N
Microsoft C

Run-Iime Library Reference

Microsoft C

Run-T'ime Library Reference

Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way, Redmond, Washington 98052-6399

Copyright© 1990 by Microsoft Press

All rights reserved. No part of the contents of this book may be reproduced or trans-
mitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft C run-time library reference.

Includes index.

1. C (Computer program language) 2. Microsoft C
(Computer program) 3. Macro instructions (Electronic
computers) I. Microsoft.

QA76.73.C15M52 1990 005.13"3 89-12240

ISBN 1-55615-225-6

Printed and bound in the United States of America.

1 23 456 7 89 HCHC 3 21 0 9

Distributed to the book trade in Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the United States and Canada by Penguin
Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available.

Writers: Editors: Sample Programs:
Phil Nelson Amanda Clark Bruce McKinney
Terry Ward Moira Macdonald

Marjorie Manwaring

Bill Nolan

Microsoft, the Microsoft logo, MS-DOS, QuickC, and XENIX are registered trademarks
and Windows is a trademark of Microsoft Corporation.

AT&T and UNIX are registered trademarks of American Telephone and Telegraph
Company.

Hercules is a registered trademark of Hercules Computer Technology.

IBM is a registered trademark of International Business Machines Corporation.

Olivetti is a registered trademark of Ing. C. Olivetti.

Contents

Imtroduction, R
About the CRun-Time Library v
AboutThisBook o oo vii
Other Booksof Interest o 0. vii
Document Conventions v .. 000w . ix

PART1 Overview

Chapter1 Using C Library Routines 5§
1.1 Calling Library Routines 5
1.2 UsingHeaderFiles 6
1.3 FileNamesand PathNames 9
1.4 Choosing Between Functionsand Macros 10
1.5 Stack CheckingonEntry 12
1.6 HandlingErrors v v v v v v v e 13
1.7 Operating-System Considerations 14
1.8 Floating-Point Support 15
1.9 Using Huge Arrays with Library Functions 16

Chapter 2 Run-Time Routines by Category19
2.1 BufferManipulation 20
2.2 Character Classification and Conversion 21
23 DataConversion« oo e . 22
24 DirectoryControl 000 23
25 FileHandling 23
26 Graphics 000 e e e e 25
27 InputandOutput 35
2.8 Internationalization 45
29 Math L0 e e 45
2.10 MemoryAllocation 48

dii

iv Microsoft G Run-Time Library Reference

2.11
2.12
2.13
2.14
2.15
2.16

Chapter 3

3.1
32
33
34
35
3.6
3.7
38

PART2 Run-

Process and EnvironmentControl
SearchingandSorting,
String Manipulation00 L
SystemCalls00
Time 0 i 0 e oo
Variable-Length Argument Lists

Global Variables and Standard Types 63

_amblksiz - . L L . L L s e e s e e e e e e e e e e
daylight, timezone, tzname
_doserrno, errno, sys_errlist,sys_nerr
fmode e e e
_osmajor, _osminor, _osmode, _osversion
1310171 (') 1 P

1
Standard Types 0oL, e

Time Functions

About the

Run-Time Reference

Alphabetic Function Reference

Index . . .

Introduction

The Microsoft® C Run-Time Library is a set of over 500 ready-to-use functions
and macros designed for use in C programs. The run-time library makes program-
ming easier by providing

m Fast and efficient routines to perform common programming tasks (such as
string manipulation), sparing you the time and effort needed to write such
routines

m Reliable methods of performing operating-system functions (such as opening
and closing files)

The C run-time library is important because it provides basic functions not pro-
vided by the C language itself. These functions include input and output, memory
allocation, process control, graphics, and many others.

This book describes the Microsoft C run-time library routines included with the
Microsoft Professional Development System version 6.0. These comprise all of
the routines included with earlier versions of Microsoft C, as well as many new
routines.

NOTE Microsoft documentation uses the term “05/2” to refer to the 05/2 systems—
Microsoft Operating System/2 (MS@ 05/2) and IBM® 0S/2. Similarly, the term “DOS” refers
to both the MS-D0OSe and IBM Personal Computer DOS operating systems. The name of a
specific operating system is used when it is necessary to note features that are unique to
that system.

About the C Run-Time Library

The Microsoft C run-time library contains a number of new routines and features
which support American National Standards Institute (ANSI) C compatibility,
08/2 and XENIX® programming, and sophisticated graphics programming. .

To ease the task of transporting programs from one operating system to another,
the description of each library routine includes compatibility boxes, which show
at a glance whether the routine is compatible with ANSI C, MS-DOS, 0S/2,
UNIX®, and XENIX. (In this book, references to XENIX systems also encom-
pass UNIX and other UNIX-like systems.)

vi Microsoft C Run-Time Library Reference

ANSI € Compatibility

The C run-time library routines are designed for compatibility with the ANSI C

- standard, which Microsoft C compilers support. The major innovation of ANSI C
is to permit argument-type lists in function prototypes (declarations). Given the
information in the function prototype, the compiler can check later references to
the function to make sure that the references use the correct number and type of
arguments and the correct return value.

To take advantage of the compiler’s type-checking ability, the include files that
accompany the C run-time library have been expanded. In addition to the defini-
tions and declarations required by library routines, the include files now contain
function declarations with argument-type lists. Several new include files have
also been added. The names of these files are chosen to maximize compatibility
with the ANSI C standard and with XENIX and UNIX names.

0S/2 and XENIX- Programming

Microsoft C run-time library routines are designed to maintain maximum com-
patibility between MS-DOS, OS/2, and XENIX or UNIX systems. The library
offers a number of operating-system interface routines that allow you to take
advantage of specific DOS and OS/2 features.

Most of the functions in the C library for DOS and OS/2 are compatible with like-
named routines in the C library for XENIX. For additional compatibility, the
math library functions have been extended to provide exception handling in the
same manner as the UNIX System V math functions.

Expanded Graphics Library

The Microsoft C run-time library now contains over one hundred graphics
routines. The core of this library consists of several dozen low-level graphics
routines, which allow your programs to select video modes, set points, draw
lines, change colors, and draw shapes such as rectangles and ellipses. You can
display real-valued data, such as floating-point values, within windows of differ-
ent sizes by using various coordinate systems.

Recent additions to the graphics library include presentation graphics and
fonts. The presentation-graphics library provides powerful tools for adding
presentation-quality graphics to your programs. These routines can display data
as a variety of graphs, including pie charts, bar and column charts, line graphs,
and scatter diagrams. -

Intraduction vii

The fonts library allows your programs to display various styles and sizes of text
in graphics images or charts. You can use font-manipulation routines with any
graphics routines that display text, including presentation graphics.

About This Book

This book assumes that you understand the C language and know how to compile
and link programs. If you have questions about these subjects, consult your com-
piler documentation.

This book has two parts. Part 1, “Overview,” introduces the Microsoft C library.
It describes general rules for using the library and summarizes the main catego-
ries of library routines. Part 1 contains the following chapters:

Chapter 1, “Using C Library Routines,” gives general rules for understanding
and using C library routines and mentions special considerations that apply to
certain routines. It is recommended that you read this chapter before using the
run-time library; you may also want to turn to Chapter 1 when you have ques-
tions about library procedures.

Chapter 2, “Run-Time Routines by Category,” lists the C library routines by
category and discusses considerations that apply to each category. This chap-
ter makes it easy to locate routines by task. Once you find the routine you
want, turn to the reference page in Part 2 for a detailed description.

Chapter 3, “Global Variables and Standard Types,” describes variables and
types that are used by library routines. Global variables and standard types
are also described in the reference descriptions of the routines that use them.

Part 2, “Run-Time Functions,” describes the library routines in alphabetical
order. Once you are familiar with the C library rules and procedures, you will
probably use this part most often.

Other Books of Interest

This book provides a guide to the C run-time library provided with the Microsoft
C Professional Development System version 6.0.

viii Microsoft C Run-Time Library Reference

The following books cover a variety of topics that you may find useful. They are
listed only for your convenience. With the exception of its own publications,
Microsoft does not endorse these books or recommend them over others on the
same subject.

Barkakati, Nabajyoti. The Waite Group’s Microsoft C Bible. Indianapolis, IN:
Howard W. Sams, 1988.

A topical guide to the Microsoft C run-time library. A similar volume is avail-
able for the Microsoft QuickC® product.

Campbell, Joe. C Programmer’s Guide to Serial Communications. Indi-
anapolis, IN: Howard W. Sams & Company, 1987.

A comprehensive guide to the specialized area of serial communication pro-
gramming in C.

Hansen, Augie. Proficient C: The Microsoft Guide to Intermediate & Ad-
vanced C Programming. Redmond, WA: Microsoft Press, 1987.

An intermediate-level guide to C programming.

Harbison, Samuel P., and Guy L. Steele, Jr. C: A Reference Manual, 2d ed.
Englewood Cliffs, NJ: Prentice Hall, 1987.

A comprehensive guide to the C language and the standard library.

Kemighan, Brian W., and Dennis M. Ritchie. The C Programming Language,
2d ed. Englewood Cliffs, NJ: Prentice Hall, 1988.

The first edition of this book is the classic definition of the C language. The
second edition includes new information on the proposed ANSI C standard.

Lafore, Robert. Microsoft C Programming for the IBM. Indianapolis, IN:
Howard W. Sams & Company, 1987.

The first half of this book teaches C. The second half concentrates on specif-
ics of the PC environment, such as BIOS calls, memory, and video displays.

Mark Williams Company. ANSI C: A Lexical Guide. Englewood Cliffs, NJ:
Prentice Hall, 1988.

A dictionary-style guide to the ANSI C standard.

Plauger, P. J., and Jim Brodie. Standard C. Redmond, WA: Microsoft Press,
1989.

A quick reference guide to the ANSI C implementation by the secretary and
chairman of the ANSI-authorized C Programming Language Standards
Committee.

Introduction ix

Plum, Thomas. Reliable Data Structures in C. Cardiff, NJ: Plum Hall, 1985.
An intermediate-level look at data structures using the C language.

Plum, Thomas, and Jim Brodie. Efficient C. Cardiff, NJ: Plum Hall, 1985.
A guide to techniques for increasing the efficiency of C programs.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in C: The Art of Scientific Computing. New York:
Cambridge University Press, 1988.

A comprehensive look at numerical techniques using the C language.

Schustack, Steve. Variations in C: Programming Techniques for Developing
Efficient Professional Applications. Redmond, WA: Microsoft Press, 1985.

An intermediate-level guide to developing business applications in C.
Ward, Robert. Debugging C. Indianapolis, IN: Que Corporation, 1986.
An advanced guide to the theory and practice of debugging C programs.

Wilton, Richard. Programmer’s Guide to PC and PS/2 Video Systems:Maxi-
mum Video Performance from the EGA, VGA, HGC, & MCGA. Redmond,
WA: Microsoft Press, 1987.

An advanced guide to all the PC and PS/2 video modes.

Document Gonventions

This book uses the following document conventions :

Example Description

STDIO.H ‘ Uppercase letters indicate file names, segment

names, registers, and terms used at the
operating-system command level.

far Boldface letters indicate C keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates
that the text must be entered exactly as shown.

expression Words in italics indicate placeholders for informa-

tion you must supply, such as a file name. Italics are
also occasionally used for emphasis in the text.

lloption]] Items inside double square brackets are optional.

x Microsoft C Run-Time Library Reference

#pragma pack {112}

#include <io.h>
CL options [[files...]
while()

{

)

CTRL+ENTER

“argument”

"C string”

Color Graphics
Adapter (CGA)

Braces and a vertical bar indicate a choice among
two or more items. You must choose one of these
items unless double square brackets surround the
braces.

This font is used for examples, user input, program
output, and error messages in text.

Three dots following an item indicate that more
items having the same form may appear.

A column of three dots tells you that part of the ex-
ample program has been intentionally omitted.

Small capital letters are used for the names of keys
on the keyboard. When you see a plus sign (+) be-

.tween two key names, you should hold down the

first key while pressing the second.

The carriage-return key, sometimes marked as a
bent arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it
is defined in text.

Some C constructs, such as strings, require quotation

- marks. Quotation marks required by the language

have the form " " and ' ' ratherthan“” and’’.

The first time an acronym is used, it is often
spelled out.

Special Offer xi

Special Offer
Companion Disk for Microsoft C Run-Time Library Reference

Microsoft Press has created a companion disk for Microsoft C Run-Time Library
Reference. This disk, available in 5.25- and 3.5-inch format, contains nearly 300
example programs from the book. You can use code fragments from the compan-
ion disk for commercial or personal purposes without infringing on the copyright
of the book.

Domestic Ordering Information

To order, use the special reply card bound in the back of the book. If the card has
already been used, please send $19.95 (plus sales tax if applicable: CA residents,
5% plus local option tax, CT 8%, FL 6%, IL 5%, KY 5%, MA 5%, MN 6%, MO
4.425%, NJ 6%, NY 4% plus local option tax, SC 5%, TX 6% plus local option
tax, WA State 7.8%) and $2.50 per disk set for domestic postage and handling
charges. Mail your order to: Microsoft Press, Attn: Companion Disk Offer,
21919 20th Ave SE, Box 3011, Bothell, WA 98041-3011. Please specify 5.25-
inch format or 3.5-inch format. Payment must be in U.S. funds. You may pay by
check or money order (payable to Microsoft Press) or by American Express,
VISA, or MasterCard. (If paying by credit card, please include both your card
number and the expiration date.) Allow 2—3 weeks for delivery.

Foreign Ordering Information (within the U. K., see below)

Follow ordering procedures for domestic ordering and add $6.00 for foreign post-
age and handling.

U.K. Ordering Information

Send your order in writing along with £18.95 (includes VAT) to: Microsoft
Press, 27 Wrights Lane, London W8 5TZ. You may pay by check or money
order (payable to Microsoft Press) or by American Express, VISA, MasterCard,
or Diners Club. (If paying by credit card, please include both your card number
and the expiration date.) Specify 5.25-inch format or 3.5-inch format.

Microsoft Press Companion Disk Guarantee

If the disk proves defective, send the defective disk along with your packing slip
(or copy) to: Microsoft Press, Consumer Sales, One Microsoft Way, Redmond,
WA 98052-6399.

If you have questions or comments about the files on the disk, send them to:
Languages User Education, Microsoft Corporation, One Microsoft Way, Red-
mond, WA 98052-6399.

The Companion Disk for Microsoft C Run-Time Library Reference is available
only from Microsoft Press.

| PART1

| Overview

s

.

L

i

i

S

e

S

e

i

Ll

.

o

-

Overview

The first part of this book provides an overview of the run-time
library provided with the Microsoft C Professional Development
System.

Chapter 1 is a general guide to the use of the run-time library
routines.

Chapter 2 lists the routines by category.

Chapter 3 tells how to access global variables and types defined
in the run-time library.

i
e

S
e
L

Ui

. G e

-

L

-

A

S i

ity

Lt

T

S

G

S

S

o
L

e . - e

e o
o

S

.

Soana . e
e ki e

L
G

o

G 5 > S
L .

G 4 Na
o | ,
.

- o
e

o
o

S

S

i

s

CHAPTER |

Using C Library Routines

This chapter provides basic information about how to use Microsoft C library
routines. It also describes some special rules, such as file- and path-name conven-
tions, that apply to particular routines. You should read this chapter before you
begin to use C library routines, and you may also want to refer back to it if you
have questions about library procedures.

1.1 Calling Library Routines

To use a C library routine, simply call it in your program, just as if it is defined
there. For instance, suppose you write the following program and name it
SAMPLE.C:

#finclude <stdio.h>
main()
(
printf("Microsoft C");
)

The program prints Microsoft C by calling the printf routine, which is part
of the standard C library. Calling a library routine normally involves two groups
of files: '

1. Header (“include”) files that contain declarations and type definitions
required by library routines
2. Library files that contain the library routines in compiled form

Header files and library files are both included with Microsoft C. Header files are
used when compiling, and library files are used when linking.

6 Microsoft C Run-Time Library Reference

You include the necessary header files in your program source code with
#include directives. The description of each library routine in Part 2, “Refer-
ence,” tells you what header file the routine requires. Since printf requires the
STDIO.H header file, the SAMPLE.C program contains the following line:

#include <stdio.h>

This line causes the compiler to insert the contents of STDIO.H into the source
file SAMPLE.C.

After you compile the source file, you link the resulting object (.OBJ) file with
the appropriate library (.LIB) file to create an executable (.EXE) file. Your object
file contains the name of every routine that your program calls, including library
routines. If a routine is not defined in your program, the linker searches for its
code in a library file and includes that code in the executable file.

Normally, the code for standard library routines is contained in the “default li-
brary” that you create when installing Microsoft C. Since the linker automat-
ically searches the default library, you do not need to specify that library’s name
when linking your program. The following command links the example program
with the default library:

1ink sample,,,;

If you call a library routine that is not contained in the default library, you must
give the linker the name of the library file that contains the routine. For instance,
suppose your program uses a Microsoft C graphics routine and you did not make
GRAPHICS.LIB part of your default library when installing Microsoft C. You
would then link the program using a line like the following:

1ink sample,,, graphics.lib;

For more information about libraries and linking, consult the installation docu-
mentation for your compiler.

1.2 Using Header Files

As stated in the previous section, you should include C header files when using
library routines. This section describes particular reasons why header files are
required.

Using C Library Routines 7

1.2.1 Including Necessary Definitions

Many C library routines use constants, type definitions, or macros defined in a
header file. To use the routine, you must include the header file containing the
needed definition(s). The following list gives examples:

Definition Example
Macro_ If a library routine is implemented as a macro, the

macro definition appears in a header file. For in-
stance, the toupper macro is defined in the header
file CTYPE.H.

Manifest constant Many library routines refer to constants that are de-
fined in header files. For instance, the open routine
uses constants such as O_CREAT, which is defined
in the header file FCNTL.H.

Type definition Some library routines return a structure or take a
structure as an argument. For example, stream
input/output routines use a structure of type FILE,
which is defined in STDIO.H.

1.2.2 Including Function Declarations

The Microsoft C header files also contain function declarations for every func-
tion in the C library. These declarations are in the style recommended by the
ANSI C standard. Given these declarations, the compiler can perform “type
checking” on every reference to a library function, making sure that you have
used the correct return type and arguments. Function declarations are sometimes
called “prototypes,” since the declaration serves as a prototype or template for
every subsequent reference to the function. ‘

A function declaration lists the name of the function, its return type, and the num-
ber and type of its arguments. For instance, below is the declaration of the pow
library function from the header file MATH.H:

double pow(double x, double y);

The example declares that pow returns a value of type double and takes two ar-
guments of type double. Given this declaration, the compiler can check every ref-
erence to pow in your program to ensure that the reference passes two double
arguments to pow and takes a return value of type double.

The compiler can perform type checking only for function references that appear
after the function declaration. Because of this, function declarations normally ap-
pear near the beginning of the source file, prior to any use of the functions they
declare.

8 Microsoft C Run-Time Library Heference‘
. ___]

Function declarations are especially important for functions that return a value of
some type other than int, which is the default. For example, the pow function re-
turns a double value. If you do not declare such a function, the compiler treats its
return value as int, which can cause unexpected results,

It is also a good practice to provide declarations for functions that you write. If
you do not want to type the declarations by hand, you can generate them automat-
ically by using the /Zg compiler option. This option causes the compiler to
generate ANSI-standard function declarations for every function defined in the
current source file. Redirect this output to a file, then insert the file near the
beginning of your source file.

Your program can contain more than one declaration of the same function, as
long as the declarations do not conflict. This is important if you have old pro-
grams whose function declarations do not contain argument-type lists. For in-
stance, if your program contains the declaration

char *calloc();

you can later include the following declaration:

char *calloc(unsigned, unsigned);

Because the two declarations are compatible, even though they are not identical,
no conflict occurs. The second declaration simply gives more information about
function arguments than the second. A conflict would arise, however, if the decla-
rations gave a different number of arguments or gave arguments of different

types.

Some library functions can take a variable number of arguments. For instance,
the printf function can take one argument or several. The compiler can perform
only limited type checking on such functions, a factor that affects the following
library functions:

m In calls to cprintf, cscanf, printf, and scanf, only the first argument (the for-
mat string) is type checked.

w In calls to fprintf, fscanf, sprintf, and sscanf, only the first two arguments
(the file or buffer and the format string) are type checked.

m In calls to open, only the first two arguments (the path name and the open
flag) are type checked.

= In calls to sopen, only the first three arguments (the path name, the open flag,
and the sharing mode) are type checked.

Using C Library Routines 9

m Incalls to execl, execle, execlp, and execlpe, only the first two arguments
(the path name and the first argument pointer) are type checked. '

m In calls to spawnl, spawnle, spawnlp, and spawnlpe, only the first three ar-
guments (the mode flag, the path name, and the first argument pointer) are
type checked.

1.3 File Names and Path Names

Many library routines take strings representing paths and file names as argu-
ments. If you plan to transport your programs to the XENIX operating system,
you should remember that XENIX uses file- and path-name conventions that are
different from those used by DOS and OS/2. If you do not plan to transport your
programs to XENIX, you can skip this section.

Case Sensitivity

The DOS and OS/2 operating systems are not case sensitive (they do not dis-
tinguish between uppercase and lowercase letters). Thus, SAMPLE.C and
Sample.C refer to the same file in DOS and OS/2. However, the XENIX operat-
ing system is case sensitive. In XENIX, SAMPLE.C and Sample.C refer to differ-
ent files. To transport programs to XENIX, choose file and path names that work
correctly in XENIX, since either case works in DOS and OS/2. For instance, the
following directives are identical in DOS and OS/2, but only the second works in
XENIX:

f#finclude <STDIO.H>
f#Hinclude <stdio.h>

Subdirectory Conventions

Under XENIX, certain header files are normally placed in a subdirectory named
SYS. Microsoft C follows this convention to ease the process of transporting pro-
grams to XENIX. If you do not plan to transport your programs, you can place
the SYS header files elsewhere.

Path-Name Delimiters

XENIX uses the slash (/) in path names, while DOS and OS/2 use the backslach
(\). To transport programs to XENIX, it is advantageous to use path-name
delimiters that are compatible with XENIX whenever possible.

10 Microsoft C Run-Time Library Reference

1.4 Choosing Between Functions and Macros

This book uses the words “routine” and “function” interchangeably. However,
the term “routine” actually encompasses both functions and macros. Because
functions and macros have different properties, you should pay attention to
which form you are using. The descriptions in the reference section indicate
whether routines are implemented as functions or as macros.

Most routines in the Microsoft C library are functions. They consist of compiled
C code or assembled Microsoft Macro Assembler (MASM) code. However, a
few library routines are implemented as macros that behave like functions. You
can pass arguments to library macros and invoke them in the same way you in-
voke functions.

The main benefit of using macros is faster execution time. A macro is expanded
(replaced by its definition) during preprocessing, creating in-line code. Thus,
macros do not have the overhead associated with function calls. On the other
hand, each use of a macro inserts the same code in your program, whereas a func-
tion definition occurs only once regardless of how many times it is called. Func-
tions and macros thus offer a trade-off between speed and size.

Apart from speed and size issues, macros and functions have some other impor-
tant differences:

m Some macros treat arguments with side effects incorrectly when the macro
evaluates its arguments more than once (see the example that follows this
list). Not every macro has this effect. To determine if a macro handles side ef-
fects as desired, examine its definition in the appropriate header file.

m A function name evaluates to an address, but a macro name does not. Thus,
you cannot use a macro name in contexts requiring a function pointer. For in-
stance, you can declare a pointer to a function, but you cannot declare a
pointer to a macro.

m You can declare functions, but you cannot declare macros. Thus, the compiler
cannot perform type checking of macro arguments as it does of function argu-
ments. However, the compiler can detect when you pass the wrong number of
arguments to a macro.

m You must always include the appropriate header file when using a library
macro. Every library macro is defined with a #define directive in a header
file. If you do not include the header file, the macro is undefined.

Using C Library Routines 11

The following example demonstrates how some macros can produce unwanted
side effects. It uses the toupper routine from the standard C library.

f#include <ctype.h>

= |mv;

nt a
toupper(a++);

It

i
a

The example increments a when passing it as an argument to the toupper
routine, which is implemented as a macro. It is defined in CTYPE.H:

fidefine toupper(c) ((islower(c)) ? _toupper{(c) : (c))

The definition uses the conditional operator (? :). The conditional expression
evaluates the argument ¢ twice: once to check if it is lowercase and again to cre-
ate the result. This macro evaluates the argument a++ twice, increasing a by 2
instead of 1. As a result, the value operated on by islower differs from the value
operated on by _toupper. '

Like some other library routines, toupper is provided in both macro and function
versions. The header file CTYPE.H not only declares the toupper function but
also defines the toupper macro.

Choosing between the macro version and function version of such routines is
easy. If you wish to use the macro version, you can simply include the header file
that contains the macro definition. Because the macro definition of the routine al-
ways appears after the function declaration, the macro definition normally takes
precedence. Thus, if your program includes CTYPE.H and then calls toupper,
the compiler uses the toupper macro:

f##include <ctype.h>

n = 'm';

a
toupper(a);

I er

.i
a
You can force the compiler to use the function version of a routine by enclosing

the routine’s name in parentheses:

#include <ctype.h>

int a="'m";
a = (toupper) (a);

Because the name toupper is not immediately followed by a left parenthesis, the
compiler cannot interpret it as a macro name. It must use the toupper function.

12 Microsoft € Run-Time Library Reference

A second way to do this is to “undefine” the macro definition with the #undef
directive:

fHinclude <ctype.h>
ffundef toupper

Since the macro definition no longer exists, subsequent references to toupper
use the function version. ‘

A third way to make sure the compiler uses the function version is to declare the
function explicitly:

#include <ctype.h>
int toupper(int _c);

Since this function declaration appears after the macro definition in CTYPE.H, it
causes the compiler to use the toupper function.

1.5 Stack Checking on Entry

For certain library routines, the compiler performs stack checking on entry. (The
“stack” is a memory area used for temporary storage.) Upon entry to such a
routine, the stack is checked to determine if it has enough room for the local vari-
ables used by that routine. If it does, space is allocated by adjusting the stack
pointer. Otherwise, a “stack overflow” run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space; if there is not, you
might overwrite memory locations in the data segment and receive no warning.

Typically, stack checking is enabled only for functions with large local-variable
requirements (more than about 150 bytes), since there is enough free space be-
tween the stack and data segments to handle functions with smaller requirements.
If the function is called many times, stack checking slows execution slightly.

Stack checking is enabled for the following library functions:

execvp scanf system
execvpe spawnvp vprintf
fprintf spawnvpe write
fscanf sprintf

printf sscanf

Using C Library Routines 13

1.6 Handling Errors

Many library routines return a value that indicates an error condition. To avoid
unexpected results, your code should always check such error values and handle
all of the possible error conditions. The description of each library routine in the
reference section lists the routine’s return value(s).

Some library functions do not have a set error return. These include functions
that return nothing and functions whose range of return values makes it im-
possible to return a unique error value. To aid in error handling, some functions
in this category set the value of a global variable named errno.

If the reference description of a routine states that it sets the errno variable, you
can use errno in two ways:

1. Compare errno to the values defined in the header file ERRNO.H.

2. Handle errno with the perror or strerror library routines. The perror
routine prints a system error message to the standard error (stderr). The
strerror routine stores the same information in a string for later use.

When you use errno, perror, and strerror, remember that the value of errno re-
flects the error value for the last call that set errno. To avoid confusion, you
should always test the return value to verify that an error actually occurred. Once
you determine that an error has occurred, use errno or perror immediately.
Otherwise, the value of errno may be changed by intervening calls.

Library math routines set errno by calling the matherr or _matherrl library
routines, which are described in the reference section. If you wish to handle math
errors differently from these routines, you can write your own routine and name
it matherr or _matherrl. Your routine must follow the rules listed in the
matherr reference description.

The ferror library routine allows you to check for errors in stream input/output
operations. This routine checks if an error indicator has been set for a given
stream. Closing or rewinding the stream automatically clears the error indicator.
You can also reset the error indicator by calling the clearerr library routine.

The feof library routine tests for end-of-file on a given stream. An end-of-file
condition in low-level input and output can be detected with the eof routine or
when a read operation returns 0 as the number of bytes read.

The _grstatus library routine allows you to check for errors after calling certain
graphics library operations. See the reference page on the _grstatus function for
details.

14 Microsoft C Run-Time Library Reference

1.7 Operating-System Considerations

The library routines listed in this section behave differently under different oper-
ating system versions. For more information on an individual routine, see the de-
scription of that routine in the reference section.

Routine

locking
sopen
_fsopen

dosexterr

dup
dup2

exec
spawn

Restrictions

These routines are effective only in OS/2 and in
DOS versions 3.0 and later.

The dosexterr routine provides error handling for
system call 0x59 (get extended error) in DOS ver-
sions 3.0 and later.

The dup and dup2 rbutin¢s can cause unexpected re-
sults in DOS versions earlier than 3.0. If you use
dup or dup2 to create a duplicate file handle for

- stdin, stdout, stderr, stdaux, or stdprn, calling the

close function with one handle causes errors in later
I/O operations that use the other handle. This
anomaly does not occur in OS/2 or in DOS versions
3.0 and later.

When using the exec and spawn families of func-
tions under DOS versions earlier than 3.0, the value
of the arg0 argument (or argv[0] to the child
process) is not available to the user; a null string

(" ") is stored in that position instead. In OS/2, the
arg0 argument contains the command name; in DOS
versions 3.0 and later, it contains the complete com-
mand path.

Microsoft C defines global variables that indicate the version of the current oper-
ating system. You can use these to determine the operating-system version in
which a program is executing. See Chapter 3, “Global Variables and Standard
Types,” for more information.

Using C Library Routines 15

1.8 Floating-Point Support

Microsoft math library routines require floating-point support to perform calcula-
tions with real numbers (numbers that can contain fractions). This support can be
provided by the floating-point libraries that accompany your compiler software
or by an 8087, 80287, or 80387 coprocessor. The names of the functions that re-
quire floating-point support are listed below:

acos
acosl

asin

asinl

atan

atanl
atan2
atan2l
atof
_atold
bessel
cabs

cabsl

ceil

ceill
_clear87
_control87

cos’

cosl

cosh

coshl
dieeetomsbin
difftime
dmsbintoieee
ecvt

exp

expl

fabs

fabsl

fevt
fieeetomsbin
floor

floorl

fmod

fmodl
fmsbintoieee
_fpreset
frexp
frexpl
gevt
hypot
hypotl
ldexp
Idexpl
log

logl
log10
log101
modf
modfl
pow

powl
sin

sinl
sinh
sinhl
sqrt
sqrtl
_status87
strtod
_strtold
tan

tanl
tanh
tanhl

Note that the bessel routine does not correspond to a single function, but to
twelve functions named j0, j1, jn, y0, y1, yn, jOl, j1I, jnl, yOl, yll, and
_ynl. Also note that the _clear87 and _control87 functions are not available with
the /FPa compiler option.

Also requiring floating-point support is the printf family of functions (cprintf,
fprintf, printf, sprintf, viprintf, vprintf, and vsprintf). These functions require
support for floating-point input and output if used to print floating-point values.

The C compiler tries to detect whether floating-point values are used in a pro-
gram so that supporting functions are loaded only if required. This behavior
saves a considerable amount of space for programs that do not require floating-

point support.

When you use a floating-point type specifier in the format string for a printf or
scanf call, make sure you specify floating-point values or pointers to floating-
point values in the argument list. These must correspond to any floating-point

16 Microsoft C Run-Time Library Reference
o __]

type specifiers in the format string. The presence of floating-point arguments al-
lows the compiler to detect that floating-point support code is required. If a
floating-point type specifier is used to print an integer argument, for example,
floating-point values will not be detected because the compiler does not actually
read the format string used in the printf and scanf functions. For instance, the fol-
lowing program produces an error at run time:

main() /* This example causes an error */
(.

long f = 10L; N

printf("%f*, f);
}

In the preceding example, the functions for floating-point support are not loaded
because

a No floating-point arguments are given in the call to printf.

m No floating-point values are used elsewhere in the program.

As a result, the following error occurs:

Floating point not loaded

Here is a corrected version of the above call to printf in which the long integer
value is cast to double:

main() /* This example works correctly */
(
long f = 10L;
printf("%f", (double) f);
}

1.9 Using Huge Arrays with Library Functions

In programs that use small, compact, medium, and large memory models, Micro-
soft C allows you to use arrays exceeding the 64K (kilobyte) limit of physical
memory in these models by explicitly declaring the arrays as _huge. However,
generally, you cannot pass _huge data items as arguments to C library functions.
In the compact-model library used by compact-model programs and in the large-
model library used by both large-model and huge-model programs, only the func-
tions listed below use argument arithmetic that works with _huge items:

bsearch _fmemchr _fmemmove Ifind
fread _fmemcmp _fmemset Isearch
fwrite _fmemcpy halloc memccpy

_fmemccpy _fmemicmp hfree memchr

Using C Library Routines 17

With this set of functions, you can read from, write to, search, sort, copy, initial-
ize, compare, or dynamically allocate and free _huge arrays; the _huge array can
be passed without difficulty to any of these functions in a compact-, large-, or
huge-model program. The model-independent routines in the above list (those
beginning with _f) are available in all memory models.

The memset, memcpy, and memcmp library routines are available in two ver-
sions: as C functions and as intrinsic (in-line) code. The function versions of
these routines support huge pointers in compact and large memory models, but
the intrinsic versions do not support huge pointers. (The function version of such
routines generates a call to a library function, whereas the intrinsic version in-
serts in-line code into your program. Your compiler documentation explains how
to select the intrinsic versions of library routines.)

CHAPTER

Run-Time Routines
by Category

Microsoft C library routines handle various kinds of tasks. If you know the type
of task you need done, but don’t know exactly which routine to use, the catego-
rized lists of routines in this chapter can help.

The descriptions here are intended only to give you a brief overview of the capa-
bilities of the run-time library. For a complete description of the behavior, syn-
tax, and use of each routine, see Part 2, “Run-Time Functions.”

The main categories of library routines are
m Buffer manipulation

m Character classification and conversion
= Data conversion

m Directory control

m File handling

s Graphics

mn Input and output

m Internationalization

= Math

m Memory allocation

m Process and environment control

m Searching and sorting

m String manipulation

m System calls

m Time

m Variable-length argument lists

19

20 Microsoft C Run-Time Library Reference

2.1 Buffer Manipulation

The buffer-manipulation routines are useful for working with areas of memory
on a character-by-character basis. A “buffer” is an array of characters, similar
to a character string. However, unlike strings, buffers are not usually termi-
nated with a null character (°\0?). Therefore, the buffer-manipulation routines
always take a length or count argument. Function declarations for the buffer-
manipulation routines are given in the include files MEMORY.H and
STRING.H, with an exception being the swab function, which appears in

STDLIB.H.

Routines beginning with _f are model independent; the _f stands for far. These
routines are useful in writing mixed-model programs because they can be called
from any program, regardless of the memory model being used.

Routine

“memccpy,
_fmemccpy

memchr, _fmemchr

memcmp, _fmememp
memcpy, _fmemcpy

memicmp,
_fmemicmp

memimove,
_fmemmove

memset, _fmemset

swab

Use

Copy characters from one buffer to another until a
given character or a given number of characters has
been copied

Return a pointer to the first occurrence, within a
specified number of characters, of a given character
in the buffer

Compare a specified number of characters from two
buffers

Copy a specified number of characters from one
buffer to another

Compare a specified number of characters from two
buffers without regard to the case of the letters (up-
percase and lowercase treated as equivalent)

Copy a specified number of characters from one
buffer to another

Use a given character to initialize a specified num-
ber of bytes in the buffer

Swaps bytes of data and stores them at the specified
location

Run-Time Routines by Category 21

When the source and target areas overlap, only the memmove and _fmemmove
functions are guaranteed to copy the full source properly. (The memcpy and
_fmemcpy routines do not always copy the full source in such cases.)

2.2 Gharacter Classification and Gonversion

The character classification and conversion routines allow you to test individual
characters in a variety of ways and to convert between uppercase and lowercase

characters.

Routine Use

isalnum Tests for alphanumeric character

isalpha Tests for alphabetic character

isascii Tests for ASCII character

iscntrl Tests for control character

isdigit Tests for decimal digit

isgraph Tests for printable character except space

islower ‘ Tests for lowercase character

isprint Tests for printable character

ispunct Tests for punctuation character

isspace » Tests for white-space character

isupper Tests for uppercase character

isxdigit Tests for hexadecimal digit

toascii Converts character to ASCII code

tolower Tests character and converts to lowercase if
uppercase

_tolower Converts character to lowercase (unconditional)

toupper Tests character and converts to uppercase if
lowercase

_toupper Converts character to uppercase (unconditional)

22 Micrasoft C Run-Time Library Reference

The classification routines identify characters by finding them in a table of classi-
fication codes. Using these routines to classify characters is generally faster than
writing a test expression such as the following:

if ((c >=0) || ¢ <= 0x7f))

All of these routines are implemented in two versions: as functions and as mac-
ros. The function prototypes and macro definitions appear in CTYPE.H. Section
1.4, “Choosing Between Functions and Macros,” explains how to choose the
appropriate version. The toupper and tolower functions are also declared in the
STDLIB.H header file.

2.3 Data L‘anversian

The data-conversion routines convert numbers to strings of ASCII characters
and vice versa. These routines are implemented as functions, all of which are de-
clared in the include file STDLIB.H. The atof function, which converts a string
to a floating-point value, is also declared in MATH.H.

Routine Use

abs Finds absolute value of integer
atof Converts string to float

atoi Converts string to int

atol Converts string to long

_atold Converts string to long double
ecvt Converts double to string

fevt Converts double to string

gevt Converts double to string

itoa - Converts int to string

labs Finds absolute value of long integer
Itoa Converts long to string

strtod Converts string to double

Run-Time Routines by Category 23

strtol Converts string to a long integer

_strtold Converts string to long double

strtoul Converts string to an unsigned long integer
ultoa Converts unsigned long to string

2.4 Directory Gontrol

The directory-control routines let a program access, modify, and obtain informa-
tion about the directory structure. These routines are functions and are declared

in DIRECT.H.

chdir Changes current working directory

_chdrive Changes current drive

getcwd Gets current working directory

_getdewd Gets current working directory for the specified drive
_getdrive Gets the current disk drive

mkdir Makes a new directory

rmdir Removes a directory

_searchenv Searches for a given file on specified paths

2.5 File Handling

The file-handling routines let you create, manipulate, and delete files. They also
set and check file-access permissions.

File-handling routines work on a file designated by a path name or by a “file
handle,” an integer assigned by the operating system that identifies an open file.
These routines modify or give information about the designated file. Most of
them are declared in the include file IO.H, with the exceptions being the fstat
and stat functions (declared in SYS\STAT.H), the _fullpath routine (declared in
DIRECT.H), and the remove and rename functions (also declared in STDIO.H).

24 WMicrosoft C Run-Time Library Reference

access
chmod
chsize
filelength
fstat
_fullpath

isatty
locking

_makepath

mktemp
remove
rename
setmode
_splitpath
stat
umask

unlink

Use

Checks file-permission setting
Changes file-permission setting
Changes file size

Gets file length

Gets file-status information on handle

Makes an absolute path name from a relative
path name

Checks for character device

Locks areas of file (available with OS/2 and
DOS versions 3.0 and later)

Merges path-name components into a single, full
path name

Creates unique file name

Deletes file

Renames file

Sets file-translation mode

Splits a path name into component pieces
Gets file-status information on named file
Sets default-permission mask

Deletes file

The access, chmod, _fullpath, _makepath, remove, rename, _splitpath, stat,
and unlink routines operate on files specified by a path name or file name.

The chsize, filelength, fstat, isatty, locking, and setmode routines work with
files designated by a file handle.

The mktemp and umask routines have functions that are slightly different from
the other routines. The mktemp routine creates a unique file name, and the pro-
grammer can use mktemp to create unique file names that do not conflict with
the names of existing files. The umask routine sets the default permission mask
for any new files created in a program. The mask can override the permlssmn set-
ting given in the open or creat call for the new file.

Run-Time Routines by Category 25

2.6 Graphics

Microsoft C graphics routines offer a wide variety of graphics functions, low-
level graphics primitives, font functions, and presentation graphics (displays such
as graphs and pie charts).

Graphics functions are supplied in two libraries that must be explicitly linked

* with your program. The GRAPHICS.LIB library provides support for low-level
graphics and character-font routines. The library PGCHART.LIB supports
presentation-graphics routines.

2.6.1 Low-Level Graphics and Character-Font Functions

The low-level graphics and font functions are declared in the include file
GRAPH.H.

The library can be divided into the eight categories listed below, which corre-
spond to the different tasks involved in creating and manipulating graphic objects.

Most graphics routines work only in DOS. Two categories of routines (“configur-
ing mode and environment” and “creating text output”) work in OS/2 as well

as DOS.

Category Task

Configuring mode and Select the proper display mode for the hardware and

environment (OS/2 establish memory areas for writing and displaying of

and DOS) images

Setting coordinates Specify the logical origin and the active display area
within the screen

Setting low-level Specify a palette mapping for low-level graphics

graphics palettes routines

Setting attributes Specify background and foreground colors, fill
masks, and line styles for low-level graphics routines

Creating graphics Draw and fill figures

output

Creating text output Write text on the screen

(0S/2 and DOS)

Transferring images Store images in memory and retrieve them

Displaying fonts Display text in character fonts compatible with

Microsoft Windowsm

The following sections explain each of these categories.

26 Microsoft C Run-Time Library Reference

2.6.1.1 Configuring Mode and Environment

-Routines that configure the mode and environment establish the graphics or text
mode of operation, determine the current graphics environment, and control the

display of the cursor.

All of the routines listed in this section are available in OS/2 as well as DOS.

Routine

_clearscreen

_getactivepage
_getbkcolor
_getvideoconfig
_getvisualpage

_grstatus
_setactivepage

_setbkcolor
_settextrows
_setvideomode

_setvideomoderows

_setvisualpage

Use

Erases the screen and fills it with the current back-
ground color

Gets the current active page number

Returns the current background color

Obtains status of current graphics environment
Gets the current visual page number

Returns the status of the most recent graphics func-
tion call

Sets memory area for the active page for writing
images

Sets the current background color
Sets the number of text rows
Selects an operating mode for the display screen

Sets the video mode and the number of rows for text
operations

Sets memory area for the current visual page

2.6.1.2 Setting Coordinates

The “set coordinates” routines set the current text or graphics position and con-
vert pixel coordinates between the various graphic coordinate systems.

The Microsoft C graphics functions recognize three sets of coordinates:

1. Fixed physical coordinates

2. View coordinates defined by the application

3. Window coordinates that can include floating-point values

Run-Time Routines by Category 27

The functions in this category establish window and view coordinate systems and
translate between physical, view, and window coordinate systems.

Routine %

_getcurrentposition Determines current position in view coordinates

_getcurrentposition_w Determines current position in window coordinates

_getphyscoord Converts view coordinates to physical coordinates

_getviewcoord Converts physical coordinates to view coordinates

_getviewcoord_w Converts window coordinates to view coordinates

_getviewcoord_wxy Converts window coordinates in _wxycoord struc-
ture to view coordinates

_getwindowcoord Converts view coordinates to window coordinates

_setcliprgn Limits graphic output to a region of the screen

_setvieworg Positions the view-coordinate origin

_setviewport Limits graphics output to a region of the screen and

positions the view-coordinate origin to the upper-left
corner of that region

_setwindow Defines a floating-point window coordinate system

The default view coordinate system is identical to the physical screen coordinate
system. The physical origin (0, 0) is always in the upper-left corner of the dis-
play. The x axis extends in the positive direction left to right, while the y axis ex-
tends in the positive direction top to bottom.

The physical horizontal and vertical dimensions depend on the hardware display
configuration and the selected mode. These values are accessible at run time by
examining the numxpixels and numypixels fields of the videoconfig structure
returned by _getvideoconfig. (The _getvideoconfig routine is listed in the pre-
vious section.)

The _setvieworg function allows you to move the viewport origin to a new posi-
tion relative to the physical screen.

Routines that refer to coordinates on the physical screen or viewport require in-
teger values. However, in real-world graphing applications, you might wish to
use floating-point values, such as stock prices or average rainfall. The window
coordinate system allows you to display graphics using floating-point values in-
stead of integers.

The _getcurrentposition and _getcurrentposition_w routines allow you to de-
termine the location of the current graphics-output point.

28 Microsoft G Run-Time Library Reference

The _setcliprgn function defines a restricted active display area on the screen.
The _setviewport function does the same thing and also resets the viewport
origin to the upper-left corner of the restricted active display area.

The physical coordinates of any view-coordinate point can be determined with
the _getphyscoord function, and the view coordinates of any physical point can
be determined with the _getviewcoord function.

The view coordinates of any window coordinate can be determined with the
_getviewcoord_w and _getviewcoord_wxy functions. The window coordinates
of any view coordinate can be determined with the _getwindowcoord function.

The _setwindow function defines the current viewport as a real-coordinate win-
dow bound by the specified floating-point values.

2.6.1.3 Setting Low-Level Graphics Palettes

Use the low-level palette routines to select or remap color palettes.

Routine Use

_remapallpalette Changes all color indexes in the current palette
_remappalette Changes a single color index in the current palette
_selectpalette Selects a predefined palette

Some video modes support a “color palette,” which is a table of the color values
that can be displayed together on the screen at any given time. A “color value” is
a long integer representing a color that can be displayed on your system.

In CGA color graphics modes, you can use the _selectpalette routine to choose
one of several predefined palettes.

On EGA and VGA video systems, you can “remap” (change) the palette using
the _remappalette or _remapallpalette routines. For instance, the EGA
_ERESCOLOR mode offers a total of 64 color values, of which 16 can be dis-
played at a time. In this mode, the palette contains 16 “color indices,” or slots to
which you can assign color values.

The _remappalette routine changes a single color index to a specified color
value. The _remapallpalette routine changes all of the available palette entries
simultaneously.

2.6.1.4 Setting Attributes

The low-level output functions that draw lines, arcs, ellipses, and other basic
figures do not specify color or line-style information. Instead, the low-level

Run-Time Routines by Category 29

graphics functions rely on a set of attributes that are set independently by the fol-
lowing functions:

Routine Use

_getarcinfo Determines the endpoints in viewport coordinates of
the most recently drawn arc or pie

_getcolor Gets the current color

_getfillmask Gets the current fill mask

_getlinestyle Gets the current line-style mask

_getwritemode Gets the current logical write mode

_setcolor Sets the current color

_setfillmask Sets the current fill mask

_setlinestyle Sets the current line-style mask

_setwritemode Sets logical write mode for line drawing

The _getcolor and _setcolor functions get or set the current color index for
graphics and font output. The _getbkcolor and _setbkcolor functions get or set
the current background color.

The _getfillmask and _setfillmask functions get or set the current fill mask. The
mask is an §-by-8-bit template array, with each bit representing a pixel. If a bit is
0, the pixel in memory is left untouched, as the mask is transparent to that pixel.
If a bit is 1, the pixel is assigned the current color value. The template is repeated
as necessary over the entire fill area.

The _getlinestyle and _setlinestyle functions get or set the current line style. The
line style is determined by a 16-bit template buffer with each bit corresponding
to a pixel. If a bit is 1, the pixel is set to the current color. If a bit is 0, the pixel is
not changed. The template is repeated for the length of the line.

The _getwritemode and _setwritemode functions get or set the logical write
mode for straight line drawing. The default mode, _GPSET, causes lines to be
drawn in the current graphics color. Other modes combine the current graphics
color and the original screen image using various logical operations.

2.6.1.5 L‘reat.ing Graphics Output

The graphics output functions use a set of specified coordinates and draw various
figures. They use the current or default attributes for line-style mask, fill mask,
write mode, background color, and foreground color.

30 Microsoft C Run-Time Library Reference

The name of each function announces its task or the figure it draws, as the follow-
ing list indicates:

Routine Use

_arc, _arc_w, _arc_wxy Draw an arc

_ellipse, _ellipse_w, Draw an ellipse or circle

_ellipse_wxy

_floodfill, _floodfill_w Flood-fill an area of the screen with
the current color

_getcurrentposition, Obtain the current graphic-output

_getcurrentposition_w position used by _lineto and
_outgtext

_getpixel, _getpixel w Obtain a pixel’s color

_lineto, _lineto_w Draw a line from the current graphic
output position to a specified point

_moveto, _moveto_w Move the current graphic-output posi-
tion to a specified point

_pie, _pie_w, _pie_wxy Draw a pie-slice-shaped figure

_polygon, _polygon_w, Draw or scan-fill a polygon

_polygon_wxy

_rectangle, _rectangle_w, Draw or scan-fill a rectangle

_rectangle_wxy

_setpixel, _setpixel_w Set a pixel’s color

Most of these routines are available in several forms, which are indicated by their
names. Output functions without a suffix use the view coordinate system. Func-
tions that end with _w take double values as arguments and use the window
coordinate system. Functions that end with _wxy use _wxycoord structures to de-
fine the coordinates and use the window coordinate system.

Circular figures, such as arcs and ellipses, are centered within a “bounding rec-
tangle” specified by two points that define the diagonally opposed corners of the
rectangle. The center of the rectangle becomes the center of the figure, and the
rectangle’s borders determine the size of the figure.

2.6.1.6 Creating Text Output

The next group of routines provides text output in both graphics and text modes.
Unlike the standard console I/O library routines, these functions recognize text-
window boundaries and use the current text color.

Run-Time Routines by Category 31

All of the routines listed in this section work in OS/2 as well as DOS.

Routine Use

_displaycursor Sets the cursor on or off upon exit from a graphics
routine

_gettextcolor Obtains the current text color

_gettextcursor Returns the current cursor attribute (text modes only)

_gettextposition Obtains the current text-output position

_gettextwindow Gets the current text window boundaries

_outmem Prints text of a specified length from a memory
buffer

_outtext Outputs a text string to the screen at the current text
position

_scrolltextwindow Scrolls the current text window up or down

_settextcolor Sets the current text color

_settextcursor Sets the current cursor attribute (text modes only)

_Ssettextposition Relocates the current text position

_settextwindow Defines the current text-display window

_wrapon Enables or disables line wrap

j
The _outtext and _outmem routines provide no formatting. If you want to out-
put integer or floating-point values, you must convert the values into a string vari-
able (using the sprintf function) before calling these routines.

The _outtext routine recognizes the \n (newline character) and \r (carriage re-
turn) sequences. The _outmem routine treats these sequences as printable
graphics characters.

2.6.1.7 Transferring Images ,

The functions in this category transfer screen images between memory and the
display, using a buffer allocated by the application, or determine the size in bytes
of the buffer needed to store a given image.

The functions that end with _w or _wxy use window coordinates; the other func-
tions in this set use view coordinates.

32 Microsoft G Run-Time Library Reference

Routine @

_getimage, Store a screen image in memory
_getimage_w,
_getimage_wxy

_imagesize, Return the size (in bytes) of the buffer needed to
_imagesize_w, store the image
_imagesize_wxy

_putimage, Retrieve an image from memory and display it
_putimage_w ‘

In some cases, the buffer needed to store an image with the _getimage functions
must be larger than 64K (65,535) bytes. Use the halloc routine to allocate a buff-
er larger than 64K.

2.6.1.8 Displaying Fonts

The functions listed in this section control the display of font-based characters on

the screen.

Routine Use

_getfontinfo Obtains the current font characteristics

_getgtextextent Determines the width in pixels of specified text in
the current font

_gefgtextvector Gets orientation of font text output

_outgtext Outputs text in the current font to the screen at the
specified pixel position

_registerfonts Initializes font library

_setfont Finds a single font that matches a specified set of
characteristics and makes this font the current font
for use by the _outgtext function

_setgtextvector Sets the current orientation for font text output

_unregisterfonts Frees memory allocated by _registerfonts

2.6.2 Presentation-Graphics Functions

The presentation-graphics functions are declared in the PGCHART.H include
file. The library can be divided into the three categories listed below, correspond-
ing to the different tasks involved in creating and manipulating graphic objects:

Run-Time Routines by Category 33

Category

Displaying presen-
tation graphics

Analyzing
presentation-graphics
data

Manipulating
presentation-graphics
structures

Task

Initialize video structures for presentation graphics
and establishes the default chart type. Display
presentation-graphics chart: bar, column, pie, scat-
ter, or line chart.

Analyze data (does not display chart).

Modify basic chart structures (e.g., palettes, cross-
hatching styles).

2.6.2.1 Displaying Presentation Graphics

The functions listed in this section initialize the presentation-graphics library and
display the specified graph type.

Because the _pg_initchart routine initializes the presentation-graphics library, it
must be called before any other function in the presentation-graphics library. The
_pg_defaultchart function initializes the variables in the chart environment.

The other routines in this category display the specified graph. The single-series

versions plot one set of data, and the multiseries versions (those ending with an
ms suffix) plot several sets of data in the same chart style.

Presentation-graphics programs can display text in different font sizes by taking
advantage of font-based characters (see Section 2.6.1.8, “Displaying Fonts.”)
Call the _registerfonts and _setfont routines to select a font before calling the .
_pginitchart routine. Subsequent charts use the selected font. You can later call
the _unregisterfonts routine to restore the default character font and free the
memory previously allocated for fonts.

Routine

. _pg_chart
_pg_chartms

_pg_chartpie
_pg_chartscatter

_pg_chartscatterms
_pg_defaultchart

_pg_initchart

Use

Displays a single-series bar, column, or line chart
Displays a multiseries bar, column, or line chart
Displays a pie chart

Displays a scatter diagram for a single series of data

Displays a scatter diagram for more than one series
of data

Initializes all necessary variables in the chart en-
vironment for a specified chart type

Initializes the presentation-graphics library

34 Microsoft C Run-Time Library Reference

2.6.2.2 Analyzing Presentation-Graphics Charts

These routines calculate default values for the specified graph type but do not dis-
play the chart. The single-series versions analyze one set of data, and the multi-
series versions analyze several sets of data in the same chart style.

Routine

_pg_analyzechart
_pg_analyzechartms

_pg_analyzepie
_pg_analyzescatter

_pg_analyzescatterms

Use

Analyzes a single series of data for a bar, column, or
line chart

Analyzes a multiseries of data for a bar, column, or
line chart

Analyzes data for a pie chart
Analyzes a single series of data for a scatter diagram

Analyzes a multiseries of data for a scatter diagram

2.6.2.3 Manipulating Presentation-Graphics Structures

These functions control low-level aspects of the presentation-graphics package.

_pg_hlabelchart
_bg_vlabelchart
_pg_getpalette

_pg_setpalette
_pg_resetpalette

_pg_getstyleset
_pg_setstyleset

_pg_resetstyleset
_pg_getchardef

_pg_setchardef

Use
Writes text horizontally on the screen
Writes text vertically on the screen

Retrieves current colors, line styles, fill patterns, and
plot characters for all presentation-graphics palettes

Sets current colors, line styles, fill patterns, and plot
characters for all presentation-graphics palettes

Sets current colors, line styles, fill patterns, and plot
characters to the default values for the current screen
mode

Retrieves the contents of the current styleset
Sets the contents of the current styleset

Resets the contents of the current styleset to the de-
fault value for the current screen mode

Retrieves the current 8-by-8-pixel bit map for a
specified character

Sets the 8-by-8-pixel bit map for a specified
character

Run-Time Routines by Category 35

2.7 Input and Output

The input and output (I/O) routines of the standard C library allow you to read
and write data to and from files and devices. In C, there are no predefined file
structures; all data items are treated as sequences of bytes. The following three
types of I/O functions are available:

1. Stream
2. Low-level

3. Console and port

The “stream” I/O functions treat data as a stream of individual characters. By
choosing among the many stream functions available, you can process data in
different sizes and formats, from single characters to large data structures. Stream
I/0O also provides buffering, which can significantly improve performance.

The “low-level” I/O routines do not perform buffering and formatting. Instead,
they invoke the operating system’s input and output capabilities directly. These
routines let you access files and peripheral devices at a more basic level than the
stream functions.

The “console and port” I/O routines allow you to read or write directly to a con-
sole (keyboard and screen) or an I/O port (such as a printer port). The port I/O
routines simply read and write data in bytes. With console I/O routines, some ad-
ditional options are available, such as detecting whether a character has been
typed at the console. You can also choose between echoing characters to the
screen as they are read or reading characters without echoing.

The C library also provides a number of direct DOS I/O system call routines.
These are described in Section 2.14, “System Calls.”

File I/O operations can be performed in two modes: text or binary. The following
section describes these modes and their use.

WARNING Because stream routines are buffered and low-level routines are not, the two
types of routines are generally incompatible. You should use either stream or low-level
routines consistently for processing a given file.

2.7.1 Text and Binary Modes

Many C programs use data files for input and output. Under DOS and OS/2, data
files are normally processed in text mode. In this mode, each carriage-return—line-
feed (CR-LF) combination is translated into a single line-feed character during

36 Microsoft € Run-Time Library Reference

input. During output, each line-feed character is translated into a CR-LF
combination.

Sometimes you may want to process a file without making those translations. In
these cases you use binary mode, which suppresses CR-LF translations.

You can control the file translation mode in the following ways:

m To process a few selected files in binary mode, while retaining the default
text mode for most files, you can specify binary mode when you open the
selected files. The fopen routine opens a file in binary mode when you
specify the letter b in the access-mode string for the file. The open routine
opens a file in binary mode when you specify the O_BINARY flag in the oflag
argument. For more information about fopen and open, see the reference de-
scription of each routine.

m To process most or all files in binary mode, you can change the default mode
to binary. The global variable _fmode controls the default translation mode,
which is normally text. If you set _fmode to O_BINARY, the default mode is
binary except for stdaux and stdprn, which are opened in binary mode by
default.

You can change the value of _fmode in two ways:

1. Link with the file BINMODE.OBJ (supplied with Microsoft C). This changes
the initial setting of _fmode to the O_BINARY flag, causing all files except
stdin, stdout, and stderr to be opened in binary mode.

2. Change the value of _fmede directly by setting it to the O_BINARY flag in
your program. This has the same effect as linking with BINMODE.OBJ.

You can still override the default mode (now binary) for a particular file by open-
ing it in text mode. Specify the letter t when using fopen, or specify the O_TEXT
flag when using open.

By default, the stdin, stdout, and stderr files are opened in text mode, and the
stdaux and stdprn files are opened in binary mode. The setmode routine allows
you to change these defaults or change the mode of a file after it has been
opened. See the reference description of setmode for details.

2.7.2 Stream Routines

Stream I/O functions handle data as a continuous stream of characters. To

use the stream functions, you must include the file STDIO.H in your program.
This file defines constants, types, and structures used in the stream functions,
and contains function declarations and macro definitions for the stream
routines.

Run-Time Routines by Category 37

When a file is opened for I/O using the stream functions, the opened file is as-
sociated with a structure of type FILE (defined in STDIO.H) containing basic in-
formation about the file. A pointer to the FILE structure is returned when the
stream is opened. Subsequent operations use this pointer (also called the “stream
pointer,” or just “stream”) to refer to the file.

The stream functions provide for buffered, formatted, or unformatted input and
output. When a stream is buffered, data that is read from or written to the stream
is collected in an intermediate storage location called a “buffer”. In write opera-
tions, the output buffer’s contents are written to the appropriate final location
when the buffer is full, the stream is closed, or the program terminates normally.
The buffer is said to be “flushed” when this occurs. In read operations, a block of
data is placed in the input buffer read from the buffer; when the input buffer is
empty, the next block of data is transferred into the buffer.

Buffering produces efficient I/O because the system can transfer a large block of
data in a single operation rather than performing an I/O operation each time a
data item is read from or written to a stream. However, if a program terminates
abnormally, output buffers may not be flushed, resulting in loss of data.

Some of the constants defined in STDIO.H may be useful in your program. The
manifest constant EOF is defined to be the value returned at end-of-file. NULL is
the null pointer. FILE is the structure that maintains information about a stream.
BUFSIZ defines the default size of stream buffers, in bytes.

Routine Use

clearerr Clears the error indicator for a stream

fclose Closes a stream

fcloseall Closes all open streams

fdopen Associates a stream with an open file handle
feof Tests for end-of-file on a stream

ferror Tests for error on a stream

fflush Flushes a stream

fgetc Reads a character from a stream (function version)
fgetchar Reads a character from stdin (function version)
fgetpos Gets the position indicator of a stream

fgets Reads a string from a stream

fileno Gets the file handle associated with a stream
flushall Flushes all streams

fopen Opens a stream

38 Microsoft G Run-Time Library Reference

fprintf
fputc
fputchar
fputs
fread
freopen
fscanf
fseek
fsetpos
_fsopen
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
rewind
rmtmp
scanf
setbuf
setvbuf
sprintf
sscanf

tempnam

Writes formatted data to a stream

Writes a character to a stream (function version)

Writes a character to stdout (function version)
Writes a string to a stream

Reads unformatted data from a stream
Reassigns a FILE pointer to a new file
Reads formatted data froﬁ a stream

Moves file position to a given location

Sets the position indicator of a stream
Opens a stream with file sharing

Gets current file position

Writes unformatted data items to a stream
Reads a character from a stream

Reads a character from stdin

Reads a line from stdin

Reads a binary int item from a stream
Writes formatted data to stdout

Writes a character to a stream

Writes a character to stdout

Writes a line to a stream

Wirites a binary int item to a stream

Moves file position to beginning of a stream
Removes temporary files created by tmpfile
Reads formatted data from stdin

Controls stream buffering

Controls stream buffering and buffer size
Writes formatted data to a string

Reads formatted data from a string

Generates a temporary file name in given directory

Run-Time Routines by Category 39

tmpfile Creates a temporary file
tmpnam Generates a temporary file name
ungetc Places a character in the buffer
viprintf Writes formatted data to a stream
vprintf Writes formatted data to stdout
vsprintf Writes formatted data to a string

2.7.2.1 Opening a Stream

A stream must be opened using the fdopen, fopen, freopen, or _fsopen function
before input and output can be performed on that stream. When opening a
stream, the named stream can be opened for reading, writing, or both, and can be
opened in either text or binary mode.

The fdopen, fopen, freopen, and _fsopen functions return a FILE pointer. You
normally assign the pointer value to a variable and use the variable to refer to the
opened stream. For instance, if your program contains the lines

FILE *infile
infile = fopen ("test.dat", "r");

you can use the FILE pointer variable infile to refer to the stream.

2.7.2.2 Using Predefined Stream Pointers

When a program begins execution, the C start-up code automatically opens
several streams: standard input, standard output, and standard error. By default,
the standard input, standard output, and standard error streams are directed to the
console (keyboard and screen). This means that when a program expects input
from the “standard input,” it receives that input from the console. Similarly, a
program that writes to the “standard output” prints its data to the console. Error
messages generated by the library routines are sent to the “standard error,” mean-
ing that error messages appear on the user’s console.

Under DOS, two additional streams are opened: standard auxiliary and standard
print. (These streams are not available in OS/2.) The assignment of standard
auxiliary and standard print depends on the machine configuration. These
streams usually refer to the first serial port and a printer port, but those ports may
not be available on some systems. Be sure to check your machine configuration
before using these streams.

You can refer to the standard streams with the following predefined stream
pointers:

40 Microsoft C Run-Time Library Reference

Pointer Stream

stdin Standard input

stdout Standard output

stderr Standard error

stdaux ‘ Standard auxiliary (DOS only)
stdprn Standard print (DOS only)

You can use these pointers in any function that requires a stream pointer as an ar-
gument. Some functions, such as getchar and putchar, are designed to use stdin
or stdout automatically. The pointers stdin, stdout, stderr, stdaux, and stdprn

are constants, not variables; do not try to assign them a new stream pointer value.

DOS and OS2 allow you to redirect a program’s standard input and standard out-
put at the operating-system command level. OS/2 also allows you to redirect a
program’s standard error. See your operating system user’s manual for a com-
plete discussion of redirection.

Within your program, you can use freopen to redirect stdin, stdout, stderr,
stdaux, or stdprn so that it refers to a disk file or to a device. See the reference
description of freopen for more details.

2.7.2.3 Controlling Stream Buffering

As mentioned earlier, stream routines can use in-memory buffers to speed 1/0
operations. Files opened using the stream routines are buffered by default, except
for stdaux and stdprn, which are normally unbuffered. The stdout and stderr
streams are flushed whenever they are full or (if you are writing to a character
device) after each library call.

By using the setbuf or setvbuf function, you can cause a stream to be unbuff-
ered, or you can associate a buffer with an unbuffered stream. Buffers allocated
by the system are not accessible to you, but buffers allocated with setbuf or
setvbuf refer to arrays in your program and can be manipulated. Buffers can be
any size up to 32,767 bytes. This size is set by the manifest constant BUFSIZ in
STDIO.H if you use seftbuf; if you use setvbuf, you can set the size of the buffer
yourself. (See the descriptions of setbuf and setvbuf in the reference section for
more details.)

NOTE These routines affect only buffers created by C library routines. They have no effect
on buffers created by the operating system.

Run-Time Routines by Category 41

2.7.2.4 Closing Streams

The fclose and feloseall functions close a stream or streams. The fclose routine
closes a single specified stream; fcloseall closes all open streams except stdin,
stdout, stderr, stdaux, and stdprn. If your program does not explicitly close a
stream, the stream is automatically closed when the program terminates. How-
ever, it is a good practice to close a stream when your program is finished w1th it,
as the number of streams that can be open at a given time is limited.

2.7.2.5 Reading and Writing Data

The stream functions allow you to transfer data in a variety of ways. You can
read and write binary data (a sequence of bytes), or specify reading and writing
by characters, lines, or more complicated formats.

Reading and writing operations on streams always begin at the current position
of the stream, known as the “file pointer” for the stream. The file pointer is
changed to reflect the new position after a read or write operation takes place.
For example, if you read a single character from a stream, the file pointer is in-
creased by one byte so that the next operation begins with the first unread char-
acter. If a stream is opened for appending, the file pointer is automatically
positioned at the end of the file before each write operation.

The fseek and fsetpos functions allow you to position the file pointer anywhere
in a file. The next operation occurs at the position you specified. The rewind
routine positions the file pointer at the beginning of the file. Use the ftell or
fgetpos routine to determine the current position of the file pointer.

The feof macro detects an end-of-file condition on a stream. Once the end-of-file
indicator is set, it remains set until the file is closed, or until clearerr, fseek,
fsetpos, or rewind is called.

Streams associated with a character-oriented device (such as a console) do not
have file pointers. Data coming from or going to a console cannot be accessed
randomly. Routines that set or get the file-pointer position (such as fseek,
fgetpos, fsetpos, ftell, or rewind) have undefined results if used on a stream as-
sociated with a character-oriented device.

2.7.2.6 Detecting Errors

‘When an error occurs in a stream operation, an error indicator for the stream is
set. You can use the ferror macro to test the error indicator and determine
whether an error has occurred. Once an error has occurred, the error indicator for
the stream remains set until the stream is closed, or until you explicitly clear the
error indicator by calling clearerr or rewind.

42 Microsoft C Run-Time Library Reference

I

2.7.3 Low-Level Routines

Low-level input and output calls do not buffer or format data. Declarations

for the low-level functions are given in the include files I0.H, FCNTL.H,
SYS\TYPES.H, and SYS\STAT.H. Unlike the stream-functions, low-level func-
tions do not require the include file STDIO.H. However, some common con-
stants are defined in STDIO.H; for example, the end-of-file indicator (EOF) may
be useful. If your program requires these constants, you must include STDIO.H.

close Closes a file

creat Creates a file

dup Creates a second handle for a file
dup2 Reassigns a handle to a file

eof Tests for end-of-file

Iseek Repositibns file pointer to a given location
open Opens a file

read Reads data from a file

sopen Opens a file for file sharing

tell Gets current file-pointer position
umask Sets default file-permission mask
write Writes data to a file

2.7.3.1 Opening a File

You must open a file before performing I/O functions on it. The open function
opens a file; it can also create the file when opening it. In OS/2 and DOS ver-
sions 3.0 and later, you can use sopen to open a file with file-sharing attributes.
The creat function can create and open a file.

The file can be opened for reading, writing, or both, and opened in either text or
binary mode (see Section 2.7.1, “Text and Binary Modes”). The include file
FCNTL.H must be included when opening a file, as it contains definitions for
flags used in open. In some cases, the files SYS\TYPES.H and SYS\STAT.H
must also be included; for more information, see the reference description for the
open function.

These functions return a file handle, which is normally assigned to an integer
variable. You use the variable to refer to the opened file.

Run-Time Routines by Category 43

2.7.3.2 Reading and Writing Data

Use the read and write routines to read and write to files. These operations begin
at the current position in the file. The current position is updated each time a read
or write operation occurs.

The Iseek function allows you to place the file pointer anywhere in the file. The
next operation occurs at the position you specified. The tell function indicates the
current position of the file pointer. The eof routine tests for the end of the file.

Low-level I/O routines set the errne variable when an error occurs. Chapter 3,
“Global Variables and Standard Types,” describes errno.

Character-oriented devices, such as the console, do not have file pointers. The
Iseek and tell routines have undefined results if used on a handle associated with
a device.

2.7.3.3 Closing Files

The close function closes an open file. Open files are automatically closed when
a program terminates. However, it is a good practice to close a file when your
program is finished with it, as there is a limit to the number of files that can be
open at one time.

2.7.3.4 Using Predefined Handles

When a program begins execution, three files are automatically opened: standard
input, standard output, and standard error. In DOS, two additional files are
opened: standard auxiliary and standard print. (These files are not available in
0S/2.)

Low-level routines can access these files using the following predefined handles:

stdin 0
stdout 1
stderr 2
stdaux (DOS only) 3
stdprn (DOS only) 4

You can use these file handles without previously opening the files. The files are
opened and the handles are assigned when the program starts.

The dup and dup?2 functions allow you to assign multiple handles for the same
file. These functions are typically used to associate the predefined file handles
with different files.

44 Microsoft C Run-Time Library Reference

In DOS and 0S/2, you can redirect the standard input and standard output at the
operating-system command level. OS/2 also allows you to redirect the standard
error. See your operating system user’s manual for a complete discussion of
redirection.

2.7.4 Gonsole and Port I/0

The console and port I/O routines are implemented as functions and are declared
in the include file CONIO.H. These functions perform reading and writing opera-
tions on your console or on the specified port. The cgets, cscanf, getch, getche,
and kbhit routines take input from the console, while cprintf, cputs, putch, and
ungetch write to the console. The input or output of these functions can be

redirected.

Routine Use

cgets Reads a string from the console

cprintf Writes formatted data to the console

cputs ' Writes a string to the console

cscanf Reads formatted data from the console

getch Reads a character from the console

getche | Reads a character from the console and echoes it
inp Reads one byte from the specified I/O port

inpw Reads a two-byte word from the specified I/O port
kbhit Checks for a keystroke at the console

outp Writes one byte to the specified I/O port

outpw Writes a two-byte word to the specified I/O port
putch Writes a character to the console

ungetch “Ungets” the last character read from the console so

that it becomes the next character read

NOTE Programs that need only run under DOS can also use a number of direct DOS 1/0
system calls (_dos_open, _dos_read, _dos_close, etc.) These are described in detail in
Section 2.14, “System Galls.”

~ The console or port does not have to be opened or closed before /O is per-
formed, so there are no open or close routines in this category. The port I/O

Run-Time Routines by Category 45

routines inp and outp read or write one byte at a time from the specified port.
The inpw and outpw routines read and write two-byte words, respectively.

The console I/O routines allow reading and writing of strings (cgets and cputs),
formatted data (cscanf and cprintf), and characters. Several options are available
when reading and writing characters.

The putch routine writes a single character to the console. The getch and getche
routines read a single character from the console; getche echoes the character
back to the console, while getch does not. The ungetch routine “ungets” the last
character read; the next read operation on the console begins with the “ungotten”
character.

The kbhit routine determines whether a key has been struck at the console. This
routine allows you to test for keyboard input before you attempt to read from the
console.

NOTE The console I/0 routines are not compatible with stream or low-level library
routines and should not be used with them.

2.8 Internationalization

2.9 Math

Internationalization routines are useful for creating different versions of a pro-
gram for international markets. These routines are declared in the header file
LOCALE.H, except for strftime, which is declared in TIME.H.

Routine Use

localeconv Sets a structure with appropriate values for format-
ting numeric quantities

setlocale Selects the appropriate locale for the program

streoll Compares strings using locale-specific information

strftime Formats a date and time string

strxfrm Transforms a string based on locale-specific
information

The math routines allow you to perform common mathematical calculations. All
math routines work with floating-point values and therefore require floating-
point support (see Section 1.8, “Floating-Point Support”).

46 Microsoft C Run-Time Library Reference

The math library provides two versions of some routines. The first version of the
routine supports double arguments and return values. The second version sup-
ports an 80-bit data type, allowing the routine to take long double arguments and
return a long double value. The second version usually has the same name with
the suffix 1. For instance, the acos routine supports double arguments and return
values, while acosl supports long double arguments and return values.

Routines which support long double values are not available when you compile
with the /Fpa (alternate math) compiler option. The same is true of the _clear 87,
_control87, and _status87 routines.

Most math declarations are in the include file MATH.H. However, the _clear87,
_control87, _fpreset, and _status87 routines are defined in FLOAT.H, , the abs
and labs functions are defined in MATH.H and STDLIB.H, and the div and Idiv

routines are declared in STDLIB.H.

Routine
acos, acosl
asin, asinl
atam, atanl
atan2, atan2l
bessel

cabs, cabsl

ceil, ceill

Use

Calculate the arccosine

Calculate the arcsine

Calculate the arctangent

Calculate the arctangent

Calculates Bessel functions

Find the absolute value of a complex number

Find the integer ceiling

_clear87 Gets and clears the floating-point status word

_control87 Gets the old floating-point control word and sets a
new control-word value

cos, cosl Calculate the cosine

cosh, coshi Calculate the hyperbolic cosine

dieeetomsbin Converts IEEE double-precision number to Micro-
soft (MS) binary format

div Divides one integer by another, returning the
quotient and remainder

dmsbintoieee Converts Microsoft binary double-precision number
to IEEE format

exp, expl Calculate the exponential function

fabs, fabsl Find the absolute value

Run-Time Routines by Category 47

fieeetomsbin
floor, floorl

fmod, fmodl

fmsbintoieee

_fpreset
frexp, frexpl
hypot, hypotl
ldexp, ldexpl
Idiv

log, logl
log10, log101

_Irotl, _Irotr

matherr, _matherrl
max, min

modf, modfl

pow, powl
rand

_rotl, _rotr

sin, sinl
sinh, sinhl
sqrt, sqrtl
srand
_status87
tan, tanl

tanh, tanhl

Converts IEEE single-precision number to Microsoft
binary format '

Find the largest integer less than or equal to the
argument

Find the floating-point remainder

Converts Microsoft binary single-precision number
to IEEE format

Reinitializes the floating-point-math package
Calculate an exponential value

Caléulate the hypotenuse of right triangle
Calculate the product of the argument and 2

Divides one long integer by another, returning the
quotient and remainder

Calculate the natural logarithm
Calculate the base-10 logarithm

Shift an unsigned long int item left (_lrotl) or right
(_Irotr)

Handle math errors
Return the larger or smaller of two values

Break down the argument into integer and fractional
parts

Calculate a value raised to a power
Gets a pseudorandom number

Shift an unsigned int item left (_rotl) or right
(_rotr)

Calculate the sine

Calculate the hyperbolic sine

Find the square root

Initializes a pseudorandom series
Gets the floating-point status word
Calculate the tangent

Calculate the hyperbolic tangent

48 Microsoft C Run-Time Library Reference

The bessel routine does not correspond to a single function, but to twelve func-
tions named j0, j1, jn, y0, y1,yn, _jOl, _jIl, _jnl, _yOl, _y1l,and _ynl

The matherr and _matherr] routines are invoked by the math functions when er-
rors occur. The matherr routine handles functions that return a double value and
_matherrl handles routines that return a long double.

These routines are defined in the library, but you can redefine them for different
error-handling. The user-defined function, if given, must follow the rules given
in the reference description of matherr and _matherrl.

You are not required to supply a definition for the matherr routines. If no defini-
tion is present, the default error returns for each routine are used. The reference
description of each routine describes that routine’s error returns.

2.10 Memory Allocation

The memory-allocation routines allow you to allocate, free, and reallocate blocks
of memory. Memory-allocation routines are declared in the include file

MALLOC.H.

Routine

alloca

_bfreeseg
_bheapseg
calloc, _bcalloc, _fcalloc, _ncalloc

_expand, _bexpand, _fexpand,
_nexpand

free, _bfree, _ffree, _nfree

_freect

halloc
_heapadd, _bheapadd

_heapchk, _bheapchk, _fheapchk,
_nheapchk

_heapmin, _bheapmin,
_fheapmin, _nheapmin

Use

Allocates a block of memory from
the program’s stack

Frees a based heap
Allocates a based heap
Allocate storage for an array

Expand or shrink a block of memory
without moving its location

Free an allocated block

Returns approximate number of items
of given size that could be allocated
in the near heap

Allocates storage for huge array
Add memory to a heap

Check a heap for consistency

Release unused memory in a heap

Run-Time Routines by Catégaty 49

_heapset, _bheapset, _fheapset, Fill free heap entries with a specified

_nheapset value

_heapwalk, _bheapwalk, Return information about each entry

_fheapwalk, _nheapwalk .in a heap

hfree Frees a block allocated by halloc

malloc, _bmalloc, _fmalloc, Allocate a block of memory

_nmalloc

_memavl Returns approximate number of bytes
available for allocation in the near
heap

_memmax Returns size of largest contiguous
free block in the near heap

_msize, _bmsize, _fmsize, Return size of an allocated block

_nmsize

realloc, _brealloc, _frealloc, Reallocate a block to a new size

_nrealloc

stackavail Returns size of stack space available

for allocation with alloca

Some memory-management routines, such as malloc, are available in different
versions that begin with _b, _f, or _n. These variations are described in the fol-
lowing section.

The malloc and free routines allocate and free memory space, respectively,
while a program runs. The malloc routine allocates memory from the “heap,”
which is a pool of memory not otherwise used by your program. In tiny-, small-,
and medium-model programs, the heap consists of unused memory in your pro-
gram’s default data segment. In compact-, large-, and huge-model programs, it is
unused memory outside the default data segment.

The malloc and free routines satisfy the memory-allocation requirements of most
programs. More specialized memory-management routines are discussed below.

The realloc and _expand routines can expand or shrink an allocated memory
block. They behave differently in cases in which there is not enough room to ex-
pand the block in its current location. In this case, realloc moves the block as
needed, but _expand does not.

The calloc routine allocates memory for an array and initializes every byte in the
allocated block to 0.

The halloe routine is similar to calloc, except that it can allocate memory for a
huge array (one that exceeds 64K in size). This routine is useful when you need a

50 Microsoft C Run-Time Library Reference

very large data object, or if you need to return allocated memory to the operating
system for subsequent calls to the spawn family of functions.

2.10.1 Near and Far Heaps

As mentioned in the previous section, heap memory can reside inside or outside
your program’s default data segment, depending on what memory model your
program uses. When it lies inside the default data segment, the heap is called the
“near heap,” since it can be accessed with near pointers. The “far heap” is
memory that spans one or more segments outside the default data segment. The
far heap can be accessed only with far pointers.

In various memory models, malloc automatically allocates memory from the
near heap or far heap, as appropriate. The C library also includes near and far ver-
sions of malloc, free, and other memory-management routines, which allow you
to specify the near and far heaps explicitly. These have the same names as stand-
ard memory routines, but are preceded by _n (for near) or _f (for far).

For instance, the _nmalloc routine always allocates memory from the near heap
and returns a near pointer, no matter which memory model your program uses.
Use _nfree to release memory allocated with _nmalloc.

Similarly, fmalloc always allocates memory from the far heap and returns a far
pointer, regardless of memory model. Use the _ffree routine to release memory
allocated with _fmalloc.

2.10.2 Based Heaps

You can also allocate memory from a “based heap,” which is a single segment
that lies outside the default data segment. Based-heap routines generally use the
same names as standard memory routines, but begin with _b. For instance,
_bmalloc allocates a memory block from the based heap and _bfree frees the
block.

Based heaps offer the following advantages:

a Localized data. Based heaps allow you to group related data in a single seg-
ment. This can simplify the management of related data. In OS/2, based heaps
can also minimize the risk of general protection faults and improve
performance.

m Faster pointer arithmetic. Although the based heap lies in the far data seg-
ment, pointers to its data items are the same size as near pointers. Thus,
pointer arithmetic on items in a based heap is faster than pointer arithmetic on
items in the far heap.

The _bheapseg routine allocates a based heap segment, from which you can then
allocate blocks of memory. You can call _bheapseg more than once to allocate

Run-Time Routines by Category 51

as many based-heap segments as needed (within the confines of available
memory).

The _bfreeseg routine frees a based-heap segment. This routine frees every block
in the based-heap segment, whether or not you previously freed the blocks
individually.

NOTE Near-, far-, and based-heap calls are not ANSI compatible and will make your pro-
gram less portable.

2.11 Process and Environment Gontrol

The process-control routines allow you to start, stbp, and manage processes from
within a program. Environment-control routines allow you to get and change in-
formation about the operating-system environment.

A “process” is a program being executed by the operating system. It consists of
the program’s code and data, plus information about the process, such as the num-
ber of open files. Whenever you execute a program at the operating-system level,
you start a process.

All process-control functions except signal are declared in the include file
PROCESS.H. The signal function is declared in SIGNAL.H. The abort, exit,
and system functions are also declared in the STDLIB.H include file. The
environment-control routines (getenv and putenv) are declared in STDLIB.H.

Routine Use

abort Aborts a process without flushing buffers or calling
functions registered by atexit and onexit

assert Tests for logic error

atexit Schedules routines for execution at program
termination

_beginthread Creates an execution thread (OS/2 only)

_cexit Performs the exit termination procedures (such as
flushing buffers) and returns control to the calling
program

_c_exit Performs the _exit termination procedures and re-

turns control to the calling program

cwait . Suspends the calling process until a specified child
process terminates (OS/2 only)

_éndthread Terminates an execution thread (OS/2 only)

52 Microsoft C Huh-Time Library Reference

execl

execle
execlp
execlpe

execv

execve
execvp
execvpe

exit

exit

getenv
getpid
longjmp

onexit
_pclose

perror
_pipe
. _popen

putenv

raise

setjmp

Executes child process with argument list

Executes child process with argument list and given
environment

Executes child process using PATH variable and ar-
gument list

Executes child process using PATH variable, given
environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and ar-
gument array

Executes child process using PATH variable, given
environment, and argument array

Calls functions registered by atexit and onexit, then
flushes all buffers and closes all open files before ter-
minating the process

Terminates process without processing atexit or
onexit functions or flushing buffers

Gets the value of an environment variable
Gets process ID number
Restores a saved stack environment

Schedules routines for execution at program
termination

Waits for a child command and closes a pipe on the
associated stream

Prints error message
Creates a pipe

Creates a pipe and asynchronously executes a child
copy of the command processor

Adds or changes the value of an environment
variable

Sends a signal to the calling process

Saves a stack environment

Run-Time Routines by Category 53

signal Handles an interrupt signal

spawnl Executes child process with argument list

spawnle Executes child process with argument list and given
environment

spawnlp Executes child process using PATH variable and ar-
gument list

spawnlpe Executes child process using PATH variable, given
environment, and argument list

spawnv Executes child process with argument array

spawnve Executes child process with argument array and
given environment

spawnvp Executes child process using PATH variable and ar-
gument array

spawnvpe Executes child process using PATH variable, given
environment, and argument array

system Executes an operating system command

wait Suspends the calling process until any of the caller’s

immediate child processes terminate (OS/2 only)

The atexit and onexit routines create a list of functions to be executed when the
calling program terminates. The only difference between the two is that atexit is
part of the ANSI standard. The onexit function is offered for compatibility with
previous versions of Microsoft C.

The _exit routine terminates a process immediately, whereas exit terminates the
process only after flushing buffers and calling any functions previously regis-
tered by atexit and onexit. The _cexit and _c_exit routines are identical to exit
and _exit, respectively, except that they return control to the calling program
without terminating the process.

The setjmp and longjmp routines save and restore a stack environment. These
allow you to execute a nonlocal goto.

The exec and spawn routines start a new process called the “child” process. The
difference between the exec and spawn routines is that the spawn routines are
capable of returning control from the child process to its caller (the “parent” -
process). Both the parent process and the child process are present in memory
(unless P_OVERLAY is specified). In the exec routines, the child process over-
lays the parent process, so returning control to the parent process is impossible
(unless an error occurs when attempting to start execution of the child process).

54 Microsoft C Run-Time Library Reference

There are eight forms each of the spawn and exec routines (see Table 2.1). The
differences among the forms involve the method of locating the file to be ex-
ecuted as the child process, the method for passing arguments to the child
process, and the method of setting the environment.

Passing an argument list means that the arguments to the child process are listed
separately in the exec or spawn call. Passing an argument array means that the ar-
guments are stored in an array, and a pointer to the array is passed to the child
process. The argument-list method is typically used when the number of argu-
ments is constant or is known at compile time. The argument-array method is use-
ful when the number of arguments must be determined at run time.

Several process-control routines take advantage of the multitasking capability of
0OS/2. The _beginthread and _endthread routines create and terminate execu-
tion threads. The cwait and wait routines suspend the calling process until one
child process terminates. The _pipe, _popen, and _pclose routines create and
manipulate pipes, which link processes for sequential execution.

Table2.1 Forms of the spawn and exec Routines

Argument-Passing
Routines Locating the File Convention Environment Settings
execl, spawnl Do not use PATH Argument list Inherited from parent
execle, spawnle Do not use PATH Argument list Pointer to environ-

ment table for child
process passed as last

argument
execlp, spawnlp Use PATH Argument list Inherited from parent
execlpe, spawnlpe Use PATH Argument list Pointer to environ-

ment table for child
process passed as last

argument
execv, spawnv Do not use PATH . Argument array Inherited from parent
execve, spawnve Do not use PATH Argument array Pointer to environ-

ment table for child
process passed as last

argument
execvp, spawnvp Use PATH Argument array Inherited from parent
execvpe, spawnvpe Use PATH Argument array Pointer to environ-

ment table for child
process passed as last
argument

Run-Time Routines by Gategory 55

The assert macro is typically used to test for logic errors. It prints a message
when a given “assertion” fails to hold true. Defining the identifier NDEBUG to
any value causes occurrences of assert to be removed from the source file, thus
allowing you to turn off assertion checking without modifying the source file.

2.12 Searching and Sorting

Search and sort routines provide binary-search, linear-search, and quick-sort
capabilities. They are all declared in SEARCH.H.

Routine

bsearch
Ifind

Isearch

qsort

2.13 String Manipulation

Use
Performs binary search
Performs linear search for given value

Performs linear search for given value, which is
added to array if not found

Performs quick sort

The string functions are declared in the include file STRING.H. They allow you
to compare strings, copy them, search for strings and characters, and perform

various other operations.

Routines beginning with _f are model-independent versions of the corresponding
routines and are useful in mixed-model programs. These routines can be called
from any point in the program, regardless of which model is being used.

Routine

strcat, _fstrcat
strchr, _fstrchr
stremp, _fstrcmp
strcpy, _fstrepy

strespn, _fstrespn

strdup, _fstrdup,
_nstrdup

strerror

Use

Append one string to another

Find first occurrence of a given character in a string
Compare two strings

Copy one string to another

Find first occurrence of a character from a given
character set in a string

Duplicate a string

Maps an error number to a message string

56 Microsoft C Run-Time Library Reference

_Strerror

stricmp, _fstricmp
strlen, _fstrlen
striwr, _fstrlwr
strncat, _fstrncat
strncmp, _fstrncmp
strncpy, _fstrncpy

strnicmp, _fstrnicmp

strnset, _fstrnset

strpbrk, _fstrpbrk

strrchr, _fstrrchr
strrev, _fstrrev
strset, _fstrset

strspn, _fstrspn
strstr, _fstrstr

strtok, _fstrtok

strupr, _fstrupr

Maps a user-defined error message to a string
Compare two strings without regard to case
Find length of string

Convert string to lowercase

Append characters of a string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard
to case

Set characters of a string to a given character

Find first occurrence of a character from one string
in another -

Find last occurrence of a given character in string
Reverse string
Set all characters of a string to a given character

Find first substring from a given character set in a
string

Find first occurrence of a given string in another
string

Find next token in a string

Convert a string to uppercase

All string functions work on null-terminated character strings. When working
with character arrays that do not end with a null character, you can use the buffer-
manipulation routines, described in Section 2.1.

2.14 System Calls

The following routines give access to IBM-PC BIOS interrupts and DOS system
calls. Except for the FP_OFF, FP_SEG, and segread routines, these routines are
for DOS application programs only; they do not work under OS/2.

Run-Time Routines by Category 57

2.14.1 BIOS_ Interface

The functions in this category provide direct access to the BIOS interrupt ser-
vices. They are all declared in BIOS.H.

Routine

_bios_disk

_bios_equiplist
_bios_keybrd

_bios_memsize

_bios_printer

_bios_serialcom

_bios_timeofday

Use

Issues service requests for both hard and floppy
disks, using INT 0x13

Performs an equipment check, using INT 0x11

Provides access to keyboard services, using
INT 0x16

Obtains information about available memory, using
INT 0x12

Performs printer output services, using INT 0x17

Performs serial communications tasks, using
INT Ox14

Provides access to system clock, using INT Ox1A

NOTE BI0S routines are hardware dependent. Some of them may not work as expected
on machines whose hardware differs from the IBM PC.

2.14.2 DOS Interface

These routines are implemented as functions and declared in DOS.H.

Routine

bdos

_chain_intr
_disable

_dos_allocmem

_dos_close

_dos_creat

Use

Invokes DOS system call; uses only DX and AL
registers

Chains one interrupt handler to another
Disables interrupts

Allocates a block of memory, using DOS system
call 0x48

Closes a file, using DOS system call Ox3E

Creates a new file and erases any existing file
having the same name, using DOS system call 0x3C

58 Microsoft € Run-Time Library Reference

_dos_creatnew

_dos_findfirst
_dos_findnext
_dos_freemem

_dos_getdate
_dos_getdiskfree

_dos_getdrive
_dos_getfileattr
_dos_getftime
_dos_gettime
_dos_getvect
_dos_keep

_dos_open
_dos_read

_dos_setblock
_dos_setdate
_dos_setdrive
_dos_setfileattr

_dos_setftime

Creates a new file and returns an error if a file
having the same name exists, using DOS system
call 0x5B

Finds first occurrence of a given file, using DOS sys-
tem call Ox4E

Finds subsequent occurrences of a glven file, using
DOS system call 0x4F

Frees a block of memory, using DOS system
call 0x49

Gets the system date, using DOS system call 0x2A

Gets information on a disk volume, using DOS sys-
tem call 0x36

Gets the current default drive, using DOS system
call 0x19

Gets current attributes of a file or directory, using
DOS system call 0x43

Gets the date and time a file was last written, using
DOS system call 0x57

Gets the current system time, using DOS system
call 0x2C

Gets the current value of a specified interrupt vector,
using DOS system call 0x35

Installs terminate-and-stay-resident (TSR) programs
using DOS system call 0x31

Opens an existing file, using DOS system call 0x3D
Reads a file, using DOS system call 0x3F

Changes the size of a previously allocated block,
using DOS system call 0x4A

Sets the current system date, using DOS system
call 0x2B

Sets the default disk drive, using DOS system
call 0xOE

Sets the current attributes of a file, using DOS sys-
tem call 0x43

Sets the date and time that the specified file was last
written, using DOS system call 0x57

_dos_settime

_dos_setvect

_dos_write

dosexterr

_enable

FP_OFF
FP_SEG

_harderr
_hardresume
_hardretn
int86

int86x

intdos
intdosx

segread

Run-Time Routines by Category 59

Sets the system time, using DOS system call 0x2D

Sets a new value for the specified interrupt vector,
using DOS system call 0x25

Sends output to a file, using DOS system call 0x40

Obtains in-depth error information from DOS sys-
tem call 0x59

Enables interrupts

Returns offset portion of a far pointer (OS/2
and DOS)

Returns segment portion of a far pointer (0S/2
and DOS)

Establishes a hardware error handler

Returns to DOS after a hardware error

Returns to the application after a hardware error
Invokes DOS interrupts

Invokes DOS interrupts with segment register values

Invokes DOS system call using registers other than
DX and AL

Invokes DOS system call using registers other than
DX and AL with segment register values

Returns current values of segment registers (OS/2
and DOS)

The _harderr routine is used to define a hardware-error interrupt handler. The
_hardresume and _hardretn routines are used within a hardware error handler
to define the return from the error.

The dosexterr function obtains and stores the error information returned by DOS
system call 0x59 (extended error handling). This function is provided for use
with DOS versions 3.0 and later.

The bdos routine is useful for invoking DOS calls that use either or both of the
DX (DH/DL) and AL registers for arguments. However, bdos should not be used
to invoke system calls that return an error code in AX if the carry flag is set; -
since your program cannot detect whether the carry flag is set, it cannot deter-
mine whether the value in AX is a legitimate value or an error value. In this case,
the intdos routine should be used instead, since it allows the program to detect
whether the carry flag is set. The intdes routine can also be used to invoke DOS
calls that use registers other than DX and AL.

60 Microsoft € Run-Time Library Reference

2.15 Time

The intdosx routine is similar to the intdos routine, but is used when ES is re-
quired by the system call, when DS must contain a value other than the default
data segment (for instance, when a far pointer is used), or when making the sys-
tem call in a large-model program. When calling intdosx, give an argument that
specifies the segment values to be used in the call. :

The int86 routine can be used to invoke any interrupt. The int86x routine is simi-
lar; however, like the intdosx routine, it is designed to work with large-model
programs and far items, as described in the preceding paragraph.

- The FP_OFF and FP_SEG routines allow easy access to the segment and offset

portions of a far pointer value. FP_OFF and FP_SEG are implemented as macros
and defined in DOS.H. You can use these macros in OS/2 as well as DOS.

The segread routine returns the current values of the segment registers. This
routine is typically used with the intdosx and int86x routines to obtain the cor-
rect segment values.

The _chain_intr routine is useful for chaining interrupt handlers together. The
_enable routine enables interrupts, while the _disable routine disables interrupts.

The routines prefixed with _dos_ are all direct system interfaces that use the sys-
tem calls noted above. More detailed information on these system calls can be
found in the MS-DOS Encyclopedia (Duncan, ed.; Redmond, WA: Microsoft
Press, 1988)or the Programmer’s PC Sourcebook (Hogan; Redmond, WA:
Microsoft Press, 1988).

NOTE The DOS interface I/0 routines are generally incompatible with console, low-level,
and stream I/0 routines. Do not mix different types of I/0 routines in the same source file.

The time functions allow you to obtain the current time, then convert and store it
according to your particular needs. The current time is always taken from the sys-
tem time.

Routine Use

asctime Converts time from type struct tm to a character
string

clock Returns the elapsed CPU time for a process

ctime Converts time from a long integer to a character

string

Run-Time Routines by Category 61

difftime Computes the difference between two times

ftime Puts current system time in variable of type
struct tm

gmtime Converts time from integer to struct tm

localtime COHVCI:(S time from integer to struct tm with local
correction

mktime Converts time to a calendar value

_strdate Returns the current system date as a string

strftime Formats a date and time string

_strtime Returns the current system time as a string

time ' Gets current system time as a long integer

tzset Sets external time variables from the environment

time variable

utime Sets file-modification time

The time and ftime functions return the current time as the number of seconds
elapsed since midnight Universal Coordinated Time (UTC) on January 1, 1970.
This value can be converted, adjusted, and stored in a variety of ways by using
the asctime, ctime, gmtime, localtime, and mktime functions. The utime func-

-tion sets the modification time for a specified file, using either the current time or
a time value stored in a structure.

The clock function returns the elapsed CPU time for the calling process.

The ftime function requires two files: SYS\TYPES.H and SYS\TIMEB.H. It is
declared in SYS\TIMEB.H. The utime function also requires two include files:
SYS\TYPES.H and SYSN\UTIME.H. It is declared in SYSN\UTIME.H. The re-
mainder of the time functions are declared in the include file TIME.H.

When you want to use ftime or localtime to make adjustments for local time,
you must define an environment variable named TZ. Section 3.2, which de-
scribes the global variables daylight, timezone, and tzname, includes a discus-
sion of the TZ variable. TZ is also described on the tzset reference page in Part 2
of this book.

The _strdate and _strtime routines return strings containing the current date and
time, respectively, in the DOS and OS/2 date and time format rather than in the
XENIX-style formats.

The stfrtime function is useful for creating international versions of a program.
See Section 2.8, “Internationalization.”

62 Microsoft C Run-Time Library Reference

2.16 Variable-Length Argument Lists

The va_arg, va_end, and va_start routines are macros that provide a portable
way to access the arguments to a function when the function takes a variable
number of arguments. Two versions of the macros are available: the macros de-
fined in the VARARG.H include file, which are compatible with the UNIX Sys-
tem V definition, and the macros defined in STDARG.H, which conform to the

ANSI C standard.

Routine Use

va_arg Retrieves argument from list

va_end Resets pointer

va_start Sets pointer to beginning of argument list

For more information on the differences between the two versions and for an ex-
planation of how to use the macros, see their descriptions in Part 2 of this book.

CHAPTER i

Global Variables
and Standard Types

The Microsoft C Run-Time Library contains definitions for a number of varia-
bles and standard types used by library routines. You can access these variables
and types by including in your program the files in which they are declared, or by
giving appropriate declarations in your program, as shown in the following
sections.

3.1 _amblksiz

The _amblksiz variable controls memory heap granularity.
It is declared in the MALLOC.H include file as follows:

extern unsigned int _amblksiz;

The _amblksiz variable controls the amount of memory used in the heap for dy-
namic memory allocation.

Memory space is always requested from the operating system in blocks contain-
ing _amblksiz bytes. The first time a program calls a memory-allocation func-
tion such as malloc, the operating system allocates a block of heap memory. The
size of this block is defined by _amblksiz, which has a default value of 8K
(8,192 bytes).

Later memory requests are satisfied from the original block. When that block is
exhausted, another block of _amblksiz bytes is allocated. If your C program
allocates a block larger than _amblksiz, multiple blocks that are each of size
_amblksiz are allocated until the request is satisfied.

To change the size of the default memory block, assign the desired size to the
_amblksiz variable, as in the following example:

_amblksiz = 2048;

63

64 Microsoft C Run-Time Library Reference

The heap allocator always rounds the operating-system request to the nearest
power of 2 greater than or equal to _amblksiz. The above statement allocates
memory in multiples of 2K (2,048 bytes).

Fewer system calls are required if you set _amblksiz to a large value, but your
program may use more memory than needed. If program speed is important, set
_amblksiz to a large value. If size is important, set _amblksiz to a smaller value.

Note that adjusting the value of _amblksiz affects allocation in the near, far, and
based heaps. The value of _amblksiz has no effect on huge memory blocks
(those allocated with halloc and similar functions).

3.2 daylight, timezone, tzname

The daylight, timezone, and tzname variables are global timezone variables
used in time functions.

They are declared in the TIME.H include files as follows:
extern int daylight;

extern long timezone;
extern char *tzname [2];

Some time and date routines use the daylight, timezone, and tzname variables
to make local-time adjustments. Whenever a program calls the ftime, localtime,
or tzset function, the value of daylight, timezone, and tzname is determined
from the value of the TZ environment variable. If you do not explicitly set the
value of TZ, the default value of PST8PDT is used The following list shows
each variable and its value:

Variable Value

daylight Nonzero if a daylight-saving-time zone (DST) is
specified in TZ; otherwise zero. Default value is one.

timezone ‘ Difference in seconds between Greenwich mean
time and the local time. Default value is 28,800.

tzname[0] Three-letter time zone name derived from the TZ en-
vironment variable. Default value is “PST” (Pacific
standard time).

tzname[1] Three-letter daylight-saving-time zone name derived
from the TZ environment variable. Default value is
PDT. If the DST zone is omitted from TZ,
tzname[1] is an empty string.

Global Variables and Standard Types 65

3.3 _doserrno, errno, sys_errlist, sys_nerr

The _doserrno, errno, sys_errlist, and sys_nerr variables contain error codes,
and are used by the perror and _strerror routines to print error information.

These variables are declared in the STDLIB.H include file. Manifest constants
for the errno variables are declared in the ERRNO.H include file. The declara-
tions are asfollows:

extern int _doserrno;
extern int errno;

extern char *sys_errlist[J;
extern int Sys_nerr;

The errno variable is set to an integer value to reflect the type of error that has
occurred in a system-level call. Each errno value is associated with an error mes-
sage, which can be printed with the perror routine or stored in a string with the
strerror routine.

Note that only some routines set the errno variable. If a routine sets errno, the
description of the routine in the reference section says so explicitly.

The value of errno reflects the error value for the last call that set errno. How-
ever, this value is not necessarily reset by later successful calls. To avoid confu-
sion, test for errors immediately after a call.

The include file ERRNO.H contains the definitions of the errno values. How-
ever, not all of the definitions given in ERRNO.H are used in DOS and OS/2.
Some of the values in ERRNO.H are present to maintain compatibility with
XENIX and UNIX operating systems.

The errno values in DOS and OS/2 are a subset of the values for errno in
XENIX systems. Thus, the errno value is not necessarily the same as the actual
error code returned by a DOS or OS/2 system call. To access the actual DOS and
08S/2 error code, use the _doserrno variable, which contains this value.

In general, you should use _doserrno only for error detection in operations in-
volving input and output, since the errno values for input and output errors have
DOS and OS/2 error-code equivalents. In other cases, the value of _doserrno is
undefined.

The syserrlist variable is an array; the perror and strerror routines use it to
process error information. The sys_nerr variable tells how many elements the
sys_errlist array contains.

66 Microsoft C Run-Time Lihiary Reference

Table 3.1 gives the errno values for DOS and OS/2, the system error message
for each value, and the value of each constant. Note that only the ERANGE and
EDOM constants are specified in the ANSI standard.

Table 3.1 errno Values and Their Meanings

Constant Meaning Value
E2BIG Argument list too long 7
EACCES Permission denied 13
EBADF Bad file number 9
EDEADLOCK Resource deadlock would occur 36
EDOM Math argument 33
EEXIST File exists 17
EINVAL Invalid argument 22
EMFILE Too many open files 24
ENOENT No such file or directory

ENOEXEC Exec format error 8
ENOMEM Not enough memory 12
ENOSPC No space left on device ‘ 28
ERANGE Result too large 34
EXDEV Cross-device link 18

3.4 fmode

The _fmode variable controls the default file-translation mode.
It is declared in the STDLIB.H include file as follows:

~ extern int _fmode;

By default, the value of _fmode is O_TEXT, causing files to be translated in
text mode (unless specifically opened or set to binary mode). When _fmode is
set to O_BINARY, the default mode is binary. You can set _fmode to the flag
O_BINARY by linking with BINMODE.OBJ or by assigning it the O_BINARY
value.

Global Variables and Standard Types 67

-

3.5 _osmajor, _osminor, _osmode, _osversion

3.6 environ

The _osmajor, _osminor, _osmode, and _osversion variables specify the ver-
sion number of the operating system or the current mode of operation.

They are declared in the STDLIB.H include file as follows:

extern unsigned char _osmajor;

. extern unsigned char _osminor;

extern unsigned char _osmode;

extern unsigned char _osversion;

The _osmajor, _osminor, and _osversion variables specify the version number
of DOS or OS/2 currently in use. The _osmajor variable holds the “major” ver-
sion number and the _osminor variable stores the “minor” version number.
Thus, under DOS version 3.20, _osmajor is 3 and _osminor is 20. The

_osversion variable holds both values; its low byte contains the major version
number and its high byte the minor version number.

These variables are useful for creating programs that run in different versions of
DOS and OS/2. For example, you can test the _osmajor variable before making
a call to sopen; if the major version number is earlier (less) than 3, open should
be used instead of sopen.

The _osmode variable indicates whether the program is in OS/2 protected mode
or in real mode (DOS or OS/2 real mode). An _osmode value of DOS_MODE in-
dicates real mode operation and a value of 0S2_MODE indicates protected
operation.

The environ variable is a pointer to the strings in the process environment. .
It is declared in the STDLIB.H include file as follows:

extern char *environ [];

The environ variable provides access to memory areas containing process-
specific information.

68 Microsoft G Run-Time Library Reference

3.7 _psp

The environ variable is an array of pointers to the strings that constitute the
process environment. The environment consists of one or more entries of
the form ; ’

NAME-=string

where NAME is the name of an environment variable and string is the value of
that variable. The string may be empty. The initial environment settings are taken
from the operating-system environment at the time of program execution.

The getenv and putenv routines use the environ variable to access and modify
the environment table. When putenv is called to add or delete environment set-
tings, the environment table changes size; its location in memory may also
change, depending on the program’s memory requirements. The environ varia-
ble is adjusted in these cases and always points to the correct table location.

The _psp variable contains the segment address of the program segment prefix
(PSP) for the process.

It is declared in the STDLIB.H include file as follows:

extern unsigned int _psp;

The PSP contains execution information about the process, such as a copy of the
command line that invoked the process and the return address on process termina-
tion or interrupt. The _psp variable can be used to form a long pointer to the

PSP, where _psp is the segment value and O is the offset value.

Note that the _psp variable is supported only in DOS.

3.8 Standard Types

A number of library routines use values whose types are defined in include files.
In the following list, these types are described, and the include file defining each
type is given.

Standard Type Description

clock_t The clock_t type, defined in TIME.H, stores time
values, It is used by the clock function.

complex The complex structure, defined in MATH.H, stores
the real and imaginary parts of complex numbers. It
is used by the cabs function.

Global Variables and Standard Types 69

diskfree_t

diskinfo_t

div_t, Idiv_t

dosdate_t

dostime_t

DOSERROR

exception

FILE

find_t

fpos_t

jmp_buf

Iconv

The diskfree_t structure, defined in DOS.H, stores
disk information used by the _dos_getdiskfree
routine.

The diskinfo_t structure, defined in BIOS.H, re-
cords information about disk drives returned by the
_bios_disk routine.

The div_t and Idiv_t structures, defined in
STDLIB.H, store the values returned by the div and
ldiv functions, respectively.

The dosdate_t structure, defined in DOS.H, records
the current system date used in the _dos_getdate
and _dos_setdate routines.

The dostime_t structure, defined in DOS.H, records
the current system time used in the _dos_gettime
and _dos_settime routines.

The DOSERROR structure, defined in DOS.H,
stores values returned by DOS system call 59H
(available under DOS versions 3.0 and later).

The exception structure, defined in MATH.H, stores
error information for math routines. It is used by the
matherr routine.

The FILE structure, defined in STDIO.H, is the
structure used in all stream input and output opera-
tions. The fields of the FILE structure store informa-
tion about the current state of the stream.

The find_t structure, defined in DOS.H, stores file-
attribute information returned by the _dos_findfirst
and _dos_findnext routines.

The fgetpos and fsetpos functions use the fpos_t ob-
ject type, defined in STDIO.H, to record all the infor-
mation necessary to uniquely specify every position
within the file.

The jmp_buf type, defined in SETIMP.H, is an
array type rather than a structure type. A buffer of
this type is used by the setjmp and longjmp
routines to save and restore the program
environment.

The lconv type is a structure containing formatting
rules for numeric values in different countries. It is
defined in LOCALE.H.

70 Microsoft C Run-Time Library Reference

onexit_t The onexit routine is declared as an onexit_t pointer
type, which is defined in STDLIB.H.

ptrdiff_t The ptrdiff_t type is used for the signed integral re-
sult of the subtraction of two pointers.

REGS The REGS union, defined in DOS.H, stores byte and

word register values to be passed to and returned
from calls to the DOS interface functions.

sig_atomic_t The sig_atomic_t type, defined in SIGNAL.H, is the
integral type of an object that can be modified as an
atomic entity, even in the presence of asynchronous
interrupts. It is used in conjunction with the signal
routine.

size_t The size_t type, defined in STDDEF.H and several
other include files, is the unsigned integral result of
the sizeof operator.

SREGS The SREGS structure, defined in DOS.H, stores the
values of the ES, CS, SS, and DS registers. This
structure is used by the DOS interface functions that
require segment register values (int86x, intdosx,
and segread).

stat The stat structure, defined in SYS\STAT.H, con-
tains file-status information returned by the stat and
fstat routines.

time_t The time_t type, defined in TIME.H, represents
time values in the mktime and time routines.

timeb The timeb structure, defined in SYS\TIMEB.H, is
used by the ftime routine to store the current system
time.

tm The tm structure, defined in TIME.H, is used by the

asctime, gmtime, and localtime functions to store
and retrieve time information.

utimbuf The utimbuf structure, defined in SYSNUTIME H,
stores file access and modification times used by the
utime function to change file-modification dates.

va_list The va_list array type, defined in STDARG.H, is
used to hold information needed by the va_arg
macro and the va_end routine. The called function
declares a variable of type va_list, which may be
passed as an argument to another function.

i

ey
o o

T_ ime
lions

PART 2
Run
Func

, o o
, : , v : : o . o - .
Sl

o

e

S . Soanon e : e

o

i s

e

Run-Time Functions

The second part of this book is the reference section. It describes,
in alphabetical order, each function of the run-time library pro-
vided with the Microsoft C Professional Development System.

Each reference entry gives syntax, return values, and other useful
information about the library functions. Information on compati-
bility is supplied to assist you in writing portable programs.

L

G e

-

=

i

o

S

e

it e B

Bl
wn

e

e
-

L

o o
o o
.

e

Goh 2

75

About the Run-Time Reference

The following pages describe, in alphabetical order, the more than 400 func-
tions in the Microsoft run-time library. In some cases, related routines are
clustered in the same description. For example, the based, near, and far versions
of _heapwalk are in the same discussion, as are the regular and long double
versions of the math functions, such as acos and atan. Differences are noted
where appropriate. Refer to Chapter 2, “Run-Time Routines by Category,” or
to the index to locate any function that does not appear in the expected position
within the alphabetical reference.

The discussion of each function (or group of functions) is divided into the follow-
ing sections:

Description. Summarizes the routine’s effect, names the include file(s) contain-
ing its declaration, illustrates the syntax, and briefly describes the arguments.

Remarks. Gives a more detailed description of the routine and how it is used.
Return Value. Describes the value returned by the routine.

Compatibility. Tells whether the routine is compatible with ANSI C, MS-DOS,
0S/2, UNIX, and XENIX.

See Also. Names related routines.

Example. Gives a complete program showing the use of the routine.

abort

76

Description

Remarks

Return Value

Compatibility

See Also

Example

Aborts the current process and returns an error code.

#include <process.h> Required only for function declarations; use either
#include <stdlib.h> PROCESS.H or STDLIB.H

void abort(void);

The abort function prints the message
abnormal program termination

to stderr, then calls raise(SIGABRT). The action taken in response to the SIGABRT signal
depends on what action has been defined for that signal in a prior call to the signal func-
tion. The default SIGABRT action is for the calling process to terminate with exit code 3,
returning control to the parent process or operating system.

The abort function does not flush stream buffers or do atexit/onexit processing.

The abort function does not return control to the caller. Rather, it terminates the process
and, by default, returns an exit code of 3 to the parent process.

Il ANSI H DOS N OS2 N UNIX M XENIX

In multithread libraries, the abort function does not call raise(SIGABRT). Instead, it
simply terminates the process with exit code 3.

exec functions, exit, _exit, raise, signal, spawn functions

/* ABORT.C:

This tries to open a file and aborts if the attempt fails. */

f#Hinclude <stdio.h>
#Hinclude <stdlib.h>

77 | abort

void main()
{

FILE *stream;

if((stream = fopen("NOSUCHF.ILE", "r")) == NULL)

{
perror("Couldn't open file");
abort();

}

else

fclose(stream);

Output
Couldn't open file: No such file or directory

abnormal program termination

abs 78
Description Calculates the absolute value.
#include <stdlib.h> Required only for function declarations; use either STDLIB.H
#include <math.h> or MATH.H
int abs(int 17);
n Integer value
Remarks The abs function returns the absolute value of its integer argument n.

Return Value

Compatibility

See Also

Example

The abs function returns the absolute value of its argument. There is no error return.
H ANSI B DOS N 0S/2 H UNIX R XENIX

cabs, fabs, labs

/* ABS.C: This program computes and displays the absolute values of

* several n
*/

quers.

f#Finclude <stdio.h>
#include <math.h>
#include <stdlib.h>

void main()
{

int ix
Tong Tx
double dx

-4, iy;
-41567L, ly;
-3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is #d\n", ix, iy);

1y = labs(1x);
printf("The absolute value of %1d is %1d\n", 1x, ly);

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

79 abs

Output

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

acecess ' 80

Description Determines file-access permission.
#include <io.h> Required only for function declarations
#include <errno.h> Required for definition of errno constants

int access(char *pathname, int mode);

pathname File or directory path name
mode Permission setting
Remarks With files, the access function determines whether the specified file exists and can be
accessed in mode. The possible mode values and their meanings in the access call are as
follows:
Value Meaning
00 Check for existence only
02 Check for write permission
04 Check for read permission
06 v Check for read and write permission

With directories, access determines only whether the specified directory exists; under
DOS and OS2, all directories have read and write access.

Return Value The access function returns the value O if the file has the given mode. A return value of —1
indicates that the named file does not exist or is not accessible in the given mode, and
errno is set to one of the following values:

Value Meaning
EACCES Access denied: the file’s pérmission setting does not allow the
specified access.

ENOENT File or path name not found.

81 access

Compatibility [JANSI EM DOS N OS2 H UNIX N XENIX

See Also chmod, fstat, open, stat

Example

/* ACCESS.C: This example uses access to check the file named "data"”
* to see if it exists and if writing is allowed.
*/

f#include <io.h>
f#include <stdio.h>
f#include <stdlib.h>

void main()
{
/* Check for existence */
if((access("access.c", @)) !=-1)
{
printf("File exists\n");

/* Check for write permission */

if((access("access.c", 2)) !=-1)
printf("File has write permission\n®);

Output

File exists
File has write permission

acos Functions 82

- R

Description Calculate the arccosine.

#include <math.h>

#include <errno.h> Required for definition of errno constant

double acos(double x);

long double acosl(long double x);

X Value whose arccosine is to be calculated
Remarks The acos functions return the arccosine of x in the range 0 to & radians. The value of x

Return Value

Compatibility

See Also

Example

must be between —1 and 1. The acosl function is the 80-bit counterpart, which uses an 80-
bit, 10-byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

The acos functions return the arccosine result. If x is less than —1 or greater than 1, the
function sets errno to EDOM, prints a DOMAIN error message to stderr, and returns 0.
Error handling can be modified with the matherr (or _matherrl) routine.

acos
lM ANSI E DOS W 0S/2 N UNIX H XENIX
acosl

O ANSI B DOS N 0S/2 [0 UNIX DO XENIX

asin functions, atan functions, cos functions, matherr, sin functions, tan functions

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.

* Input values outside this range will produce DOMAIN error messages.
* If a valid value is entered, the program prints the arcsine and the
* arccosine of that value.

*/

f#include <math.h>

#include <stdio.h>
#include <stdlib.h>
f#finclude <errno.h>

83

acos Functions

void main()
(
double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("31f", &x);

y = asin(x);

printf("Arcsine of %f = %2f\n", x, y);

y = acos(x);

printf("Arccosine of %f = %Zf\n", x, y);

Output

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

alloca

84
—— — s——— ——
Desc(iptian Allocates memory on the stack.
#include <malloc.h> Required only for function declarations
void *alloca(size_t size);
size Bytes to be allocated from stack
Remarks The alloca routine allocates size bytes from the program’s stack. The allocated space is

Return Value

automatically freed when the calling function is exited.

When you compile with optimization on (either by default or by using one of the /O op-
tions), the stack pointer may not be restored properly in functions that have no local varia-
bles and that also reference the alloca function. The following program demonstrates the
problem:

/* Compile with CL /Lp /AM /0x /Fc */
#finclude <malloc.h>

" void main(void)

{
func(10);
)
void func(register int i)
(
alloca(i);
}

To ensure that the stack pointer is properly restored, make sure that any function refer-
encing alloca declares at least one local variable.

The pointer value returned by alloca should never be passed as an argument to free, nor
should alloca be used in an expression that is an argument to a function.

The alloca routine returns a void pointer to the allocated space, which is guaranteed to be
suitably aligned for storage of any type of object. To get a pointer to a type other than
char, use a type cast on the return value. The return value is NULL if the space cannot be
allocated.

85 alloca

Compatibility O ANSI B DOS W OS/2 N UNIX O XENIX

See Also calloc functions, malloc functions, realloc functions

Example

/* ALLOCA.C: This program checks the stack space available before
* and after using the alloca function to allocate space on the stack.
*/

#include <malloc.h>
#include <stdio.h>

void main()
(
char *buffer;

printf("Bytes available on stack: %u\n", stackavail());

/* Allocate memory for string. */
buffer = alloca(120 * sizeof(char));
printf("Enter a string: ");

gets(buffer);

printf("You entered: %Zs\n", buffer);

printf("Bytes available on stack: %u\n", stackavail());

Output

Bytes available on stack: 2028

Enter a string: How much stack space will this string take?
You entered: How much stack space will this string take?
Bytes available on stack: 1982

=

_are Functions 86

Description

Remarks

~ Draw elliptical arcs.

#include <graph.h>

short _far _arc(short x/, short y/, short x2, short y2, short x3, short y3,
short x4, short y4);

short _far _arc_w(double x/, double yl, double x2, double y2, double x3, double y3,
double x4, double y4);

short far _arc_wxy(struct _wxycoord _far *pwxyl, struct _wxycoord _far *pwxy2,
struct _wxycoord _far *pwxy3, struct _wxycoord _far *pwxy4);

x1,yl Upper-left corner of bounding rectangle

x2,y2 . Lower-right comer of bounding rectangle

x3,y3 Second point of start vector (center of bounding rectangle is
first point)

x4,y4 Second point of end vector (center of bounding rectangle is
first point)

pwxyl Upper-left corner of bounding rectangle

pwxy2 Lower-right comer of bounding rectangle

pwxy3 Second point of start vector (center of bounding rectangle is
first point)

pwxy4 Second point of end vector (center of boundmg rectangle is
first point)

The _arc functions draw elliptical arcs. The center of the arc is the center of the bounding
rectangle, which is defined by points (x/, y/) and (x2, y2) for _arc and _arc_w and by
points pwxyl and pwxy2 for _arc_wxy. The arc starts where it intersects an imaginary line
extending from the center of the arc through (x3, y3) for _arc and _arc_w and through
pwxy3 for _arc_wxy. It is drawn counterclockwise about t the center of the arc, ending
where it intersects an imaginary line extending from the center of the arc through (x4, y4)
for _arc and _arc_w and through pwxy4 for _arc_wxy.

The _arc routine uses the view coordinate system. The _arc_w and _arc_wxy functions
use the real-valued window coordinate system.

In each case, the arc is drawn using the current color. Since an arc does not define a closed
area, it is not filled.

87 _are Functions
“

Return Value These functions return a nonzero value if the arc is successfully drawn; otherwise, they
return 0.

Compatibility O ANSI B DOS 0O 0s/2 O UNIX [XENIX

See Also _ellipse functions, _lineto functions, _pie functions, _rectangle functions, _setcolor

Example

/* ARC.C: This program draws a simple arc. */

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main()
{
short x, y;
struct xycoord xystart, xyend, xyfill;

/* Find a valid graphics mode */
if(!_setvideomode(_MAXRESMODE))
exit(1);

/* Draw arcs */

.ox = 100; y = 100;
_arc(x - 69, y - 60, x, ¥y, x - 30, y-60, x-60,y-30);
_arc(x + 60, y + 60, x, y, X, y +38, x +30,y):;

/* Get endpoints of second arc and enclose the figure, then fill it. */
_getarcinfo(&xystart, &xyend, &xyfill);

_moveto(xystart.xcoord, xystart.ycoord);

_lineto(xyend.xcoord, xyend.ycoord);

_floodfill(xyfill.xcoord, xyfill.ycoord, _getcolor());

getch();
_setvideomode(_DEFAULTMODE);
}

asctime 88

Description Converts a tm time structure to a character string.
#include <time.h>
char *asctime(const struct tm *timeptr);
timeptr Time/date structure

Remarks The asctime function converts a time stored as a structure to a character string. The
timeptr value is usually obtained from a call to gmtime or localtime, both of which return
a pointer to a tm structure, defined in TIME.H. (See gmtime for a complete description of
the tm structure fields.)

The tm structure contains the following elements:

Element Description

int tm_sec Seconds after the minute (0—59)
int tm_min Minutes after the hour (0-59)
int tm_hour Hours since midnight (0-23)
int tm_mday Day of the month (0-31)

int tm_mon Months since January (0-11)
int tm_year Years since 1900

int tm_wday Days since Sunday (0-6)

int tm_yday Days since January 1 (0-365)
int tm_isdét Daylight-saving-time flag

The string result produced by asctime contains exactly 26 characters and has the form of
the following example:

- Wed Jan 02 02:03:55 1980\n\@

A 24-hour clock is used. All fields have a constant width. The newline character (\n) and
the null character (*\0%) occupy the last two positions of the string. The asctime function
uses a single statically allocated buffer to hold the return string. Each call to this routine de-
stroys the result of the previous call.

Relurn Value The asctime function returns a pointer to the character string result. There is no error
return.

89 | asctime

Compatlibility W ANSI E DOS W OS2 N UNIX N XENIX

See Also ctime, ftime, gmtime, localtime, time, tzset

Example

/* ASCTIME.C: This program places the.system time in the long integer aclock,
* translates it into the structure newtime and then converts it to

* string form for output, using the asctime function.

*/

#include <time.h>
ffinclude <stdio.h>

struct tm *newtime;
time_t aclock;

void main()
{ time(&aclock); /* Get time in seconds */
newtime = Jocaltime(&aclock); /* Convert time to struct tm form */
/* Print local time as a string */
} printf("The current date and time are: %s\n", asctime(newtime));
Output

The current date and time are: Thu Jun 15 £6:57:59 1989

asin Functions 90

Description

Remarks

Return Value

Compatibility

See Also

Example

Calculate the arcsine.

#include <math.h>

#include <errno.h>

double asin(double x);

long double asinl(long double x);
X Value whose arcsine is to be calculated

The asin functions calculate the arcsine of x in the range —t/2 to ©t/2 radians. The value of
x must be between —1 and 1. The asinl function is the 80-bit counterpart, which uses an 80-
bit, 10-byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

The asin functions return the arcsine result. If x is less than —1 or greater than 1, asin sets
errno to EDOM, prints a DOMAIN error message to stderr, and retumns 0.

Error handling can be modified by using the matherr (or _matherrl) routine.

asin
M ANSI EB.DOS W OS2 N UNIX B XENIX
asinl

OO ANSI B DOS MW OS2 [UNIX [XENIX

acos functions, atan functions, cos functions, matherr, sin functions, tan functions

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.
* Input values outside this range will produce DOMAIN error messages.

*

*/

If a valid value is entered, the program prints the arcsine and the
* arccosine of that value.

#include <math.h>
#include <stdio.h>
Hinclude <stdlib.h>
ffinclude <errno.h>

void main()

{
double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("%1f", &x);

y = asin(x);

printf("Arcsine of %f = Zf\n", x, vy);

y = acos(x);

printf("Arccosine of %f = %f\n", x, y);

Output

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of ©.326960 = 1.237711

asin Functions

assert

92

Description

Remarks '

Return Value
Compatibility
See Also

Example

Prints an error message and aborts the program.

#include <assert.h>

#include <stdio.h>

voiq assert(int expression);

expression C expression specifying assertion being tested

The assert routine prints a diagnostic message and calls the abort routine if expression is
false (0). The diagnostic message has the form

Assertion failed: expression, file filename, 1ine linenumber

where filename is the name of the source file and linenumber is the line number of the
assertion that failed in the source file. No action is taken if expression is true (nonzero).

The assert routine is typically used in program development to identify program logic er-
rors. The given expression should be chosen so that it holds true only if the program is '
operating as intended. After a program has been debugged, the special “no debug” identi-
fier NDEBUG can be used to remove assert calls from the program. If NDEBUG is defined
(by any value) with a /D command-line option or with a #define directive, the C preproces-
sor removes all assert calls from the program source.

The assert routine is implemented as a macro.
None.

M ANSI B DOS N OS2 W UNIX M XENIX

abort, raise, signal

/* ASSERT.C: In this program, the analyze_string function uses the
* assert function to test several conditions related to string and
* length. If any of the conditions fails, the program prints a
* message indicating what caused the failure.

*/

#include <stdio.h>
#include <assert.h>
f#finclude <string.h>

93 assert

void analyze_string(char *string); /* Prototype */
vofd main()
(

char testl[] = "abc", *test2 = NULL, test3[] = "";

printf ("Analyzing string '%s'\n", testl);
analyze_string(testl);
printf ("Analyzing string '%s'\n", test2);
analyze_string(test2);
printf ("Analyzing string '%s'\n", test3);
analyze_string(test3);

)

/* Tests a string to see if it is NULL, empty, or longer than @ characters */
void analyze_string(char * string)

{

assert(string != NULL); /* Cannot be NULL */

assert(*string != '\@'); /* Cannot be empty */

assert(strlen(string) > 2.); /* Length must be greater than 2 */
’ .
Output

Analyzing string 'abc'
Analyzing string '(null)’
Assertion failed: string != NULL, file assert.c, line 28

abnormal program termination

atan Functions ' 94

Descriplion

Remarks

Return Value

Compatibility

See Also

Example '

S __|]
Calculate the arctangent of x (atan and atanl) and the arctangent of y/x (atan2 and atan2l).
#include <math.h>

double atan(double x);

double atan2(double y, double x);

long double atanl(long double x);

long double atan2l(long double y, long double x);

X,y Any number.

The atan family of functions calculates the arctangent of x, and the atan2 family of func-
tions calculates the arctangent of y/x. The atan group returns a value in the range —7/2 to
/2 radians, and the atan2 group returns a value in the range —7 to 7t radians. The atan2
functions use the signs of both arguments to determine the quadrant of the return value.

The atan family of functions returns the arctangent result. If both arguments of atan2 or
atan2l are 0, the function sets errno to EDOM, prints a DOMAIN error message to stderr,
and returns 0.

Error handling can be modified by using the matherr (or _matherrl) routine.

atan, atan2

B ANSI E DOS N OS2 N UNIX H XENIX

atanl, atan2l

0O ANSI B DOS MW 0S/2 0O UNIX O XENIX

acos functions, asin functions, cos functions, matherr, sin functions, tan functions

/* ATAN.C: This program calculates the arctangent of 1 and -1.‘*/

f#include <math.h>
f#include <stdio.h>
f#finclude <errno.h>

95 atan Functions

void main()
{
double x1, x2, y;

printf("Enter a real number: ");

scanf("%1f", &x1);

y = atan(x1);

printf("Arctangent of %f: %f\n", x1, y);

printf("Enter a second real number: ");

scanf("%1f", &x2);

y = atan2(x1, x2);

printf("Arctangent of %f / %f: %f\n", x1, x2, y);

Output

Enter a real number: -862.42

Arctangent of -862.420000: -1.569637

Enter a second real number: 78.5149

Arctangent of -862.420000 / 78.514900: -1.480006

atexit

Description

Remarks

Return Value

Compatibility

See Also

96

Processes the specified function at exit.

#include <stdlib.h> Required only for function declarations
int atexit(void (*func)(void));

func Function to be called

The atexit function is passed the address of a function (func) to be called when the pro-
gram terminates normally. Successive calls to atexit create a register of functions that are
executed in LIFO (last-in-first-out) order. No more than 32 functions can be registered
with atexit or onexit. The functions passed to atexit cannot take parameters.

All routines passed to atexit should have the _loadds attribute if used in multithread
dynamic-link libraries.

The atexit function returns 0 if it is successful, or a nonzero value if an error occurs (e.g.,
if there are already 32 exit functions defined).

M ANSI H DOS N 0S/2 0O UNIX 0O XENIX

Use the ANSI-standard atexit function (rather than the similar onexit function) whenever

'ANSI portability is desired.

In the OS/2 environment, the atexit function calls the OS/2 function DosExitList.

abort, exit, _exit, onexit

- Example

/* ATEXIT.C: This program pushes four functions onto the stack of functions
* to be executed when atexit is called. When the program exits, these
* programs are executed on a "last in, first out" basis.

*/

#finclude <stdlib.h>
ffinclude <stdio.h>

97 atexit

void fnl(void), fn2(void), fn3(void), fn4(void);

void main()
{

atexit(fnl);

atexit(fn2);

atexit(fn3);

atexit(fnd);

printf("This is executed first.\n");
}

void fnl()
{

printf(. "next.\n");
}

void fn2()
{

printf("executed ");
}

void fn3()
{

}

printf("is ");

void fn4()
{

printf("This ");
}

Output

This is executed first.
This is executed next.

atof, atoi, atol, _atold ' 98

Description

Remarks

Convert strings to double (atof), long double (_atold) integer (atoi), or long (atol).

#include <math.h> atof, _atold
#include <stdlib.h> atof, _atold, atoi, atol

double atof(const char *string);
long double _atold(const char *string);
int atoi(const char *string);

long atol(const char *string);
string String to be converted

These functions convert a character string to a double-precision floating-point value (atof),
an integer value (atoi), a long integer value (atol), or a long double value (_atold). The
input string is a sequence of characters that can be interpreted as a numerical value of the
specified type.

The string size that can be handled by the atof or _atold function is limited to 100
characters.

The function stops reading the input string at the first character that it cannot recognize as
part of a number. This character may be the null character (*\0”) terminating the string.

The atof and _atold functions expect string to have the following form:
Iwhitespace] [{sign}] [IKOdigits] J.digitsT [{d|D el E}[signldigits] ~

A whitespace consists of space and/or tab characters, which are ignored; sign is either plus
(+) or minus (-); and digits are one or more decimal digits. If no digits appear before the
decimal point, at least one must appear after the decimal point. The decimal digits may be
followed by an exponent, which consists of an introductory letter (d, D, e, or E) and an op-
tionally signed decimal integer..

The atoi and atol functions do not recognize decimal points or exponents. The string argu-
ment for these functions has the form

[whitespace]] [signlldigits

where whitespace, sign, and digits are exactly as described above for atof.

99 atof, atoi, atol, _atold

Return Value Each function returns the double, long double, int, or long value produced by interpret-
ing the input characters as a number. The return value is O (for atoi), OL (for atol), and 0.0
(for atof and _atold) if the input cannot be converted to a value of that type. The return
value is undefined in case of overflow.

Compatibility atof, atoi, atol
l ANSI H DOS H 0S/2 H UNIX N XENIX

_atold

OO0 ANSI E DOS W OS2 DO UNIX O XENIX

See Also ecvt, fcvt, gevt

Example

/* ATOF.C: This program shows how numbers stored as strings can be
* converted to numeric values using the atof, atoi, and atol functions.
*/

ffinclude <stdlib.h>
j#include <stdio.h>

void main()
(
char *s; double x; int i; long 1;

s =" -2309.12E-15"; /* Test of atof */
X = atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n", s, x);

s = "7.8912654773d218"; /* Test of atof */
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n", s, x);

s =" -9885 pigs"; /* Test of atoi */
i = atoi(s);
printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s, i);

s = "98854 dollars"; /* Test of atol */
1 = atol(s);
printf("atol test: ASCII string: %s\t\tlong: 21d\n", s, 1);

| atof, atoi, atol, _atold

Output

atof test:
atof test:
atoi test:
atol test:

ASCII
ASCII
ASCII
ASCII

string:
string:
string:
string:

-2309.12€E-15
7.8912654773d210

-9885 pigs
98854 dollars

100

float: -2.309120e-012
float: 7.891265e+210
integer: -9885
long: 98854

101 hdos
R A .
Descriplion Invokes the DOS system call.

#include <dos.h>

int bdoes(int dosfunc, unsigned int dosdx, unsigned int dosal);

dosfunc Function number

dosdx DX register value

dosal AL register value
Remarks The bdos function invokes the DOS system call specified by dosfunc after placing the

Return Value
Compatibility
See Also

Example

values specified by dosdx and dosal in the DX and AL registers, respectively. The bdos
function executes an INT 21H instruction to invoke the system call. When the system call
is complete, bdos returns the contents of the AX register.

The bdos function is intended to be used to invoke DOS system calls that either take no
arguments or take arguments only in the DX (DH, DL) and/or AL registers.

Do not use the bdos function to call interrupts that modify the DS register. Instead, use the
intdosx or int86x function. The intdosx and int86x functions load the DS and ES registers
from the segregs parameter and also store the DS and ES registers into segregs after the
function call.

This call should not be used to invoke system calls that indicate errors by setting the carry
flag. Since C programs do not have access to this flag, your program cannot determine
whether the return value is an error code. The intdos function should be used in these
cases.

The bdos function returns the value of the AX register after the system call has completed.
O ANSI B DOS 0O 0S/2 0O UNIX O XENIX

intdos, intdosx

/* BD0S.C: This example calls DOS function @x9 (display string)
* to display a $-terminated string.

*/

#include <dos.h>

bdo 102

/* Function @x09 assumes that DS will contain segment of the string.

* This will be true for all memory models if the string is declared near.
*/ .
char _near str[] = "Hello world!\r\ns$";

void main()
({
/* 0ffset of string must be in DX, segment in DS. AL is not needed,
* 50 @ is used.
*/
bdos(@x@9, (int)str, @);

Output

Hello world!

103

_beginthread

Description

Remarks

Begins thread in OS/2 process.

#include <process.h> Multithread version of PROCESS.H

#include <stddef.h> Declaration of threadid variable

int _far _beginthread(void(_far *start_address)(void _far *),
void _far *stack_bottom, unsigned stack_size, void _far *arglist);

start_address Starting address
stack_bottom Address of the thread stack
stack_size Stack size for thread
arglist Argument list for thread

The _beginthread function creates a thread that begins execution of a far routine at
start_address. When the thread returns from that far routine, it is terminated automatically.
The user can also terminate the thread by calling _endthread.

The address of the thread stack is given by stack_bottom. If stack_bottom is set to NULL,
the run-time library code will allocate and deallocate the thread stack as needed. Since the
_beginthread function can determine the current status of all thread IDs, it can free the old
stack and allocate a new stack whenever a thread is reused.

If it is not NULL, the stack. bottom argument must specify a word address, and the stack
must be at least as long as specified by the stack_size argument. Usually this memory is
either a global array or memory returned by malloc or _fmalloc.

The stack_size argument must be even and nonzero.

If you are writing multithread programs that make C run-time calls from child threads, be
sure to allocate a sufficiently large stack. For example, the C function printf requires
more than 500 bytes of stack space. To be safe, allocate at least 2,048 bytes for a thread’s
stack. (If your child thread makes no run-time calls, stack space is generally not a
problem.)

As a general rule, you should have 2K of stack space free when calling any API (Applica-
tions Program Interface) routine (e.g., OS/2 system calls).

The arglist is a parameter, the size of a far pointer, to be passed to the newly created
thread. Typically it is the address of a data item, such as a character string, to be passed to
the new thread. The arglist may be NULL if not needed, but _beginthread should be pro-
vided with some value to pass to the child thread.

, __beginthread 104

Return Value

All threads will be terminated if any thread calls abort, exit, _exit, or DosExit. A good
practice in multithread programming is to make the first thread the main thread and wait
until other threads have terminated before exiting the program.

The OS/2 function DosCreateThread should not be called directly to create threads. The
_beginthread function performs initialization procedures required to call other C run-time
library functions safely.

The function returns the thread identification number of the new thread, if successful. A re-
turn value of —1 indicates an error, and errno is set to one of the following values:

Value Meaning
EAGAIN Too many threads
EINVAL Invalid argument, “bad stack”

Compalibility O ANSI OO DOS MW 0S/2 0O UNIX O XENIX

See Also _endthread

Example

/* BEGTHRD.C illustrates muitiple threads using functions:

* _beginthread _endthread

*

* Also the global variable:

* _threadid

* .

* This program requires the multithread 1ibrary. For example, compile

* with the following command Jine:

*

*
~

CL /MT THREADS.C

f#fdefine INCL_NOCOMMON

fidefine INCL_NOPM

ffdefine INCL_DOSPROCESS

f#fdefine INCL_VIO

f#include <os2.h>

f#include <process.h> /* _beginthread, _endthread */
finclude <stddef.h> /* _threadid : */
ffinclude <stdlib.h>

f#finclude <conio.h>

void Bounce(int ¢); ~ /* Prototypes */
void CheckKey(void *dummy);

105 _beginthread

/* GetRandom returns a random integer between min and max. */
f#define GetRandom(min, max) ((rand() % (int)(((max) + 1) - (min))) + (min))

fidefine STACK_SIZE 4@96

BOOL repeat = TRUE; /* Global repeat flag and video variable */
VIOMODEINFO vmi = (sizeof(VIOMODEINFO) };

void main()

{
PCHAR stack;
CHAR ch = 'A';

/* Get display screen's text row and column information. */
VioGetMode(&vmi, @);

/* Launch CheckKey thread to check for terminating keystroke. */
_beginthread(CheckKey, NULL, STACK_SIZE, NULL);

/* Loop until CheckKey terminates program. */

while(repeat)

{
/* On first loops, launch character threads. */
_beginthread(Bounce, NULL, STACK_SIZE, (void *)ch++);

/* Wait one second between loops. */
DosSleep(1000L);

)

/* CheckKey - Thread to wait for a keystroke, then clear repeat flag. */
void CheckKey(void *dummy)
{
getch();
repeat = 0; /* _endthread implied */
)

/* Bounce - Thread to create and control a colored letter that moves
: around on the screen.

: Params: ch - the letter to be moved

voéd Bounce(int ch)

[/* Generate letter and color attribute from thread argument; */

char blankcel1{2] = (0x20, 0x07 };
char blockcell1[2] = { ch , (ch % 16) + 1);
int xold, xcur, yold, ycur;

BOOL first = TRUE; -

_beginthread 106

/* Seed random number generator and get initial location. */
srand(*_threadid); :

xcur = GetRandom(@, vmi.col - 1);

ycur = GetRandom(@, vmi.row - 1);

while(repeat)

{

)

/* Pause between loops. */
DosSleep(106L);

/* Blank out our old position on the screen, and draw new letter. */
if(first)

first = FALSE;
else .
VioWrtCel1Str(blankcell, 2, yold, xold, @);
VioWrtCel1Str(blockcell, 2, ycur, xcur, @);

/* Increment the coordinate for next placement of the block. */
xold = xcur;

yold = ycur;

xcur += GetRandom(-1, 1);

ycur += GetRandom(-1, 1);

/* Correct placement (and beep) if about to go off the screen. */
if(xcur < @)
xcur = 1;
else if(xcur == vmi.col)
xcur = vmi.col -~ 2;
else if(ycur < @)
ycur = 1;
else if(ycur == vmi.row)
ycur = vmi.row - 2;

/* If not at screen border, continue, otherwise beep. */
else

continue;
DosBeep((ch - 'A') * 160, 175);

/* _endthread given (but not really needed) to terminate. */
_endthread();

107

Description

Remarks

Bessel Functions

Compute the Bessel function.
#include <math.h>

double jO(double x);

double j1(double x);

double jn(int 1, double x);

double y0(double x);

double y1(double x);

double yn(int n, double x);

long double _jOI(long double x);

long double _jnl(int 1, long double x);
long double _j11(long double x);

long double _y0l(long double x);

long double _y1l(long double x);

long double _ynl(int 1, long double x);

X ' Floating-point value

n Integer order

The j0, j1, and jn routines return Bessel functions of the first kind—orders 0, 1, and n,
respectively.

The y0, y1, and yn routines return Bessel functions of the second kind—orders 0, 1, and #,
respectively. The argument x must be positive.

The long double versions of these functions are the 80-bit counterparts and use the 80-bit,
10-byte coprocessor form of arguments and return values. See the reference page on the
long double functions for more details on this data type.

The Bessel functions are explained more fully in most mathematics reference books, such
as the Handbook of Mathematical Functions (Abramowitz and Stegun; Washington: U.S.

Government Printing Office, 1964). These functions are commonly used in the mathemat-
ics of electromagnetic wave theory.

Bessel Functions

108

Return Value These functions return the result of a Bessel function of .x.

For y0, y1, or yn, if x is negative, the routine sets errno to EDOM, prints a DOMAIN error

message to stderr, and returns -HUGE_VAL.

Error handling can be modified by using the matherr (or _matherrl) routine.

Compalibility J0, j1, jn, y0, y1, yn

OANSI B DOS M OS2 M UNIX M XENIX

_joL, _j1l, _jnl, _yOI, _y1l, _ynl

O ANSI B DOS B 0S/2 0O UNIX O XENIX

See Also matherr

Example

/* BESSEL.C: This program illustrates Bessel functions, including:

* Jje J1 Jn y@ yn
*/

ffinclude <math.h>
f#Hinclude <stdio.h>

void main()

{
double x = 2.387;
int n=3, c;

printf("Bessel functions for x = %f:\n", x);

printf(" Kind\t\tOrder\t\Function\tResult\n\n");
printf(" First\t\tO\tjo(x)\t\t%f\n", JjO(x));
printf(" First\t\t1\tJjl(x)\t\tZf\n", jIC x));

for(¢ =2; ¢ < 5; c++)

printf(" First\t\tZd\tjn(n, x)\tZf\n", ¢, jnC ¢, x));

printf(" Second\t@\tyd(x)\t\t%f\n", yB(x));
printf(" Second\tl\tyl(x)\t\t%f\n", y1(x));

for(¢ = 2; ¢ < 5; c++)

printf(" Second\tZd\tyn(n, x)\t%f\n", ¢, yn(C ¢, x));

109

Output

Bessel functions for x

Kind

First
First
First
First
First
Second
Second
Second
Second
Second

Order

SBWONFEF_BBONDNFED

2.387000:

Bessel Functions

Function

Jja(
JI(
jn(
Jjn(
jn(
yo(
y1(
yn(
yn(
yn(

S 33 X X 3 335 X X

~ o~

~ ~—

xX X X

xX X X

Result

009288
.522941
.428870
.195734
063131
.511681
094374
-0.432608
-9.819314
-1.626833

LSS IS IR RS S B oS JE]

_bfreeseg 110

Description Frees a specified based heap.
#include <malloc.h> Required only for function declarations
int _bfreeseg(_segment seg);
seg Segment selected

Remarks The _bfreeseg function frees a based heap. The seg argument is a based heap returned by
an earlier call to _bheapseg. It specifies the based heap to be freed.
The number of bytes freed is the number of bytes specified when the block was allocated.
After the call, the freed heap is again available for allocation.

Return Value The _bfreeseg function returns 0 if successful and -1 in the case of an error.

Compatibility O ANSI B DOS W 0S/2 [UNIX O XENIX

See Also _bheapseg, calloc functions, free functions, malloc functions, realloc functions

Example

/* BHEAPSEG.C: This program C illustrates dynamic allocation of based
* memory using functions _bheapseg, _bfreeseg, _bmalloc, and _bfree.
,*/

#include <stdio.h>

f#Hinclude <malloc.h>
ffinclude <stdlib.h>
#include <string.h>

void main()

{
_segment seg;
char _based(seg) *outstr, _based(seg) *instr;
char _based(seg) *pout, _based(seg) *pin;
char tmpstr(80];
int len;

printf("Enter a string: ");
gets(tmpstr);

/* Request a based heap. Use based so that memory won't be taken from
* near heap.
*/

111 _bfreeseg

if((seg = _bheapseg(1000)) == _NULLSEG)
exit(1);

/* Allocate based memory for two strings. */

len = strlen(tmpstr);

if((CGinstr = _bmalloc(seg, len + 1))
(Coutstr = _bmalloc(seg, len + 1))
exit(1);

= _NULLOFF) ||
= _NULLOFF))

/* Copy a lowercased string to dynamic memory. The based memory is
* far when addressed as a whole.

*/
_fstrlwr(_fstrcpy((char _far *)instr, (char _far *)tmpstr));
/* Copy input string to output string in reversed order. When reading

* and writing individual characters from a based heap, the compiler will
* try to process them as near, thus speeding up the processing.

*/
for(pin = instr + len - 1, pout = outstr;
pout < outstr + len; pin--, pout++)
*pout = *pin;
*pout = '\@';

/* Display strings. Again strings as a whole are far. */
printf("Input: %Fs\n", (char _far *)instr);
printf("Output: %Fs\n", (char _far *)outstr);

/* Free blocks and release based heap */
_bfree(seg, instr);

_bfree(seg, outstr);

_bfreeseg(seg);

Output

Enter a string: Was I god
Input: was i god
Qutput: dog i saw

_bheapseg | 112

Description

Remarks

Return Value

Compatibility

See Also

Example

Allocates a based heap.

#include <malloc.h> Required only for function declarations
_segment _bheapseg(size_t size);

size Segment size to allocate

The _bheapseg function allocates a based-heap segment of at least size bytes. (The block
may be larger than size bytes because of space required for alignment and for maintenance
information.)

The heap code will try to enlarge the heap as necessary. If the original block of memory is
depleted (e.g., by calls to _bmalloc and _brealloc), the run-time code will try to enlarge
the heap as necessary.

The value returned by _bheapseg is the identifier of the based-heap segment. This value
should be saved and used in subsequent calls to other based-heap functions.

The _bheapseg function can be called repeatedly. For each call, the C library will allocate
a new based-heap segment.

The _bheapseg function returns the newly allocated segment selector that the user must
save for use in subsequent based-heap functions. A return value of -1 indicates failure.

Always check the return from the _bheapseg function (especially when it is used in real
mode), even if the amount of memory requested is small.

O ANSI B DOS N 0S/2 0O UNIX 0O XENiX

calloc functions, free functions, malloc functions, realloc functions

/* BHEAPSEG.C: This program C illustrates dynamic allocation of based
* memory using functions _bheapseg, _bfreeseg, _bmalloc, and _bfree.

*/

#include <stdio.h>
fHinclude <malloc.h>
f#Hinclude <stdlib.h>
##include <string.h>

113 , _bheapseg

void main()

{
_segment seg;
char _based(seg) *outstr, _based(seg) *instr;
char _based(seg) *pout, _based(seg) *pin;
char tmpstr[80];
int len;

printf("Enter a string: ");
gets(tmpstr);

/* Request a based heap. Use based so that memory won't be taken from
* near heap.
*/
if((seg = _bheapseg(1000)) == _NULLSEG)
exit(1);

/* Allocate based memory for two strings. */

len = strlen(tmpstr);

if(((instr = _bmalloc(seg, len + 1)) == _NULLOFF) ||
(Coutstr = _bmalloc(seg, len + 1)) == _NULLOFF))
exit(1);

/* Copy a lowercased string to dynamic memory. The based memory is
* far when addressed as a whole.

*/
_fstriwr(_fstrcpy((char _far *)instr, (char _far *)tmpstr));

/* Copy input string to output string in reversed order. When reading

* and writing individual characters from a based heap, the compiler will
* try to process them as near, thus speeding up the processing.

*/
for(pin = instr + len - 1, pout = outstr;

pout < outstr + len; pin--, pout++)
*pout = *pin;

*pout = '\@"';

/* Display strings. Again, strings as a whole are far. */
printf("Input: %Fs\n", (char _far *)instr);
printf("Output: %Fs\n", (char _far *)outstr);

/* Free blocks and release based heap. */
_bfree(seg, instr);

_bfree(seg, outstr); .
_bfreeseg(seg);

_bheapseg 114

Output

Enter a string: Was I god
Input: was i god
Qutput: dog i saw

115 _bios_disk
Description Calls BIOS disk services using system call INT 0x13.

#include <bios.h>

unsigned _bios_disk(unsigned service, struct diskinfo_t *diskinfo);

service Disk function desired

diskinfo Disk parameters
Remarks The _bios_disk routine uses system call INT 0x13 to provide several disk-access func-

tions. The service parameter selects the function desired, while the diskinfo structure pro-
vides the necessary parameters. Note that the low-level disk operations allowed by the
_bios_disk routine are very dangerous to use because they allow direct manipulation of
the disk.

The diskinfo structure provides the following parameters:

Element Description

unsigned drive Drive number

unsigned head Head number

unsigned track Track number

unsigned sector Starting sector number

unsigned nsectors Number of sectors to read, write, or compare

void far *buffer Memory location to write to, read from, or compare

The service argument can be set to one-of the following manifest constants:

Constant - Function

_DISK_FORMAT Formats the track specified by diskinfo. The head and track
fields indicate the track to format. Only one track can be for-
matted in a single call. The buffer field points to a set of sector
markers. The format of the markers depends on the type of
disk drive; see a technical reference to the PC BIOS to deter-
mine the marker format, There is no return value.

_bios_disk

116

_DISK_READ

_DISK_RESET

_DISK_STATUS

Reads one or more disk sectors into memory. This service
uses all fields of the structure pointed to by diskinfo, as de-
fined earlier in this section. If no error occurs, the function re-
turns O in the high-order byte and the number of sectors read
in the low-order byte. If there is an error, the high-order byte
will contain a set of status flags. If there is an error, the high-
order byte will contain a set of status flags, as defined under
_DISK_READ. Status is returned in the 8 high-order bits of
the return value, as listed below:

Bits Meaning

0x01%* Invalid request or a bad command
0x02** Address mark not founbd

0x04** Sector not found

0x05%* Reset failed

0x07** Drive parameter activity failed
0x09** Direct Memory Access (DMA) overrun
0x0A** Bad sector flag detected

0x10%* Data read (ECC) error

Ox11%* Corrected data read (ECC) error
0x20%* Controller failure

0x40** Seek error

0x80** Disk timed out or failed to respond
OxAA** Drive not ready

0xBB** Undefined error

0xCC** Write fault on drive

OxEQ** Status error

Forces the disk controller to do a hard reset, preparing for
floppy-disk I/O. This is useful after an error occurs in another
operation, such as a read. If this service is specified, the
diskinfo argument is ignored.

Obtains the status of the last disk operation. If this service is
specified, the diskinfo argument is ignored.

117 ios_disk

_DISK_VERIFY ' Checks the disk to be sure the specified sectors exist and can
be read. It also runs a CRC (cyclic redundancy check) test.
This service uses all fields (except buffer) of the structure
pointed to by diskinfo, as defined earlier in this section. If no
error occurs, the function returns 0 in the high-order byte and
the number of sectors compared in the low-order byte. If there
is an error, the high-order byte will contain a set of status
flags, as defined under _DISK_READ (above).

_DISK_WRITE Writes data from memory to one or more disk sectors. This
: service uses all fields of the structure pointed to by diskinfo,
as defined earlier in this section. If no error occurs, the func-
tion returns 0 in the high-order byte and the number of sectors
written in the low-order byte. If there is an error, the high-
order byte will contain a set of status flags, as defined under
_DISK_READ (above).

Return Value The _bios_disk function returns the value in the AX register after the BIOS intérrupt.

Compatibility 0O ANSI B DOS [0 0S2 0O UNIX 0O XENIX

Example

/* BDISK.C: This program first attempts to verify a disk by using an

* jnvalid disk head number. After printing the return value error code,
* the program verifies the disk by using a valid disk head code.

*/

f#include <conio.h>
#include <stdio.h>
f#include <bios.h>

void main()
{
unsigned status = @;
struct diskinfo_t disk_info;

disk_info.drive
disk_info.head
disk_info.track
disk_info.sector
disk_info.nsectors

3; /* Invalid head number */

[I |
o=

_bios_disk 118

printf("Insert disk in drive A: and press any key\n");
getch();
status = _bios_disk(_DISK_VERIFY, &disk_info);
printf("Return value: @x%.4x\n", status);
if(status & Oxff@Q) /* Error if high byte is @ */
printf("Seek error\n"); '
else
printf("No seek error\n");

printf("Press any key\n");

getch();

disk_info.head = 0; /* Valid head number */

status = _bios_disk(_DISK_VERIFY, &disk_info);

printf("Return value: Ox%.4x\n", status);

if(status & Oxff@@) /* Error if high byte is @ */
printf("Seek error\n");

else
printf("No seek error\n");

Output

Insert disk in drive A: and press any key
Return value: 0x@0400

Seek error

Press any key

Return value: @x0008

No seek error

119 _bios_equiplist

Description ~ Calls BIOS equipment-list service, using system call INT 0x11.
#include <bios.h>
unsigned _bios_equiplist(void);

Remarks The _bios_equiplist routine uses system call INT 0x11 to determine what hardware and
peripherals are currently installed on the machine.

Return Value The function returns a set of bits indicating what is installed, as defined below:
Bits Meaning
0 Any disk drive installed if true
1 True (1) if math coprocessor installed
2-3 System RAM in 16K blocks (16-64K)
4-5 Initial video mode
6-7 Number of floppy-disk drives installed (00 =1, 01 =2, etc.)
8 False (0) if and only if a Direct Memory Access (DMA) chip
is installed :
9-11 Number of RS232 serial ports installed
12 True (1) if and only if a game adapter is installed
13 True (1) if and only if an internal modem is installed
14-15 Number of printers installed

Compatibility O ANSI E DOS 0O 0Ss/2 0O UNIX O XENIX

Example

/* BEQUIPLI.C: This program checks for the presence of diskettes. */ .

f#Hinclude <bios.h>
f#finclude <stdio.h>

_hios_equiplist 120

void main()
(
unsigned equipment;

equipment = _bios_equiplist();

printf("Equipment bits: 0x%.4x\n", equipment);

if(equipment & @x1000) /* Check for game adapter bit */
printf("Game adapter installed\n");

else
printf("No game adapter installed\n");

Output

Equipment bits: 0x4061
No game adapter installed

121 | _bias_keybrd

e —
Description Calls BIOS keyboard services, using INT 0x16.

#include <bios.h>

unsigned _bios_keybrd(unsigned service);

service Keyboard function desired

Remarks The _bios_keybrd routine uses system call INT 0x16 to access the keyboard services. The
service argument can be any of the following manifest constants:

Constant Meaning
_KEYBRD_READ, Reads the next character from the key-
_NKEYBRD_READ board. If no character has been typed, the

call will wait for one. If the low-order
byte of the return value is nonzero, the
call contains the ASCII value of the char-
acter typed. The high-order byte contains
the keyboard scan code for the character.
The NKEYBRD_READ constant is used
with enhanced keyboards to obtain the
scan codes for function keys F11 and F12
and the cursor control keys.

_KEYBRD_READY, Checks whether a keystroke is waiting to

_NKEYBRD_READY be read and, if so, reads it. The return
value is 0 if no keystroke is waiting, or it
is the character waiting to be read, in the
same format as the _KEYBRD_READ or
_NKEYBRD_READY return. This service
does not remove the waiting character
from the input buffer, as does the
_KEYBRD_READ or _NKEYBRD_READ
service. The _NKEYBRD_READY con-
stant is used with enhanced keyboards to
obtain the scan codes for function keys F11
and F12 and the cursor control keys.

_bios_keybrd

Return Value

_KEYBRD_SHIFTSTATUS,
"NKEYBRD_SHIFTSTATUS

Bit

00H

01H
02H
3H

04H
05SH
06H
07H
08H
09H
0AH
0BH
O0CH
O0DH
OEH
OFH

122

Returns the current SHIFT-key status. Only
the low-order byte of the return value is af-
fected. The _NKEYBRD_SHIFTSTATUS
constant is used to get a full 16-bit status
value. Any combination of the following
bits may be set:

Meaning if True

Rightmost SHIFT key pressed
Leftmost SHIFT key pressed
Either CTRL key pressed
Either ALT key pressed
SCROLL LOCK on

NUM LOCK on

CAPS LOCK on

In insert mode (INS)

Left CTRL key pressed

Left ALT key pressed

Right CTRL key pressed
Right ALT key pressed
SCROLL LOCK key pressed
NUM LOCK key pressed
CAPS LOCK key pressed

SYS REQ key pressed

With the ...READ and ...SHIFTSTATUS arguments, the _bios_keybrd function returns the

contents of the AX register after the BIOS call.

With the ..READY argument, _bios_keybrd returns O if there is no key. If there is a key,
_bios_keybrd returns the key waiting to be read (i.e. the same value as_KEYBRD_READ).

With the ...READ and the ..READY arguments, the _bios_keybrd function returns -1 if
CTRL+BREAK has been pressed and is the next keystroke to be read.

123

_bios_keybrd

Compatibility 0O ANSI B DOS 0O 0S/2 0O UNIX O XENIX

Example

/* BKEYBRD.C: This program prints a message on the screen until the
* right SHIFT key is pressed.
*/

#include <bios.h>
#include <stdio.h>

void main()
{
while(!(_bios_keybrd(_KEYBRD_SHIFTSTATUS) & 0001))
printf("Use the right SHIFT key to stop this message\n");
printf("Right SHIFT key pressed\n");

Output

Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Right SHIFT key pressed

_bios_memsize 124

Description

Remarks

Return Value

Compatibility

Example

Calls the BIOS memory-size service, using system call INT 0x12.
#include <bios.h>
unsigned _bios_memsize(void);

The _bios_memsize routine uses system call INT 0x12 to determine the total amount of
main memory installed.

The routine returns the total amount of installed memory in 1K blocks. The maximum re-
turn value is 640, representing 640K of main memory.

0O ANSI E DOS [0 0S/2 0O UNIX 0O XENIX

/* BMEMSIZE.C: This program displays the amount of memory installed. */

##include <bios.h>
#include <stdio.h>

void main()

{

unsigned memory;

memory = _bios_memsize();
printf ("The amount of memory installed is: %dK\n", memory);

)

Output

The amount of memory installed is: 639K

125

_bios_printer

Description

Remarks

Calls BIOS printer services using system call INT 0x17.
#include <bios.h>

unsigned _bios_printer(unsigned service, unsigned printer, unsigned data);

service Printer function desired
printer Target printer port
data Output data

The _bios_printer routine uses system catl INT 0x17 to perform printer output services
for parallel printers. The printer argument specifies the affected printer, where 0 is LPT1,
1 is LPT2, and so forth. _

Some printers do not support the full set of signals. As a result, the “Out of Paper” condi-
tion, for example, may not be returned to your program.

The service argument can be any of the following manifest constants:

Constant Meaning
_PRINTER_INIT Initializes the selected printer. The data argument is ignored.
The return value is the low-order status byte defined below.
_PRINTER_STATUS Returns the printer status in the low-order status byte defined
v below. The data argument is ignored.
_PRINTER_WRITE Sends the low-order byte of data to the printer specified by

printer. The low-order byte of the retum value indicates the
printer status after the operation, as defined below:

Bit Meaning if True
Printer timed out
Not used

Not used

I/O error

Printer selected
Out of paper
Acknowledge

N O AW = O

Printer not busy

_bios_printer | 126

Return Value The _bios_printer function returns the value in the AX register after the BIOS interrupt.
Compatibility 0O ANSI B DOS 0O 0s/2 0O UNIX O XENIX
Example

/* BPRINTER.C: This program checks the status of the printer attached to
* LPT1 when it is off line, then initializes the printer.
*/

f#include <bios.h>
f#finclude <conio.h>
ffinclude <stdio.h>

ffdefine LPT1 @

void main()
{
unsigned status;

printf ("Place printer off line and press any key\n");
getch();

status = _bios_printer(_PRINTER_STATUS, LPTL, 9);

printf("Status with printer off line: @x%.4x\n\n", status);
printf("Put the printer on line and then\n");

printf("Press any key to initialize printer\n");

getch();

status = _bios_printer(_PRINTER_INIT, LPT1, @);
printf("Status after printer initialized: 0x%.4x\n", status);

Output

Place printer off line and press any key
Status with printer off line: 0x0018

Put the printer on 1line and then
Press any key to initialize printer
Status after printer initialized: 0x009¢

127 _bios_serialcom
Description Calls BIOS communications services, using system call INT 0x14.
#include <bios.h>
unsigned _bios_serialcom(unsigned service, unsigned serial_port, unsigned data);
service Communications service
serial_port Serial port to use
data Port configuration bits
Remarks The _bios_serialcom routine uses system call INT 0x14 to provide serial communications

services. The serial_port argument is set to 0 for COM1, to 1 for COM2, and so on.

The _bios_serialcom routine may not be able to establish reliable communications at baud
rates in excess of 1,200 baud (_COM_1200) due to the overhead associated with servicing
computer interrupts. Faster data communication rates are possible with more direct pro-
gramming of serial-port controllers. See C Programmer’s Guide to Serial Communications
for more details on serial-communications programming in C.

The service argument can be set to one of the following manifest constants:

Constant Service

_COM_INIT Sets the port to the parameters specified in the data argument
_COM_SEND Transmits the data characters over the selected serial port
_COM_RECEIVE Accepts an input character from the selected serial port
_COM_STATUS Returns the current status of the selected serial port

The data argument is ignored if service is set to _COM_RECEIVE or _COM_STATUS.
The data argument for _COM_INIT is created by combining (with the OR operator) one or
more of the following constants:

Constant Meaning
_COM_CHR7? 7 data bits
_COM_CHRS ' 8 data bits
_COM_STOP1 1 stop bit
_COM_STOP2 2 stop bits

_COM_NOPARITY No parity

_bios_serialcom 128

_COM_EVENPARITY Even parity

_COM_ODDPARITY Odd parity
_COM_110 110 baud
_COM_150 150 baud
_COM_300 300 baud
_COM_600 600 baud
_COM_1200 1,200 baud
_COM_2400 2,400 baud
_COM _4800 : 4,800 baud

_COM_9600 9,600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

Return Value The function returns a 16-bit integer whose high-order byte contains status bits. The mean-
ing of the low-order byte varies, depending on the service value. The high-order bits have
the following meanings:

Bit Meaning if Set
15 Timed out
14 Transmission-shift register empty
13 Transmission-hold register empty
12 . Break detected
11 Framing error
10 Parity error
9 Overrun error
Data ready

When service is_COM_SEND, bit 15 will be set if data could not be sent.

When service is _COM_RECEIVE, the byte read will be returned in the low-order bits if
the call is successful. If an error occurs, any of the bits 9, 10, 11, or 15 will be set.

129 | _bios_serialcom

When service is _COM_INIT or _COM_STATUS, the low-order bits are defined as

follows:

Bit Meaning if Set

7 Receive-line signal detected

6 Ring indicator

5 Data set ready

4 Clear to send

3 Change in receive-line signal detected
2 Trailing-edge ring indicator

1 Change in data-set-ready status

0 Change in clear-to-send status

Note that this function works only with IBM personal computers and true compatibles.

Compatibility £ ANSI B DOS [0 OS2 O UNIX [O XENIX

Example

/* BSERIALC.C: This program checks the status of serial port COM1. */

#include <bios.h>
#include <stdio.h>

void main()

{
unsigned coml_status;
coml_status = _bios_serialcom(_COM_STATUS, 0, 9);
printf ("COMl status: OxZ%.4x\n", coml_status);

)

Output

COM1 status: Ox6000

_bios_timeofday 130

Description Calls BIOS time and date services, using system call INT Ox1A.
#include <bios.h>

unsigned _bios_timeofday(unsigned service, long *timeval);

service Time function desired
timeval Clock count -
Remarks The _bios_timeofday routine uses system call INT Ox1A to get or set the clock count. The

service argument can be either of the following manifest constants:

Constant Meaning

_TIME_GETCLOCK Copies the current value of the clock count to the location
pointed to by timeval. If midnight has not passed since the last
time the system clock was read or set, the function returns 0;
otherwise, the function returns 1.

_TIME_SETCLOCK Sets the current value of the system clock to the value in the
location pointed to by timeval. There is no return value.

Return Value The _bios_timeofday function returns the value in the AX register after the BIOS
interrupt.

Compatibility O ANSI B DOS [OS2 0O UNIX [XENIX

Example

/* BTIMEOFD.C: This program gets the current system clock count before and after
* a "do-nothing™ loop and displays the difference.
*/

#finclude <bios.h>
ffinclude <stdio.h>

131 _bios_timeofday

void main()
{
long i, begin_tick, end_tick;

_bios_timeofday(_TIME_GETCLOCK, &begin_tick);
printf("Beginning tick count: %Zlu\n", begin_tick);
for(i = 1; i <= 900000; i++)

_bios_timeofday(_TIME_GETCLOCK, &end_tick);
printf("Ending tick count: %lu\n", end_tick);
printf("Elapsed ticks: %1u\n", end_tick - begin_tick);

Output

Beginning tick count: 1114255
Ending tick count: 1114287
Elapsed ticks: 32

bsearch

Description

Remarks

Return Value

132

Performs binary search of a sorted array.

#include <stdlib.h> Required for ANSI compatibility

#include <search.h> Required only for function declarations

void *bsearch(const void *key, const void *base, size_t num, size_t width,
int (*compare)(const void *eleml, const void *elem?2));

key Object to search for

base Pointer to base of search data

num Number of elements

width Width of elements

compare Function that compares two elements: elem! and elem2
eleml Pointer to the key for the search

elem2 Pointer to the array element to be compared with the key

The bsearch function performs a binary search of a sorted array of num elements, each of
width bytes in size. The base value is a pointer to the base of the array to be searched, and
key is the value being sought.

The compare argument is a pointer to a user-supplied routine that compares two array ele-
ments and returmns a value specifying their relationship. The bsearch function calls the
compare routine one or more times during the search, passing pointers to two array ele-
ments on each call. The routine compares the elements, then returns one of the following
values:

Value Meaning

<0 eleml less than elem2
=0 eleml identical to elem2
>0 eleml greater than elem2

If the array you are searching is not in ascending sort order, bsearch does not work prop-
erly. If the array contains duplicate records with identical keys, there is no way to predict
which of the duplicate records will be located by bsearch.

The bsearch function returns a pointer to the first occurrence of key in the array pointed to
by base. If key is not found, the function returns NULL.

133 bsearch

Compatibility B ANSI EDOS W 08)2 W UNIX B XENIX

See Also Ifind, Isearch, gsort

Example

/* BSEARCH.C: This program reads the command-line arguments, sorting them
* with gqsort, and then uses bsearch to find the word "cat."”
*/

finclude <search.h>
{fHinclude <string.h>
{#Hinclude <stdio.h> "

int compare(char **argl, char **arg2); /* Declare a function for compare */

void main(int argc, char **argv)
{

char **result;
char *key = "cat";
int i;

/* Sort using Quicksort algorithm: */
gsort((char *)argv, argc, sizeof(char *), compare);

for(i =@; i < argc; ++i) /* Output sorted 1ist */
printf("%s ", argv[il);

/* Find the word "cat" using a binary search algorithm: */
result = (char **)bsearch((char *) &key, (char *)argv, argc,
sizeof(char *), compare);
if(result) .
printf("\n%s found at %ZFp\n", *result, result);
else
printf("\nCat not found!\n");
}

int compare(char **argl, char **arg2)
(
/* Compare all of both strings: */
return strcmpi(*argl, *arg2);

Output

[C:\LIBREF] bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 0292:0FD@

cabs, cabsl 134

L
Description Calculate absolute value of a complex number.
#include <math.h>

double cabs(struct complex z);

long double cabsl(struct _complexl z);
z Complex number

Remarks The cabs and cabsl functions calculate the absolute value of a complex number, which
must be a structure of type complex (or _complexl). The structure z is composed of a real
component x and an imaginary component y. A call to one of the cabs routines is equiv-
alent to the following:

sqrt(zx*z.x + z.y*z.y)
The cabsl function is the 80-bit counterpart and it uses the 80-bit, 10-byte coprocessor

form of arguments and return values. See the reference page on the long double functions
for more details on this data type.

Return Value On overflow, these functions call matherr or _matherrl], return HUGE_VAL, and set
errno to ERANGE.

Compalibility cabs

OANSI E DOS H OS2 B UNIX N XENIX

cabsl

0OANSI B DOS N OS2 0O UNIX 0O XENIX

See Also abs, fabs, labs

Example

/* CABS.C: Using cabs, this program calculates the absolute value of
* a complex number.
*/

#include <math.h>
#include <stdio.h>

135 cabs, cabsl

void main()

{
struct complex number = { 3.8, 4.0 };
double d;

d = cabs(number);

printf("The absolute value of %f + %fi is %f\n",
number.x, number.y, d);

Output

The absolute value of 3.000000 + 4.000000i is 5.000000

calloc Functions 136

Description

Remarks

Return Value’

Allocate an array in memory with elements initialized to O.

#include <stdlib.h> For ANSI compatibility (calloc only)

#include <malloc.h> Required only for function declarations

void *calloc(size_t num, size_t size);
void _based(void) *_bcalloc(_segment seg, size_t num, size_t size);
void _far *_fcalloc(size_t num, size_t size);

void _near *_ncalloc(size_t num, size_t size);

num Number of elements
size Length in bytes of each element
seg Segment selector

/
The calloc family of functions allocates storage space for an array of num elements, each
of length size bytes. Each element is initialized to 0.

In large data models (compact-, large-, and huge-model programs), calloc maps to
_fcalloc. In small data models (tiny-, small-, and medium-model programs), calloc maps
to _ncalloc.

The various calloc functions allocate storage space in the data segments shown in the list
below:

Function Data Segment

calloc Depends on data model of program

_bcalloc Based heap, specified by seg segment selector
_fcalloc Far heap (outside default data segment)
_ncalloc Near heap (inside default data segment)

The calloc functions return a pointer to the allocated space. The storage space pointed to
by the return value is guaranteed to be suitably aligned for storage of any type of object.
To get a pointer to a type other than veid, use a type cast on the retum value.

The _fcalloc and _ncalloc functions return NULL if there is insufficient memory available
or if num or size is 0. The _bcalloc function returns _NULLOFF in this case.

137 calloc Functions

Compatibility calloc

B ANSI HM DOS B 0S/2 N UNIX N XENIX

_bcalloc, _fcalloc, _ncalloc

O ANSI B DOS N 0S/2 0O UNIX O XENIX

See Also free functions, halloc, hfree, malloc functions, realloc functions

Example

/* CALLOC.C: This program uses calloc to allocate space for 40 long integers.
* It initializes each element to zero.
*/

f#Hnclude <stdio.h>
#include <malloc.h>

void main()
{
Tong *buffer;

buffer = (long *)calloc(40, sizeof(long));
if(buffer != NULL)

printf("Allocated 40 long integers\n");
else

printf("Can't allocate memory\n");
free(buffer);

Output

Allocated 40 long integers

ceil, ceill

138

Description

Remarks

Return Value

Compatibility

See Also

Calculate the ceiling of a value.
#include <math.h>

double ceil(double x);
long double ceill(long double x);

X Floating-point value

The ceil and ceill functions return a double (or long double) value representing the
smallest integer that is greater than or equal to x.

The ceill function is the 80-bit counterpart and it uses the 80-bit, 10-byte coprocessor form
of arguments and return values. See the reference page on the long double functions for
more details on this data type.

These functions return the double or long double result. There is no error return.

ceil
lH ANSI E DOS IR 0OS/2 N UNIX N XENIX
ceill

O ANSI B DOS W OS2 0O UNIX 0O XENIX

floor, fmod

Example

/* FLOOR.C: This example displays the largest integers less than or equal
* to the floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.

*/

f#finclude <math.h>
f#Hinclude <stdio.h>

139

ceil, ceill

void main()
{
double y;

y = floor(2.8);

printf("The floor of 2.8 is #f\n", y);
y = floor(-2.8);

printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);

printf("The ceil of 2.8 is %f\n", y);
y =ceil(-2.8);

printf("The ceil of -2.8 is %f\n", y);

Output

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

_cexit, _c_exit 140

Description

Remarks

Return Value
Compalibility

See Also

Perform clean-up operations and return without terminating the process.
#include <process.h>

void _cexit(void);
void _c_exit(void);
The _cexit function calls, in LIFO (“last in, first out”) order, the functions registered by

atexit and onexit. Then the _cexit function flushes all I/O buffers and closes all open files
before returning.

The _c_exit function returns to the calling process without processing atexit or onexit
functions or flushing stream buffers. '

The behavior of the exit, _exit, _cexit, and _c_exit functions is described in the following
list:

Function Action

exit Performs complete C library termination procedures, termi-
nates the process, and exits with the supplied status code

_exit _ Performs “quick” C library termination procedures, terminates
the process, and exits with the supplied status code

_cexit Performs complete C library termination procedures and re-
turns to caller, but does not terminate the process

_c_exit ~ Performs “quick” C library termination procedures and re-
turns to caller, but does not terminate the process
None.

O ANSI E DOS HW 0s/2 [0 UNIX [0 XENIX

abort, atexit, exec functions, exit, onexit, spawn functions, system

141 cgets
Description Gets a character string from the console.

#include <conio.h> Required only for function declarations

char *cgets(char *buffer);

buffer Storage location for data
Remarks The cgets function reads a string of characters directly from the console and stores the

Return Value

Compatibility

See Also

Example

string and its length in the location pointed to by buffer. The buffer argument mustbea
pointer to a character array. The first element of the array, buffer[0], must contain the maxi-
mum length (in characters) of the string to be read. The array must contain enough ele-
ments to hold the string, a terminating null character (*\0°), and two additional bytes.

The cgets function continues to read characters until a carriage-return-line-feed (CR-LF)
combination is read, or the specified number of characters is read. The string is stored
starting at s¢r[2]. If a CR-LF combination is read, it is replaced with a null character (*\0”)
before being stored. The cgets function then stores the actual length of the string in the sec-
ond array element, buffer[1].

Because all DOS editing keys are active when you call cgets, pressing F3 repeats the last
entry.

The cgets function returns a pointer to the start of the string, at buffer(2]. There is no error
return.

O ANSI H DOS W OS/2 O UNIX O XENIX

getch, getche

/* CGETS.C: This program creates a buffer and initializes the first byte
* to the size of the buffer - 2. Next, the program accepts an input string
* using cgets and displays the size and text of that string.

*/

ffinclude <conio.h>
f##include <stdio.h>

cgets , 142

void main()

(
char buffer[82] = { 80 }; /* Maximum characters in first byte */
char *result;

printf("Input Tine of text, followed by carriage return:\n");

result = cgets(buffer); /* Input a Tine of text */

printf("\nLine length = %Zd\nText = %s\n", buffer[1l], result);
}

Output

Input Tine of text, followed by carriage return:
This is some text

Line length = 17

Text = This is some text

143 _chain_intr

e —————
Description Chains an interrupt from one handler to another.

#include <dos.h>

void _chain_intr(void(_interrupt _far *target)()); |

target Target interrupt routine

Remarks The _chain_intr routine passes control from one interrupt handler to another. The stack
and the registers of the first routine are passed to the second, allowing the second routine
to return as if it had been called directly.

The _chain_intr routine is generally used when a user-defined interrupt handler begins -
processing, then chains to the original interrupt handler to finish processing.

Chaining is one of two techniques, listed below, that can be used to transfer control from a
new interrupt routine to an old one:

1. Call _chain_intr with the interrupt routine as an argument. Do this if your routine is
finished and you want the second interrupt routine to terminate the interrupt cail.

void _interrupt new_int(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si,...)
{

++_di; /* Initial processing here */
_chain_intr(old_int); /* New DI passed to old_int */
--_di; /* This is never executed */

}

2. Call the interrupt routine (after casting it to an interrupt function if necéssary). Do this
if you need to do further processing after the second interrupt routine finishes.

void _interrupt new_int(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si,...)
(

++_di; /* Initial processing here */
(*old_int)(); /* New DI passed to old_int */
_asm mov _di, di /* Put real DI from old_int */

/* into _di for return */

}

Note that the real registers set by the old interrupt function are not automatically set to the
pseudoregisters of the new routine.

chain_intr 144

Use the _chain_intr function when you do not want to replace the default interrupt han-
dler, but you do need to see its input. An example is a TSR (terminate-and-stay-resident)
program that checks all keyboard input for a particular “hot key” sequence.

The _chain_intr function should be used only with C functions that have been declared
with type _interrupt. The _interrupt declaration ensures that the procedure’s entry/exit
sequence is appropriate for an interrupt handler.

Return Value The _chain_intr function does not return to the caller.
Compatibility OO ANSI B DOS 0O 0s/2 0O UNIX O XENiX

See Also _dos_getvect, _dos_keep, _dos_setvect

145 chdir
Description Changes the current working directory.

#include <direct.h> Required only for function declarations

#include <errno.h> Required for errno constants

int chdir(char *dirname);

dirname Path name of new working directory
Remarks The chdir function changes the current working directory to the directory specified by

Return Value

Compatibility

dirname. The dirname argument must refer to an existing directory.

This function can change the current working directory on any drive; it cannot be used to
change the default drive itself. For example, if A: is the default drive and \BIN is the
current working directory, the following call changes the current working directory for
drive C:

chdir("c:\\temp");

Notice that you must place two backslashes (\) in a C string in order to represent a single
backslash (\); the backslash is the escape character for C strings and therefore requires
special handling.

This function call has no apparent immediate effect. However, when the _chdrive function
is called to change the default drive to C:, the current working directory becomes
CA\TEMP.

In OS/2 protected mode, the current working directory is local to a process rather than
system-wide. When a process terminates, the current working directory is restored to its
original value. Under DOS, the new directory set by the program becomes the new current
working directory.

The chdir function returns a value of 0 if the working directory is successfully changed. A
return value of —1 indicates an error, in which case errno is set to ENOENT, indicating
that the specified path name could not be found.

O ANSI MW DOS N 0S/2 H UNIX M XENIX

chdir

See Also _dos_setdrive, mkdir, rmdir, system

Example

/* CHGDIR.C: This program uses the chdir function to verify that a
* given directory exists. Under real mode that directory also becomes
* the current directory. Under protected mode, it is only the default

* directory for the current process.
*/

f#finclude <direct.h>
#include <stdio.h>
f##include <stdlib.h>

void main(int argc, char *argv[])
(
if(chdir(argv[1]))

printf("Unable to locate the directory: %s\n", argv[1l]);

else
system("dir *.c");

Output
[C:\LIBREF] chgdir \tmp

The volume label in drive C is 0S2.
Directory of C:\TMP

DuP C 232 4-18-89 11:18a
TEST C 713 4-07-88 2:49p
2 File(s) 14155776 bytes free

_chdrive

#include <direct.h> Required only for function declarations

drive Number of new working drive

147

Description Changes the current working drive.
int _chdrive(int drive);

Remarks

Return Value

The _chdrive function changes the current working drive to the drive specified by drive.
The drive argument uses an integer to specify the new working drive (1=A, 2=B, etc.).

This function changes only the working drive; the chdir function changes the working
directory.

In OS/2 protected mode, the working drive is local to a process rather than system-wide.
When a process terminates, the working drive is restored to its original value. Under DOS,
the new drive set by the program becomes the new working drive.

The _chdrive function returns a value of 0 if the working drive is successfully changed. A
return value of —1 indicates an error.

Compatibility 0 ANSI HW DOS M OS2 [UNIX [I XENIX

See Also chdir, _dos_setdrive, _fullpath, _getcwd, _getdrive, mkdir, rmdir, system
Example

/* GETDRIVE.C illustrates drive functions including:

* _getdrive _chdrive _getdcwd

*/

##include <stdio.h>
#include <conio.h>
f#tinclude <direct.h>
#include <stdlib.h>

_chdrive

148

void main()
(

int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists.

for(drive = 1; drive <= 26; drive++)
if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);

while(1)
{

printf("\nType drive letter to check or ESC to quit: ");

ch = getch();

if(ch == 27

break;

)

if(isalpha(ch))

putch(ch);
if(_getdewd(toupper(ch) - 'A' + 1, path, _MAX_PATH) != NULL)
printf("\nCurrent directory on that drive is %s\n", path);
}

/* Restore original drive. This is only necessary for D0S. Under 0S/2
* the current drive of the calling process is always restored.

*/

_chdrive(curdrive);

printf("\n");

Output

Available drives are:

A: B: C: .

Type drive letter to check or ESC to quit: g
Type drive letter to check or ESC to quit: a

Current directory

Type drive letter
Current directory

Type drive letter

on

to
on

to

that drive is A:\

check or ESC to quit: ¢
that drive is C:\LIBREF

check or ESC to quit:

149 chmod
Description Changes the file-permission settings.

#include <sys\types.h>

#include <sys\stat.h>

#include <errno.h>

#include <io.h> Required only for function declarations

int chmod(char *filename, int pmode);

filename Path name of existing file

pmode Permission setting for file
Remarks The chmod function changes the permission setting of the file specified by filename. The

Return Value

permission setting controls read and write access to the file. The constant expression
pmode contains one or both of the manifest constants S_IWRITE and S_IREAD, defined in
SYS\STAT.H. Any other values for pmode are ignored. When both constants are given,
they are joined with the bitwise-OR operator (|). The meaning of the pmode argument is
as follows:

Value Meaning
S_IWRITE Writing permitted
S_IREAD Reading permitted

S_IREAD| S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. Under DOS and OS/2, all files are
readable; it is not possible to give write-only permission. Thus the modes S_IWRITE and
S_IREAD | S_IWRITE are equivalent.

The chmod function returns the value 0 if the permission setting is successfully changed.
A return value of -1 indicates an error; in this case, errno is set to ENOENT, indicating
that the specified file could not be found.

chmod 150

Compatibility O ANSI E DOS H OS2 N UNIX H XENIX

See Also access, creat, fstat, open, stat

Example

/* CHMOD.C: This program uses chmod to change the mode of a file to
* read-only. It then attempts to modify the file.
*/

* #include <sys\types.h>
f#Hinclude <sys\stat.h>
#include <io.h>
#include <stdio.h>
f#finclude <stdlib.h>

void main()
it
/* Make file read-only: */
if(chmod("CHMOD.C", S_IREAD) == -1)
perror("File not found\n");
else
printf("Mode changed to read-only\n");
system("echo /* End of file */ >> CHMOD.C");

/* Change back to read/write: */

if(chmod("CHMOD.C", S_IWRITE) == -1)
perror("File not found\n");

else
printf("Mode changed to read/write\n");

Output

Mode changed to read-only
Access denied
Mode changed to read/write

151

chsize

Description

Remarks

Return Value

Compatibility

See Also

Example

Changes the file size.

#include <io.h> Required only for function declarations

#include <errno.h>
int chsize(int handle, long size);

handle Handle referring to open file

size New length of file in bytes

The chsize function extends or truncates the file associated with handle to the length
specified by size. The file must be open in a mode that permits writing. Null characters
(°\0%) are appended if the file is extended. If the file is truncated, all data from the end of
the shortened file to the original length of the file is lost.

In DOS, the directory update is done when a file is closed. Consequently, while a program
is running, requests to determine the amount of free disk space may receive inaccurate
results,

The chsize function returns the value 0 if the file size is successfully changed. A return
value of —1 indicates an error, and errno is set to one of the following values:

Value Meaning

EACCES Specified file is locked against access (OS/2 and DOS
versions 3.0 and later only).

EBADF Specified file is read-only or an invalid file handle.

ENOSPC No space is left on device.

[0ANSI H DOS M 0S/2 M UNIX H XENIX

close, creat, open

/* CHSIZE.C: This program uses filelength to report the size of a
* file before and after modifying it with chsize.

*/

chsize 152

#include <io.h>
f#finclude <fcntl.h>
f#include <sys\types.h>
f#finclude <sys\stat.h>
#include <stdio.h>

void main()

{
int fh, result;
unsigned int nbytes = BUFSIZ;
/* Open a file */
if((fh = open("data", O_RDWR | O_CREAT, S_IREAD | S_IWRITE)) != -1)
{
printf("File length before: %Z1d\n", filelength(fh));
if(chsize(fh, 329678) == 0)
printf("Size successfully changed\n");
else
printf("Problem in changing the size\n");
printf("File length after: %1d\n", filelength(fh));
close(fh);
}
}
Output

File length before: @
Size successfully changed
File length after: 329678

153 ' _clear87

Description Gets and clears the floating-point status word.
#include <float.h>
unsigned int _clear87(void);

Remarks The _clear87 function gets and clears the floating-point status word. The floating-point sta-
tus word is a combination of the 8087/80287 status word and other conditions detected by
the 8087/80287 exception handler, such as floating-point stack overflow and underflow.

Return Value The bits in the value returned indicate the floating-point status. See the FLOAT.H include
file for a complete definition of the bits returned by _clear87.

Many of the math library functions modify the 8087/80287 status word, with unpredict-
able results. Return values from _clear87 and _status87 become more reliable as fewer
floating-point operations are performed between known states of the floating-point status
word.

Compatibility 0O ANSI H DOS B 0S/2 0O UNIX 0O XENIX

See Also _control87, _status87

Example

/* CLEAR87.C: This program creates various floating-point problems,
* then uses _clear87 to report on these problems.
*/

f#include <stdio.h>
#include <float.h>

void main()

{
double a = le-4@, b;
float x, y;

printf("Status: %.4x - clear\n”, _clear87());
/* Store into y is inexact and underflows: */

y = a;
printf("Status: %.4x - inexact, underflow\n", _clear87());

_clear87 | » 154

/* y is denormal: */

b =y;

printf("Status: %.4x - denormal\n", _clear87());
}

Output

Status: Q000 - clear
Status: 0030 - inexact, underflow
Status: 0002 - denormal

155

clearerr

Description

Remarks

Return Value
Compatibility
See Also

Example

Resets the error indicator for a stream.

#include <stdio.h>

void clearerr(FILE *stream);

stream Pointer to FILE structure

The clearerr function resets the error indicator and end-of-file indicator for stream. Error
indicators are not automatically cleared; once the error indicator for a specified stream is
set, operations on that stream continue to return an error value until clearerr, fseek,
fsetpos, or rewind is called.

None.
H ANS! E DOS HNM 0S/2 H UNIX H XENIX

eof, feof, ferror, perror

/* CLEARERR.C: This program creates an error on the standard input

*/

* stream, then clears it so that future reads won't fail.

f#include <stdio.h>

void main()

{

int c;

/* Create an error by writing to standard input. */
putc(‘'c', stdin);
if(ferror(stdin))

{

perror("Write error");
clearerr(stdin);

clearerr 156

/* See if read causes an error. */
printf("Will input cause an error? ");
¢ = getc(stdin);
if(ferror(stdin))
{

perror("Read error");

clearerr(stdin);

Output

Write error: Error 0
Will input cause an error? n

157

_clearscreen

Description

Remarks

Return Value

Compatibility

See Also

Example

Clears the specified area of the screen.
#include <graph.h>

void _far _clearscreen(short area);
area ' Target area

The _clearscreen function erases the target area, filling it with the current background
color. The area parameter can be one of the following manifest constants (defined in
GRAPH.H):

Constant Action

_GCLEARSCREEN Clears and fills the entire screen

_GVIEWPORT Clears and fills only within the current view port
_GWINDOW Clears and fills only within the current text window
None.

0O ANSI B DOS W 0S/2 0O UNIX 0O XENIX

_getbkcolor, _setbkcolor

/* CLRSCRN.C */

#include <conio.h>
f##include <graph.h>
finclude <stdiib.h>

void main()

{

short xhalf, yhalf, xquar, yquar;
struct videoconfig vc;

_clearscreen 158

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE))
exit(1);

_getvideoconfig(&vc);

xhalf = vc.numxpixels / 2;
yhalf = vc.numypixels / 2;
xquar = xhalf / 2;
yquar = yhalf / 2;

_setviewport(@, @, xhalf - 1, yhalf - 1);
_rectangle(_GBORDER, @, @, xhalf - 1, yhalf - 1);
_ellipse(_GFILLINTERIOR, xquar / 4, yquar / 4,
xhalf - (xquar / 4), yhalf - (yquar / 4));
getch(); '
_clearscreen(_GVIEWPORT);

getch();
_setvideomode(_DEFAULTMODE);
)

159 clock
Description Calculates the time used by the calling process.

#include <time.h>

clock_t clock(void);
Remarks The clock function tells how much processor time has been used by the calling process.

Return Value

Compatibility

See Also

Example

The time in seconds is approximated by dividing the clock return value by the value of the
CLOCKS_PER_SEC constant.

In other words, the clock function returns the number of processor timer ticks that have
elapsed. A timer tick is approximately equal to 1/CLOCKS_PER_SEC seconds.

The clock function returns the product of the time in seconds and the value of the
CLOCKS_PER_SEC constant, If the processor time is not available, the function returns
the value —1, cast as clock_t.

H ANSI H DOS W 0S/2 0O UNIX 0O XENIX

In both DOS and OS/2, clock returns the time elapsed since the process started. This may
not be equal to the actual processor time used by the process.

In previous versions of Microsoft C, the CLOCKS_PER_SEC constant was called
CLK_TCK.

difftime, time

/* CLOCK.C: This example prompts for how long the program is to run and
* then continuously displays the elapsed time for that period.

*/

#include <stdio.h>
#include <stdlib.h>
J#include <time.h>

void sleep(clock_t wait);

void main()

{
Tong

i = 600000L;

clock_t start, finish;

double

duration;

clock

160

/* Delay for a specified time. */
printf("Delay for three seconds\n");
sleep((clock_t)3 * CLOCKS_PER_SEC);
printf("Done!\n");

/* Measure the duration of an event. */
printf("Time to do %1d empty loops is ", i);
start = clock();

while(i--)

finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);

}

/* Pauses for a specified number of microseconds. */
void sleep(clock_t wait)
{

clock_t goal;

goal = wait + clock(); -
while(goal > clock())

Output

Delay for five seconds
Done!
Time to do 900000 empty loops is 2.0 seconds

161

close

Description Closes a file.
#include <io.h> Required only for function declarations
#include <errno.h>
int close(int handle);
handle Handle referring to open file
Remarks The close function closes the file associated with handle.
Return Value The close fuinction returns 0 if the file was successfully closed. A return value of —1 indi-
cates an error, and errno is set to EBADF, indicating an invalid file-handle argument.
Compatibility O ANS! H DOS H 0OS/2 N UNIX B XENIX
See Also chsize, creat, dup, dup2, open, unlink
Example

/* OPEN.C: This
* and a file na
*/

#include <fcntl.

program uses open to open a file named OPEN.C for input
med OPEN.OUT for output. The files are then closed.

h>

f#finclude <sys\types.h>
jfinclude <sys\stat.h>

f#finclude <io.h>
jHinclude <stdio.

void main()
{
int fhl, fh2;

h>

fhl = open("OPEN.C", O_RDONLY);
if(fhl == -1)
perror("open failed on input file");

else
{

printf("open succeeded on input file\n");
close(fhl);

close 162

fh2 = open("OPEN.OUT", O_WRONLY | O_CREAT, S_IREAD | S_IWRITE);
if(fha == -1)
perror("open failed on output file");
else
{
printf("open succeeded on output file\n");
close(fh2);

Output

open succeeded on input file
open succeeded on output file

163

Description

Remarks

_control87

Gets and sets the floating-point control word.

#include <float.h>

unsigned int _control87(unsigned int new, unsigned int mask);

new New control-word bit values

mask Mask for new control-word bits to set

The _control87 function gets and sets the floating-point control word. The floating-point
control word allows the program to change the precision, rounding, and infinity modes in
the floating-point-math package. Floating-point exceptions can also be masked or un-

masked using the _control87 function.

If the value for mask is equal to 0, then _control87 gets the floating-point control word. If
mask is nonzero, then a new value for the control word is set in the following manner: for
any bit that is on (equal to 1) in mask, the corresponding bit in nnew is used to update the

control word. To put it another way,
fpentrl = ((fpentrl & ~mask) | (new & mask))

where fpcntr] is the floating-point control word.

The possible values for the mask constant (mask) and new control values (new) are shown

in Table R.1. :

Table R.1 Hex Values

Mask Hex Value Constant Hex Value

MCW_EM 0x003F

(Interrupt

exception)
EM_INVALID 0x0001
EM_DENORMAL 0x0002
EM_ZERODIVIDE 0x0004
EM_OVERFLOW 0x0008
EM_UNDERFLOW 0x0010

EM_INEXACT

0x0020

_control87 164

Table R.1 (continued)

Mask Hex Value Constant Hex Value
MCW_IC 0x1000
(Infinity
control)
IC_AFFINE 0x1000

IC_PROJECTIVE 0x0000

MCW_RC 0x0C00

(Rounding

control)
RC_CHOP 0x0C00
RC_UP 0x0800
RC_DOWN 0x0400
RC_NEAR 0x0000

MCW_PC 0x0300

(Precision

control)
PC_24 (24 bits) 0x0000
PC_53 (53 bits) 0x0200
PC_64 (64 bits) 0x0300

Return Value The bits in the value returned indicate the floating-point control state. See the FLOAT.H

include file for a complete definition of the bits returned by _control87.
Compatibility O ANSI W DOS W 0S/2 [UNIX [XENIX

See Also _clear87, _status87

Example

/* CNTRL87.C: This program uses _control87 to output the control word,
* set the precision to 24 bits, and reset the status to the default.
*/

#include <(stdio.h>
f#Hinclude <float.h>

165 _control87

void main()
{
double a = 0.1;

/* Show original control word and do calculation. */
printf("Original: @x%.4x\n", _control87(@, @));
printf("%1.1f * %1,1f = %.15e\n", a, a, a * a);

/* Set precision to 24 bits and recalculate. */
printf("24-bit: @x%.4x\n", _control87(PC_24, MCW_PC));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

/* Restore to default and recalculate. */
printf("Default: ©x%.4x\n", _control87(CW_DEFAULT, @xffff));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

Output

Original: ©9x1332
0.1 * 0.1 = 1.000000000000000e-002
24-bit: Bx1332
9.1 * 0.1 = 9.999999776482582e-003
Default: @x1@32
8.1 * 0.1 = 1.000000000000000e-002

cos Functions 166

Description

Remarks

Return Value

Compalibility

Calculate the cosine (cos and cosl) or hyperbolic cosine (cosh and coshl).
#include <math.h>

double cos(double x);

double cosh(double x);

lIong double cosl(long double x);
long double coshl(long double x);

x Angle in radians

The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of x.

The cosl and coshl functions are the 80-bit counterparts and use the 80-bit, 10-byte co-
processor form of arguments and return values. See the reference page on the long double
functions for more details on this data type.

If x is large, a partial loss of significance in the result may occur in a call to cos, in which
case the function generates a PLOSS error. If x is so large that significance is completely
lost, cos prints a TLOSS message to stderr and returns 0. In both cases, errno is set to
ERANGE.

If the result is too large in a cosh call, the function returns HUGE_VAL and sets errno to
ERANGE.

cos, cosh

W ANSI EH DOS N OS2 B UNIX B XENIX

cosl, coshl

0O ANSI MW DOS N Os/2 [UNIX O XENIX

167 . cos Functions

See Also acos functions, asin functions, atan functions, matherr, sin functions, tan functions

Example

/* SINCOS.C: This program displays the sine, hyperbolic sine, cosine,
* and hyperbolic cosine of pi / 2.
*/

#Hinclude <math.h>
ffinclude <stdio.h>

void main()

{
double pi = 3.1415926535;
double x, y;

x =pi/ 2;

y = sin(x);

printf("sin(%f) = Zf\n", x, y);
y = sinh(x);

printf("sinh(%f) = Zf\n",x, y);
y = cos(x);

printf("cos(%f) = %f\n", x, y);
y = cosh(x);

printf("cosh(%f) = %f\n",x, y);

Output

sin(1.570796) = 1.000000
sinh(1.570796) = 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) = 2.509178

cprintf 168

Description Formats and prints to the console.
#include <conio.h> Required only for function declarations

int cprintf(char *format [, argument]] ...);

format Format control string
argument Optional arguments
Remarks The cprintf function formats and prints a series of characters and values directly to the

console, using the putch function to output characters. Each argument (if any) is con-
verted and output according to the corresponding format specification in format. The for-
mat has the same form and function as the format argument for the printf function; see
printf for a description of the format and arguments.

Note that unlike the fprintf, printf, and sprintf functions, cprintf does not translate line-
feed characters into carriage-return-line-feed combinations on output.
Return Value The cprintf function returns the number of characters printed.

Gompatibility O ANSI EW DOS M OS2 [UNIX 0O XENIX

See Also cscanf, fprintf, printf, sprintf, vprintf

Example

/* CPRINTF.C: This program displays some variables to the console. */
f#include <conio.h>

void main()
{

int i =-16, h=29;
unsigned u = 62511;

char c="A";

char s[] = "Test";

169 | cprintf

/* Note that console output does not translate \n as
* standard output’does. Use \r\n instead.

*/
cprintf("%d %.4x %u %c %s\r\n", i, h, u, ¢, s);

Output

-16 0@01d 62511 A Test

cputs

170

Description

" Remarks

Return Value

Compatibility

See Also

Example

Puts a string to tﬁe console.

#include <conio.h> Required only for function declarations
int cputs(char *string);

string Output string

The cputs function writes the null-terminated string pointed to by string directly to the con-
sole. Note that a carriage-return-line-feed (CR-LF) combination is not automatically ap-
pended to the string.

If successful, cputs returns a 0. If the function fails, it returns a nonzero value.
O ANS'I W DOS N 0S2 [O UNIX 0O XENIX

putch

/it CPUTS.C: This program first displays a string to the console. */

.

#finclude <conio.h>

void main()

{

/* String to print at console. Note the \r (return) character. */
char *buffer = "Hello world (courtesy of cputs)!\r\n";

cputs(buffer);

)

Output

Hello world (courtesy of cputs)!

171 creat
Description Creates a new file.

#include <sys\types.h>

#include <sys\stat.h> .

#include <errno.h>

#include <io.h> Required only for function declarations

int creat(char *filename, int pmode); .

filename Path name of new file

pmode Permission setting
Remarks The creat function either creates a new file or opens and truncates an existing file. If the

file specified by filename does not exist, a new file is created with the given permission set-
ting and is opened for writing. If the file already exists and its permission setting allows
writing, creat truncates the file to length 0, destroying the previous contents, and opens it
for writing.

The permission setting, pmode, applies to newly created files only. The new file receives
the specified permission setting after it is closed for the first time. The integer expression
pmode contains one or both of the manifest constants S_IWRITE and S_IREAD, defined in
SYS\STAT.H. When both of the constants are given, they are joined with the bitwise-OR
operator (|). The pmode argument is set to one of the following values:

Value Meaning
S_IWRITE Writing permitted
S_IREAD Reading permitted

S_IREAD | S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. Under DOS and OS/2, it is not
possible to give write-only permission. Thus, the S_IWRITE and S_IREAD | S_IWRITE
modes are equivalent. Under DOS versions 3.0 and later, files opened using creat are al-
ways opened in compatibility mode (see sopen).

The creat function applies the current file-permission mask to pmode before setting the
permissions (see umask). .

Note that the creat routine is provided primarily for compatibility with previous libraries.
A call to open with O_CREAT and O_TRUNC in the oflag argument is equivalent to creat
and is preferable for new code.

creat 172

Return Value If successful, creat returns a handle for the created file. Otherwise, it returns —1 and sets
errno to one of the following constants:

Value Meaning -

EACCES Path name specifies an existing read-only file or specifies a
directory instead of a file

EMFILE No more handles available (too many open files)

ENOENT Path name not found

Compatibility O ANSI B DOS N OS2 N UNIX = XENIX

See Also chmod, chsize, close, dup, dup2, open, sopen, umask

Example

/* CREAT.C: This program uses creat to create the file (or truncate the
* existing file) named data and open it for writing.
*/ .

ffinclude <sys\types.h>
#include <sys\stat.h>
ffinclude <io.h>
ffinclude <stdio.h>
f#include <stdlib.h>

void main()
{

int fh;
fh = creat("data", S_IREAD | S_IWRITE);
if(fh == -1)

perror("Couldn't create data file");
else

[.
printf("Created data file.\n");
close(fh };

)

Output

Created data file.

173

cscanf

Description

Remarks

Return Value

Compatibility

See Also

Example

Reads formatted data from the console.
#include <conio.h> Required only for function declarations
int cscanf(char *format [, argument] ...);

format Format-control string

argument Optional arguments

The cscanf function reads data directly from the console into the locations given by
argument. The getche function is used to read characters. Each optional argument must be
a pointer to a variable with a type that corresponds to a type specifier in format. The for-
mat controls the interpretation of the input fields and has the same form and function as the
Sformat argument for the scanf function; see scanf for a description of format.

While cscanf normally echoes the input character, it will not do so if the last call was to
ungetch.

The cscanf function returns the number of fields that were successfully converted and as-
signed. The return value does not include fields that were read but not assigned.

The return value is EOF for an attempt to read at end-of-file. This may occur when key-
board input is redirected at the operating system command-line level. A return value of 0
means that no fields were assigned.

O ANSI B DOS B OS2 0O UNIX [XENIX

cprintf, fscanf, scanf, sscanf

/* CSCANF.C: This program prompts for a string and uses cscanf to read
* in the response. Then cscanf returns the number of items matched,
* and the program displays that number.

*/

f#finclude <stdio.h>
f#finclude <conio.h>

cscanf 174

void main()
(
int result, i[31;

cprintf("Enter three integers: ");
result = cscanf("%i %i %i", &i[@1, &i[l], &i(2]);
cprintf("\r\nYou entered ");
while(result--)
cprintf("%i ", ilresult]);
cprintf("\r\n");

Output

Enter three integers: 34 43 987k
You entered 987 43 34

175 ctime
Description Converts a time stored as a time_t value to a character string.

#include <time.h> Required only for function declarations

char *ctime(const time_t *timer);

timer Pointer to stored time
Remarks The ctime function converts a time stored as a time_t value to a character string. The

Return Value

Compatibility
See Also

Example

timer value is usually obtained from a call to time, which returns the number of seconds
elapsed since 00:00:00 Greenwich mean time, January 1, 1970.

The string result produced by ctime contains exactly 26 characters and has the form of the
following example:

Wed Jan 02 82:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The newline character (\n) and
the null character (*\0%) occupy the last two positions of the string.

Calls to the ctime function modify the single statically allocated buffer used by the
gmtime and the localtime functions. Each call to one of these routines destroys the result
of the previous call. The ctime function also shares a static buffer with the asctime func-
tion. Thus, a call to ctime destroys the results of any previous call to asctime, localtime,
or gmtime.

The ctime function returns a pointer to the character string result. If time represents a date
before 1980, ctime returns NULL.

B ANSI H DOS N 0S/2 M UNIX N XENIX

asctime, ftime, gmtime, localtime, time

/* ASCTIME.C: This program places the system time in the long integer aclock,
* translates it into the structure newtime and then converts it to
* string form for output, using the asctime function.

*/

#include <time.h> .
#include <stdio.h>

ctime | 176

struct tm *newtime;
time_t aclock;

void main()
{
time(&aclock); /* Get time in seconds. */
newtime = localtime(&aclock); /* Convert time to struct tm form. */

/* Print local time as a string. */
printf("The current date and time are: %s\n", asctime(newtime));

Output

The current date and time are: Thu Jun 15 ©6:57:59 1989

177 cwait
Description Waits until the child process terminates.

#include <process.h>

int cwait(int *termstat, int procid, int action);

termstat Address for termination status code

procid Process ID of child

action Action code
Remarks The cwait function suspends the calling process until the specified child process

terminates.

If not NULL, termstat points to a buffer where cwait will place the termination-status word
and the return code of the terminated child process.

The termination-status word indicates whether or not the child process terminated nor-
mally by calling the OS/2 DosExit function. (Programs that terminate with exit or by
“falling off the end of main” use DosExit internally.) If the process did terminate nor-
mally, the low-order and high-order bytes of the termination-status word are as follows:

Byte Contents

High order Contains the low-order byte of the result code that the child
code passed to DosExit. The DosExit function is called if the
child process called exit or _exit, returned from main, or
reached the end of main. The low-order byte of the result
code is either the low-order byte of the argument to _exit or
exit, the low-order byte of the return value from main, or a
random value if the child process reached the end of main.

Low order 0 (normal termination).

cwait

178

Return Value

If the child process terminates without calling DosExit, the hlgh-order and low-order bytes
of the termination-status word are as follows:

Byte Contents
High order -0
Low order ~ Termination code from DosCWait:
Code Meaning
1 Hard-error abort
2 Trap operation
3 SIGTERM signal not intercepted

The procid argument specifies which child-process termination to wait for. This value is re-
turned by the call to the spawn function that started the child process. If the specified child
process terminates before cwait is called, the function returns immediately.

The action argument specifies when the parent process resumes execution, as shown in the
following list:

Value Meaning
WAIT_CHILD The parent process waits until the specified child process has
ended.

WAIT_GRANDCHILD The parent process waits until the specified child process and
all child processes of that child process have ended.

The WAIT_CHILD and WAIT_GRANDCHILD action codes are defined in PROCESS.H.

If the cwait function returns after normal termination of the child process, it returns the
child’s process ID.

If the cwait function returns after abnormal termination of the child process, it returns —1
and sets errno to EINTR.

Otherwise, the ewait function returns —1 immediately and sets errno to one of the follow-
ing error codes:

Value Meaning

ECHILD No child process exists, or invalid process ID
EINVAL Invalid action code

179 cwait

Compatibility O ANSI 0O DOS MW 0S/2 0O UNIX DO XENIX

Note that the 08S/2 DosExit function allows programs to return a 16-bit result code. How-
ever, the wait and cwait functions return only the low-order byte of that result code.

See Also exit, _exit, spawn functions, wait

Example

/* CWAIT.C: This program launches several child processes and wa1ts
* for a specified process to finish.
*/

jtdefine INCL_NOPM

jidefine INCL_NOCOMMON

f#fdefine INCL_DOSPROCESS

ffinclude <os2.h> /* DosSleep */
#include <process.h> /* cwait */
ffinclude <stdlib.h>

fHinclude <stdio.h>

f#include <time.h>

/* Macro to get a random integer within a specified range */
fidefine getrandom(min, max) ((rand() % (int)({((max) + 1) - (min))) + (min))

struct CHILD
{
int pid;
char name[107;
} child(4]l ={({ @, "Ann")}, { O, "Beth" }, (@, "Car1™ }, { @, "Dave" } };

void main(int argc, char *argv[])
{ .
int termstat, pid, ¢, tmp;

srand((unsigned)time(NULL)); /* Seed randomizer */
/* If no arguments, this is the parent. */
if(argc == 1)
{

/* Spawn children in numeric order. */

for(¢ = 0; ¢ < 4; ct+)

childfcl.pid = spawn1(P_NOWAIT, argv[@], argv[@],
child[c).name, NULL);

cwait 180

/* Wait for randomly specified child, and respond when done. */
¢ = getrandom(@, 3);
printf("Come here, %s\n", child[c].name);
cwait(&termstat, childlcl.pid, WAIT_CHILD);
printf("Thank you, %s\n", child[c].name);
)

/* If there are arguments, this must be a child. */

else

{
/* Delay for a period determined by process number. */
DosSleep((argv[11[@] - 'A' + 1) * 1009L);
printf("Hi, dad. It's %Zs.\n", argv[l]);

Output

Come here, Carl

Hi, dad. It's Ann.
Hi, dad. It's Beth.
Hi, dad. It's Carl.
Thank you, Carl

Hi, dad. It's Dave.

181

dieeetomshin, dmsbintoieee

Description

Remarks

Return Value

Compatibility

See Also

Convert between IEEE double value and Microsoft (MS) binary double value.
#include <math.h>

int dieeetomsbin(double *src8, double *dst8);

int dmsbintoicee(double *src8, double *dst8);

src8 Buffer containing value to convert

dst8 Buffer to store converted value

The dieeetomsbin routine converts a double-precision number in IEEE (Institute of
Electrical and Electronic Engineers) format to Microsoft (MS) binary format. The routine
dmsbintoieee converts a double-precision number in MS binary format to IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE format)
to use numeric data in random-access data files created with those versions of Microsoft
BASIC that store floating-point numbers in MS binary format, and vice versa.

The argument src8 is a pointer to the double value to be converted. The result is stored at
the location given by ds?8.

These routines do not handle IEEE NANSs (“not a number”) and infinities. IEEE denormals
are treated as 0 in the conversions.

These functions return O if the conversion is successful and 1 if the conversion causes an
overflow.

O ANSI B DOS W 0S/2 0O UNIX O XENIX

fieeetomsbin, fmsbintoieee

difftime

182

Description

Remarks

Return Value

Compatibility
See Also

Example

Finds the difference between two times.
#include <time.h> Required only for function declarations
double difftime(time_t timerl, time_t timer0);

timer0 Beginning time

timerl Ending time

The difftime function computes the difference between the supplied time values, timer0
and timerl.

The difftime function returns, in seconds, the elapsed time from ¢imer0 to timerl. The
value returned is a double-precision number.

H ANSI W DOS N OS2 B UNIX M XENIX

time

/* DIFFTIME.C: This program calculates the amount of time needed to
* do a floating-point multiply 50000 times.

*/

#include <stdio.h>
Hinclude <stdlib.h>
#include <time.h>

void main()

{
time_t

start, finish;

unsigned loop;

double

result, elapsed_time;

printf("This program will do a floating point multiply 50000 times\n");
printf("Working...\n"); '

time(&start);

for(loop = @; loop < 50000L; Toop++)
result = 3.63 * 5.27;

time(&finish);

183 difftime

elapsed_time = difftime(finish, start);

printf("\nProgram takes %6.2f seconds.\n", elapsed_time);
}
Output

This program will do a floating point multiply 50000 times
Working...

Program takes 4.00 seconds.

_disable | 184

L]
Description Disables interrupts.

#include <dos.h>

void _disable(void);

Remarks The _disable routine disables interrupts by executing an 8086 CLI machine instruction.
Use _disable before modifying an interrupt vector.

Return Value None.
Compatibility DO ANSI B DOS [OS2 [OUNKX [XENIX

See Also _enable

185 _displaycursor

Description Sets the cursor toggle for graphics functions.
#include <graph.h>
short _far _displaycursor(short roggle);
toggle Cursor state

Remarks Upon entry into each graphic routine, the screen cursor is turned off. The _displaycursor
function determines whether the cursor will be turned back on when programs exit graphic
routines. If toggle is set to _GCURSORON, the cursor will be restored on exit. If toggle is
set to _GCURSOROFTF, the cursor will be left off.

Return Value The function returns the previous value of toggle. There is no error return.
Compatibility O ANSI H DOS N 0S22 0O UNIX 0O XENIX

See Also _gettextcursor, _settextcursor

Example

/* DISCURS.C: This program changes the cursor shape using _gettextcursor
* and _settextcursor, and hides the cursor using _displaycursor.
*/

ffinclude <conio.h>
f#finclude <graph.h>

void main()
{
short oldcursor;
short newcursor = 0x007; /* Full block cursor */

/* Save old cursor shape and make sure cursor is on */
oldcursor = _gettextcursor();

_cClearscreen(_GCLEARSCREEN);

_displaycursor(_GCURSORON);

_outtext("\n0id cursor shape: " }; .

getch();

/* Change cursor shape */

_outtext("\nNew cursor shape: ");
_settextcursor(newcursor);
getch();

_displaycursor | 186

/* Restore original cursor shape */
_outtext("\n");
_settextcursor(oldcursor);

}

e - div
Description Computes the quotient and the remainder of two integer values.

#include <stdlib.h>

div_t div(int numer, int denom);

numer Numerator

denom ’ Denominator
'Remarks The div function divides numer by denom, computing the quotient and the remainder. The

Return Value

Compatibility

See Also

Example

div_t structure contains the following elements:

Element Description
int quot Quotient

int rem Remainder

The sign of the quotient is the same as that of the mathematical quotient. Its absolute value
is the largest integer that is less than the absolute value of the mathematical quotient. If the
denominator is 0, the program will terminate with an error message.

The div function returns a structure of type div_t, comprising both the quotient and the re-
mainder. The structure is defined in STDLIB.H.

W ANSI H DOS N 0S/2 0[O UNIX 0O XENIX

Idiv

/* DIV.C: This example takes two integers as command-line arguments and
* displays the results of the integer division. This program accepts

* two arguments on the command line following the program name, then

* calls div to divide the first argument by the second. Finally,

* it prints the structure members quot and rem.

*/

f#finclude <stdlib.h>
f#finclude <stdio.h>
ffinclude <math.h>

div " 188

void main(‘int argc, char *argv[])
{

int x,y;

div_t div_result;

x = atoi(argv[1l]);
y = atoi(argv(2]);

printf("x is %d, y is %d\n", x, y);

div_result = div(x, y);

printf("The quotient is %d, and the remainder is %d\n",
div_result.quot, div_result.rem);

Output

[C:\LIBREF] div 876 13
x is 876, y is 13
The quotient is 67, and the remainder is 5

189 _dos_allocmem

Description Allocates a block of memory, using DOS service 0x48.

#include <dos.h>

#include <errno.h>

unsigned _dos_allocmem(unsigned size, unsigned *seg);

size Block size to allocate
seg Return buffer for segment descriptor
Remarks The _dos_allocmem function uses DOS service 0x48 to allocate a block of memory size

paragraphs long. (A paragraph is 16 bytes.) Allocated blocks are always paragraph
aligned. The segment descriptor for the initial segment of the new block is returned in the
word that seg points to. If the request cannot be satisfied, the maximum possible size (in
paragraphs) is returned in this word instead.

Return Value If successful, the _dos_allocmem returns 0. Otherwise, it returns the DOS error code and
sets errno to ENOMEM, indicating insufficient memory or invalid arena (memory area) -
headers.

Compatibility O ANSI B DOS [0 0s/2 [0 UNIX [XENIX

See Also alloca, calloc functions, _dos_freemem, _des_setblock, halloc, malloc functions

Example

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases

* the allocation to 40 paragraphs, and then frees the memory space. :
*/

f#tinclude <dos.h>
f#include <stdio.h>

void main()

{
unsigned segment;
unsigned maxsize;

_dos_allocmem 190

/* Allocate 20 paragraphs */

if(_dos_allocmem(2@, &segment) !=0)
printf("allocation failed\n");

else
printf("allocation successful\n");

/* Increase allocation to 40 paragraphs */

if(_dos_setblock(40, segment, &maxsize) !=0)
printf("allocation increase failed\n");

else
printf("allocation increase successful\n");

/* free memory */.
if(_dos_freemem(segment) != 0)
printf("free memory failed\n");
else
printf("free memory successful\n");

Output

allocation successful
allocation increase successful
free memory successful

191 _dos_close

Description Closes a file using system call INT 0x3E.

#include <dos.h> |

#include <errno.h>
unsigned _dos_close(int handle);
handle Target file handle

Remarks The _dos_close function uses system call Ox3E to close the file indicated by handle. The
file’s handle argument is returned by the call that created or last opened the file.

Return Value The function returns O if successful. Otherwise, it returns the DOS error code and sets
errno to EBADF, indicating an invalid file handle.

Do not use the DOS interface I/O routines with the console, low-level, or stream I/O
routines.

Compatibility O ANSI B DOS 0O 0s/2 O UNIX 0O XENIX

See Also close, creat, _dos_creat functions, _dos_open, _dos_read, _dos_write, dup, open

Example

/* DOPEN.C: This program uses DOS I/0 functions to open and close a file. */

ffinclude <fcntl.h>
##include <stdio.h>
#include <dos.h>

void main()
{
int fh;

/* Open file with _dos_open function */
if(_dos_open("datal", O_RDONLY, &fh) !=0)
perror("Open failed on input file\n");
else
printf("Open succeeded on input file\n");

_dos_close 192

/* Close file with _dos_close function */
if(_dos_close(fh) !=0)
perror("Close failed\n");

else
printf("File successfully closed\n");

Output

Open succeeded on input file
File successfully closed

193 _dos_creat Functions
Description Create a new file.

#include <dos.h>

#include <errno.h>

unsigned _dos_creat(char *filename, unsigned attrib, int *handle);

unsigned _dos_creatnew(char *filename, unsigned attrib, int *handle);

filename File path name

attrib File attributes

handle Handle return buffer
Remarks The _dos_creat and _dos_creatnew routines create and open a new file named filename;

Return Value

this new file has the access attributes specified in the attrib argument. The new file’s
handle is copied into the integer location pointed to by handle. The file is opened for both
read and write access. If file sharing is installed, the file is opened in compatibility mode.

The _dos_creat routine uses system call INT 0x3C, and the _dos_creatnew routine uses
system call INT 0x5B. If the file already exists, _dos_creat erases its contents and leaves
its attributes unchanged; however, the _dos_creatnew routine fails if the file already exists.

If successful, both routines return 0. Otherwise, they return the DOS error code and set
errno to one of the following values:

Constant Meaning

EACCES Access denied because the directory is full or, for _dos_creat
only, the file exists and cannot be overwritten

EEXIST File already exists (_dos_creatnew only)

EMFILE Too many open file handles

ENOENT Path or file not found

_dos_creat Functions 194

Compatibility 00 ANSI B DOS O 0S/2 0O UNIX O XENIX

Example

/* DCREAT.C: This program creates a file using the _dos_creat function. The
* program cannot create a new file using the _dos_creatnew function

* because it already exists.

* / .

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main()

{
int fhl, fh2;
int result;

if(_dos_creat("data", _A_NORMAL, &fhl) !=0)
printf("Couldn't create data file\n");

else

{
printf("Created data file.\n");

/* If _dos_creat is successful, the _dos_creatnew call
* will fail since the file exists
*/
if(_dos_creatnew("data", _A_RDONLY, &fh2) !=0)
printf("Couldn't create data file\n");
else
{
printf("Created data file.\n");
_dos_close(fh2);
}
_dos_close(fhl);
)

Output

Created data file.
Couldn't create data file

195 _dos_find Functions
Description Find the file with the specified attributes or find the next file with the specified attributes.
#include <dos.h>
#include <errno.h>
unsigned _dos_findfirst(char *filename, unsigned attrib, struct find_t *fileinfo);
unsigned _dos_findnext(struct find_t #fileinfo);
filename Target file name
attrib Target attributes
Jileinfo File-information buffer
Remarks The _dos_findfirst routine uses system call INT 0x4E to return information about the first

instance of a file whose name and attributes match filename and attrib.

The filename argument may use wildcards (* and ?). The artrib argument can be any of the
following manifest constants:

Constant Meaning

_A_ARCH Archive. Set whenever the file is changed, and cleared by the
DOS BACKUP command. ’

_A_HIDDEN Hidden file. Cannot be found with the DOS DIR command.

Returns information about normal files as well as about files
with this attribute.

_A_NORMAL Normal. File can be read or written without restriction.

_A_RDONLY Read-only. File cannot be opened for writing, and a file with
the same name cannot be created. Returns information about
normal files as well as about files with this attribute.

_A_SUBDIR Subdirectory. Returns information about normal files as well
"as about files with this attribute.

_A_SYSTEM System file. Cannot be found with the DOS DIR command.
. Returns information about normal files as well as about files
with this attribute.

_A_VOLID Volume ID. Only one file can have this attribute, and it must
be in the root directory.

_dos_find Functions 196

Multiple constants can be combined (with the OR operator), using the vertical-bar ()
character.

If the artributes argument to either of these functions is_A_RDONLY, A_HIDDEN,

_A_SYSTEM, or _A_SUBDIR, the function also returns any normal attribute files that
match the fi lename argument. That is, a normal file does not have a read-only, hidden, sys-
tem, or directory attribute.

Information is returned in a find_t structure, defined in DOS.H. The find_t structure con-
tains the following elements:

Element Description

char reserved[21] Reserved for use by DOS

char attrib Attribute byte for matched path

unsigned wr_time Time of last write to file

unsigned wr_date Date of last write to ﬁle

long size Length of file in bytes

char name[13] I;Ilull-te;ninated name of matched file/directory, without
the pat

The formats for the wr_time and wr_date elements are in DOS format and are not usable
by any other C run-time function. The time format is shown below:

Bits Contents

0-4 Number of 2-second increments (0—29)
5-10 Minutes (0—59)

11-15 Hours (0-23)

The date format is shown below:

Bits Contents

0-4 Day of month (1-31)
5-8 Month (1-12)

9-15 Year (relative to 1980)

Do not alter the contents of the buffer between a call to _dos_findfirst and a subsequent
call to the _dos_findnext function. Also, the buffer should not be altered between calls to
_dos_findnext.

197 _dos_find Functions

The _dos_findnext routine uses system call 0x4F to find the next name, if any, that
matches the filename and attrib arguments specified in a prior call to _dos_findfirst. The
fileinfo argument must point to a structure initialized by a previous call to _dos_findfirst.
The contents of the structure will be altered as described above if a match is found.

Return Value If successful, both functions return 0. Otherwise, they return the DOS error code and set
errno to ENOENT, indicating that filename could not be matched.

Compatibility = O ANSI H DOS 0O 0S/2 O UNIX 0O XENIX

Example

/* DFIND.C: This program finds and prints all files in the current directory with
* the .c extension.
*/

f#include <stdio.h>
iHinclude <dos.h>

main()
(
struct find_t c_file;

/* find first .c file in current directory */
dos_findfirst("*.c", _A_NORMAL, &c_file);

printf("Listing of .c files\n\n");
printf("File: %s is %1d bytes\n", c_file.name, c_file.size);

/* find the rest of the .c files */
while(_dos_findnext(&c_file) == 0)
printf("File: %s is %1d bytes\n", c_file.name, c_file.size);

Output
Listing of .c files

File: CHDIR.C is 524 bytes
File: SIGFP.C is 2674 bytes
File: MAX.C is 258 bytes
File: CGETS.C is 577 bytes
File: FWRITE.C is 1123 bytes

_dos_freemem . 198

Description

Remarks

Return Value

Compatibility

See Also

Example

Releases a block of memory (INT 0x49).

#include <dos.h>

#include <errno.h>
unsigned _dos_freemem(unsigned seg);
seg Block to be released

The _dos_freemem function uses system call 0x49 to release a block of memory pre-
viously allocated by _dos_allocmem. The seg argument is a value returned by a previous
call to _dos_allocmem. The freed memory may no longer be used by the application
program. '

If successful, _dos_freemem returns 0. Otherwise, it returns the DOS error code and sets
errno to ENOMEM, indicating a bad segment value (one that does not correspond to a seg-
ment returned by a previous _dos_allocmem call) or invalid arena headers.

O ANSI B DOS [J OS2 0O UNIX 0O XENIX

_dos_allocmem, _dos_setblock, free functions

/* DALOCMEM.C: This program allocates 2@ paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.

*/

fHinclude <dos.h>
f#finclude <stdio.h>

void main()

{

unsigned segment;
unsigned maxsize;

/* Allocate 20 paragraphs */
if(_dos_allocmem(2@, &segment) !=0)
printf("allocation failed\n");

else

printf("allocation successful\n®);

199 _dos_freemem

/* Increase allocation to 40 paragraphs */

if(_dos_setblock(4@, segment, &maxsize) !=0)
printf("allocation increase failed\n");

else
printf("allocation increase successful\n");

/* Free memory */
if(_dos_freemem(segment) != 0)
printf("free memory failed\n");
else
printf("free memory successful\n");

Output

allocation successful
allocation increase successful
free memory successful

_dos_getdate 200

Description Gets current system date using system call INT 0x2A.
#include <dos.h>
void _dos_getdate(struct dosdate_t *date);
date Current system date
Remarks The _dos_getdate routine uses system call 0x2A to obtain the current system date. The

date is returned in a dosdate_t structure, defined in DOS.H.

The dosdate_t structure contains the following elements:

Element Description

unsigned char day 1-31

unsigned char month 1-12

unsigned int year 1980-2099

unsigned char dayofweek 0-6 (0 = Sunday)
Return Value None. ;

Compatibility O ANSI E DOS 0O 0S/2 O UNIX O XENIX

See Also _dos_gettime, _dos_setdate, _dos_settime, gmtime, localtime, mktime, _strdate,
_strtime, time

Example

/* DGTIME.C: This program gets and displays current date and time values. */

#include <stdio.h>
{#finclude <dos.h>

void main()

{)
struct dosdate_t date;
struct dostime_t time;

201 _dos_getdate

/* Get current date and time values */

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day, date.year);
printf(“The time is %02d:%@2d\n", time.hour, time.minute);

Output

Today's date is 6-15-1989
The time is 18:07

_dos_getdiskfree 202

Description

Remarks

Return Value

Compatibility

See Also

Example

Gets disk information using system call INT 0x36.

#include <dos.h>

#include <errno.h>
unsigned _dos_getdiskfree(unsigned drive, struct diskfree_t *diskspace);

drive Drive number (default is 0)

diskspace Buffer to hold disk information

The _dos_getdiskfree routine uses system call 0x36 to obtain information on the disk
drive specified by drive. The default drive is 0, drive A is 1, drive B is 2, and so on.
Information is returned in the diskfree_t structure (defined in DOS.H) pointed to by
diskspace.

The struct diskfree_t structure contains the following elements:

Element Description

unsigned total_clusters Total clusters on disk
unsigned avail_clusters ~ Available clusters on disk
unsigned sectors_per_cluster Sectors per cluster
unsigned bytes_per_sector Bytes per sector

If successful, the function returns 0. Otherwise, it returns a nonzero value and sets errno to
EINVAL, indicating that an invalid drive was specified.

O ANSI B DOS 0O 0s/2 O UNIX O XENIX

_dos_getdrive, _dos_setdrive

/* DGDISKFR.C: This program displays information about the default disk drive. */

#include <stdio.h>
#include <dos.h>

203 _dos_getdiskfree

main()
{
struct diskfree_t drive;

/* Get information on default disk drive 9 */

_dos_getdiskfree(@, &drive);

printf("total clusters: %d\n", drive.total_clusters);

printf("available clusters: %Zd\n", drive.avail_clusters);
printf("sectors per cluster: %d\n", drive.sectors_per_cluster);
printf("bytes per sector: %d\n", drive.bytes_per_sector);

Output

total clusters: 9013
available clusters: 6030
sectors per cluster: 4
bytes per sector: 512

_dos_getdrive 204

Description Gets the current disk drive using system call INT 0x19.
~ #include <dos.h>
void _dos_getdrive(unsigned *drive);
drive Current-drive return buffer

Remarks The _dos_getdrive routine uses system call 0x19 to obtain the current disk drive. The cur-
rent drive is returned in the word that drive points to: 1 = drive A, 2 = drive B, and so on.

Return Value None.
Compatibility 0O ANSI B DOS 0O OS2 0O UNIX O XENIX
See Also _dos_getdiskfree, _dos_setdrive, _getdrive

Example

/* DGDRIVE.C: This program prints the letter of the current drive,

* changes the default drive to A, then returns the number of disk drives.
*/

f#include <stdio.h>
#include <dos.h>

void main()

{
unsigned olddrive, newdrive;
unsigned number_of_drives;

/* Print current default drive information */
_dos_getdrive(&olddrive);
printf("The current drive is: %Zc\n", 'A' + olddrive - 1);

/* Set default drive to be drive A */
printf("Changing default drive to A\n");
_dos_setdrive(1, &number_of_drives);

/* Get new default drive information and total number of drives */
_dos_getdrive(&newdrive);

printf("The current drive is: %c\n", 'A' + newdrive - 1);
printf("Number of logical drives: %d\n", number_of_drives);

205 _dos_getdrive

/* Restore default drive */
_dos_setdrive(olddrive, &number_of_drives);

Output

The current drive is: C
Changing default drive to A
The current drive is: A
Number of logical drives: 26

_dos_getfileattr 206

Description

Remarks

Return Value

Gets the current attributes of a file or directory, using system call INT 0x43.

#include <dos.h>

#include <errno.h>
unsigned _dos_getfileattr(char *pathname, unsigned *artrib);

pathname Full path of target file/directory

aitrib Word to store attributes in

The _dos_getfileattr routine uses system call 0x43 to obtain the current attributes of the
file or directory pointed to by pathname . The attribu