
- .-....-- .-...-..~ ~ - ~.-- ~....--.--
-~ ~--~ -- -- -~..-~- -~.--- ~- -- ..-.-.... --- -~~--------- - ---- -. .. --- --~

,

---- -- -- ----- ---- -- ----- - ------- ----- ---- ------- - -::::::::: - --_ .. - ----------- -- -- -- ---
TECHNICAL MANUAL

r

TECHNICAL MANUAL
FOR

- ~ ---- ~~ -- -_
-~ .---~~ -- --.....,
-~ ----... -- --~ -- ------- -------- ~ - - - --------~-- -----
--~-------- -~ -- --- -- -

THE FSUCC HASP STATION EMULATOR (HASTETj
VERSION 1.3

REVISION F

by
Sam Adams

Leslie M. Brooks
Doug Lee
Jim Lyons

Ira B. Margolis
Eric M. Pepke

Computing Center
The Florida State University
Tallahassee, Florida 32306

January, 1984

Copyright © 1984 by
The Florida State University

Copyright©

Copyright© 1984 by The Florida State University. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any human or computer
language in any form or by any means electronic, mechanical, magnetic, op
tical, chemical, manual or otherwise without the prior written permission
of The Florida State University, Tallahassee, Florida, 32306.

Important Notice

The program KAYLINK is a version of the HASTE™ HASP Station
Emulator. The two versions do not differ in any functional respect and are
considered the same program for purposes of copyright. KAYLINK differs
from HASTE™ only in cosmetic ways; the word HASTE has been chang
ed to the word KAYLINK, for example. Similarly, this manual does not dif
fer from the HASTE™ manual in any functional respect.

Trademark

The name HASTE™ is a trademark of The Florida State University.

Disclaimers

The Florida State University makes no representation or warranties with
respect to the contents hereof and specifically disclaims any implied war
ranties of merchantability or fitness for any particular purpose. Further, The
Florida State University reserves the right to revise this publication and to
make changes at any time in the content hereof without obligation of the
Florida State University to notify any person of such revision or changes.

References are made throughout this manual to CP / M™, the Control
Program for Microcomputers. CP / MTM is a trademark of Digital Research
of Pacific Grove, California.

ii

Table of Contents

1.0 How to Use this Manual
1.1 Conventions

2.0 Facts About KAYLINK 3
2.1 Communication..................... 3
2.2 Buffer Sizes and Magic Numbers. .. 4
2.3 The Text Editor. .. 4
2.4 Error Trapping .. 5

3.0 The HASP Protocol--An Overview. 6
3.1 The Signon and Signoff Cards 6
3.2 HASP Data Streams. 8

4.0 Installing KAYLINK .. 11
4.1 Command Line Installation. .. 11
4.2 Machine Characteristics and the HIOS 16
4.3 Accessible KAYLINK Routines .. 19
4.4 HIOS Installable Routines. .. 20
4.5 HIOS Flags and Strings 30
4.6 Writing Interrupt Routines. .. 32
4.7 Patching in the HIOS 34

5.0 Building a HIOS from Scratch 37
5.1 Standard Routines 37
5.2 Installing Communications (Non-Interrupt) 43
5.3 Cleaning Up the HI OS .. 49
5.4 Installing Port Interrupts .. 53
5.5 Installing Timer Interrupts. .. 58

6.0 Connecting KAYLINK to the Outside World '" 63
6.1 Using a Modem ... 63
6.2 Direct Connect. .. 63

APPENDIX A: Setting Up the Machine
APPENDIX B: EBCDIC/ASCII Conversion Tables
APPENDIX C: Versions of HASTE (KAYLINK)
APPENDIX D: Revision Record

INDEX ... X-I

iii

Figures

The number of each figure begins with the number of the chapter in which
it appears.

Figure 4.1
Figure 4.2
Figure 5.1
Figure 6.1
Figure 6.2

The Three Phases of Installing KAYLINK 10
A Skeletal Hios .. 18
A Skeletal Hios . 36
Connecting the Microcomputer to a Modem 62
Direct Connect . 62

iv

1.0 How to Use this Manual

This is a technical manual and is designed to solve problems of a highly
technical nature. If your questions are simply related to ordinary use of
KAYLINK, consult the Users' Manual at the front of the binder. If, on the
other hand, you have a special problem you want KAYLINK to solve, or if
you are just interested in how KAYLINK does things, you have come to the
right place.

Since this is a technical manual, it assumes a basic knowledge of com
munications and of the CP/M operating system as well as a larger vocabulary
of technical terms. Also, most of Chapter 4 assumes knowledge of 8080 and
Z-80 assembly language, programming concepts, interrupts, and synchronous
communications.

Chapter 2 describes facts about KAYLINK which are too technical for
the Users' Manual but which might be necessary in trying to get KAYLINK
to work under certain circumstances.

Chapter 3 gives a general description of the HASP protocol that
KAYLINK uses. Some of the options to customize KAYLINK described in
Section 4.1 pertain to concepts discussed in this chapter.

Chapter 4 describes the entire process of installation, the process of tak
ing a distribution copy of KAY LINK and making it useful. It includes a descri
pion of all the command line arguments used to customize KAYLINK for
your application.

Chapter 5 describes in more detail one phase of the installations:
installation by code insertion by HIOS. Your copy of KA YLINK already
has a HIOS, and this section may help you if you wish to modify it.

Chapter 6 describes another phase of installing KAYLINK: connecting
the computer to a communications line.

1.1 Conventions

Most of the manual is in the type style of this paragraph. Another type
style, which looks like this, is used for special purposes such as the following:

*
*
*
*

File names
Assembly language instructions
Messages the computer displays
Typed commands

1

Numbers which appear in the text are usually in decimal representation.
Hexadecimal numbers are followed by an "H." For example, 20 represents
decimal 20, while 20H represents hexadecimal two-zero, or decimal thirty-two.

2

2.0 Facts About KA YLINK

This chapter contains bits of technical information about the KAYLINK
program itself. This information includes buffer sizes, communication
characteristics, and operating system requirements.

2.1 Communication

The approximate maximum speed of KAYLINK is 9600 baud times the
clock speed in MHZ for the interrupt version and 2400 baud times the clock
speed in MHZ for the non-interrupt version. KA YLINK will com
municate well at 9600 baud on aKA YPRO II and up to 19.2 kilobaud on
KAYPRO 10.

KAYLINK, as a good follower of the HASP protocol, will send out
ENQ's until it gets a response. This means that it really does not matter to
KAYLINK when the communications are established. The other computer
with which it is communicating, however, may hang up the phone after
waiting a certain period of time. For this reason, it may be necessary to bring
up KAYLINK before dialing the phone.

If you press the RETURN key alone while using the HASP Station Con
sole, KAYLINK will send a record containing a single null character. The
reason for this is that, while null records are sometimes necessary, especially
in interactive applications, most host sites are not prepared to accept records
of zero length. The compromise of using a single null character causes no
problems with most systems.

Lines of zero length in a disk file or the Text Editor are sent as records
containing a single space character.

When two microcomputers running KAYLINK are made to com
municate with each other and neither is told to be a host, a race will be held
to determine who has the honor of hosting the other. One computer will
eventually send a signon card, at which point the other will say to itself, "Oh!
I'm supposed to be a host. I get it," and will promptly behave as one. If you
want one of the computers in particular to be the host, use the command
KAYLINK HOST to load and run KAYLINK on that computer.

If KA YLINK receives a bad buffer of data, it will ask for that buffer to
be transmitted again. After five unsuccessful tries, the message
COMMUNICATIONS PROBLEM will appear in the Status Window.
KA YLINK will continue to ask for the buffer until it receives it properly.

3

2.2 Buffer Sizes and Magic Numbers

A HASP buffer is an entire message sent at once including all protocol
bytes. The largest buffer which KAYLINK can receive or send is 800 (decimal)
bytes long. When KAYLINK is sending data, this is no problem. However,
you should make sure that KAYLINK never receives a buffer of data larger
than 800 bytes. Most host sites have provisions for specifying the largest buffer
size. If KAYLINK receives a buffer which is too large, it will send a NAK
(negative acknowledge) to the other computer.

The largest record of data which KAYLINK can send is 160 (decimal)
bytes long. When sending transparent data this is no problem because record
boundaries are not significant. When sending non-transparent data such as
text all lines larger than 160 characters will be broken up into more than one
record, which will be interpreted as more than one line. Lines shorter than
160 characters will be sent as they are, without any space padding.

The HASP Station Console will only allow up to 160 characters to be
entered from the keyboard before the line is automatically sent.

2.3 The Text Editor

When you use the Text Editor, you can move the cursor anywhere on
the screen without affecting the text. Unlike many other full-screen text
editors, the number of lines is not determined until you actually enter some
text. The lowest line yet typed on the Text Screen therefore determines the
number of lines.

For example, if you type a single line in the Text Editor, there will only
be one line, even if you move the cursor to the bottom of the screen. If you
then enter a line at the bottom, there will be seventeen lines, of which the
middle fifteen will be blank.

Lines on the Text Screen are of various lengths which are determined
by what has actually been typed. If you have an application which requires
a certain number of spaces at the end of a line, you must type them. It is
sufficient for such an application to type a single space in the last position
where you want a space, because the editor will fill in the remaining spaces
for you.

When text created with the Text Editor is saved on a disk file, hidden
text is marked with a CTRLQ character at the beginning and end of each
hidden string. Although this does not secure the hidden text from users of
standard CP/M commands, it does ensure that no one may discover it while

4

using KAYLINK. When text is sent over the line, the CTRL-Q characters
are discarded.

2.4 Error Trapping

KAYLINK is set up to trap and recover from all BDOS errors. BDOS
error messages are never displayed on the screen. KAYLINK is also design
ed to trap BIOS errors for most systems. For some systems, particularly those
with custom BIOSes, the BIOS error trapping may not work.

The problem is that KAYLINK traps BIOS error messages by patching
the BIOS console output jump vector. If your BIOS error routines display
all their messages using this jump vector, there is no problem. If, however,
they display messages without going through the jump vector, there is no
way that KAYLINK can trap them. The only way to fix this is to rewrite the
BIOS so that all displaying of characters is done through the BIOS jump
vector.

5

3.0 The HASP Protocol-An Overview

A protocol is a set of specifications about the ways a device can com
municate with another device. Protocols are responsible for defining such
things as error checking and retransmission, identification, and device
specification.

HASP is the protocol used by the KAYLINK package. Primarily
associated with IBM equipment but readily available for many other systems,
this protocol is usually used for remote job-entry and printing. Among the
systems which use the HASP protocol in some form are JES and POWER.
Remember that "HASP" refers to the protocol and not to the KAYLINK
package, and phrases such as "HASP provides" refer to the protocol
definition.

HASP has a number of features which make it a very useful protocol.
For one thing, it uses synchronous communications, which makes it fast.
All traits of synchronous communications, such as the fact that SYNC bytes
must be sent at certain times to maintain synchronization, are handled by
the protocol.

HASP uses a half-duplex line for communications, so data can only go
in one direction at a time. However, because of the way that HASP breaks
up data, the direction of data flow can switch rapidly enough to give the
impression of sending and receiving data at the same time.

HASP allows multi-leaving, which permits several types of data to be
sent in one burst of communication. KAYLINK supports receiving multi
leaved data, although very few host sites actually send this type of data. In
addition, HASP allows data compression, which KAYLINK fully supports
for both incoming and outgoing data.

3.1 The Signon and Signoff Cards

After basic communications have been established and each computer
knows that the other exists, the remote will send a signon card to identify
itself. This is an 80-column card image sent over the communications line
along with special function codes. Usually the signon card takes the form

I*SIGNON REMOTEnn pw1

where REMOTE is a required keyword which starts at column 16, nn is the
number of the remote, and pw1 is a password for security which starts at
column 25. Sometimes a different signon card is used. JES systems may re-

6

quire an additional password at column 73. HASP on CDC CYBER systems
requires a signon card which starts with I*CONFIG. Talk to the people at your
mainframe site or data center if you aren't sure of the form of the signon card.

KAYLINK allows the signon card to be specified on the command line
in two different ways. Say you wanted to run KAYLINK with a signon card
which looked like

I*SIGNON REMOTE37 PANJANDRUM

One way would be to spell out the entire signon card by typing

KAYLINK SO = I*SIGNON REMOTE37 PANJANDRUM

This method works for all signon card formats. Since this particular
signon card is a standard format, you can also type

KAYLINK RN = 37,P1 = PANJANDRUM

to do exactly the same thing. For more information about command line
installation, please turn to Section 4.1.

The signon card also tells whether a remote is transparent or non
transparent. If the remote is transparent, it can send either transparent or
non-transparent data. If it is non-transparent, it can only send non
transparent data. Information about whether a remote is transparent or non
transparent is included in the signon card in a way that is invisible to humans.
You can change whether KAYLINK identifies itself as transparent or non
transparent with the T and NT arguments on the command line. For more
information about command line installation, please turn to Section 4.1.

When a microcomputer running KAYLINK receives a signon card, it
will realize that it is talking to a remote, and will behave as a host. Since
KAYLINK has no use for the signon card, its contents will be ignored.
KAYLINK will, however, determine whether the remote is transparent or
non-transparent and will not allow transparent data to be sent if the remote
is non-transparent.

7

When the session is over, the remote may send a sign off card to the host.
Like the signon card, this is a card image. Unlike the signon card, this card
has no special function codes associated with it. It is simply a single card
sent as card reader data which behaves exactly as if a real punched card
containing

I*SIGNOFF

were placed in the card reader. Because some HASP sites do not require a
signoff card, KAYLINK allows you to specify on the command line whether
to send a signoff card or not. There is no way to change the signoff card.
If your system happens to require a different type of card to sign off, use
the Send Disk File or Text Editor capabilities of KAYLINK to send one.

3.2 HASP Data Streams

A data stream in HASP may be considered a channel for sending and
receiving a certain type of data. These data streams are usually associated
with a certain device, from which their names are derived. There is a console
data stream which goes in both directions, from the host to the remote and
back again. This stream is usually used for data typed on the remote keyboard
or displayed on the remote console screen. In addition to the console stream,
both the host and the remote have seven input and seven output streams each.

The seven output streams for a remote are seven card reader streams,
named Reader 1 through Reader 7. The seven input streams may be various
combinations of printer and card punch streams, selected from Printer 1
through Printer 7 and Punch 1 through Punch 7. Similarly, a host has seven
card reader input streams and seven printer/punch output streams. Printer
and punch data only flow from the host to the remote, while reader data
only flow from the remote to the host.

KAYLINK will always send printer, punch, or reader data as Printer 1,
Punch 1, or Reader 1. Similarly, KAYLINK will treat all incoming data for
a certain device, regardless of its number, exactly the same. For example,
data received for Printer 1 and data received for Printer 4 are both treated
simply as printer data.

Before data can be sent over a stream, that stream must be open. The
console stream is always open, but all other streams must be specifically open
ed by commands defined by the HASP protocol. When a computer wants
to send data over a specified stream, it will send a request to the other com-

8

puter to open that stream. The other computer will either open that stream
and return an appropriate message or ignore the request.

KAYLINK does not allow two different streams of the same type, for
example Printer 2 and Printer 5, to be open at the same time. There are fur
ther restrictions on the streams that can be open at once. For example, printer
and punch streams cannot be open at the same time.

Once a stream has been opened, HASP provides a way for a computer
to signal whether it is ready to receive data for that stream. There is also a
way to signal whether it is ready to receive any data. These signals are used
by KAYLINK to control reception of data. When, for example, KAYLINK
is receiving data which is being sent to a disk file, KAYLINK may transmit
a signal to suspend reception of the data while it is actually writing to the disk.

9

HARDWARE

Command Line Installation by Setting Up the
Installation Code Insertion Machine

(HIOS)
Section 4.1 Appendix A

Section 4.2

SOFTWARE

Figure 4.1 The Three Phases of Installing KAYLINK

10

4.0 Installing KA YLINK

The term installation is used to describe the entire process of taking a
copy of KAYLINK from the distribution disk and transforming it into a pro
gram that runs on your machine and satisfies your requirements. The in
stallation process includes modifying your machine to run KAYLINK as well
as modifying KAYLINK to run on your machine.

Figure 4.1 on the opposite page shows the three phases of installing
KAYLINK. The boxes labeled HARDWARE and SOFTWARE roughly indicate
the difference between the three types of installation.

Command line installation is explained by Section 4.1. This type of in
stallation is performed by specifying various arguments on the command
line when loading and running KAYLINK. All of these arguments are con
cerned with software and are independent of hardware. In addition, most
of the arguments have to do with requirements of the host computer or mat
ters of taste. Any user of KAYLINK may do this type of installation.

Installation by code insertion is explained starting in Section 4.2. For
this type of installation, a segment of code is written and inserted into
KAYLINK. This code contains all the interfaces to the machine which are
not handled by CP/M. Although this type of installation only requires
modification of software, it requires intimate knowledge of the hardware
as well as experience with assembly language.

Setting up the machine is explained in appendix A. This type of installa
tion consists of all machine modifications which must be done to make the
machine function properly with KAYLINK. Depending on the machine, this
may be very easy, only involving changing jumpers, or difficult, involving
partially rewiring the machine.

4.1 Command Line Installation

KAYLINK is usually loaded and run by typing

KAYLINK

on the keyboard. Although this is probably the most common way to run
it, it is by no means the only way to do so. KAYLINK allows the command
line to contain various arguments which specify things about the program.

11

Readers of the Users' Manual will remember that typing

KAYLINK HOST

loads and runs KAYLINK as a host site rather than as a remote site. This
is an example of specifying an argument on a command line (in this case,
HOST is the one -and only argument).

In general, KAYLINK can take any number of arguments separated by
commas. These arguments may take the form of a single word, such as HOST
above, or an equivalence, which is a single word followed by an equal sign
(=) which is in turn followed by a string of characters or a number. For ex
ample, the command line

KAYLINK LP = 66,NP

will load and run KAYLINK with 66 lines per printer page and no password
protection on the text editor. LP = 66 is an equivalence, while NP is a single
word.

Although it is useful to be able to specify arguments for running
KAYLINK, typing a long line of arguments every time you want to run
KAYLINK can become tiring. Also, it is sometimes necessary to set up a
copy of KAYLINK with certain options already changed. For this reason,
a special argument is provided. This argument takes the form 0 = filename,
where filename is replaced by a standard CP/M file name. When this argu
ment is specified on the command line, KAYLINK will save a new copy of
KAYLINK with the new setup on file filename with secondary name .COM
and exit immediately. For example, typing

KAYLINK S-,O=KAYLlNK2

will save a new copy of KAYLINK on the file KAYLlNK2.COM. This copy
will be the same as the original, except that the new copy, when it is itself
loaded and run, will not send a signoff card at the end of a session (S
argument).

The following is a list of all legal command line arguments and their
meanings. If an argument is described as being the "default," that means
that the original copy of KAYLINK on your distribution disk is installed
that way.

12

Argument

HOST

o = filename

I = filename

LP=nn

P+

P-

ML=n

NP

T

Function

Run KAYLINK as a host. This argument must be the first
if more than one is used. It does not work in conjunction
with the "0=" parameter; thus KAYLINK cannot per
manently be installed to be a host.

If this argument is present; KAYLINK with the new changed
setup will be saved on file filename with type .COM. If this
argument is absent, KAYLINK will be run immediately with
the new setup.

If this argument is present, KAYLINK will load filename
as a HI OS COM file. See section 4.7 of the Technical Manual
for more information about the HIOS.

If this argument is included with nn replaced by a decimal
number, KAYLINK will use that number as the number
of lines per printed page, including all space at the top and
bottom of each page. The default is 66 lines per page.

This argument indicates that a form feed be sent to the
printer whenever it comes within four lines of the bottom
of the page. For example, if there are 66 lines per page,
KAYLINK will print 62 lines and then automatically ex
ecute a form feed.

This argument disables all automatic form feeds. (Default)

If n is replaced by a single-digit number, that number will
be the minimum length of the Text Editor Password. A
length of 0 will allow a null password to be entered when
the RETURN key is pressed at the password page. The
default minimum length is zero.

This argument specifies that no password is required to use
the Text Editor. Do not use in conjunction with ML = n.

This argument causes KAYLINK to be a transparent remote
station. This allows the host to send transparent and non
transparent data to the remote. KAYLINK is by default a
transparent station.

13

NT

RL

LR

S+

s-

SO = string

RN=nn

P1 = string

P2 = string

BS=nnn

This argument sets up KAYLINK as a non-transparent
remote station. This prevents the host from sending any
transparent data. The "T" and "NT" options have no effect
on KAYLINK operating as a host.

When KAYLINK receives a record to be sent to the con
sole, it must do a carriage return-line feed combination
either before or after the record is displayed as aline of text.
This argument causes the carriage to return before the line
and may be used to allow systems to display prompts on
the same line they ask for input.

This argument causes the carriage return to occur after the
line. This is the default.

This argument causes KAYLINK to send a I*SIGNOFF card
as card reader data before exiting to the operating system
when option "7" is selected from the Main Menu. For more
information on the signoff card, see Section 3.1 of the
Technical Manual. This is the default.

This argument specifies than no signoff card be sent.

The signon card is sent over the communications line when
KAYLINK is loaded as a remote. This argument changes
the signon card to the characters in string. If you want to
have commas in the signon card, use CTRLA to represent
each comma For more information on the signon card, turn
to Section 3.1 of the Technical Manual.

This argument sets up a standard signon card with remote
number nne Since this option builds a signon card, it should
not be used at the same time as SO = string.

Sets the standard HASP password to string. This argument
is used in conjunction with RN = nn to produce a standard
signon card.

Sets the alternate password required by some sites to string.
This is used in conjunction with P1 = string.

Sets the transmitted block size to nnn. The default is 512
bytes, the maximum is 800 bytes (decimal). The minimum
is 160.

14

M+

M-

Causes the "More Data" question (see the Users' Manual)
to be asked whenever card reader data is sent. This is the
default.

This causes KAYLINK to not ask the "More Data" ques
tion. KAYLINK will assume that there will be more data.

Examples

KAYLINK 0 = KAYLlN80,LP = 80,SO =I*SIGNON

will produce a new copy of KAYLINK with 80 lines per page and with the
specified signon card. KAYLINK does not run, but a new copy of KAYLINK
is written onto file KAYLlN80.COM.

KAYLINK LP = 80

will run KAYLINK with 80 lines per page. No new copy of KAYLINK will
be saved.

KAYLINK 0 = KAYLlN37,RN = 37,P1 = WACKAYACKA

will produce a new copy of KAYLINK, called KAYLlN37.COM, with a stan
dard remote signon card for remote number 37 with password
WACKAWACKA.

KAYLINK 0 = KAYLlNNP,S + ,NP

will produce anew copy of KAY LINK, called KAYLlNNP.COM, with a signoff
card and no password for the Text Editor.

If you do not include an argument to change a particular option, the
option will remain unchanged. Therefore, the sequence

KAYLINK 0 = KAYLlNK,SO = I*SIGNON,S +
KAYLINK 0 == KAYLlNK,LP = 88,ML = 4

is effectively equivalent to this sequence

KAYLINK 0 = KAYLlNK,SO = I*SIGNON,S + ,LP = 88,ML = 4

Notice that the output name is the same as the program name in this
example. KAYLINK will write the new copy over the old one without creating
an intermediate file. If you try this, make sure you have a backup copy of
KAYLINK under another name or on another disk.

15

This technique of breaking up changes into more than one step can be
used when all desired options cannot fit on one iine.

4.2 Machine Characteristics and the UIOS

The KAYLINK program uses many features of your machine. Although
these features are found on many machines, the ways of using them tend
to differ from machine to machine. Synchronous communications hardware,
cursor addressing, and interrupts are all things which KAYLINK either must
or can use.

KAYLINK is a large program, so its memory requirements are large. Stan
dard KAYLINK requires 48K of available memory (TPA) in a CP/M system.
Machines which use large PROM monitors and display memory located in
the standard 64K address space may not be able to run KAYLINK.

KAYLINK must be able to use a synchronous port. If a microcomputer
running KAYLINK is to be connected to a synchronous modem, the modem
must be able to supply the clock signals to the port controller. Many machines
can easily be made to receive the clock signals. For example, the Xerox 820
and Xerox 820-II only require changing two jumpers inside the cabinet. On
some machines, even some that have synchronous ports, there is no way to
allow the modem to supply the clock pulses. These machines may require
rewiring to work at all. Consult appendix A for information about your
machine.

KAYLINK requires an 80-column screen with at least 24 lines which has
direct cursor addressing and clear screen features and is fast enough not to
be annoying. KAYLINK also requires a keyboard with a reasonably full
ASCII set including control character generation and two special keys called
ESC and HELP. These two keys may be any two keys on the keyboard not
used for text entry, but to maintain consistency with the manual these keys
should be as similar to ESC and HELP as possible (i.e. HOME for HELP).
It is most convenient for the user if these keys can be operated by a single
key press (no SHIFT or CTRL).

Some machines have features which, although not strictly necessary, can
improve the performance of KAY LINK. Both port (modem) and timer (CTC)
interrupts, described in Sections 4.4 and 4.6, can multiply the speed of
KAYLINK by a factor of four. A feature to erase to the end of the line can
speed up screen replots. Special arrow keys can simplify use of the Text Editor.

All these machine-dependent features are accessed by a special section

16

of machine code. This section is called the HIOS, or HASTE Input-Output
System. KA YLINK is shipped for your machine with the proper HIOS
already installed.

If you have special things you want to do with your machine, you must
write your own HIOS, or modify the HIOS supplied. Sample HI OS source
code files are provided on your disk to help you with the process. Chapter 5
explains how to build a HIOS from scratch.

The HIOS is at most 500H bytes of machine code starting at address
0200H. (Look on the next page to see the beginning of a sample HIOS.) Before
address 0200H are six jump vectors which should not be changed by the user
but are called by routines in the HIOS. These are described in Section 4.3.
Starting at address 0201H is a series of several jump vectors which jump to
routines that perform machine-dependent functions and must be changed
for different machines. These are described in Section 4.4. After the jump
vectors is a series of flags and strings which provide information for
KAYLINK. These are described in Section 4.5.

The rest of this chapter is a guide for building a HIOS. Chapter 5 gives
information on how to build a HIOS completely from scratch. If you have
any questions about the HIOS which this manual does not answer, examine
the sample HIOSes included on the distribution disk. All have secondary
file name .ASM.

17

ORG 200H ;H!OS EXTENDS TO 6FFH (500H BYTES)

ETOA EaU $-18 ;CONVERT EBCDIC TO ASCII
ATOE EaU $-15 ;CONVERT ASCII TO EBCDIC
WSTC EaU $-12 ;WRITE STRING TO CONSOLE ROUTINE
INTMIN EaU $-9 ;MODEM (PORT) INPUT INTERRUPT ROUTINE
INTMOUT EaU $-6 ;MODEM (PORT) OUTPUT INTERRUPT ROUTINE
INTIMER EaU $-3 ;TIMER INTERRUPT ROUTINE

VERS: DB 13 ;FOR KAYLINK VERSION 1.3x
HINIT: JMP aHINIT ;ALL INSTALLABLE INITIALIZATION
EXIT: JMP aEXIT ;ANY CLEANING UP BEFORE EXIT
EMINT: JMP aEMINT ;EMULATE INTERRUPTS
ENINT: JMP aENINT ;ENABLE INTERRUPTS
DISINT: JMP aDISINT ;DISABLE INTERRUPTS
ENTXE: JMP aENTXE ;ENABLE MODEM (PORT) TRANSMITTER
ENRCV: JMP aENRCV ;ENABLE MODEM (PORT) RECEIVER
DISTXE: JMP aDISTXE ;DISABLE MODEM (PORT) TRANSMITTER
DISRCV: JMP aDISRCV ;DISABLE MODEM (PORT) RECEIVER
MODOUT: JMP aMODOUT ;SEND BYTE TO MODEM (PORT)
MODIN: JMP aMODIN ;GET BYTE FROM MODEM (PORT)
TIMEND: JMP aTIMEND ;END OF TIMER INTERRUPT ROUTINE
PRSTAT: JMP aPRSTAT ;RETURN PRINTER STATUS
PROUT: JMP aPROUT ;SEND BYTE TO PRINTER
RDRST: JMP aRDRST ;RETURN PHYSICAL CARD READER STATUS
RDRIN: JMP aRDRIN ;GET BYTE FROM CARD READER
AUXIST: JMP aAUXIST ;RESERVED FOR FUTURE EXPANSION
AUXIN: JMP aAUXIN " "" "
AUXOST: JMP aAUXOST
AUXOUT: JMP aAUXOUT ,
CON 1ST: JMP aCONIST ;RETURN CONSOLE INPUT STATUS
CONIN: JMP aCONIN ;GET BYTE FROM CONSOLE (KEYBOARD)
CONOST: JMP aCONOST ;RETURN CONSOLE OUTPUT STATUS
CONOUT: JMP aCONOUT ;SEND BYTE TO CONSOLE
POSCUR: JMP aPOSCUR ;POSITION CURSOR
CLRSCR: JMP aCLRSCR ;CLEAR SCREEN AND HOME CURSOR
ENRV: JMP aENRV ;ENABLE REVERSE VIDEO
DISRV: JMP aDISRV ;DISABLE REVERSE VIDEO
ETEOLN: JMP aETEOLN ;ERASE TO END OF LINE

ELFLAG: DB OFFH ;ERASE LINE INSTALLED FLAG
INTFLG: DB OOH ;INTERRUPT FLAG
TSPRER: DB 100 ;TENTHS OF SECONDS UNTIL PRINTER ERROR

MAX ROW: DB 24 ;NUMBER OF LINES ON CRT DISPLAY

UPAROW: DB 'A'-40H ;ALTERNATE CURSOR CONTROLS FOR TEXT EDITOR
DNAROW: DB 'B'-40H
LFAROW: DB 'D'-40H
RTAROW: DB 'C'-40H

ESCSTR: DB 'ESC',O,O,O,O,O
HLPSTR: DB 'HELP ',0,0,0,0
RETSTR: DB 'RETURN',O,O
DELSTR: DB 'DEL',O,O,O,O,O,O,O
ARRSTR: DB 'Arrow keys',O

Figure 4.2 A Skeletal HIOS

18

4.3 Accessible KAYLINK Routines

There are sixjump vectors before the beginning of the HIOS which may
be called by routines within the HIOS. Three ofthese jump to routines which
control various interrupt conditions. The builder ofthe HIOS must call one
of these routines (using an ordinary 8080 CALL instruction) when an inter
rupt occurs. The routines are as follows:

ElOA Convert EBCDIC to ASCII

Entry registers: A contains EBCDIC byte to convert to ASCII.
Return registers: A will contain ASCII equivalent of EBCDIC character.
Saved registers: BC, DE, HL

The jump vector to this routine is found at 0200H-18, or OlEEH. It con
verts a character in the EBCDIC character set to the ASCII character set.
Because KAYLINK assumes that all HIOS routines which use characters
work in ASCII, this routine is only provided for special purposes, such as
interfacing with an external device that uses the EBCDIC character set.

Because ElOA uses the conversion table described in Appendix B, it will
return a OAOH character (ASCII space with the MSB set) when an EBCDIC
character has no ASCII equivalent.

AlOE Convert ASCII to EBCDIC

Entry registers: A contains ASCII byte to convert to EBCDIC.
Return registers: A will contain EBCDI C equivalent of ASCII character.
Saved registers: BC, DE, HL

The jump vector to this routine is found at 0200H-15, or OlFIH. It con
verts a character in the ASCII character set to the EBCDIC character set.
Because KAYLINK assumes that all HIOS routines which use characters
work in ASCII, this routine is only provided for special purposes, such as
interfacing with an external device that uses the EBCDIC character set.

AlOE uses the conversion table described in Appendix B.

WSTC Write String To Console

Entry registers: DE points to O-terminated string to be sent to the screen.
Return registers: None
Saved registers: BC, HL

19

The jump vector to this routine is found at 0200H -12, or OlF4H. It sends
a O-terminated string at DE to the console screen. This should be used by
various· display functions to send a sequence of characters to the terminal.
If your machine does not use interrupts, you should always use this routine
whenever you want your HIOS routines to output characters. For example,
aCLRSCR may output an escape sequence to clear the screen.

INTMIN Modem (Port) Input Interrupt Handler

Entry registers: None
Return registers: None
Saved registers: None

The jump vector to this routine is found at 0200H -9, or OlF7H. It should
be called when an interrupt (or interrupt emulator) routine in the HIOS deter
mines that a character is ready from the synchronous port. When INTMIN
is called, it will get the character and do everything that is necessary with
it. INTMIN does not check status.

INTMOUT Modem (Port) Output Interrupt Handler

Entry registers: None
Return registers: None
Saved registers: None

The jump vector to this routine is found at 0200H -6, or 01 FAH. It should
be called when an interrupt (or interrupt emulator) routine in the HI OS deter
mines that the synchronous port is ready to receive an output character. The
routine will send a character to the port if that is appropriate. INTMOUT does
not check status.

INTI MER Timer Interrupt Handler

Entry registers: None
Return registers: None
Saved registers: None

The jump vector to this routine is found at 0200H-3, or OlFDH. It should
be called every tenth of a second by the timer interrupt or interrupt emulator
routine.

4.4 HIOS Installable Routines

The first byte in the HIOS is a version number; for KAYLINK version

20

1.3x it should be 13 (decimal). This version number must be correct or
KAYLINK will reject the HIOS.

This section describes the jump vectors in the HIOS for which the in
staller is responsible. Each is a 3-byte jump vector containing a single 8080
JMP instruction and an address.

Your skeletal HIOS, which is on file HIOS.ASM, contains a series of jump
vectors which jump to a series of routines. The labels of the routines are ex
actly the same as the labels of the jump vectors preceded by an "a" character.
When naming your routines, you must, of course, use the "a". However, when
you call any of your routines from other routines, call the label of the cor
responding jump vector, not the label of the routine itself.

Interrupt routines must save all registers, including flags, and should
use the stack as little as possible. All other routines have several stack levels
at their disposal but need not save any registers.

The following is a list of routines in the HIOS:

aHINIT KAYLINK Initialization

Entry registers: None
Return registers: None

This routine is probably the most complicated and important routine
in the entire HIOS, especially for interrupt versions of KAYLINK. It per
forms all functions which must be done when KAYLINK is loaded and run.
These include such things as initializing the interrupt controller (if any), the
serial port, etc.

aHINIT must set up the synchronous port for eight bits, no parity, two
byte synchronous mode. It must set the two sync bytes to 32H and 32H. It
should also set up the 110 chip to receive external transmit and receive clocks,
if this can be done in software. Finally, it should set the DTR (Data Terminal
Ready) line on the synchronous port. This routine must not enable either
the transmitter or the receiver (separate routines exist for these functions).

aHINIT should also set up the terminal characteristics to 80-column mode
with wrap-around at the end of the line and scroll at the bottom of the screen.
If any code needs to be patched outside KAYLINK, aHINIT should do the
patching. For example, the Xerox HI OS fixes errors in the monitor and
disables the CTRL-ESC key.

21

aHINIT has complete responsibility to set up and maintain interrupt
routines which themselves call routines listed in Section 4.3 to service inter
rupts. For more information about interrupt routines, see Section 4.6 and
aEMINT later in this section. Chapter 5 gives examples of typical interrupt
applications. aHINIT should not enable interrupts, even if it disables inter
rupts. KAYLINK will enable the interrupts when they are needed.

aEXIT Exit Processing

Entry registers: None
Return registers: None

This routine performs any and all cleanup before KAYLINK exits nor
mally. Before this routine is called, all files will have been closed, and com
munications will have been terminated.

This routine should, at the very least, disable all interrupts that were set
up by KAYLINK and drop the DTR (Data Terminal Ready) line to the
modem. If aHINIT patched any code external to KAYLINK, aEXIT should
put it back the way it was.

aEMINT Emulate Interrupts

Entry registers: None
Return registers: None

This routine is used to emulate interrupts for machines which do not
have them. It should perform the functions of all interrupts which are not
available. KAYLINK calls this routine, on the average, 2400 times a second
on a 1 MHZ microprocessor. See Section 4.6 for more information on the
interrupt emulator and interrupts in general. See Chapter 5 for a sample in
terrupt emulator.

If you use real interrupts, make this routine a single RET instruction.

aENINT Enable Interrupts

Entry registers: None
Return registers: None

This one can be just a return in a non-interrupt system. In an interrupt
system it should re-enable only those interrupts which KAYLINK uses. It
should not affect any other interrupts.

22

aDISINT Disable Interrupts

Entry registers: None
Return registers: None

This routine disables all interrupts that are being used by KAYLINK.
Any interrupts that are used by the operating system should be left unchanged.
For example, in a multiprocessor or multi-user system there may be system
interrupts that are used to switch between users. These interrupts are not
used by KAYLINK, and should not be changed by D ISINT. In a non-interrupt
system, this routine can be just a return.

aENTXE Enable Transmitter

Entry registers: None
Return registers: None

This routine enables the synchronous port transmitter. It should reset
error flags, enable DTR (Data Terminal Ready), RfS (Request To Send), and
TXEN (Transmitter Enable), and enable transmitter interrupts, if any.

aENRCV Enable Receiver

Entry registers: None
Return registers: None

This routine enables the synchronous port receiver. It should reset error
flags, turn on DTR and REN (Receiver Enable), enable receiver interrupts,
and cause the I/O chip to enter hunt mode.

The transmitter and the receiver will never both be enabled at the same
time. Therefore, aENRCV and aENTXE do not have to remember what bits
have been sent to the 110 chip.

aDISTXE Disable Transmitter

Entry registers: None
Return registers: None

This routine disables the synchronous port transmitter leaving only DTR
on and disables transmitter interrupts, if any.

23

aDISRCV Disable Receiver

Entry registers: None
Return registers: None

This routine disables the synchronous port receiver leaving only DTR
on and disables receiver interrupts, if any.

aMODOUT Modem (Port) Output

Entry registers: A contains byte to send to synchronous port.
Return registers: None

This routine sends the byte in register A to the synchronous port. This
routine is called by INTMOUT which is called only when your interrupt or
interrupt emulator routines have already tested status.

aMODIN Modem (Port) Input

Entry registers: None
Return registers: A will contain byte from the synchronous port.

This routine inputs a byte from the synchronous port and returns it in
register A. This routine is called by INTMIN which is called only when your
interrupt or interrupt emulator routines have already tested status.

aTIMEND Timer Routine End

Entry registers: None
Return registers: None

When the KAYLINK INTIMER routine (Section 4.3) is called, it will usual
ly return normally to your interrupt routine. Occasionally, in cases such as
printer errol'S, it will take over the stack to recover from errors. For this reason,
KAYLINK needs a routine to end the timer interrupt that does not change
the stack pointer. aTIMEND should signal end of interrupt by whatever
method the machine uses without changing the stack pointer and then return.
On standard Z-80 systems, for example, this routine may be an EI instruc
tion followed by a RETI instruction. On other systems, this routine may have
to send instructions to the CTC timer chip or interrupt controller chip to
signal the end of interrupt and then return.

This routine may be an entry point into your timer routine after the stack

24

has been restored. aTIMEND may use the stack as long as it exits with the
stack pointer unchanged. See Chapter 5 for a sample timer routine.

aPRSTAT Printer Status

Entry registers: None
Return registers: A will contain the status of the printer.

This routine returns the status of the printer. Register A will contain OFFH
if the printer is ready to receive a character or 0 if it is not. This routine may
simply contain a call to the appropriate BIOS function. NOfE: If this routine
does not return correct printer status, printer error routines will only work
properly on an interrupt version of KAYLINK.

aPROUT Printer Output

Entry registers: A contains the byte for the printer.
D contains the current line number.
E contains the current column number.

Return registers: None

This routine sends the character in register A to the printer. When this
routine is called, printer status will already have been tested. Therefore,
aPROUT mayor may not test the printer status--it does not matter.

The current line and column number (in registers D and E) are for the
line and column where the last character was printed.

PROUT must perform the following functions for the following control
codes:

Control Code

ODH (CR)
OAH (LF)
OCH (FF)

aRDRST

Function

Return the carriage without a line feed.
Do a line feed without a carriage return.
Go to the upper left-hand corner of the next page.
(Le. do a form-feed and carriage-return)

Return Physical Card Reader Status

Entry Registers: None
Return Registers: A and CY will contain status information

This routine, along with its sister routine aRDRIN, provides a way of us-

25

ing a physical card reader on a machine running KAYLINK. Operation of
the card reader (explained in Section 7.2 of the Users' Manual) essentially
requires no interaction with KAYLINK; the user simply puts his cards in
the hopper and presses the start button. KAYLINK constantly polls aRDRST
and when a character is available opens the Card Reader 1 stream and begins
sending cards, using aRDRST and RDRIN to get characters.

The status this routine returns is much more complicated than other
routines. Three bits must be set or reset, depending on conditions:

Bit 0 of A register--Set indicates a character is available.
Bit 7 of A register--Set indicates an error was found reading cards.
Carry Flag--Set indicates card reader stopped or hopper empty.

Bit 0 of the A register is simple enough: set this bit if and only if a character
is available. If this bit is set, no others should be. In other words, all valid
characters should be made available to KAYLINK before an error or stop
ped condition is reported.

Bit 7 of the A register is a little trickier. When an error occurs, aRDRST
should stop the card reader and, in any event, must set the Carry Flag in
dicating that the hopper is empty. This implies that an error cannot occur
in the middle of a card, or, if one does, it must be reported before any
characters on the card are made available to KAYLINK. When KAYLINK
recognizes an error, it will display the message CARD READER PROBLEM
in the Status Window. The user must then fix the problem and punch the
START button (or its equivalent) on the card reader.

The Carry Bit is sent if the card reader is stopped or empty. When
KAYLINK sees this and there has been no EOF card, it will display READY
TO SEND MORE DATA in the Status Window. The user then has the option
of placing more cards in the card reader and pressing the STARr button or
sending a disk file or the Text Screen as reader data. If there is no more data
to send, the user can indicate this by pressing option "O-NO MORE DATA
TO SEND" on the Text Screen or Send File menu.

aRDRIN Return Reader Input Character

Entry registers: None
Return registers: A will contain ASCII input character

This routine returns the next character from the physical card reader.
In practice, aRDRIN must work very closely with aRDRST to return the pro
per codes at the proper times. aRDRST will probably read an entire card in-

26

to a buffer, and aRDRIN will simply pick characters out of the internal buffer.

aRDRIN must return ASCII characters. These characters will be inter
preted as non-transparent data and will be converted to EBCDIC before be
ing sent. If your card reader returns EBCDIC characters, you must convert
them to ASCII using the ETOA routine described in section 4.3.

There is a special code which aRDRIN must return when all cards for
ajob have been sent. This is the standard CP / M EOF character, CTRL-Z
(1AH). aRDRIN must recognize the end of the job, for example by a
6-7-8-9 card, and return CTRL-Z. KA YLINK will then close the Card
Reader stream. aRDRIN should also flush the buffer or otherwise pr~vent
further characters from being sent, because KA YLINK will open the Card
Reader stream again if more characters are available.

aAUXIST
aAUXIN
aAUXOST
aAUXOUT

Auxiliary Device Input Status
Auxiliary Device Input
Auxiliary Device Output Status
Auxiliary Device Output

These four routines may be used in future versions of KAYLINK but
only require place holders for now.

aCONIST Console Input Status

Entry registers: None
Return registers: A will contain console input status.

This routine-returns A = OFFH if the console has a keyboard character
waiting or A = 0 if there is no character waiting.

The best way to implement this routine is to use BDOS call 6. First define
a single-byte location--call it CHARIN--to be a temporary location for the
character. At first, CHARIN should contain a 0 byte indicating no character.
First check to see if CHARIN is nonzero and return A = OFFH if so. If not,
load the C register with 6, load the E register with OFFH, and execute a
CALL OOOSH. BDOS will return with A =0 if no character is available or
A = the character. If A =0, return. If A is not zero, store A in CHARIN, set
A =OFFH, and return. See section 5.1 for more information on this.

aCONIN Console Input

Entry registers: None
Return registers: A will contain byte from console.

27

This routine returns one character from the keyboard without display
ing the character on the console. Since KAYLINK expects certain keycodes;
this routine must return these codes for certain keys:

Key

ESC
HELP

Returned Code

IBH (Standard ESC)
lEH (Standard HOME)

All other key codes are standard.

If you used the method described in aCONIST, this routine could simp
ly load the A register with the value in CHARIN, zero CHARIN, and return.

aCONIN must return only one character per keypress. This means that
it is responsible for converting all terminal escape sequences and the like
to single characters. This usually involves recognizing an ESC character,
waiting a short time, calling CONIST, and determining whether an escape
sequence was being sent or simply a single ESC. An example of how this
may be done appears in Section 5.3.

aCONOST Console Output Status

Entry registers: None
Return registers: A will contain console output status.

This routine returns A = OFFH if the console is ready to receive an out
put character or A = 0 if the console is not ready. This routine can speed up
the non-interrupt version using an external terminal (as opposed to a memory
mapped display).

aCONOUT Console Output

Entry registers: A contains byte to be displayed.
Return registers: None

This routine sends one character to the console. The following is a list
of actions aCONOUT must perform with certain control codes.

Control Code

ODH (CR)
OAH (LF)

Function

Return the cursor to the first column.
Line feed without returning cursor.

28

08H (BS)
07H (BELL)

Do a non-destructive back space.
Ring the bell, if any.

In addition, aCONOUT must wrap around to the beginning of the next
line when at the end of the line and must scroll at the bottom of the screen.
If your terminal must be set up to do these things, put the appropriate code
in aHINIT.

aPOSCUR Position Cursor

Entry registers: D contains row, E contains column.
Return registers: None

This routine positions the standard console cursor to row D, column E.
Rows and columns start from zero at the upper left-hand corner of the screen.

aCLRSCR Clear Screen

Entry registers: None
Return registers: None

This routine clears the console screen and homes the cursor to the upper
left-hand corner.

aENRV Enable Reverse Video

Entry registers: None
Return registers: None

This routine enables reverse video or whatever attribute mode is used.
All characters subsequently sent to CONOUT will be displayed in reverse video.

aDISRV Disable Reverse Video

Entry registers: None
Return registers: None

This routine disables reverse video. All subsequent characters will be
displayed normally.

aETEOLN Erase To End-Of-Line

Entry registers: None
Return registers: None

29

This routine erases all characters from the cursor to the end of the line
inclusive. This routine should never cause the screen to scroll. KAYLINK
contains an internal routine for terminals which do not have this feature (see
Section 4.5).

4.5 HIOS Flags and Strings

After the table of jump vectors are several labeled DB statements which
are described here.

ELFLAG: DB OFFH

This is a single byte which indicates whether or not a function which
erases to theend-of-line is available (see the description of aETEOLN above).
If your terminal does not have this feature, put a 0 byte in this location, and
make the aETEOLN routine simply return without doing anything. If your
terminal does have this feature, put a OFFH in this location and ensure that
your aETEOLN routine performs this function using calls to WSTC.

INTFLG: DB SOH

If your machine does not use serial port interrupts, put a 0 byte in this
location. If your machine uses port interrupts which may occur during disk
operations, put an 81H byte in this location. If your machine uses port inter
rupts, but those interrupts may not occur during disk operations, put an
80H byte here.

The best situation is to have interrupts which may occur during disk
operations, such as on an S-100 system with a DMA disk system. This pro
vides the best speed, efficiency, and accuracy.

If you have interrupts which may not occur during disk operations,
KAYLINK will wait for a particularly safe time to do a disk access. This
has the effect of slowing down disk operations somewhat and occasionally
requiring retransmission of a buffer over the communications line. It is assum
ed that the disk routines (and any routines which do bank switching) disable
interrupts before and re-enable them after disk operations. Ensuring that
this actually happens properly may require aHINIT to patch the disk routines.

If you don't have interrupts, communications might be limited to 4800
baud or so, depending on the speeds of various routines.

Consult Section 4.6 for more information on interrupt routines.

30

TSPRER: DB 100

This byte contains the number oftenths of a second until a printer error
is reported. This time delay gives slow printers time to start up or do form
feeds. It should be adjusted as needed for your printer. The delay may not
be precise in non-interrupt version of KAYLINK.

If TSPRER is equal to 0 (zero), the printer can wait as long as it wishes,
and KAYLINK will never report a printer problem. Use this special case with
care, especially in systems in which PRSTAT is not correctly implemented.

MAXROW: DB 24

This is a single byte giving the number of scrollable rows or lines on the
CRT display. This must be at least 24 but can be more, depending on the
characteristics of your display. For example, although the Heath/Zenith
H19/Z19 has 25 lines, the last one is not used in scrolling. Therefore, MAX·
ROW for the Z19 is 24.

UPAROW: DB
DNAROW: DB
LFAROW: DB
RTAROW: DB

'A'-40H
'B'-40H
'D'-40H
'C'-40H

These four bytes give the characters returned for an alternate set of cur
sor keys for the Text Editor. Remember that CTRL-H, CTRL-J, CTRLK,
and CTRL-L always work, even if an entirely new set is specified here.
Characters given here are those for the Xerox 820 or Xerox 820-11.

EseSTR: DB 'ESC',O,O,O,O,O

This is a O-terminated string giving the name of the ESC key. You may
change this message if, for example, your ESC key uses the legend ESCAPE.
The entire string, including at least one terminating zero, must be exactly
eight characters long.

HLPSTR: DB 'HELP',O,O,O,O

This is a O-terminated string which will be displayed as the name of the
help key. This may be changed if, for example, you are using a Heath/Zenith
H19/Z19 and want the BLUE function key to act as the help key. Including
the terminating zero, there must be exactly eight characters.

31

ESC and HELP are used in the same line in places where the length of
the displayed string is critical. Make sure that the sum of the printabie
characters in ESCSTR and HLPSTR is at most eleven characters. If there are
more than eleven characters, some information will not be displayed on the
screen.

RETSTR: DB 'RETURN ',0,0

This string gives the name of the RETURN key. For different terminals,
you might have to change this to 'ENTER' or 'NEWLINE'. Remember to ter
minate with a zero byte and pad the entire string out to eight characters.

DELSTR: DB 'DEL',O,O,O,O,O,O,O

This is the string for the DELETE key. Pad it out to ten characters in
cluding at least one terminating 0 byte.

ARRSTR: DB 'Arrow keys',O

This is the string which will be displayed on the Text Editor on-screen
help to describe how to move the cursor. Users of different terminals might
want to change this to 'CTRL-H,J,K,L' or whatever is appropriate. The string
should have at most thirteen printing characters and should be terminated
by a zero.

4.6 Writing Interrupt Routines

KAYLINK can make use of two types of interrupts or "real-time" ser
vice. The first is a timer which goes off ten times a second and allows
KAYLINK to control such things as HASP transmit and receive timers and
printer errors. The second is an immediate interrupt which occurs when the
synchronous port transmit buffer can accept a character to transmit (check
the I/O chip TXR flag) or the receive buffer has a character to be read. How
the interrupts are handled is entirely the responsibility of the installer.

The HIOS should contain interrupt handlers for both types of interrupts.
The aHINIT routine (see Section 4.4) is responsible for setting up interrupts
and ensuring that each type of interrupt results in a call to the appropriate
routine. Interrupt routines may not change any registers at all, including flags.
If they use any registers, they must first save the old values on the stack. To
be safe, push as few values on the stack as possible before changing to a new
interrupt stack. All other registers should be saved on the new interrupt stack.

Do not change the stack pointer using DAD SP before pushing PSW to

32

the old stack. This will affect the carry flag and is guaranteed to do something
terrible. If you are using a Z-80, use a LD (nn),SP instruction instead.

The timer interrupt routine is responsible for calling the INTIMER inter
rupt handler ten times a second. The port interrupt routine is responsible
for determining whether port input or output needs to be serviced (check
"READY" lines, not "BUFFER EMPTY" lines), and calling INTMIN or
INTMOUT respectively. Those routines always know exactly what to do
by themselves, so no parameters of any sort need to be passed.

All this is very good, but what if your machine has no interrupts or only
one type of interrupt? KAYLINK provides an interrupt emulator to solve
this problem. Simply provide a routine called aEMINT, accessed through jump
vector EMINT. This routine should perform the activity of both the timer
and the port interrupts. That is, it should count off the tenths of seconds
and check both the input and output statuses of the port. If a character is
ready, call INTMIN; if the transmitter is ready for a character, call
INTMOUT. For timing, be aware that the routine will be called, on the
average, about 2400 times a second if your CPU clock is running at I
MHZ.

If your machine has no interrupts, use aEMINT to perform all interrupt
operations and put a 0 byte in location INTFLG.

If your machine has a timer interrupt but no serial port interrupts, you
have two choices. If your timer interrupts are faster than the emulator, you
can simply use the timer interrupt to handle all interrupt jobs. If they are
not very fast, use the timer interrupt for timing, but use the interrupt emulator
for handling the port. In any case, put a 0 byte in location INTFLG.

If your machine has a port interrupt but no timer interrupt, use the port
interrupt as an interrupt and use the interrupt emulator for timing. If disk
operations may be interrupted, put an 81H byte in location INTFLG. If disk
operations may not be interrupted, put an SOH byte there.

If your machine has interrupts, by all means use them to their fullest.
The interrupt emulator works, but can never match the speed and efficiency
of real interrupts. Using real interrupts can speed up KAYLINK by a factor
of four.

The operation of the interrupt emulator depends on the speed of con
sole output. If you use the emulator, you should do the following things:

* Make sure that routine aCONOST returns correct console output status,
if possible.

33

* If you are using a CPU-driven memory-mapped display, make sure that
routine aCONOUT is as fast as possible.

* Make sure that all other status routines return correct status.

* Make all routines which do output (aENRV, aPOSCUR, etc.) use the WSTC
routine for their output.

* Make the "interrupt" routine as short, fast, and efficient as possible.

4.7 Patching in the BIOS

Once you have written your HIOS, use the following procedure to insert
the HIOS into your copy of KAYLINK. You need one disk which contains
KAYLINK, the HIOS, an absolute assembler, and the CP/M LOAD utility.

IMPORTANT! DO NOT USE YOUR DISTRIBUTION DISK! Section 3.1
of the Users' Manual explains how to make a copy of KAYLINK on one
of your disks.

(l) Assemble the HIOS with an assembler which produces a standard ab
solute HEX file. For example, if your HIOS is called HIOS.ASM and
your assembler is the standard CP/M assembler ASM, type the
following:

ASM HIOS

(2) Convert the HEX file into a COM file by typing the following:

LOADHIOS

(3) Type

KAVLlNK I = HIOS,O = KAVLlNKT

This will load the HIOS into KAYLINK and write the new KAYLINK
to file KAVLlNKT.COM

(4) When you are satisfied that your new KAYLINK on file
KAVLlNKT.COM works properly, you can rename it to KAVLlNK.COM.
To do this using standard CP/M, type the following two commands
(REMEMBER--you should not be using the distribution disk):

34

ERA KAYLlNK.COM
REN KAYLlNK.COM = KAYLlNKT.COM

You will probably want to use additional command line installation after
you are convinced that your HIOS works. Section 4.1 describes command
line installation.

35

ORG 200H ;HIOS EXTENDS TO 6FFH (500H BYTES)

ETOA EQU $-18 ;CONVERT EBCDIC TO ASCII
ATOE EQU $-15 ;CONVERT ASCII TO EBCDIC
WSTC EQU $-12 ;WRITE STRING TO CONSOLE ROUTINE
INTMIN EQU $-9 ;MODEM (PORT) INPUT INTERRUPT ROUTINE
INTMOUT EQU $-6 ;MODEM (PORT) OUTPUT INTERRUPT ROUTINE
INTIMER EQU $-3 ;TIMER INTERRUPT ROUTINE

VERS: DB 13 ;FOR KAYLINK VERSION 1.3x
HINIT: JMP aHINIT ;ALL INSTALLABLE INITIALIZATION
EXIT: JMP aEXIT ;ANY CLEANING UP BEFORE EXIT
EMINT: JMP aEMINT ;EMULATE INTERRUPTS
ENINT: JMP aENINT ;ENABLE INTERRUPTS
DISINT: JMP aDISINT ;DISABLE INTERRUPTS
ENTXE: JMP aENTXE ;ENABLE MODEM (PORT) TRANSMITTER
ENRCV: JMP aENRCV ;ENABLE MODEM (PORT) RECEIVER
DISTXE: JMP aDISTXE ;DISABLE MODEM (PORT) TRANSMITTER
DISRCV: JMP aDISRCV ;DISABLE MODEM (PORT) RECEIVER
MODOUT: JMP aMODOUT ;SEND BYTE TO MODEM (PORT)
MODIN: JMP aMODIN ;GET BYTE FROM MODEM (PORT)
TIMEND: JMP aTIMEND ;END OF TIMER INTERRUPT ROUTINE
PRSTAT: JMP aPRSTAT ;RETURN PRINTER STATUS
PROUT: JMP aPROUT ;SEND BYTE TO PRINTER
RDRST: JMP aRDRST ;RETURN PHYSICAL CARD READER STATUS
RDRIN: JMP aRDRIN ;GET BYTE FROM CARD READER
AUXIST: JMP aAUXIST ;RESERVED FOR FUTURE EXPANSION
AUXIN: JMP aAUXIN " "" "
AUXOST: JMP aAUXOST
AUXOUT: JMP aAUXOUT ;
CONIST: JMP aCONIST ;RETURN CONSOLE INPUT STATUS
CONIN: JMP aCONIN ;GET BYTE FROM CONSOLE (KEYBOARD)
CONOST: JMP aCONOST ;RETURN CONSOLE OUTPUT STATUS
CONOUT: JMP aCONOUT ;SEND BYTE TO CONSOLE
POSCUR: JMP aPOSCUR ;POSITION CURSOR
CLRSCR: JMP aCLRSCR ;CLEAR SCREEN AND HOME CURSOR
ENRV: JMP aENRV ;ENABLE REVERSE VIDEO
DISRV: JMP aDISRV ;DISABLE REVERSE VIDEO
ETEOLN: JMP aETEOLN ;ERASE TO END OF LINE

ELFLAG: DB OFFH ;ERASE LINE INSTALLED FLAG
INTFLG: DB OOH ;INTERRUPT FLAG
TSPRER: DB 100 ;TENTHS OF SECONDS UNTIL PRINTER ERROR

MAXROW: DB 24 ;NUMBER OF LINES ON CRT DISPLAY

UPAROW: DB 'A'-40H ;ALTERNATE CURSOR CONTROLS FOR TEXT EDITOR
DNAROW: DB 'B'-40H
LFAROW: DB 'D'-40H
RTAROW: DB 'C'-40H

ESCSTR: DB 'ESC',O,O,O,O,O
HLPSTR: DB 'HELP',O,O,O,O
RETSTR: DB 'RETURN',O,O
DELSTR: DB 'DEL',O,O,O,O,O,O,O
ARRSTR: DB :4rrow keys',O

Figure 5.1 A Skeletal HIOS

36

5.0 Building a HOIS from Scratch

Chapter 4 explained the entire process of installing KAYLINK and
described the RIOS. This chapter gives a step-by-step procedure for building
a RIOS from scratch.

DO Nor DO ANY HIOS DEVELOPMENT ON YOUR DISTRIBU
TION DISK! Make a copy of the entire disk or all files you will need.

Because the examples are presented separately, for the sake of com
pleteness some different routines may contain some of the same statements.
For example, several routines may contain the same EQUates. Most
assemblers will complain loudly if all these routines are simply typed in
without regard for repetition. When putting these routines together, put one
copy of each EQUate near the beginning of the RIOS.

5.1 Standard Routines

To build a complete RIOS, first build a partial RIOS which will not com
municate but at least will load and run. This section explains how to build
such a basic RIOS. After this basic RIOS is running it can be modified to
do communication, take advantage of interrupts, and eventually become
a complete RIOS. Sections 5.2 through 5.5 explain how to do this.

Figure 5.1 on the opposite page is the top part of a RIOS. Every RIOS
included on the distribution disk contains this code, sometimes slightly
modified.

At the top of figure 5.1 is an ORG statement followed by six addresses,
ETOA, ATOE, WSTC, INTMIN, INTMOUT, and INTIMER. Do not change any
of these addresses! They are the addresses',of jump vectors to routines in
KAYLINK which are called by routines within the RIOS. WSlC is used by
routines described in this section; the other five are used later. Also do not
change the version number.

Next is a series of jump vectors to RIOS routines. All the routines with
names beginning with a lower-case "a" must be written by the installer. Since
the jump vectors themselves should not be changed, let's skip them for a while.

37

At the bottom are several flags and strings (all DB statements). Change
these first.

ELf LAG: DB ° ;ERASE LINE INSTALLED fLAG
;OOH MEANS TERMINAL HAS NO ERASE TO END·Of·LlNE
;OFFH MEANS aETEOLN ERASES TO END·Of·LlNE

Make the ELFLAG byte zero. KAYLINK will handle all erases to the end
of the line with its own internal routine. Later on you can change it to take
advantage of your terminal's features.

INTfLG: DB ° ;INTERRUPT fLAG
;OOH MEANS NO PORT INTERRUPTS
;80H MEANS INTERRUPTS WHICH CAN'T INTERRUPT DISK
;81H MEANS CAN INTERRUPT DISK ACCESS

For now, make INTFLG a zero byte indicating no interrupts. Most inter
rupt versions will use 80H. Only a few such as those for DMAdisk systems
will use 81H.

TSPRER: DB 100 ;TENTHS Of SECONDS UNTIL PRINTER ERROR

This byte is the number of tenths of seconds until a printer error is
reported. The number 100, or 10 seconds, is standard.

MAXROW: DB 24 ;NUMBER Of LINES ON CRT DISPLAY

This is the number of scrollable lines on the CRT display. Most systems
use 24 lines, but a few, such as the Sanyo MBC-l000, use 25. If this number
is not set correctly, KAYLINK will not scroll properly.

See the example for aHINIT later on in this section for additional ter
minal requirements.

UPAROW: DB
DNAROW:DB
LfAROW: DB
RTAROW: DB

ESCSTR: DB
HLPSTR: DB
RETSTR: DB
DELSTR: DB
ARRSTR: DB

'L'-40H ;AL TERNATE CURSOR FOR TEXT EDITOR
'J'-40H
'H'-40H
'K'-40H

'ESC',O,O,O,O,O
'HELP ',0,0,0,0
'RETURN',O,O
'DEL',O,O,O,O,O,O,O
'Arrow keys',O

Don't bother changing the above listed bytes and strings until later.

38

Next, plug in the installable routines. All of these go after ARRSTR. For
purposes of clarity, put them into the HIOS in the order in which they ap
pear in the jump vectors.

aHINIT is probably the most important routine in the HIOS. Along with
its partner, aEXIT, it can be used for anything from setting up the terminal,
to controlling interrupts, to fixing bugs in the operating system. Although
most of these functions can be put off until later, setting up the terminal
must be done now.

KAYLINK requires an 80-column screen with at least 24 lines. The
number of lines above 24 is variable by changing MAXROW listed above, but
the number of columns is not. If your terminal has more than 80 columns,
aHINIT should set up the terminal for 80 columns.

The terminal must also wrap around at the end of each line to the begin
ning of the next line. When the terminal wraps around at the end of the very
bottom line on the screen, the screen must scroll up.

Most terminals do all these things by default and do not need to be set
up. Some, however, must be set up by sending a string of bytes to the ter
minal. The following is sample code for a Zenith Z-lOO system:

ESC EQU 1BH ;FIRST CHARACTER IN ESCAPE SEQUENCE

aHINIT: LXI D,SETUP ;DE POINTS TO SET UP STRING
CALL WSTC ;USE KAYLINK ROUTINE TO SEND STRING TO TERMINAL
RET

SETUP: DB ESC,'y?' ;DISABLE EXPANDED KEY CODES
DB ESC,'v' ;ENABLE WRAP-AROUND AT END OF LINE
DB 0 ;A ZERO BYTE TERMINATES THE STRING

The next few routines do not need to be written yet but require place
holders.

aEXIT: ;ANY CLEANING UP BEFORE EXIT
RET

aEMINT: ;EMULATE INTERRUPTS
RET

aENINT: ;ENABLE INTERRUPTS
RET

aDISINT: ;DISABLE INTERRUPTS
RET

aENTXE: ;ENABLE MODEM (PORT) TRANSMITTER
RET

aENRCV: ;ENABLE MODEM (PORT) RECEIVER
RET

39

aDISTXE: ;DISABLE MODEM (PORT) TRANSMITTER
RET

aDISRCV: ;DISABLE MODEM (PORT) RECEIVER
RET

aMODOUT: ;SEND BYTE TO MODEM (PORT)
RET

aMODIN: ;GET BYTE FROM MODEM (PORT)
RET

aTIMEND: ;END OF TIMER INTERRUPT ROUTINE
RET

aPRSTAT and aPROUT are the printer status and output routines.
aPRSTAT should return A = OFFH if it is O. K. to send a character to the
printer and A = OOH otherwise. aPROUT should send the character in register
A to the printer. Because these are standard CP/M functions, implementing
them is very easy. Use the following routines:

BOOS Eau 0005H
WBOOTA Eau 000lH
BIOSPST Eau 3"15

;ADDRESS OF JUMP VECTOR TO BOOS
;ADDRESS OF POINTER TO WARM BOOT
;DISPLACEMENT TO BIOS PRINTER STATUS ROUTINE

aPRSTAT: ;RETURN PRINTER STATUS IN THE A REGISTER

aPROUT:

THIS CODE WILL NOT WORK ON CP/M 3.0 OR LATER
LHLD WBOOTA ;GET THE WARM BOOT ADDRESS
MVI L,BIOSPST ;HL NOW POINTS TO THE BIOS PRINTER STATUS ROUTINE
PCHL ;00 IT AND RETURN VIA BIOS ROUTINE

MOV E,A
MVI C,5
CALL BOOS
RET

;PRINT CHARACTER IN THE A REGISTER
;PUT THE CHARACTER IN THE E REGISTER
;PRINTER OUTPUT ROUTINE IS BOOS NUMBER 5 ROUTINE
;00 IT

The next six routines only require place holders:

aRDRST:

aRDRIN:

aAUXIST:
aAUXIN:
aAUXOST:
aAUXOUT:

XRA A
STC
RET

RET

XRA A
RET

;PHYSICAL CARD READER STATUS
;NO CHARACTER AVAILABLE
;CARD READER STOPPED

;GET CARD READER CHARACTER

;RESERVED FOR FUTURE EXPANSION

40

Next implement aCONIST and aCONIN, the console input status and con
sole input routines. These are also very standard, but must carefully avoid
a feature of CP/M. This is that BDOS function 2, console input, traps control
S. This can cause KAYLINK to hang trying to send something to the con
sole. Because of this, you should always use BDOS function 6, direct con
sole 110. In this version, aCONIST actually gets the character from the
keyboard and aCONIN simply plucks it out of a memory byte. We can do
this because KAYLINK always calls aCONIST before calling aCONIN. The
routines are as follows:

aCONIST: ;RETURN CONSOLE STATUS
LOA CHARIN ;CHECK TO SEE IF WE ALREADY HAVE A CHARACTER
ORA A
MVI A,OFFH ;SET STATUS TO RETURN REGISTER A =OFFH (TRUE)
RNZ ;EXIT WITH CHARACTER AVAILABLE IF so
MVI C,6 ;OTHERWISE, USE BOOS FUNCTION 6
MVI E,OFFH ;10 DO CONSOLE INPUT OR STATUS.
CALL BOOS ;00 IT
ORA A ;SEE IF THERE IS A CHARACTER
RZ ;IF NOT, RETURN WITH REGISTER A=O (FALSE)
STA CHARIN ;OTHERWISE STASH THE CHARACTER
MVI A,OFFH ;MAKE REGISTER A = OFFH (TRUE)
RET ;RETURN WITH CHARACTER AVAILABLE

CHARIN: OS 1 ;HOLDS LAST CHARACTER OR 0 FOR NONE

aCONIN: ;GET CONSOLE INPUT CHARACTER
LXI H,CHARIN ;HL POINTS TO CHARACTER SAVED BY CONIST
MOV A,M ;REGISTER A = CHARACTER
MVI M,O ;CLEAR THE CHARACTER
RET

Now add code in aHINIT to set the byte to zero:

aHINIT:

preceding aHINIT code goes here

XRA A ;SET THE A REGISTER TO ZERO
STA CHARIN ;PUT IT IN CHARIN

The next routine, aCONOST, is neither a standard BDOS nor BIOS func
tion, and therefore is very different from machine to machine. For the first
version, make aCONOST return OFFH (TRUE) all the time, indicating that
the console is ready to receive a character all the time. Unless your machine
has a memory-mapped screen, you might later want to have this routine ac
tually check whether the terminal is ready to receive a character. The only
advantage would be speed improvements on the non-interrupt version.

41

aCONOST: ;RETURN CONSOLE OUTPUT STATUS
MVI A,OFFH ;ALWAYS READY
RET

The next routine~ aCONOUT ~ is a standard BDOS function and is very
easy to implement.

BOOS

aCONOUT:

EQU 0005H

MOV E,A
MVI C,6
CALL BOOS
RET

;ADDRESS OF JUMP VECTOR TO BOOS

;OUTPUT CHARACTER IN REGISTER A TO CONSOLE
;PUT CHARACTER IN E REGISTER
;USE SOOS FUNCTION 6 TO SEND CHAR TO CONSOLE
;DOIT

The next routine~ aPOSCUR~ is very important. It is used throughout
KAYLINK to format text on the screen. KAYLINK will call this routine with
the D register set to the number of the row (starting with 0 at the top of the
screen) and the E register set to the number of the column (starting with
o at the left-hand side of the screen). This routine will then move the console
screen cursor to that row and column.

Although the method of doing this can vary wildly from terminal to ter
minal~ many terminals use an escape sequence followed by the row and col
umn added to decimal 32. The following routine is for the Zenith Z-19 but
can be modified for most terminals:

ESC EQU 1BH ;FIRST CHARACTER IN ESCAPE SEQUENCE

aPOSCUR: ;POSITION CURSOR TO ROW D COLUMN E
XCHG ;PUT DE INTO HL
LXI D,POSSTR ;DE POINTS TO CURSOR POSITIONING STRING
CALL WSTC ;USE KAYLINK ROUTINE "WSTC" TO DISPLAY STRING
MOV A,H ;A=ROW
ADI A,32 ;OFFSET IT BY 32
STA ROW ;PLUG IT INTO STRING
MOV A,L ;A=COLUMN
ADI 32 ;OFFSET IT BY 32
STA COLUMN ;PLUG IT INTO STRING
XRA A ;SET A TO ZERO
STA RCEND ;PLUG IT INTO STRING
LXI D,ROW ;DE POINTS TO STRING CONTAINING CURSOR POSITION
CALL WSTC ;SEND IT TO THE CONSOLE
RET

POSSTR: DB
ROW: OS
COLUMN: OS
RCEND: OS

ESC,'Y',O ;Z-19 USES ESC Y ROW COLUMN
1 ;ROW-COLUMN STRING
1
1 ;SPACE FOR TERMINATOR

42

The next routine, aCLRSCR, is used to clear the screen and home the
cursor. Like aPOSCUR above, this routine usually requires sending a string
to the console. The following routine is for the Zenith Z-19:

aCLRSCR: ;CLEAR THE SCREEN AND HOME THE CURSOR
LXI D,CLRSTR ;DE POINTS TO CLEAR SCREEN STRING
CALL WSTC ;SEND STRING TO CONSOLE
RET

CLRSTR: DB ESC,'E',O ;ZENITH USES ESC E

When you have made all these changes, use the procedure described in
Section 4.7 to assemble your HIOS and insert it into KAYLINK.

Next, tryout KAYLINK to see how it flies. Use the standard HOME
key (CTRI.,. SHIFT-6 on most terminals) as the HELP key.

Page through the menus. Tryout the Text Editor. Try the Local Disk Func
tions. List a file to the screen and to the printer.

Don't try doing any communications; they will not work. Also, don't
expect the printer error time-out to work properly; until the aEMINT routine
is written no time-outs can occur.

When you are satisfied that the HIOS so far functions properly, you can
go to the next step and install communications.

5.2 Installing Communications (Non-Interrupt)

The next step in building a HIOS is to install non-interrupt communica
tions. To do this you will need detailed documentation for your computer
as well as complete specification sheets on the 1/0 chip for your machine.
Examples are given for the 8251 and Z-80 SIO chips. These examples are
by no means complete, although they do give an overview of programming
those particular chips. Computers with different chips may, of course, re
quire a completely different programming method. Even for computers with
the same chips as the examples, any number of things may differ from com
puter to computer.

Most computers use a port system to address the 110 chip. That is, the
chip is accessed with standard 8080 IN and OUT instructions. The examples
to come use labels for the 110 chip addresses, but use no EQUates to give
those addresses values. It is your responsibility to determine the proper ad
dresses for your computer. MIOS is the 110 chip status port, MIOC is the com
mand port (usually the same as the status port), and Mioe is the data port.

43

More examples of routines can be found on the HIOSes included on
the distribution disk.

The first routine which must be changed is aHINIT. This routine now
has the responsibility of programming the I/O chip for synchronous com
munications with eight data bits, no parity, and two sync bytes: 32H and
32H. Set up the I/O chip to receive external clocks if the chip has that feature;
in any event the I/O chip must be set to Xl clock. aHINIT must also raise
the DTR (Data Terminal Ready) line.

This example is for a Z-80 SIO chip.

SYNC EOU 32H

SIOTBL:

SIOEND:

aHINIT:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

MVI
LXI

PGMSIO: MOV
OUT
INX
OCR
JNZ
RET

18H
04H
10H
03H
EOH
05H
80H
06H
SYNC
07H
SYNC
01H
OOH

;TABLE OF BYTES TO PROGRAM Z-SO 510
;CHANNEL RESET
;SELECT REGISTER 4
;2-BYTE SYNC, NO PARITY, X1 CLOCK MODE
;SELECT REGISTER 3
;SET UP AUTO ENABLES
;SELECT REGISTER 5
;RAISE THE DTR LINE
;SELECT REGISTER 6
;PROGRAM SYNC BYTE 1
;SELECT REGISTER 7
;PROGRAM SYNC BYTE 2
;SELECT REGISTER 1
;NO INTERRUPTS FOR NOW
;END OF SIO TABLE

preceding aHINIT code goes here

B,SIOEND-SIOTBL ;# OF BYTES TO PROGRAM MODEM PORT
H,SIOTBL ;HL POINTS TO TABLE OF BYTES TO SEND
A,M ;GET A BYTE
MIOC ;OUTPUT TO MODEM I/O COMMAND
H ;POINT TO NEXT BYTE
B ;DECREMENT BYTE COUNT
PGMSIO ;LOOP UNTIL DONE

The following example is for an 8251. Notice the similarity to the previous
example.

SYNC EOU 32H

SIOTBL:

SIOEND:

aHINIT:

DB
DB
DB
DB
DB

0,0,0
40H
OCH
SYNC,SYNC
12H

;TABLE OF BYTES TO PROGRAM 8251
;MAKE SURE 8251 IS WAITING FOR A COMMAND
;INTERNAL RESET
;SET UP SYNCHRONOUS MODE, 8 BITS, 2 SYNC BYTES
;SYNC BYTES
;ERROR RESET, RAISE DTR LINE
;END OF SIO TABLE

preceding aHINIT code goes here

MVI B,SIOEND-SIOTBL;# OF BYTES TO PROGRAM MODEM PORT

44

LXI H,SIOTBL
PGMSIO: MOV A,M

OUT MIOC
INX H
OCR B
JNZ PGMSIO
RET

;HL POINTS TO TABLE OF BYTES TO SEND
;GET A BYTE
;OUTPUT TO MODEM I/O COMMAND
;POINT TO NEXT BYTE
;DECREMENT BYTE COUNT
;LOOP UNTIL DONE

Both of the listed aHINIT routines raise the DTR line. When KAYLINK
exits, the DTR line must go back down to indicate that KAYLINK is no longer
communicating. This is especially important when some form of auto-dial
or auto-answer equipment is used. The aEXIT routine must therefore drop
the DTR line. The following example is for a Z-80 SIO:

aEXIT: ;CLEANUP BEFORE EXIT
MVI A,S ;SELECT REGISTER 5
OUT MIOC
MVI A,O ;DROP DTR
OUT MIOC
MVI A,18 ;CHANNEL RESET
OUT MIOC
RET

The following example is for an 8251:

aEXIT:
MVI A,O
OUT MIOC
RET

;CLEANUP BEFORE EXIT
;DROP DTR

The next routine which must be written is aEMINT. The example which
follows should work properly providing that the helping routines MICRDY
and MOCRDY (explained later) are written correctly.

PSPEED EQU 50 ;PROCESSOR SPEED IN 100KHZ UNITS (HERE,S MHZ)
;PLUG IN THE SPEED OF YOUR PROCESSOR HERE

TENTH EQU 24*PSPEED ;NUMBER OF EMULATED INTERRUPTS PER TENTH SECOND

aEMINT:

aTIMEND:

CALL MICRDY
CNZ INTMIN
CALL MOCRDY
CNZ INTMOUT

LHLD TIMER
DCX H
SHLD TIMER
MOV A,H
ORA L
RNZ
LXI H,TENTH
SHLD TIMER
CALL INTIMER

RET

TIMER: OS 2

;EMULATE INTERRUPTS
;MODEM (PORT) SECTION
;CHECK IF MODEM (PORT) HAS A CHARACTER TO INPUT
;CALL KAYLINK MODEM INPUT ROUTINE IF SO
;CHECK IF MODEM (PORT) IS READY TO OUTPUT A CHAR
;CALL KAYLINK MODEM OUTPUT ROUTINE IF SO
;TIMER SECTION
;GET COUNTER FOR INTERRUPT
;COUNT DOWN ONE
;PUT IT BACK
;CHECK TO SEE IF COUNTED DOWN TO ZERO

;EXIT IF NOT
;IF DOWN TO ZERO, RESET IT TO THE TOP (TENTH)

;AND CALL THE KAYLINK TIMER INTERRUPT ROUTINE
;END OF TIMER INTERRUPT

;COUNTER FOR INTERRUPT

45

To initialize TIMER, add the following code to the very end of aHINIT
before the finai RET:

LXI H,TENTH
SHLD TIMER

Notice the use of aTIMEND in the example. Because this is not an inter
rupt version, aTIMEND does not need to signal the end of the interrupt.
However, it is the end of the timer interrupt and belongs here.

Now the helping routines MICRDY and MOCRDY must be written.
MICRDY tests to see if there is a character ready to be input from the I/O
port and clears the Z flag if so. Similarly, MOCRDY tests to see if the I/O
port is ready to output a character and clears the Z flag if so.

Notice that the setting of the Z flag is different from the normal HIOS
convention of returning A = OFFH for "true" and A = 0 for "false," as used
in routines like aPRSTAT. This is because these are only helping routines and
are not used by KAYLINK. Also, these routines should be as fast as possi
ble, and it is faster to set a flag than to set a register to one of two values.

Both MICRDY and MOCRDY may differ greatly from system to system.
The following example is for a Z-80 SIO system:

MICRDY:

MOCRDY:

IN MIOS
ANI 1
RET

IN MIOS
ANI 4
RET

;MOOEMiI(PtiRT) INPUT TEST
;GET BYTe:.'FROM STATUS REGISTER ON I/O CHIP
;TEST RX CHARACTER AVAILABLE BIT

;MOOEM (PORT) OUTPUT TEST
;GET STATUS
;TEST TX CHARACTER AVAILABLE BIT

The following example is for an 8251:

MICROY:
IN
ANI
RET

MOCROY:
IN
ANI
RET

MIOS
2

MIOS
1

;MOOEM (PORT) INPUT TEST
;GET STATUS
;TEST RX ROY BIT

;MOOEM (PORT) OUTPUT TEST
;GET STATUS
;TEST TX ROY BIT

If you like, you can eliminate the CALLs to these routines entirely and
put the contents of the routines where the CALLs were. This will speed things
up but will make the conversion to interrupts harder.

46

The next two routines, aENINT and aDISINT, can be just a return for
nOD- interrupt installations. In interrupt driven systems, these routines must
enable and disable the interrupts used by KAYLINK. They should not af
fect interrupts used only by the operating system.

aENINT: ;ENABLEINTERRUPTS
RET

aDISINT: ;DISABLE INTERRUPTS
RET

Enabling and disabling the transmitter and receiver is done by four
routines, aENTXE, aENRCV, aDISTXE, and aDISRCV, all of which are defined
in Section 4.4. The transmitter enable routine, aENTXE, must reset error flags,
set DTR (Data Terminal Ready) and RTS (Request To Send) RS-232 lines
and must enable the 110 chip transmitter. The receiver enable routine,
aENRCV, must reset error flags, set the DTR (Data Terminal Ready) line,
clear input registers, enable the 1/0 chip receiver, and enter hunt mode. Both
disable routines, aDISRCV and aDISTXE, must reset all lines but leave DTR
set.

The following example of all four routines is for a Z-80 SIO:

aENTXE: ;ENABLE TRANSMITTER
MVI A,35H ;ERROR RESET AND POINT TO REGISTER 5
OUT MIOC ;OUTPUT TO 110 COMMAND REGISTER
MVI A,OEAH ;8 BITS, TXEN, DTR, AND RTS
OUT MIOC
RET

aENRCV: ;ENABLE RECEIVER
IN MIOD
IN MIOD ;CLEAR INPUT REGISTERS
MVI A,33H ;ERROR RESET AND SELECT REGISTER 3
OUT MIOC
MVI A,OF1H ;8 BITS, RCEN, DTR, AND ENTER HUNT MODE
OUT MIOC
RET

aDISTXE: ;DISABLE TRANSMITTER
MVI A,28HS5 ;RESET TXE INTERRUPT PENDING AND SELECT REG 5
OUT MIOC
MVI A,80H ;TURN OFF TRANSMITTER BUT KEEP DTR SET
OUT MIOC
RET

aDISRCV: ;DISABLE RECEIVER
MVI A,3 ;SELECT REGISTER 3
OUT MIOC
MVI A,20H ;TURN OFF RECEIVER, KEEPING AUTO ENABLES
OUT MIOC
RET

47

These routines are for an 8251:

aENTXE: ;ENABLE TRANSMITTER
MVI A,33H ;RESET ERRORS AND TURN ON OTR, RTS, AND TXEN
OUT MIOC
RET

aENRCV: ;ENABLE RECEIVER
MVI A,96H ;RESET ERRORS, TURN ON OTR AND RXEN, ENTER HUNT
OUT MIOC
IN MIOD ;CLEAR INPUT REGISTERS
IN MIOD
RET

aDISTXE: ;TURN OFF TRANSMITTER
MVI A,02H ;TURN OFF EVERYTHING EXCEPT OTR
OUT MIOC
RET

aDISRCV: ;TURN OFF RECEIVER
MVI A,02H ;TURN OFF EVERYTHING EXCEPT OTR
OUT MIOC
RET

The last two routines to be written are aMODOUT, the modem (port)
output routine, and aMODIN, the modem (port) input routine. These routines,
which effectively control all actual communication, are actually the easiest
to write. The following example should work for practically all types of I/O
chips:

aMODOUT: ;MODEM OUTPUT ROUTINE
OUT MIOO ;OUTPUT BYTE IN REGISTER A TO 1/0 DATA REGISTER
RET

aMODIN: ;MOOEM INPUT ROUTINE
IN MIOD ;GET BYTE FROM 1/0 DATA REGISTER
RET

If your routines are written correctly, KAYLINK should now be able to
communicate. Use the procedure outlined in Section 4.7 to install the HIOS
into KAYLINK.

To determine whether your estimate of the processor speed was close
enough, use the procedure in Section 9.1 of the Users' Manual to send a file
to the printer, but switch the printer off-line. If you used the number 100
for TSPRER in Section 5.1, exactly 10 seconds should pass before the message
*** PRINTER PROBLEM *** appears in the Status Window.

If it takes longer than 10 seconds, many things could be the matter. The
speed of the emulated time interrupts depends primarily on the speed of
aCONIST and aCONOST as well as, for the printer error at least, on the speed
of the aPRSTATroutine. On some machines, such as the Zenith Z-100, these
routines can be painfully slow.

For computers with external terminals, you may have to write the

48

aCONOST routine so that it returns true console output status. This will have
no effect on computers with internal memory-mapped screens.

If the printer error never appears and KAYLINK hangs and stops respon
ding to keystrokes, the printer status routine in the BIOS is probably wrong.
Since very few programs actually test printer status, many computers of a
certain type can be sold before somebody discovers the error. Either fix the
printer status routine or update the HI OS to use interrupts. The interrupt
version can detect printer errors even if the printer status is wrong.

5.3 Cleaning Up the UIOS

Once KAYLINK is working, it should be made to work as well and as
nicely as possible. This chapter explains how to change the way KAYLINK
interacts with the user to make its use clear and simple.

Reverse video is used by KAYLINK to display status messages and key
names and makes the program much easier to understand. To use reverse
video, your terminal must have character-by-character (not line-by-line or
block-by-block) reverse video. There must be a way to make all subsequent
characters be displayed in reverse video or normal video as the programmer
chooses. Also, the method of enabling and disabling reverse video must not
take up any space on the screen.

Most terminals that have reverse video meet these requirements. A few,
such as some Televideo terminals, which have reverse video cannot be used
because they fail one or more of the above requirements.

For those terminals that can be used, the following two routines must
be written: aENRV, which enables reverse video for all subsequent characters,
and aDISRV, which disables reverse video for all subsequent characters. This
example is for a Xerox 820-11:

aENRV:

aDISRV:

LXI D,ENSTR
CALL WSTC
RET

LXI D,DISSTR
CALL WSTC
RET

;ENABLE REVERSE VIDEO

;DISABLE REVERSE VIDEO

ENSTR: DB ESC,')"O ;STRING FOR 820-11 TO ENABLE ATTRIBUTE
DISSTR: DB ESC,'("O ;STRING FOR 820-11 TO DISABLE ATTRIBUTE

49

Some terminals must also be set up to do reverse video. For example,
the Xerox 820-11 must have its attribute set to reverse video rather than blink
ing, low intensity, or graphics. The place to do this is in aHINIT. This exam
ple is for an 820-11:

aHINIT:

existing code

LXI D,RVSTR
CALL WSTC
DI

;KAYLINK INITIALIZATION

;DE POINTS TO REVERSE VIDEO STRING
;SET 820-11 ATTRIBUTE TO REVERSE VIDEO
;(XEROX RE-ENABLES INTERRUPTS ON CONSOLE OUTPUT)

more existing code

RET

RVSTR: DB ESC,'T,O

KAYLINK can use the erase to end-of-line features of the terminal to
speed up replots considerably. What is required is a function that erases all
the characters from and including the cursor character up to and including
the right-most character in the line.

Most terminals require a special character or escape sequence to be sent
to perform this function. The following example is for a Xerox 820 or 820-11:

aETEOLN:
LXI D,ELSEQ
CALL WSTC
RET

ELSEQ: DB 'R'-40H,0

;ERASE TO END-OF-LiNE
;DE POINTS TO ERASE SEQUENCE
;SEND IT

;820 USES CTRL-R

Notice that the WSTC routine is used, even though only one character
is to be output. This is good practice for all routines in the HIOS.

The next thing to do is to change the HELP key. Pick a key on the
keyboard. It should be easy-to-find. It should be accessed by a single keypress
(no SHIFT or CTRL), especially if KAYLINK will be used by people less
experienced than you are. People who do not know that you have to hold
down the CTRL key while pressing the other key are by no means rare. And
finally, the name should be seven characters or less long.

Function keys, the TAB key, or any HELP key are good choices. The
LINE FEED key is not a good choice; it is used by the Text Editor.

In using alternate keys for HELP there are two problems to be solved.
The first is the fact that KAYLINK expects the character code lEH to be

50

returned for the HELP key. This is very easy to solve by making minor
modifications to aCONIN. The following example uses the TAB key as the
HELP key:

TAB EQU 'I'-40H ;TAB KEYCODE
HELP EQU lEH ;HELP KEYCODE

aCONIN: ;GET CONSOLE INPUT CHARACTER
LXI H,CHARIN ;THIS CODE IS THE SAME AS
MOV A,M ; THE PRELIMINARY VERSION DESCRIBED
MVI M,O ; IN SECTION 5.1

;THE FOLLOWING CODE IS NEW
CPI TAB ;SEE IF CHARACTER IS A TAB
RNZ ;IF IT ISN'T, JUST RETURN
MVI A,HELP ;OTHERWISE, MAKE IT A HELP KEYCODF
RET

The next problem is not so easy to solve. When a function key is pressed,
many terminals send escape sequences instead of single keycodes. Since
KAYLINK expects a single keycode, these escape sequences must be con
verted. The way to do this is to have aCONIN, whenever it sees an ESC code,
wait a short while to see if another keycode is coming. If so, it is an escape
sequence, and can be converted. If not, the code for ESC should be returned.

The following example is one of the many ways to do this. It returns the
HELP code whenever the BLUE function key on the Zenith Z-19 is pressed.
All other function keys will act as the ESC key.

ESC EQU lBH
HELP EQU 1EH

aCONIN:
LXI H,CHARIN
MOV A,M
MVI M,O

CPI ESC
RNZ

MVI C,6
STALLC: PUSH B

XRA A
CALL CONOUT
POP B
DCR C
JNZ STALLC

CALL CON 1ST
ORA A
MVI A,ESC
RZ
CALL CONIN
CPI 'P'
MVI A,HELP
RZ
MVI A,ESC
RET

;ESC KEYCODE
;HELP KEYCODE

;GET CONSOLE INPUT CHARACTER
;THIS CODE IS TiiE SAME AS
; THE PRELIMINARY VERSION DESCRIBED
; IN SECTION 5.1
;THE FOLLOWING CODE IS NEW
;SEE IF CHARACTER IS AN ESC
;IF IT ISN'T, JUST RETURN

;WAIT FOR THE TIME IT TAKES TO SEND 6 NULLS
;TO THE CONSOLE (TRY OTHER VALUES, TOO)
·A=NULL
;SEND IT

;SEE IF 6 HAVE BEEN SENT
;LOOP IF NOT

;SEE IF ANOTHER CHAR IS AVAILABLE
;SEE IF CON 1ST RETURNS TRUE
;SET UP ESC TO BE RETURNED, JUST IN CASE
;IF NO OTHER CHARACTER, JUST RETURN AN ESC
;GET THE NEXT CHARACTER IN THE ESCAPE SEQUENCE
;CHECK FOR AN ESC-P (BLUE FUNCTION)

;IF SO, RETURN A HELP
;IF NOT, RETURN AN ESC-ALL ESCAPE SEQUENCES
;OTHER THAN ESC-P WILL JUST RETURN AN ESC

51

When there is more than one escape sequence to be translated, a table
lookup is a better way of doing the translation. Also, there are many trickier
and perhaps better ways of determining the existence of an escape sequence,
but the one above has the advantages that it is simple and works largely in
dependently of terminal speed.

Depending on your particular terminal, you may have to use the above
procedure to change the DEL (Delete) key as well. KAYLINK expects the
DEL key to return 7FH.

The Text Editor in KAYLINK uses CTRLH, J, K, and L to move the
cursor. Many terminals have arrow keys which can simplify the use of the
Text Editor greatly. For this reason, KAYLINK provides for an alternate set
of cursor control keys.

After MAXROW near the beginning of the HIOS are four DB statements
labeled UPAROW, DNAROW, LFAROW, and RTAROW. Each of these con
tain a single byte giving the keycode of an alternate cursor control key.

Change these bytes to take advantage of the arrow keys on your terminal,
if any. The following example is for a Xerox 820 or 820-11:

UPAROW: DB 'A'-40H
DNAROW: DB 'B'-40H
LFAROW: DB 'D'-40H
RTAROW: DB 'C'-40H

;UP ARROW KEY
;DOWN ARROW KEY
;LEFT ARROW KEY
;RIGHT ARROW KEY

The next things to change are the strings which KAYLINK will display
for various keycodes. There are five of these strings, found at the bottom
of figure 5.1. They should be changed to match the names on the keys exact
ly. A program which says Press the CR key when the key actually says
RETURN is sloppy and confusing.

When changing the strings, be very careful how many characters you
use. Forgetting a single padding zero byte can offset the rest of the strings
by one character. Also, the menus and Help Screens are designed to work
only with a certain number of characters per string.

ESCSTR: DB 'ESC',O,O,O,O,O ;ESCAPE STRING-EXACTLY 8 BYTES

This string is the name of the ESC or ESCAPE key. It should be chang
ed to use the exact legend on the ESC key. Notice the zero bytes after the
string. Only the first is used to terminate the string; the rest are there to pad

52

the entire string out to eight characters. The longest ESC string could therefore
have seven letters plus one terminating zero.

HLPSTR: DB 'HELP',O,O,O,O ;HELP STRING-EXACTLY 8 BYTES

This is the string for the HELP key. Because very few terminals have
a key named HELP, this string will probably need to be changed. Like the
ESC string above, this string must have exactly eight characters including
a terminating zero. There are further restrictions on the length of the ESC
and HELP strings, however. The total number of printable characters in both
strings may be at most eleven characters. If they have more, the status line
at the top of the HASP Station Console will be ruined. The strings ESC and
HELP only add up to seven characters, so there is plenty of room. A com
bination of strings such as ESCAPE and HERE IS, however, would be too
long, even though each string individually contains seven characters or fewer.

RETSTR: DB 'RETURN ',0,0 ;RETURN STRING-EXACTLY 8 BYTES
DELSTR: DB 'DEL',O,O,O,O,O,O,O ;DELETE STRING-EXACTLY 10 BYTES

Note that the DEL string has space for ten characters, not eight. This
is so that the ADM-3A SHIFT-RUB, with nine printing characters, just fits.

ARRSTR: DB 'Arrow keys',O ;CURSOR STRING-AT MOST 13 CHARS

This string gives the name of the cursor control keys for the Text Editor.
Since this is the last string, it does not need to have an exact length and can
contain up to 13 printing characters. If your terminal has no alternate arrow
keys, use the string CTRL-H,J,K,L. On terminals such as the Zenith Z-19, for
example, you may want to use SHIFT-Arrows.

5.4 Installing Port Interrupts

Installing interrupts is by far the most difficult part of writing a HIOS.
Only attempt it if you have plenty of skill and experience and complete
documentation for your system.

The rewards for installing interrupts are as great as the difficulties.
Interrupt versions of KAYLINK are faster and generally much nicer than
non-interrupt versions.

Because the methods of using interrupts can vary from machine to
machine, it is impossible to present a reasonable sample here. Instead, we
will go through the procedure of writing interrupts for an imaginary machine.

53

These are the specifications of the imaginary machine:

* 2 MHZ Z-80 processor
* Standard Z-80 SIO chip, accessed at 110 ports 10H-13H
* Standard Z-80 CTC timer chip, accessed at 1/0 ports 20H-24H

Neither the SIO nor the CTC are used by the operating system.
SIO and CTC are connected in a standard daisy chain.

* A disk system whose reads and writes cannot be interrupted
* No obtrusive bugs in the operating system

Even though a Z-80 microprocessor is used, examples of both 8080 and
Z-80 code will be given. The 8080 code is given so that you can use the stan
dard CPIM assembler ASM. To provide some necessary Z-80 instructions
in the 8080 code versions, OW statements will be used.

The first thing to do is install port interrupts. This is what will actually
speed up communications.

First of all, signal that the HIOS now uses port interrupts. On figure
5.1 you can see a single byte named INTFLG. Change this byte to an 80H,
indicating port interrupts that cannot interrupt disk access.

The next thing to do is actually to install the interrupts. Because the
machine is simplified, so is the task. For one thing, it is given that the operating
system does not use the interrupts at all. Also, the operating system has no
obtrusive bugs. This is an extremely rare and delightful quality. In the real
world, operating systems are often riddled with bugs, especially those that
affect interrupts.

However, our machine has none ofthose problems. It uses the standard
Z-80 interrupt system which is very simple. In this system, the Z-80 vectored
interrupt mode 2 is used. The CPU is given a byte which will be the high
order byte of an interrupt vector table somewhere in memory. When the device
interrupts, it will supply a low-order byte, making a complete 16-bit address.
The CPU will then look at the 2-byte word address at that location and ef
fectively do a CALL to that address.

Because the interrupt devices are connected in their own daisy-chain con
figuration, all the problems of interrupt priorities are invisible to the user.
As long as a Z-80 RETI instruction is executed as the last instruction in the
interrupt routine, all priorities will be handled automatically.

Since the operating system does not use the interrupts, we can build the
interrupt vector table inside the HIOS. The Z-80 SIO has two channels, A

54

and B. Each channel is set up to access four vectors (for our purposes all
alike), or eight bytes per channel. The entire SIO therefore requires an inter
rupt table 16-bytes long. For consistency with earlier examples we will use
SIO channel B and therefore the second set of four vectors.

This table must be normalized on a 16-byte boundary, that is, the four
least significant bits of the address of the beginning of the table must be
zero. One way to ensure that this happens is to put

ORG «$ + OFH)/10H)*10H ;PUT TABLE ON 16-BYTE BOUNDARY

just before the interrupt table.

The rest of the procedure is relatively straightforward. The high-order
byte of the interrupt vector is set with a standard 2-80 instruction, while the
low order byte is programmed into the SIO chip.

Several routines must then be changed. The initialization routine aHINIT
must now set up the interrupt table and routines.

The following 8080 code for HINIT is taken directly from the first exam
ple in Section 5.2 and has been modified to take advantage of interrupts.
Notice that the routine MODIO (Modem Input/Output) has been added to
the end actually to process the interrupts. This routine is essentially a distill
ed version of the first part of the interrupt emulator in section 5.2.

SIOADD EQU 10H ;ADDRESS OF Z·SO SIO
MIOS EQU SIOADD+3 ;CHANNEL B STATUS
MIOC EQU MIOS ;COMMAND IS THE SAME
MIOD EQU SIOADD+1 ;CHANNEL B DATA

RDA EQU 1 ;RECEIVER DATA AVAILABLE MASK
TBR EQU 4 ;TRANSMITTER BUFFER READY MASK

1M2 EQU 5EEDH ;BACKWARD Z·SO 1M 2 INSTRUCTION (USE IN DW)
LDIA EQU 47EDH " " LD I,A
RETI EQU 4DEDH " RETI

SYNC EQU 32H

SIOTBL: ;TABLE OF BYTES TO PROGRAM Z·SO SIO
DB 1SH ;CHANNEL RESET
DB 04H ;SELECT REGISTER 4
DB 10H ;2·BYTE SYNC, NO PARITY, X1 CLOCK MODE
DB 03H ;SELECT REGISTER 3
DB EOH ;SET UP AUTO ENABLES
DB OSH ;SELECT REGISTER S
DB SOH ;RAISE THE DTR LINE
DB 06H ;SELECT REGISTER 6
DB SYNC ;PROGRAM SYNC BYTE 1
DB 07H ;SELECT REGISTER 7
DB SYNC ;PROGRAM SYNC BYTE 2
DB 02H ;SELECT REGISTER 2
DB MTABLE AND OFFH ;PROGRAM LOW-ORDER INTERRUPT VECTOR BYTE

55

DB 01H ;SELECT REGISTER 1
DB 1AH ;I~JTERRUPTS ON ALL TX AND RX CHARACTERS

SIOEND:

ORG (($+OFH)/10H)*10H ;PUT TABLE ON 16-BYTE BOUNDARY
MTABLE:

aHINIT:

OS
OW
OW
OW
ow

8
MODIO
MODIO
MODIO
MODIO

CALL DISINT

;MODEM (PORT) INTERRUPT TABLE
;DON'T USE THE FIRST FOUR VECTORS
;ALL FOUR B CHANNEL VECTORS POINT TO
;PORT INTERRUPT SERVICE ROUTINES

;KAYLINK INITIALIZATION
;MAKE SURE WE DON'T GET INTERRUPTED

code to set up the terminal, etc

OW 1M2
MVI A,MTABLE/256
OW LOlA

MVI
LXI

PGMSIO: MOV
OUT
INX
OCR
JNZ
RET

B,SIOEND-SIOTBL
H,SIOTBL
A,M
MIOC
H
B
PGMSIO

;SELECT Z-80 INTERRUPT MODE 2
;A = TOP BYTE OF INTERRUPT TABLE ADDRESS
;PUT IT IN THE Z-80 INTERRUPT VECTOR REGISTER

;# OF BYTES TO PROGRAM MODEM PORT
;HL POINTS TO TABLE OF BYTES TO SEND
;GET A BYTE
;OUTPUT TO MODEM 1/0 COMMAND
;POINT TO NEXT BYTE
;DECREMENT BYTE COUNT
;LOOP UNTIL DONE

Now we must write the actual routine that recognizes the port interrupt.
All four interrupt vectors point to one place: MODIO. MODIO must therefore
determine whether the transmitter or receiver requested the interrupt.

In the following routine, notice how the stack is preserved. The method
uses only one level of the old stack before switching to a new one. Because
an interrupt can occur at just about any time, including during a BDOS call,
it· is very important not to rely on many stack levels.

The examples of 8080 code use one stack level before saving the stack
pointer to save the flags before executing a DAD. There is a trickier way to
save the stack pointer on the 8080 without using any stack levels, but using
one stack level works for the HIOS and is simpler. The Z-80 code example
given later on shows a simpler way to save the stack pointer without using
the old stack.

MODIO:
PUSH PSW
SHLD OLDHL
LXI H,O
DAD SP
SHLD OLDSTK
LXI SP,INTSTK
PUSH 0
PUSH B

IN MIOS
PUSH PSW
ANI RDA

;MODEM (PORT) INTERRUPT ROUTINE
;SAVE A AND FLAGS
;SAVE HL

;HL = CURRENT STACK POINTER
;SAVE IT
;SET STACK TO NEW INTERRUPT STACK

;SAVE OTHER REGISTERS

;GET STATUS BYTE
;SAVE IT
;CHECK IF RECEIVE DATA AVAILABLE

56

CNZ INTMIN
POP PSW
ANI TBR
CNZ INTMOUT

POP B
POP D
LHLD OLDSTK
SPHL
LHLD OLDHL
POP PSW
EI
DW RETI

OLDHL: DS 2
OLDSTK: DS 2

DS 2*20
INTSTK: DS 2

;IF SO, CALL KAYLINK ROUTINE
;GET STATUS BACK
;CHECK IF READY TO SEND CHARACTER
;IF SO, DO IT

;RECOVER REGISTERS
;GET OLD STACK POINTER
;RESTORE IT
;GETHL BACK
;GET A AND FLAGS BACK
;ENABLE INTERRUPTS AGAIN
;Z-80 RETURN FROM INTERRUPT

;SAVING PLACE FOR HL
;OLD STACK POINTER
;20 STACK LEVELS ARE ENOUGH

The following is the same code slightly modified and for a Zilog Z-80
mnemonic assembler. Only the actual code is included here, EQUates and
DB statements are as above, although to follow the Z-80 mnemonics strict
ly, DB, OW, and OS should be changed to DEFB, DEFW, and DEFS, respec
tively. Notice the different and better way of saving the stack pointer.

aHINIT: ;KAYLINK INITIALIZATION
CALL DISINT ;MAKE SURE WE DON'T GET INTERRUPTED

code to set up the terminal, etc

1M
LD
LD

LD
LD

2
A,MTABLEI100H
I,A

B,SIOEND-SIOTBL
HL,SIOTBL

PGMSIO: LD
OUT
INC
DEC
JP

A,(HL)
(MIOC),A
HL
B
NZ,PGMSIO

MODIO:

RET

LD (OLDSTK),SP
LD SP,INTSTK
PUSH AF
PUSH HL
PUSH DE
PUSH BC

IN A,(MIOS)
PUSH AF
AND RDA
GALL NZ,INTMIN
POP AF
AND TBR
CALL NZ,INTMOUT

POP BC
POP DE
POP HL
POP AF

jSELECT Z-80 INTERRUPT MODE 2
;A = TOP BYTE OF INTERRUPT TABLE ADDRESS
;PUT IT IN THE Z-80 INTERRUPT VECTOR REGISTER

;# OF BYTES TO PROGRAM MODEM PORT
;HL POINTS TO TABLE OF BYTES TO SEND
;GET A BYTE
;OUTPUT TO MODEM I/O COMMAND
;POINT TO NEXT BYTE
;ONE FEWER BYTE
;LOOP UNTIL DONE

;MODEM (PORT) INTERRUPT ROUTINE
jSAVE OLD STACK POINTER
;SET STACK TO NEW INTERRUPT STACK

;SAVE REGISTERS

;GET STATUS BYTE
;SAVE IT
;CHECK IF RECEIVE DATA AVAILABLE
;IF SO, CALL KAYLINK ROUTINE
;GET STATUS BACK
;CHECK IF READY TO SEND CHARACTER
;IFSO, DO IT

;RECOVER REGISTERS

57

LD SP,(OLDSTK)
EI
RETI

;RESTORE OLD STACK POINTER
;ENABLE INTERRUPTS AGAIN
;RETURN FROM INTERRUPT

The job is not complete, however. The interrupt emulator routine aEMINT
should be changed so that it does not check the ports.

Look at the example of aEMINT in Section 5.2. The four lines at the
beginning of the routine should be deleted. The routine will then look like
the following:

aEMINT:

LHLD TIMER
DCX H

;EMULATEINTERRUPTS
;TIMER SECTION
;GET COUNTER FOR INTERRUPT
COUNT DOWN ONE

the rest of the routine as in Section 5.2

Due to the Z-80 SIO architecture, the routines aENTXE, aOISTXE,
aENRCV, and aDISRCV do not need to be changed. This mayor may not
be true for other I/O chips.

The next two routines, aENINT and aOISINT, enable and disable inter
rupts for KAYLINK. These are critical routines - they must properly enable
and disable KAYLINK's interrupts, but they must not mess with any inter
rupts used by the operating system. This is particularly important in a multi
user environment. In the simple case of a single user machine with no system
interrupts, these routines can turn on and off all interrupts for the machine.
If this is done, then all of the calls to OISINT and ENINT in our examples
could be changed to 01 and EI instructions.

ENINT: EI ;ENABLEINTERRUPTS
RET

DISINT: 01 ;DISABLE INTERRUPTS
RET

That is all that must be done for the imaginary machine to make it run
port interrupts.

5.5 Installing Timer Interrupts

The reasons for installing timer interrupts are very different from those
for installing port interrupts. Timer interrupts will not appreciably speed
up communications.

58

There are two main reasons for timer interrupts. The first is that much
of the operation of KAYLINK, including communication, is based on a timer.
The interrupt emulator routine, aEMINT, can perform these functions fairly
well most of the time. Sometimes, such as when changing menus or display
ing help screens, cumulative errors in the timing can occur.

The other reason has to do with the printer status routine aPRSTAT.
Sometimes, the BIOS for a particular machine will not return the correct
printer status but will indicate that the printer is ready when it really is not.
This can cause KAYLINK to send a character to the printer which will wait
forever to be printed. If the timer interrupt is installed, KAYLINK can detect
and recover from such printer errors.

The Z-80 CTC chip in our imaginary machine runs directly off the 2
MHZ system clock. In the timer mode we shall be using, the incoming clock
is divided by a prescaler factor of 16 or 256, whichever the programmer
chooses. The prescaled signal is used to count down an 8-bit register to zero.
The 8-bit register, called the down counter, is loaded from another data
register, called the time constant, which can be programmed. Every time that
the CTC counts down to zero, an interrupt will be generated. The end result
is that regularly-spaced interrupt pulses will occur with a programmable
period. The period of the pulses can be determined by the following formula:

Interrupt period = System clock period * Prescaler factor * Time constant

What we ideally would like is an interrupt period of one-tenth of a second
(lOa milliseconds) for ten interrupts a second. The frequency of the system
clock is 2 MHZ, and therefore the period of the system clock is its reciprocal,
or 500 nanoseconds. Assuming the maximum prescaler factor of 256 and
the maximum time constant of 256, the above formula shows that the period
is only about 33 milliseconds, less than one-third of what we need. A better
approach, therefore, would be to configure the counter for, say, a 10 milli
second interrupt and count to ten internally in the HIOS.

A little calculation reveals that, for a 10 millisecond interrupt, the
prescaler factor is 256 and the time constant is 78. The CTC chip has four
channels, numbered 0 through 3. For no particular reason, we shall use chan
nelO.

Since the CTC uses the standard Z-80 interrupt system, like the SID, it
requires an interrupt vector table. We can simply put the CTC table at the
end of the SID table and it will automatically be on a 16 byte boundary:

59

1M2 Eau 5EEDH ;BACKWARD Z-80 1M 2 INSTRUCTION (USE IN OW)
LOlA Eau 47EDH " " LD I,A
RETI Eau 4DEDH " RETI

ORG (($ + OFH)/10H)*10H ;PUT TABLE ON 16-BYTE BOUNDARY

MTABLE: ;MODEM (PORT) INTERRUPT TABLE
DS 8 ;DON'T USE THE FIRST FOUR VECTORS
DW MODIO ;ALL FOUR B-CHANNEL VECTORS POINT TO
DW MODIO ;PORT INTERRUPT SERVICE ROUTINES
DW MODIO
DW MODIO

CTABLE: ;CTC INTERRUPT TABLE
DW TIMINT ;ONLY CHANNEL 0 IS USED
DW DUMMY
DW DUMMY
DW DUMMY

DUMMY: EI ;ENABLE INTERRUPTS
DW RETI ;JUST IN CASE

Now aHINIT must be modified to program the CTC. The following ex
ample shows elements that must be added to the HINIT routine described
in Section 5.4:

CTCO

TC

EQU 20H

EQU 78

;CTC CHANNEL 0 ADDRESS

;TIME CONSTANT

CTCTBL: ;TABLE OF BYTES FOR CTC

CTCEND:

aHINIT:

DB 03H ;RESET CHANNEL 0
DB CTABLE AND OFFH ;LOAD JUMP VECTOR
DB 10110101B ;LOAD TIME CONSTANT, SELECT TIMER, ENABLE INT.
DB TC

MVI
LXI

;END OF CTC TABLE

;KAYLINK INITIALIZATION

terminal setup, communication setup, etc.

B,CTCEND-CTCTBL ;# OF BYTES TO PROGRAM CTC
H,CTCTBL ;HL POINTS TO TABLE OF BYTES TO SEND

PGMCTC: MOV
OUT
INX
OCR
JNZ
MVI
STA
RET

A,M ;GET A BYTE
CTCO ;OUTPUT TO CTC CHANNEL 0
H ;POINT TO NEXT BYTE
B ;ONE FEWER BYTE
PGMCTC ;LOOP UNTIL DONE
A,10
COUNTER

Now we must write the TIMINT routine. The end of this routine will form
the aTIMEND routine.

TIMINT:
PUSH psw
SHLD OLDHL
LXI H,COUNTR
OCR M
JNZ TIMIN2
MVI M,10
LXI H,O

;TIMER INTERRUPT ROUTINE
;SAVE A AND FLAGS
;SAVE HL
;HL POINTS TO COUNTER
;DECREMENT IT
;IF HAVEN'T WAITED FOR 10 COUNTS, EXIT
;OTHERWISE, RESET COUNTER

60

DAD SP
SHLD OLDSTK
LXI SP,INTSTK

PUSH D
PUSH B
CALL INTIMER
POP B
POP D
LHLD OLDSTK
SPHL

TIMIN2: LHLD OLDHL
POP PSW

aTIMEND:
EI
DW RETI

COUNTR: DS 1
OLDHL: DS 2
OLDSTK: DS 2

DS 20*2
INTSTK: DS 2

;HL=CURRENT STACK POINTER
;SAVE IT
;SET STACK TO INTERRUPT STACK POINTER

;SAVE REGISTERS
CALL KAYLINK TIMER INTERRUPT ROUTINE

;RESTORE REGISTERS
;GET OLD STACK POINTER
;RESTORE IT

;RESTORE REGISTERS

;END OF TIMER INTERRUPT ROUTINE
;RE-ENABLE INTERRUPTS

;COUNTER TO 10
;OLD VALUE OF HL REGISTER
;OLD STACK POINTER
;20 STACK LEVELS
;INTERRUPT STACK

Now that both port and timer interrupts have been written, the old
aEMINT routine is extraneous. Get rid of it, including its internal aTIMEND.
All that should be left is

EMINT: ;INTERRUPT EMULATOR
RET

Interrupts have now completely been installed on the imaginary
machine.

It would be nice if installing interrupts for real machines were this easy,
but it is not so. Some machines have the right kind of interrupts but no
documentation on how to use them. Still other machines have glaring bugs
which do not necessarily affect the operating system but severely affect
applications programs that use interrupts. It is as if most designers of
machines think that nobody will ever need to use interrupts and therefore
make no attempt to describe their use.

As poor as the documentation for a machine may be, it is still the best
place to find out information. If that fails, try to obtain schematics for the
machine. Usually the required information can be found with a little
perseverance. Debugging tools such as DDT and SID can be used to hunt
down bugs, and aHINIT can be used to fix them.

"
Interrupts, especially port interrupts, are almost always worth the effort.

61

FG 1 n P FG I TD 2 2 TD
RD 3 3 RD

Computer RTS 4 4 RTS
CTS 5 5 CTS
DSR 6 6 DSR
GND 7 7 GND

CD 8 8 CD
0000000000000 TC 15 15 TC Synchronous·

0000000000000 RC 17 17 RC Hodem
00000000000 DTR 20 20 DTR

DB-25 DB-25
male connector ma18 connector

Figure 6.1 Connecting the Microcomputer to a Modem

Computer

0000000000000

0000000000000

00000000000

ig ~i-~n------------------~---+Rr~ ~g
gIl j~: I I i ~l
GND 7~----------------- ~7 GND

CD 8 ----tt-I 20 DTR
DTR 20~ I ;: 8 CD 0000000000000

TC 15 I I I 17 RC 0000000000000
RC 17 U U 15 TC 00000000000

DB-25 DB-25
male connector male connector

Figure 6.2 Direct Connect

62

6.0 Connecting KA YLINK to the Outside World

This chapter describes how to hook up your microcomputer so that it
can actually communicate with other computers.

6.1 Using a Modem

The most common way of using KAYLINK is to connect the computer
to a synchronous modem and connect the other end of the modem to a phone
line. If you do this, you will be able to dial up any HASP system within the
reach of the phone system, which is just about anywhere.

Since HASP is a synchronous protocol, you must have a synchronous
modem. These come in various baud rates and can cost from slightly under
$1000 up. (Bell 201 or Be1l208-compatible modems are the most widely used.)
Synchronous modems supply clock pulses to keep the computer in step with
what is being received. It is for this reason that you don't need to specify
the baud rate in KAYLINK.

To connect your computer to the modem, you need a sync cable. This
is a standard cable with 25-pin connectors at each end that has at least lines
1-8, 15, 17, and 20 connected. Plug one end of this cable into your computer
and plug the other end into your modem.

Figure 6.1 on the opposite page shows the cable required.

Some computers, such as Zenith systems, require a female connector on
the computer side.

Once you have connected the computer to the modem, you must con
nect the modem to the phone line. The procedure for this differs depending
on what type of phone equipment you have. Consult the manual for your
modem for more information.

Most systems involve a single phone line and a switch to connect the phone
line to the phone or to the modem. The switch usually has two positions,
called DATA and TALK. The TALK position is used to dial the phone, while
the DATA position is used for data communications.

6.2 Direct Connect

Sometimes it is desirable to connect two microcomputers running
KAYLINK directly to each other without using a modem. To do this you
must do two things.

63

First, KAYLINK is designed so that the 110 chip gets its clock signals
from the modem. One of the computers must, therefore, provide the clock
signals. Some computers cannot be set up to provide clock signals. On those
that can, such as the Xerox 820 or Xerox 820-11, set up the machine to supply
clock signals through the serial port. Instructions for doing this are in ap
pendix A. Then set the baud rate using instructions in the documentation
for your machine. The synchronous baud rate will be 16 times the asyn
chronous baud rate.

The other computer should be set up to receive clocks as if it were con
nected to a modem as described in Section 6.1.

Second, a special "lie" cable must be used to fool each computer into
thinking that it is talking to a modem. Figure 6.2 on the opposite page shows
how to do this.

Note that some of the numbers on the right-hand cable are different from
the numbers of the left-hand cable. Be sure to loop back RTS to CTS on
each side.

64

APPENDIX A

Setting Up the Machine

KAYPRO II OR KAYPRO 4

If you have a Kaypro II or a Kaypro 4 computer, you will need to do
some rewiring to run HASTE. Only attempt this if you are skilled in repair
ing computer equipment. Your Kaypro dealer may be able to make these
changes for you if you pay a service charge.

*
*
*
*
*
*
*

(1)

(2)

(3)

(4)

(5)

(6)

(7)

To rewire the machine, you will need the following:

Two (2) 470 pf (or thereabouts) mica or ceramic capacitors
One double-pole double-throw toggle switch
One 14-pin DIP socket with solder pins
One number 1489 line receiver in a 14-pin DIP package
Solder and wire
Electronic tools such as soldering iron, screwdrivers, pliers, etc.
A YOM or other continuity tester (optional)

Remove disks from the system, turn it off, and unplug it.

Unplug the keyboard cord from J3 in the back ofthe Kaypro and place
the Kaypro on a workbench with its back toward you.

Remove the screws from the top shell of the cabinet. There are two
screws at the top and four on each side.

Carefully lift the top shell off. The main board will be toward you on
the right-hand side.

Remove all plugs from the board including the two small black 4-pin
plugs, the white power plug, and the grey disk drive plug.

Remove the screws from the main board. There are two screws in the
top of the board toward the front and six through the back of the
Kaypro. The six in the back include two hexagonal bolts near J 4, two
small screws near J2 (be careful with these), and two other screws.

The board should now move freely. Turn the board over so that you
can see the bottom. If the back of the board is toward you, you will
see a number in the lower right-hand corner of the board, just above
the words MADE IN USA. There are two numbers separated by a

A-1

hyphen and then a single revision letter. In order to make the changes
in this appendix, that letter must be B if you have a Kaypro II. If you
have a Kaypro 4, the letter will probably be A .

(8) Locate U70. The part numbers are on the top side of the board. Once
you have located U70, turn the board so that the bottom faces up and
cut the copper trace between pins 11 and 12. This frees the sync detect
of port A from the input of port A.

(9) Again on U70, cut the trace between pins 13 and 14. This separates
the transmit and receive clock pins.

(10) Locate U75. It will be an empty hole for a 16-pin DIP. When you look
at the top of the board, there is a copper trace which appears to go
physically between pins 13 and 14 of this empty hole. Cut this trace.
This separates the clock of U70 from the U78 clock driver.

(11) Insert and solder a 14-pin DIP socket into the U75 hole so that pin
1 of the socket rests in pin 1 of the hole. (As you look at the top of
the board from the back, pin 1 will be at the upper right-hand corner
of U75).

(12) Look at the new socket at U75 from the bottom of the board. Solder
a jumper from pin 7 of the socket to pin 8 of the hole. This connects
ground to U75. From now on, pin numbers given for U75 will refer
to pin numbers of the socket, not pin numbers of the hole.

(13) Solder one 470 pf capacitor from pin 2 ofU75 to pin 7 ofU75 (ground).
Solder the other 470 pf capacitor from pin 5 of U75 to pin 7 of U75.
These provide noise immunity for U75.

(14) Locate 14, the serial I/O jack. Solder a wire between pin 1 ofU75 and
pin 15 of 14. The following diagram shows a view of the pins of 14
from the bottom of the board:

• • • • • • • • • • •
• • • • • • • • • •

Pin Pin
15 17

(15) Solder a wire between pin 4 ofU75 and pin 17 of 14. Now the external
clock signals from 14 are buffered through U75.

(16) Connect the DPDT switch to the board according to the following

A-2

schematic. The schematic shows the switch in the position used for
asynchronous communications. For synchronous communications
such as HASTE, flip the switch to the other position. You may need
to use a continuity tester to see which position is which on your switch.

IT
Pin 3 of U78--Clock Generator

ASYNC

~--- Pin 14 of U70··Transmit Clock
...... - -- Pin 13 of U70--Receive Clock

SYNC ? c:r Pin 3 of U75--Transmit Clock from RS-232
L-_ ---Pin 6 of U75--Receive Clock from RS-232

(17) Insert a number 1489 line receiver in U75.

(18) Mount the switch in the back of the cabinet. A toggle switch of the
proper size can easily be mounted in one of the cooling holes. For con
vention, mount it so that synchronous communications are selected
by flipping the switch up.

(19) Replace the board and screw it in. Don't forget to assemble J2 exactly
as it was before.

(20) Replace all plugs into the main board.

(21) Replace the top cover and screw it in.

Your Kaypro II should now be able to run HASTE. Flip the toggle switch
up when you want to use HASTE.

The Kaypro II cannot be used to provide clock pulses for direct connect.

A-3

Setting Up the Machine

KAYPRO 10

If you have a Kaypro 10 computer, the changes needed in order to run
HASTE are fairly simple. The Kaypro 10 was designed to support syn
chronous communications with only a very small modification. Still, you
should not attempt it unless you are skilled in repairing computer equip
ment. Your Kaypro dealer may be able to make these changes for you if you
pay a service charge.

*
*
*
*

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

To rewire the machine, you will need the following:

One double-pole double-throw toggle switch
Solder and wire
Electronic tools such as soldering iron, screwdrivers, pliers, etc.
A VOM or other continuity tester (optional)

Remove disks from the system, turn it off, and unplug it.

Unplug the keyboard cord from 15 in the back of the Kaypro and place
the Kaypro on a workbench with its back toward you.

Remove the screws from the top shell of the cabinet. There are two
screws at the top and four on each side.

Carefully lift the top shell off. The main board will be toward you on
the right-hand side.

Remove all plugs from the board including the two small black 4-pin
plugs, the white power plug, and the two grey disk drive plugs.

Remove the screws from the main board. There are two screws in the
top of the board toward the front and seven through the back of the
Kaypro. The seven in the back include two hexagonal bolts each near
13 and J4, two small screws near 16 (be careful with these), and one
black screw in the top right hand corner of the back.

The board should now move freely. Turn the board over so that you
can see the bottom.

Locate U23, a large 40-pin IC. The part numbers are on the top side
of the board. Once you have located U23, turn the board so that the
bottom faces up and cut the copper trace between pins 11 and 12. This

A-4

frees the sync detect of port A from the input of port A.

(9) Again on U23, cut the trace between pins 13 and 14. This separates
the transmit and receive clock pins.

(10) Just to the right of U23 (from the back side of the board) are three
pads right together and all in a line. From the top side of the board
these are to the left ofU23, and are labeled E25, E26, and E27. A single
trace comes from each of these pads. The traces from E25 and E26
go to pads that are above and just to either side of pins 11 and 12 of
U23. Locate these two pads. They are connected by a single trace. Cut
this trace. DO NOT cut the trace from either E25 or E26, just the trace
connecting them.

(11) Solder a wire to each of E25, E26, and E27. I use different colored
wires for ease of identification. The wire going to E25 brings out the
Kaypro's internal clock; this wire goes to both pins on one side of the
double pole double throw switch. E26 and E27 bring the clock signals
in to U23. They go to the two center pins on the switch.

(12) Solder a wire to pin 8 on each ofU4 and UI0. These are 1489 RS-232
line receivers; they are between U23 and J3. These wires bring in the
external clock signals produced by a synchronous modem. The wire
from U4 should go to the same pole (but opposite side) of the switch
as the wire from E26. The wire from UI0 should go to the same pole
(but opposite side) of the switch as the wire from E27. Thus when the
switch is thrown to synchronous, E27 connects to UI0 pin 8, and E26
connect to U4 pin 8. In the asynchronous position, both E26 and E27
are connected to E25.

(13) Your DPDT switch should now be connected to the board according
to the following schematic. The schematic shows the switch in the posi
tion used for asynchronous communications. For synchronous com
munications such as HASTE, the switch should be flipped to the other
position. You may need to use a continuity tester to see which position
is which on your switch.

A-5

ASYNC t- __ t E25··Clock Generater

? E27--Transmit Clock

SYNC
---- E26--Receive Clock

? 0- Pin 8 of U10--Transmit Clock
..... - --- Pin 8 of U4 --Receive Clock

from RS-232)

(14) Mount the switch in the back of the cabinet. A toggle switch of the
proper size can easily be mounted in one of the cooling holes. For con
vention, mount it so that synchronous communications are selected
by flipping the switch up.

(15) Replace the board and screw it in. Don't forget to assemble 16 exactly
as it was before.

(16) Replace all plugs into the main board.

(17) Replace the top cover and screw it in.

Your Kaypro 10 should now be able to run HASTE. Flip the toggle switch
up when you want to use HASTE. The Kaypro 10 cannot be used to provide
clocks for direct connect.

A-6

APPENDIX B

EBCDIC/ASCII Conversion Tables

The HASP protocol defines EBCDIC as the standard character set for
transfer of text data. Because your machine uses the ASCII character set,
characters must sometimes be translated from one character set to the other.

KAYLINK uses two tables to perform this translation, one from EBCDIC
to ASCII and one from ASCII to EBCDIC. The EBCDIC to ASCII transla
tion table is 256 bytes starting at location 700H (right after the HIOS). To
translate a character from EBCDIC to ASCII, determine the number of the
EBCDIC character, add it to 700H, and fetch the byte at that address. A
value of OAOH (an ASCII space with the high bit set) indicates no equivalent
ASCII character.

The following is the EBCDIC to ASCII translation table as it appears
in the distribution copy of KAYLINK.

ORG

SPG EQU

ETOAT:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

;OOH

OAOH ;SPAGA FOR TRANSLATI~G BAD EBCDIC CODES

;EBCDIC TO ASCII TABLE

o 1 2 345 6 7 8 9 ABC D E F
OOH,SPG,SPG,SPG,SPG,09H,SPG,7FH,SPG,SPG,SPG,SPG,OCH,ODH,SPG,SPG
SPG,SPG,SPG,SPG,SPG,SPG,08H,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG
SPG,SPG,ICH,SPG,SPG,OAH,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,BEL
SPG,SPG,SPG,SPG,SPG,IEH,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG
, ',SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,' [','.', '<',' (', '+','!'
'&' SPG SPG SPG SPG SPG SPG SPG SPG SPG '1' '$' '*' ')' '.' 'A'
, - ' ;. /' : SPG: SPG: SPG: SPG: SPG: SPG: SPG: SPG:' ';',';' ~~' : '_' ;.;, : '? '
SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,' (',':', ';ft', '@' ,27H, '=', ""
SPG, ' a ' , 'b' , 'c ' , 'd' , 'e' , ' f' , 'g' , 'h' , 'i ! ,SPG, SPG, SPG, SPG, SPG, SPG
SPG, : j : ' : k: ' : 1: ' : m: ' : n: ' : 0: ' : p: ' : < ' : < ,SPG, SPG, SPG, SPG, SPG, SPG
SPG, - , S , t , U , v , w , x , y , Z ,SPG,SPG,SPG,SPG,SPG,SPG
SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG,SPG
'{' 'A' 'B' 'c' 'D' 'E' 'F' 'G' 'H' 'I' SPG SPG SPG SPG SPG SPG
, } , ' , J' ' 'K' ' 'L' ' '~!' ' '~' ' '0' ' 'p' ' 'Q' ' 'R' ' SPG' SPG' SPG' SPG' SPG' SPG
'\ ' ' SPG' 'S' ' 'T' ' 'U' ' 'V' ' ''vi' ' 'X' ' 'y' ' 'Z' ' SPG' SPG' SPG' SPG' SPG' SPG
'0' : ' I' : ' 2 ' : ' 3' : '4' : ' 5' : '6' : ,'-; , : ' 8 ' : '9' : SPG: SPG: SPG: SPG: SPG: SPG

The following routine will convert the EBCDIC character in register A
to its ASCII equivalent. The ETOAjump vector at the beginning of the HIOS
jumps to a similar routine.

8-1

CVETOA: PUSH H ;SAVE REGISTERS
LXI H,ETOAT
MOV L,A
MOV A,M
POP H
RET

;HL- BEGINNING OF CONVERSION TABLE
;HL- ASCII CHARACTER
;A = ASCII CHARACTER
;RESTORE REGISTERS

The ASCII to EBCDIC translation table begins at address 8ooR. Because
the ASCII character set only uses seven bits, the table is only 128 bytes long.
The high bit of the ASCII character should be set to zero before adding to
800R to get the address of the EBCDIC byte.

The following is the ASCII to EBCDIC translation table as it appears
in the distribution copy of KAYLINK.

ATOET:

ORG

DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

800H

;ASCII TO EBCDIC TABLE AT 0800H

° 1 2 3 4 5 6 7 8 9 ABC 0 E F
OOH,OOH,OOH,03H,OOH,OOH,OOH,2FH, 16H,05H,25H,OOH,OCH,ODH,OOH,OOH
OOH,OOH,OOH,OOH,OOH,OOH,OOH,OOH,OOH,OOH,OOH,OOH,22H,OOH,35H,OOH
40H,4FH, 7FH,7BH,5BH,6CH,50H, 7DH,4DH,5DH,5CH,4EH,6BH,60H,4BH,61 H

° 2 3 4 5 6 7
8 9 ABC 0 E F
OFOH,OF1 H,OF2H,OF3H,OF4H,OF5H,OF6H,OF7H
OF8H,OF9H,07AH,05EH,04CH,07EH,06EH,06FH
07CH,OC1 H,OC2H,OC3H,OC4H,OC5H,OC6H,OC7H
OC8H,OC9H,OD1 H,OD2H,OD3H,OD4H,OD5H,OD6H
OD7H,OD8H,OD9H,OE2H,OE3H,OE4H,OE5H,OE6H
OE7H,OE8H,OE9H,04AH,OEOH,05AH,05FH,06DH
079H,081 H,082H,083H,084H,085H,086H,087H
088H,089H,091H,092H,093H,094H,095H,096H
097H,098H,099H,OA2H,OA3H,OA4H,OA5H,OA6H
OA7H,OA8H,OA9H,OCOH,06AH,ODOH,OA1H,007H

The following routine will convert the ASCII character in register A
to its EBCDIC equivalent. The ATOE jump vector at the beginning of the
RIOS jumps to a similar routine.

CVATOE: PUSH H
LXI H,ATOET
ANI 7FH
MOV L,A
MOV A,M
POP H
RET

;SAVE REGISTERS
;HL- BEGINNING OF CONVERSION TABLE
;SET TOP BIT OF ASCII CHARACTER TO ZERO
;HL- EBCDIC CHARACTER
;A = EBCDIC CHARACTER
;RESTORE REGISTERS

8-2

APPENDIXC

Versions of HASTE (KAYLINK)

There are several versions of HASTE, each suited to a specific need. The
word Iversionl here does not refer to the version number (i.e. 1.11 or 1.20)
but rather to completely different types of HASTE.

The following is a list of all versions of HASTE that are available now:

Standard HASTE

This is the version of HASTE for which the manuals were specifically
written. All information applies to standard HASTE.

B-only HASTE

This version of HASTE is intended to be used in public environments
where security of the disk containing HASTE itself is a problem. What you
will have is a HASTE system which only uses drive A: to load HASTE and
uses drive B: for all other purposes. To run this on a machine, several things
must be done. Install a startup command on the HASTE disk you will use
to immediately run HASTE on power- up or reset. Then physically cut the
WRITE)ine on drive A: to prevent damage to the disk on power-up. Finally,
insert your HASTE disk into drive A:, close the door, and lock it shut so
that nobody can open it without first disassembling the microcomputer.

A user of B-only HASTE cannot use drive A:. Drive B: is the default
drive on startup. No questions, Help Screens, or menu options involving
selecting a disk drive will appear. Also, all queries for a file name prevent
the user from typing a colon (:). Because B-only HASTE should be running
all the time, option "7" on the Main Menu, the option to exit HASTE, does
not appear.

PROM HASTE

PROM HASTE is designed to be burned into 16K of PROM starting
at address O. Another 16K of RAM should occupy address space just above
the PROM. PROM HASTE is intended to be used primarily as a printing
station. The Text Editor works for data entry, as does the physical card reader
(if any is installed), but no disk options of any kind are provided.

Because all machine-specific functions of HASTE are handled by the
HI OS, no operating system or monitor is used. Because the HIOS itself is

C-1

in PROM, the HIOS can no longer store bytes in the HIOS space, as most
of the sample HIOSes do.l\1ove all areas which change (OS statements) into
the address space starting at 4000H and ending at 40FFH. Use the aHINIT
routine to initialize all these bytes. It is surprisingly easy for even the best
programmers to forget a few until the PROM is burned.

Because PROM HASTE is so small, some things had to be removed.
Most Help Screens have been severely shortened. PROM HASTE cannot
act as a host, and, just as for B-only, there is no way to exit.

Demonstration HAST~

Demonstration HASTE, or DEMO HASTE, is the same as standard
HASTE except that all the communications software has been removed. The
Status Window says DEMONSTRATION ACTIVE instead of COMMUNICA
TIONS ACTIVE. All other features of HASTE may be used at will. DEMO
HASTE will allow you to "send" a file, the Text Screen, or a deck of cards
(if you have a physical card reader) although, of course, nothing will actual
ly be transmitted.

DEMO HASTE is sold for production and material costs to demonstrate
the features of HASTE. Unlike all other versions of HASTE, DEMO HASTE
does not include a licensing agreement. We encourage you to make as many
copies of a DEMO HASTE (and ONLY DEMO HASTE) disk as you want
and give them to all your friends, associates, and acquaintances. Don't copy
the manuals, however--they are protected by copyright even when they ac
company DEMO HASTE. Every HASTE disk contains a DEMO HASTE
called HASTE-D.COM.

FSUHASTE

FSU HASTE is designed for communication with the FSUCC Cyber
computer. It recognizes the signon message sent by the Cyber and, when
a password is requested, automatically begins hiding with X's just as if CTRL
Q had been pressed. At this time it also closes all open files and resets the
configuration to the startup configuration (see Section 6.1 of the Users'
Manual).

FSU HASTE is not really a version in and of itself but rather a modi fica -
tion of other versions. There exist FSU Standard HASTE, FSU B-only
HASTE, and FSU PROM HASTE.

C-2

KAYLINK

KAYLINK is a special version of HASTE sold for KAYPRO computers.
There is no difference between KAYLINK and standard HASTE except for
the replacement of the word HASTE by the word KAYLINK and rewording
of some of the menus and Help Screens.

C-3

APPENDIXD

Revision Record

Each version of this software which is released has a unique revision
number. This number is of the form "a.be" where "a", "b", and "e" are
single-digit numbers which represent levels of revision.

a is the major design revision level. This number increases by one
whenever major changes in design are made, including major
rewrites.

b is the documentation revision level. This number increases by one
whenever a change is made which is large enough to require a
change in the manual.

e is the minor change level. This number increases by one whenever
minor changes or bug fixes are made.

Version number 1.23, for example, specifies software with the original
design and no major rewrites which has received two changes large enough
to cause documentation changes and subsequently three small changes. If
a documentation -level change were made, the version number would be 1.30.
If the software were rewritten, the version number would be 2.00.

The first release is generally version number 1.00.

When the minor change level is increased, an addendum describing the
changes may be added to the manual.

Whenever the documentation revision level is changed, the manual is
changed. The revision level will be on the title page and will be a letter from
A to Z with I, 0, Q, and X omitted. (No letter means revision A, the original.)

DATE REVISION VERSION COMMENTS

01/83 A 1.00 First Release
03/83 B 1.10 HI OS made installable, Technical

Manual created
06/83 C 1.20 Card reader added, file closing ques-

tion changed
10/83 D 1.30 Printer problem handling changed;

Statuses added, "No More Data to

0-1

11/83
01/84

E
F

1.30
1.30

Send" option added, Buffer sizes
increased
Manual improved
KAYLINK version created

0-2

INDEX
/*CONFIG; 7
/ *SIGNOFF; 8
/*SIGNON; 6

8251; 43, 45, 46, 48

A Register; 28
Alternate Password; 14
Argument; II, 13
ARRSTR; 32, 53
ASM; 54
Assembly Language; I, II
ATOE; 19,37
Auto-answer; 45
Auto-dial; 45
AUXIN; 27, 40
AUXIST; 27,40
AUXOST; 27,40
AUXOUT; 27,40

Baud Rate; 63
Baud; 3
BDOS Call; 56
BDOS Errors; 5
BDOS; 27
Bell 201; 63
Bell 208; 63
BIOS Error Trapping; 5
BLUE Function Key; 51
BS=nnn; 14
Buffer Sizes; 3, 4
Buffer; 4

C Register; 27
Cable; 63
Card Image; 6
Carriage Return; 14
CHARIN; 27,41
Clear Screen; 16, 29
Clock Signals; 16
Clock Speed; 3
CLRSCR; 29, 43
Command Line Arguments; 12
Communication Characteristics; 3
Communication; 3
CONIN; 27, 41, 51
CONIST; 27,41,48
CONOST; 28, 33,41, 48, 49
CONOUT; 28,42

X-1

Console Input Status; 27
Console Input; 27
Console Output Status; 28
Console Output; 28
Control Character; 16
Conventions; I
Convert ASCII to EBCDIC; 19
Convert EBCDIC To ASCII; 19
CTC; 16
CTRL-H; 31
CTRL-J; 31
CTRL-K; 31
CTRL-L; 31
CTRL-Q; 4,5
Cursor Addressing; 16
Custom BIOS; 5
CYBER; 7

DAD; 56
Data Bits; 44
Data Compression; 6
Data Stream; 8
Data Terminal Ready; 44
DATA; 63
DB; 57
DDT; 61
Decimal; 2
DEFB; 57
DEFS; 57
DEFW; 57
DELSTR; 32, 53
Direct Cursor Addressing; 16
Disable Interrupts; 23
Disable Receiver; 24
Disable Reverse Video; 29
Disable Transmitter; 23
DISINT; 23, 39, 47, 58
DISRCV; 24, 40, 47, 58
DISRV; 29, 49
Distribution Disk; 11
DISTXE; 23,40,47, 58
DNA ROW; 31,52
DS; 57
DTR; 44,45,47
DW; 57

E Register; 27
ELFLAG; 30,38
EMINT; 22,33,39,43,45,58,59,61

INDEX
Emulate Interrupts; 22
Enable Interrupts; 22
Enable Receiver; 23
Enable Reverse Video; 29
Enable Transmitter; 23
ENINT; 22, 39, 47, 58
ENQ; 3
ENRCV; 23, 39,47, 58
ENR V; 29, 34, 49
ENTXE; 23, 39, 47, 58
EQU; 37
Equivalence; 12
Erase To End-Of-Line; 29
Error Checking; 6
Error Trapping; 5
ESC Key; 52
ESC; 16,28
ESCSTR; 31, 52
ETEOLN; 29,50
ETOA; 19,37
Exit Processing; 22
EXIT; 22, 39, 45
External Clocks; 44

Half-duplex; 6
Hang Up; 3
HASP Password; 14
HASP Protocol; 3
HASP; 6
HASTE Initialization; 21
HELP Key; 43
HELP; 16,28
Hexadecimal; 2
Hidden Text; 4
HINIT; 21, 30, 39,41,44, 50, 55,

60,61
HIOS; 16, 17,37
HLPSTR; 31, 53
Host; 3
HOST; 12
Host; 12
HOST; 13

I =filename; 13
IBM; 6
Imaginary Machine; 53
IN; 43
Input Streams; 8

X-2

Installable Routines; 20
Installation; 11
Installing Communications; 43
Interrupt Emulator; 33
Interrupts; 16, 30, 32, 38, 53, 58
INTFLG; 30, 38, 54
INTIMER; 20, 37
INTMIN; 20, 33, 37
INTMOUT; 20, 33, 37

JES; 6
JMP; 21
Jump Vector; 5,17,19

Kilobaud; 3

Largest Buffer; 4
LFAROW; 31,52
Line Feed; 14
Lines of Zero Length; 3
Lines Per Page; 13
LP=nn; 13
LR; 14

M+; 15
M-; 15
Machine Modifications; 11
MAXROW; 31,38, 39
Memory Requirements; 16
MICRDY; 45,46
MIOC; 43
MIOD; 43
MIOS; 43
ML=n; 13
MOCRDY; 45, 46
Modem (Port) Input Interrupt; 20
Modem (Port) Input; 24
Modem (Port) Output Interrupt; 20
Modem (Port) Output; 24
Modem; 63
MODIN; 24, 40, 48
MODIO; 55, 56
MODOUT; 24, 40, 48
Multi-leaving; 6

Non-transparent Data; 4
Non-transparent; 7, 14
NP; 13
NT; 14
Numbers; 2

INDEX
o =filename; 12, 13
Operating System Requirements; 3
ORG; 37
OUT; 43
Output Streams; 8

P+; 13
P-; 13
PI =string; 14
P2=string; 14
Padding; 4
Parity; 44
Password; 13
Phone Line; 63
Phone; 63
Port Interrupt; 30, 33
Port Interrupts; 53
POSCUR; 29, 34, 42
Position Cursor; 29
POWER; 6
Prescaler Factor; '39--'
Printer Output;\' 25
Printer Status; 25
Protocol; 6
PROUT; 25, 40
PRST A T; 25, 40, 48, 59

RDRIN; 26,40
RDRST; 25,40
Record; 4
Records Of Zero Length; 3
REMOTE; 6,7
RETI; 24
Retransmission; 6
RETSTR; 32, 53
Return Physical Card Reader

Status 25
Return Reader Input Character; 26
Reverse Video; 49
RL; 14
RN=nn; 14
RTAROW; 31,52
RTS; 47

S+; 14
S-; 12, 14
Send File; 26

SID; 61
Sign off Card; 8, 14
Signon Card; 6, 14
SO=string; 14
Speed of HASTE; 3
Standard Signon Card; 14
Sync Bytes; 44
SYNC; 6
Synchronous Communications; 6,16
Synchronous Modem; 16,63
Synchronous Port; 16

T; 13
TALK; 63
Text Screen; 4, 26
Text; 4
Time Constant; 59
TIMEND; 24, 40,46,60,61
Timer Interrupt Handler; 20
Timer Interrupt; 33
Timer Interrupts; 58
Timer Routine End; 24
Timer; 59
TIMINT; 60
Transparent Data; 4
Transparent; 7, 13
TSPRER; 31,38,48
Type Style; 1

UPAROW; 31, 52
Users'Manual; 1

Version Number; 20

Write String to Console; 19
WSTC; 19, 34, 37, 50

Xerox 820-11; 3, 16, 31,49, 50, 64
Xerox 820; 16, 31, 64

Z Flag; 46
Z-80 Code; 54
Z-80 CTC; 54, 59
Z-80 SIO; 43,44,45,46,47,54
Zenith Z-IOO; 39,48
Zenith Z-19; 42, 43, 51

X-3

CITY

COMMENT SHEET

FSUCC HASP Station Emulator
Version 1.30

NAME

COMPANY

ADDRESS

ADDRESS

STATE ZIP

PHONE NUMBER SOFTWARE SERIAL NUMBER

This form is not intended to be used as an order form. The Florida State
University Computing Center welcomes your evaluation of this software
product and manual. Please use this form to indicate any errors, suggested
additions or deletions, or general comments below (please include page
number references and explicit examples whenever appropriate).

____ Please Reply ____ No Reply Necessary

FOLD

computer Marketing Associates
1535 Killearn Center Blvd.
Building D
Tallahassee, FL 32308

FOLD

AFFIX
STAMP
HERE

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	X-01
	X-02
	X-03
	replyA
	replyB

