
Professional Pascal and High C Upgrade

Professional Pascal 2.7
and High C 1.4

Upgrade Information

TIle items below are new relative to the initial release of Professional
Pascal 2.6 and High C 1.3. Items apply Lo both Pascal and C unless
otherwise indicated. The items arc documented either in the on-line
README file, or in the Programmer's Guide (PG) as indicated.

\Vhere Doc'd Subject

R El\DME In-line code - the ability to place constants directly into
the instruction stream. (MS-DOS only)

RSADt-m -make command-line option assists in the construction of
make files.

RF.l\DME For embedded applications, the supplied utility bd can
analyze object files and libraries for occurrences of
initialized data. (Intel OMF targets only)

README #include can be made to behave in a non-relative fashion.

REl\DME & PG Toggle 387 allows generation of in-line 80387 code, which
makes excellent use of the 387's in-line transcendental
instructions.

RF.ADME

PO

PO

DOS 3.x networking is supported.

For the real-mode 8086/186/286/386compilers, toggle 386

allows generation of real-mode 386 code. All new
instmctions are used except for those using 32-bit registers.
(80386 targets only)

The'run-time library senses the presence of a 386 and docs
long divides using tlle 386 native instructions. (MS-DOS
only)

PG

README

PG

PG

PG

PG

Professional Pascal and High C Upgrade

More optimizations have been added. Some arc controlled
by the following toggles:

Toggle Optimi ze _FP (Intel targets only)
Toggle Mpy _ 8086 (Intel targets only)
Toggle Push_regsi ze (Intel targets only)

Far pointers for data (Professional Pascal) and Near/Far
pointers for data and code (High C) are supported. (Intel
targets only)

New calling convention attributes:

Professional Pascal
Return_aggregate_as_pointer
(Intel targets only:)
Return 32 in bx ax - - - -
Near call
Far call

HighC:
RETURN AGGREGATE AS POINTER - -

(Intel targets only:)
RETURN 32 IN BX AX - --
NEAR CALL
FAR CALL

The last two attributes in each case allow non-Sl4lndard
routine/function linkage.

Additional documentation and library support have been
provided for reducing the size of an executable file. (Intel
targets only)

80-bit floating-point numbers (ExtReal in Professional
Pascal) long double in High C) can now be both input
and output. .

Miscellaneous (Intel targets only):

Toggle Emi t _empty_groups
Toggle Group_data_externs
Toggle Group_code _ externs
Pragma Dclass
Pragma Cclass

- 2-

High Conly:

PG

README

README

PG

LRM

LRM

LbRM

PG

Professional Pascal and High C Upgrade

Function prototypes can now be mixed with old-style fun
cuon definitions. In addition, the compiler warns whenever
the semantics of an old-style definition is overridden by a
prototype. The warning is toggle-controllable.

ANSI-specified const and volatile are implemented.

_HIGHC _ is defined to be 1 in all implementations of
High C.

Signed bit fields are supported (as required by the ANSI
standard). (Intel targets only)

Structure members can be aligned or not via the keywords
...,.PClcked and _unpacked. See the Language Reference
Manual (LRM).

The ANSI-mandated offsetof macro is supported via the
intrinsic offsetof function. Sec the Language
Reference Manual.

The system function is implemented for executing a
subprocess. See the Library Reference Manual (LbRM).

Miscellaneous:
Toggle Struct_by_value_warnings
Toggle Prototype _ convers ion_warn
Toggle Prototype_override_warnings
Toggle Char_default_unsigned

- 3 -

MeteWare High C Release 1.3 - New Features pagg ADD-l

Meta Ware High C Release 1.3
New Features

This document describes what has been added to release 1.3 of High Cover
release 1.2a. All of the changes affect only the Programmer's Guide.

Here is a summary of the changes:
• A major new optimization called '-cross-jumping'" has been imple

mented.
• Register variables have been implemented, in a uniquely useful fashion.
• Any program using the 8087 or 80287 instructions is terminated at

initialization time if the 8087 or 80287 is not present. Previously, this
protection was available only for the coprocessor library routines. Fur
thermore, if an attempt is made to (erroneously) link code using 8087 or
80287 instructions with the emulator library, the linker produces a
diagnostic that" _mw87 _usedN is undefined. .

• Explicit instructions as to how to entirely remove the C I/O system are
given.

• Toggle Angle_include allows one to instruct the compiler to treat
'include < ••• > the same as 'include -... -. This is useful when using
standard header files that were not supplied with High C.

• Toggle PCC_msgs can turn off a subset of the compiler's warning mess
ages. The conditions provoking the warnings are never detected by the
standard UNIX PCC C compiler.

• Option -ppo and toggle Printypo allow one to capture preprocessor
output in a separate file or in the listing file.

• Toggle Print-protos causes the compiler to automatically generate the
new ANSI function prototype headers, to aid in upgrading programs to
the emerging C standard.

• Compiler control tllpi3 is no longer used.
Some of these items were documented in the "'REAOtEH file In the 1.2a

distribution but now have achieved full documentation status.
Now we detai I how these new features affect the Programmer's Guide. and

where possible give the exact text to appear in a future 'revised version of the
Guide. For your convenience we have printed these addenda pages separately
according to section so that they may easily be inserted into the 1.2 version of
the Guide at the appropriate places.

Version 03. 18.86 - 1 - @ 1983-86 MetaYere Incorporated

MgtgWgrg High C Rglgggg 1.3 - Ngw Fggturgg page ADO-2

Section 2
2.1 Invoking the Compiler

Binary dump utility. After the compiler has run, one can use the bd utility
to dump the. OBJ OMF output file, printing out each OMF record and its contents.
This utility is appropriate for finding out the size of various code and data
segments emitted by the compiler. One needs to know about Intel OMF to under·
stand the output in detail; order part number 121748·001, 8086 Relocatable
Object Module Formats from Intel Corporation, 3065 Bowers Avenue, Santa
Clara, CA 95051.

The usage of bd Is as follows, and the same instruction can be obtained by
running bd with no parameters:

bd [-v] [-t TYPE] filespec ...

where there are one or more H filespecs N and each may have MS- DOS wi Idcards .

• OBJ flies are dumped as OMF object modules .

• LIB files are dumped as Microsoft libraries .

• Le6 files are dumped as Concurrent DOS 286 libraries.

All other files are dumped in simple hexadecimal. The following options apply:
-t TYPE • just dump records of type TVPE; e.g. H_t segdefN.

-v • Just dump invalid records (= -t 711) (for validating OMF flies).

Version 03.18.86 - 2 - @ 1983-86 KetaWare Incorporated

MetaWare High C Releage 1.3 - New Features page ADO-3

Section 3
3.2 Run-Time libraries; link Errors

If some of the program requires the use of the 8087 or 80287, in that it
contains 8087 or 80287 native instructions, the program must be linked only
with the coprocessor library. Attempting to link with the emulator library draws
the linker error message H _ITIWB1_usedH undefined; this name is referenced in each
object module making direct use of the 8087 or 80287. It is an error to link
8087180287 In-line code with the emulator libraries. Such an error is automa
tically detected at link time by the missing name in the emulator libraries.

3.9 Minimizing Program Size
• Removing the C I/O subsystem
Even if none of CiS I/O is used, some of the 110 system ;s still linked in.

This portion does initialization and termination. It can be excluded from the link
by providing the two externals _mwcfinitO and _mwcftermO. Define these func
tions somewhere in the program to remove the libraryversions:

_lIIWcfinitO {}

_lIIWcftermO {}

The savings Is worth the effort.

Version 03. 18.86 - 3 - @) 1983·86 ItetaUare Incorporated

MotoWQre High C ReleQoe 1.3 - New Feoturoo pogo ADD-4

Section 5
5.1 Command-Line Options

tnlpi3. The tmpi3 compiler control is no longer used. Although stili accepted
by the compiler, it has no effect.

ppo is a new command line option. If "-ppo filename" is given on the
command line invoking the compiler~ the preprocessor output is printed to
"'filename"'. If "'-ppo'" alone is given, the preprocessor output is printed to the
standard output. In both cases the compiler terminates after preprocessing, i.e.
compilation per seis not done. "-ppo" can be read "pre-process onlyN or "print
preprocessor output". The preprocessor output is suitable for input to the com
piler.

There is also a new toggle, PrintJ)po, that causes preprocessed input to be
printed (and sent to the listing file) when the toggle is On. With this toggle, it is
possible to print what the compiler proper receives over a local area of source
code. A use would be to turn the toggle On prior to a complex macro invocation
and Off after it, to verify that the macro does what It should. The toggle is of
course Off by default.

Venion 03. 18.86 - 4- @ 1983-86 "etallare Incorporated

MetaWare High C ReleQQe 1.3 - New FeatureQ page AOO-5

Section 7
7.2 System-Independent Toggles

Angle_include -- Default: On

This toggle means to process 'include < .•• > in the standard fashion: look
for the file in directories given in the O-include Ipath, set up when configuring
the compi ler. Turning this toggle Off means to process 'inolude < ••• > the same
as 'include -... -. The primary use of this is to avoid obtaining High C's
standard include files when using those of another compiler; one can put the
other compiler's include files on the standard High C Ipath instead of its
<>-include ipath.

Optt.ize_xj.p -- Default: On

Enables the cross-jumping optimization. While an effective space-saving
optimization that leaves execution time invariant. it slows the code generator a
little and can produce code that is difficult to debug. See Appendix XJ for more
information on the specifics of this optimization. Also see toggle Optimize_
xjmp_space.

Opti.ize_xj.p_spaoe -- Default: On

Enables cross-jumping optimization that saves space but always at the
expense of time. This toggle takes effect only if Optimize_xjmp is also On. This
optimization slows the code generator a little and can produce code that is
difficult to debug. See Appendix XJ for more information on the specifics of this
optimization. Also see toggle Optimize_xjmp.

PCC_msgs -- Default: Off

High C by default produces many warnings - code must be ·squeaky cleanH

to get through the compiler without a warning. Some users have code that was
designed with a PCC-style compiler (portable C on UNIX) that is not so demand
ing, and would prefer fewer prods from the compiler. Therefore. if toggle PCC_
msgs is turned On, e.g. in the profile, the following warnings will not be emitted:

Function called but not defined.
Function return value never specified within function.
This ·return" should return a value of type ttt

since the enclosing function returns this type.
I.' used where •••• may have been intended.
Only fields of type "~i~ intH or Hunsigned long int" are supported.
Bit length exceeds size of Hunsigned int"; type changed to Hunsigned long".
External function is never referenced.
Declared type is never referenced.

The next four messages are suppressed for global variables when PCC_msgs is On:
Variable Is never used.
Variable referenced before set.
Variable is referenced but is never set.
Variable is set but is never referenced.

Version 03. 10.86 - s - © 1993-86 HetaUare Incorporated

MetaWare High C Relaaua 1.3 - Naw FaQturau page ADD-6
Print-ppo -- Default: Off

When On this toggle causes preprocessed input to be printed (and sent to the
listing file). With this toggle. it is possible to print what the compiler proper
receives over a local area of source code. A use would be to turn the toggle On
prior to a complex macro invocation and Off after it, to verify that the macro
does what it should.

Print-protos -- Default: Off

This toggle aids in the conversion of C programs to use the new ANSI proto
type syntax derived from the C++ language. When this toggle is On, the compiler
prints to the standard output a n~. prototype-style function header for each
function definition. For example, for the function definition

1nt f(x,y,z) 1nt -x,z[]; double (tty)O; {oo.}

the compiler produces
int f(int -x, double (tty)O, int ttz);

The old function header can then be replaced with the generated one.

There are some minor pitfalls in having the compiler automatically gener
ate prototype headers. One is illustrated above: array parameters. according to
the semantics of C, are converted to pointer parameters. Second, en .. types are
converted to their representation type (one of the signed int types). Finally,
the compiler does not distinguish the type specifier char from the s1gned- or
unsigned-char that char alone stands for. This means that for 8086 High C ..
both char and unsigned char are printed as unsigned char. On machines where
the best default for char is signed char, both char and signed char are printed
as signed char. The en .. and char problems can be avoided by using typedefs ..
and using a typedef name for the parameter's type.

It may be desirable to use -noobj on the command I ine along with this
toggle, to suppress compilation after the prototypes have been generated.

Print_reR-vara -- Default: Off

One can find out which variables were mapped to registers without looking
at the code generated by the compi ler by turning this toggle On. .

7.3 System-Dependent Toggles

Auto_reg_alloo -- Default: Off

When On, the compiler automatically allocates variables to registers. The
compiler weights variables used within loops more heavily than those not so used
in making its decision which variables to allocate to registers; furthermore it
will not allocate to registers variables that are used too infrequently. Auto
matic allocation allocates only variables of size 2 to registers; chars, for exam
ple, are not automatically allocated since it is not always best to place chars in a
register. The reason for this is that preventing a register char from exceeding
127 (for signed chars) or 255 (for unsigned ohars) is not inexpensive. Auto_reL
alloc has no effect unless toggle Use_reQ..vars is On.

'lemon 03.18. 86 - 6 - (S 1983-86 Ketaware Incorporated

MetaWare High C Release 1_3 - Ne~ Featurea page AOO-7
Return_32_in_BX_AX -- Default: Off

For Lattice compatibility. this toggle. when On. causes 32-bit quantities
returned from functions to come back in AX: BX rather than OX: AX. This includes
32-bit pointers and long integers. In a future release this facility will probably
be in the form of a call ing convention rather than a toggle. (Another compi ler
option pertaining to Lattice compatibility is wGlobal_aliasinCLconventionN

(Subsection 13.2). Since Lattice by default truncates externals to eight charac
ters, use HpraaR Global_aUasin(Lconvention(-'r: 1: B-);H In the profile to
cause High C to do the same.}

Segmented-pointer_operations -- Default: On
(This is merely additional, clarifying document3tion to what 31re3tty exists

in the present Guide.)

When the toggle is On, it is true that 32-bit pointer. operations are
generated by the complier, including comparisons. But comparisons still do not
normalize pointers before comparing. The programmer must normalize pointers
himself.

Use_re~yars -- Default: Off

When On. the campi ler attempts to place variables of storage class
register into one of the two machine registers SI or 01. Widespread use of
register variables Is not recommended for the 8086 family of architectures, but
careful, selected use can be beneficial. Use_reCLvars is by default Off, since when
initially porting a C program from a minicomputer environment where many
register variable declarations are used, placing the variables in registers may
actually have a detrimental effect on the 8086. For more information on
register variables. see Section R (added between Sections 9 and 10).

Version 03.18.86 - 1 - @) 1983·86 HetaWare Incorporated

MotaWaro High C RoloaQa 1.3 - Naw FaaturaQ PQgg AOD-B

Section 8
8.2 Floating-paint Evaluation and Run-Time Libraries

(This supersedes some of the material in the penultimate paragraph of Sub
section B.2.)

The program may require the use of the 8087, either because some of its
own modules contain 8087 instructions, or because routines from the coprocess
or libraries have been linked in that in turn require the 8087. If so. the run-time
start-up routine verifies that the 8087 exists and prints out an error message if
it does not. Previously this detection only was given for any coprocessor library
routines needing the 8087; now it also is given for user routines.

Under MS-~OS, one can find out which routines use the 8087 by searching for
H87_used" in the .OBJ files. Use the fgrep utility program supplied in the
MetaWare compiler distribution for MS-DOS: "'fgrep -0 87_used -.obj"
searches the objects for H87_used" and prints out the offset in the file containing
"87_used".

If one tries to link any code requiring the 8087 wit.h an emulator library, the
linker will complain of the undefined name" _mwB7_used H

• It is an error to link
BOB1 in-line code with the emulator library. Such an error is automatically
detected at link time.

Version 01. 16. 66 - B - @ 1983·86 ltetaWare Incorporated

MetaWare High C ReleaQe 1.3 - Ne. FeatureD page ADO-9

An entirely new Section Illogically fitting "etween Sections 9 and 1001 the
present Guide, describes the implementation of register variables.

Section R
Register Variables

80th MetaWare's High C and Professional Pascal compilers support register
variables. The implementation has a novel feature that separates it from all
other 8086 compilers known to us, and that permits efficient use of register
variables on an architecture that is hostile to them: the 8086 has few registers
to dedicate to variables, and each register has a dedicated purpose •

. Furthermore the compiler can automatically allocate variables to registers
without requiring the programmer to supply the register storage class. In the
sections that follow we present two different approaches to register variables.
Then we discuss the porting of programs written for other machines relative to
the two approaches. Next the automatic allocation of variables is described.
Miscellaneous topics and a summary with tips for best'usage of register variables
conclude the presentation.

A.l Register Variables - The Typical Approach
The typical implementation of register variables goes as follows. Registers

31 and 01 are earmarked as the two registers that can hold register variables -
i.e. each function can have a maximum of two register variables. Each function
that modifies SI and 01, whether it uses them for register variables or in any
computation, saves 31 and 01 at procedure entry and restores them at procedure
exit. Therefore each such function has a "push si; push di" at the beginning and
H pDp di; pop si" at the end.

The disadvantage of this strategy is that even if a program ne~es regis
ter variables. all functions using SI and 01 - for whatever purpose - must save
and restore them. Thus an overhead is always incurred "'just In case" somewhere.
some function uses a register variable. The overhead is incurred for library rou
tines as well as user program code.

The overhead is non-trivial, as a push and pop each take about 10 cycles on
an 8088. In fact, a BYTE magazine analysis showed that programs using register
variables can sometimes run slower. Although this is not always true, it has been
confirmed in practice by some of MetaWare's customers using a compiler such as
Microsoft C.

The strategy has its roots in compilers for mini- and mainframe computers.
where register variables are the rule. and where compilers automatically allo
cate variables to registers, as MetaWare's own mini- and mainframe compilers
do. In such an environment, the strategy is appropriate; the architecture often
supports a save-multiple-registers instruction, e.g. IBM 370. or an automatic
saving of registers on procedure call via a register mask, e.g. VAX 11/780.

On an 808x. which has neither of these two features. the heavy use of
register variables is not appropriate.

Version 03.18.86 - 9 - @ 1983-86 HetaWare Incorporated

MetaWare High C RglgQQg 1.3 - New FeQturgQ PQgg AOO-10

R.2 Register Variables - The MetaWare Approach
MetaWare has solved the problem of this overhead with a feature unique to

its BOBx compilers. The programmer can choose whether or not functions that
use SI and 01 save and restore them as part of their prologue and epi logue. Let us
call functions that do not save and restore S1 and 01 non-preserving, and functions
that do preserving. In the standard approach, then, all functions are preserving.
Now with non-preserving functions, how are registers then protected against
damage via a call to a non-preserving function?

The answer is that when calling a non-preserving function .. register variables
are saved and restored by the call£.[. The example below illustrates the differ
ence between the preserving and non-preserving approaches. Relevant assembly
code is listed on lines starting with H;_.

Preserving approach (the usual approach):
void feint i) {

; push si (S4ve.)
; push di •
.•. some code that clobbers si and di ...
; pop di (Restore.)
; pop si •
}

void mainO {
register int 1. j; ,- i in s1. j in di. -,

f(i);
; push si (Pass i as parameter to r.)
; call f
f(j);
; push di (P4SS j "s p"rlJllleter to t:)
; call f
}

The ncn-preserving approach (featured in MetaWare compilers):
void feint i) {

. •. some code that clobbers 51 and di ...
}

void IMinO {
register int 1. j;

f(i);
; push si
; .ov temp_si, si
; IIOY temp_di, di
; call f
f(j);
; push temp_di
; call f
}

,- i in s1. j in di. -,

(Pass i as par6l1lf!ter to t:)
(Conpi1er-coined tenporary for si., alias i.)
(Conpi1er-coined tenpor"ry '-or di., "lias j.)

(Pass j as parlllllt1ter to t:)

Now if "main" is the only function using register variables that calls "f
we have considerable savings in not unnecessarily saving and restoring SI and 01 in
"f" and all other functions in the program.

Version 03.18.86 - 10 - (S) 1983-86 Ket.waIe Incorporated

MetaWare High C Release 1.3 - New Features page ADO-l1
Therefore, the decision to use the preserving or non· preserving approach is

made on the basis of frequency of register variables. If a program uses many
register variables, the preserv;ng approach is appropriate.

If a program uses register variables infrequently, the non-preserving
approach is appropriate. A mixed strategy can also be used, since It Is possible to
specify on a function-by-function basis whether the function is preserving or not.

Functions can be declared as preserving by Including _SAVE_REGS In their
calling convention; by default, functions are non-preserving. For example:

pragaa Call1n~convent1onCDEFAUL T_CAlLlNG_CONVENTION I _SAVE_REGS);
void f(int i) {

; push s1
; push di
... some code that clobbers s1 and d1 .••
; pop di
; pop s1 } '* Back to the default: *'

pragma Calling_convention<_DEFAUlT_CAlLIN6_CONVENTION);

The default calling convention can be set to include _SAVE_REGS to get the
preserving approach:

pragma CallinQ_convent1on(
~DEFAlIL T_CALLING_CONVENTION I _SAVE_REGS, _DEFAll. T);
I- The default is now for all functions to save registers. -I

For more information on the use of the calling convention pragma, see Sec
tion (13) Extemals.

We at MetaWare believe that the non-preserving approach yields the best
results on the 808x, when functions are chosen carefully in which to use register
variables.

Consequently, the MetaWare run-time libraries do not save register vari
ables. Thus functions such as "printf" should notbe declared as preserving- e.g.
do notdeclare them after the calling convention has been changed. Calling con
vention changes should be made c1fterinclusion of library header files, not before.

One other thing to note is that the calling convention pragma applies only to
functions that are defined. It does notapply to functions called but not defined.
For example, If one writes "fooO N but never defines "faa", "faa" will be
assumed to be non-preserving, no matter what has been done to the default
calling convention. See Subsection 13.1 on undeclared functions.

R.3 Porting Programs Written for Other Machines I

In light of this discussion, it is probably not desirable to take a program
containing many register variables that was written for another computer and
re-host it on the 808x along with all register variable declarations. The program
may run slower with the register declarations than without. Therefore, the
MetaWare 808x compilers Ignore register declarations by default. To'turn on
the recognition of register declarations, use the toggle HUsQ_re~vars'·. One can
say ··-on use_reg_vars" on the command line~ or include an On and Pop pragma
around the functions for which register variables are to take effect:

Version 03. lB. B6 - 11 - ~ 1983-86 HetaVare Incorporated

MetaWara High C Ralaaaa 1.3 - Naw FaaturQQ PQgQ AOO-12
progma On(Use_reg_yars);

void flO {
register int i, j; '* i, j will be allocated to registers. */

}
pragma Pop(Use_re«-yars); '* Restore to default (Off). *'

void f20 {
register int 1., j; '* i. j .ill not be allocated to regs. ttl

}

R.4 Automatic Register Allocation

If register variables are really to be used everywhere, request that the
compiler automatically allocate variables to registers. The compiler weights
variables used within loops more heavily than those not soused in making its
decision which variables to allocate to registers; furthermore it will not allo·
cate to a register variables that are used too infrequently. Request automatic
allocation by turning On the toggle -Auto_reQ...alloc N

:

. pragaa On(Auto_reQ...alloc);
void f30 {

int 1.,j; '* i and j get allocated to registers if justified. *'
}

Automatic allocation allocates only variables of size 2 to a register; chars,
for example, are not automatically allocated since It Is not always best to place
chars in a register. The reason for this is that preventing a register char from
exceeding 127 (for signed chars) or 255 (for unsigned chars) is not inexpensive.
According to the formal definition of C being promulgated by the ANSI standard
committee on C, the use of a register storage class must notchange the seman·
tics of a program. Here is a simple program that illustrates the difficulty:

mainO {
register unsigned char c; register lnt 1;
c • 250;
for (i c 1; 1 (c 3; 1++) {

c .. 10;
printf(-'d\n-,c);

} }
This program should print

250
4 (which is 260 mod 256)
14

but under a careless implementation of register variables, it might instead print
250
260
270

The code to add 10 to character c is not simply Nadd s1., 10" (assuming c is
allocated to si) but is instead "lI\Oy aX,.. s1; add a1, 10; IIOY s1., ax". The H add
aI, 10" ensures that the addition does not overflow into the most significant byte

Version 03. 18.86 - 12 - tID 1983-86 "etaWare Incorporated

MetaWare High C Release 1.3 - New Features page AOO-13
of c. Thus register chars are less efficient than might be expected, and so the
eompi ler never automatically assigns chars to registers.

A.S -Envelopes- for Frequently-Used Non-Preserving Functions

Suppose that in a particular region of a program heavy use is made of regis
ter variables and frequent calls are made to library functions (which, as we have
said, are always non-preserving). To avoid the code space overhead of saving and
restoring register variables across calls to library functions, consider hiding calls
to frequently-called library functions in preserving functions dedicated to calling
the relevant library functions.

For example. if maUoc Is called many times in the context of register
variables, consider writing a preserving function -my_malIoe" and replacing calls
to malloc with calls to my_malIoe:

void *my_malloc(unsigned amount) {return malloc(amount);}

Since my_maUoc is a preserving function, 51 and OI will be saved in its pro
logue and restored in its epilogue: a preserving function that calls a non-pre
serving one must save and restore both 51 and 01 in case the non-preserving
function destroys them.

A.6 Miscellaneous
Variables that were mapped to registers can be found without looking at the

code generated by the compiler by turning on the toggle Print_rell-vars: either
use "'·on Print_reQ...vars" on the command line, or include "'pragaB On(Print_
rell-vars);" in the program.

R.7 Effect of Dedicated Instructions on the Use of SI and 01

Certain 808x instructions require the use of SI and 01, such as byte-moving
or -scanning operations. The former arise in structure assignments; the latter
when using MetaWare High C's built-in byte scanning operations. The required
use of SI and 01 cause a conflict when they are allocated to variables. In these
cases the compiler stores the register variables into temporaries, reloading
them back into registers upon the next usage.

R.B Summary; Pointers and Tips
Here are the salient facts that should be considered when using register

variables:
1. There are two approaches to using register variables: the standard

"'preserving" approach, or the MetaWare -non-preserving" approach. MetaWare
compilers support both approaches. but by default functions are non-preserving.

2. Use the preserving approach only if the intent is to use register variables
frequently. Use the non-preserving approach otherwise.

3. A preserving function that modifies SI and OI saves and restores them in
its prologue and epi logue, respectively. Any call to a non-preserving function is

Version 03. 1B. 86 - 13 - @) 1963·06 HetaUare Incorporated

MetaWare High C Releeoe 1.3 - New Foeturoo pogQ ADD-14

considered to be a modification of S1 and 01 .. so that preserving functions calling
non-preserving functions always save and restore SI and 01.

4. When a call is made to a non-preserving function from a function having
register variables .. the variables are saved before the call and restored the next
time that they are needed. Thus, successive calls to non-preserving functions
may require saving and restoring only once.

5. Use the call ing convention pragma with _SAVE_REGS to specify preserving
functions. If all functions are to be preserving, set the default calling convention
to contain _SAVE_REGS.

6. Calling convention pragmas apply only to defined functions. Functions
called but not defined are always non-preserving - the default. Thus, when using
the calling convention to establishing preserving functions .. always declare all
functions before using them.

7. Library functions are non-preserving. This includes "hidden" library
functions such as those implementing 32-bit arithmetic and floating-point emu·
lation. It is strongly advised that register variables not be used in the presence of
much long or emulated-floating-point arithmetic.

8. 00 NOT DEClARElibrary functions after changing the calling conven
tion to include _SAVE_REGS. Doing so erroneously claims that library functions
are preserving. Likewise, do not include library header files after changing the
calling convention. There may be declarations of library functions embedded in
functions that will have to be relocated if the calling convention is changed.

9. Variables that are not two bytes in size may not pay off when placed in a
register. Use registers for such variables only when the number of references to
them considerably exceeds the number of assignments to them. The compi ler
never automatically allocates such variables to registers.

10. To make register variable declarations take effect, it is necessary to
turn On the toggle Use_reo-vaTS.

11. The compiler- automatically allocates variables to registers when the
toggle Auto_reQ..alloc is turned On.

12. It is possible to find out which variables were allocated to registers,
whether automatically or not, by turning On the toggle Print_re<Lvars.

13. Both local variables and function parameters can be register variables.
14. We would appreciate feedback on this unique approach to register vari

ables. Especially consider whether it is preferable to have the library save and·
restore register variables, even though a program might contain no use of regis
ter variables anywhere, and even though saving and restoring increases overhead
in time and space during the execution of library functions.

Venion 03.18.86 - 14 - tID 1983-86 l'eUUue Incorporated

MotaWara High C Ralaaea 1.3 - Naw FaQtura. pagQ ADO-iS

Section 10
10.3 The Stack Frame

A local variable Is addressed by some negative displacement off of the BP
register .. except when that local variable has been allocated to a register - either
SI or DI. In the latter case the variable occupies no space on the stack. A local
variable can be allocated to a register by using the register storage class in
conjunction with the Use_reg_vltrs toggle.

Parameters are addressed with a positive displacement off of the BP. When
a parameter is placed in a register .. it is addressed in this way only once .. at pro
cedure prologue .. in loading the parameter into a register. Thereafter the para
meter is. referenced in the register. A parameter can be allocated to a register
by using the register storage class in conjunction with the Use_reg_vars toggle.

Be warned that use of library functions setjmp and longjmp can produce
unpredictable results in the context of register variables. longjmp can cause an
arbitrary number of function returns .. none of which restores SI or DI. See the
Library Reference Manual for more on setjrnp and longjmp.

Ytnioo 03. 18.86 - 15 - @l 1983-86 nttaware IocoJporated

MetaWare High C Releage 1.3 - New FeatureD page ADO-16

Section 11
11.2 Prologues and Epi logues

If a function is declared with _SAVE_REGS in its calling convention (see Sec
tion 13.1; by default a function does not have _SAVE_REGS in its calling conven
tion). the function wi II save registers SI and 01 at entry and restore them before
returning if the function in any way modifies those two registers.

A function is considered to modify sr or or if either sr or or is used in any
code generated for the function. or the function calls another function that does
not have _SAVE_REGS in its calling convention - i.e. the other function may in
turn destroy SI and 01.

The function saves S1 andlor 01 immediately after allocating its own local
stack frame (the sub sp, framesize instruction).

11.5 Saving Registers on a Call
Consider a function FI, using variables in registers. S1 and DL calling a func

tion F that does not save and restore S1 and 01; i.e. F does not have SAVE REGS in
Its calling convention. F' Is forced to save Its own register variables andrestore
them after the call to F.

Heavy use of register variables In the presence of calls to functions not
having _SAVE_REGS in the calling convention is not recommended, since the savel
restore overhead may well defeat the intended gain in efficiency with the use of
register variables. See the new Section (A) Register VllriaIJles.

The restore is not always done immediately after the return from the call;
it may be delayed, especially if several calls appear sequentially.

Ve~ion 03.18. B6 - 16 - @ 1963·66 I1etaYare Incorporated

MetaWara High C Releege 1.3 - New FeQtureg PQge AOO-17

Section 12
12.5 The Effect of Optimizations on Oebugging

Most compiler optimizations do not severely affect the order in which code
is generated with respect to the original order of statements in the program.
Therefore. it is generally possible to use a symbolic. line-oriented debugger. and
it is possible to keep track of code generated when debugging in assembly
language.

There is one class of optimizations that can severely reorder code .. however ..
and thoroughly confuse debuggers and humans reading assembly-level debugger
output. This class is discussed in Appendix (XJ) Cross-Jumping. The optimiza
tion is turned On by default .. and we recommend that it be turned Off.. if debug
ging becomes a problem. See Appendix Cross-Jumpingfor more details.

Vtnion 03.16.66 • 11 - ~ 1983-96 HetaUare Incorporated

MetaWare High C Release 1.3 - Ne~ Features page ADO-1S

Section 13
.

13.1 Interfacing to Other Languages

The following calling-convention pre-defined constant is added to the exist
ing list:

Name Semantics
_SAVE_REGS The function saves registers sr and or if it modifies either of them,

either by direct use of 5r or or in an Instruction, or by calling a
function that does not have _SAVE_REGS in its calling convention and
that therefore could destroy SI or 01.

SAVE REGS is not included in the OEFAlL T CAlLItIJ CONVENTION.
Nor dO any of the High C library functions Include _SAVE_REGS in
their call ing convention.

Vernon 03. 18.86 - 18 - @) 1963·86 I1etaYare Incorporated

MutaWara High C Rglggog 1.3 - Ngw Fogturgo pogo ADD-10

Appendix XJ
Cross-clumping Optimizations

MetaWare compilers now support a major new optimization that can usual
ly obtain a 2-5% reduction in code size and is often accompanied by a decrease in
execution time. The optimization is known as Hcrass-jumping". It .. along with
the two toggles that control it, is explained here.

Consider the following source code:
if (teof) read(&buf,&cnt,512); 1* Code C. */

1* L: */ .hile (cnt) 0) {
write(&buf, cnt);
if (!eof) read(&buf,&cnt,512); 1* Code CO. */
} /* Implicit jump back to the implicit label L. */

The compi ler can improve the code size of this program without any loss in
execution speed by effectively re-writing the code as:

Top: if (!eof) read(&buf,&cnt,512); 1* Code C ~ Co. */
/* L: */ if (cnt > 0) {

.rite(&buf, cnt);
goto Top;
}

The optimization involves the recognition of some code C immediately pre
ceding a jump j to some label L, where some code C' identical to C immediately
precedes L. The transformation consists in deleting C and replacing j with a
jump to C' instead:

some code C jap L"
jllp L =)

some code C' L': some code C = C'
L: L:

This optimization is called Hcross jumping" or Htail merging'· in the com
piler literature, since it was first invented to handle common code at the ends of
the arms of conditional statements" and was effected by jumping across from one
arm to the other, i.e. by merging the tails of the two arms. It is surprisingly
effective and always saves code space while never giving up execution speed.

Here we include another optimization under that name as well. The second
optimization is even more effective but gains (sometimes considerable) code
space in trade for a small loss of speed. Consider the progra~ fragment

if (buf[cnt]==O) g(&buf);
else if (buf[cnt]=="\n') {buf[cnt] = 0; g(&buf);}
else ...

The compiler effectively transforms this into
if (buf[cnt]==O) goto L';

else if (buf[cnt]2. I \n") {buf[cnt] • 0; L": g(&buf);}
else ...

Here, both occurrences of Hg(&buf);" precede a jump to the statement
follOWing the entire conditional. One of the instances of "g(&buf);" is replaced

Version 03. lB. 86 - 19 - @ 1983-86 "etaWue Incorporated

MetaWare High C Release 1.3 - New Features page AOO-20
. with a jump to the other, saving the code space for the call to g at the expense of
inserting an additional jump. Opportunities for this kind of optimization are even
more frequent than the standard cross-jumping optimization. In general the
optimization can be depicted as follows:

some code C jlllP L"
jap L

some code C" .> L": some code C • C"
jllP L jlllP L

L: ... L:
Both optimizations are turned On by default. Both may be disabled by

turning Off the toggle Optimize_xjrnp, with either "-off Optimize_xjmp'" on the
compiler execution line .. or including "prag118 Off(Optimize_xjmp); N in the
program. The second of the two optimizations can be disabled by turning Off the
toggle Optimize_xjn!p_space, so named because the second optimization saves
space but always Increases execution time.

Ouring the development phase of a project it may be desirable to turn
Optimize_xjmp Off. The reason is that the optimization can cause such a contor
tion of code that using de buggers, whether assembly-language level or line-ori
ented symbolic, is difficult. As a case in point consider the following program,
which compares the fields of two different structures to see If they are the
same:

union {
struct {int x. y;} f1;
struct. tint. e, b, c; } f2;
struct {int e, f;} f3;
st.ruct. tint g, h; int i[10];} f4;
} ul, u2;

int f(i) int i; {
s.itch(i) { '* What kind of structure to compare? *'

case 1: return ul.fl.x =- u2.fl.x && ul.fl.y •• u2.fl.y;
case 2: return ul.f2.c == u2.f2.c &&

ul.f2.a •• u2.f2.a && ul.f2.b •• u2.f2.b;
case 3: return ul.f3.e == u2.f3.e && ul.f3.f == u2.f3.f;
case 4: return u1.f4.g •• u2.f4.g &&

memcmp(ul. f4. i, u2. f4. 1.. sizeof(ul. f4. i» != 0;
case 5: return ul.f4.h •• u2.f4.h &&

} }
rnerncq>(ul. f4.1, u2. f4. i.. sizeof(ul. f4. i» != 0;

Here cases , and 3 are recognized as being Identical, and matching the tall
end of case 2. Furthermore cases 4 and 5 share a common tail. Compiling the
code produces the following tightly-coded result that surpasses the usual patience
of even a skilled assembly-language programmer in optimizing:

Version 03. 18.86 - 20 - @ 1983-86 netaUare Incorporated

MetaWare High C RQIQQgQ 1.3 - Now FQoturog pogo AOO-21

IIOV
deo
ClIP
jnbe
shl
jlap

switch(i) { /* What kind of structure to compare? */
b><.4[BP]

. L0013:
dw
d.
d.
d.
d.

bx
b><.4
006a
b><. 1
word ptr cs:.L0013[bx]

.L0026

.LOOld

.L0026
• LOroa
• L0043

;
,

case 1: return ul. fl. x =a u2. fl. x M ul. fl. y 1:& u2. fl. y;
case 2: return ul. f2. c •• u2. f2. c M

• LOOld:
IIOV
ClAP
jne

8><. iltest+4
a><. iltest+28
0066

;
, .

ul. 12. 8 == u2. f2. 8 && u.l. f2. b == u2. f2. b;
case 3: return ul. f3. e •• u2. f3. e && ul. f3. f·· u2. f3. f;

• L0026:
IIOV
ClIP
jne
110 V
Clap
jne
jlllp

8><. iltest
a><. iltest+24
0066
a><. iltest+2
a><. iltest+26
0066
0062
case 4: return ul. f4. g == uZ. f4. 0 M

ax. iltest
8><. iltest+24
0048

,
lI1efIlCq)(ul. f4. 1., u2. f4. 1., sizeof(ul. f4. i» !- 0;

case 5: return ul. f4. h == uZ. f4. h M
• L0043:

-y
ClIP

• L004a:

ax. ittest+2
ax. iltest+26

jne 0066
_v ax. 20
push ax
_v ax. offset ittest +28
push ax
_v ax. offset ittest +4
push ax
call rnemcmp
add sp,6
and ax, ax
je 0066

• L0062:
IM)V 81. 1
jlllp 0068

• L0066:
sub a><. ax

Version 03.18. B6 - 21 - ~ 1993-86 ItetaUare Incorporated

MetaWare High C Release 1.3 - Ne~ Features
• L0068:

sub ah" ah
• LOOSe:

pop bp
ret

page AOO-22

memcmp(u1. f4. L UZ. f4. L sizeof(ul. f4. i» ! cO;
} }

Compare this code with that generated by other compilers and generally it
will be found to be much smaller.

In summary: I

1. Cross-jumping is an amazingly effective optimization.

2. Toggle HOptimize_xjq>- is set On by default and turning it Off disables all
cross-jumping.

3. Toggle HOptimizey:jmp_spDceH is On by default and turning it Off disables
cross- jumping optimization that decreases space at the expense of time.

The cross-jumping optimization adds perhaps 20% to the execution time of
the code generator phase of the compiler, thus perhaps 3% overall.

Veruon 01 lB. B6 - 22 - lID 1963-86 I'etaUare Incorporat~d

