

I; • ,-J
' / / -} ' �- .:.--

_, ... -
� Jt; kf

0 (+.- ;1 ; 7(-' ''\'\ I --
' · ' 1 t.--t n , ;-J J. �c;,·l de �c, l)/ •�<12tj/(�

't- · , /1,,-J f' ·' j'�l.:\\y · 1,-·;n,t1r'l'lt:q �'77G. <:_;\ C,') . i'\c, I.._'P�(� ,

Fcr th.:;.+' r·�l ('It e d q ciHb It i'fa·t-5"1/· d.; >�do i' , . .., e •1-t. ""Ide YVl.
Tf,c::.c: 1:) t)C AvLdTft,CI·t t-l1e CC:8'(i(1).1 ')''-t.) rr;< t:::r�+, c.. �if:\ - q

pc�,;,;,-T t{ I ".> j'' ·t c � Yl .v.; +h ·ry,-c,�c,... I\ \It:· !o rr·'rl t' , , t

Dcsu�AI:-:tLE AJ)J)i f/CrVS: (n�Y �'� ·.,·j '.)G.i'
·
1

'1 y .;,\ \ """ o(\U�·)
, . b, 0. S. ¢ ExT E r ') E ·D ·�As i c •.v t • 1 1-1 F 1 L- E 5.

2.. P.tLCJ ATP·b�.-E f\-1ACRC -p)Sti'-'\BL-.Lr.¢. J);_r;;,/-) >S£l'-1BLE)
3. VI1RI/7 Ki...E.. PRE..C 1,: !C:j\1./" ;� ,_, lt�RL E �A f) E t:.'lt-TRA -(/) LCt.-1 Lf) FC u·· .

Y. TE.)<'I � D i TCI' /sELECT: I c :r.�· {It: eFT JJ\) s S .

5". til):) i c c·r� FuK 1 /<..A tv' C c r.l\ i' i L- r f' . (·lc E. .L . --c. K -,.-.ET E {:.)
(, , � 7ti>'C f RuG k./W)M E t<../: 71 �:. Pt'0C- ({1)!'11'-1 EK..

7, Mt:·F.E vc � 'E ;J �=t..� L fLGI S':'))TE.M 1�CL� ;f\.\G 3-.D
DiAGf2.AM cA f'A B; ,__, Tt L-S 7 tV�--�� r:. d 1 DI:"EN- L. 'r\i E:/Pi_A,\tES�
At� !'> '" '\B .J!Ti"t.-f f I :; j\l -- p. j- E t..t: iVl t NT Ft<Oi 1 T"/� 13 L E <) '

i tr'1 i I_ - � -· � l · J - L, I � t· .:> - I; I ' I L,� I l !) .< ,.
I . , _. I ' . 1 --:. \�, - , ;:;.. u ·' ,/17 • L

(. I • . '.,. � , -• • �)t ;,\- • L .,.,_ c. . I _. l , \rtt_..'- \ . '

' I' 'l ;- ' -' t ... ,, t: !
I ' ' I ,

) � 1 - , t. l• r L 1
. I ' I t::::.. : •· ,"i ...

- I -• 1 I ':'I ', I.. • I . '

BASIC8001

T A B L E 0 F C 0 N T E N T S

PAGE

Introduction l - 2

Summary o f Commands 3- 8

Error Mes s ages 9- l l

BASIC 8001 Ari thme tic 1 2 - 1 7

BASIC 8 0 01 S trings 18- 2 0

BAS IC 8001 Immediate Mode 2 1 - 2 3

BASIC 8001 S tatements 2 4-4 1

BASIC 8001 Arithmetic Func tions 4 2 - 5 0

BAS IC 8001 User Define Functions 51-53

BASI C 8001 S tring Functions 54-55

BAS IC 8001 Edi ting Commands 56-60

Using As sembly Language Routines
with BASIC 61

..

BAS IC 8001

INTRODUCTION

BAS IC 8001 is a singl e-user, conversational programming language which
uses simple Engl ish-type statements and famil iar mathematical notations
to perform an operation. BAS IC 8001 is one of the simpl est computer
language s to learn and once learned has the facil ity of advanced tech
niques to perform more intri cate manipulations or expre s s a problem
more e ffic iently.

BAS IC 8001 is in incremental compiler which provide s immediate translation
and storage of user programs be ing input. This method decreases the
respon se time of a RUN command and increases execution speed. BAS IC 8001
has provi sion for alphanumeric character string., I/0 and string variables,
and allows user de fined functions and as sembly language subroutine cal l s
from user BAS IC 8 0 0 1 programs .

BAS IC 8001 can be run on any Intecolor 8001, Intecolor 8 0 5 1 or Compucolor
8001 with a minimum of 8K of user workspace.

LOADING AND RUNNING BAS IC 8001

BAS IC 8001 is provided in ROM and runs ln ROM . BAS IC 8001 is initiated by
typing the ESC key, then the W (BAS IC) key. The dialogue des cribed below
is printed . Thi s is a once-only dialogue and does not occur after an ESC
key, and E key sequence . The READY me ssage is printed after the ESC, E key
sequence .

BAS IC 8001 prints :

BAS IC 8001 Vl2/8/76 COPYRIGHT (C) 1976 BY CHARLES MUENCH

MAXIMUM RAM ADDRESS ?

The user then type s the highest RAM address that he has available or wants
to use and then keys a carriage return.

1"\IDDLE:.. o;: (I�ST W1fVI C:Af::p: Lj5CP)� � ce.s-535 -2@1/fSrD :=. 11 F FF HE.i<
One extra RAM card is 4 9 1 5 1 =�'553S-If>38"/ = BFFF"'u.
Two extra RAM cards is 57343 :.(055.35- 81'JZ. = 'Df'FFhc,..,
Three extra RAM cards is 6 5 5 2 9 = "SS3i-b : FFF9. \-.e.)C.

BAS IC 8001 then prints the mes sage,

READY

and waits for a command or program line to be typed .

I

2 '3 \ S�T e:.s use.o
FoR INI\IAC..!Z:�ralN

OF �AS(C �<PcDI STIJ'TliS.
2'i7 6':\T£-S tA�El>
AA"t.R. �0 (N& .AN!1�1 M$-.

I f BAS IC 8001 has been initial ized as above but has returned to the CRT
O . S . (by CPU Re set Key) , then BAS IC 8001 can be recal l ed without disturbing
exi sting programs by typing the ESC key, then the E key . BAS IC 8 0 0 1 will
then print the me s sage READY.

1

If power fails , the CPU Re set key is hit or the unit is turned off ,
the unit returns to the CRT operating mode .

If the CPU Re set key or ESC delete keys are hit , the unit leaves
BASIC 8001 and returns to the CRT operating mode . Any BASIC 8 0 0 1
statement program i s saved and can later b e recalled i f BASIC 8001
is re -entered by typing ESC , E .

BASIC 8001 has twenty-four (2 4) key word program statements , thirteen
(13) editing and command statements , eighteen (18) mathematical functions ,

nine (9) string functions and eighteen (18) two-letter error me ssages.
With the se command and statement capabilities , BASIC 8001 i s extremely
simple to use and yet very versatile and powerful .

The next section provides an easy re ference to BASIC 8 0 0 1 capabilitie s .
If the user i s unfamiliar with BASIC 8001 language, then the remaining
portion of thi s manual should be studied in sequence while having a
terminal at your fingertips to run the example given . Thi s manual
should enable the user to become very pro ficient in BASIC 8001 when
fini shed . Intelligent Systems Corporation and Compucolor Corporation
have a number of BASIC 8001 programs on Floppy Tape s and are available
at nominal prices . In addition , both companies will pay for BASIC 8 0 0 1
programs that are provided o n floppy tape when properly documented and
accepted . Enj oy your self programming in BASIC 8 0 0 1!

2

BAS IC 8001

SUMMARY OF COMMANDS

1. BAS IC 8001 STATEMENTS

The following summary of BASIC statements defines the general format for
the statement and give s a bri e f explanation o f its use.

DATA value list

DEF function (argument)
expre s s ion

DIM variable (n) , variable (n , m) ,
variable $ (n) , variable $ (n ,m)

END

FOR variable=expre s sionl TO

expres s ion2 STEP expre s s ion3

GOSUB l ine number

GOTO l ine number

THEN
IF expre s sion GOTO l ine number

INPUT list

INPUT " string" ; l i st

LET variable = expre s s ion

NEXT variable

ON X GOSUB l ine number l i st

ON X GOTO line number l i s t

3

Used in conjunction with READ to input
data into an executing program.

Defines a user function to be used in
the program.

Reserve s space for l ists and tables
according to subscripts spec i fied a fter
variable name.

Placed at the physical end o f the
program to terminate program execution.

Sets up a loop to be executed the
specified number of time s.

Used to tran s fer control to the first
line of a subroutine .

Used to unconditional ly trans fer control
to other than the next sequential line
in the program.

Used to conditionally tran s fer control
to the spec i fied line of the program.

Used to input data from the terminal
keyboard , promps with "?".

Used to input data without promp character .

Used to ass ign a value to the speci fied
variable (s) .

Placed at the end o f a FOR loop to
return control to the FOR statement.

Call the Xth l ine number subroutine
a fter GOSUB .

Branch to the Xth l ine number a fter GOTO .

OUT I , X

PLOT expre s sion

POKE I , X

PRINT list

PRINT expre s s ion

PRINT " string"

?

PRINT TAB (x)

READ variable list

REM comment

RESTORE

RETURN

STOP

WAIT X , I , J

4

Causes the X BYTE to be output to port I.

Sends the one BYTE result of the expression
to the 8001 CRT . The result must be
between 0 and 2 55 binary.

Causes the X BYTE to be placed in memory
location 0 L I 3 2 7 6 7 . I f I is negative
then address is 6 5 5 3 6 + I.

Used to output data to the terminal.

Prints results of expre s s ion.

Prints a character string.

Equivalent to the word PRINT.

Used to space to the speci fied column .

Used to assign the values l i sted in a
DATA statement to the specified
variabl es .

Used to insert explanatory comment s into
a BAS IC 8001 program.

Used to reset data block pointer so the
same data can be used again.

Used to return program control to the
statement following the last e xecuted
GOSUB statement.

Used at the logical end of the program
to terminate execution.

Causes the input port X to be read ,
exclusive OR ' ed with BYTE J , and then
AND ' ed with BYTE I. The program will
wait until the result is zero before
continuing .

'/ > \ �·z_ r'�0 ·-ro J/:..."J. 11"\�> X >67 �of).(, I\._ t-.\0 �\f:,GT
0<a . ,,0{:/,fl � Dvr\ Vv\

2. COMMANDS

The following key commands halt program execution , erase characters or delete
line s .

CTRL/J or Line Feed

CTRL/M or RETURN

CTRL/K or ERASE LINE

CTRL/L or ERASE PAGE

CTRL/Z or CURSOR LEFT

Explanation

Terminate s program execution . BAS IC 8001
prints READY .

Must be typed to end every l ine typed
in or to indi cate the end of an INPUT .

A colon is used to separate multiple
statements per l ine .

Deletes the entire current l ine .

Erases the CRT screen , but doe s not
change or di sturb BAS IC 8 0 0 1 statements
in any way .

Deletes the last character entered and
echoe s a cursor left .

The following c
.dfumands l ist , load , save , erase and execute the program currently

in core .

Command

CLEAR

CLEAR X

LIST

LIST l ine number

LOAD I

LOAD ? I

RUN

RUN l ine number

SAVE I

SA'Jt:- 1 . .'· LO�D?1. ��-'fy use-�u0
5

Explanation

Sets the array and s tring buffers to
nul ls and zeroes .

Sets space for string variable to X
characters normally 50 characters .

Prints the user program currently in
core on the l i st output device .

Prints the program from the l ine speci
fied t o the end.

Does a NEW and inputs the program on track
I from the READER input device .

Doe s not do a NEW but inputs and compares
the program on track # I with what is
existing in RAM Memory.

Executes the program in the buf fer area .

Execute s the program starting at line
number speci fied .

Outputs the program in core to track # I
of the WRITE output device .

-

NEW

CONT

6

Erases the entire storage area .

Continue s execution a fter CTRL/J is
typed or after a STOP statement.

The following functions perform standard mathematical operations in BASIC 8001 .

Name

ABS (x)

ATN (x)

TM�
CALL (x) il-{\5 � t-\U.ST BE:. POKE.t> IN AT

-2�575 (t.o B�� �""c\- 245'7� (Hi lS�TE.)
COS (x)

EXP (x)

FRE (x) 1)0E.S NOT INt\.Ubl:.. fRE-(X�) B':11t.S �
INT (x)

INP (x)

'LOG (x)

PEEK (x) 3o.rre o,c; \)0\(E.. \0 c.�-r; OV\5 •

POS (x)

SGN (x)
'\ (

SIN (x)

SPC (x) DISTI':LACiiVe TAB(x)
SQR (x)

TAB (x)

TAN (x)

7

Explanation

Returns the absolute value of x .

Returns the arctangent of x a s an angle
in radians in the range + or - pi/2 .

Call the user machine language routine
at location OAOOO HEX . Arf¢tiJ= -2'i576 "".TMP fl(JI(PI ::: -;!1575"-=- Lo
Returns the cosine of x

���ia;��S7� �Hr

Returns the value of ex where e=2 . 7182 8 .

Returns number of free BYTEs not in use .

Returns the greatest integer less than
or equal to x .

Returns a BYTE from input port 0 � x < 255 .

Returns the natural logarithm of x .

Returns a BYTE from memory address O�x�32767
or if X is negative the memory address
is 65536- x .

Returns a value 0 to 7 9 current cursor
position .

Returns a random number between 0 and 1 .

Returns a value indicating the sign o f x .

Returns the sine of x radians .

Causes x spaces to be generated .

Returns the square root of x .

Causes the cursor to tab to column
number x when used in a print statement .

Returns the tangent of x radians .

The string functions are :

Name

ASC (x$)

CHR$ (x)

FRE (x$)

LEFT$ (x$,I)

LEN (x$)

i>1ID$ (x$, I , J)

RIGHT$ (x$, I)

STR$ (x)

VAL (x$)

CLEAR X

Explanation

Returns as a decimal number the seven-bit
internal code for the first character of
string (x$) .

Generates a one-cha£acter string having the
ASCII value of x .

Returns number of free string BYTES .

Returns left most I characters o f string
(x$) .

Returns the number of characters in the
string (x$) .

Returns J characters of string (x$)
starting at position I .

Returns right most I characters of string
(x$) .

Returns the string which represents the
numeric value o f x .

Returns the number represented by the string
(x$) .

Re.se.r"es X 'oytes -rot" str·m3 d.cx�o.. betC\ult
"C\\u� is sQ> �oy1es. No s;(\�\e '()put can

excee.� 9" 'lo'fte.cs.

8

ERROR MESSAGES

After an error occurs , BASIC 8001 returns to command level and types
READY . Variable values and the program text remain intact , but the program
cannot be continued and all GOSUB and FOR context is lost .

When an error occurs in a direct statement , no line number is printed .

Format of error messages :

Direct Statement XX ERROR

Indirect Statement XX ERROR IN YYYYY

In both of the above examples , "XX " will be the error code . The " YYYYY"
will be the line number where the error occurred for the indirect statement .

The following are the possible error codes and their meanings :

ERROR CODE

BS

DO

CF

MEANING

Bad Subscript . An attempt was made to reference a
matrix element which is outside the dimension of the
matrix . This error can occur if the wrong number of
dimensions are used in a matrix reference ; for instance ,
LET A (l , l , l) =Z when A has been dimensioned DIM A (2 , 2) .

Double Dimension . After a matrix was dimensioned ,
another dimension statement for the same matrix was
encountered . This error often occurs if a matrix has
been given the default dimension 10 because a statement
like A (I) =3 is encountered and then later in the program
a DIM A (lOO) is found .

Call Function error . The parameter passed to a math
or string function was out of range .
CF errors can occur due to :

a)

b)

c)

d)

e)

f)

g)

a negative matrix subscript (LET A (-l) =O)

an unreasonably large matrix subscript (>32767)

LOG-negative or zero argument

SQR-negative argument

A B with A negative and B not an integer .

A CALL (X) before the address of the machine
language subroutine has been patched in (see�9.7)
calls to MID$, LEFT$, RIGHT$, INP , OUT , WAIT ,
PEEK , POKE , TAB , SPC or ON . . . GOTO with an improper
argument .

9

ID

NF

OD

OM

ov

SN

RG

us

/0

CN

LS

OS

ST

TM

Illegal Direct . You cannot use an INPUT or DEF
statement as a direct command .

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously executed FOR statement .

Out of Data . A READ statement was executed but all
of the DATA statements in the program have already
been read . The program tried to read too much data
or insufficient data was included in the program .

Out of Memory . Program too large , too many variables ,
too many FOR loops , too many GOSUB ' s , too complicated
an expression or any combination of the above .

Overflow . The result of a calculation was too large
to be represented in BASIC ' s number format . If an
underflow occurs , zero is given as the result and
execution continues without any error message being
printed .

Syntax error . Missing parenthesis in an expression ,
illegal character in a line , incorrect punctuation , etc .

RETURN without GOSUB . A RETURN statement was encountered
without a previous GOSUB statement being executed .

Undefined Statement . An attempt was made to GOTO , GOSUB
or THEN to a statement which does not exist .

Division by Zero .

Continue error . Attempt to continue a program when
none exists , an error occurred , or after a new l ine was
typed into the program .

Long String . Attempt was made by use of the concatenation
operator to create a string more than 255 characters long .

Out of String Space . Save your program on paper tape
or cassette , reload BASIC and allocate more string
space or use smaller strings or less string variables . f\\.\..OCA"f'E. SIRING S'f>ACt Wl'rl-\ CL.E..AR X. 5e.� "P5· r;i!
String Temporaries . A string expression was too complex.
Break it into two or more shorter ones .

Type Mismatch . The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string , or vice versa ; or , a function
which expected a string argument was given a numeric
one or vice versa .

1 0

UF Undefined Function . Reference was made to a user
defined function which had never been defined .

11

BASIC 8001 ARITHMETIC

I . NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers--
that is , it accepts any decimal number and assumes a decimal point
after an integer . The advantage of treating all numbers as decimal
numbers is that any number or symbol can be used in any mathematical
expression without regard to its type . Numbers used must be in the
approximate range lo-38<N<lo+38 .

In addition to integer and real formats , a third format is recognized
and accepted by BASIC 8001 . This format is called exponential or
E-type notation , and in this format , a number is expressed as a
decimal number times some power of 10 . The form is :

xxEn

where E represents "times 10 to the power of" ; thus the number is
read "xx times 10 to the power of n" . For example :

2 3 . 4E2=23 . 4 * l02 = 2340

Data may be input in any one or all three of these forms . Results
of computations are output as decimals if they are within the range
. Ol_n_999999 ; otherwise , they are output in E format . Numbers are
stored up to 24 bits of significance . If a number with more than
24 bits is entered , it is truncated and stored as 24 bits . BASIC
8001 handles six significant digits in normal operation and prints
6 decimal digits as illustrated below :

Value Typed In

. 01

. 0099
999999
1000000

Value Output by BASIC 8001

. 01
9 . 90000E-03
999999
l . OOOOOE+06

BASIC automatically suppresses the printing of leading and trailing
zeroes in integer and decimal numbers , and , as can be seen from the
preceding examples , formats all exponential numbers in the form :

(sign) x . xxxxxE (+ or -) n

where x represents the number carried to six decimal places , E stands
for " times 10 to the power of" , and n represents the exponential value .
For example :

-3 . 4 702 1E+08 is equal to -347 , 021 , 000
7 . 26000E-04 is equal to . 00726

Floating point format is used when storing and calculating most numbers .

12

NOTE

Because core size limitations prohibit the storage of
infinite binary numbers , some numbers cannot be expressed
exactly . In BASIC 8001 , accuracy is approximately 5-�
digits , and errors in the 6th digit can occur . For
example , . 999998 as a result of some functions may be
equal to 1 . Discrepancies of this type are magnified when
such a number is used in mathematical operation .

I I . VARIABLES

A variable in BASIC 8001 is an algebraic symbol representing a number ,
i s formed by a single letter , a letter optionally followed by a single
digit or by double letters . For example :
NOTE: VQ.v- iQ'oles Mo.y b� C\ stri n� of chqraders M ar-.y t o r"lj

Acceptable Var1ables Unacceptable Variables

and

l...t>f'>� "o..r�O\'o\e5 C\�e
\Jer/ Ll�1u� fol" \r.�e'"""t
d.oCL.h'Y\81'\fQ-t·;O'fl I� 0.

ACC.!.PTABL.f. =- 8GJlP
I

.-£.><ci...�'Dt:.S AN�TI-\rNG
B3 W�\Cl-\ r'!.fSt:.fV\6\.tS

A s�s 1c. coMMANI>

2C-a digit cannot begin a variable .

11-numbers alone cannot form a
variable .

AB ol'IL. '1 2. t..E.FTMoST I otAAACTE.ft5 ARE-
X S\Gf'J\F\(;ANT· _.1
D ALE.. -::. ��

Subscripted and string variables are described in later sections . The
user may assign values to variables either by indicating the values in
a LET statement , or by inputting the values as data; these operations
are discussed in another chapter .

The value assigned to a variable does not change until the next time a
statement is encountered that contains a new value for that variable .
All variables are set equal to zero (O) when the RUN command i s issued .
It is only necessary to assign a value to a variable when an initial
value other than zero is required. However , good programming practice
would be to set variables equal to 0 wherever necessary . This ensures
that later changes or additions will not misinterpret values .

I I I . SUBSCRIPTED VARIABLES

In addition to the simple variables described in the preceding section ,
BASIC 8001 allows the use of subscripted variables . Subscripted variables
provide additional computing capabilities for dealing with l ists , tables ,
matrices , or any set of related variables . In BASIC 8001 variables are
allowed from 1 to 31 subscripts .

The name of a subscripted variable is any acceptable BASIC 8001 variable
name followed by one or more integer expressions in parentheses within
the range 0-3276 7 . For example , a list might be described as A (I) where
I goes from 0 to 5 as shown below :

A (O) , A (l) , A (2) , A (3) , A (4) , A (5)

1 3

This allows reference to each of the six elements in the list , and can
be considered a one dimensional algebraic matrix as follows :

A (O)

A (l)

A (2)

A (3)

A (4)

A (S)

A two-dimensional matrix B (I , J) can be defined in a similar manner :

B (O , O) , B (O , l) , B (0 , 2) , . . , B (OJ) , . . , B (I , J)

and graphically illustrated as follows :

B (0 , 0) B (O , l) B (0 , 2) B (0 , 3) / B (O , J)
B (1 , 0) B (l , l) B (l , 2) B (l , 3) " B (l , J)
B (2 , 0) B (2 , l) B (2 , 2) B (2 , 3) 7 B (2 , J)
B (3 , 0) B (3 , l) B (3 , 2) B (3 , 3)7 B (3 , J)

I B (I , O) B (I , l) B (I , 2) B (I , 3)) (B (I , J)

Subscripts used with subscripted variables throughout a program can be
explicitly stated or be any legal expression . If the value of the expression
is non-integer , the value is truncated so that the subscript is an integer .

It is possible to use the same variable name as both a subscripted and
unsubscripted variable . Both A and A (I) are val id variables and can be
used in the same program . The variable A has no relationship to any
element of the matrix A (I) . BASIC 8001 will accept the same variable
name as both a singly and a doubly subscripted variable name in the same
program .

Character strings may also be subscripted variable arrays , and may have
the same variable name i . e . , A$ (I) .

A Dimension
the maximum
variable .)

(DIM) statement is used with subscripted variables to define
number of elements in a matrix . ("Matrix" is the subscripted
The DIM statement is discussed in a later paragraph .

14

If a subscripted variable is used without appearing in a DIM statement ,
it is assumed to be dimensioned to length 10 in each dimension (that
is , having eleven elements in each dimension , 0 through 10) . However ,
all matrices should be correctly dimensioned in a program .

IV . EXPRESSIONS

An expression is a group of symbols which can be evaluated by BASIC 8001 .
Expressions are composed of numbers , variables , functions , or a
combination of the preceding separated by arithmetic or relational
operators .

The following are examples of expressions acceptable to BASIC 8001 :

Arithmetic Expressions String Expressions

4 A$+B$+"ABC"
A7* (BI\2+1)

Not all kinds of expressions can be used in all statements , as is
explained in the sections describing the individual statements .

V . ARITHMETIC OPERATIONS

BASIC 8001 performs addition , subtraction , multiplication , division and
exponentiation . Formulas to be evaluated are represented in a format
similar to standard mathematical notation . The five operators used in
writing most formulas are :

Symbol
Operator

OR
AND
NOT
+

*

Example Meaning

Logical and bitwise
Logical and bitwise
Logical and bitwise
Add B to A
Subtract B from A
Multiply A by B

"OR"
"AND"
"NOT"

I
"

A + B
A - B
A * B
A I B
A 1\ B

Divide A by B
Exponentiation (Raise A to
the Bth power)

Unary plus and minus are also allowed , e . g . , the - in -A+B or the + in
+X-Y . . Unary plus is ignored . Unary minus is treated as a zero minus
the variable , e . g . , -A+B would be handled as 0-A+B .

VI . PRIORITY OF ARITHMETIC OPERATIONS

When more than one operation is to be performed in a single formula , as
is most o ften the case , rules are observed as to the precedence of the
operators .

15

In any given mathematical formula , BASIC 8001 performs the arithmetic operations
in the following order of evaluation :

1 . Parentheses receive top priority . Any expression within
parentheses is evaluated before an unparenthesized expression .

2 . In the absence of parentheses , the order of priority is :

�- Exponentiation (proceeds from left to right). .

b . Unary minus .

c . Multiplication and Division (of equal priority) .

d . Addition and Subtraction (of equal priority) .

e . Logical operators in the order NOT , AND , then OR.

3 . I f either 1 or 2 above does not clearly designate the order of
priority , then the evaluation of expressions proceeds from
left to right .

The expression AABAC is evaluated from left to right as follows :

1 . A/I,B step 1

2 . (re sult of step l) AC = answer

The expression A/B*C is also evaluated from left to right since multi
plication and division are of equal priority :

1 . A/B step 1

2 . (result of step l) *C = answer

The expression A+B*CI\D is evaluated as :

1 . CAD step 1

2 . (result of step l) *B step 2

3 . (result of step 2) +A = answer

Parentheses may be nested , or enclosed by a second set (or more) of
parentheses . In this case , the expression within the innermost paren
theses is evaluated first , and then the next innermost , and so on , until
all have been evaluated .

In the following example :

A=7* ((BA2+4) /X)

The order of priority is :

16

2 . (result o f step 1) +4

3 . (result of step 2) /X

step 1

step 2

step 3

4 . (result of step 3) *7 = A

Parentheses also prevent any confusion or doubt as to how the expression
is evaluated . For example :

A*BA.2/7+B/C*DA2
((A*BA2) /7+ ((B/C) *DA2)

Both of these formulas are executed in the same way , but the second is
easier to understand .

Spaces may be used in a similar manner. Since the BASIC 8001 interpreter
ignores spaces (except when enclosed in quotation marks) , the two
statements :

1� LET B = DA2 + 1
l�LETB=DA2+l

are identical , but spaces in the first statement provide ease in reading.
When the statement is subsequently printed , extra spaces are ignored .

VII . RELATIONAL OPERATORS

Relational operators allow comparison of two values and are used to
compare arithmetic expressions or strings in an IF . THEN statement .
The relational operators are :

Mathematical BASIC 8001,
Symbol Symbol Example Meaning

A B A is equal to B .

� < A < B A is less than B .

(. (= or = <. A(= B A is less than or
equal to B .

> > A) B A is greater than

� >= or =) �' A) = B A is greater than
or equal to B .

B .

'I <> or)(A() B A is not equal to B .

The symbol s = <, => ,) <. are accepted by BASIC 8001 but are converted to
(= ,)= , and<.> and are shown in that form in a listing .

1 7

A\\ \Jo_r-,o..'o\�s ·l�t"\-�o.�;z� (,0·��. o. ::cp-l.oyfe po+e.Y\t;Q,J !-eYIJtt
�t-c��rf?��;-G\-f'��r,. ��e; t{.... tc;-- t V'l. Gt,., 1 wa.y, t"u:�t � 01P:��A---\:"� -"'-f-J,;� Ch""B"- "'"tb C L(f) R X stc. i e men 'G see P;)- S'.

BASIC 8001 STRINGS

CL-Eft� X R€.-S(R.\JE-S X '6-jT�� Fot<. ST�tNG "DATA
I . STRINGS

The previous section described the manipulation of numerical information
only; however , BASIC 8001 also processes information in the form of
character strings . A string , in this context , is a sequence o f characters
treated as a unit . A string can be composed of alphabetic , numeric , or al
phanumeric characters . (An alphanumeric string is one which contains
letters , numbers , spaces or any combination of characters .) A character
string can be 255 characters long . Strings cannot be typed on more than
one terminal line since a carriage return terminates the command .

II . STRING VARIABLES

Any variable name followed by a dollar sign ($) character indicates a
string variable . For example :

A$
C7$

are simple string variables and can be used , for example , as follows :

LET A$="HELLO"
PRINT A$

Note that the string variable A$ is separate and distinct from the variable
A .

In BASIC 8 0 0 1 , all control characters above control code F (or 6) are legal
within Quotes (") except for the following :

Control Code K or 11 or erase line
Control Code L or 12 or erase page
Control Code M or 13 or return
Control Code z or 26 or cursor left

III . SUBSCRIPTED STRING VARIABLES

Any list of matrix variable name followed by the $ character denotes the
string form of that variable . For example :

V$ (n)
C$ (m ,n)

M2 $ (n)
Gl$ (m , n)

where m and n indicate the position of the matrix element within the
whole .

The same name can be used as a numeric variable and as a string variable
in the same program with no restriction . A one- and a two-dimensional
matrix can have the same name in the same program . For example :

18

A
A$

A (n)
A$ (m , n)

can a l l be used in the same program .

A (m , n)
A$ (m , n (

String lists and matrices are defined with the DIM statement as are
numerical lists and matrices .

IV . STRING OPERATIONS

Concatenation

Concatenation puts one string after another without any intervening
characters . It is specified by a plus sign (+) and works only with
strings . The maximum length of a concantenated string is 255 char
acters .

For example :

1.0 READ A$, B $, C$
2.0 DATA " 1 1 " , " 3 3 " , " 2 2 "
3.0 LET D$ = A$+C$+B$
35 PRINT D$
4.0 END
RUN
112 2 3 3

v . RELATIONAL OPERATIONS

When applied to string operands , the relational operators indicate
alphabetic sequence . The comparison is done on the basis of the ASCI I
value associated with each character in the strings being compared . For
example :

55 IF A$<B$ THEN 100

When l ine 55 is executed , the first characters of each string (A$ and
B$) are compared , then the second characters of each string and so on
until the character in A$ is less than the character in B$. Then
execution continues at line 100 . Essentially , the strings are compared
for alphabetic order . The next page contains a list of the relational
operators and their string interpretations .

In any string comparison , trailing blanks are ignored (i . e . , "ABC " is
equivalent to "ABC ") .

FRE.(x);:;fl\/flll.llBL£ B'jTES oF PRoG-RAM MEJVlo�j.
f�E:.(x$)�AVAtL..ABlf. B';:\TcS OF Sn�.tNG- M£fv1oRJ.

TelA\... AVAILABLE. M£MO�j IS f=t:.t.(x) + f�£(><�) . .. co."' C\clj�..tst � +ro.nrter by CLEIJ� X.

19

Operator

<

')

(= or = (

> = or =>

<) or><

BAS IC 8001

- --- --------

Relational Operators Used With
String Variables

Example

A$ = B$

A$ (B$

A$) B$

A$<= B$

A$)= B$

A$() B$

20

Meaning

The strings A$ and B$ are al
phabetically equal .

The string A$ alphabetically
precedes B$.

The string A$ alphabetically
follows B $.

The string A $ is equivalent to
or precedes B$ in alphabetical
sequence .

The string A$ is equivalent to
or follows B$ in alphabetical
sequence .

The strings A$ and B$ are not
alphabetically equal .

BASIC 8001 IMMEDIATE MODE

I . USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It i s not necessary to write a complete program to use BASIC 8001 .
Most of the statements discussed in this manual can be included in a
program for later execution or given on-line as commands , which are
immediately executed by the 8080 CPU . This latter facility makes
BASIC 8001 an extremely powerful calculator .

BASIC 8001 distinguishes between lines entered for later execution
and those entered for immediate execution solely by the presence (or
absence) of a l ine number . Statements which begin with l ine numbers
are stored ; statements without l ine numbers are executed immediately
upon being entered to the system . Thus the line :

1,0 PRINT "THIS IS A COMPUCOLOR 8001 "

produces no action at the console upon entry , while the statement :

PRINT " THIS IS A COMPUCOLOR 8001"

causes the immediate output :

THIS IS A COMPUCOLOR 8001

I I . PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas : program
debugging and the performance of simple calculations in s ituations which
do not occur with sufficient frequency or with sufficient complications
to j ustify writing a program .

In order to facilitate debugging a program , STOP statements can be
l iberally placed throughout the program . Each STOP statement causes
the program to halt , at which time the various data values can be
examined and perhaps changed in immediate mode. The

GO TO xxxxx

command is used to continue program execution (where xxxxx i s the number
of the next program line to be executed) . GOSUB and IF commands could
also be used. The values assigned to variables when the RUN command was
executed remain intact until a NEW , CLEAR or another RUN command is
executed .

If the STOP occurs in the middle of a FOR loop , modifications cannot be
made to the section o f the program preceding the FOR .

21

When using immediate mode , nearly all the standard statements can be
used to generate or print results .

If CTRL/J or l inefeed is used to halt program execution , the GO TO XXXX or CONT
command can be used to continue execution , since CTRL J or linefeed
doe s print the number of the line where execution stopped . It is
easy to know where to resume the program .

I I I . MULTIPLE STATEMENTS PER LINE

Multiple statements can be used on a single line in immediate mode .
For example :

A=l : PRINT A
1

Program loops are allowed in immediate mode; thus a table o f square
roots can be produced as follows :

FOR I=l TO 10 : PRINT I , SQR (I) : NEXT I

1 1
2 1 . 41421
3 1 . 7 3205
4 2
5 2 . 23607
6 2 . 44949
7 2 . 64575
8 2 . 82843
9 3
10 3. 16228

READY

IV. RESTRICTIONS ON IMMEDIATE MODE

The INPUT statement cannot be used in immediate mode and such use results
in the following error message :

ID ERROR
READY

Certain commands , while not illegal , make no logical sense when used in
immediate mode . Commands in this category are DEF , DIM and DATA .

Also since user functions are not defined until the program is executed ,
function references in immediate mode cause an error unless the program
containing the definition was previously executed .

Thus , the following dialogue might result if a function was defined in
a user program and then referenced in immediate mode .

10 DEF FNA (X) = XA2 + 2*X : REM SAVED STATEMENT
PRINT FNA (l) : REM IMMEDIATE MODE

UF ERROR
READY

22

but if the sequence of statements is :

1 0 DEF FNA (X) = XA2+2*X : REM SAVED STATEMENT
RUN

READY

PRINT FNA (l)
3

READY

the immediate mode statement is executed .

2 3

BASIC 8001 STATEMENTS

A user program is composed of l ines of statements containing instructions
to BASIC 800 1 . Each line of the program begins with a line number that identi
fies that line as a statement and indicates the order of statement execution .
Each statement starts with an English word specifying the type of operation
to be performed . The statement lines are terminated with the RETURN key
which is non-printing .

I. STATEMENT NUMBERS

An integer number is placed at the beginning of each line in a BASIC 8001
program . BASIC 8001 executes the statements in a program in numerically
consecutive order regardless of the order in which they were typed .
Statement numbers must be within the range 0 to 65529 . When first writing
a program , it is advisable to number lines in increments of five or ten to
allow insertion of forgotten or additional lines when debugging the program .

All BASIC 8001 statements and computations must be written on a single line ;
they cannot be continued onto a following line . However , more than one
statement may be written on a single line when each statement after the
first is preceded by a colon (:) . For example :

1� INPUT A ,B , C

is a single statement line , whereas

2� LET X=ll : PRINT X , Y , Z : IF X=A THEN 1�

is a multiple statement line containing three statements : LET , PRINT , and
IF . Most statements may be used anywhere in a multiple statement l ine ; ,
exceptions are noted in the discussion of each statement . Only the first
statement on a l ine can (and must) have a line number . ; It should be re
membered that program control cannot be transferred to'a statement within a
line , but only to the first statement of a line .

I I . REMARK STATEMENT

It is often desirable to insert notes and messages within a user program .
Such data as the name and purpose of the program , how to use it , how
certain parts of the program work , and expected results at various points
are useful things to have present in the program for ready reference by
anyone using that program .

The REMARK or REM statement is used to insert remarks or comments into a
program without these comments affecting execution . Remarks do , however ,
use core area which may be needed by an exceptionally long program .

The REMARK statement must be preceded by a line number and may be used
anywhere in a multiple statement line . The message itself can contain

24

any printing character on the keyboard . BAS IC 8001 completely ignores
anything on a l ine following the letters REM . (The l ine number of a REM
statement can be used in a GOTO or GOSUB statement , see sections pertaining
to destination of a j ump in the program execution .) Typical REM statements
are shown be low :

10 REM- THIS PROGRAM COMPUTES THE
11 REM- ROOTS OF A QUADRATIC EQUATION

III . THE ASS IGNMENT STATEMENT - LET

The LET statement a s signs a value to the spec ified variable (s) . The
general format of the LET statement is :

LET variable expre s sion

where variable is a numeric or string variable and expre s s ion is an
arithmetic or string expres sion . All items in the statement mus t be
either string_or numeric ; they cannot be mixed . The word LET is optional .

The LET s tatement does not indicate algebraic equal ity , but performs
calculations within the expre s s ion (if any) and assigns the value to the
variable .

The meaning of the e qual (=) s ign should be clarified . In algebraic
notation , the formula X=X+l is meaningless. However , in BAS IC 8001 (and
mos t computer languages) , the equal sign des ignate s replacement rather
than equality . Thus , thi s formula is actually translated : "add one to
the c urrent value of X and store the new result back in the s ame variable
X". Whatever value has previously been ass igned to X will be combined
with the value 1. An e xpres s ion such as A=B+C instructs the computer to
add the values of B and C and store the re sult in a third variable A . The
variable
but only
prior to
replaced

E xample :

LET

A is not being evaluated in terms of any previously ass igned value ,
in terms of B and C . Therefore , if A has been assigned any value
its use in this statement , the old value is los t ; it is instead
by the value B+C .

X-=�=� -::.qg i.s oot e'lQ� u"lect {cr �:.'\8 J ':1 =9SJ 2-=-q� . . : Y"ll\1�er; � t ;s
e\laluc:.ted \ o3 ·1 c� lly where, we fest ,f �;:;z::.�g qnc\ C\SS I�:)Y' rQ.S u lf -to X.

X=2 As s1gns the value 2 to the variable X.

LET X=X+l+Y Adds 1 to the current value of X then adds the
value of Y to the result and assigns that value
to X .

IV . THE DIMENSION STATEMENT - DIM

The DIMen s ion statement i s used to define the maximum number of elements
in a matrix. The DIM s tatement is of the form :

DIM variable (n) , variable (n ,m) , variable$ (n) , variable$ (n ,m)

where variables specified are indicated with their maximum subscript value (s) .

2 5

For example :

l� DIM X (5) I Y (4 , 2) I A (l� , 1�)
12 DIM A4 (l��) I A$ (2 5)

Only integer constants (such as 5 or 507 0) can be used in DIM statements
to de fine the size of a matrix . Variables cannot be used to spe c i fy the
bounds of arrays . Any number of matrices can be de fined in a single DIM
statement as long a s the ir repre sentations are separated by commas .

The first element of every matrix is automatically as sumed to hav2 .:1 ·:ub
script of zero. Dimensioning A (6 , 10) sets up room for a matrix with 7
rows and l l columns . Thi s zero element is illustrated in the fol lowing
program :

l� REM - MATRIX CHECK PROGRAM
2 � DIM A (6 , 1�)
3� FOR I=� TO 6
4 � LET A (I I�) I
5 � FOR J=� TO l�
6 � LET A (� , J) = J
7 � PRINT A(I , J) ;
8 � NEXT J:PRINT : NEXT I
9� END

RUN
� 1 2 3 4 5 6 7 8 9 1 �
l � � � � � � � � � �
2 � � � � � � � � � �
3 � � � � � � � � � �
4 � � � � � � � � � �
5 � � � � � � � � � �
6 � � � � � � � � � �

READY

Notice that a variable has a value of zero until it is ass igned another
value .

Whenever an array i s dimensioned (n , m) , the matrix i s allocated m+l , n+l
elements . Core space can be conserved by using the Oth element of the
matrix . For example , DIM A (5 , 9) dimensions a 6 x 1 0 matrix which would
then be re ferenced beginning with the A (O , O) element.

The size and number of matrices which can be defined depend upon the
amount of storage space available .

A DIM stateme�t can be placed anywhere in a multiple statement l ine and
can appear anywhere in the program . A matrix can only be dimens ioned
onc e . D I M statements need not appear prior to the first re ference to an
array , although DIM statements are generally among the first s tatements
of a program to allow them to be easily found if any alterations are later
required .

26

All arrays spe cified in DIM statements are a llocated spa ce when the RU N

command is exe cuted.

V. PLOT S TATEMENT

The PLOT S tate ment is used t o output the 8 bit BYTE value of an expr e s s ion

t o the CRT S creen . The general f or mat of the PLOT State ment is :

10 PLOT expre s s ion

The expr e s s ion can be any combinat ion of variable s which will eva l uate

t o a p os itive value between 0 and 2 5 5 .

The f ol l owing exa mp le wil l p lot a p oint on the CRT S creen at L ocat ion

80 , 96 (X,Y) :

10 X=80 Y=96
20 PLOT 2 REMARK THE 8001 PLOT MOD E COD E

30 PLOT X
40 PLOT 255

PLOT Y : REMARK PLOTS POINT AT 80, 96
REMAR KS THE 8001 PLOT MOD E ESC APE CODE

As an other exa mp le ente r :
o (,8. PLOT b� : 1'\.0T 71D : P LOT 71

PLOI f,S': f'I..OT�: \'l.OT67: 'I>\. T .

F1 'PJC 'tl t. t= G PLOT 6 5
A

READY �i.� D� � MSIC. 'J)o£.5 MOl (t..F=)(C.RJ S€ !WEEN PL.OTS.

It can be s een that (s in ce 65 is the de cimal ASC II va lue f or A) PLOT 65
is the s a me a s PRINT "A";

VI. PRINT S TATEMENT

The PRINT s tate ment is used t o output data t o the ter mina l . The general

f or ma t of the PRINT s tate me nt is :

l) PRINT list

The list is option a l and can contain expr e s s ion s , text s t r ing s , or b oth.

When used with out the lis t , the PRINT sta te ment :

2 5 PRINT
l:lo�S. �.,.- E'-1\<;.�1 'J"\.ISI S\1:.1� 'S>OvJN •

;:-"
cau s e s a blank line t o be output on the 8001 CRT

line feed operat ion is per f or med) .

2) PRINT Expre s s ion

S creen (a car r iage return/

PRINT s tate ments can b e used t o per f or m calcu lations and print re s u lt s .

Any expre s s ion within the list is eva luated b e f ore a va lue is prin ted .

For exa mp le :

2 7

r----- - - --

10 LET A=l : LET B=2 : LET C=3+A
20 PRINT
30 PRINT A+B+C
RUN

7

READY

All numbers are printed with a preceding and fol lowing blank spac e .

The PRINT statement can be used anywhere in a multiple statement l ine .
For example :

10 A=l : PRINT A : A=A+S : PRINT : PRINT A

print s the fol lowing on the terminal when executed :

l

6

READY

Notice that the terminal per forms a carriage return/l ine feed at the end
of each PRINT statement . Thus the first PRINT statement outputs a l and
a carriage return/line feed ; the second PRINT statement the blank l ine ;

and the third PRINT statement , a 6 and another carriage return/line feed .

3) PRINT Strings

The PRINT statement can be used to print a me ssage or string of characters ,
either alone or together with the evaluation and printing o f numeric values .
Characters are indicated for printing by enc los ing them in double quotation
marks . For example :

10 PRINT " TIME ' S UP "

20 PRINT " NEVERMORE "
RUN
TIME ' S UP
NEVERMORE

READY

As another example , consider the fol lowing l ine :

40 PRINT "AVERAGE GRADE I S " ; X

which prints the fol lowing (where X is equal to 8 3 . 4) :

AVERAGE GRADE I S 83 . 4

2 8

When a character string is printed , only the characters between the
quotes appear ; no leading or trail ing spaces are added . Leading and
trail ing spaces c an be added within the quotation marks using the key
board space bar ; space s appear in the printout exactly as they are typed
within the quotation marks .

When a comma separate s a text string from another PRINT l ist item , the
item i s printed at the beginning of the next available print zone .
Semicolons separating text strings from other items are ignored . Thus ,
the previous example could be expres sed as :

4,0 PRINT " AVERAGE GRADE I S " X

and the same printout would re sult . A comma or semicolon appearing as
the last item of a PRINT l ist always suppresses the c arriage return/l ine
feed operation .

BAS IC 8001 does an automatic carriage return/line feed i f a s tring i s
pr inting past column 8 0 .

4) Use o f " , " and " ; "

BASIC 8001 cons iders the 8001 CRT Screen to be divided into ten zones o f
eight spaces each . When a n item in a PRINT statement i s followed b y a
comma , the next value to be printed appears in the next available print
zone. For example :

1.0 LET A=3 : LET B=2
2,0 PRINT A , B , A+B , A*B , A-B , B-A

When the prec eding l ine s are executed , the following i s printed :

3 2 5 6 1 - 1

Notice each character i s 8 spaces from the next charac ter .

Two commas together in a PRINT statement cause a print zone to be skipped .
For example :

1 .0 LET A=lj LET B=2
2,0 PRINT A , B , , A+B
RUN
1 2

READY

3

I f the last item in a PRINT statement is fol lowed by a comma , no carriage
return/l ine feed is output , and the next value to be printed (by a later
PRINT statement) appears in the next available print zone . For example :

29

10 A=l : B=2 : C=3
20 PRINT A, : PRINT B : PRINT C
RUN
l 2
3

READY

I f a tighter packing o f printed value s is desired , the semicolon
character can be used in place of the comma. A semicolon cause s no
further spaces to be output other than the leading and trail ing space
automatically output with each number . A comma cause s the print head
to move at least one space to the next print zone or pos s ibly perform
a carriage return/l ine feed . The following example shows the e ffects
of the semicolon and comma .

10 LET A=l/ B=2/ C=3
20 PRINT A ; B ; C ;
30 PRINT A+l ; B+l ; C+l
40 PRINT A , B , C
RUN
l 2 3 2 3 4
l 2 3

READY

The following example demonstrates the use of the formatting characters ,
and ; with text strings :

120 PRINT " STUDENT NUMBER" X , " GRADE = " G ; "AVE . = " A ;
1 30 PRINT "NO . IN CLASS = " N

could cause the following to b e printed (as suming calculations were done
prior to l ine 1 3 0) :

STUDENT NUMBER 1 1 9050 GRADE = 87 AVE .

5) PRINT Statement - TAB Function

8 5 . 44 NO . IN CLASS 2 6

The TAB function is used i n a PRINT statement t o write spaces to the spec
i fied column on the output device. The columns on the output devices are
numbered l to 8 0 .

The form o f the command is :

PRINT TAB (x)

where (x) i s the column number i n the range 0-255. (I f X exceeds 8 0 ,
however , every other consecutive line is tabbed until the number o f
spaces to b e output i s less than or equal to 8 0) . I f the column number
speci fied is greater than 2 5 5 or negative , an error me ssage is printed
as follows :

CF ERROR
READY

3 0

I f (x) is non-integer , only the integer portion o f the number i s
used.

I f the column number (x) specified is less than or equal to the
current column number , the TAB function has no e ffect.

VII . INPUT STATEMENT

The INPUT statement i s used when data i s to be input from the terminal
keyboard during program execution. The form of the statement i s :

l) INPUT l ist

where l i st i s a list o f variable names separqted by commas.

For example :

l� INPUT A , B , C

causes the computer to pause during execution , print a ques tion
and wait for input of three numeric values separated by commas.
value s are input to the computer by typing the RETURN key .

mark ,
The

If too few values are entered , BASIC 8001 prints another ? to indic ate
that more data i s needed. I f too many values are typed , the excess
data on that l ine is ignored and the message below i s printed but program
still continues. The values entered in response to the INPUT statement
cannot be continued on another l ine and are terminated by the RETURN
key. Values mus t be separated by commas , i f more than one value i s
input o n the s ame l ine .

When there are several value s to be entered via the INPUT statement ,
it is helpful to print a me ssage explaining the data needed . For
example :

l� PRINT " YOUR AGE IS " ;
2 � INPUT A

2) INPUT " string " ; list

The INPUT statement can also contain quoted strings . The above example
could be written :

10 INPUT " YOUR AGE I S ? " ; A

Note that when a quoted string i s inc luded i n a INPUT statement , the
normal ? is not printed as a prompt character , and i f de s i red , must
be included as shown within the quote s above .

This feature al lows BAS IC 8001 to be programmed to handle fill-in-the
forms type of appl ications .

3 1

VII I. DATA STATEMENT

The DATA statement is used in conjunction with the READ statement to
enter data into an executing program . One statement i s never used
without the other . The form of the statement is :

DATA value list

where the value list contains the numbers or strings to be assigned to
the variables listed in a READ statement . Individual items in the value
list are separated by commas ; strings must be enclosed in quotation
marks .

For example :

15_0 DATA 4 , 7 . 2 , 3 , "ABC"
17_0 DATA 1 , 34E-3 , 3 . 17311

The location of DATA statements is arbitrary as long as they appear in
the correct order ; however , it is good practice to collect all DATA
statements near the end of the program .

When the RUN command is executed , BASIC 8001 searches for the first DATA
statement and saves a pointer to its location . Each time a READ statement
is encountered in the program , the next value in the data statement is
assigned to the designated variable . If there are no more values in that
DATA statement , BASIC 8001 looks for the next DATA statement .

I X . READ STATEMENT

A READ statement is used to assign the values listed in a DATA statement
to the specified variables . The READ statement is of the form :

READ variable list

The items in the variable list may be simple variable names or string
variable names and are separated by commas . For example :

1_0 READ A , B$, C (l)
2_0 DATA 12 , " 12 " , . 12E2

Since data must
generally occur
placed anywhere

be read before it can be used in a
near the beginning of the program .
in a multiple statement line .

program , READ statements
A READ statement can be

If there is no data available in the data table for the READ to store , the
out o f data message below is printed :

OD . ERROR IN xxxxx � /Items in the data l ist in
statements are ignored .

excess of those needed by the program ' s READ

\ 32

X . RESTORE STATEMENT

The RESTORE statement causes the program to reuse the data from the
first DATA statement and is of the form :

RESTORE

For example :

3,0 RESTORE

causes the next READ statement following line 3 0 to begin reading data
from the first DATA statement in the program , regardless of where the
last value was found .

A further example of . the use of RESTORE follows :

15 READ B , C , D

5 5 RESTORE
6,0 READ E , F , G

8,0 DATA 6 , 3 , 4 , 7 , 9 , 2

1,0,0 END

The READ statements in lines 15 and 60 both read the first three data
values provided in line 80 . (I f the RESTORE statement had not been
inserted before line 60 , then the second READ would pick up data in
line 80 starting with the fourth value .)

Since the values are being read as though for the first time , the same
variable names may be used the second time through the data , i f desired .
To skip unwanted values , replacement , or dummy , variables may be inserted .
For example :

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
2,0 READ N
2 5 PRINT "VALUES OF X ARE : "
3,0 FOR I=l TO N
4,0 READ X
5,0 PRINT X ,
6,0 NEXT I
7,0 RESTORE
185 PRINT
19,0 PRINT " SECOND LIST OF X VALUES "
2,0,0 PRINT "FOLLOWING RESTORE STATEMENT : "
2 1,0 FOR I=l TO N
22,0 READ X
2 3,0 PRINT X ,
24,0 NEXT I

3 3

250 DATA 4 , 1 , 2
2 5 1 DATA 3 , 4
300 END

RUN
VALUES OF X ARE :

l 2 3
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT :

4

4 l 2 3
READY

The second time the data values are read , the first X picks up the
value originally assigned to N in line 20 , and as a result , BASIC
prints :

4 l 2 3

To circumvent this , a dummy variable could be inserted to pick up and
store the first value . This variable would not be represented in the
PRINT statement , so the output would be the same each time through
the l ist .

XI . GOTO STATEMENT

The GOTO statement i s used when it is desired to unconditionally transfer
to some line other than the next sequential line in the program . In
other words , a GOTO statement causes an immediate jump to a specified
line , out of the normal consecutive line number order of execution . The
general format of the statement is as follows :

GOTO line number

The line number to which the program jumps can be either greater or less
than the current line number . It is thus possible to jump forward or
backward within a program .

For example ,

10 LET A=2
20 GOTO 50
30 LET A=SQR (A+l4)
50 PRINT A , A*A
RUN

causes the following to be printed :

2 4

When the program encounters line 20 , control transfers to line 50 ; line
50 is executed , control then continues to the line following line 50 .
Line 3 0 is never executed . Any number of lines can be skipped in either
direction .

3 4

When written as part of a multiple statement line , GOTO should always
be the last statement on the line , since any statement following the
GOTO on the same line is never executed . For example :

ll� LET A=ATN (B2) : PRINT A : GOTO 5�

XII . IF-THEN , IF-GOTO STATEMENTS

The IF-THEN statement is used to transfer conditionally from the normal
consecutive order of statement numbers , depending upon the truth of some
mathematical relation or relations . The basic format of the IF statement
is as follows :

THEN
IF expression rel . op . expression line number

GOTO

where expression is an arithmetic or string expression .

rel . op .

line number

Expressions cannot be mixed ; both must be string
or both must be numeric . Numeric comparisons are
handled as described in the ARITHMETIC Section . String
comparisons are performed on the ASCII values of
the strings as described in the STRING Section .

is one of the operators described in the ARITHMETIC
Section .

is the line of the program to which control is
conditionally passed .

If the value of the expression is true , control passes to the line number
specified .

If the value of the expression lS false , control passes to the next state
ment in sequence .

Examples :

l� IF A=B THEN 2� : PRINT "A B"
15 STOP
2� PRINT A+B

l� IF A <) l� GOTO 2� : PRINT A
15 STOP
2� D=A+B*C

l� IF A$<B$ THEN 2� : STOP
2� PRINT A$

XII I . FOR-NEXT STATEMENTS

FOR and NEXT statements define the beginning and end of a loop . (A loop
is a set of instructions which are repeated over and over again , each time

3 5

being modified in some way until a terminal condition i s reached .)
The FOR statement is of the form :

where

FOR variable = expressionl TO expression2 STEP expression]

variable

expression

must be a nonsubscripted numeric variable .

is an arithmetic expression which may be non
integer .

The variable is the index ; expressionl is the initial value ; expression2 ,
the terminal value and expression] , the increment value .

For example :

15 FOR K=2 TO 20 STEP 2

causes the program execution of the designated loop as long as K is
less than or equal to 20 . Each time through the loop , K is incremented
by 2 , so the loop is executed a total of 10 times . When K=20 , program
control passes to the line following the associated NEXT statement .

The index variable must be unsubscripted , although a common use of such
loops is to deal with subscripted variables using the control variable
as the subscript of a previously defined variable . The expressions in
the FOR statement can be any acceptable BASIC 8001 expression .

The NEXT statement signals the end of the loop which began with the
FOR statement . The NEXT statement lS of the form :

NEXT variabl�

where the variable is the same variable specified in the FOR statement .
Together the FOR and NEXT statements define the boundaries of the
program loop . When execution encounters the NEXT statement , the computer
adds the STEP expression value to the variable and checks to see i f the
variable is still less than or equal to the terminal expression value .
When the variable exceeds the terminal expression value , control fall s
through the loop to the statement following the NEXT statement . Note
the variable is not necessary since when a NEXT statement is encountered
it is assumed it is for the appropriate FOR loop variable .

If the STEP expression and the word STEP are omitted from the FOR state
ment , +l is the assumed value . Since +l is a common STEP value , that
portion of the statement is frequently omitted .

The expressions within the FOR statement are evaluated once upon initial
entry to the loop . The test for completion of the loop is made after
each execution of the loop . (I f the test fails initially , the loop is
still executed once .)

3 6

The index variable can be modified within the loop . When control falls
through the loop , the index variable retains the value used to fall through
the loop .

The following is a demonstration of a simple FOR-NEXT loop . The loop
is executed 10 times ; the value of I is 11 when control leaves the loop ;
and +1 is the assumed STEP value :

1� FOR I=l TO 1�
2� PRINT I
3� NEXT I
4� PRINT I

The loop itself is l ines 10 through 30 . The numbers 1 through 10 are
printed when the loop is executed . After I=lO , control passes to line
40 which causes 11 to be printed . If line 10 had been :

1� FOR I = 1� TO 1 STEP -1

the value printed by line 40 would be � -

1� FOR I = 2 TO 44 STEP 2
2� LET I = 44
3� NEXT I

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied .

I f the initial value of the variable is greater than the terminal value ,
the loop is still executed once . The loop set up by the statement :

1� FOR I = 2� TO 2 STEP 2

will be executed only once although a statement like the following will
initialize execution of a loop properly :

1� FOR I=2� TO 2 STEP -2

For positive STEP values the loop is executed until the control variable
is greater than its final value . For negative STEP values , the loop
continues until the control variable is less than its final value .

FOR loops can be nested but not overlapped . The depth o f nesting depends
upon the amount of user storage space available (in other words , upon the
size of the user program and the amount of RAM available) . Nesting is a
programming technique in which one or more loops ar� completely within
another loop . The field of one loop (the numbered lines from the FOR
statement to the corresponding NEXT statement , inclusive) must not cross
the field of another loop .

3 7

ACCEPTABLE NESTING
TECHNIQUES

Two Level Nesting

FOR Il = 1 TO 10 [FOR I2 = 1 TO 10
NEXT I2

[FOR I3 = 1 TO 10
NEXT I3
NEXT Il

Three Level Nesting

FOR I l 1 TO 10
FOR I2 1 TO 10 [FOR I3 = 1 TO 10
NEXT I3

[FOR I4 = 1 TO 10
NEXT I4
NEXT I2
NEXT I l

UNACCEPTABLE NESTING
TECHNIQUES

�FOR Il =
FOR I2 =
NEXT Il
NEXT I2

FOR Il
FOR I2 [FOR I 3 =
NEXT I 3 [FOR I4 =
NEXT I4
NEXT Il
NEXT I2

1 TO 10
1 TO 10

1 TO 10
1 TO 10
1 TO 10

1 TO 10

An example of nested FOR-NEXT loops is shown below :

5 DIM X (5 , 1,0)
1.0 FOR A=l TO 5
2.0 FOR B=2 TO 1.0 STEP 2
3.0 LET X (A , B) = A+B
4.0 NEXT B
5.0 NEXT A
55 PRINT X (5 , 1,0)

When the above statements are executed , BASIC 8001 prints 15 when line
55 is processed .

It is possible to exit from a FOR-NEXT loop without the control variable
reaching the termination value . A conditional or unconditional transfer
can be used to leave a loop . Control can only trans fer into a loop which
had been left earlier without being completed , ensuring that termination
and STEP values are assigned .

Both FOR and NEXT statements can appear anywhere in a multiple statement
line . For example :

1.0 FOR I=l TO 1.0 STEP 5 : NEXT I : PRINT " I= " ; I

causes :

I=ll

to be printed when executed .

3 8

XIV . GOSUB AND RETURN STATEMENTS

A subroutine is a section of code performing some operation required
at more than one point in the program . Sometimes a complicated I/0
operation for a volume of data , a mathematical evaluation which i s too
complex for a user-defined function , or any number of other processes
may be best performed in a subroutine .

More than one subroutine can be used in a single program , in which
case they can be placed one after another at the end of the program
(in line number sequence) . A useful practice is to assign distinc
tive line numbers to subroutines ; for example , i f the main program
uses line numbers up to 199 , use 200 and 300 as the first numbers of
two subroutines .

Subroutines are usually placed physically at the end of a program
before DATA statements , if any . The program begins execution and
continues until it encounters a GOSUB statement of the form:

1) GOSUB line number

where the line number following the word GOSUB is that of the first
line of the subroutine . Control then transfers to that line of the
subroutine . For example :

5,0 GOSUB 2,0,0

Control is transferred to line 200 in the user program . The first
line in the subroutine can be a remark or any executable statement .

Having reached the line containing a GOSUB statement , control trans
fers to the line indicated after GOSUB ; the subroutine is processed
until BASIC 8001 encounters a RETURN statement of the form :

2) RETURN

which causes control to return to the statement following the original
GOSUB statement . A subroutine must always be exited via a RETURN
statement .

Before transferring to the subroutine , BASIC 8001 internally records the
next sequential statement to be processed after the GOSUB statement ;
the RETURN statement is a signal to transfer control to this statement .
In this way , no matter how many subroutines there are or how many times
they are called , BASIC 8001 always knows where to transfer control next .
The following program demonstrates the use of GOSUB and RETURN .

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
1,0 DEF FNA (X) = ABS (INT (X))
2,0 INPUT A , B , C
3,0 GOSUB 1,0,0
4,0 LET A=FNA (A)

3 9

5� LET B=FNA (B)
6� LET C=FNA (C)
7� PRINT
8� GOSUB 1��
9� STOP
1�� REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
11� REM - OF THE EQUATION : AXA2 + BX + C = �
12� PRINT "THE EQUATION IS "A " *XI\2 + I I B " *X + "C
13� LET D=B*B - 4 *A*C
14� IF D<)O THEN 17�
15� PRINT " ONLY ONE SOLUTION . . . X " -B/ (2 *A)
16� RETURN
17� IF D(� THEN 2��
18� PRINT " TWO SOLUTIONS . . . X = " ;
185 PRINT (-B+SQR (D)) / (2 *A) ; ") AND (" ; (-B-SQR (D)) / (2 *A)
19� RETURN
2�� PRINT " IMAGINARY SOLUTIONS . . . X= (" ;
2�5 PRINT -B/ (2 *A) " , " SQR (-D) / (2 *A) ") AND (" ;
2�7 PRINT -B/ (2 *A) " , " ; -SQR (-D) / (2 *A) ") "
2 1� RETURN
9�� END

Subroutines can be nested ; that is , one subroutine can call another
subroutine . If the execution of a subroutine encounters a RETURN
statement , it returns control to the line following the GOSUB which
called that subroutine . Therefore , a subroutine can call another
subroutine , even itself . Subroutines can be entered at any point
and can have more than one RETURN statement . I t is possible to trans
fer to the beginning or any part of a subroutine ; multiple entry points
and RETURN ' s make a subroutine more versatile . Up to 20 levels of
GOSUB nesting are allowed .

X.V . END STATEMENT

'The END statement is the last statement in a BASIC program and is of
the form :

END

The line number of the END statement must be the largest line number
in a given program , since any lines having line numbers greater than
that of the END statement are not executed (although they are saved
with the SAVE command) .

The END statement is optional . When an END statement is executed ,
program execution stops ahd the READY message is printed .

X.VI . STOP STATEMENT

The STOP statement can occur several times throughout a single program
with conditional j umps determining the actual end of the program . The
STOP statement is of the form :

90 STOP

4 0

and causes :

BREAK IN 90
READY

to be printed when executed .

This signals that the execution of a program has been terminated and
BASIC 8001 is able to accept further input .

4 1

BASIC 8001 FUNCTIONS

ARITHMETIC FUNCTIONS

BASIC 8001 provides functions to perform certain standard mathematical
operations such as square roots , logarithms , etc .

These functions have three or four letter call names followed by
a parenthesized argument . They are pre-defined and may be used
anywhere in a program .

Call Name

ABS (x)

ATN (x)

CALL (x)

COS (x)

EXP (x)

FRE (x)

INT (x)

INP (x)

LOG (x)

PEEK (x)

POS (x)

RN D (x) �o\ -roo c;.oo\) . . . V..X.��\\\� qJt\e(
Gf'o\'j l(\'\0 ni.-'M\,e,("f1,

SGN (x)

S IN (x)

SPC (x)

SQR (x)

TAB (x)

TAN (x)

Function

Returns the absolute value of x .

Returns the arctangent o f x a s an
angle in radians in range + or -pi/2 .

CALL the
.
user , machine lang�age

_
pro�ram

at locatlOn 0A000 Hex . AfP<I{J - 'SI'\ V - -2L\!> 7b ACPrP I :; Lo ::. -2"\ 5'75 M�i!.." 1-1� = -2."\ 57 1.\
Returns the cosine of x radians .

Returns the value o f eX where e=2 . 7 1828 .

Returns number of free BYTES not in use .

Returns the greatest integer less than
or equal to x , (INT (- . 5) =-l) .

Returns a BYTE from input port O<x(255 .

Returns the natural logarithm of x .

Returns a BYTE from memory address �x�32767
or if x is negative the memory address is
65536i'X .

Returns a value of current cursor positions
between 0 and 79 .

Returns a random number between 0 and l .

Returns a value indicating the sign o f x .

Returns the sine o f x radians .

Causes x spaces to be generated .

Returns the square root of x .

Causes the 8001 CRT to space over to column
number x . Valid in PRINT statement only .

Returns the tangent of x radians .
4 2

-

The argument x to the functions can be a constant , a variable , an
expression , or another function . A square bracket cannot be used as
the enclosing character for the argument x , e . g . SIN [x] is illegal .

Function calls , consisting of the function name followed by a paren
thesized argument , can be used as expressions or as elements of
expressions anywhere that expressions are legal .

Values produced by the functions SIN (x) , COS (x) , ATN (x) , SQR (x) , EXP (
and LOG (x) have six significant digits .

I . Sine and Cosine Functions , SIN (x) and COS (x)

The s ine and cosine functions require an argument angle expressed in
radian measure . If the angle is stated in degrees , conversion to
radians may be done using the identity :

(radians> (degrees) * (pi/180)

In the following example program , 3 . 14159 is used as a nominal value
for pi . P i s set equal to this value at line 20 . At l ine 40 the
above relationship is used (in the expression within the LET statemer
to convert the input value into radians .

10 REM - CONVERT ANGLE (X) TO RADIANS , AND
ll REM - FIND SIN AND COS
20 LET P = 3 . 14159
25 PRINT "DEGREES " , "RADIANS " , "SINE " , "COSINE "
30 INPUT X
40 LET Y = X*P/180
60 PRINT X , Y , SIN (Y) ,
70 GOTO 30
RUN
DEGREES RADIANS
?0
0 0

? 10 ·
10 . 174533

?20
20 . 349066

?30
30 . 52 3598

?360
360 6 . 28318

?45
45 . 785398

?90
90 l . 5708

?RETURN
READY

COS (Y)

SINE

0

. 173648

. 34202

. 5

-5 . 24310E-06

. 707106

l

4 3

COSINE

l

. 984808

. 939693

. 866026

l

. 707107

l . l2352E-06

I I . Arctangent Function , ATN (x) ; 'l'angent Function , TAN (x)

The arctangent function returns a value in radian measure , in the range
+pi/2 to -pi/2 corresponding to the value of a tangent supplied as the
argument (X) .

In the fol lowing program , input is an angle in degrees . Degrees are
then converted to radians at line 40 .

At line 70 the tangent value , Z , is supplied as argument to the ATN
function to derive the value found in column 4 of the printout under
the label ATN (X) . Also in line 70 the radian value of the arctangent
function is converted back to degrees and printed in the fifth column
of the printout as a check against the input value shown in the first
column .

1� LET P= 3 . 14159
2� PRINT "SUPPLY AN ANGLE IN DEGREES "
25 PRINT "ANGLE " , "ANGLE" , "TAN (X) II , "ATAN (X) II , "ATAN (X) I I
26 PRINT " (DEGS) " , " (RADS) " , , , " (DEGS) "
3� INPUT X
4� LET Y = X*P/18�
5� LET Z = TAN (Y)
7� PRINT X , Y , Z ,ATN (Z) , ATN (Z) *l80/P
85 PRINT
9� GOTO 3�
RUN
SUPPLY AN ANGLE IN DEGREES
ANGLE ANGLE TAN (X) ATAN (X)
(DEGS) (RADS)
?�
� �

?45
45 . 785398

?1�
10 . 174533

? (RETURN)
READY

. 999999

. 176327

I I I . Square Root Function , SQR (x)

. 785398

. 174533

ATAN (X)
(DEGS)

�

45

1�

This function derives the square root of any positive value as shown
below .

1.0 INPUT X
2� LET X SQR (X)
3� PRINT X
4� GOTO 1�
RUN
? 16
4

?1.0�
1�

?1���

44

31 . 6228
?12 3456789
11111 . 1

?17
4 . 12311

?25E2
50

?1970
44 . 3847

? (RETURN)
READY

IV . Exponential Function , EXP (x)

The exponential function raises the number e to the power x . EXP is
the inverse of the LOG function . The relationship is

LOG (EXP (X)) = X

The following program prints the exponential equivalent of an input
value . Note that the output values derived below are used as input to
.the LOG function .

10 INPUT X
20 PRINT EXP (X)
40 GOTO 10

RUN
?4
54 . 5981

?10
22026 . 5

? 9 . 4 2 1006
12345

?4 . 60517
100

?25
7 . 20049E+l0

? (RETURN)
READY

V . Logarithm Function , LOG (x)

The LOG function derives the logarithm to the base e of a given value .
In the following program at line 20 , the LOG function is used to
convert an input value to its logarithmic equivalent .

10 INPUT X
20 PRINT LOG (X)
30 GOTO 10

RUN
?54 . 598 15
4

?22026 . 47
10

4 5

?12345
9 . 42101

?100
4 . 60517

? . 720049Ell
25

? (RETURN)
READY

Logarithms to the base e may easily be converted to any other base
using the following formula :

where a represents the desired base . The following program illustrates
conversion to the base 10 .

l REM - CONVERT BASE E LOG TO BASE 10 LOG .
5 PRINT "VALUE " , "BASE E LOG" , "BASE 10 LOG"

15 INPUT X
17 PRINT X ,
20 PRINT LOG (X) ,
40 PRINT LOG (X) /LOG (l0)
50 GOTO 15
60 END
RUN
VALUE BASE E LOG BASE lfO LOG
?4
4 1 . 38629 . 60206

?250
250 5 . 52146 2 . 39794

?5
5 1 . 60944 . 69897

?60
60 4 . 09434 l . 77815

?100
100 4 . 60517 2

? (RETURN)
READY

An attempt to do a LOG (O) or LOG of a negative number causes the
CF error message .

VI . Absolute Function , ABS (x)

The ABS function returns an absolute value for any argument value .
Absolute value i s always positive . In the following program , various
input values are converted to their absolute values and printed .

4 6

lYJ' INPUT X
2YJ' LET X ABS (X)
3YJ' PRINT X
4YJ' GOTO lYJ'
'RUN
?-35 . 7
3 5 . 7

?2
2

? 25ElYJ'
2 . 5YJ'YJ'YJ'YJ'E+11

?lYJ'5555567
l . YJ'5556E+YJ'8

?lYJ' .. 12345
10 . 1234

?-44 . 555566668899
44 . 5556

? (RETURN)
READY

VII . Integer Function , INT (x)

The integer function returns the value of the greatest integer not
greater than x . For example :

PRINT INT (34 . 67)
34

PRINT INT (-5 . 1)
-6

The INT of a negative number is a negative number with the same or
larger absolute value , i . e . , the same or smaller algebraic value .
For example :

PRINT INT (-23 . 45)
-24

PRINT INT (-14 . 39)
-15

PRINT INT (-11)
-11

The INT function can be used to round numbers to the nearest integer ,
using INT (X+ . 5) . For example :

PRINT INT (34 . 67+ . 5)
3 5

PRINT INT (-5 . 1+ . 5)
-5

4 7

INT (x) can also be used to round to any given decimal place or
integral power of 10 , by using the following expression as an
argument :

(X* lOtD+ . 5) /lO D

where D is an integer supplied by the user .

VII I .

l� REM - INT FUNCTION EXAMPLE
15 PRINT
2� PRINT "NUMBER TO BE ROUNDED : II

25 INPUT A
4� PRINT "NO . OF DECIMAL PLACES : "
45 INPUT D
6� LET B = INT (A*lOAD
7� PRINT "A ROUNDED =
8� GOTO 15
9� END
RUN

NUMBER TO BE ROUNDED :
?55 . 65842
NO . OF DECIMAL PLACES :
?2
A ROUNDED = 55 . 66

NUMBER TO BE ROUNDED :
?78 . 3 75
NO . OF DECIMAL PLACES :
?-2
A ROUNDED = l��

NUMBER TO BE ROUNDED :
?67 . 38
NO . OF DECIMAL PLACES :
?-1
A ROUNDED = 7�

NUMBER TO BE ROUNDED :
? (RETURN)
READY

+ . 5) /l�AD
I I B

Random Number Function , RND (x)

The random number function produces a random number , or random number
set , between 0 and l . The numbers are reproducible in the same order
after ESC , E key i f X�O for later checking of a program . The argument (x)
is not used and can be any n��er (it cannot be a string expression) ; it
serves only to standardize all BASIC 8001 function representations . The
form RND is not legal . For example :

48

10 REM - RANDOM NUMBER EXAMPLE .
25 PRINT "RANDOM NUMBERS :
30 FOR I = l TO 15
40 PRINT RND (l) ;
50 NEXT I
60 END
RUN
RANDOM NUMBERS :

. 1002 50 . 50438

. 306121 . 209046

. 985412 . 2 7376

. 964813 . 0267824

. 285553 . 599886

. 52 2186 . 701146

. 886627 . 388094

. 958221 . 744055

. 246246 . 590584

. 636444 . 56912 3

. 1793 5 1 . 460434

. 77 7801 . 45 7448

. 8 39019 . 720021
. 452117 . 4 3 3291
. 450592 . 30797

READY

To obtain random digits from 0 to 9 , change line 40 to read :

40 PRINT INT (lO*RND (l)) ,

and run the program again . This time the results will be printed
as follows :

RUN
RANDOM NUMBERS :
8 9
5 4

READY

8
4

9
l

5
5

5 5

It is possible to generate random numbers over a given range . I f
the open range (A , B) i s desired , use the expression :

(B-A) *RND (l) +A

to produce a random number in the range A<n<B .

The following program produces a random number set in the open range
4 , 6 (the extremes , 4 and 6 , are never reached) .

10 REM - RANDOM NUMBER SET IN OPEN RANGE 4 , 6 .
20 FOR B = l TO 15
30 LET A = (6-4) * RND (l) +4
40 PRINT A ,
50 NEXT B
60 END

RUN
4 . 20054 . 59266
4 . 612245 . 3 3046
4 . 197085 . 09034

READY

5 . 929624 . 20985
4 . 57 1104 . 26695
5 . 044374 . 82533

5 . 773255 . 54026
5 . 916445 . 69965
4 . 492495 . 61408

4 9

5 . 272884 . 76248
4 . 358705 . 54721
5 . 555604 . 41632

9 8

5 . 678045 . 25946
4 . 904235 . 65021
4 . 901185 . 01508

7

NOTE :
number
number .

Negative arguments , i . e . , RND (-x) will start a new random
sequence . While RND (0) will always generate the last random RNl>(-x) w ; l j o.\w"y s re�-\-�rT the S<l\M� r � t'\ dom 1'\LA VVI� r se,tueY)ce !
Sign Function , SGN (x) IX .

The sign function returns the value 1 if x is a positive value , 0
i f x is 0 and -1 if x is negative . For example :

PRINT SGN (3 . 42)
1

PRINT SGN (-4 2)
- 1

PRINT SGN (2 3-2 3)
0

The following example program illustrates the use of the SGN function .

10 REM-SGN FUNCTION EXAMPLE .
20 READ A , B , C
2 5 PRINT " A = "A , " B = "B , " C = "C
W PRINT "SGN (A) = " SGN (A) , "SGN (B) = "SGN (B) ,
40 PRINT "SGN (C) ="SGN (C)
50 DATA -7 . 32 , . 44 , 0
60 END
RUN
A = -7 . 32
SGN (A) =-1

READY

B = . 44 C = 0
SGN (B) =1 SGN (C) =0

X . Call Statement

The CALL statement can be inserted anywhere in the BASIC 8001 program
and has the form :

CALL (expression)

Where expression is the argument to the assembly
language routine . The argument
may be an expression . This may
include values passed to the use1
routine .

The CALL statement causes a j ump to location AOOO HEX , which , unless
modified by the user , contains a jump to the CF ERROR routine . The
user must modify these three locations to go to his routines .

5 0

BASIC 8001 FUNCTIONS

USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same sequence of
statements or mathematical formulas in several different places .
BASIC 8001 allows definition of unique operations or expressions and
the calling of these functions in the same way as the square root or
trig functions .

These user-defined functions consist of a function name : the first
two letters of which are FN followed by a third or a fourth letter .
For example :

legal

FNA
FNAA
FNAl

illegal

FNA$
FN2

Each function is defined once and the definition may appear anywhere
in the program . The defining or DEF statement is formed as follows :

DEF FNa (argument) = expression (argument)

where a is a variable name . The argument may consist of a dummy variable
and the number of arguments is l imited to one variable . The expression
may contain other program variables not among the argument variable .
For example :

10 DEF FNA (S) = SA2

causes a later statement :

2� LET R = FNA (4) +1

to be evaluated as R=l7 . As another example :

5� DEF FNB (A) = A+XA2
6� Y=FNB (l4)

causes the function to be evaluated with the current value o f the
variable X within the program.

The two following programs

Program #1 :

l� DEF FNS (A) = AAA
2� FOR I=l TO 5
3� PRINT I , FNS (I)
4� NEXT I
5� END

51

Program #2 :

l� DEF FNS (X) = XI\X.
2� FOR I=l TO 5
3� PRINT I , FNS (I)
4� NEXT I
5� END

cause the same output :

RUN
l l
2 4
3 27
4 256
5 3125

READY

The argument in the DEF statement can be seen to have no s ignificance ;
it is strictly a dummy variable . (A DEF statement with no arguments i s
illegal .) The function itself can be defined in the DEF statement in
terms of numbers , variables , other functions , or mathematical expressions .
For example :

l� DEF FNA (X)
2� DEF FNB (X)
3� DEF FNC (X)

XI\2+3*X+4
FNA (X) /2 + FNA (X)
SQR (X+4) +l

The statement in which the user-defined function appears can have that
function combined with numbers , variables , other functions , or mathe
matical expressions . For example :

4� LET R = FNA (X+Y+Z) *N/ (YA2+D)

A user-defined function cannot have several arguments , as shown below :

25 DEF FNL (X , Y , Z) = SQR (X� + YA2 + ZA2)

will cause an error

SN ERROR IN 25 .
READY

When calling a user-defined function , the parenthesized arguments can be
any legal expressions . The value of each expression i s substituted for
the corresponding function variable . For example :

l� DEF FNZ (X) =XA2
2� LET A=2
3� PRINT FNZ (2+A)

line 3 0 causes 16 to be printed .

5 2

If the same function name is defined more than once , then the last
definition will be used . The program below

l� DEF FNX (X) =XA2
2� DEF FNX (X) =X+X
3� LET A=5
4� PRINT FNX (A)

will cause 10 to be printed .

The function variable need not appear in the function expression as
shown below :

10 DEF FNA (X) = 4 +2
20 LET R FNA (lO) +l
3 0 PRINT R
40 END
RUN
7

5 3

BASIC 8001 FUNCTIONS

STRING FUNCTIONS

Like the intrinsic mathematical functions (e . g . , S IN , LOG) , BASIC 8001
contains various functions for use with character strings . These
functions allow the program to concatenate two strings , access part of
a string , determine the number of characters in a string , generate a
character string corresponding to a given number or vice versa , search
for a substring within a larger string , and perform other useful
operations . The various functions available are summarized in the
following table .

Function code

ASC (x$)

CHR$ (x)

FRE (x$)

LEFT$ (x$, I)

LEN (x$)

MID$ (x$, I , J)

RIGHT$ (x$, I)

STR$ (x)

String Functions

Meaning

Returns the seven-bit internal code for the
one-character string (x$) as a decimal num
ber . If the argument contains more than
one character , then the first character in
the string is returned .

Generates a one-character string having the
ASCII value of x where x is a number greater
than or equal to 0 and less than or equal to
255 . For example : CHR$ (6 5) is equivalent
to "A" . Only one character can be generated .

Returns number of free string BY' , , .

Returns left most I characters of string
(x$) .

Returns the number of characters in the
string x$ (including trailing blanks) . For
example :

PRINT LEN (A$)
26

Returns the string of characters in position
I through J in x$.

Returns right most I characters of string
(x$) .

Returns the string which represents the
numeric value of x as it would be printed by
a PRINT statement but without a leading or
trailing blank .

5 4

' ·

VAL (x $) Re turn s the number repres ented by the string

x $. I f x$ does not repr e s ent a number , then

� �alue i s returned .

In the above exampl e s , x $ and y $ repre sen t any l egal string e xpr e s s i ons ,

and I and J r epre s ent any legal arithmet ic expr e s s ions .

U s er-Defined Str ing Function s

Characte r str ing functions c an not b e written i n the same way a s nume r i c

functions .

5 5

BASIC 8001 EDITING COMMANDS

BASIC 8001 provides several key commands which can be used to halt
program execution , erase characters or delete lines . The below table
provides an explanation of each of the key commands .

Key

CTRL/J
or LINEFEED
or -1-

CTRL/M or RETURN

CTRL/K
·or

ERASE LINE

CTRL/Z
or CURSOR LEFT
or (:--

CTRL/L
or ERASE PAGE

Key Commands

Explanation

Interrupts execution of a command or program .
BASIC 8001 prints the message

BREAK IN XXX
READY

A control command is typed by holding down
the CTRL key while typing the letter key .

Must be typed to end every line typed in
or to indicate the end of an INPUT .

Deletes the entire current line (provided
the RETURN key has not been typed) .
BASIC 8001 displays :

Erased line and CR .

Deletes the last character typed and echoes
as a cursor left on the terminal . Snaces
as well as characters or control cc .es may
be erased .

A colon is used to separate multiple
statements per line .

Erases CRT screen but does not change
any BASIC 8001 statements .

I f the RETURN key has already been typed , a program line can be corrected
by typing the appropriate line number and retyping the line correctly .

The line can be deleted by typing the RETURN key immediately after the
line number ; removing both the line number and line from the program .

If the line number of a l ine
the cursor left key (CTRL Z)
correct number can be typed .

not needing correction is accidentally typed ,
may be used to delete the number (s) ; then the
Assume the line :

5 6

l� IF A>5 GO TO 2 3 �

is correct . A l ine 15 is to be inserted , but :

l� LET

is typed by mistake . The correction is made as follows :

l� LET� .. + 4-5 LET X=X-3

Line 10 remains unchanged , and line 15 is entered .

Following an attempt to run a program , error messages may be output
on the terminal indicating illegal characters or formats , or other
user errors in the program. Most errors can be corrected by typing
the l ine number (s) and the correction (s) and then rerunning the pro
gram . As many changes or corrections as desired may be made before
runs .

The following editing commands are entered in immediate mode and
terminated by the RETURN key . These commands are used to erase a
program in RAM , and list , punch or run a program .

I . NEW COMMAND

The NEW command clears current contents of the storage area set up
by BASIC 8001 . This deletes any commands , programs , arrays , strings
or symbol s currently stored by BASIC 8001 .

NEW should be used before entering a new program from the terminal
keyboard to be sure no old program lines will be mixed into the new
program and to clear out the symbol table area .

Example :

NEW
READY
l� READ A

clears the storage area and inserts the program being input at the
keyboard.

I I . LIST COMMAND

The , LIST command prints the user program currently in core on the
terminal .

A part of a program may be listed by typing LIST followed by a l ine
number . This causes that line and all following l ines in the program
to be listed .

5 7

Type CTRL/J or l inefeed key to halt the listing . BASIC 8001 returns
to the READY message when the current line is finished .

The l ines l isted may differ slightly from those entered because :

l . Certain characters while acceptable to BASIC 8001 are stored
in a standard manner .

Character
Typed

= (
= >

> (

Character
Stored

<=
>=
< >

2 . Literals are stored to 24 bits of accuracy . Those with more
than 24 bits are truncated to 24 bits .

3 . Although literal storage is 24 bits , output is truncated to
6 decimal digits .

4 . Literals are output in standard BASIC 8001 format , regardless of
how they were input ; for example ,

10 LET X=3 . 0+1 . 000000l
20 PRINT X-E7
LIST
10 LET X=3+l
20 PRINT X-l . 00000E+07

5 . Spaces in the input program are ignored , except within
strings and REM statements . The LIST command prints the
program with a space inserted to separate the key word and
the line number . The l isted program is therefore easier
to read .

Example :

LIST 100

Lists l ine 100 and all remaining lines in the program .

III . .SAVE COMMAND

The SAVE command outputs the program in RAM to the specified device .
The form of the command is :

SAVE A

The format of the program output by
same as that stored in RAM memory .
file name using the LOAD command .

the SAVE command is exactly the
It may be recalled by the same

5 8

IV . RUN COMMAND

After the user program is entered into RAM , it can be executed by
typing the command

RUN

and the RETURN key .

The program is scanned ; arrays are created in core and then the program
is executed . Any appropriate error messages are printed and when the
END or STOP statement is encountered , execution halts and a message is
printed .

After execution , the variables used in a program remain accessible for
use in immediate mode until a NEW , CLEAR or another RUN command is
executed .

V . CLEAR COMMAND

The CLEAR command clears the contents of the user array and string
buffers . This command is generally used when a program has been exe
cuted and then edited . Before it is rerun , the array and string buffers
are set to zeros and nulls by the CLEAR command to provide more core .

These buffers will be filled again when the RUN command is executed .

Example :

ljO A=ljO
2j0 PRINT A
CLEAR

READY

RUN
ljO

READY

VI . CLEAR X COMMAND

The CLEAR X performs the same function as CLEAR without the argument ,
but the Argument X reserves X locations for string variables which are
required in string calculations . Normally this is 50 locations unless
changed by CLEAR X command .

VII . CONTINUE COMMAND

Continues program execution after a Control J or l ine feed is typed or
a STOP statement is executed . You cannot continue after any erro4 after
modifying your program or before your program has been run .

5 9

One of the main purposes of CONT is debugging . Suppose at some point
qfter running your program , nothing is printed . This may be because
your program is performing some time-consuming calculation , but it may
be because you have fallen into an " infinite loop" . An infinite loop
is a series of BASIC 8001 statements from which there i s no escape .
The BASIC 8001 will keep executing a series of statements over and
over until you intervene or until power to the unit is cut off . I f
you suspect your program is in an infinite loop , type in a Control J
or l ine feed . The line number of the statement BASIC 8001 was executing
will be typed out .

After BASIC 8001 has typed out READY , you can use PRINT to type out
some of the values of your variables . After examining these values ,
you may become satisfied that your program is functioning correctly .
You should then type in CONT to continue executing your program where
it left off , or type a direct GOTO statement to resume execution of
the program at a different line .

You could also use assignment (LET) statements to set some of your
variables to different values . Remember , if you line feed or Control
J your program and expect to continue it later , you must not get any
errors or type in any program lines . If you do , you won ' t be able to
continue , and get a "CN" (continue not) error . It is impossible to
continue a direct command . CONT always resumes execution at the next
statement to be executed in your program when Control J or line feed
was typed .

VII I . LOAD I COMMAND

LOADS the program named I f�om the 8001 CPU operating system Reader
Input port speci fied by the I/0 BYTE at location 9F90 HEX , see the
CPU O . S . Manual . A new command is automatically done before the
LOAD I command is executed . When finished loading the READY command
will appear as usual . I f the unit can ' t find the file on the floppy
tape , then an error message should appear .

IX . LOAD? I COMMAND

Does same as LOAD I except that a NEW command i s not performed and
BASIC 8001 does a word-by-word comparison of file I with the program
already existing in RAM memory . I f they are the same , then READY
appears , else

VERIFY FAILURE
READY

will appear .

This should always be used after saving a program with the SAVE I
command to ensure that it was saved correctly and can be reloaded
without error .

6 0

. , · ·- ·· -

USING ASSEMBLY LANGUAGE

ROUTINES WITH BASIC

BASIC 8001 has a facility which allows experienced 8080 assembly
language programmers to interface their own assembly language
routines to BASIC 8001 . This facility permits the user to add
functions to BASIC 8001 which can operate directly on special
purpose peripheral devices . This section describes in some detail
the internal characteristics of BASIC 8001 during the execution of
a BASIC 8001 program , and is intended to serve as a programming
guide for the creation of such user-coded assembly language functions .
This material assumes the user is familiar with 8080 assembly
language . For additional information on this subj ect , refer to an
assembly language programming manual on the 8080 CPU .

The CALL statement i s used to reference these assembly language
routines from the BASIC 8001 program .

lo c a l l h'�se rn b ly L n n�r-• n �) e. p ·-- .:. :r • ct •'"n f�o:'V'J \3/3 S tC
,-,nJ ?Ci � S o. c � 1.1 e m e ni.s .

nns ; c t> co�c � ""-' (M" I t :r ly X �� 2, "'t , hJI .�, 'to fhe left))!b '1"'.,\ �<loo.-lo,<- , by ie cD
J (f) .Ii\J P <A T X
2f!) /1 -: CA LL (X) J'l(� 3<Zl ? g 1 N ·:;- X, 19)-_�;}pi Lj(J) &oTO if/J . , ,-----..

{llt•IE- : CA i..Lu\! G- AT �-.oGATi D I'>J 2� f>2,-i E..� . I.AJ ·, I I I - �..:l't -+1-.� "�'\"'-'<! c:f X' ; fit,� ThO!. '!), E. rej ' .ste r . .
§" r-vt<f!. - 2L45759 ¢ : po ;<e.. - 2� 574 ;� I 'Jb

f)SS£M B L :) t../1/ll&i.-1/J&E.. PRCXJf-.�
CALL 2 5AEr� � G�.'t- X ·, ., ·D,£ R.:. ,J:std ,-.
Mo V Ai £ Rtc:
MDi.J 8 11 '
X P.(} 11
.J"M P 2C53H

\

- -

My ·t e ·J r �cr�
J @ Po l< t - 24 5 751 ¢ : Po i< E. - 2L\) 7 L/ ... 1 7 0

2{]) I N P l-i\ >(

3 (1) F oR I � i 10 l lP lPW •· f} ;: Cf) t.L (.x} N £ KT ,' 'PR.I N'T" X ; /1
y (D Fo r� I -:: I 10 i ebCPIJ ; A :: 2 �(x) : N IZ- .XT · Pf� ; N 'l X; A
s-q; GoTo 2Jb
q9 E N1)

B CPCP(])
Ba>CP 3

''PJ (lJ(P '1
B<P(£)5

CA i...l- ·?_�i A ? i-IE.x

Mo v B ... £
X R/1 , A

J"'M l"' 2C 53,'1E.. :x

p C N NP CA i� L 2. S'A 2 Hl;.lC
BCVtp3 Mo-..J � A , £.

tilt C 'D f:) 2 2..5

4 3
AF
C 3 53 a.c

The Co111pucolor
8001 CR

T A B L E 0 F C 0 N T E N T S

PART l

Specifications and RS232C Interface

Start-Up and Initialization

Summary of Control Codes

Summary of Escape Codes

Summary of Graphic P lot Submodes

CRT Refresh Memory

PART 11

Keyboard

Detail of Control Codes

Details of Escape Codes

Details of Graphic Plot Submodes

Light Pen Operation

APPENDIX A

Keyboard Layout
Intecolor@800l Code Set
Input Flow Diagrams
Input Command Delays
CCI Code Assignments
Jl and J2 Pin Assignment
I/0 Connector Layout

APPENDIX B

\

PAGE

1- 3

4

5-6

7-8

9

10

11

12-18

19

25- 3 6

3 7

A- 1
A-2
A- 3
A-4
A-5
A-6
A-7

Plot Mode Functions B-1
Plot Mode Characters and Codes B-2
X Point Plot and Y Point Plot B- 3
XY Incremental Point Plot Movements B-4
X and Y Bar Graph Modes B- 5
X Incremental Bar Graph, Y Incremental Bar Graph B-6
X0Y0Vector Plot Mode B-7

APPENDIX c

TMS 5501

APPENDIX D

TMS 8080

APPENDIX E

®
How to Align the Intecolor 8001 .

J

@ 1975

PROPRIETARY STATEMENT

This document , submitted in confidence ,
contains proprietary information which
shall not be reproduced or transferred
to other documents or disclosed to others
or used for manufacturing or any other
purpose without prior written permission
of Intelligent Systems Corp .

PART I

SPECIFICATIONS

Introduction

The Intecolor® 8001 is an eight color intelligent CRT data terminal
designed as a replacement for teletypes and black and white CRT data terminal s .
It is a self- contained , desk top unit which offers , with the use of a modern ,
two-way data communications over common voice telephone lines or teletype
compatible current loops . It can also be used in the stand alone mode as a
complete desk top computer if equipped with the proper options .

Basic System Specification

Power :

Temperature :

Humidity :

Package Size
Desk Mount
Version :

Keyboard
Dimensions :

Weight :

Screen
Size :

Display
Area :

Character
Format :

Character
Style :

105-125 volts , 60HZ , 250 watts
Option 11 : 205-250 volts , 50-60 HZ

+l0°C to +40°C operating
-30°C to +70°C storage

0 to 95% non-condensing

17 1/2 " high
19 3/8 " wide
2 2 1/2 " long

3 1/4 " high
14 l/16 " wide X 5 l/2 " deep

85 pounds

19 " diagonal measure
186 sq . inch screen area
4x3 aspect ratio

120 sq. inches
(12 . 0 " wide x 10 . 0 " high)

8 0 characters per line , 25 lines per page
Option 16 : 80 characters per line ,

48 lines per page

64 ASCII Characters , 5x7 dot matrix
within a 6x8 dot pattern
Option 0 3 : 32 Graphic Characters , 6x8 dot matrix
Option 17 : 64 Graphic Characters , 6x8 dot matrix

1

Standard Interface

Standard I/0 Ports

The standard Intecolor 800 1 has two input ports .
One port , Jl , is an asynchronous serial RS 2 32C I/0 , or if Option

07 is installed , a serial 20 rna current loop I/0 . The other port , J2 ,
accepts parallel input data from the keyboard and provides an 8 bit parallel
output . The Intecolor�� 8001 is furnished with a crystal clock and provides
a keyboard selectable baud rate of normal 110 , 150 , 300 , 1200 , 2400 , 4800 ,
and 9600 baud , or a high speed option of 880 , 1200 , 2400 , 9600 , 19 , 200 ,
38 , 400 , and 76 , 800 baud .

The serial input port is furnished without parity checking so
that when in the Plot Mode , or CCI Mode , eight data bits can be received .

The signals for the standard RS 232C I/0 ports are shown on
page 3 and on Jl and J2 in Appendix A7 .

Pin 2 of the Keyboard J2 connector s ignals the Data communications
equipment that the terminal has received a byte and is processing the last
byte received . The Unit ' s input port has a one byte buffer . So for maximum
speed , the communications equipment can send the next byte as soon as it
has detected the high to low transition on pin 2 . The wave form is shown
below :

3 . 5V

0

Approx . 70 MICRO SECONDS

Next byte may be sent after high
to low transition .

2

'!I

•
Pi

n

Si
gn

al
 L

in
e

No
me

nc
la

tu
re

l
Pr

ot
ec

ti
ve

Gr

ou
nd

AA

2
Tr

an
sm

it
te

d
Da

ta

BA

3
Re

ce
iv

ed
 D

at
a

BB

4
Re

qu
es

t
to

Se

nd

CA

5
Cl

ea
r

to

Se

nd

CB

w

7
Si

gn
al

 G
ro

un
d

AB

20

Da
ta

 T
er

mi
na

l
Re

ad
y

CD

*D
CE

 -
Da

ta
 C

om
mu

ni
ca

ti
on

 E
qu

ip
m
en

t

Di
re

ct
io

n

NA

Fr
om

 I
SC

 t
o

DC
E
*

Fr
om

 D
CE

*
to

IS

C

Fr
om

 I
SC

 t
o

DC
E*

Fr
om

 D
CE

*
to

IS

C

NA

Fr
om

 I
SC

 t
o

DC
E
*

RS
23

2C
 I

NT
ER

FA
CE

Co
mm

en
ts

Co
nn

ec
t

to
 C

ha
ss

is
 G

ro
un

d
an

d
Pi

n
7

al
so

"l
"

=
Ma

rk
=

-
v

"0
"

=
Sp

ac
e=

 +
V

"l
"

=
Ma

rk
=

-v

"0
"

=
Sp

ac
e=

 +
V

Co
nd

it
io

ns
 t

he
 D

CE
*

fo
r

Tr
an

sm
is

si
on

Al

w
ay

s
+V

 i
f

te
rm

in
al

 i
s

on

No
t

re
qu

ir
ed

 b
y

IS
C

Co
nn

ec
te

d
to

 P
in

 l

al

so

Si
gn

al
s

th
e

DC
E*

th

at
 t

he
 d

at
a

te
rm

in
al

 i
s

re
ad

y
to

 t
ra

ns
mi

t
ON

=+
V=

Re
ad

y
OF

F=
-V

=N
ot

 R
ea

dy

START-UP AND INITIALIZATION

Introduction

BEFORE ATTEMTPING TO OPERATE YOUR INTECOLOR@ 800l , IT IS
SUGGESTED THAT THIS SECTION BE READ AND UNDERSTOOD . The power switch
(SWl) is located in the lower rear panel portion of the CRT case . Also
located on this panel are the various input and output port connections .
These are shown in Appendix A8 . Connection diagrams are shown in Appendix
A7 .

Power

Plug the line cord into a l20VAC-60HZ outlet (2 30VAC-50 -60 HZ
with Option ll) . When the power switch is pushed up the terminal is
in the operating state . After the switch is turned on , a 60 second warm
up periQa is required before operating the terminal . The unit will come
up in the initialized state , S0 .

Initialized State - S0

The unit will always come up in t�e initialized state-S0 when
power is turned on after being off for at ·{east 30 seconds .

In State S the following conditions are true : 0

A . Visible foreground color white
B . Vis ible background color black
C . Reverse field flag "0"
D. Vis ible A7 bit = "0" (unless otherwise noted)
E . Plot Bit = "0"
F . Page Mode Operation (unless otherwise noted)
G . Terminal Mode = Local (unless otherwise noted)
H . Baud Rate = 9600 with one stop bit (unless otherwise noted)
I . Write left to right with visible cursor
J . Blind foreground color red
K. Blind background color black
L . Blind A7 Bit = "0"
M . Blind Plot Bit = "0"
N. Blind Cursor at home or top left corner of screen .

After the above conditions have been set , the cursor is moved
to the home position which is the top left hand corner of the screen , and
the position of the first character of the first line . The screen will
clear by an Erase Page command which effectively makes all 2000 (3840 with
80 character x 48 l ine option) characters ; spaces (20 HEX) which are white , non
blinking (07 HEX) . The unit is now ready to accept commands from the keyboard
or the serial input if connected .

Convergence and Purity

The units convergence and purity may need adjusting when initially
received . Allow at least a 30 minute warm before setting the final convergence .
See Appendix C for convergence alignment .

4

- .

SUMMARY OF CONTROL CODES
FOR INTECOLOR 8001

0 NULL (control @) has no effect .

1 PROTECT (control A) has no effect .

2 PLOT (control B) enters graphic plot mode (see plot subrnodes) .

3 CURSOR XY (control C) enters X-Y cursor address mode for either
vis ible cursor or blind cursor.

4 FREE (control D) not used - has no effect .

5 FREE (control E) not used - has no effect .

6 CCI (control F) the next character which follows provides the 8 bit

7 BELL (control G)

8 HOME (control H)

9 TAB (control I)

visible status word .

provides a 150 rns tone . [Co"'\'""o"'!o -\ PI\�
moves the cursor to top left corner of display .

causes cursor to advance to next column - the tab
columns are every 8 characters .

10 - LINE FEED (control J) causes the cursor to move down one line .

11 - ERASE LINE (control K) causes the cursor to return to beginning of line
and causes the complete line to be erased .

12 - ERASE PAGE (control L) causes the complete screen to be erased and
the cursor moves to the horne pos ition .

13 - RETURN (control M) causes the cursor to move to the beginning of the
line it presently is on .

14 - A7 ON (control N) turns the A7 bit flag on . f'Lo·T B IG (_ Jf.fT£ RS f
15 BLINK/A? OFF (control O) turns the blink bit and A7 bit off .

16 - BLACK KEY (control P) sets either foreground or background to color black .

17 - RED KEY (control Q) sets either foreground or background to color red .

18 - GREEN KEY (control R) sets either foreground or background to color green .

19 - YELLOW KEY (control S) sets either foreground or background to color yellow .

20 - BLUE KEY (control T) sets either foreground or background to color blue .

2 1 - VIOLET KEY (control U) sets either foreground or background to color violet .

5

22 - CYAN KEY (control V) sets either foreground or background to color cyan .

2 3 - WHITE KEY (control W) sets either foreground or background to color white .

24 - XMIT (control X) causes data to be transmitted from the visible cursor
to the end of page or until FF/00 is found in Refresh
RAM .

25 - CURSOR RIGHT (control Y) causes the cursor to move right l position .

26 - CURSOR . LEFT (control Z) causes the cursor to move left l position .

27 - ESC (control L) provides an entry to the escape code table- must be
fol lowed by one or more codes for proper operation .

28 - CURSOR UP (control ") causes the cursor to move up one line .

29 - FG ON/FLAG OFF (control :J) sets the flag bit off .

30 - BG ON/FLAG ON (control 1\) sets the flag bit on .

31 - BLINK ON (control - sets the blink bit on .

6

5 BIT CODE

0

l

* 2

3

4

* 5

6

7

8

9

10

ll

12

l3

14

* 15

* 16

* l7

18

* 19

* 20

* 2 1

* 22

* 2 3

SUMMARY OF ESCAPE CODES

FOR INTECOLOR 800 1

LETTER

@

A

B

c

D

E

F

G

H

I

J

K

L

M

N

0

p

Q

R

s

T

u

v

w

7

FUNCTION

Visible cursor mode

Blind cursor mode

Plot via color pad

Transmit cursor X , Y pos ition

Not used

Re-entry to BASIC 8001

Sets full duplex mode

Not used

Sets half duplex mode

Not used

Set write vertical mode

Sets roll up and write left to right mode

Sets local mode

Not used

Not used

Re-entry to the CPU operating system

Initializes and trans fers control to
the CPU operating system

� Character insert mode

Baud rate selection mode
A7 on = l s top bit , A7 off 2 stop bit
Transfer control to the 8080 assembler

Transfer control to the text editor

Insert one l ine

Delete one l ine

Initializes and transfers contro� to
BASIC 8001

5 BIT CODE LETTER FUNCTION

24 X Sets page mode and write left to right
mode

25 y Test mode - fill page with next character

26 z Set write down on 45 degree mode

27 c Not used

2 8 "\ Sets write up on 45 degree mode

29 =r Set unit up for Block receive mode

30 I\ Causes a j ump to address 9FA0H

31 Trans fer control to the CRT mode

* Must include certain option to be operational

8

\

RS-2 3 2 INPUT
CODE

255

254

2 5 3

2 5 2

2 5 1

2 5 0

249

248

247

246

245

244

243

242

241

240

SUMMARY OF GRAPHIC PLOT SUBMODES

FOR INTECOLOR 8 0 0 1

PLOT
SUBMODE

Plot Mode Escape

Character Plot

X Point Plot

Y Point Plot

X-Y Incremental Point Plot

x0 of X Bar Graph

Y of X Bar Graph

X max of X Bar Graph

Incremental X Bar Graph

Y0 of Y Bar Graph

X of Y Bar Graph

Y max of Y Bar Graph

Incremental Y Bar Graph

x0 Vector Plot

Y0 Vector Plot

Incremental Vector Plot

NORMAL KEY
BOARD CODE

Control ?

Control >

Control

Con tro 1 ..t:._
Control

Control

Control 9

Control 8

Control 7

Control 6

Control 5

Control 4

Control 3

Control 2

Control 1

Control 0

SUMMARY OF INCREMENTAL DIRECTION CODES
FOR INTECOLOR 800 1

A Xl A Yl t1 X2 A Y2
If BIT = l A7 A6 As A4 A3 A2 Al
Direction + - + - + - +

Value 8 0 40 20 10 8 4 2
I

9

Ao
-

1

OPTIONAL
FUNCTION

KEYBOARD CODE

F 15

F 14

F 13

F 12

F ll

F 10

F 9

F 8

F 7

F 6

F 5

F 4

F 3

F 2

F l

F 0

CRT REFRESH MEMORY LAYOUT

The 2000 [384Q] * characters for display are stored in a 4096 [8 19 4] word RAM memory beginning at 32 , 768 (8000 HEX) and ending at
36 , 76 7 (8F9F HEX) [40 , 44 7 (9DFF HEXj] . The first word is the
zero character stored as the A

7
bit and then the 7 bit ASCI I code

(A6 to A0) . The second word is the compos ite status for this characte r .
It is composed of Plot Character B i t (A7) , Foreground Blink (A6) , Back
ground color code (A5 , A4 , A3) , and Foreground color code (A

2
, A1 , A0) .

There fore , e ach screen character requi res two 8 bit words in
memory , (the screen character and the character ' s compos ite s tatus) . The
RAM memory location 8FAO HEX [9FA� to 8FFF HEX �FFF HE� are used for
s cratch pad s torages . Memory location 8FBO fjFBO HE� and 8FB 1 [9FBU
are the locations of the Curs or character pos ition and line number
respective ly . Wi th the Roll Mode (Option 15) memory location 8FB2 C:9FB:)
provides the number o f lines that the home position has been shif ted or
rolled .

* (!ndicates value for 48 Line Syste�
lA

REFRESH MEMORY WORD FOR ONE CHARACTER

EVEN ODD (EVEN +1)

ASC I I Code

A? bit
BLINK FOREGROUND

I B IT B G R COLOR

A7
A6

A5 A
4

A
3

A
2

A
l

A
o I A7 I A

6
A

5
A

4
A

3
A

2
A

l
A

o

PLOT B ITS PLOT : BACKGROUND I B G R

BIT COLOR

10

Seer-e+-� o\ the ��-:\"'-\'·"� c..�OJ.rQ.c\-e tt" :

¢ 1 z 3 t.j S"" b 7 8' q A B <: l> E- P
"" a b c. d e .f g h \ j k 1 'M n 0

l ,-1 (/)$
J CP

:;;.$
I "P q 't"' s t u " u>

& '
X :1 = L • } •

) l
3(fl
4CP
50
6fb
7fP
g�
C(@
Arb
Bt'P
C $
1>CP

l ,, • $ % (+ / . ' - •

tlJ i 2 3 l'f s b ? � � : ; i< :: > 1
[@ A "B C 1> E � IG H I .:r K L M N o
r
....
-
f'
"'

£
-d! @
?
....

Q. R- s ,.. u " w x, v z rt , :� �
a 'o c J e � � � ; � k 1 l m ' ., 7
ct r s t 1.4 � w ')(� z � : } ,..., 1j" -a 1; c ld e � �� -h i :r 11< ' i 'm'n 0 19. r "'5 � u " w lX � i! , f T � 1 \Sf ! .. :tt �$ % & ' (I) lt'_ -t- ' - • /
f 2. 3 I� 5 G l7 ! g! CJ .. ; I< :: > ?

-� -"B l C 11> E f: IG I\-\ I r %(t.. M N D
Q. fl.. S T U V \N X � 1� ['] " -

)
I

) 1
l
I >

.J

J \G LE.. Tf£ RS . . • to� 'n�W ;s r("·��-red o r>

o�� \ ines , 'oottom \-:o.�� oV\ ev e Vl \·,.f\e� .
sC\�� A.SCI-:t:. ci,.,C\('O.C;\£("" r('·l r.-\-s �0� �\ .,;es
c\i1fec \"'� on\/ 'oj \\v"e. \oc'{"\- ;o n . '

E�
!==(]) f

"' \, <:. c\ e. f I� h i j k� � n o
'(_ t 5 t �A 'I \A\ \x y z \� 1 � 1 ,.i� �· '

e �e oo.1s �CP +o 'l f 1 �1& LEITE RS.

Cch'\ 3ir t�Mcte.& eX'-\-f"o. ch(Xc-o.c"\-e.rS by
1> \oT\'; n� s om e \ette.c- 1-o-ps w',� cLff�reflt
\e<t\ec- �ottowtS . . . co.l'\�o1 \of-\"�ps � i\� -\-o�S'·

PART I I \-----------------�-_J

Keyboard

The Intecolor 8001 has a detachable keyboard which presents
the standard ASCII four level code . (See Appendix A - 1 for keyboard layouts)
The keyboard keys are optically encoded by means of phototransistors , a
light source and shutters attached to the keys . There are no switches
to wear out and the unit is RFI free . The Keyboard does not provide
two key rollover .

CPU Reset

The CPU Reset key provides a reset signal to the 8080 CPU .
Its primary function is to allow the operator to regain control of the
terminal i f the software the customer has installed gets hung in an
endless loop . If the reset is operated properly the bell will is sue a
short beep upon the release of the key . If automatically forces the
terminal to the S0 s tate . That is , j ust as if the power had been turned
off and then back on . If additional RAM memory is ins talled thi s memory
area is not cleared , but the scratch RAM area within the CRT Refresh RAM
card is c leared .

Control Key

The control key must be held down while the proper alpha numeric key
is depressed if a control function is desired . The control functions are either
color coded or have its desired results engraved dh top of the key . Those keys
which have a name enclosed within a () parentheses indicate that they are also
s tandarized escape codes . The escape codes only require that the ESC key
be depressed then the () parentheses key desired ,

Shift Key

The shift key must be held down while the proper alpha numeric key
is depressed i f a shifted function is desired . Note that both the control and
shift key must be held down to generate certain codes from the keyboard using
the alpha numeric keys . See Appendix A-2 for the keyboard code set .

11

DETAIL OF CONTROL CODES

All of the display commands can be entered either through the
serial input port or the keyboard . The keyboard input port has the highest
priority of all inputs or outputs . The eight bit Intecolor 8001 code
set as shown in Appendix A-2 must be used for the serial input port . The display
control commands are a subset of the 32 ASCI I control code set , and a flow
diagram of these commands is shown in Appendix A- 3 .

With some display commands , such as the Graphic Plot Mode ,
delays may be experienced at the higher baud rates . A chart for these
delays is shown in Appendix A 4 .

(j)
The Intecolor 8001 display commands has been expanded by

an additional 32 commands via the ESC , character sequence as shown in
Appendix 5 . The terminal employs two input pointer flags , one for the
keyboard and one for the RS2 32C input . Each flag may point to a
different Mode of operation and thus the terminal can act di fferently
from the keyboard as compared to the RS2 32 input . (See blind cursor
operation Code 1 on page 19 .)

Code �

Code 1

Code 2

Null (Control @)

Has no. 'effect upon the display

Protect '(Control A)

Not presently implemented so it has no effect upon the
unit .

Graphic Plot Mode (Control B) (Option 0 2)

The general Graphic Plot Mode i s entered by a
binary code 2 or a Control Code B . (See Appendix B) . I t should be
noted that the XY Plot Mode is also entered at the same time . If a
plot mode other than XY Point Plot is desired , the next word that fol lows
should then be a binary code from 240 to 255 . These codes represent
the various plot submodes as shown in the summary of Graphic Plot Submodes .

An additional feature is available to allow a graphic plot to
be erased by simply setting the Flag bit on before entering the plot mode .
This causes an XOR function to exist when plotting . Therefore , i f you
plot the same point , bar or vector twice , the second time erases the
originaL

Once in the general Plot Mode , any of the plot submodes
may be entered by sending the corresponding code to the terminal . When
this code is received , a flag internal to the terminal , known as PLOFL ,
is set placing the terminal in the appropriate plot submode . It should
be noted that in many of the plot submodes , PLOFL is automatically set to
a different value upon completion of the operation of that submode causing
the terminal to enter a new submode . This is done to make coding and
operation of the terminal in the various plot functions easier for the
operator . The various submodes and their interactions are explained in
detail in Appendix B .

12

Code 3 Cursor X-Y (Control C)

The visible cursor may be positioned any where on the
screen simply by sending a 3-word sequence beginning with 0 3 . The
next two words that follow determine that X character position (0-79)
and y line position (0- 24) for 2 5 line unit or [9-4.7] for 48 line unit .
Both X and Y values must be in binary form with the range indicated .
The cursor home position (i . e . , the top left hand corner) is position 0 , 0
while the bottom right hand corner is (79 , 24) or (j9 , 4i] .

If the cursor is positioned at X = 80 binary (50 HEX) then the cursor will
disappear . But i f a character is typed it will be positioned at the
beginning of the line specified by Y + l , the cursor then reappears in
character position l . Any cursor command will automatically force the
cursor to reappear at the proper position in relation to character position
0 , line Y + l .

I f the cursor X values i s 8 1 binary (5 1 HEX) o r larger then
the CRT ignores this as the visible cursor X values and sends the
unit into the blind cursor addressing mode . Once in the blind cursor
X-Y addressing mode three (3) additional words must be sent . They are
blind cursor X value , blind cursor Y value , and the blind status word .
The blind X value must be in the range of 0- 79 and the blind Y value
must be in the range of 0- 24 or [9-4fJ . The blind status word must
be in the s ame format as required in the CCI mode (control F) . See the next
page ,

l'

The bl ind A7 bit wi ll be set on by sending from 1 28 binary to
2 55 binary ins tead of 81 binary when going from the v�sible cursor
X , Y mode to the bl ind cursor X , Y mode . The Blind .A7 bit will be set off
anytime a binary number between 8 1 and 127 is used to get int.o the bl ind
X , Y mode .

It should be noted that the X and Y cursor values received
are masked to 0-127 and 0- 3 1 lQ-6:f] respectively . Then , i f the value is
still out of range , the X value has 80 subtracted and the Y values has 2 5 ��] subtracted .

When exiting from the blind cursor X-Y mode the terminal is
left in the blind cursor mode for what ever input device caused the
mode to be entered . That is if a fter CPU reset is operated t.he keyboard
causes the bl ind cu.r sor XY to be addressed then the keyboard will be
left in the blind cursor mode while the RS2 3 2 serial is $till in the
visible cursor mode .

Code 4 EOT (Control D)

Has no effect upon the display

Code 5 (Control E)

Has po effect upon the display

l3

---- ------

Code 6 CCI (Control F)

When this code is received the system accepts the next
eight bit word from the serial input as the new composite status for the
characters which follow . See CRT Refresh Memory Section .

The first three bits represents the Foreground Color with
RedF=A0 , GreenF=A1 , and Blue =A2 . The next three bits represent the
Background Color (optional) with RedB=A3 , GreenB=A4 , and BlueB=A5 . The next
bit , A5 is the Blink bit for the Foreground Color and the last bit , A7 is Plot
Character bit which causes the display to interpret the ASCI I word as a 2x4 plot
array .

Code 7 Bel;L (Control G)

When this code is received a tone will sound for about 150 MS .
"* 5"'\o.)' 5 on � "1'd BAS I.C pv-oq "" m re�� s ott) €-N D, o r 1 N p (..{ r. . . s a 0\ f o o p CC\ n be. � s e 4 +o t nc.ot" et.t'se +<=> v-.t. d. ...t r o..ti o t'\ .

Code 8 Home (Control H)

When this code is received the cursor moves to 0 , 0 or the
top left hand corner of the screen .

Code 9 Tab (Control I)

When this code i s received the cursor moves horizontally
to the next tab position . The tab positions are fixed and are at
every eight positions from zero .

Code 10 Line Feed (Control J)

When this code is received the cursor moves down one l ine .
This is the only code used for cursor down .

Code 1 1 Erase Line (Control K)

When this code is received a carriage return is initiated and
the characters from the beginning to the end of the line are replaced with
spaces and have the same color and status as the present visible CCI
status . The cursor is always positioned at the beginning of the line .

Code 12 Erase Page (Control L)

When this code is received the complete screen is replaced
with spaces that have the. same color and composite status as the present
visible CCI status . The cursor always returns to the Home position . The blind
cursor is also positioned at home .

Code 13 Carriage Return (Control M)

When this code is received , the cursor returns to the beginning
of the line that it presently is on .

14

Code 14 !::._7 On (Control N)

Upon receiving this code , the characters which are to be
displayed have A7 forced to a " 1" . This bit is used to allow 2X
character s izes for 48 l ine units . This effectively doubles the number of
displayable character types from 128 to 256 .

Code 15 Blink - !::._7 - OFF (Control 0)

When this code is received the characters which follow have
A7 set to " 0 " (i . e . , opposite to !::._7 On as above) and also have the
Blink bit , A6 of the composite status for the character set to " 0 "
(i . e . , the opposite o f Blink-On per Code 3 1 .)

Code 16 to 2 3 or Color Keys There are eight color keys

A2 Al Ao

Black (Control P) Code 16 0 0 0
Red (Control Q) Code 17 0 0 1
Green (Control R) Code 18 0 l 0
Yellow (Control S) Code 19 0 1 1
Blue (Control T) Code 20 l 0 0
Magenta (Control U) Code 2 1 1 0 1
Cyan (Control V) Code 2 2 1 J. 0
White (Control W) Code 2 3 1 1 1

When one of these eight codes is received then one of two
things happens , depending upon the Flag bit . I f the Flag is off then
the key that is depressed will change the composite status to that
Foreground Color code .

I f the Flag is on , then the key that is depressed will change
the compos ite status to the Background Color code . I f Background
Color option is used , then it will display that color . If Background Color
option is not supplied , then no effect wi ll be noticed .

Note that when the plot via color pad is selected , one of the eight color
select keys wil l select one of the eight plot blocks . The plot option 2 is installed
See Escape B section for details .

Code 2 4 Transmit (Control X)

Whenever control X is received the terminal starts transmission
from the visible cursor present position to the end of the screen , or
until it detects a FF , �� Hex sequence in the Re fresh memory .

The transmission sequence is terminated by a carriage return ,
either �D Hex or 8D Hex at the customer option . It should be noted that
there may be many �D Hex or 8D Hex imbedded in the data transmission
since these are legal words in the refresh memory .

15

The transmission sends each 8 bit word in memory in
sequence . That sequence is the ASCII character , then the status o f that
character , followed by the next ASCII character and then its status until
the FF , �� sequence is detected .

The best way to have this data sent back to the terminal
is via the ESC] or block receive mode .

Code 25 Cursor Right - (Control Y)

Moves the cursor right one character without destroying
any information .

Code 26 Cursor Left (Control Z)

Moves the cursor left one character without destroying
any information .

Code 27 Escape (Control [)
The E scape command effectively expands the control code

set by 32 additional code capabilities . This requires at least a two
code sequence (ESC , letter) which then performs a given function . At
present only 26 of the 32 additional command capabilities have been
enab led . These commands are given in the following table . (For Detail see
the Escape Code Section) .

SEE ESCAPE CODE TABLE Page 17

16

OPTIONS

*

*

*

*
*

*

*
*
*
*
*

DECIMAL
CODE

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
2 1
2 2
2 3
24
25
26
27
28
29
30
3 1

ESCAPE CODE TABLE

LETTER

@
A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
s
T
u
v
w
X
y
z
C (ESC)
"
:J
A

FUNCTION

Visible Cursor Operation
Blind Cursor Operation
Plot Via Color Pad
Transmit Cursor X , Y Position
Not Used
Re-Entry Control to BASIC 800 1 system
Sets Unit to Full Duplex
Not Used
Sets Unit to Half Duplex
Not Used
Sets Unit to Write Vertical
Sets Unit to Rol l up Mode & write Left to Right
Sets Unit to Local Mode
Not Used
Not Used
Re-Entry control to the CPU Operating System
Initializing & Transfers Control to the CPU

Operating System
Allows Operation in Character Insert Mode
Allows Selection of 1 of 7 Baud Rates
Trans fers Control to the 8080 Assembler
Trans fers Control to the Text Editor
Inserts one line (80 blanks)
Deletes one l ine (80 blanks)
Trans fers Control to BASIC 800 1 Software
Sets Unit to Write Left to Right & Page Mode
Test Mode-Fills Screen with Next Character
Sets Unit to Write Down on 45 Degrees
Not Used
Sets Unit to Write Up on 45 Degrees
Sets Unit to Block Receive Mode
Causes a Jump to Ram Address 9FA�H
Trans fers Control to the CRT Mode

The letters are presented for easy reference ; i . e . , (full
duplex mode requires ESC , F sequence) . It should be noted that the Escape
control codes can be any 8 bit value so long as the 5 least significant
bits are correct for the operation desired . The terminal simply masks off
the undesired higher order bits . The Keyboard and RS2 32C input port has
separate and independent Flags which determine some of the CRT modes .
Therefore , the Keyboard may be in the character input mode while the RS232
input may be in the Plot mode or vise versa . The input port and the Keyboard
can operate completely independently of each other . See Details of Escape Codes
section for more information .

17

Code 28 Cursor Up (Control '\.)

Moves the cursor up one line without destroying any
information . This is effectively the opposite of a Line Feed operation .

Code 29 Flag Off - (Control:J)

set to "0 " .
color codes

When this code is received the Reverse Field flag is
Effects the special character codes (96 to 12 7) and the

(16 to 2 3) .

Code 30 Flag On (Control /\)

set to one .
codes (16 to

When this code is received the Reverse Field
Effects the special character codes (96 to 127)
2 3) ; and the plot modes .

Code 3 1 Blink On (Control

flag is
the color

When this code is received the Blink bit A6 of the
composite status is set to a " 1 " .

This bit is turned off when the Blink-Protect-Off key
is operated (see Code 15) .

Code 32 to 95 - Numbers and Letters

These provide the standard printing ASCII Upper Case
characters , punc::tuations and numbers . See Appendix A-2 for code set of the
the Intecolo� 800 1 .

Code 96 to 127 Special Characters

These codes provide either 32 special characters (such as
lower case ASCII characters) or 64 special characters . The 64 special characters
are actually two groups of 32 special characters . A group is selected depending
upon the condition of the Flag bit . If the flag bit is off then the codes are not
changed when they are placed in the CRT refresh RAM . If the flag bit is on then
these codes have 96 subtracted from them before they are replaced in the CRT
refresh RAM. Therefore they are mapped into 0 to 31 within the CRT refresh memory .

18

DETAILS OF ESCAPE CODES

@ or Code 0 Visible Cursor Mode

This is the terminal ' s normal mode of operation and
it is also the startup state . A received character i s placed at the visible cursor
location . The cursor then advances to the right one position awaiting the
next character . All normal cursor operations are applicable to placing
the cursor at a different location .

A or Code l Blind Cursor Mode

This optional mode provides for a dual cursor operation .
That is , normally the host computer wil l operate in the blind cursor
mode and the keyboard in the visib le cursor mode . The two modes wil l
not interact with each other . There i s also a blind status which may be
different than the visible status . The only blind cursor movements allowed are
a subset of the cursor X-Y positioning . See Code 3 or control c . This mode
allows operation without delay for ASCII TEXT at rates up to 38 . 4 K Baud .

B or Code 2 Character Plot Via Color Pad

When the plot option is installed then this plot mode
will be available . It will normally be used via the color pad , but can
be used without it . It provides a mix between the Plot Mode and the normal
ASCII Character Mode . Instead of responding as described in
Character Plot , this mode uses only eight codes to intensify each of the
eight blocks within a character . These intensi fying codes are the normal
color select codes (Control P through W) .

This option normally uses the color select pad on the keyboard .
The pad is arranged as shown below .

Black Blue

Red Magenta

Green Cyan

Yellow White

Color Selection
Pad

One
Character Plot

Aray

One Plot Block Selected by Green

Figure 2 . 5 . 6 . 1
19

From the above it is easy to see the one to one
correspondence between the 2x4 color select pad and the 2x4 character
plot blocks . Thus , this mode is designed especially for use by the
keyboard to simplify the drawing of graphs or the correcting of graphs .
Once in this mode a block at the top right hand corner of the cursor
present position can be intensified by pushing the top right hand corner
key in the color select pad , (in this case the blue key or Control T or
Code 20) . Once that plot block has been intensified , any other plot
block at that same character location can also be intensified since the
cursor does not automatically advance . If the blue key was to be pushed
the second time , then the already intensified plot block will be
extinguished . This effectively allows any one plot block to be erased .
After all desired plot blocks have been either intensified or extinguished ,
the cursor may be conventionally moved without escaping from this
special text and character plot mode . In fact , all of the control codes
are effective while in this mode except the color select control codes ,
and any of the ASCI I Text characters can be entered and displayed . Any
code that requires a two key or more sequence (such as cursor X-Y , CCI ,
and ESC) will terminate the mode . It should be noted that the ASCII
Character when entered and displayed advances the cursor as previously
done in the vis ible mode , but the plot blocks (generated by the color
pad) do not advance the cursor . Therefore , when a character position has
been used to display plot blocks a cursor command must be given to
advance the cursor to the next character position .

C or Code 3 Transmit Cursor X , Y

When this code i s selected the terminal sends out the
following 7 word sequence :

0 3 , X , Y , 06 , Status , ASCII Character , CR .

The X and Y values represents the cursor position on the screen . The
status is the status of the ASCI I character at that cursor location . The
CR may be either a 0D or an 8D HEX at the customer request .

Thi s sequence of transmission is the same that the light pen
would provide if the unit is so equipped .

E or Code 5 Re-Entry to BASIC 8001

Return to BASIC 8001 without destroying the BASIC 8001
source program which is in Ram memory .

F or Code 6 Full Duplex Mode

When this mode is selected then the Keyboard characters
are only sent to the RS2 32C serial port . They are not proc�ssed by the
terminal . Therefore , once the unit is put in the full duplex mode via
the keyboard , then the only "normal " way the mode can be · changed to
local or half duplex is via the RS232C serial port . There are two other
ways that have been provided to regain local control . One way is to
operate the CPU Reset key on the Keyboard , which wil l initialize the
terminal as if power has been j ust turned on . The other way is to

20

operate the break key on the keyboard . When this is done a break of 150 MS
will be transmitted on the RS2 32C serial port , and the terminal will be
forced into the hal f duplex mode .

H or Code 8 Half Duplex Mode

When this mode is selected then the keyboard
characters are not only processed by the terminal but are also sent to the
RS2 32C serial port .

J or Code 10 Write Vertical Mode

This effects the visible cursor mode only and causes
the terminal to enter characters vertically one below the other . All
other cursor movements are possible via the cursor mode . After a character
is entered the cursor is moved down one character awaiting the next
character . Upon reaching the last line the next character wi ll be on
the top line , i . e . wrap around occurs .

K or Code 11 Roll Mode (option 15) Write left to right

When this mode is selected the terminal wi ll cause a page rol l
up when the last line has been filled . All 48 line units roll two lines at a time
while 25 line units roll only one line . Note the plot mode and blind cursor mode
only work in non-roll mode . This mode also sets the visible .cursor to write left to
right .

L or Code 12 Local Mode

When this mode is selected then the keyboard characters
are displayed on the terminal , but they are not sent to the RS2 32C serial
port . In this mode the RS2 32C serial input port can receive data or change
this mode . The terminal can be made to transmit out of the RS2 32C port ,
while in the local mode by typing Control X or ESC C .

0 or Code 15 Re-Entry to CPU Operating System Mode

Causes the same result as Code 16 below but does not
reini tialize the I/0 Byte or the second RS2 32C channel Baud rate .

P or Code 16 Initialize CPU Operating System Mode

When this optional mode is selected the terminal enters
into the CPU Operating System. It then obeys all the commands that
are allowed in the CPU Operating System. See the CPU Operating System Manual .

Q or Code 17 Character Insert Mode

Once in this mode the CRT acts exactly like the normal
visible cursor system for all control commands except for those requiring
a 2 or more character sequence (such as Cursor XY , CCI , and ESC) .
When any character is typed or received via the RS2 32C input , it is inserted
within the line at the cursor present position and every character

2 1

after the cursor to the end of the line is shifted right one character
position . The last character on the line is lost forever . The cursor
is also advanced one position . The ab ove is true except for control codes ,
and "Delete " or (shift 1 1) keys (code 127) .

When the "delete " key is depressed or code 127 is
received via the RS2 32 input port then the character at the cursor present
position is deleted and all characters to the end of the line are
shifted left one character position . The last character on the l ine
becomes a space . The cursor does not advance .

When the "ESC " key is depressed then the character
insert-delete mode is terminated after the second character is selected . The
terminal then normally returns to the visible character mode .

R or Code 18 Baud Rate Selection Mode

When this mode is entered the unit then accepts the
next character as one of seven baud rates . It does this by looking at
only the first three bits . Therefore , any 8 bit character that has the
desired 3 lower order bits will do . Normally the keyboard numbers l to
7 are used . The baud rates and the corresponding numbers are indicated in
the table below :

Number l 2 3 4 5 6 7

Normal Baud llO 150 300 1200 2400 4800 9600
Rate

High Speed 880 1200 2400 9600 19 , 200 38 , 400 76 , 800
Baud Rate

The unit is initialized with power up at normally 9600
baud , with one stop bit . This initialized baud rate can be specified by
the customer at any of the fourteen above rates when ordered . It
should be noted that only in certain modes (blind cursor mode) can the
38 , 400 Baud be used with delays . In no case can 76 , 800 Baud be used
without delays . The unit may be ordered with either normal baud rates
or with the High Speed Baud rates . The two different rate systems cannot
be mixed .

The number of stop bits will be determined when the baud rate
is set by the condition of the A7 flag . If A7 was on before the rate is selected ,
1 stop bit is selected; if A7 was off before the rate is selected 2 stop bits
are selected .

s or Code 19 8080 Assembler Mode

When this optional mode is selected the terminal enters
into the 8080 Assembler Mode . It then obeys all the commands that are
allowed in the 8080 Assembler . At present this option is not availab le .

2 2

r

T or Code 20 Text Editor Mode

When this optional mode is selected the terminal enters
into the Text Editor Mode . It then obeys all the commands that are
allowed in the Text Editor . At present this option is not available .

U or Code 21 Insert Line Mode

When thi s mode is selected the cursor moves to the
beginning of the line it is presently on and this line and all lines to
the end of the page is shifted down by one line . Then a new line
of 80 spaces (or blanks) are inserted with the cursor
remaining at the beginning of that new line .

Normally the cursor wi ll be at the beginning of the
line to be inserted when this mode is used . After a line has been inserted
the terminal returns to the normal visible character mode .

V or Code 22 - Delete Line Mode

When this mode is selected the cursor moves to the
beginning of the line it is presently on and this line is deleted . All
lines to the end of the page are shifted up by one l ine . Then a new
line of 80 spaces (or blanks) are inserted at the bottom of the page .
The cursor wi l l remain at the beginning of the l ine that had been deleted.
After a line has been deleted the terminal returns to the normal visible
character mode .

W or Code 2 3 BASIC 800 1 Language Mode

When this optional mode is se lected the terminal enters
into the BAS IC 800 1 Language mode . It then obeys al l the commands that
are allowed in Basic 800 1 . See the "BASIC 800 1 Manual " .

X or Code 24 Page Mode Write Left to Right

When this mode is selected the terminal wi ll not roll
up when the last line has been filled , but wi ll begin at home again . The
terminal is also placed in the write left to right mode . This is the
normal power up mode . This mode affects all modes that use the visible
cursor . The blind cursor and plot modes wi l l only operate in the page mode .

Y or Code 25 TEST Mode

When this mode is selected the next character that follows
causes the complete screen to be fil led with that character . Note use ESC ,
Y , for a convergence test pattern .

2 3

Z or Code 26 Write Down 45 Mode

When this mode is selected the terminal will place
the character at the present visible cursor and will then cause a cursor
right followed by a line feed to occur . Therefore , the next character
entered will be to the right and down one position from the previous
character . When the bottom of the page is reached the next character
will appear on the top of the screen , i . e . , wrap around occurs .

C: or ESC or Code 27 No Effect Code

Performs a return to visible character mode .

� or Code 2 8 - Write Up 45 Mode

When this mode is selected the terminal will place the
character at the present visible cursor and will then cause a cursor right
followed by a cursor up to occur . Therefore , the next character entered
will be to the right and up one position from the previous characters .
When the top of the page is reached the next character will appear on
the bottom of the screen , i . e . , wrap around occurs .

:J or Code 29 Block Receive Mode

Causes the unit to enter into the block receive mode .
Uses the blind cursor to position the data . Looks for a (FF) , (00)
HEX sequence to terminate back to the visible cursor mode . Note thi s
is same format a s when control (x) or page transmit is requested . Note
page transmit starts at visible cursor and ends at end of page or when
an (FF) , (00) HEX sequence is found .

A or Code 30 Jump to RAM 9FA�H

When this code is received the CRT O . S. branches to
location 9FA�H . Therefore , the user must patch into RAM address 9FA�H
a j ump to his program .

or Code 3 1 Trans fers Control to the CRT Operating System

When this code is received , the unit is forced to the
CRT O . S . mode . I f Option 34 , the CPU O . S . , is also installed , then a
message will be printed saying :

YOU ARE NOW IN THE 8001 CRT MODE

24

DETAIL OF GRAPHIC PLOT SUBMODES

Code 2 Graphic Plot Mode (Control B) (Option 0 2)

The general Graphic Plot Mode i s entered by a
binary code 2 or a Control Code B . (See Appendix B) . I t should be
noted that the XY Plot Mode is also entered at the same time . I f a
plot mode other than XY Point Plot is desired , the next word that follows
should then be a binary code from 240 to 255 . These codes represent
the various plot submodes as shown in the summary of Graphic Plot Submodes .

An additional feature is available to allow a graphic plot to
be erased by simply setting the Flag bit on before entering the plot mode .
This causes an XOR function to exist when plotting . Therefore , i f you
plot the same point , bar or vector twice , the second time erases the
original .

Once in the general Plot Mode , · any of the plot submodes
may be entered by sending the corresponding code to the terminal . When
this code is received , a flag internal to the terminal , known as PLOFL ,
is set placing the terminal in the appropriate plot submode . It should
be noted that in many of the plot submodes , PLOFL is automatically set to
a different value upon completion of the operation of that submode causing
the terminal to enter a new submode . This is done to make coding and
operation of the terminal in the various plot functions easier for the
operator . The various submodes and their interactions are explained in
detail in Appendix B .

In addition to being able to enter the plot submodes
from the general Plot Mode , any plot submode may be entered from any other
plot submode with the exception of the Character Plot Mode .

25

--

Colors may be defined on a character by character basis only
and the color of an individual plot block as well as all other intensi fied
plot blocks within a character will be the most recent color defined when
a new block is intensi fied in that character . To change a color , it is
required that the Plot Mode or plot submode be terminated , the color
changed , and the Plot Mode be re-entered .

The character grid is made up of 80 characters wide by 25 �sJ
lines high . The 0 reference point for all plotting i s always the lower
left corner . Each character i s further broken up into 2 blocks wide
by 4 blocks high which then causes the plot grid to be 160 blocks
wide by 100 (}.9� blocks high . All plot submodes operate on this size grid
and have the same reference point . Positive direction is considered up
and to the right and negative direction is considered down and to the left .

All plot submodes and the general Plot Mode are terminated
or exited by the binary code , 255 . Whenever this code is received ,
the modes are terminated and must be re-entered as described above .

Appendix B-2 gives a convenient summary of the codes
required to enter the Plot Mode and the various plot submodes as well as
the status of PLOFL before and after each operation and the ranges of each
operation .

Plot Mode Escape (255 binary)

This code is used to exit from the Plot Mode or any
of .the plot submodes . The control " ? " or Fl5 is used to escape from
the Plot Mode from the Keyboard .

Character Plot (254 binary)

The Character Plot is entered by a 254 after the general
Plot Mode , " 2 " or Control Code B , is entered . From the Keyboard use
Control "> " or Fl4 . It may also be entered directly from any of the
other plot submodes . After entering the Character Plot , the next word
will be treated as a plot character except for code 255 binary or (FF)
hexadecimal (i . e . all eight bits are " l ' s ") . See Appendix B-

The general Plot Mode and the Character Plot terminate
upon receipt of a 255 code . The above procedure must be repeated after
a 255 code terminates the Plot Mode and the plot submodes .

Other plot submodes may not be entered from the Character
Plot . To enter other plot submodes , the Character Plot must be terminated ,
the general Plot Mode entered and the plot submode entered with its associated
code .

26

Plot are shown
The procedures for

below .

Function

Plot Mode
Character Plot
Plot Character l

Plot Character n
Plot Escape

entering and exiting the Character

Code

2
254
0 to 254

0 to 254
255

The Character Plot causes the 6 wide by 8 high dot
matrix to be divided into 8 blocks organized 2 blocks wide by 4 blocks
high . Each block consists of a sub-dot matrix o f 3 dots wide by 2 dots
high . Each block may b e individually intensified by defining the bit
(one of eight bits) associated with the block in the plot character .
Bits may by 1 10Red1 1 together for a combination of blocks in a plot character ,
creating a form o f graphics for plotting data or drawing diagrams .
Large characters may also be created by utilizing the blocks of several
character positions to create a large 5x7 dot matrix .

X Point Plot (binary 253)

The X Point Plot is automatically entered upon receipt
of the general Plot Mode code , binary code 2 , or Control Code B . It
also may be entered directly from any of the other plot submodes except
Character Plot . From the Keyboard use Control 11 = 1 1 or Fl3 . After
entering the X Point Plot , the next word defines the X value
of the block that is desired to be plotted See Appendix B-
The X value in this mode may range from binary 0 to 159 and all other
values will cause 160 to be subtracted and the resultant value of X to
be computed .

The X Point Plot may be terminated by code 255 which
causes the general Plot Mode to be terminated also . Any of the other plo
submodes may be entered directly from the X Point Plot by s imply entering
the appropriate plot submode codes which range from binary 240 to 254 .

It should be noted that this mode does not cause a
block to be intensified , but only causes the X value to be defined . Once
the X value is sent , the terminal is automatically placed in the Y Point
Plot mode . Thus , the next code sent wi ll be the Y value , which may range
from binary 0 to 99 [Q- 191] . Upon receipt of the Y value , a plot block
wil l be intensified on the CRT screen at the X value and Y value intersection .
The terminal i s then automatically placed in the X Point Plot mode and the
next word sent wil l be interpreted as an X value .

Therefore , once in the X Point Plot mode , new
blocks may be defined by s imply sending X values and Y values consecutively ,
without the necess ity of re-entering the X or the Y Point Plot modes .

27

The procedures for entering and exiting the X Point Plot mode are shown
below :

Function

Plot Mode*
Xl Value
Y1 Value

xn Value
Yn Value
Plot Escape

or
Plot Submode

Code

2
0 to 159
0 to 99 (0- 19 1)

0 to 159
0 to 99 (0-191)
2 55
or

240 to 2 54

* Automatically X Point Plot mode also

NOTE : SEND Code 2 5 3 between X , Y data sets if necessary
for timing considerations . See Appendix A-4 for delays .

The X Point Plot in conjunction with the Y Point Plot
allows any block on a 160 wide by 100 (192 for 48 Line) high block
matrix to be positioned to and intensified . If the new block is within
a character position that is a previously intensified ASCII character , then
the ASCII character is replaced completely by the new block and its
associated color .

Y Point Plot (binary 25 2)

The Y Point Plot is entered by a binary 2 52 code
after the general Plot Mode is entered . See Appendix B-
From the Keyboard use Control 11 < 11 or Fl2 . It may also be entered
directly from any of the other plot submodes except Character Plot
(binary 254) . It is more commonly entered automatically from the X
Point Plot mode . After entering the Y Point Plot , the next word defines
the Y value of the block that is desired to be plotted and causes the
block to be intensi fied in accordance with the Section on (binary 2 5 3) . The Y
value in this mode may range from binary 0 to 99 (0- 19 1) and all larger
values will cause 100 (19 2) to be subtracted from the new value of Y to
be calculated .

Upon receipt of the Y value , the X Point Plot is
automatically entered by the terminal . The X value of the next b lock to
be plotted may then be sent as explained in the Section on (binary 2 5 3) .

The Y Point Plot is terminated by Code 2 5 5 which causes
the general Plot Mode to be terminated also . Any of the other plot submodes
may be entered directly from the Y Point Plot by simply entering the appropriate
plot submode codes which range from binary 240 to 254 .

2 8

Therefore , once in the Y Point Plot mode , new points
may be defined by s imply sending X values and Y values consecutively
without the necessity of re-entering the X or the Y Point Plot modes . The
procedures for entering and exiting the Y Point Plot mode are shown below :

Function Code

Plot Mode 2
Plot Submode 252
yl Value* 0 to 99
x2 Value 0 to 159
y2 Value 0 to 99

Xn Value 0 to 159
Yn Value 0 to 99
Plot Excape 255

or or
Plot Submode 240 to 254

* Plots point using whatever previous X
Value left in memory .

NOTE : Send Code 253 between X , Y data sets i f necessary for
timing considerations . See Appendix A-4 for Delays .

XY Incremental Point Plot (binary 25 1 .)

The XY Incremental Point Plot is entered by code 2 5 1
after the general Plot Mode i s entered . From the Keyboard use Control
11 ; 11 or Fll . It may also be entered directly from any of the other plot
submodes , except Character Plot . After entering the XY Incremental Point
Plot mode , the next word defines the next two increments as shown in
Figure below . This word may have a range from binary 0 to 2 39 s ince binary
240 to 255 is used for the plot submode codes .

b7 I b6 b5 j b4 b3 I b2 bl I bo

A Xl /). yl A X2 A-y 2

Plot Plot
Block l Block 2

..

29

b b
n+l n

0 0 No Change
1 0 Positive Increment
0 1 Negative Increment
1 l No Change

n= 0 , 2 I 4 , 6

If b0 through b3 are "O "s , then the plot block will
not print but will increment one increment according to the coding of
b4 through b7 . This allows the user to easily "skip" a plot increment
by plotting with an invisible block .

It should be noted that the XY Incremental Plot mode
does not automatically trans fer the terminal to any other plot submode
upon receipt of an incremental change word ,but remains in the XY
Incremental Plot mode ready to receive another incremental change word .
Therefore , a series of incremental movements may be made by sending
consecutive incremental change words .

The XY Incremental Plot mode may be terminated by code
255 which causes the qene:�:al Plot Mode to be terminated also . Any of the
other plot submodes may be . • entered directly from the XY Incremental Point Plot
by simply entering the appropriate plot submode codes which range from binary 240
to 254 .

The procedures for entering and exiting the XY
Incremental plot mode are shown below :

Function

Plot Mode
or

Plot Submode
XY Incremental
Point Plot

Incremental Change
Word l

Incremental Change
Word n

Plot Escape
or

Plot Submode

Code

2
or
240 to 253

251

0 to 2 39

0 to 239
255
or
240 to 254

NOTE : Send code 251 between XY incremental point words
if necessary for timing considerations . See Appendix A-4 for Delays .

30

X Bar Graph , X0 Value (binary 250)

The X Bar Graph , X0 Value is entered by a binary 250
code after the general Plot mode is entered . From the Keyboard use
Control " : " or FlO . It may also be entered from any of the other plot
submodes except Character Plot . After entering the X Bar Graph , X0 Value
Mode , the next word sent defines the X0 Value or the left horizontal
start block of the horizontal bar graph . The graph grid is referenced
to the lower left hand corner of the face of the CRT . The X0 may range
in value from 0 to 159 and all other values have 160 subtracted and the
new value calculated for X0 •

Upon receipt of the X0 Value , the value of X0 is
stored in memory and the terminal is automatically placed in the X
Bar Graph , Y Value mode (binary 249) . The terminal is now ready to
receive the next eight bit word as the Y position of the bar graph .
Upon receipt of the Y value , the terminal is then automatically placed
in the X Bar Graph , X Max Value mode (binary 248) . The terminal is
now ready to receive the next eight bit word as the X Max Value .
Upon receipt of the X Max Value , the bar is drawn on the CRT and the
terminal is placed back into the X Bar Graph , Y Value mode (binary 251)
ready to receive a new Y value to begin the bar graph drawing process
over again as outlined above . This process i s shown below and in
Appendix B .

Function Code

Plot Mode 2
or or

Plot Submode 240 to 253
X Bar Graph , X 0 Value 250
X0 Value Word 1 0 to 159
Y Value Word 1 0 to 99 (0 - 191)
X Max Value Word l 0 to 159
y Value Word 2 0 to 99 (0- 191)
X Max Value Word 2 0 to 159

y Value Word n 0 to 99 (19 1)
X Max Word n 0 to 159
Plot Escape 255

or or
Plot Submode 240 to 2 54

NOTE : Use Code 2 5 1 between Y value , X max Value data sets
for timing considerations . Timing delays depends directly upon the
length of the bar being intensi fied . See Appendix A-4 for delays both
minimum and max1mum.

As can be seen from the above process , once in the
X Bar Graph , X0 mode , it is necessary to send only two words , Y and X
Max , to completely define other bar graphs with the same x0 in the
horizontal direction . As before , any of the submodes can be entered
independently . After the first bar graph sequence , additional bar graphs
can be described by a new Y position for the graph and a new X Max

3 1

, I

Value for the graph . The bar is drawn after the X Max Value is received
using the original value of X0 •

Any of the other plot submodes may be entered directly
from the X Bar Graph , entering the appropriate plot submode codes which
range from binary 240 to 254 .

This mode allows bar graphs in any color or multiple
colors to be drawn with a width as small as one plot b lock wide or
areas under curves may be easily filled in .

X Bar Graph , Y Value (binary 249)

The X Bar Graph , Y Value is entered by a binary 249
code after the general Plot Mode is entered . From the Keyboard use
Control " 9 " or F9 . It is more commonly entered from the X Bar Graph ,
x0 Value automatically , and may also be entered from any of the other
plot submodes except Character Plot (binary 254) . After entering
the X Bar Graph , Y Value mode , the next word sent defines the Y
or vertical position of the horizontal bar graph being drawn . The
Y value may range from binary 0 to 99 (0 to 191) and all other values
will have 100 (19 2) subtracted from it and the new value calculated for
the Y value .

Upon receipt of the Y value word , the value of Y is
s tored in memory and the terminal is automatically placed in the X Bar
Graph, X Max Value mode , as explained more completely in the Section on
(binary 248) .

Any of the other plot submodes may be entered directly
from the X Bar Graph , Y Value mode by simply entering the appropriate
plot submode codes which range from binary 240 to 254 .

X Bar Graph , X Max Value (binary 248)

The X Bar Graph , X Max Value is entered by a binary
248 code after the general Plot Mode is entered . From the Keyboard use
Control " 8 " or F8 . It is more commonly entered from the X Bar Graph , Y
Value automatically , and may also be entered from any of the other plot
submodes except Character Plot. After entering the X Bar Graph , X Max
Value mode , the next word received defines the X Max horizontal point of
the horizontal bar graph being drawn . The X Hax Value may range from
0 to 159 and all other values wi ll have 160 subtracted from it and the
new value calculated for X Max Value .

Upon receipt of the X Max Value word , the bar graph
is drawn in the predefined color on the face of the CRT according to the
X0 and Y value s tored in memory from previous operations . The terminal
is then automatically placed in the X Bar Graph , Y Value mode , binary 249 ,
for the beginning of a new bar graph as more completely explained in the
Section on (binary 248) .

Any of the other plot submodes may be entered directly
from the X Bar Graph , X Max Value mode by simply entering the appropriate

3 2

plot submode codes which range from binary 240 to 254 .

X Incremental Bar Graph (binary 24 7)

The X Incremental Bar Graph is entered by a binary 247
code after the general Plot Mode is entered . From the Keyboard use
Control " 7 " or F7 . It may also be entered from any of the other plot
submodes except Character Plot . After entering the X Incremental
Bar Graph mode , the next word sent defines the next two horizontal and
vertical increments for two horizontal bar graphs . Thus , one may
position a bar graph each side of the present location and add or
subtract an increment to the bar graph previous ly defined . The coding
and composition is the same as explained in the Section on (binary 2 5 1) . An example
is shown in Appendix B-6 .

Y Bar Graph , Y0 Value (binary 246)

The Y Bar Graph , Y0 Value is entered by a binary 246
code after the general Plot Mode is entered. From the Keyboard use
Control " 6 " or F6 . It may also be entered from any of the other plot
submodes except Character Plot . After entering the Y Bar Graph , Y0 Value
mode , the next word sent defines the Y0 or the vertical start point of the
vertical bar graph being drawn . The range of the Y0 word is 0 to 99
(0-191) and all other values have 100 (192) subtracted and will have the
new value calculated for Y0 Value .

All other operations are identical as explained in the
section on (binary 250) , X Bar Graph , Xo Value except that Y Bar Graph , X Value
and Y Bar Graph , Y Max Value are applicable for drawing vertical bar
graphs . An example is shown in Appendix B-5 .

Y Bar Graph , X Value (binary 245)

The Y Bar Graph , X Value is entered by a binary 245
code after the general Plot Mode is entered. From the Keyboard use
Control " 5 " or F5 . It is more commonly entered from the Y Bar Graph ,
Y0 Value automatically , and may also be entered from any of the other plot
submodes except Character Plot . After entering the Y Bar Graph , X Value
mode , the next word sent defines the X , or horizontal position of the
vertical bar graph being drawn . The X Value may range from 0 to 159 and
all other values will have 160 subtracted and will have the new value
calculated for the X value .

All other operations are identical as explained in the
Section on binary 249 , X Bar Graph , Y Value except that Y Bar Graph , Yo Value
and Y Bar Graph , Max Value are applicable for drawing vertical bar
graphs . An example is shown in Appendix B-5 . ·

Y Bar Graph , Y Max Value (binary 244)

The Y Bar Graph , Y Max Value is entered by a binary
244 code after the general Plot Mode is entered . From the Keyboard use
Control "4 " or F4 . It is more commonly entered from the Y B ar Graph , X

3 3

Value automatically , and also may be entered from any of the other
plot submodes except Character Plot . After entering the Y Bar Graph ,
Y Max Value mode , the next word received defines the vertical Y Max point
of the vertical bar graph being drawn . The Y Max Value may range from
binary 0 to 99 (0- 191) and all other values wi ll have 100 (19 2)
subtracted and wil l have the new value calculated for Y Max Value .

All other operations are identical as explained in the
Section on (binary 248) , X Bar Graph , X Value , except that Y Bar Graph , Y0 Value
and Y Bar Graph , X Value are applicable for drawing vertical bar graphs .
An example is shown in Appendix B-5 .

Y Incremental Bar Graph - (binary 243)

The Y Incremental Bar Graph is entered by a biriary 243
code after the general Plot Mode is entered . From the Keyboard use Control
" 3 " or F 3 . It may be entered from any o f the plot submodes except Character
Plot . After entering the Y Incremental Bar Graph mode , the next word sent
defines the next two horizontal and vertical increments for two vertical
bar graphs .

All other operations are identical as explained in the
Section on (binary 247) , X Incremental Bar Graph except for the mode being
applicable for drawing vertical bar graphs . An example is shown in Appendix
B-6 .

Vector Mode X0Value (binary 242)

The Vector Mode is entered by a binary 242 code after
the general Plot Mode is entered . From the Keyboard use Control "2 "
or F2 . It may be entered from any of the plot submodes ex�ept Character Plot .
After entering the Vector Mode , X0 Value , the next word defines the X0
Value point of the vector being drawn .

defined
defined

The Vector Mode requires the two end points to be
(i . e . X0 Y0 and x1 Y1) . The x1 , Y1 values should previously be
by way of the X , Y Point Plot Mode .

Upon receipt of the X0 Value the terminal is automatically
placed in the Vector Y0 Value Mode (binary 241) . The terminal is now ready
to receive the next eight bit word as the Y0 Vector Value . Upon receipt
of the Y0 Value the terminal then determines the best straight line fit between
x0 , Y0 and x1 , Y1 using the plot blocks . The terminal will then revert to
the Vector Mode X0 value (binary 242) , ready to receive the new x0 Value
for another vector . The process is shown below and in Appendix B-7 .

34

Function Code

Plot Mode 2
or

X point Plot submode 253
xl Vector point l 0 to 159
Yl Vector point l 0 to 99 (_191)
Xo Vector plot submode 242
Xo Vector point l 0 to 159

Yo Vector point l 0 to 99 (191)

Xo Vector point N- l 0 to 159
Yo Vector point N- 1 0 to 99 [191)

Xo Vector point N 0 to 159
Yo Vector point N 0 to 99 (_191)

Plot Escape 255
or

Plot Submode 240 to 254

NOTE : Send code 242 between Y0 vector point and Xo vector point
words if necessary for timing considerations . See Appendix A-4 for
delays .

Vector Mode Y Value (binary 241)

The Y0 vector is entered by binary 241 code after the
general Plot Mode is entered . From the keyboard use Control " l "
or F l . This mode i s more commonly entered automatically from
the X0 Vector mode . After entering the Y0 Vector mode , the next word
defines the Y0 value of the vector being drawn . There is no restriction on
Y0 with respect to Y1 except it must be in the range of 0 to 99 (191) . Upon
receipt of the Y0 value a vector is drawn from X1 , Y1 to X0 , Y0 , with
the new X1Y1 now at the old X0Y0 • If the next vector has a X1Y1 value
X0Y0 old , then only the new X0Y0 need be sent . This would effectively draw
a vector from the present X0 Y0 position to the new X0Y0 point . See
Appendix B- 7 .

�0 �0 - Incremental Vector Mode (binary 240)

The X0-Y0 incremental vector mode is entered by a binary
240 code after the general plot mode is entered . From the keyboard use control
" 0 " or F0 . It may also be entered from any of the other plot submodes
except Character Plot . After entering the incremental vector mode , the next
word sent defines the increments in X0 , Y0 , x1 and Yt point values for the
vector from x1Y1 to X0Y0 . This word may have a range from binary 0 to 2 39
s ince binary 240 to 255 are used for the plot submode codes .

Referring to the section on (binary 2 51) , XY Incremental Point Plot
it can be seen that there is one two bit element availab le for each of the
4 points (i . e . x0 , Y0 , x1 and Y1) . The 4 X , 4 Y1 refers to the increment in
X1 , Y1 of the vector and the � X2 , AY2 refers \o the increment in X0 , y0 of the
vector .

3 5

b7 b6 b5 b4 b3 b2 bl bo

x1+l x1- 1 Y1+l Y1- l X0+l x0-l Y0+l Y0-l

Therefore , if b4 and b5 are both l or both � then no
increment will take place . I f either half of the word is all zero then the
corresponding X , Y will be changed but no vector will be drawn . This allows
the user to easily " skip " points . The only time a vector will be drawn is
when both halfs of the word are non zero .

The incremental vector plot mode does not automatically
transfer control to any other mode . It remains in this incremental mode until
terminated by a plot submode code . Therefore a series of incremental
movements in both X0 , Y0and X1Y1may be made by sending consecutive incremental
change words .

The procedure for entering and exiting the XY Incremental plot
mode are shown below :

Function

Plot Mode
or

Plot Submode
Incremental Vector

Plot Mode
Incremental change

in x1 , Y1 , X0 , Y0
Word l

Word N
Plot. Escape

or
Plot Submode

Code ·

2
or
240 to 253
240

0 to 2 39

0 to 2 39
255

or
240 to 254

NOTE : Send code 240 between incremental vector words i f
necessary for timing considerations . See Appendix A-4 for input
Delay Times .

36

LIGHT PEN OPERATION (Option 28)

The Intecolor 800 1 Light Pen is designed to move the cursor on
the screen of the terminal by simply pointing to the desired location on the
screen and touching with the forefinger the touch-sensitive end of the l ight
pen . The touch sensitive end of the light pen acts as a switch or button .

To effect operation of the light pen , the pen is s imply pointed to
the desired location on the screen . Either the standard lense or the long range
lense may be used in the same manner . When the desired location is reached ,
the forefinger is placed on the touch-sensitive end of the pen and held
on the pen until the cursor on the screen resides at the location the pen
is pointing to . As long as the finger is kept on the pen the cursor will
follow the pen to any location .

When the cursor i s at the desired location , lift the forefinger from the
tip of the pen and the following 7 word sequence will be transmitted to the Jl
RS2 32 output port .

0 3
X
y
06
Status
ASCII or
Special
Character
80

Cursor X-Y (See Code 3)
X Cursor Coordinate
Y Cursor Coordinate
CCI (See Code 6)
Status Character (See Appendix A-6)

Carriage Return

Notice that this sequence is not transmitted unless the
finger first touches the end of the pen in the touch sensitive area and is
effected when the finger is lifted from the end of the pen .

Note
time the touch
will repeat at

that a blue flood is normal operation and occurs every
sensitive end of the pen is touched by the forefinger and
a 2cps rate until the finger is lifted .

3 7

APPENDIX A

6 ROWS • 5.906"

5 ROWS " 5.156 11

6 ROWS z5.906"

5 ROWS •5.156 M

6 ROWS • 5.906"

5 ROWS " 5.156 "

r r 1 r, r --T- -.- , - ,.- --r -, ---r - r -.- r - ,) l I

I � I l I � I � I ! I � I : I ; I � I � l 0 J � r�J�f��I·:.·::IR��T(
!ESCAPE c�::, !taAslc)J ���Tu� ':���� I 1�1 I �:::, TAl J:����:J�c�51l NULL I LINE I RETURN I r a I w I E R T 1 y I u I I' 0 I p 'I (<il [FEED

I 1-l XWIT l'CURSOOR] (DEL]PLOT ll7 CHI] SHIFT X Y LINE) Z X C V B N

I I

I WITH OPTION 8 AND 32

14--4 ------- 21.010'

r- T i l i T -, 1 i -r i 1 - r r 1 - r---, I I I I I 1 l I I 1 I I I I I I I

I � I l I � I � I ! I :· I : I ; I � I � I 0 I � r[gJ�f�;,�l·:.·.�· IR���/
l•scAPE c�J:, IIBA�ICll E I �··�"� I ���1� '7ll �:�:, I T�B �:�3�� o�c!�l �L l [l ��� l RETURN I I CTRL I P:T r··:·ll D I c;I ·�

LL I H:E I � ·���·I���· I i I * OELETf��· I·R···I I 1- �
XWIT rcuosooRI IOEL I PLOT IAT ON l SHIFT X Y LINE) Z X C V B N

I M � � I > � � j sHIH J
I

7

4

I
-

8 9 BLACK BLUE FG ON FLGOFI
5 6 1 �\:·\ 7 1 RED � BG ON FLG ON
2 3 GREEN CYAN BLINK ON
0 ELL.aO WHITE PLOT A1 OFF

BLACK BLUE :� g;

WITH OPTION 22 J �-- 18 . 385" --�

I --.
I
I

..,
I
I

T I
I

r
I

'
I

-, r I "T - T -
1 I

r
I

T
I
I

--,
I I

r I --,
I
I

T I
I I I I I I I I I I

L (INS . haAstcJI l taAuol J (TEX� J (T£ST)J (INS I TAl JBLINK�t (CPU ,J NULL I LINE I RETURN l I ESCAPE CH�R) I w I E ··�·)I E�Tl I y I LI�El I I IAT 3FF lOP �YS)I @) [FEED

A- 1
KEYBOARD LAYOUTS

NOTE : IF 16 FUNCTION KEYS ARE REQUIRED THEN
THEN A SIXTH ROW OF KEYS ARE ADDED
AS SHOWN DOTTED.

~~lfi ~"NC'f'O~ ,, AKit --
c:::cHR~(c) : ? c, c$

C $ C C$
127 255. # ~f 1 !59 !C..,NK oN·

/2&, 2)~ ,.., .3~ \ !58' ?

12.5 253 } C'7 ?
I 2~ . J •

1 -z~ 252 ' z~ 1 S"b ?.stc'PS

12."3 2.5! { 27 t 5'5" HALf

f4'2. 25'CD z (lo..,er Ce>.5~ . 5~ cu~ Lff T

_J t ' 2S f5 3 ?

~7 2.25" 0. (lowe.- cts't)\ \52 ~
'1~ 224 , 23 tJ5"l r LOT W~/ti£

'15 _e~3 :4'"2. }5'(l) ,LoT C~ftN

,, 222 " 2.l I ~9 PLOT MAGEWU/

~ > 2~ I .] zll I yg F'Lor ~ l.U£

~l 2t3 \ ~~ JtjJ ~LO\ ~fU..Ow

'11 21 ~ (J ~ J 46 f'L.Or G~t!N

9~ 2 z #
~7 /4 5" ?t.OT 42.£.-p

t i upper CC\Sefh J L(lj PLoT Bc.Aei<.

{:5 r 3 A (u~ . e.(' c.o.se!f J'i3 PloT SMI!L'- CHfH~ACrERS
'~ 192. @ 1'1 f42 f>LDT LARGE. Cl-fflRACTf:J?.$

'3 tq '? 13 IY l Cu~ LEPT

'2 \qep > 14 \"\(D lif:AS~ ¢HOME. .

bf g :; H 13~ f.~f)SE. LtNE.1
CI..I~So~ LE.F/.

~~ . 88 (,, 138' CU.RSD£ 001.\) f'..i I LIN£ .

5Cf l 8 7 ; q \ s 7 iA B (1)

,)g ! : g t /3bCltR5o~ ~oM£.
'J7 Jg5' 9 7 13.5' BEEP

1
~ffP?

~ ~ ~ ' d)'t All> 01'1 ~£b
'iS ~~ (/) ~ .1133 HALT

1.\7 17 1 'I ' t32. MLT

S 3 :13.11 ~~ Y2. PA&-i.

~b /7~ • 2 . 3(!)·:=:-.=~"
qs 7 3 - • . 129 ? .
~~ 7 2. ' --.!1 6,3 ?

~3 17{ + !271
~2 7m :t li!.b ,..,

~l 69) + t
'"\~ 16 (Re~'\; o.\\ ~\M5 \;ke. 128 <j~eti\e r .
7!1 17 ' ,J

38 bb &
~7 /b5%
~ b~ $
35 b3 :t;
3"\ 162 II

:>3 t;; !
I c; ?

WJ.tl~ '! 2.\$"'
C'jAr..J :: Zl '1
M~Gf.N't'~~ 213

8t.~t :: 2l2

~E l.~!.Q :: 21\

G~e£1\S .: 2 I <1>

REP :: 2/P'J

et.~CK ~ 2~8

1 1~ .N01" ASCII f

r- :i :l �)(... "' 0 2 4 6 7 • ' A • 0

A3

0 0 0 0 0 0 0 0

7
G

5
4

3
2

G'-
EE

N:
 to

 �
e.t

 AS
CI

I
.f.-

oM
 I�

'P(
l)

no
n-s

1"'\
n�

"'1"
d

ke
y\s

o4
rd

.
j Ptot

jalin
k j BB

 I BG
 \ BR

 j FB
 \ FG

-� F
�>:

OP
TIO

NA
L

FU
NC

TIO
N

KE
YS

HE

XA
DE

CI
MA

L

A7

A6

A5

A
4

A2

AI

A
O

0
0

0

0
0.

0
0

0

0
0

0

0

0
0

0

0
0

0
0

0

0
0

0

0

0
4

I
7

9
A

c
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

CO
NT

RO
L

@
T JO J3

CO
NT

RO
L

P
TO

_

SH
IF

T
0 T

O
?

SH
IF

T
*

@

TO
 0

sHi
n

*
1 coN

T-
SH

IF
T
icoNT-

SH
IF

T
ICON

T-
sH

IF
T

� T
O_

@l

TO
 0

P T
O_

II T

O
?

CO
NT

0

T
O

?
CO

NT
RO

L
FO

 ·
FI

5
SH

IF
T

FO
·F

I 5

NU
LL

BL

AC
K

SP
AC

E
Gl

(Qi
,

f!
'I GO

P/GI8

P
SP

A1:
11'"

\
0

FO
 �

-\�
L �

I i"
ll2.l

+A•
l ·

�1
•n

.
I ., .. J.

 �
, +

l"l
... c.

. .. , �
\\1.

o

tLf'f.
 16

�
�

32_
q�

 48

�lf
 4

tZS

 o

)�
1

"
1)1;.,{1{

 112
l'l

�
.

��
-

-
I§Q_

_ __
 . 17

6
�

12
o8

FO

PR
OT

EC
f

RE
O

I
I

al
GI

q/

GI
7

A
Q

I
I

Fl
 fO.

Fl
�

·
I 1"

�1
�����

 +'"
 I .

+'"I

I
� :+"f

l +
''I

... '"!
 .. "

�
1

I 5IL
 zaR

33

· j
49

.
{.$'

 85

. I'Z.
'\ J

"lg
·r._j�

l 113
:Ll

S.
 .

_
 .

.
�

-
1 6
1

.
11
1

�
1209

PL
O T

GR

EE
N

11
Z

r ,

b/
G

rlG

I
·

I
R

"
..

.
2

Fz
l,

FZ

-\�

• j
.,.,'11

 �1
12.

... ,u
.
I T"l

 .
I

� +
�I

--T�
. �

'_Ill
•il

l
2

MO
ID qb

 1
e

2.td
�

_(\
� 50

"'-

66
1�

 82
,�'4

 !18
\�

2.11
4 �

14
6

•
•

162

17
B

1!.
·l
21
0

... �
.

I "'"
"'il

...
IZ.

+'Btl

 I of
l61

I
� �

I "1
{1.1

�I
 +1\

'Z
�u;;

��E

YE
LL

OW

3

C
'1

c/
53

o/

GI
9

C
S

3

F3
S

3

.,'"'
.,

 Il
l.

2
.1
1

35

(\'
51

Gt,
67

,;,
 8

�

, ,5
 99

lb
�

115
 7.:1.

.7
147

16

3
•

 17
9

�
;.\,

-
I ..

. ,�-�
1:1 +

pet L
 +\{,

 L.
I

J. �
I +

l �
i'},"fj

-�
HZ

4

:Ti
i.B 2

0
'2l

l. 3
6

$\a.p
l52

4
�

 68

J 1
2

l'\'

d/ j''f
 118

1�

0

14
8

T
141

4
$

118
0

4
��

F41
F3

21
1

F4

21
2

'fj
'f'U

Z
5

·II

F5
 u

I F5

5
.

IB
I
-

--
21
3

_,,
-· -

I -t-
"'4J -

.... 1.
l +"

�I
... , �

 -

- -
I

·1: ..
. "'1-

·-+1'
1 -�

� ..-
uz.

CC
I

C
N

a
·

8
.

�

V
1/.

y/
 Z

l
F

V
a

6
F6

�
6

.JS.
.{D

22

1: ...
 3B

��1
54

7�

 o
')

86
\

10
2

rt,"
 liB

��

. 150

IM

,
IB

2
II..

_,�
-

I . �
Cfl +

"'I
+Iiii

i +
''I

-
t·

-
l. +

'" I
1"(61

 �
 +U

1.
BE

LL

·WHITE·
'

7
W

v /
G

G 3

G
W

'
7

F
7"

1

1S"
I

2 3

1t
4'

39

IIP3
55

.,,

 1
1

l�t;'
 87

ll:f'r.
lo
3

r�7
 ·"

U
\

�
16

7
113

L.

215

F6

214
F7

·�
-·- 1

 'tf)
� +

"Z.I
+''

I +�
f>

.
. J

- �
I +

'' I
�1

+ ll2
1�

HO
ME

.

TR
AN

SM
IT

(

I
·

X
ol

x/

02
4

H
X

(
8

.
FB

)(

FB

B
I�

 24

1.
 •"

40

ldl
'l �

6
'11.

 12

';c,
 8B .

10

4
1�

 1.2lL
'2.U

I I!2
1H

I 8
4

12
1 6

�� C
URs

O- R
 ' I

-t""l
.....

 'Z I
+"

I -+
lta

 I· .

I .
r.· ""

�I
""'"-1

 ..
. � -t

i t�
 ll

TA
B

RI
GH

T
)

9
Y

1/
G

y/
12

5
I

Y
)

9
F9

-'
F9

9

tS
3z.

s
'2.\

7
41

tff
S

�7

1'3
n

l3
78

9
Zf

f
1o
s

l�
't

1t
1
�

10�

lit

IB

5
J211

LI
N 64"
� CU

R
SO

R-

I
+,, I

 " I

+ttz

FE
ED

�
u

 ·
LE

n
1 a

z

*
:

II
Fl

o'i
 1

Fl
o

10

. _l
a

,
26

·
2.w

 42
11
0

IB
8

-
21

B
ER

AS
S,��

I �
1' \\'Z.

I +''4
 I ·

·� j.
.•

l

(. +
""]

+'' I
 *"'

L_!
\l�

LI

NE':

E
C

+
;

C
k /

(/

G2
7

K
C

+
;

Fl
l[

Fl
l

I I

ISS
 27

�1
'1 4

3
l�7

 59
.

'75
. 7 5

-3�

 91
lJj

 IOL
liif

 123

:Z.3

,.
155

17
1_

,_
 18

7
12
19

ER
Ast\

� CUR
SO

R

I �
..

. �.1
+'' 'i

I ot\iJJ
 ..

�
I

J. �
I +

1'1
.�,

 �
��

PA
GE

P

·
<

·
L

'
I/

GI
2

1/G
2B

.

L
'

'
<

Fl
2'

12

!S'

62
B

�
44

J

6o
I�

 76

t'\IP
 92

.2.cl'f
1o8

1'7
 1

24

Z�

156

11

2
_

 1
8B

Fl

2
22
0

CR

FL
AG

-

·
:

m
/

Jt
29

M
J

-
=

Fl3

Fl
3

��F
OR

E GN
D

ON
� ii

i +•
qn

·'-M
.''t

 .

1 ihl.

. +()
�

�
.:1

 +$$
�

]
13

\5
 2

9
OF

F�
 45

I
61

ICP'l
 7

7
1
'4

•
93

lt

5
10
9

l�
�

 1
2�
 a

)
,

15
7

173

IB�
_

.

12
21

1\
•

>
Fl

41\

Fl
4

�
�'I

....
14

1 #

 174

19
0

�
1222

BU
N�

BL
IN

K
� �

·�
+

8'.

�
·

o
?

m
•

15
OF

F\S
31

�
 7 .

 'Jil
l 63

19
1

.
I�

Fl
�

22
3

0

CO
NT

-
SH

IF
T

FO
 -

FI
5

FO
-F

I5

FO

I FO

22
4

240

Fl
I Fl

22
5

24
1

F2

I F2
22

6
2.4

2

F3

I F3
22
7

24
3

F4

I
F4

22

B
24

4

F5

I
F5

22

9
24

5

F6

I F8

23
0

24
8

F7

I
F7

23

1
24

7

FB

I
FB

23

2
2.4

B

F9

I
F9

23

3
24

9

Fl
O

I FlO
23

4
2 8

0

Fl
l

I Fl
l

23
5

251

Fl
2

I Fl
2

23
6

21!2

Fl
3

I Fl
3

23
7

2�
3

Fl
4

I Fl
4

23
8

2�
4

BR
EA

K
(F

I5
)

I
. Fl

�
23

9
lz8

8

Xo
-Y

o
IN

CR
EM

EN
TAL

 V
EC

TOI
I

Yo
 V

EC
TO

R
PL

OT

Xo
 V

EC
TO

R
PL

OT

IN
CR

EM
EN

TA
L

Y lA
�

Ym
-

YB
AR

X
-Y

BA
R

Yo
-Y

 lA
,.

IN
C�

EM
EN

TA
L

X IIAI
I

Xm
 ·X

 l
A�

Y-
XIIM

Xo
-

X
 I

AII

X-
Y

IN
CR

EM
EN

TA
L

PLO
T

Y-
�

INT
 l'l.O

T

X-
�O

INT
 P

LOT

CHA
� l'l.O

T

�LO
T [

IC
Af

'l

RED
: vq

\ut
s

c�
to.

,n
ed

 f"r
oiY\

 \ct
1�"

�_..t\
.

G�
Ee

�
: A

SC
II

 c
or

t"e
e,.

;on
 co

t\St
Ol�

S.
NO

TE
:

TH
E

TE
RM

IN
AL

 A
CC

EP
TS

 A
LL

 8
0

TO
 B

F
HE

X
CO

DE
S

FR
OM

 T
HE

 K
EY

BO
AR

D
AND

 �
EA

SS
IQ

NS
 T

Hi
ll

F0

 T
O

FF
 H

EX

W
HE

N
IN

 T
HE

 P
LO

T
MO

DE
 ,

UN
LE

SS
 T

HE
 OP

TI
ON

AL
 K

EY
S

AR
E

IN
ST

AL
LE

D.
 T

HE
IIE

I'OI
I[

W
IT

HO
UT

TH

E
FU

NC
TI

ON
 K

EY
S

TH
E

KE
YB

OA
RD

 C
AN

 P
LO

T
IN

 A
 R

AN
GE

 O
F

• T
O

17�
,

*
CO

LU
MN

S
S A

ND
 7
 W

IL
L

BE
 T

RA
NS

LA
TE

D
TO

 C
OL

UM
NS

 0
 A

ND
 I

 R
ES

PE
CT

IV
EL

Y
IN

 T
HE

 C
IIT

 U
'II

U
H

RA
M

IF
 T

HE
 F

LA
G

ON
 H

AS
 B

EE
N

SE
T

BE
FO

RE
 E

NT
ER

IN
G

TH
ES

E
CO

DE
S.

 T
HE

Y
W

IL
L

TH
EN

 A
P�[

AJI

AS
 T

HE
 S

EC
ON

D
GR

OU
P

OF
 6

4
CH

AR
AC

TE
RS

 I
F

TH
AT

 O
PT

IO
N

IS
 S

UP
PL

IE
D

.
A-

2
IN

TE
CO

LO
R

8
0

0
1

CO

DE
 S

ET

. I

• • • • •
• • • • 8

• • le'e li • •

• • •
• •

-
Ct-\APJ\t\€.� 'f>l.ACU4£NT GIVE.S l.E.FTt Bolro M
Bo,C,�ER$ W I THIN IHE. 6 lC g' MIJ TF-. 1 X' •

DOD
D I

!
I I

I \ I l

I

I

�� . '

m . � itlt:t :!:t:ttl � � I f.lW I tD Bii � 1-rffi ' '<-'-- .' "i:l::H � H m I r:tn

.

-

I
I

6
4

A

S
C

I
I

C
H

A
R

A
C

T
E

R

C
O

D
E

S

C
O

N
T

R
O

L

C
O

D
E

2

C

O
N

T
R

O
L

C

O
D

E

3

P
L

O
T

 M
O

D
E

C

U
R

S
O

R

X
-

Y

O
P

T
IO

N

M
O

D
E

O
N

E
 O

F
 1

6

S
E

E

C
U

R
S

O
R

M

O
D

E
S

F

IG
U

R
E

 2
.6

.3
.1

S

E
E

 F
IG

U
R

E

2
.

6

A
N

Y

O
N

E

O
F

2
N

D
 1

2
8

1N
P

U
T

C
O

D
E

S

t I
1S

T

3
2

S
P

E
C

IA
L

C
H

A
R

A
C

T
E

R
S

C
O

N
T

R
O

L
 C

O
D

E

6

C
C

I

M
O

V
E

O
N

E

O
F

2

5
6

C
O

L
O

R

A
N

D

B
L

IN
K

 S
T

A
T

U
S

W
O

R
D

S
*

*

A
N

Y
 O

N
E

 O
F

2
5

6
 I

N
P

U
T

C
O

D
E

S

A
N

Y

O
N

E
 O

F

F
IR

S
T

 1
2

8

IN
P

U
T

C
O

D
E

S

3
2

 S
P

E
C

IA
L

C
H

A
R

A
C

T
E

R

C
O

D
E

S

I
I

I 2
N

D
 3

2

S
P

E
C

IA
L

C
H

A
R

A
C

T
E

R
S

C
O

N
T

R
O

L

C
O

D
E

2

9

C
O

N
T

R
O

L

C
O

D
E

3

0

C
O

N
T

R
O

L

C
O

D
E

 2
7

R

E
V

E
R

S
E

F

IE
L

D

R
E

V
E

R
S

E

F
IE

L
D

E

S
C

O

F
F

*

O
N

*

N
O

R
M

A
L

L
Y

F

O
L

L
O

W
E

D

N
O

R
M

A
L

L
Y

F

O
L

L
O

W
E

D

O
N

E

O
F

3

2

E
S

C
A

P
E

C

O
D

E
S

B

Y

A

C
O

L
O

R
 C

O
D

E

B
Y

A

C

O
L

O
R

C

O
D

E

S
E

E

S
E

C
T

IO
N

2

.5
.2

0

O
R

G

O

T
O

G

3
1

O
R

G

O

T
O

G

3
1

t
T

H
IS

IS

 V
A

L
ID

 O
N

L
Y

IF

T

H
E

A

7

B
IT

IS

 N
O

T

M
A

S
K

E
D

O

F
F

A

T

C
U

S
T

O
M

E
R

R

E
Q

U
E

S
T

A-
3

*
T

H
IS

C

O
D

E

D
O

E
S

N

O
T

 R
E

Q
U

IR
E

A
N

Y
 F

O
L

L
O

W
-

O
N

 C
O

D
E

-

IN
PU

T
CO

DE
 F

LO
W

 D
IA

GR
AM

IF

O
N

E

O
F

3
2

C

O
N

T
R

O
L

C
O

D
E

S

A
L

L

O
T

H
E

R

C
O

N
T

R
O

L

C
O

D
E

S

*
*

S
E

E

S
E

C
T

IO
N

2

.6
.7

F

O
R

D
E

F
IN

IT
IO

N

O
F

T

H
E

 8
 B

IT
S

O
F

 T
H

E
 S

T
A

T
U

S
 W

O
R

D

Delay Times are in Milliseconds

Mode

Blind Cursor
Character Store

Most Control
Codes

Erase Line

Erase Page

Visible Cursor
Character Store
Left-Right

2X Char

down @ 4 5°

Insert 80
Characters

Delete 80 Characters

X , Y Point Plot

XY Increment
2 points

100 Element
X Bar Graph

100 Element
Y Bar Graph

100 Element Vector

*48L Delay time in

Normal

. 2 7 8

. 46

1 . 4 5

16 (30) *

. 5 1

. 59

. 7 5

4 . 8 2

4 . 34

. 40 , . 6 3

1 . 2

5 . 4 5

3 . 2 8

34 -

A-4

INPUT COMMANDS DELAYS

High Speed Option

. 2 3 1

. 40

1 . 2

14 . l (2 7) *

. 4 30

. 50

. 6 3

4 . 0

3 . 6

. 3 3 , . 5 3

l . O

4 . 5 3

2 . 7 3

2 8 . 3

STANDARD INTECOLORR 8001

A7 A6 As A4 A3 A2 Al Ao

0 0 0 0 0 0 0 l RED FOREGROUND
0 0 0 0 0 0 l 0 GREEN FOREGROUND
0 0 0 0 0 l 0 0 BLUE FOREGROUND
0 l 0 0 0 0 0 0 FOREGROUND BLINK
l 0 0 0 0 0 0 0 PLOT CHARACTER

WITH BACKGROUND COLOR OPTION

A7 A6 As A4 A3 A
2

Al Ao

0 0 0 0 0 0 0 l RED FOREGROUND
0 0 0 0 0 0 l 0 GREEN FOREGROUND
0 0 0 0 0 l 0 0 BLUE FOREGROUND
0 0 0 0 l 0 0 0 RED BACKGROUND
0 0 0 l 0 0 0 0 GREEN BACKGROUND
0 0 l 0 0 0 0 0 BLUE BACKGROUND
0 l 0 0 0 0 0 0 FOREGROUND BLINK
l 0 0 0 0 0 0 0 PLOT CHARACTER

The above codes may be "ORed " for compos i te functions

A- S \

CCI CODE ASS IGNMENTS

J3

r:4
�:1

2N
D

RS
23

2C
 I

/0

Jl

1:4
��'

SE
RI

AL
 R

S-
23

2C

EI
A

20
 M

A
CU

RR
EN

T
LO

OP
 O

PT
IO

NA
L

J2

113
Tl

25

1 4
1

KE
YB

OA
RD

SW
I

fONl

�

PO
W

ER

D

FU
SE

AC
 P

OW
ER

�

NO
TE

S
:

(I
)

JI
-S

ER
IA

L
RS

-2
32

C
EI

A
AN

D
CU

RR
EN

T
LO

OP
 A

RE
 N

OT
 S

IM
UL

TA
NE

OU
SL

Y
AV

AI
LA

BL
E

IN

RE
CE

IV
E

M
OD

E
. P

IN
 N

UM
BE

RS
 A

RE
 F

OR
 S

TA
ND

AR
D

EI
A

RS
-2

32
C

, 2
5

PI
N

, C
HA

SS
IS

 M
OU

NT
 P

LU
G.

(2

)
MA

TI
NG

 P
LU

GS
 a

 R
EC

EP
TA

CL
ES

 F
OR

 R
EA

R
CH

AS
SI

S
CO

NN
EC

TO
RS

 :

JI
,J

3{
EI

A,
2!5

 P
IN

 R
EC

EP
T.

)
J2

 (2
5

PI
N

PL
UG

)
AC

 P
OW

ER
 C

OR
D

CR
IM

P
PI

NS
 F

OR
 P

LU
G

CO
NN

EC
TO

RS

CR
IM

P
SO

CK
ET

S
FO

R
RE

CE
PT

AC
LE

 C
ON

NE
CT

OR
S

-
AM

P
20

52
07

-
I

-
AM

P2
05

20
8-

I
-

BE
LD

EN
 17

25
8B

-

AM
P

20
52

01
 -

5

-
A

M
P

20
52

02
-4

O
R

EQ
UI

VA
LE

NT
 -

IS
C

P.N
. 6

00
0

40

OR
 E

QU
IV

AL
EN

T
. -

IS
C

P.N
. 6

00
0

52

OR
 E

QU
IV

AL
EN

T
-

IS
C

P.N
. 1

100
36

OR

 E
QU

IV
AL

EN
T

-
IS

C
P.N

. 6
00

04
4

OR
 E

QU
IVA

LE
NT

 -
IS

C
P.

N.
 6

00
04

6

(
)

AL
L

CH
AS

SI
S

MO
UN

T
CO

NN
EC

TO
R

PI
N

AN
D

SO
CK

ET
 N

UM
BE

RS
 A

RE
 S

HO
W

N
AS

 V
IE

W
ED

FR

OM
 T

HE
 R

EA
R

OF
 T

HE
 I

NT
EC

OL
OR

@
80

01
 C

HA
SS

IS
.

A
-

6

J
l

 A
N

D

J
2

P

I
N

A

S
S

I
G

N
ME

N
T

S

1 .
2 .
3 .
4 .
5 .
6 .
7 .
B .
9 .

1 0 .
1 1 .
1 2 .
13 .
14 .
15 .
1 6 .
17 .
lB .
1 9 .
2 0 .
21 .
2 2 .
2 3 .
2 4 .
25 .

AA
BA
BB
Cl'.
CB

AB

RX Response Control
RX Responce Control

TTL TX

CD

1 . AA
2 . BA
3 . BB
4 . 4 7 0 oluns to + 12V
5 .
6 .
7 . AB
B .
9 . RX Response . Control

1 0 . RX Response Control
1 1 . CLR+
1 2 . TTL TX
13 . TX I solator input
1 4 .
1 5 .
1 6 .
1 7 .
lB . CLR-
1 9 .
2 0 . 4 7 0 oluns to + 12V
2 1 . CLT+
2 2 .
2 3 .
2 3 .
2 5 . CLT-

An external j umper
is required from
pin 1 2 to pin 1 3 .

A 2 . 2K o lun register
is required from

\

10 . IN OArey
9 . IN lA Data

2 1 . IN 2A Bits
B . IN 3A 1- 4

2 0 . IN 4A Control
7 . IN SA Shift

1 9 . IN 6A Key Data B5
6. IN 7A Key Data B6

12 . IN 4B] NOt
2 3 . IN 5B U sed
1 1 . IN 6B
2 2 . IN 7B Key Trigger

2 . OUT OA RX ACK
1 4 . OUT 1A

3 . OUT 2A
15 . OUT 3A

4 . OUT 4A
1 6 . ·· ouT SA

5 . OUT 6A Bell
1--1.7 . OUT "fA -Key ACK ,,.-

1 3 . CPU RESET
1 . S N -Key Inturr .

25 . +5V
lB . GND

pin 3 to pin 4 . '

STANDARD TTY OPTIONAL

E lA RS 2 3 2 6 2 0MA Current Loop-

J l

SERIAL INPUT/OUTPUT

A-7
1/0 connec tor

\ I

1 0 . IN oc
9 . IN lC

2 1 . IN 2C
B . IN 3C

2 0 . IN 4C
7 . IN 5C

1 9 . IN 6C
6 . IN 7C
2 . OUT Cic

14 . OUT Ic
3 . OUT. 2c

15 . _OUT 3c
4 . OUT 4c

1 6 . OUT 5c
5 . OUT oc

1 7 . OUT 7c
1 3 . CPU RESET
2 4 . 2nd RS 2 3 2 TX
1 1 . 2nd TTL TX
2 2 . 2nd RS 2 3 2 RX
12 . + 1 2V
2 3 . - 1 2V
25 . +5V
l B . GND

1 . SN - EXT Inturr.

J3

OPTIONAL :
PARALLEL INPUT/OUTPUT

AND 2nd PS232C

APPENDIX B

BI
NA

RY
 C

OD
E

=

T
W

O'
S

CO
M

PL
EM

EN
T

SE
T

S
PL

OF
L

TO
 •

FU
NC

T
IO

N
=

NE
XT

 W
OR

D
•

RA
NG

E
FR

OM
 =

TO

 •

CH
A

NG
E

PL
OF

L
TO

 •

BI
NA

RY
 C

OD
E

=

TW
O

'S
 C

OM
PL

EM
EN

T

SE
T

S
PL

OF
L

TO
 =

FU
NC

T
IO

N
•

NE
XT

 W
OR

D
=

RA
NG

E
FR

OM
 =

TO

 •

CH
A

NG
E

PL
O

FL
 T

O
•

.

I 25
5

(-
I

) 0
PL

OT
 E

SC
AP

E

N/
A

N/
A

N/

A

N/
A I

24
7

(-
9

) 8
X

IN
CR

EM
EN

TA
L

BA
R

GR
AP

H
X I

y l

X 2
Y 2

0 23
9 8

(S
AM

E
)

I 25
4

(-
2

)

I

CH
AR

AC
TE

R
PL

OT

PL
OT

 C
HA

RA
CT

ER

0 25
4

I
(S

A
M

E)

I 24
6

(-
10

)

9

Y
BA

R
GR

AP
H

Yo
 V

AL
UE

0
100

 09
1] 10

P
LO

T
 M

OD
E

OR

(2)

CO
NT

RO
L

CO
DE

 B

SE
TS

 P
LO

FL
 •

 2

I
I

25
3

25
2

25
1

(-
3

)
(-

4
)

(-
5

)

2
3

4

X-
Y

PO
IN

T
 P

LO
T

X-
Y

PO
IN

T
 P

LO
T

IN
CR

EM
EN

TA
L

X-
Y

PL
OT

X

VA
LU

E
Y

VA
LU

E
6

X
1 L:>

Y 1
L:>

X 2
L:>

Y 2
0

0
0

15
9

1oo

 Q.
9J

]
23

9

3
2

4
(S

AM
E

)

I
I

24
5

24
4

24

3

(-
II

)
(-

12
)

(-
13

)

10

II

12

Y
BA

R
GR

AP
H

Y
BA

R
GR

A
PH

Y

IN
CR

EM
EN

TA
L

BA
R

GR
AP

H
X

VA
LU

E
Y

M
AX

 V
AL

UE

i:>
X

I L:>
yl

 6
X 2

6
Y 2

0
0

0
15

9

1oo
 09

1)
23

9

II

10

12
 (S

AM
E

)

B
-

1

PL
OT

 M
OD

E
FUN

CT
IO

N
S

I
I

I
25

0

24
9

24

B
1

(-6
)

(-
7

)
(-

B
)

5
6

7

X
BA

R
GR

AP
H

X
BA

R
GR

AP
H

X
BA

R
GR

AP
H

Xo
 V

AL
UE

Y

VA
LU

E
X

M
A

X
V

AL
UE

0
0

0
15

9
100

 09
1)

15
9

6
7

8

I
I

I
24

2
24

1
24

0

(-
14

)
(-

15
)

(-1
6

)

13

14

15

V
EC

TO
R

V
EC

TO
R

'
IN

CR
EM

EN
TA

L
X-

Y
VE

CT
OR

Xo

 V
AL

UE

Yo

VA
LU

E
L:>

X
l

L:>Y
I L:>

Xo
 L:>

Yo

0
0

0
25

9
19

1
2

3
9

14

2
15

-
-

-

0 Q 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 1 HEX

0 2 HEX

04 HEX

08 HEX

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

B- 2

Note : Each o f the above codes may be " ORed " f or compos ite
symbols .

PLOT MODE CHARACTERS AND CODES

10 HEX

20 HEX

40 HEX

80 HEX

y

Y z

yl

0 , 0

B- 3

X POINT PLOT AND Y POINT PLOT

\.

y

�x1 �Y 1 (1010)
S t art

0 , 0 Movement and Coding Example

.6-X•-1
�Y--1
(0101)5

(0010) 2
.6. Y--+1
.6.X• 0

(1010) 10

�X=+ 1 (1001) cy �Yc- 1
(OOOl) i

Movement Pos s ib ilit ies

B-4

XY INCREMENTAL POINT PLOT MOVEMENTS

y

y

0 ,

Y z

0 , 0

x l xn x2

Y BAR GRAPH

B- 5

X AI\10 Y BAR GRAPH MODES

� X

_. X

y

y

1
,..., 1
+ ,..., ,..., ,..., I I + I + >-< 6X 3 I I I I I I

>-< >-< >-< ,...,
� � + 1 ,..., I I

+ X
I I

X

X Y I n crement a l Bar Graph

S t ar t

1- l X= + l , Y= - 1 I

+ 11 X= = l , Y= - 1

l+ l X= + 1 , Y = - 1 �---...... -+--.
X= + l , Y= - 1

6X 3

1

6Y2

1

6Y 3 6 X4 6Y 4

0

/::,Y 3 6 X4 l:', Y4

1

...........__. ____ ___, • c.___..,_ X
0 , 0 X0 X I nc r ementa l Bar Graph �

App end i x B6

X I NCREMENTA L BAR GRAP H , Y I NCREMENTAL BAR G RAPH

y

Y'2

Yo

0 , 0

B- 7

xz , Y z

2 T h i s vEc t or d r awn b y
s end b ir, ary s en d ing xz , yz

1 L ine d rawn f rom x l , y l
t o xo , Yo a t Xo , Yo w ith
xl , Yl now equa l to old
xo , Yo

X

x0 Y0 Vector P lot Mode

APPENDIX C

Appendix C

TMS 5 5 0 1 Multi funct ion Input/Output Contro l ler
TAB L E O F CONTE NTS

1 . I NT R O D UCTION

1 . 1 Descr i pt ion
1 .2 Sum mary of Operat ion

2. OP E R AT I O NAL A N D F U NCT I O N A L DESC R I PTION

2 . 1 I nterface S igna l s
2 .2 TMS 5501 Commands

2 .2 . 1 Read Rece iver Buffer
2 . 2 . 2 R e a d Externa l I n put L i nes
2 .2 .3 Read I nterrupt Add ress
2 . 2.4 Read TMS 5501 Status
2 .2 .5 I ssue D i screte Commands
2 .2 .6 Load R ate R eg ister
2 . 2.7 Load Trans m i tte r Buffer
2 .2.8 Load Output Port
2 .2 .9 Load Mask Regi ster
2 .2 . 1 0 Load Ti mer n

3. TMS 5501 E L E CT R I C A L A N D M EC H A N ICAL SPEC I F I CATIONS

3. 1 Abso l u te Maximum R at i ngs
3 .2 Recommended Operat i n g Condit ions

L I ST OF I L LUST R AT I ONS

F i gu re 1 TMS 5501 B l ock D i agram
F i gu re 2
F igure 3 D ata B u s Assignments for TMS 550 1 Staws
F igure 4 D i screte Command Format
F i gu re 5 D ata B u s Assignments for Rate Commands
F i gu re 6 Read Cyc l e T i m ing . .

F i gure 7 Write Cyc l e T i m i n g
F igure 8 Sensor/I nterrupt T i m ing

I n formation contained i n th i s pub l i7ation i s bel i eved to be accurate
and rel iable. However, responsi bi l i ty i s assumed ne ither for its use
nor for any i nf r ingement of patents or r ights of others that may
resu l t f rom its use. No l i cense is granted by i mp l i cat ion or otherwise
under any patent or patent right of Texas I nstruments or others.

Copyr ight © 1 975
Texas I nstru ments I n corporated

C-1

2
3

6
8
9
9
9
9

1 0
1 1
1 2
1 2
1 2
1 2

1 2
1 2

2

9
1 0
1 1
1 4
1 5
1 5

TMS 5501 M U LTI F U N CTI ON I N PUT/O UTPUT CO NTROLLER
1 . I NT R O D U CT I ON

1 . 1 D E SC R I PT I O N

The T M S 5 5 0 1 is a m u l t ifu nction i n put/output c i rcu i t f o r use with T l 's TMS 8080 CPU . I t i s fabr icated w i t h t h e same
N-channel s i l i con -gate process as the TMS 8080 and has compat ib le t i m i n g , s igna l leve l s , and power supply
req u i rements . The TMS 5501 prov ides a TMS 8080 m icroprocessor system with an asy nchronous com m u n ications
i nterface , data I /0 buffers, i nterr u pt control l og ic , and interval t imers .

I N T

t::JSYNC CE
CONTROL AO A3 4

00 07

XI

F I G U R E 1 -TMS 5501 B L O C K D IAG RAM

The 1 /0 sect ion of the TMS 5 50 1 contains an e ight-bit para l le l input port and a separate e ight-bit para l le l output po rt
with storage register. F i ve progra mmab le i nterval t imers provide t ime i nterva ls from 64 /.lS to 1 6 .32 ms .

The i nterrupt system a l l ows the processor to effective ly com m u n i cate with the i nterva l t i mers, externa l s igna l s , and the
co m m u n i cat ions i n terface by prov id ing TMS 8080-com pati ble i nterrupt logic with mask ing capa b i l ity .

Data transfers between the TMS 5501 and the CPU a re carried by the da,ta bus and control l ed by the i nterrupt, ch ip
enab le , sy nc , and address l i nes . The TMS 8080 uses fou r of its memory-address l i nes to sel ect one of 14 com mands to
wh ich the T M S 5501 wi l l respo nd. These commands a l l ow the CPU to :

read the rece iver buffer
read the input port
read the i n terrupt address
read TMS 5501 status
issue d i screte com m ands
load baud rate regi ster
load the transm itter buffer
l oad t lie output port
load the mask register
load an i nterval t imer

C-2

The com m a n ds are generated by e xecuting memory referenc ing i nstruct ions such as M O V {register to memory) with the
memory address be i n g the T M S 5501 command. Th i s provides a h i gh degree of f l ex i bi l i ty for 1 /0 operation s.by letting
the systems progra m m er use a var iety of i nstruct ions .

1 .2 SUMMARY O F OPERATION

Addressin g the TMS 5501

A convenient method for address ing the TMS 5501 is to tie the ch ip enab le input to the h ighest o rder address l i ne of
the CPU's 1 6-b it address bus and the four TMS 5501 address i nputs to the four lowe st order bits of the bus . Th is, of
cou rse , l i m its the system to 32 ,768 words of memory but i n many app l i cati ons the f u l l 65 ,536 word memory
address ing capabi l i ty of the TMS 8080 is not required.

Communications Functions

The co m m u n ications sect ion of the TMS 5501 i s an asy nchronous transmitter a nd receiver for serial com m un icati ons
and provides the fo l lowi n g f u ncti ons :

Progra m mable bau d rate - A C P U command sel ects a baud rate of 1 1 0 , 1 50 , 300 , 1 200, 2400, 4800, or 9600 baud .

I ncom i ng character detecti on - The receiver detects the start and stop b i t s of a n incoming character and p l aces the
character in the receive buffer.

Character tran smiss ion - The transmitter generates start and stop b i ts for a character rece i ved from th e CPU and
sh ifts it out .

Status and co m mand s igna l s - V i a the data bus , the TMS 5501 s igna l s the status of : fram i ng error and overrun error
f l ags; data in the rece i ver and transm itter buffers; start and data b it detectors; and e nd-of-tra nsm ission {break) s ignals
from external equ ipment . It a l so issues break sign a l s to external equ ipment .

Data I nterface

The T M S 5501 m oves data between the CPU and external devices through its i n terna l data bus , input port, and output
port. When data i s present on the bus that is to be sent to an external device, a Load O u tput Port { LOP) com m a nd from
the CPU puts the data on the XO p ins of the TMS 5501 by latch i ng it in the output port. The data remains in the port
unt i l another LOP co m mand i s rece i ved . When the CPU requ ires data that i s present on the E xternal I nput { X I) l i nes, i t
i ssues a command that gates the data onto the internal data bus of the T M S 5501 and consequent ly onto the CPU's
data bus at the correct t ime dur ing the CPU cycles.

I nterval Ti mers

To start a countdown by any of the f ive i nterval t imers , the program sel ects the part icu lar t imer by an address to the
TMS 5501 a n d l oa ds the requ i red i n te rva l i nto the t imer v i a the data bus . Loading th e t imer activates i t and it counts
down in i ncrements of 64 m i croseconds. The 8-bit counters provide i nterva l s that vary i n d urat ion from 64 to 1 6 ,320
microseconds. Much longe r i nterva l s can be generated by cascading the t imers t h rough softwa re. When a t i m e r reaches
zero , it generates an i nterrupt that ty pica l ly wi l l be used to po int to a su brout ine that performs a serv ic i ng fu nction
such as pol l i n g a per iphera l or sca n n i ng a keyboard. Load ing an i nterval va lue of zero causes an i m mediate i nterrupt. A
new va lue loaded wh i l e the interval t imer is cou nt ing overrides the prev ious va lue and the i nterval t imer starts cou nt i ng
down the new i nterv a l . When an i nterval t imer reaches zero it remains inactive u n ti l a new i nterval is l oaded.

C - 3

Servicing I nterrupts

The TMS 5501 prov ides a TMS 8080 system with severa l i nterrupt co ntrol funct ions by rece iv ing external i nterrupt
s igna l s , generat ing i nterrupt s igna l s , m ask ing out u ndersi red i nterrupts, esta b l i sh i ng the p r ior ity of inte rrupts, and
generat ing RST i nstruct ions for the TMS 8080. An external interrupt i s received on pin 22 , S E N S. An addit iona l
externa l inte rru pt can be received on p in 32, X 1 7 , if selected by a d i screte com m a nd from the TMS 8080 (See
F igure 4) . The TMS 5501 gen erates an interrupt when a ny of the f ive i nterval ti mers cou nt to zero . I nterru pts a re a l so
generated when the rece iver buffer is loaded and when the transm itter buffer is empty .

When an i nterrupt s igna l i s rece i ved by the i nterrupt register f rom a particu l ar source, a cor respo nd i ng b i t is set a nd
gated to the mask register. A pattern wi l l h ave prev ious ly been set i n the mask reg ister by a l oad-mas k-register command
from the T M S 8080. This pattern dete r m i nes which i nterru pts wi l l pass through to the pr ior i ty logic . The p r i o r ity logic
a l l ows an interrupt to generate a n RST i n struction to the TMS 8080 only i f there i s no h i gher pr io rity i nterrupt that
has not been accepted by the TMS 8080. The TMS 5501 pr ior it i zes i nte rru pts in the order shown below:

1 st I nterval T imer #1
2nd I nterval Timer #2
3rd Externa l Se nsor
4th I nterval Timer #3
5th R ece ive r Buffer Loaded
6th Transmitter B u ffer Emptied
7th I nterval Timer #4
8th I n terval T i m er #5 or an Externa l I nput (X I 7)

T h e h ighest pr ior ity i nterrupt passes through t o th e i nterrupt address logic, w h i c h generates the RST instruction to be
read by the T M S 8080. See Tab le 3 for re lat ionsh ip of i nterrupt sou rces to RST i nstruct ions and F igures 6 and 8 for
t i m i n g r.e l at ionsh ips.

The T M S 5501 prov ides two methods of serv ic ing i nterru pts; an interrupt-dr iven system o r a pol led- interrupt syste m . I n
a n i nterrupt-dr iven system , the I NT s igna l o f the T M S 5501 i s t ied t o the I NT input o f the T M S 8080. T h e seq uence of
events wi l l be : (1) The T MS 5501 rece i ves (o r generates) an interrupt s igna l and readies the appropr i ate R ST
i nstructi o n . (2) The T M S 5501 I NT output, t ied to the TMS 8080 I N T input , goes h igh s ign a l ing the T MS 8080 that an
interrupt has occu red. (3) I f the TMS 8080 is e nab led to accept i nterrupts, i t sets th e I NTA (i nterrupt acknowledge)
statu s bit h i gh at SY N C time of the next machine cycle. (4) If the TMS 5501 has prev ious ly received a n i nterrupt
acknowledge-enab le com m a n d from the CPU (see B it 3 , Paragraph 2 .2 .5) , the R ST i nstruct ion i s transfe r red to the data
bus.

I n a po l l ed- i nterrupt system , I NT i s not u sed and the se quence of events wi l l be: (1) The TMS 5501 receives (o r
generates) an i nterru pt and readies the R ST i nstruct ion . (2) The TMS 550 1 i nterrupt-pend ing status b it (see B it 5 ,
Paragraph 2 .2 .4) i s set h igh (the i n terrupt-pend ing status bit and the I NT output go h igh s i m u l taneous ly) . (3) At the
prescr i bed t ime , the T M S 8080 po l l s the T M S 5501 to see i f an i nte rrupt has occu rred by issu i ng a read
TMS 5501 -status command a n d read ing the i nterru pt-pen d i ng b i t . (4) If the bit i s h i gh , the TMS 8080 w i l l then i ssue a
read-i nterru pt-address co mmand , wh ich causes the TMS 550 1 to transfer the R ST i n struct ion to the data bus as data for
the instruct ion be i n g execu ted by the TMS 8080.

1 .3 APPL I CAT I ONS

Communications Ter minals

The fu ncti ons of the TMS 5501 m ake i t particu lar ly u sefu l in TMS 8080-based commu n icati ons ter m i n a l s and genera l l y
app l icable i n system s req u i r i n g per iodic or random serv ic ing o f i nterrupts, generat i o n o f control s igna l s to external
devices, buffer i ng of data , and transm iss ion and reception of asynchronous ser ia l data. As an exam p l e , a system
conf igurat ion such as shown i n F igure 2 can funct i on as the contro l l er for a ter m i n a l that governs e mployee entrance
i nto a plant or secur ity areas with in a p l a n t. Each term i na l i s iden t if ied by a central computer through I D switches. The
centra l system suppl ies each term i n a l 's R A M with u p to 1 6 employee access categor ies appl icable to that term i n a l .
These categories are compared with a n e m p l oyee's badge ch aracter when h e i n se rts h i s badge i n t o t h e badge sen so r. I f a

C -4

C-5

match is not fou n d, a rej ect l ight wi l l be activated . I f a m atch is found, the term ina l w i l l transm it the emp loy ee 's badge
nu mber and access category to the centra l syste m , and a door u n l ock so leno id wi l l be activa ted for 4 seconds. The
centra l computer then may take the transm itted i nformation and record it a long with t ime and date of access .

T h e T M S 4 7 00 i s a 1 024 x 8 R O M that conta ins the system program , and the T M S 4036 i s a 64 x 8 R A M t h a t serves as
the stack for the TMS 8080 a nd storage for the access category i nfor·m ati o n . TTL c i r·cuits contro l ch ip-enab le informat ion
carr ied by the a ddress bus . S igna l s from the CPU gate the address b its from the R OM , the R A M , or t h e TMS 5501 o n to
t he data bus at the cor·rect t ime i n the CPU cyc le . The c lock generator consists of four TT L c i rcuits a l ong with a cry st a l ,
needed to m a i n ta i n accu rate ser i a l data assem bly and d i sassembly with t h e central co mputer .

The T M S 5501 h a n d l es the asynchronous ser ia l commun ication between the T M S 8080 and the ce ntra l system and
gaies data fro m the badge reader onto the data bus . I t a l so gates control and status data f rom the T M S 8080 to the door
lock and ba dge r·eader and contro l s the t ime thcrt the door l ock re m a i n s o p e n . The TMS 5 5 0 1 s ign a l s the TMS 8080
when the badge reader or the commun ication l i nes n�ed service. The funct ions that the T M S 5501 i s to perform are
sel ected by an address from the TMS 8080 with the h ighest orde r address l i n e tied to the TMS 5501 ch ip e nab le i n p u t
a n d t h e f o u r l owest o r·de r l i nes t i e d to t h e address i nputs .

2 . O P E R AT I ON A L AND F U NCT I O N A L D E SC R I PT I ON

Th is deta i l e d desc r i pt ion of the TMS 550 1 cons ists of :

I N TE R F AC E S I G N A LS - a def in i t ion of each of the c i rcu it 's external connect ions

COMMAN DS - the add ress requ ired to se lect each of the TMS 550 1 commands and a descr ipt ion of the respon se to
the co m m a n d .

2 . 1 I NT E R FACE S I G N A LS

The T M S 5501 commun i cates with the T M S 8080 v i a four address l i ne s : a ch i p enab le l i ne , an e igh t-b i t b i d i rectiona l
data bus , an i n ter rupt l i ne , a n d a sy n c l i ne . I t com m u n icates with sy stem components other th a n the CPU v i a e i ght
externa l i n puts, e i ght ex terna l outputs , a ser i a l receiver input , a se r i a l transm itter output , and an externa l sensor i nput .
Table 1 def i nes the TMS 550 1 p i n ass ignments and describes the fu nction of each p i n .

S I G N ATU R E PI N

C E 1 8

A3 1 7
A2 1 6
A1 1 5

AO 1 4
SY N C 1 9

R C V 5

TAB LE 1
T M S 5501 P I N ASS I G N M E N TS AN D F U NCTIONS

D E SC R I PT ION
I N PUTS

C h i p ena ble-When C E is low, the TMS 5501 address decod ing is i n h i b i te d , wh ich p revents
execut ion of a n y of the T M S 5501 com mands .
Add ress bus-A3 through AO a re the l i nes that are addressed by the T M S 8080 to se lect a part icu l a r
T M S 5 5 0 1 functi o n .

Sy nch ro n i z i ng s ign a l -T h e S Y N C s igna l is issued b y t h e T M S 8080 and i nd i cates t h e beg i n n i n g o f a
mach in.e cycle and ava i l ab i l ity of m ach ine statu s . Wh en the SY N C s igna l is active (h igh) , the
TMS 5501 wi l l mon i tor the data bus bits DO (in terrupt acknowledge) and 0 1 (WO, data output
f u nct i o n) .
Receive r· ser i a l data i n pu t l i ne-RCV must be he ld i n the i n active (h igh) state when not rece i v i n g
data . A trans i t ion f r o m h i gh to low wi l l activate t h e receive c i rcu itry .

C-6

S I G N ATU R E

X I 0
X I 1
X l 2
X I 3
X l 4
X I 5
X l 6
X l 7

S E N S

xo 0
xo 1
xo 2
xo 3
X 0 4
xo 5
xo 6
xo 7

X M T

D O
D 1
D 2
D 3
D 4
D 5
D 6
D 7

I N T

Vss
V s s
Vee
V D D

¢ 1
¢2

PI N

39
38
37
36
35
34
33
32

22

24
2 5
2 6
27
28
29
30
3 1

40

1 3
1 2
1 1
1 0
9
8
7
6

2 3

4

2
3

20
2 1

TAB L E 1 (conti n ued)

TMS 5501 P I N ASS I G N M E NTS AND F U N C T I O N S

D ESC R I P T I O N
I NPUTS

Externa l i n puts-Th ese e ight externa l inputs are gated to the data bus wh en the read-externa l - i nputs
funct ion i s addressed. Externa l input n i s gated to data bus b i t n without convers i o n .

Externa l i nterrupt se ns ing - A trans it ion f r o m low to h i gh at S E N S sets a b it i n the i n terrupt
registe r , which , i f enab led, generates an i nterrupt to the TMS 8080.

OUTPUTS

Externa l outputs-These e ight externa l outputs a re dr iven by the complement of the outp u t
regi ster; i .e . , i f output reg i ster b it n i s l oaded w i t h a h i gh (l ow) f r o m data bus b it n b y a l oad
outpu t regi ster com m and, the external output n wi I I be a low (h i gh) . The external outputs change
only when a load-outpu t-register f u n ct ion i s addressed .

Transm itter ser i a l data output l i ne-This l i ne rema ins h igh when the T M S 5501 i s not transm i tt i ng .

DATA BUS I N PUT/OUTPUT

D ata bu s - D ata transfers between the TMS 5 50 1 and the TMS 8080 a re m ade v ia the 8-bit
b id i rect iona l data bus . DO i s the LSB . D 7 i s the MSB .

I nterru pt-When active (h i gh). the I NT o utput i n d i cates that at l ea s t one of the i nterrupt condit ions
h as occu r red a n d that i t s corresponding m ask -register b i t i s set.

Ground reference
Supply v oltage (-5 V nom ina l)
Supp ly vo ltage (5 V nomina l)
Supp ly vo l tage (12 V nom i na l)
Ph ase 1 c lock
Phase 2 c lock

POW E R A N D C LOCKS

C-7

2.2 TMS 5 50 1 COM M A N DS

The TMS 5501 operates as memory dev ice for the TMS 8080 . F u nct ions are i n i t iated v i a the T M S 8080 address bus and
t he TMS 5501 address i n puts . Address decod i ng to deter m ine the command fu nct ion be i n g issued i s def i n ed i n Tab le 2.

TABLE 2

COMMAND ADDR ESS DECO D I N G

When Chip E nable Is H igh

A3 A2 A1 AO COMMAN D F U NCT I ON PA R A G R APH

L L L L Read rece iver buffer R B n -> Dn 2 . 2 . 1
L L L H R ead external inputs X l n -> O n 2 .2 .2
L L H L Read i nterrupt address RST -> O n 2 .2 .3
L L H H Read T MS 550 1 status (Statu s) -> O n 2.2 .4
L H L L I ssue d iscrete com m ands See F igure 4 2 .2 .5
L H L H Load rate register See F igure 4 2.2 .6
L H H L Load transm itter buffer O n � TBn 2 . 2 . 7
L H H H Load output port O n --> XO n 2 .2 .8
H L L L Load m ask register On M R n 2 .2 .9
H L L H Load i nterval t imer O n -> Timer 1 2 . 2 . 1 0
H L H L Load i nterval t imer 2 O n -> Timer 2 2 .2 . 1 0
H L H H Load i nterval t imer 3 On __.. Timer 3 2 .2 . 1 0
H H L L Load i nterval t imer 4 D n -> Timer 4 2 .2 . 1 0
H H L H Load i nterval t imer 5 D n -> Timer 5 2 .2 . 1 0
H H H L No funct ion
H H H H N o funct ion

R B n Receiver b u ffer b i t n
O n Data b u s 1 /0 termina l n
X I n E xt e rn a l i n p u t term i na l n
R S T 1 1 I I A2 l (I A 1 l I I Ao l 1 1 1 (see T a b l e 3)
T B n T r a n s m t t b u f f e r b i t n
X O n O u tp u t reg ister b i t n
M R n Mask register h i t n

TABLE 3

RST I NSTR UCTI ONS

DATA BUS B I T
I N T E R R U PT CAUSED BY

0 1 2 3 4 5 6 7
H H H L L L H H I nterval Timer 1
H H H H L L H H I nterval Timer 2
H H H L H L H H External Sensor
H H H H H L H H I nterval T imer 3
H H H L L H H H Receiver Buffer
H H H H L H H H Transmitter B uffer
H H H L H H H H I nterval T imer 4
H H H H H H H H I nterval Timer 5 or X 1 7

C-8

The fo l lowing paragraph s def ine the funct ions of th e TMS 550 1 commands .

2. 2 . 1 Read receiver buffer

Address ing the read- receiver-buffer f u n ct ion causes the rece iver buffer contents to be transferred to th e T M S 8080 and
c l ears the rece iver -buffer- l oaded f lag .

2.2.2 Read external i nput l i nes

Address ing the read-externa l - i nputs f u nct ion transfers the states of th e e ight externa l i nput l i nes to the T M S 8080.

2.2.3 Read i nterrupt address

Addre ssi ng the read interrupt address f u nct ion tran sfers the current h ighest pr ior ity i n terrupt address onto the data bus
as read data . After the read operatio n i s comp leted, the correspond i n g b it i n the i nterrupt reg i ster i s reset.

I f the read- i nterru pt-add ress funct ion is add ressed when there is n o i nterrupt pendi ng, a fa l se i nterrupt add ress wi l l be
read. T M S 5 50 1 status fu nct ion shou ld be add ressed i n order to determ i ne wheth er or not an i nterrupt cond i t ion i s
pend ing .

2 . 2.4 Read T M S 5501 status

Address ing the read-T M S 5 50 1 -status funct ion gates the var ious status cond it ions of the T M S 5501 onto the data bus.
The status condit ions , av a i l ab l e as ind icated in F igure 3, are descri bed in th e fo l lowing paragraph s .

B I T: 7 6 5 4 3 2 1 0
STA RT F U L L I NT R PT X M I T RCV S E R I A L O V E R R U N F R A M E
B I T B I T P E N D I N G B U F F E R B U F F E R RCVD E R R O R E R R O R
D ET ECT D ET ECT E M PTY LOAD E D

F I G U R E 3-DATA BUS ASS I G N M E NTS F O R TMS 5501 STATUS

Bit 0, fra m i n g error

A h igh in bit 0 i n d icates that a fram i n g error was detected on th e l ast character rece ived (e ither one or both stop b its
were i n error) . The f raming e rror f l ag i s u pdated at th e end of each ch aracter. B it 0 of the T M S 5501 statu s w i l l rema in
h i gh u n t i l the next va l id character i s received .

Bit 1 , overrun error

A h i gh i n bi t 1 i n dicates that a new ch aracter was loaded i nto th e rece iver buffe 1· before a p rev ious character was read
out. The over run er ror f l ag is c leared each time th e read - I /O-status f u n ct ion i s add ressed or a reset command i s i ssued.

Bit 2, serial received data

B it 2 mon itors the rece iver ser ia l data i nput l i ne. Th i s l i ne is provided as a status input for u se in detecting a break a nd
for test pu rposes. B it 2 i s norm a l l y h igh when no data is being rece ived.

Bit 3, receiver buffer loaded

A h i gh in bit 3 ind ic iates that the receiver buffer is loaded with a new character. The receiver-bu ffer- loaded f l ag remains
h igh u nt i l the read-rece iver-buffer fu nction i s add ressed (at wh ich t ime the f l ag i s c leared) . The reset fu nction a l so clears
t h i s f l ag .

C- 9

Bit 4, transm itter buffer empty

A h igh in bit 4 ind i cates that the transm i tter bu ffer register i s empty and ready to accept a character . N ote, h owever,
that the ser i a l transm it ter ;·egi ster m ay be in the process of sh i ft ing out a ch aracter . The reset function set s the
transm itter- bu ffer-em pty f l ag h i g h .

B i t 5 , interrupt pending

A h igh i n b it 5 ind i cates that one o r m ore of the in terrupt cond i t ions has occu red and the correspond i ng i nterrupt i s
enab led . Th i s b i t i s the status of the i nterrupt s igna l I NT.

B i t 6, f u l l bit detected

A h igh in bit 6 indicates that the f i rst data b i t of a receive-data ch aracter h as been detected . Th i s bit rem a ins h igh u n t i l
the ent i re ch aracte r has been received or u n t i l a reset i s i ssued and i s p rovided f o r test p u rp oses.

Bit 7, start bit detected

A h igh in b i t 7 i n d i cates that the start bit of an i ncom ing data ch aracter h as bee n detected . Th i s b i t rem a i n s h igh u n t i l
the ent i re character h � s been rece ived o r u n t i l a reset i s i ssued and i s provided f o r test purp oses.

2.2.5 I ssue d i screte commands

Address i n g the d i screte command f u nct ion causes the TMS 550 1 to i nte rpret the data bus informat ion accord ing to the
fol l ow ing descr ipt ions . See F i gure 4 for the d i screte command format. B its 1 through 5 are l atched u nt i l a d i fferent
d i screte comm and i s received.

N O R M A L LY LOW

B I T : 7 6 5 4 3 2

NOT N OT TEST T EST
I N T.

I NT. 7
U S E D U S E D B I T B I T

AC K .
SE L E CT

E N A B L E

H : Enables i n terrupt acknowledge j
L : I nh i b its i n terrupt acknowl edge

H : Se lects X I 7 -
L . Sel ects rnte rva l t rmer 5 -

F I G U R E 4-D I SC R E T E COMMAND F O R M AT

Bit 0, reset

A h igh in bit 0 wi l l cause the fo l l owing :

1 0

B R EA K R ESET

� H :
L L :

Reset
N o action

- H : L Sets X M T output low
L. H SeL X M T outpu t h igh_ . '

1) The receiver buffer and regi ster are c l ea red to th e search m ode inc lud ing the recei ver-buffer - l oaded f lag , the
s ta r t -b i t-detected fl ag, the fu l l -b i t -detected f lag, and the overrun-error flag. The rece iver buffer i s not c leared and
wi l l conta in the last character rece ived.

2) The transmitter d ata output i s set h i gh (m ark ing) . The transm itter-buffer-em pty f lag i s set h i gh i nd icat i ng that the
transmit ter buffer i s ready to accept a character from the TMS 8080.

3) The interrupt reg ister is c leared except for the bit corresponding to the transm i tter buffer i n te r rupt, wh ich is set
h i gh .

4) T h e i nterva l t i mers a r e inh ib i ted .

A low i n bit 0 causes n o act i o n . The reset fu nction h a s no affect on the output port, the externa l inputs , i nterrupt
ack n owl edge enab le , the m as� register, the rate register , the t r ansmitter register, o r the transm itte r buffer.

C-1 0

Bit 1 , break

A low in bit 1 causes the transm itter data output to be reset l ow (spaci n g) .

I f b i t 0 and b i t 1 a re both h igh , the reset f u nct ion w i l l overr ide .

B i t 2 , interrupt 7 select

I nterru pt 7 m ay be generated e ither by a l ow to h igh t ran-sit ion of externa l i nput 7 o r by in terva l t imer 5 .

A h igh i n b i t 2 selects the i nterrupt 7 sou rce to be the trans i t ion of externa l input 7 . A l ow i n b i t 2 se lects the
i n terrupt 7 sou rce to be i nterva l t imer 5 .

Bit 3 , interrupt acknowledge enable

The TMS 5 50 1 d ecodes data bus (CPU status) bit 0 at SYNC of each m ac h i n e �yc le to dete r m i n e if an in terrupt
acknowl edge i s be i ng i ssued .

A h igh i n b i t 3 enab les the TMS 5501 to accept th e interrupt acknowl edge decode . A l ow i n b it 3 cau ses the TMS 550 1
to ignore the interrupt acknowledge decode.

Bit 4 and bit 5 are u sed only d u r ing test ing of the TMS 550 1 . For correct system operation both bits m u st be kept l ow.

B i t 6 and b i t 7 a re not u sed a n d can assume any val u e .

2.2.6 Load rate register

Addressing the load-rate-regi ster fu nction causes the TMS 550 1 to l oad the rate regi ster from the data bus and i nterpre1
the data bits (See F igure 5) as fo l l ows.

B I T: 7 6 5 4 3 2 1 0

STO P 9600 4800 2400 1 200 300 1 50 1 1 0
B I T (s) baud baud baud baud baud bau d bau d

f-H : One stop b i t
'- . L . Two stop b 1 ts

F I G U R E 5 - D ATA BUS ASS I G N M E N TS F O R R AT E COMMAN DS

Bits 0 th rough 6 , rate select

The rate se lect b its (b its 0 th rou gh 6) are m utua l ly exc lus ive , i . e . , on ly one b i t m ay be h igh . A h igh in b its 0 through 6
wi l l se lect th e baud rate for both the trans m i tter and receiver c i rcu i try as def ined be l ow and i n F ig u re 5 :

B it 0 1 1 0 baud
Bit 1 1 50 baud
Bit 2 300 ba u d
B it 3 1 200 ba u d
B it 4 2400 ba ud
B i t 5 4800 baud
B it 6 9600 baud

If m o re than one b i t i s h igh, the h igh est rate ind i cated wi l l res u l t . I f bits 0 t h rough 6 are a l l low, both the receiver a nd
the transmitter c i rcu i try w i l l be i n h i bi ted .

C-11

Bit 7, stop bits

B i t 7 determines whether one or two stop b its are to be u sed by both the transmitter and rece iver c i rcu itry . A h igh i n
b it 7 selects one stop b it . A l ow i n b it 7 se lects two stop bits .

2.2.7 Load transmitter buffer

Address ing the l oad-transm i tter-buffer funct ion transfers the state of the data bu s i n to the transm itter buffer .

2.2.8 Load output port

Addressi ng the l oad-output-port fu nction tra nsfers the state of the data bus into the output port . The data i s l atched
and rem a i n s on XO 0 th rough XO 7 as the complement of the data bus u nt i l new data i s l oaded .

2.2.9 Load mask register

Addressi n g the l oad-mask-regi ste r fu nction l oads the contents of the data bus into the mask reg i ster. A h igh in data bus
bit n enables i nterrupt n . A l ow i n h i bits the corresponding in ter rupt.

2.2.1 0 Load timer n

Address ing the load-t i m e r-n function l oads the contents of the data bus i n to th e app rop riate i nterva l t imer . T i me
interva l s of from 64 JlS (data bu s = L L L L L LLH) to 1 6 ,320 JlS (data bus H H H H H H H H) a re cou nted i n 64-Jls, steps.
When the count of i nterval t imer n reaches 0, the bit in th e i nterrupt reg i ster that corresponds to t i m e r n i s set and
an i nterrupt i s gene rated. Load ing a l l lows cau ses an i nterrupt immed i ate ly .

3. TMS 550 1 E L ECT R I CA L A N D M ECHAN ICAL SPECI F I CAT I ONS

3.1 ABSO LUTE M AX I M U M R AT I NGS OV E R OPERATING F R E E-A I R TEMPE R ATU R E R AN G E
(U N L ESS OT H E R WISE NOTE D) *

Supply voltage, Vee (see N ote 1)
Su pply vol tage, V o o (see Note 1
Supply voltage, Vss (see N ote 1)
A l l input and output vo ltages (see Note 1)
Cont inuous power diss ipat ion
Operat ing free-a i r temperature range
Storage tem peratu re range

-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V

1 . 1 w
0° C to 70° C

-65° C to 1 50°C

• stresses bey o n d those l i sted u n d e r " Abso l u t e M a x i m u m R a t i n gs" may cau se perma n e n t d a ma g e to t h e device . T h i s is a stress r a t i n g o n ly
a n d f u n c t i o na l opera t i o n of t h e device at these or any other cond i t i o n s beyo nd those i n d i cated in t h e " R eco m m ended Opera t i n g
Cond i t i o ns" sect i o n o f t h i s spec i f i cati o n i s not i m p l ied. E x posure t o abso l u t e·m a x i m u m -rated cond i t i o n s f o r e x tended p e r iods m a y affect

dev ice r e l iabi l i t y .
N O T E 1 : U n d er abso l u t e ma x i m u m r a t i n g s vo l ta g e v a l ues are w i t h respect to t h e norm a l l y m o st negative s u p p l y vo l tage, v 8 8 (substrate) .

Thro u g ho u t the r e ma i n der of t h i s data sheet, vo ltage values are w i t h respect to V ss u n less o t h e r w i se noted.

3.2 R ECOM M E N D ED O P E R AT I N G CO N D I T IONS

M I N NOM MAX U N I T

Su pply vo l tage . Vss -4.75 -5 -5.25 v
Supp!y voltage, V CC 4.75 5 5.25 v
Su pply vo l tage, Vo o 1 1 .4 1 2 1 2 .6 v
Supply vol tage , Vss 0 v
High-level input vol tage , V 1 H (a l l i nputs except clocks) 3.3 Vcc+ 1 v
H i gh-level clock input voltage. V I H (ct>) Voo -1 V oo+ 1 v
Low-level input vo ltage, V 1 L (a l l i nputs except clocks) (see Note 2 1 -1 0.8 v
Low-level clock input vo l tage . V I L (ct>) (see Note 21 -1 0.6 v
Operating free-a i r temperature, T A 0 70 o c

N O T E 2 : T h e a l gebra i c convent ion w h e r e t h e most negative l i m it i s desi gnated a s m i n i m u m i s used i n t h i s speci f i c a t i o n f o r l o g i c voltage levels o n l y .

C-12

C-13

3.5 SWI TC H I NG C H A RACTE R I STI CS OV ER F U L L RANGE OF R E COMM E N D E D
OPE RAT I N G CON D I T I ON S (S E E F I G U R ES 6 A N D 7)

PARAMETER TEST COND IT IONS M I N MAX UN IT
tpzx
tpxz
tpD

Data bus ou tpu t enable t ime
Data bus output d i sable t ime to h igh-impedance state
Ex ternal data output propagat ion delay tune from <;>2

I I t w(<1> 1) --illool<l,..._---.1 •I

TMS 5501
OUTPUT

3 V _J L = 1 .3 kr l

T CL = 1 00 p F

C L i n c l ud e s p r o b e a n d j ig c a p a c i t a n c e

L OAD C I RCU IT

lc (<,'>)

t l(d,J) --l

C L � 1 00 pF ,
R L � 1 .3 kl l

-----1 1-- t t (r;))
I I I
r-- I j4 .,I

</>1 A I I
' 7 � I

tw(d,J2)

</>2 tel I<!> 1 H-<t>21 -11-i+------.-----1

CH I P
ENABLE

lsu (sync)t �
SYNC �-"'l<lt---j--1:

DO � th (da) _I,..,. ___ ..,. I
tsu (cla) I• .,1 lh(cla) 1• •I

I
•I tcl ((>2-<!> 1)

H i -Z

200

1 80
200

lcl(</>1 L-<!>21

I I r- --t

� I ,J H i -Z D 1 � I ,�i--------���---------------r------------------J I I
D2-D7

I 1 ��--H_i_-z
__ ��-----o_u_T_P u_T_D_A_T_A __ Y�A_L_I_D

______________ -J
I• •I lsu (acl) I• .1 th(adl

ns
ns
ns

AO-A3 �-----ri -------------R-E_A_D __ FU __ N_C_T_I O __ N_A_��D-R_E_SS ___________ -J���
I• .,1 lsu (X I I 1. •I lh (X I)

EXTE RNAL
I NPUTS

�----------E-X_T_E_R_N_A_L __ I N_P
_

U_T
__

D
_
A
_

T
_

A __________
-J�g���

N O T E : F o r f,'J1 or r)2 i n p u ts, h i g h a n d l o w t i m i n g p o i n t s a r e 90% a n d 1 0% of V 1 H (r;'J) · A l l o t her t i rn i n g p o i n t s a r e t h e 50% leve l .

F IG U R E 6-R EAD CYCLE T IM I NG

C-14

4>1

¢2

C H I P
ENAB LE

SYNC

DO, D 1

D2-D7

AO-A3

EXTERNAL
OUTPUTS

--......;!f-1 �F-----/ �1<'-------I
______ __ �.....--___,/ " : I X "--
tsu (CE) 1• •I I• -1 lh (CE) I 1 .

W', i ��� I � I ____/.1 I � I 1 I
I "1\. I I I

I I .
I I 1su (da) I• •1 lh (da) I• •1 I � I � INPUT DATA i �����I"':'??::?t'?0:-7 I I�

�RR�i:{�� I NPUT DATA I � �su (ad) th (ad) :. �� � WR I TE F U NCTION ADDR ESS ���������
t P D--+oloi.._-_.,.J.,.

-----------------------P-R_E_V_I_o_u_s __ E_X_T_E_R_N_A_L __ o_u_T_P_U_T __ D_A_T_A ______________________ -J�NEW DATA

N O T E : F o r ¢ 1 and ¢2 i n p uts, h igh and low t i m i n g p o i nts are 90% a n d 1 0% of V 1 H (¢) . A l l o th e r t i m i n g p o i nt s a re the 50% level .

F I G U R E 7-W R I TE CYCLE T I M I N G

1<1- tw(sens H)�tw(sens L)---1
_it" � � SENSOR ____../! "' T I

I NTERRUPT
..,_--------1d(sens-i nt)-----------<ool

-__________________________ _J)(� . i'--
RST I NSTRUCT I ON 1.--td (rst-int) -----1

------------------------------------J � �--------
ON DATA BUS / '-
(See Note 1)

N O T E S : 1 . The R S T i nstruction occurs d u r i ng the output d ata v a l i d t i m e of m e read c y c l e .
2 . A l l t i m i ng p o i nts are 50% o f V 1 H ·

F I G U R E 8-SENSO R / I N T E R RUPT T I M I NG

C-15

APPENDIX D

Appendix D

TMS 8 08 0 Microproc e s s or

TA B L E OF CONTE N TS

1 . A R C H I T E C TU R E

1 . 1 I ntroduct ion
1 . 2 The Stack
1 . 3 Reg isters
1 .4 The Arithmetic U n it
1 . 5 Status and Control
1 .6 I /0 Operat ions
1 .7 l nstruct ion T i m i n g

2 . T M S 8080 I N STRUCTI O N S E T

3.

2 . 1 I nstruct ion Formats
2.2 I n struct ion Set Descr ipt ion

2 .2 . 1 I nstruct ion Sym boi s
2 . 2 . 2 Accu m u l ator Group I nstruct ions
2 .2 .3 I npu t/Output I nstruct ions
2.2.4 Mach i ne I nstruct ions
2.2. 5 Program Cou nter and Stack Control I nstruct ions
2 . 2 .6 Regi ster G ro u p I nstruct ions

2 .3 I nstruct ion Set Opcodes Alph abetica l ly L i sted

TMS 8080 E L EC T R I C A L A N D M E C HA N I C A L SPEC I F I CA T I O N S

3 . 1 Abso l u te Max i m u m Rat i ngs
3.2 Recom mended Operat ing Condit ions
3 .3 E l ectrical C h aracter ist ics
3.4 T i m i n g Requ i re ments .
3 . 5 Switc h i n g Ch aracter ist ics
3.6 Term i n al Ass ignments
3. 7 Mechanica l Data

L I ST O F I L LUST RAT I O N S

F i gu re 1 TMS 8080 F u nct iona l B l ock D i agram
F i gu re 2 Vo l tage Waveform s

I nfo rmat ion contained in th i s publ icat ion is bel i eved to be accurate
and re l iable. However, responsibi l i ty is assumed n ei ther for i ts use
nor for any i nf r i ngement of patents or r ights of others that may
resu l t from its use. No l i cense i s granted by imp l i cat ion or otherwise
unde r any patent or patent r ight of Texas I nstruments or others .

Copyr igh t © 1 975
Texas I nstrumen ts I ncorporated

D-1

2
2
2
3
3
3
3

6
7

7

8
9
9

1 0
1 1

1 2

1 7

1 7

1 7

1 8
1 8
20
20

2

1 9

1 . AR C H I T E CT U R E

1 . 1 I NT R O D U C T I O N

TMS 8 0 8 0 M I C R O PROCESS O R

The TMS 8080 i s an 8-bit para l le l ce ntra l process ing u n it (CP U) fabr icated on a s i ng l e ch ip u s i ng a h i g h -speed N -channe l
s i l i con-gate process . (See F i gure 1) . A comp lete m i crocomputer system with a 2 -JlS i nstruct ion cyc le can be fo rmed by
i nterfac ing th i s c i rcu it with any a ppropr iate memory. Separate 8-bit data a n d 1 6-bit add ress buses s i m p l i fy the interface
and a l l ow di rect address ing of 6 5 , 536 bytes of memory . Up to 256 input and 256 output ports are a lso provided with
d i rect address ing . Co ntrol s ign a l s are brought d i rect ly out of the processor and a l l s i gna l s , exc l u d i ng clocks, are TTL
com pat ib le .

1 .2 T H E STACK

The TMS 8080 i nco rporates a stack a rch itecture i n which a port ion of externa l memory i s used as a pushdown stack for
sto r ing data from wor k i ng reg i sters and i nterna l mach i ne status . A 1 6-bit stack poi nter (SP) i s provided to fac i l i tate
stack locat ion i n the memory and to a l low a l most u n l i m i ted in terrupt hand l i ng capabi l i ty . The CA L L and R ST (restart)
i nstruct ions u se the S P to store the program counter (PC) into the stack . The R ET (retu rn) i nstruct ion uses the SP to
acqu i re the prev ious PC va lue . Ad d i t iona l i n struct ions a l low data from registers and f l ags to be saved i n the stack .

1 .3 R E GISTERS

The T M S 8080 has th ree categor ies of reg i sters : genet· a l regi sters , program contro l registers , and i nte rna l reg isters . The
ge nera l registers and progt·am control 1·eg isters are l i sted in Table 1 . The internal reg isters are not access ib l e by the
progra mmer . They i n c l u de the i n struction registe r , which ho lds the present in structi o n , and seve ra l temporary storage
registers to ho ld interna l data or l atch i nput ;md output addresses and data .

1 6

1 NCA E ME N T E R,
D E C A E M E N T E A

1 6

F I G U R E 1 -TMS 8080 F U N C T I ON A L B L O C K D I A G R A M

D-2

1 .4 T H E A R I TH M E T I C U N I T

Arithmet ic ope rat ions a r e performed i n a n 8-bit para l le l ar i thmet ic u n it that has both bi n a ry a n d dec i m a l capabi l i t ies .
Four testa b l e inte r n a l f lag bits are prov ided to faci l i tate p rogram contr o l , and a f i fth f l ag i s u sed for de c ima l
correct ions . Tab le 2 defi nes these f l ags and th e i r operat ion . Deci m a l co rrect ions are performed with the DAA
i nstruct io n . The D AA corre ct s the resu l t o f b inary ar ithmetic operation o n B C D data as shown i n Tab le 3.

1 .5 STATUS A N D CONT R O L

Two types o f status are provided by t h e TMS8080. Certa i n status i s i nd icated by ded i cated contro l l i nes . Addit iona l
status i s t ransm itted on the d ata bu s d u r i ng the beg i n n i ng of each i nstruct ion cycle (m ach i n e cyc le) . Tabl e 4 i n d i cates
the p i n fu nct ions of the TMS8080. Table 5 def ines the statu s i nformat ion that i s presented d u r ing the beg i n n ing of each
mac h i n e cy c le (SYNC t i m e) on the data bus .

1 .6 1 /0 OP E R AT I ONS

I n put/output ope rat ions (1 /0) are pe rfo1·med us ing the I N and O UT i nstruct ions . The seco nd byte of these i n structi ons
i n d i cates the d ev ice add re ss (2 56 dev ice add resses) . When a n IN inst ruct ion i s executed , the i nput dev ice address
appears i n d u p l i cate on A 7 t h rough AD and A 1 5 t h rough A8, a l o ng with WO and I N P status on the data bus. The
addressed i n pu t dev ice then puts its input data on the data bus for e ntry i nto the accu m u lato r . W h e n an OUT
i nstruct ion is execute d , the same operation occu rs except that the data bus has OUT statu s and then has output data .

D i rect memory access c h a n n e l s (D M A) can be O R -tied d i rectly with the data and address buses th rough t h e u se of t h e
HO LD and H L DA (h o l d acknowledge) contro l s . W h e n a H O LD request i s accepted by the CPU , H L D A goe s h igh , the
address and data l i n e s are fo rced to a h igh- i mpedance or "f l oat ing" cond it ion , and the CPU stops unt i l the H O L D
request i s removed .

I nterfaci n g with d i fferent speed m e mo ries i s eas i ly acco m p l i shed by u se of the WAIT and R E A D Y p i n s . D u r i n g each
m ach i n e cyc l e , the CPU po l l s the R EADY input and e nters a wait co nd i t ion u n t i l the R EADY l i ne becomes t rue . When
the WA I T output p i n i s h igh , i t i n d icates that the CPU has e ntered the wait state .

Des ign ing interrupt dr iven systems is s imp l if i ed through the use of vectored i nterrupts . At the e n d of e ach i n structi o n ,
the CPU po l l s the I NT i nput t o dete r m i ne i f an i nterrupt req uest i s b e i n g m ad e . T h i s act ion d o e s n o t occu r i f the CPU i s i n
the HO LD state o r if i n te rrupts a r e d i sab led . T h e I NT E output ind icates i f t h e i n te r rupt l o g i c i s e n a b l e d (I N T E i s h igh) .
When a request i s honored , the I NTA statu s b i t becomes h i g h , and a n R ST i nstruct ion m ay be i n serted to force the CPU
to j u m p to one of e i g h t possi b le locations. Enabl i ng o r d i sabl i ng i nterrupts i s contro l led by sp ec ia l i n st ruct i o n s (E I 01·
D l) . The i n te r rupt i nput i s automat ica l ly d i sabled when an i nterrupt request i s accepted or when a R ESET s igna l is
rece ived .

1 .7 I NSTR U C T I O N T I M I NG

The execut ion t i m e of the i n struct ions var ies depend i ng on the operat ion requ i re d and the n u m be r of memo ry
reference s needed. A mach i n e cy c le is def i ned to be a memory referenc ing operat ion and is e i the r 3 , 4 , o r 5 state t imes
long . A state t ime (des ign ated S) i s a f u l l cycle of c locks ¢ 1 and ¢2 . (N O T E : The except ion to th i s ru le i s the DAD
i nstructi o n , which consi sts of 1 memory reference i n 1 0 state ti mes) . The f i rst mach i ne cy c l e (des ignated M 1) i s e i ther 4
or 5 state t i mes long a n d is the " i n struct ion fetch " cyc l e with the p rogram counter appear ing on the address bus. The
CPU then conti nues with as m any M cyc les as necessary to com p l ete the execut ion of the instruct ion (up to a
m a x i m u m of 5) . T h u s the i n struct ion execut ion t i me var ies f rom 4 state t imes (severa l i n c l u d i n g AD D r) to 1 8 (XTH L) .
The W A I T o r H O L D cond it ions may affect the execution t ime s i nce they can be u sed to contml the mach i ne (for
example to "s ing le step ") and the H A LT i nstruct ion forces the CPU to stop unt i l an i n ten·upt is rece ived . As the
instruct io n execut ion i s compl eted (o r i n the H A LT state) the \ NT pin i s po l led for an i nterrupt . In the event of an
interrupt , the PC w i l l not be i ncreme nted d u r ing the next M 1 and a n RST i nstructio n can be i nserte d .

D-3

N A M E

Accumulator
B Register
C Reg ister
D Register
E Register
H Register

L Register

Program Counter
Stack Poi nter

F lag Register

D E S I G N ATOR

A
B
c
D
E

H

L

PC
SP

F

TABLE 1
TMS 8080 R E G I ST E R S

L E N G T H

8
8
8
8
8
8

8

1 6
1 6

5

PU R POSE

Used for ar ithmetic, logical , and I /0 operat ions
General or most s ign i f icant 8 bits of double register BC
General or least s ign i f icant 8 bits of double register BC
General o r most sign i f icant 8 b i t s of double register D E

General o r least s i gn i f icant 8 bits of double register DE
General o r most sign i ficant 8 b i t s of double register H L

General or least s ign i f icant 8 bits of double register H L

Contains address o f next byte to b e fetched
Contains address o f the last byte of data saved i n
t h e memory stack
F ive f lags (C , Z, S , P, C 1)

N O T E : R e g isters 8 and C may be used toge ther as a s ing le 1 6 · b i t reg ister, l i k ew i se, 0 and E , and H a n d L .

SYMBO L T ESTAB L E

c YES

z YES

s Y ES

p YES

C1 N O

c
0
0
0
1
1
1
0
0
0

TAB L E 2

F L AG D ESC R I PT I O N S

D E SC R I PT I O N

C is t he carry/borrow ou t of t he MSB (most s ign i f i cant b i t) of the ALU (Ar ithment Log i c
Un i t) . A TRUE condit ion (C = 1) i nd icates overf low for addi t ion or underf low for
subtract ion .

A TRUE condit ion (Z = 1) i nd icates that the output of the ALU i s equa l to zero .

A T.RUE condit ion (S = 1) ind icates that the MSB of the ALU output is equal to a one (1) .

A TRUE condit ion (P = 1) i nd icates that the output of t he ALU has even parity (the
number of bits equa l to one is even) .

C 1 i s the carry out of the fourth b i t of the ALU (TR U E condi t io n) . C 1 i s used on ly for BCD
correct ion with the DAA i nstruct ion .

TAB L E 3

F U NCT I ON OF T H E DAA I NST R U C T I O N

Assume t h e acc u m u l ator (A) contains t w o B C D d ig its, X and Y

7 4 3 0

ACC X I y

A C C U M U L AT O R ACC U M U LATOR

B E F O R E DAA A F T E R DAA

A7 . . . A4 C 1 A3 . . . Ao c A7 . . . A4 C 1 A 3 . . . Ao

X < 1 0 0 y < 1 0 0 X 0 y
X < 1 0 1 y < 1 0 0 X 0 y + 6
X < 9 0 y -;, 1 0 0 X + 1 1 y + 6
X < 1 0 0 y < 1 0 1 X + 6 0 y
X < 1 0 1 y < 1 0 1 X + 6 0 Y + 6
X < 1 0 0 y :;., 1 0 1 X + 7 1 Y + 6
X �· 1 0 0 y < 1 0 1 X + 6 0 y
X :;... 1 0 1 y < 1 0 1 X + 6 0 Y + 6
X · 9 0 y ;;.. 1 0 1 X + 7 1 Y + 6

N O T E : T h e correc t io n s shown i n T a b l e 3 are s u f f i c ient f o r add i t i o n . F o r sub t ract i o n , t h e p rog rammer m u st acco u n t fo r the borrow

co n d i t i o n that can occu r and g i ve e r r o n eo u s resu l t s. The most stra ight f orward method is t o set A = 9 9 1 6 and carry = 1 . Then

aclcl the m i n u e n d to A a f t e r s u b t rac t i n g the s u b t ra h e n d f r o m A .

D-4

S IGNATU R E P I N
A1 5 (MSB) 36
A 1 4 39
A1 3 38
A 1 2 37
A1 1 40
A 1 0
A9 35
A8 34
A7 33
A6 32
A5 31
A4 30
A3 29
A2 27
A1 26
AO (LSB) 25

D7 (MSB) 6
D6 5
D5 4
D4 3
D3 7
D2 8
D 1 9

DO (LSB) 1 0

Vss 2

Vs s 1 1

Vee 20

v DD 28

¢1 22

¢2 1 5

R ESET 1 2

HOLD 1 3

INT 14

I NTE 16

DB IN 1 7

1 /0
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

IN /OUT
I N /OUT
I N/OUT
I N /OUT
I N /OUT
IN /O UT
I N /OUT

I N /OUT

IN

I N

I N

I N

I N

OUT

OUT

TAB L E 4
TMS 8080 P I N D E F I N IT IONS

D ESCR I PT ION
A 1 5 through AO comprise the address bus . True memory or I /0 dev ice addresses appear on
th is 3-state bus during the fi rst state t ime of each in struction cycle.

D7 through DO comprise the b idi rectional 3-state data bus . Memory , status, or 1 /0 data i s
transferred on th is bus.

Ground reference

Supply voltage (-5 V nomina l)

Supply voltage (5 V nomina l)

Supply voltage (12 V nominal)

Phase 1 clock.

Phase 2 clock. See page 1 9 for 1,01 and 1/>2 t iming .

Reset. When active (h igh) for a m in imum of 3 c lock cycles, the R ESET input causes the
TMS 8080 to be reset. PC is cleared, i n te rrupts a re disabled, and after R ESET, instruction
execut ion starts at memory locati on 0. To prevent a l ockup cond i t ion , a H A LT in struction
must not be used i n l ocation 0.

Hold signal. When active (high) HOLD causes the TMS 8080 to enter a hold state and f loat
(put t he 3-state address and data bus in a h igh-i mpedance state) . The ch ip acknowledges
enteri ng the hold state with the H LDA signal and wi l l not accept i n terrupts unt i l it leaves
the hold state.

I nterrupt request. When active (h igh) I NT ind icates to the TMS 8080 that an interrupt is
being requested. The TMS 8080 pol l s I N T dur ing a HALT or at the end of an i n struction.
The request wi l l be accepted except when I NTE i s low or the CPU is i n the HOLD
condit ion.

I nterrupts enabled. I NT E i nd icates that an i n terrupt w i l l be accepted by the TMS 8080
un less it is in the ho ld state. I NTE is set to a h igh logic l evel by the E l (E nable I nterrupt)
instruction and reset to a low logic level by the Dl (D i sable I nterrupt) i nstructi on . I NTE i s
a l so reset when an interrupt is accepted and by a h igh on R ESET.

Data bus in . DB IN i ndicates whether the data bus i s i n an input or an output mode.
(h igh � i nput, low � output) .

D-5

2.

2.1

S I G NATU R E P I N

W R 1 8

SYNC 1 9

H LDA 2 1

READY 23

WA I T 24

1 /0
OUT

OUT

OUT

I N

OUT

S I G NATU R E DATA B U S B I T

I NTA D O

w o D 1

STACK D2

H LTA D3

OUT D4

M1 D5

I N P D 6

MEMR D7

TMS 8080 I NST RUCT I O N S ET

I NS T R U C T I O N F O R MATS

TA B L E 4 (CONTI N U E D)

DESC R I P T I O N

Wri te. When active (low) WR indicates a wr i te operat ion on the data bus to memory or to an
1 /0 port.

Synchron iz ing control l ine. When active (h igh) SYNC ind icates the beginn i ng of each
machine cycle of the TMS 8080. Status in formatio;1 is a lso present on the data bus dur ing
SYNC for externa l latches.

Hol d acknowledge. When active (h igh) H LDA ind icates that the TMS8080 is in a hold state.

Ready control l i ne . An active (h igh) l evel i nd icates to the TMS 8080 that an external device
has completed the transfer of data to or f rom the data bus. R EADY is u sed in conjunct ion
with WA I T for di fferent memory speeds.

Wait status. When active (h igh) WAIT ind icates that the TMS 8080 has en tered a wa it state
pending a R EADY signal from memory.

TAB L E 5
TMS 8080 STATUS

DESC R I PT I O N

I n terru pt acknowledge.

I nd icates that current mach ine cycle wi l l be a read (input) (h igh = read) or a wr ite (output)
(low = write) operation.

I nd i cates that address i s stack address from the SP.

HA LT i nstruction acknowledge.

I n di cates that the address bus has an output device address and the data bus has output
data.

Ind icates instruct ion acquis i t ion for fi�st byte.

Ind icates address bus has address of input device.

I ndi cates that data bus wi l l be used for memory read data.

T M S 8080 instructions are e i ther one, two , or three bytes long and are stored as bi nary i ntegers in su ccessive memory
locat ions i n the format shown be l ow.

One- Byte I nstructi ons

D 7 D6 D5 D 4 D 3 D 2 D 1 DO O P CODE

Two- Byte I nstruct ions

D 7 D 6 D5 D 4 D 3 D 2 D1 DO O P CODE

D 7 D8 D5 D 4 D 3 D 2 D 1 DO O P E R A N D

Th ree-B yte I nstructions

D 7 D 6 D5 D 4 D3 D2 D1 DO O P CODE

D 7 D 6 D5 D 4 D 3 D 2 D 1 DO LOW A D D R ESS O R OPE R A N D 1

D7 D 6 D 5 D 4 D3 D2 D 1 D O H I G H A D D R ESS O R OPE RAN D 2

D-6

2.2 I NST R UCTI ON S E T D ESCR I PTION

Operat ions resu l t ing from the execut ion of TMS 8080 i n structi ons a re d escri bed i n th i s section . The f l ags that are affected by
each i nstruct ion a re g iven after the d esc ript ion .

2.2.1 I NSTR UCTI ON SYMBOLS

SYMBOL

<b2>
<b3>

ra

M
()

[l

Am

1 1
b2

bJb2
(n nn) 8

Second byte of instru ction
Th i rd byte of instruction

R eg i ste r #
000
00 1
0 1 0
0 1 1
1 00
1 0 1
1 1 1

Register #
00
0 1
1 0
1 1

Regi ster #
0

R eg i ste r #
00
01
1 0

Least s ign i f icant 8 bits of rd
Most s ign if icant 8 bits of rd

D ESC R I PT I ON

F lags True cond it ion
Zero (Z) Resu l t i s zero

R egister N am e
B
c
D
E
H
L
A

Reg i ster N ame
BC
D E
H L
S P

R eg i ster Name
BC
D E

R egister Name
BC
D E
H L

Carry (C) Carry/bor row out of M S B is one
Parity (P) Par ity of resu l t i s even
S ign (S) MSB o f resu l t i s one
Carry 1 (C1) Carry out of fou rth b it is one

Memory address def ined by registers H and L
Conte n ts of spec ified address or register
Contents at add ress contained in specif ied regi ster
Is transferred to
E xchange
B it m of A register (accu m u l ator)
F I ags affected
S ing le byte immed i ate operand
Double byte im med iate operand
(n n n) i s a n octal (base 8) nu mber

D-7

2.2 .2 ACCUMU LATO R G R O U P I NSTR UCTI O N S

M N E M O N I C O P E RANDS BYTES

ACI b2 2

ADC
ADC
ADD

ADD
AD I
ANA

ANA
AN I
CMA
CMC
CMP

CMP
CP I
D AA

DAD

LOA
LDAX
ORA

ORA
OR I
RAL

RAR
R LC

R RC

M

'a
M

'a

'a

M

'c
M

2

2

2

3

1
2

M CYC L ES/

STATES

2/7

2/7
1 /4
2/7

1 /4
2/7
2/7

1 /4
2/7
1 /4
1 /4
2/7

1 /4
2/7
1 /4

1 / 1 0

4 / 1 3
2/7
2/7

1 /4
2/7
1 /4

1 /4
1 /4

1 /4

D-8

D ESCR I PT I O N

(A) <- (AI + <b2>+ (carry) , add t he second byte o f the
instruction and the con tents of the carry flag to register A and
place i n A. j C ,Z ,S ,P ,C1 1

(A) ;- (A) + (M) + (carry) . \ c.z:s,P ,C 1 I
(A I <- (A I + (ral + (ca rry) . � C ,Z ,S ,P ,C 1 f
(A I - (A) + (M) , add the contents of M to register A and p lace i n
A . \ C ,Z ,S ,P,C 1 f
(A) <- (A I + (ra l . \ C ,Z ,S ,P ,C1 f
(A) ;- (A) + <b2> · I C,Z,S ,P ,C1 !
(A I <- (A) AND (M) , take the logical AND of M and register A
and place in A . The carry f l ag w i l l be reset low. 1 C,Z,S,P ,C1 1
(A I <- (AI AND (ra l . I C ,Z ,S,P ,C 1 I
(A) ;- (A) AND <b2>· I C,Z,S ,P ,C1 f
(A I +-- (A) , complement A.

(carry) +-- (carry) , complement the carry f lag. I C f
(A) - (M) , compare the contents of M to regi ster A and set the
f lags accord ingl y . ! C ,Z ,S ,P ,C 1 !

(A) = (M) Z = 1
(A) 'i (M) Z = 0
(A) < (M) C = 1
(A) > (M) C = 0

(A) - (ral . I C ,Z,S,P ,C1 f
(A)-<b2>·: I C,Z ,S , P ,C1 f
(A) •-BCD correction of (A) . The 8 b i t A contents is corrected to
form two 4 b i t BCD d ig i ts after a b inary ar ithmetic operat ion . A
fifth f lag C 1 i nd icates the overflow from A3. The carry f lag C
ind icates the overflow f rom A7 (See Table 3) . j c ,Z,S ,P ,C 1 f
(H L) +-- (H L) + (rb) , add the con tents of double register 'b to
double register H L and p lace in H L. \ c f
(A) •- [<b3> <b2> l
(A) •- [(rcl l
(A) +-- (A) OR (M) , take the logical O R o f the contents o f M and
register A and place in A. The carry f lag wi l l be reset.
j C,Z,S,P ,C 1 f
(A) +-- (A) OR (ra l . \ C ,Z ,S ,P ,C 1 1
(A) ;- (A) OR <b2> · I C,Z,S ,P ,C1 \
Am+ 1 +-Am, Ao+-(carry) , (carry) <- (A7) · Sh i ft the contents of
reg i s ter A to the left one b i t th rough the carry f l ag. \ C \
Am<-Am+ 1 , Ar-(carry) , (carry) <-Ao. l C \
Am+1 <-Am, Ao<-A7 (carry) <- (A7) · Sh i f t the conten ts of regi ster
A to the left one b i t . Sh ift A7 i nto A and i nto the carry
f lag . 1 C \
Am<-Am+ 1 , Ar-Ao. (carry i •- (Aol . I c !

M N EMON I C OPE R AN DS

SBB M

SBB 'a
SBI b2
STA b3b2

STAX 'c

STC

SUB M

SUB 'a
SU I b2
X R A M

X R A 'a
X R I b2

BYTES

1
2

3

1
2

1
2

2.2.3 I N P U T/OUTPUT I NS T R U C T I O N S

M N EM O N I C OP E RA N DS BYTES

I N b2 2

OUT b2 2

2.2.4 MACH I N E I NS T R U C T I ONS

M N E M O N I C OPE R A N DS BYTES ---
H LT 1

NOP

M CYCL ES/

STATES

2/7

1 /4
217

4/1 3

217

1 /4

2/7

1 /4
2/7
2/7

1 /4
2/7

M C Y C L ES/

STATES

3/1 0

3/1 0

M CYCL ES/

STATES

2/7

1 /4

D- 9

D E SC R I P T I ON

(A)+-(A) - (M) - (carry) , subtract the contents of M and the
contents of the carry f lag f rom register A and p lace in A . Two's
complement subtract ion i s used and a t rue borrow causes the
carry f lag to be set (underf low condi t ion) . \ C ,Z ,S.P,C 1 \
(A)<-(A)- (ra l- (carry) . j c,Z,S,P,C 1 f
(A)+-(A)-<b2>-(carry) . j C ,Z ,S,P,C 1 f
l<b3> <b2> l +-(A) , store contents of A in memory address
given in bytes 2 and 3.
[(rcl l +-(A) , store contents of A in memory address given in BC
or D E.

! carry)•-1 , set carry f lag to a 1 (true condit ion) .

(A)+-(A) - (M) , subt ract the contents of M from register A and
place in A. Two's complement subtract ion is used and a true
borrow causes the carry f lag to be set (u nderf low cond it io n) .
I C,Z,S,P ,C1 \
(A)+-(A) - (ral. \ C ,Z ,S ,P ,C1 \

(A)+- (A)-<b2> - j C,Z ,S,P,C 1 f
(A)<- (A) XOR (M) , take the exc lusive OR of the contents of M
and reg ister A and place i n A. The carry flag wil l be reset .

j C,Z,S ,P ,C 1 \
(A)+- (A l X OR (ra l - l c .Z ,S,P,C 1 \
(A) <- (A) XOR <b2> . j C,Z ,S ,P ,C1 \

D E SC R I P T I O N

(A)<- (i npu t data f rom data bus) , byte 2 is sent on b i ts A7-AO
and A 1 5-A8 as the input dev i ce address. I N P status is given on
the data bus.
(Output datal +- (A) , byte 2 is sent on b its A 7 -AO and A 1 5-A8 as
the outpu t dev i ce address. OUT status i s given on the data b'JS.

D E SC R I P T I O N

Ha l t , a l l mach i ne operat ion s stop. A l l registers a re ma inta ined .
On ly an i nterrupt can retu rn the TMS 8080 to the run mode,
Note that a H L T should not be placed in l ocat ion zero,
otherw i se after the reset p i n is active, the TMS 8080 w i l t enter a
non recoverable state (un t i l power is removed) , i .e. , in ha l t with
i n terrupts disabled. Th is condit ion a l so occurs if a H L T i s
executed wh i le i nterrupts are d isabled . H LTA status is g iven on
the data bus.
(PC)-(PC)+ 1 , no operat ion .

2.2.5 PROG RAM CO U N T E R A N D STACK CONT R O L I NST R U C T I O N S

M N E M O N I C OPE RA N DS

CALL b3b2

BYTES

3

Condit ional cal l i nstruct ions for true f lags:
(f)

cc (carry) b3b2 3

CPE (par i ty) b3b2 3

CM (s ign) b3b2 3 cz (zero) b3b2 3

Condit ional cal l i nstructions fo r fa lse f lags :
(f)

CNC (carry) b3b2 3
CPO (par i ty) b3b2 3
CP (sign) b3b2 3
CNZ (zero) b3b2 3

0 1

E l

JMP b3b2 3

Condit ional j ump i nstruct ions for true flags:
(f)

JC (carry) b3b2 3
JPE (parity) b3b2 3
JM (sign) b3b2 3
JZ (zero) b3b2 3
Condit ional j ump i n struct ions fo r fa l se f laqs:

(f)
JNC (carry) b3b2 3
JPO (parity) b3b2 3
JM (s ign) b3b2 3
JNZ (zero) b3b2 3

PCH L
POP PSW

POP rd
PUSH PSW

PUSH rd
RET

M CYCLES/

STATES

5 / 1 7

5 / 1 7 (Pass)
3/1 1 (F a i l)

5/ 1 7 (Pass)
3/1 1 (Fa i l)

1 /4

1 /4

3/1 0

3/1 0

3/1 0

1 /5
3/1 0

3/1 0
3/1 1

3/1 1
3/1 0

D-10

D E SC R I P T I O N

[ISP) - 1] [(SP) -2] -(PC) , ISP)<-(SP) -2, IPCl-<b3 > <b2>.
transfer PC to the stack address given by SP, decrement SP
twice, and jump uncondi t iona l ly to add ress given in bytes 2 and
3.

I f (f) = 1 , [(SP) - 1] [(SP) -2] <- (PC) , (SP).-(SP) -2 , IPS)�<b3>
<b2>. otherwise (PC)�(PC)+3 . I f the f lag spec i f ied, f, is 1 , then
execute a cal l . Otherwise, e xecute the next i nstruct ion .

I f (f) = 0, [(SP) - 1] [(SP)-2] -IPC) , ISP)<-(SP) -2 , (PC l · -<b3>
<b2>. otherwise (PC)+-(PC)+3.

D isable i n ter rupts. I NTE i s dr iven fa lse to ind icate that no
i nterrupts wi l l be accepted.
Enable i nterrupts. I N TE i s d riven true to i ndicate that an
i nterrupt wi l l be accepted. Execut ion o f th i s i nstruction is
delayed to a l l ow the next i nstruct ion to be executed before the
INT input is pol led.
(PCl<-<b3> <b2>. jump uncondit ional ly to address given i n
bytes 2 and 3 .

I f (f) = 1 , (PCl<--< b3><b2> . otherwise (PC)<-(PC) +3. I f the f l ag
speci f ied, f, is 1 , execute a JMP . Otherwise, execute the next
instruction .

I f (f) = 0, (PC)<-<b3> <b2> , othewise (PC)+-(PC)+3.

(PC)<-(H L)
(F)<-- [(SP)] , (A)<-- [('SP) + 1] , (SP)+--(SP) +2, restore the last
stack values addressed by SP i n to A and F. I n cremen t SP twice.
(rdL)+- [(SP)] , (rdH)<-- [(SP) + 1] , (SP)<--(SP)+2.
[(SP)- 1]<--(A) , [(SP)-2] +-(F) , (SP)+--(SP) -2 , save the contents
of A and F i n to the stack addressed by SP. Decrement SP twice.
[(SP)- 1] +--(rd L) , [(SP)-2] <--(rdH l , (SP)<--(SP)-2 .
(PC)<-- [(SP)] [(SP)+1] , (SP)+--(SP)+2, return to program at
memory address given by last va lues i n the stack. The SP i s
i ncremented by two.

M N E M O N I C O P E R AN DS BYTES

Condit ional return i nstruct ions for true flags:

(f)
RC (carry)
APE (par ity)
A M (sign)
RZ (zero)

c
p
s
z

M C Y C L ES/

STATES

3/1 1 (Pass)
1 /5 (F a i l)

Condit ional retu rn i nstructions for ta l se f l ags:

(f)
RNC (ca rry) c
RPO (par i ty) p
RP (s ign) s
RNZ (zero) z

RST

SPH L

2.2 . 6 R E G I STE R G R O U P I NST R UCTI O N S

M N E M O N I C OPE R A N DS

OCR M

OCR r a
DCX 'b
I NA M

I N A r a
I N X 'b

LH LD b3b2

L X I rbb3b2

MV I M,b2

MV I rab2

MOV Mra

MOV raM

MOV 'a 1 r a2

SHLD b3b2

XCHG
XTH L

BYTES

1
1
3

3

2

2

3

3/1 1 (Pass)
1 /5 (F a i l)

3/1 1

1 /5

M CYCLES/

STATES

3/ 1 0

1 /5
1 /5

3/1 0

1 /5
1 /5

5/ 1 6

3/1 0

3 / 10

2/7

2/7

2/7

1 /5

5 / 16

1 /4
5/1 8

D-ll

D E SC R I P T I O N

I f (f) = 1 , (PCl ·- [(SPl l [(SP+1) , (SP) •- (SP) +2. I f the f l ag
spec i f ied, f, i s 1 , execute a R ET. Otherwise, execute the next
i nstruct ion .

I f (f) = 0, (PC)� [(SP) I I (SP)+ 1 I . (SP) •- (SP)+2.

[(SP)- 1 I [(SP I-21 <-(PC) (SP)·-(SP) -2 , (PC)<-OOOOROg where
R is a 3 bit f i e ld in RST (RST=3R 7gl . Tran sfer PC to the stack
address given by SP, decrement SP twice, and j ump to the
address specif ied by R.
(SP)<-(H L) .

D E SC R I P T I O N

(M) •-(M)- 1 , decrement the contents of memory location
spec i f ied by H and L. ! Z,S,P ,C 1 \
(ral<-(ral - 1 , decrement the contents of reg ister 'a · \ Z ,S,P,C1 f ·
(rb)<-(rb) - 1 , decrement double registers BC , DE, H L, or SP.
(M) •-(M) + 1 , i ncrement the contents of memo ry location
specif ied by H and L. \ Z,S,P,C 1 f
(ra)<-(ra l + 1 , i ncrement the contents of reg ister 'a · \ Z.S,P ,C1 f
(rb) <-(rb) + 1 , i ncrement double registers BC, D E , H L, or SP.
(L)<- [<b3> <b2> l ; (H) - [<b3> <b2> +1 l . load registers H
and L with contents of the two memory locat ions specif ied
by bytes 3 and 2.
(rbH l�<b3> ; ! rbLl<-<b2> . load double registers BC, DE, H L,
or SP immediate with bytes 3, 2, respect ive ly .
!Ml<-<b2>. store immediate byte 2 i n the address specif ied by

H L
! ra l<-<b 2>. load reg ister ra immed iate with byte 2 of the instruc·
t ion .

(M) •- (ral . store regi ster 'a i n the memory locat ion addressed by
H and L.
(ral-(M) , l oad register 'a with conten ts of memory addressed by
H L.
(ra 1 l<-(ra2l . load register 'a 1 with conten ts of 'a2· 'a2 contents
remai n u n changed.
l <b3> <b2> l <-(L) ; l<b3> <b2> + 1)) ·:- (H) , store the contents
of H and L into two successive memory locat ions speci f ied by
bytes 3 and 2 .
(H) - (0) ; (L) - (E) , exchange double registers H L and D E
(L)- [(SPI I . (H)- [(SP) + 1 1 , (SP) = (SP) , exchange t h e top o f the
stack with reg ister H L.

2.3 I NST R U C T I O N SET OPCO D E S A LP H A B E T I C A L L Y L I STE D,
POS I T I V E-LOG I C

R E G I ST E R H E X OPCO D E C LOC K

M N E M O N I C BYTES DESC R I PT I O N A F F ECTED � � CYCLES*

ACI 2 Add immed iate to A wi th carryt c E 7
ADC M Add memory to A with carry t 8 E 7
ADC r Add register to A with carry t B 8 8 4

c 8 9
D 8 A
E 8 B
H 8 c
L 8 D
A 8 F

ADD M Add memory to At 8 6 7
ADD r Add register to At B 8 0 4

c 8
D 8 2
E 8 3
H 8 4
L 8 5
A 8 7

AD I 2 Add immediate to At c 6 7
ANA M AND memory with At A 6 7
ANAr AND register w i th At B A 0 4

c A 1
D A 2
E A 3
H A 4
L A 5
A A 7

A N I 2 A N D i mmed i ate with At E 6 7
C.LI. L L 3 Cal l uncondit ional c D 1 7
cc 3 Call on carry D c 1 1 / 1 7
CM 3 Ca l l on minus F c 1 1 / 1 7
CMA Complement A 2 F 4
CMC Complemen t carry :!: 3 F 4
CMP M Compare memory with At B E 7

CMP r Compare register with A
B B 8 4
c B 9
D B A
E B B
H B c
L B D
A B F

CNC 3 Ca l l on no carry D 4 1 1 / 1 7
CNZ 3 Cal l on no zero c 4 1 1 / 1 7
CP 3 Ca l l on pos i t ive F 4 1 1 / 1 7
CPE 3 Ca l l on par i ty even E c 1 1 / 1 7
CP I 2 Compare immediate with At F E 7
CPO 3 Ca l l on par ity odd E 4 1 1 / 1 7
cz 3 Ca l l on zero c c 1 1 / 1 7
DAA Deci mal adjust At 2 7 4

Two possi b l e c y c l e. t i mes (1 1 / 1 7) i n d icate i n struct i o n c y c l es d ependent on cond i t i o n f l ags.
All f l ags I C. Z, S, P, C 1 1 affected .
O n l y carry f l a g a f fected .

D-12

POS IT IVE -LOG IC
REG ISTER H E X OPCODE C LOCK

MNEMONIC BYTES DESCR IPT ION A F F ECTED � � CYCLES

DAD B Add B&C to H&L :!: 0 9 1 0

DAD C Add O & E to H&U: 9 1 0

DAD H Add H& L to H&L :i: 2 9 1 0

DAD SP Add stack pointer to H&L :I: 3 9 1 0

OCR M ' Decrement Memory ' 3 5 1 0
OCR r Decrement Register � B 0 5 5

c 0 0
0 5
E 0
H 2 5
L 2 0
A 3 0

DCX B Decrement B&C 0 B 5

DCX 0 Decrement D&E 1 B 5
OCX H Decrement H&L 2 B 5

OCX SP Decrement stack poi nter 3 B 5
0 1 D i sable i n terrupts F 3 4
El Enable i nterrupts F B 4
H LT 1 Ha l t 7 6 7
I N 2 I nput 0 B 1 0
I N R M � I ncrement memory ' 3 4 1 0
I N R r ' I ncrement registe r ' B 0 4 5

c 0 c
0 4
E 1 c
H 2 4
L 2 c
A 3 c

I NX B I ncrement B&C register 0 3 5
I N X 0 I ncrement 0& E register 1 3 5
I NX H 1 I n crement H &L register 2 3 5
I NX SP 1 I ncrement stack poi n ter 3 3 5
JC 3 J ump on carry 0 A 1 0
J M 3 Jump on minus F A 1 0

JMP 3 Jump uncondi t iona l c 3 1 0

J NC 3 Jump on no carry 0 2 1 0

JNZ 3 Jump o n no zero c 2 1 0

JP 3 Jump on posi tive F 2 1 0

JPE 3 Jump on par i ty even E A 1 0

JPO 3 Jump on pari ty odd E 2 1 0

JZ 3 Jump on zero c A 1 0

LOA Load A d i rect 3 A 1 3

LDAX B Load A ind i rect 0 A 7

LDAX 0 1 Load A i n di rect 1 A 7
LHLD 3 Load H&L di rect 2 A 1 6
L X I B 3 Load i mmedi ate register pa ir B&C 0 1 0
LXI 0 3 Load i mmediate register pa i r D&E 1 1 0
LX I H 3 Load i mmediate register 2 1 0
L X I SP 3 Load immediate stack poi nter 3 1 0

:i: o n l y carry flag affected .
� Al l f l a gs e x cept carry affecte d .

D-13

POSIT I V E-LOG IC
REG ISTER HEX OPCODE CLOCK

MNEMONI C B YTES DESCR I PTION A F F ECTED � � CYCLES

MOV M,r Move reg ister to memor y B 7 0 7
c 7
0 7 2
E 7 3
H 7 4
L 7 5
A 7 7

MOV r ,M Move memory to register 8 4 6 7
c 4 E
0 5 6
E 5 E
H 6 6
L 6 E
A 7 E

MOV r 1 , r 2 Move regi ster to register 8 ,8 4 0 5
8 ,C 4
8,0 4 2
8 ,E 4 3
8 ,H 4 4
8 ,L 4 5
8 ,A 4 7
C ,8 4 8
C,C 4 9
C,O 4 A
C ,E 4 8
C ,H 4 c

.. C ,L 4 0
C,A 4 F
0,8 5 0
O,C 5 1
D,O 5 2
O,E 5 3
O,H 5 4
H ,L 5 5
O,A 5 7
E,8 5 8
E,C 5 9
E ,O 5 A
E ,E 5 8
E,H 5 c
E ,L 5 0
E ,A 5 F
H,8 6 0
H,C 6 1
H ,O 6 2
H ,E 6 3
H ,H 6 4
H ,L 6 5
H ,A 6 7
L,8 6 8

D-14

POS IT IV E-LOG IC
REG I STER HEX OPCODE CLOCK

MNEMON IC BYTES DESCR I PT ION A F F ECTED � � CYCLES*
MOV r 1 , r2 Move register to register (cont inued) L ,C 6 9

L,D 6 A
L ,E 6 B
L ,H 6 c
L , L 6 D
L,A 6 F
A,B 7 8
A,C 7 9
A,D 7 A
A,E 7 B
A ,H 7 c
A ,L 7 D
A,A 7 F

MV I M 2 Move i mmediate memory 3 6 1 0
MV I r 2 Move immediate register B 0 6 7

c 0 E
D 6
E E
H 2 6
L 2 E
A 3 E

NOP No operat ion 4 0 0 4
ORA M OR memory with At B 6 7
ORA r OR regi ster with At B B 0 4

c B
D B 2
E B 3
H B 4
L B 5
A B 7

OR I 2 O R immediate with At F 6 7
OUT 2 Ou tput D 3 1 0
PCH L H&L to program counter E 9 5
POP B Pop register pair B&C off stack c 1 0
POP D Pop register pair D& E off stack D 1 0
POP H Pop register pai r H& L off stack E 1 0
POP PSW Pop A and f l ags off st�ck t F 1 0
PUSH B Push register pa i r B&C c 5 1 1
PUSH D 1 Push register pa i r D&C D 5 1 1
PUSH H 2 Push register pair H& L on stack E 5 1 1
PUSH PSW Push A and F lags on stack F 5 1 1
R A L Rotate A l e f t th rough carry :!: 7 4
RAR Rotate A r ight through carry :!: F 4
RC Return on carry D 8 5/1 1
RET Return c 9 1 0
R L C Rotate A lefd 0 7 4
R M Return o n minus F 8 5/1 1
RNC Return on no carry D 0 5/1 1
RNZ Return on no zero c 0 5/1 1
RP Return on posi t ive F 0 5/1 1

• Two possi b l e cyc les t i mes (1 1 / 1 7) i n d i cate i n st r u ct i o n cycles dependent on cond i t io n f lags. : A l l f lags (C , Z , S, P , C l) affected .
l O n l y carry f l ag affected .

D-15

POS I T I V E -LOG I C

R E G I ST E R H E X OPCODE C LOCK

M N E MO N I C BYT ES DESC R I PT I O N A F F E C T E D � � CYCL ES*

RPE Return on parity even E 8 5/1 1
RPO Return on parity odd E 0 5/1 1
RRC Rotate A righf!: 0 F 4
RST Restart 1 1

PC+--00001 6 c 7
PC+--0008 1 6 c F
PC<-00 1 01 6 D 7
PC+--00 1 8 1 6 D F
PC<-0020 1 6 E 7
PC+--00281 6 E F
PC+--00301 6 F 7
PC+--0038 1 6 F F

RZ Return on Zero c 8 5/1 1
SBB M Subtract memory from A with borrowt 9 E 7
SBB r Subtract register from A with borrowt B 9 8 4

c 9 9
D 9 A
E 9 B
H 9 c
L 9 D
A 9 F

SBI 2 Subtract immediate from A with borrow t D E 7
SH LD 3 Store H& L d i rect 2 2 1 6
SPH L 1 H& L to stack poi

.
nter F 9 5

STA 3 Store A d i rect 3 2 1 3
STAX B Store A i ndirect 0 2 7
STAX D Store A ind i rect 1 2 7
STC Set carry :1: 3 7 4
SUB M Subtract memory from At 9 6 7
SUB r Subtract register from At B 9 0 4

c 9 1
D 9 2
E 9 3
H 9 4
L 9 5
A 9 7

SU I 2 Subtract immediate from At D 6 7
XCHG Exchange D& E , H& L registers E B 4
XRA M Excl usive OR memory with At A E 7
X R A r Exclus ive OR register with At B A 8 4

c A 9
D A A
E A B
H A c
L A D
A A F

X R I 2 Exc lusive OR immediate with At E E 7
XTH L Exchange top of stack H& L E 3 1 8

.. Two poss ib le cycles t i mes (1 1 /1 7) i n d i cate instruction cycles dependent on condit ion flags.
t A l l f l ags (C , Z, S , P , C 1) affected.
::: O n l y carry flag affected.

D-1 6

3. TMS 8080 E L ECT R I C A L AN D M EC H AN I CAL SPECI F I CATI O NS

3 . 1 ABSO LUTE M AX I M U M R AT I NG S OV E R O P E R AT I NG F R E E-A I R T E M P E RATU R E R A N G E
(U N L ESS OT H E R W I S E NOTE D) *

Supply vol tage, V ee (see N ote 1)
Supply vo l tage , V o o (see N ote 1
Su pply vo l tage, Vss (see N ote 1)
Al l i n p u t and ou tput vo l tages (see Note 1)
Co n t i n uous power di ss ipat ion
Operat ing free-ai r tem peratu re range
Storage tem peratu re range

-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V

1 . 5 W
0° C to 70° C

-65° C to 1 50°C

• Stresses bey o n d t h ose l i sted u n der " A bso l u t e M a x i m u m R a t i ngs" m a y cause perm a n ent damage to t h e d e v i c e . T h i s is a stress rat i n g o n l y
a n d f u n c t i o n a l o pera t i o n of t h e dev ice a t t h e s e o r any o t h e r co n d i t io n s b e y o nd those i nd i cated i n the " R eco m m e n d ed Opera t i n g
C o n d i t i o ns" sec t i o n o f t h i s spec i f i c a t i o n i s n o t i m p l i ed . E xposure to a b so l u te-m a x i m u m-rated c o n d i t i o n s f o r e x t e n d ed periods may affect
dev ice rei i a b i I i t y .

N O T E 1 : U n d e r a b s o l u t e m a x i m u m r a t i n g s vo l tage v a l u e s a r e w i t h respect to t h e n o rm a l l y most negat i ve s u p p l y v o l tage, v 8 8 (s u b strate) .
Throu gho u t the rema i n der of t h i s data sheet, vo ltage v a l u e s are w it h respect to V ss u n less o t h erwise noted .

3.2 R ECOMM E N D E D O P E R AT I N G CO N D I T I ONS

Su pply volta ge , Vs s
Supply voltage, V CC
Supply voltage, VD D
Supply vol tage, Vss
H igh-level i nput vo l tage , V 1 H (a l l i nputs except clocks) (see Note 2)
H igh-level c lock i nput vo ltage , V I H I<t>l
Low-leve l input voltage, V 1 L (a l l i nputs except clocks) (see Note 3)
Low-leve l clock i nput voltage , V 1 L l<t>l (see Note 3)
Operat ing free-a i r temperatu re, T A

M I N NOM
-4 .75 -5

4 .75 5
1 1 .4 1 2

0
3.3

v DD-1
-1
-1

0

MAX
-5.25

5.25
1 2 .6

Vcc+ 1
v D D+1

0.8
0.6
70

3.3 E L ECT R I CA L C H A R ACT E R I STICS O V E R F U L L R A N G E O F R ECOMM E N D E D O P E R AT I N G C O N D I T I ONS
(U N L ESS OTH E R W I S E NOT E D)

PARAMETER TEST COND IT IONS M I N TYPt MAX

I I
I nput current (any input except
c locks and data bus)

v 1 = o v to Vee � 1 0

l l (<t>) C lock input current V l (q,) = O V to VD D ± 1 0
I I (DB) I nput current , data bu s V I I DB) - 0 V to Vee - 1 00

Address or data bus i nput V I l ad) or V I (DB) = Vee 1 0
I l l ho ld) current dur i ng ho ld V l (ad) or V I (DB) - 0 V - 1 00
Vo H H igh-level output voltage IOH - 1 00 pA 3.7

Vo L Low-level output vol tage
I OL (DB) = 1 .7 mA,

0.45
loL = 0.75 mA I any output except DB)

l ss (av) Average supply current f rom Vss -0.01 - 1
1 cCiavl Average supply current from Vee

Operat ing at tc (</J) = 480 ns,
60 75

I DD iavl Average supply current f rom V DD
TA = 25° C

40 67
C· I Capacitance , any input except c lock Vee = Voo = Vss = o v, 1 0 20
Ci (<t>) C lock i n put capacitance Vss = -4.75 to -5.25 v. f = 1 MHz , 5 1 0
Co Output capacitance All other p i ns at 0 V 1 0 20

t A l l t y p i c a l va l u e s are at T A = 2 5'"' C and n o m i n a l v o l tages.

UN IT
v
v
v
v
v
v

v
v
c

U N I T

p A

pA
pA

pA

v

v

mA

pF

N O T E S : 2 . A c t i ve p u l l -u p res istors of nom i n a l l y 2 krl. w i l l be sw i t ched onto the d a t a b u s w h e n DB I N i s h igh a nd the d a t a input vo ltage i s
more pos it ive t h a n V I H m i n .

3 . T h e a lgeb r a i c convent i o n w here t h e most nega t i ve l i m i t i s des igna ted a s m i n i m u m i s u sed i n t h i s spec i f i ca t i o n f o r l o g i c voltage
levels o n l y .

D-1 7

3.4 TI M I NG R EQU I R E M E N TS O V E R F U L L RANG E OF R ECOM M E N D E D OPE R AT I N G C O N D I TI ONS
(SEE F I GU R E 2)

M I N

tc(¢) C lock cycle t ime (see Note 51 480
tr (Q) Clock r i se t ime 5
tf (<;>) Clock fa l l t ime 5
tw(<;> 1) Pu l se w1dth, c lock 1 high 60
tw(¢21 Pu lse width, clock 2 h igh 220
td(r,1 1 L-02) Delay t ime, c lock 1 low to clock 2 0

�d(¢2-<.'>1 1 Delay t ime, c lock 2 to clock 1 70
td(Q1 H -<)2) De lay ti me, c lock 1 h igh to clock 2 (t ime between lead_i ng edges) 1 30
tsu (da-<:> 1 1 Data setup t ime with respect to clock 1 50
tsu(da-<:•21 Data setup t ime with respect to clock 2 1 50
ts u (ho ld) Ho ld i npu t setu p t ime 1 40
tsu (i n t) I n terrupt i npu t setup t ime 1 80
tsu (rdy) Ready i nput setup t ime 1 20

M AX

2000
50
50

th (da) Data hold t ime (see Note 6) tPD (DB I I
th (ho l d) Ho ld i nput ho ld t ime 0

th (i n t) I n terrupt i n pu t ho l d t ime 0

th (rdy) Ready input ho ld t ime 0

N O T E S : 5 . tc (<>i = td (Q 1 L ·Q2) + ' r l ¢2 1 + lw (<,)2) + t t (r/>2) + td (¢2 ->,) 1) + tr (r,i>1) · 480 n s .;; t c (r,i>) .;; 2 000 n s .

U N I T

n s
n s
n s
n s
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

6 . T h e d a t a i np u t sho u ld be enab l ed u s i n g t h e D B I N stat us s igna l . N o b u s conf l i ct can t h e n o c c u r a n d t h e d a t a h o l d t i m e
req u i re1nent i s t h u s assu red .

3.5 SW I TC H I N G C HA R ACT E R I ST I CS O V E R F U L L R A NG E OF R E COMM E N D E D O P E R AT I N G CO N D I T I O NS
(SE E F I G U R E 2)

PA R A M E T E R T E S T C O N D I T I ONS M I N M AX

tpD (adl Propagation delay t ime, c lock 2 to address outputs
tpD (da) Propagat ion de lay t ime, clock 2 to data bus

Propagat ion de lay t ime , c locks to control ou tpu ts
C L = 1 00 pF ,

tpD (contl
Propagat ion delay t ime, c lock 2 to DB I N ou tput

R L = 1 .3 k fl
tPD IDB I)
tpD (i n t l Propagat ion delay t ime, clock 2 to I NTE ou tput

tD I Time for data bus to en ter i nput mode
D isable t ime to h igh- i mpedance state

tpxz dur ing hold (address ou tput s and data bus)

The t ime t h a t t h e add ress o u tputs a nd output d a t a w i l l �e� a i n sta b l e a f t er WR goes h ig h , tw A a nd t w o ;;. td (r,i> 1 H -<1>2) ·
T h e t i m e between add ress o u t p u ts beco m i n g stab le a� W R g o i n g low , t Aw .;; 2 t c (<i>) -td (r,i>1 H ·<i>2) - tr (r,i>) - 1 2 0 n s .
T h e t i me between o u tp u t d a ta beco m i n g sta b l e a nd W R g o i n g low, t o w ;;. t c (ci>) - td (<� 1 H ·ci>2) - t r (<l>) - 1 50 n s .
T h e f o l lo w i n g are re levant w h e n i n terf a c i n g to d ev i ces req u i r i n g v 1 H m i n of 3 . 3 V :

200
220
1 20

25 1 40
200

tpD (DB I)

1 20

a) Max imum outpu t r ise t i me l tT LH I f rom 0.8 V to 3 .3 V is 140 ns with C L as spec i fied for the propagat ion delay t imes above.

U N I T

ns
ns
ns
ns
ns
ns

ns

b) Maximum propagation delay t imes when measured to V ref(H) = 3 V (instead of 2 V) will be 60 ns more than as speci fied above with
C L as spec ified.

TMS 8080
OUTPUT

3 V

C L i n c l udes probe and j i g capacitance .

LOAD C I RCU I T

D-18

t:j I f-'

\.0

vo
lta

ge
 w

av
ef

or
m

s
(se

e
no

te
s a

 a
nd

 b
)

IN
 ¢

1

IN
 ¢

2

O
U

T
A

15
-A

O

1 /0
 D

7-
D

O

O
U

T
SY

N
C

O
U

T
D

BI
N

O
U

T
W

R

IN
 R

EA
D

Y

O
U

T
W

A
IT

IN
 H

O
LD

O
U

T
H

LD
A

IN
 I

N
T

O
U

T
IN

TE

--
---'cl

¢1
�

__

___.,
�

 ld
(</>

1L
-4>

21

lw
(</>

1)
--

-+l
�

1

I
I

--
-----�1:'

{\

11
 I

t\

(\

t\

t\�.
...-_

_

I '
w

l<t>
21

I

I
II

I
I

1
I

I I
I

I
I

'
I

I
I

--
-----+---f

I
I

:
I

I
I

I
I

I
I

'-
------.--...JI

I
�

ld
(</>

2-4>
11

I

',
t l

t
il

I
:

I
I

I I
I

I
I

I
ld

(¢
1H

-<t>
21

I

I
I

II
I

I
I

I,
I

I
II

I
I

I
r-

-!-'P
X

Z
r-

--r

s
I

11-
--v:t

I

1
1

I
I,

I
I

II
I

I
x

--
-1-

--
r-

t-
-

-
-

-
-

-
-

-
--

---l-1-
Jc.

.._
_

_

:
I

I'
�

---+
�-

_
_

 __!+-
--

'-
--+

--
-

-+l-
- f-

--
-1-

-
I

I
I'

'�

'P
D

(a
d)

__
__._______.,:

1
�

I:
111

I

I I
: lAW

:I

I ll'j

1
II

I
I•

 1
oo

j
1 W

A

I
I

1
1P

D
(d

a)
 t X

�
' D

I --t-
----1

lh
(�

ai
--

-H
t-

11
I 1

1 I
1P

D
(d

a)
 1

1
1

1
I

I
I

I
I

1--
-

-
.

�
 I

I
I

-
-

-+
-

-
,-

-..1.
.

I
; -

-
D

A
TA

 IN
@

I I

1 1
I

1
I

D
A

TA
 O

U
T

I
-

-

-
-

-
-

-
-

-
-

-+-
--

--
-

--
-t

-
-T"

"-'

, -
r--

r-:-
1,

1 1
--

r,
-r-

--
-+1

-
t--t

-f-
,-

,
I

--
-..,

..
._,s

u(
da

-</>
11

11

1 11

fr,-
•D

w
�

1

l1
1

I
�

tp
x

z

--
--

--
--

-
-1 '-

--'f
I +

I•

•I
I l

su
(d

a-4>
2 1

I

I
11

1 I
 1

It

1
I

I
I

I
I

I
I

II
II

I
I

II
I

I
'P

D
(c

on
t)__

__.j
1+-

IP
D

(c
on

t)
--+l

;.

...-
I

I
I 1

1
I)

I I
I

I I
I

I
I

I
I

T
I

\.
11

I
1

II
j

I
1

I
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-+

1-
-1

1
I

+1
1

I
II

II
I

I
II

I
I

I
'P

D
ID

BI
)�

1P

D
ID

BI
)�

 ,,

I
II

II
I

I
I

II
I

I
I

I
11

I 1
1

II
I

=\-
I f

 I
-

-
--

-
-

-
-

-
--

)I
I

II
I

t
I

II
I

.,
I

I
)I

I I
I

lh
(r

dy
)..

..j 1+-
--+i

�
 I

PD
(c

on
t)

 --
---1

14-t"
'P

D
(c

on
t)

I

--;
;:- @�

I II

�
I

I
li

I
I

-
-

-
-

-
-

-
-

-
-

-
-

1
-�

II -
:
::lsu(r

dy
)�

W

IP
D

(c
on

t)
jll

I
1 1

su
(rd

y)
--

-.....
1

)
I

1
1

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
'_.:.:h

;;.: (r
d::_:Y

.;_i-.l
 __

_ ,.__
+j -M:r:

\ I
11

I
I

IP
D

(c
on

t)
..

..J
11:.-

-y
 I

@

 �

I
:

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
�

11-
-

-
--

-�
-

�-
-

-
�

I

I
II

1
J

I_
�

ll.-
t h

(h
ol

d)
 I

--l

.._
,P

D
(c

on
t)

11
su

(h
ol

d)
-.

..,
..-

--
II

I
-L

II

I
I

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-
�

-
-

�
-

-
�1--

-
-

-
-

-
-

-
--

-
ls

ul
in

t)-.4

"io
o---

ls
u(

in
t)::

:;:r=-�

1
-

..
.... lh

(in
t)

--+t

�
lh

(in
t l

�
'P

D
(in

t)

N
O

T
E

S
:

a
.

T
h

is
 t

im
in

g
 d

ia
g

ra
m

 s
h

o
w

s
ti

m
in

g
re

la
ti

o
n

sh
ip

s
o

n
ly

,
it

 d
o

e
s

n
o

t
re

p
re

se
n

t
a

n
y

 s
p

e
c

if
ic

 m
a

c
h

in
e

c
y

c
le

.
b

.
T

im
e

 m
e

a
su

re
m

e
n

ts
 a

re
 m

a
d

e
 a

t
th

e
 f

o
ll

o
w

in
g

 r
e

fe
re

n
c

e
 v

o
lt

a
g

e
s:

 C
lo

c
k

,
V

re
f(

H
)

�
9

.5
 V

,
V

re
f(

L
)

�
1

V
.

O
th

e
r

in
p

u
ts

,
V

re
f (

H
)

�
2

 V
,

V
re

f(
L

)
� 0

.8
V

_
c

.
D

a
ta

 i
n

 m
u

st
 b

e
 s

ta
b

le
 f

o
r

th
is

 p
e

ri
o

d
 w

h
e

n
 O

B
I N

 i
s

 h
ig

h
 d

u
ri

n
g

S
3

.
R

eq
u

ir
e

m
e

n
ts

 f
o

r
b

o
th

 t
su

(d
a

·0
1

)
a

n
d

 t
su

(d
a

·¢
2

)
m

u
st

 b
e

 s
a

ti
sf

ie
d

.

d
.

T
h

e
 r

e
a

d
y

 s
ig

n
a

l
m

u
s

t
b

e
 s

ta
b

le
 f

o
r

th
is

 p
e

ri
o

d
 d

u
ri

n
g

S
2

 o
r

 S
W

.
T

h
is

 r
eq

u
ir

e
s

e
x

te
rn

a
l

sy
n

c
h

ro
n

iz
a

ti
o

n
.

e
.

T
h

e
 h

o
ld

 s
ig

n
a

l
n1

u
st

 b
e

 s
ta

b
le

 f
o

r
th

is
 p

e
ri

o
d

 d
u

ri
n

g
S

2
 o

r
 S

W
 w

h
e

n
 e

n
te

ri
n

g
 t

h
e

 h
o

ld
 m

o
d

e
 a

n
d

 d
u

ri
n

g
 S

3
,

S
4

,
S

5
 a

n
d

 S
W

H
 w

h
e

n
 i

n
 t

h
e

 h
o

ld
 m

o
d

e
.

T
h

is
 r

eq
u

ir
e

s

e
x

te
rn

a
l

sy
n

c
h

ro
n

iz
a

ti
o

n
.

f
.

T
h

e

in
te

rr
u

p
t

si
g

n
a

l
m

u
st

b

e
 s

ta
b

le
 d

u
ri

n
g

th

is

p
e

ri
o

d

o
n

th

e

la
st

c

lo
c

k

c
y

c
le

o

f
a

n
y

in

st
ru

c
ti

o
n

to

 b
e

 r
e

c
o

g
n

iz
ed

o

n

th
e

 f
o

ll
o

w
in

g

in
st

ru
c

ti
o

n
.

E
x

te
rn

a
l

sy
n

c
h

ro
n

iz
a

ti
o

n
 i

s
n

o
t

re
q

u
ir

ed
.

g.

D
u

ri
n

g
h

a
lt

 m
o

d
e

 o
n

ly
,

t
im

in
g

 i
s

w
it

h
 r

�
sp

e
c

t
to

 t
h

e
 c

lo
c

k
 1

fa
ll

in
g

 e
d

g
e

.

F
IG

U
R

E
 2

3.6 T E R M I NA L ASS I G N M E N TS

3 .7 M E CH A N I CA L DATA

INDEX
DOT �

A 1 0
vss :

D4
D5
D6
D7 ·

TMS 8080

40-P I N C E R A M I C PACKAG E

O.�f--------------2.020 MAX ------------�� k§ -----@1

.. 1.-..1 1-J L....I L...J L.....I L...J � � � -

N OT E S : A. T h e t r u e -pos i t i o n p i n spacing is 0. 1 00 between centerl: ines. E ach p i n center l i n e is l ocated w i t h i n 0 . 0 1 0
of its t r u e l o n g i t u d i nal p o s i t i o n re lat ive to p i n s 1 and 40.

B . All d i mens ions a r e i n i n ches u n less otherwise noted.

D- 2 0

APPENDI X E

APPENDIX E

@
How to Align the Intecolor 8001 .

C 0 N T E N T S

1 . 0 SAFETY PRECAUTIONS

1 . 0 . 1 HIGR VOLTAGE

1 . 0 . 2 X -RADIATION PRECAUTIONS

2 . 0 INSTALLATION AND SERVICE ADJUSTMENTS

2 . 0 . 1
2 . 0 . 2
2 . 0 . 3
2 . 0 . 4
2 . 0 . 5
2 . 0 . 6
2 . 0 . 7
2 . 0 . 8
2 . 0 . 9
2 . 0 . 10
2 . 0 . 1 1
2 . 0 . 12

© 1976

SERVIC ING PRECAUT IONS
AC LINE TAP SELECTOR
VERTICAL DEFLECTION
HORIZ ONTAL DEFLECTION
HIGH WOLTAGE ADJUSTMENT
FOCUS ADJUSTMENT
PURITY ADJUSTMENT
COLOR TEMPERATURE ADJUSTMENTS
TOP , BOTTOM , AND S IDE PINCUSHION ADJUSTMENT
CONVERGENCE ADJUSTMENT PRELIMINARIES
CONVERGENCE STATIC ADJUSTMENTS
F INAL CONVERGENCE

E -1

1 . 0 SAFETY PRECAUTIONS

WARNING : The following prec aut ions should b e ob s erved :

1 . Do not in s t a l l , remove , or handle the p ic ture tub e in any
manner unless shatt er-proof gogg les are worn . People not
so equipped s hould be kept away wh ile p ic ture tubes are
handled . Keep p ic ture tub e away from the body while
han d l ing .

2 . P art o f the High Vo ltage is connec ted to the AC l in e
d irec t ly . T h i s c ircuitry , found on t h e Analog Module
(10004 7) , is iso lat ed from the remainder of the c ircuitry
by opt ic al isolator , U3 , and driver tran s former , T lO l .
Should s ervic e of the High Vo ltage b e required it is
recommended that an isolat ion tran s former b e in serted in
the power l ine between the Int ecolo�8 001 and the AC
supp ly b efore any s ervic e is performed . When the Chas s is
mus t b e op erated d irec t ly from the AC supp ly , the power
plug shoul d always be inserted in t he c orrec t polarity to
connec t the High Voltage common (emitter of QS) to the
ground s id e of the AC l ine . Check with a VOM or osc illo
scope to s ee if a poten t ial exi s t s between this point and
a known earth ground . A z ero read ing should b e ob tained .
I f any volt a.ge reading is ob tained , revers e the power p lug
and rec hec k for z ero meter read ing .

3 . When s ervic e is required , ob s erve the orig inal lead dres s .
Extra prec aution should be g iven to as sure c orrec t lead dress
in the h igh volt age c ircuitry and v i d eo area . Where a short
c ircu it has occurred , replac e tho s e component s that ind ic ate
evidenc e of overheat ing . Alway s us e the manufac turer ' s
rec ommended replac ement component .

E-2

1 . 0 . 1

1 . 0 . 2

HIGH VOLTAGE

NOTE : THE NOMINAL HIGH VOLTAGE F OR THE INTECOLOR® 8001
17" or 19" TERMINAL IS 2 5 KV . THE HIGH VOLTAGE MUST
NOT , UNDER ANY CIRCUMSTANCES , EXCEED 2 7 . 5KV .

Eac h t ime a terminal ' s High Vo ltage requires s e rvic ing ,
measurements s hould be made at no rmal viewing sett ings
of t he Brightness Control . This will afford as suranc e
t hat ;

1 . T he H igh Vo ltage is wit hin l imit s spec if ied .
2 . The High Voltage regulat ion c ircuit is func t ion

ing p roperly .
3 . X -Rad iat ion is at a min imum .

If the High Vo ltage mea sures abnormally high or the
High Vo ltage Regulat ion C ircuit is not func t ion ing properly ,
the Termina l s hould be restored to normal operat ion through
s ervic e or adjus tment s . (See 2 . 0 . 5 for High Voltage
Adj us tment p roc edure .)

IT IS IMPORTANT TO USE AN ACCURATE AND RELIABLE HIGH
VOLTAGE METER .

X -RADIATION PRECAUTIONS

The prima ry s ourc e of X Rad iat ion in this Terminal is
the p ic ture tub e .

The tub e ut ilized for the above ment ioned func t ion in
the termin a l is spec ifically cons t ruc t ed to l imit x
Rad ia t ion emis s ions .

For cont inued X -Rad iation protec t ion , the replac ement tub e
mus t b e the s ame type as the original , inc lud ing s uf f ix
letter , o r an ISC approved type .

E-3

2 . 0

2 . 0 . 1

INSTALLATION AND SERVICE ADJUSTMENTS

SERVICING PRECAUTIONS

Purity , Color , T emperature , and Convergenc e adj us tment s
for the Int ecolor® 8 001 are es s ent ially the s ame as for
c onvent ional s hadow mask color tub es . Cert ain p re
c aut ions s hould be taken , however , in s ervic ing the
Int ec o lo-r®8 001 terminal .

S ome p rec aut ions to ob s erve while servic ing the so l id
s tat e c has s is are l is ted below :

1 . Always connec t the ground lead of a tes t ins t rument
to the c ha s s is b efore connec t ing the pos itive lead ;
c onvers ely , a lways remove the ground lead of a test
ins t rument last .

2 . Do not c hec k for high vo ltage by drawing an arc . U s e
a high vo ltage meter or a high vo ltage p robe with a VOM .

3 . Do not b ridge electrolyt ic c apac i tors s inc e resultant
surge s may damage solid state d evic e s .

4 . Some trans istors are equipped with heat s inks . Do not
operate the tran s i stor with the heat s ink removed .

5 . All soldering i rons used where t rans is tors and integrated
c hips are conc erned s hould be 35 watt (6 vo lt s) irons and
grounded in suc h a way that no vo ltag e will be app lied to
t he solid s t at e d evic e during the soldering operat ion .
This p rec aut ion is to prevent pos s ib le d amage to the
d ev ic e due to exc es s ive heat or voltag e app l ied under
no b ias cond itions .

6 . When s ervic ing the video c ircuit ry it is rec ommen d ed that
an osc illoscope of at leas t 100 MHZ b an dwid th , suc h as
the Tekt ronix 454A , be used .

E-4

2 . 0 . 2

2 . 0 . 3

2 . 0 . 4

AC LINE TAP SELECTOR

The AC L ine Tap Se lec tor is loc ated ins ide t he c ha s s is
on t he r ight hand s id e a s viewed from the rear (See
F igure 2 . 0 . 2 . 1) . In areas having a 1 15VAC l ine
supp ly , this tap s hould be left in t he 1 15 VAC
pos it ion . Other t aps are s hown d epend ing on t he
l ine volt age .

VERTICAL DEFLECTION

At 115 volts l ine voltage adjus t t he VERTICAL HEIGHT
CONTROL , R3 , (See F igure 2 . 0 . 3 . 1) and t he VERTICAL
POSITION CONTROL , R4 , s o that t he picut re is c ent ered
and t here is a 1 2 " wide by 1 0 " h igh d i splay . A
suitab le d isp lay is found by f i l l ing up the sc reen
with a s ingle c ha rac ter or eras ing the sc reen with
a b ackground c olor .

HORIZ ONTAL DEFLECT ION

Adj us t t he HORIZ ONTAL WIDTH CONTROL , R6 , (Analog
Module , 10004 7) (See F igure 2 . 0 . 3 . 1) so t ha t the
p ic ture has a 12" wide by 10" h igh d i splay .
HORIZ ONTAL CENTERING is acc omp l i s hed by adjus t ing
R3 on t he rear edge of the D isplay Generator C a rd ,
100117 . Adj us t ing the Pot R3 c auses one c harac ter
movement s to t he r ight or left of t he s c reen .

E-5

B1ue /Wht

B1ack/Wht

Green /Wht
Red /Wht

Vert ic al
Po s i t ion

4 -[= =] 105

3 --L = ::=- J 115
E::J Black

2 --c �_-_] 125 Tap S e lec tor
1 -c =. -=: :::J 13 5

AC LINE TRANSFORMER TAP SELECTION
FIGURE 2 . 0 . 2 . 1

Horizontal (!) (!) Pincushion
R7 R6

Vert ic al
Height @) R3

@ Vert ic al @ P incushion
R4 R5

Ho rizontal
Width

ANALOG MODULE (100047) PRINTED CIRCUIT BOARD BOTTOM VIEW
FIGURE 2 . 0 .3 . 1

E-6

2 . 0 . 5

2 . 0 . 6

2 . 0 . 7

HIGH VOLTAGE ADJUSTMENT

Pre s e t H igh Voltage Adj us tment C ontrol R8 (Ana log
Module 10004 7) t o 1 / 2 c lockwis e , and B r ightne s s
C ontrol Rl7 , t o max imum c ount erc lockw i s e (min imum
b r ightnes s) .

Remove t he H igh Volt age Anode C ap from the tub e and
c onnec t a Pomona #29 00A or equivalent to the High
Vo lt age C ap . CAUTION : BE SURE HV PROBE GROUND IS
GROUNDED . INSURE THAT ANODE CAP IS IS OLATED FROM
ALL PERS ON S AND EQUIPMENT . Adj us t H igh Volt age
Cont rol , R8 for 25 KV .

FOCUS ADJUSTMENT

C re a t e a fu ll page of white d o t s on t he CRT s c reen
by ut i l iz ing t he fol lowing proc edure :

1 . S e lect F oreground Color - WHITE

2 . Select Background Color - BLACK

3 . P re s s keyb oard " . " (per iod) and a l low t o
repeat un t il sc reen is full o f w h i t e dots .

Ad j us t the FOCUS pot (found on the r ight s id e (viewing
from rear) of the An a log C a rd mount ing b racke t .
Remove t he external c a s e with 6 s c rews) for opt imum
focus over t he ent ire sc reen . (See F igure 2 . 0 . 6 . 1)

PURITY ADJUSTMENT

T he Int ec o lo r®8 0 0 1 s hould always b e fac ing e i ther north
o r s outh dur ing p� ,rity adj us tment . This as sures t hat any
effec t o f the earth ' s normal magne t ic f ield upon b eam land ing
will b e negligible when the terminal i s p lac ed in i t s
normal viewing loc a t ion .

The ins t rument s hould b e a t room t emp erature (6 0 ° F o r above)
for at l eas t 30 minutes before s et -up adj u s tments a re mad e .
Allow a minimum o f ten minutes op erat ion at h igh b e am current
(brightnes s full without b loom) b efore at t empt ing purity
o r c onvergenc e adj us tment s .

E-7

Rl8 Focus Adj us tment

Rl 7 Brightness
Adj us tment

FOCUS AND BRIGHTNES S ADJUSTMENT LOCAT ION

FIGURE 2 . 0 . 6 . 1

E-8

Remove 3 Sc rew s
o n eac h s id e t o
remove c as e .

S hould any part s of t he c has s is b ec ome magnet iz ed , i t
w i l l b e nec es s ary to manually degaus s t h e affec ted areas .
Move a manual (GC 93 17 or equivalent) degaus s ing c o i l
s lowly around t ho s e areas and t he fac e of t he C R Tube
and s lowly withdraw to a d i s t anc e of s ix feet b efore
d isconnec t ing t he c o i l from the AC power sourc e .

B efore p erforming t he purity adj us tment s , the c enter o f
t he ras ter mus t b e c onverged and t he dynamic convergenc e
s et roughly a s exp lained in S ec t ion 2 . 0 . 12 . C heck
t hat the focus c ontrol is prop erly s et (See Sect ion 2 . 0 . 6) .
The focus adj us tment s hould be made with the b r ightness
cont ro l s et at maximum beam current without b loom .

1 . Purity adj us tments are mos t accurate while
ob s e rving one sc reen only , p referab ly red .
Erase the sc reen with t he b ac kg round c o lor "RED" .

2 . Loos en the yoke wing nut s and move t he yoke to the
rea r a s far as pos s ible . (See F igure 2 . 0 . 7 . 1)

3 . Rot at e the purity magnets and adj us tment t ab s so
t hat a c lean red area is p roduc ed at t he c enter
o f t he sc reen . Pus h the yoke fo rward unt i l a
uni form red ra ster is obtained . T ighten the
yoke wing nut s .

4 . Eras e the sc reen with the b ac kg round c o lo r
"WHITE" . Check f o r a un iform whi t e sc reen
(s ee COLOR TEMPERATURE ADJUSTMENTS , S ec t ion 2 . 0 . 8 ,
for p roc edure) . If un iformity has no t b een
ob t a ined , rec onverge the c enter o f t he sc reen
and repeat t he purity adj us tment s .

5 . I t s hould b e noted t hat purity adj us tments also
affec t the focus and DC Horiz ontal and Vert ic a l
screen po s i t ions and these parameters may have to
b e readj usted as out lined under S ec t ions 2 . 0 . 3 ,
2 . 0 .4 , and 2 . 0 . 6 .

E- 9

I

B L U E L A T E R A L

M A G N E T

A S S E M B LY

P U R I T Y
R I N G S

B L U E

L A T E R A L

A D J U S T M E N T

B L U E
L A T E R A L

A D J U S T M E N T

B L U E L A T E R A L

M A G N E T

A S S E M B LY -
P U R I T Y

R I N G S

C O N V E R G E N C E
Y O K E

A S S E M B LY �)))))l)!o·- -- --!
I

1 7 ' ' SCREEN

- - - R - - --,

C O N V E R G E N C E
Y O K E

A S S E M B LY

19 " SCREEN

;(((((((� �

D E F L E C T I O N

Y O K E

H O U S I N G

D E F L E C T I O N
Y O K E

· D E F L E C TI O N
Y O K E

H O U S I N G

D E F L E C T I O N
YO K E

YOKE ; BLUE LATERAL , AND PURITY

LOCATIONS AND ADJUSTMENTS

FIGURE 2 . 0 . 7 . 1

E-10

2 . 0 . 8

2 . 0 . 9

COLOR TEMPERATURE ADJUSTMENTS

1 . P l ac e a sc reen ful l of WHITE c ha rac t ers or ERASE
the sc reen in WHITE . Turn t he sc reen grid d rive
controls Rl4 (RED) , Rl5 (GREEN) , Rl6 (BLUE) (Analog
Module 10004 7) to min imum drive (Fully CCW) t hen
turn t he BRIGHTNES S Control , Rl7 to maximum brightnes s
(Fully CW) .

2 . Turn t he RED cont rol , Rl4 , c loc kwise unt il the red
vert ic al ret rac e ra s t er l ine at t he top of t he sc reen (;, ,\
is j us t vi s ib le . Turn the GREEN Cont rol , Rl5 , c lock-LR� /�
wise unt i l t he gr e:n vert ic al retrac e ras ter line at
the top of the sc reen is just vis ib l e . Repeat the
s ame for the BLUE Cont rol , Rl6 .{f. a t5)

3 . Adj us t the BRIGHTNESS Contro l , Rl7 , unt i l t here is
no vis ib le vert ic al retrac e raster l ine and the
brightne s s is at a comfort ab le viewing level with a
min imum of color s a turat ion .

4 . Adj u s t eac h screen grid d rive cont ro l , RED (Rl4) ,
GREEN (Rl5) , and BLUE (Rl6) , unt i l a white sc reen
i s ob t ained , or a 9300° K c o lor t emperature (WHITE) .

TOP , BOTTOM , AND S IDE PINCUSHION ADJUSTMENT

Plac e a suitable test pattern on t he sc reen suc h as all
1 1+ 1 1 (p lus) symbols or all 1 1 • 1 1 (period s) . (See S ec t ion
2 . 0 . 6 for pattern set-up) . Any c o lor o r WHITE may b e us ed .

T he top and bottom (Vert ic al) p in cus h ion adj u s tment is
ma d e , if nec es s ary , by adj us t ing RS on the Analog Module
(10004 7) for s t raight horizontal l ines at t he top and
bo ttom o f t he raster as s hown in F igure 2 . 0 . 3 . 1 and
F igure 2 . 0 . 9 . 1 .

The s id e (Horizontal) p in cus h ion adjus tment is mad e by
adj us t ing R7 on the Analog Module (10004 7) for s t raight
vert ic al l ines on t he left and r ight s id e o f t he ras ter .

E-l l

V:

H:

GND

v
Vert ic al
P incus hion: R7

Ho rizontal
P incush ion= R5

PINCUSHION ADJUSTMENT

FIGURE 2 . 0 .9 . 1

V+

v-
*

� T

HORIZONTAL AND VERTICAL RAMP ADJUSTMENTS
ANALOG MODULE (100047)

FIGURE 2 . 0 . 10 . . 1 . 1

E-1 2

U l l / 6 : Horizontal:Rl

2 . 0 . 10 CONVERGENCE ADJUSTMENT PRELIMINARIES

The CONVERGENCE ADJUSTMENT PRELIMINARIES are nec es s ary
only i f c onvergenc e c annot be obtained as out l ined under
FINAL CONVERGENCE ADJUSTMENTS (Sect ion 2 . 0 . 12) , o r if
t he s e areas have required s e rvic e o r p art s rep lac ements ,
or the adj us tment pot s have b een t ampered wit h . An
o sc i l lo s c op e , suc h as the Tekt ron ix 454 , or equivalent
will be nec e s s ary for these adj us tment s .

2 . 0 . 1� � 1 PRELIMINARY HORIZONTAL RAMP ADJUSTMENT

The Ho rizontal Ramp Ull/6 amp litude is adj u s t ed by Rl on
the An alog Module (100047) . The ramp i s adj ust ed s o
that t he po s it ive peak is equal in height t o t h e n egat ive
p eak (symmetric al about ground or v+ = V-) . (S ee
F igure 2 . 0 . 10 . 1 . 1) .

2 . 0 . 10 . 2 PRELIMINARY VERTICAL RAMP ADJUSTMENT

The VERTICAL RAMP Ul0 /6 ampli tude i s adj us ted by R2 on
the Analog Module (10004 7) in the s ame manner as the
HORIZ ONTAL RAMP ADJUSTMENT (See F igure 2 . 0 . 10 . 1 . 1) .

2 . 0 . 10 . 3 PRELIMINARY HORIZ ONTAL PARABOLA ADJUSTMENT (U'l / 3)
RIGHT & LEFT CENTER , TUBE AREAS 4 & 5 (See F igure 2 . 0 . 12 . 2) .

Adj ust R9 on the Analog Module (10004 7) unt i l the bot tom
o f the P arabola is at Ground leve l . S ee F igure 2 . 0 . 10 . 3 . 1 .

2 . 0 . 1 0 . 4 PRELIMINARY VERTICAL PARABOLA ADJUSTMENT (U8 / 3)
TOP & BOTTOM CENTER , TUBE AREAS 2 & 3 (See F igure 2 . 0 . 1 2. 2) .

Adj u s t RlO on t he Analog Mo dule (10004 7) unt il the bot tom
o f the Parabola is at ground level . S ee F igure 2 . 0 . 1 0 . 3 . 1 .

2 . 0 . 10 . 5 HORIZ ONTAL AND VERT ICAL RAMP ADJUSTMENTS .

Mon itor t he HORIZ ONTAL PARABOLA at U7 / 3 on the Analog
Module (10004 7) . Superimpos e a sma ll amount of the video
s ignals (with a sc reen full of WHITE c harac t ers) by
adding a small amount of the "B" trac e (c onnec t a s c op e
p robe to the c o ll ec to r of Q26 o r Q27 o r Q28) o n t he
o sc illoscope (CHOP , INVERT B , ADD) to the"A" t rac e
(connec t e d to U7 / 3) . The above may also b e acc omp l i s hed

E-13

by s imp ly c onnec t ing the "A" c hannel Scope groun d t o a
groun d in the vic in ity of Q26 , Q27 , or Q28 . The video
will b e apparent on the parabola , a s s hown in F igure
2 . 0 . 10 . 5 . 1 .

Adj us t Rl unt i l the superimpos ed video i s as s hown
in F igure 2 . 0 . 10 . 5 . 1 .

Monitor the VERTICAL PARABOLA a t U8 / 3 and adj ust R2 of
the Analog Module (100047) unt il the end po ints o f the
p arabola are equal in height .

T he above proc edure is s hown in F igure 2 . 0 . 10 . 5 . 2 .
2 . 0 . 10 . 6 VACANT

2 . 0 . 10 . 7 CORNER PARABOLA ADJUSTMENTS
TUBE AREAS 6 , 7 , 8 , and 9 (See F igure 2 . 0 . 12. 2)

The CORNER PARABOLA ADJUSTMENTS are ma d e by Rl l , Rl2
and Rl3 on the Ana log Module 100047 and monitoring the
waveform as s hown at Ul4 / 3 a s in F igure 2 . 0 . 10. 7 . 1 .
OFF SET is a dj usted to zero by Rl3 by adj us t ing the
waveform baseline to ground as s hown in F igure 2 . 0 . 10. 7 . 1 ,
Wave fo rm A .

BAS ELINE SLANT is adj us ted b y Rl2 on Ana log
(10004 7) as s hown in B of F igure 2 . 0 . 10 . 7 . 1 .
for Vsc equal to " 0 " vo lts .

Module
Adj us t

VERTICAL SYMMETRY i s adj usted a s s hown in C o f
F igure 2 . 0 . 10 . 7 . 1 us ing Rll on Ana log Module (100047) .
Alignment is mad e by adj us t ing Rll unt i l +VHC = -VHC "

2 . 0 . 1 0 . 8 HORIZ ONTAL , VERT ICAL and CORNER PARABOLA TOUCH-UP

Touc h up of the HORIZ ONTAL , VERTICAL , and CORNER PARABOLAS
c an b e s t be accomplished by monitoring the wavefo rms on
the Jl on the Convergenc e Module (100014) .

A . Adj us t the HORIZ ONTAL PARABOLA offset , VHP with R9
on the Ana log Mo dule (10004 7) by monitoring the
w aveform at J l/ 1 on the Convergenc e Module (100014)
a s s hown in F igure 2 . 0 . 10 . 8 . 1 , A .

B . Adj us t the VERT ICAL PARABOLA offs et , VVP with RlO on
the Analog Module (100047) by mon ito ring the waveform
at J l / 5 on the Convergenc e Module (100014) as s hown in
F igure 2 . 0 . 10 . 8 . 1 , B

C . Adj us t the CORNER PARABOLA offset , VCf with Rl3 on
the Ana log Module (10004 7) by mon itor�ng the waveform
a t Jl / 7 on the Convergenc e Module (100014) as s hown
in F igure 2 . 0 . 10 . 8 . 1 , C .

E-14

HORIZ ONTAL - R2
VERTICAL - RlO

GND

HORIZ ONTAL AND -VERTICAL PARABOLA ADJUSTMENTS

Superimp o s e d
Video

FIGURE 2 . 0 . 10 . 3 . 1

Adj us t Rl (Analog Module ,
10004 7) to s how 1 divi
s ion d if ferenc e between
S t art and S top o f Video .

�
1 d ivis ion

f
Adj us t Scope Gain
to 6 d ivis ion s

HORIZ ONTAL PARABOLA VIDEO ADJUSTMENT
F IGURE 2 . 0 . 10 . 5 . 1

E-15

-�

VERTICAL PARABOLA HEIGHT ADJUSTMENTS

FIGURE 2 . 0 . 10. . 5 . 2

E-1 6

Adj ust Vs :VF
us ing R2 on
Analog Module
(10004 7)

GND

A . CORNER PARABOLA OFFSET

B . CORNER PARABOLA BASELINE SLANT

C . CORNER PARABOLA VERTICAL SYMMETRY

GND

1 . Adj us t Rl3 , Ana log Module
(10 0 04 7) to v0c = "O "
Vo lts offset .

2 . Mon itor Waveform at Ul4 / 3
o n Analog Module (10004 7)

GND

1 . Adj us t Rl2 An a log Module
(10004 7) to Vsc = " O "
Vo lts .

2 . Monitor wave fo rm at Ul4 / 3
on An a. log Module (10 004 7)

-VHC
•

GND

1 . Adj us t Rll Analog Module
(10004 7) to +VHC = -VHC

2 . Monitor wave form at Ul4/3
on Ana log Module (10004 7)

CORNER PARABOLA ADJUSTMENTS

FIGURE 2 . 0 . 10. 7 . 1

E - 1 7

Adj ust R9 on
Analog Module
(10004 7) unt il
VHP = "O" Vo lts

HORIZ ONTAL PARABOLA
Jl/ 1 ON CONVERGENCE MODULE (100014)

VvP

A .

Adj us t RlO on
Analog Module
(10004 7) unt il
Vvp = " O " Vo lts

-,----
VERTICAL PARABOLA

Jl / 5 ON CONVERGENCE MODULE (100014)

B .

Adj us t Rl3 on Analog Mo dule
(10004 7) unt il�Vcp =

"0 " Volts

'
CORNER PARABOLA

J l / 7 ON CONVERGENCE MODULE (100014)
c .

HORIZONTAL , VERT ICAL , AND CORNER PARABOLA TOUCH-UP

F IGURE 2 . 0 . 10 . 8 . 1

E-18

2 . 0 . 1 1 CONVERGENCE STATIC ADJUSTMENTS

Plac e a dot pattern on the screen in the follow ing
manner from the Keyb oard .

Define FOREGROUND COLOR AS " WHITE "
BACKGROUND COLOR AS "BLACK"

Depre s s " . " (p eriod) Key and al low to rep eat
unt il the sc reen is full of whit e d ots .

The above will f ill up the sc reen with d o t s . Now
plac e "+ " symbols ut iliz ing t he keybo a rd a s s hown
in F igure 2 . 0 . 11. 1

Turn all the pots on the Convergenc e Module (100014) t o
the s t ra ight up po s it ion a s s hown i n F igure 2 . 0 . 1 1 . 3 .

Now adj ust the s t a t ic magnets and the B lue Lat era l Magnet
to al ign the "+ " symbols R , G , B , c o lors in Sc reen S ec to r 1 ,
a s s hown in F igure 2 . 0 . 11 . 2 , s o as t o appear a s ' 'WHITE " .
This will occur when the RED , GREEN , AND BLUE c o lors a re
accurat ely superimposed on t op o f eac h othe r . With the
exc ept ion o f BLUE lat eral wh ic h is exp lained b elow .

For the above to b e accurate the tube mus t have b een
ext e rna lly d egaused , the Purity adj us t e d , the FOCUS Rl8
adj us t ed for s harp , and the BRIGHTNES S , Rl7 , Analog
Module (1 00047) , s et fo r a low leve l with the c olor
t emperature b e ing s et to 9600°K as exp lained in previous
s ec t ions . DO NOT ATTEMPT FURTHER CONVERGENCE UNLES S THE
ABOVE HAS BEEN PREVIOUSLY PERFORMED . (See S ec t ions

The b eams move at app roximat ely the s ame ang le as the
c onvergenc e magnets are offset from t he vert ic al plan e .
B lue , s inc e it is mounted in the vert ic al p lane moves

E-19

+

+ + +

+

CONVERGENCE TEST PATTERN

FIGURE 2 . 0 . 11 . 1

E- 2 0

2 . 0 . 1 2

the b eam up and down vert ic ally ; red and green move the
respec t ive b eams on a line at about a 6 0 ° angle from the
vert ic a l . The blue lateral magnet moves all three b eams
in the horizontal plane , the b lue b eam in one d i rec t ion
and the red and green beams in the oppos i t e d i rec t ion in
a 5 to 1 rat io . The blue beam has the great e s t lateral
shift .

The thumb s c rew adj us tment o f red , green , and b lue c enter
c onvergenc e magnets c an b e rot at ed in e ither d i rec t ion
c ont inuous ly . F lux c hange is acc omp l i s hed by _ rot at ing
the pole po s it ion of the magnets , not by moving the
ma gnets farther from or c lo s e r to the respec t ive guns .

Adj us t the Static Blue s o that the B lue in the c enter o f
the sc reen i s superimposed on the RED and GREEN .

FINAL CONVERGENCE

Touc h up the c enter c onvergenc e with the pot s Rl3 (GREEN) ,
Rl4 (RED) and RlS (BLUE) on the C onvergenc e Module (100014)
as s hown in F igure 2 . 0 . 11 . 2 and F igure 2 . 0 . 11 . 3 .

Onc e c ent er c onvergenc e has b een adj u s ted proc eed to the
next convergenc e Sc reen Sec t o r , 2 , as s hown in F igure 2 . 0 . 1 1 . 2 .
Proc eed with the alignment in the order o f the s ec t o r numbers
as s hown in F igure 2 . 0 . 11 . 2 . Aft er eac h Sector is aligned ,
c hec k and touc h up the c enter c onvergenc e . Note that
the adj ustment pot s on the C onvergenc e Module (100014) are
a rranged in the same loc at ion as e ac h Sc reen S ec to r as
viewed on the tub e fac e (and the c omponent s id e of t he
board) and the t rio of pot group s in each s ec to r are
arranged as GREEN , RED , AND BLUE c o rre spond ing to the
loc at ion of the GREEN , RED , and BLUE elec tron b eams a s
viewed from t he tube fac e .

When c omp leted with the above , touc h up eac h Screen S ec tor
a s needed in the SAME ORDER as out l ined above . Do not
v io late the o rder of the Sc reen S ec tor numbers in the
adj us tment proc edure .

Never att empt a c onvergenc e proc edure without f i rs t s et t ing
the C onvergenc e Module (100014) pots to the c en t er po s it ion
as s hown in F igure 2 . 0 . 12 . 3 and following the Sc reen S ec tor
numb ers . It is s eldom nec e s s ary for the s t a t ic magnets to
be adj us t e d unles s s hipment v ibrat ion c aus es c onvergenc e
c o i l o r s t at ic magnet movement s or unles s c onvergenc e c o il
o r yoke replac ements bec ome nec e s s ary .

E - 2 1

8 2 6

5 1 4

9 3 7

CR TUBE CONVERGENCE SECTORS (SCREEN VIEW)
FIGURE 2 . 0 . 11 . 2

R G R G R G

CD 8 CD CD 2 @ @ 6 ®
(D B (D B (i) B

R G R G R G

® 5 ® (f) 1 (!) (!) 4 (±)
@ B @ B (!) B

R G R G R G

@ 9 ® (f) 3 ® ® 7 (±)
(!) B (I) B (f) B

8 1

I I I I I I .9 16

v- -_
CONVERGENCE BOARD ASSEMBLY SHOWING

CONTROLS AS SOCIATED WITH TUBE SECTORS
(TOP VIEW)

NOTE : Green and Red Pots a re int erc hanged on a l l 1 7 " Tub es .
F IGURE 2 . 0 . 12 . 3

E - 2 2

The CPU
Operating Systen1

-

1 . 0

2 . 0

3 . 0

4 . 0

Appendix A .

Appendix B .

Appendix c .

T A B L E 0 F C 0 N T E N T S

Page

TERMS AND ABBREVIATIONS 1 - 2

CPU O . S . COMMANDS AND MESSAGES 2-4

INTECOLOR
®

8001 CONFIGURATION

3 . 1 1/0 Sys tem
3 . 1 . 1 Logical and Physical Devices
3 . 1 . 2 I/0 Subroutine s
3 . 1 . 3 User Supplied Device s

5
5-7
7-10

1 1)- 11

CPU OPERATING SYSTEM 1 1

4 . 1

4 . 2

CPU O . S .
4 . 1 . 1
4 . 1 . 2

Implementation and Execution
CPU O . S . Implementation
Starting CPU O . S .

CPu . o . s . Operation And Commands
4 . 2 . 1 B Command (Back to CRT O . S .)
4 . 2 . 2 D Command (Display Data)
4 . 2 . 3 F Command (F i l l Memory

With Constant)
4 . 2 . 4 . G Command (Go To)
4 . 2 . 5

4 . 2 . 6

4 . 2 . 7
4 . 2 . 8
4 . 2 . 9

H Command (Hexadecimal
Arithme tic)
I Command (Re set CRT to
State S0)
L Command (Read Hex F i le)
M Command (Move Memory)
R Command (S e lect Baud Rate
2)

4 . 2 . 1 0 S Command (Subs ti tute Memory)
4 . 2 . 1 1 X Command (Examine And

Modify Regi sters)
4 . 2 . 12 E Command (End File)
4 . 2 . 1 3 W Command (Write Memory)
4 . 2 . 14 N Command (Null Punch)

12
1 2
1 2
1 2
1 2

12-14
14-15

16-17
1 7 - 1 8

1 8

18- 1 9
19- 2 1

2 1

2 2
2 3- 2 4

2 4
2 5- 2 6

2 6

I ns truc tion Summary 2 7- 3 8

Instruction Exe cution Time s and Bit P atterns 3 9- 4 2

Hexadecimal Program Tape Format 43-44

TERMS :

TERM

Address

Bit

Byte

Console

Instruction

Obj ect P rogram

Program

Source Program

System Program

--TERMS AND ABBREVIATIONS--

DESCRIPTION

A 1 6 bit number ass igned to a memory location
corre sponding to i ts sequential po sition .

The smallest unit o f information which can
be represente d . (A bit may be in one o f
two state s , 0 o r l) .

A group of 8 contiguous bits occupying a
s ingle memory location .

Re fers to the 8001 CRT Display as the
output device , and the 8001 keyboard
as the input device . Allows operator
interface with the CPU operating sys tem .

The smallest single operation that the
computer can be direc ted to execute .

A program which can be loaded directly into
the computer ' s memory and whi ch requires no
alte ration before execution . An obj ect
program is usually on paper tape , and is
produced by as sembling (or compiling) a
source program . Instructions are re
pre sented by binary machine code in an
obj ect program .

A sequence o f ins tructions which , taken as
a group , allow the computer to accomplish a
de sired task .

A progam whi ch i s readable by a programmer
but which must be trans formed into obj ect
program format before i t can be loaded into
the computer and executed . Instructions in
an as sembly language source program are
represented by their as sembly language
mnemoni c .

A program wri tten to help in the proces s of
creating user programs .

l

TERMS -- (Continued) :

TERH

User Program

Word

ABBREVIATIONS :

ABBREVIATION

Cr

CPU

Lf

PROM

Sp

nnn B

nnn D

nnn 0

nnn Q

nnn H

DESCRIPTION

A program written by the user to make the
computer perform any de s ired task .

A group o f 16 contiguous b its occupying
two success ive memory locations . (2 byte s) .

DESCRIPTION

Carriage return

Central Processing Uni t

L ine feed

Programmable Read Only Memory

Space Bar

nnn represents a number in binary forma t .

nnn repre sents a number in decimal format .

nnn repre sents a number in octa l format .

nnn represents a number in octal format .

nnn represents a number in hexadecina l format .

Shaded portions of CPU/operator dialog repre-
sent Console output.

CPU O . S . COMMANDS AND MESSAGES

2 . 0 CPU OPERATING SYSTEM (0 . S .)

STARTING ADDRESS - 100 When in 8708 ERASABLE PROM

2

/

All arguments are in hexadecimal form .

A �A M ie.ST 2., 3/-\ ?
B GO BACK TO CRT O . S .

D DI SPLAY IN HEXADECIMAL FORMAT

D low addres s , high address

tt - Sif! ATS flT f_(j)(/)(j) ' P/3L.I S E� F!l FFF tr'
(j;{ji - � 1
(J> c -(/)2.
CD2.- (JJ3

Memory from low addre s s to high addre ss i s di splayed in hexadecimal
form .

E END

E addre s s

Endfile mark is created ; 60 null characters are written on
punch device

F FILL MEMORY

F low addre s s , high addre s s , data

Memory from low addre s s to high addre s s is f i lled with data .

G GO TO

G Addre s s , bkptl , bkpt2

Program control i s trans ferred to address . Breakpoints are set at
bkptl and bkpt2 . When break po ints are executed , all o f the CPU
registers are automatically displayed .

H HEXADECIMAL ARITHMETIC

H number , number sp

The sum and differenc e of the two numbers i s printed in hexadecimal .

L LOAD HEXADECIMAL TAPE

L Bias addres s

A hexade c imal format tape i s read into memory at tape addr ess plus
bias addre s s .

3

M MOVE

M low addres s , high addre s s , de stination address

A block of memory from low address to high address is moved
to location destination addres s .

N PUNCH NULL

N

S ixty nul l characters are punched .

R BAUD RATE FOR SECOND RS- 2 3 2 CHANNEL

R rate number

The rate number mus t be between l and 7 . See the " How to use the 8001"
Manua l .

s SUBSTITUTE

S address Sp

Memory at address is displayed , and can be modi fied by typing
in new data . Termination wi th space opens next sequential
address , termination with carriage return ends command .

X E XAMINE REGI STERS OR MEMORY

X reg ident

Regi ster is displaye d , and can be modified as in the S command .

W WRITE HEXADECIMAL

W low addres s , high addre s s

Memory from low address to high addre ss is punched i n hexadecimal
format.

MESSAGES

?

CPU O . S . ready to accept commands

Error . Reenter command

4

3 . 0 INTECOLOF-
®

8 0 0 1 CONFI GURAT ION

3 . 1 I /0 SY STEM

The I nteco lor
®

3 0 0 l can s upport a number of input/output devi c e s ,

from the CRT display and the RS 2 3 2C I /0 to dev i c e s supp l i e d by

the u s e r . I n general , i t may be conve nient to have two dev i ce s

wh ich can perform the same function , but to use them for d i f ferent

purpo ses a t various time s . For example , i f a program i s b ei ng a s semb l ed ,

you might want the program l i s ti ng to be wri tten on one devi ce , whi l e

any sys tem me s s ages n o t relevant t o the a s s emb ly would be wr itten on a

s eparate devi c e .

The I . O sys tem des cribed be low permi t s thi s typ e o f change . Dev i c e s

may be a s signed fun c tions vi a the Sys tem Mon i tor S command (se e S ection

4 . 2 . 1 1) or via the us er ' s program . That i s , i t i s po s s ible to wr ite

program s whi ch r ead from several diff erent i nput devi c e s and wr i te to

s everal di fferent output devices of the program ' s choo s i n g , w i thout re

quir i ng a ny human intervention .

3 . 1 . 1 LOG I CAL AND PHYS I CAL DEVI CES

Regardle s s of how many I /0 devices a particular Intecolor
®

8 0 0 1

ha s , th ere a r e o n l y four ope ration s whi ch c a n b e p e r formed to

any of them . For examp l e , a WRITE operation can be performed

e i ther to the RS 2 3 2C channe l 1 to a host computer or a high speed

tape s y s tem . A l l s y s tem program s and u ser-wr i tten programs , therefore ,

acce s s four LOGICAL DEVICES (i . e . , a WRITE device) which are then trans

lated to a THYS I CAL DEVICE (i . e . , a high speed tap e) by the I /0

s y s tem .

The four logi c a l dev i c e s available to program s are :

CONSOLE

READER

WRI TE

LIST

An interac tive , chara cter-orie nted dev i ce u sed

for bo th i nput and output .

A character-oriente d , i nput-only device whi ch

tra n s f e r s data on command and s i gna l s the

program when where is no mor e data (an e nd- of

f i l e condition) .

A character-oriented , output-only device which

ac cepts a charac ter from the program and re

cords i t on some extern a l med ium .

A character-oriented , output-only uevi c e whi c h

a c cepts a character from the p rogram a n d records

i t on some external medium i n human readab le form .

5

Each of thes e four logical devices may be associated wi th one o f
four physical devices a t any instant , giving a total of 16 phys
ical devi ces . The mapping from logical to phys ical devices i s
specified by a n I/0 s tatus byte which resides i n memory and i s
acce ssible to sys tem and user programs via substi tute command .
The address of the I/O status byte i s 9F90 hex . A pointer to
the I/O s ta tus byte i s also contained in memory locations �� 3 6
and ��3 7 (low byte of pointer , high byte of pointer) . The pos s ible
mappings appear as fol lows :

I /O S tatus Byte : A A A A A A A A
I ni tia l ly 7 6 5 4 3 2 l 0

1 0 00 0 0 1 0

LIST FIELD

PUNCH FIELD

LOGICAL DEVICES I /0 DEV FIELD PHYSICAL DEVICES

0 0 RS 2 3 2 Channel l

0 1 RS 2 3 2 Channel 2

CONSOLE 1 0 CR Tube = Console Output
Keyboard= Console I nput

l l (user console devi ce)

0 0 RS 2 3 2 Channe l l

0 1 RS 2 3 2 Channel 2
READER

1 0 Keyboard

ll (user reader device l)

6

LOGI CAL DEVICES I /0 DEV FIELD PHYS I CAL DEVICES

00 RS 2 3 2 Channel l

0 1 RS 2 3 2 Channe l 2
WRITE

1 0 C R Tube

1 1 (user punch device l)

00 RS 2 3 2 Channel l

01 RS 2 3 2 Channe l 2
LIST

10 CR Tube

1 1 (user list devi ce l)

At cold s tart o r system re set , the I/0 s tatus byte i s set equal
to 82H , causing the CR Tube and keyboard to be selected for console
I/O and LI ST , while the RS 2 3 2 Channe l l is selected for both READ
and WRITE .

3 . 1 . 2 I /0 SUBROUTINES

The way in whi ch a program performs an I /0 operation to any of
the four logical devices is by calling the appropriate sub
routine supplied by the I /0 system . The available subrouti ne s
and their locations in memory are given in the followin g tab le :

ROUTINE FUNCTION MEMORY LOCATION

C I Console input l03H

co Console Output l09H

RI Reader input l 06H

PO Punch output l OCH
LO List output lOFH

so Conso le String Output l 2AH

The re s t of thi s section gives a description and examples o f
how to c a l l the se subroutine s .

7

CI - CONSOLE INPUT

Thi s routine returns a character received from the se lected
console device to the caller in the A register . The A reg i s
ter and the condition bits are affected by thi s operation .

Examp le :

A s sembly Language

CALL
STA

CO - CONSOLE OUTPUT

CI
DATA

CO transmits a character , passed from the calling program in
the A regi s te r , to the device se le cted for console output . The
A register and the condi tion bits are affected.

Examp le :

Assembly Language

RI - READER INPUT

MVI
CALL

A I I
, .

co ; PRINT I I ON CONSOLE

.
RI returns a character read from the reader device in the A
regi ste r . I f no character was read from the device (i . e . ,
end of f i le) , the CARRY condition bit i s set equal to 1 , and
the A register is zeroed. I f data is ready , the CARRY bit i s
zeroed . I f no character is re ceived from the physical devi ce
then striking any key cause s an end of file to be s imulated and
control i s returned to the calling program .

Example :

As sembly Language

CALL RI
JC EOF
STA DATA

END OF F ILE SENSED

8

PO - WRITE OUTPUT

PO transmits a character from the calling program to the device
se lected a s the punch device . PO is identical in format to CO .

LO - LI ST OUTPUT

LO performs the same function to the se lected list device as
CO and PO do to the ir selected devi ce s .

S O - CONSOLE STRING OUTPUT

SO transmits a charac ter s tring to the device selected for console
output . A pointer to the beginning of the s tring is passed from
the calling program in the HL regi ster pair . The s tring should be
terminated by a byte having the value 2 3 9 (decima l) . SO a l so pro
vide s repeat loop s of the form : . . . , 2 3 7 , N , Dl , D2 , . . . , DM , 2 3 8 ,

where N i s the repeat count for the string o f byte s Dl
through DM .

Example :

As sembly Language

LXI
CALL

H , STR
so

STR : DB ' AB ' , 2 3 7 , 3 , ' CD ' , 2 3 8 , ' EFG ' , 2 3 9

This example wi l l print ' ABCDCDCDEFG ' on the con so le device .

FLOPPY TAPE I /0 SUBROUTINES

Three I /0 subroutines are provided for the I ntecolor F loppy Tape .
The s e routines are :

ROUTINE

TWR
TRD
TVF

FUNCTION

Write to Floppy Tape
Read from F loppy Tape
Compare memory with Floppy Tape

MEMORY LOCAT ION

�
· ,0l33II
--0l36II

The F loppy Tape is a block- tran s fer devi ce . One record is wr itte n
per track . The inputs from the calling program to e ach of the
three I/0 routine s are :

9

HL register pair - pointer to memory buffer

DE register pair - byte count

A register - Tape drive/track code :
BIT 3
BITS 2-.0 -

DRIVE : .0 or 1
Track : .0 through 7

After calling any one of the routines , the A register wi l l contain a
status code and will have been te sted (ORA A) :

A=.0
A=2

A=4
A=6
A=B

A=lO
A=l 2

N o Errors
Keyboard Abort (Pres sing any key on the

keyboard during the data trans fer will
abort the operation)

Buffer too large for write .
Buffer too small for read.
Read Failure : A complete , corre ctly

formatted record could not be read
from the tape .

Checksum error .
Verify fai lure . A mismatch was de tected between

data in memory and data read from the tape
during a memory compare operation (TVF) .

Als o , after calling any of the routine s , the HL regi ster pair
wil l point one byte past the last byte manipulated in the memory
buffer .

3 . 1 . 3 USER-SUPPLIED DEVICES

Thi s section de scribes the neces sary steps in hook ing up a
user- supplied I/0 device to the I/0 system .

The I /0 subroutine s de scribed in Section 3 . 3 . 2 a s sume that
programs (called drivers) exi st which perform the actual
trans fer of data between I/0 devices and the CPU . For in
stance , when the console input routine is called , it che cks

.
to see whi ch physical device is ass igned to the console ,
and then branche s to the driver appropriate to the device
Therefore , when the user supplies his own device , he must :

1) Write a program to perform the data transfer ,
making sure that the program save s and re stores
any CPU registers it uses that are not specifi
cally changed by the I/0 subroutine .

1 0

2) S tore a JMP to thi s driver ' s address in the
appropriate location as de f ined in the
fol lowing table :

MEMORY LOCATI ON USE

9F 9 1H USER DEFINED CONSOLE INPUT
9F 94H USER DEFINED CONSOLE OUTPUT
9F97H USER DEFINED READER (l)
9F 9AH USER DEFINED WRITE (l)
9F 9DH USER DEFINED LIST (l)

Thus , if the user supplied a custom buil t l i sting device , he would
wri te a driver to trans fer data to it in an appropriate manner ,
then store the JMP to the drive r ' s address at location 9F 9DH . By
ass igning LIST= 3 , hi s devi ce would receive any lis ting output
gene rated.

4 . 0 CPU OPERATING SYSTEM

The I nteco lor 8 0 0 1 CPU O . S . enable s the ope rator to easily
manipulate the contents of memory ,

.......... -""�'' and exe cute programs .

The CPU O . S . , and all I nte co lor
®

800l sys tem so ftware in
general , use the last 8 0 memory locations after the re fre sh
area for s torage of temporary data . Therefore , if the opera
tor runs a program beginning in these location s , and then use s
the CPU O . S . Text E di tor , or Assembler , he must re- load the se
80 byte s of his program be fore running it again . Alternatively ,
programs could be wri tten beginning at any higher location .
Then sys tem programs and user programs could be executed in
any orde r , wi thout requiring the re- load operation .

For a 2 5 line sys tem these locations are 8FBOH to 8FFFH .
The 48 line sys tem uses locations 9FBOH to 9FFFH .

The CPU O . S . is the operator ' s interface to the 8080 CPU , and
controls loading and execution of user programs , and to some
extent the debugging of user programs . Figure 4- l il lus trate s
memory uti l i zation during various stage s of system software
use . Whi le the CPU O . S . is running , it uses an area at the
top of memory for data s torage and scratch work .

ll

4 . 1 CPU OPERATING SYSTEM IMPLEMENTATION AND EXECUTION

4 . 1 . 1 CPU O . S . I MPLEMENTATION

The I ntecolor
®

8 0 0 l CPU O . S . program i s implemented on two
E PROM modules , whi ch are pre- i nstalled into each I ntecolor 8 001
with Option 34 . This al lows the CPU to be used with great
ease , a s it is not necessary to wait for lengthy paper- tape
loadi ng operations . All that i s required to go on- line with
CPU O . S . i s to turn the I nteco lor 8001 on , hit the E SCAPE
key , and then the CPU O . S . key , and begin execution .

4 . 1 . 2 . STARTING SYSTEM MONITOR

To begin operating the CPU O . S . , pre s s two keys in sequence ,
' ESCAPE ' , (CPU O . S .) and the I nte color 8 001 wil l automatically
jump to the starting address of the CPU o . s .

4 . 2 CPU O . S . OPERATION AND COMMANDS

The commands consi s t of a single letter typed into the
®

I ntecolor 8001 keyboard followed by a number of arguments ,
pos s ibly none . The arguments are separate d , i f there are
more than one , by space s or commas . A command is terminated
and executed by typing a carriage return or space , depending
upon the command .

A �M TE.Si Z, 3 /1 ?) [£.\ :c;, v tsv.o. \]
4 . 2 . 1 B COMMAND (BACK TO CRT O . S .)

4 . 2 . 2 D COMMAND (DISPLAY DATA)

·rhe format of the D command i s :

D low address , high addre ss

Low address is a valid 16 bit memory address .

1 2

High addre ss is a valid 16 bit memory address equal to or
greater than low addres s .

Description : Upon execution of this command , memory data
from (low addres s) to (high addre s s) is displayed upon the
l i st devi ce (normally the CR tube) . Data are displayed in
hexadec imal form . Up to sixteen byte s per line are printed ,
preceded by the hexade cimal addre ss of the first byte of
that line . A carriage return is forced after a byte having a
low order dig it of F in its memory addre s s i s printed .

Example : Enter at the keyboard the command :

. Dl OF , 1 2 3 (Cr)

and the CR Tube wi l l display :

AA O l OF
0 1 1 0
0 1 2 0

B B C C DO E E F F 11 22 3 3 4 4 5 5 66 7 7 88 9 9 AB CD
EF 12 34 56

where memory locations OlOF through 0 1 2 3 are assumed to contain

AA BB CC DD EE FF 11 22 3 3 44 55 66 77 8 8 99 AB CD EF
12 34 5 6

the D command should b e used only to examine memory contents . To
punch the memory contents onto a tape , the W command should be
use d . The se commands produce a tape in the proper formats , whi le
the D command causes a simple sequence of characters to be
output.

Error conditions :

1 . I f low address or high address i s greater than 1 6 bits ,
only the last 4 hex digits of the argument wil l be used
as the addres s .

Example : The command

. D3 0010 ,AB 0 01 3 (Cr)

i s equivalent to the command

. D0010 , 00 1 3 (Cr)

2 . I f low addre s s i s greater than high addre s s , only the
one byte at low addres s wil l be disp layed .

13

Example : The command :

. Dl0 , 6

is equivalent to the command

. DlO , lO

3 . Non-exi s tent memory i s equivalent to a string o f byte s
all containing FF H .

Example : I f memory address 2000 H- 2 010 H are invalid , then
the command :

. D2000 , 2010

will cause the te letype to print :

2 000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2010 FF

4 . I f low address or high address contains an invalid
characte r , or i f high addre s s i s omitted , the CR Tube
wi ll immediately display ' ? (Cr) (lf) . and await the
next command .

Example : I f the user attempts to enter the number OG as an
addres s , the fol lowing wi ll be di splayed :

. DOG?

4 . 2 . 3 F COMMAND (FILL MEMORY WITH CONSTANT)

The format of the F command is :

F low address , high addre ss , data

Low addre s s is a valid 16 bit memory addre s s .

High address is a valid 1 6 bit memory address equal t o or
greater than low addre s s .

Data i s an 8 bit data value .

14

De scription : Exe cution of thi s command cause s memory locations
(low addr e s s) through (high addre s s) to be f i l led with the
constant (data) .

Example : The command :

. F7 , 1 4 ,AA (Cr)

will set bytes 0007 through 0014 equal to AA H .

0007
0010

Error Conditions :

AA AA AA AA AA AA AA AA AA
AA AA AA AA AA

l . I f low address o f high address i s greater than 1 6 bits
(or data is greater than 8 bits) , only the last 4 (or 2)

hex digits wi ll be used .

Example : The comman d :

. F 7AB0007 , 0014 , FFACAA (Cr)

is equivalent to the command :

. F0007 , 0014 , AA (Cr)

2 . I f low addres s i s greater than high address , data wi l l
replace on ly the byte a t low address .

Example : I f locations 7 , 8 , and 9 contain AA H , BB H , and CC H ,
execution of the comma�d :

. F7 , 1 , 3 3 (Cr)

wi l l cause memory to appear as fol lows :

0007 3 3 BB cc

3 . I f a non-exi s tent memory address is speci fied , this
command has no effect.

4 . I f low addres s , high addres s , or data contain an invalid
character , the CR Tube will immediate ly display ' ? (Cr) (l f) . '
and await the next command .

Examp le : I f the user tries to enter BQ as data , the fol lowing
wi ll be d i splayed :

. F0012 , 14 , BQ?

1 5

•

4 . 2 . 4 G COMMl\ND (GO TO)

The format o f the G command is :

G addre ss , bkptl , bkpt2

Address , bkptl , and bkpt2 are valid 16 bit hexadecimal memory
addre s se s .

Des cription : The G conuaand causes program control to be trans
ferred to location addre s s . I f ei ther bkptl or bkpt2 i s spe c ifie d ,
a breakpoint wi ll b e s e t i n the program a t the corresponding
addre s s (e s) . The spe cified address must corre spond to the first
byte of a program instruction . If either breakpo int is en
countered during program execution , the CPU O . S . wi l l save and
display all program s tatus (CPU registers and condi tion bits) ,
clear all exi sting breakpoints , and take contro l . The user may
then examine and/or modify registers or memory , or use any other
monitor commands . Th is feature allows the user to debug por-
tions of a program .

I f address i s not specifi e d , the program status is restored
and the saved va lue of the program counter is used as the new
starting addre s s .

Example : The command :

G24A

wi l l cause program execution to begin at lo cation 24AH , wi th
no breakpoints being set.

The command :

G , l2C

will cause a breakpoint to be set at l 2CH , and program execution
to resume at the address indicated by the saved value of the
program counte r .

The command :

G

wi ll cause program execution to re sume at the addre s s indi cated
by the s aved value of the program counter , wi th all status
restored and no breakpoints se t .

1 6

Error Condi tions :

1 . I f addre s s l S greater than 1 6 bits , only the las t 4
hex digits o f the argument will be used as the addre s s .

Example : The command :

. G 3C0010 (Cr)

is equivalent to the command

. GOOlO (Cr)

2 . I f addres s is a non- exi stent memory addre s s , the sys tem
will attempt to trans fer contro l and then re turn to the
CRT O . S . with no re sponse . The CPU O . S . must then be
manual ly re started.

4 . 2 . 5 . H COMMAND (HEXADECIMAL ARITHMETIC)

The format of the H command is :

. H number , number Sp

Number i s a 1 6 bit hexadecimal number .

De scription : The H command is designed to aid the user in
performing hexadecimal arithmetic while using the CPU O . S .
I t causes the sum and difference it arguments to be di splayed
in two- s complement hexadecimal form . Thi s command i s termi
nated by a spac e , rather than by a carriage re turn .

Example :

. H lE , SC 007A FFC 2

Error Condition s :

1 . I f either number i s greater than 1 6 bits , only the last
4 hex digits are used .

Example : The command :

. HO OABC , 2 3Sp

is equivalent to the command :

. HOABC , 2 3Sp

1 7

2 . I f number contains an invalid character , the CR Tube
wi l l immediate ly display ' ? (Cr) (l f) . ' and await the
next command .

Example : I f the user attempts to enter OlP , the fol lowing wi ll
be displayed :

. HOlP ?

4 . 2 . 6 I COMMAND (RESET CRT TO STATE S0)

The format of the I command i s :

4 . 2 . 7

I cause s the same action as the CPU re set key
be ing typed .

L COMMAND (LOAD HEXADECIMAL FILE)

The format for the L command is :

L bias address

Bias Addres s is a 1 6 bit two ' s complement hexadec imal number .

Description : This command loads tape written in hexade c imal
format (using the W command) into memory . The address at which
the tape i s loaded i s de termined by adding the addre s s on the
tape to the bias addre s s using two ' s comp lement arithmetic .
The bias may be negative , but in thi s case mus t be in two ' s
complement form . I f the tape wa s produced using an E command
with a non- zero entry point address (see se ction 4 . 2 . 11) ,
control wi ll be tran s ferred to that location i n memory . Other
wise , the CPU O . S . wi l l remain in control and reque s t another
command .

Examp le : I f a tape wa s used which began at location 0100 H ,
the fol lowing command :

. LFFBO (Cr)

will cause the tape to be read and loaded into location 50 H .
(lOOO+FFBO= S O) .

1 8

NOTE : I f an error occurs while reading the tape (such as a
checksum error) , the CPU O . S . will immediate ly s top reading
the tape , di splay 1 ? (Cr) (Lf) . 1 and awai t the next command .
The ope ration may be retried by backing up the tape to any
point be fore the last co lon and is suing another L command ,
since each data word specifies the addres s at which it i s to be
loaded. The CPU O . S . will read up to the fir st colon i t en
counters , and then begin loading data .

Note that thi s means that , if you wish to change data in
locations in memory , it is not neces sary to regenerate an
entirely new tape wi th the chang e ; instead you may read in
the original tape , then read in a patch tape which re loads
only the erroneous locations .

Error Conditions :

1 . I f the bias addre s s i s greater than 1 6 bits , only the
last 4 hex digits are used as the bias addres s .

Example : The command :

. LOOFFB O (Cr)

is equivalent to the command :

. LFFBO (Cr)

2 . · I f an invalid charac ter i s present i n the bias addres s ,
the CR Tube wi l l immediately display 1 * (Cr) (�f) . 1 and
await the next command .

Example : I f the user attempts to enter GOO as a bias addres s ,
the following will be di splayed :

. RG?

4 . 2 . 8 M COMMAND (MOVE MEMORY)

The format of the M command i s :

. M low addre s s , high addres s ,
de s tination address

Low addre s s is a valid 16 bit memory addres s .

High address i s a valid 1 6 bit memory address equal to or
greater than low addres s .

1 9

De stination address i s a valid 16 bit memory addres s .

Description : The M command causes the block o f memory from
low addres s through high address to be moved to the locations
in memory beginning at de stination addre s s .

Example : I f memory appears as fol lows :

LOCATIONS

0300- 0 3 0 4
0 2 00- 0 2 04

Then the command :

wi ll cause the fol lowing :

LOCATIONS

0300- 0 3 04
0 2 00-0204

contain
contain

DATA

0 1 0 2 0 3 04
AlA2A3A4

M200 , 2 04 , 300

contain
contain

DATA

AlA2A 3A4
AlA2A3A4

Note : The movement i s performed byte by byte : the byte at
low addres s is moved to destination address , then low address
+ 1 is moved to de stination addre ss+l , etc . Therefore , the
MOVE command may be used to fill memory with a byte or sequence
of byte s .

Example : I f location 0300 H contains FF H , the command

. M3 00 , 3 1 0 , 3 0l (Cr)

wi ll cause locations 3 0 0 through 310 to contain FF H . The FF
at 300 i s moved to 3 0 1 , then the byte at 301 (which is now FF) ,
i s moved to 3 0 2 , and so on .

Error Conditions :

1 . I f any addres s is greater than 1 6 bits , only the
last 4 hex digi ts are used as the addre ss .

Example : The command :

. M00302 , 3 0 3 , 00405 (Cr)

is equivalent to the command :

N302 , 3 03 , 405 (Cr)

2 0

2 . I f low addre s s is greater than high address , only
one byte wi ll be moved from low addre s s to destina
tion addre s s .

Example : The command :

. M3 00 , 2FO , lOO (Cr)

i s equivalent to the command :

. M3 00 , 3 0 0 , 100 (Cr)

3 . I f low address through high address specifie s a non
exi s tent range of memory , byte s of FF H wil l be moved
to the memory locations specified by de stination addr es s .

Example : I f locations 2 000 H through 2 005 are non-exis tent,
the commend :

. M2000 , 2005 , 1 0 0 (Cr)

will cause locations 0100 H through 0 1 05 H to contain FF H .

4 . I f an invalid character i s entered in an addres s , the
CR Tube wil l display ' ? (Cr) (lf) . ' and await the next
comman d .

E4ample : I f the user attempts to enter OBAG a s the de s ti nation
addres s , the following wi ll be displayed :

MlOO , lOF , OBAG *

4 . 2 . 9 . R COMMAND (BAUD RATE SELECT)

The format of the R command i s

R rate value

The rate value must be between l and 7 . See chart be low .

NUMBER l 2 3 4 5 6

NORMAL BAUD
1 1 0 1 5 0 3 0 0 1 2 0 0 2 4 0 0 4 8 0 0

RA'rE

HIGH SPEED 880 1200 2400 9600 1 9 , 2 0 0 3 8 , 4 0 0
BAUD RATE

2 1

7

9600

76 , 800

4 . 2 . 1 0 S COMMAND (SUBSTITUTE MEMORY)

The S command is used to display and/or modify the contents
of individual memory locations . It is used as follows :

l . Type an S , followed by the hexadecimal address of the
first memory location you wish to display . Type space .

2 . The data from the selected address is displayed ,
followed by a dash (-) .

3 . To modify memory , type in the new data followed by a
space or a carriag�· return . If you do not wish to
modify the contents o� that location , do not type any
data in , but only type ·a space or carriage return .

4 . I f a space was typed in step 3 , the next memory
location will be displayed as in step 2 . I f a
carriage return was typed , operation will be returned
to th� CPU O . S .

Example : The contents of the first four bytes of memory i s
0 0 Al CE FF . You wish to change it to 00 A3 CE 1 1 .

. S OOOOSpOOSp Al - A3Sp CE - Sp FF - llCr

User entries are unshaded . Display back is shaded.

Error Conditions :

1 . I f address is greater than 16 bits , or the data to be
substituted is greater than 8 bits , only the last 4
or 2 hex digits respectively are used .

Example : The following sequence is equilvalent to the previous
example :

. S OABOOOOSp 00 - Sp Al - BA3Sp CE - Sp FF - OllCr

2 . I f an invalid character is encountered , the CR Tube will
immediately di splay ' ? (Cr) (lf) . ' and await the next
command .

2 2

4 . 2 . 1 1 X COMMAND (EXAMINE AND MODIFY REGI STERS)

The format of the X command i s :

X reg i dent
X (c..�) 'PRINi'S !1\.L RE.GlSTe �SJ ANNOI,Alfi)!

Reg ident i s a s i ng le character speci fying a CPU regi s ter a s
fol lows :

A A regi ster
B B regi ster
c c regi ster
D D register
E E reg is ter
F F lag byte , displayed in the form as it i s s tored

by the instruction PUSH PSW
H H regis ter
L L regis ter
M H and L registers combined (1 6 bits)
p P rogram counter (1 6 bits)
s S tack pointer (1 6 bits)

Note : The format o f the flag byte F i s :

Description :
CPU registers .

S ign bit
Zero bit
Always 0

A
S Z O C O P l C

Auxil iary carry bit

S tate of carry bit
Always 1
S tate of parity bit
Always 0

The X command is used to display and/or modi fy
I t operates simi lar to the S command , a s fol lows :

1 . Type an X , fo l lowed by the register identifier .

2 . The data from the selected register i s d i splayed ,
fol lowed by a dash (-) . Four hexadec ima l digits
are di splayed for M , P , and S ; two hex digits for
the othe r regis ter identi fiers .

3 . To modi fy the registe r , type in the new data followed
by a space or a carriage re turn . I f you do not wi sh
to modify the reg i ster , type only the space or carriage
return .

2 3

)

4 . I f a space was typed in step 3 , the next regi ster i n al
phabe ti cal order is displayed . I f carriage return was
typed , the X command i s terminated . I f a space i s typed
after register S ha s been di splayed , the command is terminated ,
this being the last regis ter identi fier in the l i st .

Example : The A , B , C , and D registers contain AAH , BBH , CCH ,
and DDH , respective ly . You wish to change the B and C regis ters
to O OH and FFh , re spective ly .

XASp AA- Sp BB- OOSp CC- FFSp DD-Cr

Note : Values set by the X- command wi l l be come the actual
contents of the regi s ters after execution of the next GO
command .

The values di splayed by the X-command are the contents of
the registers prior to the execution of the last breakpo int
set by the GO command . These displayed value s , however ,
wi l l reflect any changes of register " contents

.
" made by the

execution of X- commands since this last breakpoint .

E rror Conditions :

l . I f the data to be substituted is greater than 1 6
bits for registers M , P , S , o r 8 bits for the other
register identifier s , only the last 4 or 2 hex
digits respective ly are use d .

2 . I f an invalid reg ister identi fier or character is
encountered , the CR Tube wil l immediately di splay
' ? (Cr) (Lf) . ' and await the next command.

4 . 2 . 1 2 E COMMAND (END FILE)

The format of the E command i s :

E addre s s

Address i s a val id 1 6 bit memory addre s s .

Description : The E command causes an end-of-file mark and
s ixty nul l charac ters to be written at the end of a hexa
decimal output file . The end of file mark i s hexadecimal
record of length 0 0 . (See Appendix D) . I f addres s i s 0
or absent, the L command which loads the file will return
control to the CPU O . S . I f address is non- zero , the L command
wil l transfer control to that memory address immediately after
loading the file .

24

,. . ' .· � . . ��·

4 . 2 . 13 W COMMAND (WRITE MEMORY)

The format of the W command i s :

W low addres s ; high addres s

Low address i s a valid 16 b i t memory addres s .

High address i s a valid 1 6 bit memory address equal to or
greater than low addre ss .

Description : The W command i s used to output memory locations
low address through high address to the sys tem punch devi ce
in hexadecimal format . A series of W commands may be i s sued
in order to punch various non- contiguous memory locations onto
a continuous strip of tape .

Any series of W commands should be terminated wi th an E command
in order to punch a termination character , so that when the tape
i s read i t will be handled properly .

Example : I f memory locations 1 through 3 contain 5 3FBEC , the
command : . W0001 , 0003 (Cr)

produces :

: 03 0001005 3F 8ECC5

(See Appendix D for an explanation of tape format .)

Error Conditions :

1 . I f low address or high address is greater than 16
b its , only the last 4 hex digits of the argument
wil l be used as the address .

Example : The command :

WABOOlO , lOO (Cr)

is equivalent to the command :

WOOlO , l OO (Cr)

2 . I f low addres s is greater than high addres s , only
the one byte at low address will be written :

2 5

Example : The command :

. WlO , O (Cr)

is equivalent to the command:

. Wl O , lO (Cr)

3 . Non-exis tent memory i s equivalent to a string of
bytes all containing FF H .

4 . An invalid character in either address will cause
the CR Tube to display ' ? (Cr) (lf) . ' and await the
next comrr,an d .

Example : I f the user attempts to enter 3Z as low addre s s ,
the following wil l be d i splaye d :

. W3Z?

4 . 2 . 1 4 N COMMAND (NULL PUNCH)

The N command consists only of the le tter N fol lowed by a
carriage return and causes 60 null characters to be wri tten
on the punch device .

2 6

APPENDIX A

INSTRUCTION SUMMARY

This appendix provides a summary of 8 0 8 0 a ssembly language
in structions . Abbreviations used are as fol lows :

A

An

ADDR

Aux . carry

Carry

CODE

DATA

DATA1 6

DST

EXP

INTE

LABEL

M

P arity

PC

PCH

PCL

REGM

RP

The accumulator (register A)

Bit n of the accumulator contents , where n may have any value
from 0 to 7 and 0 is the least signifi cant (rightmost) bit .

Any memory address

The auxi liary carry bit

The carry bit

An operation code

8 bits (one byte) of data

16 bits (2 byte s) of data

De stination regi ster or memory byte

A constant or mathematical expre s s ion

The 8 08 0 interrupt enable flip-flop

Any instruc tion label

A memory byte

The parity bit

Program Counter

The mos t signi ficant 8 bits of the program counter

The least s ignifi cant 8 bits of the program counter

Any register or memory byte

A regi ster pair . Lega l register pair symbols are :

B for regi sters B and c
D for registers D and E
H for reg isters H and L
SP for the 16 bit stack pointer
PSW for condition bits and regis ter A

2 7

RP l

RP 2

sign

SP

SRC

zero

XY

(

Format :

CODE

STC

CMC

The f irst regis ter of register pair RP

The second register of register pair RP

The s ign bit

The 16-bit s tack pointer register

Source regis ter or memory byte

The zero bit

The value obtained by concatenating the values X and Y

An optional field enclo sed by brackets

Contents of register or memory byte enclosed by parenthe ses

Replace value on lefthand s ide of arrow with value on right
hand s ide of arrow

CARRY BIT INSTRUCTIONS

[LABEL :] CODE

DESCRIPTION

(carry) 1

(carry)
(c arry)

S et carry

Complement carry

Condition bits affected : Carry

2 8

S INGLE REGI STER INSTRUCTIONS

Format :

[LABEL :) INR REGM
-or-

[LABEL :) DCR REGM
-or-

[LABEL :) CMA
-or-

[LABEL :] DAA

Code Description

INR (REGM) (RE GM) + 1 I ncrement register REGM

DCR (REGH) (REGM) - 1 Decrement regi ster REGM

CMA (A) <: (A) Complement accumulator

DAA I f (A0-A3) > 9 or (aux . carry = 1 , Convert accumulator
(A) (A) +6 contents to form
Then i f (A4-A7) > 9 or (carry) = two decimal
1 (A) = (A) + 6 * 24 digits

Condition bits affected : INR , DCR
CMA

Zero , sign , parity
None

DAA Zero , sign , parity , c arry , aux . carry

NOP INS TRUCTION

Forma t :

[LABE L :) NOP

Code Description

NOP ------- ------- No operation

Condition bits affected : None

2 9

-------- - -�- �

DATA TRANSFER INSTRUCTIONS

Forma t :

[LABEL :]

[LABEL :]

MOV
-or
CODE

NOTE : SRC and DST not both = M

NOTE : RP = B or D

Code Description

MOV (DST) ((SRC)

STAX ((RP)) , (A)

LDAX (A) ((RP))

-'

Condition bits affected : None

DST , SRC

RP

Load regis ter DST from regi s ter SRC

Store ac cumulator at memory
location referenced by the specifi ed
regi ster pair

Load accumulator from memory
location re fereced by the specified
regi ster pair

REGI STER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Format :

[LABEL :] CODE REGM

Code Description

ADD (A) / (A) + (RE GM) Add REGM to accumulator '

ADC (A) (A) + (REGM) + (carry) Add REGM to accumulator
with carry

SUB (A) / (A) - (REGM) Subtract REGM from accumulator

SBB (A) / (A) - (REGM) - (carry) Subtract REGM from ac cumulator "
with borrow

ANA (A) <:: (A) AND (REGM) AND accumulator with REGM

XRA (A) (A) XOR (REGM) EXCLUSIVE-OR ac cumulator "
wi th REGM

3 0

I

'

Code Des cription

ORA (A) �- (A) OR (REGM) OR accumulator wi th REGM

CMP Condi tion bi ts set by (A) - (REGM) Compare REGM wi th
accumulator

Condition bits af fected :

ADD , ADC , SUB , SBB : Carry , sign , zero , parity , aux . carry
ANA·, XRA , ORA : Sign , zero , parity . Carry is zeroed .
CMP : Carry , s ign , zero , pari ty , aux . carry . Zero set if (A) = (REGM)

Carry reset i f (A) ((RE GM)
Carry set i f (A) � (REGM)

ROTATE ACCUMULATOR INSTRUCTIONS

Format :

Code

RLC

RRC

RAL

RAR

[LABEL :] CODE

Des cription

(carry) �-- A7 , An+ l ' <- An , AO � A7

(carry) < Ao , A An � An+l , A7 � 0

An+ l � An , (c arry) � 7 , Ao � (ca.rry)

An�
A

n+ l '
(carry) <;-A o , A7 � (carry)

Condi tion bi ts affected : Carry

REGISTER PAIR INSTRUCTIONS

Forma t :

[LABEL :] CODE l RP
-or-

[LABEL :] CODE 2

Note : For PUSH and POP , RP=B , D , H or PSW
For DAD , INX , and DCX , RP=B , D , H , or SP

3 1

_
S et carry =A7 , rotate
ac cumulator left

S e t carry =A 0 , rotate
accumulator right

Rotate accumulator
le ft through the carry

Rotate accumulator
right through carry

I

Codel

PUSH

POP

DAD

INX

DCX

Code 2

XCHG

XTHL

SPHL

Description

((S P) - 1) f- (RP l) I ((S P) - 2) � (RP 2) I
(S P) � (SP) - 2

(RP l) (_ ((SP) + l) I (RP 2) � ((SP)) I
(S P) � (SP) +2

(HL) � __ (HL) + (RP)

(RP) � (RP) + l

(RP) � (RP) - 1

Description

(H) <E-7 (D) I (L) � (E)

(L) � ((SP)) I (H) <7 ((S P) + l)

(SP) � (H) : (L)

Condi tion bits affected :

PUSH , INX , DCX , XCHG , ·XTHL , SPHL : None

S ave RP on the
stack
RP=A saves accumulator
and condition bits .

Re s tore RP from
the stack
RP=A re stores accumulator
and condition bits .
Add RP to the 1 6-bit
number in H and L .

Increme nt RP by l

Decrement RP by l

Exchange the 16 bit
number in H and L with
that in D and E .
Exchange the last
value s s aved in the
stack wi th H and L .

Load s tack pointer from
H and L •

POP I f RP=PSW , all condition bits are restored from the s tack , otherwi se
none are affected .

DAD Carry

Format :

[LABEL :]

[LABEL :]

[LABEL :]

Note : RP=B , D , H , or SP

IMMEDIATE INSTRUCTIONS

LXl RP , DATA16
- or-
MVl REGM , DATA
-or-
CODE REGM

3 2

CODE DESCRIPTION

LXI

MVI

ADI

ACI

SUI

SBI

ANI

XRI

ORI

CPI

(RP) E--- DATA 16

(REGM) (DATA

(A) «--- (A) + DATA

(A) � (A) + DATA + (carry)

(A) «-- (A) - DATA

(A) � (A) - DATA - (carry)

(A) � (A) AND DATA

(A) � (A) XOR DATA

(A) � (A) OR DATA

Condition bits set by (A) -DATA

Condi tion bits affected :

LXI , MVI : None

Move 16 bit immediate Data
into RP

Move immediate DATA into REGM

Add immediate data to accumulator

Add immediate data to accumulator
with carry

Subtract immediate data from
accumulator

Subtrac t immediate data from
accumulator with borrow

AND accumulator wi th immediate
data

EXCLUS IVE -OR ac cumulator with
immediate data

OR accumulator wi th immediate
data

Compare immediate data with
ac cumulator

ADI , ACI , SUI , SBI : Carry , s ign , zero , parity , aux . c arry
ANI , XRI , ORI : Zero , s ign , parity . Carry is zeroed .
CPI : Carry , s ign , zero , parity , aux . carry . Zero i s set i f (A) = DATA

Carry reset i f (A) < DATA
Carry set if (A) > DATA

DI RECT ADDRESS ING INSTRUCTIONS

Format:

CODE

STA

LDA

SHLD

LHLD

[LABEL :]

(ADDR) (A) '

(A) (ADDR)

CODE

(ADDR) � (L) I (ADDR+ l) � Ul)

(L) � (ADDR) I (H) � (ADDR+ l)

Condition bits affected : None

ADDR

DESCRIPTION

3 3

S tore accumulator a t location
ADDR

Load accumulator from location
ADDR

S tore L and H at ADDR and
ADDR+ l

Load L and H from ADDR and ADDR+ l

Format:

[LABEL :]

[LABEL :]

CODE

PCHL (PC) � (HL)

JMP (PC) �ADDR

JC I f (carry) = 1 ,
I f (carry) = 0 ,

JNC I f (carry) = 0 ,
I f (carry) = 1 ,

JZ I f (zero) = 1 ,
I f (zero) = 0 ,

JNZ I f (zero) = 0 ,
I f (zero) = 1 ,

JP I f (sign) = 0 ,
I f (sign) = 1 ,

JM I f (s ign) = 1 ,
I f (s ign) = 0 ,

JPE I f (pari ty) = 1 ,
I f (parity) = 0 ,

JPO I f (parity) = 0 ,
I f (parity) = 1 ,

JUMP INSTRUCTIONS

PCHL

-or-

CODE

(PC) �- ADDR
(?C) (-- (PC) +3

(PC) (---- ADDR
(PC) � (PC) + 3

(PC) <,--. ADDR
(PC) � (PC) + 3

(PC) � ADDR
(PC) � (PC) + 3

(PC) � ADDR
(PC) � (PC) + 3

(PC) � ADDR
(PC) � (PC) + 3

(PC) -ADDR
(PC) -e-- (PC) + 3

(PC) �DDR
(PC) '<E-- (PC) + 3

ADDR

DESCRIPTION

Jump to lo cation speci f i ed by
regis ter H and L

Jump to location ADDR

Jump to ADDR if carry set

Jump to ADDR i f carry reset

Jump to ADDR of zero set

Jump to ADDR if zero reset

Jump to ADDR i f plus

Jump to ADDR i f minus

Jump to ADDR if parity even

Jump to ADDR i s parity odd

Condition bits affected : None

34

CALL INSTRUCTIONS

Format :

[LABEL :] CODE ADDR

CODE DESCRIPTION

CALL ((S P) - 1) <E- (PCH) 1 ((S P) - 2) <e- (PCL) 1 (SP) � (S P) + 2 1 (PC) <E- ADDR
call subroutine and push return
addre s s onto stack

CC I f (c arry) = 1 1 ((S P) - 1) � (PCH) 1 ((SP) - 2) <E- (PCL) 1 (SP) �- (SP) + 2 1
(PC)-E- ADDR

I f (carry) = 0 1 (PC) -E-- (PC) + 3 Cal l subroutine i f carry set

CNC I f (c arry) = 0 1 ((SP) - 1 � (PCH) 1 ((SP) - 2) -E---- (PCL) 1 (SP) oE- (S P) + 2 1
(PC) � ADDR

I f (carry) = 1 1 (PC) <E- (PC) + 3 Call subroutine if carry reset

CZ If (zero) = l 1 ((S P) - 1) - (PCH) 1 ((SP) - 2) � (PCL) 1 (SP) -E- (SP) + 2 1
(PC) -E-- ADDR

I f (zero) = 0 1 (PC) � (PC) + 3 Call subroutine i f zero set

CNZ I f (zero) = 0 1 ((SP) - 1) � (PCH) 1 ((SP) - 2) � (PCL) 1 (SP) � (SP) +2 1
(PC) -E- ADDR

I f (zero) = 1 1 (PC) ..;;---- (PC) + 3 Ca l l subroutine if zero reset

CP I f (sign) = 01 ((SP) - 1) � (PCH) 1 ((SP) - 2) � (PCL) 1 (SP) � (SP) + 2 1
(PC) -E- ADDR

I f · (s ign) = 1 1 (PC) <E'- (PC) +3 Call subroutine if sign plus

CM If (sign) = 1 1 ((SP) - 1)� (PCH) 1 ((SP) - 2) <E- (PCL) 1 (SP) -E---- (SP) + 2 1
(PC) � ADDR

I f (sign) = 0 1 (PC) � (PC) + 3 Call subroutine if s ign minus

CPE I f (parity) = 1 1 ((SP) - 1) <E'- (PCH) 1 ((SP) - 2) -E-- (PCL) 1 (SP) � (SP) + 2 1

(PC) <E- ADDR
I f (parity) = 0 1 (PC) � (PC) + 3 Cal l subroutine i f parity even

CPO I f (parity) = 0 1 ((SP) - 1) � (PCH) 1 ((SP) - 2) -E-- (PCL) 1 (SP) -E-- (SP) + 2 1
(PC) � ADDR

I f (parity) = 1 1 (PC) � (PC) + 3 Call subroutine if parity odd

--- ·

Condi tion bits affe cted : None

3 5

Format :

CODE

RET

RC

RNC

RZ

RNZ

RM

RP

RPE

RPO

RETURN INSTRUCTIONS

[LABEL :] CODE

DESCRIPTION

(PCL) � ((S P)) , (PCH) «---- ((SP) + l) ; (SP) <E-- (S P) + 2

I f
I f

I f
I f

I f
I f

I f
I f

I f
I f

I f
I f

I f
I f

I f
I f

(c arry) = l , (PCH) <E-- ((SP)) ,
(c arry) = 0 , (P C) � (PC) + 3

(carry) = 0 , (PCL) � ((S P)) ,
(carry) = l , (PC) � (PC) + 3

(zero) = l , (PCL) -(-- ((SP)) ,
(zero) = 0 , (PC) � (PC) + 3

(zero) = 0 , (PCL) � ((S P)) ,
(zero) = 1 , (PC) � (PC) + 3

(s ign) = l , (PCL) <- ((SP)) ,
(sign) = 0 , (PC) <E- (PC) +3

(PCH) «----

(PCH) �

(PCH) �

(PCH) ..;;:--

(PCH) '(--

Return from subroutine

((SP) + l) , (S P) � (SP) + 2
Return i f carry set

((SP) + l) , (SP) <o- (SP) + 2

Return if carry reset

((SP) +l) , (SP) � (S P) + 2

Return if zero s e t

((SP) +l) , (S P) � (S P) + 2

Return i f zero s e t

((S P) + l) , (SP) «- (S P) +2
Return if minus

(sign) = 0 , (PCL) � ((SP)) , (PCH) � ((SP) +l) , (SP) � (SP) + 2
(s ign) = l , (P C) <- (PC) + 3

(parity) =l , (P CL) <- ((SP)) ,
(parity) = 0 , (PC) � (PC) _

(parity) =O , (PCL) � ((S P)) ,
(parity) =l , (PC) � (PC) + 3

(PCH) �
(PC) + 3

Return if plus

((SP) + l) , (SP) � (SP) + 2
Return i f par ity even

(PCH) «- ((SP) + l) , (SP) � (S P) +2
Return i f pari ty c ld

Condition bits affected : None

RST INSTRUCTION

Format :
[LABEL :]

Note : 0 EXP 7

CODE

RST ((SP) - 1) � (PCH) ,

RST

((S P) - 2)
(PC) �- OOOOOOOOOOEXP OOOB

Condi tion bits affected : None

EXP

DESCRIPTION

� (PCL) , (SP) � (SP) + 2
Ca ll subroutine at
speci fied by EXP

3 6

addres s

!

I

'•

INTERRUPT FLIP FLOP INSTRUCTIONS

Format :

CODE

E I

D I

[LABEL :] CODE

(INTE) � 1

(INTE) � 0

Condition bits affected : None

DES CRIPTION

Enable the interrupt sys tem

Di sable the interrupt system

INPUT/OUTPUT INSTRUCTIONS

Format :

[LABEL :] CODE

CODE

IN (A) � input device

OUT output device � (A)

Condi ti on bits a ffected : None

HLT INSTRUCTION

Format :

CODE

HLT

[LABEL :] HLT

- - - - - - - - - - - - - - - -

Condition bits affected : None

3 7

EXP

DESCRIPTION

Read a byte from device EXP into
the accumulator

S end the accumulator contents to
devi ce EXP

DESCRIPTION

Instruction execution halts until
an interrupt occur s .

PSEUDO - INSTRUCTIONS

ORG PSEUDO - INSTRUCTION

Format :

ORG EXP

Code De:_; cription

ORG LOCATION COUNTE R < EXP Set Assembler location
counter to EXP

EQU PSEUDO - INSTRUCTION

Format :

NAME EQU EXP

Code Description
-

EQU NAME / EXP Ass ign the value EXP
to the symbol NAME

END P SEUDO - INSTRUCTION

Format :

END

Code Description

END End the as sembly .

3 8

APPENDIX B

-- INSTRUCTION EXECUTION TIMES AND BIT PATTERNS--

This appendix summarizes the bit patterns and number of time s tates
as soc iated with every 8080 CPU instruction .

When us ing this summary , note the following symbo logy :

1) DDD repre sents a des tination regi ster . SSS represents a
source register . Both DDD and SSS are i nterpreted a s
fo llows :

DDD or sss Interpretation

000 Regi s ter B
001 Regi ster c
0 1 0 Regi ster D
0 1 1 Regi ster E
100 Register H
1 0 1 Register L
1 1 0 A memory register
1 1 1 The accumulator

2) Instruction exe cution time equals number o f time periods
multiplied by the duration of a time period .

A time period may vary from 480 nanosecs to 2 microsec .

When two numbers of time periods are shown (eg . 5/1 1) , it
means that the smaller number of time periods wi l l be required
if a condition is not met , and the larger number of time periods
wi l l be requi red if the condition is met .

3 9

-..- -

MNEMONI C 0 7 06 o5 04 03 02 01 Do Number of Time Periods

CALL 1 1 0 0 1 1 0 1 1 7

cc 1 1 0 1 1 1 0 0 11/1 7

CNC 1 1 0 1 0 1 0 0 1 1/17
cz 1 1 0 0 1 1 0 0 11/17
CNZ 1 1 0 0 0 1 0 0 ll/1 7
CP 1 1 1 1 0 1 0 0 1 1/17
CM 1 1 1 1 1 1 0 0 11/17
CPE 1 1 1 0 1 1 0 0 11/17
CPO 1 1 1 0 0 1 0 0 1 1/17
RET 1 1 0 0 1 0 0 1 1 0
RC 1 1 0 1 1 0 0 0 5/11
RNC 1 1 0 1 0 0 0 0 5/11
RZ 1 1 0 0 1 0 0 0 5/1 1
RNZ 1 1 0 0 0 0 0 0 5/11
RP 1 1 1 1 0 0 0 0 5/11
RM 1 1 1 1 1 0 0 0 5/11
RPE 1 1 1 0 1 0 0 0 5/11
RPO 1 1 1 0 0 0 0 0 5/11
RST 1 1 A A A 1 1 1 1 1
IN 1 1 0 1 1 0 1 1 1 0
OUT 1 1 0 1 0 0 1 1 1 0
LXI B 0 0 0 0 0 0 0 1 1 0
LXI D 0 0 0 1 0 0 0 1 1 0
LXI H 0 0 1 0 0 0 0 1 1 0
LXI SP 0 0 1 1 0 0 0 1 1 0
PUSH B 1 1 0 0 0 1 0 1 1 1
PUSH D 1 1 0 1 0 1 0 1 1 1
PUSH H 1 1 1 0 0 1 0 1 1 1
PUSH A 1 1 1 1 0 1 0 1 1 1
POP B 1 1 0 0 0 0 0 1 1 0
POP D 1 1 0 1 0 0 0 1 1 0
POP H 1 1 1 0 0 0 0 1 1 0
POP A 1 1 1 1 0 0 0 1 1 0
STA 0 0 1 1 0 0 1 0 1 3
LOA 0 0 1 1 1 0 1 0 1 3
XCHG 1 1 1 0 1 0 1 1 4
XTHL 1 1 1 0 0 0 1 1 18
SPHL 1 1 1 1 1 0 0 1 5
PCHL 1 1 1 0 1 0 0 1 5
DAD B 0 0 0 0 1 0 0 1 -iO
DAD D 0 0 0 1 1 0 0 1 10
DAD H 0 0 1 0 1 0 0 1 1 0
DAD SP 0 0 1 1 1 0 0 1 1 0
STAX B 0 0 0 0 0 0 1 0 7
STAX D 0 0 0 1 0 0 1 0 7
LDAX B 0 0 0 0 1 0 1 0 7
LDAS D 0 0 0 1 1 0 1 0 7
INX B 0 0 0 0 0 0 1 1 5
INX D 0 0 0 1 0 0 1 1 5
INX H 0 0 1 0 0 0 1 1 5
INX SP 0 0 1 1 0 0 1 1 5

4 0

I
MNEMON IC D 7 D

6
D

5
D

4
D

3
D

2
D

1
D

o
Number of Time Periods

MOV r1 , r 2 , 0 1 D D D s s s 5
MOV M , r 0 1 1 1 0 s s s 7
MOV r , M 0 1 D D D 1 1 0 7
HLT 0 1 1 1 0 1 1 0 7
MVI r 0 0 D D D 1 1 0 7
MVI M 0 0 1 1 0 1 1 0 1 0
INR 0 0 D D D 1 0 0 5
DCR 0 0 D D D 1 0 1 5
INR A 0 0 1 1 1 1 0 0 5
DCR A 0 0 1 1 1 1 0 1 5
INR M 0 0 1 1 0 1 0 0 1 0
DCR M 0 0 1 1 0 1 0 1 1 0
ADD r 1 0 0 0 0 s s s 4
ADC r 1 0 0 0 1 s s s 4
SUB r 1 0 0 1 0 s s s 4
SBB r 1 0 0 1 1 s s s 4
NDA r 1 0 1 0 0 s s s 4
XRA r 1 0 1 0 1 s s s 4
ORA r 1 0 1 1 0 s s s 4
CMP r 1 0 1 1 1 s s s 4
ADD M 1 0 0 0 0 1 1 0 7
AOC M 1 0 0 0 1 1 1 0 7
SUB M 1 0 0 1 0 1 1 0 7
SBB M 1 0 0 1 1 1 1 0 7
NDA M 1 0 1 0 0 1 1 0 7
XRA M 1 0 1 0 1 1 1 0 7
ORA M 1 0 1 1 0 1 1 0 7
CMP M 1 0 1 1 1 1 1 0 7
ADI 1 1 0 0 0 1 1 0 7
ACI 1 1 0 0 1 1 1 0 7
SUI 1 1 0 1 0 1 1 0 7
SBI 1 1 0 1 1 1 1 0 7
NDI 1 1 1 0 0 1 1 0 7
XRI 1 1 1 0 1 1 1 0 7
ORI 1 1 1 1 0 1 1 0 7
CPI 1 1 1 1 1 1 1 0 7
RLC 0 0 0 0 0 1 1 1 4
RRC 0 0 0 0 1 1 1 1 4
RAL 0 0 0 1 0 1 1 1 4
RAR 0 0 0 1 1 1 1 1 4
JMP 1 1 0 0 0 0 1 1 1 0
JC 1 1 0 1 1 0 1 0 1 0
JNC 1 1 0 1 0 0 1 0 1 0
JZ 1 1 0 0 1 0 1 0 1 0

JNZ 1 1 0 0 0 0 1 0 1 0

JP 1 1 1 1 0 0 1 0 1 0

JM 1 1 1 1 1 0 1 0 1 0
JPE 1 1 1 0 1 0 1 0 1 0
JPO 1 1 1 0 0 0 1 0 10

41

MNEMONIC 07 06 o5 04 03 0 2 0 1 oo Number of Time Periods

DCX B 0 0 0 0 1 0 1 1 5
DXC D 0 0 0 1 1 0 1 1 5
DCX H 0 0 1 0 1 0 1 1 5
DCX SP 0 0 1 1 1 0 1 1 5
CMA 0 0 1 0 1 1 1 1 4
STC 0 0 1 1 0 1 1 1 4
CMC 0 0 1 1 1 1 1 1 4
DAA 0 0 1 0 0 1 1 1 4
SHLD 0 0 1 0 0 0 1 0 1 7
LHLD 0 0 1 0 1 0 1 0 1 7
E I 1 1 1 1 1 0 1 1 4
DI 1 1 1 1 0 0 1 1 4
NOP 0 0 0 0 0 0 0 0 4

r
4 2 l

APPENDIX C

HEXADECIMAL PROGRAM TAPE FORMAT

The hexadec imal tape format used by the I ntecolor® 800l sys tem i s a
modified memory image , b locked into discrete records . Each record
contains re cord length , record type , memory addres s , and checksum
information i n addi tion to data . A frame by frame de scription
is as fol lows :

Frame 0

Frame s 1 , 2
(0- 9 , A- F)

Frames 3 t o 6

Frames 7 , 8

Frame s 9 to 9+2 * (Record
Length) - l

Record Mark , Signals the s tart o f
a record. The ASC I I character
colon (" : " HEX 3A) is used as the
record mark .

Record Length . Two ASC I I characters
repre senting a hexadecimal number
in the range 0 to ' FF ' H (0 to 2 5 5) .

This i s the count of actual data
byte s in the re cord type or check
sum . A re cord length o f 0 indi cate s
end of f i le .

Load Addre s s . Four ASC I I characters
that repre sent the i nitial memory
location where Lhe data following
will be loade d . The first data byte
is stored in the location pointed
to by the load addre s s , succeeding
data byte s are loaded into
ascending addre s se s .

Record Type . Two ASCI I characters .
Currently all records are type 0 ,
thi s f ield i s re served for future
expans ion .

Data . E ach 8 bit memory word i s
repre sented by two frame s containing
the ASC I I charac ters (0 to 9 , A to F)
to repre s ent a hexadecimal value 0
to ' FF ' H (0 to 2 5 5) .

4 3

Frame s 9+2 * (Record Length) to
�+ 2 * (Record Length) + l

Checksum . The checksum i s the
negative of the sum of a l l 8 bit
bytes in the record s ince the
record mark (" : ") evaluated
modulus 2 5 6 . That i s , if you
add together all the 8 bit byte s ,
ignoring all carries out of an
8-bit sum, then add the checksum ,
the re sult i s zero .

Example : I f memory locations l through 3 contain 5 3F8EC , the format
of the hex f i le produced when these location s are punched i s :

: 03 000l005 3F8ECC5

Note : This format i s also known as the I ntel format.

44

I
/

�' t:oHI•HMroNS �T..,�5tl 8\.'o\1. • 1&1.1> (s IAC14)
H14'-,-. pe.� �� 'f 'FF£a5NT GliDI sn\tES (12. &I'ICM)

- I I I I 00
I I I I 01
. . I I 1 0
I I . . I I

Bttl""T C.)&R�
�\\\ 1'\Sl'\

C�AttC!.t\
'8iU6-MT

·. : � : �
• • #' '

c�A tJ
W\ HT£.
�\ HTE.

. .. · · .' . ,'

,: . '
. , '

. .
• . . .

. . . · . · ·:· '
� . \

II

I
/ -+1 ;Lf
() ' .zs
J l .s
2 3 .7�
3 't I
'f 'S 1.2.S
S" " l .S
6 '! I.?S"
7 � 2.
e" 'I Z:l.S
'I " z.s A 6 2.!7�
B c. '?..
c l> 3.2,.
t> E 3.'S'"
t f 3.'1'r
F J b �

; ' "

. - ·� l :.�

. . .

TAt£ NC4M85,�: 1 000 I Otio . · ' 0 c ·•}·� .::-a . - e oo o

. .
. . �

TA"f-#1.
NoT
l't&4L. 8!) 2.

.
·

-

. . · · . .

. 1. ""e a : . Cp .7 bw. s �
,. .: '·: , , , ' \ , ' it I

'

. �\\& � : . 2 '3
· .!)tV . (" . !

. · .
.•

. '

. '
. ·, . . . ,,:f.Al(6, (\lO ;

flt�r � �lVtDf.)!t 2.

. �

1 0rl\
.

.
.

� . -.

. • •tt
oo a o•.

, o .to . .

1 000
0 I I \

. '
1 00 (t O I 0
0 I 1 00 1 0 I

. .
�-� .' .""' � \ .

. '

.. .;.:. . .
. � 1 - �

. · •

... � . .' ; .: ' . �- -
l t ,. ' ·• �: .. • 0 ' ,. . .. • ' . · .. . • .1 ., •

. �- ·

-

	2012_11_27_21_06_38
	2012_11_27_21_06_39
	2012_11_27_21_06_56
	2012_11_27_21_06_57
	2012_11_27_21_06_59
	2012_11_27_21_07_00
	2012_11_27_21_07_01
	2012_11_27_21_07_02
	2012_11_27_21_07_04
	2012_11_27_21_07_05
	2012_11_27_21_07_07
	2012_11_27_21_07_08
	2012_11_27_21_07_09
	2012_11_27_21_07_10
	2012_11_27_21_07_12
	2012_11_27_21_07_13
	2012_11_27_21_07_15
	2012_11_27_21_07_16
	2012_11_27_21_07_17
	2012_11_27_21_07_18
	2012_11_27_21_07_20
	2012_11_27_21_07_21
	2012_11_27_21_07_23
	2012_11_27_21_07_24
	2012_11_27_21_07_25
	2012_11_27_21_07_26
	2012_11_27_21_07_28
	2012_11_27_21_07_29
	2012_11_27_21_07_31
	2012_11_27_21_07_32
	2012_11_27_21_07_33
	2012_11_27_21_07_34
	2012_11_27_21_07_37
	2012_11_27_21_07_38
	2012_11_27_21_07_39
	2012_11_27_21_07_40
	2012_11_27_21_07_42
	2012_11_27_21_07_43
	2012_11_27_21_07_45
	2012_11_27_21_07_46
	2012_11_27_21_07_47
	2012_11_27_21_07_48
	2012_11_27_21_07_50
	2012_11_27_21_07_51
	2012_11_27_21_08_04
	2012_11_27_21_08_05
	2012_11_27_21_08_07
	2012_11_27_21_08_08
	2012_11_27_21_08_10
	2012_11_27_21_08_11
	2012_11_27_21_08_12
	2012_11_27_21_08_13
	2012_11_27_21_08_15
	2012_11_27_21_08_16
	2012_11_27_21_08_18
	2012_11_27_21_08_19
	2012_11_27_21_08_21
	2012_11_27_21_08_22
	2012_11_27_21_08_24
	2012_11_27_21_08_24_000
	2012_11_27_21_08_26
	2012_11_27_21_08_27
	2012_11_27_21_08_29
	2012_11_27_21_08_30
	2012_11_27_21_08_32
	2012_11_27_21_08_32_000
	2012_11_27_21_08_34
	2012_11_27_21_08_35
	2012_11_27_21_08_46
	2012_11_27_21_08_47
	2012_11_27_21_08_49
	2012_11_27_21_08_49_000
	2012_11_27_21_08_51
	2012_11_27_21_08_52
	2012_11_27_21_08_54
	2012_11_27_21_08_55
	2012_11_27_21_08_57
	2012_11_27_21_08_57_000
	2012_11_27_21_08_59
	2012_11_27_21_09_00
	2012_11_27_21_09_02
	2012_11_27_21_09_03
	2012_11_27_21_09_05
	2012_11_27_21_09_05_000
	2012_11_27_21_09_07
	2012_11_27_21_09_08
	2012_11_27_21_09_10
	2012_11_27_21_09_11
	2012_11_27_21_09_41
	2012_11_27_21_09_42
	2012_11_27_21_09_44
	2012_11_27_21_09_45
	2012_11_27_21_09_46
	2012_11_27_21_09_47
	2012_11_27_21_09_49
	2012_11_27_21_09_50
	2012_11_27_21_09_52
	2012_11_27_21_09_53
	2012_11_27_21_10_37
	2012_11_27_21_10_38
	2012_11_27_21_10_40
	2012_11_27_21_10_40_000
	2012_11_27_21_10_42
	2012_11_27_21_10_43
	2012_11_27_21_10_45
	2012_11_27_21_10_46
	2012_11_27_21_10_48
	2012_11_27_21_10_49
	2012_11_27_21_10_51
	2012_11_27_21_10_52
	2012_11_27_21_10_54
	2012_11_27_21_10_55
	2012_11_27_21_10_57
	2012_11_27_21_10_58
	2012_11_27_21_10_59
	2012_11_27_21_11_00
	2012_11_27_21_11_03
	2012_11_27_21_11_04
	2012_11_27_21_11_05
	2012_11_27_21_11_08
	2012_11_27_21_11_09
	2012_11_27_21_11_11
	2012_11_27_21_11_12
	2012_11_27_21_11_14
	2012_11_27_21_11_14_000
	2012_11_27_21_11_16
	2012_11_27_21_11_17
	2012_11_27_21_11_19
	2012_11_27_21_11_20
	2012_11_27_21_11_22
	2012_11_27_21_11_22_000
	2012_11_27_21_11_24
	2012_11_27_21_11_25
	2012_11_27_21_11_27
	2012_11_27_21_11_28
	2012_11_27_21_11_30
	2012_11_27_21_11_30_000
	2012_11_27_21_11_32
	2012_11_27_21_11_33
	2012_11_27_21_11_35
	2012_11_27_21_11_36
	2012_11_27_21_11_38
	2012_11_27_21_11_38_000
	2012_11_27_21_11_40
	2012_11_27_21_11_41
	2012_11_27_21_11_43
	2012_11_27_21_11_44
	2012_11_27_21_11_46
	2012_11_27_21_11_47
	2012_11_27_21_11_48
	2012_11_27_21_11_49
	2012_11_27_21_11_51
	2012_11_27_21_11_52
	2012_11_27_21_11_55
	2012_11_27_21_11_56
	2012_11_27_21_12_07
	2012_11_27_21_12_08
	2012_11_27_21_12_10
	2012_11_27_21_12_11
	2012_11_27_21_12_12
	2012_11_27_21_12_13
	2012_11_27_21_12_16
	2012_11_27_21_12_16_000
	2012_11_27_21_12_18
	2012_11_27_21_12_19
	2012_11_27_21_12_21
	2012_11_27_21_12_22
	2012_11_27_21_12_24
	2012_11_27_21_12_25
	2012_11_27_21_12_26
	2012_11_27_21_12_27
	2012_11_27_21_12_29
	2012_11_27_21_12_30
	2012_11_27_21_12_32
	2012_11_27_21_12_33
	2012_11_27_21_12_48
	2012_11_27_21_12_49
	2012_11_27_21_12_50
	2012_11_27_21_12_51
	2012_11_27_21_12_53
	2012_11_27_21_12_54
	2012_11_27_21_12_56
	2012_11_27_21_12_57
	2012_11_27_21_12_59
	2012_11_27_21_13_00
	2012_11_27_21_13_11
	2012_11_27_21_13_12
	2012_11_27_21_13_14
	2012_11_27_21_13_15
	2012_11_27_21_13_17
	2012_11_27_21_13_18
	2012_11_27_21_13_19
	2012_11_27_21_13_20
	2012_11_27_21_13_22
	2012_11_27_21_13_23
	2012_11_27_21_13_25
	2012_11_27_21_13_26
	2012_11_27_21_13_28
	2012_11_27_21_13_28_000
	2012_11_27_21_13_30
	2012_11_27_21_13_31
	2012_11_27_21_13_33
	2012_11_27_21_13_34
	2012_11_27_21_13_36
	2012_11_27_21_13_36_000
	2012_11_27_21_13_38
	2012_11_27_21_13_39
	2012_11_27_21_13_41
	2012_11_27_21_13_42
	2012_11_27_21_13_44
	2012_11_27_21_13_45
	2012_11_27_21_14_06
	2012_11_27_21_14_07
	2012_11_27_21_14_08
	2012_11_27_21_14_09
	2012_11_27_21_14_11
	2012_11_27_21_14_12
	2012_11_27_21_14_14
	2012_11_27_21_14_15
	2012_11_27_21_14_17
	2012_11_27_21_14_17_000
	2012_11_27_21_14_33
	2012_11_27_21_14_34
	2012_11_27_21_14_36
	2012_11_27_21_14_37
	2012_11_27_21_14_39
	2012_11_27_21_14_39_000
	2012_11_27_21_14_41
	2012_11_27_21_14_42
	2012_11_27_21_15_15
	2012_11_27_21_15_16
	2012_11_27_21_15_18
	2012_11_27_21_15_19
	2012_11_27_21_15_21
	2012_11_27_21_15_22
	2012_11_27_21_15_23
	2012_11_27_21_15_24
	2012_11_27_21_15_26
	2012_11_27_21_15_27
	2012_11_27_21_15_56
	2012_11_27_21_15_57
	2012_11_27_21_15_58
	2012_11_27_21_15_59
	2012_11_27_21_16_01
	2012_11_27_21_16_02
	2012_11_27_21_16_04
	2012_11_27_21_16_05
	2012_11_27_21_16_07
	2012_11_27_21_16_08
	2012_11_27_21_16_10
	2012_11_27_21_16_11
	2012_11_27_21_16_14
	2012_11_27_21_16_14_000
	2012_11_27_21_16_16
	2012_11_27_21_16_17
	2012_11_27_21_16_19
	2012_11_27_21_16_20
	2012_11_27_21_16_21
	2012_11_27_21_16_22
	2012_11_27_21_16_24
	2012_11_27_21_16_25
	2012_11_27_21_16_27
	2012_11_27_21_16_28

