

REP/TRANSLATOR

2: Console Output (CONOUT - "Write a Console Character")

A straight-line translation to the PC-DOS CONOUT, but note
that PC-DOS itself is routed through the TV950 emulator, not
through the normal host screen driver - hence monitor
controls must conform to the TV950 standard (See Table 4-2).

3: Reader Input

A direct call to the PC-DOS Aux In.

4: Punch Output

A direct call to the PC-DOS Aux Out.

5: List output

Calls PC-DOS PRINT OUT, routing direct to the PRN device.

6: Direct Console !LQ

Fully supported.

�7�/�~�:� Get/Set !LQ Byte

Ignored because PC-DOS does not support I/O redirection at
this level - "Get I/O Byte" will always return the default
value 0. At Baby Blue's location 0003H, where the CP/M I/O
byte is normally found, the high-order nibble contains
instead the segment number occupied by Baby �B�l�u�e�~�s� 64K.

9: Print String

Fully supported - a direct translation to the same PC-DOS
function.

�l�~�:� Read Console Buffer

A straight-line translation, but note that this means PC-DOS
line editing commands will be in effect, not CP/M, so that
an operator expecting to use the CP/M set may be confused.
Also note that redefining the function keys may disable PC
DOS line-editing features (See "1: Console Input").

4-16

REF/TRANSLATOR

11: Get Console Status (CONSTAT: "Interrogate Console Ready")

A straight-line translation except that like "1: Console
Input", this will be handled, and sometimes automatically
repeated, by the Keyboard E~ulator.

12: Return Version Number

Returns Version 2.2.

13: Reset Disk System

Ignored, since the purpose of this call is always satisfied
under PC-DOS (a 11 disks per petua 11y set to read/wri te). No
incompatibility will result from the use of this command,
but it may mask a deeper problem if the program or its
documentation depends on the CP/M software write-protect
facility (see "28: Write Protect Disk").

14: Select Disk

Direct translation - designates default drive. However, the
Jrive will not automatically go to a read-only state if the
disk media is physically changed, as it would under CP/M
(See "28: Wr i te Protect Disk").

15: Open File

Fully supported, however some confusion may result if you
don't fully understand how the HEADER handles CP/M COM
files under development, as explained under OPERATION.

16: Close File

Direct translation to PC-DOS function call. AL returns
either 00H (successful close) or FFH (file not found). When
closing a COM file, this call also finds the size of the z-
80 code (less HEADER) and stores this number at location
0107H in the HEADER attached t~ the target file. The size of
HEADER itself is stored at location 0105H.

17/18: Search for First/Next

Direct translation to PC-DOS function calls. Returns 00H
(file found) or FFH (file not found) in AL. The directory
image buffered at the DMA address is artificially construc
ted from the PC-DOS image, with the following surprises:

4-17

REP/TRANSLATOR

- In the case of a COM file, the record count returned
includes HEADER, accurately reflecting the disk space
required, but not the TPA.

- There is only one entry, so AL, if found, is always 9
(not 1, 2 or 3). The remaining 96 bytes, which might
ordinarily contain further entries, are filled with
E5H.

- The correct number of group entries are filled in, but
they are all set to 91H, since the actual pointer in
PC-DOS is to the file's first entry in the File Alloca
tion Table.

19: Delete File

. Direct translation to PC-DOS function call.

29: Read seguential

. Direct translation to PC-DOS function call - for a COM file,
the first record returned will be the first line of Z-89
code - HEADER is skipped over.

21: ,write Seguential

,Direct translation to PC-DOS. In the case of a COM file,
the presence of HEADER on the disk is automatically
accounted for - no special adjustments are required to
insure that the write indeed begins at the end of the file.

22: Make File:

Direct translation to PC-DOS. As explained under OPERATION,
HEADER is automatically bound when the file to be created is
designated as a COM file. HEADER is written and closed
immediately, before the COM file is opened, so even if you
decide not to write to the file, or not to close it, you'll
still find that you've created a file containing HEADER.

23: Rename File

Automatically binds HEADER when the filename extension is
changed from someth i ng al se to COM, and v ice-ver sa. S 1 nce
in the first case the bound file is larger by the length of
HEADER, it's possi.ble there will be insufficient disk space
available to write it. Rather than lose the file, we
recover by leaving the file unbound, and tagging it with th~
extension "CPM".

4-18

REF/TRANSLATOR

24: ~ Log-in Vector

Not supported, because it is irrel~vant under PC-DOS.
Returns the defa~lt value FFFFH.

25: Return Current Disk

Direct translation to PC-DOS function cal t.

26: Set DMA Address

See BIOS Call FF24H: SETDM~, below.

27: Return Allocation Vector

Not supported. This function, usually not used by allocation
programs, returns a value which refers to physical
properties of a CP/M diskette. Since PC-DOS diskettes do
not share these attributes, the function is meaningless when
directed at a PC-DOS diskette.

28: Write Protect Disk

Not supported, since PC-DOS does not support the software
write-protect facility offered by CP/M.

29: Return Read Only vector

Not supported, see "28: Write Protect Disk".

30: Set File Attributes

Not supported, since the attributes themselves reside in the
physical directory of a CP/M disk and have no equivalent
under PC-DOS. Therefore, this call will also fail to
"discover" a file which has been defined as "hidden" under
PC-DOS.

31: Get Address of Disk Parameters

Partially emulated. The parameters involved are properties
of a CP/M diskette and are not supported by PC-DOS. The
address returned points to a dummy parameter table based on
an assumed 5" diskette.

32: Get/Set User Code

Returns value 0. PC-DOS does not support multiple users.

4-19

REF/TRAHSLATOR

33/34: Read/Write Random

Direct translation to PC-DOS function call. Files created
while running on Baby Blue will not introduce gaps in a
random access file, and so will be fully transportable.

35: Compute File Size

Returns true file size. Since gaps are not permitted in a
random access fil~ under PC-DOS, "virtual size" is always
the physical size of the file. HEADER is subtracted from
the physical size of a .COM file, giving the size of the Z-
89 code only. This will be accurate for operations
conducted on Baby Blue or on another CP/M system, since
HEADER will not appear in memory in either case. If it is
desired to return the size of a .COM file including HEADER,
the directory image returned to the DMA address by function
calls 17 and 18 will contain this information in the record
count.

36: !!! Random Record

Direct translation to PC-DOS function call.

37:' ~ Drive

Ignored as irrelevant to PC-DOS.

38: Not used

39: !2! used

40: Write Random With ~ Fill

Translated to Function 34: Write Random. (This function
refers to physical properties of a CP/M diskette not
duplicated under PC-DOS)

4-20

REF/TRANSLATOR

4.44 CP/M BIOS CALLS

HEADER maintains a CP/M BIOS jump t~ble starting at FF~0H in Baby
Blut!'s memory, with the stand;,lrd point.?r at 0000H. Except for
disk-bas(~d routines, most (;alls pass to their BOOS counterparts,
which in turn c.'lll th<:?ir ciirect equivalents in PC-DOS. Because
cp/r-1 and PC-DOS locate physical disk sectors very differently,
disk-based c311s undargo .3 Inore complicated translation.

4.441 Logical to Physical Sector Mapping

All disk I/O is based on a conversion of CP/M Track/Sector
pardmeters to corresponding PC-DOS logical sectors, assuming an
ideal "CP/M" diskette of thirty-two 128-byte sectors per track.
This ideal format is automatically mapped onto a real PC-DOS 5"
diskette of eight 512-byte sectors per track, through the
following algorithm:

Logical PC-DOS Sector (32 * T + S - 1) / SCALE

Where:

T "Track number"

S "Segment number"

and SCALE is computed automatically upon disk selection, as:

real physical sector size in bytes / 128

The algorithm assumes 4096 bytes per track, with a limit of 1~24
bytes per sector. It will find the specified sector on any disk
conform i ng to these parameter Si SCALE automa t ica lly accomoda tes
different sector sizes. There is no range check on sector
number, but it must be in the range 1 to 255. The first segment
on the disk is Track ~, Sector 1, which becomes PC-DOS Logical
Sector 9 - therefore, the physical sector always equals the
logical sector plus one.

Remainders are truncated, guaranteeing that the logical sector
will always contain the expected 128-byte sector. This is
because remainders are only produced when physical sector size is
larger than 128 bytes, in direct proportion to SCALE - some
remainder "n" is really a pointer to the nth 128-byte block
within the physical sector. The physical sector is read into a lK
buffer maintained in HEADER, and deblocked into 128-byte segments
for loading at the DMA address.

4-21

REF/TRANSLATOR

You can also read a non-conforming format if its parameters are
known, and sector size does not exceed 1924, but you must first
transpose the target track and sector number into the "ideal"
equivalents expected by HEADER. Find the target sector as the
"Nth" physical sector, counting from the beginning of the disk:

NthSectphys = (SPT * Tphys) + Sphys

Where:

SPT = Physical Sectors per Track on the target disk.

Tphys = Physical (literal) track number.

Sphys = Physical (literal) sector number.

Multiply this number by SCALE, converting it to the nth l28-byte
block (NthSect l28):

NthSect128 = SCALE * NthSectphys

Now~divide by 32. The quotient is the desired track number (T),
and' the remainder is the segment (S). The combined formula
reads:

T + S = SCALE * (S PT * T phys + Sphys) / 32

Passing these calculated values to SETTRK and SETSEC will yield
the desired physical sector.

For example, given an 8" single-sided, single-density diskette
of twenty-six l28-byte sectors per track, SCALE = 1. Therefore,
physical [Track 10, Sector 5) yields:

(26 * HJ) + 5 / 32 = 265/32 = 8 + 8

Or [Track 8, Sector 8). [Track 7, Sector 40) is also valid,
since there is no range check, but not [TraCK 0, Sector 265J,
because the highest allowable sector number is 255.

4-22

REF/TRANSLATOR

4.442 SIOS Entry Points

The standard BIOS entry points are listeJ below in addr~ss order.
All BIOS calls follow standard CP/M procedure, except as
indicated.

FF00H: COLD BOOT

Not supported - initialization is controlled by HEADER under
PC-~OS.

FF93H: WARM !!QQ!

Invokes BOOS call 0, System Reset.

FF06H: CONST

Invokes BOOS call 11, Get Console Status.

FF09H: £.Q!'!!.!

Invokes BOOS call 6, Direct Console I/O (input).

FFIrJCH: CONOUT

Invokes BOOS call 2, Console Output.

FFIrJFH: LIST

Invokes BOOS CallS, List Output.

FF1~H: PUNCH

Invokes BOOS Call 4, Punch Output.

FFl5H: READER

Invokes BOOS Call 3, Reader Input.

FFl8H: ~

Not supported.

4-23

REF/TRANSLATOR

FFIBH: SELDSK

Calculates SCALE. The disk parameters are always based on an
ideal 49-track diskette, with 32 128-bite sectors per
track.

FFlEH: SETTRK
FF2lH: SETSEC

Literal physical track and sector numbers are valid for any
disk of 4996 bytes per track, and no more than 1924 bytes
per sector. Other formats are accessible with translated
parameters, as described above. The first physical sector on
each track is number 9lH.

FF24H: SETDMA

The initial address is the expected 89H. This call invokes
. BOOS Call 26, which means that either call alters the ad
dress set by the other. The usual 128-byte allocation is
sufficient, regardless of physical sector size - the physi
cal sector is stored and deblocked from a 1924-byte buffer
maintained in HEADER.

FF27H: READ
FF'2AH: WRITE

Data is buffered and blocked/deblocked as described above,
under SETDMA.

FF39H: SECTRAN

The physical sector always equals the logical sector plus
one.

FF2DH: LISTST

Al ways retur ns "ready" (FFH inA).

4-24

REF/EXBDOS

4.5 EXTENDED BOOS FUNCTION CALLS

4.51 DESCRIPTION

Microlog has created a set of new CP/M-80 style function cal13
for use on Baby Blue. They are:

Number

247

248

249
250

251
252

253

254
255

4.52 PURPOSE

Function

Chain

8088 Software Interrupt

System Memory Block Move Down
System Memory Block Move Up

Peek Host Memory Byte
Poke Host Memory Byte

8088 BIOS Call (Subset of • 248)

Output to Host I/O Port
Input from Host I/O Port

The extended BOOS function calls are provided to support true
user-designed applications using Microlog's Co-processor boards.
By means of these functions a CP/M-80 program can gain access to
the host system at the following levels:

-8088 software interrupt

-Host memory (block moves and individual locations)

-Direct I/O through host ports

4.53 OPERATIOH

All extended function calls parallel standard CP/M-80 usage.

4-25

REP/EXBDOS

4.531 Call 247: Chain

Entry Parameters

Register C: F7H
Register DE:
Register B:

Starting Address of ASCII Command String
Length of Command String

Return:

Exits the current program, then invokes the indicated
command file.

The Command String may contain the name of any PC-DOS COM, EXE or
BAT file, including any passed parameters (DOS resident commands
are invalid); it must terminate with 9DH «CTRL M>, or (CR». No
provision is made for reentry to the calling program.

4.532 Call 24S: S8SS Software Interrupt

Entry Parameters:

Register C: FSH
Register HL: Address of pseudo 8988 Interrupt/Register

Table

R~turn:

Executes specified interrupt
Updates 8988 Register Table at address specified by [HL]

Emulates an 8988 "INT" instruction. The HL register pair points
in Baby Blue's memory to the starting address of a table
representing the 8988 registers, as follows:

Byte .:

8988 Interrupt/Register Table

Interrupt
Number

99

Registers
AX BX CX OX BP SI 01 OS ES
91 i3 95 97 i9 IT IT IS IT

Flag Byte 'l~:

Flag:
Bit t:

SF ZF -- AF -- PF -- CF
7654321'0

Flags
19

The parameters become active as the specified interrupt is
executed. Upon completion, the contents of the 8988 re~isters are
returned to the tabla.

4-26

REF/EXBDOS

4.533 Call 249: System Memory Block Move Down

Entry Par3met~(s:

Register C: F9
Registers HL: 3lock Move Table AdJ(~ss

R~turn:

Executes block move down in system memory (64K max.)

Upon entry, the HL re~ister pair points to d 10 byte table in
Baby Blue's memory, organized as follows:

Byte #:

Where:

Source
Offset

00

Source
Segment

02

Destination
Offset

04

Destination
Segment

06

alock
Size

08

Block Size - total number of bytes to transfer (up to FF Hex
---orG4K).

Source Offset - l6-bit location of first byte in the block
you are moving.

Source Segment - Present memory segment containing the block
to be moved. Note that this could be Baby Blue's
memory.

Destination Offset - 16-bit location to fill with first byte
of the block.

Destination Segment - Memory segment to which block is to be
moved. Note that this can be anywhere in system
memory, including Baby Blue.

This function parallels the Z-80 LDDR block move instruction, or
the 8088 REPZ MOVSB with the STD instruction, i.e., it moves the
block by starting with the lowest byte and incrementing. You can
move data to or from any area of system memory, including on or
off Baby Bl ue.

4-27

REP/EXBDOS

4.534 Call 251: System Memory Block Move Up

Entry Parameters:

Register C: FAH
Registers HL: Block Move Table Address

Return:

Executes block move up in system memory (64K max.)

Identical in all respects to Call 249, except that it emulates
the Z-81 LOIR instruction, or the 8188 REPZ MOVSB with CLO, i.e.,
it moves the block starting with the last location and
decrementing.

4.535 Call 251: Peek System Memory Byte

Entry parameters:

Register C:
Registers DE:
Registers HL:

Return:

FBH
Offset number
Segment number

Register A: Contents of Byte

Re'ads a byte from the location specified in [DE] and [HL].
Enables a Z-81 program to read from any location in the 8988's
address space, including Baby Blue's memory.

4.536 Call 252: Poke System Memory Byte

Entry parameters:

Register C:
Register B:
Registers DE:
Registers HL:

Return:

FCH
Contents of Byte
Offset number
Segment number

Writes contents of byte to specified location in system
memory.

The contents of (b) wilt be written to the location specified in
[U E) and [H f ..] • En a ole s a Z - 8 I pro 3 ram tow r i t e to any 1 0 cat ion
in the 8088's addr~ss space.

4-28

REF/EXBDOS

4.537 Call 253: 8988 BIOS Call

Entry ~ar~m~t2rs:

Reqister C: F~)ii

R~gister!; HL: 8~88 Interrupt/Re9ister Table Address

Return:

Execut2s specified interrupt.
Updates 8~B8 Interrupt/Register Table at specified address.

This function is included for compatibility with e~rlier versions
of HEADER, and is a subset of Call 248. Its action is identical
in every respect except that it passes only the first four regi
sters (AX, ax, CX, DX), and the effective table is only nine
bytes long.

4.538 Call 254: Output to Host I/O Port

~ntry Parameters:

Register C: FEH
Register E: 8-bit output value
Registers HL: Host system port number

Since the Baby Blue has no ports of its own, all I/O must pass
through the 8088. This function enables a Z-80 program to output
values directly to a port (under the control, of course, of the
8088) - use this function instead of an OUT instruction.

4.539 Call 255: Input from Host I/O Port

Entry Parameters:

Register C: FFH
Registers HL: Host system port number.

Return:

Register A: 8-bit input value.

Complements Call 254, enabling the Z-80 to input values directly
from an 8088-controlled port.

4-29

REF/HARDFUN

4.6 HARDWARE FUNCTIONS

4.61 Z-81 PORT ADDRESS DECODING

The assignment of address lines to the Z-80 1 s I/O port is
given in Table 4-8 ("Blue DIP Switch Decoding"). Note that the
memory page (segment) address lines map onto the low-order bits
of the port address by sharing the same switches for signal
decoding. This means that the port address could vary from
0300H to 031CH, depending on the base address of Baby Bluels
memory (Table 4-9).

In a single Baby Blue system, port address and segment
decoding could be separate, but tying them together offers the
possibility of running more than one in parallel - mapping the
onboard memory into different pages will automatically define
separate port addresses, without special accomodations from the
host control program. HEADER in fact uses this facility when it
polls memory to locate the Baby Blue - once the memory
segment is located, the port address is automatically known.

Note that here, OFF = 1 = High, and ON = 0 = Low. Numbers in
110

11 brackets are set for compatibility with HEADER, but cou14
be set differently to interface a different control program.
Since A8 and A9 are hard-wired high (11111), the high-order nibble
of the port address is always 3H. A0 is tied Low ("~II), so all
addresses are given as even, even though the low order bit is
re~lly a IIdon't care ll

•

4.6~ Z-81 CORTROL LIRES

Z-89 control lines available to the 8088 programmer are:

NMI (Non-Maskab1e Interru'pt: Jump to Location 66H)

In HEADER this interrupt is serviced by a routine which
emulates a Z-89 system reset.

INT (Interrupt)

HALT

A special, discretei y configured control line which
presents a hard-wired HALT instruction (76H) to the Z-
80 data bus, bypassing RAM. Following activation of
this line, the HALT instruction waits to appear on the
data bus for the next instruction fetch, permitting the
orderly completion of the current machine cycle.

When the Z-80 is in a HALT state, it executes No-ops,
which are essentially bare memory refresh cycles. A
HALTed Z-80 recognizes only an NMI or an INT (with :nask
enabled), so one of these must be used to resume
processing.

4-30

REF/HARDFUN

RESET is activated only by a power-up syste~ reset, dnd is not
available to the programmer - use NMI with a z-8ra service routine
at 66H to emulate any desired RESET functions.

Control lines are accessed through the Z-80's I/O port address of
as follows:

(0) 93XXH [Cont~ol Data Byte)

Where:

(0) OUT Instruction

03XXH Port address in hexadecimal, where XX are
determined by DIP switch settings on the Baby Blue (See
Table 4-9: "Baby Blue DIP Switch Decoding").

[Control Data Byte) = information transmitted to the port to
select the available control lines. Only bits 0, 2 and
3 of this byte are significant: the rest are "don't
cares" ("X"). It maps onto the control lines as
follows:

Table 4-7: Z-8& Functions Control Byte

Data Lines

NMI INT X HALT
Functions 03 02 01 00 Decimal

HALT Z-80: 0 ra x ra 13

RUN (all off) : 9 0 x 1 1

INTERRUPT: 9 1 x 1 5

JUMP to Loc. 66H: 1 9 x 1 9

All control lines latch and so must be cancelled explicitly.
For example, the "JUMP to Location 66H" cancels HALT with a "1"
on 00 so that NMI will execute, but NMI must in turn be be
cancelled by a "RUN" instruction (9 on 03) for the service
routine to begin - otherwise the Z-80 will continuously execute
an NMI.

4-31

REP/HARDPUN

Table 4-8: Address Decoding

PORT
NUMBER

(HEX)

PORT
ADDRESS

LINES

All

AIO
3

A9

AS

A7

A6
X

AS
(0 ·OR 1)

A4

A3

A2
X

Al
(2 THRU C)

A"

4.63 MEMORY ARBITRATION

DIP
SWITCH

.. HIGH

HIGH

SWI

SW2

SW3

SW4

SWS

SW6

SW7

LOW

SETTING
(BINARY
VALUE)

X

X

(1)

(1)

ON U}

ON {O}

ON U}

?

?

?

?

XX

SEGMENT
ADDRESS

LINES

MEMORY
SEGMENT
(PAGE)

AI9

A18

AI7

Al6

THRU

E

Memory access is as straightforward as writing or reading a
location within Baby Blue's memory segment. Since the Z-SO
handles refresh, handshaking is constant, but it is automatically
controlled by the board's hardware.

The 8088 has priority access to Baby Blue's onboard memory. A
validly decoded address, combined with an active /MEMR or /MEMW,
presents an active /BUSREQ to the Z-B9. The z-B9 must respond by
relinquishing the bus, but first completes its current machine
cycle. The 89BB waits, responding to an active signal on its I/O
CHANNEL READY line. An active /BUSACK indicates that the Z-B9
has relinquished the bus, and lifts I/O CHANNEL READY, permitting
the 89B8 to complete its cycle. Now /BUSREQ goes high, starting
the Z-B9 and insuring that each memory access by the 89B8 is
followed by at least one Z-B9 cycle, to maintain refresh.

4-32

REF/HARDFUN

Table 4-9: Segment and Port Assignments

Switch Setting Memory Address z-80 Port
~L~._7_8 _____ ~ment ____ Rang~ ___ ~dress_

[] [] [] [] [] [J [J ON 1 1000~-lFFFF 302
[j T

[] [J [-:-j ':'""":[J--:-[~l --;[-;.-) [) ON 2 20000-2T:'FFF 304
____ ..:....;[)'-- T

[J [] [J [1 [J [j ON 3 30000-3FFFF 306
[] [] T

[] [) [] [] [] [] (ION 4 40000-4FFFF 308
[] T

[] [] [] [J [] [) ON 5 5£HHHl-5FFFF 30A
[] [] T

[) [] [] [] [] IT ON 6 6000~-6FFFF 30C
[) [) T

[) [) [] [) [] ON 7 70000-7FFFF 30E
(] [) [) T

[) [] [) [] [] [] [) ON 8 80000-8FFFF 310
[) T

[] [] [J [) [] [] ON 9 90000-9FFFF 312
[] [] T

[] [] [1 [] [] [) ON A* A00fHJ-AFFFF 314
[1 [] T

[] [] (] [1 l1 ON B* B0ItHJ0-BFFFF 316
[1 [1 [1 T

[] [1 [) [1 [1 [] ON C* C0000-CFFFF 318
[) [) T

[) [1 [] [] [] ON D* D0000-0FFFF 31A
[] (] (] T

[] [) [] (1 [] ON E* E0000-EFFFF 31C
[] [] [] T

[] [) [] [] ON F* F0000-FFFFF 31E
[] [) [] [] T

* One or more Pages in the range A through F are reserved by
all machines.

4-33

BIND

A. THE BABY BLUE UTILITIES

A.I BIND: THE CP/M-aS PROGRAM IN PC-DOS FORMAT

BIND dttaches HEAUER to 2P/M-80 programs which are on PC-DOS
diskettes, as opposed to CONVERT, which does the same thing to
programs on CP/M diskettes. Use BIND when:

- as recommended, you purchdse CP/M software published on PC
DOS diskettes, though not yet bound with HEADER.

- you transfer software from a CP/M system by some means which
does not directly involve the Co-Processor, e.g. a PC-DOS
communications program or the Microlog 8" Disk Controller.
(Programs running on the Co-Processor will automatically
BIND HEADER to any COM files they write on a PC-DOS disk).

- you update your files with a new version of HEADER.

PROCEDURE

Both BIND.COM and HEADER must be on the same disk in the default,
or logged-in drive. Type:

c:BIND s:filename.COM d: <CR)

BIND first checks for the presence of HEADER in the target file.
If the file contains some version of HEADER, it will be replaced
with the version currently on your disk. If source and destina
tion are on the same drive, the old filename.COM will be over
w r itt en. T his ish 0 w BIN Dis use d to u pd ate apr 0 g ram wit han e w
version of HEADER.

Iff i lename.COM does not conta i n HEADER, Bam will respond with
the warning:

This -.COM- file may be an asaa file -
if you still wish to bind it,
rename it with ex tens i on - .CPM-

If you attach HEADER to a native PC-DOS program, the program
will no longer run - BIND is making sure that won't happen. If
you know you've got a CP/M file, type:

RENAME s:filename.COM filename.CPM <CR>

A-I

BIND

Then:

c:BIND s:filename.CPM d: <CR>

This will unconditionally attach HEADER to filename.CPM,
producing the larger filename.COM. The size of the two files will
differ by exactly the length of HEADER.

You may of course rename your file to the CPM extension before
running BIND the first time, but be careful: if the file already
contains HEADER, it will now be "double-bound", containing two
HEADERs, and it won't run. It's safest to probe for the presence
of HEADER by attempting to BIND your COM file first, before you
RENAME it to CPM.

B I NO does not accept globa 1 , or "w i ldca rd" filenames, fo r
example:

BIND *.CPM

will not match a series of files; instead, it will look for a
single file literally named "*.CPM". Since you only BIND each
COM file once, the absence of globals shouldn't be a serious
handicap.

A-2

CONVERT

A.2 CONVERT: ACCESS TO CP/M DISKETTES

Use CONVERT to:

- Move files in either dlrection between PC-DOS dnd CP/M.

To transfer a file, you must have two diskettes, one
formatted for PC-DOS (double or sin'3le slded), th~
other for CP/M (single sided only).

- Inspect the directory of a CP/M diskette.

Don't use CONVERT to attach HEADER to a file which is already on
a ~C-D05 formatted diskette - use BIND instead. Convert requires
two disk drives to operate; at least one must be a 5-inch floppy
disk drive.

Type:

Response:

PROCEDURE

c:CONVERT s:filename

CP/M IBM File Transfer Utility
Version 2.1 (c) 1982, Microlog Inc.

IBM Disk: __

Type the one-letter name of the drive which contains your PC-DOS
formatted diskette - no <CR) is necessary. Notice that CONVERT
immediately posts your response at the top of the screen. It
will continue to do this with each parameter (selection) you
supply, forming a "status line" for easy reference. The next
prompt is:

CP/M Disk: __

Type the name of the drive containing your CP/M diskette.

Response:

AVAILABLE FORMATS:

1. NBC pc-alll
2. IMS 5111
3. DBC VT-laX
4. Heath/Zenith Soft Sectored
5. CP/M-a6 on the IBM PC

SELECT FORMAT:

A-3

CONVERT

Select from this list the format that matches your CP/M diskette,
and type the appropriate number, 1 through 5. Now the Functions
Menu appears:

1. Copy from CP/M to IBM
2. Copy from IBM to CP/M
3. Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Exit program

ENTER SELECTION:

Type a number from 1 to 6 - the entire menu remains on the
screen, but the other functions fade to half-intensity,
highlighting your choice. Your function remains highlighted until
execution is completed.

FUNCTIONS

1 •. £.22:£ from CP/M to IBM

Type "1" to bring a file into PC-DOS from CP/M. Your screen looks
like this:

IBM Disk: d: CPM Disk: s: CPM format type: formattype

1. Copy from CP/M to IBM
2. Copy from IBM to CP/M
3. Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Exit program

ENTER FILE NAME «return> to exit copy) :

You now type:

filespec <CR>

Which is soon replaced by:

COPYING FILE s:filename.ext

You may use global parameters in place of filenames and exten
sions (e.g. *.ext , or *.*).

When the copy is finished, CONVERT says:

ENTER FILE NAME «return» to exit)

Ent~r anoth~r filename, or type <CR>, returning to the Functions
Menu.

A-4

CONVERT

Identi.;al to the procedure for Functi,)n 1, except of course that
now th~ ~ourCi~ is a PC-DOS formatted diskett.:?, and the destina
tion is a CP/M diskette.

3. Pr!.nt Directory of IBM Q.isk

This function displays the directory of the disk listed as "ISM
disk" ~t th: top of your screen, so you don't have to e;.cit
CONVERT to find out which files you've got. If you've got the
wrong type of disk in there, you'll get an error.,The directory
appears at the bottom of the screen and remains there for
ref~rence after control returns to the Function Menu.

4. Print Directory of CP/M Disk

Similar to Function 3, except that you get the directory of the
disk listed as the "CP/M disk". This is the only way to read the
directory of a CP/M diskette under PC-DOS.

5. Change Parameters

When you want to change an entry in the onscreen status line,
this function allows you to quickly restart CONVERT from the top,
without exiting to system level.

You type "5", the screen clears, and CONVERT begins again with
the prompt:

IBM Disk: __

6. Exit Program

The screen clears, and the system prompt appears, returning you
to PC-DOS command level.

A-S

KEYFIX

A.3 KEYFIX: AUTOMATING YOUR KEYBOARD

KEYFIX allows you to program more than fifty "definable" function
keys to output any character string (sequence of keystrokes), up
to 89 characters long. Because the function key definitions
reside in HEADER, KEYFIX can only be used with CP/M programs
running on Baby Blue.

PROCEDURE

Type:

c:KEYFIX s:filename <CR>

Response:

ENTER THE KEY YOU WISH TO DEFINE, <a>-TO EXIT

Press a "definable" key, as explained below. The screen clears,
and you see this:

KEY SELECTED: [FUNKEY]

CORRENTLY DEFINED AS:

[current designation]

TO DEFINE A KEY HIT <RETURN) TO LEAVE THE KEY UNCHANGED
HIT ANY OTHER KEY.

pres~ "Return" «CR». All information currently on the screen
remains there, and in addition,

Now type:

To define a key, enter a string of characters. Define
able keys may not be used. They will be ignored.
Control characters are okay. The maximum length of one
entry is 88. Any characters exceeding this size or the

total table size will be truncated.

TO END THE STRING, ENTER THE KEY YOU ARE DEFINING.

(character string] <FUNKEY>

A-6

KEYFIX

The symbol "(FUNKEY)" means "press the key you tire currently
defining" - that's how KEYFIX knows you're done. Why not <CR>?
Because you might use that as part of your definition - if you
do, it will display as "AM".

The screen clears, and you're back at the top, ready to start on
another key. This is the £~ way to exit once you begin to
define a key: whatever you see at the bottom of your screen is
stored literally as the key definition. If there is nothing at
the bottom of your screen, your key will be stored as a "null",
meaning that when you press it during program execution, nothing
at all will happen.

Restarting KEYFIX

You can always get back to top of KEYFIX by pressing the
currently selected key, but remember that once you have
started to define a key, the bottom of your screen will be
stored as the new key definition, even if there is nothing
there.

To Inspect the Definition of ~ ~

Press the key to display its current status; press the key
again, and you're back at the top of KEYFIX.

To Finalize Your Entries

When you've finished setting up your keys, type "0" ("Ouit")
at the top of KEYFIX, to return to PC-DOS. Always exit in
this way if you want to save your entries - KEYFIX will
write them all to disk, in the HEADER attached to the target
program. Now, whenever you call that program, your keys will
work as you have programmed them.

To Clear ~ Function Key

You may want to erase the definition of a function key
simply to disable it, but the main reason is to clear table
space for long entries to other keys, as explained below.

Go to the initial prompt, and press the key. Now press
"Retrn"; at this point, your cursor is standing on an empty
line at the bottom of the screen. Immediately press the
selected key again, entering a "null", or inactive, string
for the selected key.

A-7

ItBYPIX

Correcting Errors

There is no practical way to correct an error, except to
start again. Press the selected key twice, then press
"Re trn", to sta rt over.

Duplicate Definitions

To KEYFIX the same definitions to a number of programs,
rename HEADER to HEADER.COM - now you can KEYFIX HEADER
itself. Then chaqge the name back to HEADER, and BIND it to
your programs.

Sorry, you can't run KEYFIX on KEYFIX itself - it's not a
CP/M-S9 program.

Def.inable Keys

YOU can define a total of 56 different function keys,
divided into four registers. The unshifted, or "normal"
register consists of:

19 Function Keys: (Fl>-(F19>.
4 Arrow Keys: (Up>, (Down>, (Left>, <Right>.
6 Others:(Home>, (End>, (Pg Up>, (Pg On>,

(Delete>, (Insert>.
29 Total

To select an unshifted key, type:

(Function key>

For example,

(Fl>

displays:

KBY SELECTED: FUNCTION 1

The "control" register consists of:

19 Function Keys <Fl> - (Fl9>
2 Arrow Keys: (Left>, <Right>
!_Q.~hers:~~~~~~~!!d>.L_~~~pg On>
16 Total

A-S

KEYFIX

To select one of the 16 keys in the "control" register,
press <CTRL) and the function key simultaneously. For example:

<CTRL HOME>

displays:

KEY SELECTED: CTRL HOME

The "Shift" and "Alternate" registers each contain 10 keys:

For example,

<SHIFT FI> (or <ALT FI»

displays:

KEY SELECTED: SHIFT FI (or ALT FI)

Default Definitions

HEADER comeS with all function keys predefined as shown in
Table 4-5. The peculiar symbols beginning with "-@" are
sequences expected by the PC-DOS line editor: you use this
facility, for example, every time you delete a character
while typing a DOS command. If you redefine these keys, you
will disable the corresponding DOS line-edit function during
execution of your KEYFIXED program. This will only be a
problem in the rare case where a program does not have its
own line-edit functions.

Allowable Strings

You may enter any character as part of the definition for a
function key, except that nothing will happen if you try to
enter one of the definable keys. This means that one
function key cannot call another, nor can a function key
call itself.

The so-called "parallel functions" - ALT, SHIFT and CTRL -
are always used as part of a two-keystroke combination. If
you type <CTRL> nothing happens; however, if you hold <CTRL)
down and type another character, for example "C", you get
this on your screen:

A-9

ICEYFIX

Your system uses a caret ("A") to represent the "hidden"
<CTRL> keystroke - doni t confuse it with the "real" caret,
or <Shift 6> on your keyboard. Your system interprets this
"-C" not as two characters, but as one: the normally non
printing command sequence <CTRL C>.

If you type:

<SHIFT 6><C>

You'll also see:

but this is interpreted, and normally printed (or displayed)
as the two characters "A", and "C".

Some keys, such as <Tab> and <Retrn> will post peculiar
control codes on the screen as you define a function, but
don't worry - during program execution your system will
properly interpret these as commands, and will not print or
display unintended characters.

Space Limitations:

The longest definition you can enter is 80 characters - if
you enter too many, the following message appears at the
bottom of your screen:

ERROR: NO SPACE AVAILABLE

However, there is also a hidden limitation: your total
entries, for all functions, cannot exceed the size of the
"table" which has been reserved for them. There are actual
ly t'wo tables, each of 256 characters, divided between the
possible function keys as follows:

Table 1 256 Characters Total

10 Normal Functions: <Fl> - <F10>
10 Shift Functions: <SHIFT Fl - <SHIFT FIB>
20 Keys Total _. _____ _

Average 12.8 Characters per Function.

A-I"

KEYFIX

Table 2 256 Characters Total

10 ALT Functions:?l - F10
10 CTRL Functions: FI - F10
6 Cursor Controls: <UP>,<OOWN>,<RIGHT>,<LEFT>,

<CTRL RIGHT>,<CTRL LEFT>
10 Other Functions: <rIOME>,<END>,<PG UP>,<PG ON>,

<INS>,<CTRL HOME>,<CTRL END>,
<DEL),<CTRL PG UP~,<C~RL PG ON)

36 Functions Total

Average 7.1 Characters per Function.

If you have some really long strings, you may want to use
the functions of Table 1, in order to save space in Table 2.
In most applications, the Arrow and Other functions tend to
be short strings, and it is quite natural to save elaborate
instructions for the Normal keys Fl - F10.

HEADER's original default definitions occupy most of the
table space already - this is why you may suddenly receive a
"No Space Available" error after only a moderately long
string. To get more space, clear some functions you aren't
using by redefining them as nulls.

EXAMPLE

The following exercise programs a hypothetical text editor named
TEDIT.COM to output a name and address at the touch of function
key Flo

Run KEYFIX on TEDIT:

KEYFIX TEDIT <CR)

Select Fl:

<Fl>

Elect to define Fl:

<CR)

Enter key definition:

Ethel and Rupert Snoot~M35 Tar-Boosh Ln.AHHog-Jaw, N.D.<Fl>

Exit KEYFIX:

A-II

KEYFIX

Exit KEYFIX:

o
The symbol "AM" appeared each time you pressed (Retrn> while
entering the key definition itself. It represents (CTRL-M>, which
is properly interpreted as a carriage return by the computer.

Now, whenever you press
following text appears:

(Fl> during a TEDIT session, the

Ethel and Rupert Snoot
35 Tar-Boosb Ln.
Hog-Jaw, N.D.

This occupies 53 of the 256 characters available in Table 1.
Note that all symbols count, including "AM" (1 character) and
spaces.

Don't limit yourself to simple text entry - you can KEYFIX
anything you can type, especially command sequences which can
turn a sound but awkward program into a high-performance vehicle.
Any often-repeated complex series of keystrokes is a candidate
for ~ function key "mini-program" - a complicated graphic figure
for example, or a text editing sequence. With eighty characters
at your disposal, you can achieve spectacular results.

Many powerful software packages are so complicated that you end
up~seldom using many functions simply because it's too much
trouble to remember all the codes. A logically arranged KEYFIX is
often the answer - you'll find that the function keys fall natu
rally into groups for easy reference.

A-12

TESTZS9

A.4 DIAGNOSTICS: TESTZ89

TESTZ8~ is a diagnostic program which tests all hardware
.functions on the Baby Blue board, including memory. Use it any
time you suspect a physical malfunction on the board. It is
included so that you can distinguish Baby Blue related problems
from faults in other parts of your system, lncluding possible
problems with software.

PROCEDURE

Type:

TESTZ8fiJ <CR>

System Response:

Z8fiJ CO-PROCESSOR CONFIDENCE TEST VERSION 1.92
COPYRIGHT(C), 1983, MICROLOG, INC.

1 BABY BLUE LOCATOR PASSED
2 INTERRUPT TEST 66 PASSED
3 8fiJS8 MEMORY TEST PASSED
4 8fiJ88 ADDRESS LINES PASSED
5 INTERRUPT TEST 38 PASSED
6 Z81 ADDRESS LINES PASSED

** TESTING SUCCESFULLY COMPLETED **

If you see this, you know the problem is definitely elsewhere,
either somewhere else in your system, or in software. If your
board fails TESTZS0, or you suspect a hardware fault in your
system, continue reading through "Troubleshooting", below.

TROUBLESHOOTING

You're here because your system fa i led to behave norma lly af ter
you installed Baby Blue, or because TESTZ80 returned an error.
At worst, you may have to return your board to Microlog for
service, but that's going to take some time, so you're hoping to
find another answer. Our experience indicates that very few
boards actually fail after factory testing, and that apparent
faults are usually due to some factor overlooked during the
installation. Most boards received by our service department turn
out to be in perfect working order.

Here are some common faults:

- At boot-time, an error message appears at the top of your
screen (e.g. "l0AA 201", Parity 2).

A-13

TESTZ89

- Your machine won't boot at all. Either you don't get a
cursor, or you only get a cursor, or the system locks up as
the titles come on.

- You get erratic operation, often associated with a
particular utility or peripheral device.

- TESTZ89 returns various errors.

All of these appear to be "hard" errors, indicating defective
hardware. Since Baby Blue is the only new factor, it is natural
to assume that the board is defective. However, as explained in
Section 2.2, problems may arise from conflicts between elements
in your system, where neither part is in itself at fault. Such
conflicts can be resolved, but it's important to know first where
the fault lies.

Use the following procedure to isolate the problem. Remember,
before you touch any boards, be ~ that ~ turn E.£~~ OFF,
and disconnect the power cable from your System Unit.

First, remove Baby Blue, and turn all the DIP switches on and off
two or three times; then reset them as recommended and try rein
stalling the board. DIP switches are Baby Blue's only mechanical
component, and they sometimes get "tired" - exercising them is
often a quick fix. Make sure they're really set - push hard.

T~e next step is to isolate Baby Blue - you don't know the board
is ~efective unless you have removed all other factors which
might affect it. This means removing as many other boards as
possible, stripping your computer down to bare essentials.
Obviously, you wouldn't remove your video interface or disk drive
controller, since without them your computer won't run anyway,
but any extra memory boards or peripheral device interfaces
should come out. Also, your boot disk should contain a plain
vanilla operating system - if you've made any software installa
tions to your working copy of DOS, make a new copy of your
original operating system for testing purposes.

Before you start pulling boards, make some notes, if you haven't
done so already. Don't change anything you can't undo, and make
sure you've recorded the settings of any switches you can see.
On most machines, you'll have to change the switches on the
motherboard after removing any memory boards. When you're done,
you should have returned your machine to its original factory
configuration.

Make sure the machine works normally in every way, then instdll
Baby Blue, using the factory switch settings shown in Section
2.11. Don't do any customizing at this point - we're trying to
find out whether the board is OK, so keep it simple. You now
have a complete isolation test - the only change to your working
machine is plugging in Baby Blue - you haven't even changed a
switch position.

A-14

TESTZ80

If the board doesn't work now, try a different expansion slot -
you'd be surprised how often this works, ~ven thou~h all slots
are theoretically th~ sam~. ~he manufdcture('~ documentation
won't mention it, but ~any m~chines have shown problems with the
physical distribution of signals on the expdn:3ion bus. The same
principle applies if you have an expansion chassis, only mor? SOi

try your putting your board in the System Unit, or vice-vers~. IE
the board still doesn't work, it's tim~ to turn to the Warranty
section and get some help.

If your board works now, you can start reinstalling your various
options until you find the one that doesn't like Baby Blue. When
you find the problem, Section 2.2 ~ay give you some idea of
what's causing it. The way to fix a conflict with another board
is to change the Page assignment of one or both boards - this
will remove possible overlaps in th~ memory map.

Changing Baby Blue's memory Page also changes its "port address",
which is a separate addressing scheme used by your system to
locate peripheral devices such as printers and disk drives. This
means that you can also resolve conflicts involving non-memory
boards, simply by changing Baby Blue's Page assignment.

Contact your dealer for any problem you can't fix - he is in the
best position to help, since he is on the scene and can directly
observe the symptoms. If you can't get satisfaction locally,
contact Microlog at:

Technical Support
Microlog Inc.
222 Route S9

Suffern, NY 10901
914-368-'BS3

When reporting any problem, be sure you include the following
information:

-Serial number, dealer's name, and date of purchase.
-System configuration, as outlined in Section 2.26.
-A short history of your attempts to fix the problem,

including contacts with your dealer.

A-1S

'l'ESTZ81

HOTES:

A-16

APPNOTES

B. APPLICATIONS NOTES

B.l EMULATING THE "SAVE" FUNCTION: DEBUG.DDT

Although DDT and si~ilar utilities work on Baby Blue, they're not
vldry useful if you can't write the results of your work to disk.
Normally, you would use the CP/M resident SAVE command, but this
command is not available under PC-DOS. A neat sol~tion is to run
DDT under the control of DEBUG, using DEBUG's Write facility in
much the same way you would use SAVE. Note that unlike SAVE,
DEBUG makes it very easy to compute the file size to write,
becausld it's given simply as the number of bytes in hexadecimal.

The screen display is shown" in boldface~ comments follow the
semicolon.

A>DEBUG DDT.COM <CR) ~run DDT under DEBUG

-G <CR> istart DDT

* DDT STARTS HERE *

xxxxxxxxxxxxxxxx

-I (filespec] <CR)

-R <CR>

HEXT PC
nnnn pppp

-(do whatever you want]

DDT's signon message

specifies target file

DDT reads the file

DDT responds with the next free
address following the file, and the
assumed program counter (l~~H for .COM
files). You can use this information
to determine the size of the loaded
file.

modify target file under DDT.

IMPORTANT: before exiting DDT, find
out how many bytes you want to save,
and also the starting memory location
(usually 100H).

B-1

APPalOTES

-03 <CR>

-<CTRL-C>

displays contents of Baby Blue
location 9993H in first position.
Ordinarily, this would be the CP/M I/O
Byte, which is not implemented in
HEADER. Instead, the high-order nibble
contains the segment number occupied
by Baby Blue in the host's memory
(e.g, a Baby Blue with base address
E0000H will display "E9" with this
command). you'll need this information
to Write your file under DEBUG.

exits DDT, returns to DEBUG

program terminated normally; DDT signs off;

* DDT ENDS HERE *

-al<filespec> <eR>

-RC~ <eR>

-CXexxxx <eR>

-wseqment:offset <CR>

-Q <CR>

specifies DEBUG output file

calls ex register

enter number of bytes to save (HEX)

write output file to disk: enter Baby
Blue's segment, followed by colon,
followed by the starting address to
save within Baby Blue's memory
(usually the beginning of the program,
at l0"H).

exit DEBUG

B-2

WARRANTY

c. WARRANTY INFORMATION

DISCLAIMER

Microlog, Inc. makes no representations or ~arranties with
respect to the software programs included herein and specifically
oiscldims any implied warranties of merchantability or fitness
for a particular purpose. Furthermore, Microlog, Inc. reserves
the right to revise the software programs included herein and to
make changes from time to time in the content thereof. Microlog,
Inc. is not o~ligated to notify any person or organization of
such revision or change.

LIMITED WARRANTY

Microlog warrants the original user of this hardware product that
it is free from defects in materials and workmanship for a period
of ninety (90) days from the date of shipment from Microlog or
Dealer to the original end user. If any Microlog product becomes
defective within the first ninety (90) days from the date of
shipment, Microlog will replace or repair, at its sole option,
that unit which proves to be defective. This warranty is void
if, in the sole opinion of Microlog, the product has been subject
to abuse, misuse, or modification. All warranties are non
transferrable. This warranty is in lieu of any other warranty,
expressed or implied, and in any event, is limited to product
repair or replacement. Microlog shall not be liable for any
incidental or consequential damages of any kind resulting from
use of this product.

IF YOUR BOARD FAILS TO OPERATE.

Microlog rigorously tests every product to insure that our boards
will not fail in the field. However, even with this level of
testing, problems do occur. If your board requires repair,
please refer to the return procedure outlined below.

C-I

WARRANTY

RETURN POLICY

All defective products in question, whether purchased directly
from Microlog, or through an authorized dealer, must be returned
to Microlog for repair or replacement according to the conditions
set forth in the limited warranty.

Prior to returning any defective product for replacement or
repair, you must receive a RMA (Return Materials Authorization)
number from Microlog. When requesting an RMA number, please
provide the following information:

1. A brief description of the problem.

2.

3.

Serial number of the unit to be returned.

The name of the dealer from whom
purchased.

4. The date of purchase.

the unit was

Upon receipt of an RMA number from Microlog, pack the unit along
with a copy of your proof of purchase and sh ip it prepa id to
'Microlog. Items received without proof of purchase cannot be
s~rviced and will be returned at the sender's expense. The RMA
n~mber must be marked on the outside of the shipping container.

Repaired units, if still in warranty, will be shipped prepaid by
UPS surface. Customer requests for any method of shipment other
than UPS will be charged to the customer. All requests for
air freight will be shipped collect.

All products returned for repair or testing and found to be out
of warranty will be assessed a minimum $55.00 service charge. If
the charge for repair is to exceed $55.00, the customer will be
notified for authorization prior to Microlog's repair of the
unit. An RMA number is also required for out of warranty repair.

All prices are subject to change without notice.

Ship to:

Microlog Inc.
222 Route 59
Suffern, N.Y. 10901
(914) 368-0353

C-2

