These directives have an effect only when the -Mlist compile-time switch is used.

All of the directives must begin in column one.

1-15

Language Overview Parz-xgon"'I System Fortran Language Reference Manual d o

E 3

o

i
.

I‘Q“\

--a
oo

E

Y

4

| e A
P

3

_—
B

A

t

4

¥

4

b

4

SR

i i L4

I:

£ [

-

| B —
h;_:! C@ B4 L4

Data Types

Every Fortran element and expression has a data type. The data type of an element may be implicit
in its definition or explicitly attached to the element in a declaration statement. This chapter
describes the Fortran data types and constants that if77 supports.

Table 2-1 lists the standard FORTRAN 77 data types. Table 2-2 shows additional data types that if77

Fortran supports.
Table 2-1. Fortran Standard Data Types
Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION A double precision floating point number (real number) taking
up two numeric storage units and whose precision is greater than
REAL.

LOGICAL A value which can be either true or false.

COMPLEX A pair of real numbers used in complex arithmetic.

CHARACTER A string consisting of one or more printable characters.

Data Types

Paragonm System Fortran Language Reference Manual

A symbolic name for a data type can be followed by a data type length specifier of the form *s, where
s is one of the acceptable lengths for the data type being declared. Such a specification overrides the
length attribute that the statement implies and assigns a specific length to the specified item,
regardless of the compiler options specified. For example, REAL*8 is equivalent to DOUBLE
PRECISION. Table 2-2 shows the lengths of data types, their meanings, and their sizes.

Table 2-2. Data Type Extensions

Type Meaning Size
LOGICAL*1 Small LOGICAL 1 byte
LOGICAL*2 Short LOGICAL 2 bytes
LOGICAL*4 LOGICAL 4 bytes
BYTE Small INTEGER 1 byte
INTEGER*1 Same as BYTE 1 byte
INTEGER*2 Short INTEGER 2 bytes
INTEGER*4 INTEGER 4 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes
COMPLEX*8 COMPLEX 8 bytes
COMPLEX*16 DOUBLE COMPLEX 16 bytes

The BYTE type is treated as a signed one-byte integer and is equivalent to LOGICAL*1.
Assignment of a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type word
has a specifier. For example:

CHARACTER*4 FUNCTION C*8 (VAR1)

Above, the function size specification C* 8 overrides the CHARACTER* 4 specification. Logical
data items can be used with any operation where a similar sized integer data item is permissible and
vice versa. The logical data item is treated as an integer or the integer data item is treated as a logical
of the same size and no type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array subscripts,
in computed GOTOs, in array bounds and in alternate returns. if77 converts the floating point
number to an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The type
of an expression is determined by the rank of its elements. Table 2-3 shows the ranks of the various
data types, from lowest to highest.

=
4

L]
{1 -

£
4

[

»
l & Paragonm System Fortran Language Reference Manual Data Types

.l

el

—
Eo

4

Table 2-3. Data Type Ranks

ko

E|

Data Type Rank
LOGICAL 1 (lowest)
INTEGER*2
INTEGER*4
REAL*4
REAL*8 (Double precision)
COMPLEX*8 (Complex)
COMPLEX*16 (Double complex) 7 (highest)

B

E|

b

Lo

:

The data type of a value produced by an operation on two arithmetic elements of different data types
is the data type of the highest-ranked element in the operation. The exception to this rule is that an
operation involving a COMPLEX*8 element and a REAL*8 element produces a COMPLEX*16
result. In this operation, the COMPLEX*8 element is converted to a COMPLEX*16 element, which
consists of two REAL*8 elements, before the operation is performed.

&

E

S |
(o N LV N I N IV

b

-
[|

The type of a logical expression is always a LOGICAL*4 result.

4

Constants

A constant is an unchanging value. It takes a form corresponding to one of the data types.

£

o

if77 supports octal, hexadecimal and Hollerith constants. The use of character constants in a numeric
context, for example, in the right-hand side of an arithmetic assignment statement, is supported.
These constants assume a data type that conforms to the context in which they appear.

i

A

L

Integer Constants
-
B The form of a decimal integer constant is:

where d; is a digit in the range 0 to 9 and where s is an optional sign. The value of an integer constant
- must be within the range -2147483648 to 2147483647 inclusive (-2*! to (2°! - 1)). All integer
l | constants assume a data type of INTEGER*4 and have a 32-bit storage requirement.

= Below are several examples of integer constants.
o
+2
- -36
I 437

E 23

Data Types

Real Constants

Real constants have two forms, scaled and unscaled. An unscaled real constant consists of a signed
or unsigned decimal number. A scaled real constant takes the same form as an unscaled constant, but
is followed by a scaling factor using the form:

E+digits
Edigit
E-digits

where digits is the scaling factor (the power of ten) to be applied to the unscaled constant. The first
two forms above are equivalent, that is, a scaling factor without a sign is assumed to be positive.

Paragon"‘ System Fortran Language Reference Manual

Table 2-4 shows several examples of real constants.

Table 2-4. Real Constants

Constants Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-10 signed unscaled single precision constant
6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

Double Precision Constants

A double precision constant has the same form as a scaled real constant except that the E is replaced

by D. Table 2-5 shows several double precision constants.

Table 2-5. Double Precision Constants

6.1D2 is equivalent to 610.0
+2.3D3 is equivalent to 2300.0
-3.5D-1 is equivalent to -0.35

+4D4 is equivalent to 40000

2-4

v
.
L
.
. 2

W

mo
-

e

H
VY

4

e I B S]
A

:
.|

‘ Lo

L
=

[|

i

fam mm =
| |

£

S

ks b T

ParagonTM System Fortran Language Reference Manual Data Types

Logical Constants

A logical constant is one of:

. TRUE.
.FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and O
respectively. By default, a logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise. The option -Munixlogical defines a logical expression to be true if its value
is non-zero and false otherwise, and defines the internal value of .TRUE. to be 1. Refer to the
Paragon™ System Fortran Compiler User’s Guide for details.

The abbreviations T and F can be used in place of . TRUE. and .FALSE. in data initialization
statements and in namelist input.

Complex Constants

A complex constant is held as two real constants separated by a comma and surrounded by
parentheses. The first real number is the real part and the second real number is the imaginary part.
Together these values represent a complex number. Below are several examples:

(3.5,-3.5)
(6.1E2,+2.3E3)

Character Constants

Character string constants may be delimited using either an apostrophe () or a double quote (*"). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use two
apostrophes together to include an apostrophe as part of the expression. If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote or
backslash escape. Within character constants, blanks are significant. The length of the string must
be at least one character. For further information on the use of the backslash character, refer to
—Mbackslash in the ParagonTM System Fortran Compiler User’s Guide.

Below are several examples of character constants.

‘abc'
'abc !
lablfcl

If a character constant is used in a numeric context, for example as the expression on the right side
of an arithmetic assignment statement, it is treated as a Hollerith constant. The rules for typing and
sizing character constants used in a numeric context are outlined later in the description of Hollerith
constants.

2-5

Data Types

Paragon"‘ System Fortran Language Reference Manual

Octal and Hexadecimal Constants

26

The form of an octal constant is:

‘cjc..c,'O

The form of a hexadecimal constant is:

'ajay...a,'’X

where ¢; is a digit in the range O to 7 and g; is a digit in the range 0 to 9 or a letter in the range A to
For ato f (case mixing is allowed). You can specify up to 64 bits (22 octal digits or 16 hexadecimal
digits).

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded on
the left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

An octal or hexadecimal constant is always either 32 or 64 bits in size and is typeless.
Sign-extension and type-conversion are never performed. All binary operations are performed
on 32-bit or 64-bit quantities. This implies that the rules to follow are only concerned with
mixing 32-bit and 64-bit data.

When a constant is used with an arithmetic binary operator (including the assignment operator)
and the other operand is typed, the constant assumes the type and size of the other operand.

When a constant is used in a relational expression such as . EQ ., its size is chosen from the
operand having the largest size. This implies that 64-bit comparisons are possible.

When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bits in size;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

When a constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant.
Array subscripting is an example.

When a constant is used in a context other than those mentioned above, an INTEGER*4 data
type is assumed. Logical expressions and binary arithmetic operations with other untyped
constants are examples.

-
(.

N Bl

-

-
-

L
b

A £ £

E

3

4

Ba Ea Fa Ea kA
[

E

"

al

[
I

I

I

I

-

I
I
I;

Paragon™ System Fortran Language Reference Manual Data Types

When the required data type for a constant implies that the length needed is more than the
number of digits specified, the left-most digits have a value of zero. When the required data type
for a constant implies that the length needed is less than the number of digits specified, the
constant is truncated on the left. Truncation of nonzero digits is allowed.

In the example below, the constant I (of type INTEGER*4) and the constant J (of type
INTEGER*2) will have hex values 1234 and 4567, respectively. The variable D (of type
REAL*8) will have the hex value x4000012345678954 after its second assignment:

I = '1234'X ! Leftmost Pad with zero.

J = '1234567'X ! Truncate Leftmost 3 hex digits
D = '40000123456789%ab'X

D = NEQV(D,'ff'X) ! 64-bit Exclusive Or

Hollerith Constants

The form of a Hollerith constant is:

nHcjcy...cp,

where n specifies the positive number of characters in the constant and cannot exceed 2000
characters. A Hollerith constant is stored as a byte string with four characters per 32-bit word.
Hollerith constants are untyped arrays of INTEGER*4. The last word of the array is padded on the
right with blanks if necessary. Hollerith constants cannot assume a character data type and cannot
be used where a character value is expected. Hollerith constants are permitted with the %REF
built-in function (for more information on the built-in VAX/VMS functions, see Appendix B, VAX
System Subroutines and Built-in Functions.) The data type of a Hollerith constant used in a numeric
expression is determined by the following rules:

Sign-extension is never performed.

The byte size of the Hollerith constant is determined by its context and is not strictly limited to
32 or 64 bits like hexadecimal and octal constants.

When the constant is used with a binary operator (including the assignment operator), the data
type of the constant assumes the data type of the other operand.

"When a specific data type is required, that type is assumed for the constant. When an integer or

logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required,
REAL*4 is assumed (array subscripting is an example of the use of a required data type).

When a constant is used as an argument to certain generic functions (AND, OR, EQV, NEQV,
SHIFT, and COMPL), a 32-bit operation is performed if no argument is larger than 32 bits;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

When a constant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER*4 array. Character constants are passed by descriptor only.

2-7

Data Types

Arrays

Paragonm System Fortran Language Reference Manual

« When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

‘When the length of the Hollerith constant is less than the length implied by the data type, spaces are
appended to the constant on the right. When the length of the constant is greater than the length
implied by the data type, the constant is truncated on the right.

An array is a group of consecutive, contiguous storage locations associated with a symbolic name
which is the array name. Each individual element of storage, called the array element, is referenced
by the array name modified by a list of subscripts. Arrays are declared with type declaration
statements, DIMENSION statements and COMMON statements; they are not defined by implicit
reference. These declarations will introduce an array name and establish the number of dimensions
and the bound of each dimension. If a symbol, modified by a list of subscripts is not defined as an
array, then it will be assumed to be a FUNCTION reference with an argument list.

An Array Declaration Element

An array declaration has the following form:
name([1b:Jub[, [1b:1lub]...)

where name is the symbolic name of the array, b is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound b must be greater than
the lower bound /b. The values /b and ub may be negative. The bound Ib is taken to be 1 if it is not
specified. The difference (ub-1b+1) specifies the number of elements in that dimension. The number
of Ib,ub pairs specifies the dimension of the array. The total amount of storage of the array is:

(ub-1b+1)* (ub-1b+1)*. ..

However, the dimension specifiers of a subroutine argument may themselves be subroutine
arguments or members of COMMON.

Subscripts

2-8

A subscript is used to locate an array element for access. An array name qualified by a subscript list
has the following form:

name(sub[,sub]l...)

where there must be one sub entry for each dimension in array name.

™
o

v
.

ol
“

E A
B

k.

4
-

£

A

A A pea oA
-

8

e
oA

-

.l

4 b 4

E

i

i 14 1

|
|

] “N;
t B

4 L

[

§

¢ L4

A

t

| S N S

==
l }

i
I i

-

Paragon™ System Fortran Language Reference Manual Data Types

Each sub must be an integer expression yielding a value which is within the range of the lower and
upper bounds. Arrays are stored as a linear sequence of values in memory and are held such that the
first element is in the first store location and the last element is in the last store location. In a
multi-dimensional array the first subscript varies more rapidly than the second, the second more
rapidly than the third, and so on (column major order).

Character Substring

A character substring is a contiguous portion of a character variable and is of type character. A
character substring can be referenced, assigned values and named. It can take either of the following
forms:

character._variable _name (x1 : x2)

character_array (subscripts) (x1 : x2)
where x] and x2 are integers and x denotes the left-hand character position and x2 the right-hand
one. These are known as substring expressions. In substring expressions x/ must be both greater than
orequal to 1 and less than x2 and x2 must be less than or equal to the length of the character variable
or array element.
For example:

J(2:4) the characters in positions 2 to 4 of character variable J.

K(3,5)(1:4) the characters in positions 1 to 4 of array elementK(3,5).

A substring expression can be any valid integer expression and may contain array element or
function references.

s Structures

A structure is a user-defined aggregate data type having the following form:
STRUCTURE [/structure_name/][field_namelist]
field _declaration

[field declaration]

[field _declaration]
END STRUCTURE

2-9

Data Types

s Records

2-10

Paragon""l System Fortran Language Reference Manual

Where:

structure_name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

field_namelist is alist of fields having the structure of the associated structure declaration.
A field_namelist is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields
also provides a C-like “struct” building capability and allows convenient inter-language
communications.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
because records use periods to separate fields, it is not legal to use relational operators (for example,
.EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions (.AND., .NOT., .OR.) as
field names in structure declarations.

Fields in a structure are aligned as required by hardware; therefore a structure's storage requirements
are machine-dependent. Because explicit padding of records is not necessary, the compiler
recognizes the $FILL intrinsic, but performs no action in response to it.

Data initialization can occur for the individual fields.

A record is a user-defined aggregate data item having the following form:

RECORD /structure name/record_namelist
[,/structure_name/record_namelist]

[, /st..rl.zc.:'ture_name/record_namelist]
Where:
structure_name is the name of a previously declared structure.
record_namelist is alist of one or more variable or array names separated by commas.
You create memory storage for a record by specifying a structure name in the RECORD statement.

You define the field values in a record either by defining them in the structure declaration or by
assigning them with executable code.

r

Ea g a
E 4 ¥4 £

i

{

pa ma =a
s

3

|)
B

E L |

E

4

B

£

4

4

§

i

L

£

i

i

4

Lo 3

i
o3

£

i

[

‘ [Lo ' '

P |

-

L

Paragonm System Fortran Language Reference Manual

Data Types

You can access individual fields in a record by combining the parent record name, a period (.), and
the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an

aggregate reference means a reference that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with the
exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate
references may only appear in aggregate assignment statements, unformatted I/O statements, and as

parameters to subprograms.
The following is an example of RECORD and STRUCTURE usage.

STRUCTURE /person/ ! Declare a structure to define a person
INTEGER id
LOGICAL living
CHARACTER*5 first, last, middle
INTEGER age
END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /person/ population(2), me

me.age = 34 ! Assign values for the variable me to

me.living = .TRUE. ! some of the fields.
me.first = 'Steve'

me.id = 542124822
population(1l).last = 'Jones' Assign the "last" field of
element 1 of array population.
Assign all the values of record
"me" to the record population(2)

population(2) = me

[S -

2-11

Data Types Paragon™ System Fortran Language Reference Manual a
bl
v
-
F i
s UNION and MAP Declarations a .
A UNION declaration is a multi-statement declaration defining a data area that can be shared e
intermittently during program execution by one or more fields or groups of fields. It declares groups L
of fields that share a common location within a structure. Each group of fields within a union
declaration is declared by a MAP declaration, with one or more fields per MAP declaration. E]

Union declarations are used when one wants to use the same area of memory to alternately contain
one of two or more groups of fields. Whenever one of the fields declared by a union declaration is i
referenced in a program, that field and any other fields in its map declaration become defined. Then, L =
when a field in one of the other map declarations in the union declaration is referenced, the fields in

that map declaration become defined, superseding the fields that were previously defined. F' B
P
A union declaration is initiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and A
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields is w
defined by a separate map declaration. The format of a UNION statement is as follows:
v
UNION a.
map_declaration
[map_declaration] *
... .
[map_declaration]
END UNION mo
o
The format of the map_declaration is as follows:
('Y
MAP “
field_declaration
[field_declaration] E -
[field declaration]
END MAP A
"

where field_declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed
data field within a union.

4

|

Data can be initialized in field declaration statements in union declarations. Note, however, it is
illegal to initialize multiple map declarations in a single union.

| = | =]
4

&
b

Field alignment within multiple map declarations is performed as previously defined in structure [I

declarations. d .

The size of the shared area for a union declaration is the size of the largest map defined for that ™

union. The size of a map is the sum of the sizes of the field(s) declared within it plus possibly space -
reserved for alignment purposes.

~ N

N

-

2-12

&

f—
Eos

E

&

k|

LS

E

4

I3

i

&

i
€

4

3

4

ko

S

k]

b

g4

-

ParagontM System Fortran Language Reference Manual Data Types

Manipulating data using union declarations is similar to using EQUIVALENCE statements.
However, union declarations more closely resemble union declarations for the language C. The main
difference is that the language C requires one to associate a name with each “map” (union). Fortran
field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE, MAP and UNION usage. The size of
each element of the recarr array would be the size of typerag (4 bytes) plus the size of the largest
MAP, the employee map (24 bytes).

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map.
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct_cust
REAL*4 credit_amt
CHARACTER*8 due_date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct_supp
REAL*4 debit_amt
BYTE num_items
BYTE items(12) ! Items supplied
END MAP
END UNION

END STRUCTURE

RECORD /account/ recarr(1000)

Data Initialization

§

Within data type declaration statements, data initialization is allowed. Data is initialized by placing
values bounded by slashes immediately following the symbolic name (variable or array) to be
initialized. Initialization of fields within structure declarations is allowed, but initialization of
unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type

declarations and in DATA statements. Truncation and padding occur for constants that differ in size
from the declared data item (as specified in the discussion of constants above).

2-13

Data Types Paragon"'I System Fortran Language Reference Manual

s Pointer Variables

The POINTER statement declares a scalar variable to be a pointer variable (of data type INTEGER),
and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:
POINTER (pl, v1) [, (p2, v2) ...]

vl and v2 are pointer-based variables. A pointer-based variable can be of any type,
including STRUCTURE. A pointer-based variable can be dimensioned in a
separate type, in a DIMENSION statement, or in the POINTER statement.
The dimension expression may be adjustable, according to the rules for
adjustable dummy arrays and dimension declarators.

pl and p2 are the pointer variables corresponding to v and v2. A pointer variable may
not be an array. The pointer is an integer variable containing the address of a
pointer-based variable. The storage located by the pointer variable is defined
by the pointer-based variable (for example, array, data type, etc.). A reference
to a pointer-based variable appears in Fortran statements like a normal
variable reference (for example, a local variable,a COMMON block variable,
or a dummy variable). When the based variable is referenced, the address to
which it refers is always taken from its associated pointer (that is, its pointer
variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined. The
pointer is defined in one of the following ways:

» By assigning the value returned by the LOC function.
+ By assigning a value defined in terms of another pointer variable.

+ By dynamically allocating a memory area for the based variable. If a pointer-based variable is
dynamically allocated, it may also be freed.

2-14

»
A

rm
i

il
e
a

po

{T
e
v

[

™o

o

o

o

|- S

S

A

§
£

pim e s
e

-
il

4

[

e
S

A

&

Ponag fnn—_y — —
S |

E| ‘.

¢

[|

_,A
Lo .4

Lo b ‘

Paragonm System Fortran Language Reference Manual Data Types

The following code illustrates the use of pointers:

Restrictions

REAL XC(10)

REAL X

COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))

P = LOC(IC)

I=0 ! IC gets 0

P = LOC(XC)

Q= P+ 20 ! same as LOC(XC(6))

X(1) =0 ! XC(6) gets 0

ALLOCATE (X) ! Q locates an allocated memory area

The following restrictions apply to the POINTER statement:

No storage is allocated when a pointer-based variable is declared.
If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram.
If a pointer-based variable is an adjustable array, it is assumed that the variables in the
dimension declarator(s) are defined with an integer value at the time the SUBROUTINE or
FUNCTION is called. For a variable which appears in a pointer-based variable's adjustable
declarator, modifying its value during the execution of the SUBROUTINE or FUNCTION does
not modify the bounds of the dimensions of the pointer-based array.

A pointer-based variable is assumed not to overlap with another pointer-based variable.

2-15

Data Types

2-16

Paragon"'I System Fortran Language Reference Manual

H !
"

i.
o

r
\i ARG

I:
A

)

-

E

E

S |

b B S

"

I
[

B L 4 ‘ b4 ‘ E

£

Fortran Statements

This chapter describes each of the Fortran statements. Each description includes a brief summary of
the statement, a syntax description, a complete description and an example. The statements are listed
in alphabetical order. The first section lists terms that are used throughout the chapter.

Definition of Terms

character scalar memory reference
is an character variable, a character array element, or a character member of a
structure.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a
structure.

logical scalar memory reference
is an logical variable, a logical array element, or a logical member of a structure.

3-1

!

Fortran Statements Paragon‘T ™ System Fortran Language Reference Manual i 3 j
i
o
rm
-
£
s ACCEPT -
The ACCEPT statement causes formatted input to be read on standard input, stdin. ACCEPT is identical to the READ o
statement with a unit specifier of asterisk (*). .
J
Syntax yo
ACCEPT f [,iolist] L« i
ACCEPT namelist ™o
i ..
f format-specifier. A * indicates list directed input.
>
iolist is a list of variables to be input. N
namelist is the name of a namelist specified with the NAMELIST statement. L
"
Examples | v
ACCEPT *, IA, ZA &
ACCEPT 99 I, J, K ~ -
ACCEPT SUM "
99 FORMAT(I2, I4, I3) -
-
-
-
.
v
..

E

b

i

4

1

13

3-2 "
-

l"”',
ikl
gl

l“m‘
l)
el

4

(I P

i

i

B

E .

B

A

[

3

I

Paragonm System Fortran Language Reference Manual Fortran Statements

s ALLOCATE

The ALLOCATE statement allocates storage for each pointer-based variable and allocatable common block which
appears in the statement.

Syntax

Description

Examples

ALLOCATE (name[, name] ... [, STAT= var])

name is a pointer-based variable or the name of an allocatable COMMON enclosed in
slashes.

var is an integer variable, integer array element or an integer member of a

STRUCTURE (that is, an integer scalar memory reference).

For a pointer based variable, its associated pointer variable is defined with the address of the
allocated memory area. If the specifier STAT= is present, successful execution of the ALLOCATE
statement causes the status variable to be defined with a value of zero. If an error occurs during
execution of the statement and the specifier STAT= is present, the status variable is defined to have
the integer value one. If an error occurs and the specifier STAT= is not present, program execution
is terminated.

A dynamic, or allocatable COMMON block is a common block whose storage is not allocated until
an explicit ALLOCATE statement is executed.

COMMON P, N, M

POINTER (P, A(N,M))

COMMON, ALLOCATABLE /ALL/X(10), Y
ALLOCATE (/ALL/, A, STAT=IS)
PRINT *, IS

X(5) = A(2, 1)

DEALLOCATE (2)

DEALLOCATE (A, STAT=IS)

PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

Fortran Statements Paragon™ System Fortran Language Reference Manual

ASSIGN

The assign statement assigns a statement label to a variable.

Syntax
ASSIGN a TO b

a is the statement label.

b is an integer variable.

Description

Executing an ASSIGN statement assigns a statement label to an integer variable. This is the only
way that a variable may be defined with a statement label value. The statement label must be:

« A statement label in the same module as the ASSIGN statement.

» The label of an executable statement or a FORMAT statement.

A variable must be defined with a statement label when it is referenced:
* inanassigned GOTO statement.

» as aformat identifier in an input/output statement and while so defined must not be referenced
in any other way.

An integer variable defined with a statement label can be redefined with a different statement label,
the same statement label or with an integer value.

Example
ASSIGN 40 TO K

GO TO K

40 L =P+ T+ 56

|

l"ﬁ
s
™
-l

il
al

o

I‘ |
E

E

9

3

E

[

i

b

Lo

i

L

e =
S

4

L S|

'
&4

m_— en
4L

Paragon"' System Fortran Language Reference Manual Fortran Statements

BACKSPACE

When a BACKSPACE statement is executed the file connected to the specified unit is positioned before the preceding

BACKSPACE unit

BACKSPACE ([UNIT=]unit [,ERR=errs] [, IOSTAT=ios])

is the unit specifier.

an error specifier which is a statement label of an executable statement in the same
program. If an error condition occurs execution continues with the statement
specified by errs.

is an integer scalar memory reference that is defined as zero if no error condition
exists or a positive integer when there is an error condition.

If there is no preceding record the position of the file is not changed. A BACKSPACE statement
cannot be executed on a file that does not exist. You must not issue a BACKSPACE statement for a
file that is open for direct or append access.

record.
Syntax
unit
errs
ios
Description
Examples

BACKSPACE 4
BACKSPACE (UNIT=3)

BACKSPACE (7, IOSTAT=IOCHEK, ERR=50)

3-5

Fortran Statements Paragonm System Fortran Language Reference Manual

BLOCK DATA

The BLOCK DATA statement introduces a module that sets up initial values in COMMON blocks. No executable
statements are allowed in a BLOCK DATA module.

Syntax
BLOCK DATA [name]

name is a symbol identifying the module and must be unique among all global names
(COMMON block names and among all other module names). If missing, the
module is given a default name.

Example

BLOCK DATA

COMMON /SIDE/ BASE, ANGLE, HEIGHT, WIDTH
INTEGER SIZE

PARAMETER (SIZE=100)

INTEGER BASE(0:SIZE)

REAL WIDTH(0:SIZE), ANGLE(0:SIZE), WIDTH(O:SIZE)
DATA/(BASE(I),I=0,SIZE)/SIZE*-1,-1/,
+(WIDTH(I), I=0,SIZE)/SIZE*0.0,0.0/

END

NTF"
"

v
W

L

il

i

Rl

il

1.

1.

™

il

R

-

|

il

l am
!

o

I
1
1

Lo [

4

|
[

3

B R I S B B4

Paragonm System Fortran Language Reference Manual Fortran Statements

The BYTE statement establishes the data type of a variable by explicitly attaching the name of a variable to a 1-byte
integer. This overrides the implication of data typing by the initial letter of a symbolic name.

Syntax
BYTE name [/clist/],
name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).
clist is a list of constants that initialize the data, as in a DATA statement.
Description
Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BYTE declaration statements must not be labeled.
Example

BYTE TB3, SEC, STORE (5,5)

3-7

Fortran Statements Paragon"‘ System Fortran Language Reference Manual

CALL

The CALL statement transfers control to a subroutine.

Syntax

CALL subroutine [([argument [, argument]...])]
subroutine is the name of the subroutine.

argument is the actual argument being passed to the subroutine. The first argument
corresponds to the first dummy argument in the SUBROUTINE statement and so
on.

Description

Actual arguments can be expressions including: constants, scalar variables, function references and
arrays.

Actual arguments can also be alternate return specifiers. Alternate return specifiers are labels
prefixed by asterisks (*) or ampersands (&) (the ampersand is an extension from FORTRAN 77§).

Examples
CALL CRASH ! no arguments

CALL BANG(1.0) ! one argument
CALL WALLOP(V, INT) ! two arguments

CALL ALTRET(I, *10, *20)

SUBROUTINE ONE

DIMENSION ARR (10, 10)

REAL WORK

INTEGER ROW, COL

PI=3.142857

CALL EXPENS (ARR,ROW,COL,WORK,SIN(PI/2)+3.4)
RETURN

END

v-
i

Akl

b

o

o

o
"o

m’ M
"o

{W -
-

il
il

m

[

e B e [

%

E

e
P§

B LA L4 Lo Lo

|
-

e

il

Paragonm System Fortran Language Reference Manual k Fortran Statements

CHARACTER

The CHARACTER statement establishes the data type of a variable by explicitly attaching the name of a variable to
a character data type. This overrides the implication of data typing by the initial letter of a symbolic name.

Syntax
CHARACTER [*len] name [*len] [/clist/],

name is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

len is a constant or *. (*) is only valid if the corresponding name is a dummy
argument.

clist is a list of constants that initialize the data, as in a DATA statement.

Description

Character type declaration statements may be used to dimension arrays explicitly in the same way
as the DIMENSION statement. Type declaration statements must not be labeled. Note: The data type
of a symbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

Examples
CHARACTER A*4, B*6, C

A is 4 and B is 6 characters long and C is 1 character long.

3-9

L
Fortran Statements Paragon"‘ System Fortran Language Reference Manual \ﬁ ™
N kid)
.
"
LA
i
’W' ™
The CLOSE statement terminates the connection of the specified file to a unit. “
Syntax lJ
CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs] ml
[,STATUS= sta] [,DISPOSE= sta] [,DISP= stal) -
u the external unit specifier where u is an integer. o
ios is an integer scalar memory reference; if this is included ios becomes defined with
0 (zero) if no error condition exists or a positive integer when there is an error "
condition. W
errs is an error specifier in the form of a statement label of an executable statement in wo
the same module. If an error condition occurs, execution continues with the d .
statement specified by errs.
M
sta is a character expression, where case is insignificant, specifying the file status and "N
the same keywords are used for the dispose status. Status can be KEEP or
DELETE. KEEP cannot be specified for a file whose dispose status is SCRATCH. o
When KEERP is specified (for a file that exists) the file continues to exist after the a
CLOSE statement; conversely DELETE deletes the file after the CLOSE
statement. The default value is KEEP unless the file status is SCRATCH. mo
.
Description o
-
A unit may be the subject of a CLOSE statement from within any module. If the unit specified does
not exist or has no file connected to it the use of the CLOSE statement has no effect. Provided the v
file is still in existence it may be reconnected to the same or a different unit after the execution of a -
CLOSE statement. Note that an implicit CLOSE is executed when a program stops.
Example
M 1
In the following example the file on unit 6 is closed and deleted. .
CLOSE(UNIT=6,STATUS='DELETE"') E‘

3-10 l m
&

g
&l

(B

£

b4

Paragon™ System Fortran Language Reference Manual Fortran Statements

COMMON (Static and Dynamic)

The COMMON statement defines contiguous blocks of storage. Each block is identified by a symbolic name and the
order of variables and arrays is defined in the COMMON block containing them. There are two forms of the
COMMON statement, a static form and a dynamic form.

Syntax

COMMON /name/nlist [, /name/nlist]...
COMMON [,ALLOCATABLE] /name/nlist [,/name/nlist]...

name is the name of each common block and is declared between the /.../ delimiters.

nlist is a list of scalar and array names where the arrays may be defined in
DIMENSION statements or formally declared by their inclusion in the
COMMON block.

Description (static COMMON)

The name of the COMMON block need not be supplied; this is the Fortran BLANK COMMON
feature. In this case the compiler will use a default name which is implementation-specific. There
can be several COMMON block statements of the same name in a module; these are effectively
treated as one statement, with variables and array addresses concatenated from one COMMON
statement of the same name to the next. This is an alternative to the use of continuation lines when
declaring a common block with many symbols.

Common blocks with the same name that are declared in different modules share the same storage
area when combined into one executable program.

3-11

-
Fortran Statements ParagonTM System Fortran Language Reference Manual H ™
N
"
ol
& wl
LA
COMMON (Static and Dynamic) (con.) h
™o
Example (static COMMON) -
™
DIMENSION R(10) P
COMMON /HOST/ A, R, Q(3), U
wo
This declares a common block of data memory called HOST where A will be held in the first L B

memory location,R(1) ... R(10) will be held in the next ten locations, Q (1) . . . Q(3) inthe

next three and U in the fifteenth location. Note the different types of declaration used for R (declared -
in a DIMENSION statement) and Q (declared in the COMMON statement). The declaration of !
HOST in a SUBROUTINE in the same executable program will share the same data area.

SUBROUTINE DEMO [

COMMON/HOST/STORE(15) .-
e
"o
RETURN -
END K "
If the main program has the common block declaration as in the previous example, the COMMON -
statement in the subroutine causes STORE (1) to correspond to A, STORE (2) to correspond to [‘ y
R(1), STORE(3) to correspond to R(2), and so on through to STORE(1S) corresponding to the '
variable U. v
You can name records within a COMMON block. Because the storage requirements of records are
machine-dependent, the size of a COMMON block containing records may vary between machines. -
Note that this may also affect subsequent equivalence associations to variables within COMMON ‘ﬁ]
blocks that contain records. -
§ Both character and non-character data may reside in one COMMON block. Data is aligned within H

the COMMON block in order to conform to machine-dependent alignment requirements.

A COMMON block may be data initialized in more than one program unit if the existing system
environment allows it (note that COFF-based systems do not). It is up to the programmer to make
sure that data within one COMMON block is not initialized more than once.

Blank COMMON may be data initialized.

3-12 ~ r
&

" |

| S

4

E

i & 4

¥

L4 B

b

S|

[S S T T R

3

k

§

e e e
I |

t

o

Paragon™ System Fortran Language Reference Manual Fortran Statements

COMMON (Static and Dynamic) (con.

§ Description (dynamic COMMON)

A dynamic, or allocatable, COMMON block is a common block whose storage is not allocated until
an explicit ALLOCATE statement is executed.

If the allocatable attribu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>