
SOFTWARE SECTION MICROCOMPUTER DEVELOPMENT SOFTWARE

PART 1 OF
LLL 8080 BASIC INTERPRETER

By Jerry Barber & Royce Eckard Submitted by E. R. Fisher
Lawrence Livermore Laboratory

FOREWARD
The BASIC interpreter was developed at the Univer­

sity of Idaho by John Dickenson. Jerry Barber. and
John Teeter under a contract with the Lawrence Liver­
more Laboratory. The floating point package was
developed by David Mead. modified by Hal Brand and
Frank Olken. In addition. Jerry Barber. as an LLL
summer employee. made significant contributions to
this document and to implementing the BASIC lan­
guage in an MCS-8080 microprocessor.

INTRODUCTION
This article is Part 1 of a series of four articles

covering the LLL 8080 BASIC interpreter just released
to the public domain by Lawrence Livermore Labor­
atory. The other three articles that will be published in
the next three months are:

PART 2 - LLL 8080 BASIC INTERPRETER SOURCE
PROGRAM WITHOUT FLOAT

PART 3 - LLL 8080 BASIC FLOAT SOURCE PRO­
GRAM

PART 4 - LLL 8080 OCTAL DEBUGGING SOURCE
PROGRAM

The partition approach of publishing the com­
plete 120 page LLL BASIC interpreter source pro­
gram assembly listing and descriptive text is taken as
the only logical way to transfer the complete source
program and text to INTERFACE AGE readers.

STORAGE REQUIREMENTS

The BASIC interpreter consists of a 5K-byte-PROM
resident interpreter used for program generation and
debug was configured to operate with the MCS-8080
microprocessor.

The goal in developing the 8080 BASIC was to
provide a high-level. easy-to-use conversational lan­
guage for performing both control and computation
functions in the MCS-8080 microprocessor. To mini­
mize system memory size and cost. the interpreter was
constrained to fit into 5 K bytes. It was necessary.
therefore. to limit the commands to those considered
the most useful in microprocessor applications.

MATH OPERATOR EXECUTION TIMES

Average execution times of the four basic math
operators are as follows;

Happy Holidays

110 INTERFACE AGE

Operation

ADD
SUBSTRACT
MULTIPLY
DIVIDE

Execution time
on 8080 (m secl

2.4 m sec
2.4 m sec
5.4 m sec
7.0 m sec

BASIC INTERPRETER LANGUAGE GRAMMAR

COMMANDS - Six BASIC interpreter commands
are provided. These commands are:

RUN
SCR
LIST
PLST
PTAPE

O\ITRL S

Begins program execution
Clears program from merrory
Lists ASCII program in merrory
Punches paper-tape copy of program
Reads paper-tape copy of program
using high-speed reader
Interrupts program during execution

The LIST and PLST commands can be followed by
one or two line numbers to indicate that only a part of
the program is to be listed. If one line number follows
the command. the program is listed from that line
number to the end of the program. If two line numbers
(separated by a comma) follow the command. the list­
ing begins at the first line number and ends at the
second.

When a command is completed. READY will be
typed on the teletype. Once initialized by a command.
a process will normally go to completion. However. if
you wish to interrupt an executing program or a list­
ing. simply strike CNTRL S and the process will ter­
minate and a READY message will be
typed.

ST A TEM ENTS - Each statement line begins with a
line number. which must be an integer between 0 and
32767. Statements can be entered in any order. but
they will be executed in numerical order. All blanks are
ignored. The following types of statements are
allowed:

REM - Indicates a remark (comment). The system
deletes blanks from all character strings that are
not enclosed in quotes ("). Therefore. it is sug­
gested that characters following the REM key
word be enclosed in quotes.

END - Indicates the end of a program. The program
stops when it gets to the END statement. All
programs must end with EN D.

DECEMBER 1976

SOFTWARE SECTION

STOP - Stops the program. This statement is used
when the program needs to be stopped other
than at the end of the program text.

GOTO - Transfers program control to specified
statement line number. This statement is used to
loop or jump unconditionally within a program.
Program execution continues from new state­
ment.

DIM - Declares an array. Only one-dimensional
arrays with an integer constant number of ele­
ments are allowed. An array with N elements
uses indexes 0 through N-1. All array locations
are set to zero. No check is made on subscripts to
ensure that they are within the declared array. An
array variable must be a ·single letter.

LET - Indicates an assignment statement (Addition,
subtraction, multiplication, division, or special
function may be used). The LET statement is used
to assign a value to a variable. Non-array var­
iables can be either a single letter or a letter
followed by a digit. It is possible to have an array
and a non-array variable with the same name.
The general form of the LET statement is:

line number LET identifier = expression,
where "identifier" is either a subscripted array
element or a non-array variable or function (see
section on functions) and "expression" is a unary
or binary expression. The expression will be one
of the following ten types:

variable
-variable
variable + variable
variable - variable
-variable + variable
-variable - variable
variable * variable
-variable * variable
variable I variable,
-variable I variable,

where "variable" is an identifier, function, or
number. The subscript of an array can also be an
expression.

IF - Condition statement which transfers to specified
line number statement if the condition of the
expression is met. It has the form: line number IF
expression relation expression TH EN transfer line
number. The possible relations are:

Equal =
Greater than >
Less than <
Greater than or equal > = = <
Less than or equal < = = <
Not equal <> ><

If the relation between the two expressions is
true then the program transfers to the line
number, otherwise it continues sequentially.

INPUT - This command allows numerical data to be
input via the teletype. The general form is:

Line nu mber I N PUT identifier list

where an "identifier list" is a sequence of iden­
tifiers separated by commas. There is no comma

112 INTERFACE AGE

MICROCOMPUTER DEVELOPMENT SOFTWARE

after the last identifier so, if only one identifier is
present no comma is needed. When an INPUT
statement is executed, a colon (:) is output to the
teletype to indicate that data are expected. The
data are entered as numbers separated by com­
mas. If fewer data are entered than expected,
another colon is output to the teletype, indicat­
ing again that data are expected. For example,
where

50 INPUT I,J,K,P

is executed, a colon is output to the teletype.
Then, if only 3 numerical values are entered, ano­
ther colon will be output to indicate that more
data are expected; e.g.,

: 4,4,6.2 CIR
: 10.3 CIR,

where CIR is the carriage-return key. If an error is
made in the input-data line, an error message is
issued and the entire line of data must be re­
entered. If, for the above example,

: 4,4,6M2,1 0.3 CIR
is entered, the system will respond

INPUT ERROR, TRY AGAIN

At this time, the proper response would be

4,4,6.2,10.3 C/R.
PRINT - This command allows numerical data and

character strings to be printed on the teletype.
Two types of print items are legal in the print
statement: character strings enclosed in quotes
(") and expressions. These items .are separated by
either a comma or a semicolon. If print items are
separated by a comma, a skip occurs to the next
pre-formatted field before printing of the item
following the comma begins. The pre-formatted
fields begin at columns 1, 14,27,40, and 52. If
print items are separated by a semicolon, no skip
occurs. If a semicolon or comma is the last
character on a print statement line, the appro­
priate formatting occurs and the carriage-return­
line feed is suppressed. A print statement of the
form

50 PRINT

will generate a carriage-return-line feed. Thus,
the two lines below

50 PRINT "INPUT A NUMBER";
60 INPUT A

will result in the following output:

INPUT A NUMBER:

FOR - Causes program to iterate through a loop a
designated number of times.

NEXT - Signals end of loop at which point the
computer adds the step value to the variable and
checks to see if the variable is still less than the
terminal value.

GOSUB - Transfer control to a subroutine that begins
at specified line number

RETURN - Returns control to the next sequential line

DECEMBER 1976

SOFTWARE SECTION

after the last GOSUB statement executed. A
return statement executed before a GOSUB is
equivalent to a STOP statement.

CALL - Calls user-written assembly-language rou­
tines of the form

CALL (N. A. B •... l.
where N is a subroutine number from 0- 254 and
A. B are parameters. The parameters can be
constants. variables. or expressions. However. if
variables and constants or expressions are inter­
mixed. all variables should have been referenced
before the CALL statement. Otherwise. the space
reserved for newly referenced variables may
overwrite the results of constants and expres­
sions. A memory map of one configuration of the
system is shown below:

Page 10

Page 11
ODTSTACK

BASIC

INTERPRETER

ACTIVE VAR·S. -Pointer to firstVloOrd
1------1 of available rrermry and

~~a:ro of -- IJ3ER SUB'S subroutine table

""""'V I..5ER SOURCE

BASICSTK I-:- Page 43 l.oc 370s

The subroutine table contains 3-byte entries for
each subroutine. The table directly follows the
pointer to the first word of available memory
(FWAM) and must end with an octal 377. A
sample table and its subroutines is shown below:

ORG 166120
CNIISUBEND
DB 1
CNII SUB1

DB4
CNII SUB4

DB5
CNII SUB5

DB 2
DB SUB2
DB 3170
SUB1: ~

RET
SUB5: •

RET

•
•
•
RET

SUBEND EOU$

; Define FWAM
; Subrouti ne #1
; Starti ng add of
subroutine #1

; Subrouti ne #4
; Starting add of
subroutine #4
; Subroutine #6
; Starting add of
subroutine #6
; Subroutine #!2
; etc.
; end of subroutine table
; Subroutine #1

; Subroutine #6

; Retain last subroutine
;FWAM

Addresses to passed parameters are stored on
the stack. The user must know how many para­
meters were passed to the subroutine. These
must be taken off the stack before RET is exe­
cuted. Addresses are stored last parameter first

DECEMBER 1976

MICROCOMPUTER DEVELOPM-=NT SOFTWARE

on the stack. Thus. on entry to a subroutine. the
first POP instruction will recover the address to
the last parameter in the call list. The next will
recover the next to last. etc.
Each scalar variable passed results in the address
to the first byte of a four-byte block of memory.
Each array element passes the address to the first
byte of a (N-M) x four-byte memory block. where
N is the number of elements given the array in
the DIM STMT and M is the array subscript in the
CALL STMT.
For passed parameters to be handled in expres­
sions within BASIC. they must be in the proper
floating-point format.

FUNCTIONS - Two special functions not found in
most BASIC codes are available to input or output data
through Intel 8080 port numbers. These functions are;
GET (X) = READ 8080 INPUT PORT X.
PUT (V) = OUTPUT A BVTE OF DATA TO
OUTPUT PORT V.

The function GET allows input from a port and the
function PUT allows output to a port. Their general
forms are:
GET (expression).
PUT (expression).
The function GET may appear in statements in a posi­
tion that implies that a numerical value is used. The
function PUT may appear in statements in a position
that implies that a numerical value will be stored or
saved. This is because GET inputs a number and PUT
outputs a number. For example. while
LET PUT(I) =GET(J) is valid
LET GET(I) = PUT(J) is invalid.

These functions send or receive one byte of data.
which in BASIC is treated as a number from a to 255.

VARIABLES - Single characters A ~ Z
Single character followed by a
signal decimal digit

NUMBERS - Numbers in a program statement or
input via the teletype are handled with a floating-point
package provided by LLL. Numbers can have any of
the following forms:

4 ±4. .123
4. ±4.0 ±.123
4.0 1.23 0.123

±4 ±1.23 ±0.123

and the user may add an exponent to any of the above
forms using the letter E to indicate powers of 10. The
forms of the exponent are:

E±1
E 1

E± 15
E 15

E 1 E 15

The numbers are stored with seven-digit accuracy;
therefore. seven significant figures can be entered. The
smallest and largest numbers are ±2. 71051 E-20 and
±9.22337E18.

Floating point numbers are expressed as a 32 bit
operand consisting of a 24 bit normalized fractional
mantissa in standard two's complement representa-

INTERFACE AGE 113

SOFTWARE SECTION

tion and a 6 bit exponent also in standard two's com­
plement representation with a range of -64 to +63.
The exponent byte also includes the exponent sign bit
and mantissa sign bit. The floating point number for­
mat is as shown in the following:

Op"",o"_A",hm,,,,oporotQr<· Mult'pl.

INTERPRETER OPERATION

<>
, ,.

'"'

INITIALIZATION - the BASIC interpreter is presently
configured so that it is located in memory pages 118 to
348. The starting address is page 178, location O. This
address begins an initialization sequence that allows
the user to begin with a clear memory. However, to
avoid the initialization sequence, a second starting
address - page 178 to 348 - can be used. This
starting address is used if the user wishes to retain any
program that might exist in memory.

Once started the interpreter responds with READY.

INPUT LINE FORMAT

Each line entered is terminated with the carriage­
return key. The line-feed key is ignored. Carriage-return
automatically step terminal to next line and waits for
next line statement number input. Statements can be
entered in any order, but they will be executed in
numerical order. All blanks outside of quotation marks
are ignored by the interpreter. Up to 72 characters may
be entered/line.

INPUT LINE EDITORING - A program can be edited
by using the line numbers to insert or delete state­
ments. Typing a line number and then typing a car­
riage return causes the statement at that line number
to be deleted. Since the statements can be entered in
any order, a statement can be inserted between two
existing statements by giving it a line number be­
tween the two existing statement line numbers. To
replace a statement. the new statement should have
the same line number as the old statement.

It is possible to correct errors on a line being entered
by either deleting the entire line or by deleting one or
more characters on the line. A character is deleted with
either the rubout key or the shiftiO key. Several
characters can be deleted by using the rubout key
several times in succession. Character deletion is, in
effect. a logical backspace. To delete the line you are
currently typing, use the CNTRLIY key.

BASIC PROGRAM, EXECUTION - Entering a RUN
command, after a BASIC program has been entered
into the microcomputer, will cause the current
program to begin execution at the first statement
number. RUN always begins at the lowest statement
number.

114 INTERFACE AGE

MICROCOMPUTER DEVELOPMENT SOFTWARE

ERROR MESSAGES -If an unrecognizable command
is entered, the word WHAT? is printed on the teletype.
Simply retype the command. It may also have been
caused by a missing line number on a BASIC
statement. in which case you should retype the state­
ment with a line number.

During program execution and whenever new lines
are added to the program, a test is made to see if there
is sufficient memory. If the memory is full, MEMORY
FULL is printed on the teletype. At this point. you
should enter one of the single digits below to indicate
what you wish to do:

Number entered Meaning

o (RUN) runs

o (RUN) runs the program in memory
1 (PLST) outputs program in memory to paper tape punch
2 (LIST) lists program in memory
3 (SCR) erases program in memory
4 none of the above (will case WHAT? to be printed

out on the tl
out on the teletype).

To help you select the best alternative, a brief
description of how the statements are manipulated in
memory will be helpful. All lines entered as program
are stored in memory. If lines are deleted or replaced,
the originals still remain in memory. Thus, it is possible,
if a great deal of line editing has been done, to have a
significant portion of memory taken up with unused
statements. If a MEMORY FULL message is obtained
in these circumstances, then the best thing to do is
punch a tape of the program (entering number 1). then
erase the program memory with a SCR command (or a
number 3, if memory is too full to accept commands).
and then re-enter your program using the high-speed
paper-tape reader with the PTAPE command.

If an error is encountered while executing a pro­
gram, an error message is typed out that indicates an
error number and the line number in which the error
occurred. These numbered error messages are as
follows;
ERROR NUMBER
ERROR MESSAGE

1 Program has no EN D statement
2 Unrecognizable keyword at beginning of

statement
3 Source statements exist after END statement
4 Designation line number is improperly formed in

a GOTO, GOSUB, or IF statement
5 Designation line number in a GOTO, GOSUB, or

I F statement does not exist
6 Unexpected character
7 Unfinished statement
8 Illegally formed expression
9 Error in floating-point conversion

10 Illegal use of a function
11 Duplicate array definition
12 An array is referenced before it is defined
13 Error in the floating-point-to-integer routine,

Number is too big
14 I nvalid relation in an I F statement

DECEMBER 1976

SOFTWARE SECTION

LLL 8080 BASIC INTERPRETER PROGRAMS EXAMPLES

PRINT STATEMENT PROGRAM EXAMPLE - The
program below gives a few examples of the use of the
print statement.

LIST
1PRINT"THE PRE-FORNATTED COLUMNS ARE SHO\,TN BELOW"
2PRINTl,2,3,4,5
4PRINT
10PRINT"INPUT 1ST NUMBER";
20INPUTA
30PRINT"INPUT 2ND NUMBER",
40INPUTB
50PRINT
60PRINT"A IS";A
70PRINT"B IS",B
S0PRINT"A IS";Aj"B ISII,B,"A+S ISII;A+B
100END
READY
RUN
THE PRE-FORNATTED COLUMNS ARE SHOWN BELOW
1.0000E 00 2.0000E 00 3.0000E 00 4.0000E 00

INPUT 1ST NUMBER: 2
INPUT 2ND NUMBER : 3

A IS 2.0000E 00
B IS 3.0000E 00
A IS 2.0000E 00B IS
READY

3.0000E 00 A+B IS 5.0000E 00

PLOT FUNCTION PROGRAM The following
program plots a function on a display. It uses four user­
written assembly-language subroutines. The display
works as follows: The contents of memory locations on
pages 2748 to 2778 are displayed as 16 rows of 64
characters each. Thus, if location 2018 on page 274
contains 3018 (ASCII A). an A appears in column 2 of
Row 3. An example of this program's execution is
shown below:
RUN
WHAT SHOULD PLOT BE LABELED? MCSaO -
BASIC INTERPRETER
READY

The BASIC and assembly-language programs and
the display output are shown below.

BASIC PROGRAM

Display output for Plot Function program.

BASIC Program

LIST
lRE:1" THIS ROL'TI~E WILL PLOT A SET OF AXIS AND A QUADRATIC FUNCTION
2REM" ON A DISPLAY AND THE~ LABEL IT. IT USES A 4 USER WRITTEN
3REK" Sl'B-RDUTlNE5:
4REM
SREM" CALL (I,X,Y,C) - PLACES C IN COLUMN X, ROW Y OF THE DISPLAY
6REM" I.1iERE C IS AN ASCII CODED CHARACTER
lREM
BREM" CALL(2,A(0» - READS A CHARACTER STRING FROM THE TTY AND STORES
9REM" IT"IN ARRAY A
lOREH
llREH" CALL().A(~» - WRITES TilE CHARACTER STRING STORED IN ARRAY A
12REM" TO THE DISPLAY
13REM
14REM" CALL(4) - CLEARS THE DISPLAY
lSREH
16REH" START OF PROGR}.M
17REH
18REH" RESERVE STORAGE AREA FOR TITLE
20DIMA(UI)
30REM" CLEAR SCREEN
40CALL(4)
S0REM" ASK FOR AND I~UT TITL!
SSPRINT"WHAT SHOULD PLOT BE LABELED?";
60CALL(2,A(0»
70RE!1" ORAW AXIS
80GOSUBS0!it
90REH" PLOT FUNCTION
100LETX"-29
110GOSUEI0!11!11
120CALL(I, 31+X,8-Y, 248)
130LETX-X+1
140IFX><31 THENllf
ISI:'lREM" OUTPUT TITLE
160CALL(3,A(0))
16SREM" WE'RE DONE
170sTOP

DECEMBER 1976

MICROCOMPUTER DEVELOPMENT SOFTWARE

014812
813212
iIl6567
016614
016614

016616
1116617
016621
016622
016624
016625
016627
iIl6630
iIl6632

BI66]3
016634
iI166]7
iI16642
016643
816646
016647
816658
iI16651
016652
016653
0166~4
016657
016662
1l1666]
916666
916667
01667i1
016671
016672
016673
016674
016677
016782
01678]
016706
BI6787
8167li1
Bl6711
016712
816715

016720
016721
016724
016725
016731l
016- 31
1:H673i
IU67)]

WJ~0)33

U6734
016735
016736
016740
016741
016744
U6746
016751
016752
01(.75)
i1167~6
016757
~ 16 760
016762
01676]

016764
016765
016770
016771
11116772
016773
1616774
016775
016776
016777
~17002

017003
0176~6
il17011:1
017"12
017014
E17015
017016
t117017
"171622
017023
017\'126
017027

500REM" THIS SUB. WILL DRAW A SET OF AXIS
505LETX-l
510LErY-7
520LETC-I73
5]0CALL(I,X. Y .C)
540LETX-X+1
550IFX><65THEN53!11
560LETX=31
570LETY-l
57SLETC-2S2
580CALL(I.X, Y ,C)
590LETY"Y+1
600IfY><17THEN58ilt
6UfRETURN
10""REM" GIVEN X nus SUB. CALCULATES (17/900)*X**2-8
1""SREH" FIRST CHECK IF X=0 AS iT WILL "UPSET FLT. PHT. PACK.
1010IFX="THENIQ145
Ul15R1:M" WE'RE OK - CALCULATE FUNCTION
1020LETY-X*X
UI25LETK"17/9"
If3!&LETY-Y*K
1035LETY-Y-R

1040RETURN
If45LETY--8
If5ifRETURN

'"'END READY
Assembly-language program

0270]6

"I
2]] 035

'"]]4 0]5

"3
3640]5 ...

; DEF IN!:: EXTERNALS
fIX EOU 149120
COPDH EOU 132120
FREG1 EOU 165670

ORG 166140
OW SBEND

: ENTRIES IN SUB TABLE
DB 1
OW SCOPE
DB ,
OW SUB2
DB 3
OW SU1:I]
DB •
OW SUB4

;fIX ROUTINE
:CUPY ROUTINE
; FLOATING PN'l

;FWAM

REGISrER

ee3 0]6
377 DB]17Q ;NO MORE EN1'RYS

:THE CALL TO ',~HIS ROUTINE IS OF THE FORM
: CALL(lXYC)
;THE VALUE OF C IS PLACED IN COLUMN X LINE Y
;Of THE DISPLAY

321 SCOPE: pop 0
841 167 835 LXI H FREG1
315 212 026 CALL COPDH
]5] XCHG
]15 812 038 CALL FIX
82] INX 0
02] INX
kl2] INX
032 LDAX
107 MOV
]21 POP
041 167 B]5 LXI
315 212 026 CALL
]53 XCHG
]15 B12 8n CALL
82] INX
02] INX
02] INX
B]2 LDAX
117 Mall
]21 POP
1141 167 1135 LXI
]15 212 026 CALL
]5] XCHG
]15 012 0]0 CALL
02] INX
82] INX
1123 INX
0]2 LDAX
041]77 273
821lilll !t09

LXI
LXI

D
D
D
B A
D
H FREG1
COPDH

FIX
D
,;
D
D
C A
D
H FREG1
COPDi!.

FIX
D
D
D
D
H 1357770
o 1000

!tIS LUP: OCR C
]12]]0 "]5 JZ ADINC
031 [JAD 0
]0]]21111;]5 JMP LUP
137 ADINC: HuV E A

;ADDRESS Of CHARACTER
;COPY TO FREG1

; ADDRESS TO DE
;FIX IT
; PNT TO 4TH BYTE

: GET CHARACTER
;SAVE IN B
; ROW ADO
ICOPY TO FREGI

;FIX IT
;GET BYTE 4 TO A

;SAVE IN C
;GET COLUMN ADD
: copy TO FREG1

;FIX IT
; PNT TO 4 TH BYTE

;GET IT TO A
;CALCULATION OF ADDRESS

'Jl DAD 0 ; ADD I N COLUMN Loe

16' 1~0'v' M B ; STORE CHARACTEIt
311 RE'l" ; [JuNt:

;3i.lo2 READS A TITLE. fROM TrY VIA ODT
HE.Ar.. E.QU]330 ;ODT ROUTINE

341 $UU2: PUP H ;GET STORAGE AREA ADD

345
8160ltrl

'" 315]33 000
]76,15
312]56 iDS
01'
167
3113 340 6]5

LUP2:

PUSH H
MVI C 8
INX H
CALL READ
CPI 215Q
JZ OUN2

C
MOV

341 DUN2:
JMP
FOP
MOV

M A
Lup2
H

161
076212
367
311

MVI
RST
RET

M C
A 2120
6

;sua] WRITLS 'rlTLE TO DISPLAY
341 SU1:I); POP H
021 341 277 LXI 0 1377410
116 MOV C M
043 INX H
176 LUP]: MOV A M
022 STAX 0
043 INX H
1'12] INX 0
015 OCR C
]02]72 8]5 JNZ Lup3
]11 RET

; SUB4 CLEARS SCREEN
041 IH~0

076 240
0260£J"
016004

274 SUB4: LXI H 1]60000

167 ." 025
]il2 014 036
015
302 014 0]6
311

LUP4:

SBEND

MVI A 2400
MVI 0 1'1
MVI C 4
MOV
INX
DCR
JHZ
DCR
JNZ
RET
EOD
END

M A
H
D
LUP4
C
LUP4

;INIT CNTR
: BUHP PNTR
; READ A CHARACTER
;CR?
;YES - DONE
: INCR CNT
;SAV!:. CHARACTER

;STORE CNT

;SEND A LF

;DONE

;GE"r ADD
;SCREE.N ADD
;CNT

;SEND STRING

; DONE

;SCREEN ADO
; SPACE
ICNTR S

;CLEAR IT

NO PROGRAM ERRORS

...
A
COPDH
FIX
LUP
M
SCOPE
SUB4

"1:l00ti7
813212
014012
01672il
0!l0006
0166]3
817i103

SYM1:IOL TASLE

ADINC
D
FREG1
LUP2
PSO
SP

0167]0
090002
016567
016740
000006
0"0006

B
DUN2
H
Lup3
READ
SUB2

000000 C 0011001
016756 , !:l!l1:l003
0000il4 L 88i1005
1116772 LUP4 1H7il14
00033] SBEND iI17027
016734 SUB) 016764

BRANCH TO PAGE 124

INTERFACE AGE 115

SOFTWARE SECTION MICROCOMPUTER DEVELOPMENT SOFTWARE

310 IF M<3 GOTO 600
320 PRINT" CONGRATULATIONS! YOU GOT IT IN"IPI"TiHES."
33(1 PRINT" PLAY AGAIN? (I=YESI 0=NO)"
340 I NPtfT Q: IF Q=0 GOTO H100
360 GOTO 60
500 REM
5~0 REM NEXT SECTION PRINTS CLUES
60'1 IF M<>0 FOR T=I TO M:PRINT"FERMI "; :NEXT T
62 (-1 I F N < > '1 FOR T = 1 TON: P KIN T" PIC 0 .. ; : N EXT T
650 IF "'1+N=0 PRINT "RAGLF.S"
700 PRINT :GOTO 120: REM ASK FOR NEXT GLlF.SS
10V10 t'RINT"GOODf3YE"

The object of the game is to guess the number that
the microprocessor has picked. All numbers are
between 1 00 and 999. For each correctly guessed
digit in the correct location, the processor responds
"FERMI." For each correct digit not in the right
location, the processor responds "PI CO." If no correct
digits are guessed, the processor responds
"BAGLES."

The NIB L language is well suited to control tasks,
as long as the user recognizes its inherent speed
limitations. While it is more than adequate for human
interface and a variety of other control applications, it
doesn't have the speed to handle video generation,
direct control of fast peripherals, etc. For these
applications, the algorithms should be proved out in
NIB L then translated into SC/M P machine code for
installation in the final system. On the plus side, once
the user has paid the initial price in speed and ROM
for the interpreter, he will find that NIB L tasks (which
are stored as powerful source statements) tend to
take less memory than their assembly language
equivalents. The larger the program, the more
dramatic are the savings.

CONCLUSION

Microprocessor technology will change the ways
that all of us live, by infusing high technology into our
everyday activities. Whereas most people in this
country today have never come in contact with micro­
processors, soon each of us will make use of a variety
of them every day. They will be in our cars,
appliances, TVs, games, tools, etc. They will be ubi­
quitous; in five years you won't be able to pick up a
hammer that doesn't have a microprocessor in it!

For processors to be so pervasive, they will have to
penetrate non-traditional markets where simplicity of
design, ease of programming, and early user con­
fidence of success will be crucial. NIB L is one of the
tools that should make the job easier. NIBL is
available now in a preliminary form and will be
supported by a new, self-teaching manual on NIBL
and the SC/M P LCDS which is currently being written
by Bob Albrecht and Don Innmann.

124 INTERFACE AGE

BIBLIOGRAPHY

DR. DOBB'S JOURNAL OF COMPUTER CALIS­
THENICS AND ORTHODONTIA; Volume 1, No.1 -
January, 1976. PCC, Box 310, Menlo Park, CA
94025

And thanks to Dr. Marvin Winzinread, California
State University at Hayward, for "BAGLES."

ABOUT THE AUTHOR

PHIL ROYBAL/BID SKETCH

BsEE from UC Berkeley. 1968
1 year at HEWLETI PACKARD

Project Engineer
4 years at VARIAN DATA MACHINES­

Microcomputer Sales. Applications
and Marketing.

NATIONAL SEMICONDUCTOR CORP. -
since 1973 as MP Product Marketing
Mgr.

Associated With ACM.

VECTORED FROM PAGE 115

I
I

I
I

I
I

-------------------------------------+---------------------~~---------------
I

l
I

I
I

I
I
I xxx

xxxxxxx 1 xxxxxxx
x

Display output for prec-eding program.

SPONSORSHIP

The development of the LLL BOBO BASIC
Interpreter was performed under the auspices of the
U.S. Energy Research and Development Administra­
tion, under contract No. W-7405-Eng-4B.

CONTINUATION

Next month we will publish PART #2 - LLL BOBO
BASIC Interpreter Source Program Without Float. At
the completion of publishing this series at least a hard
copy and hopefully a paper tape source copy will be
made available from the Microcomputer Software
Depository.

DECEMBER 1976

