SBC M11 SERIES SINGLE BOARD COMPUTER

User Guide

M11

0. First Edition, November 1st 1994.

The material in this SBC-M11 User Guide may be subject to modification.

Notification of any modifications may not be given but copies of any such changes will be available.

The following are trade marks or model numbers of **Digital Equipment Corporation** used in this document:

- DLV11

- DHV11
- RQDX3
- LSI-11
- Q-BUS
- DCJ11
- PDP-11
- Micro PDP-11

- DEC

- DIGITAL
- DECnet
- VAX
- VMS
- RSTS
- RSX
- TU58
- RL01/02
- MSCP
- RX01/02
- TK25/50
- TSV05
- RT11
- AMP is a trademark of AMP
- TI is a trademark of TEXAS INSTRUMENTS
- I960 is an INTEL registered product.

Mentec Limited assumes no responsibility for any errors which may appear in this document.

Mentec Limited.

Mentec House, Dun Laoghaire Industrial Estate, Pottery Road, Dun Laoghaire, Co. Dublin, Ireland. Telephone: 353-1-2858444 Fax: 353-1-2858005

©1994 - Mentec Limited. All Rights Reserved

CONTENTS

PAGE

PREFACE	
AUDIENCE	0-6
ORGANISATION.	0-6
RELATED DOCUMENTS	0-7

CHAPTER 1 PRODUCT OVERVIEW

1.1	INTRODUCTION.	1-1
1.2	PROCESSOR	1-1
1.3	MEMORY	1-1
1.4	LSI-BUS INTERFACE	1-1
1.5	SERIAL LINES	1-1
	LINE TIME CLOCK	
1.7	BOOTSTRAPS	1-2
1.8	INTERRUPTS	1-2
1.9	LED DISPLAY	1-2

CHAPTER 2 SPECIFICATIONS

2.1	PHYSICAL.	2-1
2.2	POWER REQUIREMENTS.	2-1
2.3	ENVIRONMENTAL	2-1
2.3.1	Temperature	2-1
2.3.2	Airflow	2-1
2.3.3	Environment	2-1
2.3.4	Relative Humidity	2-2
2.4	CONNECTORS AND CABLES	2-2

CHAPTER 3 UNPACKING AND INSTALLATION

3.1	INTRODUCTION	3-1
3.2	UNPACKING	3-1
3.3	INSTALLATION.	3-2
3.3.1	Introduction	3-2
3.3.2	Bus Connections	3-2
3.4	USER CONNECTION	3-3
3.5	DIAGNOSTIC LEDs AND POWER-UP.	3-3

CONTENTS

PAGE

CHAPTER 4 SELECTABLE HARDWARE CONFIGURATION

4.1 II	NTRODUCTION	4-1
4.1.1	Bus Grant Continuity Jumpers.	4-1
4.1.2	Fuse	4-1
4.1.3	Factory Hardware Default Switch	4-1
4.1.4	Rotary Baudrate Switch.	4-2

CHAPTER 5 PROGRAMMABLE MODULE CONFIGURATION

5.1	INTRODUCTION.	5-1
5.2	FUNCTIONAL OVERVIEW	5-1
5.3	OPERATIONAL OVERVIEW	5-1
5.4	AUTOMATIC BOOT MODE	5-2
5.5	DIALOGUE MODE	5-2
	BOOT - Boot from a specific device.	5-3
5.5.2	HELP - Provide a summary of commands.	5-3
5.5.4	MAP - Display a map of address space.	5-4
5.5.5	SETUP - Configure the SBC M100	5-4
5.5.5.1	Modify Hardware Setup	5-5
5.5.5.2	Modify Software Setup	5-10
5.5.5.3	Save Modified Setup	5-13
5.5.5.4	Initialise To Factory Setup	5-13
5.5.5.5	Configure Autoboot List	5-13
	Configure Device Translations	5-14
5.5.5.7	Exit Setup	5-15
5.5.6	Test - Enter A Continuous Test Mode	5-16
5.6	BOOTPROM MAPPING	5-16
5.7	USAGE OF BOOTPROM WINDOWS	5-16
5.8	CODE OVERVIEW	5-17
5.9	DEVELOPMENT UTILITIES	5-18

CONTENTS

PAGE

CHAPTER 6 SYSTEM ARCHITECTURE

6.1	INTRODUCTION	6-1
6.2	PROCESSOR MODES	6-1
6.3	GENERAL PURPOSE REGISTERS	6-1
6.4	SPECIAL PURPOSE REGISTERS	6-2
6.4.1	Internal Registers.	6-2
6.4.1.1	The Processor Status Word	6-3
6.4.1.2	The CPU Error Register	6-5
6.4.2	The System Registers	6-7
6.4.2.1	The Maintenance Register	6-7
6.4.3	The External Registers.	6-7
6.4.4	The Power-Up Register	6-8
6.4.5	The Program Interrupt Request Register	6-9
6.5	MEMORY MANAGEMENT	6-11
6.5.1	Active Page Registers	6-11
6.5.1.1	Page Address Register	6-11
6.5.1.2	Page Descriptor Register	6-11
6.5.2	The Memory Management Registers	6-13
6.5.2.1	Memory Management Register 0	6-13
	Memory Management Register 1	6-14
6.5.2.3	Memory Management Register 2	6-14
6.5.2.4	Memory Management Register 3	6-15
6.5.3	Mapping from Virtual to Physical Memory	6-16
6.5.4	Instruction and Data Space	6-16
6.6	SBC M11 MEMORIES	6-17
6.6.1	Main Memory	6-17
6.6.1.1	Memory Layout	6-17
6.6.2	BOOTPROM	6-17
6.7	EPROM STORAGE AND USE	6-19
6.8	PROGRAM CONTROL OF THE LINE-TIME CLOCK	6-19
6.9	PAGE CONTROL REGISTER FOR BOOTPROM	6-19
6.10	PARITY MEMORY CONTROL AND STATUS BIT ASSIGN	6-20
СНАР	TER 7 SERIAL I/O INTERFACE	
7.1	INTRODUCTION.	7-1
7.2	EIA STANDARD	7-1 7-1
7.2	SERIAL LINE ARCHITECTURE	7-1 7-2
7.3.1	Transmission	7-2 7-2
7.3.2	Reception.	7-2 7-2
7.3.3	SerialLine Interrupt Priorities.	7-2 7-2
7.3.3 7.4	SERIAL LINE REGISTERS.	7-2 7-3
/		1-5

0-4

CO	NTENTS	PAGE
AP	PENDIX A BACKPLANE PIN UTILISATION	
A	APPENDIX A - BACKPLANE PIN UTILISATION	A-1
AP	PENDIX B OP CODES & TRAPS	
	NUMERICAL OP CODE LISTINGS	
AP	PENDIX C I/O PAGE MEMORY MAP	
С	APPENDIX C - I/O PAGE MEMORY MAP	C-1
AP	PENDIX D DEVICE MNEMONICS	
D	APPENDIX D - DEVICE MNEMONICS	D-1

PREFACE

AUDIENCE

This document is intended for two specific types of user. Firstly, the engineer or technician who wants to configure and install the SBC M11 single board computer. Secondly, the programmer who wants to write applications software for the module. An overview of the architecture is given, but the document is not intended as a tutorial on PDP-11's.

ORGANISATION

Configuration, programming and installation details are divided among the chapters as follows:

CHAPTER 1: PRODUCT OVERVIEW

Chapter 1 describes the main functions and features of the SBC M11

CHAPTER 2: SPECIFICATIONS

Chapter 2 gives a quantitative description of the features of the SBC M11.

CHAPTER 3: UNPACKING AND INSTALLATION

Chapter 3 outlines the steps a user must follow in order to successfully unpack and install the module.

CHAPTER 4: HARDWARE CONFIGURATION

Chapter 4 explains how the user can alter the hardware configuration of the SBC M11.

CHAPTER 5: SELECTABLE SOFTWARE CONFIGURATION

Chapter 5 describes the functionality and operation of the SBC M11 software.

CHAPTER 6: SYSTEM ARCHITECTURE

Chapter 6 gives an overview of the architecture of the SBC M11 module. It describes how the PDP-11 architecture is implemented on the SBC M11.

CHAPTER 7: SERIAL I/O INTERFACE

Chapter 7 details the architecture, programming and cables of the serial-line subsystem.

APPENDIX A: BACKPLANE PIN UTILISATION

Appendix A lists the Q-Bus signals and indicates their positions on the module.

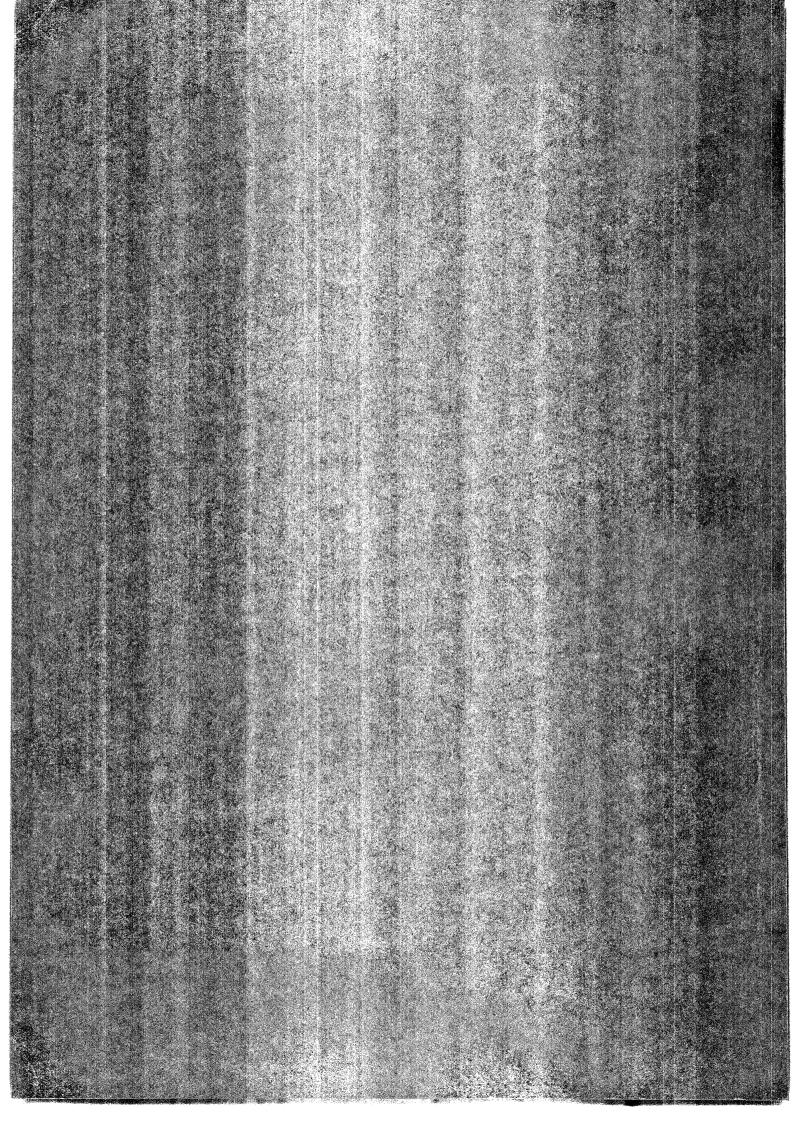
APPENDIX B: OP CODES & TRAPS

Appendix B contains a list of PDP-11 OP Codes.

APPENDIX C: I/O PAGE MEMORY MAP

Appendix C contains a memory map of the I/O page for the SBC M11.

APPENDIX D: DEVICE MNEMONICS


Appendix D contains the device mnemonics as used in the boot prompts.

RELATED DOCUMENTS

The following Digital Equipment Corporation publications provide additional information on DEC PDP-11.

DCJ11 User Guide Micro PDP-11 Hand Book Micro PDP-11 Interface Hand Book

PRODUCT OVERVIEW

1. PRODUCT OVERVIEW

1.1 INTRODUCTION

The SBC M11 module is a high performance micro engine based PDP11 on a quad height QBUS card.

The module contains 1 to 4Mb of RAM, four DLV11J compatible serial lines and 32 Kb of FLASH EPROM, and a 50Hz, 60Hz, 800Hz or BEVENT real-time clock. The SBC M11 also interfaces to the 22-bit Q-BUS and supports block mode DMA.

1.2 PROCESSOR

The M11 is a high performance PDP-11 similar in functionality to previous Mentec PDP11 CPU's. PDP11 instructions are implemented by a microprogrammed subsystem based on the TI 8832 ALU and the TI 8818A microsequencer.

Console ODT and Floating Point instruction emulation are performed by the i960 processor block. Floating Point instruction emulation is available only with microcode revisions 2.0 or later. It should be noted that internally IEEE format floating point is used for this emulation. This means that while all program visible floating point values are in PDP formats, if executing in D-Floating Mode three bits of precision are lost in the mantissa.

1.3 MEMORY

The module contains 1Mb/2Mb/3Mb/4Mb of Q-bus parity/non-parity SRAM, one parity bit per byte of data. The Module's SRAM is accessible by other system devices over the Q-bus using DMA.

<u>NOTE</u> If you have ordered a **non-parity M11** please refer **now** to section 1.10 of this chapter for configuration instructions.

1.4 LSI-BUS INTERFACE

The module interfaces to the extended LSI-11 bus and can address up to 4 MB of main memory and communicate with other bus devices, disk controllers (RQDX-3) or asynchronous serial line mux (DHV11). The 22- bit extended LSI-11 bus is completely downward compatible with the standard 18-bit LSI-11 bus.

1.5 SERIAL LINES

Contained on the module are four independent, full-duplex, asynchronous serial line units (SLUs) which are software compatible with the DLV11J Qbus module. Channel number 3 is configurable as the system console i.e. J8. The interface transmits and receives data from the peripheral device over EIA lines which support data leads only. The four independent lines are contained within a single FPGA chip.

1.6 LINE TIME CLOCK

The line time clock on the module is used by software systems to control events, such as operating system scheduling, software interrupts and system time.

1.7 BOOTSTRAPS

There are a number of primary bootstraps available on the module, which facilitate the loading of secondary bootstraps from storage devices, such as tape and disk drives.

1.8 INTERRUPTS

An interrupt allows the current code being executed by the processor to be suspended, while the requesting device is serviced. The interrupt source may be from either the LSI-11 bus or the processor. The interrupt facility of the LSI-11 bus, supported by the module, allows any I/O device to temporarily suspend the current program execution and divert the processor operation to service the requesting device.

1.9 LED DISPLAY

The LED display indicates the current status of the module i.e. is there power on the module, have all power-up diagnostics been passed, is the module in console ODT or executing software, has a memory parity error occurred etc.

1.10 NON PARITY MEMORY CONFIGURATION INSTRUCTIONS

If you have ordered a *non-parity M11* then the following configuration *must* be in place *before* operating system boot up.

- 1. Ensure that switch SW1 is in position B. The position which permits user setups on power up. (See Figure 4.1 Page 4-2 for details)
- Ensure that within the Hardware Setup Menu option 14 is selected to disable on-board parity. (See section 5.5.5.1 for details. Pages 5-5 through 5-9).

SBC M11 USER GUIDE

2. SPECIFICATIONS

2.1 PHYSICAL

Height -	25 mm.
Length -	214 mm.
Width -	265 mm.
Weight -	712 g.

2.2 POWER REQUIREMENTS

Power Supply

+5.0 V +10%/-5%	7A (typical).
+12V +/- 5%	2A (max.).

NOTE:	The M11 does not use 12V it only supplies it to
	the Berg headers for use by external devices.

2.3 ENVIRONMENTAL

2.3.1 TEMPERATURE

Storage -	-10 to 60°C.
Operating -	0 to 50°C.

NOTE: The module should be brought into operating conditions and allowed to stabilise before commencing operation.

2.3.2 AIRFLOW

Operating - Adequate airflow must be provided to limit the inlet to outlet temperature rise across the module to 5°C when the inlet temperature is 35°C.

NOTE: These are design limits. Lower temperature limits will serve to increase the life of the product.

2.3.3 ENVIRONMENT

Air must be non-caustic.

SBC M11 USER GUIDE

REF:M11UG ISSUE: REV 1.1.

2.3.4 RELATIVE HUMIDITY

Storage -	10% to 90%	(no condensation).
Operating -	10% to 90%	(no condensation).

2.4 CONNECTORS AND CABLES

Connectors: J4 to J8 -Cables:

AMP 2x5 pin male. RS232 Null Modem - DEC BC20N-05 [2x5 pin AMP female to RS-232C female (25-way Cannon D-type)].

3. UNPACKING AND INSTALLATION

3.1 INTRODUCTION

This chapter explains how to unpack and install the SBC M11 module. It is advisable to leave the module in the factory configuration until its operation has been verified.

3.2 UNPACKING

The following four steps outline how the SBC M11 should be unpacked. (If there is visible damage to the shipping carton then the module should be unpacked in the presence of the delivering carriers agent).

WARNING

STATIC ELECTRICITY CAN DAMAGE COMPONENTS ON THE MODULE. PROPER PRECAUTIONS SHOULD BE TAKEN DURING ANY OPERATION WHICH INVOLVES HANDLING THE BOARD.

- 1). Ensure that an anti-static wrist-strap is being worn.
- 2). Lay the shipping carton on a flat surface and open out the flap.
- 3). Remove the module from the anti-static bubble-wrap. Allow a moment for any static to leak away to ground and then remove the module from the anti-static bag.
- 4). Inspect the module for damage.

If the module is damaged then no installation or repair should be undertaken. If the delivering carriers agent was not present during the unpacking then an insurance inspection claim should be called for. If the board is to be repaired then it should be returned to the distributor.

3.3 INSTALLATION

3.3.1 Introduction

This section details the installation of the SBC M11. Bus connections and user connections are described. Full details of the LED display on the front of the module are also given since monitoring these is the first step in verifying the correct operation of the module.

3.3.2 Bus Connections

The following must be verified before the module is installed in the backplane:

1). The backplane is a correct Q-Bus AB-AB or AB-CD backplane.

2). +5Vdc and +12Vdc are available at the correct points on the backplane. Module damage will result if user power is incorrectly bussed (ref AppendixA).

3). There is adequate power reserve for the module and any other Q-Bus modules which are to be inserted in the backplane.

4). The backplane is adequately cooled and there is sufficient airflow.

5). The board is configured as required. It is advisable to leave the module in the factory configuration until its operation has been verified.

WARNING

MODULE DAMAGE WILL RESULT IF THE BOARD IS REMOVED FROM THE BACKPLANE WITH POWER APPLIED.

The SBC M11 may now be installed as follows.

- 1).Place the module in the backplane in the first most slot. The other cards should then be placed in the following slots. Ensure that grant continuity is maintained for all the NPR modules. The respective backplane documentation should give details.
- 2). Apply power to the backplane and observe diagnostic LEDs for correct operation.

REF:M11UG ISSUE:REV 1.1.

3.4 USER CONNECTION

The serial communications with the SBC M11 is by means of four AMP tenway connectors on the front of the module (refer to figure 4.1). A suitable DEC cable is BC20N-05 (5 foot EIA RS-232C null modem cable).

For initial module verification a single cable should be connected to J8.

3.5 DIAGNOSTIC LEDs AND POWER-UP

The LED display on the front of the module should be observed while the power is being switched on. Table 3-1 summarises LED details. Figure 3.1 shows the relative positions of the diagnostic LEDs on the SBC M11 module.

When power is applied, two bus signals, BDCOK-H and BPOK-H, are asserted. These signals indicate that the correct dc power and ac line power levels are available. The assertion of BDCOK-H forces the three diagnostic LEDs (L5 - L7) on.

The M11 then proceeds to execute a power-up diagnostic routine, which test the CPU, MEMORY and CONSOLE. When each diagnostic is passed the corresponding diagnostic LED is turned off. LEDs L1 & L2 indicate that correct power is available on the module.

The action taken by the M11 at this point depends on the value of the power-up configuration register.

If the module is in factory configuration, it will commence executing the bootcode resident in the module's FLASH EPROMS. A message, such as the following, is transmitted to the printer or terminal:

Loading Microcode V1.X 1 2 3 4 5 Testing in progress please wait 4088K Bytes RAM

Led	Colour	Description	
8	Yellow	Parity Memory Error. Set by bit 15 of the memory parity CSR under diagnostic control or by detection of an error during a memory READ.	
7	Red	CPU Test. Cleared on power-up if internal CPU diagnostic is passed.	
6	Red	Memory Test. Cleared on power-up if CPU receives a reply from memory at address 0 and no reply from memory at address 177777008.	
5	Red	Console Test. Cleared on power-up if CPU receives a reply from console DLART at address 177775608	
4	Red	Processor in ODT. Set if processor is running console ODT.	
3	Green	Processor Running. Set if the processor is executing code.	
2	Green	Power. This LED indicates the status of the signal BDCOK-H on the Q-bus. BDCOK-H is a PSU generated signal that is asserted when there is sufficient DC voltage available to sustain reliable system operation.	
1	Green	Communications Power. Set if fuse F1 and +/- 12V are operating correctly.	
	LED8 LED7 yellow red	LED6 LED5 LED4 LED3 LED2 LED1 red red red green green green	
	parity cpu test	memory console odt run bdcok +/- 12v	
ſ			

TABLE 3-1LED DESCRIPTION

Figure 3.1 LED Display.

4. SELECTABLE HARDWARE CONFIGURATION

4.1 INTRODUCTION

Module hardware configuration is by means of selecting switch positions and component values, as described in this chapter, and by means of firmware which is user programmable through the console as described in chapter 5.

4.1.1 Bus Grant Continuity Jumpers

To confirm the installation of the grant jumpers on the module identify the backplane and refer to table 4-1 for jumper configuration.

NOTE:- Jumpers are installed in module on leaving factory.

Backplane	Bus Type	Jumpers	
H9270 (4 slot)	Q/Q	in	
H9275 (9 slot)	Q22/Q22	in	
H9273 (4 slot)	Q/CD	out	
H9276 (9 slot)	Q22/CD	out	

TABLE 4-1 BUS GRANT CONTINUITY

4.1.2 Fuse

If the current drawn by all external device powered via the modules communications connectors (J4 - J8) exceeds 2 amps, the modules fuse (F1) will have to be replaced. LED 1 will be extinguished if the fuse has blown or +/- 12V has failed. Replace the fuse with one of the same specification.

4.1.3 Factory Hardware Default Switch

This switch allows the user to force the module's PROGRAMMABLE HARDWARE CONFIGURATION to factory standard. Switch, SW1 is usually set such that the module's configuration is loaded from the EPROM on power-up (Refer to section 5.5.5.1 for details on factory default).

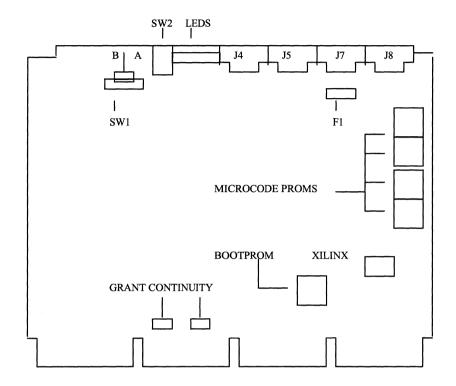


FIGURE 4.1 SBC M11 CONFIGURATION.

4.1.4 Rotary Baud Rate Default Switch

Switch SW2 provides a hardware overide switch for the baud rate on the console serial line. This switch effectively overides the baud rate selected in the Hardware Setup Menu. Table 4-3 provides details of the rotary baud rate switch settings.

Position	Baud rat	e
0 to 7	As per Hardware Setup Menu	
8	38400	Baud
9	19200	Baud
А	9600	Baud
В	4800	Baud
С	2400	Baud
D	1200	Baud
E	600	Baud
F	300	Baud

TABLE 4-3 ROTARY BAUD RATE SETTINGS

. _. _.

5. PROGRAMMABLE MODULE CONFIGURATION

5.1 INTRODUCTION

This chapter is a guide for the boot/diagnostic and module configuration software. It describes the functionality and basic operation of the software. In addition some of the internal functioning of the software is described.

The bootstrap and diagnostic firmware is contained in one FLASH EPROM on the SBC M11. The EPROM is used both by the power-up circuitry and the boot/diagnostic software to retain setup information.

5.2 FUNCTIONAL OVERVIEW

The bootstrap/diagnostic EPROM provides a set of diagnostics, bootstraps for standard devices, and configuration software for the board. The boot software can operate in two modes viz:

Automatic Mode:-	The bootstrap attempts to boot in sequence from a pre- configured list of devices.
Dialogue Mode:-	The user enters commands directly to configure or boot the system.

Dialogue mode is entered when an un-configured board is booted, when an automatic bootstrap fails, or when <CTRL/C> is entered during the execution of diagnostics or an autoboot sequence. Therefore if a board is setup for automatic boot, with power-up testing disabled, it may be necessary to unload or disable all devices in the automatic boot list to gain access to the dialogue boot.

5.3 OPERATIONAL OVERVIEW

The boot code supports both ANSI standard video terminals and dumb terminals. ANSI standard terminals use cursor position escape sequences where as dumb terminals allow only standard ASCII control characters.

Both upper and lower case may be used interchangeably in all responses to the boot/ diagnostic code. Lowercase is converted to and echoed as uppercase.

As the SBC M11 does not have a display register, failures early in testing i.e. before the functionality of the console sub-system has been established, are signaled by the processor halting with a failure code in R0.

The Failure codes are as follows:

- 0 bootPROM window 0, window number invalid.
- 1 bootPROM window 1, window number invalid.
- 2 bootPROM window 0, checksum invalid.
- 3 bootPROM window 1, checksum invalid.
- 4 Low 64kB memory failure.
- 5 bootPROM window number invalid, not window 0 or 1.
- 6 bootPROM window checksum invalid, not window 0 or 1.
- 7 Processor Trap to memory location 48.
- 10 Processor Trap to memory location 108.
- 11 Data parity error detected, trap location 1148.

5.4 AUTOMATIC BOOT MODE

Automatic boot mode is selected using the "Setup Option" in dialogue mode. In this mode the bootstrap will run processor and memory diagnostics and then attempt to boot the system from one or a series of devices. These devices may be selected using the "BOOT Option" also in dialogue mode. The diagnostics run during boot are configurable from the setup menu as described in section 5.5.5.

5.5 DIALOGUE MODE

Dialogue mode is intended for use in reconfiguring the system. The following is the initial dialogue mode menu :

- BOOT BOOT FROM A SPECIFIC DEVICE.
- HELP PROVIDE A SUMMARY OF COMMANDS.
- **LIST** LIST BOOTSTRAPS PROVIDED.
- MAP DISPLAY A MAP OF ADDRESS SPACE.
- SETUP CONFIGURE THE SBC M11.
- TEST ENTER A CONTINUOUS TEST MODE.

To invoke the required option, enter the associated command and a <CR>.

Note:- 'TEST' assumes that the hardware setup information is valid.

SBC M11 USER GUIDE

REF:M11UG ISSUE: REV 1.1.

5.5.1 BOOT - Boot from a specific device

To enter this option the user inputs "B<CR>" at the main menu and the SBC M11 responds with the prompt "BOOT>". The BOOT function invokes the SBC M11 device specific bootstrap to load a primary bootstrap from the selected boot device. The user must enter the boot device mnemonic and device unit number followed by "<CR>". The device number is only required in instances when more than one device of a certain type is resident in the system. Note the default device number is "0". e.g. to select a second RL02 drive the user enters DL1 followed by <CR>.

When the the software has been loaded from the device, control is relinquished to the primary bootstrap, which normally proceeds to load a secondary bootstrap and then a possible tertiary bootstrap. Success of this operation is usually indicated by a "linefeed" at the console. The devices and their mnemonics which are supported by the SBC M11 are listed in table 5-1.

Mnemonic Device		
DB	RM03 emulation	
DD	TU58	
DL	RL01/02	
DU	MSCP	
DX	RX01	
DY	RX02	
MS	TK25/TSV05	
MU	TK50	
XQ	DEQNA (Decnet boot)	
NL	Delay for devices to come ready	

TABLE 5-1 SUPPORTED DEVICES

5.5.2 HELP - Provide a summary of commands

This option redisplays the MAIN MENU and is selected by entering "H<CR>" at the above menu. This option is useful when the console is a dumb terminal and it is required to recall the available commands.

5.5.3 LIST - List bootstraps provided

This option lists the mnemonics and corresponding devices which the SBC M11 module can boot from as shown in table 5-1 above. This option is selected by entering "L<CR>" at the MAIN MENU. <CR> returns the user to the main menu.

5.5.4 MAP - Display a map of address space

When this option is selected the SBC M11 reads all locations in the 4Mb address space (0 to 17777778), starting at location 0 and working upwards through the memory address space and then proceeding into the I/O address space. The SBC M11 continues reading until a location fails to reply at which stage it outputs the address it started from and the address of the last location which replied. This procedure is carried out until the complete address range has been read.

This operation reports all contiguous memory blocks and I/O device registers which respond to read commands in the system. The I/O space occupies the top 8 Kbytes of the total 4 Mbytes address space. During this operation the memory parity error LED may be illuminated, indicating that a read parity error has occurred. This does not imply a system fault and the LED will be extinguished on booting the system.

This option is selected by entering "M<CR>" at the MAIN MENU. <CR> returns the user back to the main menu.

For listing of fixed I/O page registers refer to Appendix C.

5.5.5 SETUP - Configure the SBC M11

Setup mode allows the configuration of both the SBC M11 hardware and of the boot/diagnostic operation. Alterations to Software Setup take effect immediately, however they must be saved for retention. Hardware alterations only take effect if SW1 is in position 'B' on power up. SW1 is used to force the module into factory hardware configuration (position 'A') or load hardware configuration from FLASH EPROM (position 'B'). Software configuration is reset to factory default by selecting option 4 of the Setup Menu.

The initial setup mode menu is shown below:

SETUP MENU

- 1 MODIFY HARDWARE SETUP
- 2 MODIFY SOFTWARE SETUP
- 3 SAVE MODIFIED SETUP
- 4 INITIALIZE TO FACTORY SETUP
- 5 CONFIGURE AUTOBOOT LIST
- 6 CONFIGURE DEVICE TRANSLATIONS
- 7 EXIT SETUP

To select an option, enter the associated number and press <CR>.

The first two options may be used to obtain a listing of the current setup. No changes are saved to the FLASH EPROM until a save is performed.

5.5.5.1 Modify Hardware Setup

This option is selected by entering "1<CR>" at the "SETUP MENU". The following menu is then displayed indicating the configurable hardware. The various options for each hardware element are described below. "<CR>" returns the user to the "SETUP MENU".

Note that SW1 is only used to temporarily force the module to factory hardware configuration. Changes to the setup may be made with SW1 in either position but only take effect when SW1 is in position 'B' and the board is powered up.

NOTE : Any devices which will conflict with the module's factory setups must be removed from the system when the module is being restored to default settings.

REF:M11UG ISSUE: REV 1.1.

To alter a specific hardware element the user enters the corresponding number from the menu followed by <CR>. The menu below shows the factory hardware configuration for the SBC M11 module:

1	Base address of DLV11J emulation .	176500
2	Base vector of DLV11J emulation	300
3	Serial line 0 baud rate	9600
4	Serial line 1 baud rate	9600
5	Serial line 2 baud rate	9600
6	Serial line 3 baud rate	9600
7	On-board console	Enabled
8	On-board LTC	60 HZ
9	On-board bootPROM	Enabled
10	Power-Up mode	173000
11	Power-Up address	000000
12	On-board parity CSR address	172100
13	Halt option	Cleared
14	On board parity enable	Enabled
15	Console Halt enable	Enabled
16	Memory timeout select	24uS

- Note 1 :- In order for a modification to the hardware configuration to take effect the configuration must be saved and the system turned off and on as the information is loaded only during initialization.
- Note 2 :- Refer to section 5.5.5.4. Restore Factory Hardware Configuration for details on how to reset the SBC M11 module to factory hardware configuration.

1. **DLV11J Emulation**

The SBC M11 has four on-board serial lines which emulate the functionality of a DLV11J. The first 8 options in the hardware setup menu allow the user to configure most of the characteristics of this emulation. The serial (DL) lines do not support parity generation or the generation of more than one stop bit.

DLV11J Base Address

A DL module consists of four serial lines. Each serial line has four registers and as a result, the address space for the DL module requires sixteen contiguous locations. Therefore the base address for the DL module must increment in 408 bytes or 16 decimal words in the range 1600008 to 1777408.

NOTE:- That the I/O page addresses for these serial lines will occupy range of 30s if the on-board console is enabled and 40s if it is disabled.

2. DLV11J Base Vector

Similarly the four interrupt vector addresses for use with the serial lines must be contiguous. The base interrupt vector for the DL lines is selectable in the range 0 3408. Note that bits [0:4] of the interrupt base address are always set to 0. The default base address is 300.

Note:- The vectors for these serial lines will occupy a range of 30s if the on-board console is enabled and 40s if it is disabled.

3 - 6. Serial Line Baud Rate.

The baud rate for each of the four serial lines may be individually configured to any of 300, 600, 1200, 2400, 4800, 9600, 19200 or 38400 baud. When this option is selected, the user enters the number of the required baud rate as displayed on the screen followed by $\langle CR \rangle$.

7. On-Board Console

If this option is selected the CSR address for SLU3 is 1775608 and the vector is 608 irrespective of the addresses assigned to the other serial lines. When using on-board console the base address for the DL module must be either 1765008, 1765408 or 1775008. A warning is given on saving the setup if one of the above is not selected as the base address due to the configuration not being DLV11J compatible.

8. Line Time Clock

The on-board clock source may be configured as a 50, 60 or 800 Hz clock or the bus signal BEVENT can be used. The source is selected by entering the required option number as displayed on the screen followed by $\langle CR \rangle$.

9. On-Board BootPROM

This option allows the BootPROM to be disabled. If this option is used the hardware setup is still loaded from the FLASH EPROM when the system is initialized. The setup bypass switch SW1 must be used to regain access to the on-board FLASH EPROM to allow any further changes to be made to the on-board firmware. Note that the PCR resident at 1775208 is also disabled if the on board BootPROM is disabled.

10. **Power-up Mode**

The are four power-up modes which can be selected by entering one of the options from table 5-2 below.

TABLE 5-2 POWER-UP MODE OPTIONS

- 0 Trap through location 248
- 1 Enter console ODT
- 2 Power-up to location 1730008
- 3 Power-up to the user specified power-up address

11. **Power-up Address**

The user may configure the most significant 7 bits of the power-up address. In order for this address to apply, power-up mode option 3 must be selected.

The address is entered as a sixteen bit octal number followed by <CR>. Note that the MMU is turned off on power-up and as a result the SBC M11 module has a sixteen bit address range.

12. On-Board Parity CSR Address

The parity CSR on the SBC M11 module allows program control of certain memory parity functions and contains diagnostic information if a parity error occurs in the on-board memory system. The on-board memory CSR may be assigned one of the word addresses in the range 172100^s to 172136^s which allows for sixteen memory CSRs. Since the on-board memory starts at location 0, the CSR is assigned as default the first address in this range. Additional Q-bus memory cards will have their parity CSRs in ascending order following their base address.

The user is prompted for an address in the range indicated above and the address is entered as a sixteen bit octal number followed by <CR>.

13. Halt Option

Indicates how a HALT instruction is executed in KERNEL mode. If clear the processor enters console ODT. If set the processor traps through location 4 and sets bit 7 of the CPU error register. This is selected by entering the required option as displayed on the screen followed by <CR>.

SBC M11 USER GUIDE

14. **On-board Parity Enable**

This option allows the generation of parity interrupts and aborts to be enabled/disabled. If disabled, the error is still logged in the parity CSR and the error LED is lit. The disabling of aborts is not recommended except for special applications.

15. Console Halt Enable

This option allows the user to configure whether or not the system will halt on receipt of a break from the console.

16. Memory Timeout Select

This option allows selection of memory timeout periods of 24us or 48us. It should be set to 48us if older Q-Bus devices cause bus timeouts at 24us.

The following lists the module's factory hardware configuration :

1).	Serial Line Base addr	177765008
2).	Serial Line Vector addr	3008.
3).	Serial Line Baud Rate -	9600.
4).	Serial Line Baud Rate -	9600.
5).	Serial Line Baud Rate -	9600.
6).	Serial Line Baud Rate -	9600.
7).	Onboard Console	Enabled.
8).	Line Time Clock Frequency -	60Hz.
9).	BootPROM	Enabled.
10).	Power-up Mode-	1730008.
11)	User Power up Address	000000
12).	Parity CSR addr	177721008.
13)	Halt option	Cleared
14)	On Board Parity	Enabled
15)	Console Halt Enable	Enabled
16)	Memory Timeout Select	24us

5.5.5.2 Modify Software Setup

This allows the configuration of power-up action, console type, diagnostics run at power-up, and non-standard device CSR assignments. When the software setups are modified they take effect immediately, however a save operation must be implemented to retain them. The displayed menu with the factory configured option settings is as shown below :

To select an option, enter the required number followed by $<\!\text{CR}\!>.$

REF:M11UG ISSUE: REV 1.1.

1. Boot Option

This allows the user to determine whether the SBC M11 will power-up in dialogue mode where the main menu is displayed or attempt to boot from devices listed in the autoboot configuration table (refer to section 5.5.5.5).

2. <u>Console Type</u>

With this option the user may determine the type of terminal with which the system is to interact. If ANSI mode is selected (Option 1) the bootstrap will use ANSI escape sequences for cursor positioning. Option 0 should be selected if the console terminal does not support ANSI escape sequences or is a hard-copy terminal. Factory default is dumb mode.

Note : VT100 terminals support ANSI escape sequences.

3. **Disable All Diagnostics**

Board diagnostics are executed at power-up. These diagnostics are intended to provide confidence in the operation of the board and are not for fault isolation.

The following tests are performed

- Low memory 0-64 K.
- Existence and operation of I/O page registers.
- Basic CPU functionality All GP registers etc.
- BootPROM checksums and PCR.
- MMU.
- Console SLU.
- Memory parity register.
- Basic memory test.

If the user requires no diagnostic tests to be performed option 1 should be selected followed by <CR>. However, it is recommended that these tests be kept enabled.

4. Enable Extended Testing

When selected, this option provides an extended memory test which is run in conjunction with the standard diagnostics. This test verifies the integrity of all available system memory and the existence and operation of the fixed I/O page registers. (Refer to Table 5-3).

REF:M11UG ISSUE: REV 1.1.

TABLE 5-3	FIXED I/O PAGE REGISTERS
Address	Register
172200 to	
172376	Page address and page descriptor registers
172516	MMR3
173000 to	BootPROMs
173776	
177546	Line time clock
177560 to	Console registers
177566	
177520	Page control register
177572 to	Memory management registers
177576	
177600 to	Page address and page descriptor registers
177676	
177744	Memory system error register
177746	Cache control register
177750	Maintenance register
1	-
177752	HIT/MISS register
177766	CPU Error register
177772	Program interrupt request
177776	Processor status word

5. Enable Line Time Clock

This option allows the user to enable the line time clock on the SBC M11. The line time clock interrupts at PR6 while the bootstrap executes at PR7, therefore all LTC interrupts are ignored. When control is relinquished to the primary bootblock it must cater for LTC interrupts either by executing at or above PR6, disabling the LTC or providing an interrupt service routine at the LTC vector 1008.

Note: DEC operating systems primary bootstraps execute at PR0, therefore the LTC must be disabled on booting these systems.

6. Allow Non-standard Boot Block

When the standard boot block option is enabled, primary code is checked to ensure that the first instruction is NOP (240_8). If this test fails an error message is displayed to indicate that the media cannot be booted. If the non-standard boot block option (option 1) is selected, this test is dispensed with and control is passed unconditionally to the primary bootstrap.

5.5.5.3 Save Modified Setup

This option must be selected in order to save any hardware or software modifications to the board. When selected, a message "SAVE IN PROGRESS PLEASE WAIT" is displayed after which control is returned to the setup menu. Software alterations take effect immediately. Modifications to hardware only take effect if the module has been powered-up again with SW1 in position 'B'.

5.5.5.4 Initialise To Factory Setup

The SBC M11 Programmable Hardware and Software configuration is restored to factory setting when this option is invoked. In order for this configuration to be retained on power-up it must be saved by selecting option 3 from the "SETUP MENU".

5.5.5.5 Configure Autoboot List

The user may configure a list of up to six devices in the order in which it is desired to attempt to boot them. If the list has not been configured all entries are shown as unused and the user is prompted to modify the list. The configuration menu is as shown below in table 5-4.

TABLE 5-4 AUTOBOOT CONFIGURATION				
DEVICE	LOWES	ST UNIT	HIGHEST UNIT	
1	DU	0	10	
2	DL	0	2	
3	Unused			
4	Unused			
5	Unused			
6	Unused			

In order to delete a device from the list it should be selected and <CR> alone entered as the response to the prompt for the device mnemonic.

Note : There is a NL mnemonic which may be used as the first device to provide a delay for some peripherals to come online after power up. The use of this device is not normally necessary. If needed it should be configured with a highest unit number of 0. The lowest unit number should be configured to specify the delay required. A unit number of 1 provides approximately 0.75 seconds delay (dependent on clock frequency) and a unit number of 30 provides 24 * 0.75 seconds delay (Note unit numbers are octal). It may also be useful to use this device to allow users to enter <CTRL/C> before a real autoboot is entered.

5.5.5.6 Configure Device Translations

The boot software may be configured to allow for non-standard CSR addresses by use of the device translation table. This table contains a list by mnemonic of device types with the lowest and highest unit numbers to which the entry applies and the corresponding CSR address. When booting the software initially scans this table and if an entry is found corresponding to the device from which it is attempting to boot the CSR in the table is used, otherwise the default standard CSR is used. Only 6 entries are allowed in the table and the menu is similar to the autoboot configuration.

REF:M11UG ISSUE: REV 1.1.

	DEVICE	LOWEST UNIT	HIGHEST UNIT	CSR
1	DU	0	10	172150
2	DL	0	2	174400
3	Unused			
4	Unused			
5	Unused			
6	Unused			

To select a specific device, enter the appropriate device number followed $\langle CR \rangle$. To exit from this option, enter $\langle CR \rangle$.

Note: The bootstrap device table contains an entry for the maximum number of devices per controller, if no entries for a mnemonic exist in the device translation table the unit number entered by a user is validated to be in the range 0 to n-1. If an entry exists in the device translation table for the unit number entered it is validated against the range given in the table entry.

> As each device translation table entry is assumed to correspond to one controller with one CSR the lowest unit number in the table entry is subtracted from the unit number entered to give the device number within the controller before it is passed to the device specific bootstrap. The one slight exception to the above rule is that the standard bootstrap table supports 4 MS units as there are 4 sequentially assigned fixed CSRs in the I/O page.

5.5.5.7 Exit Setup

Select this option to return to main menu.

5.5.6 Test - Enter A Continuous Test Mode.

In this mode it is assumed that the SBC M11 module is in a valid hardware configuration. Diagnostics are continuously executed until <CTRL C> is entered by the user. At this point control is returned to the main menu on completion of the current diagnostic.

5.6 BOOTPROM MAPPING

The FLASH EPROM is mapped using a page control register at location 177775208.

The PCR functions as two separate halves. The low byte is used as bits 8 to 14 of the EPROM address for addresses in the range 173000 to 173377 and the high byte as bits 8 to 14 of the EPROM address for addresses in the range 173400 to 173777.

Bits 8 to 14 of the PCR provide a total of 128 windows of 256 bytes each. Of these 128 (0-127) are used to map the EPROM and one (127) is used to map the setup data. The setup data is byte wide with the least significant byte being valid. This provides 128 bytes of EPROM and 31.75 K bytes of BootPROM.

The first 8 bytes of setup data are reserved for hardware configuration. These bytes are read by the SBC M11 power-up circuitry unless the configuration bypass switch (SW1) is on. The definition of these bytes is hardware defined and they must contain a valid configuration.

5.7 USAGE OF BOOTPROM WINDOWS

Windows 0 and 1 are allocated for use by the code which relocates the remaining code to RAM. These two windows relocate the contents of all of the remaining windows.

The format of the remaining windows is such that the first word contains the load address i.e. the address at which the code is to be loaded.

In order to provide a degree of testability the last 2 bytes of each window in the Boot PROMs are reserved locations for diagnostic purposes. Byte 3778 is the window number, this is used to test the functioning of the PCR. Byte 3768 is an exclusive-OR checksum to validate the integrity of the EPROMS.

As the setup data is mapped to the low byte only, the checksum is in byte 3768 as normal and no block number is provided.

The overheads in the windows mean that the effective window size is 252 bytes. As two windows are allocated for code relocation to RAM the effective upper limit on the actual code size for the main code is 124x252 = 31248 bytes or just over 30 Kb. The physically resident setup data and Boot Code are in one 29F010 device but the Boot Code is in hardwre protected sectors and appears to be 16 Bits wide to the software.

5.8 CODE OVERVIEW

The operation of the boot software proceeds as follows:

- 1). A test is performed on low memory.
- 2). The basic trap vectors are set up.
- 3). 16 bit memory space is tested.
- 4). The EPROM code is transferred to RAM.
- 5). Control is transferred to the code in RAM.
- 6). If boot is selected the requested bootstrap is searched for and if found, it is invoked.
- 7). If the boot block is valid or the non standard boot block format is enabled control is passed to the boot block.

This method of operation requires that the first one or two windows of the Boot Code contain code specifically written for execution in those windows to perform basic testing and relocate the remaining code. The remaining code is transfered to RAM at address 10000 and control is transfered to this.

The setup data cannot be relocated in the same manner as the remaining code as only the low byte is valid and it has a different format. It is therefore specifically unpacked into a formatted area of RAM.

5.9 DEVELOPMENT UTILITIES

A utility program is used to process a number of RT11 loadable absolute binary files to a HEX ASCII PROM file.

The boot code is developed and tested in RAM under RT11. It is transfered to VAX/VMS by using the VMS EXCHANGE utility. The Mentec PROM FORMAT utility is then used to format the code. This utility program is written in VAX FORTRAN.

6. SYSTEM ARCHITECTURE

6.1 INTRODUCTION

This chapter describes the architecture of the SBC M11.

6.2 PROCESSOR MODES

There are three processor modes - Kernel, Supervisor and User. Each one has a different degree of control over the operation of the M11. They are chosen by setting bits 14 and 15 in the Processor Status Word (PSW). The existence of different processor modes allows security to be implemented in a multi-programming environment. For example, WAIT, RESET and HALT statements can only be executed in Kernel mode. Certain bits in the PSW may only be written to in Kernel mode. (Refer to section 6.4.1.1). Thus, nonprivileged users are kept from having too much control over the system.

6.3 GENERAL PURPOSE REGISTERS

The M11 has sixteen general purpose registers. These registers do not reside in the address space. Twelve of the registers are true general purpose registers. These are arranged as two sets, R0 to R5 and R0' to R5'. Only one of these sets is available to the user at any one time. The choice is made by setting bit 11 in the Processor Status Word. These registers may be used as accumulators or as base or index registers for memory addressing. The existence of two sets means that fast context switching is possible. There are three registers used as stack pointers - one for each of the operating modes. Thus there is a kernel stack pointer (KSP), a supervisor stack pointer (SSP) and a user stack pointer (USP). The mode is chosen by setting bits 14,15 in the PSW and the stack pointer is then referred to as register R6.

The stack moves downwards in memory when items are pushed on to it. The stacks can be used to provide linkage information when the processor modes are switched. The M11 provides hardware stack protection for the Kernel stack. Yellow and Red stack traps are described in table 6-3. The final register is the program counter (instruction pointer). It is incremented by two every time a word is fetched from memory. It is accessed as register R7. R7 may also be used as a base or index registers for addressing. This has the effect of extending the power of the addressing modes.

6.4 SPECIAL PUROSE REGISTERS

As well as the general purpose registers the M11 module implements a set of special purpose registers. These registers are used by the user to set some of the operational features of the system or by the system to provide status information to the user.

There are four sub-divisions of special purpose registers. These would be the equivalent of the DCJ11's internal registers, System registers, External Registers and Power-up Register. They all differ from the General Purpose Registers in that they have addresses in the 4K words of memory reserved for I/O addresses (the I/O Page).

6.4.1 Internal Registers

The M11's Internal Registers are so named because they are the equivalent of the DCJ11's internal registers. Unlike the General Purpose Registers, however, the user accesses them by addressing locations in the I/O page. Table 6-1 lists the internal registers. The Processor Status Word and CPU Error Register are described here. Descriptions of the other registers are reserved until the relevant sections of the architecture are being described.

TABLE 6-1 INTERNAL REGISTERS			
Register	Address		
SW Processor Status Word			
Program Interupt Request Register	177777728		
CPU Error Register	177777668		
Hit /Miss Register	177777528		
Memory Management Registers	*		
Floating Point Registers	**		
	Processor Status Word Program Interupt Request Register CPU Error Register Hit /Miss Register Memory Management Registers		

Refer to Appendix C.

** Floating Point Registers do not have addresses they are referenced using special instructions.

6.4.1.1 Processor Status Word

The Processor Status Word (PSW) contains information about current processor staus. It also contains information about the result of the current instruction. By Writing to it the user can provide the M11 with information about how it is to run. Figure 6-1 gives a schematic of the PSW. Table 6-2 explains each bit in detail.

Bit	Name	Description
15:14	Current Mode	The Status Of these bits indicate the
	(RW)	The current processor mode as follows
		Bits Mode
		15 14
		0 0 Kernel
		0 1 Supervisor
		1 0 N/A
		1 1 User
13:12	Previous Mode (R/W)	These bits indicate the previous process mode and have the same meanings as b 15 and 14.
11	Register Set (R/W)	If Bit 11 is 0 then R0-R5 are used. If Bit 11 is 1 then R0'-R5' are used.
10:09	Unused (Read Only)	These bits are unused and read back as
08	Reserved	
07:05	Priority	These bits are read as a 3 bit binary nur with bit 5 as the least significant bit. As interrupt needs a priority greater than the number before it can interupt the proce

TABLE 6-2 PROCESSOR STATUS WORD

	Name	Description
04	Trace Trap	If this bit is set then the processor traps to location 14 at the end of the instruction currently being executed. The bit may not be set directly - it must be set via an RTI or RTT instruction.
03	N (Read Only)	This bit is set if the result of the previous operation was negative.
02	Z (Read Only)	This bit is set if the result of the previous operation was 0.
01	V (Read Only)	This bit is set if the previous operation \sim resulted in an arithmetic overflow.
00	C (Read Only)	This bit is set if themost significant bit of the result of the previous operation was carried.
15 14	13 12 11 10 9	8 7 6 5 4 3 2 1 0
nt Mode Iode er set		Zero Negat Trace
d ved		Prior

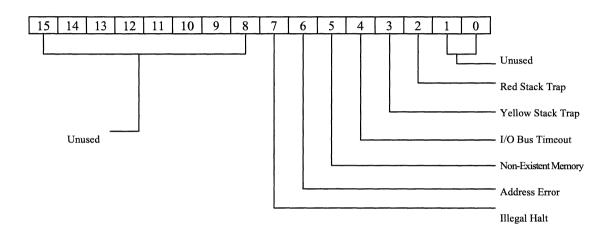

TABLE 6-2 Contd. PROCESSOR STAUS WORD

Figure 6.1 Processor Status Word.

REF:M11UG ISSUE: REV 1.1.

6.4.1.2 The CPU Error Register

The M11 traps to location 4 when a CPU error occurs. The CPU error register is used to log the nature of the error. Only bits [7:2] of the CPU error register are used All of the other bits return 0's when read. The CPU error register is summarised in Table 6-3 and Figure 6.2.

6-5

REF:M11UG ISSUE: REV 1.1.

	TABLE 6-3	CPU ERROR REGISTER
Bit	Name	Description
15:08	Unused	Return 0's when read.
07	Illegal HALT	A HALT instruction is illegal if executed in user or supervisor mode. A trap 4 will occur and this bit will be set. A HALT will cause this sequence of events in all three modes if bit 3 in the power-up configuration register is set.
06	Address Error	A trap to 4 will occur if an attempt is made to address a word with an odd address or if an attempt is made to fetch an address from an internal register. Bit 6 in the CPU error register is set in these instances.
05	Non- Existent Memory	An attempted access to a memory location which does not exist will cause a trap to 4. Bit 5 of the CPU Error Register is set. If the location is in the I/O page th bit 4 is set instead.
04	I/O Bus Timeout	If a non-existent location is in the I/O page then bit 6 is set.
03	Yellow Stack Trap	Set when a yellow zone stack trap occurs i.e. when a Kernel stack reference has a virtual address of less than octal 400
02	Red Stack Trap	If a Kernel stack abort occurrs during an interrupt, trap or abort sequence then a red stack trap is flagged and locations 0 and 2 are used as an emergency stack, vectoring through location 4.
01:00	Unused	Return 0's when read.

TABLE 6-3 CPU ERROR REGISTER

REF:M11UG ISSUE: REV 1.1.

6.4.2 System Registers

The registers classed as system registers all have addresses in the range 17777740⁸ to 1777750⁸. The SBC M11 has three system registers; the Maintenance Register, the Memory Error Register, and the Cache Control Register. Table 6-4 gives the addresses of these registers.

The Cache Control Register, the Memory Error Register and Hit Miss Register are implemented for compatibility and have no effect on system operation and are not described further.

Some operating systems check for the existence of the Maintenance Register and this is the main reason for its inclusion. The Maintenance Register is described in section 6.4.2.1.

6.4.2.1 The Maintenance Register

The Maintenance Register (MR) has the same bit definitions as the Power-up and Configuration Register. The latter is equivalent to the DCJ11's external register and is described in section 6.4.4.

	TABLE 6-4	SYSTEM REGISTERS	
Abbrv.	Register	Address	
MR	Maintenance Reg	ister 17777508	
MER	Memory Error Re	egister 177777448	
CCR	Cache Control Re	gister 177777468	

6.4.3 The External Registers

These are the Line-Time Clock Register, The Parity Control and Status Register (PCSR) and the Page Control Register (PCR). Table 6-5 lists the external registers.

	TABLE 6-5	EXTERNAL REGISTERS	5
Abbrv.		Register	Address
LTC		Line-Time Clock Register	177775468
PCSR		Parity Control and Status Register.	177721XX8
PCR		Page Control Register	177775208

6.4.4 The Power-Up Register

As part of the M11 power-up diagnostic routine it reads the Power-Up register using a unique instruction. Table 6-6 describes the information relayed to the M11.

	TADLE 0-0	TOWER-OF REGISTER
Bit	Name	Description
15:09	Boot Address	These bits represent the address from which the M11 is to start executing boot code, bits 00:08 of the address are always logic zero.
08	FPA Here	As Floating Point operation are intrinsic to the M micro engine this bit has no use on the M11.
07	-	Reserved for future use.
06:04	Processor Type	These bits are read by operating systems to determine the processor type. (Maintenance Register)
03	Halt Option	This bit determines the action to be taken by the M11 on receipt of a halt instruction : 0 - Enter Console ODT 1 - Trap Through Location 4.

TABLE 6-6POWER-UP REGISTER

Bit	Name	Description
2:1	Power-up	The M11 uses these bits on
	mode	power-up to determine which of
		the following actions is to be taken
		Bits: Mode
		2 1
		00 - Trap through location 248
		0 1 - Enter console ODT
		1 0 - Power-up to 1730008
		1 1 - Power-up to user specified
		address bits 15:09
0	POK	This bit is asserted by on-board
		logic to inform the M11 that the system power
		is at an acceptable level.

TABLE 6-6 contd. POWER-UP REGISTER

The Maintenance Register which can be read by the user will display the same information as the power-up mode register except that bits 09:15 are read back as logic zero ,since they are used by operating systems to determine the hardware configuration of the system.

6.4.5 The Program Interrupt Request Register

The Program Interrupt Request Register (PIRQ) can interrupt the processor at any one of the seven levels of interrupt priority. An interrupt will occur if one of the bits [15,9] in the PIRQ is set. The PIRQ has two sets of read only bits which hold the binary value of the priority. The vector for a trap instigated by the PIRQ is 240.

Table 6-7 describes each bit in the PIRQ. Figure 6.3 shows the PIRQ in schematic form.

Bit	Name	Description
15:9	PIR7 to PIR1 (RW)	When bit 15 is set an interrupt with priority level of 7 is requested. Bit 14 is used to request an interrupt with priority level 6 and so on down to bit 9 which requests an interrupt with a priority of 1.
7:5	- Read only	Contains the binary value of the highest program interrupt pending.
3:1	- Read Only	These bits hold the same information as bits 7:5.

TABLE 6-7 PROGRAM INTERRUPT REQUEST REGISTER

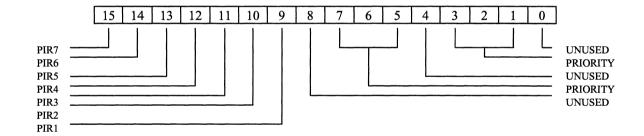


Figure 6.3 Program Interrupt Request Register.

6.5 MEMORY MANAGEMENT

NOTE:- Refer to Appendix C, Table C-6 for addresses of Memory Management Registers.

The M11 is a sixteen-bit machine. This basically limits the virtual address space to 64k bytes. The M11 Memory Management Unit (MMU) allows the effective memory to be expanded. The MMU maps a sixteen bit virtual address space (64 Kb) to a twenty-two-bit physical address space (4 Mb) using a paging system. The user can decide where each page is to reside in physical memory by writing to registers in the MMU. The only restriction on the mapping of virtual addresses to physical memory is that they should start at locations which are multiples of 64 bytes.

6.5.1 Active Page Registers

The user decides where the pages are to be mapped by writing to the Active Page Registers. The MMU maintains one of these for each page that it maps. Each one consists of two sixteen-bit registers, the Page Address Register (PAR) and the Page Descriptor Register (PDR).

Each processor mode can map eight pages. This gives twenty-four Active Page Registers. If the Instruction/Data space mode of operation is enabled (Refer to Table 6-10), then these twenty-four pairs are used to map to the instruction Space and a further twenty-four are available to map to the Data Space. The Instruction/Data space mode of operation is described in section 6.5.4.

6.5.1.1 Page Address Register

This register contains the block number in physical memory to which the page is to be mapped.

6.5.1.2 Page Descriptor Register

The PDR allows the user to set some of the features of the mapped page. It is described in Table 6-8 and Figure 6.4.

Bit	R/W	Description
15	R/W	If this bit is set then reference to this page will bypass cache. No effect on M11.
14:08	R/W	The length of the page in blocks is contained in bits 14:8. An attempt to access data in a longer page will lead to a page length abort.
07	R	Reserved for future use.
06	R	If this bit is set then the page has been written to since the last time its PAR or PDR was modified
05:04	R	Reserved for future use.
03	R/W	This bit indicates in which direction the page expands. When set to a 1 the page will expand downwards.
02:01	R/W	Access Control Field. These bits represent a code 00 Non Resident - Abort all. 01 Read Only - Abort on write. 10 Unused - Abort all. 11 Read/Write - Full Access.
00	R	Reserved for future use.

TABLE 6-8PAGE DESCRIPTOR REGISTER

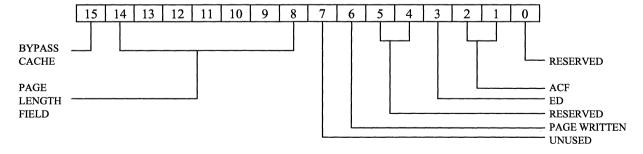
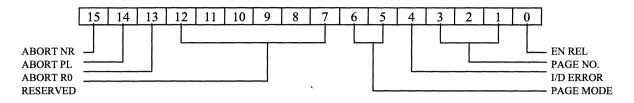


Figure 6.4 Page Descriptor Register.

REF:M11UG ISSUE: REV 1.1.

6.5.2 The Memory Management Registers

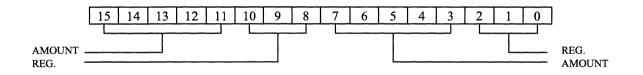
The user interacts with the MMU through a series of registers in the I/O page. There are four status and control registers - MMR0-3. These are used to enable and disable the MMU and to decide some other features of its operation.


6.5.2.1 Memory Management Register 0

Memory Management Register 0 gives status and control information for the memory management unit, refer to Figure 6.5 and Table 6-9.

Bit	Access	Description
15	R	If an attempt is made to access a non-resident page then an abort will occur and this bit will be set. When set freezes contents of MMR1/MMR3
14	R	MMU will abort if program tries to access memory beyond the page length indicated in the PDR. This bit will also be set
13	R	If an attempt is made to access a page which has been set as read only then an abort will occur and this bit will be set
12:07	R	Reserved for future use.
06:05	R	Indicates which processor mode is causing the abort. Code is same as that for PSW.
04	R	
03:01	R	These bits contain the number of the page causing the abort in binary form.
* 00]	R/W	This bit must be set if the MMU is to be enabled.

TABLE 6-9 MEMORY MANAGEMENT REGISTER 0


* NOTE:- This bit must be set to 1 if MMU is to be used since the M11 powers up as a sixteen-bit machine.

6.5.2.2 Memory Management Register 1

If a memory management trap occurs then Memory Management Register 1 (MMR1) records any changes to the general purpose registers. Figure 6.6 gives the format of the register. The register number is given in binary form. The amount by which the register has changed is given in 2's complement format.

Figure 6.6 Memory Management Register 1.

6.5.2.3 Memory Management Register 2

Memory Management Register 2 (MMR2) holds the virtual address of the instruction which is currently being fetched.

REF:M11UG ISSUE: REV 1.1.

6.5.2.4 Memory Management Register 3

Memory Management Register 3 (MMR3) gives further status and control information. It is summarised in Figure 6.7 and Table 6-10.

TABLE 6-10MEMORY MANAGEMENT REGISTER 3

Bit	Description
15:06	Reserved for future use - always read back as 0.
05	Unused.
04	If this bit is 0 when the MMU is enabled then 18-bit mapping is used. To enable 22-bit mapping the bit should be set to a 1.
03	Enable CSM instruction.
02	Enable Kernel Data Space
01	Enable Supervisor Data Space
00	Enable User Data Space

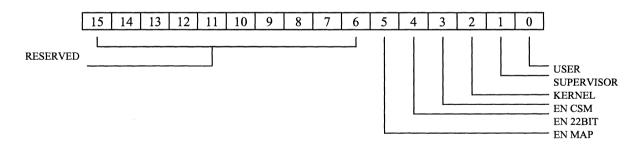
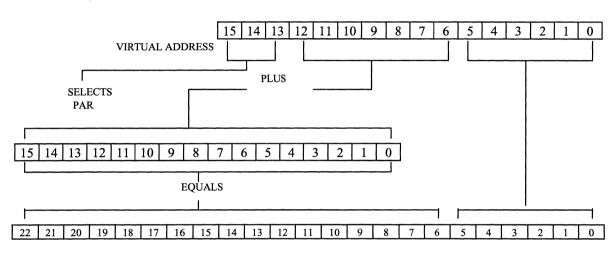



Figure 6.7 Memory Management Register 3.

6.5.3 Mapping from Virtual to Physical Memory

The mapping procedure is now considered. The MMU contains a PAR for every page that it maps. The three most significant bits in the virtual address are used to choose between the pages. The number in the PAR must be shifted six bits to the left to give the address in physical memory to which the page is to be mapped. The sixteen least significant bits of the virtual address are used as the displacement within the page. The mapping procedure is summarised in Figure 6.8.

PHYSICAL ADDRESS

Figure 6.8 Virtual To Physical Address Mapping.

6.5.4 Instruction and Data Space

The Instruction/Data space mode of operation can be enabled through the memory management registers. In this mode of operation the user has access to sixteen pages instead of the normal eight. Eight of the pages are reserved for data and eight are reserved for instructions.

REF:M11UG ISSUE: REV 1.1.

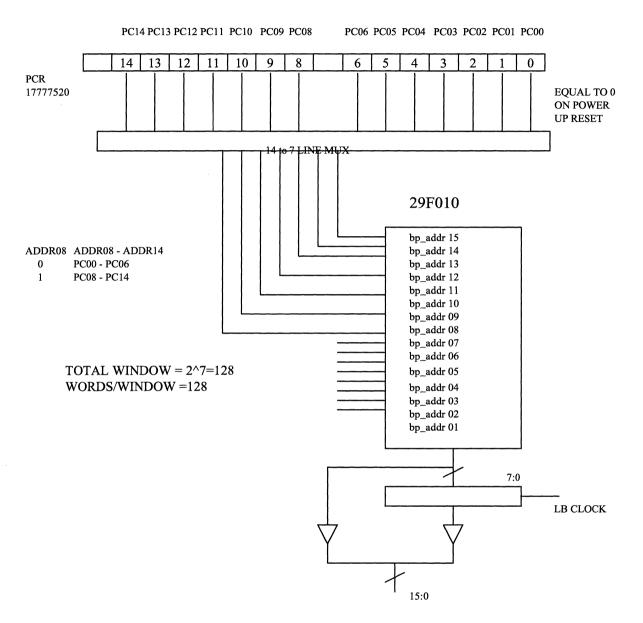
6.6 SBC M11 MEMORIES

The SBCM11 memories are as follows

- 1 Main Memory SRAM 1,2,3,4 M/Bytes
- 2 Flash Eprom (Boot Code user setups)

6.6.1 Main Memory

The main memory system on the SBCM11 is either 1,2,3 or 4 MegaByte of Parity SRAMS.


6.6.1.1 Parity Memory User Information

The user can examine the parity information by means of the parity CSR. and yellow LED.

6.6.2 BootProm

The SBCM11 is provided with one 29F010 Flash Eprom. This appears to the programmer as a 16 Bit wide boot prom and an 8 Bit wide setup Flash Prom. The Boot Code resides in hardware protected sectors so only the setup information may be modified by software.

REF:M11UG ISSUE: REV 1.1.

TOTAL BOOT CODE SPACE 128 WORDS X 127 WINDOWS = 31.75KBYTES. TOTAL SETUP ADDR. SPACE 128 BYTES X 1 = 128 BYTES.

Figure 6.9

6.7 EPROM STORAGE AND USE

The first 6 bytes of SETUP are reserved for hardware configuration. These bytes are read by the SBC M11 power-up circuitry unless the configuration bypass switch is on. The definition of these bytes is hardware defined and they must contain a valid configuration. The remaining 122 bytes are software defined.

6.8 PROGRAM CONTROL OF THE LINE-TIME CLOCK

The line-time clock function is controlled through the LTC register, addressable at location 177775468. Bits <15:7,5:0> are not used and are always read as logical zeroes. Writing to these bits has no effect on the CSR. Bit <6> is used to control line time clock interrupts. It must be set to 1 to enable clock interrupts. This is done by writing 1008 to the register. Note that the bit is cleared on power-up. It will also be cleared by a RESET instruction. The line-time clock is a read/write register. There are four clock sources available for the LTC, refer to section 5.5.5.1 on how to select a source.

6.9 PAGE CONTROL REGISTER FOR BOOTPROMS

The EPROM is mapped using a page control register at location 177775208. The register format and ROM address calculation are shown in figure 6.9.

The PCR functions as two separate halves. The low byte is used as bits 8 to 14 of the EPROM address for addresses in the range 1730008 to 1733778 and the high byte as bits 8 to 14 of the EPROM address for addresses in the range 1734008 to 1737778.

The 7 bits of the PCR provide a total of 128 windows at 256 bytes each. Of these 127 (0-126) are used to map the Boot EPROM and one (127) is used to map the Setup Data. The Setup is byte wide with the least significant byte being valid. This provides 128 bytes of Setup Data and 31.75K bytes of Boot EPROM. Note that if the BootPROM is disabled then the PCR is also disabled.

6.10 PARITY MEMORY CONTROL AND STATUS BIT ASSIGNMENT

The CSR allows program control of certain memory parity functions and contains diagnostic information if a memory parity error has occurred. The address of the CSR is assigned from one of the 16(10) selectable addresses using the configuration option in the boot software. The CSR should be assigned the first address when offboard memory parity CSRs exist. The order of CSR address assignment should follow the order of the addressing of the memory modules. Bits <15,2,0> are reset on power-up or BUS INIT. This signal is asserted on power-up and in response to RESET instruction. The CSR assignments are listed in Table 6-11 and shown in Figure 6.10.

Bit	Description
Bits 1,3,4,12,13	These bits are not used and are always read as logical zeroes. Writing into these bits has no effect on the CSR.
Bit 0	Parity Error Enable - If a parity error occurs on a DATI or DATIO(B) cycle to memory and bit 0 is set, then a parity abort trap occurs to location 1148. This is a read/write bit reset to zero on power-up or BUS INIT.
Bit 2	Write Wrong Parity - If this bit is set = 1 and a DATO or DATOB cycle to memor occurs, wrong parity data is written into t parity RAMs. This bit can be used to check the parity error logic as well as failed address information in the CSR.

TABLE 6-11 PARITY CONTROL REGISTER

REF:M11UG ISSUE: REV 1.1.

TABLE 6-11	contd. PARITY CONTROL REGISTER
Bit	Description
Bit 5-11	Error Address Bits - If a parity error occurs on a DATI or DATIO(B) cycle, then A11-A17 are stored in CSR bits $<5:11>$ and bits A18-A21 are latched. CSR bit $<14>=0$ allows the logic to pass A11-A17 to the processor. The program then sets CSR bit $<14>=1$.
	This enables A18-A21 to be read from CSR bits 05-08. The parity error addresses locate the parity error to 1K segment of memory. These are read/write bits and are not reset to zero via power up or BUS INIT. If a second parity error is encountered the new failed address is stored in the CSR.
Bit 14	Extended CSR Read Enable Supra for use of this bit.
Bit 15	Parity Error - This bit set indicates that a parity error has occurred. The bit mimics the Parity Led. The indicator provides visual indication of a parity error. This bit is a read/write bit. It is reset to zero via a power-up or BUS INIT and remains set unless rewritten or initialised.

ſ	Р	EX	0	0	A17	A16	A15	A14	A13	A12	A11	0	0	WT	0	Р
	ER	C												WR		ER
		S R						A21	A20	A19	A18			Р		EN
1		<u> </u>														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 6.10 Parity CSR Bit Allocation.

7. SERIAL I/O INTERFACE

7.1 INTRODUCTION

This chapter describes the serial line units and the necessary cables for serial communication. Some background information on the EIA standard is given as an introduction to this chapter.

7.2 EIA STANDARDS

Each SLU complies with the Electronics Industries Association RS-232 standard for single ended transmission and reception. The main requirements of which is given in table 7-1.

If current 20 mA current loop communications is required the DLV11-KA option is recommended.

NOTE: This option will not support the Reader Run strobe or a baud rate of 110, as a result some devices, such as the LA33 may not be used.

TABLE 7-	1 RS23	32 STANDAI	RD	
	tandard Line ength	Data Rate	No. of Drivers	No. of Receivers
RS-232C	16 M	20 kb/s	1	1

REF:M11UG ISSUE: REV 1.1.

7.3 SERIAL LINE ARCHITECTURE

7.3.1 Serial Line Programming Information

Each serial line provides four registers as follows:

1) Receiver Control and Status Register (RCSR).

2) Receiver Buffer (RBUF).

3) Transmitter Control and Status Register (XCSR).

4) Transmitter Buffer (XBUF).

All of these registers are internal to the FPGA

7.3.2 Transmission

If the XMIT RDY bit is set then the transmitter is ready to transmit a byte. This bit will go low as soon as a byte is written to indicate that the transmit section of the device is in the busy state. As soon as the byte has been completely placed on the serial line the XMIT RDY bit will once again go high to indicate ready to transmit. The serial line can be configured to interrupt when the XMIT RDY bit is set.

7.3.3 Reception

The receiver has two buffers. Serial input data is placed in the first one bit by bit as it is received. When a byte is received it is moved from this first buffer to the Receive Buffer which is transparent to the programmer. At this point the Receive Done bit is set. Ideally the character is read and this bit will go low to indicate that the serial line has not yet received the next character. If the character has not been read, or has only been partially read, before the new character is written into the receive buffer then an overrun error will be flagged. If a valid stop bit is not found then a framing error is flagged. The serial line can be configured to interrupt with RCV DONE to reduce the chances of an overrun error.

7.3.4 Serial Line Interrupt Priorities

The serial line can be configured to interrupt on the completion of a transmission or reception of a character. This leads to eight possible interrupts. These all interrupt the M11with a priority of 4. If more than one Channel tries to interrupt the processor at any one time then the interrupts are presented to the M11 in the order indicated in table 7-2.

REF:M11UG ISSUE: REV 1.1.

	TABLE 7-2		SLU INTERRUPT PRIORITIES
Device	Interrupt	M11	Priority Acceptance Order
SLU0	RX	4	1
SLU1	RX	4	Order of
SLU2	RX	4	decreasing
SLU3	RX	4	priority
SLU0	TX	4	(ie. SLU0 RX will
SLU1	TX	4	l interrupt before
SLU2	TX	4	SLU1 RX).
SLU3	ТХ	4	v

7.4 SERIAL LINE REGISTERS

The serial line registers are now described in tabular form. Figures 7.3(a) to 7.3(d) give bit maps for the serial line registers. Tables 7-3 to 7-6 give bit descriptions (For addresses of serial line registers refer to Appendix C).

Γ	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
ſ	0	0	0	0	rcv act	0	0	0	rcv done	rcv ie	0	0	0	0	0	0

Figure 7.3(a) Receiver Control and Status Register.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
ERR	oe err	fr err	0	rcv brk	0	0	0								

(----- RECEIVED DATA BUFFER------)

Figure 7.3(b) Receiver Data Buffer Register.

[15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	0	0	0	0	0	0	0	0	xmit rdy	xmit ie	pbr sel2	pbr sel1	pbr sel0	mnt	pbr enb	xmit brk

Figure 7.3(c) Transmitter Control and Status Register.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
0	0	0	0	0	0	0	0								
								(T	RANSM	IT DATA	BUFFE	R)

Figure 7.3(d) Transmitter Data Buffer Register.

Bits	Name	Direction	Function
12-15	Not used	Read only	Reserved for
		5	future use.
11	Receiver	Read only	This bit is set to
	Active		a one by the start
	RCV ACT)		bit. It is cleared to
			a zero on power-up.
08-10	Not used	Read only	Reserved for
			future use.
07	Receiver	Read only	This bit is set to
	done		a one when the byte
	(RCV DONE		received is trans-
			ferred into the RCV
			data buffer. It is
			cleared to a zero
			when the RCV data
			buffer is read. It
			is cleared to
			zero on power-up.
06	Receiver	Read/Write	This bit is set in
	Interrupt		software to enable
	Enable		RCV IRQ.
	(RCV IE)		The interrupt will
			occur when data has
			been received ie.
			when the RCV DONE
			bit has been set. It can be cleared
			by software. A power-up or bus
			reset will clear it.
			reset will clear it.
00-05	Not used	Read only	Reserved for future
			use

TABLE 7-3 RECEIVER CONTROL AND STATUS BIT DESCRIPTION

REF:M11UG ISSUE: REV 1.1.

Bits	Name	Direction	Function
15	Error (ERR)		There are two errors associated with the use of RBUF - the overrun error and the framing error. These set this bit as well as bits 14, 15 respectively.
14	Overrun Error (OR ERR)	Read only	If a new character is placed in the received data buffer before the previous one has been read then his bit is set. Bit 7 of the RCSR (RCV DONE) is cleared by reading the buffer. The bit is cleared when the next character along is moved in. It is cleared on power-up.
13	Framing Error (FR ERR)	Read only	A framing error occurs if the serial line moves a byte into the buffer and is then unable to read a valid stop bit. This renders the character and the one followinginvalid. The next byte with a valid stop bit will cause the bit to be cleared. The bit is cleared on power-up.

TABLE 7-4 RECEIVER DATA BUFFER BIT DESCRIPTION

Bits	Name	Direction	Function
12	Not used	Read only	Reserved for future use.
11	Received break (RCV BRK)	Read only	This bit is used to indicate that the serial line has received a break. Cleared on power-up.
08-10	Not used	Read only	Reserved for future use.
00-07	Received data (DATA BUFFER)	Read only	The 8 bits represent a contains the last byte which was received. The bits are cleared on power-up.

TABLE 7-4 Contd. RECEIVER DATA BUFFER BIT DESCRIPTION

Bits	Name	Direction	Function
)8-15	Not used	Read only	Reserved for future use.
07	Transmitter ready (XMIT RDY)	Read only	If set this indicates that the current character has been sent. A new byte may be placed in the XMIT data buffer. Writing the byte in the buffer will clear the bit. Cleared on Power-up.
06	Transmitter interrupt enable (XMIT IE)	Read/write	This bit can be set by software and enables XMIT IRQ The signal can be cleared under program control, by power-up and by bus reset.
01-05	None		Bits have no use on SBC M11.

TABLE 7-5 TRANSMITTER CONTROL AND STATUS DESCRIPTION

TABLE 7-5 Contd. TRANSMITTER CONTROL AND STATUS DESCRIPTION

Bits	Name	Direction	Function
00	Transmit Break (XMIT BRK)	Read/write	Used under program control to start communication with external devices. When the bit is set high SO will be held low. The bit can be cleared by software. A power-up or bus reset will also reset it.

TABLE 7-6 TRANSMITTER DATA BUFFER BIT DESCRIPTIONS

Bits	Name	Direction	Function
08-15	Not use	d Read only	Reserved for future use
00-07	Transmi data buffer (XMIT BUFFE	DATA	These 8 bits represent a data buffer which cont- ains the next byte to be transmitted. Writing a byte to this buffer causes the XMIT RDY bit in the XCSR to be cleared. Power-up will clear these bits

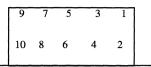
7.5 SERIAL LINE CABLES

Each serial line interfaces to the outside world through a 2*5 pin AMP connector. The positions of these connectors on the SBC M11 module are shown in Figure 4.1. Figure 7.5 shows the AMP connector pin numbers. Table 7-7 gives the signal associated with each number.

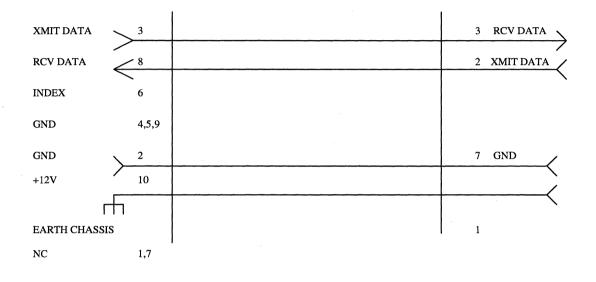
Most of the cables which are necessary for serial communications with peripheral devices are available from Digital Equipment Corp. These are described in section 7.6.1. Guidelines for a user wishing to construct his own cables are given in section 7.6.2.

7.5.1 Digital Cables

BC20N-05 5 foot RS-232C null modem cable used to interface to a local terminal (e.g. VT100). One end of the cable consists of an AMP 2*5 female connector and the other of RS-232C D-type female connector. The null modem concept is explained in section 7.6.2. Refer also to figure 7.6.


BC20M-50 This cable is 50 feet long and requires that RS-422 or RS-423 be used. The cable can be used for transmission rates of up to 19200 baud. Both ends consist of an AMP 2*5 female connector. A typical use would be communication between two SBC M11's by means of their serial lines.

Pin	Designation	
<u>.</u>		
1	NC	
2	GND	
3	TX DATA+	
4	GND	
5	GND	
6	INDEX KEY (no pin)	
7	NC	
8	RCV DATA+	
9	GND	
10	+12V (fused)	


TABLE 7-7 SLU CONNECTOR PIN DESIGNATIONS

SBC M11 USER GUIDE

REF:M11UG ISSUE: REV 1.1.

Figure 7.4 AMP Connector.

AMP 10-WAY

. .

D-TYPE FEMALE

7.5.2 User Cable Construction

This section outlines the factors which must be taken into consideration when designing a cable for use with the RS-232 standard.

To connect the SBC M11 module to RS232-C terminal an AMP 2*5 female connector and a D-type male/female RS-232 connector is required.

A loopback to connect the inverted input of the differential receivers to ground is necessary. Pin 7 (RECEIVE DATA-) is normally connected to pin 9 (ground). For the SBC M11 to communicate correctly with the terminal it is necessary to connect transmit data outputs to receive data inputs on the terminal and vice-versa i.e. the cable must be constructed as a null modem. Figure 7.4 and Table 7-7 show where the relevant signals are on the AMP connector. Figure 7.6 and Table 7-7 show the signals on the D-type connector.

The connector in figure 7.6 is shown with the solder buckets facing outwards. Pin 3 on the SBC M11 (TRANSMIT DATA+) should be connected to pin 3 on the D-type connector (RS-232 RECEIVED DATA). Pin 8 on the SBC M11 (RECEIVED DATA+) should be connected to pin 2 of the D-type connector (RS-232 TRANSMITTED DATA). Common the ground signals at each end by connecting Pin 2 on the SBC M11 (GROUND) to pin 7 on the D-type connector (RS-232 SIGNAL GROUND/ COMMON RETURN). Lastly, a shield connection is made from the chassis containing the SBC M11 to pin 1 on the D-type connector (PROTECTIVE GROUND). The cable length limitations of RS-232 should not be neglected in designing the cable. These are shown in table 7-1.

If the cable is to be used for communication between two SBC M11s or between one SBC M11 and a DL type device then two AMP female connectors are used and table 7-7 is used to determine which pins should be connected to give a null modem configuration. The following AMP/DEC parts will be needed if cables are being constructed:

1. Cable receptacle:	AMP PN 87133-5	DEC PN 12-14268-02
2. Locking clip contacts:	AMP PN 87124-1	DEC PN 12-14267-00
3. Key pin (pin 6):	AMP PN 87179-1	DEC PN 12-15418-00

TABLE 7-7D-TYPE CONNECTOR PIN DESIGNATIONS

Pin	Signal
1	Protective Ground
2	Transmitted Data
3	Received Data
7	Signal Ground/Common Return

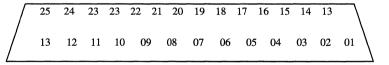


Figure 7.6 25-Way Female D-type. (View of Solder Buckets)

Appendix A

BACKPLANE PIN UTILISATION

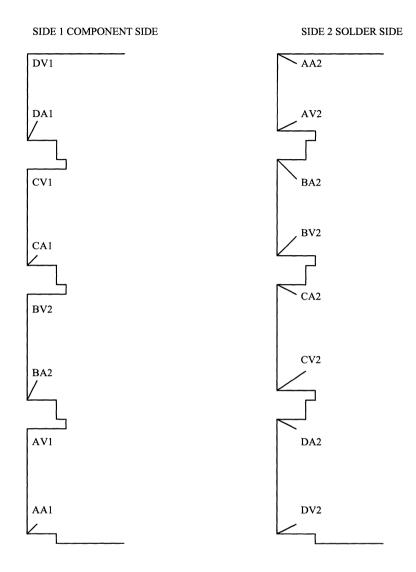


Figure A.1 Backplane Edge Connector

TABLE A-1 Contd. COMPONENT SIDE (Side1)

Backplane	e SBC M100 LSI-11 Bu		
Pin	Signal Function	Signal Name	
AA1	BIRQ5 L	BIRQ5 L	
AB1	BIRQ6 L	BIRQ6 L	
AC1	BDAL16 L	BDAL16 L	
AD1	BDAL17 L	BDAL17 L	
AE1	Not connected	SSPARE 1	
AF1	SRUN	SRUN	
AH1	Not connected	SSPARE 3	
AJ1	GND	GND	
AK1	Not connected	MSPAREA	
AL1	Not connected	MSPAREB	
AM1	GND	GND	
AN1	BDMR L	BDMR L	
AP1	BHALT	BHALT	
AR1	BREF L	BREF L	
AS1	Not Connected	+5B	
AT1	GND	GND	
AU1	Not connected	PSPARE 1	
AV1	Not Connected	+5B	
BA1	BDCOK H	BDCOK H	
BB1	BPOK H	BPOK H	
BC1	BDAL18 L	BDAL 10 L	
BD1 DE1	BDAL19 L	BDAL19 L	
BE1	BDAL20 L	BDAL20 L	
BF1	BDAL21 L	BDAL21 L	
BH1	Not connected	SSPARE8	
BJ1 DV1	GND	GND	
BK1	Not connected	MSPAREB	
BL1	Not connected	MSPAREB	
BM1	GND	GND	
BN1	BSACK L	BSACK L	
BP1	BIRQ7 L	BIRQ7 L	
BR1	BEVNT L	BEVNT L	
BS1	Not Connected	+12B	
BT1	GND	GND	
BU1	Not connected	PSPARE2	
BV1	+5V	+5V	

A-2

TABLE A-1 Contd. COMPONENT SIDE (Side2)

Backplan	e SBC M11	LSI-11 Bus
Pin	SignalFunction	Signal Name
AA2	+5 V	+5 V
AB2	Not connected	-12 V
AC2	GND	GND
AD2	+12 V	+12 V
AE2	BDOUT L	BDOUT L
AF2	BRPLY L	BRPLY L
AH2	BDIN L	BDIN L
AJ2	BSYNC L	BSYNC L
AK2	BWTBT L	BWTBT L
AL2	BIRQ4 L	BIRQ4 L
AM2	Not connected	BIAKI L
AN2	BIAKO L	BIAKO L
AP2	BBS7 L	BBS7 L
AR2	Not connected	BDMGI L
AS2	BDMGO L	BDMGO L
AT2	BINIT L	BINIT L
AU2	BDAL0 L	BDAL0 L
AV2	BDAL1 L	BDAL1 L
BA2	+5 V	+5 V
BC2	GND	GND
BD2	Not connected	+12 V
BE2	BDAL2 L	BDAL2 L
BF2	BDAL3 L	BDAL3 L
BH2	BDAL4 L	BDAL4 L
BJ2	BDAL5 L	BDAL5 L
BL2	BDAL7 L	BDAL7 L
BM2	BDAL8 L	BDAL8 L
BN2	BDAL9 L	BDAL9 L
LP2	BDAL10 L	BDAL10 L
BR2	BDAL11 L	BDAL11 L
BS2	BDAL12 L	BDAL12 L
BT2	BDAL13 L	BDAL13 L
BU2	BDAL14 L	BDAL14 L
BV2	BDAL15 L	BDAL15
NOTE		

NOTE:

The following pins on the C and D sections of the backplane edge connector are also used:

CA2, DA2 +5V power CT1, CC2, DT1, DC2 GNDCM2, CN2 BIAKI L, BIAKO L (linked) CR2, CS2 BDMGI L, BDMGO L (linked)

-

Appendix B NU

NUMERICAL OP CODE LISTINGS

OP Code	Mnemonic	OP Code	Mnemonio
00 00 00	Halt	00 4R DD	JSR
00 00 01	Wait		
00 00 02	RTI		
00 00 03	BPT	00 50 DD	CLR
00 00 04	IOT	00 51 DD	COM
00 00 05	Reset	00 52 DD	INC
00 00 06	RTT	00 53 DD	DEC
00 00 07	MFPT	00 54 DD	NEG
00 00 77	Unused	00 55 DD	ADC
		00 56 DD	SBC
		00 57 DD	TST
00 01 DD	JMP		
00 02 OR	RTS		
		00 60 DD	ROR
	······································	00 61 DD	ROL
00 02 10		00 62 DD	ASR
to	Unused	00 63 DD	ASL
00 02 27		00 64 NN	
		00 65 SS	MFPI
		00 66 DD	MTPI
00 02 3N	SPL	00 67 DD	SXT
00 02 40	NOP		
		00 70 00	
00 02 41		to	Unused
to 00 02 77	Cond Codes	00 77 77	
00 02 11		01 SS DD	MOV
00 03 DD	SWAB	02 SS DD	
		03 SS DD	
		04 SS DD	
00 04 XXX	BR	05 SS DD	
00 10 XXX		06 SS DD	
00 10 XXX			
00 20 XXX	`		
00 20 XXX		1	
00 30 XXX		1	
00 30 XXX		1	

OP Code	Mnemonic	OP Code	Mnemonic
07 0R SS	MUL	10 50 DD	CLRB
07 1R SS	DIV	10 51 DD	COMB
07 2R SS	ASH	10 52 DD	INCB
07 3R SS	ASHC	10 53 DD	DECB
07 4R DD	XOR	10 54 DD	NEGB
07 5R RR	MOVR	10 55 DD	ADCB
10 65 SS	MFPD	 10 56 DD	SBCB
10 67 DD	MFPS	10 57 DD	TSTB
00 00 07	MFPT		
10 66 DD	MTPD		
10 64 SS	MTPS	10 60 DD	RORB
		10 61 DD	ROLB
		10 62 DD	
07 50 40		10 63 DD	ASLB
to	Unused		
07 67 77			
		10 64 00	
	<u></u>	to	Unused
07 7R NN	SOB	10 64 77	
10.00 3/3/3/			
10 00 XXX			
10 04 XXX		10 67 00	TT 1
10 10 XXX		to	Unused
10 14 XXX		10 77 77	
10 20 XXX	BVC		
10 24 XXX	BVS		
10 30 XXX	BCC,BHIS		
10 34 XXX	BCS, BLO		
		11 SS DD	MOVB
10 40 00		12 SS DD	CMPB
to	EMT	13 SS DD	
10 43 77		14 SS DD	
		16 SS DD	SUB
10 44 00			
to	TRAP		
10 47 77		00 70 DD	CSM
		00 72 DD	TSTSET
		00 73 DD	

TABLE B-1 contd. NUMERICAL OP CODES

B-2

OP Code	Mnemonic	OP Code	Mnemonic
1706 fdst	ABSD	171 (AC) fsrc	MULD
1706 fdst	ABSF	171 (AC) fsrc	MULF
172 (AC) fsrc	ADDD	1707 fdst	NEGD
172 (AC) fsrc	ADDF	1707 fdst	NEGE
170000	CFCC	170011	SETD
1704 fdst	CLRD	170001	SETF
1704 fdst	CLRF	170002	SETI
173 (AC+4)	CMPD	170012	SETL
173 (AC+4)	CMPF	176 (AC) fdst	STCDF
174 (AC+4)	DIVD	176 (AC) fdst	STCDI
174 (AC+4)	DIVF	176 (AC) fdst	STCDL
177 (AC+4)	LDCDF	176 (AC) fdst	STCFD
177 (AC+4)	LDCFD	175 (AC+4)	STCFI
177 (AC) src	LDCID	175 (AC+4)	STCFL
177 (AC) src	LDCIF	174 (AC) fdst	STD
177 (AC) src	LDCLD	175 (AC) dst	STEXP
177 (AC) src	LDCLF	174 (AC) fdst	STF
172 (AC+4)	LDD	1702 dst	STFPD
176 (AC+4)	LDEXP	1703 dst	STST
172 (AC+4)	LDF	173 (AC) fsrc	SUBD
1701 src	LDFPS	173 (AC) fsrc	SUBF
171 (AC+4)	MODD	1705 fdst	TSTD
171 (AC+4)	MODF	1705 fdst	TSTF

TABLE B-1 contd. NUMERICAL OP CODES

INTERRUPTS ASYNCHRONOUS & SYNCHRONOUS

TABLE B-2 INTERRUPTS

Interrupt	Vector Address
Address error (CPU error register, bit 6)	4
Red stack trap (CPU error register, bit 2)	4
Yellow stack trap (CPU error register, bit 3)	4
Timeout/nonexistent memory (CPU error register	
bits 4-5)	4
Parity error (Parity, Abort)	114
Memory management violation (MMR0, 13-15)	250
Trace (T bit) Trap (PSW, bit 4)	14
Power fail (PWRF)	24
FP exception (FPE)	244
EVENT/LTC	100
PIR 1 (PIRQ, bit 9)	240
PIR 2 (PIRQ, bit 10)	240
PIR 3 (PIRQ, bit 11)	240
PIR 4 (PIRQ, bit 12)	240
PIR 5 (PIRQ, bit 13)	240
PIR 6 (PIRQ, bit 14)	240
PIR 7 (PIRQ, bit 15)	240

B-4

Appendix C

I/O PAGE MEMORY MAP

TABLE C-1 SERIAL LINE FACTORY ADDRESSES

Address	Register	Vector	· Channel	
17776500	RCSR			
17776502	RBUF	300		
17776504	XCSR		Channel 0	
17776506	XBUF	304		
17776510	RCSR			
17776512	RBUF	310		
17776514	XCSR		Channel 1	
17776516	XBUF	314		
17776520	RCSR			
17776522	RBUF	320		
17776524	XCSR		Channel 2	
17776526	XBUF	324		
17777560	RCSR			
17777562	RBUF	60		
17777564	XCSR		Channel 3	
17777566	XBUF	64		

TABLE C-2INTERNAL REGISTERS

Abbrv.	Register	Address
PSW	Processor Status Word	17777776
PIRQ	Program Interrupt Request	17777772
CPUERR	CPU Error Register	17777766
HMR	Hit/Miss Register	17777752

TABLE C-3SYSTEMREGISTERS

Abbrv.	Register	Address
MR	Maintenance Register	17777750
MER	Memory Error Register	17777744
CCR	Cache Control Register	17777746

TABLE C-4 EXTERNAL REGISTERS

Abbrv.	Register	Address
LTC	Line-Time Clock Register	17777546
PCSR	Parity memory Control and Status Register	17772100

TABLE C-5BOOT CODE LOCATIONS

Section	Address Ranges	
Window 0-127	17773000 to 17773776	

TABLE C-6

MEMORY MANAGEMENT REGISTERS

Abbrv.	Name	Address
MMR0	Memory Management Register0	17777572
MMR1	Memory Management Register 1	17777574
MMR2	Memory Management Register 2	17777576
MMR3	Memory Management Register 3	17772516
-	Kernel Data Page PAR7 to PAR0	17772376 to 17772360
-	Kernel Instruction PARs	17772356 to 17772340
-	Kernel Data PDRs	17772336 to 17772320
-	Kernel Instruction PDRs	17772316 to 17772300
-	Supervisor Data PARs	17772276 to 17772260
-	Supervisor Instruction PARs	17772256 to 17772240
-	Supervisor Data PDRs	17772236 to 17772220
-	Supervisor Instruction PDRs	17772216 to 17772200
-	User Data PARs	17777676 to 17777660
-	User Instruction PARs	17777656 to 17777640
-	User Data PDRs	17777636 to 17777620
-	User Instruction PDRs	17777616 to 17777600

REF:M11UG ISSUE: REV 1.1.

Appendix D DEVICE MNEMONICS

TABLE D-1DEVICE MNEMONICS

oppy X02 Floppy L01, RL02 emovable Disk	17777170 17777170 17774400
L01, RL02	
	17774400
	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SCP Devices	17772150
K06/RK07 emovable Disk	17777440
M03 Removable Disk	17776700
S11, TK25, TSV05,TU80	17772522
S03, TU10, TE10	17772522
U58 Tape Cartridge	17776500
K50 Tape Cartridge	17774500
EQNA (DECNET boot)	17774440
	K06/RK07 emovable Disk M03 Removable Disk S11, TK25, TSV05,TU80 S03, TU10, TE10 U58 Tape Cartridge K50 Tape Cartridge

REF:M11:UG ISSUE: REV 1.1.

READERS COMMENTS

This form is for comments relating to the SBC M11 User Guide only. It will be used at the company's discretion and will hopefully improve our ability to document our products clearly and concisely.

.

What is your general reaction to this user guide?

Did you find any errors, if so please specify?

Additional comments or suggestions:

Name:	
Position/Title :	
Company:	
Address:	

Please send your comments to:

Technical Publications Dept., Mentec Ltd., Mentec House, Dun Laoghaire Industrial Estate, Pottery Road, Co. Dublin, Ireland.

Mentec Limited

Mentec House, Dun Laoghaire Industrial Estate, Co. Dublin, Ireland. Tel: 353-1-2858444 Fax: 353-1-2858005

