KEYBOARD DESCRIPTION

General Description

Refer to the keyboard schematic. The keyboard consists of the following principal circuits: an oscillator, the 4 LSB Counter, the Character Detector, the 4 MSB Counter, the Character Decoder, the B5-B7 Control circuits, the Character Repetition Oscillator, and the Strobe Generator. Their combined purpose is to generate a coded character output on seven data lines labeled KB1 through KB7; to develop a strobe output labeled K STROBE (that accompanies the data bits); and to repeat the keyboard character at a 10 Hz rate when the key is held down more than $1 / 2$ second.

Assume that characters are being entered at the keyboard. The oscillator generates a symmetrical output pulse which is applied to $\mathrm{Z1}$ and Z 10 . Z 1 causes the 4 LSB Counter to continuously cycle through its 16 counts. Each time it completes a cycle, it feeds a pulse to the 4 MSB Counter, causing it to advance one. The 4 MSB Counter eventually cycles through its 16 counts, and the entire performance is repeated. During this operation, the W output of the Character Decoder holds a low on the Z10 gate, causing the output of Z 21 to remain high. This inhibits outputs from the Character Output Gates. KSTROBE is also held low during the operation.

When a character key is pressed, contact is made between an output of the Character Decoder and an input of the Character Detector. The output combination from

Circuits-4012 Service

the 4 MSB Counter into the Character Decoder eventually reaches a code that selects the closed key. Since the 4 LSB Counter continues to cycle, a low is eventually placed on the closed key. This low 'is applied to the Character Detector, causing its W output to go high. This high provides enabling voltage to Z 10 in the Strobe Generator. When the $\emptyset 1$ output of the oscillator goes high, it causes a positive-going INHB pulse of about 22 ms from the strobe Generator. An INHA pulse from Z 10 is input to the oscillator to prevent additional clock pulses from affecting the 4 LSB Counter.

With the count from the 4 LSB and 4 MSB Counters frozen, the B5, B6, and B7 logic circuits place the decoded equivalents of the $\overline{B 5}, \overline{B 6}$, and $\overline{B 7}$ information on their respective output Gates. Approximately 22 ms later the INHB goes low, providing an enabling voltage for the Character Output Gates. This action places on the B1-kB7 lines the representative bit combination of the character pressed. $\overline{\mathrm{INHB}}$ going low enables the KSTROBE signal that accompanies the data bits.
$\overline{\text { INHB }}$ also triggers the Character Repeat Oscillator. If the same key is held down for more than .5 second, the Character Repeat Oscillator strobes Z 21 in the Strobe

Generator at an approximately 10 Hz repetition rate. This enables KSTROBE 10 times a second . . . thus enabling the terminal to process the character bits at that rate.

The keyboard circuitry maintains the above-stated condition as long as the keyboard key is held down. When the key is released, the high from the W output of the Character Detector is removed from Z10, permitting its output to return to its high state. This ends the B1-B7 and KSTROBE outputs.

Miscellaneous Functions

SHIFT, CONTROL, and TTY keys. Pressing one of these keys causes the outputs of the B5-B7 Control circuits to reflect the appropriate bit configuration for the character code desired. For example, pressing SHIFT in conjunction with an alpha key causes the output configuration of $\mathrm{B} 1-\mathrm{B} 7$ to represent the upper-case alpha character, Pressing the CONTROL (CTRL) key causes the output bit configuration to represent a control character. And pressing TTY permits only upper-case alpha bit configurations to be structured.

