
COD~VIE-W
AND
UTILITIES
SOFTWARE DEVELOPMENT TOOLS

FOR THE MS-DOS® OPERATING SYSTEM

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy for backup purposes. No
part of this manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording, for any
purpose other than the purchaser's personal use without the written permission of
Microsoft Corporation.

«:> Copyright Microsoft CorporationJ..,1987. All rights reserved.
Simultaneously published in the D.;:,. and Canada.

Microsoft® J MS-DOS®, MS® J XENlX®, and CodeView® are registered trademarks of Micro­
soft Corporation .

. AT&T® is a registered trademark of AT&T Information Systems.

Eagle® is a registered trademark of Eagle Computer, Inc.

IBM® is a registered trademark of International Business Machines Corporation.

Intel® is a registered trademark of Intel Corporation.

Lotus® is a registered trademark of Lotus Development Corporation.

Document No. 410840010-500-R02-0887
Part No. 016-014-042

~~O~F CONTENTS

,/

/
/

/
/

j

,,­
/

/

/lntroduction
Ne,Y Features
of the Code View Debugger xvii
About this ~nual .. xviii
Notational Conventions ... xx

Part 1 0 The Code View Debugger
1 Getting Started ... 5
1.1 Restrictions .. 7
1.2 Preparing Programs

for the Code Vie,Y Debugger 8
1.2.1 Programming Considerations 8
1.2.2 Code View Compile Options 9
1.2.3 Code View Link Options 10
1.2.4 Preparing CPrograms 11
1.2.5 Preparing FORTRAN Programs 13
1.2.6 Preparing BASIC Programs 14
1.2.7 Preparing Pascal Programs 15
1.2.8 Preparing Assembly Programs 17

1.3 Starting the Code View Debugger 20
1.4 Using Code View Options .. 23

1.4.1 Using Two Video Adapters 25
1.4.2 Using the Enhanced Graphics

Adapter's 43-Line Mode 26
1.4.3 Starting ·with a Black-and-

Wllite Display ... 26
1.4.4 Specifying Start-Up COlllmands 27
1.4.5 Handling Interrupt Trapping ~ 28 .
1.4.6 Using Expanded :tvlelllory 29

iii

"­
.................................. ~CONTENTS

1.4.7 Setting the Screen-Exchange Mode 29
1.4.8 Turning Off the Mouse 31
1.4.9 Extending EGA Compatibility 32
1.4.10 Enabling Window or Sequential Mode 33

1.5 Debugging Large Programs 34

1.6 Working with Older Versions
of the Assembler .. 34

2 The Code View Display 37
2.1 Using Window Mode .. 39

iv

2.1.1 Executing Window
Commands with the I<eyboard 41
2.1.1.1 Moving the Cursor

with Keyboard Commands .••.•..•.••.......... 41
2.1.1.2 Changing the Screen

with Keyboard Commands ..•.............•...• 43
2.1.1.3 Controlling Program Execution

with ICeyboard Commands•..............• 44
2.1.1.4 Selecting from Menus

with the Keyboard ••••..•.••.•...•.....•....•.... 45
2.1.2 Executing Window Commands

with the Mouse .. 47
2.1.2.1 Changing the Screen

with the Mouse•..•............•..... 47
2.1.2.2 Controlling Program

Execu tion with the 11ouse •...........••..•..... 48
2.1.2.3 Selecting from Menus

with the Mouse•..•..•••.................••.... 50
2.1.3 Using Menu Selections 52

2.1.3.1 The File Menu •••.........•...•.........•....••.... 52
2.1.3.2 The View Menu•...•.......•.....•..... 54
2.1.3.3 The Search Menu•.•......•.............•. 55
2.1.3.4 The Run Menu•.............•....•....• 57
2.1.3.5 The Watch Menu •..••.••.•.................•..... 58
2.1.3.6 The Options Menu .•......••.........•.....•...•. 60
2.1.3.7 The Language Menu•..... 62
2.1.3.8 The Calls Menu•....•.......•......••.... 63
2.1.3.9 The Help Menu••............•....•..... 65

2.1.4 Using the Help Systen1 65

,
CONTENTS~BS~~~~===Z================~~

<' 2.2 Using Sequential Mode ... 66

3 Using Dialog Commands 69
3.1 Entering Conunands and Arguments 71

3.1.1 Using Special I(eys ... 71
3.1.2 Using the Command Buffer 72

3.2 Format for CodeView
COlmnands and Arguments 73

4 Code View Expressions 75
4.1 C Expressions ... 78

4.1.1 C Symbols ... 79
4.1.2 C Constants .. 80
4.1.3 C Strillgs .. 81

4.2 FOR1R.AN Expressions ... 81
4.2.1 FORTRAN Symbols 83
4.2.2 FORTRAN Constants 83
4.2.3 FORTRAN Strings .. 84
4.2.4 FORTRAN Intrinsic Functions 85

4.3 BASIC Expressions ... 86
4.3.1 BASIC Symbols ... 88
4.3.2 BASIC Constants ... 88
4.3.3 BASIC Strings•... 89
4.3.4 BASIC Intrinsic Functions 89

4.4 Pascal Expressions ... 91
4.4.1 Pascal Symbols .. 92
4.4.2 Pascal Constants ... 93
4.4.3 Pascal Strings .. 93
4.4.4 Pascal Intrinsic Functions 93

4.5 Assembly Expressions .. 95
4.6 Line NUlnl)ers .. 97
4.7 Registers and Addresses ... 97

4.7.1 Registers ... 98
4.7.2 Addresses .. 99
4.7.3 Address Rallges .. 100

v

,
.................................. ~CONTENTS

4.8 Memory Operators ... 1 0 1
4.8.1 Accessing Bytes (BY) 101
4.8.2 Accessing Words (WO) 102
4.8.3 Accessing Double Words (DW) 103

4.9 Switching Expression Evaluators 104

5 Executing Code .. 107
5.1 Trace Command ... 110
5.2 Program Step Command .. 113
5.3 Go Co:rnmand ... 115
5.4 Execute Co:rnmand ... 118
5.5 Restart Command .. 119

6 Examining Data
and Expressions ... 121

6.1 Display Expression Command 123
6.2 Examine Symbols Command 132
6.3 Dump Commands ... 138

6.3.1 Dump•..................................... 139
6 .3.2 Dump Bytes ... 140
6.3.3 Dump ASCII .. 141
6.3.4 Dump Integers ... 141
6.3.5 Dump Unsigned Integers 142
6.3.6 Dump Words ... 143
6.3.7 Dump Double Words 144
6.3.8 Dump Short Reals .. 144
6.3.9 Dump Long Reals ... 145
6.3.10 Dump la-Byte Reals 146

6.4 Compare Memory C0l1unand 147
6.5 Search Memory COlTIlnand 148
6.6 Port Input COlmnand ... 149

vi

,
~ONTENTS~ .. gm~~~~~~~·~"'~1~"==~E5~'~~~:'~~'-m5\'9oa,~

)

y//.6//.'7 R . t C d 150
? egIs er oIDl11an .. .

/

'. ,// 6.8 8087 COIDlnand .. 152
./

7 Managing Breakpoints 155
7.1 Breakpoint Set Command 157
7.2 Breakpoint Clear Corrunand 160
7.3 Breakpoint Disable COll1lnand 161
7.4 Breakpoint Enable COlnmand 162
7.5 Breakpoint List COllllnand 164

8 Managing Watch Statements 167
8.1 Setttl!g Watch-Expression

and Watch-Memory Statelnents 170
8.2 Setting Watchpoints .. 174
8.3 Setting Tracepoin ts .. 177
8.4 Deleting Watch Statements 181
8.5 Listing Watchpoints and Tracepoints 183
8.6 C&les .. 184
8.7 FORTR.AN" &les ... 185
8.8 Pascal Exan1ples ... 186
8.9 Assen1bly Examples .. 187

9 Examining Code .. 189
9.1 Set Mode COlnmand ... 191
9.2 Un assemble COn1l11and ... 193
9.3 View Command .. 195
9.4 Current Location COIDl11and 198
9.5 Stack Trace Conm1and ... 199

vii

~

E'~""""""""""""""""""~CONTENTE

10 Modifying Code or Data 203

10.1 Assemble Command ... 205

10.2 Enter Commands ... 209
10.2.1 Ellter Command .. 212
10.2.2 Enter Bytes Command 212
10.2.3 Enter ASCII Command 213
10.2.4 Enter Integers Command 214
10.2.5 Enter Unsigned Integers Command 214
10.2.6 Enter Words COlnmand 215
10.2.7 Enter Double Words Command 216
10.2.8 Enter Short Reals Command 217
10.2.9 Enter Long Reals COlnmand 217
10.2.10 Enter 10-Byte Reals Command 218

10.3 Fill Memory Command .. 219

10.4 Move Memory Command 220

10.5 Port Output Con1l11and .. 221

10.6 Register Command ... 222

111 Using Code View
System-Control Commands 227

11.1 Help Command .. 229

11.2 Quit Command .. 230

11.3 Radix Command .. 231

11.4 Redraw Command .. 233

11.5 Screen Exchange Corrunand 233

11.6 Search Command ... 234

11.7 Shell Escape Command .. 237

11.8 Tab Set Command ... 239

11. 9 Option COlnmancl ... 240

viii

/
CONTENTS~"~~=~~~==========================~

(11.10 Redirection Conunands .. 242
11.10.1 Redirecting Code "\'iew Input 243
11.10.2 Redirecting CodeView Output 244
11.10.3 Redirecting Code"\Tiew Input and Output 245
11.10.4 Comlnands Used ·with Redirection 245

11.10.4.1 Comment Command•......•.......... 246
11.10.4.2 Delay Command•............•.............. 247
11.10.4.3Pause Command .•............•................. 248

Part 20 Utilities
12 Linking Object Files

with LINK ... 253
12.1 Specifying Files for Linking 255

12.1.1 Specifying File Names 255
12.1.2 Linking with the LINI(Command Line 256
12.1.3 Linking with the LINI(Prompts 258
12.1.4 Linking with a Response File 260
12.1.5 How LINI(Searches

for Libraries .. 261
12.1.6 LINI(Melnory Requirements 263

12.2 Specifying Linker Options 264
12.2.1 Viewing the Options List (/HE) 265
12.2.2 Pausing during Linking (/P AU) 266
12.2.3 Displaying Linker Process Information (II) 266
12.2.4 Packing Executable Files (IE) ..••......••......•••.. 267
12.2.5 Listing Public Symbols (1M) 268
12.2.6 Including Line Numbers

in the Map File (ILl) 269
12.2.7 Preserving Case Sensitivity (/NOI)•........ 260
12.2.8 Ignoring Default Libraries (/NOD) .•..........•... 269
12.2.9 Controlling Stack Size (1ST)•.•.•..... 270
12.2.10 Setting the Maximum Allocation

Space (I CP) .. 270
12.2.11 Setting Maxinlum NUlnber

of Segments (/SE)•.................. 271
12.2.12 Setting the Overlay Interrupt (/0) 272

ix

" aB ~CONTENT~

12.2.13 Ordering Segments (/DO) 272
12.2.14 Controlling Data Loading (IDS) 273
12.2.15 Controlling Executable-File Loading (/HI) .•••. 274
12.2.16 Preserving Con1patibility (/NOG)•...•...... 274
12.2.17 Preparing for Debugging (I CO)•...... 275
12.2.18 Running in Batch Mode (/B)•...... 275
12.2.19 Optimizing Far Calls (IF) •••••..••..••••••••.••••••••. 276
12.2.20 Disabling Far-Call Optimization (/NOF) .•...... 277
12.2.21 Packing Contiguous Segments (/P AC) 277
12.2.22 Disabling Segment Packing (/NOP) 278
12.2.23 Specifying User Libraries

for Quick Languages (/ Q) 279
12.3 Selecting Options with the

LINI(Environment Variable 280
12.4 Linker Operation .. 281

12.4.1 Alignment of Segments 281
12.4.2 Frame Number .. 282
12.4.3 Order of Segments 282
12.4.4 Combined Seglnents 282
12.4.5 Groups .. 283
12.4.6 Fix Ups ... 283

12.5 Using Overlays ... 285
12.5.1 Restrictions on Overlays 285
12.5.2 Overlay-Manager Prompts 286

13 Managing Libraries
wi th LIB .. 287

13.1 Managing Libraries .. 289

x

13.1.1 Managing Libraries
with the LIB Con1mand Line 290
13.1.1.1 Specifying the Library File•......... 290
13.1.1.2 Specifying a Page Size••..••••...... 291
13.1.1.3 Giving LIB Commands .•••••....•••...••.•.... 291

,13.1.1.4 Specifying a
Cross-Reference-Listing File••••........ 293

13.1.1.5 Specifying an Output Library .•••..•.•..•... 293

/
CONTENTS

13.1.2 Managing Libraries
with the LIB Prompts 295
13.1.2.1 Extending Lines••.........••••..•..• 295
13.1.2.2 Using Default Responses ..•...•..•••••........ 296

13.1.3 Managing Libraries
with a Response File 296

13.1.4 Terminating the LIB Session 297
13.2 Performing Library

Managelnent Tasks with LIB 297
13.2.1 Creating a Library File 298
13.2.2 Changing a Library File 299
13.2.3 Adding Library Modules 299
13.2.4 Deleting Library Modules 300
13.2.5 Replacing Library Modules 300
13.2.0 Copying Library Modules 300
13.2.7 Moving Library Modules (Extracting) 300
13.2.8 Combining Libraries 300
13.2.9 Creating a Cross-Reference-Listing File 301
13.2.10 Performing Consistency Checks 301
13.2.11 Setting the Library Page Size 302

14 Automating Program
Development with MAKE 303

14.1 Using 11AIill .. 305
14.2 Creating a 11AICE Description File 306
14.3 Automating Program Development 309
14.4 Running 11AICE ... 311
14.5 Specifying 11AICE Options 312
14.6 Using Macro Definitions vvith 11AI<E 312

14.6.1 Defining and Specifying Macros 313
14.6.2 Using Macros within Macro Definitions 315
14.6.3 Using Special Macros 315

14.7 Defining Inference Rules ... 316

xi

" ~CONTENTS

15 Using EXEP ACK, EXEMOD,
SETENV, and ERROUT 319
Compressing Executable
Files with tlie EXEPACIC Utility 321

15.1

15.2 Modifying Program
Headers with the EXEMOD Utility 322

15.3 Enlarging the DOS
Environment with the SETENV Utility 326
RedirectiQg ~rror OutJ?ut
with the ERROUT UtIlity 328

15.4

Appendixes
j\._ Regular Expressions 333
A.l Introduction ... 335
A. 2 Special Characters in Regular Expressions 335
A.3 Searching for Special Charactel's 336
A.4 Using the Period ... 336
A5 Using Bracl(ets ... 336

A.5.l Using the Dash within Brackets 337
A.5.2 Using the Caret within Brackets 337
A.5.3 Matching Brackets within Brackets 338

A. 6 Using the Asterisk .. 338
A 7 Matching the Start or End of a Line 339

B Using Exit Codes 341
B.1 Exit Codes with :MAI<E .. 343
B.2 Exit Codes with DOS Batch Files 343
B.3 Exit Codes for ProgranlS .. 344

B.3.l CodeView Exit Codes 344
B.3.2 LINI(Exit Codes ... 344
B.3.3 LIB Exit Codes .. 345

xii

B.3.4
B.3.5
B.3.6
B.3.7
B.3.8

l\I1AIill Exit Codes .. 345
EXEP ACI(Exit Codes 345 .
EXEMOD Exit Codes 345
SETENV Exit Codes 345
ERROUT Exit Codes 346

C Error Messages ... 347
C.1 Code View Error Messages 349
C.2 Linker Error 1"1essages .. 359
C.3 LIB Error Messages .. 370
C.4 1vfAI<E Error Messages ... 375
C.5 EXEP ACI{ Error Messages 378
C.6 EXEMOD Error Messages 380
C.7 SE'rENV Error Messages 381
C.8 ERROUT Error Messages 382

Index ... 385

xiii

"­
.................................. ~CONTENTS

Figures

Figure 1.1 Code Vie,,, Start-Up Screen
in Window Mode .. 22

Figure 2.1 Elements of the
Code View Debugging Screen 40

Figure 2.2 The File Menu ... 52
Figure 2.3 The View Menu .. 54
Figure 2.4 The Search Menu ... 55
Figure 2.5 The Run Menu ... 57
Figure 2.6 The Watch Menu ... 58
Figure 2.7 The Options Menu ... 60
Figure 2.8 The Language Menu 63
Figure 2.9 The Calls Menu .. 64
Figure 8.1 Watch Statements in the Watch Window 173
Figure 8.2 Watchpoints in the Watch Window 176
Figure 8.3 Tracepoints in the Watch Windo\v 180
Figure 8.4 C Watch Statements 184
Figure 8.5 FORTRAN Watch Statements 185
Figure 8.6 Pascal Watch Statements 186
Figure 8.7 Assembly Watch Statements 188

xiv

/
CONTENTS~"""""""""""""""""

Table 1.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4

Default Exchange and Display Modes 30
Code View C-Expression Operators 78
C Radix Examples .. 81
Code Vievv FORTRAN Operators 82
FORTRAN Radix Examples 84

Table 4.5 FORTRAN Intrinsic Functions
Supported by the Code Vie,,, Debugger 85

Table 4.6 CodeView BASIC Operators 86
Table 4.7 BASI C RadLx Examples 8g
Table 4.8 BASIC Intrinsic Functions

Supported by the CodeView Debugger gO
Table 4J) Code View Pascal Operators g 1
Table 4.10 Pascal Intrinsic Functions

Supported by the Code View Debugger g4
Table 4.11 Registers .. g8
Table 6.1 Code View Format Specifiers 124
Table 10.1 Flag-Value Mnelllonics 224

xv

INTRODUCTION

Welcome to the Microsoft® CodeView® debugger and development utili­
ties. These are executable programs that help you develop software writ­
ten with the Microsoft BASIC, C, FORTRAN, and Pascal compilers, as
well as with the Microsoft Macro Assembler.

The Microsoft CodeView debugger is a powerful, window-oriented tool
that enables you to track down logical errors in programs; it allows you to
analyze a program, as the program is actually running. The Code View
debugger will display source code or assembly code, indicate which line is
about to be executed, dynamically watch the values of variables (local or
global), switch screens to display program output, and perform many
other related functions. The debugger can be easily learned and used, by
assembly and high-Ievel-Ianguage programmers alike.

The utilities are important at various stages of software development.
After you use a compiler or assembler to p'roduce one or more object files,
use LINK to produce an executable file. lWhen a program is made into an
executable file, it is finally in the form that can be loaded and executed by
DOS.) In the process of linking, you may use software libraries. The LIB
utility enables you to create, examine, and maintain these libraries. The
process of compiling and linking can be automated, to a large degree, with
the MAKE utility; MAKE keeps track of which source files have been
changed, and then executes just the commands necessary to update the
program.

Other utilities help you maintain executable files once they have been
created. You can use EXEPACK to reduce the size of the file as stored
on disk, and EXEMOD to examine or modify the file's header. The
executable-file header indicates stack size, load size, and other important
items used by DOS each time it executes the file.

Finally, you can use the SETENV and ERROUT utilities to modify the
DOS environment itself.

New Features of the Code View Debugger

• Mu/t£language expression evaluation

The Code View debugger has a built-in language interpreter that
can evaluate either C, BASIC, FORTRAN, or Pascal expressions.

xvii

:M1crosoft Code View a.nd Utilities

• 386 support

The CodeView debugger now supports debugging of code written
specifically for the 386 processor. You can now decode and assem­
ble 386 instructions, as well as view 386 registers.

• Expanded memory support

If you have expanded memory, then you can substantially reduce
the amount of main memory required to debug a program. Many
programs that were previously too large can now be run with the
CodeView debugger.

• 8087 emulator support

If you do not have an 8087 coprocessor in your machine, you can
link to a Microsoft emulator library and take advantage of the 7
command. The debugger will display pseudo-8087 registers, as if
you d£d have a math coprocessor in your machine.

• Overlayed and library modules

The debugger is now fully compatible with programs that use over­
lays. You can also debug library modules.

• New commands

The S~EB (symbolic debugger) commands Compare, Fill,
Move, Input, and Output have been added to the Code View
de bugger's repertoire. The Option command provides more power
for redirected input and start-up commands.

About this Manual

This manual is intended as a companion volume to Microsoft language
manuals. It is not language specific, except where examples are required;
and in those cases, examples from several languages are typically given.

The manual is divided into two parts, followed by appendixes: Part 1
(comprising chapters 1-11) explains how to use the CodeView debugger to
examine and locate program errors; Part 2 (comprising chapters 12-15)
explains how to use each of the utilities, inc)uding LINK, Lill, MAKE,
EXEPACK, EXEMOD, and SETENV. The appendixes at the end of
the manual discuss exit codes and error messages for the Code View
debugger and all the utilities.

The following list indicates where to find different kinds of information in
the manual. The list is by no means exhaustive, but is intended to serve as
a starting place, particularly for the new user of the CodeView debugger.

xviii

Information

Examining and locating
program errors

Sta~ting a debugging
seSSIOn

Using the Code View
interface

Specifying Code View
commands

Con trolling execution of
your program

Watching the value of
variables or expressions

Using the utilities

Introduction

Location

Part 1, "The CodeView Debugger,"
describes in Chapters 1-11 methods to
help you track down errors in programs
and analyze a program while it runs.
Exit codes and error messages are dis­
cussed in the appendixes at the back of
this manual.

Chapter 1, "Getting Started," tells you
how to compile and link programs so
that you can run them with the
debugger. It also explains each Code View
command-line option.

Chapter 2, "The CodeView Display,"
describes how to use the Code View win­
dows, pop-up menus, and the mouse.

Chapter 3, "Using Dialog Commands,"
presents the general form of commands,
while Chapter 4, "Code View Expres­
sions," describes how to build complex
expressions for use in commands.

Chapter 5, "Executing Code," explains
the basics of controlling program execu­
tion with the Code View debugger;
Chapter 7, "Managing Breakpoints,"
explains how to use breakpoints to
suspend execution.

Chapter 6, "Examining Data and
Expressions," shows how to display
values; Chapter 8, "Managing Watch
Statements," shows how to place vari­
ables in a window, where you can watch
their values change as the program runs.

Part 2, "Utilities," describes in Chapters
12-15 the various utilities for producing
and maintaining executable files, and for
other tasks. Exit codes and error mes­
sages for the utilities are discussed in the
appendixes at the back of this manual.

xix

Microsoft Code View and Utilities

Creating execu table files

Managing software
libraries

Automating projects that
have several modules

Using the other utilities

Specifying expressions for
the Code View Search
command

Codes returned to DOS
by each utility

A list of error messages

Chapter 12, "Linking Object Files
with LINK."

Chapter 13, "Managing Libraries
with LIB."

Chapter 14, "Automating Program
Development with MAKE."

Chapter 15, "Using EXEPACK, EXE­
MOD, SETENV, and ERROUT."

Appendix A, "Regular Expressions."

Appendix B, "Exit Codes."

Appendix C, "Error Messages."

Important

There may be additional information about the CodeView debugger in
the READ:ME.DOC file. This file will describe changes made to the
program after the manual was printed.

Throughout this manual, the term "DOS" is used to refer to both MS­
DOS® and PC-DOS, except when noting features that are unique to one or
the other.

Notational Conventions

The following notational conventions are used throughout this manual
and apply in particular to syntax displays.

Example
of Convention

KEY TERMS

xx

Description
of Convention

Bold letters indicate a specific term or punctua­
tion mark intended to be used literally: language
keywords (such as IF), names of files released
with Microsoft products (such as LINK), and
command-line options (such as /Zi).

placeholders

Examples

Program

Fragment

Introduction

These terms and punctuation marks must be
typed in exactly as shown in order to have effect.
However, the use of uppercase or lowercase
letters is not always significant. For instance,
you can invoke the linker by responding to the
DOS prompt with either LINK, link, or Link.
Case-sensitive terms are noted in text.

Words in italics indicate a general kind of infor­
mation; you are expected to provide the actual
value. For example, consider the syntax display
for the CodeView Radix command:

Nnumber

This syntax display asks that you enter the
Radix command by typing N, immediately fol­
lowed by some value for number. You could, for
example, type in the entry N8; but you could
not legally type in the word "number" itself.

Examples are displayed in a nonproportional
typeface so that they will look more like
computer-monitor displays or printer output.
Where a display includes both user input and
command output, the input is shown in bold­
face, and the output is shown in regular, non­
boldface type:

>RAX
AX 0041
:43
>

Vertical ellipsis dots are used in program exam­
ples to indicate that a portion of the program
has been omitted. For example, in the following
excerpt, three statements are shown. The ellipsis
dots between the statements indicate that inter­
vening program lines occur, but are not shown.

COUNT = 0

PASS = PASS + 1

COUNT = 0

xxi

Microsoft Code View and Utilities

[optional items]

[choicel I choice2]

"Defined terms"

KEY NAMES

Sample screens

xxii

Double brackets enclose optional fields in
command-line and option syntax. Consider the
following command-line syntax:

R [regi8ter] [[=] value]

The double brackets around the placeholders
indicate that you may enter a register and you
may enter a value. The equal sign (=) in the
indicates that you may place an equal sign
before the value, but only if you specify a value.

The vertical bar indicates that you may enter
one of the entries shown on either side of the
bar. The following command-line syntax illus­
trates the use of a vertical bar:

DB [addre88 1 range]

The bar indicates that following the Dump
Bytes command (DB), you can specify either an
address or a range. Since both are in double
brackets, you can also give the command with
no argument.

Quotation marks set off terms defined in the
text. For example, the term "watchpoint"
appears in quotation marks the first time it is
defined.

Small capital letters are used for the names of
keys and key sequences, such as ENTER,
CONTROL+C, and ALT+F.

Sample screens are shown in black and white.
Your screens will look like this if you have a
monochrome monitor, or if you use the /B
option in the Code View command line (see Sec­
tion 1.4.3, "Starting with a Black-and-White
Display").

PARTl

-----E
ODE lEW·

EBUGGER

Part 1 explains the use of the Code View
debugger. Commands, display, and interface of
the debugger are presented here, while other
material relevant to the debugger (such as error
messages and exit codes) is presented in the
Appendixes.
Chapter 1 explains how to create a C, FOR­
TRAN, BASIC, Pascal or assembly program that
can be run with the CodeView debugger; it also
explains how to start the debugger and select
various command-line options.
Chapter 2 discusses the Code View display screen
and interface, including function keys, keyboard
commands, and the mouse.
Chapters 3-11 of Part 1 describe how to use
each of the Code View commands and expres-.
Slons.

,3

GETIING STARTED

1.1 Restrictions .. 7
1.2 Preparing Programs

for the Code View Debugger 8
1.2.1 Programming Considerations 8
1.2.2 Code View Compile Options g
1.2.3 CodeView Link Options 10
1. 2.4 Prep aring C Programs 11
1.2.5 Preparing FORTRAN Programs 13
1.2.6 Preparing BASIC Programs 14
1.2.7 Preparing Pascal Programs 15
1.2.8 Preparing Assembly Programs 17

1.3 Starting the Code View Debugger 20
1.4 Using Code View Options 23

1.4.1 Using Two Video Adapters 25
1.4.2 Using the Enhanced Graphics

Adapter's 43-Line Mode 26
1.4.3 Starting with a Black-and-

White Display .. 26
1.4.4 Specifying Start-Up Commands 27
1.4.5 Handling Interrupt Trapping 28
1.4.6 Using Expanded Memory 29
1.4.7 Setting the Screen-Exchange Mode 29
1.4.8 Turning Off the Mouse 31
1.4.9 Extending EGA Compatibility 32
1.4.10 Enabling Window or Sequential Mode 33

1.5 Debugging Large Programs 34
1.6 Working with Older Versions

of the Assembler ... 34

Getting Started

Getting started with the Code View debugger requires several simple steps.
First you must prepare a special-format executable file for the program
you wish to debug; then you can invoke the debugger. You may also wish
to specify options that will affect the debugger's operation.

This chapter describes how to produce executable files in the Code View
format using C, FORTRAN, BASIC, Pascal, or assembly language, and
how to load a program into the CodeView debugger. The chapter lists re­
strictions and programming considerations with regard to the debugger,
which you may want to consult before compiling or assembling. Finally,
the chapter describes how to use the debugger with Microsoft or IBM
Macro Assembler, Versions 1.0 through 4.0.

1.1 Restrictions

This list briefly describes kinds of files that are not directly supported by
the debugger. The following restrictions apply generally to the use of the
CodeView debugger, regardless of the language being used.

Restriction

Include files

Packed files

. COM files

Memory-residen t
programs

Programs that
alter the
environment

Program Segment
Prefix (PSP)

Explanation

You will not be able to use the Code View
debugger to debug source code in include files.

CodeView symbolic information cannot be put
into a packed file .

Files with the extension .COM can be debugged
in assembly mode only; they can never contain
symbolic information.

The Code View debugger can only work with
disk-resident .EXE and .COM files. Debugging
of memory-resident files is not supported.

Programs run under the Code View debugger can
read the DOS environment, but they cannot per­
manently change it. Upon exit from Code View,
all changes to the environment are lost.

The Code View debugger automatically
preprocesses a program's PSP the same way a C
program does; quote marks are removed, and
exactly one space is left between command-line
arguments. This preprocessing only creates a
problem if you are debugging a program not
written in C-one that tries to access
command-line arguments.

7

Microsoft Code View a.nd Utilities

Some of the features that are now allowed by Code View include debugging
of library modules and debugging of overlayed code. Code View users can
now freely debug library modules and overlays.

1.2 Preparing Programs
for the Code View Debugger

You must compile and link with the correct options, in order to use a pro­
gram with the CodeView debugger. These options direct the compiler and
the linker to produce an executable file, which contains line-number infor­
mation and a symbol table, in addition to the executable code.

Note

For the sake of brevity, this section and its three subsections use the
term "compiling" to refer to the process of producing object modules.
Hovv"ever, almost everything said about compiling in this section
applies equally well to assembling. Exceptions are noted in Section
1.2.8, "Preparing Assembly Programs."

Not all compiler and linker versions support CodeView options. (Consult
the section on the appropriate language below, for information about com­
piler versions. Also, you will need to use the Microsoft Overlay Linker,
Version 3.6 or later.) If you try to debug an executable file that was not
compiled and linked with Code View options, or if you use a compiler that
does not support these options, then you will only be able to use the
debugger in assembly mode. This means that the CodeView debugger will
not be able to display source code or understand source-level symbols,
such as symbols for functions and variables.

1.2.1 Programming Considerations

Any source code that is legal in C, FORTRAN, BASIC, Pascal or Microsoft
Macro Assembler can be compiled or assembled to create an executable
file, and then debugged with the CodeView debugger. However, some pro­
gramming practices make debugging more difficult.

Each of the Microsoft languages listed above permits you to put code in
separate include files, and to read the files into your source file by using an
include directive. However, you will not be able to use the Code View
debugger to debug source code in include files. The preferred method of

8

Getting Started

developing programs is to create separate object modules, and then link
the object modules with your program. The Code View debugger supports
the debugging of separate object modules in the same session.

Also, the Code View debugger will be more effective and easier to use if you
put each source statement on a separate line. A number of languages (C
and BASIC in particular) permit you to place more than one statement on
a single line of the source file. This practice does not prevent the Code­
View debugger from functioning. However, the debugger must treat the
line as a single unit; it cannot break the line down into separate state­
ments. Therefore, if you have three statements on the same line, you will
not be able to put a breakpoint or freeze execution on the individual state­
men ts. The best you will be able to do is freeze execution at the beginning
of the three statements, or at the beginning of the next line.

Some languages (C and assembly in particular) support a type of macro
expansion. However, the CodeView debugger will not help you debug mac­
ros in source mode. You will need to expand the macros yourself before
debugging them; otherwise, the debugger will treat them as simple state­
men ts or instructions.

Finally, your segments should be declared according to the standard
Microsoft format (as described in the Mixed-Language Programming
Guide). This is taken care of for you automatically with each of the
Microsoft high-level languages.

1.2.2 CodeView Compile Options

Note

Microsoft compilers will accept command-line options that are pre­
ceded by either a forward slash (/) or a dash (-). For brevity, this
manual will list only the forward slash when describing options, but
you may use either symbol.

The use of uppercase or lowercase letters is significant for options used
with the C, FORTRAN, BASIC and Pascal compilers; you must type
the letters exactly as given.

When you compile a source file for a program you want to debug, you
must specify the /Zi option on the command line. The /Zi option
instructs the compiler to include line-number and symbolic information in
the object file. If you are using Microsoft QuickBASIC, this option is
en tered as /D.

9

Microsoft CodeView and Utilities

If you do not need complete symbolic information in some modules, you
can compile those modules with the /Zd option instead of /Zi. The IZd
option writes less symbolic informatIOn to the object file, so using this
option will save disk space and memory. For example, if you are working
on a program made up of five modules, but only need to debug one
module, you can compile that module with the /Zi option and the other
modules with the /Zd option. You will be able to examine global variables
and see source lines in modules compiled with the IZd option, but local
variables will be unavailable.

Note

The IZd option is not available with QuickBASIC.

In addition, if you are working with a high-level language, you will prob­
ably want to use the /Od option, which turns off optimization. Optimized
code may be rearranged for greater efficiency and, as a result, the instruc­
tions in your program may not correspond closely to the source lines. After
debugging, you can compile a final version of the program with the optimi­
zation level you prefer.

Note

The lad option is not available with QuickBASIC or the Macro
Assembler.

You cannot debug a program until you compile it successfully. The Code­
View debugger will not help you correct syntax or compiler errors. Once
you successfully compile your program, you can then use the debugger to
locate logical errors in the program.

Compiling examples are given in the sections below on compiling and link­
ing with specific languages.

1.2.3 CodeView Link Options

If you use LINK separately to link an object file or files for debugging,
you should specify the /eODEVIEWoption (it can be abbreviated as
leO). This instructs the linker to incorporate addresses for symbols and
source lines in to the executable file.

10

Getting Started

Note that if you use a Microsoft driver program that automatically
invokes the linker (such as OL with C, or FL with FORTRAN), then the
linker will automatically be invoked with the 100 option whenever you
specify IZi on the command line. You do not use lOa unless you are
invoking the linker directly, by typing LINK.

Although executable files prepared with the 100DEVIEW option can be
executed from the DOS command line like any other executable files, they
are larger because of the extra symbolic information in them. To minimize
program size, you will probably want to recompile and link your final ver­
sion without the IZi option when you finish debugging a program.

Linking examples are given in the sections below on compiling and linking
with specific languages.

1.2.4 Preparing C Programs

In order to use the Code View debugger with a program written in C, you
need to compile it with the Microsoft C Compiler, Version 4.0 or later.
Earlier versions of the compiler do not support the Code View compile
options. You also need to link with the Microsoft Overlay Linker , Version
3.6 or later.

Writing C Source Code

Microsoft C supports the use of include files, t ~lfough the use of the
include directive. However, you will not be able to debug source code
put into include files. Therefore, you should reserve the use of include files
for # define macros and structure definitions.

The C language permits you to put more than one statement on a line.
This practice makes it difficult for you to debug such lines of code. For
example, the following code is legal in C:

code = buffer[count]; if (code == '\n') ++lines;

This code is made up of three separate source statements. When placed on
the same line, the individual statements cannot be accessed during debug­
ging. You could not, for example, stop program execution at + + 1 ines; .
The same code would be easier to debug in the following form:

code = buffer[count];
if (code == '\n')

++lines;

This makes code easier to read and corresponds with what is generally
considered good programming practice.

11

Microsoft Code View a.nd Utilities

You cannot easily debug macros with the CodeView debugger. The
debugger will not break down the macro for you. Therefore, if you have
complex macros with potential side effects, you may need to write them
first as regular source statements.

Compiling and Linking C Programs

The IZi, IZd, and IOd options are all supported by the Microsoft C
Compilers, Versions 4.0 and later. (For a description of these options, see
Section 1.2.2, "CodeView Compile Options.") The options are accepted by
the CL driver and the MSC driver, which was supplied with Version 4.0.
Linking separately with ICO is necessary when you compile with MSC.

The CodeView debugger supports mixed-language programming. For an
example of how to link a C module with modules from other languages, see
Section 1.2.8, "Preparing Assembly Programs."

• Examples

CL IZi IOd EXAMPLE.C

MSC IZi IOd EXAMPLE;
LINK ICO EXAMPLE;

CL IZi IOd Ie MOD1.C
CL IZd IOd Ie MOD2.C
CL IZi MODl MOD2

In the first example, CL is used to compile and link the source file
EXAMPLE.C. CL creates an object file in the Code View format,
EXAMPLE.OBJ, and then automatically invokes the linker with the
ICO option. The second example demonstrates how to compile and link
the source file EXAMPLE.C by using the MSC program provided with
Version 4.0 of the compiler. Since MSC does not invoke the linker, you
must invoke the linker directly, and specify / CO on the command line.
Both examples result in an executable file, ExAMPLE.EXE, which has
the line-number information, symbol table, and unoptimized code required
by the Code View debugger.

In the third example, the source module MODl.C is compiled to produce
an object file with full symbolic and line information, while MOD2.C is
compiled to produce an object file with limited information. Then, CL is
used again to link the resulting object files. (This time, CL does not
recompile, because the arguments have no .C extension.) Typing IZi on
the command line causes the linker to be invoked with the ICO option.
The result is an executable file in which one of the modules, MOD2.C,
will be harder to debug. However, the executable file will take up substan­
tially less space on disk than it would if both modules were compiled with
full symbolic information.

12

Getting Sta.rted

1.2.5 Preparing FORTRAN Programs

In order to use the Code View debugger with a program written in FOR­
TRAN, you will need to compile it with the Microsoft FORTRAN Opti­
mizing Compiler, Version 4.0 or later. Earlier versions of the compiler do
not support the CodeView compile options. You will also need to link with
the Microsoft Overlay Linker, Version 3.6 or later.

Writing FORTRAN Source Code

The Microsoft FORTRAN compiler supports the use of include files,
through use of the $INCLUDE directive. However, you will not be able
to debug source code in an include file. If you have source code that you
wish to put in separate files, then you should use the technique of
separately compiled modules. The CodeView debugger does support this
technique. by allowing you to trace through separate source files in the
same seSSlOn.

Compiling and Linking FORTRAN Programs

The LZi, IZd, and IOd options are all supported by the Microsoft FOR­
TRAN Optimizing Compiler, Version 4.0. For a description of these
options, see Section 1.2.2, "CodeView Compile Options." The CodeView
debugger supports mixed-language programming. For an example of how
to link a FORTRAN module with modules from other languages, see Sec­
tion 1.2.8, "Preparing Assembly Programs."

• Examples

FL jZi jOd EXAMPLE.FOR

FL jZi jOd je EXAMPLE.FOR
LINK jeo EXAMPLE;

FL jZi jOd je MOD1.FOR
FL jZd jOd je MOD2.FOR
FL jZi MODl MOD2

In the first example, FL is used to compile and link the source file
EXAMPLE.FOR. FL creates an object file in the Code View format,
EXAMPLE.OBJ, and then automatically invokes the linker with the
I CO option. The second example demonstrates how to compile and link
the source file EXAMPLE.FOR by using separate steps for compiling
and linking. In this case, the ICO option must be given explicitly to the
linker. Both examples result in an executable file, EXAMPLE.EXE,
which has the line-number information, symbol table, and unoptimized
code required by the Code View debugger.

13

Microsoft Code View and Utilities

In the third example, the source module MODI.FOR is compiled to pro­
duce an object file with full symbolic and line information, while
MOD2.FOR is compiled to produce an object file with limited informa­
tion. Then FL is used again to link the object files. (Note that this time,
FL does not recompile, because the arguments have no .FOR extension.)
Typing /Zi on the command line causes the linker to be invoked with the
/CO option. The result is an executable file in which one of the modules,
MOD2.FOR, will be harder to debug. However, the executable file takes
up substantially less space on disk than it would if both modules were
compiled with full symbolic information.

1.2.6 Preparing BASIC Programs

In order to use the Code View debugger with a program written in BASIC,
you will need to compile it with Microsoft QuickBASIC, Version 4.0 or
later. You will also need to link with the Microsoft Overlay Linker, Ver­
sion 3.6 or later.

Writing BASIC Source Code

Ivficrosoft BASIC supports the use of include files, through the use of the
REM $INCLUDE directive. However, you will not be able to debug
source code put into include files. The preferred practice for developing
source code in separate files is to use separately compiled modules. The
Code View debugger does support this technique by allowing you to trace
through separate source files in the same session.

BASIC also permits you to put more than one statement on a line. This
practice makes it difficult for you to debug such lines of code. For exam­
ple, the following code is legal, even common, in BASIC:

SUM=O : FOR 1=1 TO N : SUM=SUM+ARRAY(1) : NEXT I

This code is actually made up of four separate BASIC statements. When
placed on the same line, the individual statements cannot be accessed dur­
ing debugging. You could not, for example, stop program execution at
SUM=SUM+ARRAY (I). The same code would be easier to debug if it were
written in the following form:

SUM=O
FOR 1=1 TO N

SUM=SUM+ARRAY(1)
NEXT I

14

Getting Started

Compiling and Linking BASIC Programs

Versions 4.0 and later of QuickBASIC can prepare BASIC programs for
use with the Code View debugger, through the use of the BC command
line. You cannot prepare programs for use with Code View when you are in
the QuickBASIC editor itself. Instead, compile separately with the BC
command-line option ID. The ID option is equivalent to the IZi option
described in Section 1.2.2, "CodeView Compile Options." You must also
link separately with ICO.

The CodeView debugger supports mixed-language programming. For an
example of how to link a BASIC module with modules from other lan­
guages, see Section 1.2.8, "Preparing Assembly Programs."

• Example

BC /D EXAMPLE;
LINK ICO EXAMPLE;

The example above compiles the source file ~LE.BAS to produce
an object file, ~LE.OBJ, which contains the symbol and line­
number information required by the CodeView debugger. Then the linker
is invoked with the ICO option to create an executable file that can be
used with the debugger.

1.2.7 Preparing Pascal Programs

In order to use the Code View debugger with a program written in Pascal,
you will need to compile it with the Microsoft Pascal Compiler, Version
4.0 or later. Earlier versions of Pascal do not support the Code View com­
pile options. You will also need to link with the Microsoft Overlay Linker,
Version 3.6 or later.

Note

If you have a version of Microsoft Pascal earlier than Version 4.0, you
can use the CodeView debugger to a limited extent. However, the
debugger will not be able to evaluate program symbols in Code View
commands. Compile a program as you would normally, and then link
with the ICO option as explained below. You will then be able to use
Code View to step through your program and set breakpoints. The
debugger will also be able to display machine-level code and do
memory dumps.

15

Microsoft Code View and Utilities

Writing Pascal Source Code

Microsoft Pascal supports the use of include files by providing the
$include metacommand. However, you will not be able to debug source
code put into include files. You can easily debug code in separately com­
piled source files. Use this technique, rather than that of include files, if
you want to debug a large program.

Pascal permits you to put more than one statement on a line; yet it is
difficult to debug programs with multiple statements on a single line. For
example, the following code is perfectly legal in Pascal:

if i = max then begin k := k+l; i = 0 end;

This code is actually made up of five separate source statements. When
placed on the same line, the individual statements cannot be accessed dur­
ing debugging. You could not, for example, stop program execution at k
: = k+l; The same code would be easier to debug if it were written as:

if i = max then
begin

k := k+l;
i := 0

end;

Writing only one statement on a line makes code easier to read, and
corresponds with what is generally considered good programming practice.

Compiling and Linking Pascal Programs

Versions 4.0 and later of Microsoft Pascal support the CodeView options
IZi and IZd. (For a description of these options, see Section 1.2.2,
"Code View Compile Options.") The CodeView compile options are put on
the command line when invoking the first pass of the Pascal compiler.

Linking separately with ICO is necessary when you compile with Micro­
soft Pascal.

• Example

PASl IZi TEST;
PAS 2
LINK leo TEST;

The example above compiles the source file TEST.PAS to produce an
object file, TEST.OBJ, which contains the symbol and line-number infor­
mation required by the Code View debugger. Then the linker is invoked
with the /CO option.

16

Getting Sta.rted

The Code View debugger supports mixed-language programming. For an
example of how to link a Pascal module with modules from other
languages, see Section 1.2.8 below, "Preparing Assembly Programs."

1.2.8 Preparing Assembly Programs

In order to use all the features of the Code View debugger with assembly
programs, you will need to assemble with Microsoft Macro Assembler, Ver­
sion 5.0 or later. (Section 1.6 discusses how to use earlier versions of
Microsoft Macro Assembler with the debugger.) No matter what version of
the assembler you use, you will need to link with the Microsoft Overlay
Linker, Version 3.6 or later.

Writing Assembler Source Code

If you have Version 5.0 of the Microsoft Macro Assembler, then you can
use the simplified segment directives described in the Microsoft Macro
Assembler Programmer's Guide. Use of these directives ensures that seg­
ments will be declared in the correct way for use with the CodeView
debugger. (These directives also aid mixed-language programming.) If you
do not use these directives, then you need to make sure that the class
name for the code segment is CODE.

Important

The CodeView debugger correctly recognizes floating-point values only
when they are in the IEEE (Institute of Electrical and Electronics
Engineers, Inc.) format. You should use the IEEE format with any pro­
gram that you are going to run with the Code View debugger if that
program uses floating-point variables. The IEEE format is the default
for Version 5.0 of the Microsoft Macro Assembler. You can always
specify IEEE format by using the .8087 or .287 directive, or by assem­
bling with the jR option.

You will not be able to trace through macros while in source mode. Macros
will be treated as single instructions unless you are in assembly or mixed
mode, so you will not see comments or directives within macros. There­
fore, you may want to debug code before putting it into a macro.

The Microsoft Macro Assembler also supports include files, but you will
not be able to debug code in an include file. You are better off reserving
include files for macro and structure definitions.

17

Microsoft CodeView and Utilities

Because the assembler does not have its own expression evaluator, you will
have to use either the 0-, FORTRAN-, BASIO-, or Pascal-expression
evaluator. C is the default, because it is the closest to assembly language.
To make sure that the expression evaluator recognizes your symbols and
labels, you should observe the following guidelines when you write assem­
bly modules:

18

• The assembler has no explicit way to declare real numbers. How­
ever, it will pass the correct symbolic information for reals and
integers if you initialize each real number with a decimal point and
each integer without a decimal point. (The default type is integer.)
For example, the following statements correctly initialize
REALSUM as a real number and COUNTER as an integer:

REAL SUM
COUNTER

DD
DD

0.0
o

You must initialize real number data in data definitions. If you use
?, then the assembler will consider the variable an integer when it
generates symbolic information. The Code View debugger, in turn,
will not properly evaluate the value of the variable.

• Avoid the use of special characters in symbol names. The 0-,
FORTRAN-, BASIO-, and Pascal-expression evaluators each apply
their own standards in determining what is a legal symbol name.
Generally, only alphanumeric characters and the underscore (_)
are recognized. BASIC accepts certain type-declaration characters
at the end of a name, but C, FORTRAN, and Pascal do not.

• Assemble with /1fX. or /"WIL to avoid conflicts due to case when
you do mixed-language programming. By default, the assembler
converts all symbols to uppercase when it generates object code. C,
however, does not do this conversion. Therefore, the Code View
debugger will not recognize that var in a C program and var in
an assembly program are the same variable, unless you leave Case
Sense off when using the debugger.

• If you access command-line data in the Program Segment Prefix
(PSP), note that the Code View debugger changes the PSP; tabs,
quote marks, and extra spaces are removed so that exactly one
space separates each argument. The debugger retains quote marks
(along with any quoted material) for command lines given with the
t command.

Getting Started

Assembling and Linking

The assembler supports the /Zi and /Zd assemble-time options. The /Od
option does not apply, and so is not supported. Assembler options are not
case sensitive. You may therefore enter lZI or !ZD on the assembler com­
mand line to produce an object file in the Code View format.

If you link your assembly program with a module written in C (which is
case sensitive), you probably need to assemble with /1vfX. or /~.

After assembling, link with the /CO option to produce an executable file
in the Code View format.

II Examples

MASM j2I EXAMPLE;
LINK JCO EXAMPLE;

MASM j2I MOD1;
MASM j2D MOD2;
LINK JCO MODl MOD2;

CL j2i jOd je jAL prog.e
BC /Di subl;
MASM j2I /MX sub2;
LINK JCO prog subl sub2

The first example assembles the source file EXAMPLE.ASM and pro­
duces the object file EXAMPLE.OBJ, which is in the Code View format.
The linker is then invoked with the ICO option and produces an execut­
able file with the symbol table and hne-number information required by
the debugger.

The second example produces the object file MODl.OBJ, which contains
symbol and line-number information, and the object file MOD2.0BJ,
which contains line-number information but no symbol table. The object
files are then linked. The result is an executable file in which the second
module will be harder to debug. This executable file, however, will be
smaller than it would be if both modules were assembled with the /ZI
option.

The last example demonstrates how to create a mixed-language executable
file that can be used with the CodeView debugger. The debugger will be
able to trace through different source files in the same session, regardless
of the language.

19

Microsoft Code View and Utilities

1.3 Starting the CodeView Debugger

Before starting the debugger, make sure all the files it requires are avail­
able in the proper places. The following files are recommended for source­
level debugging:

20

File

CV.EXE

CV.HLP

program.EXE

source. ext
(extension
depends on
language)

Location

The Code View program file can be in the
current directory or in any directory accessible
with the PATH command. For example, if you
are using a hard disk setup, you might put
CV.EXE in the \BIN directory. If you have an
older version of the debugger, take care to
remove any copies of CV.EXE from directories
in your PATH. The debugger has an overlay
manager that reloads the file CV.EXE from
time to time. If it reloads the wrong version of
this file, then your machine will likely crash.

If you want to have the on-line help available
during your session, you should have this file
either in the current directory or in any direc­
tory accessible with the PATH command. For
example, if you set up your compiler files on a
hard disk using the SETUP program provided
on the distribution disk, you might put
CV.HLP in the \BIN directory. If the Code­
View debugger cannot find the help file, you can
still use the debugger, but you will see an error
message if you use one of the help commands.

The executable file for the program you wish to
debug must be in the current directory or in a
drive and directory you specify as part of the
start-up file specification. The CodeView
debugger will display an error message and will
not start unless the executable file is found.

Normally, source files should be in the current
directory. However, if you specify a file speci­
fication for the source file during compilation,
that specification will become part of the sym­
bolic information stored in the executable file.
For example, if you compiled with the command
line argument DEMO, the CodeView debugger
will expect the source file to be in the current
directory. However, if you compiled with the
command line argument \SOURCE\DEMO, then

Getting Started

the debugger will expect the source file to be in
directory \SOURCE. If the debugger cannot find
the source file in the directory specified in the
executable file (usually the current directory),
the program will prompt you for a new direc­
tory. You can either enter a new directory, or
you can press the ENTER key to indicate that you
do not want a source file to be used for this
module. If no source file is specified, you must
debug in assembly mode.

If the appropriate files are in the correct directories, you can enter the
Code View command line at the DOS command prompt. The command line
has the following form:

CV [opt£ons] executableft"le [arguments]

The options are one or more of the options described in Section 1.4. The
executablefile is the name of an executable file to be loaded by the
debugger. It must have the extension .EXE or .COM. If you try to load a
nonexecutable file, the following message appears:

Not an executable file

Compiled programs and assembly-language programs containing Code­
View symbolic information will always have the extension .EXE. Files
with the extension .COM can be debugged in assembly mode, bu~ they
can never contain symbolic information.

The optional arguments are parameters passed to the executablefile. If the
program you are debugging does not accept command-line arguments, you
do not need to pass any arguments.

If you specify the executablefile as a file name with no extension, the Code­
View debugger searches for a file with the given base name and the exten­
sion .EXE. Therefore, you must specify the .COM extension if you are
debugging a .COM file. If the file is not in the Code View format, the
debugger starts in assembly mode and displays the following message:

No symbolic information

You must specify an executable file when you start the Code View
debugger. If you omit the executable file, the debugger displays a message
showing the correct command-line format.

When you give the debugger a valid command line, the executable pro­
gram and the source file are loaded, the address data are processed, and
the Code View display appears. The initial display will be in window mode

21

Microsoft Code View and Utilities

or sequential mode, depending on the options you specify and the type of
computer you have.

For example, if you wanted to debug the program BENCHMRK.EXE,
you could start the debugger with the following command line:

CV BENCHMRK

If you give this command line on an IBM® Personal Computer, window
mode will be selected automatically. The display will look like Figure 1.1.

22

Uiew Search Run Watch Options Language Calls Help I F8:Trace F5:Go
===========ll stats, for F=========~
1: C**

File

2: C STATS,FOR ~

3: C I 4: C Calculates simple statistics (minimum} maximum} mean} median}
5: C variance} and standard deviation) of up to 50 values,
6: C
7: C Reads one value at a time from unit 5, Echoes values and
8: C writes results to unit 6,
9: C
10: C**
11: I
12:
13:
14:
15:
16:
17:
18:

DIMENSION DAT(50)
OPEN(5} FI LE:} })

N:0
DO 10 I:1} 50

======================================*
Microsoft (R) CodeView (R) Version 2,0
(C) Copyright Microsoft Corp, 1986} 1987, All rights reserved,
>.

Figure 1.1 CodeView Start-Up Screen in Window Mode

Getting Sta.rted

If you give the same command line on most non-IBM computers, sequential
mode will be selected. The following lines appear:

Microsoft (R) CodeView (R) Version 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.

>

You can use CodeView options, as described in Section 1.4, to override the
default start-up mode.

If your program is written in a high-level language, the Code View
debugger is now at the beginning of the start-up code that precedes your
program. In source mode, you can enter an execution command (such as
Trace or Program Step) to execute automatically through the start-up
code to the beginning of your program. At this point, you are ready to
start debugging your program, as described in Chapters 3-11.

1.4 Using CodeView Options

You can change the start-up behavior of the debugger by specifying
options in the command line.

An option is a sequence of characters preceded by either a forward slash
(/) or a dash (-). For brevity, this manual will list only the forward slash
wIlen describing options, but you may use either. Unlike compiler
command-line options, CodeView command-line options are not case sensi­
tive.

A file whose name begins with a dash must be renamed before you use it
with the CodeView debugger, so that the debugger will not interpret the
dash as an option designator. You can use more than one option in a com­
mand line, but each option must have its own option designator, and
spaces must separate each option from other elements of the line.

Note

The CodeView debugger's defaults for IBM Personal Computers are
different from the defaults it has for other computers. However, the
debugger may not always recognize the difference between computers,
and defaults may vary accordingly.

23

Microsoft CodeView and Utilities

The following list suggests some situations in which you might want to use
an option. If more than one condition applies, you can use more than one
option (in any order). If none of the conditions applies, you need not use
any options.

24

Condition

You want to use two monitors with the
CodeView debugger.

You want a 43-line display and you have an
IBM or IBM-compatible computer with an
enhanced graphics adapter (EGA) and an
enhanced color display.

You have a two-color monitor, a color
graphics adapter, and an IBM or IBM­
compatible computer.

You want the CodeView debugger to
automatically execute a series of commands
when it starts up.

You are using an IB11-compatible computer
that does not support certain IBM-specific
interrupt trapping functions.

You have expanded memory, and want the
CodeView debugger to take advantage of it.

You are using an IBM-compatible computer
to debug a program that does not use
graphics or multiple video-display pages, and
you want to be able to see the output screen.

You are using a non-IBM-compatible
computer, and you want to enable
CONTROL+C and CONTROL+BREAK.

You have a mouse installed in your system,
but you do not want to use it during the
debugging session.

You have a non-IBM EGA and have problems
running the debugger.

Option

/2

/43

/B

/Ccommands

/D

/E

/F

/1

/M

/P

You are debugging a graphics program or a IS
program that uses multiple video-display
pages, and you want to be able to see the
output screen.

You are using a non-IBM-compatible IS
computer, and you want to be able to see the
output screen.

You have an IBM computer, but you wish to IT
debug in sequential mode (for example, with
redirection) .

You have an IBM-compatible computer, and IW
you want to use window mode.

Getting Sta.rted

For example, assume you are using an IBM-compatible computer with a
color graphics adapter (CGA) and a two-color monitor. The program you
are debugging, which you could name GRAPHIX.EXE, plots points in
graphics mode. You want to be able to see the output screen during the
debugging session. Finally, you want to be able to start the debugger
several times without having to remember all the options, and you want to
execute the high-level language start-up code automatically each time.
You could create a batch file consisting of the following line:

CV /W /B /S /CGmain GRAPHIX

The CodeView options are described in more detail in Sections 1.4.1-1.4.9
below.

1.4.1 Using Two Video Adapters

• Option

/2

The /2 option permits the use of two monitors with the Code View
debugger. The program display will appear on the current default monitor,
while the CodeView display appears on the other monitor. You must have
two monitors and two adapters to use the /2 option. For instance, if you
have both a color graphics adapter and a monochrome adapter, you might
want to set the CGA up as the default adapter. You could then debug a
graphics program with the graphics display appearing on the graphics
monitor and the debugging display appearing on the monochrome moni­
tor. Microsoft Mouse support will be disabled on the debugging display if
you use this option.

25

Microsoft Code View and Utilities

1.4.2 Using the Enhanced Graphics
Adapter's 43-Line Mode

• Option

/43

If you have an enhanced graphics adapter (EGA) and a monochrome moni­
tor or an enhanced color display monitor (or a compatible monitor), you
can use the /43 option to enable a 43-line-by-80-column text mode. You
cannot use this mode with other monitors, such as a CGA or a mono­
chrome adapter (MA). The Code View debugger will ignore the option if it
does not detect an EGA.

The EGA's 43-line mode performs the same as the normal 25-line-by-80-
column mode used by default on the EGA, CGA, and MA. The advantage
of the 43-line mode is that more text fits on the Code View display; the
disadvantage is that the text is smaller and harder to read. If you have an
EGA, you can experiment to see which size you prefer.

• Example

CV /43 CALC CALC.DAT

The example above starts the CodeView debugger in 43-line mode if you
have an EGA video adapter and an enhanced color or monochrome moni­
tor. The option will be ignored if you lack the hardware to support it.

1.4.3 Starting with a Black-and­
White Display

• Option

/B

The /B option forces the Code View debugger to display in two colors even
if you have a color adapter (CGA, EGA, or compatible). By default, the
debugger checks on start-up to see what kind of display adapter is
attached to your computer. If the debugger detects an MA, it displays in
two colors. If it detects a color adapter, it displays in multiple colors.

If you use a two-color monitor with a CGA or EGA, 'you may want to dis­
able color. Monitors that display in only two colors tusually green and
black, or amber and black) often attempt to show colors with different
cross-hatching patterns, or in gray-scale shades of the display color. In

26

Getting Started

either case, you may find the display easier to read if you use the /B
option to force black-and-white display. Most two-color monitors still have
four color distinctions: background (black), normal text, high-intensity
text, and reverse-video text.

• Example

CV /B CALC CALC.DAT

The example above starts the CodeView debugger in black-and-white
mode. This is the only mode available if you have an MA. The display is
usually easier to read in this mode if you have a CGA and a two-color
monitor.

1.4.4 Specifying Start-Up Commands

• Option

/Ccommands

The / C option allows you to specify one or more commands that will be
executed automatically upon start-up. You can use these options to invoke
the debugger from a batch or MAKE file. Each command is separated
from the previous command by a semicolon.

If one or more of your start-up commands have arguments that require
spaces between them, you should enclose the entire option in double quo­
tation marks. Otherwise, the debugger will interpret each argument as a
separate CodeView command-line argument rather than as a debugging­
command argument.

Warnz'ng

Any start-up option that uses the less-than (<) or greater-than (»
symbol must be enclosed in double quotation marks even if it does not
require spaces. This ensures that the redirection command will be
interpreted by the CodeView debugger rather than by DOS.

• Examples

CV /CGmain CALC CALC. DAT

The example above loads the Code View debugger with CALC as the exe­
cutable file and CALC. DAT as the argument.

27

Microsoft Code View a.nd Utilities

Upon start-up, the debugger executes the high-level-language start-up
code with the command Gmain. Since no space is required between the
CodeView command (G) and its argument {main), the option is not
enclosed in double quotation marks.

CV "/c;S&;G INTEGRAL;DS ARRAYX L 20" CALC CALC.DAT

The example above loads the same file with the same argument as the first
example, but the command list is more extensive. The debugger starts in
mixed source/assembly mode (S&). It executes to the routine INTEGRAL
(G INTEGRAL), and then dumps 20 short real numbers, starting at the
address of the variable ARRAYX (DS ARRAYX L 20). Since several of the
commands use spaces, the entire option is enclosed in double quotation
marks.

CV "/C<INPUT.FIL" CALC CALC.DAT

The example above loads the same file and argument as the first example,
but the start-up command directs the debugger to accept input from the
file INPUT. FIL rather than from the keyboard. Although the option does
not include any spaces, it must be enclosed in double quotation marks so
that the less-than symbol will be read by the CodeView debugger rather
than by DOS.

1.4.5 Handling Interrupt Trapping

• Options

/D
/1

The ID option turns off nonmaskable interrupt (NMI) trapping and 8259
interrupt trapping. If you are using an IBM PC Convertible, Tandy® 1000,
or the AT&T® 6300 Plus and you are experiencing system crashes while
using the Code View debugger, try starting with the /D option. To enable
window mode, use IW with ID; otherwise sequential mode is set automat­
ically. Note that because this option turns off interrupt trapping,
CONTROL+C and CONTROL+BREAK will not work, and an external interrupt
may occur during a trace operation. If this happens you may find yourself
tracing the interrupt handler instead of your program.

The II option forces the debugger to handle NMI and 8259 interrupt trap­
ping. Use this option to enable CONTROL+C and CONTROL+BREAK on com­
puters not recognized as being IBM compatible by the debugger, comput­
ers such as the Eagle® PC. Window mode is set automatically with the /1

28

Getting Started

option; you don't have to specify /W. Using the /1 option lets you stop
program execution at any point while you are using the Code View
debugger.

1.4.6 Using Expanded Memory

• Option

/E

"Expanded memorx" refers to memory made accessible according to the
Microsoft/Lotus® jIntel® EMS specification. This access provides your
system with memory above the 640k MS-DOS limitation on RAM. How­
ever, since MS-DOS will not recognize this additional memory, programs
can make use of expanded memory in limited ways.

The /E option enables the use of expanded memory. If expanded memory
is present, the Code View debugger will use it to store the symbolic infor­
mation of the program. This may be as much as 85% of the size of the exe­
cutable file for the program, and represents space that would otherwise be
taken up in main memory.

Note

This option enables only expanded memory, not extended memory.
Extended memory makes use of protected-mode instructions, rather
than the Microsoft/Lotus/Intel specification for memory paging.

1.4.7 Setting the Screen-Exchange Mode

• Options

/F
/S

The Code View debugger allows you to move quickly back and forth
between the output screen, which contains the output from your program,
and the debugging screen, which contains the debugging display. The
debugger can handle this screen exchange in two ways: screen flipping or
screen swapping. The /F option (screen flipping) and the /S option
(screen swapping) allow you to choose the method from the command line.

29

Microsoft Code View a.nd Utilities

If neither method is specified (possible only on non-IBM computers), the
Screen Exchange command wi11 not work. No screen exchange is the
default for non-IBM computers. Screen flipping is the default for IBM com­
puters with graphics adapters, and screen swapping is the default for IBM
computers with monochrome adapters. Screen flipping uses the video­
display pages of the graphics adapter to store each screen of text. Video­
display pages are a special memory buffer reserved for multiple screens of
video output. This method is faster and uses less memory than screen
swapping. However, screen flipping cannot be used with an MA, nor to
debug programs that produce graphics or use the video-display pages. In
addition, the Code View debugger's screen flipping works only with IBM
and IBM-compatible microcomputers.

Screen swapping has none of the limitations of screen flipping, but is
significantly slower and requires more memory. In the screen-swapping
method, the Code View debugger creates a buffer in memory and uses it to
store the screen that is not being used. When the user requests the other
screen, the debugger swaps the screen in the display buffer for the one in
the storage buffer.

When you use screen swapping, the buffer size is 16K for all adapters. The
amount of memory used by the Code View debugger is increased by the size
of the buffer.

Table 1.1 shows the default exchange mode (swapping or flipping) and the
default display mode (sequential or window) for various configurations.
Display modes are discussed in Section 1.4.10, "Enabling Window or
Sequential Mode."

Table 1.1

Default Exchange and Display Modes

Display Default
Computer Adapter Modes Alternate Modes

mM CGAorEGA IF/W IS if your program uses video-
display pages or graphics; IT for
sequential mode

mM compatible CGAorEGA IT IW for window mode; IF for
screen flipping with text
programs, or lS for screen
swapping wit programs that use
video-display pages or graphics

mM MA IS/W IT for sequential mode
mM compatible MA IT IW for wind?w mode; IS for

screen swappmg

Noncompatible Any IT IS for screen swapping

30

Getting Started

If you are not sure if your computer is completely IBM compatible, you
can experiment. If the basic input/output system (BIOS) of your computer
is not compatible enough, the Code View debugger may not work with the
IF option.

If you specify the IF option with an MA, the debugger will ignore the
option and use screen swapping. If you try to use screen flipping to debug
a program that produces graphics or uses the video-display pages, you
may get unexpected results and have to start over with the /S option.

• Examples

CV /F CALC CALC. DAT

The example above starts the CodeView debugger with screen flipping.
You might use this command line if you have an IBM-compatible com­
puter, and you want to override the default screen-exchange mode in order
to use less memory and switch screens more quickly. The option would not
be necessary on an IBM computer, since screen flipping is the default.

II Example

CV /s GRAFIX

The example above starts the debugger with screen swapping. You might
use this command line if your program uses graphics mode.

1.4.8 Turning Off the Mouse

.. Option

1M
If you have a mouse installed on ;:our system, you can tell the Code View
debugger to ignore it, using the 1M option. You may need to use this
option if you are debugging a program that uses the mouse and your
mouse is not a Microsoft Mouse. This is due to a conflict between the
program's use of the mouse and the debugger's use of it. Use of 1M may
possibly disable the program's use of the mouse, as well as CodeView's.

31

Microsoft Code View and Utilities

Important

The same conflict between program and debugger applies if you are
not using the current Microsoft Mouse driver program
(MOUSE.SYS), which is included on the distribution disks for certain
Microsoft products. You may want to replace your old mouse driver
program with the updated version. You will then be able to use the
mouse with both the Code View debugger and the program you are
debugging. If you did not install a mouse driver when you set up Ver­
sion 4.0 of Microsoft FORTRAN, Version 5.0 of Microsoft C, or Ver­
sion 5.0 of Macro Assembler, see your User's Guide for information on
installing MOUSE.SYS. These programs may not work with pointing
devices from other manufacturers.

1.4.9 Extending EGA Compatibility

• Option

/P

The use of the /P option may enable the Code View debugger to run prop­
erly in window mode on a non-IBM version of the enhanced graphics
adapter (EGA).

Normally, the debugger will save and restore the palette registers of an
enhanced graphics adapter. However, although this procedure works per­
fectly well with an IBM EGA, it can create conflicts with other EGAs. The
/P option prevents the saving and restoring of palette registers, and so
may enhance compatibility.

Symptoms that may indicate the need for using /P include the debugging
screen starting in nonstandard colors, and the debugger appearing to
crash in window mode.

Note

32

The /P option may cause the program being debugged to lose some
colors, whenever you switch back and forth between the debugging
screen and the output screen. Therefore, do not use the /P option
unless necessary.

Getting Started

1.4.10 Enabling W-mdow or Sequential Mode

• Options

/T
/w

The CodeView debugger can operate in window mode or in sequential
mode. Window mode displays up to four windows, enabling you to see
different aspects of the debugging-session program simultaneously. You
can also use a mouse in window mode. Window mode requires an IBM or
IBM-compatible microcomputer.
Sequential mode works with any computer and is useful with redirection
commands. Debugging information is displayed sequentially on the screen.

The behavior of each mode is discussed in detail in Chapter 2, "The Code­
View Display." Refer back to Table 1.1 for the default and alternative
modes for your computer. If you are not sure if your computer is com­
pletely IBM compatible, you can experiment with the options. If the BIOS
of your computer is not compatible enough, you may not be able to use
window mode (the /W option).

Note

Although window mode is more convenient, any debugging operation
that can be done in window mode can also be done in sequential mode.

• Examples

CV /W SIEVE

The example above starts the Code View debugger in window mode. You
will probably want to use the /Woption if you have an IBM-compatible
computer, since the default sequential mode is less convenient for most
debugging tasks.

CV IT SIEVE

The example above starts the debugger in sequential mode. You might
want to use this option if you have an IBM computer, and you have a
specific reason for using sequential mode. For instance, sequential mode
usually works better if you are redirecting your debugging output to a
remote terminal.

33

Microsoft Code View and Utilities

1.5 Debugging Large Programs

Because the Code View debugger must reside in memory along with the
program you are debugging, there may not be enough room to debug some
large programs that could otherwise run in memory alone. However, there
are at least three ways to get around memory limitations:

1. If you have expanded memory, use the /E option described earlier.
This will enable Code View to put the symbol table in expanded
memory, thus freeing up a good deal of main memory.

2. Since CodeView now supports the debugging of overlayed pro­
grams, you can substantially reduce the amount of memory
required to run your program by using overlays when you link your
program.

3. Save space by using !Zi with modules you plan to focus on in the
debugging session only, using /Zd with other modules.

i.6 Working with Older Versions
of the Assembler

You can run the Code View debugger with files developed using older ver­
sions of the Microsoft or IBM assemblers (prior to 5.0). Since older versions
do not write line numbers to object files, some of the Code View debugger's
features will not be available when you debug programs developed with
the older assemblers. The following considerations apply, in addition to
the considerations mentioned in Section 1.2.8, "Preparing Assembly Pro­
grams."

The procedure for assembling and debugging .EXE files by using older
versions of the assembler is summarized below. The debugger can be used
on either .EXE or .COM files, but you can only view symbolic informa­
tion in .EXE files.

34

1. In your source file, declare public any symbols, such as labels and
variables, that you want to reference in the debugger. If the file is
small, you may want to declare all symbols public.

2. As mentioned earlier, make sure that the code segment has class
name CODE.

Getting Sta.rted

3. Assemble as usual. No special options are required, and all assem­
bly options are allowed.

4. Use LINK, Version 3.6 or later. Do not use the linker provided with
older assembler versions. Use the /CODEVIEWoption when
linking.

5. Debug in assembly mode (this is the start-up default if the
debugger fails to find line-number information). You cannot use
source mode for debugging, but you can load the source file into
the display window and view it in source mode. Any labels or vari­
ables that you declared public in the source file can be displayed
and referenced by name instead of by address. However, they can­
not be used in expressions because type information is not written
to the object file.

35

CHAPTER

THE CODEVIEW DISPLAY

2.1 Using Window Mode ... 3g
2.1.1 Executing Window

Commands with the I(eyboard ...•................. 41
2.1.1.1 Moving the Cursor

with J(eyboard Commands ••••••••••.•••••.• 41
2.1.1.2 Changing the Screen

with I(eyboard Commands ••••••••••.••••••• 43
2.1.1.3 Controlling Program Execution

with I(eyboard Commands .•••••••••.•••.•.• 44
2.1.1.4 Selecting from Menus

with the Keyboard •••••••••.•••.••.•••.••••••. 45
2.1.2 Executing Window Commands

with the Mouse ... 47
2.1.2.1 Changing the Screen

with the Mouse ••••••••••••••••••••••••.••••••• 47
2.1.2.2 Controlling Program

Execution with the Mouse ••••••..••..•.••.. 48
2.1.2.3 Selecting from Menus

with the Mouse •.•••••.•••••••••••••••••••••••• 50
2.1.3 Using Menu Selections•..... 52

2.1.3.1 The File Menu ••.••••.•..••••.•.•••••••.••.•••. 52
2.1.3.2 The View Menu •••.••.••..•.••••••...••..•.•..• 54
2.1.3.3 The Search Menu •••••••••••••.••••••••..•...•• 55
2.1.3.4 The Run Menu ••.••.•.••••••••.••••••••.••••••• 57
2.1.3.5 The Watcll Menu ...•....•.....•.••..••..•.•.•• 58
2.1.3.6 The Options Menu ••.....••••..••..•••.••••••• 60
2.1.3.7 The Language Menu .•..•.•..•..•.•.•..••••.•• 62
2.1.3.8 The Calls Menu •.•.•....••.•.•.••••••••.••••••• 63
2.1.3.9 The Help Menu •..••.•••..••..••.•••.....••.••. 65

2.1.4 Using the Help System 65
2.2 Using Sequential Mode ... 66

The Code View Display

The Microsoft Code View debugger screen display can appear in two
different modes-window and sequential. Either mode provides a useful
debugging environment, but the window mode is the more powerful and
convenient of the two. The CodeView debugger accepts either window
commands or dialog commands. Dialog commands are entered as com­
mand lines following the CodeView prompt (» in sequential mode. They
are discussed in Chapter 3, "Using Dialog Commands."

You will probably want to use window mode, if you have the hardware to
support it. In window mode, the pull-down menus, function keys, and
mouse support offer fast access to the most common commands. Different
aspects of the program and debugging environment can be seen in different
windows simultaneously. Window mode is described in Section 2.1.

Sequential mode is similar to the display mode of the Code View
debu~ger's predecessors, the Microsoft Symbolic Debug Utility (SYM­
DEB) and the DOS DEBUG utility. This mode is required if you do not
have an IBM-compatible computer, and it is sometimes useful when
redirecting command input or output. Sequential mode is described in Sec­
tion 2.2.

2.1 Using Window Mode

The elements of the Code View display marked in Figure 2.1 below include
the following:

1. The display window shows the program being debugged. It can
contain source code (as in the example), assembly-language instruc­
tions, or any specified text file.

2. The current location line (the next line the program will execute) is
displayed in reverse video or in a different color. This line may not
always be visible, because you can scroll to earlier or later parts of
the program.

3. Lines containing previously set breakpoints are shown in high­
intensity text.

4. The dialog window is where you enter dialog commands. These are
the commands with optional arguments that you can enter at the
CodeView prompt (». You can scroll up or down in this window to
view previous dialog commands and command output.

5. The cursor is a thin, blinking line that shows the location at which
you can enter commands from the keyboard. You can move the
cursor up and down, and place it in either the dialog or display
window.

Microsoft Code View and Utilities

2
9

10 11 12 7

,

File View Search Run Watchl Options Language Call~ Help I F8:Trace F5:Go

0) n : 4 / AX : 0196

~ ~ ~~~nc~ ~ , 0~~~~~~~~~~ ~~~~~~~ t ~i: :: I g ~ M t~
=======1 Delete Watch", Ctrl+U DX : 00B0
28: Delete All Watch SP : 1152
29: eL.....-------~ BP : 1174
30: sum: sum + roll(n); SI : 019E

1

\31: el se { DI : 1162
w;32.: •••••••• lchBani9ce.:_ro~IID(n_)--L.' ~~~~._)(DS : 59AD ~ ~S : 59AD
~1: sum: sum + ~ qhance * hi g~er); I~S : 59AD V
35' nri ntf("I.S 1.2d II I str1 I n) I' C~ : 553A

1

/36: I, print£("Xs X£\n", str2, higher * 199) IP: 0119
37:} ./
38:} ~ NV UP

3

/f)DB 100 L 64 t= ~~ ~~
59AD:0060 65 20 67 61-6D 65 20 61 72 65 20 00 e g~~ PO NC
59AD:0070 0A 0A 00 25 73 20 25 66-0A 00 25 73 20 25 66 00 ",ils ~
59AD:0080 01 00 02 00 03 00 04 00-05 00 06 00 05 00 04 00 ~::~.
59AD:0090 03 00 02 00 01 00 4F 64-64 73 20 6F 66 20 77 69 ::::: :Od1"(

\ 59AD: 00A0 6E 6E 69 6E - nni r
).

SS:1172
0004

,

~~~--------~--------------------------+----+----~ 
4 5 

6 
13 8 1 

Figure 2.1 Elements of the Code View Debugging Screen 

6. The display/dialog separator line divides the dialog window from 
the display window. 

7. The register window shows the current status of processor registers 
and flags. This is an optional window that can be opened or closed 
with one keystroke or with the mouse. If the 386 option is on, a 
much wider register window is displayed, with 32-bit registers. The 
register window also displays the effective address at the bottom of 
the window; the effective address shows the actual location of an 
operand in physical memory. It is useful when debugging in assem­
bly mode. 

8. The scroll bars are the vertical bars on the right side of the screen. 
Each scroll bar has an up arrow and a down arrow that you can use 
to scroll through the display with a mouse. 

40 



The Code View Display 

9. The optional watch window shows the current status of specified 
variables or expressions. It appears automatically whenever you 
create watch statemen ts. 

10. The menu bar shows titles of menus and commands that you can 
activate with the keyboard or the mouse. "Trace" and "Go" 
represent commands; the other titles are all menus. 

11. Menus can be opened by specifying the appropriate title on the 
menu bar. On the sample screen, the Watch menu has been opened. 

12. The menu "highlight" is a reverse-video or colored strip indicating 
the current selection in a menu. You can move the highlight up or 
down to change the current selection. 

13. The mouse pointer indicates the current position of the mouse. It is 
shown only if you have a mouse installed on your system. 

14. Dialog boxes (not shown) appear in the center of the screen when 
you choose a menu selection that requires a response. The box 
prompts you for a response and disappears when you enter your 
answer. 

15. Message boxes (not shown) appear in the center of the screen to 
display errors or other messages. 

The screen elements are described in more detail in the rest of this 
chapter. 

2.1.1 Executing Window 
Commands with the Keyboard 

The most common Code View debugging commands, and all the commands 
for managing the CodeView display, are available with window commands. 
Window commands are one-keystroke commands that can be entered with 
function keys, CONTROlrkey combinations, ALT-key combinations, or the 
direction keys on the numeric keypad. 

Most window commands can also be entered with a mouse, as described in 
Section 2.1.2, "Changing the Screen with the Mouse." The window com­
mands available from the keyboard are described by category in Sections 
2.1.1.1-2.1.1.4 below. 

2.1.1.1 Moving the Cursor 
with Keyboard Commands 

The following keys move the cursor or scroll text up or down in the display 
or dialog window. 

41 



Microsoft Code View a.nd Utilities 

Key 

F6 

CONTROL+G 

CONTROL+T 

UPARROW 

DOWN ARROW 

PGUP 

PGDN 

42 

Function 

Moves the cursor between the display and dialog 
windows. 

If the cursor is in the dialog window when you press 
F6, it will move to its previous position in the display 
window. If the cursor is in the display window, it will 
move to its previous position in the dialog window. 

Makes the size of the dialog or display window grow. 

This works for whichever window the cursor is in. If 
the cursor is in the display window, then the 
display/dialog separator line will move down one 
line. If the cursor is in the dialog window, then the 
separator line will move up one line. 

Makes the size of the dialog or display window 
smaller. 

This works for whichever window the cursor is in. If 
the cursor is in the display window, then the 
display/dialog separator line will move up one line. If 
the cursor is in the dialog window, then the separator 
line will move down one line. 

Moves the cursor up one line in either the display or 
dialog window. 

Moves the cursor down one line in either the display 
or dialog window. 

Scrolls up one page. 

If the cursor is in the display window, the source lines 
Or assembly-language instructions scroll up. If the 
cursor is in the dialog window, the buffer of com­
mands entered during the session scrolls up. The cur­
sor remains at its current position in the window. 
The length of a page is the current number of lines in 
the window. 

Scrolls down one page. 

If the cursor is in the display window, the source lines 
or assembly-language instructions scroll down. If the 
cursor is in the dialog window, the buffer of com­
mands entered during the session scrolls down. The 
cursor remains at its current position in the window. 
The length of a page is the current number of lines in 
the window. 



HOME 

END 

The Code View Display 

Scrolls to the top of the file or command buffer. 

If the cursor is in the display window, the text scrolls 
to the start of the source file or program instructions. 
If the cursor is in the dialog window, the commands 
scroll to the top of the command buffer. The top of 
the command buffer may be blank if you have not yet 
en tered enough commands to fill the buffer. The cur­
sor remains at its current position in the window. 

Scrolls to the bottom of the file or command buffer. 

If the cursor is in the display window, the text scrolls 
to the end of the source file or program instructions. 
If the cursor is in the dialog window, the commands 
scroll to the bottom of the command buffer, and the 
cursor moves to the CodeView prompt (» at the end 
of the buffer. 

2.1.1.2 Changing the Screen 
with Keyboard Commands 

The following keys change the screen or switch to a different screen. 

Key 

Fl 

F2 

F3 

Function 

Displays initial on-line help screen. 

The help system is discussed in Section 2.1.4. You 
can also take advantage of the help system by using 
the Help menu, as mentioned in Section 2.1.3.9. 

Toggles the register window. 

The window disappears if present, or appears if 
absent. You can also toggle the register window with 
the Register selection from the View menu, as 
described in Section 2.1.3.2. 

Switches between source, mixed, and assembly 
modes. 

Source mode shows source code in the display win­
dow, whereas assembly mode shows assembly­
language instructions. Mixed mode shows both. You 
can also change modes with the Source, Mixed, and 
Assembly selections from the View menu, as 
described in Section 2.1.3.2. 

43 



Microsoft Code View and Utilities 

F4 Switches to the output screen. 

The output screen shows the output, if any, from 
your program. Press any key to return to the Code­
View screen. 

2.1.1.3 Controlling Program Execution 
with Keyboard Commands 

The following keys set and clear breakpoints, trace through your program, 
or execute to a breakpoint. 

Key 

F5 

F7 

F8 

F9 

44 

Function 

Executes to the next breakpoint or to the end of the 
program if no breakpoint is encountered. 

This keyboard command corresponds to the Go dia­
log command when it is given without a destination 
breakpoint argument. 

Sets a temporary breakpoint on the line with the cur­
sor, and executes to that line (or to a previously set 
breakpoint or the end of the program if either is 
encountered before the temporary breakpoint). 

In source mode, if the line does not correspond to 
code (for example, data declaration or comment 
lines), the Code View debugger sounds a warning and 
ignores the command. This window command 
corresponds to the Go dialog command when it is 
given with a destination breakpoint. 

Executes a Trace command. 

The Code View debugger executes the next source line 
in source mode or the next instruction in assembly 
mode. If the source line or instruction contains a call 
to a routine or interrupt, the debugger starts tracing 
through the call (enters the call and is ready to exe­
cute the first source line or instruction). This com­
mand will not trace in to DOS function calls. 

Sets or clears a breakpoint on the line with the 
cursor. 

If the line does not currently have a breakpoint, one 
is set on that line. If the line already has a break­
point, the breakpoint is cleared. If the cursor is in the 
dialog window, the Code View debugger sounds a 
warning and ignores the command. This window 



FlO 

Important 

The CodeView Display 

command corresponds to the Breakpoint Set and 
Breakpoint Clear dialog commands. 

Executes the Program Step command. 

The CodeView debugger executes the next source line 
in source mode, or the next instruction in assembly 
mode. If the source line or instruction contains a call 
to a routine or interrupt, the debugger steps over the 
entire call (executes it to the return) and is ready to 
execu te the line or instruction after the call. 

You can usually interrupt program execution by pressing either 
CONTROL+BREAK or CONTROL+C. These key combinations can be used 
to exit endless loops or to interrupt loops that are slowed by the 
Watchpoint or Tracepoint commands (see Chapter 8, "Managing 
Watch Statements"). CONTROL+BREAK or CONTROL+C may not work 
if your program has a special use for one or both of these key combina­
tions. If you have an IBM Personal Computer AT (or an AT­
compatible), you can use the SYSTEM-REQUEST key to interrupt execu­
tion regardless of your program's use of CONTROL+BREAK and 
CONTROL+C. 

2.1.1.4 Selecting from Menus 
with the Key board 

This section discusses how to make selections from menus with the key­
board. The effects of the selections are discussed in Section 2.1.3, "Using 
Men u Selections." 

The menu bar at the top of the screen has eleven titles: File, View, Search, 
Run, Watch, Options, Language, Calls, Help, Trace, and Go. The first nine 
titles are menus, and the last two are commands. The Trace and Go titles 
are provided primarily for mouse users. 

The four steps for opening a menu and making a selection are described 
below. 

1. To open a menu, press the ALT key and the mnemonic (the first 
letter) of the menu title. This can be accomplished either by press­
ing the ALT key first, releasing the key, and pressing the letter; or 
you can hold down the ALT key and then press the letter. For 
example, press ALT+S to open the Search menu. The menu title is 
highlighted, and a menu box listing the selections pops up below 
the title. 

45 



Microsoft CodeView a.nd Utilities 

You can type either an uppercase or lowercase letter to open any of 
the menus. 

2. There are two ways to make a selection from an open menu: 

a. Press the DOWN ARROW key on the numeric keypad to move 
down the menu. The highlight will follow your movement. 
When the item you want is highlighted, press the ENTER key to 
execute the command. For example, press the DOWN ARROW 
once to select Find from the Search menu. 

You can also press the UP ARROW key to move up the menu. If 
you move off the top or bottom of the menu, the highlight 
wraps around to the other end of the menu. 

b. Press the key corresponding to the menu-selection mnemonic. 
The mnemonic is simply a single letter that represents the 
selection. In color displays, this letter is in red; in black-and­
white displays, this letter is in bold. In most cases, but not all, 
the letter is simply the first letter of the name of the selection. 
You can type either an uppercase or lowercase letter for the 
same selection. 

3. After a selection is made from the menu, one of three things will 
happen: 

a. For most menu selections, the choice is execu ted immediately. 

b. The items on the View, Options, and Language menus have 
small double arrows next to them if the option is on, or no 
arrows if the option is off. Choosing the item toggles the 
option. The status of the arrows will be reversed the next time 
an option is chosen. 

c. Some items require a response. In this case, there is another 
step in the menu-selection process. 

4. If the item you select requires a response, a dialog box opens when 
you select a menu item. Type your response to the prompt in the 
box and press the ENTER key. For example, the Find dialog box 
asks you to enter a regular expression (see Appendix A for a com­
plete explanation of regular expressions). 

If your response is valid, the command will be executed. If you 
enter an invalid response, a message box will appear, telling you 
the problem and asking you to press a key. Press any key to make 
the message box disappear. 

At any point during the process of selecting a menu item, you can press 
the ESCAPE key to cancel the menu. While a menu is open, you can press 
the LEFT ARROW or RIGHT ARROW key to move from one menu to an adja­
cent menu, or to one of the command titles on the menu bar. 

46 



The Code View Display 

Pressing ENTER without entering any characters in response to a message 
box will also cancel the menu. 

2.1.2 Executing Window Commands 
with the Mouse 

The Code View debugger is designed to work with the Microsoft Mouse (it 
also works with some compatible pointing devices). By moving the mouse 
on a flat surface, you can move the mouse pointer in a corresponding 
direction on the screen. The following terms refer to the way you select 
items or execute commands with the mouse. 

Term 

Point 

Click 

Drag 

Definition 

Move the mouse until the mouse pointer rests on the item 
you want to select. 

Quickly press and release a mouse button while pointing 
at an item you want to select. 

Press a mouse button while on a selected item, then hold 
the button down while moving the mouse. The item moves 
in the direction of the mouse movement. When the item 
you are moving is where you want it, release the button; 
the item will stay at that place. 

The CodeView debugger uses two mouse buttons. The terms "click right," 
"click left," "click both," and "click either" are sometimes used to desig­
nate which buttons to use. When dragging, either button can be used. 

2.1.2.1 Changing the Screen 
with the Mouse 

You can change various aspects of the screen display by pointing to one of 
the following elements and then either clicking or dragging. 

Item 

Double line 
separating display 
and dialog 
windows 

Action 

Drag the separator line up to increase the size of 
the dialog window while decreasing the size of 
the display window, or drag the line down to 
increase the size of the display window while 
decreasing the size of the dialog window. You 
can eliminate either window completely by drag­
ging the line all the way up or down (providing 
the cursor is not in the window you want to 
eliminate ). 

47 



Microsoft Code View and Utilities 

UP ARROW or 
DOWN ARROW on 
the scroll bar 

Scroll bar elevator 

Point and click left button on one of the four 
arrows on the scroll bars to scroll up or down. If 
you are in the display window, source code 
scrolls up or down. If you are in the dialog win­
dow, the buffer containing dialog commands 
entered during the session scrolls up or down. 

Click left button to scroll up or down just one 
line at a time. Press left button and hold it 
down in order to scroll continuously. Continu­
ous scrolling is easier to use when you want to 
scroll more than a couple of lines. The scrolling 
stops as soon as you release the ,mouse button. 

Each scroll bar has an "elevator," which is a 
highlighted rectangle on the bar that can be 
moved up or down with the mouse. In the 
display window, the elevator indicates your rela­
tive position in the source file; if you are in 
mixed or assembly mode, the elevator indicates 
your position in the executable file relative to 
the instructions that correspond to the source 
file. You can move quickly through the source 
file by dragging the display window elevator up 
or down. 

In the dialog window, the position of the eleva­
tor does not have any significance. 

To move up one page (either in the display or 
dialog window), click the scroll bar anywhere 
above the elevator. To move down a page, click 
the scroll bar anywhere below the elevator. 

2.1.2.2 Controlling Program 
Execution with the Mouse 

By clicking the following mouse items, you can set and clear breakpoints, 
trace through your program, execute to a breakpoint, or change flag bits. 

48 

Item 

Source line or 
instruction 

Action 

Point and click on a source line in source mode 
or on an instruction in assembly mode to take 
one of the following actions: 



"Trace" on menu 
bar 

Button 

Click left 

Click right 

The Code View Displa.y 

Result 

If the line under the mouse cursor 
does not have a breakpoint, one 
is set there. If the line already 
has a breakpoint, the breakpoint 
is removed. Lines with break­
poin ts are shown in high­
intensity text. 

A temporary breakpoint is set on 
the line, and the Code View 
debugger executes until it reaches 
the line (or un til it reaches a pre­
viously set breakpoint or the end 
of the program if either is 
encountered before the tem­
porary breakpoint). 

If you click on a line that does not correspond to 
code (for example, a declaration or comment), 
the Code View debugger will sound a warning 
and ignore the command. 

Point and click to trace the next instruction. 
The kind of trace is determined by the button 
clicked: 

Button 

Click left 

Click right 

Result 

The Trace command is executed. 
The CodeView debugger executes 
the next source line in source 
mode or the next instruction in 
assembly mode. If the source line 
or instruction contains a call to a 
routine or interrupt, the 
debugger starts tracing through 
the call (it enters the call and is 
ready to execu te the first source 
line or instruction). This com­
mand will not trace into DOS 
function calls. 

The Program Step command is 
executed. The debugger executes 
the next source line in source 
mode, or the next instruction in 

49 



Microsoft Code View and Utilities 

"Go" on menu bar 

Flag in register 
window 

assembly mode. If the source line 
or instruction contains a call to a 
routine or interrupt, the Code­
View debu!lger steps over the 
entire call tit executes the call to 
the return) and is ready to exe­
cute the line or instruction after 
the call. 

These two commands are different only if the 
current location is the start of a procedure, 
interrupt, or call. 

Point and click either button to execute to the 
next breakpoint, or to the end of the program if 
no breakpoints are encountered. 

Point to a flag name and click either button to 
reverse the flag. If the flag bit is set, it will be 
cleared; if the flag bit is cleared, it will be set. 
The flag name is changed on the screen to match 
the new status. If you are using color mode, the 
color of the flag mnemonic will also change. This 
command can only be used when the register 
window is open. Use the command with caution, 
since changing flag bits can change program exe­
cu tion at the lowest level. 

Important 

You can usually interrupt program execution by pressing either 
CONTROL+BREAK or CONTROL+C. See the note in Section 2.1.1.3, 
"Controlling Program Execution with Keyboard Commands," for 
more information. 

2.1.2.3 Selecting from Menus 
with the Mouse 

This section discusses how to make selections from menus with the mouse. 
The effect of each selection is discussed in Section 2.1.3, "Using Menu 
Selections." 

The menu bar at the top of the screen has nine titles: File, View, Search, 
Run, Watch, Options, Language, Calls, Help, Trace, and Go. The first 
nine titles are menus, and the last two are commands that you can execute 
by clicking with the mouse. The five steps for opening a menu and making 

50 



The CodeView Display 

a selection are described below: 

1. To open a menu, point to the title of the menu you want to select. 
For example, move the pointer onto File on the menu bar if you 
want to open the File menu. 

2. With the mouse pointer on the title, press and hold down either 
mouse button. The selected title is highlighted and a menu box 
with a list of selections pops up below the title. For example, if you 
point to Search and press a button, the Search menu pops up. 

3. With the button held down, move the mouse toward you. The 
highlight follows the mouse movement. You can move the highlight 
up or down in the menu box. For example, to select Find from the 
Search menu, move the highlight down the menu to Find. 

If you move off the box, the highlight will disappear. However, as 
long as you do not release the button, you can move the pointer 
back onto the menu to make the highlight reappear. 

4. When the selection you want is highlighted, release the mouse but­
ton. For example, release the button with the highlight on Find. 

When you release the button, the menu selection is executed. One 
of three things will happen: 

a. For most menu selections, the choice is executed immediately. 

b. The items on the View, Options, and Language menus have 
small double arrows next to them if the option is on, or no 
arrows if the option is off. Choosing the item toggles the 
option. The status of the arrows on a chosen item will appear 
reversed the next time you open the menu. 

c. Some items require a response. In this case, there is another 
step in the menu-selection process. 

5. If the item you select requires a response, a dialog box with a 
prompt appears. Type your response and press the ENTER key or a 
mouse button. For example, if you selected Find, the prompt will 
ask you to enter a regular expression (see Section 2.1.3.3, "The 
Search Menu," or Appendix A, "Regular Expressions," for an 
explanation of regular expressions). 

If your response is valid, the command will be executed. If you 
enter an invalid response in the dialog box, a message box will 
appear telling you the problem and asking you to press a key. 
Press any key or click a mouse button to make the message box 
disappear. 

Also, if you press ENTER without entering any characters, the mes­
sage box will disappear. 

51 



Microsoft Code View a.nd Utilities 

There are several shortcuts you can take when selecting menu items with 
the mouse. If you change your mind and decide not to select an item from 
a menu, just move off the menu and release the mouse button-the menu 
will disappear. You can move from one menu to another by dragging the 
pointer directly from any point on the current menu to the title of the 
new menu. 

2.1.3 Using Menu Selections 

This section describes the selections on each of the CodeView menus. 
These selections can be made with the keyboard, as described in Section 
2.1.1, or with the mouse, as described in Section 2.1.2. 

Note that although the Trace and Go commands appear on the menu bar, 
they are not menus. These titles are provided primarily for mouse users. 

2.1.3.1 The File Menu 

The File menu includes selections for working on the current source or 
program file. The File menu is shown in Figure 2.2, and the selections are 
explained below. 

_I U i ew Search Run Watch Ovti ons Language Call s Hel V I F8:Trace F5:Go 
l=========I:====~1 dice, C f============l 

Oven, , , 
Dos Shell 
Exit 

59: 

-~~-----------------------------

Selection 

Open ... 

52 

Figure 2.2 The File Menu 

Action 

Opens a new file. 

When you make this selection, a dialog box appears 
asking for the name of the new file you want to open. 
Type the name of a source file, an include file, or any 
other text file. The text of the new file replaces the 
current contents of the display window (if you are in 
assembly mode~ the Code View debugger will switch 
to source mode). When you finish viewing the file, 



DOS Shell 

Exit 

The Code View Display 

you can reopen the original file. The last location and 
breakpoints will still be marked when you return. 

You may not need to open a new file to see source 
files for a different module of your program. The 
CodeView debugger automatically switches to the 
source file of a module when program execution 
enters that module. Although switching source files is 
never necessary, it may be desirable if you want to 
set breakpoints or execute to a line in a module not 
currently being executed. 

Note 
If the debugger cannot find the source file when it 
switches modules, a dialog box appears asking for 
a file specification for the source file. You can 
either enter a new file specification if the file is in 
another directory, or press the ENTER key if no 
source file exists. If you press the ENTER key, the 
module can only be debugged in assembly mode. 

Exits to a DOS shell. This brings up the DOS screen, 
where you can execute DOS commands or executable 
files. To return to the CodeView debugger, type 
exi t at the DOS command prompt. The Code View 
screen reappears with the same status it had when 
you left it. 

The Shell Escape command works by saving the 
current processes in memory and then executing a 
second copy of CO:M:MAND.COM. This requires 
more than 200I( of free memory, since the debugger, 
CO:M:MAND.COM, symbol tables, and the 
debugged program must all be saved in memory. If 
you do not have enough memory to execute the Shell 
Escape command, an error message appears. Even if 
you have enough memory to execute the command, 
you may not have enough memory left to execute 
large programs from the shell. 

The Shell Escape command does not work under cer­
tain conditions. See Section 11.7 for additional infor­
mation. 

Terminates the debugger and returns to DOS. 

53 



Microsoft Code View and Utilities 

2.1.3.2 The View Menu 

The View menu includes selections for switching between source and as­
sembly modes, and for switching between the debugging screen and the 
output screen. The corresponding function keys for menu selection are 
shown on the right side of the menu where appropriate. The View menu is 
shown in Figure 2.3, and the selections are explained below. 

Note 

The terms "source mode" and "assembly mode" apply to Microsoft 
Macro Assembler programs as well as to high-level-language programs. 
Source mode used with assembler programs shows the source code as 
originally written, including comments and directives. Assembly mode 
displays un assembled machine code, without symbolic information. 

The use of one mode or another affects Trace and Program Step com­
mands, as explained in Chapter 5, "Executing Code." 

Fi Ie 

55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 

_, Seapch 

» Soupce 
Mixed 
Assembly 

Registeps 

Output 

Run 

F2 

F4 

Watch Options Language Calls Help I F8:Tpace F5:Go 
===9 dice, C F===============l 

- -~:- - - - - - - - - - - - - - - - - - - - - - - - - - - -',--

Figure 2.3 The View Menu 

At all times exactly one of the following selections will have a small double 
arrow to the left of the name: Source, Mixed, and Assembly. This arrow 
indicates which of the three display modes is in use. If you select a mode 
when you are already in that mode, the selection will be ignored. The 
Registers selection mayor may not have a double arrow to the left, 
depending on whether or not the register window is being displayed. 

54 



Selection 

Source 

Mixed 

Assembly 

Registers 

Output 

The Code View Display 

Action 

Changes to source mode (showing source lines only). 

Changes to mixed mode (showing both un assembled 
machine code and source lines). 

Changes to assembly mode (showing only unassem­
bled machine code). 

Selecting this option will toggle the register window 
on and off. You can also turn the register on and off 
by pressing the F2 key. 

Selecting this option will display the output screen. 
The entire CodeView display will temporarily disap­
pear, but come back as soon as you press any key. 
The Output command can also be selected with the 
F4 key. 

2.1.3.3 The Search Menu 

The Search menu includes selections for searching through text files for 
text strings and for searching executable code for labels. The Search menu 
is shown in Figure 2.4, and the selections are explained below. 

File View 

55: 
56: 
57: 
58: 
59: 
60: 

-I Run 
Find" , 
Next 
Ppevious 
Label, " 

Watch 

Ctpl+F 

Options Language Calls Help I F8:Tpace F5:Go 
ice,C 1===============1 

-~---------------------------

Selection 

Find ... 

Figure 2.4 The Search Menu 

Action 

Searches the current source file or other text file for a 
specified regular expression. (This selection can also 
be made without pulling down a menu, simply by 
pressing CONTROL+F.) 

55 



Microsoft Code View and Utilities 

Next 

56 

When you make this selection, a dialog box opens, 
asking you to enter a regular expression. Type the 
expression you want to search for and press the 
ENTER key. The Code View debugger starts at the 
current or most recent cursor position in the display 
window and searches for the expression. 

If your entry is found, the cursor moves to the first 
source line containing the expression. If you are in 
assembly mode, the debugger automatically switches 
to source mode when the expression is found. If the 
entry is not found, a message box opens, telling you 
the problem and asking you to press a key (you can 
also click a mouse button) to continue. 

Regular expressions are a method of specifying vari­
able text strings. This method is similar to the DOS 
method of using wild cards in file names. Regular 
expressions are explained in detail in Appendix B. 

You can use the Search selections without under­
standing regular expressions. Since text strings are 
the simplest form of regular expressions, you can sim­
ply enter a string of characters as the expression you 
want to find. For example, you could enter count if 
you wanted to search for the word "count." 

The following characters have a special meaning in 
regular expressions: backslash (\), asterisk (*), left 
bracket (0, period (.), dollar sign ($), and caret (A). 
In order to find strings containing these characters, 
you must precede the characters with a backslash; 
this cancels their special meanings. 

For example, the periods in FORTRAN relational 
and logical operators must be preceded by 
backslashes. You would use \. EQ to find the .EQ. 
operator. With C, you would use \ *ptr to find 
*ptr; and with BASIC, you would use NAME\$ to 
find NAME$. 

The Case Sense selection from the Options menu has 
no effect on searching for regular expressions. 

Search~s for the next match of the current regular 
expreSSIOn. 

This selection is meaningful only after you have used 
the Search command to specify the current regular 
expression. If the Code View debugger searches to the 
end of the file without finding another match for the 
expression, it wraps around and starts searching at 
the beginning of the file. 



Previous 

Label. .. 

The CodeView Display 

Searches for the previous match of the current regu­
lar expression. 

This selection is meaningful only after you have used 
the Search command to specify the current regular 
expression. If the debugger searches to the beginning 
of the file without finding another match for the 
expression, it wraps around and starts searching at 
the end of the file. 

Searches the executable code for an assembly­
language label. 

If the label is found, the cursor moves to the instruc­
tion containing the label. If you start the search in 
source mode, the debugger will switch to assembly 
mode to show a label in a library routine or an 
assembly-language module. 

2.1.3.4 The Run Menu 

The Run menu includes selections for running your program. The Run 
menu is shown in Figure 2.5, and the selections are explained below. 

File Uiew Search ~l Watch Options Language Calls Help I F8:Trace F5:Go 

55: 
56: 
57: 
58: 
59: 
60: 

Start 
Restart 
Execute 
Clear Breakpoints 

_li: _____________________________ _ 

Selection 

Start 

Figure 2.5 The Run Menu 

Action 

Starts the program from the beginning and runs it. 

Any previously set breakpoints or watch statements 
will still be in effect. The Code View debugger will run 
your program from the beginning to the first break­
point, or to the end of the program if no breakpoint 
is encoun teredo This has the same effect as selecting 
Restart (see the next selection), then entering the Go 
command. 

57 



Microsoft Code View and Utilities 

Restart 

Execute 

Clear 
Breakpoints 

Restarts the current program, but does not begin 
executing it. 

You can debug the program again from the begin­
ning. Any previously set breakpoints or watch state­
ments will still be in effect. 

Executes in slow motion from the current instruction. 

This is the same as the Execute dialog command (E). 
To stop execution, press any key or a mouse button. 

Clears all breakpoin ts. 

This selection may be convenient after selecting Res­
tart if you don't want to use previously set break­
points. Note that watch statements are not cleared 
by this command. 

Note 

Although "Start" and "Restart" retain breakpoints, along with pass 
count and arguments (see Chapter 5, "Executing Code"), any instruc­
tions entered with the Assemble command will be overwritten by the 
original program. 

2.1.3.5 The Watch Menu 

The Watch menu includes selections for managing the watch window. 
Selections on this menu are also available with dialog commands. The 
Watch menu is shown in Figure 2.6, and the selections are explained 
below. 

File View Search Run ~l Options Language Calls Help I F8:Trace F5:Go 

55: Add Watch", Ctrl+W 
56: Watchpoint, , , 
57: Tracepoint, , , 
58: Delete Watch", Ctrl+U 
59: Delete All Watch 
60: 
61: 
-~-----------------------------

Figure 2.6 The Watch Menu 

58 



Selection 

Add Watch ... 

Watchpoint ... 

Tracepoin t ... 

The Code View Display 

Action 

Adds a watch-expression statemen t to the watch 
window. (This selection can also be made directly, 
by pressing CONTROL+W.) 

A dialog window opens, asking for the source-level 
expression (which may be simply a variable) whose 
value you want to see displayed in the watch win­
dow. Type the expression and press the ENTER key 
or a mouse button. The statement appears in the 
watch window in normal text. You cannot specify 
a memory range to be displayed with the Add 
Watch selection as with the Watch dialog com­
mand. 

You can specify the format in which the value will 
be displayed. Type the expression, followed by a 
comma and a Code View format specifier. If you do 
not give a format specifier, the Code View debugger 
displays the value in a default format. See Chapter 
6, "Examining Data and Expressions," for more 
information about format specifiers and the 
default format. See Section 8.1, "Setting Watch­
Expression and Watch-Memory Statements," for 
more information about the Watch command. 

Adds a watchpoint statement to the window. 

A dialog window opens, asking for the source-level 
expression whose value you want to test. The 
watchpoint statement appears in the watch win­
dow in high-intensity text when you enter the 
expression. A watch point is a conditional break­
point that causes execution to stop when the 
expression becomes nonzero (true). See Section 8.2, 
"Setting Watchpoints," for more information. 

Adds a tracepoint statement to the watch window. 

A dialog window opens, asking for the source-level 
expression or memory range whose value you want 
to test. The tracepoint statement appears in the 
watch window in high-intensity text when you 
enter the expression. A tracepoint is a conditional 
breakpoint that causes execution to stop when the 
value of a given expression changes. You cannot 
specify a memory range to be tested with the Tra­
cepoint selection as you can with the Tracepoint 
dialog command. 

59 



Microsoft Code View and Utilities 

Delete Watch ... 

When setting a tracepoint expression, you can 
specify the format in which the value will be 
displayed. Mter the expression type a comma and 
a format specifier. If you do not give a format 
specifier, the CodeView debugger displays the 
value in a default format. See Chapter 6, "Examin­
ing Data and Expressions," for more information 
about format specifiers and default. See Section 
8.3, "Setting Tracepoints," for more information 
abou t tracepoin ts. 

Deletes a statement from the watch window. (This 
selection can also be made directly, by pressing 
CONTROL+U. ) 

A dialog window opens, showing the current watch 
statements. If you are using a mouse, move the 
pointer to the statement you want to delete and 
click either button. If you are using the keyboard, 
press the UP ARROW or DOWN ARROW key to move 
the highlight to the statement you want to delete, 
then press the ENTER key. 

Delete All Watch Deletes all statements in the watch window. 

All watch, watchpoint, and tracepoint statements 
are deleted, the watch window disappears, and the 
display window is redrawn to take advantage of 
the freed space on screen. 

2.1.3.6 The Options Menu 

The Options menu allows you to set options that affect various aspects of 
the behavior of the Code View debugger. The Options menu is shown in 
Figure 2.7, and the selections are explained below. 

60 

File Uiew Sea~ch Run Watch ~I Language Calls Help I F8:T~ace F5:Go 
I 

55: 
56: 
57: 
58: 
59: 
60: 
61: 

» FI ip/Swap 
» Bytes Coaed 
» Case Sense 

386 

-------------------------------

Figure 2.7 The Options Menu 



The CodeView Display 

Selections on the Options menu have small double arrows to the left of the 
selection name when the option is on. The status of the option (and the 
presence of the double arrows) is reversed each time you select the option. 
By default, the Flip/Swap and Bytes Coded options are on, and the 386 
option is off, when you start the CodeView debugger. Depending on which 
language your main program is in, the debugger will automatically turn 
Case Sense on (if your program is in C) or off (if your program is in 
another language) when you start debugging. 

The selections from the Options menu are discussed below. 

Selection 

Flip/Swap 

Bytes Coded 

Action 

When on (the default), screen swapping or screen 
flipping (whichever the debugger was started with) is 
active; when off, swapping or flipping is disabled. 

Turning off swapping or flipping makes the screen 
scroll more smoothly . You will not see the program 
flip or swap each time you execute part of the pro­
gram. This option has no effect if neither swapping 
nor flipping was selected during start-up. 

Warning 

Any time your program writes to the screen, 
make sure that flipping or swapping is on. If 
swapping and flipping are off, your program will 
write the output at the location of the cursor. 
The Code View debugger will detect that the 
screen has changed and will redraw the screen, 
thus destroying the program output. An error 
message is also displayed: Flip/Swap option 
off - application output lost. 

When on (the default), the instructions, instruction 
addresses, and the bytes for each instruction are 
shown; when off, only the instructions are shown. 

61 



Microsoft Code View and Utilities 

Case Sense 

386 

This option affects only assembly mode. The follow­
ing display shows the appearance of sample code 
when the option is off: 

27: name = gets(namebuf); 
LEA AX,Word Ptr [namebuf] 
PUSH AX 
CALL _gets (03El) 
ADD SP,02 
MOV Word Ptr [name],AX 

The following display shows the appearance of the 
same code when the option is on: 

27: name = gets(namebuf); 
32AF:003E 8D46DE LEA AX,Word Ptr [namebuf] 
32AF : 0041 50 PUSH AX 
32AF:0042 E89C03 CALL _gets (03El) 
32AF:0045 83C402 ADD SP,02 
32AF:00488946DA MOV Word Ptr [name],AX 

When the selection is turned on, the Code View 
debugger assumes that symbol names are case sensi­
tive (each lowercase letter is different from the 
corresponding uppercase letter); when off, symbol 
names are not case sensitive. 

This option is on by default for C programs, and off 
by default for FORTRAN, BASIC, and assembly pro­
grams. You will probably want to leave the option in 
its default setting. 

When on, the register window will display the regis­
ters in the wider, 386 format. Furthermore, this 
option will enable you to assemble and execute 
instructions that reference 32-bit registers. If the 386 
option is not on, then any data stored in the high­
order word of a 32-bit register will be lost. 

To use this option, you should have a 386 processor 
running in 386 mode. If you do not have a 386 pro­
cessor, then the debugger will respond with the mes­
sage, CPU is not an 80386, and leave the option 
turned off. 

2.1.3.7 The Language Menu 

The Language menu allows you either to select the expression evaluator, 
or to instruct the CodeView debugger to select it for you automatically. 

62 



The Code View Display 

The Language menu is shown in Figure 2.8, and the selections are 
explained below. 

File Uiew Search Run Watch Options ~I Calls 
========::::::il dice,C FI===:::!:::::::! 
55: )) Auto 
56: Basic 
57: C 
58: Fortran 
59: Pascal 
60: 
61: 

Help I F8:Trace F5:Go 

-~~---------------------------
Figure 2.8 The Language Menu 

As with the Options menu, the selection on is marked by double arrows. 
Unlike the Options menu, however, exactly one item (and no more) on the 
Language menu is selected at any given time. 

The Auto selection causes the debugger to select automatically the expres­
sion evaluator each time a new source file is loaded. The debugger will 
examine the extension of the source file in order to determine which 
expression evaluator to select. The Auto selection will use the C expression 
evaluator if the current source file does not have a .BAS, .F, .FOR, or 
.P AS extension. 

If you change to a source module with an .ASM extension, then Auto will 
cause the debugger to select the C expression evaluator, but not all of the 
C defaults will be used; system radix will be hexadecimal, case sensitivity 
will be turned off, and the register window will be displayed. 

When a language expression evaluator is selected, the debugger uses that 
evaluator, regardless of what kind of program is being debugged. 

2.1.3.8 The Calls Menu 

The Calls menu is different from other menus in that its contents and size 
change, depending on the status of your program. The Calls menu is 
shown in Figure 2.9. 

63 



Microsoft Code View a.nd Utilities 

Watch Options Language I~I Help I F8:Trace F5:Go 
========~I dice, C F====F====::!::::::::========l 
68: double roll(n) 4 ro11(4) 

Fi leU i ew Search Run 

69: int n; 3 make(4) 
70: { 2 calc(27865:4492 1 27865:4484) 
71: double odds; 1 main() 
72: int ways; 
73: 

_ ]j: _ _______ w~L:J1 :..1.L.. ______________ _ 

Figure 2.9 The Calls Menu 

The mnemonic for each item in the Calls menu is a number. Type the 
number displayed immediately to the left of a routine in order to select it. 
You can also use the UP ARROW or DOWN ARROW key to move to your selec­
tion, and then press the ENTER key. You can use the mouse to select from 
the Calls menu as well. 

The effect of making a selection from the Calls menu is to 'view a routine. 
The cursor will go to the line at which the selected routine was last execut­
ing. For example, selecting main in the example above will cause Code­
View to display main, at the point at which main made a call to calc 
(the function immediately above it). Note that selecting a routine from the 
Calls menu does not (by itself) affect program execution. It simply pro­
vides a convenient way to view previously called routines. 

It is not required that one of the routines be selected. The Calls menu is 
useful simply for viewing the list of previously called routines. 

The Calls menu shows the current routine and the trail of routines from 
which it was called. The current routine is always at the top. The routine 
from which the current routine was called is directly below. Other active 
routines are shown in the reverse order in which they were called. With C 
and FORTRAN programs, the bottom routine should always be main. 
(The only time when main will not be the bottom routine is when you are 
tracing through the standard library's start-up or termination routines.) 

The current value of each argument, if any, is shown in parentheses fol­
lowing the routine. The menu expands to accommodate the ar~uments of 
the widest routine. Arguments are shown in the current radix t the default 
is decimal). If there are more active routines than will fit on the screen, or 
if the routine arguments are too wide, the display will expand to both the 
left and right. The Stack Trace dialog command (K) also shows all the 
routines and arguments. 

64 



The Code View Display 

Note 

If you are using the CodeView debugger to debug assembly-language 
programs, routines will be shown in the Calls menu only if they use one 
of the Microsoft calling conventions. These calling conventions are 
explained in the Mz"crosojt Mz"xed-Language Programmz"ng GuZ"de. 

2.1.3.9 The Help Menu 

The Help menu lists the major topics in the help system. For help, open 
the Help menu and then select the topic you want to view. 

Each topic may have any number of subtopics. You must go to the major 
topic first. Information on how to move around within the help system is 
provided in the next section. 

The bottom selection on the Help menu is the About command. When you 
make this selection, the debugger will display a small box at the center of 
the screen that gives the time, the name of the product, and the version 
number. 

2.1.4 Using the Help System 

The Code View on-line help system uses tree-structured menus to give you 
quick access to help screens on a variety of subjects. The system uses a 
combination of menu access and sequentially linked screens, as explained 
below. 

The help file is called CV.~P. It must be present in the current direc­
tory or in one of the directories specified with the DOS PATH command. 
If the help file is not found, the Code View debugger will still operate, but 
you will not be able to use the help system. An error message will appear if 
you try to use a help command. 

When you request help, either by pressing the FI key, by using the H dia­
log command, or by selecting the Help menu, the first help screen appears. 
You can select Next and Previous buttons to page through the screens. 
The screens are arranged in a circular fashion, so that selecting Next on 
the last screen get you to the first screen. Select the Cancel button to 
return to the Code View screen. 

65 



Microsoft Code View a.nd Utilities 

Pressing the PGDN, PGUP, and ESC keys achieves the same results as select­
ing Next, Previous, and Cancel, respectively, with the mouse. 

You can enter the help system at a particular topic by selecting the topic 
from the Help menu. Once into the system, use Next and Previous to page 
to other screens. 

2.2 Using Sequential Mode 

Sequential mode is required if you have neither an IBM Personal Computer 
nor a closely compatible computer. In sequential mode, the CodeView 
debugger works much like its predecessors, the Microsoft Symbolic Debug 
Utility (SYMDEB) and the DOS DEBUG utility. Sequential mode is also 
useful when you are using redirected CodeView input and output. 

In sequential mode, the CodeView debugger's input and output always 
move down the screen from the current location. When the screen is full, 
the old output scrolls off the top of the screen to make room for new out­
put appearing at the bottom. You can never return to examine previous 
commands once they scroll off, but in many cases, you can reenter the 
command to put the same information on the screen again. 

Most window commands cannot be used in sequential mode. However, the 
following function keys, which are used as commands in window mode, are 
also available in sequential mode. 

Command 

Fl 

F2 

F3 

F4 

66 

Action 

Displays a command-syntax summary. 

Displays the registers. 

This is equivalent to the Register (R) dialog command. 

Toggles between source, mixed, and assembly modes. 

Pressing this key will rotate the mode between source, 
mixed, and assembly. You can achieve the same effect 
by using the Set Assembly (S-), Set Mixed (S&), and 
Set Source(S+) dialog commands. 

Switches to the output screen, which shows the output 
of your program. 

Press any key to return to the Code View debuggin~ 
screen. This is equivalent to the Screen Exchange (\) 
dialog command. 



F5 

F8 

F9 

FlO 

The Code View Display 

Executes from the current instruction until a break­
point or the end of the program is encountered. 

This is equivalent to the Go dialog command (G) with 
no argument. 

Executes the next source line in source mode, or the 
next instruction in assembly mode. 

If the source line or instruction contains a function, 
procedure, or interrupt call, the CodeView debugger 
execu tes the first source line or instruction of the call 
and is ready to execu te the next source line or instruc­
tion within the call. This is equivalent to the Trace 
(T) dialog command. 

Sets or clears a breakpoint at the current program 
location. 

If the current program location has no breakpoint, one 
is set. If the current location has a breakpoint, it is 
removed. This is equivalent to the Breakpoint Set 
(BP) dialog command with no argument. 

Executes the next source line in source mode, or the 
next instruction in assembly mode. 

If the source line or instruction contains a function, 
procedure, or interrupt call, the call is executed to the 
end, and the CodeView debugger is ready to execute 
the line or instruction after the call. This is equivalent 
to the Program Step (P) dialog command. 

The CodeView Watch (W), Watchpoint (WP), and Tracepoint (TP) com­
mands work in sequential mode, but since there is no watch window, the 
watch statements are not shown. You must use the Watch List command 
(W) to examine watch statements and watch values. See Chapter 8 for 
information on Watch Statement commands. 

All the Code View commands that affect program operation (such as Trace, 
Go, and Breakpoint Set) are available in sequential mode. Any debugging 
operation done in window mode can also be done in sequential mode. 

67 





USING DIALOG COMMANDS 

3.1 Entering Commands and Arguments .................... 71 
3.1.1 Using Special Keys ..................................... 71 
3.1.2 Using the Command Buffer .......................... 72 

3.2 Format for CodeView 
Commands and Arguments ................................... 73 





Using Dialog Commands 

Code View dialog commands can be used in sequen tial mode or from the 
dialog window. In sequential mode, they are the primary method of enter­
ing commands. In window mode, dialog commands are used to enter com­
mands that require arguments or that do not have corresponding window 
commands. 

Many window commands have duplicate dialog commands. Generally, the 
window version of a command is more convenient, but the dialog version is 
more powerful. For example, to set a breakpoint on a source line in win­
dow mode, put the cursor on the source line and press F9, or point to the 
line and click the left mouse button. The dialog version of the Breakpoint 
command (BP) requires more keystrokes, but it allows you to specify an 
address, a pass count, and a string of commands to be taken whenever the 
breakpoint is encountered. 

The rest of this chapter explains how to enter dialog commands. 

3.1 Entering Commands and Arguments 

Dialog commands are entered at the CodeView prompt (». Type the com­
mand and arguments, and then press the ENTER key. 

In window mode, you can enter commands whether or not the cursor is at 
the CodeView prompt. If the cursor is in the display window, the text you 
type will appear after the prompt in the dialog window, even though the 
cursor remains in the display window. 

3.1.1 Using Special Keys 

When entering dialog commands or viewing output from commands, you 
can use the following special keys: 

Key 

CONTROL+C 

CONTROL+S 

Action 

Stops the current output or cancels the current 
command line. For example, if you are watching a 
long display from a Dump command, you can press 
CONTROL+C to interrupt the output and return to 
the Code View prompt. If you make a mistake 
while entering a command, you can press 
CONTROL+C to cancel the command without exe­
cuting it. A new prompt appears, and you can 
reenter the command. 

Pauses during output of a command. You can 
press any key to continue output. For example, if 

71 



Microsoft Code View and Utilities 

BACKSPACE 

you are watching a long display from a Dump com­
mand, you can press CONTROL+S when a part of 
the display appears that you want to examine 
more closely. Then press any key when you are 
ready for the output to continue scrolling. 

Deletes the previous character on the command 
line and moves the cursor back one space. For 
example, if you make an error while typing a com­
mand, you can use the BACKSPACE key to delete the 
characters back to the error-then retype the rest 
of the command. 

3.1.2 Using the Command Buffer 

In window mode, the Code View debugger has a command buffer where the 
last 2-4 screens of commands and command output are stored. The com­
mand buffer is not available in sequential mode. 

When the cursor is in the dialog window, you can scroll up or down to 
view the commands you have entered earlier in the session. The com­
mands for moving the cursor and scrolling through the buffer are 
explained in sections 2.1.1.1 and 2.1.2.1. 

Scrolling through the buffer is particularly useful for viewing the output 
from commands, such as Dump or Examine Symbols, whose output may 
scroll off the top of the dialog window. 

If you have scrolled through the dialog buffer to look at previous com­
mands and output, you can still enter new commands. When you type a 
command, it will appear to be overwriting the previous line where the cur­
sor is located, but when you press the ENTER key, the new command will 
be entered at the end of the buffer. For example, if you enter a command 
while the cursor is at the start of the buffer and then scroll to the end of 
the buffer, you will see the command you just entered. If you scroll back 
to the point where you entered the command, you will see the original 
characters rather than the characters you typed over the originals. 

When you start the debugger, the buffer is empty except for the copyright 
message. As you enter commands during the session, the buffer is gradu­
ally filled from the bottom to the top. If you have not filled the entire 
buffer and you press the HOME key to go to the top of the buffer, you will 
not see the first commands of the session. Instead you will see blank lines, 
since there is nothing at the top of the buffer. 

72 



Using Dialog Commands 

3.2 Format for CodeView 
Commands and Arguments 

The Code View command format is similar to the format of previous 
Microsoft debuggers, S~EB and DEBUG. However, some features, 
particularly operators and expressions, are different. The general format 
for Code View commands is shown below: 

command [arguments] [;command2] 

The command is a one-, two-, or three-character command name, and 
arguments are expressions that represent values or addresses to be used by 
the command. The command is not case sensitive; any combination of 
uppercase and lowercase letters can be used. However, arguments consist­
ing of source-level expressions mayor may not be case sensitive. (For 
example, C expressions are normally case sensitive; FORTRAN expressions 
are not. Case sensitivity can be affected by the language selected for 
expression evaluation, in the Options menu.) Usually, the first argument 
can be placed immediately after command with no space separating the 
two fields. 

The number of arguments required or allowed with each command varies. 
If a command takes two or more arguments, you must separate the argu­
ments with spaces. A semicolon (;) can be used as a command separator if 
you want to specify more than one command on a line. 

• Examples 

>DB 100 200 ;* Example 1 

>U Labell ;* Example 2, C variable as argument 

>U SUM ; * Example 3, FORTRAN variable as argument 

>U SUM; DB ;* Example 4, multiple commands 

In Example 1, DB is the first command (for the Dump Bytes command). 
The arguments to the command are 100 and 200. The second command 
on this line is the Comment command ( *). A semicolon is used to separate 
the two commands. The Comment command is used throughout the rest 
of the manual to number examples. 

In Example 2, U is the first command (for the Un assemble command), and 
the C language variable Labell is a command argument. 

73 



Microsoft Code View and Utilities 

In Example 3, U is again the first command (for the Un assemble com­
mand), and the FORTRAN variable SUM is a command argument. 

Example 4 consists of three commands, separated by semicolons. The first 
is the Unassemble command (U) with the FORTRAN variable SUM as an 
argument. The second is the Dump Bytes command (DB) with no argu­
ments. The third is the Comment command (*). 

74 



CHAPTER 

CODE VIEW EXPRESSIONS 

4.1 C :Expressions ....................................................... 78 
4.1.1 CSymbols ................................................. 79 
4.1.2 C Constants ............................................... 80 
4.1.3 C Strings ................................................... 81 

4.2 FOR'fR.AN" Expressions ........................................ 81 
4.2.1 FORTRAN Symbols ................................... 83 
4.2.2 FORTRAN Constants ................................. 83 
4.2.3 FORTRAN Strings ..................................... 84 
4.2.4 FORTRAN Intrinsic Functions .................... 85 

4.3 BASIC :Expressions ............................................... 86 
4.3.1 BASIC Symbols .......................................... 88 
4.3.2 BASIC Constants ....................................... 88 
4.3.3 BASIC Strings ............................................ 89 
4.3.4 BASIC Intrinsic Functions ........................... 89 

4.4 Pascal Expressions ................................................ 91 
4.4.1 Pascal Symbols ........................................... 92 
4.4.2 Pascal Constants ........................................ 93 
4.4.3 Pascal Strings ............................................ 93 
4.4.4 Pascal Intrinsic Functions .......................... J)3 

4.5 Assembly :EXpressions ........................................... 95 
4.6 Lin e Numbers ....................................................... 97 
4.7 Registers and Addresses ........................................ 97 

4.7.1 Registers .................................................... 98 
4.7.2 Addresses ................................................... gg 
4.7.3 Address Ranges ........................................ 100 



CHAPTER 

4.8 Memory Operators .............................................. 101 
4.8.1 Accessing Bytes (BY) ................................. 101 
4.8.2 Accessing Words (WO) .............................. 102 
4.8.3 Accessing Double Words (DW) ................... 103 

4.9 Switching Expression Evaluators ........................ 104 

76 



CodeView Expressions 

CodeView command arguments are expressions that can include symbols, 
constant numbers, operators, and registers. Arguments can be simple 
machine-level expressions that directly specify an address or range in 
memory, or they can be source-level expressions that correspond to opera­
tors and symbols used in Microsoft C, FORTRAN, BASIC, Pascal or the 
Macro Assembler. For each high-level language (C, FORTRAN, BASIC, 
and Pascal), Code View has an expression evaluator that computes the 
value of source-level expressions. 

Each of the four expression evaluators has a different set of operators and 
rules of precedence. However, the basic syntax for registers, addresses, and 
line numbers is the same regardless of the language. You can always 
change the expression evaluator. If you specify a language other than the 
one used in the source file, then the expression evaluator will still recog­
nize your program symbols, if possible. (C and FORTRAN, however, will 
not accept BASIC type tags.) If you are debugging an assembly routine 
called from BASIC or FORTRAN, then you may want to choose the 
language of the main program, rather than C, which is default for assem­
bly programs. 

If the Auto option is on, then the debugger examines the file extension of 
each new source file you trace through. Both C and assembly modules 
cause the debugger to select C as the expression evaluator. 

This chapter deals first with the expressions specific to each language. 
Line-number expressions are presented next; they work the same way 
regardless of the language. Then, register and address expressions are 
presented; generally, these do not have to be mastered unless you are 
doing assembly-level debugging. Finally, the chapter describes how to 
switch the expression evaluator. 

Note 

When you use a variable in an expression where that variable is not 
defined, the Code View debugger displays the message UNKNOWN SYM­
BOL. For example, the message appears if you reference a local vari­
able outside the function where the variable is defined. 

77 



Microsoft Code View a.nd Utilities 

4.1 C Expressions 

The C expression evaluator uses a subset of the most commonly used C 
operators. It also supports the colon operator (:), which is described in Sec­
tion 4.7.2, "Addresses," and the three memory operators (BY, WO, and 
DW), which are discussed in Section 4.8. The memory operators are pri­
marily useful for debugging assembly source code. The Code View C­
expression operators are listed in Table 4.1 in order of precedence. The 
superscripts a, b, and c indicate explanatory footnotes. 

Table 4.1 

Code View C-Expression Operators 

Precedence 

(Highest) 

1 
2 

3 

4 

5 
6 

7 

8 
9 

10 
(Lowest) 

Operators 

() [] -> . 
! - _ l!. (type) ++ __ .b &C sizeof 

.b / % : 
+ _l!. 

< > <= >= 
- - != 
&& 

II 
= += -_ 111= /= %= 
BY WO DW 

a The minus sign with precedence 2 is the unary minus indicating the sign of a 
number; the minus sign with precedence 4 is a binary minus inClicating 
subtraction. 

b The asterisk with precedence 2 is the pointer operator; the asterisk with 
precedence 3 is the multiplication operator. 

C The ampersand with Qrecedence 2 is the address-of operator. The amper­
sand as a bitwise AND operator is not supported by the Code View 
debugger. 

See the Mz"crosoft C Compz"ler Language Reference for a description of 
how C operators can be combined with identifiers and constants to form 
expressions. 

78 



Code View Expressions 

With the C-expression evaluator, the period (.) has its normal use as a 
member selection operator, but it also has an extended use as a specifier of 
local variables in parent functions. The syntax is shown below: 

function. variable 

The function must be a high-level-language function, and the variable must 
be a local variable within the specified function. The variable cannot be a 
register variable. For example, you can use the expression main. argc to 
refer to the local variable argc when you are in a function that has been 
called by main. 

The type operator (used in type casting) can be any of the predefined C 
types. The Code View debugger limits casts of pointer types to one level of 
indirection. For example, (char *) sym is accepted, but (char 
* * ) sym is not. 

When a C expression is used as an argument with a command that takes 
multiple arguments, the expression should not have any internal spaces. 
For example, count+6 is allowed, but count + 6 may be interpreted 
as three separate arguments. Some commands (such as the Display 
Expression command) do permit spaces in expressions. 

4.1.1 C Symbols 

• Syntax 

name 

A symbol is a name that represents a register, a segment address, an offset 
address, or a full 32-bit address. At the C source level, a symbol is a vari­
able name or the name of a function. Symbols (also called identifiers) fol­
low the naming rules of the C compiler. Note that although CodeView 
command letters are not case sensitive, symbols given as arguments are 
case sensitive (unless you have turned off case sensitivity with the Case 
Sense selection from the Options menu). 

In assembly-language output or in output from the Examine Symbols com­
mand, the Code View debugger displays some symbol names in the object­
code format produced by the Microsoft C Compiler. This format includes a 
leading underscore. For example, the function main is displayed as 
_main. Only global labels (such as procedure names) are shown in this 

79 



Microsoft Code View and Utilities 

format. You do not need to include the underscore when specifying such a 
symbol in Code View commands. Labels within library routines are some­
times displayed with a double underscore ( __ chkstk). You must use two 
leading underscores when accessing these labels with Code View com­
mands. 

4.1.2 C Constants 

• Syntax 

digits 
o digits 
Ox digits 
On digits 

Default radix 
Octal radix 
Hexad ecimal radix 
Decimal radix 

Numbers used in CodeView commands represent integer constants. They 
are made up of octal, hexadecimal, or decimal digits, and are entered in 
the current input radix. The C-Ianguage format for entering numbers of 
different radixes can be used to override the current input radix. 

The default radix for the C expression evaluator is decimal. However, you 
can use the Radix command (N) to specify an octal or hexadecimal radix, 
as explained in Section 11.3, "Radix Command." 

If the current radix is 16 (hexadecimal) or 8 (octal), you can enter decimal 
numbers in the special Code View format Ondigits. For example, enter 21 
decimal as On21. 

With radix 16, it is possible to enter a value or argument that could be 
interpreted either as a symbol or as a hexadecimal number. The CodeView 
debugger resolves the ambiguity by searching first for a symbol (identifier) 
with that name. If no symbol is found, the debugger interprets the value 
as a hexadecimal number. If you want to enter a number that overrides an 
existing symbol, use the hexadecimal format (Ox digits). 

For example, if you enter abc as an argument when the program contains 
a variable or function named abc, the Code View debugger interprets the 
argument as the symbol. If you want to enter abc as a number, enter it 
as Oxabc. 

Table 4.2 shows how a sample number (63 decimal) would be represented 
in each radix. . 

80 



Code View Expressions 

Table 4.2 

C Radix Examples 

Input Radix Octal Decimal Hexadecimal 

8 77 On63 Ox3E 

10 077 63 Ox3E 

16 077 On63 3E 

4.1.3 C Strings 

• Syntax 

II null-terminated-8tringll 

Strings can be specified as expressions in the C format. You can use C 
escape characters within strings. For example, double quotation marks 
within a string are specified with the escape character \" . 

• Example 

>EA message "This \"string\" is okay." 

The example uses the Enter ASCII command (EA) to enter the given 
string into memory starting at the address of the variable message. 

4.2 FORTRAN Expressions 

The FORTRAN-expression evaluator uses a subset of the most commonly 
used FORTRAN operators. It also supports two additional operators, the 
period (.) and colon (:). A number of FORTRAN intrinsic functions, listed 
in Section 4.2.4, are also supported. FORTRAN function calls are permit­
ted, but statement function names and CO:MMON block names are not. 
(Note that these limitations only apply to the arguments of CodeView 
commands. They do not apply to the source program, which can contain 
any valid FORTRAN expression.) The Code View FORTRAN operators are 
listed in Table 4.3 in order of precedence. 

81 



Microsoft Code View and Utilities 

Table 4.3 

CodeView FORTRAN Operators 

Precedence Operator 

(Highest) 

1 0 
2 

3 Unary + -
4 ... / 
5 Binary + -
6 .LT .• LE • . EQ • . NE .. GT .• GE. 
7 .NOT. 
8 .AND. 
9 .OR. 
10 .EQV .• NEQV. 
11 = 
(Lowest) 

The FORTRAN-expression evaluator does not support the character con­
catenation operator (/ /) or the exponentiation operator ( ...... ). 

The order and precedence with which the Code View debugger evaluates 
FORTRAN expressions are the same as in the Microsoft FORTRAN 
language. See Chapter 2 of the Mz'crosoft FORTRAN Compz'ler Language 
Reference for a description of how FORTRAN operators can be combined 
with symbols and constants to form expressions. 

The colon operator (:) may be used when specifying a memory address. It 
acts as a segment: offset separator, as described in Section 4.7.2, 
"Addresses." 

In the CodeView debugger, the period (.) has an extended use as a specifier 
of local variables in parent routines. The syntax is shown below: 

rou tin e. va r'l'abI e 

The roui£ne must be a high-level-language routine and the variable must be 
a local variable within the specified routine. For example, you can use the 
expression main. X to refer to the local variable X in the procedure 
main if you are in a routine called by main. Note that in this example, 
main refers to the main routine of a FORTRAN or C program. It does not 
appear in FORTRAN source code. 

82 



Code View Expressions 

4.2.1 FORTRAN Symbols 

• Syntax 

name 

A symbol is a name that represents a register, a segment address, an offset 
address, or a full 32-bit address. At the FORTRAN source level, a symbol 
is simply a variable name or the name of a routine; you do not necessarily 
need to know what kind of address it represents. Note that when given as 
arguments, symbols are never case sensitive with the FORTRAN­
expression evaluator. If you have turned on case sensitivity with the Case 
Sense selection from the Options menu, it is turned off automatically when 
a symbol is used. 

In assembly-language output or in output from the Examine Symbols com­
mand, the CodeView debugger displays some symbol names in the object­
code format produced by the Microsoft FORTRAN Optimizing Compiler. 
This format includes a leading underscore. For example, the main routine 
in your program is displayed as _main. Only global labels (such as pro­
cedure names) are shown in this format. You do not need to include the 
underscore when specifying such a symbol in Code View commands. Labels 
within library routines are sometimes displayed with a double underscore 
( __ chkstk). You must use leading underscores when accessing these 
labels with Code View commands. 

4.2.2 FORTRAN Constants 

• Syntax 

digits 
radiX#digits 
# digits 

Default radix 
Specified radix 
Hexadecimal radix 

Numbers used in Code View commands represent inte~er constants. These 
constants are entered in the current input radix (base). When you are 
using the FORTRAN-expression evaluator, the debugger will recognize 
any explicitly specified radix between 2 and 36 inclusive, as in 20#2G. 
The FORTRAN radix specifiers can be used to override the current radix. 
Note that a hexadecimal number may be entered in two ways. For exam­
ple, 3F hex could be entered as either #3F or 16#3F. In this manual, we 
will use the number sign alone to indicate hexadecimal numbers. 

The default radix for the FORTRAN version of the Code View debugger is 
decimal. However, you can use the Radix command (N) to specify an octal 
or hexadecimal radix, as explained in Section 11.3, "Radix Command." 

83 



Microsoft Code View and Utilities 

With radix 16, it is possible to enter a value or argument that could be 
interpreted either as an identifier or as a hexadecimal number. The Code­
View debugger resolves the ambiguity by searching first for a symbol 
(identifier) with that name. If no symbol is found, the debugger interprets 
the value as a hexadecimal number. If you want to enter a number that 
overrides an existing symbol, use the hexadecimal format (#d£g£ts). 

For example, if you enter ABC as an argument when the program contains 
a variable or function named ABC, the Code View debugger interprets the 
argument as the symbol. If you want to enter ABC as a number, enter it 
as #ABC. 

Table 4.4 shows how a sample number (63 decimal) would be represented 
in the octal, decimal, and hexadecimal radixes. 

Table 4.4 

FORTRAN Radix Examples 

Input Radix Octal Decimal Hexadecimal 

8 77 10#63 #3F 
10 8#77 63 #3F 
16 8#77 10#63 3F 

4.2.3 FORTRAN Strings 

• Syntax 

, strz"ng' 

Strings can be specified as character expressions in the FORTRAN format. 
Single quotation marks within a string must be specified by two single 
quotation marks . 

• Example 

>EA MESSAGE 'This "string" is okay. 

The example above uses the Enter ASCII command (EA) to enter the 
given string in to memory, starting at the address of the variable 
MESSAGE. Notice that the string includes embedded single quotation 
marks and trailing blanks. 

84 



Code View Expressions 

4.2.4 FORTRAN Intrinsic Functions 

When entering a FORTRAN expression, you may use a limited number of 
FORTRAN intrinsic functions. The primary use of these functions is to 
convert a FORTRAN variable or value from one type to another for 
purposes of calculation. The intrinsic functions recognized by the expres­
sion evaluator of the Code View debugger are listed in Table 4.5. See 
Chapter 3 of the Microsoft FORTRAN Compiler Language Reference for a 
complete description of the FORTRAN intrinsic functions. 

Table 4.5 

FORTRAN Intrinsic Functions 
Supported by the CodeView Debugger 

Argument Function 
Name Definition Type Type 

CHAR(int) Data-type int char * 
conversion 

CMPLX(genA[,gen~) Data-type int, real, or cmp8 
conversion cmp 

DBLE(gen) Data-tYpe int, real, or dbl 
conversIOn cmp 

DCMPLX(genA[,gen~) Data-type int, real, or cmpl6 
conversion cmp 

DIMAG( cmp16) Imaginary part cmpl6 dbl 
of 
cmpl6 number 

DREAL(cmp16) Data-type cmpl6 dbl 
conversion 

ICHAR( char) Data-type char int 
conversion 

IMAG(cmp) Imaginary part cmp realt 
of cmp number 

INT(gen) Data-type int, real, or int 
conversion cmp 

INTI (gen) Data-type int, real, or intI 
conversion cmp 

INT4(gen) Data-type int, real, or int4 
conversion cmp 

INTC(gen) Data-type int, real, or INTEGER[C] 
conversion cmp 

LOCFAR(gen) Segmented int, real, or int4 
address cmp 

LOCNEAR(gen) Unsegmented int, real, or int2 
address cmp 

85 



Microsoft Code View a.nd Utilities 

REAL (gen) Data-type 
conversion 

int, real, or 
cmp 

real4 

* The abbreviations used for the different data types in this table are listed in Appendix B of 
the Microsoft FORTRAN Compiler Language Reference. 

t If argument is COMPLEX~..Junction is REAL*4. If argument is COMPLEX*16, 
function is DOUBLE PREvR>ION. 

4.3 BASIC Expressions 

The BASIC-expression evaluator uses a subset of the most commonly used 
BASIC operators. It also supports one important BASIC command-the 
LET command-and one operator in addition to the BASIC operators­
the colon (:). The CodeView BASIC operators are listed in Table 4.6 in 
order of precedence. 

Table 4.6 

CodeView BASIC Operators 

Precedence Operator 

(Highest) 

1 0 
2 
3 11& / 
4 \ MOD 
5 + -
6 = <> < > <= >= 
7 NOT 
8 AND 
9 OR 
10 XOR 
11 EQV 
12 IMP 
13 LET ... = 
(Lowest) 

The BASIC-expression evaluator does not support the exponentiation 
operator ( .... ). Nor does it support string assignment, the string concatena­
tion operator (+), or any of the relational operators (=, <, >, etc.) , when 

86 



Code View Expressions 

used with strings. However, arrays, records, and user-defined types are all 
supported. 

The order and precedence with which the Code View debugger evaluates 
BASIC expressions are the same as in the Microsoft BASIC language. See 
your BASIC documentation for a description of how BASIC operators can 
be combined with symbols and constants to form expressions. 

Important 

The BASIC-expression evaluator supports arrays and array indexing 
but not multidimensional arrays. This is a limitation only of the 
BASIC-expression evaluator and does not apply to the other languages. 

The assignment operator LET is supported for numerical operations only. 
When you use LET in a BASIC expression, the return value will not be 
useful. However, an assignment will take place whenever the expression is 
evaluated. This gives you a convenient way of manipulating data. For 
example, after the expression LET A = 5 is evaluated, the variable A 
will contain the value 5. You must use the keyword LET to specify assign­
ment; otherwise, the BASIC expression evaluator will interpret the equal 
sign ( = ) as a test for equality. 

The colon operator ( : ) may be used to specify a memory address. It 
acts as a segment: offset separator, as described in Section 4.7.2, 
"Addresses." 

In the CodeView debugger, the period (.) has an extended use as a specifier 
of local variables in parent routines. The syntax is shown below: 

routine. variable 

The routine must be a high-level-language routine and the variable 
must be a local variable within the routine. 

When a BASIC expression is used as an argument with a command that 
takes multiple arguments, the expression should not have any internal 
spaces. For example, COUNT+6 is allowed, but COUNT + 6 may be inter­
preted as three arguments. Some commands (such as the Display Expres­
~ion com~and) only take one argument; these commands do permit spaces 
In expreSSIOns. 

87 



Microsort CodeView and Utilities 

4.3.1 BASIC Symbols 

• Syntax 

name 

A symbol is a name that represents a register, a segment address, an offset 
address, or a full 32-bit address. At the BASIC source level, a symbol is 
simply a variable name or the name of a routine; you do not necessarily 
need to know what kind of address it represents. With the BASIC­
expression evaluator, symbols follow the naming rules of the BASIC com­
piler. In particular, all the type specifiers used in BASIC ($, %, &., !, and 
#) are accepted by the BASIC-expression evaluator. Note that symbols are 
never case sensitive to BASIC, whether the Case Sense option is on or not. 

4.3.2 BASIC Constants 

• Syntax 

j£xed-po£nt-str£ng[# I !] 
j/oat£ng-poz"nt-strz"ng[# I !] 

d£g£ts 
&Od£g£ts 
&dig£ts 
&Hdig£ts 

Single or double, fixed-point format 
Single or double, floating-point format 

Integer, default radix 
Octal radix 
Alternative octal radix 
Hexadecimal radix 

With the BASIC-expression evaluator, numbers can be entered as integer, 
long, single precision, or double precision data objects. Constants are 
formed according to the rules of the Microsoft BASIC Compiler. A single 
or double precision constant must be entered in decimal radix, regardless 
of the current system radix. To enter a single or double, use the Microsoft 
BASIC rules for forming fixed and floating point strings. 

Integer constants are entered in the system radix and are made up of 
octal, decimal, or hexadecimal digits. You may override the system radix 
by using the octal, or hexadecimal prefix. In addition, you can use the & 
suffix on any integer constant to indicate that the integer is to be stored as 
a long (four-byte) integer, rather than as a short (two-byte) integer. To 
enter integers in the decimal format, the system radix must be 10, and you 
use the default radix. There is no way to enter decimal integers when the 
system radix is other than 10, unless you switch to another expression 
evaluator. 

The default radix for the BASIC-expression evaluator is decimal. However, 
you can use the Radix command (NJ to specify an octal or hexadecimal 
radix, as explained in Section 11.3, 'Radix Command." 

88 



Code View Expressions 

With radix 16, it is possible to enter a value or argument that could be 
interpreted either as an identifier or as a hexadecimal number. The Code­
View debugger resolves the ambiguity by searching first for a symbol 
(identifier) with that name. If no symbol is found, the debugger interprets 
the value as a hexadecimal number. If you want to enter a number that 
overrides an existing symbol, use the hexadecimal format (&Hdigits). 

For example, if you enter ABC as an argument when the program contains 
a variable or function named ABC, the CodeView debugger interprets the 
argument as the symbol. If you want to enter ABC as a number, enter it 
as &CHABC. 

Table 4.7 shows how a sample number (63 decimal) would be represented 
in the octal, decimal, and hexadecimal radixes. 

Table 4.7 

BASIC Radix Examples 

Input Radix Octal Decimal Hexadecimal 

8 

10 
16 

77 
&077 
&077 

4.3.3 BASIC Strings 

63 

&H3E' 
&H3E' 
3E' 

The BASIC-expression evaluator does not allow you to input strings while 
debugging. However, it does recognize both fixed and variable-length 
string variables, as defined by the BASIC compiler. (This includes arrays 
and records of strings.) Expressions that refer to strmgs will probably be 
quite simple, because string operators (concatenation and relational opera­
tors) are not supported by the BASIC-expression evaluator. 

By using the Enter Address command, you can enter a string literal at a 
given address. To use this technique effectively, however, you will need to 
understand how BASIC handles string variables. For more information, 
see Chapter 6, "Examining Data and Expressions." 

4.3.4 BASIC Intrinsic Functions 

When entering a BASIC expression, you may use a limited number of 
BASIC intrinsic functions. The primary use of these functions is to convert 
a BASIC variable or value from one type to another for purposes of calcu­
lation. The intrinsic functions recognized by the expression evaluator of 

89 



Microsoft Code View a.nd Utilities 

the Code View debugger are listed in Table 4.8. See your BASIC compiler 
manual for a complete description of the BASIC intrinsic functions. 

Table 4.8 

BASIC Intrinsic Functions 
Supported by the CodeView Debugger 

Argument Function 
Name Definition Type Type 

ASCI ASCII value of first string integer 
character 

CDBL Data-type conversion numerical double 
expression 

OINT Conversion, with numerical integer 
rounding expression 

CSGN Data-type conversion numerical single 
expression 

CVI Data-type conversion two-byte integer 
string 

CVL Data-type conversion four-byte long 
string 

CVS Data-type conversion four-byte short 
string 

CVD Data-type conversion eight-byte double 
string 

FIX Conversion, with numerical integer 
truncation expression 

INT Conversion, with numerical integer 
truncation expression 

LBOUND( arr[,dim]) Lowest index of array array, integer 
dimension 

UBOUND( arr[,dim]) Highest index of array array, integer 
dimension 

VAL Numerical value of string integer, 
string long, single, 

or double 

VARPTR Offset of variable variable name integer 

VARSEG Segment of variable variable name integer 

1 Except where noted, each of the functions in this table takes exactly one argument of the 
type mdicated in the third column. 

gO 



Code View Expressions 

4.4 Pascal Expressions 

The Pascal-expression evaluator uses a subset of the most commonly used 
Pascal operators. The Code View Pascal-expression operators are listed in 
Table 4.9 in order of precedence. 

Table 4.9 

Code View Pascal Operators 

Precedence 

(Highest) 
1 
2 

3 

4 
5 

(Lowest) 

Operators 

- a. NOT ADR ADS 
* / DIY MOD AND 
+ _a. OR XOR 

<> <= >= < > 

(unary) 

a The minus sign with precedence 1 is the unary minus indicating 
the sign of a number; the minus sign with precedence 3 is a binary 
minus indicating subtraction. 

See the Mz"crosoft Pascal Reference Manual to learn how Pascal operators 
can be combined with identifiers and constants to form expressions. 

The asterisk (*) is supported as both the multiplication and string con­
catenation operator. 

Set variables and set operations are not su pported. Th e colon operator (:), 
which the other expression evaluators support, is not supported by the 
Pascal-expression evaluator. 

Enumerated constants and variables can appear in expressions when used 
with the ORD, PRED, or SUCC functions listed in Table 4.10. With 
the Pascal-expression evaluator, the period (.) has its normal use as a 
field-selection operator, but it also has an extended use as a specifier of 
local variables in parent functions. The syntax is shown below: 

routine. variable 

The routz"ne must be a high-level-language routine (procedure or function), 
and the variable must be a local variable within the specified routine. The 
variable cannot be a register variable. 

The Pascal language has a feature known as "nested scope" that enables 
the user to define routines inside of routines, in which each routine has 

91 



Microsoft Code View and Utilities 

access to the local variables of the routine that called it. But with the 
Pascal-expression evaluator for Code View, there is no nested scope. You 
must use the period operator (.) to access any local variable not declared 
in the currently executing routIne. For example, consider this code: 

procedure testl; 
var a, b: integer; 
procedure test2; 

var m, n : integer; 
procedure test3; 

var x, y integer; 
begin 
x := m + n + a + b; 

In the example above, the procedure test3 has access to the variables a, 
m, n, and d, as well as x and y. However, if we are in Code View execut­
ing test3, then variables declared outside of test3 can be accessed in 
CodeView commands only with the aid of the period operator, as in: 

testl.a 

When a Pascal expression is used as an argument with a command that 
takes multiple arguments, the expression should not have any internal 
spaces. For example, count+6 is allowed, but count + 6 may be 
interpreted as three separate arguments. Some commands (such as the 
Display Expression command) do permit spaces in expressions. 

4.4.1 Pascal Symbols 

• Syntax 

name 

A symbol is a name that represents a register, segment address, offset 
address, or a full 32-bit address. At the Pascal source level, a symbol is a 
variable name or the name of a function. Symbols (also called identifiers) 
follow the naming rules of the Pascal compiler. Note that symbols are 
never case sensitive with the Pascal-expression evaluator. If you have 
turned on case sensitivity, it is turned off automatically when a symbol is 
used in an expression. 

In assembly-language output or in output from the Examine Symbols com­
mand, the Code View debugger displays some symbol names in the object­
code format produced by the Microsoft Pascal Compiler. This format 
includes a leading underscore. For example, the function main is 

92 



CodeView Expressions 

displayed as _main. Only global labels (such as procedure names) are 
shown in this format. You do not need to include the underscore when 
specifying such a symbol in Code View commands. Labels within library 
routines are sometimes displayed with a double underscore ( __ chkstk). 
You must use leading underscores when accessing these labels with Code­
View commands. 

4.4.2 Pascal Constants 

• Syntax 

d£gits 
radiX#dig£ts 
# digits 

Default radix 
Specified radix 
Hexadecimal radix 

Numbers used in Code View commands represent integer constants. These 
constants are made up of octal, decimal, or hexadecimal digits, and are 
entered in the current input radix. The default for the radix for the 
Pascal-expression evaluator is decimal. 

The Pascal-expression evaluator uses the same method for accepting con­
stants as the FORTRAN-expression evaluator. For further information 
and examples, see Section 4.2.2, "FORTRAN Constants." 

4.4.3 Pascal Strings 

• Syntax 

, string' 

Strings can be specified as expressions in the Pascal format. 

• Example 

>EA message 'This string is okay.' 

The example uses the En ter ASCII command (EA) to en ter the given 
string into memory, starting at the address of the variable message. 

4.4.4 Pascal Intrinsic Functions 

When entering a Pascal expression, you can use a limited number of Pascal 
intrinsic functions. The purpose of these functions is to support the use of 

93 



Microsoft Code View a.nd Utilities 

enumerated types, to access array bounds, and to convert one type of data 
to another. The Pascal intrinsic functions recognized by the CodeView 
debugger are listed in Table 4.10. See the Microsoft Pascal Reference Guide 
for a complete description of the Pascal intrinsic functions. 

Table 4.10 

Pascal Intrinsic Functions 
Supported by the CodeView Debugger 

Argument Function 
Name Definition Type Type 

BYLONG(lowrd,hiwrd) Builds four-byte integer or word integer4 
integer 

BYWORD(lobyte,hibyte) Builds a word out byte word 
of two bytes 

CHR(ord) Data-type ordinal char 
conversion 

FLOAT(integer) Data-type integer real 
conversion 

FLOAT4( integer4) Data-type integer4 real 
conversion 

FLOAT8(integer) Data-type integer4 real8 
conversion 

LOBYTE( int) Returns least integer or word byte 
significant byte 

LOWER(arr) Lowest bound of array constant 
an array 

ORD(enum) Data-type enumerated integer 
conversion value 

PRED(enum) Ordinal value or enumerated integer 
predecessor value 

SUCC(enum) Ordinal value or enumerated integer 
successor value 

TRUNC( real) Truncates toward real integer 
0 

TRUNC4(real) Truncates toward real integer4 
0 

TRUNC8(real) Truncates toward real8 integer4 
0 

UPPER(arr) Upper bound of array constant 
an array 

94 



Code View Expressions 

4.5 Assembly Expressions 

The /ZI option, available with Version 5.0 and later of the Microsoft 
Macro Assembler, provides variable size information for the Code View 
debugger. This makes for correct evaluation of expressions derived from 
assembly code (except with arrays, which are discussed later in this sec­
tion). If you have an earlier version of the Macro Assembler, you will 'need 
to use C type casts to get correct evaluation. 

When a program assembles or when the Auto switch is on, source files with 
an .ASM extension will cause Code View to select the C-expression evalua­
tor. However, the following options will be set differently from the C 
default options: 

• System radix is hexadecimal (not decimal). 

• Register window is on. 

• Case Sense is off. 

The C-expression evaluator supports the memory operators described in 
Section 4.8, and generally is the appropriate expression evaluator to debug 
assembly with, because of its flexibility. 

However, you cannot always use the C-expression evaluator to specify an 
expression exactly as it would appear in assembly code. The list below 
describes the principal differences between assembler syntax and syntax 
used with the C-expression evaluator. 

Note 

The examples below present expressz'ons, not Code View commands. 
You can see the results of these expressions by using them as operands 
for the Display Expression command (?), described in Chapter 6, 
"Examining Data and Expressions." 

In the following list, examples of assembly source code are shown in the 
left-hand column. Corresponding Code View expressions (with the C­
expression evaluator) are shown in the right-hand column. 

1. Register indirection. 

The C-expression evaluator does not extend the use of brackets to 
registers. To refer to the byte, word, or double word pointed to by 
a register, use the BY, WO, or DWoperator. 

95 



Microsoft Code View a.nd Utilities 

96 

BYTE PTR [bx] 
WORD PTR [bp] 
DWORD PTR [bp] 

2. Register indirection with displacement. 

BY bx 
WO bp 
DW bp 

To perform based, indexed, or based-index indirection with a dis­
placement, use the BY, WO, or DW operator along with addition 
in a complex expression: 

BYTE PTR [di+6] 
BYTE PTR [si] [bp+6] 
WORD PTR [bx] [si] 

3. Taking the address of a variable. 

BY di+6 
BY si+bp+6 
WO bx+si 

Use the ampersand (&) to get the address of a variable with the 
C-expression evaluator. 

OFFSET var &var 

4. The PTR operator. 

With the Code View debugger, C type casts perform the same func­
tion as the assembler PTR operator. 

BYTE PTR var 
WORD PTR var 
DWORD PTR var 

5. Accessing array elements. 

(char) var 
(int) var 
(long) var 

Accessing arrays declared in assembly code is problematic, because 
the Macro Assembler emits no type information to indicate which 
variables are arrays. Therefore the Code View debugger treats an 
array name like any other variable. 

In C, an array name is equated with the address of the first ele­
ment. Therefore, if you prefix an array with the address operator 
(&), the C-expression evaluator gives correct results for array 
operations. 

string [12] (&string) [12] 
warray[bx+di] (&warray) (bx+di)/2 
darray[4] (&darray) [1] 

In the second and third examples above, notice that the indexes 
used in the assembly source-code expressions differ from the 
indexes used in the Code View expressions. This difference is neces­
sary because C arrays are automatically scaled according to the 
size of elements. In assembly, the program must do the scaling. 



Code View Expressions 

4.6 Line Numbers 

Line numbers are useful for source-level debugging. They correspond to 
the lines in source-code files (BASIC, C, FORTRAN, or Macro Assembler). 
In source mode, you see a program displayed with each line numbered 
sequentially. The CodeView debugger allows you to use these same 
numbers to access parts of a program. 

• Syntax 

• [filename:] linenumber 

The address corresponding to a source-line number can be specified as 
linenumber prefixed with a period (.). The CodeView debugger assumes 
that the source line is in the current source file, unless you specify the 
optional filename followed by a colon and the line number. 

The Code View debugger displays an error message if filename does not 
exist, or if no source line exists for the specified number . 

• Examples 

>V .100 

The example above uses the View command (V) to display code starting at 
the source line 100. Since no file is indicated, the current source file is 
assumed. 

>V .SAMPLE.FOR:10 

>V .EXAMPLE.BAS:22 

>V .DEMO.C:301 

The examples above use V to display source code starting at line 10 of 
SAMPLE. FOR, line 22 of EXAMPLE. BAS, and line 301 of DEMO. C, 
respectively. 

4.7 Registers and Addresses 

This section presents alternative ways to refer to objects in memory, 
including values stored in the processor's registers. Addresses are basic to 

97 



Microsoft Code View and Utilities 

each of the expression evaluators. A data symbol represents an address in 
a data segment; a procedure name represents an address in a code seg­
ment. All of the syntax in this section can be considered as an extension to 
the BASIO-, 0-, or FORTRAN-expression evaluator. 

4.7.1 Itegisters 

• Syntax 

[@]register 

You can specify a register name if you want to use the current value stored 
in the register. Registers are rarely needed in source-level debugging, but 
they are used frequently for assembly-language debugging. 

When you specify an identifier, the Code View debugger first checks the 
symbol table for a symbol with that name. If the debugger does not find a 
symbol, it checks to see if the identifier is a valid register name. If you 
want the identifier to be considered a register, regardless of any name in 
the symbol table, use the "at" sign (@) as a prefix to the register name. 
For example, if your program has a symbol called AX, you could specify 
@AX to refer to the AX register. You can avoid this problem entirely by 
making sure that identifier names in your program do not conflict with 
register names. 

The register names known to the Code View debugger are shown in Table 
4.11. Note that the 32-bit registers are available only if the 386 option is 
on and if the computer is a 386 machine running in 386 mode. 

Table 4.11 

Registers 

Type Names 

8-bit high byte AH 
8-bit low byte AL 

16-bit general purpose AX 
16-bit segment CS 
16-bit pointer SP 
16-bit index SI 
32-bit general purpose EAX 
32-bit pointer ESP 
32-bit index ESI 

98 

BH 
BL 
BX 
DS 
BP 
DI 
EBX 
EBP 
EDI 

CH 
CL 
CX 
SS 
IP 

ECX 

DH 
DL 
DX 
ES 

EDX 



Code View Expressions 

4.7.2 Addresses 

• Syntax 

[segment:] offset 

Addresses can be specified in the Code View debugger through the use of 
the colon operator as a segment: offset connector. Both the segment and the 
offset are made up of expressions. 

A full address has a segment and an offset, separated by a colon. A partial 
address has just an offset; a default segment is assumed. The default seg­
ment varies, depending on the command with which the address is used. 
Commands that refer to data (Dump, Enter, Watch, and Tracepoint) use 
the contents of the DS register. Commands that refer to code (Assemble, 
Breakpoint Set, Go, Unassemble, and View) use the contents 01 the CS 
register. 

Full addresses are seldom necessary in source-level debugging. Occasion­
ally they may be convenient for referring to addresses outside the pro­
gram, such as BIOS (basic input/output system) or DOS addresses. 

• Examples 

>DB 100 

In the example above, the Dump Bytes command (DB) is used to dump 
memory starting at offset address 100. Since no segment is given, the 
data segment (the default for Dump commands) is assumed. 

>DB ARRAY(COUNT) ;* FORTRAN/BASIC example 

In the example above, the Dump Bytes command is used to dump memory 
starting at the address of the variable ARRAY (COUNT). In C, a similar 
variable might be denoted as array [count]. 

>DB label+l0 

In the example above, the Dump Bytes command is used to dump memory 
starting at a point 10 bytes beyond the symbol label. 

>DB ES:200 

In the example above, the Dump Bytes command is used to dump memory 
at the address having the segment value stored in ES and the offset 
address 200. 

99 



Microsoft CodeView and Utilities 

4.7.3 Address Ranges 

• Syntax 

8tartaddreS8 endaddre88 
8tartaddreS8 L count 

A range is a pair of memory addresses that bound a sequence of con tigu­
ous memory locations. 

You can specify a range in two ways. One way is to give the start and end 
points. In this case the range covers startaddress to endaddress, inclusively. 
If a command takes a range, but you do not supply a second address, the 
CodeView debugger usually assumes the default range. Each command has 
its own default range. (The most common default range is 128 bytes.) 

You can also specify a range by giving its starting point and the number of 
objects you want included in the range. This type of range is called an 
object range. In specifying an object range, startaddress is the address of 
the first object in the list, L indicates that this is an object range rather 
than an ordinary range, and count specifies the number of objects in the 
range. 

The size of the objects is the size taken by the command. For example, the 
Dump Bytes command (DB) has byte objects, the Dump Words command 
(DW) has words, the Un assemble command (U) has instructions, and 
so on. 

• Examples 

>DB buffer 

The example above dumps a range of memory starting at the symbol 
bu f fer. Since the end of the range is not given, the default size (128 
bytes for the Dump Bytes command) is assumed. 

>DB buffer buffer+20 

The example above dumJ?s a range of memory starting at buffer and 
ending at buffer+20 lthe point 20 bytes beyond buffer). 

100 



Code View Expressions 

>DB buffer L 20 

The example above uses an object range to dump the same range as in the 
previous example. The L indicates that the range is an object range, and 
20 is the number of objects in the range. Each object has a size of 1 byte, 
since that is the command size. 

>U funcname-30 funcname 

The example above uses the Unassemble command (U) to list the 
assembly-language statements starting 30 instructions before funcname 
and continuing to funcname. 

4.8 Memory Operators 

Memory operators return the con ten t of specific locations in memory. 
They are unary operators that work in the same way regardless of the 
language selected, and return the result of a direct memory operation. 
They are chiefly of interest to programmers who debug in assembly mode, 
and are not necessary for high-level debugging. 

All of the operators listed in this section are part of the Code View C­
expression evaluator and should not be confused with Code View com­
mands. As operators, they can only build expressions, which in turn are 
used as arguments in commands. 

Note 

The memory operators discussed in this section are only available with 
the C-expression evaluator, and have lowest precedence of any C 
operators. 

4.8.1 Accessing Bytes (BY) 

You can access the byte at an address by using the BY operator. This 
operator is useful for simulating the BYTE PTR operation of the 
Microsoft Macro Assembler. It is particularly useful for watching the byte 
pointed to by a particular register. 

101 



Microsoft Code View a.nd Utilities 

Note 

The examples that follow in Section 4.8 make use of the Display 
Expression (?) Command, which is described in Section 6.1. The x for­
mat specifier causes the debugger to produce output in hexadecimal. 

• Syntax 

BY address 

The result is a short integer that contains the value of the first byte stored 
at address. 

• Examples 

>? BY sum 
101 

The example above returns the first byte at the address of sum. 

>? BY bp+6 
42 

This example returns the byte pointed to by the BP register, with a dis­
placemen t of 6. 

4.8.2 Accessing Words (WO) 

You can access the word at an address by using the WO operator. This 
operator is useful for simulating the WORD PTR operation of the 
assembler. It is particularly useful for watching the word pointed to by a 
particular register, such as the stack pointer. 

• Syntax 

WO address 

The result is a short integer that contains the value of the first two bytes 
stored at address. 

102 



• Examples 

>? WO sum 
>13120 

Code View Expressions 

The example above returns the first word at the address of sum. 

>? WO sp,x 
>2F38 

This example returns the word pointed to by the stack pointer; the word 
therefore represents the last word pushed (the "top" of the stack). 

4.8.3 Accessing Double Words (DW) 

You can access the word at an address by using the DW operator. This 
operator is useful for simulating the DWORD PTR operation of the 
Microsoft Macro Assembler. It is particularly useful for watching the word 
poin ted to by a particular register. 

• Syntax 

DWaddress 

The result is a long integer that contains the value of the first four bytes 
stored at address. 

Note 

Be careful not to confuse the DW operator with the DW command. 
The operator is only useful for building expressions; it occurs within a 
Code View command line, but never at the beginning. The second use 
of DW mentioned above, the Dump Words Command, occurs only at 
the beginning of a CodeView command line. It displays an entire range 
of memory (in words, not double words) rather than returning a single 
result. 

• Examples 

>? OW sum 
>132120365 

The example above returns the first double word at the address of sum. 

103 



Microsoft Code View a.nd Utilities 

>? DW si,x 
>3F880000 

This example returns the double word pointed to by the SI register. 

4.9 Switching Expression Evaluators 

The Code View debugger allows you to specify a particular expression 
evaluator: BASIC, C, FORTRAN, or Pascal. You may want to specify the 
expression evaluator if you are debugging a source module that does not 
use the standard extension of the source language (such as .C for C, .BAS 
for BASIC, etc.), or if you want to use a feature of a different language. 
For example, you might be debugging a C program and want to evaluate a 
string of binary digits. The FORTRAN-expression evaluator accepts base 
2, so you might want to switch temporarily to the FORTRAN-expression 
evaluator. 

It is normally not necessary to specify the evaluator, even if you are 
debugging a mixed-language program; the Auto selection changes the 
expression evaluator for you. 

• Mouse 

To switch expression evaluators with the mouse, open the Language menu 
and click the appropriate language selection. 

• Keyboard 

To switch expression evaluators with a keyboard command, press ALT+L to 
open up the Language menu, use the arrow keys (or mnemonic letter) to 
move to the appropriate language, then press RETURN. 

• Dialog 

To switch expression evaluators using a dialog command, enter a com­
mand line with the syntax 

USE [language] 

where language is C, FORTRAN, BASIC, Pascal or Auto. The command is 
not case sensitive, and you can enter the language name in any combina­
tion of uppercase and lowercase letters. Entered on a line by itself, USE 

104 



Code View Expressions 

displays the name of the current expression evaluator. The USE command 
always displays the name of the current expression evaluator or the new 
expression evaluator (if specified). 

• Examples 

>USE fortran 
FORTRAN 

The example above switches to the FORTRAN-expression evaluator. 

>USE 
BASIC 

The example above displays the name of the current expression evaluator, 
which in this case happens to be BASIC. 

105 





CHAPTER, 

EXECUTING CODE 

5.1 Trace Command ................................................. 110 
5.2 Program Step Command ..................................... 113 
5.3 Go Command ...................................................... 115 
5.4 EXecute Command .............................................. 118 
5.5 Restart Command ............................................... 119 





Executing Code 

Several commands execute code within a program. Among the differences 
between the commands is the size of step executed by each. The com­
mands and their step sizes are listed below. 

Command 

Trace (T) 

Program Step (P) 

Go (G) 
Execute (E) 

Restart (L) 

Action 

Executes the current source line in source mode, 
or the current instruction in assembly mode; 
traces into routines, procedures, or interrupts 

Executes the current source line in source mode, 
or the current instruction in assembly mode; 
steps over routines, procedures, or interrupts 

Execu tes the current program 

Executes the current program in slow motion 

Restarts the current program 

In window mode, the screen is updated to reflect changes that occur when 
you execute a Trace, Program Step, or Go command. The highlight mark­
ing the current location is moved to the new instruction in the display 
window. When appropriate, values are changed in the register and watch 
windows. 

In sequential mode, the current source line or instruction is displayed af­
ter each Trace, Program Step, or Go command. The format of the display 
depends on the display mode. The three display modes available in sequen­
tial mode (source, assembly, and mixed) are discussed in Chapter 9, 
"Examining Code." 

If the display mode is source (S+) in sequential mode, the current source 
line is shown. If the display mode is assembly (S-), the status of the regis­
ters and the flags and the new instruction are shown in the format of the 
Register command (see Chapter 6, "Examining Data and Expressions"). If 
the display mode is mixed (8&), then the registers, the new source line, 
and the new instruction are all shown. 

The commands that execute code are explained in Sections 5.1-5.5. 

Note 

If you are executing a section of code with the Go or Program Step 
command, you can usually interrupt program execution by pressing 
CONTROL+BREAK or CONTROL+C. This can terminate endless loops, or it 
can interrupt loops that are delayed by the Watchpoint or Tracepoint 
command (see Chapter 8, "Managing Watch Statements"). 

109 



Microsoft Code View and Utilities 

CONTROL+BREAK or CONTROL+C may not work if your program has a 
special use for either of these key combinations. If you have an IBM 
Personal Computer AT (or a compatible computer), you can use the 
SYSTEM-REQUEST key to mterrupt execution regardless of your 
program's use of CONTROL+BREAK and CONTROL+C. 

5.1 Trace Command 

The Trace command executes the current source line in source mode, or 
the current instruction in assembly mode. The current source line or 
instruction is the one pointed to by the CS and IP registers. In window 
mode, the current instruction is shown in reverse video or in a contrasting 
color. 

In source mode, if the current source line contains a call, the Code View 
debugger executes the first source line of the called routine. In this mode, 
the Code View debugger will only trace into functions and routines that 
have source code. For example, if the current line contains a call to an 
intrinsic function or a standard C library function, the debugger will sim­
ply execute the function if you are in source mode, since the source code 
for Microsoft standard libraries is not available. 

If you are in assembly or mixed mode, the debugger will trace into the 
function. In this mode, if the current instruction is CALL, INT or REP, 
the debugger executes the first instruction of the procedure, interrupt, or 
repeated string sequence. 

Note 

When you debug Microsoft Macro Assembler programs in source mode, 
the paragraph above still applies. The debugger will not trace into an 
INT or REP sequence when you are in source mode. 

Use the Trace command if you want to trace into calls. To execute calls 
without tracing into them, you should use the Program Step command (P) 

110 



Executing Code 

instead. Both commands execute DOS function calls without tracing into 
them. There is no direct way to trace into DOS function calls. However, 
you can trace through BIOS calls in assembly or mixed mode. 

Note 

The Trace command (T) uses the hardware trace mode of the 8086 
family of processors. Consequently, you can also trace instructions 
stored in ROM (read-only memory). However, the Program Step com­
mand (P) will not work in ROM. Using the Program Step command 
has the same effect as using the Go command (G). 

• Mouse 

To execute the Trace command with the mouse, point to Trace on the 
menu bar and click the left button. 

• Keyboard 

To execute the Trace command with a keyboard command, press the F8 
key. This works in both window and sequential modes. 

• Dialog 

To execute the Trace command using a dialog command, enter a command 
line with the following syntax: 

T [count] 

If the optional count is specified, the command executes count times before 
stopping. 

• Example 

The following example shows the Trace command in sequential mode. (In 
window mode, there would be no output from the commands, but the 
display would be updated to show changes caused by the command.) 

111 



Microsoft Code View and Utilities 

>S+ 
source 
>. 

;* FORTRAN example 

9: 
>T 3 
34: 
35: 
36: 

> 

CALL INPUT (DATA, N, INPFMT) 

OPEN (l,FILE='EXAMPLE.DAT',STATUS='OLD') 
DO 100 I=l,N 
READ (1,' (BN,I10) ',END=999) DATA (I) 

The FORTRAN example above sets the display mode to source, and then 
uses the Source Line command to display the current source line. (See 
Chapter 9, "Examining Code," for a further explanation of the Set Source 
and Source Line commands.) Note that the current source line calls the 
subroutine INPUT. The Trace command is then used to execute the next 
three source lines. These lines will be the first three lines of the su brou tine 
INPUT. 

Debugging C and BASIC source code is very similar. If you execute the 
Trace command when the current source line contains a C function call or 
a BASIC subprogram call, then the debugger will execute the first line of 
the called routine. 

>s­
assembly 
>T 
AX=0058 BX=3050 
DS=49B7 ES=49B7 
3FBO:OO13 50 
> 

CX=OOOB DX=3FBO SP=304C BP=3056 SI=OOCC DI=40EO 
SS=49B7 CS=3FBO IP=0013 NY UP EI PL NZ AC PO NC 

PUSH AX 

The example above sets the display mode to assembly and traces the 
current instruction. This example and the next example are the same as 
the examples of the Program Step command in Section 5.2. The Trace and 
Program Step commands behave differently only when the current instruc­
tion is a CALL, INT, or REP instruction. 

>S& 
mixed 
>T 
AX=OOOO BX=319C CX=OO28 DX=OOOO SP=304C BP=3056 SI=OOCC DI=40EO 
DS=49B7 ES=49B7 SS=49B7 CS=3FBO IP=003C NV UP EI PL NZ NA PO NC 
8: IF (N.LT.1 .OR. N.GT.1000) GO TO 100 
3FBO:OO3C 833ECE2101 CMP Word Ptr [21CE],+Ol DS:21CE=OO28 
> 

The example above sets the display mode to mixed and traces the current 
instruction. 

112 



Executing Code 

5.2 Program Step Command 

The Program Step command executes the current source line in source 
mode, or the current instruction in assembly mode. The current source line 
or instruction is the one pointed to by the CS and IP registers. In window 
mode, the current instruction is shown in reverse video or in a contrasting 
color. 

In source mode, if the current source line contains a call, the Code View 
debugger executes the entire routine and is ready to execute the line after 
the call. In assembly mode, if the current instruction is CALL, INT, or 
REP, the debugger executes the entire procedure, interrupt, or repeated 
string sequence. 

Use the Program Step command if you want to execute over routine, func­
tion, procedure, and interrupt calls. If you want to trace into calls, you 
should use the Trace command (T) instead. Both commands execute DOS 
function calls without tracing into them. There is no direct way to trace 
into DOS function calls. 

• Mouse 

To execute the Program Step command with the mouse, point to Trace on 
the menu bar and click the right button. 

• Keyboard 

To execute the Program Step command with a keyboard command, press 
the FlO key. This works in both window and sequential modes. 

• Dialog 

To execute the Program Step command with a dialog command, enter a 
command line with the following syntax: 

P [count] 

If the optional count is specified, the command executes count times before 
stopping. 

• Example 

This example shows the Program Step command in sequential mode. In 
window mode, there would be no output from the commands, but the 
display would be updated to show changes. 

113 



Microsoft Code View and Utilities 

>S+ 
source 
>. 

; * FORTRANjBASIC example 

9: 
>P 3 
10: 
11: 
12: 
> 

CALL INPUT (DATA, N, INPFMT) 

CALL BUBBLE (DATA,N) 
CALL STATS (DATA, N) 
END 

The example above (in FORTRAN or BASIC) sets the display mode to 
source, and then uses the Source Line command to display the current 
source line. (See Chapter 9, "Examining Code/, for a further explanation 
of the Set Source and Source Line commands.) Notice that the current 
source line calls the subprogram INPUT. The Program Step command is 
then used to execute the next three source lines. The first program step 
executes the entire subprogram INPUT. The next two steps execute the 
subprograms BUBBLE and STATS, also in their entirety. 

The same program, written in C, would behave exactly the same way with 
the Program Step command. The Program Step command will not trace 
into a C function call. 

>s­
assembly 
>p 
AX=0058 BX=3050 
DS=49B7 ES=49B7 
3FBO:0013 50 
> 

CX=OOOB DX=3FBO SP=304C BP=3056 SI=ooCC DI=40EO 
SS=49B7 CS=3FBO IP=0013 NY UP EI PL NZ AC PO NC 

PUSH AX 

The example above sets the display mode to assembly and steps through 
the current instruction. This example and the next example are the same 
as the examples of the Trace command in Section 5.1. The Trace and Pro­
gram Step commands behave differently only when the current instruction 
is a CALL, INT, or REP instruction. 

>s& 
mixed 
>p 
AX=OOOO BX=319C CX=0028 DX=OOOO SP=304C BP=3056 SI=ooCC DI=40EO 
DS=49B7 ES=49B7 SS=49B7 CS=3FBO IP=OO3C NY UP EI PL NZ NA PO NC 
8: IF (N.LT.1 .OR. N.GT.1000) GO TO 100 
3FBO:003C 833ECE2101 CMP Word Ptr [21CE],+01 DS:21CE=0028 
> 

The example above sets the display mode to mixed and steps through the 
current instruction. 

114 



Executing Code 

5.3 Go Command 

The Go command starts execution at the current address. There are two 
variations of the Go command, Go and Goto. The Go variation simply 
starts execution and continues to the end of the program or until a break­
point set earlier with the Breakpoint Set (BP), Watch point (WP), or 
Tracepoint (TP) command is encountered.. The other variation is a Goto 
command, in which a destination is given with the command. 

If a destination address is given but never encountered (for example, if the 
destination is on a program branch that is never taken), the Code View 
debugger executes to the end of the program. 

If you enter the Go command and the debugger does not encounter a 
breakpoint, the entire program is executed and the following message is 
displayed: 

Program terminated normally (number) 

The number in parentheses is the value returned by the program (some­
times called the exit or "errorlevel" code) . 

• Mouse 

To execute the Go command with no destination, point to Go on the menu 
bar and press either button. 

To execute the Goto variation of the Go command, point to the source line 
or instruction you wish to go to; then press the right button. The highlight 
marking the current location will move to the source line or instruction 
you pointed to (unless a breakpoint is encountered first). The CodeView 
debugger will sound a warning and take no action if you try to go to a 
comment line or other source line that does not correspond to code. 

If the line you wish to go to is in another module, you can use the Load 
command from the Files menu to load the source file for the other module. 
Then point to the destination line and press the right button . 

• Keyboard 

To use a keyboard command to execute the Go command with no destina­
tion, press the F5 key. This works in ,both window and sequential modes. 

To execute the Goto variation of the Go command, move the cursor to the 
source line or instruction you wish to go to. If the cursor is in the dialog 
window, first press the F6 key to move the cursor to the display window. 

115 



Microsoft Code View a.nd Utilities 

When the cursor is at the appropriate line in the display window, press the 
F7 key. The highlight marking the current location will move to the source 
line or instruction you pointed to (unless a breakpoint is encountered 
first). The CodeView debugger will sound a warning and take no action if 
you try to go to a comment line or other source line that does not 
correspond to code. 

If the line you wish to go to is in another module, you can use the Load 
command from the Files menu to load the source file for the other module. 
Then move the cursor to the destination line and press the F7 key. 

• Dialog 

To execute the Go command with a dialog command, enter a command 
line with the following syntax: 

G [breakaddress] 

If the command is given with no argument, execution continues until a 
breakpoint or the end of the program is encountered. 

The Goto form of the command can be given by specifying breakaddress. 
The breakaddress can be given as a symbol, a line number, or an address in 
the segment: offset format. If the offset address is given without a segment, 
the address in the CS register is used as the default segment. If you give 
breakaddress as a line number, but the corresponding source line is a com­
ment, declaration, or blank line, the following message appears: 

No code at this line number 

• Examples 

The following examples show the Go command in sequential mode. In win­
dow mode there would be no output from the commands, but the display 
would be updated to show changes caused by the command. 

>G 

Program terminated normally (0) 
> 

The example above passes control to the instruction pointed to by the 
current values of the CS and IP registers. No breakpoint is encountered, 
so the CodeView debugger executes to the end of the program, where it 
prints a termination message and the exit code returned by the program (0 
in the example). 

116 



>S+ ;* FORTRANjBASIC example (source mode) 
source 
>G BUBBLE 
17: 
> 

A = B + C 

Executing Code 

In the example above, the display mode is first set to source (8+). (See 
Chapter 9, "Examining Code," for information on setting the display 
mode.) When the Go command is entered, the CodeView debugger starts 
program execution at the current address and continues until it reaches 
the start of the subprogram BUBBLE. 

>S& ;* C example (mixed mode) 
mixed 
>G .22 
AX=02F4 BX=OOO2 CX=ooA8 DX=OOOO SP=3036 BP=3042 S1=0070 D1=40EO 
DS=49B7 ES=49B7 SS=49B7 CS=3FBO 1P=0141 NY UP E1 PL NZ NA PO NC 
22: x[i] = x[j]; 
3FBO:0141 8B7608 MOV S1,Word Ptr [BP+08] SS:304A=OO70 
> 

The example above passes execution control to the program at the current 
address and executes to the address of source line 22. If the address with 
the breakpoint is never encountered (for example, if the program has less 
than 22 lines, or if the breakpoint is on a program branch that is never 
taken), the Code View debugger executes to the end of the program. 

Note 

Mixed and source mode can be used equally well with all three 
languages. The examples alternate languages in this chapter simply to 
be accessible to more users. 

>S­
assembly 
>G #2AS 
AX=0049 BX=0049 
DS=5DAF ES=5DAF 
58BB:02A8 98 
> 

CX=028F DX=OOOO SP=12F2 BP=12F6 S1=04BA D1=1344 
SS=5DAF CS=58BB 1P=02A8 NY UP EI PL NZ NA PE NC 

CBW 

The example above executes to the hexadecimal address CS:2A8. Since no 
segment address is given, the C8 register is assumed. 

117 



Microsoft Code View and Utilities 

5.4 Execute Command 

The Execute command is similar to the Go command with no arguments, 
except that it executes in slow motion (several source lines per second). 
Execution starts at the current address and continues to the end of the 
program or until a breakpoint, tracepoint, or watch point is reached. You 
can also stop automatic program execution by pressing any key or a mouse 
button. 

• Mouse 

To execute code in slow motion with the mouse, point to Run on the menu 
bar, press a mouse button and drag the highlight down to the Execute 
selection, and then release the button. 

• Keyboard 

To execute code in slow motion with a keyboard command, press ALT+R to 
open the Run menu, and then press ALT+E to select Execute. 

• Dialog 

To execute code in slow motion with a dialog command, enter a command 
line with the following syntax: 

E 

You cannot set a destination for the Execute command as you can for the 
Go command. 

In sequential mode, the output from the Execute command depends on the 
display mode (source, assembly, or mixed). In assembly or mixed mode, the 
command executes one instruction at a time. The command displays the 
current status of the registers and the instruction. In mixed mode, it will 
also show a source line if there is one at the instruction. In source mode, 
the command executes one source line at a time, displaying the lines as it 
executes them. 

Important 

118 

The Execute command has the same command letter (E) as the Enter 
command. If the command has at least one argument, it is interpreted 
as Enter; if not, it is interpreted as Execute. 



Executing Code 

5.5 Restart Command 

The Restart command restarts the current program. The program is ready 
to be executed just as if you had restarted the CodeView debugger. Pro­
gram variables are reinitialized, but any existing breakpoints or watch 
statements are retained. The pass count for all breakpoints is reset to 1. 
Any program arguments are also retained, though they can be changed 
with the dialog version of the command. 

The Restart command can only be used to restart the current program. If 
you wish to load a new program, you must exit and restart the Code View 
debugger with the new program name. 

• Mouse 

To restart the program with the mouse, point to Run on the menu bar, 
press a mouse button and drag the highlight down to the Restart or Start 
selection, and then release the button. The program will be restarted. If 
the Restart selection is chosen, the program will be ready to start execut­
ing from the beginning (but not actually running). If the Start selection is 
chosen, the program starts executing from the beginning and continues 
until a breakpoint or the end of the program is encountered. 

• Keyboard 

To restart the program with a keyboard command, press ALT+R to open 
the Run menu, and then press either ALT+R to select Restart or ALT+S to 
select Start. The program will be restarted. If the Restart selection is 
chosen, the program will be ready to start executing from the beginning 
(but not actually running). If the Start selection is chosen, the program 
starts executing from the beginning and continues until a breakpoint or 
the end of the program is encountered. 

• Dialog 

To restart the program with a dialog command, enter a command line 
with the following syntax: 

L [arguments] 

When you restart using the dialog version of the command, the program 
will be ready to start executing from the beginning. If you want to restart 
with new program arguments, you can give optional arguments. You can­
not specify new arguments with the mouse or keyboard version of the 
command. 

119 



Microsoft Code View and Utilities 

Note 

The command letter L is a mnemonic for Load, but the command 
should not be confused with the Load selection from the File menu, 
since that selection only loads a source file without restarting the 
program. 

• Examples 

>L 
> 

The example above starts the current executable file, retaining any break­
points, watchpoints, tracepoints, and arguments. 

>L 6 
> 

The example above restarts the current executable file, but with 6 as the 
new program argument. 

120 



CHAPTER 
EXAMINING DATA 
AND EXPRESSIONS 

6.1 Display Expression Command ............................. 123 
6.2 Examine Symbols COmmand ............................... 132 
6.3 Dump Commands ............................................... 138 

6.3.1 Dump ...................................................... 139 
6.3.2 Dump Bytes ............................................. 140 
6.3.3 Dump ASCII ............................................ 141 
6.3.4 Dump Integers .......................................... 141 
6.3.5 Dump Unsigned Integers ........................... 142 
6.3.6 Dump Words ............................................ 143 
6.3.7 Dump Double Words ................................. 144 
6.3.8 Dump Short Reals ..................................... 144 
6.3.9 Dump Long Reals ..................................... 145 
6.3.10 Dump 10-Byte Reals ................................. 146 

6.4 Compare Memory Command .............................. 147 
6.5 Search Memory Command .................................. 148 
6.6 Port Input Command .......................................... 149 
6.7 Register Command ............................................. 150 
6.8 8087 Command ................................................... 152 





Examining Data and Expressions 

The Code View debugger provides several commands for examining 
different kinds of data, including expressions, symbols, memory, and regis­
ters. The data-evaluation commands discussed in this chapter are sum­
marized below. 

Command 

Display Expression (?) 

Examine Symbol (X?) 

Dump (D) 

Compare Memory (C) 

Search Memory (8) 

Port Input (I) 
Register (R) 

8087 (7) 

Action 

Evaluates and displays the value of sym­
bols or expressions 

Displays the addresses of symbols 

Displays sections of memory containing 
data (with variations for examining 
different kinds of data) 

Compares two blocks of memory, byte by 
byte 

Scans memory for specified byte values 

Reads a byte from a hardware port 

Shows the current values of each register 
and each flag 

Shows the current value in the 8087 or 
80287 register 

6.1 Display Expression Command 

The Display Expression command displays the value of a Code View 
expression. 

Each of the expression evaluators (C, FORTRAN, BASIC, and Pascal) 
accepts a different set of symbols, operators, functions, and constants, as 
explained in Chapter 4, "Code View Expressions." The resulting expres­
sions can contain the intrinsic functions listed for the FORTRAN- and 
BASIC-expression evaluators. They may also contain functions that are 
part of the executable file. The simplest form of expression is a symbol 
representing a single variable or routine. 

Note 

FORTRAN subroutines and BASIC subprograms do not return values 
as functions do. They can be used in expressions, and in fact may be 
useful for observing side effects. However, the value returned by the 
expression will be meaningless. 

123 



Microsoft CodeView and Utilities 

In addition to displaying values, the Display Expression command can also 
set values as a side effect. For example, with the C-expression evaluator 
you can increment the variable n by using the expression ++n with the 
Display Expression command. With the FORTRAN-expression evaluator 
you would use N=N+l, and with the BASIC-expression evaluator you 
would use LET N=N+1. Mter being incremented, the new value will be 
displayed. 

You can specify the format in which the values of expressions are dis­
played by the Display Expression command. Type a comma after the 
expression, followed by a Code View format specifier. The format specifiers 
used in the CodeView debugger are a subset of those used by the C printf 
function. They are listed in Table 6.1. 

Table 6.1 

Code View Format Specifiers 

Output Sample Sample 
Character Format Expression Output 

d Signed decimal integer ?40000,d 40000 

i Signed decimal integer ?40000,i 40000 

u 1 Unsigned decimal integer ?40000,u 40000 

0 Unsigned octal integer ?40000,0 116100 

xorX2 Hexadecimal integer ?40000,x 9c40 

f Signed value in floating- ?3./2.,f 1.500000 
point decimal format 
with six decimal places 

e or E3 Signed value in ?3./2.,e 1.500000e+000 
scientific-notation 
format with up to six 
decimal places (trailing 
zeros and decimal point 
are truncated) 

gor G3 Signed value with ?3./2.,g 1.5 
floating-point decimal 
format (f) or scientific-
notation format (g or 
G), whichever is more 
compact 

c Single character ?65,c A 

8
4 Characters printed up to ?"String",s String 

the first null character 

1 FORTRAN and BASIC have no unsigned data types. Using an unsigned format specifier has 
no effect on the output of positive numbers, but causes negative numbers to be output as 
positive values. 

124 



Examining Data and Expressions 

2 Hexadecimal letters are uppercase if the type is X and lowercase if the type is x. 

3 The "E" is uppercase if the type is E or G; lowercase if the type is e or g. 

4The s string format is used only with the ~expression evaluator; it prints characters up 
to the first null. 

If no format specifier is given, single- and double-precision real numbers 
are displayed as if the format specifier had been given as g. (If you are 
familiar with the C language, you should note that the nand p format 
specifiers and the F and H prefixes are not supported by the Code View 
debugger, even though they are supported by the C printf function.) 

The prefix h can be used with the integer format specifiers (d, 0, U, x, and 
X) to specify a two-byte integer. The prefix 1 can be used wIth the same 
types to specify a four-byte integer. For example, the command 
7100000, Id produces the output 100000. However, the command 
7100000, hd evaluates only the low-order two bytes, producing the out­
put -31072. 

The Display Expression command does not work for programs assembled 
with Microsoft Macro Assembler Versions 4.0 and earlier, because the 
assembler does not write information to the object file about the type size 
of each variable. Use the Dump command instead. 

When calling a FORTRAN subroutine that uses alternate returns, the 
value of the return labels in the actual parameter list must be o. For 
example, the subroutine call CALL PROCESS (I, * 10, J, * 20, * 30) 
must be called from the debugger as 
7PROCESS (1ARG1, 0, 1ARG2, 0,0). Using other values as return labels 
will cause the error Type clash in function argument or 
Unknown symbo 1. 

Note 

Do not use a type specifier when evaluating strings in FORTRAN, 
BASIC, or Pascal. Simply leave off the type specifier, and the expres­
sion evaluator will display the string correctly. The s type specifier 
assumes the C language string format, with which other languages 
conflict; if you use 5, then the debugger will simply display characters 
at the given address until a null is encountered. 

125 



Microsoft Code View and Utilities 

• Mouse 

The Display Expression command cannot be executed with the mouse. 

• Keyboard 

The Display Expression command cannot be executed with a keyboard 
command. 

• Dialog 

To display the value of an expression using a dialog command, enter a 
command line with the following syntax: 

? expressz'on[,/ormat] 

The expression is any valid CodeView expression, and the optional format 
is a Code View format specifier. 

The remainder of this section first gives examples that are relevant to all 
languages, and then gives examples specific to C, FORTRAN, BASIC and 
Pascal. 

If you are debugging code written with the assembler, you will use the C­
expression evaluator by default. Consult Section 4.5 for guidelines on how 
to use the C-expression evaluator with assembly code. 

• Examples 

>? amount 
500 
>? amount,x 
1f4 
>? amount,o 
764 
> 

The example above displays the value stored in the variable amount, an 
integer. This value is first displayed in the system radix (in this case, 
decimal), then in hexadecimal, and then in octal. 

>? 92,x 
5c 
>? 109*(35+2),0 
7701 
>? 118,c 
v 
> 

126 



Examining Data and Expressions 

The example above shows how the Code View debugger can be used as a 
calculator. You can convert between radixes, calculate the value of con­
stant expressions, or check ASCII equivalences. 

>? chance,f 
0.083333 
>? chance,e 
8.333333e-002 
>? chance,E 
8.333333E-002 

The example above shows a double-precision real number, chance, 
displayed in three formats. The f format always displays six digits of pre­
cision. The e format uses scientific notation. Note that the E format yields 
essentially the same display as e does. 

The rest of the examples in this section are specific to particular 
languages . 

• C Examples 

The following examples assume that a C source file is being debugged, and 
that it contains the following declarations: 

char *text = "Here is a string." 
int amount; 
struct { 

char name[20J; 
int id; 
long class; 

} student, *pstudent; 

int square(int); 

Assume also that the program has been executed to the point where the 
above variables have been assigned values, and that the C-expression 
evaluator is in use. 

>? text, X 
13F3 
>DA Ox13F3 
3D83:13FO Here is a string. 
>? text,s 
Here is a string. 
> 

The example above shows how to examine strings. One method is to evalu­
ate the variable that points to the string, and then dump the values at 
that address (the Dump commands are explained in Section 6.3). A more 
direct method is to use the s type specifier. 

127 



Microsoft Code View and Utilities 

>? student.id 
19643 
>? pstudent->id 
19643 
> 

The example above illustrates how to display the values of members of a 
structure. The same syntax applies to unions. 

>? amount 
500 
>? ++amount 
501 
>? amount=600 
600 
> 

The example above shows how the Display Expression command can be 
used with the C-expression evaluator to change the values of variables. 

>? square(9) 
81 
> 

The example above shows how functions can be evaluated in expressions. 
The CodeView debugger executes the function square with an argument 
of 9, and displays the value returned by the function. You can only 
display function values after you have executed into the function main. 

• FORTRAN Examples 

The examples below assume that the FORTRAN source file contains the 
following variable declarations, in which SQUARE is a function: 

INTEGER*2 SQUARE 
INTEGER*2 AMOUNT 
CHARACTER*16 STR 
STR = 'Here is a string' 

Assume also that the program has executed to the point where these vari­
ables have been assigned values, and that the FORTRAN-expression 
evaluator has been selected. 

>? STR 
'Here is a string' 

The example above shows how to examine strings with the FORTRAN­
expression evaluator. The s format specifier is not required. 

128 



Examining Data and Expressions 

>? AMOUNT 
500 
>? AMOUNT=AMOUNT+ 1 
501 
>? AMOUNT=600 
600 
>? AMOUNT 
600 
> 

The example above shows how the Display Expression command can be 
used to change values with the FORTRAN-expression evaluator. 

>? SQUARE (9) 
81 
> 

The example above shows how functions can be evaluated in expressions. 
The Code View debugger executes the function SQUARE with an argument 
of 9, and displays the value returned by the function. You can only 
display the values of functions after you have executed into the main pro­
gram level. 

• BASIC Examples 

These examples assume that the BASIC source file contains the following 
statemen ts: 

amount% = 500 
str$ = "Here is a string" 

Assume also that the program has been executed up to these statements, 
and that the BASIC-expression evaluator is in use. 

>? str$ 
Here is a string 

The first example above shows how to examine strings with the BASIC­
expression evaluator. The s format specifier should not be used. 

>? ASC(str$) 
72 

The second example demonstrates one of the BASIC intrinsic functions 
supported by the CodeView debugger, ASC, which returns the ASCII 
value of the first character in a string. 

129 



Microsoft Code View and Utilities 

>? amount% 
500 
>? LET amount%=amount%+ 1 
501 
>? LET amount%=600 
600 
>? amount% 
600 
> 

The example above shows how the Display Expression command can be 
used to change values with the BASIC-expression evaluator. With BASIC, 
the LET command can only be applied to numeric data, not strings. 

Note 

The BASIC-expression evaluator cannot evaluate functions defined in 
the program, as the C- and FORTRAN-expression evaluators can. 

• Pascal Examples 

The following examples assume that a Pascal source file has the following 
declarations: 

type student = record 
name = string(20); 
id : integer; 
class : integer4; 
end; 

mycard = (jack, queen, king, ace); 

var amount: integer; 
str: string(16); 
tom : student; 
mycard : card; 

function square (n: integer) 
begin 

square := n * n; 
end 

integer; 

Assume also that the program has been executed to the point where all 
these variables have been assigned values, and that the Pascal-expression 
evaluator is in use. 

130 



Examining Data and Expressions 

>? str 
This is a string 
>? tom.id 
19643 
>? ORD (mycard) 
2 
>? ORD(SUCC(mycard» 
3 

The example above shows how various Pascal types can be evaluated. Note 
that the s type specifier must not be used to evaluate strings. 

>? amount 
500 
>? amount := amount+1 
501 
>? amount : = 600 
600 
>? amount 
600 
> 

The example above demonstrates how the assignment operator can be 
used to change values. 

>? mycard = king 
2 
> 

The example above shows how to assign values to enumerated types. In 
this case king is not a variable, but an enumerated-type constant value. 

>? square(3)+1 
10 
> 

The example above shows how a function defined in the source code can be 
used in a CodeView expression. 

• Assembly Examples 

By default, the C-expression evaluator is used for debugging assembly 
modules. However, some C expressions are particularly helpful for debug­
ging assembly code. Some typical examples are presented below. 

>? BY bx 
12 
> 

The example above displays the first byte at the location pointed to by 
BX, and is equivalent to the assembly expression BYTE PTR [bx]. 

131 



Microsoft Code View a.nd Utilities 

>? WO bp+8 
9359 
> 

The example above displays the first word at the location pointed to by 
[bp+8] . 

>? DW si+12 
12555324 
> 

The example above displays the first double word at the location pointed 
toby [si+12]. 

>? (char) var 
5 
>? (int) var 
1005 
> 

The last two examples use type casts, which are similar to the assembler 
PTR operator. The expression (char) var displays the byte at the 
address of var, in signed format. The expression (int) var displays 
the word at the same address, also in signed format. You can alter either 
of these commands to display results in unsigned format simply by using 
the u format specifier. 

>7 (char) var,u 

>7 (int) var,u 

6.2 Examine Symbols Command 

The Examine Symbols command displays the names and addresses of sym­
bols, and the names of modules, defined within a program. You can specify 
the symbol or group of symbols you want to examine by module, pro­
cedure, or symbol name . 

• Mouse 

The Examine Symbols command cannot be executed with the mouse . 

• Keyboard 

The Examine Symbols command cannot be executed with a keyboard 
command. 

132 



Examining Data and Expressions 

• Dialog 

To view the addresses of symbols with a dialog command, enter a com­
mand line in one of the following formats, 

X* 
X 
X? [module!] [routine.] [symbol] [*] 

in which routine is in a program unit, such as a C function or a BASIC 
subprogram, capable of having its own local variables. 

The syntax combinations are listed in more detail below. 

Syntax 

X? module! routz'ne.symbol 

X?module! routz'ne.* 

X?module!symbol 

X?module!* 

X? routine. symbol 

X?routine.* 

X?symbol 

Display 

The specified symbol in the specified 
routine in the specified module 

All symbols in the specified routine in 
the specified module 

The specified symbol in the specified 
module (symbols within routines are 
not found) 

All symbols in the specified module 

The specified symbol in the specified 
routine (looks for routine first in the 
current module, and then in other 
modules from first to last) 

All symbols in the specified routine 
(looks for routine first in the current 
module, and then in other modules 
from first to last) 

Looks for the specified symbol in this 
order: 

1. In the current routine 

2. In the current module 

3. In other modules, from first to last 

All symbols in the current routine 

133 



Microsoft CodeView and Utilities 

x 

Note 

All module names 

All symbolic names in the program, 
including all modules and all symbols 

When you debug an assembly module, you cannot use the routine field; 
you must use the module field. Therefore, the only versions of this com­
mand that work with assembly modules are the following: 

X?module!* 
X?module!symbol 

• C Examples 

For the following examples, assume that the program being examined is 
called pi. exe, and that it consists of two modules: pi. c and math. c. 
The pi. c module is a skeleton consisting only of the main function, 
whereas the math. c module has several functions. Assume that the 
current function is div within the math module. 

>X* 
P1.OBJ 
MATH.OBJ 
C:B(chkstk) 
C:B(crtO) 

C:B(itoa) 
C:B(unlink) 
> 

;*Example 1 

Example 1 lists the two user-created modules of the program, as well as 
the library modules used in the program. 

>X?* ;*Example 2 
D1 int b 
[BP-0006] int quotient 
81 int i 
[BP-0002] int remainder 
[BP+OOO4] int divisor 

> 

134 



Examining Data and Expressions 

Example 2 lists the symbols in the current function (div). Local variables 
are shown as being stored either in a register (b in register D1) or at a 
memory location specified as an offset from a register (divisor at loca­
tion [BP+0004]). 

>X?pil:l: 
3037:19B2 int 
3037:2954 int 
3037:2956 int 
3A79:0010 int 
3037:19B2 int 
3037:0A10 char 
3037:2954 int 
3037:19B4 char 
3037:2956 int 
3037:19BO int 
> 

;:1: Exanple 3 
_scratchO 
_scratch1 
_scratch2 
.JnainO 

scratchO 
p [] 
scratch1 
t [] 
scratch2 
q 

3037:0A10 char 
3037:19B4 char 
3037:19BO int 

3A79:0010 int 

Example 3 shows all the symbols in the pi. c module. 

>X?math!div.* 
3A79:0264 int 

;*Example 4 

> 

DI 
[BP-0006] 
8I 
[BP-0002] 
[BP+0004] 

int 
int 
int 
int 
int 

div () 
b 
quotient 
i 
remainder 
divisor 

Example 4 shows the symbols in the di v function in module math. c. 
You wouldn't need to specify the module if math. c were the current 
module, but you would if the current module were pi. c. 

Variables local to a function are indented under that function. 

>X?math!arctan.s ;* Example 5 
3A79:00FA int arctan() 

[BP+0004] int s 
> 

Example 5 shows one specific variable (s) within the arctan function. 

• FORTRAN Examples 

For the following examples, assume that the program being examined is 
called FRUST. EXE, and that it consists of four modules: FRUST. FOR, 
FRUST1.FOR, FRUST2.FOR,and FRUST3.FOR.Assume that the 
current routine is main within the FRUST. FOR module. 

135 



Microsoft Code View a.nd Utilities 

>X* 
FRUST.OBJ 
FRUST1.0BJ 
FRUST2.0BJ 
FRUST3.0BJ 
c:\lib\LLIBFORE.LIB(fixups) 
c:\lib\LLIBFORE.LIB(crtO) 
c:\lib\LLIBFORE.LIB(chkstk) 
c:\lib\LLIBFORE.LIB(wr) 

c:\lib\LLIBFORE.LIB(txtmode) 
c:\lib\LLIBFORE.LIB(_creat) 

The example above lists the four modules called by the program. The 
library files called by the program are also listed. 

>X?T 
520D:ODE4 REAL*4 T 

The example above shows the address of the variable T in the current 
module. 

>X?FRUST3!MULTPI.* 
4B28:0005INTEGER*4 MULTPI() 

[BP+OOOA] 
[BP+0006] 
[BP-0004] INTEGER*4 

v 
X 
MULTPI 

The example above lists the symbols in the function MULTPI, located in 
module FRUST3. Variables local to the function are indented under the 
function. You wouldn't need to specify the module if FRUST3 were the 
current module. 

>X?FRUST2!SAREA.* 
4B15:000E void SAREA() 

[BP+0012] 
[BP+OOOE] 
[BP+OOOA] 
[BP+0006] 
520D:ODEC REAL*4 
520D:ODE8 REAL*4 

R1 
R2 
H 
T 
S12 
U 

The example above shows all the symbols in the routine SAREA in the 
module FRUST2. Because SAREA is a subroutine instead of a function, 
the word void appears where function return-value types are shown. 

136 



Examining Data and Expressions 

• BASIC Examples 

For the following examples, assume that the program being examined is 
called PROG. EXE, and that it consists of the following modules: 
PROG. BAS and SORT. BAS. Assume that the current routine is the main 
program (which, unlike subprograms, has no name in a BASIC program), 
and that the module SORT. BAS contains two subprograms, SORT and 
SWITCH. 

>X* 
PROG.OBJ 
SORT.OBJ 
BRUN303.LIB(ftmdata) 
BRUN303.LIB(crtO) 
BRUN303.LIB(crtOdat) 

BRUN303.LIB(doexec) 
BRUN303.LIB(execmsg) 

The example above lists the two modules of the program, including 
PROG.OBJ, which is the main module. The BASIC library files called by 
the program are also listed. 

5825:17BE integer 
5825:1780 single 
5825:1784 integer 

A%[array] 
HOURS! 
1% 

The example above lists the symbols in the current routine, which happens 
to be the main program. Although the main program has no label and 
therefore will not show up in a stack trace, it is still an independent rou­
tine and has its own local variables. In BASIC, local variables are not put 
on the stack unless they are su bprogram parameters. 

>X?*SORT!* 
572F:0033 integer 
572F:00El integer 

SORT 0 
SWITCH 0 

The example above lists the routines in the module SORT. OBJ. This 
form of the Display Symbols command lists routines only, not variables. 
Note that SORT () and SWITCH () are given with the addresses of the 
two subprograms by that name. 

>X?SORT!SWITCH.* 
[BP+0008] integer 
[BP+0006] integer 
5824:1798 integer 

B% 
C% 
TEMP% 

The example above shows all the symbols in the routine SWITCH, which is 
in the SORT. OBJ module. Each represents an integer. However, B% and 

137 



Microsoft Code View and Utilities 

C% represent subprogram parameters that were passed on the stack, 
whereas TEMP% is a true subprogram variable. Therefore, TEMP% has an 
absolute address in memory, whereas B% and C% are addressed relative to 
the stack. (BP points to the value of the stack at the time the routine 
SWITCH was called.) 

6.3 Dump Commands 

The CodeView debugger has several commands for dumping data from 
memory to the screen (or other output device). The Dump commands are 
listed below. 

Command Command Name 

D Dump (size is the default type) 

DB Dump Bytes 

DA Dump ASCII 

DI Dump Integers 

DU Dump Unsigned Integers 

DW Dump Words 

DD Dump Double Words 

DS Dump Short Reals 

DL Dump Long Reals 

DT Dump lO-Byte Reals 

• Mouse 

The Dump commands cannot be executed with the mouse. 

• Keyboard 

The Dump commands cannot be executed with keyboard commands. 

• Dialog 

To execute a Dump command with a dialog command, enter a command 
line with the following syntax: 

D[ type] [address I range] 

138 



Examining Data and Expressions 

The type is a one-letter specifier that indicates the type of the data to be 
dumped. The Dump commands expect either a starting address or a range 
of memory. If the starting address is given, the commands assume a 
default range (usually determined by the size of the dialog window) start­
ing at address. If range is given, the commands dump from the start to the 
end of range. The maximum size of range is 32K. 

If neither address nor range is given, the commands assume the current 
dump address as the start of the range and the default size associated with 
the size of the object as the length of the range. The Dump Real com­
mands have a default range size of one real number. The other Dump com­
mands have a default size determined by the size of the dialog window (if 
you are in window mode), or a default size of 128 bytes otherwise. 

The current dump address is the byte following the last byte specified in 
the previous Dump command. If no Dump command has been used during 
the session, the dump address is the start of the data segment (DS). For 
example, if you enter the Dump Words command with no argument as the 
first command of a session, the CodeView debugger displays the first 64 
words (128 bytes) of data declared in the data segment. If you repeat the 
same command, the debugger displays the next 64 words following the 
ones dumped by the first command. 

Note 

If the value in memory cannot be evaluated as a real number, the 
Dump commands that display real numbers (Dump Short Reals, Dump 
Long Reals, or Dump 10-Byte Reals) will display a number containing 
one of the following character sequences: # NAN , #INf, or #IND. NAN 
(not a number) indicates that the data cannot be evaluated as a real 
number. INF (infinity) indicates that the data evaluates to infinity. 
IND (indefinite) indicates that the data evaluates to an indefinite 
number. 

Sections 6.3.1-6.3.10 discuss the variations of the Dump commands in 
order of the size of data they display. 

6.3.1 Dump 

• Syntax 

D [address I range] 

The Dump command displays the contents of memory at the specified 
address or in the specified range of addresses. The command dumps data in 

139 



Microsoft Code View and Utilities 

the format of the default type. The default type is the last type specified 
with a Dump, Enter, Watch Memory, or Tracepoint Memory command. If 
none of these commands has been entered during the session, the default 
type is bytes. 

The Dump command displays one or more lines, depending on the address 
or range specified. Each line displays the address of the first item dis­
played. The Dump command must be separated by at least one space from 
any address or range value. For example, to dump memory starting at 
symbol a, use the command D a, not Da. The second syntax would be 
interpreted as the Dump ASCII command. 

6.3.2 Dump Bytes 

• Syntax 

DB [address I range] 

The Dump Bytes command displays the hexadecimal and ASCII values of 
the bytes at the specified address or in the specified range of addresses. 
The command displays one or more lines, depending on the address or 
range supplied. 

Each line displays the address of the first byte in the line, followed by up 
to 16 hexadecimal byte values. The byte values are immediately followed 
by the corresponding ASCII values. The hexadecimal values are separated 
by spaces, except the eighth and ninth values, which are separated by a 
dash (-). ASCII values are printed without separation. Unprintable ASCII 
values (less than 32 or greater than 126) are displayed as dots. No more 
than 16 hexadecimal values are displayed in a line. The command displays 
values and characters until the end of the range or, if no range is given, 
until the first 128 bytes have been displayed . 

• Example 

>DB 0 36 
305E:OOOO 53 6F 60 65 20 6C 65 74-74 65 72 73 20 61 6E 64 Some letters and 
305E:0010 20 6E 75 60 62 65 72 73-3A 00 10 EA 89 FC FF EF numbers: ...... . 
3DSE : 0020 00 FO 00 CA E4 
> 

The example above displays the byte values from DS : 0 to DS : 36 (36 
decimal is equivalent to 24 hexadecimal). The data segment is assumed if 
no segment is given. ASCII characters are shown on the right. 

140 



Examining Data and Expressions 

6.3.3 Dump ASCII 

• Syntax 

DA [address I range] 

The Dump ASCII command displays the ASCII characters at a specified 
address or in a specified range of addresses. The command displays one or 
more lines of characters, depending on the address or range specified. 

If no ending address is specified, the command dumps either 128 bytes or 
all bytes preceding the first null byte, whichever comes first. Up to 64 
characters per line are displayed. Unprintable characters, such as carriage 
returns and line feeds, are displayed as dots. ASCII characters less than 32 
and greater than 126 in number are unprintable. 

• Examples 

>DA 0 
3D7C:OOOO Some letters and numbers: 
> 

The example above displays the ASCII values of the bytes starting at 
DS : O. Since no ending address is given, values are displayed up to the first 
null byte. 

>DA 0 36 
3D7C:OOOO Some letters and numbers: .......... . 
> 

In the example above, an ending address is given, so the characters from 
DS : 0 to DS : 36 (24 hexadecimal) are shown. Unprintable characters are 
shown as dots. 

6.3.4 Dump Integers 

• Syntax 

DI [address I range] 

The Dump Integers command displays the signed decimal values of the 
words (two-byte values) starting at address or in the specified range of 

141 



Microsoft Code View and Utilities 

addresses. The command displays one or more lines, depending on the 
address or range specified. Each line displays the address of the first 
integer in the line, followed by up to eight signed decimal words. The 
values are separated by spaces. The command displays values until the end 
of the range or until the first 64 two-byte integers have been displayed, 
whichever comes first. 

Note 

In this manual an integer is considered a two-byte value, since the 
CodeView debugger assumes that integer size. Note that a default 
FORTRAN integer is a four-byte value . 

• Example 

>DI 0 36 
3D5E:OOOO 
3D5E:0010 
3D5E:0020 
> 

28499 25965 27680 29797 25972 29554 24864 25710 
28192 28021 25954 29554 58 -5616 -887 -4097 
-4096 -13824 2532 

The example above displays the byte values from DS : 0 to DS : 36 (24 hex­
adecimal). Compare the signed decimal numbers at the end of this dump 
with the same values shown as unsigned integers in Section 6.3.5 below. 

6.3.5 Dump Unsigned Integers 

• Syntax 

DU [address I range] 

The Dump Unsigned Integers command displays the unsigned decimal 
values of the words (two-byte values) starting at address or in the specified 
range of addresses. The command displays one or more lines, depending on 
the address or range specified. Each line displays the address of the first 
unsigned integer in the line, followed by up to eight decimal words. The 
values are separated by spaces. The command displays values until the end 

142 



Examining Data and Expressions 

of the range or until the first 64 unsigned integers have been displayed, 
whichever comes first. 

• Example 

>DU 0 36 
3D5E:OOOO 
3D5E:0010 
3D5E:0020 
> 

28499 25965 27680 29797 25972 29554 24864 25710 
28192 28021 25954 29554 58 59920 64649 61439 
61440 51712 2532 

The example above displays the byte values from DS : 0 to DS : 36 (24 hex­
adecimal). Compare the unsigned decimal numbers at the end of this 
dump with the same values shown as signed integers in Section 6.3.4 
above. 

6.3.6 Dump Words 

• Syntax 

DW [address I range] 

The Dump Words command displays the hexadecimal values of the words 
(two-byte values) starting at address or in the specified range of addresses. 
The command dIsplays one or more lines, depending on the address or 
range specified. Each line displays the address of the first word in the line, 
followed by up to eight hexadecimal words. The hexadecimal values are 
separated by spaces. The command displays values un til the end of the 
range or until the first 64 words have been displayed, whichever comes 
first. 

• Example 

>DW 0 36 
3D5E:0000 
3D5E:0010 
3D5E:0020 
> 

6F53 656D 6C20 7465 6574 7372 6120 646E 
6E20 6D75 6562 7372 003A EA10 FC89 EFFF 
FOOO CAOO 09E4 

The example above displays the word values from DS : 0 to DS : 36 (24 
hexadecimal). No more than eight values per line are displayed. 

143 



Microsoft Code View a.nd Utilities 

6.3.7 Dump Double Words 

• Syntax 

DD [address I range] 

The Dump Double Words command displays the hexadecimal values of the 
double words (four-byte values) starting at address or in the specified 
range of addresses. 

The command displays one or more lines, depending on the address or 
range specified. Each line displays the address of the first double word in 
the line, followed by up to four hexadecimal double-word values. The 
words of each double word are separated by a colon. The values are 
separated by spaces. The command displays values until the end of the 
range or until the first 32 double words have been displayed, whichever 
comes first. 

• Example 

>DD 0 36 
3D5E:OOOO 
3D5E:0010 
3D5E:0020 
> 

656D:6F53 7465:6C20 7372:6574 646E:6120 
6D75:6E20 7372:6562 EAlO:003A EFFF:FC89 
CAOO:FOOO 6F73:09E4 

The example above displays the double-word values from DS: 0 to DS: 36 
(24 hexadecimal). No more than four double-word values per line are 
displayed. 

6.3.8 Dump Short Reals 

• Syntax 

DS [address I range] 

The Dump Short Reals command displays the hexadecimal and decimal 
values of the short (four-byte) floating-point numbers at address or in the 
specified range of addresses. 

The command displays one or more lines, depending on the address or 
range specified. Each line displays the address of the floating-point number 
in the first column. Next, the hexadecimal values of the bytes in the 
number are shown, followed by the decimal value of the number. The 
hexadecimal values are separated by spaces. 

144 



Examining Data and Expressions 

The decimal value has the following form: 

[-]d£g£t.d£g£tsE{ + \-} exponent 

If the number is negative, it will have a minus sign; positive numbers have 
no sign. The first digit of the number is followed by a decimal point. Six 
decimal places are shown following the decimal point. The letter E follows 
the decimal digits, and marks the start of a three-digit signed exponent. 

The command displays at least one value. If a range is specified, all values 
in the range are displayed . 

• Example 

>DS SPI 
SE68:0100 DB OF 49 40 3.141S93E+000 
> 

The example above displays the short-real floating-point number at the 
address of the variable SP!. Only one value is displayed per line. 

6.3.9 Dump Long Reals 

• Syntax 

DL [address \ ran'ge] 

The Dump Long Reals command displays the hexadecimal and decimal 
values of the long (eight-byte) floating-point numbers at the specified 
address or in the specified range of addresses. 

The command displays one or more lines, depending on the address or 
range specified. Each line displays the address of the floating-point number 
in the first column. Next, the hexadecimal values of the bytes in the 
number are shown, followed by the decimal value of the number. The 
hexadecimal values are separated by spaces. 

The decimal value has the following form: 

[-] d£gz"t.dz"gz"tsE{ + \-} exponent 

If the number is negative, it will have a minus sign; positive numbers have 
no sign. The first digit of the number is followed by a decimal point. Six 
decimal places are shown following the decimal point. The letter E follows 
the decimal digits, and marks the start of a three-digit signed exponent. 

145 



Microsoft Code View and Utilities 

The command displays at least one value. If a range is specified, all values 
in the range are displayed. 

• Example 

>DL LPI 
5E68:0200 11 2D 44 54 FB 21 09 40 3.141593E+000 
> 

The example above displays the long-real floating-point number at the 
address of the variable LPI. Only one value per line is displayed. 

6.3.10 Dump 10-Byte Reals 

• Syntax 

DT [address I range] 

The Dump IO-Byte Reals command displays the hexadecimal and decimal 
values of the IO-byte floating-point numbers at the specified address or in 
the specified range of addresses. 

The command displays one or more lines, depending on the address or 
range specified. Each line displays the address of the floating-point number 
in the first column. Next, the hexadecimal values of the bytes in the 
number are shown, followed by the decimal value of the number. The 
hexadecimal values are separated by spaces. 

The decimal value has the following form: 

[-] digit.digitsE{ + I -} exponent 

If the number is negative, it will have a minus sign; positive numbers have 
no sign. The first digit of the number is followed by a decimal point. Six 
decimal places are shown following the decimal point. The letter E follows 
the decimal digits, and marks the start of a three-digit signed exponent. 

The command displays at least one value. If a range is specified, all values 
in the range are displayed. 

• Example 

>DTTPI 
5E68:0300 DE 87 68 21 A2 DA OF C9 00 40 3.141593E+000 
> 

146 



Examining Data and Expressions 

The example above displays the 10-byte floating-point number at the 
address of the variable TPI. Only one number per line is displayed. 

6.4 Compare Memory Command 

The Compare Memory command provides a convenient way for comparing 
two blocks of memory, specified by absolute addresses. This command is 
primarily of interest to programmers using assembly mode; however, it can 
be useful to anyone who wants to compare efficiently two large areas of 
data, such as arrays. 

• Mouse 

The Compare Memory command cannot be executed with the mouse. 

• Keyboard 

The Compare Memory command cannot be executed with a keyboard 
command. 

• Dialog 

To compare two blocks of memory, enter a command line with the follow­
ing syntax: 

C range addres8 

The bytes in the memory locations specified by range are compared with 
the corresponding bytes in the memory locations beginning at address. If 
one or more pairs of corresponding bytes do not match, each pair of 
mismatched bytes is displayed. 

• Examples 

>C 100 01EF 300 ;* hexadecimal radix assumed 
39BB:0102 OA 00 39BB:0302 
39BB:0108 OA 01 39BB:0308 
> 

The first example (in which hexadecimal is assumed to be the default 
radix) compares the block of memory from 100 to IFF with the block of 
memory from 300 to 3FF. It indicates that the third and ninth bytes differ 
in the two areas of memory. 

147 



Microsoft Code View and Utilities 

>C arr1(1) L 100 arr2(1) ;* BASIC/FORTRAN notation used 
> 

The second example compares the 100 bytes starting at the address of 
arr1 (1) , with the 100 bytes starting at address of arr2 (1). The Code­
View debugger produces no output in response, so this indicates that the 
first 100 bytes of each array are identical. (Using C language, this example 
would be entered as C arr1 [OJ L 100 arr2 [OJ .) 

Note 

You can enter the Compare Memory command using any radix you 
like; however, any output will still be in hexadecimal format. 

6.5 Search Memory Command 

The Search Memory command (not to be confused with the Search com­
mand discussed in Section 11.6) scans a specified area of memory, looking 
for specific byte values. It is prImarily of interest to programmers using 
assembly mode, and to users who want to test for the presence of specific 
values within a range of data. 

• Mouse 

The Search Memory command cannot be executed with the mouse. 

• Keyboard 

The Search Memory command cannot be executed with a keyboard 
command. 

• Dialog 

To search a block of memory, enter the Search Memory command with the 
following syntax: 

S range Nst 

The debugger will search the specified range of memory locations for the 
byte values specified in the l£st. If bytes with the specified values are 

148 



Examining Data and Expressions 

found, then the debugger displays the addresses of each occurrence of 
bytes in the list. 

The list can have any number of bytes. Each byte value must be separated 
by a space or comma, unless the list is an ASCII string. If the list contains 
more than one byte, then the Search Memory command looks for a series 
of bytes that precisely match the order and value of bytes in list. If found, 
then the beginning address of each such series is displayed. 

• Examples 

>S buffer L 1500 II error II 
2BBA:0404 
2BBA:OSE3 
2BBA:0604 
> 

The first example displays the address of each memory location containing 
the string error. The command searches the first 1500 bytes at the 
address specified by bu f fer. The string was found at the three addresses 
displayed by the CodeView debugger. 

>S DS:100 200 OA ; * hexadecimal radix assumed 
3CBA:0132 
3CBA:01C2 
> 

The second example displays the address of each memory location that 
contains the byte value OA in the range DS:OI00 to DS:0200 (hexadec­
imal). The value was found at two addresses. 

6.6 Port Input Command 

The Port Input command reads and displays a byte from a specified 
hardware port. It is primarily of interest to assembly-language program­
mers writing hardware-specific programs . 

• Mouse 

The Port Input command cannot be executed with the mouse . 

• Keyboard 

The Port Input command cannot be executed with a keyboard command. 

149 



Microsoft Code View a.nd Utilities 

• Dialog 

The Port Input command is executed with the following syntax: 

I port 

The byte is read and displayed from the specified port, which can be any 
16-bit address. 

• Examples 

>I 2fB 
E8 
> 

;* hexadecimal radix assumed 

The preceding example reads input port, number 2F8, and displays the 
result, E8. You may enter the port address using any radix you want, but 
the result will always be displayed in current radix. 

The Port Input command is often used in conjunction with the Port Out­
put command, which is described in Section 10.5. 

6.7 Register Command 

The Register command has two functions. It displays the contents of the 
central processing unit (CPU) registers. It can also change the values of 
the registers. The display features of the Register command are explained 
here. The modification features of the command are explained in Chapter 
10, "Modifying Code or Data." 

• Mouse 

To display the registers with the mouse, point to View on the menu bar, 
press a mouse button and drag the highlight down to the Registers selec­
tion, and then release the button. The register window will appear on the 
right side of the screen. If the register window is already on the screen, the 
same command removes it. 

• Keyboard 

To display the registers using a keyboard command in window mode, press 
the F2 key. The register window will appear on the right side of the screen. 

150 



Examining Data and Expressions 

If the register window is already on the screen, the same command will 
remove it. 

In sequential mode, the F2 key will display the current status of the regis­
ters. (This produces the same effect as entering the Register dialog com­
mand with no argument.) 

• Dialog 

To display the registers in the dialog window (or sequentially in sequential 
mode), enter a command line with the following syntax: 

R 

The current values of all registers and flags are displayed. The instruction 
at the address pointed to by the current C8 and IP register values is also 
shown. (The Register command can also be given with arguments, but 
only when used to modify registers, as explained in Chapter 10, "Modify­
ing Code or Data.") 

If the display mode is source (8+) or mixed (8&) (see Section 9.1, "Set 
Mode Command," for more information), the current source line is also 
displayed by the Register command. If an operand of the instruction con­
tains memory expressions or immediate data, the Code View debugger will 
evaluate operands and show the value to the right of the instruction. This 
value is referred to as the "effective address," and is also displayed at the 
bottom of the register window. If the C8 and IP registers are currently at 
a breakpoint location, the register display will indicate the breakpoint 
number. 

In sequential mode, the Trace (T), Program Step (P), and Go (G) com­
mands show registers in the same format as the RegIster command. 

• Examples 

>8& 
mixed 
>R 
AX=OOO5 
OS=5067 
35: 

BX=299E CX=OOOO OX=OOOO SP=38OO BP=380E SI=0070 01=4001 
ES=5067 55=5067 C5=4684 IP=014E' NV UP EI PL NZ NA PO NC 

4684:014E' 8B5E06 
> 

MOV 
VARIAN = (N*SUMXSQ-SUMX**2)/(N-1) 

BX,Word Ptr [BP+06] ;BR1 SS:3814=299E 

151 



Microsoft Code View and Utilities 

The example above displays all register and flag values, as well as the 
instruction at the address pointed to by the C8 and IP registers. Because 
the mode has been set to mixed (8&), the current source line is also 
shown. The example is from a FbRTRAN program, but applies equally 
well to BASIC and C programs. 

>8-
assembly 
>R 
AX=OOO5 BX=299E 
05=5067 E5=5067 
4684:014F 8B5E06 
> 

cx=oooo OX=OOOO 5P=3800 BP=380E 51=0070 01=4001 
55=5067 C5=4684 IP=014F NY UP EI PL NZ NA PO NC 

MOV BX,Word Ptr [BP+06] ;BR1 55:3814=299E 

In the example above, the display mode is set to assembly (8-), so no 
source line is shown. Note the breakpoint number at the right of the last 
line, indicating that the current address is at Breakpoint 1. 

6.8 8087 Command 

The 8087 command dumps the contents of the 8087 registers. If you do not 
have an 8087 or 80287 coprocessor chip on your system, then this com­
mand will dump the contents of the pseudoregisters created by the 
compiler's emulator routines. This command is useful only if you have an 
8087 or 80287 chip installed, or if your executable file includes math rou­
tines from a Microsoft 8087-emulator library. 

Note 

This section does not attempt to explain how the registers of the Intel 
8087 and 80287 processors are organized or how they work. In order to 
interpret the command output, you must learn about the chip from an 
Intel reference manual or other book on the subject. Since the Micro­
soft emulator routines mimic the behavior of the 8087 coprocessor, 
these references will apply to emulator routines as well as to the chips 
themselves . 

• Mouse 

The 8087 command cannot be executed with the mouse. 

152 



Examining Data and Expressions 

• Keyboard 

The 8087 command cannot be executed with a keyboard command. 

• Dialog 

To display the status of the 8087 or 80287 chip (or floating-point emulator 
routines) with a dialog command, enter a command line with the following 
syntax: 

7 

The current status of the chip is displayed when you enter the command. 
In window mode, the output is to the dialog window. If you do not have an 
8087 or 80287 chip, and are not linking to an emulator library, then the 
debugger will report the error message floating point not loaded. 

The following example shows a display for a machine that actually has an 
8087 or 80287 chip. The example at the end of the section shows the same 
display for a machine using an emulator library instead of an actual math 
coprocessor. 

• 8087 Example 

>7 
cControl 037F (Projective closure, Round nearest, 64-bit precision) 

cStatus 
Tag 
Stack 
cST (3) 
cST (2) 
cST (1) 
cST (0) 
> 

iem=O pm=l um=l om=l zm=l dm=l im=l 
6004 cond=l000 top=4 pe=O ue=O oe=O ze=l de=O ie=O 

AlEF instruction=59380 operand=59360 opcode=D9EE 
Exp Mantissa Value 

special 7FFF 8000000000000000 = + Infinity 
special 7FFF 0101010101010101 = + Not a Number 
valid 4000 C90FDAA22168C235 = +3.141592265110390E+000 
zero 0000 OOOOOOOOOOOOOOO = +0. OOOOOOOOOOOOOOOE+OOO 

In the example above, the first line of the dump shows the current closure 
method, rounding method, and the precision. The number 037F is the 
hexadecimal value in the control register. The rest of the line interprets 
the bits of the number. The closure method can be either projective (as in 
the example) or affine. The rounding method can be either rounding to the 
nearest even number (as in the example), rounding down, rounding up, or 
using the chop method of rounding (truncating toward zero). The preci­
sion may be 64 bits (as in the example), 53 bits, or 24 bits. 

The second line of the display indicates whether each exception mask bit is 
set or cleared. The masks are interrupt-enable mask (iem), precision mask 

153 



Microsoft Code View a.nd Utilities 

(pm), underflow mask (um), overflow mask (om), zero-divide mask (zm), 
denormalized-operand mask (dm), and invalid-operation mask (im). 

The third line of the display shows the hexadecimal value of the status 
register (6004 in the example), and then interprets the bits of the register. 
The condition code (cond) in the example is the binary number 1000. The 
top of the stack (top) is register 4 (shown in decimal). The other bits 
shown are ;>recision exception (pe), underflow exceptIOn (ue), overflow 
exception l oe), zero-divide exceptIOn (ze), denormalized-operand excep­
tion (de), and invalid-operation exception (ie). 

The fourth line of the display first shows the hexadecimal value of the tag 
register (A1FF in the example). It then gives the hexadecimal values of the 
instruction (59380), the operand (59360), and the operation code, or 
opcode, (D9EE). 

The fifth line is a heading for the subsequent lines, which contain the con­
tents of each 8087 or 80287 stack register. The registers in the example 
contain four types of numbers that may be held in these registers. Starting 
from the bottom, register 0 contains zero. Register 1 contains a valid real 
number. Its exponent (in hexadecimal) is 4000 and its mantissa is 
C90FDAA22168C235. The number is shown in scientific notation in the 
rightmost column. Register 2 contains a value that cannot be interpreted 
as a number, and register 3 contains infinity. 

The c that precedes Control, Status, and each of the ST listings indi­
cates that an actual math-coprocessor chip is in use. If emulator routines 
were in use instead of a chip, then each c prefix would be replaced bye, as 
in the next example. 

• Floating-Point Emulator Example 

>7 
eControl 037F (Projective closure, Round nearest, 64-bit precision) 

iem=O pm=l um=l om=l zm=l dm=l im=l 
eStatus 6004 cond=looo top=4 pe=O ue=O oe=O ze=l de=O ie=O 
Tag A1FF instruction=59380 operand=59360 opcode=D9EE 
Stack Exp Mantissa Value 
eST(3) special 7FFF 8000000000000000 = + Infinity 
eST(2) special 7FFF 0101010101010101 = + Not a Number 
eST(l) valid 4000 C90FDAA22168C235 = +3.141592265110390E+000 
eST (0) zero 0000 OOOOOOOOOOOOOOO = +0. OOOOOOOOOOOOOOOE+OOO 
> 

Note the e at the beginning of the first, third, sixth, seventh, eighth, and 
ninth lines. Aside from this replacement of the c prefix bye, the emulator 
display is the same as the corresponding display for an 8087 chip. 

154 



MANAGING BREAKPOINTS 

7.1 Breakpoint Set Command ................................... 157 
7.2 Breakpoint Clear Command ............................... 160 
7.3 Breakpoint Disable Command ............................ 161 
7.4 Breakpoint Enable Command ............................. 162 
7.5 Breakpoint List Command .................................. 164 





Managing Breakpoints 

The CodeView debugger enables you to control program execution by set­
ting breakpoints. A breakpoint is an address that stops program execution 
each time the address is encountered. By setting breakpoints at key 
addresses in your program, you can "freeze" program execution and exam­
ine the status of memory or expressions at that point. 

The commands listed below con trol breakpoints: 

Command 

Breakpoint Set (BP) 

Breakpoint Clear (BC) 

Breakpoint Disable (BD) 

Breakpoint Enable (BE) 

Breakpoint List (BL) 

Action 

Sets a breakpoint and, optionally, a pass 
count and break commands 

Clears one or more breakpoints 

Disables one or more breakpoints 

Enables one or more breakpoints 

Lists all breakpoints 

In addition to these commands, the Watchpoint (WP) and Tracepoint 
~TP) commands can be used to set conditional breakpoints (see Chapter 8, 
'Managing Watch Statements," for information on these two commands). 

7.1 Breakpoint Set Command 

The Breakpoint Set command (BP) creates a breakpoint at a specified 
address. Any time a breakpoint is encountered during program execution, 
the program halts and waits for a new command. 

The CodeView debugger allows up to 20 breakpoints (0 through 19). Each 
new breakpoint is assigned to the next available number. Breakpoints 
remain in memory until you delete them or until you quit the debugger. 
They are not canceled when you restart the program. Because breakpoints 
are not automatically canceled, you are able to set up a complicated series 
of breakpoints, then execute through the program several times without 
resetting. 

If you try to set a breakpoint at a comment line or other source line that 
?oes not correspond to code, the CodeView debugger displays the follow­
Ing message: 

No code at this line number 

157 



Microsoft Code View and Utilities 

• Mouse 

To set a breakpoint with the mouse, point to the source line or instruction 
where you want to set the breakpoint, and then click the left button. The 
line will be displayed in high-intensity text, and will remain so until you 
remove or disable the breakpoint . 

• Keyboard 

To set a breakpoint with a keyboard command in window mode, move the 
cursor to the source line or instruction where you want to set a break­
point. You may have to press the F6 key to move the cursor to the display 
window. When the cursor is on the appropriate source line, press the F9 
key. The line will be displayed in high-intensity text, and will remain so 
until you remove or disable the breakpoint. 

In sequential mode, the F9 key can be used to set a breakpoint at the 
current location. You must use the dialog version of the command to set a 
breakpoint at any other location. 

• Dialog 

To set a breakpoint using a dialog command, enter a command line with 
the following syntax: 

BP [address [passcount] [" commands"]] 

If no address is given, a breakpoint is created on the current source line in 
source mode, or on the current instruction in assembly mode. You can 
specify the address in the segment: offset format or as a source line, a rou­
tine name, or a label. If you give an offset address, the code segment is 
assumed. 

The dialog version of the command is more powerful than the mouse or 
keyboard version in that it allows you to give a passcount and a string of 
commands. The passcount specifies the first time the breakpoint is to be 
taken. For example, if the pass count is 5, the breakpoint will be ignored 
the first four times it is encountered, and taken the fifth time. Thereafter, 
the breakpoint is always taken. 

The commands are a list of dialog commands enclosed in quotation marks 
CI ") and separated by semicolons (;). For example, if you specify the 
commands as "? code; T", the Code View debugger will automatically 
display the value of the variable code and then execute the Trace com­
mand each time the breakpoint is encountered. The Trace and Display 
Expression commands are described in Chapter 5, "Executing Code," and 
Chapter 6, "Examining Data and Expressions," respectively. 

158 



Managing Breakpoints 

In window mode, a breakpoint entered with a dialog command has exactly 
the same effect as one created with a window command. The source line or 
instruction corresponding to the breakpoint location is shown in high-
in tensi ty text. 

In sequential mode, information about the current instruction will be 
displayed each time you execute to a breakpoint. The register values, the 
current instruction, and the source line may be shown, depending on the 
display mode. See Chapter 9, "Examining Code," for more information 
about display modes. 

When a breakpoint address is shown in the assembly-language format, the 
breakpoint number will be shown as a comment to the right of the instruc­
tion. This comment appears even if the breakpoint is disabled (but not if 
it is deleted). 

• Examples 

>BP .19 10 
> 

The example above creates a breakpoint at line 19 of the current source 
file (or if there is no executable statement at line 19, at the first executable 
statement after line 19). The breakpoint is passed over nine times before 
being taken on the 10th pass. 

>BP STATS 10 "?COUNTER = COUNTER + l;G" 
> 

The example above creates a breakpoint at the address of the routine 
STATS. The breakpoint is passed over nine times before being taken on 
the 10th pass. Each time execution stops for the breakpoint, the quoted 
commands are executed. The Display Expression command increments 
COUNTER, then the Go command restarts execution. If COUNTER is set to 
o when the breakpoint is set, this has the effect of counting the number of 
times the breakpoint is taken. 

>s­
assembly 
>BP #Oa94 

;* FORTRAN example - uses FORTRAN hexadecimal notation 

>G 
AX=OOO6 BX=304A 
D8=5064 E8=5064 
46A2:0A94 7205 
> 

CX=OOOB DX=465D 8P=3050 BP=3050 SI=OOBB DI=40Dl 
88=5064 CS=46A2 IP=OA94 NY UP EI PL NZ NA PE NC 

JB __ chkstk+13 (OA9B) ;BRl 

The example above first sets the mode to assembly, and then creates a 
breakpoint at the hexadecimal (offset) address #OA94 in the default (CS) 

159 



Microsoft Code View and Utilities 

segment. (The same address would be specified as OxOA94 with the C­
expression evaluator, and as &HOA9 with the BASIC-expression evaluator.) 
The Go command (G) is then used to execute to the breakpoint. Note that 
in the output to the Go command, the breakpoint number is shown as an 
assembly-language comment (; BR1) to the right of the current instruc­
tion. The Go command displays this output only in sequential mode; in 
window mode no assembly-language information appears. 

7.2 Breakpoint Clear Command 

The Breakpoint Clear command (Be) permanently removes one or more 
previously set breakpoints. 

• Mouse 

To clear a single breakpoint with the mouse, point to the breakpoint line 
or instruction you want to clear. Breakpoint lines are shown in high­
intensity text. Press the left mouse button. The line will be shown in nor­
mal text to indicate that the breakpoint has been removed. 

To remove all breakpoints with the mouse, point to Run on the menu bar, 
press a mouse button and drag the highlight down to the Clear Break­
points selection, and then release the button. 

• Keyboard 

To clear a single breakpoint with a keyboard command, move the cursor 
to the breakpoint line or instruction you want to clear. Breakpoint lines 
are shown in high-intensity text. Press the F9 key. The line will be shown 
in normal text to indicate that the breakpoint has been removed. 

To remove all breakpoints using a keyboard command, press ALT+R to 
open the Run menu, and then press ALT+C to select Clear Breakpoints. 

• Dialog 

To clear breakpoints using a dialog command, enter a command line with 
the following syntax: 

BC list 
BC* 

If l£st is specified, the command removes the breakpoints named in the list. 
The list can be any combination of integer values from 0 to 19. You can 

160 



Managing Breakpoints 

use the Breakpoint List command (BL) if you need to see the numbers for 
each existing breakpoint. If an asterisk (*) is given as the argument, all 
breakpoints are removed. 

• Examples 

>BC 0 4 8 
> 

The example above removes breakpoints 0, 4, and 8. 

>BC * 
> 

The example above removes all breakpoints. 

7.3 Breakpoint Disable Command 

The Breakpoint Disable command (BD) temporarily disables one or more 
existing breakpoints. The breakpoints are not deleted. They can be 
restored at any time using the Breakpoint Enable command (BE). 

When a breakpoint is disabled in window mode, it is shown in the display 
window with normal text; when enabled, it is shown in high-intensity text. 

Note 

All disabled breakpoints are automatically enabled whenever you 
restart the program being debugged. The program can be restarted 
with the Start or Restart selection from the Run menu, or with the 
Restart dialog command (L). See Chapter 5, "Executing Code." 

• Mouse 

The Breakpoint Disable command cannot be executed with the mouse. 

• Keyboard 

The Breakpoint Disable command cannot be executed with a keyboard 
command. 

161 



Microsoft Code View a.nd Utilities 

• Dialog 

To disable breakpoints with a dialog command, enter a command line with 
the following syntax: 

BD Ust 
BD* 

If list is specified, the command disables the breakpoints named in the list. 
The list can be any combination of integer values from 0 to 19. Use the 
Breakpoint List command (BL) if you need to see the numbers for each 
existing breakpoint. If an asterisk (*) is given as the argument, all break­
points are disabled. 

The window commands for setting and clearing breakpoints can also be 
used to enable or clear disabled breakpoints. 

• Examples 

>BD 0 4 8 
> 

The example above disables breakpoints 0, 4, and 8. 

>BD * 
> 

The example above disables all breakpoints. 

7.4 Breakpoint Enable Command 

The Breakpoint Enable command (BE) enables breakpoints that have 
been temporarily disabled with the Breakpoint Disable command. 

• Mouse 

To enable a disabled breakpoint with the mouse, point to the source line 
or instruction of the breakpoint, and then click the left button. The line 

162 



Managing Breakpoints 

will be displayed in high-intensity text, and will remain so until you 
remove or disable the breakpoint. This is the same as creating a new 
breakpoint at that location. 

• Keyboard 

To enable a disabled breakpoint using a keyboard command, move the 
cursor to the source line or instruction of the breakpoint, and then press 
the F9 key. The line will be displayed in high-intensity text, and will 
remain so un til you remove or disable the breakpoint. This is the same as 
creating a new breakpoint at that location. 

• Dialog 

To enable breakpoints using a dialog command, enter a command line 
with the following syntax: 

BE list 
BE. 

If l£st is specified, the command enables the breakpoints named in the list. 
The l£st can be any combination of integer values from 0 to 19. Use the 
Breakpoint List command (BL) if you need to see the numbers for each 
existing breakpoint. If an asterisk (*) is given as the argument, all break­
points are enabled. The CodeView debugger ignores all or part of the com­
mand if you try to enable a breakpoint that is not disabled. 

• Examples 

>BE 0 4 8 
> 

The example above enables breakpoints 0, 4, and 8. 

>BE* 
> 

The example above enables all disabled breakpoints. 

163 



Microsoft CodeView a.nd Utilities 

7.5 Breakpoint List Command 

The Breakpoint List command (BL) lists current information about all 
breakpoin ts. 

• Mouse 

The Breakpoint List command cannot be executed with the mouse. 

• Keyboard 

The Breakpoint List command cannot be executed with a keyboard 
command. 

• Dialog 

To list breakpoints with a dialog command, enter a command line with 
the following syntax: 

BL 

The command displays the breakpoint number, the enabled status (e for 
"enabled" , d for "disabled"), the address, the routine, and the line 
number. If the breakpoint does not fall on a line number, an offset is 
shown from the nearest previous line number. The pass count and break 
commands are shown if they have been set. If no breakpoints are currently 
defined, nothing is displayed. 

• Example 

>BL 
o e 56C4:0105 
1 d 56C4:011E 
2 e 56C4:00FD 
> 

_ARCTAN: 10 
_ARCTAN: 19 
~CTAN:9+6 

(pass 10) "T;T" 

In the example above, breakpoint 0 is enabled at address 56C4: 0105. 
This address is in routine ARCTAN and is at line 10 of the current source 
file. No pass count or break commands have been set. 

Breakpoint 1 is currently disabled, as indicated by the d after the break­
point number. It also has a pass count of 10, meaning that the breakpoint 

164 



Managing Breakpoints 

will not be taken until the 10th time it is encountered. The command 
string at the end of the line indicates that each time the breakpoint is 
taken, the Trace command will automatically be executed twice. 

The line number for breakpoint 2 has an offset. The address is six bytes 
beyond the address for line 9 in the current source file. Therefore, the 
breakpoint was probably set in assembly mode, since it would be difficult 
to set a breakpoint anywhere except on a source line in source mode. 

165 





CHAPTER 
MANAGING 
WATCH STATEMENTS 

8.1 Sett~l!g Watch-Expression 
and Watch-Memory Statements .......................... 170 

8.2 Setting Watchpoints ........................................... 174 
8.3 Setting Tracepoints ............................................ 177 
8.4 Deleting Watch Statements ................................ 181 
8.5 Listing Watchpoints and Tracepoints ................. 183 
8.6 C Examples ......................................................... 184 
8.7 FORTRAN Examples ......................................... 185 
8.8 Pascal Examples ................................................. 186 
8. 9 Assembly Examples ............................................. 187 





Managing Watch Statements 

Watch Statement commands are among the Microsoft CodeView 
debugger's most powerful features. They enable you to set, delete, and list 
watch statements. Watch statements describe expressions or areas of 
memory to watch. Some watch statements specify conditional breakpoints, 
which depend upon the value of the expression or memory area. 

Note 

Syntax for each CodeView command is always the same, regardless of 
the expression evaluator; however, the method for specifying an 
argument may vary with the language. Therefore, each example in this 
chapter is repeated with C, FORTRAN, BASIC, and Pascal arguments. 
The sample screens throughout the text that present these examples 
feature BASIC. At the end of this chapter are C, FORTRAN, and Pas­
cal sample screens, each of which incorporates all the previous exam­
ples (except for Watch Delete and Watch List). 

The Watch Statement commands are summarized below: 

Command 

Watch (W) 

Watchpoint (WP) 

Tracepoint (TP) 

Watch Delete (Y) 

Watch List (W) 

Action 

Sets an expression or range of memory to be 
watched 

Sets a conditional breakpoint that will be taken 
when the expression becomes nonzero (true) 

Sets a conditional breakpoint that will be taken 
when a given expression or range of memory 
changes 

Deletes one or more watch statements 

Lists current watch statements 

Watch statements, like breakpoints, remain in memory until you 
specifically remove them or quit the CodeView debugger. They are not 
canceled when you restart the program being debugged. Therefore, you 
can set a complicated series of watch statements once, and then execute 
through the program several times without resetting. 

In window mode, Watch Statement commands can be entered either in the 
dialog window or with menu selections. Current watch statements are 
shown in a watch window that appears between the menu bar and the 
source window. 

169 



Microsoft Code View a.nd Utilities 

In sequential mode, the Watch, Tracepoint, and Watchpoint commands 
can be used, but since there is no watch window, you cannot see the watch 
statements and their values. You must use the Watch List command to 
examine the current watch statements. 

Note 

In order to set a watch statement containing a local variable, you must 
be in the function where the variable is defined. If the current line is 
not in the function, the Code View debugger displays the message 
UNKNOWN SYMBOL. When you exit from a function containing a local 
variable referenced in a watch statement, the value of the statement is 
displayed as UNKNOWN SYMBOL. When you reenter the function, the 
local variable will again have a value. With the C and FORTRAN 
expression evaluators, you can avoid this limitation by using the 
period operator to specify both the function and the variable. For 
example, enter main. x instead of just x. 

8.1 Setting Watch-Expression 
and Watch-Memory Statements 

The Watch command is used to set a watch statement that specifies an 
expression (watch-expression statement) or a range of addresses in memory 
(watch-memory statement). The value or values specified by this watch 
statement are shown in the watch window. The watch window is updated 
to show new values each time the value of the watch statement changes 
during program execution. Since the watch window does not exist in 
sequential mode, you must use the Watch List command to examine the 
values of watch statements. . 

When setting a watch expression, you can specify the format in which the 
value will be displayed. Type the expression followed by a comma and a 
format specifier. If you do not give a format specifier, the CodeView 
debugger displays the value in a default format. See Section 6.1, "Display 
Expression Command," for more information about type specifiers and the 
default format. 

170 



Managing Watch Statements 

Note 
If your program directly accesses absolute addresses used by IBM or 
IBM-compatible computers, you may sometimes get unexpected results 
with the Display Expression and Dump commands. However, the 
Watch command will usually show the correct values. This problem 
can arise if the Code View debugger and your program begin to use the 
same memory location. 

The problem often occurs when a program reads data directly from the 
screen buffer of the display adapter. If you have an array called 
screen that is initialized to the starting address of the screen buffer, 
the command DB screen L 16 will display data from the CodeView 
display rather than from the display of the program you are debug­
ging. The command WB screen L 16 will display data from the 
program's display (provided screen swapping or screen flipping was 
specified at start-up). The Watch command behaves differently from 
the Dump command because watch-statement values are updated dur­
ing program execution, and any values read from the screen buffer will 
be taken from the output screen rather than from the debugging 
screen . 

• Mouse 

To set a watch-expression statement using the mouse, point to Watch on 
the menu bar, press a mouse button and drag the highlight down to the 
Add Watch selection, and then release the button. A dialog box appears, 
asking for the expression to be watched. Type the expression and press the 
ENTER key or a mouse button. 

You cannot use the mouse version of the command to specify a range of 
memory to be watched, as you can with the dialog version . 

• Keyboard 

To set a watch-expression statement with a keyboard command, press 
ALT+W to open the Watch menu, and then type A (uppercase or lowercase) 
to select Add Watch. You can also select the Add Watch command 
directly by pressing CONTROL+W. A dialog box appears, asking for the 
expression to be watched. Type the expression and press the ENTER key. 

You cannot use the keyboard version of the command to specify a range of 
memory to be watched, as you can with the dialog version. 

171 



Microsoft Code View and Utilities 

• Dialog 

To set a watch-expression statement or watch-memory statement with a 
dialog command, enter a command line with the following syntax: 

W? expres8ion[,!ormat] 
W[ type] range 

Watch expression 
Watch memory 

An expression used with the Watch command can be either a simple vari­
able or a complex expression using several variables and operators. The 
expression should be no longer than the width of the watch window. The 
characters permitted for format correspond to format arguments used in a 
C printf function call. See Section 6.1, "Display Expression Command," 
for more information on format arguments. 

When watching a memory location, type is a one-letter size specifier from 
the following list: 

Specifier 

None 

B 

A 

I 

U 

W 

D 

S 

L 

T 

Size 

Default type 

Byte 

ASCII 

Integer (signed decimal word) 

Unsigned (unsigned decimal word) 

Word 

Double word 

Short real 

Long real 

10-byte real 

If no type size is specified, the default type used is the last type used by a 
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none of 
these commands has been used during the session, the default type is byte. 

The data will be displayed in a format similar to that used by the Dump 
commands (see Section 6.1, "Display Expression Command," for more 
information on format arguments). The range can be any length, but only 
one line of data will be displayed In the watch window. If you do not 
specify an ending address for the range, the default range is one object. 

• Examples 

The following three examples display watch statements in the watch 
window. 

172 



Managing Watch Statements 

W? n 

The example above displays the current value of the variable n. 

W? higher * 100 

The example above displays the value of the expression higher * 100. 

WL chance 

The example above displays the double-precision floating-point chance, 
first showing exactly how it is stored in memory. (The command W? 
chance would display the value of chance but not any actual bytes of 
memory.) 

These commands, entered while debugging a BASIC program, produce the 
watch window in Figure 8.1. Corresponding C, FORTRAN, and Pascal 
examples are included with other commands in language-specific sections 
at the end of the chapter. 

File Uiew Search Run Watch Options Language Calls Help I F8:Trace F5:Go 
=======~I DICE,BAS F=========~ 
0) n : 4 
1) higher * 100 : 33,33333333333333 
2) chance : 55FF:179A 55 55 55 55 55 55 B5 3F +8,333333333333E-002 

28: ELSEIF n:7 OR n:11 THEN 
29: sum: sum + roll(n) 
30: ELSE 
31: chance: roll(n) 
32: hi her: make(n) 

, 

35: 
36: 
37: 
38: 
39: 
40: 
41 : 

s r ; n; 
PRINT str2S;hlgher * 100 

END IF 
NEXT n 
win: sum 
lose: 1,0 - win 

END SUB 

====================* )W? n 
}W? higher * 100 
)WL chance 
). 

Figure 8.1 Watch Statements in the Watch Window 

173 



Microsoft Code View and Utilities 

8.2 Setting Watchpoints 

The Watchpoint command is used to set a conditional breakpoint called a 
watchpoint. A watchpoint breaks program execution when the expression 
described by its watch statement becomes true. You can think of watch­
points as "break when" points, since the break occurs when the specified 
expression becomes true ( nonzero). 

A watch statement created by the Watchpoint command describes the 
expression that will be watched and compared to o. The statement 
remains in memory until you delete it or quit the Code View debugger. Any 
valid CodeView expression can be used as the watchpoint expression as 
long as the expression is not wider than the watch window. 

In window mode, watchpoint statements and their values are displayed 
in high-intensity text in the watch window. In sequential mode, there is 
no watch window, so the values of watchpoint statements can only be 
displayed with the Watch List command (see Section 8.5 "Listing Watch­
points and Tracepoints," for more information). 

Although watchpoints can be any valid CodeView expression, the com­
mand works best with expressions that use the relational operators (such 
as < and > for C and BASIC, or . LT. and . GT. for FORTRAN). Rela­
tional expressions always evaluate to false (zero) or true (nonzero). Care 
must be taken with other kinds of expressions when used as watch points, 
because the watch points will break execution whenever they do not equal 
precisely zero. For example, your program might use a loop variable 1, 
which ranges from 1 to 100. If you entered 1 as a watchpoint, then it 
would always suspend program execution, since 1 is never equal to o. 
However, the relational expression 1>90 (or 1. GT. 90) would not 
suspend program execution until 1 exceeded 90 . 

• Mouse 

To set a watch point statement with the mouse, point to Watch on the 
menu bar, press a mouse button and drag the highlight down to the 
Watchpoint selection, and then release the button. A dialog box appears, 
asking for the expression to be watched. Type the expression and press the 
ENTER key or a mouse button . 

• Keyboard 

To execute the Watchpoint command with a keyboard command, press 
ALT+W to open the Watch menu, and then press ALT+W to select Watch­
point. A dialog box appears, asking for the expression to be watched. Type 
the expression and press the ENTER key. 

174 



Managing Watch Statements 

• Dialog 

To set a watch point using a dialog command, enter a command line with 
the following syntax: 

WP? expression[,!ormat] 

The expressz'on can be any valid Code View expression (usually a relational 
expression). You can enter a format specifier, but there is little reason to 
do so, since the expression value is normally either 1 or O . 

• Examples 

The following dialog commands display two watch statements (watch­
points) in the watch window: 

WP? higher > chance 
WP? higher . gt. chance 

;* BASIC/C/pascal example 
;* FORTRAN example 

The examples above instruct the CodeView debugger to break execution 
when the variable higher is greater than the variable chance. (Note 
that BASIC, C, and Pascal happen to use the same syntax in this case, but 
FORTRAN uses its own.) After setting this watchpoint, you could use the 
Go command to execute until the condition becomes true. 

WP? n=7 or n=ll 
WP? n=7 I I n=ll 
WP? n.eq.7 .or. n.eq.ll 
WP? (n=7) or (n=ll) 

;* BASIC example 
;* C example 
;* FORTRAN example 
;* Pascal example 

The examples above instruct the CodeView debugger to break execution 
when the variable n is equal to 7 or 11. 

Note 

BASIC and C will each display a numerical result in response to a 
Boolean expression (0 being equivalent to false, nonzero to true). How­
ever, the corresponding FORTRAN condition will be displayed with 
either. TRUE. or .F ALSE. in the watch window. Pascal will display 
TRUE or FALSE. 

These commands, entered while debugging a BASIC program, produce the 
watch window in Figure 8.2. Corresponding C, FORTRAN, and Pascal 
examples are included with other commands, at the end of the chapter. 

175 



Microsoft Code View and Utilities 

Fi leU i ew Search Run Watch Opti ons Language Call s Hel p I F8:Trace F5:Go 
1 DICE, BAS 

9) highe~} chance : -1,QQQQQQQQQQQQQQ 
1) n:7 O~ n:11 : Q 

28: 
29: 
30: 
31: 
32: 

, 

35: 
36: 
37: 
38: 
39: 
40: 
41: 
4,"" 

0::" 

ELSEIF n:7 OR n:11 THEN 
sum: sum t roll(n) 

ELSE 
chance: roll(n) 
hi her: make(n) 

s r ; n; 
PRINT str2$;hlgher * 100 

EriD IF 
NEXT n 
l~i n : sum 
lose : 1. 0 - wi n 

END SUB 

=======================================t 
> 
>WP? higher> chance 
>WP? n:7 or n:11 
> .. 

"--------------------------------_./ 
Figure 8.2 Watchpoints in the Watch Window 

Note 

176 

Setting watchpoints significantly slows execution of the program being 
debugged. The Code View debugger checks if the expression is true 
each time a source line is executed in source mode, or each time an 
instruction is executed in assembly mode. Be careful when setting 
watchpoints near large or nested loops. A loop that executes almost 
instantly when run from MS-DOS can take many minutes if executed 
from within the debugger with several watch points set. 

Tracepoints do not slow CodeView execution as much as watch points, 
so you should use tracepoints when possible. For example, although 
you can set a watchpoint on a Boolean variable (WP? moving), a 
tracepoint on the same variable (TP? moving) has essentially the 
same effect and does not slow execution as much. 

If you enter a seemingly endless loop, press CONTROL+BREAK or 
CONTROL+C to exit. You will soon learn the size of loop you' can safely 
execute when watch points are set. 



Managing Watch Statements 

8.3 Setting Tracepoints 

The Tracepoint command is used to set a conditional breakpoint called a 
tracepoint. A tracepoint breaks program execution when the value of a 
specified expression or range of memory changes. 

The watch statement created by the Tracepoint command describes the 
expression or memory range to be watched and tested for change. The 
statement remains in memory until you delete it or quit the CodeView 
debugger. 

In window mode, tracepoint statements and their values are shown in 
high-intensity text in the watch window. In sequential mode, there is no 
watch window, so the values of tracepoint statements can only be 
displayed with the Watch List command (see Section 8.5, "Listing Watch­
points and Tracepoints," for more information). 

An expression used with the Tracepoint command must evaluate to an 
"lvalue." In other words, the expression must refer to an area of memory 
rather than a constant. Furthermore, the area of memory must be not 
more than 128 bytes in size. For example, i==10 (which is similar to 
I . EQ . 10 in FORTRAN and I=10 in BASIC) would be invalid because it 
is either 1 (true) or 0 (false) rather than a value stored in memory. The 
expression sym1 +sym2 is invalid because it is the calculated sum of the 
value of two memory locations. The expression buffer would be invalid if 
buffer is an array of 130 bytes, but valid if the array is 120 bytes. (How­
ever, using array names this way is not valid with BASIC modules because 
BASIC uses array descriptors.) Note that if buffer is declared as an 
array of 64 bytes, then the Tracepoint command given with the expression 
buffer checks all 64 bytes of the array. The same command given with 
the C expression buffer [32J, or BUFFER (33) in FORTRAN or BASIC, 
means that only one byte (the 33rd) will be checked. (Note that C and 
FORTRAN index the same element differently.) 

Note 

The following is relevant only to C programs. 

Register variables are not considered lvalues. Therefore, if i is 
declared as register int i, the command TP? i is invalid. How­
ever, you can still check for changes in the value of i. Use the Examine 
Symbols command to learn which register contains the value of i. 

177 



Microsoft Code View and Utilities 

Then learn the value of i. Finally, set up a watchpoint to test the 
value. For example, use the following sequence of commands: 

>X? i 
3A79:0264 int 

SI 
>?i 
10 
>WP? @SI!=10 
> 

int 
div () 

i 

When setting a tracepoint expression, you can specify the format in which 
the value will be displayed. Type the expression followed by a comma and 
a type specifier. If you do not give a type specifier, the CodeView debugger 
displays the value in a default format. See Section 6.1, "Display Expression 
Command," for more information about type specifiers and the default 
format. 

• Mouse 

To set a tracepoint-expression statement with the mouse, point to Watch 
on the menu bar, press a mouse button and drag the highlight down to the 
Tracepoint selection, and then release the button. A dialog box appears, 
asking for the expression to be watched. Type the expression, and press 
the ENTER key or a mouse button. 

You cannot specify a range of memory to be watched with the mouse ver­
sion of the command, as you can with the dialog version. 

• Keyboard 

To set a tracepoint-expression statement with a keyboard command, press 
ALT+W to open the Watch menu, and then press ALT+T to select Trace­
point. A dialog box appears, asking for the expression to be watched. Type 
the expression and press the ENTER key. 

You cannot use the keyboard version of the command to specify a range of 
memory to be watched, as you can with the dialog version. 

• Dialog 

To set a tracepoint with a dialog command, enter a command line with 
one of the following forms of syntax: 

178 



Managing Watch Statements 

TP? expression,[format] 
TP[ type] range 

Tracepoint expression 
Tracepoint memory 

An expressz"on used with the Tracepoin t command can be either a simple 
variable or a complex expression using several variables and operators. 
The expression should not be longer than the width of the watch window. 
You can specify format using a C printf type specifier if you do not want 
the value to be displayed in the default format (decimal for integers or 
floating point for real numbers). See Section 6.1, "Display Expression 
Command," for more informatIOn on format arguments. 

In the memory-tracepoint form, range must be a valid address range and 
type must be a one-letter memory-size specifier. If you specify only the 
start of the range, the Code View debugger displays one object as the 
default. 

Although no more than one line of data will be displayed in the watch win­
dow, the range to be checked for change can be any size up to 128 bytes. 
The data will be displayed in the format used by the Dump commands (see 
Section 6.1, "Display Expression Command," for more information on for­
mat arguments). The valid memory-size specifiers are listed below: 

Specifier 

None 

B 

A 

I 

U 

W 

D 

S 

L 
T 

Size 

Default type 

Byte 

ASCII 

Integer (signed decimal word) 

Unsigned (unsigned decimal word) 

Word 

Double word 

Short real 

Long real 

10-byte real 

The default type used if no type size is specified is the last type used by a 
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none of 
these commands has been used during the session, the default type is byte. 

179 



Microsoft Code View a.nd Utilities 

• Examples 

The two dialog commands below display watch statements (tracepoints) in 
the watch window. 

'IF? sum 

The example above instructs the CodeView debugger to suspend program 
execution whenever the value of the variable sum changes. 

'IFBn 

The example above instructs the Code View debugger to suspend program 
execution whenever the first byte at the address of n changes; the address 
of this byte and its contents are displayed. The value of n may change 
because of a change in the second byte at the address of n; but that 
change (by itself) would have no effect on this tracepoint. 

These commands, entered while debugging a BASIC program, produce the 
watch window in Figure 8.3. Corresponding C, FORTRAN and Pascal 
examples are included, with other commands, at the end of the chapter. 

File View Search Run Watch Oftions Language Calls Help I F8:Trace F5:Go 
=========jl DICE,BAS ~============1 
9) SUM : 9.99999999999999 
1) 55FF:1798 94, 

28: 
29: 
30: 
31: 
32: 

, 

35: 
36: 
37: 
~8' 3q: 
40: 
41 : 
42: 

ELSEIF n:7 OR n:ll THEN 
sum: sum + roll(n) 

ELSE 
chance: roll(n) 
hi her: make(n) 

s r ;n; 
PRINT str2S;hlgher * 100 

EriD IF 
NEXT n 
l~i n : sum 
lose: 1,0 - win 

END SUB 

================================: 
) 
)TP? sum 
)TPB n 
). 

~-------------------------------------------------------------------------------------------------------/ 

Figure 8.3 Tracepoints in the Watch Window 

180 



Managing Watch Statements 

Note 

Setting tracepoints significantly slows execution of the program being 
debugged. The Code View debugger has to check to see if the expres­
sion or memory range has changed each time a source line is executed 
in source mode or each time an instruction is executed in assembly 
mode. However, tracepoints do not slow execution as much as do 
watch poin ts. 

Be careful when setting tracepoints near large or nested loops. A loop 
that executes almost instantly when run from the MS-DOS operating 
system can take many minutes if executed from within the debugger 
with several tracepoints set. If you enter a seemingly endless loop, 
press CONTROL+BREAK or CONTROL+C to exit. Often you can tell how 
far you went in the loop by the value of the tracepoint when you 
exited. 

8.4 Deleting Watch Statements 

The Watch Delete command enables you to delete watch statements that 
were set previously with the Watch, Watchpoint, or Tracepoint command. 

When you delete a watch statement in window mode, the statement disap­
pears and the watch window closes around it. For example, if there are 
three watch statements in the window and you delete statement 1, the 
window is redrawn with one less line. Statement 0 remains unchanged, but 
statement 2 becomes statement 1. If there is only one statement, the win­
dow disappears . 

• Mouse 

To delete a watch statement with the mouse, point to Watch on the menu 
bar, press a mouse button and drag the highlight down to the Delete 
Watch selection, and then release the button. A dialog box appears, con­
taining all the watch statements. Point to the statement you want to 
delete and press the ENTER key or a mouse button. The dialog box disap­
pears, and the watch window is redrawn without the watch statement. 

You can also delete all the statements in the watch window at once, sim­
ply by selecting the Delete All selection. 

181 



Microsoft CodeView and Utilities 

• Keyboard 

To execute the Delete Watch command with a keyboard command, press 
ALT+W to open the Watch menu, and then type D (uppercase or lowercase) 
to select Delete Watch. You can also select the Delete Watch command 
directly by pressing CONTROL+U. A dialog box appears, containing all the 
watch statements. Use the UP and DOWN arrow keys to move the cursor to 
the statement you want to delete, and then press the ENTER key. The dia­
log box disappears, and the watch window is redrawn without the watch 
statement. 

You can also delete all the statements in the watch window at once, sim­
ply by selecting the Delete All selection. Do this by pressing L (upppercase 
or lowercase) after the Watch menu is open. 

• Dialog 

To delete watch statements with a dialog command, enter a command line 
with the following syntax: 

Y number 

When you set a watch statement, it is automatically assigned a number 
(starting with 0). In window mode, the number appears to the left of the 
watch statement in the watch window. In sequential mode, you can use 
the Watch List (W) command to view the numbers of current watch 
statements. 

You can delete existing watch statements by specifying the number of the 
statement you want to delete with the Delete Watch command. (The Y is 
a mnemonic for "yank.") 

You can use the asterisk (*) to represent all watch statements. 

• Examples 

>Y 2 
> 

The command above deletes watch statement 2. 

>Y * 
> 

The command above deletes all watch statements and closes the watch 
window. 

182 



Managing Watch Statements 

8.5 Listing Watchpoints and Tracepoints 

The Watch List command lists all previously set watchpoints and trace­
points with their assigned numbers and their current values. 

This command is the only way to examine current watch statements in 
sequential mode. The command has little use in window mode, since watch 
statements are already visible in the watch window. 

• Mouse 

The Watch List command cannot be executed with the mouse. 

• Keyboard 

The Watch List command cannot be executed with a keyboard command. 

• Dialog 

To list watch statements with a dialog command, enter a command line 
with the following syntax: 

w 

The display is the same as the display that appears in the watch window 
in window mode. 

• Example 

>w 
0) code,c : I 
1) (float)letters/words,f 4.777778 
2) 3F65:0B20 20 20 43 4F 55 4E 54 COUNT 
3) lines==ll: 0 
> 

Note 

The command letter for the Watch List command is the same as the 
command letter for the memory version of the Watch command when 
no memory size is given. The difference between the commands is that 
the Watch List command never takes an argument. The Watch com­
mand always requires at least one argument. 

183 



Microsoft Code View and Utilities 

8.6 C Examples 

The seven examples shown previously in a BASIC screen would be entered 
in a C debugging session as follows: 

~,----------------------------------------------------~ 

File View Search Run Watch Options Language Calls Help / F8:Trace F5:Go 
==========1/ dice, C 1===============1 
0) n : 4 
1) higher * 100 : 33,33333333333333 
2) chance : 5958:115A 55 55 55 55 55 55 B5 3F +8,333333333333E-002 
3) highe~} chance : 1 
4) n::7 :: n::11 : 9 
5) SUM : 9,99999999999999 
6) 5958:1172 94, 

30: sum: sum + roll(n); 
31: else { 
32: 
33: 

=====================================* 
)W? n 
)W? higher * 100 
)WL chance 
)WP? higher > chance 
>WP? n::7 :: n::11 
)TP? sum 
)TPB n 
). 

Figure 8.4 C Watch Statements 

The first three items in the watch window are simple watch statements. 
They display values but never cause execution to break. 

The next two items are watch points; they cause execution to break when­
ever they evaluate to true (nonzero). The fourth item will break execution 
whenever higher is greater than chance, and the fifth item will break 
execution whenever n is equal to 7 or 11. 

The last two items are tracepoints, which cause execution to break when­
ever any bytes change within a specified area of memory. The sixth item 
breaks execution whenever the value of sum changes; the seventh item 
breaks execution whenever there is a change in the first byte at the 
address of n. 

184 



Managing Watch Statements 

8.7 FORTRAN Examples 

The seven examples shown previously in a BASIC screen would be entered 
in a FORTRAN debugging session as follows: 

File Uiew Search Run Watch Options Language Calls Help I F8:Trace F5:Go 
========~I dice, for F==========~ 
0) n : 4 
1) higher * 100 : 33,33333333333333 
2) chance : 5B43:0AF8 55 55 55 55 55 55 B5 3F +8,333333333333E-002 
3) highe~ ,gt, chance : ,TRUE, 
4) n,eq,7 ,O~, n,eq,ll : ,FALSE, 
S) SUM : 0,00000000000000 
6) SB43:0AF4 04 , 

33: 
34: 
35: 
36: 

sum: sum + roll(n) 
else 

)W? n 
)W? higher * 100 
)~JL ch,:1nce 
)WP? higher ,gt, chance 
)WP? n,e~,7 ,or, n,e~,11 
)TP? sum 
)TPB n 
). 

chance: roll(n) 
hi her: make(n) 

I 
---) 

,--------------------------------------------------~ 

Figure 8.5 FORTRAN Watch Statements 

The first three items in the watch window are simple watch statements. 
They display values but never cause execution to break. 

The next two items are watchpoints; they cause execution to break when­
ever they evaluate to true (nonzero). The fourth item will break execution 
whenever higher is greater than chance, and the fifth item will break 
execution whenever n is equal to 7 or II. 

The last two items are tracepoints, which cause execution to break when­
ever any bytes change within a specified area of memory. The sixth item 
breaks execution whenever the value of sum changes; the seventh item 
breaks execution whenever there is a change in the first byte at the 
address of n. 

185 



Microsoft Code View and Utilities 

8.8 Pascal Examples 

The seven examples shown previously in a BASIC screen would be entered 
in a Pascal debugging session as follows: 

.. ---
File View Seal1ch Run Watch O}ltions Lang'uage Calls HeIF' 1 F8:Tl~ace F5:Go 
=========1 dice,pas F===========:::::' 
0) n : 4 
1) higheF * 100 : 33,333333333333 
2) chance : 8071:1156 55 55 55 55 55 55 B5 3F 
3) highe~) chance : TRUE 
4) (n:7) O~ (n:ll) : FALSE 
5) SUM : 9,99999999999999 
6) 8971:116E 94 , 

~0' 
31: 
32: 
33: 

sum :: sum + l1oll(n) 
else begin 

chance :: l1oll(n); 
hi heF :: make(n): 

J 1 

... ' 1 

+8, 333333333333E-002 

I n); 
=====================================t 
)~J? n 
)W? higheF * 100 
)~JL ch,anee 
)WP? higheF ) chance 
}WP? (n:7) OF (n:ll) 
)TP? sum 
)TPB n 
\ 
I. 

,_.-------------------------------------------------------------------------------------------------------

Figure 8.6 Pascal Watch Statements 

The first three items in the watch window are simple watch statements. 
They display values but never cause execution to break. 

_-_01'/ 

The next two items are watch points; they cause execution to break when­
ever they evaluate to true (nonzero). The fourth item will break execution 
whenever higher is greater than chance, and the fifth item will break 
execu tion whenever n is equal to 7 or 11. 

The last two items are tracepoints, which cause execution to break when­
ever any bytes change within a specified area of memory. The sixth item 
breaks execution whenever the value of sum changes; the seventh item 
breaks execution whenever there is a change in the first byte at the 
address of n. 

186 



Managing Watch Statements 

8.9 Assembly Examples 

By default, assembly source modules are debugged with the C-expression 
evaluator. Therefore, refer to the C examples for appropriate syntax for 
entering watch expressions. 

In addition, however, certain C expressions tend to be more useful for 
debugging assembly modules. The following examples show some typical 
cases used with watch and tracepoint commands. 

• Examples 

>WW sp L 8 
>WW bp L 8 
>W? wo bp+4,d 
>W? by bp-2, d 
>TPW arr L 5 
> 

The first two examples watch a range of memory. The watch command WW 
sp L 8 is particularly useful because it will cause the debugger to watch 
the stack dynamically; the debugger will continually display the first eight 
words on the top of the stack as items are pushed and popped. The expres­
sion WW bp L 8 is similar; it causes the debugger to watch the first eight 
words in memory pointed to by BP (the framepointer). 

The third example, W? wo bp+4, d, is useful if you are using the stack to 
pass parameters. In this case, the position on the stack four bytes above 
BP holds one of three integer parameters. The WO operator returns the 
same value as the assembler expression WORD PTR [bp+4J; the result is 
displayed in decimal. 

You must use the expression bp+4 in order to watch this parameter; you 
cannot specify a parameter by name. The assembler does not emit sym­
bolic information for parameters. The fourth command, W? by bp- 2, d, 
is similar to the third, but instead of watching a parameter, this command 
watches a local variable. The operator BY returns the same value as the 
assembler expression BYTE PTR [bp- 2J . 

The final example sets a tracepoint on a range of memory, which 
corresponds to the first five words of the array arr. Range arguments for 
tracepoint and watch expressions are particularly useful for large data 
structures, such as arrays. 

187 



Microsoft Code View a.nd Utilities 

The five examples above produce the following screen, when entered in a 
Code View debugging session: 

188 

File Uiew Sea~ch Run Watch Options Language Calls Help I F8:T~ace F5:Go 
=======~I test,ASM F=======:::::::;::=== 
0) sp L 8 : 531C:09A2 0044 09B4 0037 005 000F 001B 000F 0005 AX : 001B 
1) bp L 8 : 531C:09A4 09B4 0037 0005 000F 001B 000F 0005 001B BX : 09A2 
2) wo bp+4 l d : 5 CX : 0044 
3) by bp-2 d : 68 DX : 00B0 
4) 531F:0996 91 9992 9993 "'" SP : 09A2 
====================l BP : 09A4 

Fi~st pa~amete~ la~gest SI : 0098 
D1 : 0A8C 

70: 
71: 
72: 
73: 
74: 
75: 
76: 

mov BYTE PTR [bp-2J I 1 ; Load indicato~ value DS : 531C 
; of 1 into local va~iabl ES: 531C 
; and finish up SS : 531C Jmp 

nexLtest: 
mov 

I: Jfe {I: em:' 

79: 

)WW sp L 8 
)WW bp L 8 
)W? wo bp+4 l d 
)W? by bp-2~d 
)TPB a~~ L :J 
). 

SHORT finished 
CS : 52D7 

; Load 3~d fa~m into ax & 1P : 005D 
·~·~m·$lall = 

Figure 8.7 Assembly Watch Statements 



CHAPTER,. 

EXAMINING CODE 

9.1 Set Mode Command ............................................ 191 
9.2 Unassemble Command ........................................ 193 
9.3 View Command ................................................... 195 
9.4 Current Location Command ............................... 198 
9.5 Stack Trace Command ....................................... 199 





Examining Code 

Several Code View commands allow you to examine program code or data 
related to code. The following commands are discussed in this chapter: 

Command 

Set Mode (8) 

Unassemble (U) 
View (V) 
Curren t Location (.) 

Stack Trace (K) 

Action 

Sets format for code displays 

Displays assembly instructions 

Displays source lines 

Displays the current location line 

Displays routines or procedures 

9.1 Set Mode Command 

The Set Mode command sets the mode in which code is displayed. The two 
basic display modes are source mode, in which the program is displayed as 
source lines, and assembly mode, in which the program is displayed as 
assembly-language instructions. These two modes can be combined in 
mixed mode, in which the program is displayed with both source lines and 
assembly-language instructions. 

In sequential mode, there are three display modes: source, assembly, and 
mixed. These modes affect the output of commands that display code 
(Register, Trace, Program Step, Go, Execute, and Unassemble). 

In window mode, these same display modes are available, but affect what 
kind of code appears in the display window. 

Source and mixed modes are only available if the executable file contains 
symbols in the CodeView format. Pro~rams that do not contain symbolic 
information (including all .COM files) are displayed in assembly mode . 

• Mouse 

To set the display mode with the mouse, point to View on the menu bar, 
press a mouse button and drag the highlight to either the Source selection 
for source mode, the Mixed selection for mixed mode, or the Assembly 
selection for assembly mode. Then release the button. 

You can further control the display of assembly-language instructions by 
making selections from the Options menu. See Section 2.1.3.6, "The 
Options Menu," for more information. 

191 



Microsoft Code View and Utilities 

• Keyboard 

To change the display mode with a keyboard command, press the F3 key. 
This will rotate the mode to the next setting; you may need to press F3 
twice to get the desired mode. This command works in either window or 
sequential mode. In sequential mode, the word source, mixed, or 
assembly is displayed to indicate the new mode. 

• Dialog 

To set the display mode from the dialog window, enter a command line 
with the following syntax: 

S[+ I-I &] 

If the plus sign is specified (8+), source mode is selected, and the word 
source is displayed. 

If the minus sign is specified (8-), assembly mode is selected, and the word 
assembly is displayed. In wmdow mode, the display will include any 
assembly options, except the Mixed Source option, previously toggled on 
from the Options menu. The Mixed Source option is always turned off by 
the 8- command. 

If the ampersand is specified (S&), mixed mode is selected, and the word 
mixed is displayed. In window mode, the display will include any assem­
bly options previously toggled on from the Options menu. In addition, the 
Mixed Source option will be turned on by the S& command. 

If no argument is specified (8), the current mode (source, assembly, or 
mixed) is displayed. 

The Un assemble command in sequential mode is an exception in that it 
displays mixed source and assembly with both the source (S+) and mixed 
(S&) modes. When you enter the dialog version of the Set Mode command, 
the CodeView debugger outputs the name of the new display mode: 
source,assembly,ormixed. 

• Examples 

>S+ 
source 
>S­
assembly 
>S& 
mixed 
> 

192 



Examining Code 

The examples above show the source mode being changed to source, 
assembly, and mixed. In window mode, the commands change the for­
mat of the display window. In sequential mode, the commands change the 
output from the commands that display code (Register, Trace, Program 
Step, Go, Execute, and Unassemble). See the sections on individual com­
mands for examples of how they are affected by the display mode. 

9.2 Unassemble Command 

The Unassemble command displays the assembly-language instructions of 
the program being debugged. It is most useful in sequential mode, where it 
is the only method of examining a sequence of assembly-language instruc­
tions. In window mode it can be used to display a specific portion of 
assembly-language code in the display window. 

Note 

Occasionally, code similar to the following will be displayed: 

FE30 777 Byte Ptr [BX + SI] 

If you attempt to unassemble data, then the Code View debugger may 
display meaningless instructions. 

• Mouse 

The Un assemble command has no direct mouse equivalent, but you can 
view un assembled code at any time by changing the mode to assembly or 
mixed (see Section 9.1, "Set Mode Command," for more information). 

• Keyboard 

The Un assemble command has no direct keyboard equivalent, but you can 
view unassembled code at any time by changing the mode to assembly or 
mixed (see Section 9.1, "Set Mode Command," for more information). 

• Dialog 

To display un assembled code using a dialog command, enter a command 
line with the following syntax: 

U [address I range] 

193 



Microsoft Code View and Utilities 

The effect of the command varies depending on whether you are in sequen­
tial or window mode. 

In sequential mode, if you do not specify address or range, the disassem­
bled code begins at the current unassemble address and shows the next 
eight lines of instructions. The unassemble address is the address of the 
instruction after the last instruction displayed by the previous Unassemble 
command. If the Unassemble command has not been used during the ses­
sion, the unassemble address is the current instruction. 

If you specify an address, the disassembly starts at that address and shows 
the next eight lines of instructions. If you specify a range, the instructions 
within the range will be displayed. 

The sequential mode format of the display depends on the current display 
mode (see Section 9.1, "Set Mode Command," for more information). If 
the mode is source (8+) or mixed (8&), the CodeView debugger displays 
source lines mixed with un assembled instructions. One source line is shown 
for each corresponding group of assembly-language instructions. If the 
display mode is assembly, only assembly-language instructions are shown. 

In window mode, the Unassemble command changes the mode of the 
display window to assembly. The display format will reflect any options 
previously set from the Options menu. There is no output to the dialog 
window. If address is given, the instructions in the display window will 
begin at the specified address. If range is given, only the starting address 
will be used. If no argument is given, the debugger scrolls down and 
displays the next screen of assembly-language instructions. 

Note 

The 80286 protected-mode mnemonics (also available with the 80386) 
cannot be displayed with the Un assemble command. 

• Examples 

>8& 
mixed 
>u Ox11 
4900:0011 350G8E 
4900:0014 189A2300 
49DO : 0018 E'C 
4900:0019 49 
49OO:00lA CD351ED418 
4900 : 001E' CD3D 

XOR 
SBB 
CLD 
DEC 
INT 
INT 

7: A = 0.0 
49DO:0021 CD35EE INT 

194 

AX, ___ sqrtjmptab+8cd4 (8EOG) 
Byte Ptr [BP+SI+0023],BL 

ex 
35 ;FSTP DWord Ptr [ ___ fpinit+ee (18D4)] 
3D ;FWAIT 

35 ;E'LDZ 



Examining Code 

The sequential mode example above sets the mode to mixed and unassem­
bles eight lines of machine code, plus whatever source lines are encoun­
tered within those lines. The display would be the same if the mode were 
source. 

The example is taken from a FORTRAN debugging session, but produces 
results similar to what would be produced using the same commands with 
a C or BASIC program. 

>8-
assembly 
>u Ox1l 
4900:0011 35068E 
4900:0014 189A2300 
4900 : 0018 FC 
4900 : 0019 49 
49OO:00~ CD351ED418 
4900 : 00lF CD3D 
4900:0021 CD35EE 
> 

XOR AX, __ sqrtjmptab+8cd4 (8E06) 
SBB Byte Ptr [BP+SI+0023],BL 
CLD 
DEC ex 
INT 35 ;FSTP DWord Ptr [ __ fpinit+ee (18D4)] 
INT 3D ;FWAIT 
INT 35 ;FLDZ 

The sequential mode example above sets the mode to assembly and repeats 
the same command. 

9.3 View Command 

The View command displays the lines of a text file (usually a source 
module or include file). It is most useful in sequential mode, where it is the 
only method of examining a sequence of source lines. In window mode, the 
View command can be used to page through the source file or to load a 
new source file . 

• Mouse 

To load a new source file with the button, point to File on the menu bar, 
press a mouse button and drag the highlight to the Load selection, then 
release the button. A dialog box appears, asking for the name of the file 
you wish to load. Type the name of the file, and press the ENTER key or a 
mouse button. The new file appears in the display window. 

The paging capabilities of the View command have no direct mouse 
equivalent, but you can move about in the source file by pointing to the up 
or down arrows on the scroll bars and then clicking different mouse but­
tons. See Section 2.1.2.2, "Controlling Program Execution with the 
Mouse," for more information. 

195 



Microsoft Code View and Utilities 

• Keyboard 

To load a new source file with a keyboard command, press ALT+F to open 
the File menu, then press L to select Load. A dialog box appears, asking 
for the name of the file you wish to load. Type the name of the file, and 
press the ENTER key. The new file appears in the display window. 

The paging capabilities of the View command have no direct keyboard 
equivalent, but you can move about in the source file by first putting the 
cursor in the display window with the F6 key, then pressing the PGUP, 
PGDN, HOME, END, UP ARROW, and DOWN ARROW keys. See Section 2.1.1.3, 
"Controlling Program Execution with Keyboard Commands," for more 
information. 

• Dialog 

To display source lines using a dialog command, enter a command line 
with the following syntax: 

v [expression] 

Since addresses for the View command are often specified as a line number 
(with an optional source file), a more specific syntax for the command 
would be as follows: 

V [.[f£lename:]linenumber] 

The effect of the command varies, depending on whether you are in 
sequential or window mode. 

In sequential mode, the View command displays eight source lines. The 
starting source line is one of the following: 

• The current source line if no argument is given. 

• The specified linenumber. If filename is given, the specified file is 
loaded, and the l£nenumber refers to lines in it. 

• The address that expression evaluates to. For example, expression 
could be a procedure name or an address in the segment: offset for­
mat. The code segment is assumed if no segment is given. 

In sequential mode, the View command is not affected by the current 
display mode (source, assembly, or mixed); source lines are displayed 
regardless of the mode. 

In window mode, if you enter the View command while the display mode is 
assembly, the CodeView debugger will automatically switch back to source 
mode. If you give linenumber or expression, the display window will be 
redrawn so that the source line corresponding to the given address will 

196 



Examining Code 

appear at the top of the source window. If you specify a filename with a 
linenumber, the specified file will be loaded. 

If you enter the View command with no arguments, the display will scroll 
down one line short of a page; that is, the source line that was at the bot­
tom of the window will be at the top. 

Note 

The View command with no argument is similar to pressing the PGDN 
key, or clicking right on the down arrow with the mouse. The 
difference is that pressing the PGDN key enables you to scroll down one 
more line. 

• Examples 

>V BUBBLE 
51: 
52: 
53: 
54: 
55: 
56: 
57: 

;* Example 1, FORTRAN source code 
IF (N .LE. 1) GOTO 101 
DO 201 I = 1,N-1 
DO 301 J = I + 1,N 
IF (X(I) .LE. X(J» GOTO 301 
TEMP = X (I) 
X(I) = X(J) 
X(J) = TEMP 

58: 301 CONTINUE 

Example 1 (shown in sequential mode) displays eight source lines, begin­
ning at routine BUBBLE. 

>V .math.c:30 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
> 

;* Example 2, C source code 
register int j; 

for (j = q; j >= 0; j--) 
if (t[j] + p[j] > 9) { 

p[j] += t[j] - 10; 
p[j-1] += 1; 

} else 
p [j] += t [j] ; 

Example 2 loads the source file math. c and displays eight source lines 
starting at line 30. 

All forms of the View command are supported with all languages that 
work with the CodeView debugger. 

197 



Microsoft Code View a.nd Utilities 

9.4 Current Location Command 

The Current Location command displays the source line or assembly­
language instruction corresponding to the current program location. 

• Mouse 

The Current Location command cannot be executed with the mouse. 

• Keyboard 

The Current Location command cannot be executed with a keyboard 
command. 

• Dialog 

To display the current location line using a dialog command, enter a com­
mand line with the following syntax (a period only): 

In sequential mode, the command displays the current source line. The line 
is displayed regardless of whether the current debugging mode is source or 
assembly. If the program being debugged has no symbolic information, the 
command will be ignored. 

In window mode, the command puts the current program location (marked 
with reverse video or a contrasting color) in the center of the display win­
dow. The display mode (source or assemhly) will not be affected. This com­
mand is useful if you have scrolled through the source code or assembly­
language instructions so that the current location line is no longer visible. 

For example, if you are in window mode and have executed the program 
being debugged to somewhere near the start of the program, but you have 
scrolled the display to a point near the end, the Current Location com­
mand returns the display to the current program location . 

• Example 

>. 
MINDAT = 1.0E6 
> 

The example above illustrates how to display the current source line in 
sequential mode. The same command in window mode would not produce 

198 



Examining Code 

any output, but it could change the text that is shown in the display 
window. 

9.5 Stack Trace Command 

The Stack Trace command allows you to display routines that have been 
called during program execution (see note below). The first line of the 
display shows the name of the current routine. The succeeding lines (if 
any) list any other routines that were called to reach the current address. 
The dialog version of the Stack Trace command also displays the source 
lines where each routine was called. 

For each routine, the values of any arguments are shown in parentheses 
after the routine name. Values are shown in the current radix (the default 
is decimal). 

The term "stack trace" is used because, as each routine is called, its 
address and arguments are stored on (pushed onto) the program stack. 
Therefore, tracing through the stack shows the currently active routines. 
With C and FORTRAN programs, the main routine will always be at the 
bottom of the stack. With BASIC programs, the main program is not 
listed on the stack, because BASIC programs have no standard label (such 
as main) corresponding to the first line of a program. Only routines called 
by the main program will be displayed. In assembly-language programs, 
the bottom routine displayed in the stack trace is astart instead of main. 

Note 

This discussion uses the term "routines," which is a general term for 
functions (C, FORTRAN, Pascal), subroutines (FORTRAN), pro­
cedures (Pascal), and subprograms and function procedures 
(BASIC)-each of which uses the stack to transfer control to an 
independent program unit. In assembly mode, the term "procedure" 
may be more accurate. GOSUB and DEF FN routines in BASIC will 
not work with the Stack Trace command, since they do not follow the 
same convention for setting up the stack. 

If you are using the CodeView debugger to debug assembly-language 
programs, the Stack Trace command will work only if procedures were 
called with the calling convention used by Microsoft languages. This 
calling convention is explained in the Microsoft Mixed-Language Pro­
gramming Guide. 

199 



Microsoft Code View and Utilities 

• Mouse 

To view a stack trace with the mouse, point to Calls on the menu bar and 
press a mouse button. The Calls menu will appear, showing the current 
routine at the top and other routines below it in the reverse order in which 
they were called; for example, the first routine called (which is always 
main in a C or FORTRAN program) will be at the bottom. The values of 
any routine arguments will be shown in parentheses following the routines. 

If you want to view one of the routines that was previously called, select 
the routine by dragging down the highlight to the routine you wish to see, 
then releasing the mouse button. (You can also select a routine by clicking 
a selection, once the menu is open.) The effect of selecting a routine in the 
Calls menu is to cause the debugger to display that routine. The cursor 
will be on the last statement that was executed in the routine. 

• Keyboard 

To view a stack trace with a keyboard command, press ALT+C to open the 
Calls menu. The menu will show the current routine at the top, and other 
routines below it in the reverse order in which they were called; for exam­
ple, the first routine called will be at the bottom. The values of any rou­
tine arguments will be shown in parentheses following the routine. 

If you want to view one of the routines that was previously called, select 
the routine by moving the cursor with the arrow keys and then pressing 
ENTER, or by typing the number or letter to the left of the routine. The 
effect of selecting a routine in the Calls menu is to cause the debugger to 
display that routine. The cursor will be on the last statement that was 
executed in the routine. 

• Dialog 

To display a stack trace with a dialog command, enter a command line 
with the following syntax: 

K 

The output from the Stack Trace dialog command lists the routines in the 
reverse order in which they were called. The arguments to each routine are 
shown in parentheses. Finally, the line number from which the routine was 
called is shown. 

You can enter the line number as an argument to the View or Unassemble 
command if you want to view code at the point where the routine was 
called. 

200 



Examining Code 

In window mode, the output from the Stack Trace dialog command 
appears in the dialog window. 

• FORTRAN Example 

>K 
ANALYZE(67,O), line 94 
COUNTWORDS(O,512), line 73 
MAIN(2,5098), line 42 
> 

In the example above, the first line of output indicates that the current 
routine is ANALYZE. Its first argument currently has a decimal value of 
67, and its second argument has a value of O. The current location in this 
routine is line 94. 

The second line indicates that ANALYZE was called by COUNTWORDS, and 
that its arguments have the values 0 and 512. Routine ANALYZE was 
called from line 73 of routine COUNTWORDS. 

Likewise, COUNTWORDS was called from line 42 of MAIN, and its argu­
ments have the values 2 and 5098. 

If the radix had been set to 16 or 8 using the Radix (N) command, the 
arguments would be shown in that radix. For example, the last line would 
be shown as MAIN (2, 13ea) in hexadecimal or MAIN (2, 11752) in octal. 

• C Example 

>K 
analyze(67,O), line 94 
countwords(O,512), line 73 
main (2,5098) 
> 

As with the FORTRAN example, the example above shows the routines on 
the stack in the reverse order in which they were called. Since analyze is 
on the top, it has been called most recently; in other words, it is the 
current routine. 

Each routine is shown with the arguments it was passed, along with the 
last source line that it had been executing. Note that main is shown with 
~he cOl!lmand line arguments .argc (~hich is equal to 2) and argv C~vhich 
IS a pOInter equal to 5098 deCImal). SInce the language IS C, main wIll 
always be on the bottom of the stack. 

201 



Microsoft Code View and Utilities 

• BASIC Example 

>K 
ROLL#(19122:6040) 
MAKE # (19122:6040) 
CALC (19122:5982, 19122:5990) 
> 

As with the FORTRAN example, the example above shows the routines on 
the stack in the reverse order in which they were called. Since ROLL# is on 
the top, it has been called most recently; in other words, it is the current 
routine. 

Each routine is displayed along with the arguments by which it was 
passed. In BASIC, arguments passed to routines are always addresses. 

This example shows some features peculiar to BASIC. First of all, there is 
no MAIN displayed, because the BASIC compiler does not produce any 
such symbol. Furthermore, each routine will have a type tag if it is a func­
tion; the tag indicates what the function returns. ROLL# and MAKE# are 
both functions returning a double-precision floating point. A function that 
returned a short integer would have a % type tag. CALC has no type tag 
since it is a subprogram, and therefore does not return a value of any type. 

202 



CHAPTER 

MODIFYING CODE OR DATA 

10.1 Assemble Command ............................................ 205 
10.2 Enter Commands ................................................ 20g 

10.2.1 Enter Command ....................................... 212 
10.2.2 Enter Bytes Command .............................. 212 
10.2.3 Enter ASCII Command ............................. 213 
10.2.4 Enter Integers Command ........................... 214 
10.2.5 Enter Unsigned Integers Command ............ 214 
10.2.6 Enter Words Command ............................. 215 
10.2.7 Enter Double Words Command .................. 216 
10.2.8 Enter Short Reals Command ...................... 217 
10.2.9 Enter Long Reals Command ...................... 217 
10.2.10 Enter 10-Byte Reals Command .................. 218 

10.3 Fill Memory Command ....................................... 21g 
10.4 Move Memory Command .................................... 220 
10.5 Port Output Command ....................................... 221 
10.6 Register Command ............................................. 222 





Modifying Code or Data 

The Code View debugger provides the following commands for modifying 
code or data in memory: 

Command 

Assemble (A) 
Enter (E) 

Register (R) 

Fill Memory (F) 

Move Memory (M) 
Port Output (0) 

Action 

Modifies code 

Modifies memory, usually data 

Modifies registers and flags 

Fills a block of memory 

Copies one block of memory to another 

Outputs a byte to a hardware port 

These commands change code temporarily. You can use the alterations for 
testing in the CodeView debugger, but you cannot save them or per­
manently change the program. To make permanent changes, you must 
modify the source code and recompile. 

10.1 Assemble Command 

The Assemble command assembles 8086-family (8086, 8087, 8088, 80186, 
80287, and 80286 unprotected) instruction mnemonics and places the 
resulting instruction code into memory at a specified address. The only 
8086-family mnemonics that cannot be assembled are 80286 protected­
mode mnemonics. In addition, the debugger will also assemble 80286 
instructions that utilize the expanded 386 registers. 

Note 

The effects of the Assemble command are temporary. Any instructions 
that you assemble are lost as soon as you exit the program. 

The instructions you assemble are also lost when you restart the pro­
gram with the Start or Restart command, because the original code is 
reloaded on top of memory you may have altered. 

To test the results of an Assemble command, you may need to manipu­
late the IP register (and possibly the CS register) to the starting 
address of the instructions you have assembled. If you do this, you 
must use the Current Line command (.) to reset the debugger's inter­
nal variables so that it will trace properly. 

205 



Microsoft Code View and Utilities 

• Mouse 

The Assemble command cannot be executed with the mouse. 

• Keyboard 

The Assemble command cannot be executed with a keyboard command. 

• Dialog 

To assemble code using a dialog command, enter a command line with the 
following syntax: 

A [address] 

If address is specified, the assembly starts at that address; otherwise the 
current assembly address is assumed. 

The assembly address is normally the current address (the address pointed 
to by the CS and IP registers). However, when you use the Assemble com­
mand, the assembly address is set to the address immediately following 
the last assembled instruction. When you enter any command that exe­
cutes code (Trace, Program Step, Go, or Execute), the assembly address is 
reset to the current address. 

When you type the Assemble command, the assembly address is displayed. 
The CodeView debugger then waits for you to enter a new instruction in 
the standard 808B-family instruction-mnemonic form. You can enter 
instructions in uppercase, lowercase, or both. 

To assemble a new instruction, type the desired mnemonic and press the 
ENTER key. The CodeView debugger assembles the instruction into 
memory and displays the next available address. Continue entering new 
instructions until you have assembled all the instructions you want. To 
conclude assembly and return to the Code View prompt, press the ENTER 
key only. 

If an instruction you enter contains a syntax error, the debugger displays 
the message ... Syntax error, redisplays the current assembly address, 
and waits for you to enter a correct instruction. The caret symbol in the 
message will point to the first character the CodeView debugger could not 
interpret. 

206 



Modirying Code or Data 

The following eight principles govern entry of instruction mnemonics: 

1. The far-return mnemonic is RETF. 

2. String mnemonics must explicitly state the string size. For ex­
ample, MOVSW must be used to move word strings, and 
MOVSB must be used to move byte strings. 

3. The CodeView debugger automatically assembles short, near, or 
far jumps and calls, depending on byte displacement to the desti­
nation address. These may be overridden with the NEAR or FAR 
prefix, as shown in the following examples: 

JMP OxS02 
JMP NEAR OxSOS 
JMP FAR OxSOA 

The NEAR prefix can be abbreviated to NE, but the FAR prefix 
cannot be abbreviated. The examples above use the C notation for 
hexadecimal numbers. If the FORTRAN option were selected, then 
you would enter the operands as #502, #505, and #50A; if the 
BASIC option were selected, you would enter them as &H502, 
&H505, and &H50A. 

4. The Code View debugger cannot determine whether some operands 
refer to a word memory location or to a byte memory location. In 
these cases, the data type must be explicitly stated with the prefix 
WORD PTR or BYTE PTR. Acceptable abbreviations are WO 
and BY. Examples are shown below: 

MOV WORD PTR [BP],l 
MOV BYTE PTR [SI-l],symbol 
MOV WO PTR [BP],l 
MOV BY PTR [SI-l],symbol 

5. The Code View debugger cannot determine whether an operand 
refers to a memory location or to an immediate operand. The 
debugger uses the convention that operands enclosed in square 
brackets refer to memory. Two examples are shown below: 

MOV AX, #21 
MOV AX, [#21] 

The first statement moves 21 hexadecimal into AX. The second 
statemen t moves the data at offset 21 hexadecimal in to AX. Both 
statements use the FORTRAN notation for the hexadecimal 
number 21. If the C option were selected, then this number would 
be represented as Ox21, and if the BASIC option were selected, 
then the number would be represented as &H21. 

207 



Microsoft Code View and Utilities 

6. The Code View debugger supports all forms of indirect register 
instructions, as shown in the following examples: 

ADD BX, [BP+2]. [SI-1] 
POP [BP+DI] 
PUSH [SI] 

7. All instruction-name synonyms are supported. If you assemble 
instructions and then examine them with the Un assemble com­
mand (U), the Code View debugger may show synonymous instruc­
tions, rather than the ones you assembled, as shown in the follow­
ing examples: 

LOOPZ 
LOOPE 
JA 
JNBE 

ScH100 
&H100 
ScH200 
&H200 

The examples above use the BASIC hexadecimal notation. Instead 
of using the &H prefix, you would use Ox with the C option 
selected, and # with the FORTRAN option selected. 

8. Do not assemble and execute 8087 or 80287 instructions if your 
system is not equipped with one of these math coprocessor chips. If 
you try to execute the WAIT instruction without the appropriate 
chip, for example, your system will crash . 

• Example 

>U #40 L 1 
39BO:0040 89C3 
>A #40 
39BO:0040 MOV 
39BO:0042 
>U #40 L 1 
39BO:0040 89C1 
> 

ex, AX 

MOV BX,AX. 

MOV CX,AX. 

The example above (in FORTRAN notation) modifies the instruction at 
address 40 hexadecimal so that it moves data into the ex register instead 
of the BX register (40 hexadecimal is notated as Ox40 in C, and as &H40 
in BASIC). The Unassemble command (U) is used to show the instruction 
before and after the assembly. 

You can modify a portion of code for testing, as in the example, but you 
cannot save the modified program. You must modify your source code and 
recompile. 

208 



Modifying Code or Data 

10.2 Enter Commands 

The Code View debugger has several commands for entering data to 
memory. You can use these commands to modify either code or data, 
though code can usually be modified more easily with the Assemble com­
mand (A). The Enter commands are listed below: 

Command Command Name 

E Enter (size is the default type) 

EB Enter Bytes 

EA Enter ASCII 

EI Enter Integers 

EU Enter Unsigned Integers 

EW Enter Words 

ED Enter Double Words 

ES Enter Short Reals 

EL En ter Long Reals 

ET Enter 10-Byte Reals 

• Mouse 

The Enter commands cannot be executed with the mouse. 

• Keyboard 

The Enter commands cannot be executed with keyboard commands. 

• Dialog 

To enter data (or code) to memory with a dialog command, enter a com­
mand line with the folfowing syntax: 

E[ type] addres8 [list] 

The type is a one-letter specifier that indicates the type of the data to be 
entered. The address indicates where the data will be entered. If no seg­
ment is given in the address, the data segment (DS) is assumed. 

209 



Microsoft Code View and Utilities 

The list can consist of one or more expressions that evaluate to data of the 
size specified by type (the expressions in the list are separated by spaces). 
This data will be entered to memory at address. If one of the values in the 
list is invalid, an error message will be displayed. The values preceding the 
error are entered; values at and following the error are not entered. 

The expressions in the list are evaluated in the current radix, regardless of 
the size and type of data being entered. For example, if the radix is 10 and 
you give the value 10 in a list with the Enter Words command, the decimal 
value 10 will be entered even though word values are normally entered in 
hexadecimal. This means that the Enter Words, Enter Integers, and Enter 
Unsigned Integers commands are identical when used with the list method, 
since two-byte data are being entered for each command. 

If list is not given, the Code View debugger will prompt for values to be 
entered to memory. Values entered in response to prompts are accepted in 
hexadecimal for the Enter Bytes, Enter ASCII, Enter Words, and Enter 
Double Words commands. The Enter Integers command accepts signed 
decimal integers, while the Enter Unsigned Integers command accepts 
unsigned decimal integers. The Enter Short Reals, Enter Long Reals, and 
Enter 10-Byte Reals commands accept decimal floating-point values. 

With the prompting method of data entry, the Code View debugger 
prompts for a new value at address by displaying the address and its 
current value. As explained below, you can then replace the value, skip to 
the next value, return to a previous value, or exit the command. 

• To replace the value, type the new value after the current value. 

• To skip to the next value, press the SPACEBAR. Once you have 
skipped to the next value, you can change its value or skip to the 
following value. If you pass the end of the display, the Code View 
debugger displays a new address to start a new display line. 

• To return to the preceding value, type a backslash (\). When you 
return to the preceding value, the debugger starts a new display 
line with the address and value. 

• To stop entering values and return to the Code View prompt, press 
the ENTER key. You can exit the command at any time. 

Sections 10.2.1-10.2.10 discuss the Enter commands in order of the size of 
data they accept. 

• Examples 

>EW PLACE 16 32 

The example above shows how to enter two word-sized values at the 
address PLACE. 

210 



Modifying Code or Data 

>EW PLACE 

3DA5:0B20 00F3._ 

The example above illustrates the prompting method of entering data. 
When you supply the address where you want to enter data but supply no 
data to be entered there, the CodeView debugger displays the current 
value of the address and waits for you to enter a new value. The under­
score in this example and the examples below represents the Code View 
cursor. You change the value F 3 to the new value 16 (10 hexadecimal) by 
typing 10 (without pressing the ENTER key yet). The value must be typed 
in hexadecimal for the Enter Words command, as shown below: 

>EW PLACE 

3DA5:0B20 00F3.10_ 

You can then skip to the next value by pressing the SPACEBAR. The Code­
View debugger responds by displaying the next value, as shown below: 

>EW PLACE 

3DA5:0B20 00F3.10 4F20. 

You can then type another hexadecimal value, such as 30: 

>EW PLACE 

3DA5:0B20 00F3.10 4F20.30_ 

To move to the next value, press the SPACEBAR. 

>EW PLACE 

3DA5:0B20 00F3.10 4F20.30 3DC1. 

Assume you realize that the last value entered, 30, is incorrect. You really 
wanted to enter 20. You could return to the previous value by typing a 
backslash. The Code View debugger starts a new line, starting with the 
previous value. Note that the backslash is not echoed on the screen: 

>EW PLACE 

3DA5:0B20 00F3.10 4F20.30 3DC1. 
3DA5:0B22 0030. 

Type the correct value, 20: 

>EW PLACE 

3DA5:0B20 00F3.10 4F20.30 3DC1. 
3DA5:0B22 0030.20_ 

211 



Microsoft Code View and Utilities 

If this is the last value you want to enter, press the ENTER key to stop. The 
Code View prompt reappears, as shown below: 

>EW PLACE 

3DA5:0B20 00F3.10 4F20.30 3DC1. 
3DA5:0B22 0030.20 
>-

10.2.1 Enter Command 

• Syntax 

E address [list] 

The Enter command enters one or more values into memory at the 
specified address. The data are entered in the format of the default type, 
which is the last type specified with a Dump, Enter, Watch Memory, or 
Tracepoint Memory command. If none of these commands has been 
entered during the session, the default type is bytes. 

Use this command with caution when entering values in the list format; 
values will be truncated if you enter a word-sized value when the default 
type is actually bytes. If you are not sure of the current default type, 
specify the size in the command. 

Important 

The Execute command and the Enter command have the same com­
mand letter (E). The difference is that the Execute command never 
takes an argument; the Enter command always requires at least one 
argument. 

10.2.2 Enter Bytes Command 

• Syntax 

EB address [Ust] 

The Enter Bytes command enters one or more byte values into memory at 
address. The optionall£st can be entered as a list of expressions separated 

212 



Modifying Code or Data 

by spaces. The expressions are evaluated and entered in the current radix. 
If list is not given, the Code View debugger prompts for new values, which 
must be entered in hexadecimal. 

The Enter Bytes command can also be used to enter strings, as described 
in Section 10.2.3, "Enter ASCII Command." 

• Examples 

>EB 256 10 20 30 
> 

If the current radix is 10, the above example replaces the three bytes at 
DS:256, DS:257, and DS:258 with the decimal values 10, 20, and 30. 
(These three bytes correspond to the hexadecimal addresses DS:0100, 
1)S:0101, and DS:0102.) 

>EB 256 

3DA5:0100 130F.A 
> 
The example above replaces the byte at DS:256 (DS:OIOO hexadecimal) 
with 10 (OA hexadecimal). 

10.2.3 Enter ASCll Command 

• Syntax 

EA address [l£st] 

The Enter ASCII command works in the same way as the Enter Bytes com­
mand (EB) described in Section 10.2.2. The Ust version of this command 
can be used to enter a string expression. 

• Example 

>EA message "File cannot be found" 
> 

In the example above, the string File cannot be found is entered 
starting at the symbolic address message. (Note that the double quota­
tion marks are Code View string delimiters.) 

You can also use the Enter Bytes command to enter a string expression, or 
you can enter nonstring values using the Enter ASCII command. 

213 



Microsoft Code View and Utilities 

10.2.4 Enter Integers Command 

• Syntax 

EI address [Hst] 

The Enter Integers command enters one or more word values into memory 
at address using the signed-integers format. With the Code View debugger, 
a signed integer can be any decimal integer between -32,768 and 32,767. 

The optionalUst can be entered as a list of expressions separated by 
spaces. The expressions are entered and evaluated in the current radix. If 
Ust is not given, the CodeView debugger prompts for new values, which 
must be entered in decimal. 

• Examples 

>EI 256 -10 10 -20 
> 

If the current radix is 10, the example above replaces the three integers at 
DS:256, DS:258, and DS:260 with the decimal values -10, 10, and - 20. 
(The three addresses correspond to the three hexadecimal addresses 
bS:OlOO, DS:OI02, and DS:OI04.) 

>EI 256 

3DA5:0100 130F.-l0 
> 

The example above replaces the integer at DS:256 (hexadecimal address 
DS:OIOO) with -10. 

10.2.5 Enter Unsigned Integers Command 

• Syntax 

EU address [list] 

The Enter Unsigned Integers command enters one or more word values 
into memory at address using the unsigned-integers format. With the 
CodeView debugger, an unsigned integer can be any decimal integer 
between 0 and 65,535. 

214 



Modifying Code or Data 

The optional list can be entered as a list of expressions separated by 
spaces. The expressions are entered and evaluated in the current radix. If 
list is not given, the CodeView debugger prompts for new values, which 
must be entered in decimal. 

II Examples 

>EU 256 10 20 30 
> 

If the current radix is 10, the example above replaces the three unsigned 
integers at DS:256, DS:258, and DS:260 with the decimal values 10, 20, 
and 30. (These addresses correspond to the hexadecimal addresses 
DS:0100, ))S:0102, and DS:0104.) 

>EU 256 

3DA5:0100 130F.I0 
> 

The example above replaces the integer at DS:256 (DS:0100 hexadecimal) 
with 10. 

10.2.6 Enter Words Command 

• Syntax 

EW addres8 [list] 

The Enter Words command enters one or more word values into memory 
at address. 

The optional list list The expressions are entered and evaluated in the 
current radix. If list is not given, the Code View debugger prompts for new 
values, which must be entered in hexadecimal. 

• Examples 

>EW 256 10 20 30 
> 

If the current radix is 10, the example above replaces the three words at 
DS:256, DS:258, and DS:260 with the decimal values 10, 20, and 30. 
(These addresses correspond to the hexadecimal addresses DS:0100, 
OS:0102, and DS:0104.) 

215 



Microsoft Code View and Utilities 

>EW 256 

3DA5:0100 130F.A 
> 

The example above replaces the integer at DS:256 (DS:0100 hexadecimal) 
with 10 (OA hexadecimal). 

10.2.7 Enter Double Words Command 

• Syntax 

ED address [Ust] 

The Enter Double Words command enters one or more double-word values 
into memory at address. Double words are displayed and entered in the 
segment:offset address format; that is, two words separated by a colon (:). 
If the colon is omitted and only one word entered, only the offset portion 
of the address will be changed. 

The optionalUst can be entered as a list of expressions separated by 
spaces. The expressions are entered and evaluated in the current radix. If 
Ust is not given, the Code View debugger prompts for new values, which 
must be entered in hexadecimal. 

• Examples 

>ED 256 8700:12008 
> 

If the current radix is 10, the example above replaces the double words at 
DS:256 (DS:0100 hexadecimal) with the decimal address 8700: 12008 
(hexadecimal address 21FC:2EE8). 

>ED 256 

3DA5:0100 21FC:2EE8.2EE9 
> 

The example above replaces the offset portion of the double word at 
DS:256 (DS:0100 hexadecimal) with 2EE9 hexadecimal. Since the segment 
portion of the address is not provided, the existing segment (21FC hexade­
cimal) is unchanged. 

216 



Modifying Code or Data 

10.2.8 Enter Short Reals Command 

• Syntax 

ES addre88 [/i8t] 

The Enter Short Reals command enters one or more short-real values into 
memory at address. 

The optional list can be entered as a list of real numbers separated by 
spaces. The numbers must be entered in decimal, regardless of the current 
radix. If lz'st is not given, the Code View debugger prompts for new values, 
which must be entered in decimal. Short-real numbers can be entered 
either in floating-point format or in scientific-notation format. 

• Examples 

>ES 256 23.479 1/4 -1.65E+4 235 
> 

The example above replaces the four numbers at DS:256, DS:260, DS:264, 
and DS:268 with the real numbers 23.479, 0.25, -1650.0, and 235. o. 
(These addresses correspond to the hexadecimal addresses DS:OI00, 
1)S:0104, DS:OI08, and DS:0112.) 

>ES PI 
3DA5:0064 42 79 74 65 7. 215589E+022 3.141593 
> 

The example above replaces the number at the symbolic address PI with 
3.141593. 

10.2.9 Enter Long Reals Command 

• Syntax 

EL addre88 [li8t] 

The Enter Long Reals command enters one or more long-real values into 
memory at address. 

The optional lz'st can be entered as a list of real numbers separated by 
spaces. The numbers must be entered in decimal, regardless of the current 
radix. If list is not given, the Code View debugger prompts for new values, 

217 



Microsoft Code View and Utilities 

which must be entered in decimal. Long-real numbers can be entered 
either in floating-point format or in scientific-notation format. 

• Examples 

>EL 256 23.479 1/4 -1.65E+4 235 
> 

The example above replaces the four numbers at DS:256, DS:264, DS:272, 
and DS:280 with the real numbers 23.479, 0.25, -1650.0, and 235.0 
(These addresses correspond to the hexadecimal addresses DS:OlOO, 
1)S:0108, DS:OllO, and DS:0118.) 

>EL PI 
3DA5:0064 42 79 74 65 DC OF 49 40 5.012391E+001 3.141593 
> 

The example above replaces the number at the symbolic address PI with 
3.141593. 

10.2.10 Enter 10-Byte Reals Command 

• Syntax 

ET address [list] 

The Enter 10-Byte Reals command enters one or more 10-byte-real values 
into memory at address. 

The optional list can be entered as a list of real numbers separated by 
spaces. The numbers must be entered in decimal, regardless of the current 
radix. If Ust is not given, the Code View debugger prompts for new values, 
which must be entered in decimal. The numbers can be entered either in 
floating-point format or in scientific-notation format. 

• Examples 

>ET 256 23.479 1/4 -1.65E+4 235 
> 

The example above replaces the four numbers at DS:256, DS:266, DS:276, 
and DS:286 with the real numbers 23.479, 0.25, -1650.0, and 235. O. 

218 



Modifying Code or Data 

(These addresses correspond to the hexadecimal addresses DS:OIOO, 
bS:OlOA, DS:Ol14, and DS:OIIE.) 

>ET PI 
3DA5:0064 42 79 74 65 DC OF 49 40 7F BD -3.292601E-193 3.141593 
> 

The example above replaces the number at the symbolic address PI with 
3.141593. 

10.3 Fill Memory Command 

The Fill Memory command provides an efficient way of filling up a large or 
small block of memory, with any values you specify. It is primarily of 
interest to assembly programmers because the command enters values 
directly into memory. However, you may find it useful for initializing large 
data areas such as an array or structure. 

You can enter arguments to the Fill Memory command using any radix. 

• Mouse 

The Fill Memory command cannot be executed with a mouse. 

• Keyboard 

The Fill Memory command cannot be executed with a keyboard command. 

• Dialog 

To fill an area of memory with values you specify, enter the Fill Memory 
command as follow: 

F range l£st 

The Fill Memory command fills the addresses in the specified range with 
the byte values specified in list. The values in the list are repeated until 
the whole range is filled. (Thus, if you specify only one value, the entire 
range is filled with that same value.) If the list has more values than the 
number of bytes in the range, then the command ignores any extra values. 

219 



Microsoft Code View and Utilities 

• Examples 

>F 100 L 100 0 
> 

;* hexadecimal radix assumed 

The first example fills 255 (100 hexadecimal) bytes of memory starting at 
DS:OlOO with the value O. This command mIght possibly be used to reini­
tialize the program's data without having to restart the program. 

>F table L 64 42 79 74 ;* hexadecimal radix assumed 
> 

The second example fills the 100 (64 hexadecimal) bytes starting at table 
with the following hexadecimal byte values: 42, 79, 74. These three values 
are repeated until all 100 bytes are filled. 

10.4 Move Memory Command 

The Move Memory command enables you to copy all the values in one 
block of memory directly to another block of memory of the same size. 
This command is of most interest to assembly programmers, but can be 
used by anyone who wants to do large data transfers efficiently. For exam­
ple, you can use this command to copy all the values in one array to the 
elemen ts of another. 

• Mouse 

The Move Memory command cannot be executed with the mouse. 

• Keyboard 

The Move Memory command cannot be executed with a keyboard com­
mand. 

• Dialog 

To copy the values in one block of memory to another, enter the Move 
Memory command with the following syntax: 

M range address 

The values in the block of memory specified by range are copied to a block 
of the same size beginning at address. All data in range are guaranteed to 
be copied completely over to the destination block, even if the two blocks 

220 



Modifying Code or Data 

overlap. However, if they do overlap, some of the original data in range 
will be altered. 

To prevent loss of data, the Move Memory command copies data starting 
at the source block's lowest address whenever the source is at a higher 
address than the destination. If the source is at a lower address, then the 
Move Memory command copies data beginning at the source block's 
highest address. 

• Example 

>M arrl(l) L arsize arr2(1) ;* FORTRAN example 
> 

In the example above, the block of memory beginning with the first ele­
ment of arrl, and arsize bytes long, is copied directly to a block of the 
same size beginning at the address of the first element of arr2. In C, this 
command would be entered as M arrl [0] L arsize arr2 [0] . 

10.5 Port Output Command 

The Port Output command sends specific byte values to hardware ports. It 
is primarily of use to assembly programmers writing code that interacts 
directly with hardware. 

• Mouse 

The Port Output command cannot be executed with a mouse. 

• Keyboard 

The Port Output command cannot be executed with a keyboard com­
mand. 

• Dialog 

To output to a hardware port, enter the Port Output command with the 
following syntax: 

o port byte 

The specified byte is sent to the specified port, in which port is a 16-bit 
port address. 

221 



Microsoft Code View and Utilities 

• Example 

>0 2f8 4f 
> 

;* hexadecimal system radix assumed 

The byte value 4F hexadecimal is sent to output port 2FB. 

The example above assumes that the system radix is hexadecimal; however 
(as with all other CodeView commands), you can enter the Port Output 
command using any radix you prefer. Both the port and byte arguments 
will assume system radix, unless you specify a radix override. 

The Port Output command is often used in conjunction with the Port 
Input command, which is discussed in Section 6.6. 

10.6 Register Command 

The Register command has two functions: it displays the contents of the 
central processing unit registers, and it can also change the values of those 
registers. The modification features of the command are explained in this 
section. The display features of the Register command are explained in 
Section 6.7 . 

• Mouse 

The only register that can be changed with the mouse is the flags register. 
The register's individual bits (called flags) can be set or cleared. To change 
a flag, first make sure the register window is open. The window can be 
opened by selecting Registers from the Options menu or by pressing the 
F2 key. 

The flag values are shown as mnemonics in the bottom of the window. 
Point to the flag you want to change and click either button. The 
mnemonic word representing the flag value will change. The mnemonics 
for each flag are shown in the third and fifth columns of Table 10.1. The 
color or highlighting of the flag will also be reversed when you change a 
flag. Set flags are shown in red on color monitors and in high-intensity text 
on two-color monitors. Cleared flags are shown in light blue on color moni­
tors or normal text on two-color monitors. 

222 



Modifying Code or Data 

• Keyboard 

The registers cannot be changed with keyboard commands. 

• Dialog 

To change the value of a register with a dialog command, enter a com­
mand line with the following syntax: 

R [regt"stername[[= ~express£on~~ 

To modify the value in a register, type the command letter R followed by 
registername. The CodeView debugger displays the current value of the 
register and prompts for a new value. Press the ENTER key if you only 
want to examine the value. If you want to change it, type an expression for 
the new value and press the ENTER key. 

As an alternative, you can type both registername and expression in the 
same command. You can use the equal sign (= ) between registername and 
expression, but a space has the same effect. 

The register name can be any of the following names: AX, BX, ex, DX, 
es, DS, SS, ES, SP, BP, SI, DI, IP, or F (for flags). If you have a 386-
based machine, and have turned the 386 option on, then the register name 
can be one of the 32-bit register names shown in table 4.11. 

To change a flag value, supply the register name F when you enter the 
Register command. The command displays the current value of each flag 
as a two-letter name. 

At the end of the list of values, the command displays a dash (-). Enter 
new values after the dash for the flags you wish to change, then press the 
ENTER key. You can enter flag values in any order. Flags for which new 
values are not entered remain unchanged. If you do not want to change 
any flags, simply press the ENTER key. 

If you enter an illegal flag name, an error message will be displayed. The 
flags preceding the error are changed; flags at and following the error are 
not changed. 

The flag values are shown in Table 10.1. 

223 



Microsoft Code View and Utilities 

Table 10.1 

Flag-Value Mnemonics 

Flag Name 

Overflow 
Direction 
Interrupt 
Sign 
Zero 
Auxiliary carry 
Parity 
Carry 

• Examples 

>R IP 256 
> 

Set Clear 

OV NY 
DN UP 
EI DI 
NG PL 
ZR NZ 
AC NA 
PE PO 
CY NC 

The example above changes the IP register to the value 256 (0100 hexade­
cimal). 

>R AX 
AX OEOO 

The example above displays the current value of the AX register and 
prompts for a new value (the underscore represents the CodeView cursor). 
You can now type any 16-bit value after the colon. 

>R AX 
AX OEOO 
:256 
>-

The example above changes the value of AX to 256 (in the current radix). 

>R F UP EI PL 

The example above shows the command-line method of changing flag 
values. 

224 



Modifying Code or Data 

>R F 
NV(OV) UP (DN) EI(DI) PL(NG) NZ(ZR) AC(NA) PE(PO) NC(CY) -OV DI ZR 
>R F 
OV(NV) UP (DN) DI(EI) PL(NG) ZR(NZ) AC(NA) PE(PO) NC(CY) -
> 

With the prompting method of changing flag values (shown above), the 
first mnemonic for each flag is the current value, and the second mnemonic 
(in parentheses) is the alternate value. You can enter one or more 
mnemonics at the dash prompt. In the example, the command is given a 
second time to show the results of the first command. 

225 





CHAPTER, 
USING CODEVIEW 
SYSTEM-CONTROL COMMANDS 

11.1 Help Command ................................................... 229 
11.2 Quit Command ................................................... 230 
11.3 Radix Command ................................................. 231 
11.4 Redraw Command .............................................. 233 
11.5 Screen Exchange Command ................................ 233 
11.6 Search Command ................................................ 234 
11.7 Shell Escape Command ....................................... 237 
11.8 Tab Set Command .............................................. 239 
11.9 Option Command ............................................... 240 
11.10 Redirection Comrnands ....................................... 242 

11.10.1 Redirecting CodeView Input ...................... 243 
11.10.2 Redirecting Code View Output ................... 244 
11.10.3 Redirecting CodeView Input and Output .... 245 
11.10.4 Commands Used with Redirection .............. 245 

11.10.4.1 Comment Command ...•.••.••.•....•....... 246 
11.10.4.2Delay Command ......••••.••.••.•.•••..•••.. 247 
11.10.4.3 Pause Command ...••....••..•.••.........•.. 248 





Using CodeView System-Control Commands 

This chapter discusses commands that control the operation of the Code­
View debugger. The commands in this category are listed below: 

Command 

Help (H) 
Quit (Q) 
Radix (N) 

Redraw (@) 
Screen Exchange (\) 

Search (I) 
Shell Escape ( ! ) 

Tab Set (#) 

Option (0) 

Redirection and related 
commands 

Action 

Displays help 

Returns to DOS 

Changes radix 

Redraws screen 

Switches to output screen 

Searches for regular expression 

Starts new DOS shell 

Sets tab size 

Views or sets Code View options 

Control redirection of Code View output or 
input 

The system-control commands are discussed in the following sections. 

11.1 Help Command 

The CodeView debugger has two help systems: a complete on-line-help sys­
tem available only in window mode, and a syntax summary available with 
sequen tial mode . 

• Mouse 

To enter the complete on-line-help system with the mouse, point to View 
on the menu bar, press a mouse button and drag the highlight down to a 
Help selection, and then release the button. The appropriate help screen 
will appear . 

• Keyboard 

If you are in window mode, press the Fl key to enter the complete on-line­
help system. If you are in sequential mode, a syntax-summary screen 
appears when you press Flo 

229 



Microsoft CodeView and Utilities 

• Dialog 

If you are in window mode, you can view the complete on-line-help system 
with the following command: 

H 

If you are in sequential mode, this command displays a screen containing 
all CodeView dialog commands with the syntax for each. This screen is the 
only help available in sequential mode. 

11.2 Quit Command 

The Quit command terminates the CodeView debugger and returns con­
trol to DOS. 

&iii Mouse 

To quit the CodeView debugger with the mouse, point to "File" on the 
menu, press a mouse button and drag the highlight down to the Exit selec­
tion, and then release the button. The Code View screen will be replaced by 
the DOS screen, with the cursor at the DOS prompt. 

• Keyboard 

To quit the Code View debugger with a keyboard command, press ALT+F to 
open the File menu, and then press X to select Exit. The Code View screen 
will be replaced by the DOS screen, with the cursor at the DOS prompt. 

• Dialog 

To quit the Code View debugger with a dialog command, enter a command 
line with the following syntax: 

Q 

When the command is entered, the Code View screen will be replaced by 
the DOS screen, with the cursor at the DOS prompt. 

230 



Using Code View System-Control Commands 

11.3 Radix Command 

The Radix command changes the current radix for entering arguments and 
displaying the value of expressions. The default radix when you start the 
CodeView debugger is 10 (decimal). Radixes 8 (octal) and 16 (hexadecimal) 
can also be set. Binary and other radixes are not allowed. 

The following seven conditions are exceptions; they are not affected by the 
Radix command: 

1. The radix for entering a new radix is always decimal. 

2. Format specifiers given with the Display Expression command or 
any of the Watch Statement commands override the current radix. 

3. Addresses output by the Assemble, Dump, Enter, Examine Symbol, 
and Un assemble commands are always shown in hexadecimal. 

4. In assembly mode, all values are shown in hexadecimal. 

5. The display radix for Dump, Watch Memory, and Tracepoint 
Memory commands is always hexadecimal if the size is bytes, 
words, or double words, and always decimal if the size is integers, 
unsigned integers, short reals, long reals, or 10-byte reals. 

6. The input radix for the Enter commands with the prompting 
method is always hexadecimal if the size is bytes, words, or double 
words, and always decimal if the size is integers, unsigned integers, 
short reals, long reals, or 10-byte reals. The current radix is used 
for all values given as part of a list, except real numbers, which 
must be entered in decimal. 

7. The register display is always in hexadecimal. 

• Mouse 

You cannot change the input radix with the mouse. 

• Keyboard 

You cannot change the input radix with a keyboard command. 

• Dialog 

To change the input radix with a dialog command, enter a command line 
with the following syntax: 

N[radixnumber] 

231 



Microsoft Code View and Utilities 

The radixnumber can be 8 (octal), 10 (decimal), or 16 (hexadecimal). The 
default radix when you start the CodeView debugger IS 10 (decimal), 
unless your main program is written with the Microsoft Macro Assembler, 
in which case the default radix is 16 (hexadecimal). If you give the Radix 
command with no argument, the debugger displays the current radix. 

• Examples 

>Nl0 
>N 
10 
>? prime 
107 
> 

>N8 ; * C example 
>? prime 
0153 
> 

>N16 ;* FORTRAN example 
>? prime 
#006b 
> 

>N8 ;* BASIC example 
>? prime 
&0153 
> 

The example aboves show how 107 decimal, stored in the variable 
pr ime, would be displayed with different radixes. Examples are taken 
from different languages; there is no logical connection between the radix 
and the language used in each example. 

>N8 
>? 34 1 i 
28 
>Nl0 
>? 28 1 i 
28 
>N16 
>? lC 1 i 
28 
> 

In the example above, the same number is entered in different radixes, but 
the i format specifier is used to display the result as a decimal integer in 
all three cases. See Chapter 6, "Examining Data and Expressions," for 
more information on format specifiers. 

232 



Using Code View System-Control Comma.nds 

11.4 Redraw Command 

The Redraw command can be used only in window mode; it redraws the 
Code View screen. This command is seldom necessary, but you might need 
it if the output of the program being debugged disturbs the Code View 
display temporarily. 

• Mouse 

You cannot redraw the screen using the mouse. 

• Keyboard 

You cannot redraw the screen using a keyboard command. 

• Dialog 

To redraw the screen with a dialog command, enter a command line with 
the following syntax: 

@ 

11.5 Screen Exchange Command 

The Screen Exchange command allows you to switch temporarily from the 
debugging screen to the output screen. 

The Code View debugger will use either screen flipping or screen swapping 
to store the output and debugging screens. See Chapter 1, "Getting 
Started," for an explanation of flipping and swapping. 

• Mouse 

To execute the Screen Exchange command with the mouse, open the View 
menu, then select Output. Press any key when you are ready to return to 
the debugging screen. 

233 



Microsoft Code View a.nd Utilities 

• Keyboard 

To execute the Screen Exchange command with a keyboard command, 
press the F4 key. Press any key when you are ready to return to the de bug­
ging screen. 

• Dialog 

To execute the Screen Exchange command from the dialog window, enter 
a command line with the following syntax: 

\ 

The output screen appears. Press any key when you are ready to return to 
the debugging screen. 

11.6 Search Command 

The Search command allows you to search for a regular expression in a 
source file. The expression being sought is specified either in a dialog box 
or as an argument to a dialog command. Once you have found an expres­
s~on, you can also search for the next or previous occurrence of the expres­
SIon. 

Regular expressions are patterns of characters that may match one or 
many different strings. The use of patterns to match more than one string 
is similar to the DOS method of using wild-card characters in file names. 
Regular expressions are explained in detail in Appendix A. 

You can use the Search command without understanding regular expres­
sions. Since text strings are the simplest form of regular expressions, you 
can simply enter a string of characters as the expression you want to find. 
For example, you could enter COUNT if you wanted to search for the word 
"COUNT" in the source file. 

The following characters have special meanings in regular expressions: 
backslashf\J, asterisk (*), left bracket ([), period (.), dollar sign ($), and 
caret (A). 0 find strings containing these characters, you must precede 
the characters with a backslash; this cancels their special meanings. 

For example, you would use \ * to find x*y. The periods in the relational 
operators must also be preceded by a backslash. 

234 



Using CodeView System-Control Commands 

The Case Sense selection from the Options menu has no effect on searches 
for regular expressions. 

Note 

When you search for the next occurrence of a regular expression, the 
Code View debugger searches to the end of the file, and then wraps 
around and begins again at the start of the file. This can have unex­
pected results if the expression occurs only once. When you give the 
command repeatedly, nothing seems to happen. Actually, the debugger 
is repeatedly wrapping around and finding the same expression each 
time . 

• Mouse 

To find a regular expression with the mouse, point to "Search" on the 
menu bar, press a mouse button and drag the highlight down to the Find 
selection, and then release the button. A dialog box appears, asking for 
the regular expression to be found. Type the expression and press either 
the ENTER key or a mouse button. The Code View debugger starts search­
ing at the current cursor position and puts the cursor at the next line con­
taining the regular expression. An error message appears if the expression 
is not found. If you are in assembly mode, the debugger automatically 
switches to source mode when the expression is found. 

After you have found a regular expression, you can search for the next or 
previous occurrence of the expression. Point to "Search" on the menu bar, 
press a mouse button and drag the highlight down to the Next or Previous 
selection, and then release the button. The cursor will move to the next or 
previous match of the expression. 

You can also search the executable code for a label (such as a routine 
name or an assembly-language label). Point to "Search" on the menu bar, 
press a mouse button and drag the highlight down to the Label selection, 
and then release the button. A dialog box appears, asking for the label to 
be found. Type the label name, and press either the ENTER key or a mouse 
button. The cursor will move to the line containing the label. This selec­
tion differs from other search selections because it searches executable 
code rather than source code. The Code View debugger will switch to 
assembly mode, if necessary, to display a label in a library routine or 
assembly-language module. 

235 



Microsoft Code View and Utilities 

• Keyboard 

To find a regular expression with a keyboard command, press ALT+S to 
open the Search menu, and then press F to select Find. A dialog box 
appears, asking for the regular expression to be found. Type the expression 
and press the ENTER key. The CodeView debugger starts searching at the 
current cursor position and puts the cursor at the next line containing the 
regular expression. An error message appears if the expression is not 
found. If you are in assembly mode, the debugger automatically switches 
to source mode when the expression is found. 

Mter you have found a regular expression, you can search for the next or 
previous occurrence of the expression. Press ALT+S to open the Search 
men u and then press N to select Next or p to select Previous. The cursor 
will move to the next or previous match of the expression. 

You can also search the executable code for a label (such as a routine 
name or an assembly-language label). Press ALT+S to open the Search 
menu and then press L to select Label. A dialog box appears, asking for the 
label to be found. Type the label name and press the ENTER key. The cur­
sor will move to the line containing the label. This selection differs from 
other search selections because it searches executable code rather than 
source code. The Code View debugger will switch to assembly mode, if 
necessary, to display a label in a library routine or assembly-language 
module. 

• Dialog 

To find a regular expression using a dialog command, enter a command 
line with the following syntax: 

/[regularexpression] 

If regularexpression is given, the Code View debugger searches the source 
file for the first line containing the expression. If no argument is given, the 
debugger searches for the next occurrence of the last regular expression 
specified. 

In window mode, the CodeView debugger starts searching at the current 
cursor position and puts the cursor at the next line containing the regular 
expression. In sequential mode, the debugger starts searching at the last 
source line displayed. It displays the source line in which the expression is 
found. An error message appears if the expression is not found. If you are 
in assembly mode, the Code View debugger automatically switches to 
source mode when the expression is found. 

236 



Using CodeView System-Control Commands 

You cannot search for a label with the dialog version of the Search com­
mand, but you can use the View command with the label as an argument 
for the same effect. 

11.7 Shell Escape Command 

The Shell Escape command allows you to exit from the Code View 
debugger to a DOS shell. You can execute DOS commands or programs 
from within the debugger, or you can exit from the debugger to DOS while 
retaining your current debugging context. 

The Shell Escape command works by saving the current processes in 
memory and then executing a second copy of CO~.COM. The 
COMSPEC environment variable is used to locate a copy of 
CO~.COM. 

Opening a shell requires a significant amount of free memory (usually more 
than 20bK) because the CodeView debugger, the symbol table, 
CO:M:M.AND.COM, and the program being debugged must all be saved 
in memory. If you do not have enough memory, an error message will 
appear. Even if you have enough memory to start a new shell, you may not 
have enough memory left to execute large programs from the shell. 

If you change directories while working in the shell, make sure you return 
to the original directory before returning to the Code View debugger. If 
you don't, the debugger may not be able to find and load source files when 
it needs them. 

Note 

In order to use the Shell Escape command, the executable file being 
debugged must release unneeded memory. Programs created with 
Microsoft compilers release memory during start-up. 

You cannot use the Shell Escape command with assembler programs 
unless the program specifically releases memory by using the DOS 
function ca1l4A hexadecimal (Set Block) or is linked with the 
/CPARMAXALLOC link option. 

237 



Microsoft Code View and Utilities 

• Mouse 

To open a DOS shell with the mouse, point to File on the menu bar, press 
a mouse button and drag the highlight down to the DOS Shell selection, 
and then release the button. If there is enough memory to open the shell, 
the DOS screen will appear. You can execute any DOS command or any 
program. When you are ready to return to the debugging session, type the 
command exit (in any combination of uppercase and lowercase letters). 
The debugging screen will appear with the same status it had when you 
left it. 

• Keyboard 

To open a DOS shell with a keyboard command, press ALT+F to open the 
File menu, and then press D to select DOS Shell. If there is enough memory 
to open the shell, the DOS screen will appear. You can execute any DOS 
internal command or any program. When you are ready to return to the 
debugging session, type the command exit (in any combination of 
uppercase and lowercase letters). The debuggIng screen will appear with 
the same status it had when you left it. 

• Dialog 

To open a DOS shell using a dialog command, enter a command line with 
the following syntax: 

![command] 

If you want to exit to DOS and execute several programs or commands, 
enter the command with no arguments. The CodeView debugger executes 
a new copy of COMMAND.COM, and the DOS screen appears. You can 
run programs or DOS internal commands. When you are ready to return 
to the debugger, type the command exit (in any combination of upper­
case and lowercase letters). The debugging screen will appear with the 
same status it had when you left it. 

If you want to execute a program or DOS internal command from within 
the Code View debugger, enter the Shell Escape command (!) followed by 
the name of the command or program you want to execute. The output 
screen appears, and the debugger executes the command or program. 
When the output from the command or program is finished, the message 
Press any key to continue... appears at the bottom of the 
screen. Press a key to make the debugging screen reappear with the same 
status it had when you left it. 

238 



Using CodeView System-Control Commands 

• Examples 

>! 

In the above example, the CodeView debugger saves the current debugging 
context and executes a copy of CO:MMAND.COM. The DOS screen 
appears, and you can enter any number of commands. To return to the 
debugger, enter exit. 

>!DIR a:*.for 

In the example above, the DOS command DIR is executed with the argu­
ment a: * . for. The directory listing will be followed by a prompt telling 
you to press any key to return to the Code View debugging screen. 

>!CHKDSK a: 

In the example above, the DOS command CHKDSK is executed, and the 
status of the disk in Drive A is displayed in the dialog window. The pro­
gram name specified could be for any executable file, not just that for a 
DOS program. 

11.8 Tab Set Command 

The Tab Set command sets the width in spaces that the Code View 
debugger fills for each tab character. The default tab is eight spaces. You 
might want to set a smaller tab size if your source code has so many levels 
of indentation that source lines extend beyond the edge of the screen. This 
command has no effect if your source code was written with an editor that 
indents with spaces rather than with tab characters. 

• Mouse 

You cannot set the tab size by using the mouse. 

• Keyboard 

You cannot set the tab size by using a keyboard command. 

239 



Microsoft CodeView and Utilities 

• Dialog 

To set the tab size with a dialog command, enter a command line with the 
following syntax: 

#number 

The number is the new number of characters for each tab character. In 
window mode, the screen will be redrawn with the new tab width when 
you enter the command. In sequential mode, any output of source lines 
will reflect the new tab size . 

• Example 

>. 
32: IF (X (I» .LE. X (J» GOTO 301 
>#4 
>. 
32: IF (X (I» .LE. X (J» GOTO 301 
> 

In the example above, the Source Line command (.) is used to show the 
source line with the default tab width of eight spaces. Next the Tab Set 
command is used to set the tab width to four spaces. The Source Line 
command then shows the same line. 

11.9 Option Command 

The Option command allows you to view the state of options in the 
Option menu (Flip/Swap, Bytes Coded, Case Sense, and 386), and to turn 
any of the these options on or off. 

For each different kind of source module that you debug, there is a 
different set of default settings. However, the use of the Option command 
will override any of these settings . 

• Mouse 

To view the state of the options with a mouse, simply point to Options on 
the menu bar and click either button. Each option is then displayed. 
Those options that are turned on have a double arrow immediately to the 
left. Options that are turned off have no double arrow. 

240 



Using CodeView System-Control Commands 

To change one of the Option settings, drag the highlight down to the 
option you wish to change and release the button. This will reverse the 
state of the option. (An option that was on will be turned off and vice 
versa.) 

• Keyboard 

To view the state of the Options menu with a keyboard command, press 
ALT+O to open the Options menu. Each option is then displayed. Those 
options that are turned on have a double arrow immediately to the left. 
Options that are turned off have no double arrow. 

To change one of the Option settings, press the letter key corresponding to 
the option's mnemonic. This will reverse the state of the option. (An 
option that was on will be turned off and vice versa.) You can also reverse 
an option by moving the highlight down with the arrow key, and then 
pressing ENTER. 

• Dialog 

To view or change options with a dialog command, enter a command line 
with the following syntax: 

O[optz'on [+ I -]] 

In the above display, option is one of the following characters: F, B, C, or 
3. If used, there must be no spaces between the character and the O. 
These characters correspond to options as shown below: 

Command 

OF 

OB 

OC 

03 

o 

Correspondence 

Flip/Swap option 

Bytes-Coded option 

Case-Sense option 

386 option 

All options 

The 0 form of the command (all options) takes no arguments. It simply 
displays the state of all four options. The other forms of the command 
(OF, OB, OC, and 03) can be used either with no arguments (in which 
case they simply display the state of the option) or they can take the argu­
ment + or-. 

241 



Microsoft CodeView and Utilities 

The + argument turns the option on. The - argument turns the option off. 

• Examples 

>0 
Flip/Swap on 
Bytes Coded on 
Case Sense off 
386 off 
>03 
386 off 
>03+ 
386 on 
>OF 
Flip/Swap on 
>OF­
Flip/Swap off 

In the example above, the 0, 03, and OF commands are used simply to 
view the current state of an option. Each of the 03+ and OF- commands 
modifies an option and then reports the results of the modification. 

The dialog version of the Option command is particularly useful for 
redirected CodeView commands (which cannot access menus) and for mak­
ing Code View startup with certain options. For example, the following 
DOS-level command line brings up CodeView with the 386 option on and 
Bytes Coded off: 

CV /c"03+;OB-" test 

This command line could be put into a batch file for convenient execution. 

11.10 Redirection Commands 

The Code View debugger provides several options for redirecting com­
mands from or to devices or files. Furthermore, the debugger provides 
several other commands, which are relevant only when used with 
redirected files. The redirection commands and related commands are dis­
cussed in Sections 11.10.1-11.10.4.3 below . 

• Mouse 

None of the redirection or related commands can be executed with the 
mouse. 

242 



Using CodeView System-Control Commands 

• Keyboard 

None of the redirection or related commands can be executed with key­
board commands. 

• Dialog 

The redirection commands are entered with dialog commands, as shown in 
Sections 11.10.1-11.10.4.3 below. 

11.10.1 Redirecting CodeView Input 

• Syntax 

< devicename 

The Redirected Input command causes the Code View debugger to read all 
subsequent command input from a device, such as another ~erminal or a 
file. The sample session supplied with most versions of the debugger is an 
example of commands being redirected from a file. 

• Examples 

><COM! 

The example above redirects commands from the device (probably a 
remote terminal) designated as COM! to the Code View terminal. 

><INFILE.TXT 

The example above redirects command input from file INFILE. TXT to 
the CodeView debugger. You might use this command to prepare a Code­
View session for someone else to run. You create a text file containing a 
series of CodeView commands separated by carriage-return-line-feed com­
binations or semicolons. When you redirect the file, the debugger will exe­
cute the commands to the end of the file. One way to create such a file is 
to redirect commands from the Code View debugger to a file (see Section 
11.10.3) and then edit the file to eliminate the output and add comments. 

243 



Microsoft Code View a.nd Utilities 

11.10.2 Redirecting CodeView Output 

• Syntax 

[T]>[>] devicename 

The Redirected Output command causes the Code View debugger to write 
all subsequent command output to a device, such as another terminal, a 
printer, or a file. The term "output" includes not only the output from 
commands, but the command characters that are echoed as you type 
them. 

The optional T indicates that the output should be echoed to the Code­
View screen. Normally, you will want to use the T if you are redirecting 
output to a file, so that you can see what you are typing. However, if you 
are redirecting output to another terminal, you may not want to see the 
output on the Code View terminal. 

The second greater-than symbol (optional) appends the output to an exist­
ing file. If you redirect output to an existing file without this symbol, the 
existing file will be replaced. 

• Examples 

»COM1 

In the example above, output is redirected to the device designated as 
COM 1 (probably a remote terminal). You might want to enter this com­
mand, for example, when you are debugging a graphics program and want 
Code View commands to be displayed on a remote terminal while the pro­
gram display appears on the originating terminal. 

>T>OUTFlLE.TXT 

> > CON 

In the example above, output is redirected to the file OUTFILE. TXT. You 
might want to enter this command in order to keep a permanent record of 
a Code View session. Note that the optional T is used so that the session 

244 



Using CodeView System-Control Comma.nds 

will be echoed to the Code View screen as well as to the file. After redirect­
ing some commands to a file, output is returned to the console (terminal) 
with the command >CON. 

>T»OUTFlLE.TXT 

If, later in the session, you want to redirect more commands to the same 
file, use the double greater-than symbol, as in the example above, to 
append the output to the existing file. 

11.10.3 Redirecting Code View Input and Output 

• Syntax 

= devicename 

The Redirected Input and Output command causes the CodeView 
debugger to write all subsequent command output to a device and simul­
taneously to receive input from the same device. This command is practi­
cal only if the device is a remote terminal. 

Redirecting input and output works best if you start in sequential mode 
(using the IT option). The CodeView debugger's window interface has lit­
tle purpose in this situation, since the remote terminal can act only as a 
sequential (nonwindow) device . 

• Example 

>=COMl 

In the example above, output and input are redirected to the device desig­
nated as COMl. This command would be useful if you wanted to enter 
debugging commands and see the debugger output on a remote terminal, 
while entering program commands and viewing program output on the ter­
minal where the debugger is running. 

11.10.4 Commands Used with Redirection 

The following commands are intended for use when redirecting commands 
to or from a file. Although they are always available, these commands 
have little practical use during a normal debugging session. 

245 



Microsoft Code View and Utilities 

Command 

Comment (*) 
Delay (:) 

Pause (II) 

Action 

Displays comment 

Delays execution of commands from a redirected 
file 

Interrupts execution of commands from a 
redirected file until a key is pressed 

11.10.4.1 Comment Command 

• Syntax 

.comment 

The Comment command is an asterisk (*) followed by text. The Code View 
debug~er echoes the text of the comment to the screen (or other output 
device J. This command is useful in combination with the redirection com­
mands when saving a commented session, or when writing a commented 
session that will be redirected to the de bugger. 

• Examples 

>T>OUTPUT • TXT 
>" I>uDp first 20 bytes of screen buffer 
>D =18800:0 L 20 
B8oo:oooo 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o .. r.e.t.u.r. 
B8oo:oo10 6E 17 20 17 n. . 
> 

In the example above, the user is sending a copy of a Code View session to 
file OUTPUT. TXT. Comments are added to explain the purpose of the 
command. The text file will contain commands, comments, and command 
output. 

* Dump first 20 bytes of screen buffer 
D #B800:0 L 20 

< CON 

246 



Using Code View System-Control Commands 

The example above illustrates another way to use the Comment command. 
You can put comments into a text file of commands that will be executed 
automatically when you redirect the file into the CodeView debugger. In 
this example, an editing program was used to create the text file called 
INPUT.TXT. 

><INPUT.TXT 
>* Dump first 20 bytes of screen buffer 
>D #B800:0 L 20 
B800:oooo 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o .. r.e.t.u.r. 
B800:0010 6E 17 20 17 n .. 

>< CON 
> 

When you read the file into the debugger by using the Redirected Input 
command, you will see the comment, the command, and then the output 
from the command, as in the example above. 

11.10.4.2 Delay Command 

• Syntax 

The Delay command interrupts execution of commands from a redirected 
file and waits about half a second before continuing. You can put multiple 
Delay commands on a single line to increase the length of the delay. The 
delay is the same length, regardless of the processing speed of the com­
puter . 

• Example 

;* That was a short delay ... 
::::: ;* That was a longer delay .•. 

In the example above from a text file that might be redirected into the 
CodeView debugger, the Delay command is used to slow execution of the 
redirected file. 

247 



Microsoft Code View and Utilities 

11.10.4.3 Pause Command 

• Syntax 

.. 
The Pause command interrupts execution of commands from a redirected 
file and waits for the user to press a key. Execution of the redirected com­
mands begins as soon as a key is pressed . 

• Example 

* Press any key to continue 
" 

In the example above from a text file that might be redirected into the 
CodeView debugger, a Comment command is used to prompt the user to 
press a key. The Pause command is then used to halt execution until the 
user responds. 

>* Press any key to continue 
>" 

The example above shows the output when the text is redirected into the 
debugger. The next CodeView prompt will not appear until the user 
presses a key. 

248 



· PART 2 

TILITIES 



, ' 
, " 



PART 2 

Part 2 describes the use of each of the DOS pro­
gramming utilities (while exit messages and exit 
codes for these utilities are presented in the 
Appendixes ). 
Some of the material in this part, most notably 
the information on LINK, is presented in par­
tial form in the user's guides of Microsoft com­
pilers. However, you will find here the only com­
plete, authoritative reference on utility opera­
tion and available options. 
Chapters 12-14 document UNK, LIB, and 
MAKE-all the functions, command-line 
options, and commands (if applicable). 
Chapter 15 describes four additional utilities. 

251 





CHAPTER 
LINKING OBJECT FILES 
WITH LINK 

12.1 Specifying Files for Linking ................................ 255 
12.1.1 Specifying File Names ............................... 255 
12.1.2 Linking with the LINK Command Line ....... 256 
12.1.3 Linking with the LINI{ Prompts ................. 258 
12.1.4 Linking with a Response File ..................... 260 
12.1.5 How LINK Searches 

for Libraries ............................................. 261 
12.1.6 LINK Memory Requirements ...................... 263 

12.2 Specifying Linker Options ................................... 264 
12.2.1 Viewing the Options List (/HE) ...........•...... 265 
12.2.2 Pausing during Linking (/P AU) ................. 266 
12.2.3 Displaying Linker Process 

Information (/1) .................•..•...........•....... 266 
12.2.4 Packing Executable Files (IE) •••••••.....•....... 267 
12.2.5 Listing Public Symbols (1M) ...................... 268 
12.2.6 Including Line Numbers 

in the Map File (/LI) ................................. 269 
12.2.7 Preserving Case Sensitivity (/NOI) ............. 269 
12.2.8 Ignoring Default Libraries (/NOD) ............. 26g 
12.2.9 Controlling Stack Size (1ST) ..................... 270 
12.2.10 Setting the Maximum Allocation 

Space (/CP) ............................................. 270 
12.2.11 Setting Maximum Number 

of Segments (/SE) ..................................... 271 
12.2.12 Setting the Overlay Interrupt (/0) ............. 272 
12.2.13 Ordering Segments (/DO) .......................... 272 
12.2.14 Controlling Data Loading (/DS) ................. 273 
12.2.15 Controlling Executable-File Loading (/ill) .. 274 
12.2.16 Preserving Compatibility (/NOG) .............. 274 
12.2.17 Preparing for Debugging (/ CO ) .................. 275 



12.2.18 Running in Batch Mode (/B) ..................... 275 
12.2.1 9 Optimizing Far Calls (/F) .......................... 276 
12.2.20 Disabling Far-Call Optimization (/NOF) .... 277 
12.2.21 Packing Contiguous Segments (/PAC) ........ 277 
12.2.22 Disabling Segment Packing (/NOP) ........... 278 
12.2.23 Specifying User Libraries 

for Quick Languages (/ Q) .......................... 27g 
12.3 Selecting Options with the 

LINK Environment Variable ............................... 280 
12.4 Linker Operation ................................................ 281 

12.4.1 Alignment of Segments .............................. 281 
12.4.2 Frame Number ......................................... 282 
12.4.3 Order of Segments .................................... 282 
12.4.4 Combined Segments .................................. 282 
12.4.5 Groups ..............................................•..... 283 
12.4.6 Fix Ups .................................................... 283 

12.5 Using Overlays .................................................... 285 
12.5.1 Restrictions on Overlays ............................ 285 
12.5.2 Overlay-Manager Prompts ......................... 286 

254 



Linking Object Files with LINK 

The Microsoft Overlay Linker (LINK) is used to combine object files into 
a single executable file. It can be used with object files compiled or assem­
bled for 8086/8088 or 80286 machines. The format of input to the linker is 
the Microsoft Relocatable Object-Module Format (O:tv1F), which is based 
on the In tel 8086 OMF. 

The output file from LINK (that is, the executable file) is not bound to 
specific memory addresses. Thus, the operating system can load and exe­
cute this file at any convenient address. LINK can produce executable 
files containing up to 1 megabyte of code and data. 

The following sections explain how to run the linker and specify options 
that control its operation. 

12.1 Specifying Files for Linking 

Instead of using high-level-language commands to invoke the linker, you 
can use the LINK command to invoke LINK directly. You can specify the 
input required for this command in one of three ways: 

1. By placing it on the command line. 

2. By responding to prompts. 

3. By specifying a file containing responses to prompts. This type of 
file is known as a "response file." 

Regardless of the way in which LINK was invoked, type CONTROL+C at any 
time to terminate LINK operation and exit back to DOS. 

12.1.1 Specifying File Names 

You can use any combination of uppercase and lowercase letters for the 
file names you either specify on the LINK command line or give in 
response to the LINK command prompts. For example, LINK considers 
the following three file names to be equivalent: 

abcde.fgh 
AbCdE.FgH 
ABCDE.fgh 

255 



Microsoft Code View a.nd Utilities 

If you specify file names without extensions, LINK uses the following 
default file-name extensions: 

File Default 
Type Extension 

Object .OBJ 

Executable .EXE 

Map .MAP 

Library .Lffi 

You can override the default extension for a particular command-line field 
or prompt by specifying a different extension. To enter a file name that 
has no extension, type the name followed by a period . 

• Examples 

Consider the following two file specifications: 

ABC. 
ABC 

If you use the first file specification, LINK assumes that the file has no 
extension. If you use the second file specification, LINK uses the default 
extension for that prompt. 

12.1.2 Linking with the LINK Command Line 

Use the following form of the LINK command to specify input on the 
command line: 

LINK [options] object/iles[,[ executable/ile] [,[ map/ile] [,[l'ibrary/iles]]]] [;] 

The objectfiles field allows you to specify the names of the object files you 
are linking. At least one object-file name is required. A space or plus sign 
(+) must separate each pair of object-file names. LINK automatically 
supplies the .OBJ extension when you give a file name without an exten­
sion. If your object file has a different extension, or if it appears in another 
directory or on another disk, you must give the full name-including the 
extension and path name-for the file to be found. If LINK cannot find a 
given object file, and the drive associated with the object file is a remov­
able (floppy) drive, then LINK displays a message and waits for you to 
change disks. 

256 



Linking Object Files with LINK 

You may also specify one or more libraries in the objectfiles field. To enter 
a library in this field, make sure that you include the .Lm extension; oth­
erwise LINK will assume an .OBJ extension. Libraries entered in this 
field are called "load libraries" as opposed to "regular libraries." LINK 
automatically links in every object module in a load library; it does not 
search for unresolved external references first. The effect of entering a load 
library is exactly the same as if you had entered all the names of the 
library's object modules into the objectfiles field. This feature is useful if 
you are developing software using many modules, and wish to avoid hav­
ing to retype each mod ule on the LINK command line. 

The executablefile field allows you to specify the name of the executable 
file. If the file name you give does not have an extension, LINK automati­
cally adds .EXE as the extension. You can give any file name you like; 
however, if you are specifying an extension, you should always use .EXE, 
because DOS expects executable files to have either this extension or the 
.COM extension. 

The mapfile field allows you to specify the name of the map file, if you are 
creating one. To include public symbols and their addresses in the map 
file, specify the [MAP option on the LINK command line. See Section 
12.2.5, "Listing Public Symbols." If you specify a map-file name without 
an extension, LINK automatically adds an extension of .MAP. LINK 
creates the map file in the current working directory unless you specify a 
path name for the map file. 

The libraryfiles field allows you to specify the name of a library that you 
want linked to the object file(s). (When LINK finds the name of a library 
in this field, the library is a "regular library," and LINK will link in only 
those object modules needed to resolve external references.) Each time you 
compile a source file for a high-level language, the compiler places the 
name of one or more libraries in the object file that it creates; the linker 
automatically searches for a library with this name. Because of this, you 
do not need to give library names on the LINK command line unless you 
want to add the names of other libraries, search for libraries in different 
locations, or override the use of the library named in the object file. 

The options field allows you to specify the linker options described in Sec­
tions 12.2.1-12.2.23. You do not have to give any options when you run 
the linker. If you specify options, you can put them after any field (but 
before comma) or at the end of the command line. 

If you include a comma (to indicate where a field would be) but do not put 
a file name before the comma, then LINK will select the default for that 
field. However, if you use a comma to include the mapfile field (but do not 
include a name), then LINK will create a map file. This file has the same 
base name as the executable file. Use NUL for the map-file name if you do 
not want to produce a map file. 

257 



Microsoft Code View a.nd Utilities 

You can also select default responses by using a semicolon (;). The semi­
colon tells LINK to use the defaults for all remaining fields. 
If you do not give all file names on the command line, or if you do not end 
the command line with a semicolon, the linker prompts you for the files 
you omitted, using the prompts described in Section 12.1.3, "Linking with 
the LINK Prompts." 

If you do not specify a drive or directory for a file, the linker assumes that 
the file is on the current drive and directory. If you want the linker to 
create files in a location other than the current drive and directory, you 
must specify the new drive and directory for each such file on the com­
mand line. 

• Examples 

LINK FUN+TEXT+TABLE+CARE, , FUNLIST, XLIB.LIB 

The command line above causes LINK to load and link the object 
modules FUN. OBJ, TEXT. OBJ, TABLE. OBJ, and CARE. OBJ, and to 
search for unresolved references in the library file XLI B. LI B and the 
default libraries. By default, the executable file produced by LINK is 
named FUN .EXE. LINK also produces a map file named fUNLIST . MAP. 

LINK FUN,,; 

This command line produces a map file named fUN. MAP, since a comma 
appears as a placeholder for the mapfile specification on the command line. 

LINK FUN,; 
LINK FUN; 

These command lines do not produce a map file, since commas do not 
appear as placeholders for the mapfile specification. 

12.1.3 Linking with the LINK Prompts 

If you want to use the LINK prompts to specify input to the linker, start 
the linker by typing LINK at the DOS command level. LINK prompts 
you for the input it needs by displaying the following lines, one at a time: 

Object Modules [.OBJ]: 
Run File [basename.EXE]: 
List File [NUL.MAP]: 
Libraries [.LIB]: 

258 



Linking Object Files with LINK 

LINK waits for you to respond to each prompt before printing the next 
one. Section 12.1.1 gives the rules for specifying file names in response to 
these prompts. 

The responses you give to the LINK command prompts correspond to the 
fields on the LINK command line. (See Section 12.1.2 for a discussion of 
the LINK command line.) The following list shows these correspondences: 

Prompt 

"Object Modules" 

"Run File" 

"List File" 

"Libraries" 

Command-Line 
Field 

objectfiles 

executablefile 

mapfile 

lz'braryfiles 

If a plus sign (+) is the last character that you type on a response line, the 
prompt appears on the next line, and you can continue typing responses. 
In this case, the plus sign must appear at the end of a complete file or 
library name, path name, or drive name. 

Default Responses 

To select the default response to the current prompt, type a carriage 
return without giving a file name. The next prompt will appear. 

To select default responses to the current prompt and all remaining 
prompts, type a semicolon (;) followed immediately by a carriage return. 
After you enter a semicolon, you cannot respond to any of the remaining 
prompts for that link session. Use this option to save time when you want 
to use the default responses. Note, however, that you cannot enter a semi­
colon in response to the "Object Modules" prompt, because there is no 
default response for that prompt. 

The following list shows the defaults for the other linker prompts: 

Prompt 

"Run File" 

"List File" 

"Libraries" 

Default 

The name of the first object file submitted for 
the "Object Modules" prompt, with the .EXE 
extension replacing the .OBJ extension 

The special file name NUL.MAP, which tells 
LINK not to create a map file 

The default libraries encoded in the object 
module (see Section 12.1.5, "How LINK 
Searches for Libraries"). 

259 



Microsoft Code View a.nd Utilities 

12.1.4 Linking with a Response File 

To operate the linker with a response file, you must set up the response file 
and then type the following: 

LINK @response/z'le 

Here responsefile specifies the name or pathname of the response file that 
starts the linker. You can also enter the name of a response file after any 
LINK command prompt or at any position in the LINK command line. 

A response file contains responses to the LINK prompts. The responses 
must be in the same order as the LINK prompts discussed in Section 
12.1.3. Each new response must appear on a new line or must begin with a 
comma; however, you can extend long responses across more than one line 
by typing a plus sign (+) as the last character of each incomplete line. You 
may give options at the end of any response or place them on one or more 
separate lines. 

LINK treats the input from the response file just as if you had entered it 
in response to prompts or in a command line. It treats any carriage­
return-line-feed combination in the response' file the same as if you had 
pressed the ENTER key in response to a prompt or included a comma in a 
command line. 

You can use options and command characters in the response file in the 
same way as you would use them in responses you type at the keyboard. 
For example, if you type a semicolon on the line of the response file 
corresponding to the "Run File" prompt, LINK uses the default responses 
for the executable file and for the remaining prompts. 

When you enter the LINK. command with a response file, each LINK 
prompt is displayed on your screen with the corresponding response from 
your response file. If the response file does not include a line with a file 
name, semicolon, or carriage return for each prompt, LINK displays the 
missing prompts and waits for you to enter responses. When you type an 
acceptable response, LINK continues the link session . 

• Example 

Assume that the following response file is named FUN. LNK: 

FUN TEXT TABLE CARE 
/pAUSE /MAP 
FUNLIST 
GRAF.LIB 

260 



Linking Object Files with LINK 

You can type the following command to run LINK and tell it to use the 
responses in FUN. LNK: 

LINK @FUN.LNK 

The response file tells LINK to load the four object modules FUN, TEXT, 
TABLE, and CARE. LINK produces an executable file named FUN. EXE 
and a map file named FUNLIST • MAP. The /PAUSE option tells LINK to 
pause before it produces the executable file so that you can swap disks, if 
necessary. The /MAP option tells LINK to include public symbols and 
addresses in the map file. LINK also links any needed routines from the 
library file GRAF • LI B. See the discussions of the /PAUSE and /MAP 
options in Sections 12.2.2 and 12.2.5, respectively, for more information 
about these options. 

12.1.5 How LINK Searches 
for Libraries 

The material in this section does not apply to libraries that LINK. finds in 
the objectfiles field, either on the command line or in response to the 
Object Modules prompt. Those libraries are treated simply as a series 
of object files, and LINK does not conduct extensive searches in such 
cases. 

LINK may be directed to find a particular library by the user (who 
specifies a library in the libraryfiles field) or by an object module. (When a 
compiler creates an object module from a higher-level-language program, 
that object module will contain the names of one or more "default" 
libraries.) However the linker is directed to a library, LINK, which uses 
the same method for finding that library. 

If the library name includes a path specification, LINK searches only that 
directory for the library. Libraries specified by object modules (that is, 
default libraries) will normally not include a path specification. 

If a library name is given without a path specification, then LINK searches 
in the following locations to find the given library file: 

• The current working directory 

• Any path specifications or drive names that you give on the com­
mand line or type in response to the "Libraries" prompt, in the 
order in which they appear (see Section 12.1.3) 

• The locations given by the Lm environment variable 

Because object files created by compilers and assemblers usually contain 
the names of all the standard libraries you need, you are not required to 

261 



Microsoft Code View and Utilities 

specify a library on the LINK command line or in response to the LINK 
Libraries prompt unless you want to do one of the following: 

• Add the names of additional libraries to be searched 

• Search for libraries in different locations 

• Override the use of one or more default libraries 

For example, if you have developed your own customized libraries, you 
might want to include one or more of them as additional libraries at link­
ing time. 

Searching Additional Libraries 

You can tell LINK to search additional libraries by specifying one or more 
library files on the command line or in response to the "Libraries" prompt. 
LINK searches these libraries before it searches default libraries. It 
searches these libraries in the order you specify. 

LINK automatically supplies the .LIB extension if you omit it from a 
library-file name. If you want to link a library file that has a different 
extension, be sure to specify the extension. 

Searching Different Locations for Libraries 

You can tell LINK to search additional locations for libraries by giving a 
drive name or path specification in the library files field on the command 
line or in response to the "Libraries" prompt. You can specify up to 32 
additional paths. If you give more than 32 paths, LINK ignores the addi­
tional paths without displaying an error message. 

Overriding Libraries Named in Object Files 

If you do not want to link with the library whose name is included in the 
object file, you can give the name of a different library instead. You might 
want to specify a different library name in the following cases: 

• If you assigned a "custom" name to a standard library when you 
set up your libraries 

• If you want to link with a library that supports a different math 
package than the math package you gave on the compiler com­
mand line (or the default) 

If you specify a new library name on the LINK command line, the linker 
searches the new library to resolve external references before it searches 
the library specified in the object file. 

262 



Linking Object Files with LINK 

If you want the linker to ignore the library whose name is included in the 
object file, you must use the /NOD option. This option tells LINK to 
ignore the default-library information that is encoded in the object files 
created by high-level language compilers. Use this option with caution; 
see the discussion of the lNOD option in Section 12.2.8 for more informa­
tion . 

• Example 

LINK 

Object Modules [.OBJ]: FUN TEXT TABLE CARE 
Run File [FUN.EXE]: 
List File [NUL.MAP]: 
Libraries [.LIB]: C:\TESTLIB\ NEWLIBV3 

This example links four object modules to create an executable file named 
FUN. EXE. LINK searches NEWLIBV3. LIB before searching the default 
libraries to resolve references. To locate NEWLIBV3. LIB and the default 
libraries, the linker searches the current working directory, then the 
C: \TESTLIB\ directory, and finally the locations given by the Lm 
environment variable. 

12.1.6 LINK Memory Requirements 

LINK uses available memory for the link session. If the files to be linked 
create an output file that exceeds available memory, LINK creates a tem­
porary disk file to serve as memory. This temporary file is handled in one 
of the following ways, depending on the DOS version: 

• The linker will use the directory specified by the TMP environ­
ment variable, for the purpose of creating a temporary file. For 
example, if the TMP variable were set to c: \TEMPDIR, then 
LINK would put the temporary file in c: \TEMPDIR. 

If there is no TMP environment variable, or if the directory 
specified by TMP does not exist, then LINK will put the tem­
porary file in the current working directory. 

• If the linker is running on DOS Version 3.0 or later, it uses a DOS 
system call to create a temporary file with a unique name in the 
tern porary-file directory. 

• If the linker is running on a version of DOS prior to 3.0, it creates a 
temporary file named VM. TMP. 

263 



Microsoft Code View and Utilities 

When the linker creates a temporary disk file, you will see the message 

Temporary file tempfile has been created. 
Do not change diskette in drive, letter. 

In the message displayed above, tempfile is ".\" followed by either 
VM. T:rvIP or a name generated by DOS, and letter is the drive containing 
the temporary file. 

The message Do not change diskette in drive will not appear 
unless the drive is a removable disk. Mter this message appears, do not 
remove the disk from the drive specified by letter until the link session 
ends. If the disk is removed, the operation of LINK is unpredictable, and 
you may see the following message: 

unexpected end-of-file on scratch file 

When this happens, rerun the link session. The temporary file created by 
LINK is a working file only. LINK deletes it at the end of the link ses­
sion. 

Note 

Do not give any of your own files the name VM. TMP. The linker 
displays an error message if it encounters an existing file with this 
name. 

12.2 Specifying Linker Options 

This section explains how to use linker options to specify and control the 
tasks performed by LINK. All options begin with the linker's option char­
acter, the forward slash (/). 

When you use the LINK command line to invoke LINK, options can 
appear at the end of the line or after individual fields on the line. However, 
they must precede the comma that separates each field from the next. 

If you respond to the individual prompts for the LINK command, you can 
specify linker options at the end of any response. When you specify more 
than one option, you can either group the options at the end of a single 

264 



Linking Object Files with LINK 

response or distribute the options among several responses. Every option 
must begin with the slash character (/), even if other options precede it on 
the same line. Similarly, in a response file, options can appear on a line by 
themselves or after individual response lines. 

Ab breviations 

Since linker options are named according to their functions, some of these 
names are quite long. You can abbreviate the options to save space and 
effort. Be sure that your abbreviation is unique so that the linker can 
determine which option you want. (The minimum legal abbreviation for 
each option is indicated in the syntax description of the option.) 

Abbreviations must begin with the first letter of the option and must be 
continuous through the last letter typed. No gaps or transpositions are 
allowed. 

Numerical Arguments 

Some linker options take numeric arguments. A numeric argument can be 
any of the following: 

• A decimal number from 0 to 65,535. 

• An octal number from 0 to 177777. A number is interpreted as 
octal if it starts with O. For example, the number 10 is interpreted 
as a decimal number, but the number 010 is interpreted as an 
octal number, equivalent to 8 in decimal. 

• A hexadecimal number from 0 to FFFF. A number is interpreted as 
hexadecimal if it starts with OX. For example, OX10 is a hexade­
cimal number, equivalent to 16 in decimal. 

12.2.1 Viewing the Options List (fIlE) 

• Option 

/HE[LP] 

The /HELP option causes LINK to display a list of the available options 
on the screen. This gives you a convenient reminder of the available 
options. Do not give a file name when using the /HELP option. 

265 



Microsoft Code View and Utilities 

12.2.2 Pausing during Linking (/P AU) 

• Option 

/PAU[SE] 

Unless you instruct it otherwise, LINK performs the linking session from 
beginning to end without stopping. The /P AU option tells LINK to 
pause in the link session before it writes the executable (.EXE) file to disk. 
This option allows you to swap disks before LINK writes the executable 
file. 

If you specify the /P AU option, LINK displays the following message 
before it creates the run file: 

About to generate .EXE file 
Change diskette in drive letter and press <ENTER> 

The letter corresponds to the current drive. LINK resumes processing 
when you press the ENTER key. 

Note 

Do not remove the disk that will receive the list file or the disk used for 
the temporary file. 

If a temporary file is created on the disk you plan to swap, you should 
press CONTROL+C to terminate the LINK session. Rearrange your files 
so that the temporary file and the executable file can be written to the 
same disk. Then try linking again. 

For more information on how LINK determines where to put the tem­
porary file, see Section 12.1.6, "LINK Memory Requirements." 

12.2.3 Displaying Linker Process Information (/1) 

• Option 

/I[NFORMATION] 

The /1 option tells the linker to display information about the linking pro­
cess, including the phase of linking and the names of the object files being 

266 



Linking Object Files with LINK 

linked. This option is useful if you want to determine the locations of the 
object files being linked and the order in which they are linked. 

Output from this option is sent to the standard error output. You can use 
the ERROUT utility, described in Section 15.4, to redirect output to any 
file or device. 

The following is a sample of the linker output when the II and lMAP 
options are specified on the LINK command line: 

**** PASS ONE **** 
TEST.OBJ(test.for) 
**** LIBRARY SEARCH **** 
LLIBFOR7.LIB(wr) 
LLIBFOR7.LIB(fmtout) 
LLIBFOR7.LIB(ldout). 

**** ASSIGN ADDRESSES **** 
1 segment "TEST_TEXT" length 122H bytes 
2 segment "_DATA" length 912H bytes 
3 segment "CONST" length 12H bytes 

**** PASS TWO **** 
TEST.OBJ(test.for) 
LLIBFOR7.LIB(wr) 
LLIBFOR7.LIB(fmtout) 
LLIBFOR7.LIB(ldout) 

**** WRITING EXECUTABLE **** 

12.2.4 Packing Executable Files (IE) 

• Option 

/E[XEPACK] 

The IE option directs LINK to remove sequences of repeated bytes (typi­
cally null characters) and to optimize the load-time relocation table before 

267 



Microsoft Code View and Utilities 

creating the executable file. (The load-time relocation table is a table of 
references, relative to the start of the program, each of which changes 
when the executable image is loaded into memory and an actual address 
for the entry point is assigned.) Executable files linked with this option 
may be smaller, and thus load faster, than files linked without this option. 
However, you cannot use the Symbolic Debug Utility (SYMDEB) or the 
Code View window-oriented debugger to debug with packed files. The 
EXEPACK option strips symbolic information from the input file and 
notifies you of this with a warning message. 

The IE option does not always give a significant saving in disk space and 
may sometimes actually increase file size. Programs that have a large 
number of load-time relocations (about 500 or more) and long streams of 
repeated characters are usually shorter if packed. If you're not sure 
whether your program meets these conditions, link it both ways and com­
pare the results. 

12.2.5 Listing Public Symbols (1M) 

• Option 

/M[AP] [:number] 

You can list all public (global) symbols defined in the object file(s) by 
using the 1M option. When you invoke LINK with the 1M option, the 
mapfile will contain a list of all the symbols sorted by name and a list of 
all the symbols sorted by address. If you do not use this option, then 
mapfile will contain only a list of segments. 

Whe you use this option, the default for mapfile is no longer NUL. 
Instead, the default is a name that combines the basename of the execut­
able file, with a .MAP extension. It is still possible for you to specify 
NUL in the mapfile field (which indicates that no map file is to be gen­
erated); if you do, then the 1M option will have no further effect. 

The optional number field specifies the maximum number of public sym­
bols that the linker can sort. By default, this limit is 2048. If the number 
of symbols exceeds this limit, then the linker will generate only an 
unsorted list. When you specify a value for number, the mapfile will con­
tain a list of symbols sorted by address (assuming that number is large 
enough); however, it will not contain a lIst sorted by name. 

268 



Linking Object Files with LINK 

12.2.6 Including Line Numbers in the Map File (ILl) 

• Option 

/LI[NENUMBERS] 

You can include the line numbers and associated addresses of your source 
program in the map file by using the ILl option. Ordinarily the map file 
does not contain line numbers. To produce a map file with line numbers, 
you must give LINK an object file (or files) with line-number information. 
You can use the /Zd option with any Microsoft compiler to include line 
numbers in the object file. If you give LINK an object file without line­
number information, the ILl option has no effect. 

The ILl option forces LINK to create a map file, even if you did not 
explicitly tell the linker to create a map file. By default, the file is given 
the same base name as the executable file, plus the extension .MAP. You 
can override the default name by specifying a new map file on the LINK 
command line or in response to the "List File" prompt. 

12.2.7 Preserving Case Sensitivity (/NOI) 

• Option 

/NOI[GNORECASE] 

By default, LINK treats uppercase letters and lowercase letters as 
equivalent. Thus ABC, abc, and Abc are considered the same name. When 
you use the INOI option, the linker distinguishes between uppercase 
letters and lowercase letters, and considers ABC, abc, and Abc to be three 
separate names. Since names in some high-level languages are not case sen­
sitive, this option can have minimal importance. However, in some 
languages, such as C, case is significant. If you plan to link your files from 
other high-level language with C routines, you may want to use this 
option. 

12.2.8 Ignoring Default Libraries (I NOD) 

• Option 

/NOD[EFAULTLmRARYSEARCH] 

The INOD option tells LINK not to search any library specified in the 
object file to resolve external references. 

269 



Microsoft Code View and Utilities 

In general, higher-level-language programs do not work correctly without 
a standard library. Thus, if you use the /NOD option, you should expli­
citly specify the name of a standard library. 

12.2.9 Controlling Stack Size (1ST) 

• Option 

/ST[ACK]:number 

The /ST option allows you to specify the size of the stack for your pro­
gram. The number is any positive value (decimal, octal, or hexadecimal) up 
to 65,535 (decimal). It represents the size, in bytes, of the stack. 

If you get a stack-overflow message, you may need to increase the size of 
the stack. In contrast, if your program uses the stack very little, you may 
save some space by decreasing the stack size. 

Note 

You can also use the EXEMOD utility, described in Section 15.2, to 
change the default stack size in executable files by modifying the 
executable-file header. The format of the executable-file header is dis­
cussed in that section as well as in the Microsoft MS-DOS 
Programmer's Reference and in other reference books on DOS. 

12.2.10 Setting the Maximum Allocation Space (I CP) 

• Option 

/CP[ARMAXALLOC]:number 

The /CP option sets the maximum number of 16-byte paragraphs needed 
by the program when it is loaded into memory. The operating system uses 
this value when allocating space for the program before loading it. The 
option is useful when you want to execute another program from within 
your program and you need to reserve space for the executed program. 

LINK normally requests the operating system to set the maximum 
number of paragraphs to 65,535. Since this represents more memory than 

270 



Linking Object Files with LINK 

could be available under DOS, the operating system always denies the 
request and allocates the largest contiguous block of memory it can find. If 
the lOP option is used, the operating system allocates no more space than 
the option specified. This means any additional space in memory is free for 
other programs. 

The number can be any integer value in the range 1 to 65,535. If number is 
less than the minimum number of paragraphs needed by the program, 
LINK ignores your request and sets the maximum value equal to whatever 
the minimum value happens to be. The minimum number of paragraphs 
needed by a program is never less than the number of paragraphs of code 
and data in the program. To free more memory for programs compiled in 
the medium- and large-memory models, link with lOP:!; this leaves no 
space for the near heap. 

Note 

You can change the maximum allocation after linking by using the 
EXEMOD utility, which modifies the executable-file header, as 
described in Section 15.2. The format of the executable-file header is 
also discussed in that section, as well as in the Microsoft MS-DOS 
Programmer's Reference and in other reference books on DOS. 

12.2.11 Setting Maximum Number of Segments (/SE) 

• Option 

/SE[GMENTS]:number 

The /SE option controls the number of segments that the linker allows a 
program to have. The default is 128, but you can set number to any value 
t decimal, octal, or hexadecimal) in the range 1 to 3072 (decimal). 

For each segment, the linker must allocate some space to keep track of 
segment information. By using a relatively low segment limit as a default 
(128), the linker is able to link faster and allocate less storage space. 

When you set the segment limit higher than 128, the linker allocates more 
space for segment information. This option allows you to raise the seg­
ment limit for programs with a large number of segments. For programs 
with fewer than 128 segments, you can keep the storage requirements of 
the linker at the lowest level possible by setting the segment number to 
reflect the actual number of segments in the program. 

271 



Microsoft Code View and Utilities 

If the number of segments allocated is too high for the amount of memory 
LINK has available to it, you will see the following error message: 

segment limit too high 

To specify a number of segments that will fit in the amount of memory 
available, set the segment lower and relink the object files. 

12.2.12 Setting the Overlay Interrupt (/0) 

• Option 

/O[VERLAYINTERRUPT~:number 

By default, the interrupt number used for passing control to overlays is 63 
(3F hexadecimal). The /0 option allows the user to select a different inter­
rupt number. 

The number can be a decimal number from 0 to 255, an octal number from 
octal 0 to octal 0377, or a hexadecimal number from hexadecimal 0 to hex­
adecimal FF. Numbers that conflict with DOS interrupts can be used; 
however, their use is not advised. 

In general, you should not use 10 with programs. The exception to this 
guideline would be a program that uses overlays and spawns another pro­
gram using overlays; in this case, each program should use a separate 
overlay-interrupt number, meaning that at least one of the programs 
should be compiled with /0. 

12.2.13 Ordering Segments (/DO) 

• Option 

/DO[SSEG~ 

The /DO option is automatically enabled by a special object module 
record in Microsoft language libraries. If you are linking to one of these 
libraries, then you do not need to specify this option. 

This option is also enabled by assembly modules that use the Microsoft 
Macro Assembler directive .DOSSEG. 

272 



Linking Object Files with LINK 

The IDO option forces segments to be ordered as follows: 

1. All segments with a class name ending in CODE 

2. All other segments outside DGROUP 

3. DGROUP segments, in the following order: 

a. Any segments of class BEGDATA (this class name reserved 
for Microsoft use) 

b. Any segments not of class BEGDATA, BSS, or STACK 

c. Segments of class BSS 

d. Segments of class STACK 

Note 

When the IDO option is in effect the linker initializes two special vari­
ables as follows: 

_edata = DGROUP : BSS 
_end = DGROUP : STACK 

The variables _ edata and _ end have special meanings for the Micro­
soft C and FORTRAN compilers, so it is not wise to give these names 
to your own program variables. Assembly modules can reference these 
variables but should not change them. 

12.2.14 Controlling Data Loading (IDS) 

• Option 

/DS[ALLOCATE] 

By default, LINK loads all data starting at the low end of the data seg­
ment. At run time, the DS (data segment) register is set to the lowest pos­
sible address to allow the entire data segment to be used. 

Use the IDS option to tell LINK to load all data starting at the high end 
of the data segment instead. In this case, the DS register is set at run time 
to the lowest data-segment address that contains program data. 

273 



Microsoft CodeView and Utilities 

The IDS option is typically used with the IHIoption, discussed in the 
next section, to take advantage of unused memory within the data seg­
ment. 

Warning 

This option should be used only with assembly-language programs. 

12.2.15 Controlling Executable-File Loading (1m) 

• Option 

/HI[GH] 

The executable file can be placed either as low or as high in memory as 
possible. Use of the 1m option causes LINK. to place the executable file 
as high as possible in memory. Without the IHI option, LINK places the 
executable file as low as possible. 

Note 

This option should be used only with assembly-language programs. 

12.2.16 Preserving Compatibility (/NOG) 

• Option 

/NOG[ROUPASSOCIATION] 

The INOG option causes the linker to ignore group associations when 
assigning addresses to data and code items. It is provided primarily for 
compatibility with previous versions of the linker (Versions 2.02 and ear­
lier) and early versions of Microsoft language compilers. 

Note 

This option should be used only with assembly-language programs. 

274 



Linking Object Files with LINK 

12.2.17 Preparing for Debugging (leO) 

• Option 

/CO[DEVIEW~ 

The / CO option is used to prepare for debugging with the Code View 
window-oriented debugger. This option tells the linker to prepare a spe­
cial executable file containing symbolic data and line-number information. 

You can run this executable file outside the CodeView debugger; the extra 
data in the file will be ignored. However, to keep file size to a minimum, 
use the special-format executable file only for debugging; then you can link 
a separate version without the /eo option after the program is debugged. 

12.2.18 Running in Batch Mode (/B) 

• Option 

/B[ATCH~ 

By default, the linker prompts you for a new path name whenever it can­
not find a library that it has been directed to use. It also prompts you if it 
cannot find an object file, and it expects that file to be on a removable 
disk. If the /B option is used, however, the linker will not prompt you for 
any libraries or object files that it cannot find. Instead, the linker will gen­
erate an error or warning message, if appropriate. 

The use of this option can cause unresolved external references. It is 
intended primarily for users who use batch or MAKE files for linking 
many executable files with a single command, and who wish to prevent 
linker operation from halting. 

Note 

This option does not prevent the linker from prompting for command­
line arguments. You can prevent such prompting only by using a semi­
colon on the command line. 

275 



Microsoft Code View a.nd Utilities 

12.2.19 Optimizing Far Calls (IF) 

• Option 

/F[ARCALLTRANSLATION] 

The IF option may result in slightly faster code, and smaller executable 
file SIze. It should be used with the /PAC option, described in Section 
12.2.21, in order to achieve significant results. The gain in speed is most 
apparent for 286- and 386-based machines. Though some assembly pro­
grams should not be linked with this option, it is generally safe for use 
with high-level-language programs. This option is off by default; further­
more, it can always be turned off with the /NOF option described in the 
next section. 

The rest of this section describes the low-level details of /F. It is not 
necessary that you understand these details in order to use the option. 

The IF option directs the linker to optimize far calls to procedures that 
lie in the same segment as the caller. For example, a medium or large 
model program may have a machine instruction that makes a far call to a 
procedure in the same segment. Since the segment address is the same (for 
both the instruction and the procedure it calls), only a near call should be 
necessary. 

A near-call instruction does not require an entry in the relocation table, 
whereas a far-call instruction does. Therefore, use of /F (together with 
/PAC) often results in smaller executable files, because the relocation 
table is smaller. Such files will load faster. 

When /F has been specified the linker will optimize code, by removing the 
instruction call FAR label, and substituting the following sequence: 

push cs 
call NEAR label 
nop 

Upon execution, the called procedure will still return with a far-return 
instruction. However, because both the code segment and the near address 
are on the stack, the far return will be executed correctly. The nop (no-op) 
instruction appears so that exactly five bytes replace the five-byte far-call 
instruction; the linker may in some cases place the nop at the beginning of 
the sequence. 

The IF option has no effect on programs that only make near calls. Of the 
high-level Microsoft languages, only small- and compact-model C pro­
grams use near calls. 

276 



Linking Object Files with LINK 

Note 

There is a small risk involved with the IF option; the linker may mis­
takenly translate a byte in a code segment that happens to have the 
far-call opcode (9A hexadecimal). If a program linked with IF inexpli­
cably fails, then you may want to try linking with this option off. How­
ever, object modules produced by Microsoft high-level languages 
should be safe from this problem, because relatively little immediate 
data is stored in code segments. 

In general I assembly-language programs are also relatively safe for use 
with the F option, as long as they do not involve advanced system­
level code, such as might be found in operating systems or interrupt 
handlers. 

12.2.20 Disabling Far-Call Optimization (/NOF) 

• Option 

/NOF[ARCALLTRANSLATION] 

This option is normally not necessary, because far-call optimization 
(translation) is turned off by default. However, if an environment variable 
such as LINK (or CL) turns on far-call translation automatically, you can 
use INOF to turn far-call translation back off again. 

12.2.21 Packing Contiguous Segments (/P AC) 

• Option 

/PAC[KCODE] [:number] 

This option only affects code segments in medium- and large- model pro­
grams. It is intended to be used with the IF option, which is described in 
Section 12.2.19. It is not necessary to understand the details of the IPAC 
option in order to use it. You only need to know that this option, used in 
conjunction with IF, produces slightly faster and more compact code. The 
IP AC option is off by default, and can always be turned off with the 
/NOP option described in the next section. 

The IP AC option directs the linker to group together neighboring code 
segments. Segments in the same group are assigned the same segment 
address; offset addresses are adjusted upward accordingly. In other words, 

277 



Microsoft Code View and Utilities 

all items will have the correct physical address whether the /P AC option 
is used or not. However, /P AC changes segment and offset addresses so 
that all items in a group share the same segment address. 

The number field specifies the maximum size of groups formed by /P AC. 
The linker will stop adding segments to a group as soon as it cannot add 
another segment without exceeding number. At that point, the linker 
starts forming a new group. The default for number is 65,530. 

The packing of code segments provides more opportunities for far-call 
optimization, which is enabled with IF. Generally speaking, /F and 
/PAC are designed to be used together. 

Programs developed with Microsoft high-level languages can safely use 
/P AC. The /P AC option is unsafe only when used with assembly pro­
grams that make assumptions about the relative order of code segments. 
For example, the following assembly code attempts to calculate the dis­
tance between CSEGl and CSEG2. This code would produce incorrect 
results when used with IPAC, because /PAC causes the two segments to 
share segment address. Therefore the procedure would always return zero. 

CSEGl SEGMENT PARA PUBLIC 'CODE' 

CSEGl ENDS 

CSEG2 SEGMENT PARA PUBLIC 'CODE' 
ASSUME cs:CSEG2 

; Return the length of CSEGl in AX. 

codsize PROC 
mov 
sub 
mov 
shl 

codsize ENDP 

CSEG2 ENDS 

NEAR 
ax,CSEG2 
ax,CSEGl 
cx,4 
ax,cl 

Load para address of CSEGl 
Load para address of CSEG2 
Load count, and 

convert distance from paragraphs 
to bytes 

12.2.22 Disabling Segment Packing (/NOP) 

• Option 

/NOP[ACKCODE~ 

This option is normally not necessary because code-segment packing is 
turned off by default. However, if an environment variable such as LINK 
(or CL) turns on code-segment packing automatically, you can use /NOP 
to turn segment packing back off again. 

278 



Linking Object Files with LINK 

12.2.23 Specifying User Libraries 
for Quick Languages (/Q) 

• Option 

/Q[UICKLIB~ 

The /Q option directs the linker to produce a "Quick library," suitable for 
use with Microsoft QuickBASIC or Microsoft QuickC programs, instead of 
producing a stand-alone application. (Stand-alone applications are execut­
able files that need only the presence of DOS to run. The linker produces 
these by default.) 

No other option is necessary to enable Quick-library creation. When you 
use /Q, the run-file field refers to a Quick library instead of to an applica­
tion. The default extension for this field is then .QBL instead of .EXE. 
You can use all of the linker features to build a Quick library that you 
would otherwise use to build an application. The principal difference is 
that a Quick library does not require (and should not contain) any main­
program-level code. 

A Quick library is similar to a standard software library in some ways; 
both contain a collection of routines that may be called upon by a pro­
gram. The two libraries are different, however, in that a standard library 
is brought together with a program at link time. A Quick library, by con­
trast, is brought together with a program at run time. 

Important 

Two special restrictions apply to use of a Quick library: 

1. User libraries can only be loaded by programs created with 
QuickC or QuickBASIC. These programs have the special code 
that properly loads a Quick library at run time. 

2. Routines in a Quick library can be called from any module at 
run time. However, Quick-library routines cannot themselves 
make calls to routines outside the library. In other words, 
Quick libraries must be self-contained. 

The linker creates a Quick library, not by linking it to a program, but 
instead by placing into a file all of the object modules to be included and 
by adding a location table of all of the library routines. This table allows 

279 



Microsoft Code View a.nd Utilities 

for references to be resolved at run time, after the entire library is loaded 
into memory. For further information on the use of these libraries, consult 
the User's Guide for QuickBASIC or QuickC. 

12.3 Selecting Options with the 
LINK Environment Variable 

You can use the LINK environment variable to cause certain options to 
be used each time you link. The linker checks the environment variable for 
options, if the variable exists. 

The linker expects to find options listed in the variable exactly as you 
would type them in on the command line. It will not accept other kinds of 
arguments; file names in the environment variable will cause the error 
message unrecognized option. 

Each time you link, you can specify other options in addition to the ones 
specified in the LINK environment variable. If you type an option both on 
the command line and in the environment variable, the effect will be the 
same as if the option were given once . 

• Example 

>SET LINK=/NOI ISE:256 leo 
>LINK TEST; 
>LINK /NOD leo PROG; 

In the example above, the file TEST. OBJ is linked with the options INOI, 
ISE : 256, and ICO. The file PROG. OBJ is then linked with the option 
INOD, in addition to INOI, ISE : 256, and ICO. 

Note 

280 

A command-line option will override the effect of any environment­
variable option that it conflicts with. For example, the command-line 
option ISE : 256 cancels the effect of the environment-variable option 
ISE :512. 

The only other way to prevent an option in the environment variable 
from being used is to reset the environment variable itself. 



Linking Object Files with LINK 

12.4 Linker Operation 

LINK performs the following steps to combine object modules and pro­
duce an executable file: 

1. Reads the object modules submitted 

2. Searches the given libraries, if necessary, to resolve external refer-
ences 

3. Assigns addresses to segments 

4. Assigns addresses to public symbols 

5. Reads code and data in the segments 

6. Reads all relocation references in object modules 

7. Performs fix ups 

8. Outputs an executable file (executable image and relocation infor­
mation) 

Steps 5, 6, and 7 are performed concurrently: in other words, LINK will 
move back and forth between these steps before it progresses to Step 8. 

The "executable image" contains the code and data that constitute the 
executable file. The "relocation information" is a list of references, relative 
to the start of the program, each of which changes when the executable 
image is loaded into memory and an actual address for the entry point is 
assigned. 

The following sections explain the process LINK uses to concatena~e seg­
ments and resolve references to items in memory. 

12.4.1 Alignment of Segments 

LINK uses a segment's alignment type to set the starting address for the 
segment. The alignment types are BYTE, WORD, PARA, and PAGE. 
These correspond to starting addresses at byte, word, paragraph, and page 
boundaries, representing addresses that are multiples of 1, 2, 16, and 256, 
respectively. The default alignment is P AHA. 

When LINK encounters a segment, it checks the alignment type before 
copying the segment to the executable file. If the alignment is WORD, 
PARA, or PAGE, then LINK checks the executable image to see if the 
last byte copied ends at an appropriate boundary. If not, LINK pads the 
image with extra null bytes. 

281 



Microsoft Code View and Utilities 

12.4.2 Frame Number 

LINK computes a starting address for each segment in a program. The 
starting address is based on a segment's alignment and the sizes of the 
segments already copied to the executable file (as described in Section 
12.4.1, above). The address consists of an offset and a "canonical frame 
number." The canonical frame number specifies the address of the first 
paragraph in memory that contains one or more bytes of the segment. (A 
paragraph is 16 bytes of memory; therefore, to compute a physicalloca­
tion in memory, multiply the frame number by 16 and add the offset.) The 
offset is the number of bytes from the start of the paragraph to the first 
byte in the segment. For BYTE and WORD alignments, the offset may 
be nonzero. The offset is always zero for PARA and PAGE alignments. 
(An offset of zero means that the physical location is an exact multiple of 
16.) 

The frame number of a segment can be obtained from the map file created 
by LINK. The first four digits of the start address give the frame number 
in hexadecimal. For example, a "Start" address of oeOA6 gives us a frame 
number of oeOA. 

12.4.3 Order of Segments 

LINK copies segments to the executable file in the same order that it 
encounters them in the object files. This order is maintained throughout 
the program unless LINK encounters two or more segments having the 
same class name. Segments having identical class names belong to the 
same class type and are copied as a contiguous block to the executable file. 

The /DOSSEG option may change the way in which segments are 
ordered. 

12.4.4 Combined Segments 

LINK uses combine types to determine whether or not two or more seg­
ments sharing the same segment name should be combined into one large 
segment. The valid combine types are PUBLIC, STACK, CO:M::M:ON, 
and PRIVATE. 

If a segment has combine type PUBLIC, then LINK automatically com­
bines it with any other segments having the same name and belonging to 
the same class. When LINK combines segments, it ensures that the seg­
ments are contiguous and that all addresses in the segments can be 
accessed using an offset from the same frame address. The result is the 
same as if the segment were defined as a whole in the source file. 

282 



Linking Object Files with LINK 

LINK preserves each individual segment's alignment type. This means 
that even though the segments belong to a single, large segment, the code 
and data in the segments do not lose their original alignment. If the com­
bined segments exceed 64K, LINK displays an error message. 

If a segment has combine type STACK, then LINK carries out the same 
combine operation as for PUBLIC segments. The only exception is that 
STACK segments cause LINK to copy an initial stack-pointer value to 
the executable file. This stack-pointer value is the offset to the end of the 
first stack segment (or combined stack segment) encountered. 

If a segment has combine type COM1v.lON, then LINK automatically 
combines it with any other segments having the same name and belonging 
to the same class. When LINK combines CO~ON segments, however, 
it places the start of each segment at the same address, creating a series of 
overlapping segments. The result is a single segment no larger than the 
largest segment combined. 

A segment has combine type PRIVATE only if no explicit combine type 
is defined for it in the source file. LINK does not combine private seg­
ments. 

12.4.5 Groups 

Groups allow segments to be addressed relative to the same frame address. 
When LINK encounters a group, it adjusts all memory references to items 
in the group so that they are relative to the same frame address. 

Segments in a group do not have to be contiguous, belong to the same 
class, or have the same combine type. The only requirement is that all seg­
ments in the group fit within 64K. 

Groups do not affect the order in which the segments are loaded. Unless 
you use class names and enter object files in the right order, there is no 
guarantee that the segments will be contiguous. In fact, LINK may place 
segments that do not belong to the group in the same 64K of memory. 
Although LINK does not explicitly check that all segments in a group fit 
within 64K of memory, LINK is likely to encounter a fix-up-overflow error 
if this requirement is not met. 

12.4.6 Fix Ups 

Once the starting address of each segment in a program is known and all 
segment combinations and groups have been established, LINK can "fix 
up" any unresolved references to labels and variables. To fix up unresolved 
references, LINK computes an appropriate offset and segment address and 
replaces the temporary values generated by the assembler with the new 
values. 

283 



Microsoft Code View snd Utilities 

LINK carries out fix ups for the types of references shown in the following 
list: 

Type of Reference 

Short 

Near self relative 

Near segment relative 

Long 

Description 

Occurs in JMP instructions that attempt 
to pass control to labeled instructions in 
the same segment or group. 

The target instruction must be no more 
than 128 bytes from the point of reference. 
LINK computes a signed, 8-bit number for 
this reference. It displays an error message 
if the target instruction belongs to a 
different segment or group (has a different 
frame address), or if the target is more 
than 128 bytes distant in either direction. 

Occurs in instructions that access data 
relative to the same segment or group. 

LINK computes a 16-bit offset for this 
reference. It displays an error if the data 
are not in the same segment or group. 

Occurs in instructions that attempt to 
access data in a specified segment or group, 
or relative to a specified segment register. 

LINK computes a 16-bit offset for this 
reference. It displays an error message if 
the offset of the target within the specified 
frame is greater than 64K or less than 0, or 
if the beginning of the canonical frame of 
the target is not addressable. 

Occurs in CALL instructions that attempt 
to access an instruction in another segment 
or group. 

LINK computes a 16-bit frame address 
and 16-bit offset for this reference. LINK 
displays an error message if the computed 
offset is greater than 64K or less than 0, or 
if the beginning of the canonical frame of 
the target is not addressable. 

The size of the value to be computed depends on the type of reference. If 
LINK discovers an error in the anticipated size of a reference, it displays 
a fix-up-overflow message. This can happen, for example, if a program 
attempts to use a 16-bit offset to reach an instruction which is more than 

284 



Linking Object Files with LINK 

64K away. It can also occur if all segments in a group do not fit within a 
single 64K block of memory. 

12.5 Using Overlays 

You can direct LINK to create an overlaid version of a program. In an 
overlaid version of a program, specified parts of the program (known as 
"overlays") are loaded only if and when they are needed. These parts share 
the same space in memory. Only code is overlaid; data are never overlaid. 
Programs that use overlays usually require less memory, but they run 
more slowly because of the time needed to read and reread the code from 
disk in to memory. 

You specify overlays by enclosing them in parentheses in the list of object 
files that you submit to the linker. Each module in parentheses represents 
one overlay. For example, you could give the following object-file list in 
the objectfiles field of the LINK command line: 

a + (b+c) + (e+f) + 9 + (i) 

In this example, the modules (b+c) , (e+f), and (i) are overlays. The 
remaining modules, and any drawn from the run-time libraries, constitute 
the resident part (or root) of your program. Overlays are loaded in to the 
same region of memory, so only one can be resident at a time. Duplicate 
names in different overlays are not supported, so each module can appear 
only once in a program. 

The linker replaces calls from the root to an overlay, and calls from an 
overlay to another overlay with an interrupt (followed by the module 
identifier and offset). By default, the interrupt number is 63 (3F hexade­
cimal). You can use the /OVERLAYINTERRUPT option of the LINK 
command to change the interrupt number. 

The Code View debugger is now compatible with overlayed mod ules. In 
fact, in the case of large programs, you may need to use overlays to leave 
sufficient room for the debugger to operate. 

12.5.1 Restrictions on Overlays 

You can overlay only modules to which control is transferred and returned 
by a standard 8086 long (32-bit) call/return instruction. Therefore, 
because calls to subroutines modified with the NEAR attribute are short 
(16-bit) calls, you cannot overlay modules containing NEAR subroutines 
if other modules call those subroutines. 

285 



Microsoft Code View and Utilities 

12.5.2 Overlay-Manager Prompts 

The overlay manager is part of the language's run-time library. If you 
specify overlays during linking, the code for the overlay manager is 
automatically linked with the other modules of your program. 

When the executable file is run, the overlay manager searches for that file 
whenever another overlay needs to be loaded. The overlay manager first 
searches for the file in the current directory; then, if it does not find the 
file, the manager searches the directories listed in the PATH environment 
variable. When it finds the file, the overlay manager extracts the overlay 
modules specified by the root program. If the overlay manager cannot find 
an overlay file when needed, it prompts the user to enter the file name. 

Even with overlays, the linker produces only one .EXE file. This file is 
opened again and again as long as the overlay manager needs to extract 
new overlay modules. 

For example, assume that an executable program called PAYROLL. EXE 
uses overlays, and does not exist in either the current directory or the 
directories specified by PATH. If the user runs PAYROLL. EXE (by en ter­
ing a complete path specification), the overlay manager displays the fol­
lowing message when it attempts to load overlay files: 

Cannot find PAYROLL.EXE 
Please enter new program spec: 

The user can then enter the drive or directory, or both, where 
PAYROLL. EXE is located. For example, if the file is located in directory 
\EMPLOYEE\DATA \ on drive B, the user could enter 
B: \EMPLOYEE\DATA \ or simply \EMPLOYEE\DATA \ if the current drive 
is B. 

If the user later removes the disk in drive B and the overlay manager needs 
to access the overlay again, it does not find PAYROLL. EXE and displays 
the following message: 

Please insert diskette containing B:\EMPLOYEE\DATA\PAYROLL.EXE 
in drive B: and strike any key when ready. 

Mter the overlay file has been read from the disk, the overlay manager 
displays the following message: 

Please restore the original diskette. 
Strike any key when ready. 

286 



CHAPTER. 
MANAGING 
LIBRARIES WITH LIB 

13.1 Managing Libraries ............................................. 289 
13.1.1 Managing Libraries 

with the LIB Command Line ...................... 290 
13.1.1.1 Specifying the Library File ••••••.•.•.••••• 290 
13.1.1.2 Specifying a Page Size •.•.••.••••••••••.•••• 291 
13.1.1.3 Giving LIB Commands .•.••••••••••••.••••. 291 
13.1.1.4 Specifying a 

Cross-Reference-Listing File •••••.•..••••. 293 
13.1.1.5 Specifying an Output Library ••••••.•.•.• 293 

13.1.2 Managing Libraries 
with the LIB Prompts ................................ 295 
13.1.2.1 Extending Lines ••••••....•..•••••••...•••••.. 295 
13.1.2.2 Using Default Responses •.•.••.••.•••.••••. 296 

13.1.3 Managing Libraries 
with a Response File ................................. 296 

13.1.4 Terminating the LIB Session ...................... 297 
13.2 Performing Library 

Management Tasks with LIB .............................. 297 
13.2.1 Creating a Library File .............................. 298 
13.2.2 Changing a Library File ...............•............ 299 
13.2.3 Adding Library Modules ............................ 299 
13.2.4 Deleting Library Modules ...................•...... 300 
13.2.5 Replacing Library Modules ........................ 300 
13.2.6 Copying Library Modules .......................... 300 
13.2.7 Moving Library Modules (Extracting) ..•...... 300 
13.2.8 Combining Libraries ....•............................ 300 
13.2.9 Creating a Cross-Reference-Listing File ...... 301 
13.2.10 Performing Consistency Checks ................. 301 
13.2.11 Setting the Library Page Size ..................... 302 





Managing Libraries with Lm 

The Microsoft Library Manager (LlB) is a utility designed to help you 
create, organize, and maintain run-time libraries. Run-time libraries are 
collections of compiled or assembled functions that provide a common set 
of useful routines. After you have linked a program with a run-time­
library file, that program can call a run-time routine exactly as if the func­
tion were included in the program. The call to the run-time routine is 
resolved by finding that routine in the library file. 

Run-time libraries are created by combining separately compiled object 
files into one library file. Library files are usually identified by their .Lm 
extension, although other extensions are allowed. 

In addition to accepting DOS object files and library files, LlB can read 
the contents of 286 XENIX® archives and Intel-style libraries and combine 
their contents with DOS libraries. To see how you can add the contents of 
a 286 XENIX archive or an Intel-style library to a DOS library, refer to 
Section 13.2.8, "Combining Libraries." 

Once an object file is incorporated into a library, it becomes an object 
"module." LlB makes a distinction between object files and object 
modules: an object "file" exists as an independent file, while an object 
"module" is part of a larger library file. An object file can have a full path 
name, including a drive designation, directory path name, and file-name 
extension (usually .OBJ). Object modules have only a name. For example, 
B: \RUN\SORT • OBJ is an object-file name, while SORT is an object­
module name. 

Using LlB, you can create a new library file, add object files to an existing 
library, delete library modules, replace library modules, and create object 
files from library modules. LlB also lets you combine the contents of two 
libraries into one library file. 

The command syntax is straightforward; you can give LlB all the input it 
requires directly from the command line. Once you have learned how LlB 
works and what input it needs, you can use one of the two alternative 
methods of invoking LID, described in Sections 13.1.1 and 13.1.2 (you can 
enter input in response to prompts instead of-or in addition to-entering 
the in pu t on the LlB command line). 

13.1 Managing Libraries 

You run LlB by typing the LlB command on the DOS command line. You 
can specify the input required for this command in one of three ways: 

1. By placing it on the command line. 

289 



Microsoft Code View and Utilities 

2. By responding to prompts. 

3. By specifying a file containing responses to prompts. (This type of 
file is known as a "response file.") 

13.1.1 Managing Libraries 
with the LID Command Line 

You can start Lm and specify all the input it needs from the command 
line. In this case, the Lm command line has the following form: 

Lm oldUbrary [/PAGESIZE:number] [commands] [,[Ustj£le] [,[newlibrary]]] [;] 

To tell Lm to use the default responses for the remaining fields, use a 
semicolon (;) after any field except the oldlibrary field. The semicolon 
should be the last character on the command line. 

Sections 13.1.1.1-13.1.1.5 describe the input that you give in each 
command-line field. 

13.1.1.1 Specifying the Library File 

• Field 

oldlibrary[;] 

The oldlibrary field allows you to specify the name of the existing library 
to be used. Usually library files are named with the .Lm extension. You 
can omit the .Lm extension when you give the library-file name since Lm 
assumes that the file-name extension is .Lm. If your library file does not 
have the .Lm extension, be sure to include the extension when you give 
the library-file name. Otherwise, Lm cannot find the file. 

Path names are allowed with the library-file name. You can give Lm the 
path name of a library file in another directory or on another disk. There 
is no default for this field. Lm produces an error message if you do not 
give a file name. 

If you give the name of a library file that does not exist, LID displays the 
following prompt: 

Library file does not exist. Create? 

Type y to create the library file, or n to terminate LID. This message is 
suppressed if the nonexistent library name you give is followed immedi­
ately by commands, a comma, or a semicolon. 

290 



Managing Libraries with LID 

If you type an oldlibrary name and follow it immediately with a semicolon 
(;), Lm performs only a consistency check on the given library. A con­
sistency check tells you whether all the modules in the library are in usable 
form. Lm prints a message only if it finds an invalid object module; no 
message appears if all modules are intact. 

13.1.1.2 Specifying a Page Size 

• Option 

[/P AGESIZE:number] 

The /PAGESIZE option allows you to specify the library-page size of a 
new library or change the library-page size of an existing library. The 
page size of a library affects the alignment of modules stored in the 
library. Modules in the library are always aligned to start at a position 
that is a multiple of the page size (in bytes) from the beginning of the file. 
The default page size for a new library is 16 bytes. See Section 13.2.11, 
"Setting the Library Page Size," for more information. 

13.1.1.3 Giving Lm Commands 

• Field 

[commands] 

The commands field allows you to specify the command symbols for mani­
pulating modules. To use this field, type a command symbol (such as +, -, 
-+, *, or -*), followed immediately by a module name or an object-file 
name. You can specify more than one operation in this field, in any order. 
Lm does not make any changes to oldlibrary if you leave the commands 
field blank. 

Command 
Symbol 

+ 

Meaning 

The add command symbol. A plus sign makes an 
object file the last module in the library file. Immedi­
ately following the plus sign, give the name of the 
object file. You can use path names for the object file. 
Lm automatically supplies the .OBJ extension, so 
you can omit the extension from the object-file name. 

You can also use the plus sign to combine two 
libraries. When you give a library name following the 
plus sign, a copy of the contents of the given library 

291 



Microsoft Code View and Utilities 

-+ 

* 

292 

is added to the library file being modified. You must 
include the .Lm extension when you give a library­
file name. Otherwise, Lm uses the default .OBJ 
extension when it looks for the file. 

The delete command symbol. A minus sign deletes a 
module from the library file. Immediately following 
the minus sign, give the name of the module to be 
deleted. A mod ule name has no path name and no 
extension. 

The replace command symbol. A minus sign followed 
by a plus sign replaces a module in the library. Fol­
lowing the replacement symbol, give the name of the 
module to be replaced. Module names have no path 
names and no extensions. 

To replace a module, Lm deletes the given module, 
then appends the object file having the same name as 
the module. The object file is assumed to have an 
.OBJ extension and to reside in the current working 
directory. 

The copy command symbol. An asterisk followed by 
a module name copies a module from the library file 
into an object file of the same name. The module 
remains in the library file. When Lm copies the 
module to an object file, it adds the .OBJ extension 
and the drive designation and path name of the 
current working directory to the module name to 
form a complete object-file name. You cannot over­
ride the .OBJ extension, drive designation, or path 
name given to the object file. However, you can later 
rename the file or copy it to whatever location you 
like. 

The move command symbol. A minus sign followed 
by an asterisk moves an object module from the 
library file to an object file. This operation is 
equivalent to copying the module to an object file, as 
described above, then deleting the module from the 
library. 



Managing Libraries with LID 

13.1.1.4 Specifying a Cross-Reference-Listing File 

• Field 

[list/ile] 

The listfile field allows you to specify a file name for a cross-reference­
listing file. You can specify a full path name for the listing file to cause it 
to be created outside your current working directory. You can give the 
listing file any name and any extension. LIB does not supply a default 
extension if you omit the extension. 

A cross-reference-listing file contains the following two lists: 

1. An alphabetical list of all public symbols in the library. 

Each symbol name is followed by the name of the module in which 
it is referenced. 

2. A list of the modules in the library. 

Under each module name is an alphabetical listing of the public 
symbols defined in that module. The default when you omit the 
response to this prompt is the special file name NUL, which tells 
LIB not to create a listing file. 

13.1.1.5 Specifying an Output Library 

• Field 

[ newlibrary] 

The newlibrary field allows you to specify the name of the new library file 
that will contain the specified changes. This prompt appears only if you 
specify changes to the library in the commands field. The default is the 
current library-file name. 

If you do not specify a new library-file name, the original, unmodified 
library is saved in a library file with the same name but with a .BAK 
extension replacing the .LIB extension. 

293 



Microsoft Code View a.nd Utilities 

• Examples 

LIB LANG-+HEAP; 

The example above uses the replace command symbol (-+) to instruct 
Lm to replace the HEAP module in the library LANG. LI B. Lm deletes 
the HEAP module from the library, then appends the object file HEAP. OBJ 
as a new module in the library. The semicolon at the end of the command 
line tells Lm to use the default responses for the remaining prompts. This 
means that no listing file is created and that the changes are written to 
the original library file instead of a new library file. 

LIB LANG-HEAP + HEAP ; 

LIB LANG+HEAP-HEAP; 

The examples above perform the same function as the first example in this 
section, but in two separate operations, using the add (+) and delete (-) 
command symbols. The effect is the same for these examples because 
delete operations are always carried out before add operations, regardless 
of the order of the operations in the command line. This order of execution 
prevents confusion when a new version of a module replaces an old version 
in the library file. 

LIB FOR; 

The example above causes Lm to perform a consistency check of the 
library file FOR. LI B. No other action is performed. Lm displays any con­
sistency errors it finds and returns to the operating-system level. 

LIB LANG,LCROSS.PUB 

This example tells Lm to perform a consistency check of the library file 
LANG. LIB and then create a cross-reference-listing file named 
LCROSS . PUB. 

LIB FIRST -*STUFF *MORE, ,SECOND 

This last example instructs Lm to move the module STUFF from the 
library FIRST. LIB to an object file called STUFF. OBJ. The module 
STUFF is removed from the library in the process. The module MORE is 
copied from the library to an object file called MORE. OBJ; the module 
remains in the library. The revised library is called SECOND. LIB. It con­
tains all the modules in FIRST. LIB except STUFF, which was removed by 
using the move command symbol (-*). The original library, FIRST. LIB, 
remains unchanged. 

294 



Managing Libraries with LID 

13.1.2 Managing Libraries 
with the LID Prompts 

If you want to respond to individual prompts to give input to LID, start 
Lm at the DOS command level by typing Lm. Lm prompts you for the 
input it needs by displaying the following four messages, one at a time: 

Library name: 
Operations: 
List file: 
Output library: 

Lm waits for you to respond to each prompt, then prints the next 
prompt. 

The responses you give to the Lm command prompts correspond to the 
fields on the LID command line. (See Section 13.1.1 for a discussion of the 
Lm command line.) The following list shows these correspondences: 

Prompt 

"Library name" 

"Operations" 

"List file" 

"Output library" 

Command-Line Field 

The oldlibrary field and the optional 
PAGESIZE:number option \see Sections 
13.1.1.1 and 13.1.1.2, respectively). If you 
want to perform a consistency check on the 
library, type a semicolon (;) immediately after 
the library name. 

Any of the commands allowed in the com­
mands field (see Section 13.1.1.3). 

The Ustfile field. 

The newlib field. 

13.1.2.1 Extending Lines 

If you have many operations to perform during a library session, use the 
ampersand command symbol (&) to extend the operations line. Give the 
ampersand symbol after an object-module or object-file name; do not put 
the ampersand between an operation's symbol and a name. 

The ampersand causes Lm to repeat the "Operations" prompt, allowing 
you to type more operations. 

295 



Microsoft Code View and Utilities 

13.1.2.2 Using Default Responses 

Mter any entry but the first, use a single semicolon (;) followed immedi­
ately by a carriage return to select default responses to the remaining 
prompts. You can use the semicolon command symbol with the command­
line and response-file methods of invoking LID, but it is not necessary 
since Lm supplies the default responses wherever you omit responses. 

The following list shows the defaults for Lm prompts: 

Prompt 

"Operations" 

"List file" 

"Output library" 

Default 

No operation; no change to library file. 

The special file name NUL, which tells LID not to 
create a listing file. 

The current library name. This prompt appears 
only if you specify at least one operation at the 
"Operations" prompt. 

13.1.3 Managing Libraries 
with a Response File 

To operate Lm with a response file, you must first set up the response file 
and then type the following at the DOS command line: 

LID @responsefz'le 

The responsefile is the name of a response file. The response-file name can 
be qualified with a drive and directory specification to name a response file 
from a directory other than the current working directory. 

You can also enter the name of a response file at any position in a com­
mand line or after any of the linker prompts. The input from the response 
file will be treated exactly as if it had been entered in command lines or 
after prompts. A carriage-return-line-feed combination in the response file 
is treated the same as pressing the ENTER key in response to a prompt, or 
using a comma in a command line. 

Before you use this method, you must set up a response file containing 
responses to the Lm prompts. This method lets you conduct the library 
session without typing responses to prompts at the keyboard. 

A response file has one text line for each prompt. Responses must appear 
in the same order as the command prompts appear. Use command symbols 
in the response file the same way you would use responses typed on the 
keyboard. You can type an ampersand at the end of the response to the 
"Operations" prompt and continue typing operations on the next line. 

296 



Managing Libraries with LID 

When you run LID with a response file, the prompts are displayed with 
the responses from the response file. If the response file does not contain 
responses for all the prompts, LID uses the default responses . 

• Example 

LIBE'OR 
+CURSOR+HEAP-HEAP*E'OIBLES 
CROSSLST 

The contents of the above response file cause LID to delete the module 
HEAP from the LIBFOR.LIB library file, copy the module FOIBLES and 
place it in an object file named FOIBLES. OBJ, and append the object files 
CURSOR.OBJ and HEAP. OBJ as the last two modules in the library. Fi­
nally, LID creates a cross-reference-listing file named CROSSLST. 

13.1.4 Terminating the LIB Session 

You can press CONTROL+C at any time during a library session to ter­
minate the session and return to DOS. If you notice that you have entered 
an incorrect response at a previous prompt, you should press CONTROL+C 
to exit LID and begin again. You can use the normal DOS editing keys to 
correct errors at the current prompt. 

13.2 Performing Library 
Management Tasks with Lm 

You can perform a number of library-management functions with LID, 
including the following tasks: 

• Create a library file 

• Delete modules 

• Copy a module to a separate object file 

• Move a module out of a library and into an object file (extract 
module) 

• Append an object file as a module of a library 

• Replace a module in the library file with a new module 

• Produce a listing of all public symbols in the library modules 

For each library session, LID reads and interprets the user's commands as 
listed below. It determines whether a new library is being created or an 
existing library is being examined or modified. 

297 



Microsoft Code View and Utilities 

1. LID processes any deletion and move commands. 

Lm does not actually delete modules from the existing file. 
Instead, it marks the selected modules for deletion, creates a new 
library file, and copies only the modules not marked for deletion 
into the new library file. 

2. LID processes any addition commands. 

Like deletions, additions are not performed on the original library 
file. Instead, the additional modules are appended to the new 
library file. (If there were no deletion or move commands, a new 
library file would be created in the addition stage by copying the 
original library file.) 

As LID carries out these commands, it reads the object modules in the 
library, checks them for validity, and gathers the information necessary to 
build a library index and a listing file. The linker uses the library index 
to search the library. 

The listing file contains a list of all public symbols in the index and the 
names of the modules in which they are defined. LID produces the listing 
file only if you ask for it during the library session. 

LID never makes changes to the original library; it copies the library and 
makes changes to the copy. Therefore, when you terminate LID for any 
reason, you do not lose your original file. It also means that when you run 
LID, enough space must be available on your disk for both the original 
library file and the copy. 

When you change a library file, LID lets you specify a different name for 
the file containing the changes. If you use this option, the modified library 
is stored under the name you give, and the original, unmodified version is 
preserved under its own name. If you choose not to give a new name, LID 
gives the modified file the original library name, but keeps a backup copy 
of the original library file. This copy has the extension .BAK instead of 
.LID. 

13.2.1 Creating a Library File 

To create a new library file, give the name of the library file you want to 
create in the oldlibrary field of the command line or at the "Library name" 
prompt. LID supplies the .LID extension. 

The name of the new library file must not be the name of an existing file. 
If it is, LID assumes that you want to change the existing file. When you 
give the name of a library file that does not currently exist, LID displays 
the following prompt: 

Library file does not exist. Create? 

298 



Managing Libraries with Lm 

Type y to create the file, or n to terminate the library session. This mes­
sage is suppressed if the nonexistent library name you give is followed 
immediately by commands, a comma, or a semicolon. 

You can specify a page size for the library when you create it. The default 
page size is 16 bytes. See Section 13.2.11, "Setting the Library Page Size," 
for a discussion of this option. 

Once you have given the name of the new library file, you can insert object 
modules into the library by using the add command symbol (+) in the 
commands field of the command line or at the "Operations" prompt. You 
can also add the contents of another library, if you wish. See Section 
13.2.3, "Adding Library Modules," and Section 13.2.8, "Combining 
Libraries," for a discussion of these options. 

13.2.2 Changing a Library File 

You can change an existing library file by giving the name of the library 
file at the "Library name" prompt. All operations you specify in the oldli­
brary field of the command line or at the "Operations" prompt are per­
formed on that library. 

However, Lm lets you keep both the unchanged library file and the newly 
changed version, if you like. You can do this by giving the name of a new 
library file in the newlibrary field of the command line or at the "Output 
library" prompt. The changed library file is stored under the new library­
file name, while the original library file remains unchanged. 

If you don't give a new file name, the changed version of the library file 
replaces the original library file. Even in this case, LID saves the original, 
unchanged library file with the extension .BAK instead of .LID. Thus, at 
the end of the session you have two library files: the changed version with 
the .Lm extension and the original, unchanged version with the .BAK 
extension. 

13.2.3 Adding Library Modules 

Use the add command symbol (+) in the commands field of the command 
line or at the "Operations" prompt to add an object module to a library. 
Give the name of the object file to be added, without the .OBJ extension, 
immediately following the plus sign. 

Lm strips the drive designation and the extension from the object-file 
specification, leaving only the base name. This becomes the name of the 
object module in the library. For example, if the object file B: \CURSOR is 

299 



Microsoft Code View and Utilities 

added to a library file, the name of the corresponding object module is 
CURSOR. 

Object modules are always added to the end of a library file. 

13.2.4 Deleting Library Modules 

Use the delete command symbol (-) in the commands field of the command 
line or at the "Operations" prompt to delete an object module from a 
library. After the minus sign, give the name of the module to be deleted. A 
module name does not have a path name or extension; it is simply a name, 
such as CURSOR. 

13.2.5 Replacing Library Modules 

Use the replace command symbol (-+) in the commands field to replace a 
module in the library. Following the replace command symbol, give the 
name of the module to be replaced. Remember that module names do not 
have path names or extensions. 

To replace a module, LID deletes the given module, then appends the 
object file having the same name as the module. The object file is assumed 
to have an .OBJ extension and to reside in the current working directory. 

13.2.6 Copying Library Modules 

Use the copy command symbol (*) followed by a module name in the com­
mands field to copy a module from the library file into an object file of the 
same name. The module remains in the library file. When Lm copies the 
module to an object file, it adds the .OBJ extension and the drive designa­
tion and path name of the current working directory to the module name. 
This forms a complete object-file name. You cannot override the .OBJ 
extension, drive designation, or path name given to the object file, but you 
can later rename the file or copy it to any location you like. 

13.2.7 Moving Library Modules (Extracting) 

Use the move command symbol (-*) in the commands field to move an 
object module from the library file to an object file. This operation is 
equivalent to copying the module to an object file, then deleting the 
module from the library. 

13.2.8 Combining Libraries 

You can add the contents of a library to another library by using the add 
command symbol (+) with a library-file name instead of an object-file 

300 



Managing Libraries with LID 

name in the commands field. In the commands field of the command line or 
at the "Operations" prompt, give the add command symbol (+) followed 
by the name of the library whose contents you wish to add to the library 
being changed. When you use this option, you must include the .Lm 
extension of the library-file name. Otherwise, LID assumes that the file is 
an object file and looks for the file with an .OBJ extension. 

In addition to allowing DOS libraries as input, Lm also accepts 286 
XENIX archives and Intel-format libraries. Therefore, you can use LID to 
convert libraries from either of these formats to the DOS format. 

Lm adds the modules of the library to the end of the library being 
changed. Note that the added library still exists as an independent library. 
Lm copies the modules withou t deleting them. 

Once you have added the contents of a library or libraries, you can save 
the new, combined library under a new name by giving a new name in the 
newlibrary field of the command line or at the "Output library" prompt. If 
you omit the "Output library" response, LID saves the combined library 
under the name of the original library being changed. The original library 
is saved with the same base name and the extension .BAK. 

13.2.9 Creating a Cross-Reference-Listing File 

Create a cross-reference-listing file by giving a name for the listing file in 
the listfile field of the command line or at the "List file" prompt. If you do 
not give a listing-file name, Lm uses the special file name NUL, which 
means that no listing file is created. 

You can give the listing file any name and any extension. To cause the list­
ing file to be created outside your current working directory, you can 
specify a full path name, including drive designation. Lm does not supply 
a default extension if you omit the extension. 

A cross-reference-listing file contains two lists. The first is an alphabetical 
listing of all public symbols in the library. Each symbol name is followed 
by the name of the module in which it is referenced. 

The second list is an alphabetical list of the modules in the library. Under 
each module name is an alphabetical listing of the public symbols refer­
enced in that module. 

13.2.10 Performing Consistency Checks 

When you give only a library name followed by a semicolon in the oldli­
brary field of the command line or at the "Library name" prompt, Lm 
performs a consistency check, displaying messages about any errors it 
finds. No changes are made to the library. It is not usually necessary to 

301 



Microsoft CodeView and Utilities 

perform consistency checks, since Lm automatically checks object files for 
consistency before adding them to the library. 

To produce a cross-reference-listing file with a consistency check, invoke 
Lm, specify the library name followed by a semicolon, and give the name 
of the listing file. Lm then performs the consistency check and creates the 
cross-reference-listing file. 

13.2.11 Setting the Library Page Size 

You can set the library-page size while you are creating a library, and you 
can change the page size of an existing library by adding a page-size 
option after the library-file name in the Lm command line or after the 
new library-file name at the "Library name" prompt. The option has the 
following form: 

/PA[GESIZE]:number 

The number specifies the new page size. It must be an integer value 
representing a power of 2 between the values 16 and 32,768. 

The page size of a library affects the alignment of modules stored in the 
library. Modules in the library are always aligned to start at a position 
that is a multiple of the page size (in bytes) from the beginning of the file. 
The default page size is 16 bytes for a new library or the current page size 
for an existing library. 

Note 

302 

Because of the indexing technique used by Lm, a library with a large 
page size can hold more mod ules than a library with a smaller page 
size. However, for each module in the library, an average of pagesize/2 
bytes of storage space is wasted. In most cases, a small page size is 
advantageous; you should use a small page size unless you need to put 
a very large number of modules in a library. 

Another consequence of this indexing technique is that the page size 
determines the maximum possible size of the .Lm file. Specifically, 
this limit is number * 65,536. For example, IP: 16 means that the 
.Lm file has to be smaller than 1 megabyte (16 * 65,536 bytes). 



CHAPTER,. 
AUTOMATING pROGRAM 
DEVELOPMENT WITH MAKE 

14.1 Using MAI<E ....................................................... 305 
14.2 Creating a MAI<E Description File ..................... 306 
14.3 Automating Program Development ..................... 309 
14.4 RunningMAI<E .................................................. 311 
14.5 Specifying MAKE Options .................................. 312 
14.6 Using Macro Definitions with MAI<E .................. 312 

14.6.1 Defining and Specifying Macros ................. 313 
14.6.2 Using Macros within Macro Definitions ....... 315 
14.6.3 Using Special Macros ................................ 315 

14.7 Defining Inference Rules ..................................... 316 





Automating Program Development with MAKE 

The Microsoft Program Maintenance Utility (MAKE) automates program 
development. MAKE can update an executable file automatically when­
ever changes are made to one of its source or object files, and it can update 
any file whenever changes are made to other, related files. 

Before you run MAKE, you must create a file containing the information 
that MAKE needs in order to run. This type of file is known as a MAKE 
"description file." The following example shows a MAKE description file 
named SAMPLE: 

#SAMPLE IS THE NAME OF THIS FILE 
SAMPLE.EXE: SAMPLE.OBJ 

LINK SAMPLE; 

This description file has the following characteristics: 

• SAMPLE. EXE is the name of the "outfile." The outfile is the file 
that you want MAKE to update. 

• SAMPLE. OBJ is the name of an "infile." An infile is a file that 
MAKE examines in order to determine whether the ou tfile should 
be updated. If the infile has changed more recently than the outfile 
has changed, then MAKE will update the outfile. 

• LINK SAMPLE; is the command which tells MAKE to update the 
outfile. In the example above, MAKE updates SAMPLE. EXE (the 
outfile) whenever SAMPLE. OBJ (the in file) has been changed. 

To update SAMPLE, you would type the following command: 

MAKE SAMPLE 

MAKE then compares the last-modification dates of SAMPLE. EXE and 
SAMPLE.OBJ. If the date for SAMPLE. OBJ is more recent than the date 
for SAMPLE. EXE, MAKE carries out the LINK command, LINK SAM­
PLE; , specified in the description file. This LINK command links the 
SAMPLE.OBJ file, so that the corresponding executable file, SAMPLE. EXE, 
is updated automatically to reflect the changes to SAMPLE. OBJ. 

14.1 Using MAKE 

The general procedure for using MAKE is as follows: 

1. Create a file in which you give MAKE the following information: 

a. The name of each outfile that you want it to update 

305 



Microsoft Code View and Utilities 

b. For each outfile, the infiles that must change to cause MAKE 
to update the outfile 

c. The commands that you want MAKE to perform when any of 
the in files change 

2. Run MAKE. On the DOS command line, you must specify the 
name of the MAKE description file you have created. (You can 
also specify options that affect the way in which MAKE operates; 
see Section 14.5 for a description of these options.) 

Mter you invoke MAKE, it compares the last-modification date of the 
in files with the last-modification date of the corresponding outfiles. If any 
infile date is more recent than the outfile date, MAKE automatically car­
ries out the commands given in the description file and updates the outfile. 

The following sections explain how to create a MAKE description file and 
run MAKE. 

14.2 Creating a MAKE Description File 

Since a MAKE description file is just a text file, you can use any text edi­
tor to create one. You will usually want to give the MAKE description file 
the same file name as the program it updates (with no extension); however, 
you can use any valid file name. 

A MAKE description file consists of one or more description blocks, each 
with the following general form: 

[ macrodef£nition] 

outfile: infile[,infile ... ] [# comment] 
[# comment] 

306 

command [# comment] 
[command] [# comment] 



Automa.ting Progra.m Development with MAKE 

Note 

In the example above the pairs of in file names are separated by a 
comma. Each pair may also be separated by at least one space. 

The following list defines how the fields appearing in a description block 
are used: 

Field 

macrodejin£t£on 

outjile 

injile 

command 

Note 

Usage 

Defines one or more MAKE macro definitions. See 
Section 14.6 for an explanation of how to use 
macro definitions in a MAKE description file. 

Specifies the name of a file that you want MAKE 
to update automatically. A colon must separate 
this field from the £nfile fields. 

Specifies the names of any files that the outfile 
depends on. For example, if the outfile is an exe­
cutable file, the infiles might be object files; if the 
outfile is an object file, the in files might be source 
files. The line containing the outjile and injile fields 
is known as the "dependency line." 

Specifies the name of an executable file (for exam­
ple, LINK) or a DOS internal command. 

One way to remember the MAKE description-file format is to think of 
it in terms of an "if-then" form: if an outjile is out of date with respect 
to any injile, or if an outjile does not exist, then do commands. 

The following sections define the rules for using outfile and infile names, 
commands, comments, and description blocks in a description file. 

307 



Microsoft CodeView a.nd Utilities 

Outfiles and Infiles 

The outfile and £nfile fields must contain valid file names. If any file is not 
on the same drive and in the same directory as the description file, you 
must include a path specification with the file name. 

In any description block, you can give any number of £nfile names, but 
only one outfile name. At least one space or a comma must separate each 
pair of £nfile names. If you have more £nfile names than can fit on one line, 
type a backslash (\) at the end of the current line, and then continue typ­
ing names on the next line. 

Commands 

The command field in a description block can contain any valid DOS com­
mand line, consisting of the base name of an .EXE, .COM, or .BAT file 
or a DOS internal command. You can give any number of commands, but 
each must begin on a new line and each must appear immediately after a 
tab or after at least one space. 

MAKE carries out this command only if one or more of the infiles in the 
description block has been changed since the outfile was created or most 
recently updated. 

Comments 

The comment field must contain a number sign (#), which is a comment 
character. MAKE ignores all characters that follow the comment charac­
ter on the same line. 

If a comment appears on the same line as the outfile name, it must appear 
after the £nfile name(s). If a comment a]?pears on a line where a command 
is expected (but no command is written), the comment character (#) must 
be the first character on the line; no leading spaces are allowed. 

Description Blocks 

You can give any number of description blocks in a description file. You 
must make sure, however, that a blank line appears between the last line 
of one description block and the first line of the next. 

308 



Automating Program Development with MAKE 

The order in which you place the description blocks is important. MAKE 
examines each description block in turn and makes its decision to carry 
out the command in that block based on the last-modification dates of the 
outfile and infiles. If a command in a later description block changes a file 
used in an earlier description block, MAKE has no way to return to that 
earlier description block to update files that depend on the changed files . 

• Example 

MOD1.OBJ: MODI.ASM 
MASM MODI; 

MOD2.0BJ: MOD2.C #Comment allowed after infile 
#Comment before command must start in first column 

CL Ic IAL MOD2.C #Comment allowed here 

MOD3.0BJ: MOD3.FOR 
E'L Ic MOD3.E'OR 

EXAMPLE.EXE: MODI.OBJ MOD2.0BJ MOD3.0BJ 
LINK MODI+MOD2+MOD3,EXAMPLE,EXAMPLE; 

The sample description file tells MAKE how to update or create four 
outfiles: MODl.OBJ, MOD2.0BJ, MOD3.0BJ, and EXAMPLE.EXE. To 
update or create an object file, MAKE invokes the appropriate assembler 
or compiler. To update or create EXAMPLE. EXE, MAKE will link the 
three object files. 

Note that the description blocks appear in the order in which the outfiles 
are updated or created. Thus, MAKE updates MODl. OBJ, MOD2. OBJ, 
and MOD3. OBJ (or creates them, if necessary) before it updates or creates 
EXAMPLE. EXE. Thus, after MAKE is run, any changes to the source files 
will be reflected in EXAMPLE. EXE. 

The next section further describes how MAKE processes files. 

14.3 Automating Program Development 

Consider a test program called WORK. EXE that is produced from two 
source files, WORKl • C and WORK2 . FOR, where the resulting object files 
(WORKl .OBJ and WORK2 .OBJ) must be linked with a library file named 
LI BV3 • LI B. During development, you will sometimes recompile either 

309 



Microsoft Code View and Utilities 

WORKl or WORK2; however, WORK. EXE needs to be updated every time you ' 
alter the program. 

The following block descriptions in a MAKE description file named WORK 
allow you to update WORK. EXE automatically: 

WORK1.OBJ: WORK1.C 
CL Ie IAL WORK1.C 

WORK2.0BJ: WORK2.FOR 
FL Ie WORK2. FOR 

WORK.EXE: WORK1.OBJ WORK2.0BJ \LIB\LIBV3.LIB 
LINK ICO WORK1.OBJ+WORK2.0BJ,WORK,,\LIB\LIBV3.LIB 

Each time you finish debugging the program's files, invoke MAKE with 
the following command line: 

MAKE WORK 

MAKE carries out the following three steps (each step corresponds to a 
description block): 

1. Checks to see if WORKl • C has been changed since the last time 
WORKl .OBJ was changed (in other words, you've made a change to 
the source file since the last compile). If so, it carries out the given 
CL command to recompile WORKl • C. 

2. Checks WORK2 . FOR in the same way it checked WORKl • C in Step 
1. Note that if only one of the files has been changed, then only 
that file is recompiled. For example, if you change WORKl • C but 
not WORK2 • FOR, then only WORKl • C is recompiled; but if each 
source file has been changed since its last compile, then each is now 
recompiled. 

3. Checks to see if the object files WORKl .OBJ and WORK2 • OBJ or 
the library file LI BV3 • LI B has been changed since the last time 
the modules were linked. If either of the object files has been 
recompiled, or if the library file has been changed, then MAKE 
relinks the program. 

If you run MAKE with this description file immediately after you create 
the source files WORKl . C and WORK2 • FOR, MAKE carries out Steps 1 
and 2 to compile these source files (since in each case the ou tfile does not 
exist), then links them in Step 3. 

If you invoke MAKE again without changing any of the infiles, MAKE 
does not execute any commands. 

310 



Automating Program Development with MAKE 

If you change one of the object files WORK!. OBJ or WORK2 .OBJ, MAKE 
relinks that file and then relinks the program in Step 3. 

If you change the library file LI BV3 • LI B, but make no other changes, 
MAKE skips Steps 1 and 2, but relinks the program in Step 3 (as 
specified in the last description block). 

14.4 Running MAKE 

• Syntax 

MAKE [oph'ons] [macrodef£n£h"ons] filename 

The following list describes the options you can give on the MAKE com­
mand line: 

Option 

options 

macro definitions 

filename 

Meaning 

One or more of the MAKE options, 
described in Section 14.5 

One or more MAKE macro definitions, 
described in Section 14.6 

The name of a MAKE description file 

Once you start MAKE, it reads the line in each description block that 
specifies the ou tfile and infiles and checks the modification dates of those 
files. If any of the in files has a modification date later than the outfile's 
modification date, or if the outfile does not exist, MAKE displays the 
commands specified in the block and then executes the given commands. 
Otherwise, it skips to the next description block. 

If MAKE cannot find a file, it displays a message informing you that the 
file was not found. If the missing file is an outfile, MAKE continues run­
ning since, in many cases, the missing file will be created by later com­
mands. 

If the missing file is an in file or a command file (that is, an executable or 
batch file), MAKE stops running. MAKE also stops running and displays 
an exit code if any command in the description block returns an error, 
unless a minus sign (-) precedes the command line in the MAKE descrip­
tion file. 

MAKE executes any commands in the environment in which the MAKE 
command itself is invoked. Thus, you can include environment variables 
such as PATH for the commands specified in the description file. 

311 



Microsoft Code View and Utilities 

14.5 Specifying MAKE Options 

To invoke a MAKE option, type the option on the MAKE command line 
in the opt£ons field. The following list describes each option available with 
MAKE and how the option affects how MAKE operates. 

Option 

/D 

/1 

/N 

/S 

Action 

Displays the last modification date of each file as the file is 
scanned. 

Ignores exit codes (also called return or "errorlevel" codes) 
returned by programs called from the MAKE description 
file. MAKE continues executing the rest of the descrip­
tion file despite the errors. 

Displays commands in the description file that MAKE 
would execute but does not execute these commands. This 
option is useful if you are debugging a MAKE description 
file. 

Does not display lines as they are executed. 

14.6 Using Macro Definitions with MAKE 

Macro definitions let you associate a name with text in a description file, 
and then use the name instead of the text wherever the text appears in a 
description file. This feature makes it easier to update a description file 
when one of the names used in the file changes: when you update a macro 
definition, the corresponding text is updated wherever the macro appears 
in the definition file. Thus, you can change the text throughout the 
description file without having to edit every line that uses the particular 
text. 

You might want to use macro definitions to perform operations such as the 
following: 

312 

1. Specifying the base names of source, object, and executable files 
under development. If the program name changes, you only need 
to change the base name in the macro definition; then the base 
name is changed automatically for the source, object, and execut­
able files given in the description file. 



Automa.ting Progra.m Development with MAKE 

2. Specifying the set of default options for a command such as FL or 
LINK. If the options change, changing the macro definition 
changes the options wherever the macro appears in the description 
file. 

14.6.1 Defining and Specifying Macros 

The following defines the form of a macro definition: 

name=text 

After you define a macro, use the following to include the macro in the 
description file: 

$(name) 

Wherever the pattern $( name) appears in the description file, that pattern 
is replaced by text. The name is converted to uppercase; for example, the 
names flags and FLAGS are equivalent. If you define a macro name but 
leave text blank, text will be a null string. 

For name, you can also use any environment variable that is defined in the 
current environment in a macro definition. For example, if the environ­
ment variable PATH is defined in the current environment, the value of 
PATH will replace any occurrences of $ (PATH) in the description file. 

You can give macro definitions in either of the following two places: 

1. In the MAKE description file. Each macro definition must appear 
on a separate line. Any white space (tab or space characters) 
between name and the equal sign (= ) or between the equal sign and 
text is ignored. Any other white space is considered part of text. 

2. On the MAKE command line. 

To include white space in a macro definition, enclose the entire definition 
in double quotation marks (-. II). 

If the same name is defined in more than one place, the following order of 
precedence applies: 

1. Command-line definition 

2. Description-file task definition 

3. Environment definition 

313 



Microsoft Code View and Utilities 

• Example 

Assume the following MAKE description file named LINKER: 

base=ABC 
debug="/CO" 

$(base).OBJ: $(base).OBJ 
LINK $ (base) .OBJ 

$(base).exe: $ (base) .obj \lib\libv3.lib 
LINK $(debug),$(base),$(base),$(base); 

In this description file, macro definitions are given for the names base and 
debug. 

The base macro defines the base name of the object and executable files 
being maintained. MAKE replaces each occurrence of $(base) with the 
text ABC. If the program name changes, you would only have to replace 
ABC in the macro definition with the new program name to change the 
base name of the two files. 

The debug macro tells the linker to prepare a special executable file con­
taining symbolic data and line-number information. 

If you want to override one of the macro values in this description file, you 
can give a new macro definition on the MAKE command line, as shown in 
the following example: 

MAKE base=DEF linker 

This command-line definition of base overrides the definition of base in 
the description file. This causes base to be replaced with DEF instead of 
ABC. 

If you do not want the special executable file created during linking, you 
could run MAKE with the following command line: 

MAKE debug= linker 

Since you give a blank value for debug (note the white space between the 
equal sign and the MAKE description-file name), it will be treated as a 
null string. Because definition on the command line has higher precedence 
than the definition in the description file, the $( debug) macro becomes a 
null string. Thus, the linker does not prepare the special executable file for 
debugging. 

314 



Automating Program Development with MAKE 

14.6.2 Using Macros within Macro Definitions 

Macros can be used within macro definitions. For example, you could have 
the following macro definition in a MAKE description file named PIC­
TURE: 

LIBS=$(DLIB)\LIBV3.LIB $ (DLIB)\GRAPHICS.LIB 

You could then run MAKE and specify the definition for the macro 
named $ (DLI B) on the command line, as shown in the following example: 

MAKE DLIB=C:\LIB PICTURE 

In this case, every occurrence of the macro $(DLI B) in the description file 
would be expanded to c: \LI B, so the definition of the LI BS macro in the 
description file would be expanded to the following: 

LIBS=C:\LIB\LIBV3.LIB C:\LIB\GRAPHICS.LIB 

Be careful to avoid infinitely recursive macros such as the following: 

A = $ (B) 
B = $ (C) 
C = $ (A) 

In the example above, if the macro $(B) is undefined, all of these macros 
will be undefined, as well. 

14.6.3 Using Special Macros 

MAKE recognizes the following special macro names and automatically 
substitutes the corresponding text for each: 

Name 

• Example 

Value Substituted 

Base name of the outfile (without the extension) 

Complete outfile name 

Complete list of infiles 

TEST.EXE: MOD1.OBJ MOD2.0BJ MOD3.0BJ 
LINK $**, $@; 
$* 

315 



Microsoft Code View and Utilities 

In the LINK command in the example above, $ * * represents all of the 
infiles that correspond to the outfile TEST. EXE, and $@ specifies the com­
plete name of TEST. EXE as the executable-file name on the LINK com­
mand line. The final line uses $ * to specify the base name of TEST. EXE, 
TEST, as the next command to be carried out. Thus, this example is 
equivalent to the following: 

TEST:EXE: MOD1.OBJ MOD2.0BJ MOD3.0BJ 
LINK MOD1.OBJ MOD2.0BJ MOD3.0BJ, TEST.EXE; 
TEST 

14.7 Defining Inference Rules 

Often, you use MAKE to perform updates on one type of file when a file 
of another type is changed. For example, you often use MAKE to update 
object files when source files change or to update executable files when 
object files change. 

MAKE allows you to define rules, known as "inference rules," that allow 
you to give a single command to convert all files with a given extension to 
files with a different extension. For example, you can use inference rules to 
specify a single LINK command that changes any object file (which has an 
extension of .OBJ) to an executable file (which has an extension of 
.EXE). You would not have to include the LINK command in each block 
in which you link a object file. 

Inference rules have the following form: 

• in exten8ion. outexten8ion: 
command 
[command] 

In this format, command specifies one of the commands that you must use 
to convert files with extension inextension to files with extension outexten­
sion. Using the earlier example of converting source files to object files, 
inextension would be .OBJ, outextensz'on would be .EXE, and command 
would be the LINK command with any appropriate command-line 
options. 

If MAKE finds a description block without an explicit command, it looks 
for an inference rule that matches both the outfile extension and the infile 
extension. If it finds such a rule, MAKE carries out any commands given 
in the rule. 

316 



Automa.ting Progra.m Development with MAKE 

You can include inference rules in one of two places: 

1. In a MAKE description file. 

2. In a file named TOOLS.INI. This file is known as the "tools­
initialization file." A line beginning with the tag fmake] must 
appear before any dependency rules in TOOLS.iNI. 

MAKE searches for dependency rules in the following order: 

1. In the current description file. 

2. In the TOOLS.INI file. MAKE looks for TOOLS.IN! on the 
current drive and directory. If it cannot find this file, then MAKE 
looks for TOOLS.INI in the directory indicated by the INIT 
environment variable. If MAKE finds TOOLS.INI, it looks 
through the file for a line beginning with the tag [make]. It applies 
any appropriate inference rules following this line . 

• Example 

.OBJ .EXE: 
LINK $*.OBJ; 

EXAMPLE1.EXE: EXAMPLE1.OBJ 

EXAMPLE2 . EXE: EXAMPLE2 .OBJ 
LINK ICO EXAMPLE2",LIBV3.LIB 

In the sample description file above, line 1 defines an inference rule that 
executes the LINK command on line 2 to create an object file whenever a 
change is made in the corresponding object file. The file name in the infer­
ence rule is specified with the special macro name $ * so that the rule 
applies to any base name with the .OBJ extension. 

When MAKE encounters a line containing an outfile and one or more 
infiles, it first looks for commands on the next line. When it does not find 
any commands, MAKE checks for a rule that may apply and finds the 
rule defined in lines 1 and 2 of the description file. MAKE applies the 
rule, replacing the $ * macro with EXAMPLE! when it executes the com­
mand, so that the L-I~ command becomes 

LINK EXAMPLE1.OBJ; 

When MAKE reaches the line containing the EXAMPLE 2 . EXE outfile, it 
does not search for a dependency rule, since a command is explicitly given 
for this outfile/infile relationship. 

317 





CHAPTER 
USING EXEPACK, EXEMOD~' 
SETENv, AND ERROUT 

15.1 Compressing Executable 
Files with tlie EXEP ACK Utility ........................ 321 

15.2 Modifying Program 
Headers with the EXEMOD Utility ..................... 322 

15.3 Enlarging the DOS 
Environment with the SETENV Utility .............. 326 

15.4 Redirecti!!g ~rror Output 
with the ERROUT UtIlity ................................... 328 





Using EXEPACK, EXEMOD, SETENV, a.nd ERROUT 

The following utilities allow you to modify files and change the operating 
environment: 

Utility 

Microsoft EXE File 
Compression Utility 
(EXEPACK) 

Microsoft EXE File Header 
Utility (EXEMOD) 
Microsoft Environment 
Expansion Utility 
(SETENV) 

Microsoft STDERR 
Redirection Utility 
(ERROUT) 

Function 

Compresses executable files by remov­
ing sequences of repeated characters 
from the file and by optimizing the relo­
cation table. 

Modifies header information in execut­
able files. 

Enlarges the DOS environment table in 
IBM PC-DOS Versions 2.0,2.1,3.0, and 
3.1. SETENV allows you to use more 
and/or larger environment variables. 

Redirects standard error output from 
any command to a given file or device. 

The following sections explain how to use the EXEP ACK, EXEMOD, 
SETENV, and ERROUT utilities. 

15.1 Compressing Executable 
Files with the EXEP ACK Utility 

The EXEPACK utility compresses sequences of identical characters from 
a specified executable file. It also optimizes the relocation table, whose 
entries are used to determine where modules are loaded into memory when 
the program is executed. Using EXEPACK, you can reduce the size of 
some files and decrease the time required to load them. 

EXEP ACK does not always give a significant saving in disk space, and 
may sometimes actually increase file size because of an enhanced .EXE 
loader. However, programs that have approximately 500 or more entries in 
the relocation tab«c an,d long streams of repeated characters will usually 
be shorter and take less time to load if packed. 

The EXEP ACK program has exactly the same function as the LINK 
/EXEP ACK option, except that EXEP ACK works on files that have 
already been linked. One use for this utility is to pack the executable files 
provided with the product distribution. If you have floppy disks, you may 
want to pack all programs in order to make more room on your disks. 

321 



Microsoft Code View a.nd Utilities Guide 

The EXEPACK command-line format is as follows: 

EXEP ACK executable/ile packed/ile 

The executablefile is the file to be packed and packedfile is the name for the 
packed file. The packedfile should have a different name or be on a differ­
ent drive or directory. EXEPACK will not pack a file onto itself. 

When using EXEP ACK to pack an executable overlay file or a file that 
calls overlays, the packed file should always be renamed with the original 
name to avoid the overlay-manager prompt. 

Note 

Using EXEP ACK removes all symbolic debug information from exe­
cutable files . 

• Example 

EXEPACK WORK.EXE WORK.TMP 
DEL WORK.EXE 
RENAME WORK.TMP WORK.EXE 

In the example above, the executable file WORK. EXE is packed to a tem­
porary file. The original is then deleted and the new packed version is 
renamed with the original name. 

15.2 Modifying Program 
Headers with the EXEMOD Utility 

The EXEMOD utility allows you to modify fields in the header of an exe­
cutable file. Some of the options available with EXEMOD are the same 
as LINK options, except that they work on files that have already been 
linked. Unlike the LINK options, the EXEMOD options require that 
values be specified as hexadecimal numbers. 

To display the current status of the header fields, type the following: 

EXEMOD executable/ile 

322 



Using EXEPACK, EXEMOD, SETENV, and ERROUT 

To modify one or more of the fields in the file header, type the following: 

EXEMOD executable/ile [options] 

EXEMOD expects the executablefile to be the name of an existing file 
with the .EXE extension. If the file name is given without an extension, 
EXEMOD appends .EXE and searches for that file. If you supply a file 
with an extension other than .EXE, then EXEMOD displays the follow­
ing error message: 

exemod: file not .EXE 

The EXEMOD options are shown with the forward slash (/) designator, 
but a dash (-) may also be used. Options can be given in either uppercase 
or lowercase, but they cannot be abbreviated. The EXEMOD options and 
their effects are described in the following list: 

Option 

/H 

/STACK hexnum 

/lV1IN hexnum 

/MAX.. hexnum 

Effect 

Displays the current status of the DOS program 
header. Its effect is the same as entering 
EXEMOD with an executablefile but without 
options. The /H option should not be used with 
other options. 

Allows you to set the size of the stack (in bytes) 
for your program by setting the initial SP 
(stack pointer) value to hexnum. The minimum 
allocation value is adjusted upward, if neces­
sary. This option has the same effect as the 
LINK /STACK option, except that it works 
on files that are already linked. 

Sets the minimum allocation value (that is, the 
minimum number of 16-byte paragraphs needed 
by the program when it is loaded into memory) 
to hexnum. The actual value set may be 
different from the requested value if adjustments 
are necessary to accommodate the stack. 

Sets the maximum allocation value (that is, the 
maximum number of 16-byte paragraphs used 
by the program when it is loaded into memory) 
to hexnum. The maximum allocation value 
must be greater than or equal to the minimum 
allocation value. This option has the same effect 
as the LINK /CPARMAXALLOC option. 

For each of the options listed above, hexnum is a number entered using 
hexadecimal digits (uppercase or lowercase); no prefix is needed. 

323 



Microsoft Code View and Utilities Guide 

Note 

Use of the /STACK option on programs developed with other than 
Microsoft compilers or assemblers may cause the programs to fail, or 
EXEMOD may return an error message. 

EXEMOD works on packed files. When it recognizes a packed file, it will 
print the following message: 

packed file 

It will then continue to modify the file header. 

When packed files are loaded, they are expanded to their unpacked state 
in memory. If the EXEMOD /STACK option is used on a packed file, 
the value changed is the value that SP will have after expansion. If either 
the {MIN or the /STACK option is used, the value is corrected as neces­
sary to accommodate unpacking of the modified stack. The /MAX. option 
operates as it would for unpacked files. 

If the header of a packed file is displayed, the CS:IP and SS:SP values are 
displayed as they are after expansion. These values are not the same as the 
actual values in the header of the packed file . 

• Example 

Microsoft (R) EXE File Header Utility Version 4.02 
Copyright (C) Microsoft Corp 1985. All rights reserved. 

TEST.EXE (hex) (dec) 

.EXE size (bytes) 439D 17309 
Minimum load size (bytes) 419D 16797 
Overlay number 0 0 
Initial CS:IP 0403:0000 
Initial SS:SP 0000:0000 0 
Minimum allocation (para) 0 0 
Maximum allocation (para) FFFF 65535 
Header size (para) 20 32 
Relocation table offset IE 30 
Relocation entries 1 1 

The display above shows how EXEMOD would display the current file 
header for file TEST. EXE. Note that (para) refers to paragraphs, which 
are units of 16 bytes. To translate paragraphs to bytes, multiply by 16. 
The meaning of each field is given below. 

324 



Using EXEPACK, EXEMOD, SETENV, a.nd ERROUT 

• EXE size is the size of the file as stored on disk. Minimum load 
size is the total amount of memory that DOS must provide in order for 
the program to execute. 

Overlay, number is the ordinal number of the overlay as generated by 
LINK. llf the executable file does not use overlays, then there will be 
exactly one overlay module, the root.) Since EXEMOD looks only at the 
beginning of the file, the overlay number displayed will normally be O. 

Ini tial CS: IP and Initial SS: SP indicate the initial values of the 
instruction pointer and the stack pointer, respectively. The values of as 
and SS are relative to the beginning of the load module, and will be 
changed once the file is actually loaded into memory. The offset address of 
the stack pointer (that is, SP) indicates the amount of room available for 
the stack to grow downward before reaching SS. (Some of this room may 
be needed by other segments, however.) The initial value of SP can be 
changed with EXEMOD. 

Minimum allocation indicates the amount of memory that the file 
requires, in addition to the memory that DOS uses to load the file itself. If 
DOS is unable to allocate this amount of memory, then it will not execute 
the file. This value can be changed with EXEMOD. 

Maximum allocation indicates the amount of memory that the file 
requests, in addition to memory used to load the file itself. If the amount 
specified is not available, then DOS will simply allocate all of available 
memory. This value can be changed with EXEMOD. 

Header size gives the size of all header information, including reloca­
tion en tries. 

Relocation table offset indicates the number of bytes from the 
beginning of the file to the relocation entries. 

Relocation entries gives the number of relocation entries. Each of 
these entries is a~iece of information used to adjust segment addresses in 
the load module the portion of the file that is actually loaded into 
memory). DOS a ds the load address to each segment address, so that the 
segment address will refer to a true location in physical memory. 

• Examples 

>EXEMOD TEST.EXE 

The command in this example will show the display in the previous exam­
ple, for the file TEXT. EXE. 

325 



Microsoft Code View and Utilities Guide 

EXEMOD TEST.EXE /STACK FF /MIN FF /MAX FFF 

The example above uses the EXEMOD command line to modify the 
header fields in TEST. EXE. 

>EXEMOD TEST.EXE 

Microsoft (R) EXE File Header Utility Version 4.02 
Copyright (C) Microsoft Corp 1985. All rights reserved. 

TEST.EXE 

.EXE size (bytes) 
Minimum load size (bytes) 
Overlay number 
Initial CS:IP 
Initial SS:SP 
Minimum allocation (para) 
Maximum allocation (para) 
Header size (para) 
Relocation table offset 
Relocation entries 

(hex) 

439D 
528D 

o 
0403:0000 
OOOO:OOFF 

FF 
FFF 

20 
IE 

1 

(dec) 

17309 
20877 

o 

256 
256 

4095 
32 
30 

1 

The last example shows the current status of the header for TEST. EXE 
after being altered by the previous example. 

15.3 Enlarging the DOS 
Environment with the SETENV Utility 

The SETENV utility allows you to allocate more operating-environment 
space to DOS by modifying a copy of COMMAND.COM. 

Normally, DOS Versions 2.0 and later will allocate 160 bytes (10 para­
graphs) for the environment table. This may not be enough space if you 
want to set numerous environment variables using the SET or PATH 
command. For example, if you have a hard disk with several levels of sub­
directories, a single environment variable might take 40 or 50 characters. 
Since each character uses 1 byte, you could easily require more than 160 
bytes if you want to set several environment variables. 

326 



Using EXEPACK, EXEMOD, SETENV, and ERROUT 

Note 

SETENV will work with most MS-DOS and PC-DOS operating sys­
tems, Versions 2.0 through 3.1. If SETENV does not work with your 
version of CON.Th1AND.COM, please contact Microsoft Technical 
Support. 

If you use DOS 3.2 or later, you can set the environment space with 
the DOS SHELL command. For example, the following command will 
set the environment size at 3000 bytes when placed in CONFIG.SYS: 

SHELL = COMMAND.COM /E:3000 /p 

Consult your DOS manual for further information. 

To enlarge the environment table, you can use SETENV to modify a 
copy of CON.Th1AND.COM. Make sure you work on a copy, and retain 
an unmodified version of CON.Th1AND.COM for backup. 

The command line for modifying the environment table is as follows: 

SETENV filename [environmentsize] 

Normally filename specifies CON.Th1AND.COM. It must be a valid, 
unmodified copy of COMMAND.COM, though it can be renamed. The 
optional environmentsize is a decimal number specifying the size in bytes 
of the new allocation; environmentsz·ze must be a number greater than or 
equal to 160, and less than or equal to 65,520. The specified 
environmentsize is rounded up to the nearest multiple of 16 (the size of a 
paragraph ). 

If environmentsize is not given, SETENV reports the value that the 
CON.Th1AND.COM file is currently allocating. 

Mter modifying CON.Th1AND.COM, you must reboot so that the 
environment table is set to the new size. 

• Examples 

>SETENV COMMAND. COM 

Microsoft (R) Environment Expansion Utility Version 2.01 
Copyright (C) Microsoft Corp 1985,1986. All rights reserved. 

command. com: Environment allocation = 160 

327 



Microsoft Code View a.nd Utilities Guide 

In the example above, no environment size is specified, so SETENV 
reports the current size of the environment table. 

>SETENV COMMAND. COM 605 

In the example above, an environment size of 605 bytes is requested. Since 
605 bytes is not on a paragraph boundary (a multiple of 16), SETENV 
rounds the request up to 608 bytes. CO~.COM is modified so 
that it will automatically set an environment table of 608 bytes (38 para­
graphs). You must reboot to set the new environment-table size. 

15.4 Redirecting Error Output 
with the ERROUT Utility 

By default, standard output and standard error output from a DOS pro­
gram are directed to the terminal. The ERROUT utility allows you to 
execute any legal DOS command-line (including an executable or batch 
file, as well as arguments) and redirect standard error output to a specified 
file or device. 

The ERROUT command-line format is as follows: 

ERROUT [If standarderrorfile] d08commandline 

The doscommandline is simply the entire command line you would type in 
if you were not using ERROUT. This includes the .EXE, .COM, or 
.BAT file you are invoking, as well as any options, arguments, and spaces 
that you would normally use. The doscommandline runs to the end of the 
ERROUT command line. 

The If standarderrorfile option is the name of the file or device to which 
standard error output is redirected. The f must be lower case, and at least 
one space must separate it from the beginning of standarderrorfile. 
Without the use of this option, ERROUT has no effect; doscommandline 
is simply executed as it would normally be executed by DOS. 

Note 

328 

With ERROUT, you may use the DOS redirection operators> and 
> > just as you normally would. However, their effects change some­
what; only standard output is redirected to the file indicated by > or 
> >. Standard error is redirected to standarderrorfile. 



Using EXEPACK, EXEMOD, SETENV, a.nd ERROUT 

• Examples 

ERROUT If ERR.EIL TYPE READ.ME > OUT.EIL 

In the example above, the standard output of the command TYPE 
READ. ME is redirected to the file OUT. ElL, while the standard error out­
put, if any, is redirected to the file ERR. ElL. If there is no error output, 
then ERROUT will still create a file called ERR. ElL. This file will be 0 
bytes long. 

ERROUT If C_ERRORS.DOC CL IAL 12i IOd demo.c 

In the example above, the entire command line beginning with CL is exe­
cuted. All of the command-line arguments /AL, /Zi, /CO, and demo. c 
modify the CL command as they normally would. Error output, if any, is 
sen t to C_ERRORS. DOC. 

ERROUT If PRN MASM 121 TEST,,; 

In the example above, the DOS command line MASM /2I TEST,,; is 
executed, and standard error output is sent to the printer (which is the 
device indicated by PRN). 

329 





ApPENDIXES 

A Regular Expressions .................................................. 333 

B Using Exit Codes ......................................................... 341 

C Error Messages .............................................................. 347 

331 





ApPENDIX A 
REGULAR EXPRESSIONS 

Al Introduction ................................................................ 335 
A2 Special Characters in Regular Expressions .................. 335 
A3 Searching for Special Characters ................................. 336 
A4 Using the Period ......................................................... 336 
A5 Using Brackets ............................................................ 336 

A.5.l Using the Dash within Brackets .......................... 337 
A.5.2 Using the Caret within Brackets ......................... 337 
A.5.3 Matching Brackets within Brackets .................... 338 

A6 Using the Asterisk ....................................................... 338 
A 7 Matching the Start or End of a Line ........................... 339 

333 





Regular Expressions 

A.1 Introduction 

Regular expressions are used to specify text patterns in searches for vari­
able text strings. Special characters can be used within regular expressions 
to specify groups of characters to be searched for. 

This appendix explains all of the special characters you can use to form 
regular expressions, but you do not need to learn them all to use the Code­
View Search commands. The simplest form of regular expression is simply 
a text string. For example, if you want to search for all instances of the 
symbol COUNT, you can specify COUNT as the string to be found. 

If you only want to search for simple strings, you do not need to read this 
entire appendix, but you should know how to search for strings containing 
the special characters used in regular expressions. See Section A.3 for more 
information. 

A.2 Special Characters in Regular Expressions 

The following characters have special meanings in regular expressions: 

Character 

Asterisk (*) 

Backslash (\) 

Brackets ([ ]) 

Purpose 

Matches any number of repetitions of the previ­
ous character. 

Removes the special characteristics of the fol­
lowin~ characters: backslash (\), period (.), 
caret lA)( dollar sign ($), asterisk (*), and left 
bracket D. 
Matches characters specified within the brack­
ets. The following special characters may be 
used inside brackets: 

Caret (A) 

Dash (-) 

Reverses the function of the 
brackets. That is, the caret 
matches any character except 
those specified within the 
brackets 

Matches characters in ASCII 
order between (inclusive) the 
characters on eIther side of the 
dash. 

335 



Microsort CodeView and Utilities 

Caret (A) 

Dollar sign ($) 

Period (.) 

Matches beginning of line. 

Matches end of line. 

Matches any character. 

A3 Searching for Special Characters 

If you need to match one of the special characters used in regular expres­
sions, you must precede it with a backslash when you specify a search 
string. The special characters are the asterisk (*)( backslash (\), left 
bracket (D, caret (A), dollar sign ($), and period .). 

For example, the regular expression I *J matches such combinations as 
J, IJ, IIJ, and IIIJ. The regular expression I\*J matches only 
I *J. The backslash is necessary because the asterisk (*) is a special char­
acter in regular expressions. 

A4 Using the Period 

A period in a regular expression matches any single character. This 
corresponds to the question mark (1) used in specifying DOS file names. 

For example, you could use the regular expression AMAX. to search for 
either of the intrinsic functions AMAXO and AMAXl. You could use the 
expression X. Y to search for strings such as X+Y, X-Y, or X* Y. If your 
programming style is to put a space between variables and operators, you 
could use the regular expression X • Y for the same purpose. 

Note that when you use the period as a wild card, you will find the strings 
you are looking for, but you may also find other strings that you aren't 
interested in. You can use brackets to be more exact about the strings you 
want to find. 

A5 Using Brackets 

You can use brackets to specify a character or characters you want to 
match. Any of the characters listed within the brackets is an acceptable 

336 



Regular Expressions 

match. This method is more exact than using a period to match any char­
acter. 

For example, the regular expression x[-+/*Jy matches x+y, x-y, x/y, 
or x*y, but not x=y or xzy. The regular expression COUNT [12J matches 
COUNT1 and COUNT2, but not COUNT3. 

Most regular-expression special characters have no special meaning when 
used within brackets. The only special characters within brackets are the 
caret (A), dash (-), and right bracket (]). Even these characters only have 
special meanings in certain contexts, as explained in Sections A.5.1-A.5.3. 

A.5.1 Using the Dash wi.thin Brackets 

The dash (minus sign) can be used within brackets to specify a group of 
sequential ASCII characters. For example, the regular expression [0-9J 
matches any digit; it is equivalent to [0123456789J. Similarly, [a-zJ 
matches any lowercase letter, and [A-ZJ matches any uppercase letter. 

You can combine ASCII ranges of characters with other listed characters. 
For example, [A-Za-z J matches any uppercase or lowercase letter or a 
space. 

The dash has this special meaning only if you use it to separate two ASCII 
characters. It has no special meaning if used directly after the starting 
bracket or directly before the ending bracket. This means that you must 
be careful where you place the dash (minus sign) within brackets. 

For example, you might use the regular expression [+ - / * J to match the 
characters +, -, /, and *. However, this does not give the intended result. 
Instead it matches the characters between + and / and also the character 
*. To specify the intended characters, put the dash first or last in the list: 
[ - + / * J or [+ / * -] . 

A.5.2 Using the Caret within Brackets 

If used as the first character within brackets, the caret (A) reverses the 
meaning of the brackets. That is, any character except the ones in brack­
ets will be matched. For example, the regular expression [ .... 0- 9] matches 
any character that is not a digit. Specifying the characters to be excluded 
is often more concise than specifying the characters you want to match. 

If the caret is not in the first position within the brackets, it is treated as 
an ordinary character. For example, the expression [0-9 .... ] matches any 
digit or a caret. 

337 



Microsoft Code View and Utilities 

A.5.3 Matching Brackets within Brackets 

Sometimes you may want to specify the bracket characters as characters 
to be matched. This is no problem with the left bracket; it is treated as a 
normal character. However, the right bracket is interpreted as the end of 
the character list rather than as a character to be matched. 

If you want the right bracket to be matched, you must make it the first 
character after the initial left bracket. For example, the regular expression 
[J #! [@%J matches either bracket character or any of the other characters 
listed within the brackets. However, if you changed the order of just one of 
the characters (to [#J ! [@%J), the meaning would be changed so that you 
would be specifying two groups of characters in brackets: [#] and [@%J. 

A.6 Using the Asterisk 

The asterisk matches zero or more occurrences of the character preceding 
the asterisk. 

For example, the regular expression IF * TEST will match any number of 
repetitions of the space character that follow the word "if." 

IF TEST 
IF TEST 
IF TEST 
IFTEST 

Notice that the last example contains zero repetitions of the space 
character. 

The asterisk is convenient if the text you are searching for might contain 
some spaces, but you don't know the exact number. (Be careful in this 
situation: you can't be sure if the text contains a series of spaces or a tab.) 

You might also use the asterisk to search for a symbol when you aren't 
sure of the spelling. For example, you could use first* ime if you aren't 
sure if the identifier you are searching for is spelled firsttime or firs­
time. 

One particularly powerful use of the asterisk is to combine it with the 
period (.*). This combination searches for any group of characters. It is 
similar to the asterisk used in specifying DOS file names. For example, the 
expression (. *) matches (test), (response . EQ. 'Y'), (x=o; x 
. LE. 20; x=x+l), or any other string that starts with a left parenthesis 
and ends with a right parenthesis. 

338 



Regular Expressions 

You can use brackets with the asterisk to search for a sequence of repeated 
characters of a given type. For example, \ [ [0- 9J * J matches number 
strings within brackets ([1353J or [3J), but does not match character 
strings within brackets ([countJ ). Empty brackets ([ J) are also 
matched, since the characters in the brackets are repeated zero times. 

A. 7 Matching the Start or End of a Line 

In regular expressions, the caret ("') matches the start of a line, and the 
dollar sign ($) matches the end of a line. 

For example, the regular expression ... c matches any uppercase C that 
starts a line. Similarly, ) $ matches a right parenthesis at the end of a line, 
but not a right parenthesis within a line. 

You can combine both symbols to search for entire lines. For example, 
... {$ matches any line consisting of only a left curly brace in the left mar­
gin, and ... $ matches blank lines. 

aag 





ApPENDIXB 
USING EXIT CODES 

B.l Exit Codes with :rvrAI<E ............................................... 343 
B.2 Exit Codes with DOS Batch Files ................................ 343 
B.3 Exit Codes for Programs ............................................. 344 

B.3.1 Code View Exit Codes ........................................ 344 
B.3.2 LIN!( Exit Codes .............................................. 344 
B.3.3 LIB Exit Codes ................................................. 345 
B.3.4 MAKE Exit Codes ............................................. 345 
B.3.5 EXEP ACK Exit Codes ....................................... 345 
B.3.6 EXEMOD Exit Codes ........................................ 345 
B.3.7 SETENV Exit Codes ......................................... 345 
B.3.8 ERROUT Exit Codes ........................................ 346 

341 





Using Exit Codes 

Most of the utilities return some exit code (sometimes called an "error­
level" code) that can be used by DOS batch files or other programs such as 
MAKE. It the program finishes without errors, it returns an exit code O. 
The code returned varies if the program encounters an error. This appen­
dix discusses several uses for exit codes and lists the exit codes that can be 
returned by each utility. 

B.l Exit Codes with MAKE 

The Microsoft Program Maintenance Utility (MAKE) automatically stops 
execution if a program executed by one of the commands in the MAKE 
description file encounters an error. The exit code is displayed as part of 
the error message unless a minus sign (-) precedes the command line in the 
MAKE file. 

For example, assume the MAKE description file TEST contains the fol­
lowing lines: 

TEST. OBJ : TEST. E'OR 
E'L Ie TEST.E'OR 

If the source code in TEST. fOR contains a program error (but not if it 
contains a warning error), you would see the following message the first 
time you use MAKE with the MAKE description file TEST: 

make: CL Ie TEST.E'OR - error 2 

This error message indicates that the command CL / c TEST. fOR in the 
MAKE description file returned exit code 2. 

B.2 Exit Codes with DOS Batch Files 

If you prefer to use DOS batch files instead of MAKE description files, 
you can test the code returned with the IF command. The following sam­
ple batch file, called COMPILE. BAT, illustrates how to do this: 

CL Ie %1 
IE' NOT ERRORLEVEL 1 LINK %1; 
IE' NOT ERRORLEVEL 1 %1 

You can execute this sample batch file with the following command: 

COMPILE TEST.C 

343 



Microsoft Code View and Utilities 

DOS then executes the first line of the batch file, substituting TEST. C for 
the parameter %1, as in the following command line: 

CL Ie TEST.C 

It returns an exit code 0 if the compilation is successful, or a higher code if 
the compiler encounters an error. In the second line, DOS tests to see if the 
code returned by the previous line is 1 or higher. If it is not (that is, if the 
code is 0), DOS executes the following command: 

LINK TEST; 

LINK also returns a code, which will be tested by the third line. 

B.3 Exit Codes for Programs 

An exit code 0 always indicates execution of the program with no fatal 
errors. Warning errors also return exit code o. MAKE can return several 
codes indicating different kinds of errors, while other programs return only 
1 to indicate that an error occurred. The exit codes for each program are 
listed in Sections B.3.1-B.3.7. 

B.3.1 CodeView Exit Codes 

The Microsoft CodeView debugger does not return exit codes. However, it 
does display codes returned by programs that are run within the debugger. 
For example, if you run an executable file named TEST. EXE within the 
debugger and the program encounters an error that returns 1, you will see 
the following line: 

Program terminated normally (1) 

B.3.2 LINK Exit Codes 

344 

Code 

o 
1 

Meaning 

No error 

Any LINK fatal error 



B.3.3 LIB Exit Codes 

Code 

o 
1 

Meaning 

No error 

Any Lm fatal error 

B.3.4 MAKE Exit Codes 

Code 

o 
2 

4 

Meaning 

No error 

Program error 

System error--ou t of memory 

Using Exit Codes 

If a program called by a command in the MAKE description file produces 
an error, the exit code will be displayed in the MAKE error message. 

B.3.5 EXEP ACK Exit Codes 

Code 

o 
1 

Meaning 

No error 

Any EXEPACK fatal error 

B.3.6 EXEMOD Exit Codes 

Code Meaning 

o No error 

1 Any EXEMOD fatal error 

B.3.7 SETENVExit Codes 

Code Meaning 

o No error 

1 Any SETENV fatal error 

345 



Microsoft Code View a.nd Utilities 

B.3.S ERROUT Exit Codes 

346 

Code 

o 
1 

Meaning 

No error 

Any ERROUT fatal error 



APPENDIXC 
ERROR MESSAGES 

C.l Code View Error Messages ........................................... 349 
C.2 Linker Error Messages ................................................. 359 
C.3 LIB Error Messages ..................................................... 370 
C.4 MAlCE Error Messages ................................................ 375 
C.5 EXEP ACI( Error Messages .......................................... 378 
C.6 EXErv10D Error Messages ........................................... 380 
C.7 S~NVError Messages ............................................ 381 
C.8 ERROUT Error Messages ............................................ 382 

347 





Error Messages 

C.1 Code View Error Messages 

The Code View debugger displays an error message whenever it detects a 
command it cannot execute. Most errors (start-up errors are the exception) 
terminate the Code View command under which the error occurred, but do 
not terminate the debugger. You may see any of the following messages. 

Argument to lMAG/DlMAG must be simple type 

You specified an argument to an !MAG or D!MAG function that is 
not permitted, such as an array with no subscripts. 

Array must have subscript 

You specified an array without any subscripts in an expression, such as 
I ARRAY + 2. A correct example would be IARRAY [1] + 2. 

Bad address 

You specified an address in an invalid form. 
For instance, you may have entered an address containing hexadecimal 
characters when the radix is decimal. 

Bad breakpoint command 

You typed an invalid breakpoint number with the Breakpoint Clear, 
Breakpoint Disable, or Breakpoint Enable command. 

The number must be in the range 0 to 19. 

Bad flag 

You specified an invalid flag mnemonic with the Register dialog com­
mand (R). 
Use one of the mnemonics displayed when you enter the command RF. 

Bad format string 

You used an invalid format specifier following an expression. 

Expressions used with the Display Expression, Watch, Watchpoint, 
and Tracepoint commands can have CodeView format specifiers set off 
from the expression by a comma. The valid format specifiers are d, i, 
U, 0, x, X, f, e, E, g, G, c, and s. Some format specifiers can be pre­
ceded by the prefix h or 1. See Chapter 6, "Examining Data and 
Expressions," for more information about format specifiers. 

349 



Microsort Code View and Utilities 

Bad integer or real constant 

You specified an illegal numeric constant in an expression. 

Bad intrinsic function 

You specified an illegal intrinsic function name in an expression. 

Bad radix (use 8, 10, or 16) 

With the N command you can use only octal, decimal, and hexadec­
imal radixes. 

Bad register 

You typed the Register command (R) with an invalid register name. 

Use AX, BX, OX, DX, SP, BP, SI, DI, DS, ES, SS, OS, IP, or F. 

Bad subscript 

You entered an illegal subscript expression for an array, such as 
IARRAY (3.3) or IARRAY ( (3, 3». The correct expression for this 
example (in BASIC or FORTRAN) would be I ARRAY (3, 3). 

Bad type cast 

The types of the operands in an expression are incompatible. 

Bad type (use one of 'ABDILSTUW') 

The valid dump types are ASCII (A), Byte (B), Integer (I), Unsi~ned 
(U), Word (W), Double Word (DJ, Short Rear (S), Long Real (L), and 
10-Byte Real (1'). 

Badly formed type 

The type information in the symbol table of the file you are debugging 
is incorrect. 

If this message occurs, please note the circumstances of the error and 
inform Microsoft Corporation, using the Microsoft Product Assistance 
Request form at the back of one of your manuals. '< 

Breakpoint # <or I *<, expected 

You entered th,e Breakpoint Clear (BO), Breakpoint Disable (BD), or 
Breakpoint Enable (BE) command with no argument. 

These commands require that you specify the number of the break­
point to be acted on, or that you specify the asterisk (*), indicating 
that all breakpoints are to be acted on. < 

Cannot use struct or union as scalar ' 

350 

A struct or union variable cannot be used as a scalar value in a C 
expression. 



Error Messages 

Such variables must be followed by a file specifier or preceded by the 
address-of operator. 

Cannot cast complex constant component into REAL 

Both the real and imaginary components of a CO:MPLEX constant 
must be compatible with type REAL. 

Cannot cast lMAG/DlMAG argument to COMPLEX 

Arguments to IMAG and DIMAG must be simple numeric types. 

Can I t find filename 

The CodeView debugger could not find the executable file you specified 
when you started. 

You may have misspelled the file name, or the file is in a different 
directory. 

Character constant too long 

You specified a character constant that is too long for the FORTRAN­
expression evaluator (the limit is 126 bytes). 

Character too big for current radix 

In a constant, you specified a radix that is larger than the current 
Code View radix. 

Use the N command to change the radix. 

Constant too big 

The CodeView debugger cannot accept an unsigned constant number 
larger than 4,294,967,295 (16#FFFFFFFF). 

CPU not an 80386 

The 386 option cannot be selected if you are using a machine without 
an 80386 processor. 

Divide by zero 

An expression in an argument of a dialog command attempts to divide 
by zero. 

EMM error 

The debugger is failing to use ENlM: correctly. Please contact Microsoft 
Corporation using the Microsoft Product Assistance Request form at 
the back of one of your manuals. 

351 



Microsoft Code View and Utilities 

EMM hardware error 

The Expanded Memory routines report a hardware error. Your 
expanded memory board may need replacement. 

EMM memory not found 

You tried to use the IE option without having installed expanded 
memory. You must make this installation with software that accesses 
the memory according to the Microsoft/Lotus/Intel EMS specification. 

EMM software error 

The Expanded Memory routines report a software error. Reinstall 
E:M1vf software. 

Expression too complex 

An expression given as a dialog-command argument is too complex. 

Try simplifying the expression. 

Extra input ignored 

You specified too many arguments to a command. 

The Code View debugger evaluates the valid arguments and ignores the 
rest. Often in this situation the debugger does not evaluate the argu­
ments the way you intended. 

Flip/Swap option off - application output lost 

The program you are debugging is writing to the screen, but the out­
put cannot be displayed because you have turned off the flip/swap 
option. 

Floating point error 

This message should not occur, but if it does, please note the cir­
cumstances of the error and inform Microsoft Corporation, using the 
Microsoft Product Assistance Request form at the back of one of your 
manuals. 

Illegal instruction 

This message usually indicates that a divide-by-zero machine instruc­
tion was attempted. 

Index ou~ of bound 

You specified a subscript value that is outside the bounds declared for 
the array. ' 

352 



Error Messages 

Insufficient EMM memory 

Not enough expanded memory is available to hold the program's sym­
bol table. 

Internal debugger error 

If this message occurs, please note the circumstances of the error and 
inform Microsoft Corporation, using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

Invalid argument 

One of the arguments you specified is not a valid Code View expression. 

Invalid executable file format - please relink 

The executable file was not linked with the version of the linker 
released with this version of the CodeView debugger. Relink with the 
more current version of the linker. 

Invalid option 

The option specified cannot be used with the CodeView Option 
command. 

Missing 'ttl 

You specified a string as an argument to a dialog command, but you 
did not supply a closing double quotation mark. 

Missing t (. 

An argument to a dialog command was specified as an expression con­
taining a right parenthesis, but no left parenthesis. 

Missing ') t 

An argument to a dialog command was specified as an expression con­
taining a left parenthesis, but no right parenthesis. 

Missing 'J t 

An argument to a dialog command was specified as an expression con­
taining a left bracket, but no right bracket. 

This error message can also occur if a regular expression is specified 
with a right bracket but no left bracket. 

Missing t (' in complex constant 

The debugger is expecting an opening parenthesis of a complex con­
stant in an expression, but it is missing. 

353 



:MIcrosoft Code View and Utilities 

Missing ')' in complex constant 

The de~ugger expects a closing parenthesis of a complex constant in an 
expreSSIon. 

Missing ') I in substring 

The debugger expects a closing parenthesis of a substring expression. 

Missing' (I to intrinsic 

The debugger expects an opening parenthesis for an intrinsic function. 

Missing t)' to intrinsic 

The debugger expects a closing parenthesis for an intrinsic function. 

No closing single quote 

You specified a character in an expression used as a dialog-command 
argument, but the closing single quotation mark is missing. ' 

No code at this line number 

You tried to set a breakpoint on a source line that does not correspond 
to machine code. (In other words, the source line does not contain an 
executable statement.) 

For instance, the line may be a data declaration or a comment. 

No free EMM memory handles 

The debugger cannot find an available handle. E:M:M: software allocates 
a fixed number of memory handles (usually 256) to be used for specific 
tasks. 

No match of regular expression 

No match was found for the regular expression you specified with the 
Search command or with the Find selection from the Search menu. 

No previous regular expression 

You selected Previous from the Search menu, but there was no previ­
ous match for the last regular expression specified. 

No source lines ,at this address 

354 

The address you specified as an argument for the View command (V) 
does not have any source lines. 

For instance, it could be an address in a library routine or an 
assembly-language module. 



Error Messages 

No such file/directory 

A file you specified in a command argument or in response to a prompt 
does not exist. 

For instance, the message appears when you select Load from the File 
menu and then enter the name of a nonexistent file. 

No symbolic information 

The program file you specified is not in the Code View format. 

You cannot debug in source mode unless you recreate the file in the 
CodeView format. However, you can debug in assembly mode. 

Not a text file 

You attempted to load a file by using the Load selection from the File 
menu or using the View command, but the file is not a text file. 

The Code View debugger determines if a file is a text file by checking 
the first 128 bytes for characters that are not in the ASCII ranges 9 to 
13 and 20 to 126. 

Not an executable file 

The file you specified to be debugged when you started the Code View 
debugger is not an executable file having the extension .EXE or 
.COM. 

Not enough space 

You typed the Shell Escape command (I) or selected Shell from the File 
menu, but there is not enough free memory to execute 
CO?vIMAND.COM. 

Since memory is released by code in the FORTRAN start-up routines, 
this error always occurs if you try to use the Shell Escape command 
before you have executed any code. Use any of the code-execution com­
mands (Trace, Program Step, or Go) to execute the FORTRAN start­
up code, then try the Shell Escape command again. The message also 
occurs with assembly-language programs that do not specifically 
release memory. 

Object too big 

You entered a Tracepoint command with a data object (such as an 
array) that is larger than 128 bytes. 

Operand types incorrect for this operation 

An operand in a FORTRAN expression had a type incompatible with 
the operation applied to it. 

355 



:Microsoft Code View and Utilities 

For example, if P is declared as CHARACTER P (10) I then ? P+5 
would produce this error, since a character array cannot be an operand 
of an arithmetic operator. 

Operator must have a struct/union type 

You used one of the C member-selection operators (-, > 7 or .) in an 
expression that does not reference an element of a structure or union. 

Operator needs lvalue 

You specified an expression that does not evaluate to a memory loca­
tion in an operation that requires one. (An lvalue is an expression that 
refers to a memory location.) 

For example, buffer (count) is correct because it represents a sym­
bol in memory. However, I .EQV. 10 is invalid because it evaluates 
to TRUE or FALSE instead of to a single memory location. 

Overlay not resident 

You tried to unassemble machine code from a function that is 
currently not in memory. 

Program terminated normally (number) 

You executed your program to the end. The number displayed in 
parentheses is the exit code returned to DOS by your<program. 

You must use the Restart command (or the Start menu selection) to 
start the program before executing more code. 

Radix must be between 2 and 36 inclusive 

You specified a radix outside the allowable range. 

Register variable out of scope 

You tried to specify a register variable by using the period (.) operator 
and a routine name. < 

For example, if you are in a third-level routine, you can display the 
value of a local variable called local in a second-level routine called 
parent with the following command: 

? parent. local 

However, this command will not work if local is declared as a regis­
ter variable. 

Regular expression too complex 

The regular expression specified is too complex for the <CodeView 
debugger to evaluate. ' 

356 



Error Messages 

Regular expression too long 

The regular expression specified is too long for the Code View debugger 
to evaluate. 

Restart program to debug 

You have executed to the end of the program you are debugging. 

Simple variable cannot have argument 

In an expression, you specified an argument to a simple variable. 

For example, given the declaration INTEGER NUM, the expression 
NUM (I) is not allowed. 

Substring range out of bound 

A character expression exceeds the length specified in the 
CHARACTER statement. 

Syntax error 

You specified an invalid command line for a dialog command. 

Check for an invalid command letter. This message also appears if you 
enter an invalid assembly-language instruction using the Assemble 
command. The error will be preceded by a caret that points to the first 
character the Code View debugger could not interpret. 

Too few array bounds given 

The bounds you specified in an array subscript do not match the array 
declaration. 

For example, given the array declaration INTEGER IARRAY (3,4) , 
the expression IARRAY (I) would produce this error message. 

Too many array bounds given 

The bounds you specified in an array subscript do not match the array 
declaration. 

For example, given the array declaration INTEGER IARRAY (3,4) , 
the expression IARRAY (I, 3, J) would produce this error message. 

Too many breakpoints 

You tried to specify a 21st breakpoint; the Code View debugger only 
permits 20. 

Too many open files 

You do not have enough file handles for the Code View debugger to 
operate correctly. 

You must specify more files in your CONFIG.SYS .file. See the DOS 

357 



Microsoft Code View and Utilities 

You must specify more files in your CONFIG.SYS file. See the DOS 
user's guide for information on using the CONFIG.SYS file. 

Type clash in function argument 

The type of an actual parameter does not match the correspondirig for­
mal parameter. 

This message also appears when a subroutine that uses alternate 
returns is called and the values of the return labels in the actual 
parameter list are not O. 

Type conversion too complex 

You tried to type cast an element of an expression in a type other than 
the simple types or with more than one level of indirection. 

An example of a complex type would be type casting to a struct or 
union type. An example of two levels of indirection is char * *. 

Unable to open file 
A file you specified in a command argument or in response to a prompt 
cannot be opened. 

For instance, this message appears when you select Load from the File 
menu, and then enter the name of a file that is corrupted or has its file 
attributes set so that it cannot be opened. 

Unknown symbol 

You specified an identifier not in the CodeView debugger's symbol 
table. ' 

Check for a misspelling. This message may also occur if you' try to use 
a local variable in an argument when you are not in the routine where 
the variable is defined. The message also occurs when a subroutine 
that uses alternate returns is called and the values of the return labels 
in the actual parameter list are not O. 

Unrecognized option option , 
Valid options: IB IC<command> ID IF 111M IS IT /W 143 
12 

You entered an invalid option when starting the CodeView debugger. , ' , 

Try retyping the command line. 

Usage: cv [options] file [arguments] 

You failed to specify an executable file when you started the Code View . 
debugger. ' , " 

Try again with the syntax shown in th'e message.' 

358 



Error Messages 

Video mode changed without /S option 

The program changed video modes (either to, or from, graphics modes) 
when screen swapping was not specified. 

You must use the /S option to specify screen swapping when debug­
ging graphics programs. You can continue debugging when you get 
this message, but the output screen of the debugged program may be 
damaged. 

Warning: packed file 

You started the Code View debugger with a packed file as the execut­
able file. 

You can attempt to debug the program in assembly mode, but the 
packing routines at the start, of the program may make this difficult. 
You cannot debug in source mode because all symbolic information is 
stripped from a file when it is packed with the /EXEP ACK linker 
option or the EXEPACK utility. 

Wrong number of function arguments 

You specified an incorrect number of arguments when you tried to 
evaluate a function in a Code View expression. 

0.2 Linker Error Messages 

This section lists and describes error messages generated by the Microsoft 
Overlay Linker, LINK. 

Fatal errors cause the linker to stop execution, Fatal error messages have 
the following format: 

location: error Llxxx: messagetext 

Nonfatal errors indicate problems in the executable file. LINK produces 
the executable file. Nonfatal error messages have the following format: 

locatt'on: error L2xxx: messagetext 

Warnings indicate possible problems in the executable file, LINK pro­
duces the executable file. Warnings have the following format: 

location: warning L4xxx: messagetext 

In all three kinds of messages, locaUon is the input file associated with the 
error, or LINK if there is no input file. If the input file is an .OBJ or .Lffi 

359 



Microsoft Gade View and Utilities 

file and has a module name, the module name is enclosed in parentheses, 
as shown in the following examples: 

SLIBC.LIB(_file) 
MAIN.OBJ(main.c) 
TEXT.OBJ 

The following error messages may appear when you link object files with 
the Microsoft Overlay Linker, LINK. 

Number 

L100l 

L1002 

L1004 

L1010 

L1007 

L1008 

L1009 

S6P 

Linker Error Message 

opUon : option name ambiguous 

A unique option name did not appear after the option indi­
cator t/). For example, the command 

LINK IN main; 

generates this error, since LINK cannot tell which of the 
three options beginning with the letter "N" was intended. 

option : unrecognized option name 

An unrecognized character followed the option indicator 
(I), as in the following example: 

LINK IABCDEF main; 

option : ,invalid numeric value 

An incorrect value appeared for one of the linker options. 
For example, a character string was given for an option 
that requires a numeric value. 

optz'on : stack size exceeds 65536 bytes 

The size specified for the stack in the /STACK option of 
the LINK command was more than 65,536 bytes.: , 

option : interrupt number exceeds 255 

A number greater than 255 was given as a value for the 
IOVERLAYINTERRUPT option. ' 

option : se~~n.t limit, set too high' 

The limit on, the number of segments allowed was set to 
greater than 10,24 ~sing, the ISEG1v.IENTS option. 

option : illegal value 

The number 'specified in the ICPAAMAXALLOC option" 
was not in the ,range 1-65,535. ' , ' 



Number 

L1020 

L1021 

L1022 

L1023 

L1024 

L1025 

L1026 

L1027 

L1043 

L1045 

Error Messa.ges 

Linker Error Message 

no object modules specified 

No object-file names were specified to the linker. 

cannot nest response files 

A response file occurred within a response file. 

response line too long 

A line in a response file was longer than 127 characters. 

terminated by user 

You entered CONTROL+C. 

nested right parentheses 

The contents of an overlay were typed incorrectly on the 
command line. 

nested left parentheses 

The contents of an overlay were typed incorrectly on the 
command line. 

unmatched right parenthesis 

A right parenthesis was missing from the contents 
specification of an overlay on the command line. 

unmatched left parenthesis 

A left parenthesis was missing from the contents 
specification of an overlay on the command line. 

relocation table overflow 

More than 32,768 long calls, long jumps, or other long 
pointers appeared in the program. 

Try replacing long references with short references, where 
possible, and re-create the object module. 

too many TYFDEE records 

An object module contained more than 255 TYPDEF 
records. These records describe communal variables. This 
error can appear only with programs produced by the 
Microsoft FORTRAN Compiler or other compilers that 
support communal variables. (TYPDEF is a DOS term. It 
is explained in the Microsoft MS-DOS Programmer's Refer­
ence and in other reference books on DOS.) 

361 



Microsoft Code View a.nd Utilities 

Number 

L1046 

L1047 

L1048 

LI049 

L1050 

L1051 

~ ~ L1052~ 

Linker Error Message 

too many external symbols in one module 

An object module specified more than the limit of 1023 
external symbols. 

Break the module into smaller parts. 

too many group, segment, and class names 
in one module 

The program contained too many group, segment, and class 
names. 

Reduce the number of groups, segments, or classes, and re­
create the object file. 

too many segments in one module 

An object module had more than 255 segments. 

Split the module or combine segments 

too many segments 

The program had more than the maximum number of seg­
ments. (The /SEG~NTS option specifies the maximum 
legal number; the default is 128.) 

Relink by using the /SEG~NTS option with an 
appropriate number of segments. 

too many groups in one module 

LINK. encountered more than 21 group definitions 
(GRPDEF) in a single module. 

Reduce the number of group definitions or split the module. 
(Group definitions are explained in the Microsoft MS-DOS 
Programmer's Reference and in other reference books on 
DOS.) , 

too'many groups 

The program defined more than 20 groups, not counting 
DGROUP. 

Reduce the num~er of groups. 

too many libraries 

An attempt was made to link with more than 32 libraries. 

Combine libraries, or'use modules that require fewer 
libraries. 



Number 

Ll053 

Ll054 

Ll056 

Ll057 

Ll070 

Ll071 

Error Messages 

Linker Error Message 

symbol table overflow 

The program had more than 256I( of symbolic information 
(such as public, external, segment, group, class, and file 
names). 

Combine modules or segments and re-create the object files. 
Eliminate as many public symbols as possible. 

requested segment limit too high 

The linker did not have enough memory to allocate tables 
describing the number of segments requested. (The default 
is 128 or the value specified with the /SEG1\.1ENTS 
option.) 

Try linking again by using the /SEG~NTS option to 
select a smaller number of segments (for example, use 64 if 
the default was used previously), or free some memory by 
eliminating residen t programs or shells. 

too many overlays 

The program defined more than 63 overlays. 

data record too large 

A LEDATA record (in an object module) contained more 
than 1024 bytes of data. This is a translator error. 
(LEDATA is a DOS term, which is explained in the 
Mz'crosoft MS-DOS Programmer's Reference and in other 
DOS reference books.) 

Note which translator (compiler or assembler) produced the 
incorrect object module and the circumstances. Please 
report this error to Microsoft Corporation using the Micro­
soft Product Assistance Request form at the back of one of 
your manuals. 

segment size exceeds 64K 

A single segment contained more than 64I( of code or data. 

Try compiling and linking using the large model. 

segment _TEXT larger than 65520 bytes 

This error is likely to occur only in small-model C pro­
grams, but it can occur when any program with a segment 
named _ TEXT is linked using the /DOSSEG option of 
the LINK command. Small-model C programs must 
reserve code addresses 0 and 1; this range is increased to 16 
for alignment purposes. 

363 



Microsoft CodeView and Utilities 

Number 

L1072 

L1080 

L1081 

Ll083 

L1084 

L1085 

L1086 

L1087 

~64, 

Linker Error Message ' 

common area longer than 65536 bytes 

The program had more than 64K of communal variables. 
This error cannot appear with object files generated by the 
Microsoft Macro Assembler, MASM. It occurs only with ' 
programs produced by the Microsoft FORTRAN Compiler 
or other compilers that support communal variables. 

cannot open list file 

The disk or the root directory was full. 

Delete or move files to make space. 

out of space for run file 

The disk was full on which the .EXE file was being written. 

Free more space on the disk and restart the linker. 

cannot open run file 

The disk or" the root directory was fulL 

Delete or move files to make space. ' 

cannot create temporary file 

The disk or root directory was full. 

Free more space in the 'directory and restart the linker. 

cannot open temporary file 

The disk or the root directory was fuli. 

Delete or move files to' make space. 

scratch file missing 

An in ternal error has occurred. 

Note the circumstances of the problem and contact Micro­
soft Corporation using the Microsoft Product Assistance 
Request form at the back of one of your, manuals. 

unexpected end-of,- file" on scratch file 

The disk with the temporary linker-output :file: was 
removed. 



Number 

Ll088 

Ll089 

Ll090 

Ll09l 

Ll093 

LllOl 

Ll102 

Ll103 

Error Messages 

Linker Error Message 

out of space for list file 

The disk (where the listing file was being written) is full. 

Free more space on the disk and restart the linker. 

fikname : cannot open response file 

LINK could not find the specified response file. 

This usually indicates a typing error. 

cannot reopen list file 

The original disk was not replaced at the prompt. 

Restart the linker. 

unexpected end-of-file on library 

The disk containing the library was probably removed. 

Replace the disk containing the library and run the linker 
again. 

object not found 

One of the object files specified in the linker input was not 
found. 

Restart the linker and specify the object file. 

invalid object module 

One of the object modules was invalid. 

If the error persists after recompiling, please contact Micro­
soft Corporation using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

unexpected end-of-file 

An invalid format for a library was encountered. 

attempt to access data outside segment 
bounds 

A data record in an object module specified data extending 
beyond the end of a segment. This is a translator error. 

Note which translator (compiler or assembler) produced the 
incorrect object module and the circumstances in which it 

365 



Microsoft Code View a.nd Utilities 

Number 

LII04 

Lll13 

Lll14 

Ll126 

L2001 

L2002 

366 

Linker Error Message 

was produced. Please report this error to Microsoft Cor­
poration using the Microsoft Product Assistance Request 
form at the back of one of your manuals. 

filename : not valid library 

The specified file was not a valid library file. This error 
causes LINK to abort. 

unresolved COMDEF; internal error 

Note the circumstances of the failure and contact Microsoft 
Corporation using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

file not suitable for /EXEPACK; relink 
without 

For the linked program, the size of the packed load image 
plus packing overhead was larger than that of the 
unpacked load image. 

Relink without the jEXEPACK option. 

starting address __ aulstart not found 

You tried to create a Quick library without linking with the 
required LID library. 

fixup(s) without data 

A FIXUPP record occurred without a data record immedi­
ately preceding it. This is probably a compiler error. (See 
the M£crosoft MS-DOS Programmer's Reference for more 
information on FIXUPP.) 

fixup overflow near number in frame seg 
segname target seg segname target a ffset number 

The following conditions can cause this error: 

• A group is larger than 64K. 

• The program contains an intersegment short jump 
or intersegment short call. 

• The name of a data item in the program conflicts 
with that of a library subroutine included in the 
link. 



Number 

L2003 

L2004 

L2005 

L2011 

Error Messages 

Linker Error Message 

• An EXTRN declaration in an assembly-language 
source file appeared inside the body of a segment, as 
in the following example: 

code SEGMENT public 'CODE' 
EXTRN main: far 

start PROC far 
call main 
ret 

start ENDP 
code ENDS 

The following construction is preferred: 

EXTRN main: far 
code SEGMENT public 'CODE' 
start PROC far 

call main 
ret 

start ENDP 
code ENDS 

Revise the source file and recreate the object file. 
(For information about frame and target segments, 
see the M£crosoft MS-DOS Programmer's Reference.) 

inter segment self-relative fixup 

An intersegment self-relative fixup is not allowed. 

LOBYTE-type fixup overflow 

A LOBYTE fixup generated an address overflow. (See the 
M£c~osoft MS-DOS Programmer's Reference for more infor­
matIon.) 

fixup type unsupported 

A fixup type occurred that is not supported by the Micro­
soft linker. This is probably a compiler error. 

Note the circumstances of the failure and contact Microsoft 
Corporation using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

name : NEAR/HUGE conflict 

Conflicting NEAR and HUGE attributes were given for a 
communal variable. This error can occur only with pro­
grams produced by the Microsoft FORTRAN Compiler or 
other compilers that support communal variables. 

367 



Microsoft Code View a.nd Utilities 

Number 

L2012 

L2024 

L2025 

L2029 

L4012 

L4015 

368 . 

Linker Error Message 

name : array-element size mismatch 

A far communal array was declared with two or more 
different array~element sizes (for instance, an array was 
declared once as an array of characters and once as an 
array of real numbers). This error cannot occur with object 
files produced by the Microsoft Macro Assembler. It occurs 
only with the Microsoft FORTRAN Compiler and any other 
compiler that supports far communal arrays. 

name : symbol already defined 

One of the special overlay symbols required for overlay sup­
port was defined by an object. 

name : symbol defined more than once 

Remove the extra symbol definition from the object file. 

unresolved externals 

One or more symbols were declared to be external in one or 
more modules,· but they were not publicly defined in any of 
the modules or libraries. A list of the unresolved external 
references appears after the message, as shown in the fol­
lowing example; 

unresolved externals 

EXIT in file (s) : 
MAIN.OBJ {main. for) 

OPEN in file(s): 
MAIN.OBJ (main. for) 

" The name that·comes before in file (s) is the 
·unresolved external symbol. On the next line is a list of 
object modules that have made references to this symboL, 
This message and the list are also written to the map file, if 
ooe~~~. ' 

load-high disables EXEPACK 

The /IDGH and /EXEP ACK options cannot be used at 
the same,time.' , , " 

!CODEVIEW disables !DSAL~OCATE 

The /CODEVIEW and jDSALLqCATE options can7 ' 
not be used at the same tlme. ' , : 



Number 

L4016 

L4020 

L4021 

L4031 

L4045 

L40S0 

Error Messages 

Linker Error Message 

/CODEVIEW disables /EXEPACK 

The /CODEVIEW and /EXEPACK options cannot be 
used at the same time. 

name : code-segment size exceeds 65500 

Code segments of 65,501-65,536 bytes in length may be 
unreliable on the Intel 80286 processor. 

no stack segment 

The program did not contain a stack segment defined with 
STACK combine type. This message should not appear for 
modules compiled with the Microsoft FORTRAN Compiler, 
but it could appear for an assembly-language module. 

Normally, every program should have a stack segment with 
the combine type specified as STACK. You may ignore 
this message if you have a specific reason for not defining a 
stack or for defining one without the STACK combine 
type. Linking with versions of the linker earlier than Ver­
sion 2.40 might cause this message, since these linkers 
search libraries only once. 

name : segment declared in more than one 
group 

A segment was declared to be a member of two different 
groups. 

Correct the source file and re-create the object files. 

name : is name of output file 

The prompt for the run-file field gave an inaccurate default 
because IQUICKLm was not used early enough. The out­
put will be a Quick library with the name given in the error 
message. 

too many public symbols 

The /MAP option was used to request a sorted listing of 
pubhc symbols in the map file, but there were too many 
symbols to sort (more than 3072 symbols by default). 

Relink using /MAP:number. The linker produces an 
unsorte~ listing of the public symbols. 

369 



Microsoft CodeView and Utilities 

Number 

L4051 

L4053 

L4054 

Linker Error Message 

filename : cannot find library 

The linker could not find the specified file. 

Enter a new file name, a new path specification, or both. 

VM.TMP : illegal file name; ignored 

VM. TMP appeared as an object-file name. 

Rename the file and rerun the linker. 

fikname : cannot find file 

The linker could not find the specified file. 

Enter a new file name, a new path specification, or both. 

0.3 Lm Error Messages 

Error messages generated by the Microsoft Library Manager, LID, have 
one of the following formats: 

{filename I LIB} : fatal error Ulxxx: messagetext 
{filename I LIB} : warning U4xxx: message text 

The message begins with the input-file name (filename), if one exists, or 
with the name of the utility. If possible, Lm prints a warning and contin­
ues operation. In some cases errors are fatal, and LID terminates process­
ing. Lm may display the following error messages. 

Number 

Ul150 

Ul151 

Ul152 

370 

LID Error Message 

page size too small 

The page size of an input library was too small, which indi-
cates an invalid input .Lm file. ' 

syntax error : illegal file specification 

A command operator such as a minus sign (-) was given 
without a following module name. 

syntax error : option name missing 

A forward slash (/) was given without an option after it. 



Number 

Ul153 

Ul154 

Ul155 

U1156 

U1157 

Ul158 

Ul161 

Ul162 

Error Messages 

LID Error Message 

syntax error : option value missing 

The IPAGESIZE option was given without a value fol­
lowing it. 

option unknown 

An unknown option was given. Currently, LID only recog­
nizes the IP AGESIZE option. 

syntax error : illegal input 

The given command did not follow correct LID syntax as 
specified in Chapter 13, "Managing Libraries with LIB." 

syntax error 

The given command did not follow correct LID syntax as 
specified in Chapter 13, "Managing Libraries with LIB." 

comma or new line missing 

A comma or carriage return was expected in the command 
line but did not appear. This may indicate an inappropri­
ately placed comma, as in the following line: 

LIB math.lib,-modl+mod2; 

The line should have been entered as follows: 

LIB math. lib -modl+mod2; 

terminator missing 

Either the response to the "Output library" prompt or the 
last line of the response file used to start LID did not end 
with a carriage return. 

cannot rename old library 

LID could not rename the old library to have a .BAK 
extension because the .BAK version already existed with 
read-only protection. 

Change the protection on the old .BAK version. 

cannot reopen library 

The old library could not be reopened after it was renamed 
to have a .BAK extension. 

371 



Microsoft Code View a.nd Utilities 

Number 

U1163 

Ul170 

U1171 

Ul172 

Ul173 

Ul174 

U1175 

U1180 

Ul181 

3'12 

Lm Error Message 

error writing to cross-reference file 

The disk or root directory was full. 

Delete ~r move files to make space. 

too many symbols 

More than 4609 symbols appeared in the library file. 

insufficient memory 

Lm did not have enough memory to run. 

Remove any shells or resident programs and try again, or 
add more memory. 

no more virtual memory 

Note the circumstances of the failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

internal failure 

Note the circumstances of the failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

mark: not allocated 

Note the circumstances of the failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

,free: not,allocated 

Note the circumstances orthe failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 

'Request form at the back of one of your manuals. ' 

write to extract file failed 

The disk or root directory was full. 

Delete or move files to make space. 

write to library file failed 

The disk ?r root directory was full. 

Delete or move files to make space. 



Number 

Ul182 

Ul183 

Ul184 

Ul185 

Ul186 

Ul187 

Ul188 

Ul189 

Error Messa.ges 

Lffi Error Message 

fikname : cannot create extract file 

The disk or root directory was full, or the specified extract 
file already existed with read-only protection. 

Make space on the disk or change the protection of the 
extract file. 

cannot open response file 

The response file was not found. 

unexpected end-of-file on command input 

An end-of-file character was received prematurely in 
response to a prompt. 

cannot create new library 

The disk or root directory was full, or the library file 
already existed with read-only protection. 

Make space on the disk or change the protection of the 
library file. 

error writing to new library 

The disk or root directory was full. 

Delete or move files to make space. 

cannot open VM.TMP 
The disk or root directory was full. 

Delete or move files to make space. 

cannot write to VM 
Note the circumstances of the failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

cannot read from VM 
Note the circumstances of the failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

373 



Microsoft CodeView and Utilities 

Number 

Ul190 

U1200 

U1203 

U2152 

U2155 

U2157 

U2158 

U2159 

U4150 

374 

Lm Error Message 

interrupted by user 

You interrupted Lm during its operation, with CNTRL+C or 
CNTRL+BREAK. 

name : invalid library header 

The input library file had an invalid format. It was either 
not a library file, or it had been corrupted. 

name : invalid object module near location 

The module specified by name was not a valid object 
module. 

filename : cannot create listing 

The directory or disk was full, or the cross-reference-listing 
file already existed with read-only protection. 

Make space on the disk or change the protection of the 
cross-reference-listing file. 

modulename : module not in library; ignored 

The specified module was not found in the input library. 

fikname : cannot access file 

Lm was unable to open the specified file. 

libraryname : invalid library header; file 
ignored 

The input library had an incorrect format. 

filename : invalid format hexnumber; file 
ignored 

The signature byte or word hexnumber of the given file was 
not one of the following recognized types: Microsoft library, 
Intel library, Microsoft object, or Xenix archive. 

modulename : module redefinition ignored 

A module was specified to be added to a library but a 
module with the same name was already in the library. Or, 
a module with the same name was found more than once in 
the library. 



Number 

U4151 

U4153 

U4156 

Error Messa.ges 

LID Error Message 

symbol (modulename) : symbol redefinition 
ignored 

The specified symbol was defined in more than one module. 

number: page size too small; ignored 

The value specified in the IP AGESIZE option was less 
than 16. 

libraryname : output-library specification 
ignored 

An output library was specified in addition to a new library 
name. For example, specifying 

LIB new.lib+one.obj,new. lst,new. lib 

where new. I ib does not already exist, causes this error. 

0.4 MAEE Error Messages 

Error messages displayed by the Microsoft Program Maintenance Utility, 
MAKE, have one of the following formats: 

{f£lename I MAKE} : fatal error Ulxxx: mes8agetext 
{f£lename I MAKE} : warning U4xxx: message text 

The message begins with the input file name (filename), if one exists, or 
with the name of the utility. If possible, MAKE prints a warning and con­
tinues operation. In some cases errors are fatal, and MAKE terminates 
processing. MAKE generates the following error messages. 

Number 

Ul00l 

Ul002 

MAKE Error Message 

macro definition larger than number 

A single macro was defined to have a value string longer 
than the number stated, which is the maximum. 

Try rewriting the MAKE description file to split the macro 
into two or more smaller ones. 

infinitely recursive macro 

A circular chain of macros was defined, as in the following 
example: 

375 



Microsoft Code View and Utilities 

Number 

Ul003 

Ul004 

UIOOS 

Ul006 

Ul007 

Ul008 

UI009 

UlOlO 

376 > 

MAKE Error Message 

A=$ (B) 
B=$ (C) 
C=$ (A) 

out of memory 

MAKE ran out of memory for processing the MAKE 
description file. 

Try to reduce the size of the MAKE description file by 
reorganizing or splitting it. 

syntax error : macro name missing 

The MAKE description file contained a macro definition 
with no left side (that is, a line began with =). 

syntax error : colon missing 

A line that should be an outfile/infile line lacked a colon to 
indicate the separation between outfile and infile. MAKE 
expects any line following a blank line to be an outfile/infile 
description line. 

targetname : macro expansion larger than 
number 

A single macro expansion, plus the length of any string to 
which it may be concatenated, was longer than the number 
stated. 

Try rewriting the MAKE description file to split the macro 
into two or more smaller ones. 

multiple sources 

An inference rule was defined more than once. 

name : cannot find file or directory 

The file or directory specified by name could not be found. 

command: argument list too long 

A command line in the MAKE description file was longer 
than 128 bytes, which is the maximum that DOS allows. 

Rewrite the commands to use shorter argument lists. 

filename : permission denied 

The file specified by filename was a read-only file. 



Number 

U10ll 

U1012 

U1013 

U4000 

U4001 

U4013 

U4014 

Error Messages 

MAKE Error Message 

filename : not enough memory 

Not enough memory was available for MAKE to execute a 
program. 

filename : unknown error 

Note the circumstances of the failure and notify Microsoft 
Corporation by using the Microsoft Product Assistance 
Request form at the back of one of your manuals. 

command : error errcode 

One of the programs or commands called in the MAKE 
description file returned with a nonzero error code. 

fikname : target does not exist 

This usually does not indicate an error. It warns the user 
that the target file does not exist. In many cases the outfile 
will be created by a later command in the MAKE descrip­
tion file. 

dependent filename does not exist; target 
filename not bui 1 t 

MAKE could not continue because a required in file did not 
exist. 

Make sure that all named files are present and spelled 
correctly in the MAKE description file. 

command : error errcode (ignored) 

One of the programs or commands called in the MAKE 
description file returned with a nonzero error code, and 
MAKE was run with the /1 option. MAKE ignores the 
error and continues. 

usage : make [/n] [/d] [/i] [Is] 
[name=value ... ] file 

MAKE has not been invoked correctly. 

Try entering the command line again with the syntax 
shown in the message. 

377 



Microsoft Code View and Utilities 

C.6 EXEPACK Error Messages 

Error messages in the Microsoft EXE File Compression Utility, 
EXEP ACK, have one of the following formats: 

{filename I EXEPACK} : fatal error Ulxxx: mes8agetext 
{filename I EXEPACK} : warning' U4xxx: me88agetext 

The message begins with the input·file name (filename), if one exists, or 
with the name of the utility. 

If possible, EXEPACK prints a warning and continues operation. In 
some cases errors are fatal, and EXEP ACK terminates processing. Fatal 
errors have an exit code 1. 

EXEP ACK generates the following error messages. 

Number 

UllOO 

UllOl 

Ull02 

Ull03 

Ull04 

Ul10S 

378 

EXEPACK Error Message 

out of space on output file 

The disk or root directory is full. 

Delete or move files to make space. 

filename : file not found 

The file specified by filename could not be found. 

fikname : permission denied 

The file specified by filename was a read-only file. 

cannot pack file onto itself 

It is illegal to specify the same file for both input and out­
put. Change one of the file names. 

usage : exepack <infile> <out file> 

The EXEPACK command line was not specified properly. 

Try again using the syntax shown. 

invalid .EXE file; bad header 

The given file was not an executable file or it had an invalid 
file header. 



Number 

UII06 

UII07 

Ulloa 

UII09 

UIIIO 

Ullll 

Ull12 

U4100 

Error Messages 

EXEP ACK Error Message 

cannot change load-high program 

When the minimum allocation value and the maximum 
allocation value are both 0, the file cannot be compressed. 

cannot pack already-packed file 

The file specified for EXEP ACK had already been packed 
using EXEP ACK. 

invalid .EXE file; actual length less than 
reported 

The second and third fields in the file header indicated a file 
size greater than the actual size. 

out of memory 

The EXEPACK utility did not have enough memory to 
operate. 

error reading relocation table 

The file could not be compressed because the relocation 
table could not be found or was invalid. 

file not suitable for packing 

The packed load image of the specified file was larger than 
the unpacked load image, so the file could not be packed. 

filename : unknown error 

An unknown system error occurred while the specified file 
was being read or written. 

Try running EXEP ACK again. 

omitting debug data from output file 

EXEPACK strips symbolic debug information from the 
input file before packing. 

You may also encounter DOS error messages if the EXEP ACK program 
cannot read from, write to, or create a file. 

379 



Microsoft Code View a.nd Utilities 

0.6 EXEMOD Error Messages 

Error messages from the Microsoft EXE File Header Utility, EXEMOD, 
have one of the following formats: 

{fa1ename I EXEMOD} : fatal error Ulxxx: mess age text 
{filename I EXEMOD} : warning U4xxx: mess age text 

The message begins with the input-file name (filename), if one exists, or 
with the name of the utility. If possible, EXEMOD prints a warning and 
continues operation. In some cases errors are fatal, and EXEMOD ter­
minates processing. EXEMOD generates the following error messages. 

Number 

U1050 

U1051 

U1052 

U1053 

U1054 

U1055 

380 

EXEMOD Error Message 

usage : exemod file [-/h] [-/stack n] [­
/max n] [-/min n] 

The EXEMOD command line was not specified properly. 
Try again using the syntax shown. Note that the option 
indicator can be either a slash (/) or a hyphen ( .. ). The sin­
gle brackets (J 1) in the error message indicate that your 
choice of the Item within them is optional. 

invalid .EXE file : bad header 

The specified input file is not an executable file or it has an 
invalid file header. . 

invalid .EXE file : actual length less than 
reported 

The second and third fields in the input-file header indicate 
a file size greater than the actual size. 

cannot change load-high program 

When the minimum allocation value and the maximum 
allocation value are both 0, the file cannot be modified. 

file not, .EXE 

EXEMOD automatically appends'the,.EXE extension to , 
any file name without an extension; in this case, no ,file with 
th~ given name and an .EXE extension could be found. 

filename : cannot find file' 

The file specifie'd by filename could not be found. 



Error Messages 

Number EXEMOD Error Message 

U1056 filename : permission denied 

The file specified by filename was a read-only file. 

U4050 packed file 

The given file was a packed file. This is a warning only. 

U4051 minimum allocation less than stack; 
correcting minimum 

If the minimum allocation value is not enough to accommo­
date the stack (either the original stack request or the 
modified request), the minimum allocation value is 
adjusted. This is a warning message only; the modification 
is still performed. 

U4052 minimum allocation greater than maximum; 
correcting maximum 

If the minimum allocation value is greater than the max­
imum allocation value, the maximum allocation value is 
adjusted. This is a warning message only; the modification 
is still performed. EXEMOD will still modify the file. The 
values shown if you ask for a display of DOS header values 
will be the values after the packed file is expanded. 

C.7 SETENV Error Messages 

Messages generated by the Microsoft Environment Expansion Utility, 
SETENV, have the following format: 

{filename I SETENV} : fatal error Ulxxx: me66agetext 

The message begins with the input-file name (filename), if one exists, or 
with the name of the utility. SETENV generates the following error 
messages. 

Number SETENV Error Message 

U1080 usage : setenv <command. com> [envsize] 

The command line was not specified properly. This usually 
indicates that the wrong number of arguments was given. 

Try again with the syntax shown in the message. 

381 



Microsoft Code View and Utilities 

Number 

U1081 

U1082 

U1083 

U1084 

U1085 

U1086 

U1087 

SETENV Error Message 

unrecognizable COMMAND. COM 

The COMMAND.COM file was not one of the accepted 
versions (DOS Versions 2.0,2.1, 2.11,' 3.0, and 3.1). 

maximum for Version 3.1 : 992 

The user specified a file that was recognized as 
COMMAND.COM for IBM PC-DOS, Version 3.1, and 
gave an environment size greater than 992 bytes, the max­
imum allowed for that version. 

maximum environment size : 65520 

The environment size specified was greater than 65,520 
bytes, the maximum size allowed. 

minimum environment size : 160 

The environment size specified was less than 160 bytes, the 
minimum size allowed. 

filename : cannot find file 

The specified file was not found, perhaps because it was a 
directory or s<?me other special file. 

filename : permission denied 

The specified file was a read-only file. < 

filename : unknown error 

An unknown system error occurred while the specified file 
was being read or written. 

Try running SETENV again. 

C~8 ERROUT Error Messages 

Messages that indicate ,errors on the command line used to invoke the 
compiler have one of the following formats; 

command line error Ulxxx: mes8agetext 
execution error U2ixx: me88ag~text 

382 



Error Messa.ges 

ERROUT generates the following error messages. 

Number 

U1251 

U1252 

U1253 

U1254 

U2251 

U2252 

U2253 

ERROUT Error Message 

no arguments 

No arguments were specified to ERROUT. 

bad command line switch 

An option other than If was given on the ERROUT com­
mand line. 

missing file name 

The If option was given on the ERROUT command line 
without a file name. 

missing command 

No command was given on the ERROUT command line. 

cannot open file 

ERROUT could not open the given standard error file. 

cannot redirect standard error 

The standard error file given on the ERROUT command 
line could not be used for standard error output. 

command failed 

The command given on the ERROUT command line 
failed. 

383 





CODEVIEW AND UTILITIES INDEX 

& (ampersand), LIB command symbol, 
295 

* (asterisk) 
Comment command, 246 
FORTRAN multiplication operator, 

82 
LIB command symbol, 292, 297, 300 
regular eXJ?ressions, used in, 338 

* * (asterisks), exponentiation operator, 
FORTRAN, 82 

@ (at sign) 
Redraw command, 233 
register prefix, 98 

\ (backslash), Screen Exchange 
command, 234 

[ ] (brackets) 
notationai conventions, xxi 
regular expressions, used in, 336 

A (caret) 
exponentiation operator, BASIC, 86 
regular expressions, used in, 337, 339 

: (colon) 
Delay command, 247 
LINK command, 257 
operator, 82, 87, 99 

, (comma) 
LIB command symbol, 290 
LINK command symbol, 257 

- (dash) 
option designator, 9, 23 
regular expressions, used in, 337 

$ (dollar sign), regular expressions, 
used in, 339 

= (equal sign) 
assignment operator, FORTRAN, 82 
Redirected Input and Output 

command, 245 
! ( exclamation point), Shell Escape 

command, 238, 355 
/ ( forward slash) 

division operator, FORTRAN, 82 
option character, LINK, 264 
option designator 

Code View, 23 
compilers, 9 

Search command, 236, 354 
> (greater-than sign) 

CodeView prompt, 39, 41, 71 
Redirected Output command, 244 

< (less-than sign), Redirected Input 
command, 243 

- (minus sign) 
FORTRAN, 82 
LIB command symbol, 292, 297, 300 

-* (minus sign-asterisk), LIB command 
symbol, 292, 300 

-+ (minus sign-plus sign), LIB 
command symbol, 292, 294, 300 

# (number sign) 
NAN (not a number), 139 
Tab Set command, 240 

( ) (parentheses), FORTRAN operator, 
82 

. (period) 
Current Location command, 198 
operator 

C,79 
error messages, 356 
FORTRAN, 82 
Pascal, 91 

regular expressions, used in, 336 
+ (plus sign) 

LIB command symbol 
Intel, XENIX files, used with, 289 
libraries, combining, 292, 300 
library, specifying, 294 
object files, appending, 297, 299 
using, 291 

LINK command symbol, 257, 260 
operator, FORTRAN, 82 

" (quotation marks) 
notational conventions, xxii 
Pause command, 248 

; (semicolon) 
LIB command symbol, 290, 296, 301 
LINK command symbol, 258, 259, 

260 
_ (underscore), symbol names, used in, 

79,83,92 
I (verti.~al bar), notational convention, 

XXll 

/2 option, CodeView, 25 
/43 option, CodeView, 26 
'7 (8087 command), 153 
10-byte reals, dumping, 146 
386 option, 62 
8087 

385 



Index 

8087 (continued) 
command, 152 
coprocessor, 152, 208 
stack, 154 

8259 trapping, 28 

A (Assemble command), 206, 357 
Absolute addresses, 99 
Accessing bytes, 101 
Adapters, using two, 25 
Addresses 

absolute, 171 
arguments, used in, 99, 349, 354 
full, 99, 171 
segment start, 282 

Alignment types, 281, 282 
Ampersand (&), LIB command symbol, 

295 
.AND. operator, 82 
Axchives,~~, 289, 301 
Arguments 

CodeView 
dialog commands, 71, 73 
program, 119 

errors, dialog commands, 353, 357 
LINK options, 265 
program, 21 
routine, 64, 199 

Arithmetic operators, FORTRAN, 82 
Arrays 

copying, 220 
multidimensional, and BASIC, 87 

ASCII characters, displayed by 
CodeView, 140, 141 

Assemble command, 205, 357 
Assembly 

address, 206 
mode 

display options, 60 
example, 195 
setting, 191 
using, 35, 355 

programs. See Macro Assembler 
rules, 206 

Assignment operator 
BASIC, 87 
FORTRAN, 82 

Asterisk (*) . See * ( asterisk) 
At sign (@) 

Redraw command, 233 
register prefix, 98 

jB CodeView option, xxii, 26 

386 

Backslash (\), Screen Exchange 
command, 234 

BACKSPACE key, 72 
BASIC 

colon (:) operator, 87 
constants, 88 
expression evaluator, 77 
expressions, 86 
intrinsic functions, 89 
programs 

CodeView, preparing for, 14 
compiling and linking, 15 
source code, writing, 14 

strings, 89 
symbols, 88 

Batch files, exit codes, 343 
/BATCH option (LINK), 275 
BC (Breakpoint Olear), 160 
BD (Breakpoint Disable command), 

161,349,350 
BE (Breakpoint Enable command), 162, 

349,350 
BEGDATA class name, 273 
BL (Breakpoint List command), 164 
Black-and-white display 

CodeView,26 
sample screens, xxii 

Blocks of memory 
copying, 220 
filling, 219 
moving, 220 

Bold type, notational conventions, xx 
BP. See Breakpoint Set command 
Brackets ([ 1) 

notational conventions, xxi 
regular expressions, used in, 336 

"Break when" point, 349 
Breakpoint Clear command 

argument requirements, 349, 350 
Run menu selection, 58,164 
using, 160 

Breakpoint Disable command, 161, 349, 
350 

Breakpoint Enable command 
argument requirements, 349, 350 
using, 162 

Breakpoint List command, 164 
Breakpoint Set command 

errors, 354, 357 
F9 function key, 44, 67 
mouse, executing with, 49 
using, 157 

Breakpoin ts 
address, 116 
conditional, 59, 157 
defined, 157 



Breakpoints (continued) 
deleting, 160 
displaying, 39, 158 
Go command, used with, 115 
listing, 164 

BSS class name, 273 
Buffer, CodeView command, 42, 72 
BY operator, 101 

lC CodeView option, 27 
C compiler. See C language, programs 
C language 

CodeView, case sensitivity, 79 
constants, 80 
expressions, 78 
operators, 78 
programs 

CodeView, preparing for, 11 
compiling and linking, 12 
macros, 12 
writing source, 11 

strings, 81 
symbols, 79 

Calling conventions, 199 
Calls 

menu, 63, 200 
stepping over, 113 
tracing into, 110 

Canonical frame number. See Frame 
number 

Capital letters 
notational conventions, xx 
notational conventions, xxii 
See al80 Case sensitivity 

Caret (") 
exponentiation operator, BASIC, 86 
regular expressions, used in, 337, 339 

Case sensitivity 
BASIC-expression evaluator, 88 
C symbols, 79 
CodeView, 9, 62, 73 
errors, 358 
FORTRAN symbols, 83 
LINK, 255, 269 
Macro Assembler options, 19 
Pascal symbols, 92 

CL driver, 12 
Class names 

BEGDATA, 273 
BSS,273 
CODE, 273 
linking procedure, used in, 282 
STACK, 273 

Class types, 282 
Click, defined, 47 

Index 

lCO linker option, 10, 275 
CODE class name, 273 
CodeView 

case sensitivity, 9, 73 
colon (:) operator, 82, 87, 99 
command line, 21 
compatibility, 30, 32, 33 
compiler options 

ID, 9,15 
lad, 10 
IZd, 10 
/.Zi, 9, 10 

defaults, 139 
display. See Display, Code View 
EGA compatibility, 32 
error messages, 349 
executable files, 8, 11, 20 
exit codes, 115, 116, 344 
interrupt program execution, 109 
language support 

BASIC, 14 
C,ll 
FORTRAN, 13 
Macro Assembler, 17 

linker option (fCO), 10, 35 
menus. See Menus, CodeView 
mixed-language support, 19 
operators 

BY, 101 
DW,103 
memory, 101 
WO,102 

optimization, effect of, 10 
options 

/2 option, 25 
143 option, 26 
IB,26 
IC,27 
command line, used in, 21 
ID,28 
IF, 29 
11,28 
&1,31 
IP,32 
IS,29 
summary, 24 
IT, 33 
IW, 33 

parameters, proqram, 21 
period operator t.), 79, 82, 91 
restrictions, 7 
source-module files, location of, 20, 

53 
start-up 

command line, 21 
commands, 27 

387 



Index 

Code View {continued} 
start-up (continued) 

file configuration, 20 
symbolic information, 11 
symbols, 79, 83, 88 
syntax, summary, 229 
variables, local, 77 
See also individual issues 

Code View Commands. See Commands, 
CodeView 

Code View expressions. See Specific 
Languages 

iCODEVIEW linker option, 10, 35 
CodeView menus. See Menus, 

CodeView 
Colon (:) 

Delay command, 247 
LINK command, 257 
operator, 82, 87, 99 

Color graphics adapter (CGA), 25, 26, 
30 

.COM extension, debugged files, used 
for, 21, 34, 355 

Combine types 
COMMON, 283 
LINK,282 
PRIVATE, 283 
PUBLIC, 282 
STACK, 283 

Comma (,) 
Lill command symbol, 290 
LINK command symbol, 257 

Command buffer, 42,72 
Command line 

CodeView,21 
Lill,290 
LINK, 255 

COMMAND.COM, Shell command, 
used with, 53, 237 

Commands, Code View 
8087 command, 152 
Assemble, 205, 357 
Breakpoint Clear 

argument requirements, 349, 350 
Run menu selection, 57, 58 
using, 160 

Breakpoint Disable, 161, 349, 350 
Breakpoint Enable, 162, 349, 350 
Breakpoint List, 164 
Breakpoint Set 

F9 function key, 44, 67 
mouse, executing with, 49 
using, 157 

calls 

388 

stepping over, 113 
tracing through, 110 

Commands, Code View (continued) 
command buffer, 72 
Comment, 246 
Current Location, 198 
cursor 

move down, 42 
move up, 42 

Delay, 247 
dialog commands, 41, 71, 177 
Display Expression, 123 
Dump 

10-Byte Reals, 146 
ASCII, 141 
Bytes, 140 
default size, 138, 139 
Double Words, 144 
Integers, 141 
Long Reals, 145 
Short Reals, 144 
Unsigned Integers, 142 
Words, 143 

Enter 
ASCII, 213 
Bytes, 212 
default size, 212 
Double Words, 216 
Integers, 214 
Long Reals, 217 
Short Reals, 217 
Unsigned Integers, 214 
using, 209 
Words, 215 

Examine Symbols, 132 
Execute, 58, 118 
Exit, 53 
Expression, 123 
Fill Memory, 219 
Go 

destination address, 115 
F5 function key, 44, 67 
mouse, executing with, 50 
using, 115 

Goto 
comment line, 115 
F5 function key, 44 
mouse, executing with, 49 
using, 115 

grow (increase) window size, 42 
Help 

F1 function key, 43 
menu, 65 
using, 229 
window mode, 65, 66 

input, redirecting, 243 



Commands, CodeView (cont£nued) 
mnemonic keys, 46 
Move Memory, 220 
Option, 240 
Output, 55 
output, redirecting, 244 
Pause, 248 
Port Output, 221 
Program Step 

FlO function key, 45, 67 
mouse, executing with, 49 
using, 113 

Quit, 230 
Radix 

limits, 350 
setting, 231 

Redirected Input and Output, 27, 
242,245 

Redraw, 233 
R~isters 

F2 function key, 43, 66 
mouse, executing with, 50 
register values, changing, 222 
registers, displaying, 150 
View menu selection, 55 

Restart 
Run menu selection, 58 
using, 119 

Screen Exchange 
F4 function key, 44, 66 
using, 233 

scroll 
line down, 48 
line up, 48 
page down, 42, 48 
page up, 42, 48 
to bottom, 43, 48 
to top, 43,48 

Search 
menu selections, 55 
regular expressions, used with, 335 
using, 234 

separator line 
move down, 47 
move up, 47 

Set Mode 
dialog command, 191 
F3 function key, 43, 66 
View menu selection, 55 

Shell Escape 
File menu selection, 53 
space problem solutions, 355 
using, 237 

Stack Trace 
display contents, 64 
using, 199 

Index 

Commands, Code View (cont£nued) 
T (Trace command), 111 
Tab Set, 239 
tiny (reduce) window size, 42 
Trace 

F8 function key, 44, 67 
mouse, executing with, 49 
using, 110 

Tracepoint 
data-object size limit, 355 
sequential mode, 67 

tracing through calls, 110 
Unassemble, 193 
View, 195, 354, 355 
Watch 

menu selections, 59 
sequential mode, 67 

Watch Delete, 60, 181 
Watch Delete All, 60 
Watch expression, 170, 349 
Watch List, 67, 183 
Watchpoint 

errors, 349 
sequential mode, 67 
setting, 174 
Watch menu selection, 59 

window, 71 
Comment command, 246 
Comment lines, source code, 115, 116, 

157 
COlv1MON combine type, 283 
Compiler errors 

and Code View, 10 
correctable, 359 

Compiler options 
/D, 9, 15 
jOd, 10 
jZd, 10 
'/Zi, 9, 10 

CbMSPEC environment variable, 237 
Concatenation, string, BASIC, 86 
Conditional breakpoints, 59, 157, 169 
CONFIG.SYS file, 358 
Conjunction operator, FORTRAN, 82 
Consistency checking, LIB, 291, 301 
Constant numbers 

arguments, used as, 351 
BASIC, 88 
C,80 
FORTRAN, 83 
Pascal, 93 

CONTROL+BREAK, 28, 45, 109, 176 
CONTROL+C, 28, 45, 71, 109, 176 
CONTROL+F (Find command), 56 
CONTROL+G (grow window sIze), 42 
CONTROL+S, 71 

389 



Index 

CONTROL+T (tiny window size), 42 
CONTROL+U (Delete Watch command), 

60 
CONTROL+W (Add Watch command), 

59 
Controlling 

data loading, 273 
executable-file loading, 274 
LINK, 264 
segments, number of, 271 
stack size, 270 

Copying arrays, 220 
Correctable error messages, 359 
lOP option, LINK, 237, 268 
ICPARMAXALLOC option, LINK, 

237,270 
Cross-reference listing, Lm, 293, 301 
Current Location command, 198 
Current location line, 39 
Cursor, CodeView, 39, 71 
CV.EXE, location of, 20 
CV.HLP, location of, 20, 65 

D (Dump command), 139 
/D option 

CodeView, 28 
compiler, 9, 15 
MAKE,312 

DA (Dump ASCII command), 141 
Dash (-) 

option designator, 9, 23 
regular expressions, 337 

Data segments, loading, 273 
DB (Dump Bytes command), 140 
DD (Dump Double Words command), 

144 
DEBUG, 39 
Debu~ging, preparing for, 

(jCODEVIEW option), 275 
Decimal notation 

BASIC, 88 
C,80 
FORTRAN, 83 
Pascal, 93 

Defaults, Code View 
address-range size, 139 
assembly-mode format, 60 
expression format, 172 
mM Personal Computer, used with, 

23 
radix, 199,231, 232 
segment, 99 
start-up behavior, 22 
type 

Dump command, 139 
I 

ago 

Defaults, CodeView {continued} 
type {continued} 

Enter command, 212 
Watch command, 172, 179 

Defaults, utilities 
libraries, ignoring, 263, 269 
responses 

Lm,296 
LINK,259 

Delay command, 247 
Description file, 306 
Destination address, Go command, 

used with, 115 
DGROUP 

memory, allocating below, 273 
segment order, 273 

DI (Dump Integers command), 141 
Dialog 

box, 41, 46, 51 
commands, 41, 71, 177 
window, 39 

Disjunction, inclusive, 82 
Display, CodeView 

assembly mode, 191, 194 
cursor, 39, 71 
dialog box, 41, 46, 51 
display mode, 109, 196 
highlight, 41 
menu bar, 41 
message box, 41, 46, 51 
mouse pointer, 41 
output screen, 233 
register window, 40, 43 
CONTROL+G (grow window size), 42 
CONTROL+T (tiny window size), 42 
DOWN ARROW key (cursor down), 42 
END key (scroll to bottom), 43 
HOME keYl,scroll to top), 43 
PGDN key scroll page down), 42 
PGUP key scroll page up), 42 
UP ARROW key (cursor up), 42 
scroll bar, 40 
separator line, 40 
set mode command, 43 
window, 39, 41 

Display Expression command, 123 
Display mode, 109, 194, 196 
Dividing by zero, 351 
DL (Dump Long Reals command), 145 
IDO option LINK, 272 
bollar sign ($), regular expressions, 

used in, 339 
DOS, program header, 323 
IDOSSEG option, LINK, 272 
bouble Words (units of memo~), 103 
DOWN ARROW key (cursor down), 42 



Drag, defined, 47 
Drivers 

CL,12 
FL,13 

DS (Dump Short Reals command), 144 
/DS option, LINK, 273 
bs register, described, 273 
/DSALLOCATE option, LINK, 273 
bT (Dump 100Byte Reals command), 

146 
DU (Dump Unsigned Integers 

command), 142 
Dump address, 139 
Dump commands 

100Byte Reals, 146 
ASCII, 141 
Bytes, 140 
default size, 139 
Double Words, 144 
Integers, 141 
Long Reals, 145 
Short Reals, 144 
Unsigned Integers, 142 
using, 138 
Words, 143 

DW (Dump Words command), 143 
DWoperator, 103 

Ecommands 
Enter, 212 
Execute, 118 

IE option, CodeView, 29 
See al80 LINK options, IEXEPACK 

EA (Enter ASCII command), 213 
EB (Enter Bytes command); 212 
Echo, redirection, used with, 244 
ED (Enter Double Words command), 

216 
_edata, 273 
EGA (Enhanced Graphics Adapter), 

26,30,32 
EI (Enter Integers command), 214 
EL (Enter Long Reals command), 217 
Ellipses, notational conventions, xxi 
_end, 273 
End (special variable), 273 
END key (scroll to bottom), 43 
Enhanced graphics adapter (EGA), 26, 

30,32 
Enter commands 

ASCII, 213 
Bytes, 212 
default size, 212 
Double Words, 216 
Integers, 214 

Enter commands (continued) 
Long Reals, 217 
Short Reals, 217 
Unsigned Integers, 214 
using, 209 
Words, 215 

Enumerated types, in Pascal 
expressions, 91 

Environment, enlarging, 326 
Environment variables 

INIT, used by MAKE, 317 
LID,261 
LINK, 280 
TMP, used by LINK, 263 

.EQ. operator{ 82 

Index 

Equal sign (= J 
assignment operator, FORTRAN, 82 
Redirected Input and Output 

command, 245 
.EQV. operator, 82 
Error messages 

Code View, 349 
compiler, correctable, 359 
ERROUT, 382 
EXEMOD, 380 
EXEPACK, 378 
internal debugger, 350, 353 
LID, 370 
LINK, 359 
MAKE,375 
run time, redirecting, 328 
SETENV, 381 

Errorlevel codes. See Exit codes 
Errors, logic and syntax, 10 
ERROUT 

described, 328 
error messages, 382 
exit codes, 345, 346 

ES (Enter Short Reals command), 217 
ESCAPE key, 46 
EU (Enter Unsigned Integers 

command), 214 
EW (Enter Words command), 215 
Examine Symbols command, 132 
Exclamation point (!), Shell Escape 

command, 238, 355 
.EXE extension, 21, 34, 355 
EXE header information, 325 
Executable files 

CodeView 
format, 8, 11 
start-up, required for, 21 

command line, used in, 21, 351, 355 
compressing, 322 
extensions, 257 
headers 

391 



Index 

Executable files (continued) 
headers (continued) 

changing, 322 
information, 325 
size, 325 

initial register values, 325 
invalid format, 353 
LINK 

naming with, 257 
specifying with 

prompts, 258 
response file, 261 

load size, 325 
loading, 274 
location of, 20 
maximum allocation, 325 
minimum allocation, 325 
naming, default, 257 
overlay number, 325 
packing, 267 
size, 325 

Executable image, 281 
Execute command, 58, 118 
EXEMOD 

described, 322 
error messages, 380 
exit codes, 345 
/H option, 323 
header information, 325 
/MAX option, 323 
maximum allocation, changing, 271 
!M!N option, 323 
LSTACK option, 323 

EXEPACK 
command line, 321 
described, 321 
error messages, 378 
exit codes, 345 
symbolic debug information, 

stripping, 322 
/EXEPACK option, LINK, 267, 359 
Exit codes 
Code~ew,115, 116,344 
DOS, 343 
error level, 343 
using, 343 

Exit, DOS command, 53, 238 
Exiting from LINK, 255 
Expanded memory, 29 
Exponentiation operator 

BASIC, 86 
FORTRAN, 82 

Expression evaluation 
Code ~ew requirement, 77 
Display Expression command, 123 
errors, 353 

392 

Expressions 
arguments, error in, 352, 353 
BASIC, 86 
C,78 
FORTRAN,81 
Pascal, 91 
regular 

errors, 354, 356 
searches, used in, 56, 234 
specifying, 335 

Expressions. See specific languages 
Extensions 

auto option, 77 
default, LINK, 256 
executable files, 257 
libraries 

LIB, used with, 289, 290, 298 
LINK, used with, 256 

map files, 256, 257, 269 
object files, 256 

F (Fill Memory command), 219 
/F options 

CodeView, 29 
(FL),270 

F1 key (Help), 43, 66, 229 
FlO key (Program Step), 45, 67, 113 
F2 key (Register), 43, 66, 150 
F3 key 

(Set source/assembly), 66, 192 
(Set source/mixed/assembly), 43 

F4 key Screen Exchange), 44, 66 
F5 key Go), 44, 67, 115 
F6 key sWItch cursor), 42, 115 
F7 key Goto) 44, 115 
F8 key Tracej, 44, 67, 111 
F9key 

IBreakPoint Clear), 160 
Breakpoint Enable), 163 
Breakpoint Set), 44, 67 

Far-return mnemonic (RETF), 207 
Files 

handle, 357 
menu 

DOS Shell, 53 
Exit, 53 
Load, 196,355,358 
Open, 52 
Quit, 230 
Shell, 238,355 

See also specific types 
Fill Memory command, 219 
Fix ups, 283 
FL driver, 13 
FL options 



FL options (continued) 
IF, 270 
IFPa, 262 
/FPc, default libraries, overriding, 

262 
/FPc87, default libraries, overriding, 

262 
IZd,269 
/Zi, 275 

Flag bits 
errors, 349 
mouse, changing with, 50 
values 

changing, 222 
displaying, 151 

Flag mnemonics, 223, 349 
Flipping 

CodeView,29 
Format specifiers 

prefixes, 125, 349 
summary, 124 

FORTRAN 
CodeView 

case sensitivity, 83 
support, 13 

colon r:) operator, 82 
compiler, 13 
constants, 83 
exit codes, 346 
expression evaluator, 77 
expressions, 81 
identifiers, 83 
include files, 13 
intrinsic functions, 85 
operators, 81 
programs 

CodeView, preparing for, 13 
writing source code, 13 

strings, 84 
symbols, 83 

Forward slash U) 
division operator, FORTRAN, 82 
option character, LINK, 264 
option designator 

CodeView,23 
compilers, 9 

Search command, 236, 354 
Frame number, 282 
Function calls 

stepping over, 113 
tracing into, 110 

Function keys 
F11HeIP)' 43, 65, 229 
F2 Register), 43, 66, 150 
F3 Set source/assembly), 66, 192 
F3 Set source/mixed/assembly), 43 

Index 

Function keys (continued) 
F4 Screen EXchange), 44, 66 
F5 Go), 44, 67, 116 
F6 sWItch cursor), 42, 115 
F7 Goto) 44, 115 
F8 Trace~, 44, 67,111 
F9 Breakpoint Clear), 160 
F9 Breakpoint Enab1e), 163 
F9 Breakpoint Set), 44, 67 
FlO (Program Step), 45, 67, 113 

Functions 
calls to, 200 
examining, 132 
intrinsic 

BASIC, 89 
FORTRAN, 85 

viewing, 64 

G (Go command), 116 
.GE. operator, 82 
Global symbols. See Public symbols 
Go command 

F5 function key, 44, 67 
mouse, executing with, 50 
using, 115 

Goto command 
comment line, 115 
F5 function key, 44 
mouse, executing with, 49 
using, 115 

Graphics adapters 
43-line mode, 26 
EGA, compatibility, 32 
screen-exchange mode, 30 
using two, 25 

Graphics programs, debugging, 25, 244 
Greater-than operator, FORTRAN, 82 
Greater-than sign (> ) 

CodeView prompt, 39, 41,71 
Redirected Output command, 244 

Greater-than-or-equal-to operator, 
FORTRAN, 82 

Groups 
DGROUP, 273 
linking procedures, used in, 283 

.GT. operator, 82 

H (Help command), 230 
Iff option, EXEMOD, 323 
Hardware ports, output to, 221 
lHE option, LINK, 265 
Header information, EXE file, 325 
Help command 

F1 function key, 43, 66 

393 



Index 

Help command (continued) 
help file, 65 
Shell command, used with, 229 
using, 229 
view menu selection, 55 
window mode, 65 

Help menu 
About command, 65 
described, 65 

/HELP option, LINK, 265 
Hexadecimal notation 

BASIC, 88 
C,80 
FORTRAN, 83 
Pascal, 93 

IHI option. See /HIGH option 
'/HIGH option, LINK, 273, 274 
Highlight, 41 
HOME key (scroll to top), 43 

II options 
Code View, 28 
LINK,266 
MAKE,312 

IBM PC 
CodeView, compatibility with, 30, 33 
Code View, recognizing, 23 

Identifiers 
arguments, used as, 358 
BASIC, 88 
C,79 
FORTRAN, 83 
Pascal, 92 

Ignoring case, LINK, 269 
Ignoring default libraries, LINK, 262, 

269 
Immediate operand, 207 
Include files 

assembly programs, 17 
BASIC programs, 14 
C programs, 11 
CodeView,7 
FORTRAN programs, 13 

Inclusive disjunction operator, 
FORTRAN, 82 

# IND (indefinite), 139 
IND (indefinite), 139 
Indentation, 239 
Indirect register instructions, 208 
Indirection levels, Code View, 79 
# INF (infinity), 139 
INF (infinity), 139 
Inference rules, 316 
Infinity, 139 
IINFORMATION option, LINK, 266 

394 

INIT environment variable, used by 
MAKE,317 

Initial instruction pointer, EXEMOD 
display, 325 

Initial register values,EXEMOD 
display, 325 

Initial stack pointer, EXEMOD display, 
325 

Initializing data, 219 
Instruction, current, 110, 113 
Instruction-name synonyms, 208 
Integers, dumping, 141 
Interrupt, DOS functions, 111 
Intrinsic functions 

BASIC, 89 
FORTRAN, 85 

Italics, notational conventions, xx 

K (Stack Trace command), 200 
Key names, notational conventions, 

xxii 

L (Restart command), 119, 356, 357 
Labels, finding, 57, 235 
.LE. operator, 82 
Less-than operator, FORTRAN, 82 
Less-than sign ( <), Redirected Input 

command, 243 
Less-th an-or-e qual-to operator, 

FORTRAN, 82 
LET (assignment operator), BASIC, 87 
Levels of indirection, CodeView, 79 irA option, LINK, 269 

addition commands, 298 
backup library file, 298 
changing with, 289, 298, 299 
commands, specifying, 291 
consistency checking, 291, 301 
creating, 289, 298 
default responses, 296 
error messages, 370 
exit codes, 345 
extending lines, 295 
files, listing, 301 
input, 290 
Intel, 289, 301 
libraries, combining, 291,300 
library index, 298 
library modules 

adding, 291, 299 
deleting, 292, 300 

listing files, 293, 298 
modules, extracting and deleting, 

292, 



297, 300 
LIB (continued) 

object modules, deleting, 292, 297, 
300 

operations, order of, 297 
options, /PAGESIZE, 291, 302 
output, 293 
running 

command line, 290 
prompts, 295 
response file, 296 

terminating, 297 
variable, 261 

LIB command symbols 
asterisk (*), 292, 297, 300 
minus sign (-), 292, 294, 300 
minus sign-asterisk (-*), 292, 300 
minus sign-plus sign (-+), 292, 294, 

300 
plus sign (+) 

libraries, combining, 300 
library, specifying, 294 
object files, appending, 297, 299 
using, 291 

Libraries 
automatic object-file processing, 257 
development, used in, 257 
extensions, 256 
load, 257 
mixed-language programming, 19 
regular, 257 
search path, 261 
specifying 

LINK command line, 257 
LINK prompts, 258 
LINK response file, 261 

standard places, 261 
See also LIB 

Library manager. See LIB 
Line numbers, in source-level 

debugging, 97 
Line-number option, LINK, 269 
/LINENUMBERS option, LINK, 269 
LINK 

alignment types, 281 
CodeView, used with 

C example, 12 
FORTRAN example, 13 
Macro Assembler example, 19 

combine type, 282 
default 

command line, 257 
responses, 259 

environment variable, 280 
error messages 

Code View format, invalid, 353 

Index 

LINK (continued) 
error messages (continued) 

listed, 359 
exit codes, 344 
exiting from, 255 
file-name conventions, 255 
groups, 283 
operation, 281 
running 

LINK command line, 255 
prompts, 258 
response file, 260 

ISTAOK option, 323 
temporary output file, 263, 266 
terminating, 255 

LINK options 
abbreviations, 265 
/BATOH (lB), 275 
batch-file mode, running in, 275 
case sensitivity( 269 
100DEVIEW 100), 275 
compa.!iibili~y, preserving, 274 
/OPARMAXALLOO (lOP), 270 
data loading, 273 
debugging, 275 
default libraries, ignorinp1 263 
displaying with /HELP lJHE), 265 
jDOSSEG (IDO), 272 
IDSALLOOATE(lDS),273 
environment variable, using, 280 
executable files, packing, 267 
executable-file loading, 274 
jEXEPAOK (IE), 267 
/HELP (jHE), 265 
HIGH ( HI , 273, 274 ~INFOR~TION (II), 266 

line numbers, displarmg, 269 
/LINENUMBERS (;LI), 269 
LINK comrnand line, specifying on, 

263 
LINK prompts, responding to, 264 
linker prompting, preventing, 275 
map file, 257, 268 
JMM> ( 1M),257, 268 
INODEF AUL TLIBRARYSEAROH 

(lNOD) 
described, 269 
object files, used with, 263 

INOGROUPASSOCIATION 
(/NOG),274 

IN01GNOREOASE (lNOI), 269 
numerical arguments, 265 
ordering segments, 272 
overlay interrupt, setting, 272, 285 
10VERLAYINTERRUPT (10), 272, 

285 

395 



Index 

LINK options (continued) 
paragraph space, allocating, 270 
lPAUSE (lPAU), 266 
pausing, 266 
process information, displaying, 266 
segments, 271 
/SEGMENTS (/SE), 271 
stack size, settmg, 270 
/STACK (1ST), 270 

Linker utility. See LINK 
Listing files, LIB, 293, 298, 301 
Listing, LINK options, 265 
Load libraries, LINK command line, 

257 
Load, menu selection, 120 
Load size, 325 
Local variables, 77, 170 
Logical error, 10 
Logical operator, FORTRAN, 82 
Long reals 

dumping, 145 
entering with CodeView, 217 

Loops 
tracepoints, used with, 181 
watchpoints, used with, 176 

.L T. operator, 82 
Lvalue, 177 

1M Code View option, 31 

lliMove Memory command), 220 
option. See LINK options, /MAP 

cro Assembler 
assembling and linking, 19 
older versions, using CodeView with, 

34 
Macro definitions, MAKE, 312 
Macros, in Cprograrns, 12 
MAKE 

described, 305 
description file, 306 
error messages, 375 
example, 309 
exit codes, 343, 345 
inference rules, 316 
infile, 308 
macro 

definitions, 312 
names, special, 315 

messages, 311 
options 

/D,312 

396 

II, 312 
IN, 312 

MAKE (continued) 
options (continued) 

/S,312 
using, 312 

outfile, 308 
running, 311 

Map files 
creating, 268, 269 
extensions, 256, 257, 269 
frame numbers, obtaining, 282 
/MAP (1M) option, LINK, 257, 268 
naming with LINK, 257 
~ option, LINK, 257, 268 
/MAX option, EXEMOD, 323 
Maximum allocation, EXEMOD 

display, 325 
Memory 

allocation, and EXEMOD, 325 
copying blocks of, 220 
filling blocks of, 219 
moving blocks of, 220 
operators, 101 
release, 237, 355 

Menu bar, 41 
Menus, Code View 

Calls 
Stack Trace command, 200 
using, 64 

defined, 41 
File 

DOS Shell, 53, 238 
Exit, 53 
Load, 196 
Open, 52 
Quit, 230 

Help 
About selection, 65 
using, 65 

keyboard, selection from, 45 
mouse, selection from, 51 
Options 

386 option, 62 
Bytes Coded, 61,191 
Case Sense, 62 
Flip/Swap, 61 

Run 
Clear Breakpoints, 58, 160 
Execute, 58, 118 
Restart, 58, 119 
Start, 57, 119 

Search 
Find, 55, 235 
Label, 57, 235 
Next, 56, 235 
Previous, 57, 235 

View 



Menus, CodeViewfcontinuedj 
View (continued 

Assembly, 55, 191 
Mixed, 55 
Output, 55 
Registers, 55, 150, 222 
Source, 55, 191 

Watch 
Add Watch, 59, 171 
Delete All, 60 
Delete Watch, 60, 181 
Tracepoint, 59, 178 
Watchpoint, 59, 174 

Menus, error messages, 356, 358 
Message box, 41, 46, 51 
Microsoft LIB. See LIB 
Microsoft LINK. See LINK 
!MIN option, EXEMOD, 323 
Minimum allocation 

EXEMOD display, 325 
value, controlling, 323 

Minus sign (-) 
FORTRAN, 82 
LIB command symbol, 292, 294, 300 

Minus sign-asterisk (-*), LIB command 
symbol, 292, 300 

Minus sign-plus sign (-+), LIB 
command symbol, 292, 294, 300 

Mixed mode, 191 
Mixed-language programming, 

CodeView, 19 
Mnemonic keys, CodeView, 46 
Modules, examination, 132 
Monochrome adapter (MA), 25, 26, 30 
Mouse 

driver, 32 
ignore option, 31 
pointer, 41, 47 
selecting with, 47 

Move Memory command, 220 
MSC,12 

IN option, MAKE, 312 
N (Radix command), 231, 350 
Naming files, 257 
NAN (not a number), 139 
.NE. operator, 82 
Negation operator, FORTRAN, 82 
.NEQV. operator, 82 
Nested scope, effect on CodeView, 91 
NMI trapping, 28 
INOD option, LINK, 269 
!NODEF AUL TLIBRARYSEARCH 

option, LINK, 263, 269 
/NOG option, LINK, 274 

Index 

/NOGROUP ASSOCIATION option, 
LINK, 274 

INOI option, LINK, 269 
/NOIGNORECASE option, LINK, 269 
Nonequivalence operator, FORTRAN, 

82 
Nonproportional typeface, notational 

conventions, xxi 
.NOT. operator, 82 
Notational conventions, xx 
Not-equal-to operator, FORTRAN, 82 
NUL,293 
Number sign (#), Tab Set command, 

240 
Numbers 

arguments, used as, 351 
floating point, 144, 145, 146 

lO option, 285 
o (Option Command), 241 
lO option, LINK, 272 
Object files 

extensions, 256 
naming, default, 256 
object modules, difference from, 289 
specifying 

LINK command line, 256 
LINK prompts, 258 
LINK response file, 260 

Object modules 
defined,289 
library 

deleting from, 292, 300 
extracting and deleting from, 292, 

300 
including in, 291, 299 

listing (LIB), 293, 301 
object flIes, difference from, 289 

Object ranges, arguments, used as, 100 
Octal notation 

BASIC, 88 
C,80 
FORTRAN, 83 
Pascal, 93 

lOd compiler option, 10 
Operands, machine instruction, 

displayed by CodeView, 151 
Operators 

BASIC, 86 
C,78 
FORTRAN, 81 
memory, CodeView, 103 

Optimization, and CodeView, 10 
Option command, 240 
Optional fields, conventions for, xxi 

397 



Index 

Options, CodeView. See CodeView 
Options, LINK. See LINK options 
.OR. operator, 82 
Out/dependent file descriptions, 306 
Output, Port command, 221 
Output screen, CodeView, 29, 233 
Output, View menu selection, 55 
Overlay number, EXEMOD display, 

325 
/OVERLAYINTERRUPT option, 

LINK, 272, 285 
Overlays 

interrupt number, setting, 272, 285 
LINK, specifying, 285 
overlay manager prompts, 286 
restrictions, 285 
search path, 286 

IP CodeView option, 32 
P (Program Step command), 113 
Packed files, and CodeView, 7 
Packing executable files, LINK, 267 
Page size, library, 291, 302 
IPAGESIZE option, Lm, 291, 302 
Palette registers, and Code View, 32 
Paragraph space, 270 
Parameters, program, 21 
Parentheses t ), FORTRAN, 82 
Pascal 

Code View, case sensitivity, 92 
compiling and linking, 16 
constants, 93 
expressions, 91 
intrinsic functions, 93 
operators, 91 
strings, 93 
symbols, 92 

Pass count, 158, 164 
PATH command 

Codeview, setting up, 20 
MAKE, used with, 317 

Pause command 248 
IPAUSE (jPAUj option, LINK, 266 
Period (.) 

Current Location command, 198 
operator 

C,79 
error messages, 356 
FORTRAN, 82 
Pascal, 91 

regular expressions, used in, 336 
PGDN key!SCrOll page down), 42, 197 
PGUP key scroll page up), 42 
Plus sign +) 

Lm command symbol 

398 

Plus sign (+) (continued) 
Lm command symbol (continued) 

Intel, XENlX files, used with, 289 
libraries, combining, 292, 300 
library, specifying, 294 
object files, appending, 297, 299 
using, 291 

LINK command symbol, 257, 260 
operator, FORTRAN, 82 

Point, defined, 47 
Pointer, mouse, 41, 47 
Port Output command, 221 
Precedence of operators 

BASIC, 86 
C,78 
FORTRAN, 82 
Pascal, 91 

Prefixes, format specifiers, used with, 
125,349 

printf type specifiers, 174, 179 
PRIVATE combine type, 283 
Procedure calls 

Stack Trace command, 200 
stepping over, 113 
tracing into, 110 

Procedures, 132, 199 
Program arguments, CodeView, 119 
Program header, inspection of, 323 
Program maintainer . See MAKE 
Program Step command 

FlO function key, 45, 67 
mouse, executing with, 49 
using, 113 

Prompt, CodeView, (», 39, 41, 71 
Protected-mode (80286J mnemonics, 

194, 205 
PUBLIC combine type, 282 
Public names. See Public symbols 
Public symbols 

Lm,293,298,301 
LINK, 268 
Macro Assembler, 34 

Q (Quit command), CodeView, 230 
Quotation marks (") 

notational conventions, xxii 
Pause command, 248 

R (Register command), 151, 349, 350 
Radix 

command 
limits, 350 
using, 231 

current 



Radix (continued) 
current (continued) 

BASIC, 88 
C,80 
effect on display, 64 
effect on unassemble, 199 
FORTRAN, 83 
Pascal, 93 

Ranges, arguments, used as, 100 
READ11E.DOC file, xx 
Redirecting error messages, 328 
Redirection 

commands, 242 
start-up commands, used in, 27 

Redraw command, 233 
References 

long, 284 
near segment-relative, 284 
near self-relative, 284 
resolving, 269, 283 
short, 284 
unresolved, 283 

Register 
argument, used as, 98 
command 

changing register values, 222 
displaying registers, 150 
F2 function key, 43, 66 
mouse, executing with, 50 
View menu selection, 55 

DS, described, 273 
prefix (@), 98 
variables, 79, 177, 356 
window, 40 

Regular expressions 
errors, 354, 356 
searches, used in, 56, 234 
searching for, 56 
specifying, 335 

Regular libraries, LINK command line, 
257 

Relational expressions, 174 
Relational operators 

BASIC, 86 
FORTRAN, 82 

Relocation information, 281 
Relocation table, 325 
Response files 

LIB, 296 
LINK, 260 

Restart command 
errors, 356, 357 
Run menu selection, 58 
using, 119 

Restrictions, CodeView, 7 
Return codes. See Exit codes 

Index 

ROM (read-only memory), 111 
Routines 

and CodeView, 199 
arguments, value of, 199 
calls to, 200 

Run menu 
Clear Breakpoints, 58, 160 
Execute, 58, 118 
Restart, 58, 119, 356 
Start, 57, 119, 356 

Run time 
error messages, redirecting, 328 
libraries, 289 

Running 
LIB 

command line, 290 
prompts, 295 
response file, 296 

LINK 
command line, 255 
prompts, 258 

/S options 
CodeView, 29, 359 
MAKE, 312 

S (Set Mode command), 192 
Screen 

buffer, 171 
exchange 

command, 233 
F4 function key, 44, 66 
method, 30 

movement commands, 42 
notational conventions, xxii 
two, using, 25 

Scroll bar, defined, 40 
Search 

command 
menu selections, 55 
regular expressions, used with, 335 
using, 234 

menu 
Find, 55, 235 
Label, 57, 235 
Next, 56, 235 
Previous, 57, 235 

paths 
libraries, 261 
overlays, 286 

Segments 
alignment types, 281, 282 
class names, 282 
class types, 282 
combine types, 282 
combining, 282 

399 



Index 

Segments (continued) 
number allowed, 271 
order, 272, 282 

LSEGlv1ENTS option, LINK, 271 
Semicolon (;) 

LIB command symbol, 290, 296, 301 
LINK command symbol, 258, 259, 

260 
Separator line, 40 
Sequential mode 

Code View, 39 
redirection, used with, 245 
starting, 33 

Set Block, DOS function call (# 4A), 
237 

Set Mode command 
dialog command, 55 
F3 function key, 43, 66 
using, 191 
View menu selection, 55 

SETENV 
error messages, 381 
exit codes, 345 
utility, 326 

Shell Escape command 
File menu selection, 53 
space problem solutions, 355 
using, 237 

Short reals 
Codeview, entering with, 217 
dumping, 144 

Small capitals, notational conventions, 
xxii 

Source 
file, line-number arguments, used 

with, 97 
mode, 191, 355 

Source-module files, location, 20, 53 
Special macro names, MAKE, 315 
Stack 

8087 register, 154 
size 

controlling, 323 
setting, 270 

STACK. class name, 273 
STACK combine type, 283 
/STACK. option 

(EXEMOD), 323 
(LINK), 270, 323 

Stack Trace command 
display contents, 64 
using, 199 

Standard places, libraries, 261 
Start-up 

code, 23, 53,237 
command line, 351, 355 

400 

Start-up (continued) 
file configuration, Code View, 20 
routine, 271 

Stopping 
library manager, LIB, 290, 297 
linker, LINK, 255 

Strings 
arguments 

BASIC, 89 
C,81 
FORTRAN, 84 
Pascal, 93 
used as, 353 

concatenation, BASIC, 86 
mnemonics, 207 
operators, BASIC, 86 

Subprogram calls 
Stack Trace command, 200 
stepping over, 113 
tracing into, 110 

Swapping 
screen, 29 
disks, during linking, 266 

Symbols 
arguments, used in, 358 
BASIC, 88 
C,79 
examining, 132 
FORTRAN, 83 
Pascal, 92 
underscore (_), in names, 79, 83, 92 

SYMDEB, 39 
Syntax 

CodeView summary, 229 
error, 10 

Syntax conventions. See Notational 
conventions 

SYSTEM-REQUEST key, 45,110 

IT CodeView option, 33 
T (Trace command), 111 
Tab Set command, 239 
Text files, identifying, 355 
Text strings, finding, 55, 234, 335 
~ environment variable, used by 

LINK, 263 
TOOLS.INI file, 317 
TP. See Tracepoint command 
Trace command 

dialog command, 110 
F8 function key, 44, 67 
mouse, executing with, 49 

Tracepoint command 
data object size limit, 355 
sequential mode, 67 



Tracepoint command (cont£nued) 
setting, 177, 349 
Watch menu selection, 59 

Tracepoint, defined, 177 
Two-color graphics display, CodeView, 

26 
Type casting, 350 
Type specifiers, 172, 174, 178 

U (Unassemble command), 193 
Underscore (_ ), symbol names, 79, 83, 

92 
Unsigned integers, dumping, 142 
UP ARROW key (cursor up), 42 
Uppercase letters, notational 

conventions, xx 
Utilities 

ERROUT. See ERROUT 
EXEMOD. See EXEMOD 
EXEPACK. See EXEPACK 
library manager. See LIB 
linker. See LINK 

V (View command), 195,354,355 
Variables 

local, 10, 77, 170 
special 

_edata, 273 
_end, 273 

Vertic~ bar (I), notational convention, 
XXll 

Video modes, 359 
Video-display pages, 30 
View 

command, 195, 354, 355 
menu 

Assembly, 55, 191 
Mixed, 55 
Output, 55 
Registers, 55 
Source, 55, 191 

VM.TMP file, 263, 266 

W commands 
Watch, 172, 349 
Watch List, 67, 183 

/Woption, CodeView, 33 
\V AIT instruction, 208 
Watch 

expression statement, 171 
memory statement, 171 
menu 

Add Watch, 59 

Watch (cont£nued) 
menu (continued) 

Delete All, 60 
Delete Watch, 60 
Tracepoint, 59 
Watchpoint, 59 

statements 
commands, 169 
defined, 41 
deletion, 181 
listing, 183 
summary, 169 

window, 41, 169 
Watch command 

error messages, 349 
menu selections, 59 
sequential mode, 67 
setting Watch statement, 170 

Watch Delete All command, 60 
Watch Delete command, 60, 181 
Watch List command, 67,183 
Watchpoint command 

error messages, 349 
sequential mode, 67 
setting, 174 
Watch menu selection, 59 

Watchpoint, defined, 174 
Window commands, 41, 71 
Window mode 

CodeView,39 
starting, 33 

WO operator, 102 

Index 

Words (units of memory), 102 
WP (Watchpoint command), 175,349 

X (Examine Symbols command), 133 

Y (Watch Delete command), 182 

/Zd 
compiler o}?tion, 10 
option (FL), 269 

Zero, dividing by, 351 
/Zi compiler o}?tion, 9, 10 
!Zi option (FL), 275 

401 




