
Operating System

Programmer's Reference Manual

Microsoft Corporation

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is
against the law to copy the Programmer's Reference Manual on
magnetic tape, disk, or any other medium for any purpose
other than the purchaser's pers9nal use.

(C) Microsoft Corporation 1981, 1983, 1984

Portions of this manual (C) Intel Corporation 1980

Comments about this documentation may be sent to:

Microsoft Corporation
Microsoft Building
10700 Northup Way
Bellevue, WA 98004

Microsoft is
Corporation.

a registered trademark of Microsoft

MS is a registered trademark of Microsoft Corporation.

XENIX is a trademark of Microsoft Corporation.

CP/M is a registered trademark of Digital Research, Inc.

INTEL is a registered trademark of Intel Corporation.

Epson is a registered trademark of Epson Corporation.

Document No. 8411-310-02
Part No. 036-014-012

System Requirements

Disk drive(s)
One disk drive if and only if output is sent to the
same physical disk from which the input was taken.
None of the programs allows time to swap disks
during operation on a one-drive configuration.
Therefore, two disk drives is a more practical
cxmfiguration.

For more information about other
contact:

Microsoft Corporation
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

Microsoft products,

Contents

Chapter 1 System Calls

1.1 Introduction 1-1
1.2 Standard Character Device I/O 1-2
1.3 1rIemory !vlanagement 1-4
1.4 Process Management 1-5
1.5 File and Directory Management 1-7
1.6 !vIicrosoft Networks 1-14
1.7 !vIiscellaneous System Management 1-15
1.8 Old System Calls 1-15
1.9 Using the System Calls 1-19
1.10 Interrupts 1-31
1.11 Function Requests 1-46

Chapter 2 MS-DOS Device Drivers

2.1 Introduction 2-1
2.2 Format of a Device Driver 2-2
2.3 How to Create a Device Driver 2-4
2.4 Installation of Device Drivers 2-5
2.5 Device Headers 2-6
2.6 Request Header 2-9
2.7 Device Driver Functions 2-11
2.8 !vIedia Descriptor Byte 2-23
2.9 Format of a Media Descriptor Table 2-24
2.10 The CLOCK Device 2-26
2.11 Anatomy of a Device Call 2-27
2.12 Example of Device Drivers 2-29

Chapter 3 MS-DOS Technical Information

3.1 !vIS-DOS Initialization 3-1
3.2 The Command Processor 3-1
3.3 !vIS-DOS Disk Allocation 3-2
3.4 !vIS-DOS Disk Directory 3-2
3.5 File Allocation Table (FAT) 3-5
3.6 !vIS-DOS Standard Disk Formats 3-8

Chapter 4 MS-DOS Control Blocks and \Vork Areas

4.1 Typical !vIS-DOS Memory 1tIap 4-1
4.2 1v1S-DOS Program Segment 4-2

Chapter 5 .EXE File Structure and Loading

Chapter 6 Intel Relocatable Object Module Formats

6.1 Introduction 6-1
6.2 Definition of Terms 6-2
6.3 1vIodule Identification and Attributes 6-4
6.4 Segment Definition 6-4
6)) Segment Addressing 6-5
6.6 Symbol Definition 6-6
6.7 Indices 6-7
6.8 Conceptual Framework for Fixups 6-8
6.9 Self-Relative Fixups 6-13
6.10 Segment-Relative Fixups 6-14
6.11 Record Order 6-14
6.12 Introduction to the Record Formats 6-16
6.13 Numeric List of Record Types 6-47
6.14 Microsoft Type Representa.tions for Communal

Variables 6-48

Chapter 7 Programming Hints

7.1 Introduction 7-1
7.2 Interrupts 7-1
7.3 System Calls 7-3
7.4 Device 1vIanagement 7-3
7 Jj 1vIemory !vlanagement 7-4
7.6 Process Management 7-5
7.7 File and Directory Management 7-5
7.8 1vIiscellaneous 7-6

Chapter 1
System Calls

1.1 Introduction 1-1
1.1.1 System Calls That Have Been Superseded 1-2

1.2 Standard Character Device I/O 1-2

1.3 Memory Management 1-4

1.4 Process Management 1-5
1.4.1 Loading and Executing A Program 1-6
1.4.2 Loading An Overlay 1-7

1.5 File and Directory Management 1-7
1.5.1 Handles I-S
1.5.2 File-Related Function Requests I-S
1.5.3 Device-Related Function Requests 1-11
1.5.4 Directory-Related Function Requests 1-11
1.5.5 Directory Entry 1-12
1.5.6 File Attributes 1-13

1.6 Microsoft ~etworks 1-14

1.7 Miscellaneous System :\1anagement 1-1.:)

1.S Old System Calls 1-15
1.S.1 File Control Block (FCB) 1-16

1.9 Using the System Calls 1-19
1.9.1 Issuing An Interrupt 1-19
1.9.2 Calling A Function Request 1-20
1.9.3 Using The Calls From A High-Level Language 1-20
1.9.4 Treatment Of Registers 1-21
1.9.5 Handling Errors 1-21
1.9.6 System Call Descriptions 1-23

1.10 Interrupts 1-31

1.11 Function Requests 1-46

SYSTEM CALLS

1.1 INTRODUCTION

The routines that MS-DOS uses to manage system operation and
resources can be called by any application program. Using
these system calls makes it easier to write
machine-1ndepende~rograms and increases the likelihood
that a program will be compatible with future versions of
MS-DOS. MS-DOS system calls fall into several categories:

Standard character device I/O

Memory management

Process management

File and directory management

Microsoft Network calls

Miscellaneous system functions

MS-DOS services are invoked by an application by software
interrupts. The current range of interrupts used for MS-DOS
is 20H-27H, with 28H-40H reserved. Interrupt 2lH is the
function request service, and provides access to a wide
var1ety of MS-DOS services. The selection of the Interrupt
2lH function is through a function number placed in the AH
register by the application. In some cases, the full AX
register is used to specify the requested function. Each
interrupt or function request uses values in various
registers to receive or return function-specific
information.

SYSTEM CALLS Page 1-2

1.1.1 System Calls That Have Been Superseded

Many system calls introduced in versions of MS-DOS earlier
than 2.0 have been superseded by function requests that are
simpler to use and make better use of system resources.
Although MS-DOS still includes these old system calls, they
should not be used unless it is imperative that a program
maintain backward-compatibility with the pre-2.0 versions of
MS-DOS.

A table of the pre-2.0 system calls and a description of the
File Control Block (required by some of the old calls)
appears in Section 1. 8, "Old System Calls."

The first part of this chapter explains how DOS manages its
resources such as memory, files, and processes -- and
briefly describes the purpose of most of the system calls.
The remainder of the chapter describes each interrupt and
function request in detail. The system call descriptions
are in numeric order, interrupts followed by function
requests. These descriptions include further detail on how
MS-DOS manages its resources.

Chapter 2 of this book describes how to write an MS-DOS
device driver. Chapters 3, 4, and 5 contain more detailed
information about MS-DOS, including how it manages disk
space, the control blocks it uses, and how it loads and
executes relocatable programs (files with an extension of
.EXE). Chapter 6 describes the Intel{R) object module
format. Chapter 7 gives some programming hints.

1.2 STANDARD CHARACTER DEVICE I/O

The standard character function requests handle all input
and output to and from character devices such as the
console, printer, and serial ports. If a program uses these
function requests, its input and output can be redirected.

Table 1.1 lists the MS-DOS function requests for managing
standard character input and output.

SYSTEM CALLS Page 1-3

Tab1e 1.1 Standard Character I/O Function Requests

OlH Read Keyboard
and Echo

02H Display Character

03H Auxiliary Input

04H Auxiliary Output

OSH Print Character

Gets a character from standard input
and echoes it to standard output.

Sends a character to standard
Oltput.

Gets a character from standard
auxiliary.

Sends a character to standard
auxiliary.

Sends a character to the standard
printer.

06H Direct Console I/O Gets a character from standard input
or sends a character to standard
ootput.

07H Direct Console
Input

08H Read Keyboard

09H Display String

OAH Buffered Keyboard
Input

OBH Check Keyboard
Status

OCH Flush Buffer,
Read Keyboard

Gets a character from standard
input.

Gets a character from standard
input.

Sends a string to standard output.

Gets a string from standard input.

Reports on the status of the
standard input buffer.

Empties the standard input buffer
and calls one of the other standard
character I/O function requests.

Although several of these standard character I/O function
requests seem to do the same thing, they are distinguished
by whether they echo characters from standard input to
standard output or check for control characters. The
detailed descriptions later in this chapter point out the
differences.

SYSTEM CALLS Page 1-4

1.3 MEMORY MANAGEMENT

MS-DOS keeps track of which areas of memory are allocated by
writing a memory control block at the beginning of each area
of memory. ThlS control block specifies the size of the
memory area; the name of the process, if any, that owns the
memory area; and a pointer to the next area of memory. If
the memory area is not owned, it is available.

Table 1.2 lists the MS-DOS function requests for managing
memory.

Table 1.2 Memory Management Function Requests

48H Allocate Memory

49H Free Allocated
Memory

4AH Set Block

Requests a block of memory.

Frees a block of memory previously
allocated with 48H.

Changes the size of an allocated
memory block.

When a process requests additional memory with Function 48H,
MS-DOS searches for a block of available memory large enough
to satisfy the request. If it finds such a block of memory,
it changes the memory control block to show the owning
process. If the block of memory is larger than the
requested amount, MS-DOS changes the size field of the
memory control block to the requested amount, writes a new
memory control block at the beginning of the unneeded
portion that shows it is available, and updates the pointers
to add this memory to the chain of memory control blocks.
MS-DOS then returns the segment address of the first byte of
the allocated memory to the requesting process.

When a process releases an allocated block of memory with
Function 49H, DOS changes the memory control block to show
that it is available (not owned by any process).

When a process shrinks an allocated block of memory with
Function 4AH, DOS builds a memory control block for the
memory being released and adds it to the chain of memory
control blocks. When a process tries to expand an allocated
block of memory with Function 4AH, MS-DOS treats it as a
request for additional memory; rather than returning the
segment address of the additional memory to the requesting
process, however, MS-DOS simply chains the additional memory
to the existing memory block.

If MS-DOS can't find a block of available memory large
enough to satisfy a request for additional memory -- made
with either Function 48H or Function 4AH MS-DOS returns
an error code to the requesting process.

SYSTEM CALLS Page 1-5

When a program receives control, it should call Function 4AH
to shrink its initial memory allocation block (the block
that begins with its Program Segment Prefix) to the minimum
it requires. This frees unneeded memory and makes the best
application design for portability to future multitasking
environments.

When a program exits, MS-DOS automatically frees its initial
memory allocation block before returning control to the
calling program (COMMAND.COM is usually the calling program
fOr application programs). The DOS frees any memory owned
by the process exiting.

Any program that changes memory not allocated to it will
most likely destroy at least one memory management control
block. This causes a memory allocation error the next time
MS-DOS tries to use the chain of memory control blocks; the
only cure is to restart the system.

1.4 PROCESS MANAGEMENT

MS-DOS uses several function requests to load, execute, and
terminate programs. Application programs can use these same
function requests to manage other programs.

Table 1.3 lists the MS-DOS function requests for managing
processes.

Table 1.3 Process Management Function Requests

31H Keep Process

4BOOH Load and Execute
Program

4B03H Load Overlay

4CH End Process

4DH Get Return Code
of Child Process

62H Get PSP

Terminates a process and returns
control to the invoking process,
but keeps the terminated process
in memory.

Loads and executes a program.

Loads a program overlay without
executing it.

Returns control to the invoking
process.

Returns a code passed by a child
process when it exits.

Returns the segment address of the
Program Segment Prefix of the
current process.

SYSTEM CALLS Page 1-6

1.4.1 Loading And Executing A Program

When a program loads and executes another program with
Function 4BOOH, MS-DOS allocates memory, writes a program
segment Prefix (PSP) for the new program at offset 0 of the
allocated memory, loads the new program, and passes control
to it. When the invoked program exits, control returns to
the calling program.

COMMAND.COM uses Function 4BOOH to load and execute command
files. Application programs have the same degree of control
over process management as COMMAND.COM.

In addition to these cornmon features, there are some
differences in the way MS-DOS loads .COM and .EXE files.

LOading a .COM Program

When COMMAND.COM loads and executes a .COM program, it
allocates all of available memory to the application and
sets the stack pointer lOOH bytes from the end of available
memory. A .COM program should set up its own stack before
shrinking its initial memory allocation block with Function
4AH, because the default stack is in the memory to be
released.

If a newly loaded program is allocated all of memory -- as a
.COM program is -- or requests all of available memory with
Function 48H, MS-DOS allocated to it the memory occupied by
the transient part of COMMAND.COM. If the program changes
this memory, MS-DOS must reload the transient portion of
COMMAND.COM before it can continue. If a program exits (via
call 31H, Keep Process) without releasing enough memory, the
system halts and must be reset. To minimize this
possibility, a .COM program should shrink its initial
allocation block with Function 4AH before doing anything
else, and all programs must release all memory they allocate
with Function 48H before exiting.

Loading an .EXE Program

When COMMAND.COM loads and executes an .EXE program, it
allocates the size of the program's memory image plus either
the value in the MAXALLOC field (offset OCH) of the file
header, if that much memory is available, or the value in
the MINALLOC field (offset OAH). These fields are set by
the linker. Before passing control to the .EXE file, MS-DOS
calculates the correct relocation addresses, based on the
relocation information in the file header.

For a more detailed description of how MS-DOS loads .COM and
.EXE files, see Chapters 3 and 4.

SYSTEM CALLS Page 1-7

Executing a Program From Within Another Program

Because COMMAND.COM takes care of details such as building
complete pathnames, searching the directory path for
executable files, and relocating .EXE files, the simplest
way to load and execute a program is to load and execute an
additional copy of COMMAND.COM, passing it a command line
that includes the IC switch to invoke the .COM or .EXE file.
The description of Function 4BOOH (Load and Execute Program)
describes how to do this.

1.4.2 Loading An Overlay

When a program loads an overlay with Function 4B03H, it must
pass to MS-DOS the segment address at which the overlay is
to be loaded. The program then must call the overlay, and
the overlay returns directly to the calling program. The
calling program is in complete control: MS-DOS does not
write a PSP for the overlay or intervene in any other way.

MS-DOS does not check to see if the calling program owns the
memory where the overlay is to be loaded. If the calling
program does not own the memory, loading the overlay will
most likely destroy a memory control block, causing an
eventual memory allocation error.

A program that loads an overlay must, therefore, either
allow room for the overlay when it calls Function 4AH to
shrink its initial memory allocation block, or should shrink
its initial memory allocation block to the minimum and then
use Function 48H to allocate memory for the overlay.

1.5 FILE AND DIRECTORY MANAGEMENT

The MS-DOS hierarchical (multilevel) file system is similar
to that of the XENIX operating system. For a description of
the multilevel directory system and how to use it, see the
MS-DOS User's Reference.

SYSTEM CALLS page 1-8

1.5.1 Handles

To create or open a file, a program passes to MS-DOS a
pathname and the attribute to be assigned to the file.
MS-DOS returns a l6-bit number called a handle. For most
subsequent actions, MS-DOS requires onry--this handle to
identify the file.

A handle can refer to either a file or a device. MS-DOS
predefines five standard handles. These handles are always
open; you needn't open them before you use them. Table 1.4
lists these predefined handles.

Table 1.4 Predefined Device Handles

Handle

o
1
2
3
4

Standard device

Input
Output
Error
Auxiliary
Printer

Comment

Can be redirected from command line
Can be redirected from command line

When MS-DOS creates or opens a file, it assigns the first
available handle. A program can have 20 open handles; this
includes the five predefined handles, so a program can
typically open 15 extra files. Any of the five predefined
handles can be temporarily forced to refer to an alternate
file or device using function request 46H.

1.5.2 Fi1e-Related Function Requests

MS-DOS treats a file as a string of bytes; it assumes no
record structure or access technique. An application
program imposes whatever record structure it needs on this
string of bytes. Reading from or writing to a file requires
only pointing to the data buffer and specifying the number
of bytes to read or write.

SYSTEM CALLS Page 1-9

Table 1.S lists the MS-DOS function requests for managing
files.

Table 1.5 File-Related Function Requests

3CH Create Handle

3DH Open Handle

3EH Close Handle

3FH Read Handle

40H write Handle

42H Move File
pointer

4SH Duplicate File
Handle

46H Force Duplicate
File Handle

SAH Create
Temporary File

SBH Create New File

Creates a file.

Opens a file.

Closes a file.

Reads from a file.

Writes to a file.

Sets the read/write pointer in a
file.

Creates a new handle that refers to
the same file as an existing handle.

Makes an existing handle refer to
the same file as another existing
handle.

Creates a file with a unique name.

Attempts to create a file, but fails
if a file with the same name exists.

SYSTEM CALLS Page 1-10

File Sharing

Version 3.1 of MS-DOS introduces file sharing, which lets
more than one process share access to a file. File sharing
operates only after the Share command has been executed to
load file-sharing support. Table 1.6 lists the MS-DOS
function requests for sharing files; if file sharing is not
in effect, these function requests cannot be used. Function
3DH, Open Handle, can operate in several modes.
Compatibility mode is usable without file sharing in effect.
Here it is referred to in the file-sharing modes, which
require file sharing to be in effect.

Table 1.6 File-Sharing Function Requests

3DH Open Handle

440BH IOCTL Retry

5COOH Lock

5COIH Unlock

Opens a file with one of the
file-sharing modes.

Specifies how many times an I/O
operation that fails due to a
file-sharing violation should be
retried before Interrupt 24 is
issued.

Locks a region of a file.

Unlocks a region of a file.

SYSTEM CALLS Page 1-11

1.5.3 Device-Related Function Requests

I/O Control for Devices is implemented with Function 44H
(IOCTL); it includes several action codes to perform
different device-related tasks. Some forms of the IOCTL
function request require that the device driver be written
to support the IOCTL interface. Table 1.7 lists the MS-DOS
function requests for managing devices.

Table 1.7 Device-Related Function Requests

4400H,OlH IOCTL Data Gets or sets device
descr iption.

4402H,03H IOCTL Character Gets or sets character
device control data.

4404H,05H IOCTL Block Gets or sets block device
oontrol data.

4406H,07H IOCTL Status Checks device input or
ootput status.

4408H IOCTL Is Changeable Checks whether block device
oontains removable medium.

Some forms of the IOCTL function request can only be used
with Microsoft(R) Networks; they are listed in Section 1.6,
"Microsoft Networks."

1.5.4 Directory-Related Function Requests

The root directory on a disk has room for a fixed number of
entries: 64 on a standard single-sided disk, 112 on a
standard double-sided disk. For hard disks, the number of
directories is dependent on the DOS partition size. A
subdirectory is simply a file with a unique attribute;
there can be as many subdirectories on a disk as space
allows. The depth of a directory structure, therefore, is
limited only by the amount of storage on a disk and the
maximum pathname length of 64 characters.

The root directory is identical to the pre-2.0 directory.
Pre-2.0 disks appear to have only a root directory that
contains files but no subdirectories.

SYSTEM CALLS Page 1-12

Table 1.8 lists the MS-DOS function requests for managing
directories.

Table 1.8 Directory-Related Function Requests

39H Create Directory

3AH Remove Directory

3BH Change Current
Directory

41H Delete
Directory Entry
(Unlink)

43H Get/Set File
Attributes
(Chmod)

47H Get Current
Directory

4EH Find First File

4FH Find Next File

56H Change
Directory Entry

57H Get/Set Date/Time
of File

1.5.5 Directory Entry

Creates a subdirectory.

Deletes a subdirectory.

Changes the current directory.

Deletes a file.

Retrieves or changes the attributes
of a file.

Returns current directory for a
given drive.

Searches a directory for the first
entry that matches a filename.

Searches a directory for the next
entry that matches a filename.

Renames a file.

Changes the time and date of
last change in a directory entry.

A directory entry is a 32-byte record that includes the
file's name, extension, date and time of last change, and
size. An entry in a subdirectory is identical to an entry
in the root directory. The directory entry is described in
detail in Chapter 3.

SYSTEM CALLS Page 1-13

1.5.6 File Attributes

Table 1.9 describes the file attributes and how they are
represented in the attribute byte of the directory entry
(offset OBH). The attributes can be inspected or changed
with Function 43H (Get/Set File Attributes) .

Table 1.9 File Attributes

Code Description

OOH Normal. Can be read or written without restriction.

OlH Read-only. Cannot be opened for write; a file with the
same name cannot be created.

02H Hidden. Not found by directory search.

04H System. Not found by directory search.

08H Volume-IDe Only one file can have this attribute; it
must be in the root directory.

lOH Subdirectory.

20H Archive. Set whenever the file is changed, cleared
by the Backup command.

The Volume-ID (08H) and Directory (lOH) attributes cannot be
changed with Function 43H (Get/Set File Attributes).

SYSTEM CALLS Page 1-14

1.6 MICROSOFT NETWORKS

A Microsoft Network consists of a server and one or more
workstations. MS-DOS maintains an assign list that keeps
track of which workstation drives and devices have been
redirec.ted to the server. For a description of operation
and use of the network, see the Microsoft Networks Manager's
Guide, and User's Guide.

Table 1.10 lists the MS-DOS function requests for managing a
Microsoft Networks workstation.

Table 1.10 Microsoft Network Function Requests

4409H IOCTL Is Redirected
Block

440AH IOCTL Is Redirected
Handle

SEOOH Get Machine Name

SE02H Printer Setup

SF02H Get Assign List
Entry

SF03H Make Assign List
Entry

SF04H Cancel Assign List
Entry

Checks whether a drive letter
refers to a local or redirected
drive.

Checks whether a device name
refers to a local or redirected
device.

Gets the network name of the
workstation.

Defines a string of control
characters to be added at the
beginning of each file sent to a
network printer.

Gets an entry from the assign
list that shows the workstation
drive letter or device name and
the net name of the directory or
device on the server to which
it is reassigned.

Redirects a workstation drive or
device to a server directory or
device.

Cancels the redirection of a
workstation drive or device to a
server directory or device.

SYSTEM CALLS Page 1-15

1.7 MISCELLANEOUS SYSTEM MANAGEMENT

The remaining system calls manage other system functions and
resources such as drives, the clock, and addresses. Table
1.11 lists the MS-DOS function requests for managing
miscellaneous system resources and operation.

Table 1.11 Miscellaneous System-Management Function Requests

ODH
OEH
19H
lAH

lBH

lCH
25H
29H
2AH
2BH
2CH
2DH
2EH
2FH

30H

33H
35H

36H
38H

54H

Reset Disk
Select Disk
Get Current Disk
Set Disk Transfer
Address
Get Default Drive
Data
Get Drive Data
Set Interrupt Vector
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag
Get Disk Transfer
Address
Get MS-DOS Version
Number
Control-C Check
Get Interrupt Vector

Get Disk Free Space
Get/Set Country Data

Get verify State

1.8 OLD SYSTEM CALLS

Empties all file buffers.
Sets the default drive.
Returns the default drive.
Establishes the disk I/O buffer.

Returns disk format data.

Returns disk format data.
Sets interrupt handler address.
Checks string for valid filename.
Returns system date.
Sets system date.
Returns system time.
Sets system time.
Turns disk verify on or off.
Returns system disk I/O buffer
address.
Returns MS-DOS version number.

Returns Control-C check status.
Returns address of interrupt
handler.
Returns disk space data.
Sets current country or retrieves
country information.
Returns status of disk verify.

Most of the system calls that have been superseded deal with
files. Table 1.12 lists these old calls and the function
requests that have superseded them.

Although MS-DOS still includes these old system calls, they
should not be used unless it is imperative that a program
maintain backward-compatibility with the pre-2.0 versions of
MS-DOS.

SYSTEM CALLS Page 1-16

Table 1.12 Old System Calls and Their Replacements

Old System Call

Function Requests

OOH
OFH
10H
IlH
12H
13H
14H
15H
16H

17H
21H
22H
23H
24H
26H
27H
28H

Terminate Program
Open File
Close File
Search for First Entry
Search for Next Entry
Delete File
Sequential Read
Sequential Write
Create File

Rename File
Random Read
Random Write
Get File Size
Set Relative Record
Create New PSP
Random Block Read
Random Block Write

Interrupts

20H
27H

Program Terminate
Terminate But Stay
Resident

Has Been Superseded By

Function Requests

4CH End Process
3DH Open Handle
3EH Close Handle
4EH Find First File
4FH Find Next File
41H Delete Directory Entry
3FH Read Handle
3DH Open Handle
3CH Create Handle
5AH Create Temporary File
5BH Create New File
56H Change Directory Entry
3FH Read Handle
40H write Handle
42H Move File Pointer
42H Move File Pointer
4BOOH Load and Execute program
3FH Read Handle
40H write Handle

Function Requests

4CH
31H

End Process
Keep Process

1.8.1 File Control Block (FCB)

The old file-related function requests require that a
program maintain a File Control Block (FCB) for each file;
this control block contains such information as the file's
name, size, record length, and pointer to current record.
MS-DOS does most of this housekeeping for the newer,
handle-oriented function requests.

Some descriptions of the old function requests refer to
unopened and opened FCBs. An unopened FCB contains only a
drive specifier and filename. An opened FCB contains all
fields filled by Function OFH (Open File).

The program Segment Prefix (PSP) includes room for two FCBs
at offsets 5CH and 6CH. See Chapter 4 for a description of
the PSP and how these FCBs are used. Table 1.13 describes
the fields of the FCB.

SYSTEM CALLS Page 1-17

Table 1.13 Format of the File Control Block (FCB)

Offset
Hex Dec Bytes Name

~OH 0 1 Drive number
01H 1 8 Filename
09H 9 3 Extension
OCH 12 2 Current block
OEH 14 2 Record size
10H 16 4 File size
14H 20 2 Date of last write
l6H 22 2 Time of last write
l8H 24 8 RESERVED
20H 32 1 Current record
2lH 33 4 Relative record

Fields of the FCB

Drive Number (offset OOH): Specifies the disk drive; 1
means drive A and 2 means drive B. If the FCB is used to
create or open a file, this field can be set to 0 to specify
the default drive; the Open File system call sets the field
to the number of the default drive.

Filename (offset OlH): Eight characters, left-aligned and
padded (if necessary) with blanks. If you specify a
reserved device name (such as PRN), do not put a colon at
the end.

Extension (offset 09H):
padded (if necessary)
blanks (no extension).

Three characters, left-aligned and
with blanks. This field can be all

Current Block (offset OCH): Points to the block (group of
128 records) that contains the current record. This field
and the Current Record field (offset 20H) make up the record
pointer. This field is set to 0 by the Open File system
call.

Record Size (offset OEH): The size of a logical record, in
bytes. --set to 12g--Qy the Open File system call. If the
record size is not 128 bytes, you must set this field after
opening the file.

File Size (offset 10H): The size of the file, in bytes.
The first word of this 4-byte field is the low-order part of
the size.

SYSTEM CALLS Page 1-18

Date of Last Write (offset 14H):
created -or- last updated.----The
mapped into two bytes as follows:

The date the file was
year, month, and day are

Offset 15H
lylylylylylylylMI
15 9

Offset 14H
IMIMIMIDIDIDIDIDI
854 a

Time of Last Write (offset l6H): The time the file was
created or last updated. The hour, minutes, and seconds are
mapped into two bytes as follows:

Offset 17H
IHIHIHIHIHIMIMIMI
15 11 10

Reserved (offset 18H):
MS-DOS. --

Offset 16H
IMIMIMlslslslslsl

5 4 a

These fields are reserved for use by

Current Record (offset 20H): Points to one of the 128
records ln the curre~lock. This field and the Current
Block field (offset OCH) make up the record pointer. This
field is not initialized by the Open File system call. You
must set it before doing a sequential read or write to the
file.

Relative Record (offset 21H): Points to the currently
selected record, counting--from the beginning of the file
(starting with 0). This field is not initialized by the
Open File system call. You must set it before doing a
random read or write to the file. If the record size is
less than 64 bytes, both words of this field are used; if
the record size is 64 bytes or more, only the first three
bytes are used.

Note

If you use the FCB at offset 5CH of the Program Segment
Prefix, the last byte of the Relative Record field is
the first byte of the unformatted parameter area that
starts at offset 80H. This is the default Disk Transfer
Area.

SYSTEM CALLS Page 1-19

Extended FCB

The Extended File Control Block is used to create or search
for directory entries of files with special attributes. It
adds the following 7-byte prefix to the FCB:

Size
Name (bytes) Offset

Flag byte (FFH) 1 -07H
Reserved 5 -06H
Attribute byte 1 -OlH

File attributes are described earlier in this chapter in
section 1.5.6, "File Attributes."

1.9 USING THE SYSTEM CALLS

The remainder of this chapter describes how to use the
system calls in application programs, lists all the calls in
both numeric and alphabetic order, and describes each call
in detail.

1.9.1 Issuing An Interrupt

MS-DOS reserves Interrupts 20H through 3FH for its own use.
The table of interrupt handler addresses (vector table) is
maintained in locations 80H-FCH. Most of the interrupts
have been superseded by function requests. Descriptions of
three MS-DOS interrupt handlers (Program Terminate,
Control-C, and Critical Error) are included in case you must
write your own routines to handle these interrupts.

TO issue an interrupt, move any required data into the
registers and issue the interrupt.

SYSTEM CALLS Page 1-20

1.9.2 Calling A Function Request

The function requests call MS-DOS routines to manage system
resources. Follow this procedure to call a function
request:

1. Move any required data into the registers.

2. Move the function number into AH.

3. Move the action code, if required, into AL.

4. Issue Interrupt 21H.

If your program has a standard Program Segment Prefix, an
alternative to issuing Interrupt 21H is to execute a long
call to location SOH in the PSP.

Whenever possible, it is recommended that the Interrupt 21H
method be used.

One other technique supports earlier calling conventions:
move any required data into the registers; move the
function number into CL; and execute an intrasegment call
to location OSH in the current code segment (this location
contains a long call to the MS-DOS function dispatcher).
This method can only be used with functions OOH through 24H,
and always destroys the contents of AX.

1.9.3 Using The Calls From A High-Level Language

The system calls can be executed from any high-level
language whose modules can be linked with assembly language
modules. In addition to this general technique:

• You can use the DOSXQQ function of Pascal-86 to
call a function request directly.

• Use the CALL statement or USER function to execute
the required assembly-language code from the BASIC
interpreter.

SYSTEM CALLS Page 1-21

1.9.4 Treatment Of Registers

When MS-DOS takes control after a function request, it
switches to an internal stack. Registers not used to return
information (except AX) are preserved. The calling
program's stack must be large enough to accommodate the
interrupt system -- at least 128 bytes in addition to other
needs.

1.9.5 Handling Errors

Most of the newer function requests -- those introduced with
version 2.0 or later -- set the Carry flag if there is an
error, and identify the specific error by returning a number
in AX. Table 1.14 lists these error codes and their
meanings.

Table 1.14 Error Codes Returned in AX

Code Meaning

1 Invalid function code
2 File not found
3 Path not found
4 Too many open files (no open handles left)
5 Access denied
6 Invalid handle
7 Memory control blocks destroyed
8 Insufficient memory
9 Invalid memory block address

10 Invalid environment
11 Invalid format
12 Invalid access code
13 Invalid data
14 RESERVED
15 Invalid drive
16 Attempt to remove the current directory
17 Not same device
18 No more files
19 Disk is write-protected
20 Bad disk unit
21 Drive not ready
22 Invalid disk command
23 CRC error
24 Invalid length (disk operation)
25 Seek error
26 Not an MS-DOS disk
27 Sector not found
28 Out of paper
29 write fault
30 Read fault

SYSTEM CALLS

31
32
33
34
35
36-49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73-79
80
81
82
83
84
85
86
87
88

General failure
Sharing violation
Lock violation
Wrong disk
FCB unavailable
RESERVED
Network request not supported
Remote computer not listening
Duplicate name on network
Network name not found
Network busy
Network device no longer exists
Net BIOS command limit exceeded
Network adapter hardware error
Incorrect response from network
Unexpected network error
Incompatible remote adapt
Print queue full
Queue not full
Not enough space for print file
Network name was deleted
Access denied
Network device type incorrect
Network name not found
Network name limit exceeded
Net BIOS session limit exceeded
Temporarily paused
Network request not accepted
Print or disk redirection is paused
RESERVED
File exists
RESERVED
Cannot make
Interrupt 24 failure
Out of structures
Already assigned
Invalid password
Invalid parameter
Net write fault

Page 1-22

TO handle error conditions, put the following statement
immediately after each call similar to XENIX calls:

JC <error>

where <error> represents the label of an error-handling
routine that gets the specific error condition by checking
the value in AX and takes appropriate action.

Some of the older system calls return a value in a register
that specifies whether the operation was successful. To
handle such errors, check the error code and take the
appropriate action.

SYSTEM CALLS Page 1-23

Extended Error Codes

Newer versions of MS-DOS have added more detailed error
messages that cannot be used by programs that use the older
system calls. To avoid incompatibility, MS-DOS maps these
new error codes to the old error code that most closely
matches the new one.

To make use of these new calls, Function 59H (Get Extended
Error) has been added. It provides as much detail as
possible on the most recent error code returned by MS-DOS.
The description of Function 59H lists the new, more detailed
error codes and shows how to use this function request.

1.9.6 System Call Descriptions

Most system calls require that information be moved into one
or more registers before the call is issued and return
information in the registers. The description of each
system call in this chapter includes the following:

• A drawing of the 8088 registers that shows their
contents before and after the system call.

• A more complete description of the register
contents required before the system call.

• A description of the processing performed.

• A more complete description of
contents after the system call.

• An example of the system call's use.

the register

SYSTEM CALLS Page 1-24

Figure 1.1 is an example of the drawing of the 8088
registers and how the information is presented.

AX: AH Ai. Call
BX: BH BL

cx: CH CL

ox: DM DL

Return

~ BP

S,

DI

I FLAGSH 'I F~Sl I

~ SS

ES

Figure 1.1 Example of System Call Description

SYSTEM CALLS Page 1-25

Sample Progr ams

The sample programs show only data declarations and the code
required to use the system calls. Unless stated otherwise,
each example assumes a common skeleton that defines the
segments and returns control to MS-DOS. Each sample program
is intended to be executed as a .COM file. Figure 1.2 shows
a complete sample program. The unshaded portion shows what
appears in this chapter; the shaded portions are the common
skeleton.

start:

filename
buffer
handle

begin:

read line:

segment
assume
org
jmp

db
db
dw

cS:COq.~ids : code ,eS: nothing.; ss: nothing
IOOH

begin

ftb:\te.~tfile.asc" ,0
129PllP (1)
?

open_handle filename,O ; Open the file
jc error_open ; Routine not shown
mov handle,ax ; Save handle
read handle handle,buffer,128 ; Read 128 bytes
jc - error read Routine not shown
cmp ax,O End of file?
je return Yes, go home
mov bx,ax No, AX bytes read
mov buffer [bx] ,"$" To terminate string

"display buffer See Function 09H
jmp read line Get next 128 bytes

return: end_process 0 Return to MS-DOS
To mark next byte last_inst:

ends
end start

Figure 1.2 Sample Program with Common Skeleton

To allow the examples to be more complete programs rather
than isolated uses of the system calls, a macro 1S defined
for each system call; these macros, plus some general
purpose ones, are used in the sample programs. The sample
program in the preceding figure includes four such macros:
open handle, read handle, display, and end process. All
macro definitions are listed at the end of this chapter.

SYSTEM CALLS Page 1-26

The macros assume the environment for a .COM program as
described in Chapter 4; in particular, they assume that all
the segment registers contain the same value. To conserve
space, the macros generally do not protect registers and
leave error checking to the main code. This keeps the
macros fairly short, yet useful. You may find such macros a
convenient way to include system calls in your assembly
language programs.

Error Handling in Sample Programs

Whenever a system call returns an error code, the sample
program shows a test for the error condition and a jump to
an error routine. To conserve space, the error routines
themselves aren't shown. Some error routines might simply
display a message and continue processing; in more serious
cases, the routine might display a message and end the
program (performing any required housekeeping, such as
closing files).

Tables 1.15 through 1.18 list the Interrupts and Function
Requests in numeric and alphabetic order.

Table 1.15 MS-DOS Interrupts, Numeric Order

Interrupt

20H
21H
22H
23H
24H
25H
26H
27H

28H-3FH

Description

Program Terminate
Function Request
Terminate Process Exit Address
Control-C Handler Address
Critical Error Handler Address
Absolute Disk Read
Absolute Disk Write
Terminate But Stay Resident
RESERVED

Table 1.16 MS-DOS Interrupts, Alphabetic Order

Description

Absolute Disk Read
Absolute Disk Write
Control-C Handler Address
Critical Error Handler Address
Function Request
Program Terminate
RESERVED
Terminate Process Exit Address
Terminate But Stay Resident

Interrupt

25H
26H
23H
24H
21H
20H
28H-3FH
22H
27H

SYSTEM CALLS

Table 1.17

Function

OOH
OlH
02H
03H
04H
OSH
06H
07H
OSH
09H
OAH
OBH
OCH
ODH
OEH
OFH
lOH
IlH
12H
l3H
14H
lSH
l6H
l7H
lSH
19H
lAH
lBH
lCH
lDH-20H
21H
22H
23H
24H
2SH
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
3lH
32H
33H
34H

MS-DOS Function Requests, Numeric Order

Description

Terminate Program
Read Keyboard And Echo
Display Character
Auxiliary Input
Auxiliary Output
Print Character
Direct Console I/O
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Reset Disk
Select Disk
Open File
Close File
Search For First Entry
Search For Next Entry
Delete File
Sequential Read
Sequential Write
Create File
Rename File
RESERVED
Get Current Disk
Set Disk Transfer Address
Get Default Drive Data
Get Drive Data
RESERVED
Random Read
Random Write
Get File Size
Set Relative Record
Set Interrupt Vector
Create New PSP
Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag
Get Disk Transfer Address
Get MS-DOS Version Number
Keep Process
RESERVED
Control-C Check
RESERVED

Page 1-27

SYSTEM CALLS

35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
4400H,4401H
4402H,4403H
4404H,4405H
4406H,4407H
4408H
4409H
440AH
440BH
45H
46H
47H
48H
49H
4AH
4BOOH
4B03H
4CH
4DH
4EH
4FH

50H-53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5COOH
5COIH
5DH
5EOOH
5E02H
5F02H
5F03H
5F04H
60H-61H
62H
63H-7FH

Get Interrupt vector
Get Disk Free Space
RESERVED
Get/Set Country Data
Create Directory
Remove Directory
Change Current Directory
Create Handle
Open Handle
Close Handle
Read Handle
write Handle
Delete Directory Entry
Move File Pointer
Get/Set File Attributes
IOCTL Data
IOCTL Character
IOCTL Block
IOCTL Status
IOCTL Is Changeable
IOCTL Is Redirected Block
IOCTL Is Redirected Handle
IOCTL Retry
Duplicate File Handle
Force Duplicate File Handle
Get Current Directory
Allocate Memory
Free Allocated Memory
Set Block
Load and Execute Program
Load Overlay
End Process
Get Return Code Child Process
Find First File
Find Next File
RESERVED
Get verify State
RESERVED
Change Directory Entry
Get/Set Date/Time of File
Get/Set Allocation Strategy
Get Extended Error
Create Temporary File
Create New File
Lock
Unlock
RESERVED
Get Machine Name
Printer Setup
Get Assign List Entry
Make Assign List Entry
Cancel Assign List Entry
RESERVED
Get PSP
RESERVED

Page 1-28

SYSTEM CALLS

Table 1.18

Function

48H
03H
04H
OAH
5F04H
3BH
56H
OBH
lOH
3EH
33H
39H
l6H
3CH
5BH
26H
5AH
41H
l3H
06H
07H
02H
09H
45H
4CH
4EH
4FH
OCH
46H
49H
5F02H
47H
19H
2AH
lBH
36H
2FH
lCH
59H
23H
35H
5E01H
30H
62H
4DH
2CH
54H
58H
38H
57H

page 1-29

MS-DOS Function Requests, Alphabetic Order

Description

Allocate Memory
Auxiliary Input
Auxiliary Output
Buffered Keyboard Input
Cancel Assign List Entry
Change Current Directory
Change Directory Entry
Check Keyboard Status
Close File
Close Handle
Control-C Check
Create Directory
Create File
Create Handle
Create New File
Create New PSP
Create Temporary File
Delete Directory Entry
Delete File
Direct Console I/O
Direct Console Input
Display Character
Display String
Duplicate File Handle
End Process
Find First File
Find Next File
Flush Buffer, Read Keyboard
Force Duplicate File Handle
Free Allocated Memory
Get Assign List Entry
Get Current Directory
Get Current Disk
Get Date
Get Default Drive Data
Get Disk Free Space
Get Disk Transfer Address
Get Drive Data
Get Extended Error
Get File Size
Get Interrupt vector
Get Machine Name
Get MS-DOS Version Number
Get PSP
Get Return Code Of Child Process
Get Time
Get Verify State
Get/Set Allocation Strategy
Get/Set Country Data
Get/Set Date/Time Of File

SYSTEM CALLS

43H
4404H,4405H
4402H,4403H
4400H,4401H
440SH
4409H
440AH
440BH
4406H,4407H
31H
4BOOH
4B03H
5COOH
5F03H
42H
OFH
3DH
29H
05H
5E02H
27H
2SH
21H
22H
3FH
OSH
OlH
3AH
17H
ISH

IBH-20H
32H
34H
37H

50H-53H
55H

60H-61H
63H-7FH

ODH
IlH
12H
OEH
14H
15H
4AH
2BH
lAH
25H
24H
2DH
2EH
OOH
5COIH
40H

Get/Set File Attributes
IOCTL Block
IOCTL Character
IOCTL Data
IOCTL Is Changeable
IOCTL Is Redirected Block
IOCTL Is Redirected Handle
IOCTL Retry
IOCTL Status
Keep Process
Load and Execute Program
Load Overlay
Lock
Make Assign List Entry
Move File Pointer
Open File
Open Handle
Parse File Name
Print Character
Printer Setup
Random Block Read
Random Block Write
Random Read
Random Write
Read Handle
Read Keyboard
Read Keyboard And Echo
Remove Directory
Rename File
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
Reset Disk
Search For First Entry
Search For Next Entry
Select Disk
Sequential Read
Sequential Write
Set Block
Set Date
Set Disk Transfer Address
Set Interrupt Vector
Set Relative Record
Set Time
Set/Reset Verify Flag
Terminate program
Unlock
Write Handle

Page 1-30

SYSTEM CALLS Page 1-31

A detailed description of each system call follows. They
are listed in numeric order; the interrupts are described
first, then the function requests.

Note: Unless otherwise stated, all numbers in the system
call descriptions--both text and code--are in hexadecimal.

1.10 INTERRUPTS

The following pages describe Interrupts 20H-27H.

SYSTEM CALLS Interrupt 20H Page 1-32

Program Terminate (Interrupt 20H)

AX:

BX:

cx:

ox:

AH- AL

BH BL

CH CL

OH OL

~
p

BP

51

01

I FLAGS" Ii FLAGS, I

~~
55

ES

Call
CS

Segment address of Program Segment
Prefix

Return
None

Interrupt 20H terminates the current process and returns
control to its parent process. All open file handles are
closed and the disk cache is cleaned. CS must contain the
segment address of the Program Segment Prefix when this
interrupt is issued.

Interrupt 20H is provided only for compatibility with
versions of MS-DOS prior to 2.0. New programs should use
Function Request 4CH, End Process, which permits returning a
completion code to the parent process and does not require
CS to contain the segment address of the Program Segment
prefix.

The following exit addresses are restored from the Program
Segment Prefix:

Offset

OAH
OEH
l2H

Exit Address

Program terminate
Control-C
Critical error

SYSTEM CALLS Interrupt 20H Page 1-33

Note

Close all files that have changed in length before
issuing this interrupt. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Functions lOH and 3EH for a description
of the Close File system calls.

Macro Definition: terminate macro
int 20H
endm

Example

The following program displays a message and returns to
MS-DOS. It uses only the opening portion of the sample
program skeleton shown in Figure 1.2:

message db "displayed by INT20H example". ODH, OAH, "$"

begin: display message
terminate

code ends
end start

;see Function 09H
;THIS INTERRUPT

SYSTEM CALLS Interrupt 21H Page 1-34

Function Request (Interrupt 2lB)

AX: Aff AL

BX: BH BL

cx: CH CL

ox: OH OL

~ BP

SI

01

~ SS

ES

Call
AH

Function number

Other registers
As specified in individual function

Return
As specified in individual function

Interrupt 21H causes MS-DOS to carry out the function
request whose number is in AH. See Section 1.11, "Function
Requests," for a description of the MS-DOS functions.

Example

To call the Get Time function:

mov
int

ah,2CH
21H

iGet Time is Function 2CH
iMS-DOS function request

SYSTEM CALLS Interrupt 22H Page 1-35

Terminate Process Exit Address (Interrupt 228)

When a program terminates,
routine that starts at
entry in the vector table.
segment, it copies this
offset OAH.

MS-DOS transfers control to the
the address in the Interrupt 22H
When MS-DOS creates a program
address into the PSP starting at

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
terminate interrupt handler, use Function Request 35H (Get
Interrupt vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt vector) to change the Interrupt 22H entry in
the vector table to point to your routine.

SYSTEM CALLS Interrupt 23H Page 1-36

Control-C Handler Address (Interrupt 23H)

When a user types Control-C or Control-Break (on
IBM-compatibles) , MS-DOS transfers control as soon as
possible to the routine that starts at the address in the
Interrupt 23H entry in the vector table. When MS-DOS
creates a program segment, it copies the address currently
ill the interrupt table into the PSP starting at offset OEH.

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
Control-C interrupt handler, use Function Request 35H (Get
Interrupt Vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt Vector) to change the Interrupt 23H entry in
the vector table to point to your routine.

If the Control-C routine preserves all registers, it can end
with an IRET instruction (return from interrupt) to continue
program execution. If the user-written interrupt program
returns with a long return, the carry flag is used to
determine whether or not the program will abort. If the
carry flag is set, it will be aborted; otherwise, execution
will continue as with a return by IRET. If the user-written
Control-Break interrupt uses function calls 09H or OAH, then
Control-C, Return, and Line Feed are output. If execution
continues with an IRET instruction, I/O continues from the
start of the line.

When the interrupt occurs, all registers are set to the
value they had when the original call to MS-DOS was made.
There are no restrictions on what a Control-C handler can do

including MS-DOS function calls as long as the
registers are unchanged if IRET is used.

If Function 09H or OAH (Display String or Buffered Keyboard
Input) is interrupted by Control-C, the three-byte sequence
03H-ODH-OAH (usually displayed as C followed by a carr1age
return) is sent to the display and the function resumes at
the beginning of the next line.

If a program creates a second PSP and executes a second
program using Function 4BOOH (Load and Execute Program),
for example -- and the second program changes the Control-C
address in the vector table, MS-DOS restores the Control-C
vector to its original value before returning control to the
calling program.

SYSTEM CALLS Interrupt 24H Page 1-37

Critical Error Handler Address (Interrupt 24H)

If a critical error occurs during execution of an I/O
function request -- this usually means a fatal disk error -
MS-DOS transfers control to the routine that starts at the
address in the Interrupt 24H entry in the vector table.
When MS-DOS creates a program segment, it copies this
address into the PSP starting at offset l2H.

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
critical error interrupt handler, use Function Request 35H
(Get Interrupt Vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt Vector) to change the Interrupt 24H entry in
the vector table to point to your routine.

Interrupt 24H is not issued if a failure occurs during
execution of Interrupt 25H (Absolute Disk Read) or Interrupt
26H (Absolute Disk Write). These errors are handled by the
error routine in COMMAND.COM that retries the disk
operation, then gives the user the choice of aborting,
retrying the operation, or ignoring the error.

The following
Interrupt 24H
stack.

topics describe the
routine, the error

1.10.1 Conditions Upon Entry

requirements of an
codes, registers, and

After retrying an I/O error three times, MS-DOS issues
Interrupt 24H. The interrupt handler receives control with
interrupts disabled. AX and DI contain error codes, and BP
contains the offset (to the segment address in SI) of a
Device Header control block that describes the device on
which the error occurred.

1.10.2 Requirements For An Interrupt 24H Handler

To use the MS-DOS critical error handler to issue the
"Abort, Retry, or Ignore" prompt and get the user's
response, the first thing a user-written critical error
handler should do is push the flags and execute a far call
to the address of the standard Interrupt 24H handler (the
user program that changed the Interrupt 24H vector should
have saved this address). After the user responds to the
prompt, MS-DOS returns control to the user-written routine.

SYSTEM CALLS Interrupt 24H Page 1-38

NOTE: There are source applications which will have trouble
with this as it changes the stack frame.

The error handler can do its processing now, but before it
does anything else it must preserve BX, CX, DX, DS, ES, SS,
and SP. Only function calls Ol-OCH inclusive and 59H may be
used (if it uses any others, the MS-DOS stack is destroyed
and MS-DOS is left in an unpredictable state), nor should it
change the contents of the Device Header.

If an Interrupt 24H routine returns to the user program
(rather than returning to MS-DOS), it must restore the user
program's registers -- removing all but the last three words
from the stack -- and issue an IRET. Control returns to the
statement immediately following the I/O function request
that resulted in the error. This leaves MS-DOS in an
unstable state until a function request above OCH is called.

User Stack

The user stack is in effect, and contains the following
(starting with the top of the stack):

IP MS-DOS registers from issuing Interrupt 24H
CS
FLAGS

AX User registers at time of original
BX INT 21H
CX
DX
SI
DI
BP
DS
ES

IP From the original INT 21H
CS from the user to MS-DOS
FLAGS

The registers are set such that if the user-written error
handler issues an lRET, MS-DOS responds according to the
value in AL:

AL Action

o Ignore the error.
1 Retry the operation.
2 Abort the program by issuing Interrupt 23H.
3 Fail the system call that is in progress.

Note that the ignore option may cause unexpected results as
it causes MS-DOS to believe that an operation completed
successfully when it didn't.

SYSTEM CALLS Interrupt 24H Page 1-39

Disk Error Code in AX

If bit 7 of AH is 0, the error occurred on a disk drive. AL
contains the failing drive (O=A, l=B, etc.). Bit 0 of AH
specifies whether the error occurred during a read or write
operation (O=read, l=write), and bits 1 and 2 of AH identify
the area of the disk where the error occurred:

Bits
2-1 Location of error

00 MS-DOS area
01 File Allocation Table
10 Directory
11 Data area

Bits 3-5 of AH specify valid responses to the error prompt:

Bit Value Response

3 0 Fail not allowed
1 Fail allowed

4 0 Retry not allowed
1 Retry allowed

5 0 Ignore not allowed
1 Ignore allowed

If Retry is specified but not allowed, MS-DOS changes it to
Fair:---If Ignore is specified but not allowed, MS-DOS
changes it to Fall. If Fail is specified but not allowed,
MS-DOS changes--It to Abort. The Abort response is always
allowed.

Other Device Error Code in AX

If bit 7 of AH is 1, either the memory image of the File
Allocation Table (FAT) is bad or an error occurred on a
character device. The device header pointed to by BP:SI
contains a word of attribute bits that identify the type of
device and, therefore, the type of error.

The word of attribute bits is at offset 04H of the Device
Header. Bit 15 specifies the type of device (O=block,
l=character).

If bit 15 is 0 (block device), the error was a bad memory
image of the FAT.

If bit 15 is 1 (character device), the error was on a
character device. DI contains the error code, the contents
of AL are undefined, and bits 0-3 of the attribute word have
the following meaning:

SYSTEM CALLS Interrupt 24H Page 1-40

Bit Meaning If Set

0 Current standard input
1 Current standard output
2 Current null device
3 Current clock device

See Chapter 2 for a complete description of the Device
Header control block.

Error Code in DI

The high byte of DI is undefined. The low byte contains the
following error codes:

Error
Code

o
1
2
3
4
5
6
7
8
9
A
B
C

Description

Attempt to write on write-protected disk
Unknown unit
Drive not ready
Unknown command
CRC error in data
Bad drive request structure length
Seek error
Unknown media type
Sector not found
Printer out of paper
Write fault
Read fault
General failure

A user-written Interrupt 24H handler can use Function 59H
(Get Extended Error) to get detailed information about the
error that caused the interrupt to be issued.

SYSTEM CALLS Interrupt 25H

Absolute Disk Read (Interrupt 25B)

AX:

BX:

ex:

ox:

AH ~

~ ·· .. ·.aL
()H Ol

~
p

BP

SI

01

~ a==J

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF=l
FlagsL

CF 0 if successful
1 if not successful

The registers must contain the following:

AL Drive number (O=A, l=B, etc.).
BX Offset of Disk Transfer Address

(from segment address in DS) •
CX Number of sectors to read.
DX Beginning relative sector.

Warning

Page 1-41

It is strongly recommended that the use of this
function be avoided unless absolutely necessary.
Access to files should be done through the normal
MS-DOS function requests. There is no guarantee of
upward compatibility for the Absolute Disk I/O in
future releases of MS-DOS.

This interrupt transfers control to the device driver. The
number of sectors specified in CX is read from the disk to
the Disk Transfer Address. Its requirements and processing
are identical to Interrupt 26H, except data is read rather
than written. Very little checking is done on the user's
input parameters; therefore, care must be used to make sure
they are reasonable. Failure to do this may cause strange
results or a system crash.

SYSTEM CALLS Interrupt 25H Page 1-42

Note

All registers except the segment registers are
destroyed by this call. Be sure to save any registers
your program uses before issuing the interrupt.

The system pushes the flags at the time of the call; they
are still there upon return. Be sure to pop the stack upon
return to prevent uncontrolled growth.

If the disk operation was successful, the Carry Flag (CF) is
o. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H earlier in
this section for the codes and their meanings).

Macro Definition:
abs disk read macro disk,buffer,num sectors,first sector - -

Example

mov
mov
mov
mov
int
popf
endm

al,disk - -
bx,offset buffer
cx,num sectors
dx,first sector
25H -

The following program copies the contents of a single-sided
disk in drive A to the disk in drive B.

prompt

first
buffer

begin:

copy:

db
db
dw
db

"Source in A, target in B",ODH,OAH
"Any key to start. $"
o
60 dup (512 dup (?») ; 60 sectors

display prompt
read kbd
mov cx,6

push cx
abs disk read
abs-disk-write
add- first, 60
pop cx
loop copy

;see Function 09H
;see Function 08H
;copy 6 groups of

;60 sectors
;save the loop counter

0,buffer,60,first ;THIS INTERRUPT
l,buffer,60,first ;see INT 26H

;do the next 60 sectors
irestore the loop counter

SYSTEM CALLS Interrupt 26H

Absolute Disk Write (Interrupt 26B)

AX:

BX:

ex:

DX:

AH At.

BH BL

CH CL

DH DL

~
p

BP

SI

DI

I FLAGS" '[~.]

~:
SS

ES

Call
AL

Drive number
DS:BX

Disk Transfer Address
ex

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF '= 1
FLAGSL

CF = 0 if successful
1 if not successful

warning

Page 1-43

It is strongly recommended that the use of this
function be avoided unless absolutely necessary.
Access to files should be done through the normal
MS-DOS function requests. There is no guarantee of
upward compatibility for the Absolute Disk I/O in
future releases of MS-DOS.

The registers must contain the following:

AL Drive number (O=A, l=B, etc.).
BX Offset of Disk Transfer Address

(from segment address in DS).
CX Number of sectors to write.
DX Beginning relative sector.

This interrupt transfers control to MS-DOS. The number of
sectors specified in CX is written from the Disk Transfer
Address to the disk. Its requirements and processing are
identical to Interrupt 25H, except data is written to the
disk rather than read from it. Very little checking is done
on the user's input parameters; therefore, care must be
used to make sure they are reasonable. Failure to do this
may cause strange results or a system crash.

SYSTEM CALLS Interrupt 26H Page 1-44

Note

All registers except the segment registers are
destroyed by this call. Be sure to save any registers
your program uses before issuing the interrupt.

The system pushes the flags at the time of the calli they
are still there upon return. Be sure to pop the stack upon
return to prevent uncontrolled growth.

If the disk operation was successful, the Carry Flag (CF) is
O. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H for the
codes and their meanings).

Macro Definition:
abs disk write macro

mov
mov
mov
mov
int
popf
endm

disk,buffer,num sectors,first sector
al,disk - -
bx,offset buffer
cx,num sectors
dx,first sector
26H -

Example

The following program copies the contents of a single-sided
disk in drive A to the disk in drive B, verifying each
write. It uses a buffer of 32K bytes.

off
on
,
prompt

first
buffer

begin:

copy:

equ 0
equ 1

db "Source in A, target in B",ODH,OAH
db "Any key to start. $"
dw 0
db 60 dup (512 dup (?» ; 60 sectors

display prompt
read kbd
verify on
mov cx,6
push cx
abs disk read
abs-disk-write
add- first,60
pop cx
loop copy
verify off

isee Function 09H
isee Function 08H
isee Function 2EH
iCOPY 6 groups of 60 sectors
isave the loop counter

0,buffer,60,first isee INT 25H
1,buffer,60,first iTHIS INTERRUPT

ido the next 60 sectors
irestore the loop counter

isee Function 2EH

SYSTEM CALLS Interrupt 27H page 1-45

Terminate But Stay Resident (Interrupt 278)

AX: AH AL

BX: BH BL

cx: CH CL

ox: OM Dt.

~ BP

SI

01

I FLAGSH If FLAGSL I

~ SS

ES

call
CS:DX

Pointer to first byte following
last byte of code.

Return
None

Interrupt 27H makes a program up to 64K in size remain
resident after it terminates. It is often used to install
device-specific interrupt handlers.

This interrupt is provided only for compatibility with
versions of MS-DOS prior to 2.0. You should use Function
31H (Keep Process), which lets programs larger than 64K
remain resident and allows return information to be passed,
to install a resident program unless it is absolutely
imperative that your program be compatible with pre-2.0
versions of MS-DOS.

DX must contain the offset (from the segment address in CS)
of the first byte following the last byte of code in the
program. When Interrupt 27H is executed, the program
terminates and control returns to DOS, but the program is
not overlaid by other programs. Files left open are not
closed. When the interrupt is called, CS must contain the
segment address of the Program Segment Prefix (the value of
DS and ES when execution started).

This interrupt must not be used by .EXE programs that are
loaded into high memory. It restores the Interrupt 22H,
23H, and 24H vectors, so it cannot be used to install new
Control-C or critical error handlers.

SYSTEM CALLS Interrupt 27H Page 1-46

Macro Definition: stay_resident macro last instruc
mov dx,offset last instruc
inc dx
int 27H
endm

Example

Because the most common use of this call is
machine-specific routine, an example is
macro definition shows the calling syntax.

1.11 FUNCTION REQUESTS

to install a
not shown. The

The following pages describe function calls OOH-62H.

SYSTEM CALLS Function OOH Page 1-47

Terminate program (Function OOB)

AX:

BX:

cX:

ox:

AH AL

BH BL

CH CL

OH OL

~
p

BP

SI

01

~:
ss
ES

Call
Ali = OOH
CS

Segment address of
Program Segment Prefix

Return
None

Function OOH is called by Interrupt 20Hi
same processing.

it performs the

The CS register must contain the segment address of the
Program Segment Prefix before you call this interrupt.

The following exit addresses are restored from the specified
offsets in the Program Segment Prefix:

Offset Exit Address

OAH
OEH
12H

Program terminate
Control-C
Critical error

All file buffers are flushed to disk.

Warning

Close all files that have changed in length before
calling this function. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function lOH for a description of the
Close File system call.

SYSTEM CALLS

Macro Definition:

Example

Function ~OH

terminate_program macro
xor
int
endm

ah,ah
21H

Page 1-48

The following program displays a message and returns to
MS-DOS. It uses only the opening portion of the sample
program skeleton shown in Figure 1.2.

message db "Displayed by FUNCOOH example", ODH,OAH,"$"

begin:

code

display message
terminate program
ends -
end start

isee Function 09H
iTHIS FUNCTION

SYSTEM CALLS Function OlH

Read Keyboard and Echo (Function OlB)

AX: k···· AH

BX: BH

CX: CH

ox: OH

At

BL

CL

OL

call
Ali = OlH

Return
AL

Page 1-49

~
p

BP

SI

01

Character typed

I FLAGS" If FLAGSL I

~
s

os

SS

ES

Function OlH waits for a character to be read from standard
input, then echoes the character to standard output and
returns it in AL. If the character is Control-C, Interrupt
23H is executed.

Macro Definition: read kbd and echo macro - - -

Example

mov ah, OlH
int 21H
endm

The following program displays and prints characters as they
are typed. If Return is pressed, the program sends a Line
Feed-Carriage Return sequence to both the display and the
printer.

begin: read kbd and echo
print_char -al
cmp al,ODH
jne begin
print char OAH
display_char OAH
jmp begin

iTHIS FUNCTION
isee Function OSH
; is ita CR?
inO, print it
isee Function OSH
isee Function 02H
iget another character

SYSTEM CALLS Function 02H Page 1-50

Display Character (Function 02H)

AX: ··Ati ...
BX: BH

ex: CH

Call
AH = 02H
DL

ox: OH

AL

BL

CL

OL Character to be displayed

~
p

BP

SI

01

§
s

os

SS

ES

Return
None

Function 02H sends the character in DL to standard output.
If Control-C is typed, Interrupt 23H is issued.

Macro Definition: display_char macro
mov
mov
int
endm

character
dl,character
ah,02H
21H

Example

The following program converts lowercase characters to
uppercase before displaying them.

begin: read kbd
cmp
jl

aI, "a"
uppercase

cmp al,"z"
jg uppercase
sub al,20H

uppercase: display char al
jmp -begin:

;see Function 08H

;don't convert

;don't convert
;convert to ASCII code
;for uppercase
;THIS FUNCTION
;get another character

SYSTEM CALLS Function 03H

Auxiliary Input (Function 03B)

AX:

BX:

cx:

ox:

Aft

BH

CH

OH

AL

BL

CL

OL

Call
AH = 03H

Return
AL

Page 1-51

~
p

BP

SI

01

Character from auxiliary device

I FLAGSH II FlAGSL I

~~
SS

ES

Function 03H waits for a character from standard auxiliary,
then returns the character in AL. This system call does not
return a status or error code.

If a Control-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: aux_input macro

Example

mov ah,03H
int 21H
endm

The following program prints characters as they are received
from the auxiliary device. It stops printing when an
end-of-file character (ASCII 26, or Control-Z) is received.

begin: aux input
cmp- al,lAH
je return
print char al
jmp -begin

iTHIS FUNCTION
iend of file?
iyes, all done
isee Function 05H
iget another character

SYSTEM CALLS Function 04H

Auxiliary Output (Function 04H)

AX: 'I.

BH

CH

AL

BL

CL

Call
AH = 04H
DL

page 1-52

BX:

cx:

ox: OH tIL Character for auxiliary device

~
p

BP

SI

DI

~
s

os

SS

ES

Return
None

Function 04H
auxiliary.
error code.

sends the
This system

character in DL to standard
call does not return a status or

If a Control-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: aux_output macro character
mov dl,character
mov ah,04H
int 2lH
endm

Examp1e

The following program gets a series of strings of up to 80
bytes from the keyboard, sending each to the auxiliary
device. It stops when a null string (CR only) is typed.

string
,
begin:

send it:

db 81 dup(?) ~see Function OAH

get string 80,string
cmp- string[l],O
je return
mov cx, word ptr string[l]
mov bx,O
aux output string[bx+2]
inc- bx
loop send it
jmp begin-

~see Function OAH
~null string?
~yes, all done
~get string length
;set index to 0
;THIS FUNCTION
;bump index
~send another character
~get another string

SYSTEM CALLS Function 05H Page 1-53

Print Character (Function 05H)

AX: Ali AL

BX: BH BL

cx: CH CL

ox: OH DL

~ BP

SI

01

~ os

SS

ES

Call
AH = 05H
DL

Character for printer

Return
None

Function 05H sends the character in DL to the standard
printer. If Control-C has been typed at console input,
Interrupt 23H is issued. This function request does not
return a status or error code.

Macro Definition: print_char macro character
mov dl,character
mov ah,05H
int 2lH
endm

Example

The following program prints a walking test pattern on the
printer. It stops if Control-C is pressed.

line num db 0 -

begin: mov cx,60 :print 60 lines
start - line: mov bl,33 :first printable ASCII

:character (1)
add bl,line num :to offset one character -push cx :save number-of-lines counter
mov cx,80 : loop counter for line

print_ it: print char bl :THIS FUNCTION -
inc bl :move to next ASCII character
cmp bl,126 :last printable ASCII

;character (-)
jl no reset :not there yet

SYSTEM CALLS

no reset:

Function 05H Page 1-54

loop print it
print char ODH
print-char OAH
inc -1 ine num
pop cx
loop start line

iprint another character
icarriage return
iline feed
ito offset 1st char. of line
irestore i-of-lines counter
iprint another line

SYSTEM CALLS Function 06H Page 1-55

Direct Console I/O (Function 06H)

AX: Ali

BX: BH

cx: CH

ox: OH

AL

BL

CL

D\;

Call
AH = 06H
DL

See text

~ BP

SI

01

Return
AL

If DL = FFH before call,

~ os

SS

ES

then zero flag not set means AL
has character from standard input.
Zero flag set means there was not
a character to get, and AL = 0

The action of Function 06H depends on the value in DL when
the function is called:

Value in DL

FFH

Not FFH

Action

If a character has been read from standard
input, it is returned in AL and the zero flag
is cleared (0); if a character has not been
read, the zero flag is set (1).

The character in DL is sent to standard
output.

This function does not check for Control-C.

Macro Definition: dir console io macro switch
mov dl,switch
mov ah,06H
int 21H
endm

SYSTEM CALLS Function 06H Page 1-56

Example

The following program sets the system clock to 0 and
continuously displays the time. When any character is
typed, the display freezesi when any character is typed
again, the clock is reset to 0 and the display starts again.

time db "OO:OO:OO.OO",ODH,OAH,"$" isee Function 09g
ifor explanation of $

i
begin: set time - 0,0,0,0 isee Function 2DH
read clock: get time isee Function 2CH - byte to dec ch,time end of chapter isee

byte= to-dec cl,time[3] isee end of chapter
byte_ to-dec dh,time[6] isee end of chapter
byte to dec dl,time[9] isee end of chapter
display- time isee Function 09H
dir console io FFH iTHIS FUNCTION -

al~O icharacter typed? cmp
jne stop iyes, stop timer
jmp read clock ino, keep timer

irunning
stop: read kbd isee Function OSH

jmp begin istart over

SYSTEM CALLS Function 07H

Direct Conso1e Input (Function 07H)

AX:

BX:

CX:

OX:

AI*' ... AI.

BH BL

CH CL

OH OL

~ BP

SI

DI

~
s

os

SS

ES

Ca11
AH = 07H

Return
AL

Character from keyboard

Page 1-57

Function 07H waits for a character to be read from standard
input, then returns it in AL. This function does not echo
the character or check for Control-C. (For a keyboard input
function that echoes or checks for Control-C, see Function
OlH or 08H.)

Macro Definition:

Examp1e

macro
mov ah, 07H
int 21H
endm

The following program prompts for a password (8 characters
maximum) and places the characters into a string without
echoing them.

password db 8 dup(?)
prompt db "Password: $" isee Function 09H for

iexplanation of $
begin: display prompt isee Function 09H

nov cx,8 imaximum length of password
xor bx,bx iSO BL can be used as index

get_pass: dir console input iTHIS FUNCTION
cmp al,ODH- iwas it a CR?
je return iyes, all done
rnov password[bx},al ino, put character in string
inc bx ibump index
loop get_pass iget another character

SYSTEM CALLS Function 08H Page 1-58

Read Keyboard (Function 08H)

AX: m 'At Call
BX: BH BL AH = 08H
ex: CH CL

ox: DH OL

~
p

BP

SI

01

Return
AL

Character from keyboard

~
s

os

SS

ES

Function 08H waits for a character to be read from standard
input, then returns it in AL. If Control-C is pressed,
Interrupt 23H is executed. This function does not echo the
character. (For a keyboard input function that echoes the
character or checks for Control-C, see Function OlH.)

Macro Definition: read kbd macro

Example

mov ah, 08H
int 2lH
endm

The following program prompts for a password (8 characters
maximum) and places the characters into a string without
echoing them.

password
prompt

begin:

db 8 dup(?)
db "Password: $"

display prompt
mov cx,8
xor bx,bx
read kbd
cmp aI, ODH
je return
mov password [bx] ,al
inc bx
loop get_pass

;see Function 09H
;for explanation of $
;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put char. in string
;bump index
;get another character

SYSTEM CALLS Function 09H Page 1-59

Display String (Function 09H)

AX:

BX:

CX:

OX:

AH AL

BH BL

CH CL

OM OL.

~
p

BP

SI

01

I FLAGS" II FLAGSL I

§~ ...
SS

ES

Call
AH = 09H
DS:DX

Pointer to string to be displayed

Return
None

Function 09H sends to standard output a string that ends
with "$" (the $ is not displayed). DX must contain the
offset (from the segment address in DS) of the string.

Macro Definition: display macro string

Example

mov dx,offset string
mov ah,09H
int 21H
endm

The following program displays the hexadecimal code of the
key that is typed.

table
result

begin:

db "0123456789ABCDEF"
db " - OOH",ODH,OAH,"$"

read kbd and echo
xor - ah,ah
convert ax,16,result[3] ;see
display result
jmp begin

;see text for
;explanation of $
;see Function OlH
;clear upper byte
end of chapter
;THIS FUNCTION
;do it again

SYSTEM CALLS Function OAR

Buffered Keyboard Input (Function OAR)

AX:

ex:

ex:
ox:

I jUt AL

BH BL

CH CL

Of! OL

~
p

BP

SI

01

I FLAGS" Ii FLAGSl I

~ ...•.. ;

SS

ES

call
AH = OAH
OO:DX

Pointer to input buffer

Return
None

Page 1-60

Function OAR gets a string from standard input. DX must
contain the offset (from the segment address in DS) of an
input buffer of the following form:

Byte Contents

1 Maximum number of characters in buffer, including
the carriage return (you must set this value) .

2 Actual number of characters typed, not counting
the Carriage Return (the function sets this
value).

3-n Buffer; must be at least as long as the number
in byte 1.

Characters are read from standard input and placed in the
buffer beginning at the third byte until a Return (ODH) is
read. If the buffer fills to one less than the maximum,
additional characters read are ignored and 07H (Bel) is sent
to standard output until a Return is read. If the string is
typed at the console, it can be edited as it is being
entered. If Control-C is typed, Interrupt 23H is issued.

MS-DOS sets the second byte of the buffer to the number of
characters read (not counting the Carriage Return).

SYSTEM CALLS Function OAH Page 1-61

Macro Definition: get_string macro limit,string
mov dx,offset string
mov string,limit
roov ah,OAH
int 21H
endm

Example

The following program gets a 16-byte (maximum) string from
the keyboard and fills a 24-line by aO-character screen with
it.

buffer
max length
chars entered
string
strings_per_ line

crlf

begin:

display_screen:

display_line:

label byte
db ?
db ?
db 17 dup (?)
dw 0

db ODH,OAH

get string 17,buffer -
xor

mov
mov
roov
cbw
div

bx,bx

bl,chars entered
buffer [bx+2] ,"$"
al,50H

chars entered

;maximum length
;number of chars.
i16 chars + CR
;how many strings
ifit on line

iTHIS FUNCTION
;so byte can be
iused as index
iget string length
isee Function 09H
;columns per line

itimes string fits
ion line

xor ah,ah iclear remainder
mov strings per line,ax ;save col. counter
mov cx,24 - - irow counter
push cx isave it
mov cx,strings per line iget col. counter
display string- - isee Function 09H
loop display line
display crlf-
pop cx
loop display_screen

isee Function 09H
iget line counter
idisplay 1 more line

SYSTEM CALLS Function OBH Page 1-62

Check Keyboard Status (Function OBH)

AX:

BX:

ex:
ox:

BH BL

CH CL

OH OL

~
p

BP

SI

01

~
s

os

SS

ES

Call
AH = OBH

Return
AL

FFH = characters in type-ahead
buffer
o = no characters in type-ahead

buffer

Function OBH checks whether characters are available from
standard input (if standard input has not been redirected,
the type-ahead buffer). If characters are available, AL
returns FFH: if not, AL returns 0. If Control-C is in the
buffer, Interrupt 23H is executed.

Macro Definition: check kbd status macro
mov
int
endm

ah,OBH
21H

Example

The following program continuously displays the time until
any key is pressed.

time

begin:

db "OO:OO:OO.OO",ODH,OAH,"$"

get time
byte to dec ch,time
byte-to-dec cl,time[3]
byte-to-dec dh,time[6]
byte-to-dec dl,time[9]
display-time
check kbd status
cmp - aI, OFFH
je return
jmp begin

:see Function 2CH
isee end of chapter
:see end of chapter
:see end of chapter
:see end of chapter
:see Function 09H
:THIS FUNCTION
:has a key been typed?
:yes, go home
:no, keep displaying
:time

SYSTEM CALLS Function OCH Page 1-63

Flush Buffer, Read Keyboard (Function OCB)

AX:

BX:

CX:

OX:

AH At

BH BL

CH CL

OH. tit

~
p

BP

SI

01

I FLAGSH Ii FLAGS, I

~
s

OS

SS

ES

Call
AH = OCH
AL

1, 6, 7, 8, or OAH = the
corresponding function
is called.
Any other value = no
further processing.

Return
AL

o = Type-ahead buffer was
flushed; no other
processing performed.

Function OCH empties the standard input buffer (if standard
input has not been redirected, Function OCH empties the
type-ahead buffer). Further processing depends on the value
in AL when the function is called.

1, 6, 7, 8, or OAH The corresponding MS-DOS function
is execu ted.

Any other value -- No further processing; AL returns o.

Macro Definition: flush and read kbd macro switch - -

Example

IIOV aI, swi tch
IIOV ah, OCH
int 2lH
endm

The following program both displays and prints characters as
they are typed. If Return is pressed, the program sends
Carriage Return-Line Feed to both the display and the
printer.

begin: flush and read kbd 1
print=char
cmp
jne
print char
display_char
jmp

aT
al,ODH
begin
OAH
OAH
begin

;THIS FUNCTION
;see Function OSH
;is it a CR?
;no, print it
;see Function OSH
;see Function 02H
;get another character

SYSTEM CALLS

Reset Disk (Function

AX:

BX:

cx:

ox:

Afl AL

BH BL

CH CL

OH OL

~ BP

SI

01

~
s

os

5S

ES

Function ODH Page 1-64

ODH)

Call
AH = ODH

Return
None

Function ODH flushes all file buffers to ensure that the
internal buffer cache matches the disks in the drives. It
writes out buffers that have been modified, and marks all
buffers in the internal cache as free. This function
request is normally used to force a known state of the
system: Control-C interrupt handlers should call this
function.

This function request does not update directory entries:
you must close files that have changed to update their
directory entries (see Function lOH, Close File).

Macro Definition: reset disk macro

Example

mov ah,ODH
int 2lH
endm

The following program flushes all file buffers and selects
disk A.

begin: reset disk
select disk "A"

SYSTEM CALLS Function OEH

Select Disk (Function OEB)

AX: AH At.

BX: BH BL

CX: CH CL

OX: DH ol. ..

~ BP

SI

01

I FLAGSH Ii FLAGSL I

~ os

SS

ES

Call
AH = OEH
DL

Drive number
(0 = A, 1 = B, etc.)

Return
AL

Number of logical drives

Page 1-65

Function OEH selects the drive specified in DL (O=A, l=B,
etc.) as the current drive. AL returns the number of
drives.

Note

For future compatibility, treat the value returned in
AL with care. For example, if AL returns 5, it is not
safe to assume drives A, B, C, D, and E are all valid
drive designators.

SYSTEM CALLS Function DEH

Macro Definition: select disk macro disk

Example

mov dl,disk[-64]
mov ah,OEH
int 21H
endm

Page 1-66

The following program selects the drive not currently
selected in a 2-drive system.

begin: current disk
cmp 211, DOH
je select b
select disk "A"
jmp -return

select_b: select disk "B"

isee Function 19H
idrive A: selected?
iyes, select B
iTHIS FUNCTION

iTHIS FUNCTION

SYSTEM CALLS Function OFH

Open File (Function OFB)

AX: AH AI.

BX: BH BL

CX: CH CL

OX: DH 1)1.

~ BP

SI

01

Call
AH = OFH
DS:DX

Pointer to unopened FCB

Return
AL

o = Directory entry found

Page 1-67

I FLAGSH II FLAGSL I FFH = No directory entry found

~ SS

ES

Function OFH opens a file. DX must contain the offset (from
the segment address in DS) of an unopened File Control Block
(FCB). The disk directory is searched for the named file.

If a directory entry for the file is found, AL returns 0 and
the FCB is filled as follows:

If the drive code was 0 (current drive), it is changed
to the actual drive used (l=A, 2=B, etc.). This lets
you change the current drive without interfering with
subsequent operations on this file.

Current Block (offset OCH) is set to O.

Record Size (offset OEH) is set to the system default
of 128.

File Size (offset lOH) , Date of Last Write (offset
14H) , and Time of Last Write (offset 16H) are set from
the directory entry.

Before performing a sequential disk operation on the file,
you must set the Current Record field (offset 20H). Before
performing a random disk operation on the file, you must set
the Relative Record field (offset 21H). If the default
record size (128 bytes) is not correct, set it to the
correct length.

If a directory entry for the file is not found, or if the
file has the hidden or system attribute, AL returns FFH.

SYSTEM CALLS Function OFH Page 1-68

Macro Definition: open macro fcb

Example

ITDV

ITDV

int
endm

dx,offset fcb
ah,OFH
21H

The following program prints the file named TEXTFILE.ASC
that is on the disk in drive B. If a partial record is in
the buffer at end-of-file, the routine that prints the
partial record prints characters until it encounters an
end-of-file mark (ASCII 26, or Control-Z).

fcb

buffer

begin:

read line:

print_ it:

check more:

find eof: -

all done: -

db
db
db

2, "TEXTFILEASC"
26 dup (?)
128 dup (?)

set dta buffer
open fcb
read seq fcb
anp - al,02H
je all done
anp al,OOH
jg check_more

nov cx,80H
xor si,si
print char buffer [si]
inc - si
loop print it
jmp read line
cmp al,03H
jne all done
nov cx,80H
xor si,si
cmp buffer [si] ,26
je all done
print_ char buffer [si]
inc si

loop find - eof
close fcb

isee Function lAH
iTHIS FUNCTION
isee Function 14H
iend of file?
iyes, go home
imore to come?
ino, check for partial
irecord
iyes, print the buffer
iset index to 0
isee Function OSH
ibump index
iprint next character
iread another record
ipart. record to print?
ino
iyes, print it
iset index to 0
iend-of-file mark?
iyes
isee Function OSH
ibump index to next
icharacter

isee Function lOH

SYSTEM CALLS Function lOH

Close File (Function lOB)

AX: Ali AL

BX: BH BL

cx: CH CL

OX: OH DL

~ BP

51

01

Call
AH = lOH
DS:DX

Pointer to opened FCB

Return
AL

o = Directory entry found

Page 1-69

FFH = No directory entry found

§ 55

E5

Function lOH closes a file. DX must contain the offset (to
the segment address in DS) of an opened FCB. The disk
directory is searched for the file named in the FCB. If a
directory entry for the file is found, the location of the
file is compared with the corresponding entries in the FCB.
The directory entry is updated, if necessary, to match the
FCB, and AL returns O.

This function must be called after a file is changed to
update the directory entry. It is strongly advised that any
FCB (even one for a file that hasn't been changed) be closed
when access to the file is no longer needed.

If a directory entry for the file is not found, AL returns
FFH.

Macro Definition: close macro fcb
mov dx,offset fcb
mov ah,lOH
int 2lH
endm

SYSTEM CALLS Function 10H Page 1-70

Example

The following program checks the first byte of the file
named MODl.BAS in drive B to see if it is FFH, and prints a
message if it is.

message
feb

buffer

begin:

all done:

db
db
db
db

"Not saved in ASCII format",ODH,OAH,"$"
2, "MODI BAS"
26 dup (?)
128 dup (?)

set dta buffer
cpen feb
read seq feb
cmp - buffer,OFFH
jne all done
display message
close feb

isee Function lAH
isee Function OFH
isee Function 14H
iis first byte FFH?
ino
isee Function 09H
iTHIS FUNCTION

SYSTEM CALLS Function llH Page 1-71

Search for First Entry (Function lIB)

AX:

BX:

cx:

ox:

All AL

BH BL

CH CL

DH Qt.

~
p

BP

SI

01

~
s I:.~ ... >

SS

ES

Call
AH = llH
DS:DX

Pointer to unopened FCB

Return
AL
o = Directory entry found
FFH = No directory entry found

Function llH searches the disk directory for the first
matching filename. DX must contain the offset (from the
segment address in DS) of an unopened FCB. The filename in
the FCB can include wildcard characters. To search for
hidden or system files, DX must point to the first byte of
an extended FCB prefix.

If a directory entry for the filename in the FCB is not
found, AL returns FFH.

If a directory entry for the filename in the FCB is found,
AL returns 0 and an unopened FCB of the same type (normal or
extended) is created at the Disk Transfer Address as
follows:

If the search FCB was normal, the first byte at the Disk
Transfer Address is set to the drive number used (l=A, 2=B,
etc.) and the next 32 bytes contain the directory entry.

If the search FCB was extended, the first byte at the Disk
Transfer Address is set to FFH, the next 5 bytes are set to
OOH, and the following byte is set to the value of the
attribute byte in the search FCB. The remaining 33 bytes
are the same as the result of the normal FCB (drive number
and 32 bytes of directory entry) •

If Function l2H (Search for Next Entry) is used to continue
searching for matching filenames, the original FCB at DS:DX
must not be altered or opened.

SYSTEM CALLS Function IlH Page 1-72

The attribute field is the last byte of the extended FCB
fields that precede the FCB (see "Extended FCB" in Section
1.8.1 File Control Block (FFCB». If the attribute field is
zero, only normal file entries are searched. Directory
entries for hidden files, system files, volume label, and
subdirectories are not searched.

If the attribute field is hidden file, system file, or
directory entry (02H, 04H, or lOH) , or any combination of
those values, all normal file entries are also searched. To
search all directory entries except the volume label, set
the attribute byte to l6H (hidden file and system file and
directory entry).

If the attribute field is volume label (08H), only the
volume label entry is searched.

Macro Definition: search first macro fcb

Example

mov dx,offset fcb
mov ah, IlH
int 21H
endm

The following program verifies the existence of a file named
REPORT.ASM on the disk in drive B.

yes
no
crlf
fcb

buffer

begin:

not there:
continue:

db
db
db
db
db
db

"FILE EXISTS.$"
"FILE DOES NOT EXIST.$"

ODH,OAH,"$"
2,"REPORT ASM"
26 dup (?)
128 dup (?)

set dta buffer isee Function
search first fcb iTHIS FUNCTION -

lAH

cmp al,OFFH idirectory entry found?
je not there ino -display yes isee Function 09H
jmp continue
display no isee Function 09H
display crlf isee Function 09H

SYSTEM CALLS Function l2H

Search for Next Entry (Function l2H)

AX: 4ti At;

BX: BH BL

cx: CH CL

ox: OM DL

~ BP

SI

01

Call
AH = l2H
DS:DX

Pointer to unopened FCB

Return
AL

o = Directory entry found

page 1-73

I FLAGSH If FLAGSL I FFH = No directory entry found

~ SS

ES

Function l2H is used after Function llH (Search for First
Entry) to find additional directory entries that match a
filename that contains wildcard characters. It searches the
disk directory for the next matching name. DX must contain
the offset (from the segment address in DS) of an FCB
previously specified in a call to Function llH. To search
for hidden or system files, DX must point to the first byte
of an extended FCB prefix that includes the appropriate
attribute value.

If a directory entry for the filename in the FCB is not
found, AL returns FFH.

If a directory entry for the filename in the FCB is found,
AL returns a and an unopened FCB of the same type (normal or
extended) is created at the Disk Transfer Address (see
Function llH for a description of how the unopened FCB is
formed) •

Macro Definition: search next macro fcb
mov dx,offset fcb
mov ah,12H
int 2lH
endm

SYSTEM CALLS Function l2H Page 1-74

Example

The following program displays the number of files on the
disk in drive B.

message
files
fcb

buffer

begin:

db
db
db
db
db

"NO files",ODH,OAH,"$"
o
2,"???????????"
26 dup (?)
128 dup (?)

set dta buffer
search first fcb
cmp al,OFFH
je all done
inc fifes

isee Function lAH
isee Function llH
idirectory entry found?
ino, no files on disk
iyes, increment file
icounter

search dir: search next
cmp al,OFFH
je done
inc files

fcb iTHIS FUNCTION
idirectory entry found?
ino
iyes, increment file
icounter

done:
all_done:

jmp search dir icheck again
convert files,lO,message isee end of chapter
display message isee Function 09H

SYSTEM CALLS Function 13H

Delete File (Function 13H)

AX:

BX:

cx:

ox:

.~ AI;

BH BL

CH CL

DH OJ;

~
p

BP

51

01

Call
AH = 13H
DS:DX

Pointer to unopened FCB

Return
AL
o = Directory entry found

page 1-75

FFH = No directory entry found

~.'i.;'." '.
55

ES

Function 13H deletes a file. DX must contain the offset
(from the segment address in DS) of an unopened FCB. The
directory is searched for a matching filename. The filename
in the FCB can contain wildcard characters.

If no matching directory entry is found, AL returns FFH.

If a matching directory entry is found, AL returns 0 and the
entry is deleted from the directory. If a wildcard
character is used in the filename, all files which match
will be deleted.

Do not delete open files.

Macro Definition: delete macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,13H
21H

SYSTEM CALLS Function 13H Page 1-76

Example

The following program deletes each file on the disk in drive
B that was last written before December 31, 1982.

year
nonth
day
files
message
feb

buffer

begin:

compare:

next:

all done:

dw 1982
db 12
db 31
db ° db "NO FILES DELETED.",ODH,OAH,"$"
db 2,"???????????"
db 26 dup (?)
db 128 dup (?)

set dta buffer
search first fcb
anp al,OFFH
jne compare
jmp all done
convert date buffer
anp cX,year
jg next
cmp dl ,mon th
jg next
anp dh,day
jge next
delete buffer
inc files

search next fcb
anp al,OOH
je compare
anp files ,0
je all done

isee Function lAH
isee Function IlH
idirectory entry found?
iyes
inO, no files on disk
isee end of chapter
inext several lines
icheck date in directory
ientry against date
iabove & check next file
iif date in directory
ientry isn't earlier.
iTHIS FUNCTION
ibump deleted-files
icounter
isee Function 12H
idirectory entry found?
iyes, check date
iany files deleted?
ino, display NO FILES
imessage.

convert
display

files,IO,message isee end of chapter
message isee Function 09H

SYSTEM CALLS Function l4H Page 1-77

Sequential Read (Function l4H)

AX:

BX:

cx:

ox:

AM, 4l

BH BL

CH CL

t)H , ~

~
p

BP

SI

01

I FLAGSH Ii FLAGSL I

§ ... ; , ', ..
ss
ES

Call
AH = l4H
DS:DX

pointer to opened FCB

Return
AL

OOH
OlH
02H
03H

Read completed successfully
EOF
DTA too small
EOF, partial record

Function 14H reads a record from the specified file. DX
must contain the offset (from the segment address in DS) of
an opened FCB. The record pointed to by the Current Block
field (offset OCH) and Current Record (offset 20H) field is
loaded at the Disk Transfer Address, then the Current Block
and Current Record fields are incremented.

The length of the record is taken from the Record Size field
(offset OEH) of the FCB.

AL returns a code that describes the processing:

Code

o

I

2

3

Meaning

Read completed successfully.

End-of-file; no data in the record.

Not enough room at the Disk Transfer Address
to read one record~ read canceled.

End-of-file~ a partial record was read and
padded to the record length with zeros.

Macro Definition: read_seq macro fcb
mov dx,offset fcb
mov ah,14H
int 2lH
endm

SYSTEM CALLS Function 14H Page 1-78

Example

The following program displays the file named TEXTFILE.ASC
that is on the disk in drive Bi its function is similar to
the MS-DOS Type command. If a partial record is in the
buffer at end of file, the routine that displays the partial
record displays characters until it encounters an
end-of-file mark (ASCII lAH, or Control-Z).

fcb

buffer

begin:

find eof:

all done:

db
db
db

2, "TEXTFILEASC"
26 dup (?)
128 dup (?) ,"$"

set dta buffer isee Function lAH
open fcb isee Function OFH
read seq fcb iTHIS FUNCTION
cmp - al,02H iDTA too small?
je all done ;yes
cmp al,OOH ;end-of-file?
jg check more iyes
display buffer ;see Function 09H
jmp read line iget another record
cmp al,03H ;partial record in buffer?
jne all done ino, go home
xor si,si iset index to 0
cmp buffer [si] ,26 ;is character EOF?
Je all done iyes, no more to display
display char buffer [si] isee Function 02H
inc sT ibump index
jmp find eof icheck next character
close fcb isee Function lOH

SYSTEM CALLS Function ISH Page 1-79

Sequential Write (Function l5H)

AX: AM At

BX: BH BL

cx: CH CL

ox: DH 01.

~ BP

SI

01

~ DS

SS

ES

Call
AH = ISH
DS:DX

Pointer to opened FCB

Return
AL

OOH
OlH
02H

Write completed successfully
Disk full
DTA too small

Function ISH writes a record to the specified file. DX must
contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by Current Block field
(offset OCH) and Current Record field (offset 20H) is
written from the Disk Transfer Address, then the Current
Block and Current Record fields are incremented.

The record size is taken from the value of the Record Size
field (offset OEH) of the FCB. If the Record Size is less
than a sector, the data at the Disk Transfer Address is
written to an MS-DOS buffer; MS-DOS writes the buffer to
disk when it contains a full sector of data, or the file is
closed, or a Reset Disk system call (Function ODH) is
issued.

AL returns a code that describes the processing:

Code

o

1

2

Meaning

write completed successfully.

Disk full; write canceled.

Not enough room at the Disk Transfer Address
to write one record; write canceled.

SYSTEM CALLS Function ISH Page 1-80

Macro Definition: write_seq macro fcb

Example

mov
mov
int
endm

dx,offset fcb
ah,lSH
21H

The following program creates a file named DIR.TMP on the
disk in drive B that contains the disk number (O=A, l=B,
etc.) and filename from each directory entry on the disk.

record size
,
fcbl

fcb2

buffer

begin:

write it:

all done:

equ OEH ;offset of Record Size
field in FCB

db
db
db
db
db

2, "DIR TMP"
26 dup (?)
2,"???????????"
26 dup (?)
128 dup (?)

set dta
search first
cmp
je
create
mov

write_seq
cmp
jne
search next
cmp
je
jmp
close

buffer isee Function lAH
fcb2 isee Function IlH
al,OFFH idirectory entry found?
all done ;no, no files on disk
fcb! ;see Function 16H
fcbl[record size] ,12

fcbl
al,O
all done
fcb2
al,FFH
all done
write it
fcbl

;set record size to 12
iTHIS FUNCTION
;write successful?
ino, go home
;see Function 12H
idirectory entry found?
ino, go home
;yes, write the record
isee Function 10H

SYSTEM CALLS Function 16H

Create File (Function l6B)

AX:

BX:

ex:
ox:

BH BL

CH Cl

DH DL '

~
p

BP

Sl

01

~": ss
ES

Call
AlI = 16H
OO:DX

Pointer to unopened FCB

Return
AL

OOH
FFH

Empty directory found
= No empty directory

available

page 1-81

Function 16H creates a file. DX must contain the offset
(from the segment address in DS) of an unopened FCB. MS-DOS
searches the directory for an entry that matches the
specified filename or, if there is no matching entry, an
empty entry.

If MS-DOS finds a matching entry, it opens the file and sets
the length to zero (in other words, if you try to create a
file that already exists, MS-DOS erases it and creates a
new, empty file). If MS-DOS doesn't find a matching entry
but does find an empty directory entry, it opens the file
and sets its length to zero. In either case, the file is
created and AL returns O. If MS-DOS doesn't find a matching
entry and there is no empty entry, the file is not created
and AL returns FFH.

You can assign an attribute to the file by using an extended
feB with the attribute byte set to the appropriate value
(see "Extended FCB" in Section 1.8.1).

Macro Definition: create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm

SYSTEM CALLS Function 16H Page 1-82

Example

The following program creates a file named DIR.TMP on the
disk in drive B that contains the disk number (0 = A, 1 B,
etc.) and filename from each directory entry on the disk.

,
fcbl

fcb2

buffer

begin:

all done:

equ OEH ;offset of Record Size
field of FCB

db
db
db
db
db

2,"DIR TMP"
26 dup (?)
2,"???????????"
26 dup (?)
128 dup (?)

set dta buffer :see Function lAH
search first fcb2 isee Function IlH
cmp - al,OFFH idirectory entry found?
je all done ino, no files on disk
create fcbI iTHIS FUNCTION
mov fcbl[record size),12

write seq fcbl
cmp al,O
jne all done
search next rcb2
cmp - al,FFH
je all done
jmp write it
close fcbl

;set record size to 12
isee Function ISH
iwrite successful
ino, go home
isee Function 12H
idirectory entry found?
ino, go home
iyes, write the record
isee Function 10H

SYSTEM CALLS Function 17H Page 1-83

Rename File (Function 17H)

AX: AM AL

ex: BH Bl

cx: CH Cl

ox: OH DL

~ BP

SI

01

~ -os
SS

ES

Call
AH = 17H
DS:DX

Pointer to modified FCB

Return
AL

OOH = Directory entry found
FFH = No directory entry
found or destination already
exists

Function 17H changes the name of an existing file. DX must
contain the offset (from the segment address in DS) of an
PCB with the drive number and filename filled in, followed
by a second filename at offset llH. DOS searches the disk
directory for an entry that matches the first filename,
which can contain wildcard characters.

If MS-DOS finds a matching directory entry and there is no
directory entry that matches the second filename, it changes
the filename in the directory entry to match the second
filename in the modified FCB and AL returns zero. If a
wildcard character is used in the second filename, the
corresponding characters in the filename of the directory
entry are not changed.

This function request cannot be used to rename a hidden
file, a system file, or a subdirectory. If MS-DOS does not
find a matching directory entry or finds an entry for the
second filename, AL returns FFH.

Macro Definition: rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

SYSTEM CALLS Function l7H page 1-84

Example

The following program prompts for the name of a file and a
new name, then renames the file.

fcb
promptl
prompt2
reply
crlf

begin:

db
db
db
db
db

37 dup (?)
"Filename: $"
"New name: $"

15 dupe?)
ODH,OAH,"$"

display promptl
get string l5,reply
display crlf
parse reply[2] ,fcb
display prompt2
get string l5,reply
display crlf

isee Function
isee Function
isee Function
isee Function
isee Function
isee Function
isee Function

parse reply[2] ,fcb[16]
isee Function

rename fcb iTHIS FUNCTION

09H
OAH
09H
29H
09H
OAH
09H

29H

SYSTEM CALLS Function 19H Page 1-85

Get Current Disk (Function 19B)

AX: Alt AI. Call
BX: BH BL AH = 19H
CX: CH CL

OX: OH OL

~ BP

51

01

Return
AL

Currently selected drive
(0 = A, 1 = B, etc.)

m5

05

55

E5

Function 19H returns the current drive in AL (O=A, l=B,
etc.) •

Macro Definition: current disk macro
mov
int
endm

Example

ah,19H
2lH

The following program displays the currently
(default) drive in a 2-drive system.

selected

message
crlf
,
begin:

disk b:
all done:

db "Current disk is $"
db ODH,OAH,"$"

display message
current disk
cmp al,OOH
jne disk b
display char "A"
jmp - all done
display char-"B"
display- crlf

;see Function 09H
;THIS FUNCTION
;is it disk A?
;no, it's disk B:
;see Function 02H

;see Function 02H
;see Function 09H

SYSTEM CALLS Function lAH

Set Disk Transfer Address (Function LAB)

AX:

BX:

CX:

OX:

4M AL

BH BL

CH CL

f DI'I ~

~
p

BP

SI

01

I FLAGS" I, FLAGS, I

§

Call
AH = lAH
DS:DX

Disk Transfer Address

Return
None

page 1-86

Function lAH sets the Disk Transfer Address. DX must
contain the offset (from the segment address in DS) of the
Disk Transfer Address. Disk transfers cannot wrap around
from the end of the segment to the beginning, nor can they
overflow into another segment.

If you do not set the Disk Transfer Address, MS-DOS defaults
to offset 80H in the Program Segment Prefix. You can check
the current Disk Transfer Address with Function 2FH (Get
Data Transfer Address).

Macro Definition: set dta macro buffer
mov dx,offset buffer
nov ah, lAH
int 21H

SYSTEM CALLS Function lAH Page 1-87

Example

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A=l, B=2, etc.), then
reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk In drive B. The file
contains 26 records; each record is 28 bytes long.

record_size equ OEH ;offset of Record Size
;field of FCB

relative_record equ 21H ;offset of Relative Record
,
fcb

buffer
prompt
crlf

begin:

get char:

all done:

db
db
db
db
db

field of FCB
2, "ALPHABETDAT"
26 dup (?)
28 dup(?) ,"$"

"Enter letter: $"
ODH,OAH,"$"

set dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record size] ,28 ;set record size
display prompt - ;see Function 09H
read kbd and echo ;see Function OlH
cmp -al,ODH ;just a CR?
je all done ;yes, go home
sub al,41H ;convert ASCII

mov

display
read ran
display
display
jrnp
close

;code to record #
fcb[relative_record] ,al

;set relative record
;see Function 09H
;see Function 21H
;see Function 09H
;see Function 09H

crlf
fcb
buffer
crlf
get char
fcb-

;get another character
;see Function lOH

SYSTEM CALLS Function lBH

Get Default Drive Data (Function IBB)

AX:

ex:

ex:

ox:

~
p

BP

SI

01

~.i; ss
ES

Call
AH = lBH

Return
AL

Sectors per cluster
ex

Bytes per sector
DX

Clusters per drive
OO:BX

Pointer to FAT 1D byte

page 1-88

Function lBH retrieves data about the disk in the default
drive. The data is returned in the following registers:

AL The number of sectors in a cluster (allocation unit).
ex The number of bytes in a sector.
DX The number of clusters on the disk.

BX returns the offset (to the segment address in DS) of the
first byte of the File Allocation Table (FAT), which
identifies the type of disk in the drive:

Value Type of Drive

FF Double-sided diskette, 8 sectors per track.
FE Single-sided diskette, 8 sectors per track.
FD Double-sided diskette, 9 sectors per track.
FC Single-sided diskette, 9 sectors per track.
F9 Double-sided diskette, 15 sectors per track.
Fa Fixed disk.

This call is similar to Function 36H (Get Disk Free Space),
except that it returns the address of the FAT 1D byte in BX
instead of the number of available clusters, and to Function
lCH (Get Drive Data), except that it returns data on the
disk in the default drive instead of the disk in a specified
drive. For a description of how MS-DOS stores data on a
disk, including a description of the File Allocation Table,
see Chapter 3.

SYSTEM CALLS Function IBH

Macro Definition: def drive data macro
push
IIDV

int
mov
pop
endm

Example

ds
ah,lBH
21H

Page 1-89

al,byte ptr[bx]
ds

The following program displays a message that tells whether
the default drive is a diskette or fixed disk drive.

stdout

msg
remov
fixed
crlf

begin:

diskette:
all done:

equ

db
db
db
db

1

"Default drive is
"diskette."
"fixed."
ODH,OAH

write_handle stdout,msg,17
jc write error
def drive data
cmp- - byte ptr [bx] ,OF8H
jne diskette
write_handle stdout,fixed,6
jc write error
jmp short all done
write handle stdout,remov,9
write-handle stdout,crlf,2
jc write error

~display message
iroutine not shown
iTHIS FUNCTION
icheck FAT ID byte
iit's a diskette
isee Function 40H
isee Function 40H
~clean up & go home
isee Function 40H
isee Function 40H
iroutine not shown

SYSTEM CALLS Function lCH Page 1-90

Get Drive Data (Function lea)

AX:

BX:

ex:
OX:

~
p

BP

51

01

Call
AH lCH
DL

Drive (O=default, l=A, etc.)

Return
AL

ex

OFFH if drive number is invalid,
otherwise sectors per cluster

Bytes per sector
DX

Clusters per drive
DS:BX

Pointer to FAT ID byte

Function lCH retrieves data about the disk in the specified
drive. DL must contain the drive number (O=default, l=A,
etc.). The data is returned in the following registers:

AL The number of sectors in a cluster (allocation unit).
CX The number of bytes in a sector.
DX The number of clusters on the disk.

BX returns the offset (to the segment address in DS) of the
first byte of the File Allocation Table (FAT), which
identifies the type of disk in the drive:

Value Type of Drive

FF Double-sided diskette, a sectors per track.
FE Single-sided diskette, a sectors per track.
FD Double-sided diskette, 9 sectors per track.
FC Single-sided diskette, 9 sectors per track.
F9 Double-sided diskette, 15 sectors per track.
Fa Fixed disk.

If the drive number in DL is invalid, AL returns OFFH.

SYSTEM CALLS Function lCH Page 1-91

This call is similar to Function 36H (Get Disk Free Space),
except that it returns the address of the FAT ID byte in BX
instead of the number of available clusters, and to Function
lBH (Get Default Drive Data), except that it returns data on
the disk in the drive specified in DL instead of the disk in
the default drive. For a description of how MS-DOS stores
data on a disk, including a description of the File
Allocation Table, see Chapter 3.

drive Macro Definition: drive data macro
push
nov
nov
int
nov
pop
endm

ds
dl,drive
ah,lBH
21H

Example

aI, byte ptr[bx]
ds

The following program displays a message that tells whether
drive B is a diskette or fixed disk drive.

stdout

msg
remov
fixed
crlf
,
begin:

diskette:
all_done:

equ

db
db
db
db

write handle
jc
drive data
cmp
jne
write handle
jc
jmp
write handle
write-handle
jc -

1

"Drive B is "
"diskette."
"fixed."
ODH,OAH

stdout,msg,ll
write error
2
byte ptr [bx] ,OF8H
diskette
stdout,fixed,6
write error
all done
stdout,remov,9
stdout,crlf,2
write error

~display message
~routine not shown
~THIS FUNCTION
~check FAT ID byte
~it's a diskette
~see Function 40H
~routine not shown
~clean up & go homE
~see Function 40H
~see Function 40H
~routine not shown

SYSTEM CALLS Function 21H

Random Read (Function 21H)

AX: All

BX: BH

cx: CH

ox: 00

Al'

BL

CL

J)I;
..•..

Call
AH = 21H
DS:DX

Pointer to opened FCB

Return
AL

Page 1-92

~
p

BP

SI

01 o
1
2
3

Read completed successfully
End of file, record empty
DTA too small
End of file, partial record

~.:'•. ss
ES

Function 21H reads the record pointed to by the Relative
Record field (offset 21H) of the FCB to the Disk Transfer
Address. DX must contain the offset (from the segment
address in DS) of an opened FCB. The Current Block field
(offset OCH) and Current Record field (offset 20H) are set
to agree with the Relative Record field (offset 21H), then
the record is loaded at the Disk Transfer Address. The
record length is taken from the Record Size field (offset
OEH) of the FCB.

AL returns a code that describes the processing:

Code

o

1

2

3

Meaning

Read completed successfully.

End-of-file; no data in the record.

Not enough room at the Disk Transfer Address
to read one record; read canceled.

End-of-file; a partial record was read and
padded to the record length with zeros.

Macro Definition: read ran macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,21H
21H

SYSTEM CALLS Function 21H Page 1-93

Example

The following program prompts for a letter,
letter to its alphabetic sequence (A = 1, B =
reads and displays the corresponding record
named ALPHABET.DAT on the disk in drive
contains 26 records; each record is 28 bytes

converts the
2, etc.), then

from a file
B. The file

long.

record size equ OEH ;offset of Record Size
;field of FCB

relative record equ 21H ;offset of Relative Record
field of FCB

fcb

buffer
prompt
crlf
,
begin:

all done:

db
db
db
db
db

2, "ALPHABETDAT"
26 dup (?)
28 dup(?) ,"$"

"Enter letter: $"
ODH,OAH,"$"

set dta buffer ;see Function lAH
open fcb ;see Function OFH
mov fcb[record_size] ,28 iset record size
display prompt isee Function 09H
read kbd and echo isee Function OlH
cmp -al,ODH ijust a CR?
je all done iyes, go home
sub al,4lH iconvert ASCII code

mov

display
read ran
display
display
jmp
close

ito record #
fcb[relative recordl,al ;set relative

crlf
fcb
buffer
crlf
get char
fcb-

- ;record
isee Function 09H
;THIS FUNCTION
;see Function 09H
isee Function 09H
iget another char.
isee Function IOH

SYSTEM CALLS Function 22H

Random write (Function 228)

AX:

BX:

ex:
ox:

BH

CH

BL

CL

.. .,~

Call
AH = 22H
OO:DX

Pointer to opened FCB

Return
AL

Page 1-94

~
p

BP

SI

01

I FLAGS" 'j FLAGS, I
OOH
OIH
02H

Write completed successfully
Disk full
DTA too small

~
s

...............::<

ES

Function 22H writes the record pointed to by the Relative
Record field (offset 21H) of the FCB from the Disk Transfer
Address. DX must contain the offset from the segment
address in DS of an opened FCB. The Current Block (offset
OCH) and Current Record (offset 20H) fields are set to agree
with the Relative Record field (offset 21H) , then the record
addressed by these fields is written from the Disk Transfer
Address.

The record length is taken from the Record Size field
(offset OEH) of the FCB. If the record size is less than a
sector, the data at the Disk Transfer Address is written to
a buffer; the buffer is written to disk when it contains a
full sector of data, or the file is closed, or a Reset Disk
system call (Function ODH) is issued.

AL returns a code that describes the processing:

Code Meaning

o Write completed successfully.

1 Disk is full.

2 Not enough room at the Disk Transfer Address
to write one record; write canceled.

SYSTEM CALLS Function 22H Page 1-95

Macro Definition: write ran macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,22H
21H

Example

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A = 1, B = 2, etc.), then
reads and displays the corresponding record from a file
named ALPHABET.OAT on the disk in drive B. After displaying
the record, it prompts the user to enter a changed record.
If the user types a new record, it is written to the file;
if the user just presses Return, the record is not replaced.
The file contains 26 records; each record is 28 bytes long.

record size equ OEH ;offset of Record Size
;field of FCB

relative record equ 21H ioffset of Relative Record
field of FCB ,

fcb

buffer
promptl
prompt2
crlf
reply
blanks
;

db
db
db
db
db
db
db
db

2, "ALPHABETOAT"
26 dup (?)
28 dup(?),OOH,OAH,"$"

"Enter letter: $"
"New record (RETURN for no change): $"

OOH, OAH , "$"
28 dup (32)
26 dup (32)

begin: set dta buffer isee Function lAH
open fcb isee Function OFH
mov fcb[record size] ,28 iset record size

get_char: display promptl - isee Function 09H
read kbd and echo isee Function OlH
cmp - -al,OOH ijust a CR?
je all done iyes, go home
sub al,41H iconvert ASCII

icode to record *
mov fcb[relative record] ,al

- iset relative record
display crlf isee Function 09H
read ran fcb iTHIS FUNCTION
display buffer isee Function 09H
display crlf isee Function 09H
display prompt2 isee Function 09H
get string 27,reply isee Function OAH
display crlf ;see Function 09H
cmp reply[l],O ;was anything typed

ibesides CR?
je

xor
mov

bx,bx
bl, reply [1]

ino
iget another char.
ito load a byte
iuse reply length as
icounter

SYSTEM CALLS Function 22H Page 1-96

move string blanks,buffer,26 isee chapter end
move-string reply[2J ,buffer,bx isee chapter end
write ran fcb iTHIS FUNCTION
jmp - get char iget another character

all done: close fcb- isee Function lOH

SYSTEM CALLS Function 23H

Get File Size (Function 23H)

AX:

BX: BH

CX: CH

OX: DK

BP

51

01

BL

CL

QL.

Call
AH = 23H
DS:DX

Pointer to unopened FCB

Return
AL

Directory entry found

page 1-97

~
p

OOH
FFH No directory entry found

~
5 OS

5S

ES

Function 23H returns the size of the specified file. DX
must contain the offset (from the segment address in DS) of
an unopened FCB.

If there is a directory entry that matches the specified
file, MS-DOS divides the File Size field (offset lCH) of the
directory entry by the Record Size field (offset OEH) of the
FCB, puts the result in the Relative Record field (offset
21H) of the FCB, and returns 00 in AL.

You must set the Record Size field of the FCB to the correct
value before calling this function. If the Record Size
field is not an even divisor of the File Size field, the
value set in the Relative Record field is rounded up,
yielding a value larger than the actual number of records.

If no matching directory is found, AL returns FFH.

Macro Definition: file size macro feb
mov dx,offset feb
mov ah,23H
int 21H
endm

SYSTEM CALLS Function 23H Page 1-98

Example

The following program prompts for the name of a file, opens
the file to fill in the Record Size field of the FCB, issues
a File Size system call, and displays the record length and
number of records.

fcb
prompt
msgl
msg2
crlf
reply

begin:

all done:

db
db
db
db
db
db

37 dup (?)
"File name: $"
"Record length: ",ODH,OAH,"$"
"Records: ",ODH,OAH,"$"

ODH,OAH,"$"
17 dupe?)

display prompt isee Function 09H
get string 17,reply isee Function OAH
cmp- reply[l],O ijust a CR?
jne get length ino, keep going
jmp all-done iyes, go home
display crlf isee Function 09H
parse reply[2] ,fcb isee Function 29H
open fcb isee Function OFH
file size fcb iTHIS FUNCTION
rnov ax,word ptr fcb[33] iget record length
oonvert ax,IO,msg2[9] isee end of chapter
rnov ax,word ptr fcb[14] i get record number
convert ax,10,msgl[15] isee end of chapter
display msgl ;see Function 09H
display msg2 ;see Function 09H
close fcb ;see Function 10H

SYSTEM CALLS Function 24H

Set Relative Record (Function 24B)

AX:

BX:

CX:

OX:

AH Al

BH Bl

CH Cl

OH DL

~
p

BP

51

01

I FLAGS" II FLAGSl I

~.CS .
us
55

ES

call
AH = 24H
a:; :OX

Pointer to opened FCB

Return
None

Page 1-99

Function 24H sets the Relative Record field (offset 21H) to
the file address specified by the Current Block field
(offset OCH) and Current Record field (offset 20H). OX must
contain the offset (from the segment address in OS) of an
opened FCB. You use this call to set the file pointer
before a random read or write (Functions 21H, 22H, 27H, or
28H) •

Macro Definition: set relative record macro
mov
mov
int
endm

Example

fcb
dx,offset fcb
ah,24H
21H

The following program copies a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by setting the record length equal to the file size and
the record count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the Current Record
field (offset 20H) to 1 and using Set Relative Record to
make the Relative Record field (offset 21H) point to the
same record as the combination of the Current Block field
(offset OCH) and Current Record field (offset 20H).

SYSTEM CALLS Function 24H Page 1-100

current record equ 20H ;offset of Current Record
ifield of FCB

fil size equ
,

10H ioffset of File Size
field of FCB

fcb db
filename db
promptl db
prompt2 db
crlf db
file length dw

37 dup (?)
17 dup(?)

"File to copy: $"
"Name of copy: $"

ODH,OAH,"$"
?

isee Function 09H for
;explanation of $

buffer db 32767 dup(?)
,
begin: set dta buffer isee Function lAH

display promptl ; see Function 09H
get string 15,filename isee Function OAH
display crlf ;see Function 09H
parse filename[2] ,fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current record],O iset Current Record

- ;field
set relative record fcb ;THIS FUNCTION
mov ax,word ptr fcb[fil size] iget file size
mov file length,ax -isave it for

- iran block write
ran block read fcb,l,ax isee-FunctIon 27H
display prompt2 ;see Function 09H
get string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function l6H
rnov fcb[current record],O ;set Current Record

- ;field
set relative record fcb ;THIS FUNCTION
rnov- ax,rile_length ;get original file

ran block write fcb,l,ax
close fcb

;.length
;see Function 28H
;see Function lOH

SYSTEM CALLS Function 25H

Set Interrupt vector (Function 258)

AX: Ali

BX: BH

cx: CH

OX: DH

Al

Bl

CL

Dl

Call
AH = 25H
AL

Interrupt number
DS:DX

Page 1-101

BP ~
Pointer to interrupt-handling
routine

SI

01

Return
None

~:
ss
ES

Function 25H sets the address in the interrupt vector table
for the specified interrupt.

AL must contain the number of the interrupt. DX must
contain the offset (to the segment address in DS) of the
interrupt-handling routine.

To avoid compatibility problems, programs should never read
an interrupt vector directly from memory, nor--Bet an
interrupt vector by writing it into memory. Use Function
35H (Get Interrupt Vector) to get a vector and this function
request to set a vector, unless it is absolutely imperative
that your program be compatible with pre-2.0 versions of
MS-DOS.

Macro Definition:

set vector macro interrupt,handler start
mov aI, interrupt -
mov dx,offset handler start
mov ah,25H
endm

Example

Because interrupts tend to be machine-specific, no example
is shown.

SYSTEM CALLS Function 26H

Create New PSP (Function 268)

AX:

BX:

CX:

OX:

AL

BL

CL

~
p

BP

81

DI

~
s

os

SS

ES

Call
AH = 26H
DX

Segment address of new PSP

Return
None

page 1-102

Function 26H creates a new program Segment Prefix. DX must
contain the segment address where the new PSP is to be
created.

This function request has been superseded. Use Function
4BH, Code 0 (Load and Execute Program) to execute a child
process unless it is imperative that your program be
compatible with pre-2.0 versions of MS-DOS.

Macro Definition: create_psp macro

Example

mov
mov
endm

seg addr
dx,seg addr
ah,26H-

Because Function 4BH, Code 0 (Load and Execute Program) and
Code 3 (Load Overlay) have superseded this function request,
no example is shown.

SYSTEM CALLS Function 27H Page 1-103

Random B10ck Read (Function 27H)

AX:

BX:

ex:
ox:

AI'! AI. ,

BH BL

CH CL

OM DL

~
p

BP

SI

01

I FLAGS" 'I FLAGSL I

~.:. ss
ES

Call
AH = 27H
DS:DX

Pointer to opened FCB
CX

Number of blocks to read

Return
AL

CX

o
1
2
3

Read completed successfully
End of file, empty record
DTA too small
End of file, partial record

Number of blocks read

Function 27H reads one or more records from the specified
file to the Disk Transfer Address. DX must contain the
offset (to the segment address in DS) of an opened FCB. CX
must contain the number of records to read. Reading starts
at the record specified by the Relative Record field (offset
21H); you must set this field with Function 24H (Set
Relative Record) before calling this function.

DOS calculates the number of bytes to read by multiplying
the value in CX by the Record Size field (offset OEH) of the
FCB.

CX returns the number of records read. The Current Block
field (offset OCH) , Current Record field (offset 20H) , and
Relative Record field (offset 21H) are set to address the
next record.

If you call this function with CX=O, no records are read.

SYSTEM CALLS Function 27H Page 1-104

AL returns a code that describes the processing:

Oode Meaning

o Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address
to read one record; read canceled.

3 End-of-file; a partial record was read
and padded to the record length with zeros.

Macro Definition:

ran block read - -

EXaDlple

macro fcb,count,rec size
rnov dx,offset fcb-
rnov
rnov
rnov
int
endrn

cx,count
word ptr fcb[14] ,rec_size
ah,27H
21H

The following program copies a file using the Random Block
Read system call. It speeds the copy by specifying a record
count of 1 and a record length equal to the file size, and
using a buffer of 32K bytes; the file is read as a single
record (compare to the sample program for Function 28H that
specifies a record length of 1 and a record count equal to
the file size). ------ -----

current record
fil size
,
fcb db
filename db
promptl db
prompt2 db
crlf db
file length dw
buffer db
,

equ 20H
equ lOH

;offset of Current Record field
;offset of File Size field

37 dup (?)
17 dupe?)

"File to copy: $"
"Name of copy: $"

ODH,OAH,"$"
?
32767 dupe?)

;see Function 09H for
;explanation of $

begin: set dta
display
get string
display
parse

buffer ;see Function lAH
promptl ;see Function 09H
15,filename ;see Function OAH
crlf ;see Function 09H
filename [2] ,fcb isee Function 29H
fcb ;see Function OFH
fcb[current record],O ;set Current

open
mov

;Record field
set relative record fcb ;see Function 24H
mov ax, word ptr fcb[fil_size]

SYSTEM CALLS Function 27H Page 1-105

iget file size
mov file length,ax isave it
ran block read -fcb,l,ax iTHIS FUNCTION
display - prompt2 isee Function 09H
get string l5,filename isee Function OAH
display crlf isee Function 09H
parse filename [2] ,fcb isee Function 29H
create fcb isee Function 16H
mov fcb[current record] ,Oiset current

- iRecord field
set relative record fcb isee Function 24H
ran-block wrIte fcb,l,ax isee Function 28H
close fcb isee Function 10H

SYSTEM CALLS Function 28H Page 1-106

Random Block Write (Function 28B)

=
~

~

~

~ ~

~ ~

~ c .. s•...•.........•.. ~

~

~

Call
AH = 28H
DS:DX

Pointer to opened FeB
CX

Number of blocks to write
(0 = set File Size field)

Return
AL

OOH
OlH
02H

CX

Write completed successfully
Disk full
End of segment

Number of blocks written

Function 28H writes one or more records to the specified
file from the Disk Transfer Address. DX must contain the
offset (to the segment address in DS) of an opened FCB; CX
must contain either the number of records to write or o.

If CX is not 0, the specified number of records is written
to the file starting at the record specified in the Relative
Record field (offset 2lH) of the FCB. If CX is 0, no
records are written, but MS-DOS sets the File Size field
(offset lCH) of the directory entry to the value in the
Relative Record field of the FCB (offset 2lH); disk
allocation units are allocated or released, as required, to
satisfy this new file size.

MS-DOS calculates the number of bytes to write by
multiplying the value in CX by the Record Size field (offset
OEH) of the FCB. CX returns the number of records written;
the Current Block field (offset OCH) , Current Record field
(offset 20H) , and Relative Record (offset 21H) field are set
to address the next record.

SYSTEM CALLS Function 28H Page 1-107

AL returns a code that describes the processing:

Code

o

1

2

Meaning

Write completed successfully.

Disk full. No records written.

Not enough room at the Disk Transfer Address
to write one record; write canceled.

Macro Definition:

ran block write - -

Example

macro
I10V

110 V

I10V

I10V

int
endm

fcb,count,rec size
dx,offset fcb
cx,count
word ptr fcb[14] ,rec_size
ah,28H
21H

The following program copies a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by specifying a record count equal to the file size and
a record length of 1, and using a buffer of 32K bytes; the
file is copied quickly with one disk access each to read and
write (compare to the sample program of Function 27H, that
specifies a record count of 1 and a record length equal to
file size).

current record
fil size

fCb db
filename db
promptl db
prompt2 db
crlf db
num recs dw
buffer db
,

equ
equ

20H
10H

;offset of Current Record field
;offset of File Size field

37 dup (?)
17 dup(?)

"File to copy: $"
"Name of copy: $"

ODH,OAH,"$"
?
32767 dup(?)

isee Function 09H for
iexplanation of $

beg in: set dta
display
get string
display
parse

buffer ;see Function lAH
promptl ;see Function 09H
15,filename isee Function OAH
crlf isee Function 09H
filename[2],fcb isee Function 29H
fcb i see Function OFH
fcb[current record] ,Oiset Current

open
mov

- Record field
set relative record fcb ;see Function 24H
mov ax, word ptr fcb[fil size]

mov num_recs,ax
;get file size
;save it

SYSTEM CALLS Function 28H Page 1-108

ran block read fcb,num recs,l ;THIS FUNCTION
display prompt2 - ;see Function 09H
get string l5,filename isee Function OAH
display crlf ;see Function 09H
parse filename [2] ,fcb ;see Function 29H
create fcb ;see Function l6H
mov fcb[current record] ,0 ;set Current

- ;Record field
set relative record fcb ;see Function 24H
ran-block write fcb,num recs,l ;see Function 28H
close - fcb - isee Function 10H

SYSTEM CALLS Function 29H Page 1-109

Parse File Name (Function 29B)

a

~

a

=

- •
~ ~

~ ~

~ ~

~ .•.....•.•.•..••••• s.: p: ...•••.. : •.••...••• : ...••.•..•..••••• : ...••. : •. : .• : .••.•••. : .• : .•••• :: ..•.••.• : ••.•••••. :: •••. :: •. :: •.

~

•
~

§ : : ..
~

9

Call
AH = 29H
AL

Controls parsing (see text)
DS:S1

Pointer to string to parse
ES:D1

Pointer to buffer for unopened FCB

Return
AL

OOH
OlH
FFH

DS:S1

No wildcard characters
Wildcard characters used
Drive letter invalid

Pointer to first byte past
string that was parsed

ES:D1
Pointer to unopened FCB

Function 29H parses a string for a filename of the form
drive:filename.extension. SI must contain the offset (to
the segment address in DS) of the string to parse; D1 must
contain the offset (to the segment address in ES) of an area
of memory large enough to hold an unopened FCB. If the
string contains a valid filename, a corresponding unopened
FCB is created at ES:DI.

AL controls the parsing. Bits 4-7 must be 0; bits 0-3 have
the following meaning:

Bit Value Meaning

o 0 Stop parsing if a file separator is
encountered.

1

2

1 Ignore leading separators.

o Set the drive number in the FCB to 0
(current drive) if the string does not
contain a drive number.

1 Leave the drive number in the FCB unchanged
if the string does not contain a drive
number.

o Set the filename in the FCB to 8 blanks
if the string does not contain a filename.

SYSTEM CALLS Function 29H Page 1-110

Bit Value Meaning

3

1 Leave the filename in the FCB unchanged if
the string does not contain a filename.

1 Leave the extension in the FCB unchanged
if the string does not contain an extension.

o Set the extension in the FCB to 3 blanks
if the string does not contain an extension.

If the string contains a filename or extension that includes
an asterisk (*), all remalnlng characters in the name or
extension are set to question mark (?).

Filename separators:

+ / " [] \ < > I space tab

Filename terminators include all tpe filename separators
plus any control character. A filename cannot contain a
filename terminator; if one is encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension contains
a wildcard character (* or ?); AL returns 0 if
neither the filename nor extension contains a
wildcard character.

2. DS:SI points to the first character following the
string that was parsed.

ES:DI points to the first byte of the unopened FCB.

If the drive letter is invalid, AL returns FFH. If the
string does not contain a valid filename, ES:DI+l points to
a blank (20H).

Macro Definition: parse macro string,fcb
mov si,offset string
mov di,offset fcb
push es
push ds
pop es
mov al,OFH ;bits 0-3 on
mov ah,29H
int 21H
pop es
endm

SYSTEM CALLS Function 29H Page 1-111

Example

The following program verifies the existence of the file
named in reply to the prompt.

fcb
prompt
reply
yes
no

begin:

not there:

37 dup (?)
"Filename: $"

17 dup(?)

db
db
db
db
db
crlf

"FILE EXISTS",ODH,OAH,"$"
"FILE DOES NOT EXIST",ODH,OAH,"$"
db ODH,OAH,"$"

display prompt
get_string l5,reply
parse reply[2] ,fcb
display crlf
search first fcb
amp - al,OFFH
je not there
display yes-
jmp return
display no

:see Function 09H
:see Function OAH
:THIS FUNCTION
:see Function 09H
:see Function llH
:dir. entry found?
:no
:see Function 09H

SYSTEM CALLS Function 2AH

Get Date (Function 2AH)

AX:

BX:

ex:
ox:

AM, AL

BH

~
p

BP

SI

01

I FLAGS" Ii FLAGS, I

Call
AH = 2AH

Return
CX

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)
AL

Page 1-112

~~
Day of week (O=Sun., 6=Sat.)

SS

ES

Function 2AH returns the current date set in the operating
system as binary numbers in CX and DX:

ex Year (1980-2099)
DH Month (l=January, 2=February, etc.)
DL Day (1-31)
AL Day of week (O=Sunday, l=Monday, etc.)

Macro Definition: get_date macro
mov ah,2AH
int 21H
endm

SYSTEM CALLS Function 2AH Page 1-113

Example

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date.

month db 31,28,31,30,31,30,31,31,30,31,30,31
,
begin: get_date

inc dl
xor bx,bx
mov bl,dh
dec bx
cmp dl,month[bx]
jle month ok
mov dl,l
inc dh
cmp dh,12
jle month ok
mov dh,l
inc cx

month ok: set_date cx,dh,dl

iTHIS FUNCTION
iincrement day
iSO BL can be used as index
imove month to index register
imonth table starts with 0
ipast end of month?
ino, set the new date
iyes, set day to 1
iand increment month
ipast end of year?
ino, set the new date
iyes, set the month to 1
iincrement year
isee Function 2AH

SYSTEM CALLS Function 2BH

Set Date (Function 2BH)

AX: '*' ..] Al

BX: BH 1 BL

ex:

ox: ~lil. III

~
p

BP

SI

DI

~
s

os

SS

ES

Call
AH = 2BH
CX

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)

Return
AL

OOH
FFH

Date was valid
Date was invalid

Page 1-114

Function 2BH sets the date in the operating system.
Registers CX and DX must contain a valid date in binary:

ex Year (1980-2099)
DH Month (l=January, 2=February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL returns O. If
the date is not valid, the function is canceled and AL
returns FFH.

Macro Definition: set date macro year,month,day
mov cx,year
mov dh,month
mov dl,day
mov ah,2BH
int 21H
endm

SYSTEM CALLS Function 2BH Page 1-115

Example

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date.

month
,
begin:

month ok:

db 31,28,31,30,31,30,31,31,30,31,30,31

get date
inc- dl
xor bx,bx
mov bl,dh
dec bx
cmp dl,month[bx]
jle month ok
mov dl,l
inc dh
cmp dh,12
jle month ok
mov dh,l
inc cx
set date cx,dh,dl

isee Function 2AH
iincrement day
iSO BL can be used as index
imove month to index register
imonth table starts with 0
ipast end of month?
ino, set the new date
;yes, set day to 1
iand increment month
;past end of year?
ino, set the new date
iyes, set the month to 1
iincrement year
;THIS FUNCTION

SYSTEM CALLS Function 2CH Page 1-116

Get Time (Function 2CH)

AX: ~ AL Call
BX: BH BL AH = 2CH
ex: (lH .•. Cl

ox: ·.lItf 01.
Return

~
CH

BP Hour (0-23)
51 CL
01 Minutes (0-59)

DH
Seconds (0 - 59)

IlL

~
Hundredths (0-99)

os

55

E5

Function 2CH returns the current time set in the operating
system as binary numbers in CX and DX:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

Depending on how your hardware keeps time, some of these
fields may be irrelevant. As an example, many CMOS clock
chips do not resolve more than seconds. In such a case the
value in DL will probably always be O.

Macro Definition: get_time macro
mov ah,2CH
int 21H
endm

SYSTEM CALLS Function 2CH page 1-117

Example

The following program continuously displays the time until
any key is pressed.

time
,
begin:

db "OO:OO:OO.OO",ODH,"$"

get time
~te to dec ch,time
~te-to-dec cl,time[3]
~te-to-dec dh,time[6]
~te-to-dec dl,time[9]
display-time
check kbd status
crop - al, OFFH
je return
jmp begin

iTHIS FUNCTION
isee end of chapter
isee end of chapter
isee end of chapter
isee end of chapter
isee Function 09H
isee Function OBH
ihas a key been pressed?
iyes, terminate
ino, display time

SYSTEM CALLS Function 2DH

Set Time (Function 2DH)

AX:

BX:

ex:

OX:

~
p

BP

SI

DI

I FLAGS" II FLAGSL I

~
s

OS

SS

ES

Call
AH = 2DH
CH

Hour (0-23)
CL

Minutes (0-59)
DR

Seconds (0-59)
DL

Hundredths (0-99)

Return
AL

OOH
FFH

Time was valid
Time was invalid

page 1-118

Function 2DH sets the time in the operating system.
Registers CX and DX must contain a valid time in binary:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

Depending on how your hardware keeps time, some of these
fields may be irrelevant. As an example, many CMOS clock
chips do not resolve more than seconds. In such a case the
value in DL will not be relevant.

If the time is valid, the time is set and AL returns O. If
the time is not valid, the function is canceled and AL
returns FFH.

Macro Definition:

set time macro
mov
mov
mov
mov
mov
int
endm

hour,minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah,2DH
2lH

SYSTEM CALLS Function 2DH Page 1-119

EXaDlple

The following program sets the system clock to ° and
continuously displays the time. When a character is typed,
the display freezesi when another character is typed, the
clock is reset to ° and the display starts again.

time

begin:
read clock:

stop:

db "OO:OO:OO.OO",ODH,OAH,"$"

set time 0,0,0,0 iTHIS FUNCTION
get= time isee Function 2CH
byte to dec ch,time isee end of chapter
byte - to-dec cl,time[3] end of chapter - isee
byte to-dec dh,time[6] isee end of chapter
byte-to-dec dl,time[9] isee end of chapter
display time isee Function 09H
dir console io OFFH isee Function 06H
cmp al-;OOH iwas a char. typed?
jne stop iyes, stop the timer
jmp read clock inO keep timer on
read kbd isee Function 08H
jmp begin ikeep displaying time

SYSTEM CALLS Function 2EH

Set/Reset Verify Flag (Function 2EH)

AX:

BX:

cx:

OX:

I' AM 'Ali
BH BL

CH CL

OH OL

~
p

BP

81

01

I FLAGS" 'I FLAGSL I

~
s

OS

SS

ES

Call
AH = 2EH
AL

o
1

Do not verify
Verify

Return
None

Page 1-120

Function 2EH tells MS-DOS whether to verify each disk write.
If AL is 1, verify is turned on; if AL is 0, verify is
turned off. MS-DOS checks this flag each time it writes to
a disk.

The flag is normally off; you may wish to turn it on when
writing critical data to disk. Because disk errors are rare
and verification slows writing, you will probably want to
leave it off at other times. You can check the setting with
Function 54H (Get Verify State).

Macro Definition: verify macro
mov
mov
int
endm

switch
al,switch
ah,2EH
21H

SYSTEM CALLS Function 2EH Page 1-121

Example

The following program copies the contents of a single-sided
disk in drive A to the disk in drive B, verifying each
write. It uses a buffer of 32K bytes.

on
off

prompt

first
buffer

begin:

copy:

equ 1
equ 0

db "Source in A, target in B",ODH,OAH
db "Any key to start. $"
dw 0
db 60 dup (512 dup(?» ;60 sectors

display prompt
read kbd
verify on
nov cx,6

push cx
abs disk read
abs-disk - wr i te
crld- fIrst, 60
p:>p cx
loop copy
verify off

;see Function 09H
isee Function OaH
iTHIS FUNCTION
;copy 60 sectors
;6 times
;save counter

0,buffer,60,first :see Int 25H
1,buffer,64,first :see Int 26H

:do next 60 sectors
;restore counter
:do it again
:THIS FUNCTION

SYSTEM CALLS Function 2FH Page 1-122

Get Disk Transfer Address (Function 2FH)

AX:

BX:

CX:

OX: OH OL

Call
AH = 2FH

Return
ES:BX

~
p

BP

51

01

Pointer to Disk Transfer Address

I FLAGS" 'f FLAGSL I

w .. ,.,., .. " .. ,.,.,., , ' ... , ' .. ,c, 5 ,., " .. ,•.......

OS

55

··i' •. ,:J:!S,

Function 2FH returns the segment address of the current Disk
Transfer Address in ES and the offset in BX.

Macro Definition: get_dta macro
mov
int
endm

Example

ah,2fH
21H

The following program displays the current Disk Transfer
Address in the form segment:offset.

message
sixteen
temp

begin:

db
db
db

"DTA -
lOH
2 dup (?)

",ODH,OAH,"$"

get_dta ;THIS FUNCTION
mov word ptr temp,ex ;To access each byte
convert temp[l] ,sixteen,message[07H] ;See end of
convert temp,sixteen,message[09H] ;chapter for
convert bh,sixteen,message[OCH] ;description
convert bl,sixteen,message[OEH] ;of CONVERT
display message ;See Function 09H

SYSTEM CALLS Function 30H Page 1-123

Get MS-DOS Version Number (Function 30B)

AX:

BX:

ex:

ox:

Call
AH = 30H

~
p

BP

51

01

Return
AL

Major version number
AH

Minor version number
BH

OEM serial number
BL:CX

24-bit user (serial) number

~
5

05

55

E5

Function 30H returns the MS-DOS version number. AL returns
the major version number: AH returns the minor version
number. (For example, MS-DOS 3.0 returns 3 in AL and 0 in
AH.)

If AL returns 0, the version of MS-DOS is earlier than 2.0.

Macro Definition: get_version macro
mov
int
endm

Example

ah,30H
21H

The following program displays the version of MS-DOS if it
is 1.28 or greater.

message
ten

begin~

db
db

"MS-DOS Version
OAH

• ",ODH,OAH,"$"
iFor CONVERT

get version
cmp- a1,0
jng return
convert a1,ten,message[OFH]
convert ah,ten,message[12H]
display message

iTHIS FUNCTION
i1.28 or later?
iNo, go home
iSee end of chapter
ifor description
:See Function 9

SYSTEM CALLS Function 3lH

Keep Process (Function 3lB)

AX:

BX:

ex:
ox:

~
p

BP

SI

01

I FLAGS" Ii FLAGS, I

~
s

OS

SS

ES

Call
AH = 3lH
AL

Return code
DX

Memory size, in paragraphs

Return
None

page 1-124

Function 3lH makes a program remain resident after it
terminates. It is often used to install device-specific
interrupt handlers. Unlike Interrupt 27H (Terminate But
Stay Resident), this function request allows more than 64K
bytes to remain resident and does not require CS to contain
the segment address of the Program Segment Prefix. You
should use Function 3lH to install a resident program unless
it is absolutely imperative that your program be compatible
with pre-2.0 versions of MS-DOS.

DX must contain the number of paragraphs of memory required
by the program (one paragraph = 16 bytes). AL contains an
exi t code.

Use of this in .EXE programs requires care. The value in DX
must be the total size to remain resident, not just the size
of the code segment which is to remain resident. A typical
error is to forget about the lOOH byte program header prefix
and give a value which is lOH in DX which is lOH too small.

MS-DOS terminates the current process and tries to set the
memory allocation to the number of paragraphs in DX. No
other allocation blocks belonging to the process are
released.

The exit code in AL can be retrieved by the parent process
with Function 4DH (Get Return Code of Child Process) and can
be tested with the IF command using ERRORLEVEL.

SYSTEM CALLS Function 3lH

Macro Definition: keep_process macro
mov
mov
mov
shr
inc
mov
int
endm

Example

Page 1-125

return code,last byte
al,return code -
dx,offset-last byte
cl,4 -
dx,cl
dx
ah,3lH
2lH

Because the most common use of this call is
machine-specific routine, an example is
macro definition shows the calling syntax.

to install a
not shown. The

SYSTEM CALLS Function 33H Page 1-126

Control-C Check (Function 33H)

AX:

BX:

cx:

ox:

Ali .A(

BH BL

CH CL

OH Ol

~
p

BP

SI

01

I FLAGS" r FLAGSl I

~
s

OS

SS

ES

Call
AH 33H
AL

0 Get state
1 Set state

DL (if AL=l)
0 Off
1 = On

Return
DL (if AL=O)

o Off

AL
1 = On

FFH error (AL was neither 0 nor 1
when call was made)

Function 33H gets or sets the state of Control-C (or
Control-Break for IBM compatibles) checking in MS-DOS. AL
must contain a code that specifies the requested action:

o Return current state of Control-C checking in DL.

1 Set state of Control-C checking to the value in DL.

If AL is 0, DL returns the current state (O=off, l=on). If
AL is 1, the value in DL specifies the state to be set
(O=off, l=on). If AL is neither 0 nor 1, AL returns FFH and
the state of Control-C checking is not affected.

MS-DOS normally checks for Control-C only when carrying out
certain function requests in the OlH through OCH group (see
the description of specific calls for details). When
Control-C checking is on, MS-DOS checks for Control-C when
carrying out any function request. For example, if
Control-C checking is off, all disk I/O proceeds without
interruption; if Control-C checking is on, the Control-C
interrupt is issued at the function request that initiates
the disk operation.

SYSTEM CALLS Function 33H page 1-127

Note

programs that use Function Request 06H or 07H to read
Control-C as data must ensure that the Control-C
checking is off.

Macro Definition: ctrl c ck macro
mov
mov
mov
int
endm

action, state
al,action
dl,state
ah,33H
21H

Example

The following program displays a message that tells whether
Control-C checking is on or off:

message
on
off
,
begin:

ck on:

db
db
db

display
ctrl c
cmp
jg
display
jmp
display

ck

"Control-C checking ","$"
"on","$",ODH,OAH,"$"
"off","$",ODH,OAH,"$"

message ~See Function
0 ~THIS FUNCTION

09H

dl,O ~Is checking off?
ck on ~No
off ~See Function 09H
return iGo home
on ~See Function 09H

SYSTEM CALLS Function 35H

Get Interrupt vector (Function 358)

AX:

BX:

ex:

ox: DH OL

Call
AH 35H
AL

Interrupt number

Return
ES:BX

page 1-128

§
p

BP

SI

01

Pointer to interrupt routine

~ ...

es .. os

SS

ES

Function 35H gets the address from the interrupt vector
table for the specified interrupt. AL must contain the
number of an interrupt.

ES returns the segment address of the interrupt handler; BX
returns the offset.

To avoid compatibility problems, programs should never read
an interrupt vector directly from memory, nor--set an
interrupt vector by writing it into memory. Use this
function request to get a vector and Function 25H (Set
Interrupt Vector) to set a vector, unless it is absolutely
imperative that your program be compatible with pre-2.0
versions of MS-DOS.

Macro Definition: get_vector macro
mov
mov
int
endm

interrupt
aI, interrupt
ah,35H
21H

SYSTEM CALLS Function 35H Page 1-129

Example

The following program displays the segment and offset
(CS:IP) for the handler for Interrupt 25H (Absolute Disk
Read) .

message

vee seg
vee-off

begin:

db
db
db
db

"Interrupt 25H -- CS:OOOO IP:OOOO"
ODH,OAH,"$"
2 dup (?)
2 dup (?)

push es isave ES
get_vector 25H
rrov
pop
oonvert
oonvert
display

ax,es
es
ax,16,message[20]
bx,16,message[28]
message

iTHIS FUNCTION
iINT25H segment in AX
isave ES
isee end of chapter
isee end of chapter
iSee Function 9

SYSTEM CALLS Function 36H

Get Disk Free Space (Function 36H)

Call
AH 36H
DL

Page 1-130

AX:

ax:

ex:

ox: Drive (O=default, l=A, etc.)

~
p

BP

SI

01

~
s

os

SS

ES

Return
AX

BX

OFFFFH if drive number is invalid;
otherwise sectors per cluster

Available clusters
CX

Bytes per sector
DX

Clusters per drive

Function 36H returns the number of clusters available on the
disk in the specified drive, and sufficient information to
calculate the number of bytes available on the disk. DL
must contain a drive number (O=default, I=A, etc.). If the
drive number is valid, MD-DOS returns the information in the
following registers:

AX Sectors per cluster
BX Available clusters
CX Bytes per sector
DX Total clusters

If the drive number is invalid, AX returns OFFFFH.

This call supersedes Functions IBH and ICH in earlier
versions of MS-DOS.

Macro Definition: get_disk_space macro
mov
mov
int
endm

drive
dl,drive
ah,36H
2lH

SYSTEM CALLS Function 36H Page 1-131

Example

The following program displays the space information for the
disk in drive B.

message

,
begin:

db "
db"
db "
db"

get_disk_
convert
convert
convert
convert

clusters on drive B.",ODH,OAH ~DX
clusters available.",ODH,OAH ~BX
sectors per cluster.",ODH,OAH ~AX

bytes per sector,",ODH,OAH,"$" ;CX

space 2 ;THIS FUNCTION
ax,lO,message[55] ;see end of chapter
bx,lO,message[28] ~see end of chapter
cx,lO,message[83] isee end of chapter
dx,lO,message ~see end of chapter

display message ;See Function 09H

SYSTEM CALLS Function 38H (Get) Page 1-132

Get Country Data (Function 38H)

AX:

BX:

ex:
ox:

~
p

BP

51

01

~j';~.; 55

E5

Call
AH 38H
AL

o Current country
1 to OFEH Country code

OFFH BX contains Country code
BX (if AL=OFFH)

Country code 255 or higher
DS:DX

Pointer to 32-byte memory area

Return
Carry set:
AX

2 = Invalid country code
Carry not set:
BX

Country code

Function 38H gets the country-dependent information that MS
DOS uses to control the keyboard and display or sets the
currently defined country (to set the country code, see the
next function request description). To get the information,
DX must contain the offset (from the segment address in DS)
of a 32-byte memory area in which the country data is to be
returned. AL specifies the country code:

Value in AL

a

1 to OFEH

OFFH

Meaning

Retrieve information about the country
currently set.

Retrieve information about the country
identified by this code.

Retrieve information about the country
identified by the code in BX.

BX must contain the country code
greater. The country code is
telephone prefix code.

if the code is 255 or
usually the international

SYSTEM CALLS Function 38H (Get) Page 1-133

The country-dependent information
following form:

Offset
Hex Decimal Field Name

00 0 Date format
02 2 Currency symbol
07 7 Thousands separator
09 9 Decimal separator
OB 11 Date separator
00 13 Time separator
OF 15 Bit field
10 16 Currency places
11 17 Time format
12 18 Case-map call address
16 22 Data-list separator
18 24 RESERVED

Date Format: 0
1
2

USA (m/d/y)
Europe (d/m/y)
Japan (y/m/d)

is returned in

Length in bytes

2 (word)
5 (ASCIZ string)
2 (ASCIZ string)
2 (ASCIZ string)
2 (ASCIZ string)
2 (ASCIZ string)
1
1
1
4 (dword)
2 (ASCIZ string)
10

Bit Field: Bit 0 o Currency symbol precedes amount
1 Currency symbol follows amount

Bit I o No space between symbol and amount
lOne space between symbol and amount

All other bits are undefined.

Time format: 0
1

l2-hour clock
24-hour clock

the

Currency Places: Specifies the number of places that appear
after the decimal point on currency amounts.

Case-Mapping Call Address: The segment and offset of a FAR
procedure that performs country-specific lowercase-to
uppercase mapping on character values from 80H to OFFH. You
call it with the character to be mapped in AL. If there is
an uppercase code for the character, it is returned in ALi
if there is not, or if you call it with a value less than
80H in AL, AL is returned unchanged. AL and the FLAGS are
the only registers altered.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

2 Invalid country code (no table for it).

SYSTEM CALLS Function 3aH (Get) Page 1-134

Macro Definition: get country macro country,buffer
local gc 01
mov dx~offset buffer
mov ax,country
crop aX,OFFH
jl gc 01
mov al~OFFh
mov bx,country
mov ah,38h
int 2lH
endm

Example

The following program displays the time and date in the
format appropriate to the current country code, and the
number 999,999 and 99/100 as a currency amount with the
proper currency symbol and separators.

time db
date db
number db
data area db

",5 dup (20H) ,"$"
/ / ",5 dup (20H) ,"$"

"999?999?99",ODH,OAH,"$"
32 dup (?)

,
begin: get country O,data_area

get-time
byte to dec ch,time
byte-to-dec cl,time[03H]
byte-to-dec dh,time[06H]
get date
sub- cx,1900
byte to dec cl,date[06H]
crop - - word ptr data_area,O
jne not usa
byte to dec -dh,date
byte-to-dec dl,date[03H]
jmp - - all done

not usa: byte to dec -dl,date
byte-to-dec dh,date[03H]

all done: mov - - al,data area[07H]
mov number [03H] ,al
mov al,data area[09H]
mov number [07H] ,al
display time
display date
display char data area[02H]
display- number -

iTHIS FUNCTION
iSee Function 2CH
iSee end of chapter
ifor description of
iCONVERT macro
iSee Function 2AH
iWant last 2 digits
iSee end of chapter
iCheck country code
i It's not USA
iSee end of chapter
iSee end of chapter
iDisplay data
iSee end of chapter
iSee end of chapter
iThousand separator
iPut in NUMBER
iDecimal separator
iPut in AMOUNT
iSee Function 09H
iSee Function 09H
iSee Function 02H
iSee Function 09H

SYSTEM CALLS Function 38H (Set) Page 1-135

Set Country Data (Function 3aB)

AX:

BX:

ex:

ox:

~
p

BP

SI

01

~
s

os

SS

ES

Call
AH
DX
AL

38H
-1 (OFFFFH)

Country code less than 255, or
OFFH if the country code is in BX

BX (if AL=OFFH)
Country code 255 or higher

Return
Carry set:
AX

2 = Invalid country code
Carry not set:

No error

Function 38H sets the country code that MS-DOS uses to
control the keyboard and display, or retrieves the country
dependent information (to get the country data, see the
previous function request description) • To set the
information, DX must contain OFFFFH. AL must contain the
country code if it is less than 255, or 255 to indicate that
the country code is in BX. If AL contains OFFH, BX must
contain the country code.

The country code is usually the international telephone
prefix code. See the preceding function request description
(Get Country Data) for a description of the country data and
how it is used.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

2 Invalid country code (no table for it).

SYSTEM CALLS Function 38H (Set)

Macro Definition: set_country macro
local
mov
mov
anp
jl

Example

mov
mov

sc 01: mov
int
endm

country
sc 01
dx-;-OFFFFH
ax,country
ax,OFFH
sc 01
bx~country
al,Offh
ah,38H
21H

Page 1-136

The following program sets the country code to the united
Kingdom (44).

uk
,
begin:

equ 44

set_country uk
jc error

iTHIS FUNCTION
iroutine not shown

SYSTEM CALLS Function 39H

Create Directory (Function 39B)

AX:

BX:

CX:

OX:

Mi····.··· Al

BH BL

CH CL

QH III

~
p

BP

SI

DI

I FLAGS" Ii FLAGSc I

§ c s ,0$

ss
ES

Call
AH = 39H
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = Path not found
5 = Access denied

Carry not set:
No error

page 1-137

Function 39H creates a new subdirectory. DX must contain
the offset (from the segment address in DS) of an ASCIZ
string that specifies the pathname of the new subdirectory.

If there is an error, the carry flag (CF)
error code is returned in AX:

is set and the

Code

3

5

Meaning

Path not found.

No room in the parent directory, a file with the
same name exists in the current directory, or
the path specifies a device.

Macro Definition: make dir macro path
mov dx,offset path
mov ah, 39H
int 2lH
endm

SYSTEM CALLS Function 39H Page 1-138

Example

The following program adds a subdirectory named NEWDIR to
the root directory on the disk in drive B, changes the
current directory to NEWDIR, changes the current directory
back to the original directory, then deletes NEWDIR. It
displays the current directory after each step to confirm
the changes.

old path db
new-path db
buffer db

"b:\",O,63 dup (?)
"b:\new dir",O
"b:\",O~63 dup (?)

begin: get_dir 2,old_path[03H]
jc error get
display asciz old path
make dir new path
jc error make
change_dir new path
jc error change
get_dir 2,buffer[03H]
jc error get
display asciz buffer
change dir old path
jc - error change
rem dir new_path
jc error rem
get dir 2,buffer[03H]
jc - error get

;See Function 47H
;Routine not shown
;See end of chapter
;THIS FUNCTION
;Routine not shown
;See Function 3BH
;Routine not shown
;See Function 47H
;Routine not shown
;See end of chapter
;See Function 3BH
;Routine not shown
;See Function 3AH
;Routine not shown
;See Function 47H
;Routine not shown

display_asciz buffer ;See end of chapter

SYSTEM CALLS Function 3AH

Remove Directory (Function 3AB)

AX:

BX:

ex:

ox:

~
p

BP

SI

01

m·

····················

e
..
s
................................... . 0$:

SS

ES

Call
AH = 3AH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 Path not found
5 Access denied

16 Current directory
Carry not set:

No error

Page 1-139

Function 3AH deletes a subdirectory. DX must contain the
offset (from the segment address in DS) of an ASCIZ string
that specifies the pathname of the subdirectory to be
deleted.

The subdirectory must not contain any files. You cannot
erase the current directory. If there is an error, the
carry flag (CF) is set and the error code is returned in AX:

Code

3

5

16

Meaning

Path not found.

The directory isn't empty~ or the path doesn't
specify a directory, specifies the root
directory, or is invalid.

The path specifies the current directory.

Macro Definition: rem dir macro
mov
nov
int
endm

path
dx,offset path
ah,3AH
21H

SYSTEM CALLS Function 3AH Page 1-140

Example

The following program adds a subdirectory named NEWDIR to
the root directory on the disk in drive B, changes the
current directory to NEWDIR, changes the current directory
back to the original directory, then deletes NEWDIR. It
displays the current directory after each step to confirm
the changes.

old path db
new-path db
buffer db

"b:\",0,63 dup (?)
"b:\new dir",O
"b:\",O~63 dup (?)

,
begin: get_dir 2,old path[03H]

jc error-get
display asciz old path
make dir new path
jc - error make
change dir new path
jc - error change
get_dir 2,buffer[03H]
jc error get
display asciz buffer
change dir old path
jc - error change
rem_dir new_path
jc error rem
get dir 2,buffer[03H]
jc - error get
display_asciz buffer

:See Function 47H
:Routine not shown

;See end of chapter
:See Function 39H
:Routine not shown
:See Function 3BH
:Routine not shown
;See Function 47H
;Routine not shown

:See end of chapter
;See Function 3BH
;Routine not shown
;THIS FUNCTION
;Routine not shown
:See Function 47H
:Routine not shown

;See end of chapter

SYSTEM CALLS Function 3BH

Change Current Directory (Function 3BH)

4X:

BX:

ex:
ox:

AH At.

BH BL

CH CL

OK bL:

~
p

BP

SI

01

~~
SS

ES

Call
AH = 3BH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = Path not found
Carry not set:

No error

Page 1-141

Function 3BH changes the current directory. DX must contain
the offset (from the segment address in DS) of an ASCIZ
string that specifies the pathname of the new current
directory.

The directory string is limited to 64 characters.

If any member of the path doesn't exist, the path is not
changed. If there is an error, the carry flag (CF) is set
and the error code is returned in AX:

Code

3

Meaning

The pathname either doesn't exist or specifies a
file, not a directory.

Macro Definition: change_dir macro
mov
mov
int
endm

path

Example

dx,offset path
ah,3BH
21H

The following program adds a subdirectory named NEW DIR to
the root directory on the disk in drive B, changes the
current directory to NEW DIR, changes the current directory
back to the original directory, then deletes NEW DIR. It
displays the current directory after each step to- confirm
the changes.

SYSTEM CALLS Function 3BH page 1-142

old path db
new-path db
buffer db

"b:\",O,63 dup (?)
"b:\new dir",O
"b:\",O~63 dup (?)

;
begin: get_dir 2,old path[03H]

jc error-get
display asciz old path
make dir new path
jc error make
change dir new path
jc - error change
get dir 2,buffer[03H]
jc - error get
display asciz buffer
change dir old path
jc - error change
rem dir new path
jc error rem
get dir 2,buffer[03H]
jc - error get
display_asciz buffer

;See Function 47H
;Routine not shown

;See end of chapter
;See Function 39H
;Routine not shown
;THIS FUNCTION
;Routine not shown
;See Function 47H
;Routine not shown

;See end of chapter
;See Function 3BH
;Routine not shown
;See Function 3AH
;Routine not shown
;See Function 47H
;Routine not shown

;See end of chapter

SYSTEM CALLS Function 3CH Page 1-143

Create Handle (Function 3CH)

AX:

BX:

ex:

ox:

_6 ~I.

BH BL

.(lfI .~

DR Ot.

~
p

BP

SI

01

~. : ...

SS

ES

Call
AH = 3CH
DS:DX

Pointer to pathname
CX

File attribute

Return
Carry set:
AX

3 Path not found
4 Too many open files
5 Access denied

Carry not set:
AX

Handle

Function 3CH creates a file and assigns it the first
available handle. DX must contain the offset (from the
segment address in DS) of an ASCIZ string that specifies the
pathname of the file to be created. CX must contain the
attribute to be assigned to the file, as described under
"File Attributes" earlier in this chapter.

If the specified file does not exist, it is created. If the
file does exist, it is truncated to a length of O. The
attribute in CX is assigned to the file and the file is
opened for read/write. AX returns the file handle.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

3

4

5

Meaning

The path is invalid.

Too many open files (no handle available).

Directory full, a directory with the same name
exists, or a file with the same name exists
with more restrictive attributes.

SYSTEM CALLS Function 3CH Page 1-144

Macro Definition: create handle macro
mov
mov
mov
int
endm

path,attrib
dx,offset path
cx,attrib
ah,3CH
21H

Example

The f?llowing program creates a file named DIR.TMP on the
disk ln drive B that contains the name and extension of each
file in the current directory.

srch file db
tmp file db
buffer db

"b:*.*",O
"b:dir.tmp",O

43 dup (?)
handle dw ?
;
begin: set dta buffer ;See Function lAH

find first file srch file,16H ;See Function 4EH
cmp ax~12H ;Directory empty?
je all done ;Yes, go home
create handle tmp_file,O ;THIS FUNCTION
jc error ;Routine not shown
mov handle,ax ;Save handle

write it: write handle handle,buffer[IEH] ,12 ;Function 40H
find next file iSee Function 4FH
cmp - ax,12H ;Another entry?
je all done iNo, go home
jmp write it ;Yes, write record

all done: close handle -handle ;See Function 3EH

SYSTEM CALLS Function 3DH Page 1-145

Open Handle (Function 3DB)

AX:

BX:

CX:

OX:

''''
BH BL

CH CL

~
p

BP

SI

01

I FLAGS" Ir",~,J

~""."' .. '." ".'."." .. ".' ... ' ... "'."" .. '.' ... ,.,.',,', .. ,.,',',.,',' ,','.,.',.', '., .. C,'.','.' ... S , ... '"." .. ,.',.,.,., .. ,'"., .. ".,.,'.,.'.',' .. ,' ... ,., ,', .. , ... ,', .• ,' ... ' " ... ' .. ', .. ,',' .. ',.'.',.', .. , PI

SS

ES

Call
Ali 3DH
AL

Access code (see text)
DS:DX

Pointer to pathname

Return
Carry set:
AX

1 Invalid function code
2 File not found
3 Path not found
4 Too many open files
5 Access denied

12 Invalid access
carry not set:

No error

Function 3DH opens any file, including hidden and system
files, for input or output. DX contains the offset (from
the segment address in DS) of an ASCIZ string that specifies
the pathname of the file to be opened. AL contains a code
that specifies how the file is to be opened, described later
under "Controlling Access to the File."

If there is no error, AX returns the file handle. MS-DOS
sets the read/write pointer to the first byte of the file.

controlling Access to the File

The value in AL is made up of three parts that specify
whether the file is to be opened for read, write, or both
(access code); what access other processes have to the file
(sharing mode); and whether the file is inherited by a
child process (inherit bit).

Bit
1_71_61_51_41_3 1_2 1_1 1_° 1

1
~----,,-\ I

I~) Sharing mode

) Inherit bit

Access code

SYSTEM CALLS Function 3DH Page 1-146

Inherit Bit

The high-order bit (bit 7) specifies whether the file is
inherited by a child process created with Function 4BH (Load
and Execute Program). If the bit is 0, the file is
inherited; if the bit is 1, the file is not inherited.

Sharing Mode

The sharing mode (bits 4-6) specifies what access, if any,
other processes have to the open file. It can have the
following values:

Bits 4-6 Sharing Mode Description

000 Compatability Any process can open the file any
number of times with this mode.
Fails if the file has been opened
with any of the other sharing
modes.

001 Deny both Fails if the file has been opened
in compatibility mode or for read
or write access, even if by the
current process.

010 Deny write Fails if the file has been opened
in compatibility mode or for write
access by any other process.

011 Deny read Fails if the file has been opened
in compatibility mode or for read
access by any other process.

100 Deny none Fails if the file has been opened
in compatibility mode by any other
process.

Access Code

The access code (bits 0-3) specifies how the file is to be
used. It can have the following values:

Access
Bits 0-3 Allowed

0000 Read

0002 Write

0010 Both

Description

Fails if the file has been opened in
deny read or deny both sharing mode.

Fails if the file has been opened in
deny write or deny both sharing mode.

Fails if the file has been opened in
deny read, deny write, or deny both
sharing mode.

SYSTEM CALLS Function 3DH Page 1-147

If there is an error, the carry flag (CF) is set and the
error code is returned in AX.

Code Meaning

1 File sharing must be loaded to specify a sharing
node (bits 4-6 of AL).

2 The file specified is invalid or doesn't exist.

3 The path specified is invalid or doesn't exist.

4 No handles are available in the current process
or the internal system tables are full.

5 The program attempted to open a directory or
Volume-ID, or open a read-only file for writing.

12 The access code (bits 0-3 of AL) is not 0, 1, or
2.

If this ~ystem call fails because of a file-sharing error,
MS-DOS 1ssues Interrupt 24H with error code 2 (Drive Not
Ready). A subsequent Function 59H (Get Extended Error)
returns the extended error code that specifies a sharing
violation.

When opening a file, it is important to inform MS-DOS of any
operations other processes may perform on this file (sharing
mode). The default (compatibility mode) denies all other
processes access to the file. It may be OK for other
processes to continue to read the file while your process is
operating on it. In this case, you should specify "Deny
Write," which inhibits writing by other processes but allows
reading them.

Similarly, it is important to specify what operations your
process will perform ("Access" mode). The default mode
("Read/write") will cause the open request to fail if
another process has the file opened with any sharing mode
other than "Deny" mode. If you only want to read the file,
your open will succeed unless all other processes have
specified "Deny" mode or "Deny write".

Macro Definition: open_handle macro
IIDV

IIDV

IIDV

int
endm

path,access
dx, offset path
al, access
ah, 3DH
21H

SYSTEM CALLS Function 3DH Page 1-148

Example

The following program prints the file named TEXTFILE.ASC on
the disk in drive B.

file
buffer
handle
,
begin:

read char:

db "b:textfile.asc",O
db ?
dw ?

open handle file,O
nov -handle,ax
read handle handle,buffer,l
jc -error read
anp ax,O
je return
print char buffer
jmp read_char

iTHIS FUNCTION
;Save handle
;Read 1 character
;Routine not shown
;End of file?
;Yes, go home
;See Function OSH
;Read another

SYSTEM CALLS Function 3EH Page 1-149

Close Handle (Function 3EH)

AX: Ali At. Call
BX: .8Ii at.: AH 3EH
cx: CH CL BX
ox: OH OL Handle

§ Return
BP Carry set:
SI AX
01 6 = Invalid handle

I FLAGSH I, FlAGSt I Carry not set:
No error

§ os

SS

ES

Function 3EH closes a file opened with Function 3DH (Open
Handle) or 3CH (Create Handle). BX must contain the handle
of the open file that is to be closed.

If there is no error, MS-DOS closes the file and flushes all
internal buffers. If there is an error, the carry flag (CF)
is set and the error code is returned in AX:

Code Meaning

6 Handle is not open or is invalid.

Macro Definition: close handle macro
mov
mov
int
endm

handle
bx,handle
ah,3EH
2lH

SYSTEM CALLS Function 3EH Page 1-150

Example

The following program creates a file named DIR.TMP in the
current directory on the disk in drive B that contains the
filename and extension of each file in the current
directory.

srch file db
tmp file db

"b:*.*",O
"b:dir.tmp",O

43 dup (?) buffer db
handle dw ?
,
begin: set dta buffer ;See Function lAH

find first file srch file,16H ;See Function 4EH
cmp ax,12H ;Directory empty?
je all done iYes, go horne
create handle tmp file,O ;See Function 3CH
jc error create ;Routine not shown
mov handle,ax ;Save handle

write it: write handle handle,buffer[lEH] ,12 ;See Function
jc - error write ;40H
find next file- ;See Function 4FH
cmp ax,12H ;Another entry?
je all done ;No, go horne
jmp write it ;Yes, write record

all done: close handle handle ;See Function 3EH
jc - error close ;Routine not shown

SYSTEM CALLS Function 3FH

Read Handle (Function 3FH)

AX:

BX:

ex:

ox:

~
p

BP

SI

01

I FLAGS" '[:FLAGS.)

~
s

OS

SS

ES

Call
AH 3FH
BX

Handle
CX

Bytes to read
DS:DX

Pointer to buffer

Return
Carry set:
AX

5 = Access denied
6 = Invalid handle

Carry not set:
AX

Bytes read

Page 1-151

Function 3FH reads from the file or device associated with
the specified handle. BX must contain the handle. CX must
contain the number of bytes to be read. DX must contain the
offset (to the segment address in DS) of the buffer.

If there is no error, AX returns the number of bytes read;
if you attempt to read starting at end of file, AX returns
O. The number of bytes specified in CX is not necessarily
transferred to the buffer; if you use this call to read
from the keyboard, for example, it reads only up to the
first CR.

If you use this function request to read from standard
input, the input can be redirected.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

5 Handle is not open for reading.

6 Handle is not open or is invalid.

SYSTEM CALLS Function 3FH Page 1-152

Macro Definition: read handle macro
rrov
rrov
rrov
rrov
int
endm

handle,buffer,bytes
bx,handle

Example

dx,offset buffer
cx,bytes
ah,3FH
21H

The following program displays the file named TEXTFILE.ASC
on the disk in drive B.

filename
buffer
handle

db
db
dw

"b:\textfile.asc",O
129 dup (?)
?

begin : open_handle
jc
fOC)V

read file: read handle
jc
anp
je
rrov
rrov
display
jmp

filename,O iSee Function 3DH
error open iRoutine not shown
handle,ax iSave handle
buffer,file handle,l28
error open - iRoutine not shown
ax,O - iEnd of file?
return iYes, go home
bx,ax i* of bytes read
buffer [bx} ,"$" iMake a string
buffer iSee Function 09H
read file iRead more

SYSTEM CALLS Function 40H

write Handle (Function 40H)

AX:

BX:

ex:

ox:

~
f

Bf

51

DI

I FLAGS" It ~t J

~
s

DS

5S

ES

Call
AH 40H
BX

Handle
CX

Bytes to write
DS:DX

Pointer to buffer

Return
Carry set:
AX

5 = Access denied
6 = Invalid handle

Carry not set:
AX

Bytes written

Page 1-153

Function 40H writes to the file or device associated with
the specified handle. BX must contain the handle. CX must
contain the number of bytes to be written. DX must contain
the offset (to the segment address in DS) of the data to be
written.

If there is no error, AX returns the number of bytes
written. Be sure to check AX after writing to a disk file:
if it contains 0, the disk is full~ if its value is less
than the number in CX when the call was made, it indicates
an error even though the carry flag isn't set.

If you use this function request to write to standard
output, the output can be redirected. If you call this
function request with CX=O, the file size is set to the
value of the read/write pointer. Allocation units are
allocated or released, as required, to satisfy the new file
size.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

5 Handle is not open for writing.

6 Handle is not open or is invalid.

SYSTEM CALLS Function 40H Page 1-154

Macro Definition: write handle macro
mov
mov
mov
mov
int
endm

handle,data,bytes
bx,handle
dx,offset data
cx,bytes
ah,40H
21H

Example

The following program creates a file named DIR.TMP in the
current directory on the disk in drive B that contains the
filename and extension of each file in the current
directory.

srch file db
tmp file db

"b:*.*",O
"b:dir.tmp",O

43 dup (?) buffer db
handle dw ?
,
begin:

write it:

all done:

set dta buffer iSee Function lAH
find first file srch file,16H iCheck directory
cmp - ax~12H - iDirectory empty?
je return iYes, go home
create handle tmp file,O iSee Function 3CH
jc error create iRoutine not shown
mov handle,ax iSave handle
write handle handle,buffer[lEH],12 iTHIS FUNCTION
jc - error write iRoutine not shown
find next file iCheck directory
cmp - ax,12H iAnother entry?
je all done iNo, go home
jmp write it iYes, write record
close handle -handle iSee Function 3EH
jc - error close iRoutine not shown

SYSTEM CALLS Function 41H

Delete Directory Entry (Function 4lH)

AX:

BX:

cx:

ox:

Mf iIIL

BH BL

CH CL

DH .nt:

~
p

BP

SI

01

§.: :
ss
ES

Call
AH = 4lH
OS:OX

Pointer to pathname

Return
Carry set:
AX

2 = File not found
5 = Access denied

Carry not set:
No error

Page 1-155

Function 4lH erases a file by deleting its directory entry.
OX must contain the offset (from the segment address in OS)
of an ASCIZ string that specifies the pathname of the file
to be deleted. Wildcard characters cannot be used.

If the file exists and is not read-only, it is deleted. If
there is an error, the carry flag (CF) is set and the error
code is returned in AX:

Code Meaning

2 Path is invalid or file doesn't exist.

5 Path specifies a directory or read-only file.

To delete a file with the read-only attribute, first change
its attribute to a with Function 43H (Get/Set File
Attribute) •

Macro Definition: delete_entry macro
mov
mov
int
endrn

path
dx,offset path
ah,41H
21H

SYSTEM CALLS Function 41H Page 1-156

Example

The following program deletes all files on the disk in drive
B whose date is earlier than December 31, 1981.

year
month
day
files
ten
message
path
buffer
,

db
db
db
db
db
db
db
db

1981
12
31
?
OAH

"NO FILES DELETED.",ODH,OAH,"$"
"b:*.*", 0

43 dup (?)

begin: set dta buffer ;See Function lAH
select disk "B" iSee Function OEH
find fIrst file path,O ;See Function 4EH
jc all done ;Go home if empty

compare: convert date- buffer ;See end of chapter
cmp cx,year iAfter 1981?
jg next ;Yes, don't delete
cmp dl,month ;After December?
jg next ;Yes, don't delete
cmp dh,day i31st or after?
jge next ;Yes, don't delete
delete entry buffer [lEH] ;THIS FUNCTION
jc error delete iRoutine not shown
inc files- iBump file counter

next: find next file iCheck directory
jnc - compare ;Go home if done

how_many: cmp files,O ;Was directory empty?
je all done ;Yes, go home
convert files,ten,message ;See end of chapter

all done: display message ;See Function 09H
select disk "A" ;See Function OEH

SYSTEM CALLS Function 42H

Move File Pointer (Function 428)

AX:

BX:

ex:

ox:

Call
AH 42H
AL

Method of moving
BX

Handle
CX:DX

Page 1-157

~
p

BP

SI

01

Distance in bytes (offset)

I FLAGSH If FtAGSl J
Return
Carry set:
AX

~
s

os

SS

ES

1 = Invalid function
6 = Invalid handle

Carry not set:
DX:AX

New read/write pointer location

Function 42H moves the read/write pointer of the file
associated with the specified handle. BX must contain the
handle. CX and DX must contain a 32-bit offset (CX contains
the most significant byte). AL must contain a code that
specifies how to move the pointer:

Code Cursor Is Moved To

a Beginning of file plus the offset.

1 Current pointer location plus the offset.

2 End of file plus the offset.

DX and AX return the new location of the read/write pointer
(a 32-bit integer; DX contains the most significant byte).
You can determine the length of a file by setting CX:DX to
0, AL to 2, and calling this function request; DX:AX return
the offset of the byte after the last byte in the file (size
of the file in bytes).

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 AL isn't 0, 1, or 2.

6 Handle isn't open.

SYSTEM CALLS Function 42H Page 1-158

Macro Definition: move_ptr macro
mov
mov
mov
mov
mov
int
endm

handle,high,low,method
bx,handle
cx,high
dx,low
al,method
ah,42H
21H

Example

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A=l, B=2, etc.), then
reads and displays the corresponding record from the file
named ALPHABET.DAT in the current directory on the disk in
drive B. The file contains 26 records; each record is 28
bytes long.

file db
buffer db
prompt db
crlf db
handle db
record_length

"b:alphabet.dat",O
28 dup (?), "$"

"Enter letter: $"
ODH,OAH,"$"
?

dw 28

begin: open_handle file,O ;See Function 3DH
jc error open ;Routine not shown
mov handle,ax iSave handle

get_char: display prompt ;See Function 09H
read kbd and echo ;See Function OlH
sub -al,41h ;Convert to sequence
mul byte ptr record length ;Calculate offset
move ptr handle,O,ax,O :THIS FUNCTION
jc - error move ;Routine not shown
read handle handle,buffer,record length
jc - error read ;Routine not shown
cmp ax,O :End of file?
je return ;Yes, go home
display crlf ;See Function 09H
display buffer :See Function 09H
display crlf ;See Function 09H
jmp get_char :Get another character

SYSTEM CALLS Function 43H

Get/Set File Attributes (Function 43H)

AX:·Ak~

BX:

ex:

ox:

BH Bl

OK DL

~
p

BP

SI

01

I FLAGS" Ii FlAGS. I

~
e .. s .
0$

SS

ES

call
AH
AL

43H

o Get attributes
1 = Set attributes

ex (if AL=l)
Attributes to be set

LS:DX
Pointer to pathname

Return
Carry set:
AX

1 Invalid function
3 = Path not found
5 = Access denied

carry not set:
ex

Attribute byte (if AL=O)

Page 1-159

Function 43H gets or sets the attributes of a file. DX must
contain the offset (from the segment address in DS) of an
ASCIZ string that specifies the pathname of a file. AL must
specify whether to get or set the attribute (O=get, l=set).

If AL is 0 (get the attribute), the attribute byte is
returned in CX. If AL is 1 (set the attribute), CX must
contain the attributes to be set. The attributes are
described under "File Attributes" earlier in this chapter.

You cannot change the volume-ID bit (08H) or the directory
bit (lOH) of the attribute byte with this function request.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

1

3

5

Meaning

AL isn't 0 or 1.

Path is invalid or file doesn't exist.

Attribute in CX cannot be changed (directory or
Volume-ID) •

SYSTEM CALLS Function 43H Page 1-160

Macro Definition: change_attr macro
mov
mov
mov
mov
int
endm

path,action,attrib
dx,offset path
al,action
cx,attrib
ah,43H
21H

Example

The following program displays the attributes assigned to
the file named REPORT.ASM in the current directory on the
disk in drive B.

header db 15 dup (20h) ,"Read-",ODH,OAH
db
db
db

"Filename Only Hidden
"System Volume Sub-Dir Archive"

ODH,OAH,ODH,OAH,"$"
path db
attribute dw
blanks db

"b:report.asm",3 dup (0) ,"$"
?
9 dup (20h), "$"

;
begin:

chk bit:

no attr:
next bit:

change_attr path,O,O ;THIS FUNCTION
jc error mode ;Routine not shown
mov attribute,cx ;Save attribute byte
display header ;See Function 09H
display path ;See Function 09H
mov cx,6 ;Check 6 bits (0-5)
mov bx,l ;Start with bit 0
test attribute,bx ;Is the bit set?
jz no attr ;No
display char "X" ;See Function 02H
jmp short next bit ;Done with this bit
display char 20h ;See Function 02H
display-blanks ;See Function 09H
shl bx,l ;Move to next bit
loop chk bit ;Check it

SYSTEM CALLS Function 44H, Codes 0 and 1 Page 1-161

IOCTL Data (Function 448, Codes 0 and I)

AX:

BX:

ex:

ox:

Call
AH
AL

0

44H

Get device data

~
p

BP

SI

01

BX

DX

1 Set device data

Handle

Device data (see text)

Return
Carry set:

~
s

os

SS

ES

AX
1 = Invalid function
6 = Invalid handle

Carry not set:
DX

Device data

Function 44H, Codes 0 and 1 either gets or sets the data
MS-DOS uses to control the device. AL must contain 0 to get
the data or 1 to set it. BX must contain the handle. If AL
is 1, DH must contain o.

The device data word is specified or returned in DX. If bit
7 of the data is 1, the handle refers to a device and the
other bits have the following meanings:

Bit Value

15
14 1

13-8
6 0
5 1

o
4 1
3 1
2 1
1 1
o 1

Meaning

RESERVED.
Device can process control strings sent
with Function 44H, Codes 2 and 3 (IOCTL
Control). This bit can only be read; it
cannot be set.
RESERVED
End of file on input.
Don't check for control characters.
Check for control characters.
RESERVED.
Clock device.
Null device.
Console output device.
Console input device.

The control characters referred to in the description of bit
5 are Control-C, Control-P, Control-S, and Control-Z. To
read these characters as data, rather than having them
interpreted as control characters, bit 5 must be set and

SYSTEM CALLS Function 44H, Codes 0 and 1 Page 1-162

Control-C checking must be turned off, either with Function
33H (Control-C Check) or the MS-DOS Break command.

If bit 7 of DX is 0, the handle refers to a file and the
other bits have the following meanings:

Bit Value Meaning

15-8 RESERVED
6 0 The file has been written.
0-5 Drive number (O=A, l=B, etc.) •

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 AL is not 0 or 1, or AL is 1 but DH is not O.

6 The handle in BX is not open or invalid.

Macro Definition: ioctl data macro code,handle
mov bx,handle
mov al,code
mov ah,44H
int 21H
endm

Example

The following program gets the device data for Standard
Output and sets the bit that specifies not to check for
control characters (bit 5), then clears the bit.

get equ 0
set equ 1
stdout equ 1

begin: ioctl data get,stdout ;THIS FUNCTION
jc error ;routine not shown
mov dh,O ;clear DH
or dl,20H ;set bit 5
ioctl data set,stdout ;THIS FUNCTION -jc error ;routine not shown

<control characters now treated as data, or "raw mode">

ioctl data
jc -
mov
and
ioctl data

get,stdout
error
dh,O
dl,ODFH
set,stdout

;THIS FUNCTION
;routine not shown
;clear DH
;clear bit 5
;THIS FUNCTION

<control characters now interpreted, or "cooked mode">

SYSTEM CALLS Function 44H, Codes 2 and 3

IOCTL Character (Function 44H, Codes 2 and 3)

AX:

BX:

ex:

ox:

~
p

BP

51

01

~"'i)'~;i;}'/" 5S

ES

Call
AH 44H
AL

2 Send control data
3 Receive control data

BX
Handle

CX
Bytes to read or write

DS:DX
Pointer to buffer

Return
Carry set:
AX

1 = Invalid function
6 = Invalid handle

Carry not set:
AX

Bytes transferred

Page 1-163

Function 44H, Codes 2 and 3 send or receive control data to
or from a character device. AL must contain 2 to send data
or 3 to receive. BX must contain the handle of a character
device, such as a printer or serial port. CX must contain
the number of bytes to be read or written. DX must contain
the offset (to the segment address in DS) of the data
buffer.

AX returns the number of bytes transferred. The device
driver must be written to support the IOCTL interface.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 AL is not 2 or 3, or the device cannot perform the
specified function.

6 The handle in BX isn't open or doesn't exist.

SYSTEM CALLS Function 44H, Codes 2 and 3 Page 1-164

Macro Definition: ioctl char macro
mov
mov
mov
mov
int
endm

Examp1e

code,handle,buffer
bx,handle
dx,offset buffer
al,code
ah,44H
21H

Because processing of IOCTL control data depends on the
device and device driver, no example is included.

SYSTEM CALLS Function 44H, Codes 4 and 5 Page 1-165

IOCTL Block (Function 44B, Codes 4 and 5)

AX:

BX:

ex:

ox:

~
p

BP

SI

01

~}'iX!?!cii/.ir SS

ES

Call
AH 44H
AL

BL

CX

4
5

Send control data
Receive control data

Drive number (O=default, l=A, etc.)

Bytes to read or write
DS:DX

Pointer to buffer

Return
Carry set:
AX

1 = Invalid function
5 = Invalid drive

Carry not set:
AX

Bytes transferred

Function 44H, Codes 4 and 5 send or receive control data to
or from a block device. AL must contain 4 to send data or 5
to receive. BL must contain the drive number (O=default,
l=A, etc.). CX must contain the number of bytes to be read
or written. DX must contain the offset (to the segment
address in DS) of the data buffer.

AX returns the number of bytes transferred. The device
driver must be written to support the IOCTL interface. To
determine this, use Function 44H, Code 0 to get the device
data and test bit 14; if it is set, the driver supports
IOCTL.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 AL is not 4 or 5, or the device cannot perform the
specified function.

5 The number in BL is not a valid drive number.

SYSTEM CALLS Function 44H, Codes 4 and 5 Page 1-166

Macro Definition: ioctl block macro

Example

mov
mov
mov
mov
int
endm

code,drive,buffer
bl,drive
dx,offset buffer
al,code
ah,44H
21H

Because processing of IOCTL control data depends on the
device and device driver, no example is included.

SYSTEM CALLS Function 44H, Codes 6 and 7

IOCTL status (Function 44H, Codes 6 and 7)

AX: Call
AH 44H
AL

Page 1-167

BX:

ex:

ox:

~
p

6 Check input status
7 Check output status

BP

SI

01

I FLAGSH I~~I

~
s

os

SS

ES

BX
Handle

Return
Carry set:
AX

1 Invalid function
5 Access denied
6 Invalid handle

13 Invalid data
Carry not set:
AL

OOH
OFFH

Not ready
Ready

Function 44H, Codes 6 and 7
associated with a handle
check whether the handle is
whether the handle is ready
handle.

check whether the file or device
is ready. AL must contain 6 to

ready for input or 7 to check
for output. BX must contain the

AL returns the status:

Value

OOH
OFFH

Meaning for
Device

Not ready
Ready

Meaning for
Input File

Pointer is at EOF
Ready

Meaning for
Output File

Ready
Ready

An output file always returns ready, even if the disk is
full.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

1

5

6

13

Meaning

AL is not 6 or 7.

Access denied.

The number in BX isn't a valid, open handle.

Invalid data.

SYSTEM CALLS Function 44H, Codes 6 and 7 Page 1-168

Macro Definition: ioctl status macro code,handle
mov bx,handle
mov al,code
mov ah, 44H
int 2lH
endm

Example

The following program displays a message that tells whether
the file associated with handle 6 is ready for input or at
end-of-file.

stdout

message
ready
at eof
crTf
,
begin:

not eof:
all=done:

equ

db
db
db
db

1

"File is
"ready."
"at EOF."
ODH,OAH

write handle stdout,message,8
jc write error
ioctl status 6 -
jc
cmp
jne
wr i te handle
jc
jmp
write handle
write-handle
jc

ioctl error
al,O -
not eof
stdout,at eof,7
write error
all done
stdout,ready,6
stdout,crlf,2
write error

idisplay message
iroutine not shown
iTHIS FUNCTION
iroutine not shown
icheck status code
ifile is ready
isee Function 40H
iroutine not shown
iclean up & go home
isee Function 40H
i see Function 40H I

iroutine not shown

SYSTEM CALLS Function 44H, Code 08H

IOCTL Is Changeable (Function 44B, Code 08H)

AX:

BX:

ex:
ox: OH OL

Call
AH 44H
AL 08H
BL

Page 1-169

~
p

Drive number (O=default, l=A, etc.)

BP

SI

01

Return
Carry set:
AX

1 = Invalid function
15 = Invalid drive

Carry not set:

~
s

os

SS

ES

AX
a Changeable
1 Not changeable

Function 44H, Code a8H checks whether a drive contains a
fixed or removable disk. BL must contain the drive number
(a=default, l=A, etc.). AX returns a if the disk can be
changed, 1 if it cannot.

This call lets a program determine whether to issue a
message to change disks.

If there is an error, the carry flag (CF)
error code is returned in AX.

is set and the

Code Meaning

1 The device does not support this call.

15 The number in BL is not a valid drive number.

In the case where this call returns error 1 because the
device doesn't support the call, the caller should make the
assumption that the driver cannot be changed.

Macro Definition: ioctl_change macro
IIDV

IIDV
mov
int
endm

drive
bl, drive
aI, 08H
ah, 44H
2lH

SYSTEM CALLS Function 44H, Code 08H Page 1-170

Example

The following program
contains a removable
if so, it prompts the
current drive.

stdout equ 1

checks whether the current drive
disk. If not, processing continues;

user to replace the disk in the

message
drives
crlf

db
db
db

"please replace disk in drive "
"ABCD"

,
begin:

continue:

ODH,OAH

ioctl_change
jc
cmp
jne
write handle
jc -
current disk
xor
mov
display char
write handle
jc

o jTHIS FUNCTION
ioctl error jroutine not shown
ax,O - icurrent drive changeable?
continue jno, continue processing
stdout,message,29 jsee Function 40H
write error jroutine not shown

- jsee Function 19H
bx,bx jclear index
bl,al jget current drive
dr i ves [bx] i see Function 02H
stdout,crlf,2 jsee Function 40H
write_error jroutine not shown

(Further processing here)

SYSTEM CALLS Function 44H, Code 09H

IOCTL Is Redirected Block (Function 44B, Code 09B)

AX:

BX:

cx:
ox:

BH

CH

Call
AH
AL
BL

44H
09H

page 1-171

~
p

Drive number (O=default, l=A, etc.)

BP

51

DI

Return
Carry set:
AX

I FLAGS" Ir·~1
1 = Invalid function code

15 = Invalid drive number
Carry not set:
DX

~o: Device attribute bits
55

ES

Function 44H, Code 09H checks whether a drive letter refers
to a drive on a Microsoft Networks workstation (local) or is
redirected to a server (remote). BL must contain the drive
number (O=default, l=A, etc.).

If the block device is local, DX returns the attribute word
from the device header. If the block device is remote, only
bit 12 (lOOOh) is set; the other bits are 0 (reserved).

An application program should not test bit 12. Applications
should make no distinction between local and remote files or
devices.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 File sharing must be loaded to use this system
call.

15 The number in BL is not a valid drive number.

Macro Definition: ioctl rblock macro
mov
mov
mov
int
endm

drive
bl, drive
aI, 09H
ah, 44H
21H

SYSTEM CALLS Function 44H, Code 09H Page 1-172

Example

The following program checks whether drive B is local or
remote, and displays the appropriate message.

stdout

message
loc
rem
crlf
,
begin:

not loc:

done:

equ 1

db "Drive B: is
db "local."
db "remote."
db ODH,OAH

write handle
jc
ioctl rblock
jc
test
jnz
wr i te handle
jc
jrnp
write handle
jc
write handle
jc

stdout,message,12 ~display message
write error ~routine not shown
2 - ;THIS FUNCTION
ioctl error ~routine not shown
dx,lOOOh ~bit 12 set?
not loc ~yes, it's remote
stdout,loc,6 ~see Function 40H
write error ~routine not shown
done -
stdout,rem,7
write error
stdout,crlf,2
write error

;see Function 40H
;routine not shown
;see Function 40H
;routine not shown

SYSTEM CALLS Function 44H, Code OAH Page 1-173

IOCTL Is Redirected Handle (Function 44H, Code OAB)

AX:

BX:

ex:
ox:

~
p

BP

SI

01

Call
AH
AL
BX

44H
OAH

Handle

Return
Carry set:
AX

1 = Invalid function code
6 = Invalid handle

Carry not set:
DX

~
s

os

SS

ES

IOCTL bit field

Function 44H, Code OAH checks whether a handle refers to a
file or device on a Microsoft Networks workstation (local)
or is redirected to a server (remote). BX must contain the
file handle. DX returns the IOCTL bit field: Bit 15 is set
if the handle refers to a remote file or device.

An application program should not test bit 15. Applications
should make no distinction among local and remote files and
devices.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

I

6

Network must be loaded to use this system call.

The handle in BX is not a valid, open handle.

Macro Definition: ioctl rhandle macro
llOV

llOV

mov
int
endm

handle
bx, handle
aI, OAH
ah, 44H
2lH

SYSTEM CALLS Function 44H, Code OAH Page 1-174

Example

The following program checks whether handle 5
local or remote file or device, then
appropriate message.

refers to a
displays the

stdout

message
loc
rem
crlf
,
begin:

oot loc:

done:

equ 1

db "Handle 5 is
db "local."
db "remote."
db ODH,OAH

write handle stdout,message,12idisplay message
jc - write error iroutine not shown
ioctl rhandle 5 - iTHIS FUNCTION
jc - ioctl error iroutine not shown
test dx,lOOOh ibit 12 set?
jnz not loc iyes, it's remote
write handle stdout,loc,6 isee Function 40H
jc - write error iroutine not shown
jmp done -
write handle stdout,rem,7
jc write error
write handle stdout,crlf,2
jc write error

isee Function 40H
iroutine not shown
isee Function 40H
iroutine not shown

SYSTEM CALLS Function 44H, Code OBH

IOCTL Retry (Function 44H, Code OBH)

A)(:

B)(:

C)(:

0)(:

~
p

BP

SI

01

~
s

os

SS

ES

Call
AH
AL
BX

44H
OBH

Number of retries
CX

Wait time

Return
Carry set:
AX

1 = Invalid function code
carry not set:

No error

Page 1-175

Function 44H, Code OBH specifies how many times MS-DOS
should retry a disk operation that fails because of a
file-sharing violation. BX must contain the number of
retries. CX controls the pause between retries.

MS-DOS retries a disk operation that fails because of a
file-sharing violation three times unless this system call
is used to specify a different number. After the specified
number of retries, MS-DOS issues Interrupt 24 for the
requesting process.

The effect of the delay parameter in CX is machine-dependent
because it specifies how many times MS-DOS should execute an
empty loop. The actual time varies, depending on the
processor and clock speed. You can determine the effect on
your machine by using Debug to set the retries to 1 and time
several values of CX.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX.

Code

1

Meaning

File sharing must be loaded to use this system
call.

SYSTEM CALLS Function 44H, Code OBH Page 1-176

Macro Definition: ioctl_retry macro

Example

mov
mov
mov
mov
int
endm

retries, wait
bx, retries
cx, wait
aI, OBH
ah, 44H
2lH

The following program sets the number of sharing retries to
10 and specifies a delay of 1000 between retries.

begin: ioctl_retry 10,1000
jc error

;THIS FUNCTION
;routine not shown

SYSTEM CALLS Function 45H

Duplicate File Handle (Function 45H)

AX: .• H AL

BX: 8li 8l

CX: CH CL

OX: OH OL

~ BP

SI

01

I FLAGSH II F~$L I

~ os

SS

ES

Call
AH 45H
BX

Handle

Return
Carry set:
AX

4 = Too many open files
6 = Invalid handle

Carry not set:
AX

New handle

Page 1-177

Function 45H creates an additional handle for a file. BX
must contain the handle of an open file.

MS-DOS returns the new handle in AX. The new handle refers
to the same file as the handle in BX, with the file pointer
at the same position.

After this function request, moving the read/write pointer
of either handle also moves the pointer for the other
handle. This function request is usually used to redirect
standard input (handle 0) and standard output (handle 1).
For a description of standard input, standard output, and
the advantages and techniques of manipulating them, see
Software Tools by Brian W. Kernighan and P.J. Plauger
(Addison-Wesley Publishing Co., 1976).

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

4 Too many open files (no handle available).

6 Handle is not open or is invalid.

Macro Definition: xdup macro handle
mov bx,handle
mov ah,45H
int 21H
endm

SYSTEM CALLS Function 45H Page 1-178

Example

The following program redefines standard output (handle 1)
to a file named DIRFILE, invokes a second copy of
COMMAND.COM to list the directory (which writes the
directory to DIRFILE), then restores standard input to
handle 1.

pgm file db
cmd-line db
parm blk db
path-

"command.com",O
9,"/c dir /w",OdH
14 dup (0)
db "dirfile",O

dir file
sav-stdout dw

dw ?
?

For handle
For handle

begin: set block last inst See Function 4AH
jc error setblk Routine not shown
create handle- path,O See Function 3CH
jc - error create Routine not shown
mov dir fTle,ax Save handle
xdup 1 - THIS FUNCTION
jc error xdup Routine not shown
mov sav stdout,ax Save handle
~up2 dir-file,l See Function 46H
jc error_xdup2 i Routine not shown
exec pgm file,cmd line,parm blk i See Function - - mH
jc error exec
xdup2 sav stdout,l
jc error xdup2
close handle sav stdout
jc - error close
close handle dir file
jc error close

Routine not shown
See Function 46H
Routine not shown
i See Function 3EH
Routine not shown
See Function 3EH
Routine not shown

SYSTEM CALLS Function 46H

Force Duplicate File Handle (Function 46H)

AX:

BX:

ex:

ox:

At,

SI.

Cl

OH OL

~
p

BP

SI

01

I FLAGS" If FtA$Sll

~
s

os

5S

ES

Call
AH 46H
BX

Handle
CX

Second handle

Return
Carry set:
AX

4 = Too many open files
6 = Invalid handle

car ry not set:
No error

Page 1-179

Function 46H forces a specified handle to refer the same
file as another handle already associated with an open file.
BX must contain the handle of the open file; CX must
contain the second handle.

On return, the handle in CX now refers to the same file at
the same position as the handle in BX. If the file referred
to by the handle in CX was open at the time of the call, it
is closed.

After this call, moving the read/write pointer of either
handle also moves the pointer for the other handle. This
function request is normally used to redirect standard input
(handle 0) and standard output (handle 1). For a
description of standard input, standard output, and the
advantages and techniques of manipulating them, see Software
Tools by Brian W. Kernighan and P.J. Plauger
(Addlson-Wesley Publishing Co., 1976).

If there is an error, the carry flag (CF)
error code is returned in AX:

is set and the

Code Meaning

4 Too many open files (no handle available).

6 Handle is not open or is invalid.

SYSTEM CALLS Function 46H Page 1-180

Macro Definition: xdup2 macro
mov
fOC)V

mov
int
endm

Example

handlel,handle2
bx,handlel
cx,handle2
ah,46H
21H

The following program redefines standard output (handle 1)
to a file named DIRFILE, invokes a second copy of
COMMAND.COM to list the directory (which writes the
directory to DIRFILE), then restores standard input to
handle 1.

pgm file db
cmd-line db
parm blk db
path-

"command.com",O
9,"/c dir /w",OdH
14 dup (0)
db "dirfile",O

dir file
sav=stdout dw

dw ?
?

,
begin: set block last inst

jc error setblk
create handle- path,O
jc error create
fOC)V dir fIle,ax
xdup 1-
jc error xdup
mov sav stdout,ax
xdup2 dir-file,l

For handle
For handle

See Function 4AH
Routine not shown
See Function 3CH
Routine not shown
Save handle
See Function 45H
Routine not shown
Save handle

jc error xdup2 Routine not shown
exec pgm_fTle,cmd_line,parm blk ; See Function

4BH
jc error exec
xdup2 sav stdout,l
jc error_xdup2
close handle sav stdout
jc - error close
close handle dir file
jc - error_close

Routine not shown
THIS FUNCTION
Routine not shown
; See Function 3EH
Routine not shown
See Function 3EH
Routine not shown

SYSTEM CALLS Function 47H

Get Current Directory (Function 47H)

AX: AH

BX: BH

CX: CH

AL

BL

CL

Call
AH = 47H
DS:SI

Page 1-181

OX: OH DI. Pointer to 64-byte memory area
DL

EF1 EB
Drive number

Return
Carry set:
AX

I FLAGS" 'I FLAG~ I 15 = Invalid drive number
Carry not set:

~
CS

55

E5

No error

Function 47H returns the pathname of the current directory
on a specified drive. DL must contain a drive number
(O=default, l=A, etc.). SI must contain the offset (from
the segment address in DS) of a 64-byte memory area.

MS-DOS places an ASCIZ string in the memory area that
consists of the pathname, starting from the root directory,
of the current directory for the drive specified in DL. The
string does not begin with a backslash and does not include
the drive letter.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

15 The number in DL is not a valid drive number.

Macro Definition: get_dir macro
mov
mov
mov
int
endm

drive,buffer
dl,drive
si,offset buffer
ah,47H
21H

SYSTEM CALLS Function 47H Page 1-182

Example

The following program displays the current directory on the
disk in drive B.

disk
buffer
,
begin:

db
db

"b:\$"
64 dup (?)

get_dir 2,buffer
jc error dir
display disk
display_asciz buffer

;THIS FUNCTION
;Routine not shown
;See Function 09H

;See end of chapter

SYSTEM CALLS Function 48H

Allocate Memory (Function 48H)

AX: Afl

BX: 8tI

CX: CH CL

Call
AH = 48H
BX

Page 1-183

OX: OH OL Paragraphs of memory requested

Return
Carry set:
AX ~

p

BP

SI

DI

I FLAGS" T~tl
7
8

Memory control blocks damaged
Insufficient memory

BX

~
s

Paragraphs of memory available
Carry not set:
AX OS

SS

ES

Segment address of allocated memory

Function 48H tries to allocate the specified amount of
memory to the current process. BX must contain the number
of paragraphs of memory (1 paragraph is 16 bytes).

If sufficient memory is available to satisfy the request, AX
returns the segment address of the allocated memory (the
offset is 0). If sufficient memory is not available, BX
returns the number of paragraphs of memory in the largest
available block.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

7 Memory control blocks damaged (a user program
changed memory that doesn't belong to it).

8 Not enough free memory to satisfy the request.

Macro Definition: allocate_memory macro
I'IDV

I'IDV

shr
inc
I'IDV

int
endm

bytes
bx,bytes
cl,4
bx,cl
bx
ah,48H
21H

SYSTEM CALLS Function 48H Page 1-184

Example

The following program opens the file named TEXTFILE.ASC,
calculates its size with Function 42H (Move File Pointer),
allocates a block of memory the size of the file, reads the
file into the allocated memory block, then frees the
allocated memory.

path db "textfile.asc",O
msgl db "File loaded into allocated memory block.",

ODH,OAH
msg2 db "Allocated memory now being freed

handle dw
mem seg dw
fiie len dw

~eallocated).",ODH,OAH
?
?
?

begin: open_handle path,O
jc error open iRoutine not shown
rnov handle,ax iSave handle
rnove_ptr handle,O,O,2 iSee Function 42H
jc error move iRoutine not shown
rnov file Ien,ax iSave file length
set block last inst iSee Function 4AH
jc error setblk iRoutine not shown
allocate memory file len iTHIS FUNCTION
jc -error alloe - iRoutine not shown
mov mem seg,ax iSave address of new memory
move_ptr handle,O,O,O iSee Function 42H
jc error move iRoutine not shown
push ds - iSave DS
mov ax,mem_seg iGet segment of new memory
rnov ds,ax ;Point DS at new memory
read handle cs:handle,O,cs:file_len iRead file into

new memory
pop ds iRestore DS
jc error read iRoutine not shown
(CODE TO PROCESS FILE GOES HERE)
write handle stdout,msgl,42 iSee Function 40H
jc - write error iRoutine not shown
free memory mem seg iSee Function 49H
jc - error freemem iRoutine not shown
write handle stdout,msg2,49 iSee Function 40H
jc - write error ;Routine not shown

SYSTEM CALLS Function 49H

Free Allocated Memory (Function 49B)

AX:

BX:

cx:

AH

BH

CH

Al

BL

CL

Call
AH = 49H
ES

Page 1-185

OX: OH OL Segment address of memory to be
freed

~
p

BP

SI

01

Return
Carry set:
AX

I FLAGS" IIFLAG~ I
7 = Memory control blocks damaged
9 = Incorrect segment

~ ..

CS

OS

SS

ES

Carry not set:
No error

Function 49H releases (makes available) a block of memory
previously allocated with Function 48H (Allocate Memory) .
ES must contain the segment address of the memory block to
be released.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

7 Memory control blocks damaged (a user program
changed memory that doesn't belong to it).

9 The memory pointed to by ES was not allocated
with Function 48H.

Macro Definition: free_memory macro
mov
mov
mov
int
endm

seg addr
ax,seg_addr
es,ax
ah,49H
21H

SYSTEM CALLS Function 49H Page 1-186

Example

The following program opens the file named TEXTFILE.ASC,
calculates its size with Move File Pointer (42H), allocates
a block of memory the size of the file, reads the file into
the allocated memory block, then frees the allocated memory.

path db "textfile.asc",O
msgl db "File loaded into allocated memory block.",

ODH,OAH
msg2 db "Allocated memory now being freed

handle dw
mem seg dw
fife len dw

~eallocated).",ODH,OAH
?
?
?

,
begin: open_handle path,O

jc error open ;Routine not shown
mov handle,ax ;Save handle
move ptr handle,O,O,2 ;See Function 42H
jc - error move ;Routine not shown
mov file Ten,ax ;Save file length
set block last inst ;See Function 4AH
jc - error setblk jRoutine not shown
allocate memory file len jSee Function 48H
jc -error alloc - jRoutine not shown
mov mem seg,ax jSave address of new memory
mov_ptr handle,O,O,O jSee Function 42H
jc error move jRoutine not shown
push ds - jSave OS
mov ax,mem_seg jGet segment of new memory
mov ds,ax jPoint OS at new memory
read handle handle,code,file len jRead file into

- new memory
tnP ds j Restore OS
jc error read jRoutine not shown
(CODE TO PROCESS FILE GOES HERE)
write handle stdout,msgl,42 jSee Function 40H
jc - write error jRoutine not shown
free memory mem seg jTHIS FUNCTION
jc - error freemem jRoutine not shown
write handle stdout,msg2,49 ;See Function 40H
jc - write_error jRoutine not shown

SYSTEM CALLS Function 4AH Page 1-187

Set Block (Function 4AH)

AX: /liH

BX: . .,.
CX: CH

OX: OH

CL

OL

Call
AH 4AH
BX

Paragraphs of memory

~
p

BP

51

01

ES
Segment address of memory area

Return
Carry set:
AX

BX

7 Memory control blocks damaged
8 Insufficient memory
9 Incorrect segment

Paragraphs of memory available
Carry not set:

No error

Function 4AH changes the size of a memory allocation block.
ES must contain the segment address of the memory block. BX
must contain the new size of the memory block, in paragraphs
(1 paragraph is 16 bytes).

MS-DOS attempts to change the size of the memory block. If
the call fails on a request to increase memory, BX returns
the maximum size (in paragraphs) to which the block can be
increased.

Because MS-DOS allocates all of available memory to a .COM
program, this call is most often used to reduce the size of
a program's initial memory allocation block.

If there is an error, the carry flag (CF)
error code is returned in AX:

is set and the

Code

7

8

9

Meaning

Memory control blocks destroyed (a user program
changed memory that doesn't belong to it).

Not enough free memory to satisfy the request.

Wrong address in ES (the memory block it points
to cannot be modified with Set Block).

SYSTEM CALLS Function 4AH Page 1-188

Macro Definition:

This macro is set up to shrink the initial memory allocation
block of a .COM program. It takes as a parameter the offset
of the first byte following the last instruction of a
program (LASTINST in the sample programs), uses it to
calculate the number of paragraphs in the program, then adds
17 to the result 1 to round up and 16 to set aside 256
~tes for a stack. It then sets up SP and BP to point to
this stack.

set block macro last_byte
mov bx,offset last_byte
nov cl,4
shr bx,cl
rod bx,17
nov ah,4AH
int 21H
mov ax,bx
shl ax,cl
dec ax
dec ax
mov sp,ax
endm

Examp1e

The following program invokes a second copy of COMMAND.COM
and executes a Dir (directory) command.

pgm file db
cmd-line db
parm_blk db
reg_save db
;
begin: set block

exec

"command.com",O
9,"/c dir /w",ODH
14 dup (?)
10 dup (?)

last inst iTHIS FUNCTION
pgm_file,cmd_line,parm_blk,O jSee Function

;4BH

SYSTEM CALLS Function 4BH, Code OOH page 1-189

Load and Execute Program (Function 4B8, Code 008)

AX:

BX:

ex:

ox:

~
p

BP

SI

01

I FLAGS" r ¥LAGs~1

~es•. ss
ES

Call
AH = 4BH
AL = OOH
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block

Return
Carry set:
AX

1 Invalid function
2 File not found
8 Insufficient memory

10 Bad environment
11 Bad format

Carry not set:
No error

Function 4BH, Code OOH loads and executes a program. DX
must contain the offset (from the segment address in DS) of
an ASCIZ string that specifies the drive and pathname of an
executable program file. BX must contain the offset (from
the segment address in ES) of a parameter block. AL must
contain O.

There must be enough free memory for MS-DOS to load the
program file. All available memory is allocated to a
program when it is loaded, so you must free some memory with
Function 4AH (Set Block) before using this function request
to load and execute another program. Unless memory is
needed for some other purpose, shrink to the minimum amount
of memory required by the current process before issuing
this function request.

MS-DOS creates a Program Segment Prefix for the program
being loaded, and sets the terminate and Control-C addresses
to the instruction that immediately follows the call to
Function 4BH in the invoking program.

SYSTEM CALLS Function 4BH, Code OOH page 1-190

The parameter block consists of four addresses:

Offset Length
(Hex) (Bytes)

00 2 (word)

02 4 (dword)

06 4 (dword)

OA 4 (dword)

Description

Segment address of environment to be
passed; OOH means copy the parent's
environment.

Segment:Offset of command line to be
placed at offset 80H of the new
Program Segment Prefix. This must
be a correctly formed command line
no longer than 128 bytes.

Segment:Offset of FCB to be placed
at offset SCH of the new Program
Segment Prefix (the program Segment
Prefix is described in Chapter 4).

Segment:Offset of FCB to be placed
at offset 6CH of the new Program
Segment Prefix.

All open files of a program are available to the newly
loaded program, giving the parent program control over the
definition of standard input, output, auxiliary, and printer
devices. For example, a program could write a series of
records to a file, open the file as standard input, open a
second file as standard output, then use Load and Execute
Program to load and execute a program that takes its input
from standard input, sorts records, and writes to standard
output.

The loaded program also receives an environment, a series of
ASCIZ strings of the form parameter=value (for example,
VERIFY=ON). The environment must begin on a paragraph
boundary, be less than 32K bytes long, and end with a byte
of OOH (that is, the final entry consists of an ASCII string
followed by two bytes of OOH). After the last byte of zeros
is a set of initial arguments passed to a program that
contains a word count followed by an ASCIZ string. If the
file is found in the current directory, the ASCIZ string
contains the drive and pathname of the executable program as
passed to Function 4BH. If the file is found in the path,
the filename is concatenated with the path information. (A
program may use this area to determine where the program was
loaded from.) If the word environment address is 0, the
loaded program either inherits a copy of the parent's
environment or receives a new environment built for it by
the parent.

Place the segment address of the environment at offset 2CH
of the new Program Segment Prefix. To build an environment
for the loaded program, put it on a paragraph boundary and

SYSTEM CALLS Function 4BH, Code DOH Page 1-191

place the segment address of the environment in the first
word of the parameter block. To pass a copy of the parent's
environment to the loaded program, put DOH in the first word
of the parameter block.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

1

2

8

11

Meaning

AL is not 0 or 3.

Program file not found or path is invalid.

Not enough memory to load the program.

Program file is an .EXE file that contains
internally inconsistent information.

Executing Another Copy of COMMAND.COM

Because COMMAND.COM takes care of such details as building
pathnames, searching the command path for program files, and
relocating .EXE files, the simplest way to load and execute
another program is to load and execute an additional copy of
COMMAND.COM, passing it a command line that includes the IC
switch -- which tells COMMAND.COM to treat the remainder of
the command line as an executable command that invokes
the .COM or .EXE file.

This requires 17K bytes of available memory, so a program
that does this should be sure to shrink its initial memory
allocation block with Function 4AH (Set Block). The format
of a command line that contains the IC switch:

<length>/C <command><DDH>

<Length> is the length of the command line, counting the length
byte but not counting the ending carriage return (ODH).

<Command> is any valid MS-DOS command.

<ODH> is a carriage return character.

If a program executes another program directly -- naming it
as the program file to Function 4BH instead of COMMAND.COM
-- it must perform all the processing normally done by
COMMAND.COM.

SYSTEM CALLS Function 4BH, Code DOH Page 1-192

Macro Definition:

exec macro path,command,parms
mov dx,offset path
mov bx,offset parms
mov word ptr parms[02H] ,offset command
mov word ptr parms[04H] ,cs
mov word ptr parms[06H] ,SCH
mov word ptr parms[08H] ,es
mov word ptr parms[OAH] ,6CH
mov word ptr parms[OCH] ,es
mov al,O
mov ah,4BH
int 21H
endm

Example

The following program invokes a second copy of COMMAND.COM
and executes a Dir (directory) command with the /W (wide)
switch:

pgm file db
cmd-line db
parrn_blk db
reg_save db
,
begin:

set block
exec

"command.com",O
9,"/c dir /w",ODH
14 dup (?)
10 dup (?)

last inst iSee Function 4AH
pgm_file,cmd_line,parm_blk,O iTHIS FUNCTION

SYSTEM CALLS Function 4BH, Code 03H Page 1-193

LOad Overlay(Function 4BH, Code 03H)

AX:

BX·

cx:
OX:

... »1 Al

Bt'! BL

CH Cl

OQ. DL

~ .. ,.,
...

,."
,.,., ".,

"

....
,
.......

,S., .. ,.p , ,',.,.

BP

SI

Ol

I FLAGS" II FLAGSL I

~ •• ' ...•• '.' .. ' ,'•....•. ~ ~i ..• ,., '.
ss
ES

call
AH = 4BH
AI., = 03H
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block

Return
carry set:
AX

1 Invalid function
2 File not found
8 Insufficient memory

10 Bad environment
Carry not set:

No error

Function 4BH, Code 03H loads a program segment (overlay).
DX must contain the offset (from the segment address in DS)
of an ASCIZ string that specifies the drive and pathname of
the program file. BX must contain the offset (from the
segment address in ES) of a parameter block. AL must
contain 3.

MS-DOS assumes that the invoking program is loading into its
own address space, so no free memory is required. A program
Segment Prefix is not created.

The parameter block is four bytes long:

Offset
(Hex)

00

02

Length
(Bytes)

2 (word)

2 (word)

Description

Segment address where program is to
be loaded.

Relocation factor. This is usually
the same as first word of the
parameter block; for a description
of an .EXE file and relocation, see
Chapter 5).

If there is an error, the carry flag (CF) is set and the
error code is returned in AX.

SYSTEM CALLS Function 4BH, Code 03H page 1-194

Code Meaning

1 AL is not OOH or 03H.

2

8

Program file not found or path is invalid.

Not enough memory to load the program.

Macro Definition: exec ovl

Example

macro
mov
mov
mov
mov
mov
mov
int
endm

path,parms,seg addr
dx,offset path
bx,offset parms
parms,seg addr
parms[02H),seg addr
al,3 -
ah,4BH
21H

The following program opens a file named TEXTFILE.ASC,
redirects standard input to that file, loads MORE.COM as an
overlay, and calls MORE.COM. MORE.COM reads TEXTFILE.ASC as
standard input.

stdin equ o
,
file db
cmd file db
parm blk dw
handle dw
new mem dw

"TEXTFILE.ASC",O
"\more.com",O

4 dup (?)
?
?

begin: set block last inst
jc setblock error
allocate memory 2000
jc - allocate_error
mov new mem,ax
open handle file,O
jc - open error
mov
xdup2
jc
close
jc
mov

handle,ax
handle,stdin
dup2 error

handle handle
close error
ax,new_mem

isee Function 4AH
iroutine not shown
isee Function 48H
iroutine not shown
isave seg of memory
isee Function 3DH
iroutine not shown
isave handle
isee Function 45H
iroutine not shown
isee Function 3EH
iroutine not shown
iaddr of new memory

SYSTEM CALLS Function 4BH, Code 03H page 1-195

exec ovl
jc

cmd file,parm blk,ax iTHIS FUNCTION

mov
sub
mov
call
push
pop
free_memory
jc

exec error- iroutine not shown
aX,new mem ipoint to overlay
ax,lOh- ino PSP for overlay
ds,ax iDS for overlay
cs:overlay icall the overlay
cs irestore DS to
ds ioriginal segment
new mem isee Function 49H
free error iroutine not shown

SYSTEM CALLS Function 4CH Page 1-196

End Process (Function 4CH)

AX: AM Al Call

BX: BH BL
AH 4CH

cx: CH CL
AL

ox: OH OL
Return code

~
Return

BP None
SI

01

I FLAGSH

IP

I I FLAGSL

~ os

SS

ES

Function 4CH terminates a process and returns to MS-DOS. AL
contains a return code that can be retrieved by the parent
process with Function 4DH (Get Return Code of Child process)
or the If command using ERRORLEVEL.

MS-DOS closes all open handles, ends the current process,
and returns control to the invoking process.

This function request doesn't require that CS contain the
segment address of the Program Segment Prefix. You should
use it to end a program (rather than Interrupt 20H or a jump
to location 0) unless it is absolutely imperative that your
program be compatible with pre-2.0 versions of MS-DOS.

Macro Definition: end_process macro
mov
mov
int
endm

return code
aI, return code
ah,4CH -
21H

SYSTEM CALLS Function 4CH page 1-197

Example

The following program displays a
MS-DOS with a return code of 8.
portion of the sample program
beginning of this chapter.

message and returns to
It uses only the opening

skeleton shown at the

message db "Displayed by FUNC_4CH example",ODH,OAH,"$"
,
begin:

code

display message
end process 8
ends
end code

~See Function 09H
iTHIS FUNCTION

SYSTEM CALLS Function 4DH

Get Return Code of Child Process (Function 4DH)

AX:

BX:

cx:

ox:

"
AI'! .4i,

BH BL

CH CL

OH OL

~
p

BP

51

01

~
5

05

55

ES

Call
AH = 4DH

Return
AX

Return code

Page 1-198

Function 4DH retrieves the
child process terminated
process) or Function 4CH
returned in AL. AH returns
the program ended:

return code specified when a
with either Function 31H (Keep

(End Process). The code is
a code that specifies the reason

Code Meaning

0 Normal termination.

1 Terminated by Control-C.

2 Critical device error.

3 Function 3lH (Keep Process) •

The exit code can be retrieved only once.

Macro Definition: ret code macro
mov
int
endm

Example

ah,4DH
2lH

Because the meaning of a return code varies, no example is
included for this function request.

SYSTEM CALLS Function 4EH Page 1-199

Find First File (Function 4EH)

AX:

BX:

ex:

DX:

lit AI;;

BH Bl

CH C!-

ott 01..

~
p

BP

Sl

DI

Call
AH = 4EH
DS:DX

Pointer to pathname
CX

Attributes to match

Return
Carry set:
AX

2 = File not found
18 = No more files

Carry not set:
No error

Function 4EH searches the specified or current directory for
the first entry that matches the specified pathname. DX
must contain the offset (from the segment address in DS) of
an ASCIZ string that specifies the pathname that can include
wildcard characters. CX must contain the attribute to be
used in searching for the file, as described in Section
1.5.6, "File Attributes," earlier in this chapter.

If the attribute field is hidden file, system file, or
directory entry (02H, 04H, or lOH), or any combination of
those values, all normal file entries are also searched. To
search all directory entries except the volume label, set
the attribute byte to l6H (hidden file and system file and
directory entry) .

If a directory entry is found that matches the name and
attribute, the current DTA is filled as follows:

Offset Length Description

OOH 21 Reserved for subsequent Find Next
File (Function Request 4FH).

ISH 1 Attribute found.

l6H 2 Time file was last written.

l8H 2 Date file was last written.

SYSTEM CALLS Function 4EH Page 1-200

lAH 2

lCH 2

lEH 13

Low word of file size.

High word of file size.

Name and extension of the file,
followed by OOH. All blanks are
removed; if there is an extension, it
is preceded by a period (it appears
just as you would enter it in a
command) •

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

2 The specified path is invalid or doesn't exist.

18 No matching directory entry was found.

Macro Definition: find_first_file macro
mov
mov
mov
int
endm

path,attrib
dx,offset path
cx,attrib
ah,4EH
2lH

Example

The following program displays a message
whether a file named REPORT.ASM exists
directory on the disk in drive B.

that specifies
in the current

yes
no
path
buffer
,

db
db
db
db

"FILE EXISTS.",ODH,OAH,"$"
"FILE DOES NOT EXIST.",ODH,OAH,"S"
"b:report.asm",O

43 dup (?)

begin: set dta buffer ;See Function IAH
iTHIS FUNCTION
;Routine not shown
iFile found?

find first file path,O
jc - error findfirst
cmp al,l2H
je not there
display yes-
jmp return

not there: display no

iNa
;See Function 09H
iAII done
iSee Function 09H

SYSTEM CALLS Function 4FH

Find Next File (Function 4FH)

AX: AH< Ali.

BX: BH BL

cx: CH CL

ox: OH OL

~ BP

SI

01

I FLAGSH 'i fLA4St I

~ SS

ES

Call
AH = 4FH

Return
Carry set:
AX

18 = No more files
Carry not set:

No error

Page 1-201

Function 4FH searches for the next directory entry that
matches the name and attributes specified in a previous
Function 4EH (Find First File). The current DTA must
contain the information filled in by Function 4EH (Find
First File).

If a matching entry is found, the current DTA is filled just
as it was for Find First File (see the previous function
request description).

If there is an error, the carry flag (CF)
error code is returned in AX:

Code Meaning

is set and the

2 The specified path is invalid or doesn't exist.

18 No matching directory entry was found.

Macro Definition: find next file macro
mov
int
endm

ah,4FH
2lH

SYSTEM CALLS Function 4FH Page 1-202

Example

The following program displays the number of files in the
current directory on the disk in drive B.

message
files
path
buffer
,
begin:

search dir:

done:
all done:

db
dw
db
db

"No files",ODH,OAH,"$"
?

"b:*.*",O
43 dup (?)

set dta buffer iSee Function lAH
find first file path,O iSee Function 4EH
jc - error findfirst iRoutine not shown
amp al,12H iDirectory empty?
je all done iYes, go horne
inc files iNo, bump file counter
find next file iTHIS FUNCTION
jc error findnext iRoutine not shown
amp al,12H iAny more entries?
je done iNo, go horne
inc files iYes, bump file counter
jmp search dir iAnd check again
convert files,IO,message iSee end of chapter
display message ;See Function 09H

SYSTEM CALLS Function 4FH

Get Verify State (Function 548)

AX: AM IlL

BX: BH BL

cx: CH CL

ox: OH OL

~ BP

SI

DI

I FLAGSH Ii FLAGSL I

~ os

SS

ES

Call
AH = 54H

Return
AL

o No verify after write
1 Verify after write

Page 1-203

Function 54H checks whether MS-DOS verifies write operations
to disk files. The status is returned in AL: 0 if verify
is off, 1 if verify is on.

You can set the verify status with Function 2EH (Set/Reset
verify Flag) •

Macro Definition: get_verify macro
mov
int
endrn

ah,54H
21H

Example

The following program displays the verify status:

message
on
off
,
begin:

ver on:

db
db
db

"verify ","$"
"on.",ODH,OAH,"$"
"off.",ODH,OAH,"$"

display message
get verify
cmp- al,O
jg ver on
display off-
jmp return
display on

;See Function 09H
;THIS FUNCTION
;Is flag off?
iNo, it I S on
iSee Function 09H
iGo home
iSee Function 09H

SYSTEM CALLS Function 56H Page 1-204

Change Directory Entry (Function 568)

AX:

BX:

ex:

ox:

AH Ail

BH BL

CH CL

OK 01.

~5P

BP

51

m

~.: 55

ES

Call
AH = 56H
OS:OX

Pointer to pathname
ES:OI

Pointer to second pathname

Return
Carry set:
AX

2 File not found
5 = Access denied

17 = Not same device
Carry not set:

No error

Function 56H renames a file by changing its directory entry.
OX must contain the offset (from the segment address in OS)
of an ASCIZ string that contains the pathname of the entry
to be changed. DI must contain the offset (from the segment
address in ES) of an ASCIZ string that contains a second
path name to which the first is to be changed.

If a directory entry for the first pathnarne exists, it is
changed to the second pathname.

The directory paths need not be the same; in effect, you
can move the file to another directory by renaming it. You
cannot use this function request to copy a file to another
drive, however: if the second pathname specifies a drive,
the first pathname must specify or default to the same
dr ive.

This function request cannot be used to rename a hidden
file, system file, or subdirectory. If there is an error,
the carry flag (CF) is set and the error code is returned in
AX.

SYSTEM CALLS Function 56H Page 1-205

Code

2

5

17

Meaning

One of the paths is invalid or not open.

The first pathname specifies a directory, the
second pathname specifies an existing file, or
the second directory entry could not be opened.

Both files are not on the same drive.

Macro Definition: rename file macro
mov
push
pop
mov
mov
int
endm

old path,new path
dx,offset old pat
ds -
es
di,offset new_path
ah,56H
21H

Example

The following program prompts for the name of a file and a
new name, then renames the file.

promptl db
prompt2 db
old path db
new-path db
crlf db

"Filename: $"
"New name: $"
15,7,15 dup (7)
15,7,15 dup (?)
ODH,OAH,"$"

,
begin: display promptl ~See Function 09H

get string 15,old_path ~See Function OAH
xor- bx,bx iTo use BL as index
mov bl,old path[l] ~Get string length
mov old path [bx+2] ,0 iMake an ASCIZ string
display crlf ~See Function 09H
display prompt2 iSee Function 09H
get string 15,new path ~See Function OAH
xor- bx,bx - ~TO use BL as index
mov bl,new path[l] ~Get string length
mov new path[bx+2],0 iMake an ASCIZ string
display crlf ~See Function 09H
rename file old path[2] ,new path[2] ~THIS FUNCTION
jc - error rename ~Routine not shown

SYSTEM CALLS Function 57H

Get/set Date/Time of File(Function 578)

AX:

BX:

ex:

ox:

~
p

BP

SI

01

I FLAGS" li.;~.J

~
s

OS

SS

ES

57H
Call
AH
AL Function code

BX

CX

DX

o Get date and time
1 = Set date and time

Handle
(if AL=l)
Time to be set
(if AL=l)
Date to be set

Return
Carry set:
AX

1 = Invalid function
6 = Invalid handle

Car ry not set:
CX (if AL=O)

Time file last written
DX (if AL=O)

Date file last written

Page 1-206

Function 57H gets or sets the time and date a file was last
written. To get the time and date, AL must contain OJ the
time and date are returned in CX and DX. To set the time
and date, AL must contain l~ CX and DX must contain the
time and date. BX must contain the file handle. The time
and date are in the form described in "Fields of the FCB" in
Section 1. 8.1.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

AL is not 0 or 1. 1

6 The handle in BX is invalid or not open.

Macro Definition:

get_set_date_time macro
mov
mov
mov
mov
mov
int
endm

handle,action,time,date
bx,handle
al,action
cx,word ptr time
dx,word ptr date
ah,57H
21H

SYSTEM CALLS Function 57H Page 1-207

Example

The following program gets the date of the file named
REPORT.ASM in the current directory on the disk in drive B,
increments the day, increments the month or year if
necessary, and sets the new date of the file.

month
path
handle
time
date
,

db
db
dw
db
db

31,28,31,30,31,30,31,31,30,31,30,31
"b:report.asm",O

?
2 dup (?)
2 dup (?)

begin: open_handle path,O ;See Function 3DH
mov handle,ax ;Save handle
get set date time handle,O,time,date;THISFUNCT10N
jc - -error time ;Routine not shown
mov word ptr time,cx ;Save time
mov word ptr date,dx ;Save date
convert date date [-24] ;See end of chapter
inc -dh ;Increment day
xor bx,bx ;To use BL as index
mov bl,dl ;Get month
cmp dh,month[bx-l] ;Past last day?
jle month ok ;No, go home
mov dh,l - ;Yes, set day to 1
inc dl ;1ncrement month
cmp dl,12 ;1s it past December?
jle month ok ;No, go home
mov dl,l - ;Yes, set month to 1
inc cx ;Increment year

month ok: pack_date date ;See end of chapter
get set date time handle,1,time,dateiTH1SFUNCT10N
jc -error time Routine not shown
close handle -handle See Function 3EH
jc error close Routine not shown

SYSTEM CALLS Function 58H Page 1-208

Get/Set Allocation Strategy (Function 588)

AX:

BX:

ex:
ox:

§
p

BP

SI

01

§ s
os

SS

ES

Call
AH 58H
AL

o = Get strategy
1 = Set strategy

BX (AL=l)
o First fit
1 Best fit
2 Last fit

Return
Carry set:
AX

1 = Invalid function code
Carry not set:
AX (AL=O)

o First fit
1 Best fit
2 Last fit

Function 58H gets or sets the strategy used by MS-DOS to
allocate memory when requested by a process. If AL contains
0, the strategy is returned in AX. If AL contains 1, BX
must contain the strategy. The three possible strategies
are:

Value Name Description

o First fit MS-DOS starts searching at the lowest
available block and allocates the first
block it finds (the allocated memory is
the lowest available block). This is the
default strategy.

1 Best fit MS-DOS searches each available block and
allocates the smallest available block
that satisfies the request.

2 Last fit MS-DOS starts searching at the highest
available block and allocates the first
block it finds (the allocated memory is
the highest available block).

You can use this function request to control how MS-DOS uses
its memory resources.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX.

SYSTEM CALLS Function 58H page 1-209

Code Meaning

1 AL doesn't contain 0 or 1, or BX doesn't contain
0, 1, or 2.

Macro Definition: alloc strat macro
mov
mov
mov
int
endm

Examp1e

code,strategy
bx,strategy
al,code
ah,58H
21H

The following program displays the memory allocation
strategy in effect, then forces subsequent memory
allocations to the top of memory by setting the strategy to
last fit (code 2).

get
set
stdout
last fit
i
first
best
last
I

begin:

equ ° equ 1
equ 1
equ 2

db "First fit " ,ODH,OAH
db "Best fit " ,ODH,OAH
db "Last fit " ,ODH,OAH

alloc_strat get
jc alloc error
mov cl,4
shl ax,cl
mov dx,offset first

iTHIS FUNCTION
iroutine not shown
imultiply code by 16
ito calculate offset
ipoint to first msg
iadd to base address
ihandle for write
iwrite 16 bytes
iwrite handle
isystem call
iroutine not shown
iTHIS FUNCTION
iroutine not shown

add dx,ax
mov bx,stdout
mov cs,16
mov ah,40h
int 21H
jc write error
alloc strat set,last fit
jc - alloc error

SYSTEM CALLS Function 59H Page 1-210

Get Extended Error (Function 59B)

Call
AH 59H
BX = 0

Return
AX

Extended error code
BH

Error class (see text)
BL

Suggested action (see text)
CH

Locus (see text)

CL, OX, SI, DI, BP, OS, ES destroyed

Function 59H retrieves an extended error code for the
immediately previous system call. Each release of MS-DOS
extends the error codes to cover new capabilities. These
new codes are mapped to a simpler set of error codes based
on Version 2.0 of DOS, so that existing programs can
continue to operate correctly. Note that all registers
except CS:IP and SS:SP are destroyed by this call.

A user-written Interrupt 24H handler can use Function 59H
(Get Extended Error) to get detailed information about the
error that caused the interrupt to be issued.

The input BX is a version indicator which says what level of
error handling the application was written for. The current
level is o.

The extended error code consists of four separate codes in
AX, BH, BL, and CH that give as much detail as possible
about the error and suggest how the issuing program should
respond.

SYSTEM CALLS Function 59H Page 1-211

BH -- Error C1ass

BH returns a code that describes the class of error that
occurred:

Class Description

lOut of a resource, such as storage or channels.

2 Not an error, but a temporary situation (such as a
locked region in a file) that can be expected to end.

3 Authorization problem.

4 An internal error in system software.

5 Hardware failure.

6 A system software failure not the fault of the active
process (could be caused by missing or incorrect
configuration files, for example).

7 Application program error.

8 File or item not found.

9 File or item of invalid format, type, or otherwise
invalid or unsuitable.

10 File or item interlocked.

11 Wrong disk in drive, bad spot on disk, or other
problem with storage medium.

12 Other error.

BL -- Suggested Action

BL returns a code that suggests how the issuing program can
respond to the error:

Action Description

1 Retry, then prompt user.

2 Retry after a Pause.

3 If the user entered data such as a drive letter or
file name, prompt for it again.

4 Terminate with cleanup.

5 Terminate immediately. The system is so unhealthy
that the program should exit as soon as possible

SYSTEM CALLS Function 59H Page 1-212

without taking the time to close files and update
indexes.

6 Error is informational.

7 Prompt the user to perform some action, such as
changing disks, then retry the operation.

CH -- Locus

CH returns a code that provides additional information to
help locate the area involved in the failure. This code is
particularly useful for hardware failures (BH=5).

Locus Description

1 Unknown.

2 Related to random access block devices, such as a
disk drive.

3 Related to Network.

4 Related to serial access character devices, such
as a printer.

5 Related to random access memory.

Your programs should handle errors by noting the error
return from the original system call, then issuing this
system call to get the extended error code. If the program
does not recognize the extended error code, it should
respond to the original error code.

This system call is available during Interrupt 24H and may
be used to return network-related errors.

Macro Definition: get_error macro
mov
int
endm

Example

ah, 59H
21H

Because so much detail is provided by this function request,
an example is not shown. User programs can interpret the
various codes to determine what sort of messages or prompts
should be displayed, what action to take, and whether to
terminate the program if recovery from the errors isn't
possible.

SYSTEM CALLS Function 5AH Page 1-213

Create Temporary File (Function SAD)

AX:

BX:

ex:

ox:

BH BL

Call
AH 5AH
CX

Attribute
DS:DX

~
p

BP

SI

01

Pointer to pathname followed by a
byte of 0 and 13 bytes of memory

~\ii ; .. i ••
SS

ES

Return
Carry set:
AX

3 = Path not found
5 = Access denied

Carry not set:
AX

Handle

Function 5AH creates a file with a unique name. DX must
contain the offset (from the segment address in DS) of an
ASCIZ string that specifies a pathname and 13 bytes of
memory (to hold the filename). CX must contain the
attribute to be assigned to the file, as described in
Section 1.5.6, "File Attributes," earlier in this chapter.

MS-DOS creates a unique filename and appends it
pathname pointed to by DS:DX, creates the file and
in compatibility mode, then returns the file handle
A program that needs a temporary file should
function request to avoid name conflicts.

to the
opens it

in AX.
use this

MS-DOS does not automatically delete a file
Function 5AH-when the creating process exits.
is no longer needed, it should be deleted.

created with
When the file

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

3

5

Meaning

The directory pointed to by DS:DX is invalid or
doesn't exist.

Access denied.

SYSTEM CALLS Function 5AH Page 1-214

Macro Definition: create_temp macro
nov
nov
mov
int
endm

pathname,attrib
cx,attrib
dx,offset pathname
ah,SAH
21H

Example

The following program creates a temporary file in the
directory named \WP\DOCS, copies a file in the current
directory named TEXTFILE.ASC into the temporary file, then
closes both files.

stdout equ 1
;
file db "TEXTFILE.ASC",O

"\WP\DOCS",O path db
temp db 13 dup (0)
open rnsg db
crl msg db
rd_rnsg db
wr msg db
cl-msg db
crTf db
handlel dw
handle2 dw
buffer db

" opened.",ODH,OAH
" created.",ODH,OAH
" read into buffer.",ODH,OAH
"Buffer written to "
"Files closed.",ODH,OAH
ODH,OAH

?
?
512 dup (1)

;
begin: open_handle file,O ;see Function 3DH

jc open error ;routine not shown
mov handlel,ax ;save handle
write_handle stdout,file,12 ;see Function 40H
jc write error ;routine not shown
write handle stdout,open msg,lO ;see Function 40H
jc - write error - ;routine not shown
create temp path~O ;THIS FUNCTION
jc - create error ;routine not shown
nov handle2,ax ;save handle
write handle stdout,path,8 ;see Function 40H
~ - write error ;routine not shown
display char ,,\,,- ;see Function 02H
write handle stdout,temp,12 ;see Function 40H
jc - write error ;routine not shown
write handle stdout,crl msg,ll ;See Function 40H
jc - write error - ;routine not shown
read handle handlel,buffer,512 ;see Function 3FH
jc - read error ;routine not shown
write handle stdout,file,12 ;see Function 40H
jc - write error ;routine not shown
write handle staout,rd msg,20 ;see Function 40H
jc - write error - ;routine not shown
write handle handle2,buffer,512 ;see Function 40H
jc - write error ;routine not shown
write handle staout,wr msg,18 ;see Function 40H
jc - write_error- ;routine not shown

SYSTEM CALLS Function 5AH

write handle stdout,temp,12
jc - write error
write handle stdout,crlf,2
jc - write error
close handle handlel
jc - close error
close handle handle2
jc close error
write_handle stdout,cl_msg,15
jc write error

Page 1-215

;see Function 40H
;routine not shown
;see Function 40H
iroutine not shown
;see Function 3EH
iroutine not shown
isee Function 3EH
iroutine not shown
isee Function 40H
iroutine not shown

SYSTEM CALLS Function 5BH

Create New File (Function 5BH)

AX:

BX:

ex:

ox:

Call
AH 5BH
CX

Attribute
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 Path not found
4 Too many open files
5 Access denied

80 File already exists
Carry not set:
AX

Handle

Page 1-216

Function 5BH creates a new file. DX must contain the offset
(from the segment address in DS) of an ASCIZ string that
specifies a pathname. CX contains the attribute to be
assigned to the file, as described in Section 1.5.6, "File
Attributes."

If there is no existing file with the same filename, MS-DOS
creates the file, opens it in compatibility mode, and
returns the file handle in AX.

Unlike Function 3CH (Create Handle), this function request
fails if the specified file exists, rather than truncating
it to a length of O. The existence of a file is used as a
semaphore in a multitasking system; you can use this system
call as a test-and-set semaphore.

SYSTEM CALLS Function 5BH Page 1-217

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

COde Meaning

3 The directory pointed to by DS:DX is invalid or
Cbesn't exist.

4 No free handles are available in the current
process, or the internal system tables are full.

5 Access denied.

80 A file with the same specification pointed to by
DS:DX already exists.

Macro Definition: create new macro
mov
mov
nov
int
endm

Example

pathname,attrib
cx, attrib
dx, offset pathname
ah, 5BH
21H

The following program attempts to create a new file in the
current directory named REPORT.ASM. If the file already
exists, the program displays an error message and returns to
MS-DOS. If the file doesn't exist and there are no other
errors, the program saves the handle and continues
processing.

err msg db
path db
handle dw
,
begin: create

jnc
cup
jne
display
jmp

continue: mov

"FILE ALREADY EXISTS",ODH,OAH,"$"
"REPORT.ASM",O

?

new path,O
continue
ax,80
error
err msg
return
handle,ax

iTHIS FUNCTION
ifurther processing
ifile already exist?
iroutine not shown
isee Function 09H
;return to MS-DOS
;save handle

(further processing here)

SYSTEM CALLS Function 5CH, Code OOH page 1-218

Lock (Function SCR, Code OOR)

Call
AH 5CH
AL OOH
BX

Handle
CX:DX

Offset of region to be locked
SI:DI

Length of region to be locked

Return
Carry set:
AX

1 Invalid function code
6 Invalid handle

22 Lock violation
Carry not set:

No error

Function 5CH, Code OOH denies all access (read or write) by
any other process to the specified region of the file. BX
must contain the handle of the file that contains the region
to be locked. CX:DX (a 4-byte integer) must contain the
offset in the file of the beginning of the region. SI:DI (a
4-byte integer) must contain the length of the region.

If another process attempts to use (read or write) a locked
region, MS-DOS retries three times; if the retries fail,
MS-DOS issues Interrupt 24H for the requesting process. You
can change the number of retries with Function 44H, Code OBH
(IOCTL Retry).

The locked region can be anywhere in the file. Locking
beyond the end of the file is not an error. A region should
be locked for a brief period; it should be considered an
error if a region is locked for more than 10 seconds.

Function 4SH (Duplicate File Handle) and Function 46H (Force
Duplicate File Handle) duplicate access to any locked
region. Passing an open file to a child process with
Function 4BH, Code OOH (Load and Execute Program) does not
duplicate access to locked regions.

If a program closes a file that contains a locked region or
terminates with an open file that contains a locked region,
the result is undefined. Programs that might be terminated
by Interrupt 23H (Control-C) or Interrupt 24H (a fatal
error) should trap these interrupts and unlock any locked
regions before exiting.

SYSTEM CALLS Function 5CH, Code DOH Page 1-219

Programs should not rely on being denied access to a locked
region; a program can determine the status of a region
(locked or unlocked) by attempting to lock the region and
examining the error code.

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

1

6

33

Meaning

File sharing must be loaded to use this function
request.

The handle in BX is not a valid, open handle.

Allor part of the specified region is already
locked.

Macro Definition: lock macro handle,start,bytes
rrov bx, handle
mov cx, word ptr start
rrov dx, word ptr start+2
rrov si, word ptr bytes
rrov di, word ptr bytes+2
rrov al, 0
rrov ah, SCH
int 21H
endm

SYSTEM CALLS Function 5CH, Code OOH Page 1-220

Example

The following program opens a file named FINALRPT in Deny
None mode and locks two portions of it: the first 128 bytes
and bytes 1024 through 5119. After some (unspecified)
processing, it unlocks the same portions and closes the
file.

stdout
,
startl
Igthl
start2
Igth2
file
cp msg
U-msg
12-msg
ul-msg
u2-msg
cl-msg
handle
,
begin:

equ 1

° 128
1023
4096

"FINALRPT",O
" opened.",ODH,OAH

dd
dd
dd
dd
db
db
db
db
db
db
db
dw

"First 128 bytes locked.",ODH,OAH
"Bytes 1024-5119 locked.",ODH,OAH
"First 128 bytes unlocked.",ODH,OAH
"Bytes 1024-5119 unlocked.",ODH,OAH
" closed.:,ODH,OAH

?

open_handle file,OlOOOOlOb
jc open error
write handle stdout,file,8
jc - write error
write handle stdout,op msg,lO
jc - write error-
mov handle,ax
lock handle,startl,lgthl
jc lock error
write handle stdout,ll msg,25
jc - write error-
lock handle,start2,lgth2
jc lock error
write handle stdout,12 msg,25
jc - write error-

isee Function 3DH
iroutine not shown
isee Function 40H
iroutine not shown
isee Function 40H
iroutine not shown
isave handle
iTHIS FUNCTION
iroutine not shown
isee Function 40H
iroutine not shown
iTHIS FUNCTION
iroutine not shown
isee Function 40H
iroutine not shown

Further processing here)

unlock handle,startl,lgthl
jc unlock error
write handle stdout,ul msg,27
jc - write error-
unlock handle,start2,lgth2
jc unlock error
write handle stdout,u2 msg,27
jc - write error-
close handle handle
jc - close error
write handle stdout,file,8
jc - write error
write_handle stdout,cl_msg,lO
jc write error

iSee Function 5COIH
iroutine not shown
isee Function 40H
iroutine not shown
iSee Function 5COIH
iroutine not shown
iSee Function 40H
iroutine not shown
iSee Function 3EH
iroutine not shown
jsee Function 40H
jroutine not shown
jsee Function 40H
jroutine not shown

SYSTEM CALLS Function 5CH, Code OlH page 1-221

unlock (Function SCB, Code OlB)

AX:

ex:

ex:

ox:

~
I FLAGSH 'r·.~ii.i~~i·1

~
s

os

SS

ES

Call
AH
AL
BX

5CH
OlH

Handle
CX:DX

Offset of area to be unlocked
SI:DI

Length of area to be unlocked

Return
Carry set:
AX

1 Invalid function code
6 Invalid handle

22 Lock violation
Carry not set:

No error

Function 5CH, Code OlH unlocks a region previously locked by
the same process. BX must contain the handle of the file
that contains the region to be unlocked. CX:DX (a 4-byte
integer) must contain the offset in the file of the
beginning of the region. SI:D1 (a 4-byte integer) must
contain the length of the region. The offset and length
must be exactly the same as the offset and length specified
in the previous Function 5CH, Code OOH (Lock).

The description of Function 5CH, Code OOH (Lock) describes
how to use locked regions.

If there is an error, the carry flag (CF)
error code is returned in AX:

is set and the

Code

1

6

33

Meaning

File sharing must be loaded to use this function
request.

The handle in BX is not a valid, open handle.

The region specified is not identical to one
that was previously locked by the same process.

SYSTEM CALLS Function 5CH, Code OlH Page 1-222

Macro Definition: unlock macro
nov
nov
nov
nov
nov
nov
nov
int
endm

handle,start,bytes
bx, handle

Example

cx, word ptr start
dx, word ptr start+2
si, word ptr bytes
di, word ptr bytes+2
al, 1
ah, 5CH
21H

The following program opens a file named FINALRPT in Deny
None mode and locks two portions of it: the first 128 bytes
and bytes 1024 through 5119. After some (unspecified)
processing, it unlocks the same portions and closes the
file.

stdout
,
startl
19thl
start2
19th2
file
cp msg
ll-msg
l2-msg
ul-msg
u2-msg
cl-msg
handle
,
begin:

equ 1

o
128
1023
4096

"FINALRPT" ,0
" opened.",ODH,OAH

dd
dd
dd
dd
db
db
db
db
db
db
db
dw

"First 128 bytes locked.",ODH,OAH
"Bytes 1024-5119 locked.",ODH,OAH
"First 128 bytes unlocked.",ODH,OAH
"Bytes 1024-5119 unlocked.",ODH,OAH
" closed.",ODH,OAH

?

open_handle file,OlOOOOlOb
jc open error
write handle stdout,file,8
jc - write error
write handle stdout,op msg,lO
jc - write error-
mov handle,ax
lock handle,startl,lgthl
jc lock error
write handle stdout,ll msg,25
jc - write error-
lock handle,start2,lgth2
jc lock error
write handle stdout,12 msg,25
jc - write error-

isee Function 3DH
iroutine not shown
isee Function 40H
iroutine not shown
isee Function 40H
iroutine not shown
isave handle
;See Function 5COOH
iroutine not shown
isee Function 40H
iroutine not shown
iSee Function 5COOH
iroutine not shown
isee Function 40H
iroutine not shown

Further processing here }

unlock handle,startl,lgthl
jc unlock error
write handle stdout,ul_msg,27

THIS FUNCTION
routine not shown
see Function 40H

SYSTEM CALLS Function 5eH, Code OlH Page 1-223

jc write error
unlock handle,start2,lgth2
jc unlock error
write handle stdout,u2 msg,27
jc - write error-
Close handle handle
~ - close error
write handle stdout,file,8
jc - write error
write handle stdout,cl msg,lO
jc - write error-

;routine not shown
;THIS FUNCTION
;routine not shown
;see Function 40H
;routine not shown
;See Function 3EH
;routine not shown
;see Function 40H
;routine not shown
;see Function 40H
;routine not shown

SYSTEM CALLS Function 5EH, Code OOH

Get Machine Name (Function SER, Code OOR)

AX:

BX:

ex:
ox:

~
p

BP

SI

01

Call
AH = SEH
AL = 0
DS:DX

Pointer to 16-byte buffer

Return
Carry set:
AX

1 = Invalid function code
Carry not set:
CX

Page 1-224

~.?t~ii
Identification number of local
computer

SS

ES

Function 5EH, Code 0 retrieves the net name of the local
computer. DX must contain the offset (to the segment
address in DS) of a 16-byte buffer. Microsoft Networks must
be running.

MS-DOS returns the local computer name (a 16-byte ASCIZ
string, padded with blanks) in the buffer pointed to by
DS:DX. CX returns the identification number of the local
computer.

Code Meaning

1 Microsoft Networks must be running to use this
function request.

Macro Definition: get_machine_name macro
mov
mov
mov
int
endm

buffer
dx,offset buffer
al,O
ah,5EH
2lH

SYSTEM CALLS Function 5EH, Code OOH Page 1-225

Example

The following program displays the name of a Microsoft
Networks workstation.

stdout equ 1

rnsg
IlBC name
I

begin:

"Netname: " db
db 16 dup (?),ODH,OAH

get_machine name
jc
write handle
jc -

mac name
name error
stdout,msg,27
write error

iTHIS FUNCTION
iroutine not shown
isee Function 40H
iroutine not shown

SYSTEM CALLS Function SEH, Code 02H

printer setup (Function SED, Code 02D)

AX:

BX:

ex:

ox:

~,.", •.•.
""
..
,."

•.
::.".".",., .. , .. ,., .. ",." .. ":'."'."

.•
"'.:.':.'.""

..

'."
.•. ".",:'.:'.'.",.,."

..

:."""
S.",.", .. p .. "." .. : .•. ".,.,.,."., .. ".: .. ,':',',.",".'.'.'.".':'.',', .. ".,.'.'.,.' .. "."".' .•. ":' .. :""" .. ' .•. "'.'.

BP

$

01

~i'~: ss
ES

Ca11
AH
AL
BX

SEH
02H

Assign list index
ex

Length of setup string

Pointer to setup string

DS:SI
Pointer to string

Return
Carry set:
AX

1 = Invalid function code
Carry not set:

No error

Page 1-226

Function SEH, Code 02H defines a string of control
characters that MS-DOS adds to the beginning of each file
sent to the network printer. BX must contain the index into
the assign list that identifies the printer (entry 0 is the
first entry). CX must contain the length of the string. SI
must contain the offset (to the segment address in DS) of
the string itself. Microsoft Networks must be running.

The setup string is added to the beginning each file sent to
the printer specified by the assign list index in BX. This
function request lets each program that shares a printer
have its own printer configuration. You can determine which
entry in the assign list refers to the printer with Function
SF02H (Get Assign List Entry).

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code

1

Meaning

Microsoft Networks must be running to use this
function request.

SYSTEM CALLS Function 5EH, Code 02H Page 1-227

Macro Definition: printer_setup macro
rrov
rrov
rrov
rrov
rrov
int
endm

Example

index,lgth,string
bx, index
cx, 19th
dx, offset string
al, 2
ah, 5EH
2lH

The following program defines a printer setup string that
consists of the control character to print expanded type on
Epson(R)-compatible printers. The printer cancels this mode
at the first Carriage Return, so the effect is to print the
first line of each file sent to the network printer as a
title in expanded characters. The setup string is one
character. This example assumes that the printer is the
entry number 3 (the fourth entry) in the assign list. Use
Function 5F02H (Get Assign List Entry) to determine this
value.

setup
;
begin:

db OEH

printer_setup 3,1,setup
jc error

;THIS FUNCTION
;routine not shown

SYSTEM CALLS Function 5FH, Code 02H Page 1-228

Get Assign List Entry (Function SFB, Code 02B)

AX:

BX:

CX:

OX:

~".' .. ".' .•

'
••
'.'
...•
"' .• '.'

.• '.""."
•.

'.'
•.•.• '.,.,'." •••..•••.. ,' .•.• ,

.. ',"
..•.

"." .•...•

'

..• ,'., .• ,.,.' •.
,.,

.•.•
,'.,.', .. ',., .•..••.. ,'.'.,' •. ',', .• ,' •. ,.'" •...

S, ..••.•...•..•..•• p .. ' .•.••... , •.• ' •. ' •. ,.' •. ,.' .. ,.',.'.,., ...• , •• ' .. '.,.' .• ".,'.'" •.. '.,' .• ',.' ..• ' .. ' •.. ', ••..• , •... ,.,.' .. ' •• " .. ' .. ' •. ,', •• " .••. "'.'.',.'.,'".'.' ..• ',, .. '.,.,.'.,'.,'.

BP

·Sf

01

I FLAGS" Irf~s~·1

=, .

. '.,.'.,'.'., .. '" ... , .. ', ... ', .. '", .. '.,."",".,',."" ..•. ',',.'.,','.,',."'.',',.",', .. ,,, .. ' •... ,', .. ,.,',.,."., .. '•.... ,'.'." .. ".' •. ' .• ".'.,"'.,',." .. '.".'., .. '"',., .. ,,"',, .. ,.,,.',c •..•. '' ',.' S ,.,','., .•.. "', .• ,.,', ••. ,,.",',.,.,' •. ,,', •. ,.,.,'.,., ••.. ' .• '., .••...• '.,,',',.,.,','".',',.'"' •• "' .• ' ••• ", .•. " .• ,, .•.......• ,, ..•. , .• ' •. '.,.',' .. " •. '".".".""",."""',, ... ',,.'"

D.S

SS

aI

Call
AH
AL
BX

5FH
02H

Assign list index
DS:SI

Pointer to buffer for local name
ES:DI

Pointer to buffer for remote name

Return
Carry set:
AX

1 = Invalid function code
18 = No more files

Carry not set:
BL

CX

3 Printer
4 Drive

Stored user value

Function 5FH, Code 02H retrieves the specified entry from
the network list of assignments. BX must contain the assign
list index (entry 0 is the first entry). S1 must contain
the offset (to the segment address in DS) of a l6-byte
buffer for the local name. D1 must contain the offset (to
the segment address in ES) of a l28-byte buffer for the
remote name. Microsoft Networks must be running.

MS-DOS puts the local name in the buffer pointed to by DS:S1
and the remote name in the buffer pointed to by ES:DI. The
local name can be a null ASC1Z string. BL returns 3 if the
local device is a printer or 4 if the local device is a
drive. CX returns the stored user value set with Function
5FH, Code 03H (Make Assign List Entry). The contents of the
assign list can change between calls.

You can use this function request to retrieve any entry, or
make a copy of the complete list by stepping through the
table. To detect the end of the assign list, check for
error code 18 (no more files), just as when you step through
a directory with Functions 4EH and 4FH (Find First File and
Find Next File) •

SYSTEM CALLS Function 5FH, Code 02H page 1-229

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 Microsoft Networks must be running to use this
function request.

18 The index passed in BX is greater than the
number of entries in the assign list.

Macro Definition: get_list macro index,local,remote
mov bx, index
mov si, offset local
mov di, offset remote
mov al, 2
mov ah, 5FH
int 2HI
endm

Example

The following program displays the assign list on a
Microsoft Networks workstation, showing the local name,
remote name, and device type (drive or printer) for each
entry.

stdout equ
printer equ

header db
db
db

crlf db
header len equ

local nm db
remote nm len equ

remote nm db
remote-nm len equ

drive msg db
print-msg db
device_msg_len equ

str len
index

begin:

dw
dw

1 ;Code returned from
3 ;GetAssignListEntry for

;a printer
13,10,13,10,"Device Type"
"Local name",9 dup (20h)
"Remote name"
13,10,13,10
$ - header

19 dup (?)
$ - local_nm

128 dup (?)
$ - remote nm

"Drive",8 dup (20h)
"printer", 6 dup (20h)
$ - print_msg

?
?

write_handle stdout,header,header len ;see Function 40H
jnc set index
jmp write error

set index:
mov index,O ;assign list index

SYSTEM CALLS Function 5FH, Code 02H Page 1-230

ck list: get_list
jnc

index,local_nm,remote_nm iTHIS FUNCTION
got one ;got an entry

cmp ax,Ia ilast entry?
je last one ; yes
jmp return ;some other error

got_one:
cmp bl,printer ;is it a printer?
jc prntr ;yes
~ite handle stdout,drive msg,device msg len
jc write error - ;routTne not shown

prntr:
jmp short display nms
write handle stdout,print msg,device msg len
jc - write_error - ;routine-not shown

display_nms:
mov
nov
xor
repne
dec
inc
nov
rep
nov
mov
xor
repne
dec
mov
stosb
mov
stosb
mov
sub

di, offset local nm
cx,local_nm_len -
ax,ax
scasb
di
cx
al,20h
stosb
di,offset remote nm
cx,remote_nm len
ax,ax
scasb
di
al,13

al,lO

si,offset local nm
di,si

mov str len,di
write handle stdout,local nm,str len
jc - write error -
inc index-
jrnp ck list

last one: write handle stdout,crlf,4
jc - write error
jrnp return

~ite error:

INCLUDE suffix.asm

bump index
get next entry
see Function 40H

SYSTEM CALLS Function 5FH, Code 03H Page 1-231

Make Assign List Entry (Function 5FB, Code 03B)

AX:

BX:

ex:

ox:

~
I FLAGSH Ir·f~~<j

='

.• ",." .. ,."., .. '.,.' .. '" .. ' ... ,',:,'.'.","':,,"' •.. ".".'.: .. ":,."" .. ":."",.":,." .. "." .. :':'::"'::.',., .. , " .. :," ... ":, ... ,,',." .. " .. , .. " ... """,:,.,." .. ":": .. ,,,.,,:,., .. ,,,:,.e .. ,'.,.:," •. ""5 ,.',, ..•.. " ... '.',., ... '., ... ,.,' .. ,.:, .. ,." .. ".,."., .• ',.,." " .. ', .• '".':, .. ,.:'.:'."."'.:."".".":' ... " .. :.".":.:':"".:',:,."".:'.,:,".:"'".'.",.'.,.'",.".' .. :,.'.:"." .. :."", .. ' .. ',:.
tiS···"·"
5S

1:$.

Call
AH
AL
BL

5FH
03H

CX

3 Printer
4 Drive

User value
DS:SI

Pointer to name of source device
ES:DI

Pointer to name of destination
device

Return
Carry set:
AX

1 Invalid function code
5 Access denied
3 Path not found
8 Insufficient memory
(Other errors particular to the
network may occur.)

Carry not set:
No error

Function 5FH, Code 03H redirects a printer or disk drive
(source device) to a network directory (destination device).

BL must contain 3 if the source device is a printer or 4 if
the source device is a disk drive. SI must contain the
offset (to the segment address in DS) of an ASCIZ string
that specifies either the name of the printer, a drive
letter followed by a colon, or a null string (one byte of
OOH). DI must contain the offset (to the segment address in
ES) of an ASCIZ string that specifies the name of a network
directory. CX contains a user-specified 16-bit value that
MS-DOS maintains. Microsoft Networks must be running.

The destination string must be an ASCIZ string of the
following form:

<machine-name><pathname><OOH><password><OOH>

<machine-name> is the net name of the server that contains
the network directory.

<pathname> is the alias of the network directory
directory path) to which the source device
redirected.

<~OH> is a null byte.

(not the
is to be

SYSTEM CALLS Function 5FH, Code 03H page 1-232

<password> is the password for access to the network
directory. If no password is specified, both null bytes
must immediately follow the pathname.

If BL=3, the source string must be PRN, LPTl, LPT2, or LPT3.
All output for the named printer is buffered and sent to the
remote printer spooler named in the destination string.

If BL=4, the source string can be either a drive letter
followed by a colon or a null string. If the source string
contains a valid drive letter and colon, all subsequent
references to the drive letter are redirected to the network
directory named in the destination string. If the source
string is a null string, MS-DOS attempts to grant access to
the network directory with the specified password.

1he maximum length of the destination string is 128 bytes.
1he value in CX can be retrieved with Function 5FH, Code 02H
~et Assign List Entry) .

If there is an error, the carry flag (CF)
error code is returned in AX:

is set and the

Cbde

1

3

5

8

Meaning

Microsoft Networks must be running to use this
function request, the value in BX is not 1 to 4,
the source string is in the wrong format, the
destination string is in the wrong format, or
the source device is already redirected.

The network directory path is invalid or doesn't
exist.

The network directory/password combination is
not valid. This does not mean that the password
itself was invalid; the directory might not
exist on the server.

There is not enough memory for string
substitutions.

Macro Definition:
redir macro

~v

~v

~v

~v

~v

~v

~v

int
endm

device,value,source,destination
bl, device
cx, value
si, offset source
es, seg destination
di, offset destination
aI, 03H
ah, 5FH
2lH

SYSTEM CALLS Function 5FH, Code 03H page 1-233

Example

The following program redirects two drives and a printer
from a workstation to a server named HAROLD. It assumes the
machine name, directory names, and driver letters shown:

IDeal dr i ve
or printer

Netname
on server Password

E:
F:
PRN:

printer
drive
,
local 1
local-2
local-3
remote 1
remote-2
remote-3

begin:

equ 3
equ 4

WORD
COMM
PRINTER

none
fred
quick

db "e:",O
db "f:",O
db "prn", 0
db "\harold\word",O,O
db "\harold\comm",O,"fred",O
db "\harold\printer",O,"quick",O

redir
jc
redir
jc
redir
jc

local l,remote l,drive,O iTHIS FUNCTION
error- - iroutine not shown
local 2,remote 2,drive,O iTHIS FUNCTION
error- - iroutine not shown
local 3,remote 3,printer,O iTHIS FUNCTION
error- - iroutine not shown

SYSTEM CALLS Function SFH, Code 04H Page 1-234

Cancel Assign List Entry (Function 5FH, Code 04H)

AX:

BX:

cx:

ox:

BH

CH

OH

I Bl

I Cl

I Ol

call
AH = SFH
AL = 04H
DS:S1

Pointer to name of source device

Return
Carry set:
AX

1 = Invalid function code
15 = Redirection paused on server
(Other errors particular to the network

may occur.)
Carry not set:

No error

Function SFH, Code 04H cancels the redirection of a printer
or disk drive (source device) to a network directory
(destination device) made with Function SFH, Code 03H (Make

Assign List Entry). S1 must contain the offset (to the
segment address in DS) of an ASC1Z string that specifies the
name of the printer or drive whose redirection is to be
canceled. Microsoft Networks must be running.

The ASC1Z string pointed to by DS:S1 can contain one of
three values:

1. The letter of a redirected drive, followed by a
colon. The redirection is canceled and the drive
is restored to its physical meaning.

2. The name of a redirected printer (PRN, LPTl, LPT2,
or LPT3). The redirection is canceled and the
printer name is restored to its physical meaning.

3. A string starting with \\ (2 backslashes).
connection between the local machine and
network directory is terminated.

The
the

SYSTEM CALLS Function 5FH, Code 04H page 1-235

If there is an error, the carry flag (CF) is set and the
error code is returned in AX:

Code Meaning

1 Microsoft Networks must be running to use this
function request, or the ASCIZ string doesn't
name an existing source device.

~ Disk or printer redirection on the network
server is paused.

Macro Definition: cancel redir macro
llOV

nov
nov
int
endm

local
si, offset local
al, 4
ah, 5FH
21H

Example

The following program cancels the redirection of drives E
and F and the printer (PRN) of a Microsoft Networks
workstation. It assumes that these local devices were
previously redirected.

local 1
local-2
local-3

begin:

db
db
db

"e:",O
"f:" ,0
"prn",O

cancel redir
jc
cancel redir
jc
cancel redir
jc -

local 1
error
local 2
error
local_3
error

~THIS FUNCTION
;routine not shown
~THIS FUNCTION
;routine not shown
;THIS FUNCTION
;routine not shown

SYSTEM CALLS

Get PSP (Function 62H)

AX:

BX:

ex:

OX:

Function 62H

Call
AH = 62H

Return
BX

page 1-236

~
p

BP

SI

01

Segment address of the Program
Segment

Prefix of the current process

I FLAGS" 'I FLAGS, I

~
s

OS

SS

ES

Function 62H retrieves the segment address of the currently
active process (the start of the Program Segment Prefix).
The address is returned in BX.

Macro Definition: get~psp macro
mov
int
endm

Example

ah, 62H
21H

The following program displays the segment address of its
Program Segment Prefix (PSP) in hexadecimal.

msg
;
begin:

db

get psp
convert
display

"PSP segment address:

bx,16,msg[21]
msg

H",ODH,OAH,"$"

THIS FUNCTION
see end of chapter
see Function 09H

Page 1-237

; MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL EXAMPLES

;*******************
; Interrupts
;*******************
; INTERRUPT 25H
PBS DISK READ macro disk,buffer,num_sectors,first_sector

- nov- al,disk
nov bx,offset buffer
mov cx,num sectors
mov dx,first sector
int 25H -
IOpf
endm

INTERRUPT 26H
ASS DISK WRITE macro disk,buffer,num_sectors,first_sector

- mov - al,disk
mov bx,offset buffer
mov cx,num sectors
mov dx,first sector
int 26H -
popf
endm

INTERRUPT 27H
STAY_RESIDENT macro last instruc

mov dx,offset last-instruc
inc dx
int 27H
endm

,
;*******************
; Function Requests
;*******************
,
TERMINATE PROGRAM macro

xor - ah,ah
int 21H
endm

READ KBD AND ECHO macro
mov ah,OlH
int 21H
endm

DISPLAY CHAR macro character
mov dl,character
mov ah,02H
int 21H
endm

AUX INPUT
mov
int
endm

macro
ah,03H
21H

FUNCTION REQUEST OOH

FUNCTION REQUEST OlH

FUNCTION REQUEST 02H

FUNCTION REQUEST 03H

AUX OUTPUT
IlDV

int
endm

PRINT CHAR
mov
IlDV

int
endm

macro
ah,04H
21H

macro character
d1,character
ah,OSH
21H

DIR CONSOLE 10 macro switch
- IlDV -d1,switch

rrov ah,06H
int 21H
endm

DIR CONSOLE INPUT macro
- IlDV - ah , 07H

int 21H
endm

READ KBD
mov
int
endm

macro
ah,08H
21H

DISPLAY macro string
dx,offset string
ah,09H

mov
mov
int
endm

GET STRING
mov
mov
mov
int
endm

,

21H

macro 1imit,string
dx,offset string
string,1imit
ah,OAH
21H

CHECK KBD STATUS macro
mov ah,OBH
int 21H
endm

Page 1-238

FUNCTION REQUEST 04H

FUNCTION REQUEST OSH

FUNCTION REQUEST 06H

FUNCTION REQUEST 07H

FUNCTION REQUEST 08H

FUNCTION REQUEST 09H

FUNCTION REQUEST OAH

FUNCTION REQUEST OBH

FLUSH AND READ KBD macro
mov - a1~switch

FUNCTION REQUEST OCH
switch

mov ah,OCH
int 21H
endm

RESET_DISK macro
rrov ah,ODH
int 21H
endm

SELECT_DISK macro disk
nov dl,disk[-65]
nov ah,OEH
int 21H
endm

(PEN macro feb
nov dx,offset feb
nov ah,OFH
int 21H
endm

CLOSE macro feb
mov dx,offset feb
mov ah,lOH
int 21H
endm

SEARCH_FIRST macro feb
mov dx,offset feb
mov ah,llH
int 21H
endm

SEARCH_NEXT
rnov
rnov
int
endm

macro feb
dx,offset feb
ah,12H
21H

,
JELETE macro feb

mov dx,offset feb
rrov ah,13H
int 21H
endm

READ_SEQ macro feb
nov dx,offset feb
nov ah,14H
int 21H
endm

WRITE_SEQ macro feb
mov dx,offset feb
mov ah,15H
int 21H
endm

Page 1-239

FUNCTION REQUEST ODH

FUNCTION REQUEST OEH

FUNCTION REQUEST OFH

FUNCTION REQUEST lOH

FUNCTION REQUEST IlH

FUNCTION REQUEST 12H

FUNCTION REQUEST 13H

FUNCTION REQUEST 14H

FUNCTION REQUEST ISH

CREATE macro feb
mov dx,offset feb
mov ah,16H
int 21H
endm

RENAME macro fcb,newname
mov dx,offset feb
IIOV ah,17H
int 21H
endm

CURRENT_DISK macro
IIOV ah,19H
int 21H
endm

IIOV

rrov
endm

macro buffer
dx,offset buffer
ah,1AH

rEF_DRIVE_DATA macro
IIOV

int
endm

DRIVE_DATA
mov
mov
int
endm

READ RAN
IIOV

mov
int
endm

WRITE_RAN
mov
mov
int
endm

FILE SIZE -
IIOV

mov
int
endm

ah,1BH
21H

macro drive
d1,drive
ah,1CH
21H

macro feb
dx,offset feb
ah,21H
21H

macro feb
dx,offset feb
ah,22H
21H

macro feb
dx,offset feb
ah,23H
21H

Page 1-240

FUNCTION REQUEST 16H

FUNCTION REQUEST 17H

FUNCTION REQUEST 19H

FUNCTION REQUEST 1AH

FUNCTION REQUEST 1BH

FUNCTION REQUEST 1CH

FUNCTION REQUEST 21H

FUNCTION REQUEST 22H

FUNCTION REQUEST 23H

Page 1-241

FUNCTION REQUEST 24H
SET RELATIVE RECORD macro feb

- mov dx,offset fcb
mov ah,24H
int 21H
endm

SET VECTOR
nov
mov
nov
int
endm

FUNCTION REQUEST 25H
macro interrupt,handler start
al,interrupt
dx,offset handler start
ah,25H -
21H

FUNCTION REQUEST 26H
CREATE_PSP

mov
mov
int
endm

macro seg addr
dx,offset seg addr
ah,26H -
21H

FUNCTION
RAN_BLOCK_READ macro fcb,count,rec_size

mov dx,offset fcb
mov cx,count
mov word ptr fcb[14] ,rec_size
mov ah,27H
int 21H
endm

FUNCTION
RAN BLOCK WRITE macro fcb,count,rec size

mov
mov
mov
mov
int
endm

dx,offset fcb -
cx,count
word ptr fcb[14],rec_size
ah,28H
21H

REQUEST 27H

REQUEST 28H

; FUNCTION REQUEST 29H
PARSE macro string,fcb

mov si,offset string
mov di,offset fcb
push es
plsh ds
IX>P es
nov al , OFH
mov ah,29H
int 21H
IX>P es
endm

GET DATE
mov
int
endm

macro
ah,2AH
21H

FUNCTION REQUEST 2AH

SET DATE
nov
nov
nov
nov
int
endm

macro year,month,day
cx,year
dh,month
dl,day
ah,2BH
21H

GET TIME macro
nov ah ,2CH
int 21H
endm

Page 1-242

FUNCTION REQUEST 2BH

FUNCTION REQUEST 2CH

FUNCTION REQUEST 2DH
SET_TIME

IlPV

mov
nov
IlPV

nov
int
endm

macro hour,minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah,2DH
21H

,
VERIFY macro switch

IlPV al,switch
nov ah,2EH
int 21H
endm

GET DTA
mov
int
endm

macro
ah,2FH
21H

GET VERSION
IlPV

int
endm

macro
ah,30H
21H

FUNCTION REQUEST 2EH

FUNCTION REQUEST 2FH

FUNCTION REQUEST 30H

FUNCTION REQUEST 31H
KEEP PROCESS

nov
macro return_code, last_byte

al,return code
IlPV

IlPV

shr
inc
mov
int
endm

dx,offset-last byte
cl,4 -
dx,cl
dx
ah,31H
21H

CTRL C CK macro action,state
mov al,action
mov dl,state
mov ah,33H
int 21H
endm

FUNCTION REQUEST 33H

GET_VECTOR
mov
mov
int
endm

macro interrupt
a1,interrupt
ah,35H
21H

GET DISK SPACE macro drive
nov
nov
int
endm

CET COUNTRY

d1,drive
ah,36H
21H

country,buffer
gc 01

Page 1-243

FUNCTION REQUEST 35H

FUNCTION REQUEST 36H

FUNCTION REQUEST 38H
macro
local
nov
nov
anp
j1

dx-;-offset buffer
ax,country
ax,OFFH

SET_COUNTRY

sc 01:

,

nov
nov
mov
int
endm

macro
local
mov
mov
anp
j1
nov
nov
mov
int
endm

gc 01
a1-;Offh
bx,country
ah,38H
21H

country
sc 01
dx-;-OFFFFH
ax,country
ax,OFFH
sc 01
a1-;-Offh
bx,country
ah,38H
21H

W\KE OIR
nov
mov
int
endm

macro path
dx,offset path
ah,39H
21H

nov
nov
int
endm

macro path
dx,offset path
ah,3AH

REM OIR

CHANGE DIR
mov
mov
int
endm

21H

macro path
dx,offset path
ah,3BH
21H

FUNCTION REQUEST 38H

FUNCTION REQUEST 39H

FUNCTION REQUEST 3AH

FUNCTION REQUEST 3BH

CREATE HANDLE macro path,attrib
rnov dx,offset path
rnov cx,attrib
rnov ah, 3CH
int 21H
endm

OPEN_HANDLE
rnov
rnov
rrov
int
endm

macro path,access
dx,offset path
al,access

ah,3DH
21H

CLOSE HANDLE macro handle
mov bx,handle
rrov ah ,3EH
int 2lH
endm

Page 1-244

FUNCTION REQUEST 3CH

FUNCTION REQUEST 3DH

FUNCTION REQUEST 3EH

FUNCTION REQUEST 3FH
READ HANDLE

rrov
rrov
rrov
rrov
int
endm

macro handle,buffer,bytes
bx,handle
dx,offset buffer
cx,bytes
ah,3FH
2lH

FUNCTION REQUEST 40H
WRITE HANDLE macro hand1e,buffer,bytes

rnov bx,hand1e
rnov dx,offset buffer
rnov cx,bytes
rnov ah,40H
int 21H
endm

FUNCTION REQUEST 41H
DELETE ENTRY macro path

rrov dx,offset path
rnov ah, 4lH
int 21H
endm

FUNCTION
IDVE PTR

rnov
mov
rnov
rnov
rnov
int
endm

macro handle,high,low,method
bx,hand1e
cx,high
dx,low
al,method
ah,42H
21H

REQUEST 42H

Page 1-245

FUNCTION REQUEST 43H
mANGE MODE

rrov
rrov
rrov
rrov
int
endm

macro path,action,attrib
dx,offset path

IOCTL DATA
rrov
nov
rrov
int
endm

a1,action
cx,attrib
ah,43H
21H

macro code,hand1e
bx,hand1e
a1,code
ah,44H
21H

FUNCTION REQUEST 4400H,OlH

IOCTL CHAR
rrov
rrov
rrov
rrov
int
endm

FUNCTION REQUEST 4402H,03H
macro code,hand1e,buffer
bx,hand1e
dx,offset buffer
a1,code
ah,44H
21H

FUNCTION REQUEST 4404H,05H
IOCTL STATUS macro code,drive,buffer

nov b1,drive
rrov dx,offset buffer
rnov a1,code
mov ah,44H
int 21H
endm

,
IOCTL BLOCK

mov
rnov
rnov
int
endm

macro code,hand1e
bx,hand1e

IOCTL CHANGE
rrov

,

rrov
mov
int
endm

a1,code
ah,44H
21H

macro
b1,drive
a1,OSH
ah,44H
21H

drive

IOCTL RBLOCK macro drive
InoV b1,drive
mov a1,09H
rrov ah,44H
int 21H
endm

FUNCTION REQUEST 4406H,07H

FUNCTION REQUEST 440SH

FUNCTION REQUEST 4409H

IOCTL RHANDLE macro handle
rnov bx,handle
rnov al, OAH
rnov ah, 44H
int 21H
endm

,
roCTL_RETRY

rnov
IIOV

rrov
IIOV

int
endm

macro retries,wait
bx,retries
cx,wait
al,OBH
ah,44H
21H

XDUP

,

macro
rnov
mov
int
endm

handle
bx,handle
ah,4SH
2lH

XDUP2 macro handlel,handle2
mov bx,handlel
mov cx,handle2
nov ah,46H
int 21H
endm

GET DIR macro drive,buffer
dl,drive
si,offset buffer
ah,47H

mov
mov
mov
int
endm

21H

ALLOCATE MEMORY macro bytes
nov- bx,bytes

FREE

nov cl,4
shr bx,cl
inc
nov
int
endm

MEMORY
mov
mov
mov
int
endm

bx
ah,48H
2lH

macro
ax,seg_
es,ax
ah,49H
21H

seg_addr
addr

Page 1-246

FUNCTION REQUEST 440AH

FUNCTION REQUEST 440BH

FUNCTION REQUEST 45H

FUNCTION REQUEST 46H

FUNCTION REQUEST 47H

FUNCTION REQUEST 48H

FUNCTION REQUEST 49H

Page 1-247

FUNCTION REQUEST 4AH
SET BLOCK

nov
nov
shr
add
nov
int
nov
shl
mov
mov
endm

EXEC macro
nov
nov

macro last byte
bx,offset last byte
cl,4 -
bx,cl
bx,17
ah,4AH
21H
ax,bx
ax,cl
sp,ax
bp,sp

path,cornmand,parms
dx,offset path
bx,offset parms

FUNCTION REQUEST 4BOOH

nov
nov

word ptr parms[02h] ,offset command
word ptr parms[04h] ,cs

nov word ptr parms[06h] ,5ch
nov word ptr parms[OBh] ,es
nov word ptr parms[Oah] ,6ch
nov word ptr parms[Och] ,es
nov al,O
nov ah,4BH
int 21H
endm

FUNCTION REQUEST 4B03H
EXEC OVL macro path,parms,seg_addr

dx,offset path
bx,offset parms
parms,seg addr
parms[02HT,seg addr

mov
mov
mov
mov
mov
mov
int
endm

al,3 -
ah,4BH
21H

END PROCESS macro
nov
nov
int
endm

WAIT macro
mov ah,4DH
int 21H
endm

return code
al,return code
ah,4CH -
21H

FUNCTION REQUEST 4CH

FUNCTION REQUEST 4DH

FUNCTION REQUEST 4EH
FIND FIRST FILE macro path,attrib

mov - dx,offset path
mov cx,attrib
mov ah,4EH
int 21H
endm

FIND NEXT FILE macro
- rrov - ah,4FH

int 21H
endm

GET VERIFY
rrov
int
endm

,

macro
ah,54H
21H

Page 1-248

FUNCTION REQUEST 4FH

FUNCTION REQUEST 54H

FUNCTION REQUEST 56H
mNAME FILE

oov
~sh
IX>P
oov
oov
int
endm

macro old path,new_path
dx,offset oTd_path
ds
es
di,offset new_path
ah,56H
21H

GET SET DATE TIME macro
FUNCTION REQUEST 57H

handle,action,time,date
oov -bx,handle
mov al,action
oov cx,word ptr time

date mov dx,word ptr
mov ah,57H
int 21H
endm

, FUNCTION REQUEST 58H
ALLOC STRAT

oov
nov
nov
int
endm

macro code,strategy
bx,strategy
al,code
ah,58H
21H

GET ERROR macro
nov ah,59
int 21H
endm

CREATE_TEMP macro
nov
nov
rrov
int
endm

CREATE_NEW macro
mov
mov
mov
int
endm

FUNCTION REQUEST 59H

FUNCTION REQUEST 5AH
pathname,attrib
cx,attrib
dx,offset pathname
ah,5AH
21H

FUNCTION REQUEST 5BH
pathname,attrib
cx,attrib
dx,offset pathname
ah,5BH
21H

LOCK

tNLOCK

,

macro
nov
nov
nov
nov
nov
nov
nov
int
endm

macro
nov
nov
nov
rrov
nov
nov
rrov
int
endm

CET MACHINE NAME
nov
rrov
nov
int
endm

Page 1-249

FUNCTION REQUEST 5COOH
handle,start,bytes
bx,handle
cx,word ptr start
dx,word ptr start+2
si,word ptr bytes
di,word ptr bytes+2
al,O
ah,5CH
21H

FUNCTION REQUEST 5COIH
handle,start,bytes
bx,handle
cx,word ptr start
dx,word ptr start+2
si,word ptr bytes
di,word ptr bytes+2
al,l
ah,5CH
21H

FUNCTION REQUEST 5EOOH
macro buffer
dx,offset buffer
al,O
ah,5EH
21H

FUNCTION REQUEST 5E02H
PRINTER_SETUP

nov
nov
nov
rrov

macro index,lgth,string
bx,index

GET LIST

nov
int
endm

macro
nov
nov
nov
rrov
!IDV

int
endm

cx,lgth
dx,offset string
al,2
ah,5EH
21H

FUNCTION REQUEST 5F02H
index,local,remote
bx,index
si,offset local
di,offset remote
al,2
ah,5FH
21H

Page 1-250

,
REDIR macro

TIOV

mov
TIOV

IlOV

IlOV

TIOV

int
endm

FUNCTION REQUEST 5F03H
local,remote,device,value
bl,device
cx,value
si,offset local
di,offset remote
al,3
ah,5FH
21H

i
~NCEL REDIR macro local

GET PSP

TIOV si,offset
TIOV aI, 4
TIOV ah,5FH
int 21H
endm

macro
TIOV

int
endm

ah,62H
21H

i
i*******************
i General
i*******************
,

FUNCTION REQUEST 5F04H

local

FUNCTION REQUEST 62H

DISPLAY ASCIIZ macro ascllz_string
local search,found it
mov bx,offset asciiz_string

search:
cmp
je
inc
jmp

found it:

byte ptr [bx],O
found it
bx

short search

mov byte ptr [bx] ,"$"
display asciiz string
mov byte ptr [bx],O
display char ODH
display-char OAH
endm -

MOVE STRING
- plsh

plsh
IX>P
assume
nov
nov
nov

rep movs
assume
IX>P
endm

macro source,destination,count
es
ds
es
es:code
si,offset source
di,offset destination
cx,count
es:destination,source
es:nothing
es

CONVERT macro value,base,destination
local table,start
jmp start

table db "0123456789ABCDEF"

start:
push
push
p..1sh
nov
xor
xor
div
nov
nov
nov
mov
mov
mov
pop

,

IX>P
IX>P
endm

ax
bx
dx
al,value
ah,ah
bx,bx
base
bl,al
al,cs:table[bx]
destination,al
bl,ah
al,cs:table[bx]
destination[l] ,al
dx
bx
ax

CONVERT TO BINARY macro string ,number ,value
local- ten,start,calc,mult,no mult
jmp start -

ten db 10

start:
mov value,O
xor cx,cx
mov cl,number
xor si,si

Page 1-251

calc:

mult:

xor
rnov
sub
cmp
jl
push
dec

mul
loop
pop

ax,ax
al,string[si]
al,48
cx,2
no rnult
ex
ex

cs:ten
mult
ex

no mult:

,

- add
inc
loop
endm

value,ax
si
calc

OONVERT DATE macro
dx,word
cl,5
dl,cl

dir entry

,

rnov
IlDV

shr
IlDV

and
xor
mov
shr
add
endrn

ptr dir_entry[24]

dh,dir entry[24]
dh,lFH-
cx,cx
cl,dir entry[25]
cl,l -
cx,1980

PACK DATE macro date
local set bit

On entry: DH=day, DL=rnonth, CX=(year-1980)

sub
push
mov
IroV

shl
fOP
jnc
or

set bit:

cx,1980
ex
date,dh
cl,5
dl,cl
ex
set bit
cl,80h

or date ,dl
rol cl,l
IroV date[l],cl
endm

Page 1-252

Chapter 2
MS-DOS Device Drivers

2.1 Introduction 2-1

2.2 Format of a Device Driver 2-2

2.3 How to Create a Device Driver 2-4
2.3.1 Device Strategy Routine 2-5
2.3.2 Device Interrupt Routine 2-5

2.4 Installation of Device Drivers 2-5

2.5 Device Headers 2-6
2.5.1 Pointer to Next Device Field 2-7
2.5.2 Attribute Field 2-7
2.5.3 Strategy And Interrupt Routines 2-8
2.5.4 Name Field 2-8

2.6 Request Header 2-9
2.6.1 Length of Record 2-9
2.6.2 Unit Code Field 2-9
2.6.3 Command Code Field 2-10
2.6.4 Status Field 2-10

2.7 Device Driver Functions 2-11
2.7.1 INIT 2-12
2.7.2 MEDIA CHECK 2-14
2.7.3 BUILD BPB (BIOS Parameter Block) 2-17
2.7.4 READ or WRITE 2-18
2.7.5 NON DESmUCTIVE READ NO WAIT 2-20
2.7.6 OPEN or CLOSE 2-21
2.7.7 REMOVABLE MEDIA 2-22
2.7.8 STAWS 2-22
2.7.9 FLUSH 2-23

2.8 Media Descriptor Byte 2-23

2.9 Format of a Media Descriptor Table 2-24

2.10 The CLOCK Device 2-26

2.11 Anatomy of a Device Call 2-27

2.12 Example of Device Drivers 2-29
2.12.1 Block Device Driver 2-29
2.12.2 Character Device Driver 2-43

CHAPTER 2

MS-DOS DEVICE DRIVERS

2.1 INTRODUCTION

The IO.SYS file is composed of the "resident" device
drivers. This forms the MS-DOS BIOS, and these drivers are
called upon by MS-DOS to handle I/O requests initiated by
application programs.

One of the most powerful features of MS-DOS is the ability
to add new devices such as printers, plotters, or mouse
input devices without rewriting the BIOS. The MS-DOS BIOS
is "configurable~" that is, new drivers can be added and
existing drivers can be pre-empted. Non-resident device
drivers may be easily added by an end user at boot time via
the "DEVICE =" entry in the CONFIG.SYS file. In this
section, these non-resident drivers are termed "installable"
to distinguish them from drivers in the IO.SYS file, which
are considered the resident drivers.

At boot time, a minimum of five resident device drivers must
be present. These drivers are in a linked list: the
"header" of each one contains a DWORD pointer to the next.
The last driver in the chain has an end-of-list marker of
-1, -1 (all bits on).

Each driver in the chain has two entry points: the strategy
entry point and the interrupt entry point. MS-DOS does not
take advantage of the two entry points: it calls the
strategy routine, then immediately calls the interrupt
routine.

The dual entry points facilitate future multitasking
versions of MS-DOS. In multitasking environments, I/O must
be asynchronous~ to accomplish this, the strategy routine
will be called to (internally) queue a request and return
quickly. It is then the responsibility of the interrupt
routine to perform the I/O at interrupt time by getting
requests from the internal queue and processing them. When
a request is completed, it is flagged as "done" by the
interrupt routine. MS-DOS periodically scans the list of
requests looking for those that are flagged as done, and

MS-DOS DEVICE DRIVERS Page 2-2

"wakes up" the process waiting for the completion of the
request.

When requests are queued in this manner, it is no longer
sufficient to pass I/O information in registers, since many
requests may be pending at any time. Therefore, the MS-DOS
device interface uses "packets" to pass request information.
These request packets are of variable size and format, and
are composed of two parts:

1. The static request header section, which has the
same format for all requests.

2. A section which has
type of request.

A driver is called with a
multitasking versions, this
global chain of all pending
MS-DOS.

information specific to the

pointer to a packet. In
packet will be linked into a
I/O requests maintained by

MS-DOS does not implement a global or local queue. Only one
request is pending at anyone time. The strategy routine
must store the address of the packet at a fixed location,
and the interrupt routine, which is called immediately after
the strategy routine, should process the packet by
completing the request and returning. It is assumed that
the request is completed when the interrupt routine returns.

To make a device driver that SYSINIT can install, a .BIN
(core image) or .EXE format file must be created with the
device driver header at the beginning of the file. The link
field should be initialized to -1 (SYSINIT fills it in).
Device drivers which are part of the BIOS should have their
headers point to the next device in the list and the last
header should be initialized to -1,-1. The BIOS must be a
.BIN (core image) format file .

• EXE format installable device drivers may be used in
non-IBM versions of MS-DOS. On the IBM PC, the .EXE loader
is located in COMMAND.COM which is not present at the time
that installable devices are being loaded.

2.2 FORMAT OF A DEVICE DRIVER

A device driver is a program segment responsible for
communication between DOS and the system hardware. It has a
special header at the beginning identifying it as a device
driver, defining entry points, and describing various
attributes of the device.

MS-DOS DEVICE DRIVERS Page 2-3

Note

For device drivers, the file must not use the ORG 100H
(like .COM files). Because it does not use the Program
Segment prefix, the device driver is simply loaded;
therefore, the file must have an origin of zero (ORG 0
or no ORG statement).

There are two kinds of device drivers:

1. Character device drivers

2. Block device drivers

Character devices perform serial character I/O. Examples
are the console, communications port and printer. These
devices are named (i.e., CON, AUX, CLOCK, etc.), and
programs may open channels (handles or FCBS) to do I/O to
them.

Block devices are the "disk drives" on the system. They can
perform random I/O in structured pieces called blocks
(usually the physical sector size). These devices are not
named as the character devices are, and therefore cannot be
opened directly. Instead they have unit numbers and are
identified by driver letters such as A, B, and C.

A single block-device driver may be responsible for one or
more logically contiguous disk drives. For example, block
device driver ALPHA may be responsible for drives A, B, C,
and D. This means that it has four units defined (0-3), and
therefore, takes up four drive letters. The position of the
driver in the list of all drivers determines which units
correspond to which driver letters. If driver ALPHA is the
first block driver in the device list, and it defines 4
units (0-3), then they will be A, B, C, and D. If BETA is
the second block driver and defines three units (0-2), then
they will be E, F, and G, and so on. The theoretical limit
is 63, but it should be noted that the device installation
code will not allow the installation of a device if it would
result in a drive letter >'Z' (SAH). All block device
drivers present in the standard resident BIOS will be placed
ahead of installable block-device drivers in the list.

Note

Character devices cannot define multiple units
because they have only one name.

MS-DOS DEVICE DRIVERS Page 2-4

2.3 HOW TO CREATE A DEVICE DRIVER

To create a device driver that MS-DOS can install, you must
create a binary file (.COM or .EXE format) with a device
header at the beginning of the file. Note that for device
drivers, the code should not be originated at lOOH, but at
O. The device header contains a link field (pointer to next
device header) which should be -1, unless there is more than
one device driver in the file. The attribute field and
entry points must be set correctly.

If it is a character device, the name field should be filled
in with the name of that character device. The name can be
any legal 8-character filename. If the name is less than
eight characters, it should be padded out to eight
characters with spaces (20H). Note that device names do not
include colons (:). The fact that "CON" is the same as
"CON:" is a property of the default MS-DOS command
interpreter (COMMAND.COM) and not the device driver or the
MS-DOS interface. All character device names are handled in
this way.

MS-DOS always processes installable device drivers before
handling the default devices, so to install a new CON
device, simply name the device "CON". Remember to set the
standard input device and standard output device bits in the
attribute word on a new CON device. The scan of the device
list stops on the first match, so the installable device
driver takes precedence.

It is not possible to replace the "resident" disk block
device driver with an installable device driver the same way
you can replace the other device drivers in the BIOS. Block
drivers can be used only for devices not directly supported
by the default disk drivers in IO.SYS.

Note

Because MS-DOS can install the driver anywhere in
memory, care must be taken when making far memory
references. You should not expect that your driver
will always be loaded in the same place every time.

MS-DOS DEVICE DRIVERS Page 2-5

2.3.1 Device Strategy Routine

This routine, which is called by MS-DOS for each device
driver service request, is primarily responsible for queuing
these requests in the order in which they are to be
processed by the Device Interrupt Routine. Such queuing can
be a very important performance feature in a multitasking
environment, or where asynchronous I/O is supported. As
MS-DOS does not currently support these facilities, only one
request can be serviced at a time, and this routine is
usually very short. In the coding examples in Section 2.12,
each request is simply stored in a single pointer area.

2.3.2 Device Interrupt Routine

This routine contains all of the code to process the service
request. It may actually interface to the hardware, or it
may use ROM BIOS calls. It usually consists of a series of
procedures which handle the specific command codes to be
supported as well as some exit and error-handling routines.
See the coding examples in Section 2.12.

2.4 INSTALLATION OF DEVICE DRIVERS

MS-DOS allows new device drivers to be installed dynamically
at boot time. This is accomplished by initialization code
in IO.SYS which reads and processes the CONFIG.SYS file.

MS-DOS calls upon the device drivers to perform their
function in the following manner:

1. MS-DOS makes a far call to strategy entry.

2. MS-DOS passes device driver information in a
request header to the strategy routine.

3. MS-DOS makes a far call to the interrupt entry.

This structure is designed to be easily upgraded to support
any future multitasking environment.

MS-DOS DEVICE DRIVERS Page 2-6

2 • 5 DEVICE HEADERS

A device header is required at the beginning of a device
driver. A device header looks like this:

DWORD Pointer to next device
(Usually set to -1 if this driver
is the last or only driver in the
file)

WORD Attributes
Bit 15 = 1 if character device

= 0 if block device
Bit 14 = 1 if IOCTL supported
Bit 13 = 1 if output till busy

(character devices)
= 1 if NON FAT ID

(block devices)
Bit 12 = reserved (must be 0)
Bit 11 = 1 if support OPEN/CLOSE/RM
Bit 10-5 reserved (must be 0)
Bit 3 = 1 if intended current CLO<;K

device
Bit 2 = 1 if intended current NUL

device
Bit 1 = 1 if intended current sto

device
Bit 0 = 1 if intended current sti

device

WORD Pointer to device strategy
entry point

WORD Pointer to device interrupt
entry point

8-BYTE Character device name field
Character devices set a device name.
For block devices the first byte is
the number of units.

Figure 2.1 Sample Device Header

Note that the device entry points are words. They must be
offsets from the same segment number used to point to this
table. For example, if XXX:YYY points to the start of this
table, then XXX:strategy and XXX:interrupt are the entry
points.

The device header fields are described in the following
section.

MS-DOS DEVICE DRIVERS Page 2-7

2.5.1 Pointer to Next Device Field

The pointer to the next device header field is a double word
field (offset followed by segment) that is set by MS-DOS to
point at the next driver in the system list at the time the
device driver is loaded. It is important that this field be
set to -1 prior to load (when it is on the disk as a file)
unless there is more than one device driver in the file. If
there is more than one driver in the file, the first word of
the double word pointer should be the offset of the next
driver's device header.

Note

If there is more than one device driver in the,
file, the last driver in the file must have the pointer
to the next device header field set to -1.

2.5.2 Attribute Field

The attribute field is used to identify the type of device
this driver is responsible for. In addition to
distinguishing between block and character devices, these
bits are used to give selected character devices special
treatment. (Note that if a bit in the attribute word is
defined only for one type of device, a driver for the other
type of device must set that bit to 0.)

For example, assume that a user has a new device driver that
he wants to use as the standard input and output. In
addition to installing the driver, he must tell MS-DOS that
he wants his new driver to override the current standard
input and standard output (the CON device). This is
accomplished by setting the attributes to the desired
characteristics, so he would set bits 0 and 1 to 1 (note
that they are separate!). Similarly, a new CLOCK device
could be installed by setting that attribute. (Refer to
Section 2.10, "The CLOCK Device," in this chapter for more
information.) Although there is a NUL device attribute, the
NUL device cannot be reassigned. This attribute exists so
that MS-DOS can determine if the NUL device is being used.

The NON FAT ID bit for block devices affects the operation
of the BUILD BPB (BIOS Parameter Block) device call. The
NON FAT ID bit has a different meaning on character devices.
It indicates that the device implements the OUTPUT UNTIL
BUSY device call.

The IOCTL bit has meaning on character and block devices.

MS-DOS DEVICE DRIVERS Page 2-8

The IOCTL functions allow data to be sent and received by
the device for its own use (for example, to set baud rate,
stop bits, and form length), instead of passing data over
the device channel as does a normal read or write. The
interpretation of the passed information is up to the
device, but it must not be treated as a normal I/O request.
This bit tells MS-DOS-Whether the device can handle control
strings via the IOCTL system call, Function 44H.

If a driver cannot process control strings, it should
illitially set this bit to O. This tells MS-DOS to return an
error if an attempt is made (via Function 44H) to send or
receive control strings to this device. A device which can
process control strings should initialize the IOCTL bit to
1. For drivers of this type, MS-DOS will make calls to the
IOCTL INPUT and OUTPUT device functions to send and receive
IOCTL strings.

The OPEN/CLOSE/RM bit signals to MS-DOS 3.x and later
versions whether this driver supports additional MS-DOS 3.0
functionality. To support these old drivers, it is
necessary to detect them. This bit was reserved in MS-DOS
2.x, and is O. All new devices should support the OPEN,
CLOSE, and REMOVABLE MEDIA calls and set this bit to 1.
Since MS-DOS 2.x never makes these calls, the driver will be
backward compatible.

2.5.3 Strategy And Interrupt Routines

These two fields are the pointers to the entry points of the
strategy and interrupt routines. They are word values, so
they must be in the same segment as the device header.

2.5.4 Name Field

This is an 8-byte field that contains the name of a
character device or the number of units of a block device.
If it is a block device, the number of units can be put in
the first byte. This is optional, because MS-DOS will fill
ill this location with the value returned by the driver's
~IT code. Refer to Section 2.4, "Installation of Device
Drivers," for more information.

MS-DOS DEVICE DRIVERS Page 2-9

2.6 REQUEST HEADER

When MS-DOS calls a device driver to perform a function, it
passes a request header in ES:BX to the strategy entry
point. This is a fixed length header, followed by data
pertinent to the operation being performed. Note that it is
the device driver's responsibility to preserve the machine
state (for example, save all registers including flags on
entry and restore them on exit). There is enough room on
the stack when strategy or interrupt is called to do about
20 pushes. If more stack is needed, the driver should set
up its own stack.

The following figure illustrates a request header.

REQUEST HEADER ->

BYTE Length of record
Length in bytes of this
request header

BYTE Unit code
The subunit the operation
is for (minor device)
(no meaning on character
devices)

BYTE Command code

WORD Status

8 BYTES Reserved

Figure 2.2 Request Header

The request header fields are described below.

2.6.1 Length of Record

This field contains the length (in bytes) of the request
header.

2.6.2 Unit Code Field

The unit code field identifies which unit in your device
driver the request is for. For example, if your device
driver has 3 units defined, then the possible values of the
unit code field would be 0, 1, and 2.

MS-DOS DEVICE DRIVERS Page 2-10

2.6.3 Command Code Field

The command code field in the request header can have the
following values:

Command
Code

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

Function

INIT
MEDIA CHECK (Block devices only)
BUILD BPB "" "
IOCTL INPUT (Only called if device has IOCTL)
INPUT (read)
NON-DESTRUCTIVE INPUT NO WAIT (Char devs only)
INPUT STATUS
INPUT FLUSH
OUTPUT (Write)
OUTPUT (Write) with verify
OUTPUT STATUS
OUTPUT FLUSH
IOCTL OUTPUT (Only called if device has IOCTL)
DEVICE OPEN (Only called if OPEN/CLOSE/RM bit set)
DEVICE CLOSE (Only called if OPEN/CLOSE/RM bit set)
REMOVABLE MEDIA (Only called if OPEN/CLOSE/RM bit

set and device is block)
OUTPUT UNTIL BUSY (Only called if bit 13 is set on

character devices)

2.6.4 Status Field

The following figure illustrates the status field in the
request header.

15 14 13 12 11 10 9 8 7 654 3 210

E B D
R RESERVED U 0 ERROR CODE (bi t 15 on)
R S N

Y E

The status word is zero on entry and is set by the driver
interrupt routine on return.

Bit 8 is the done bit. When set, it means the operation has
completed. The driver sets it to 1 when it exits.

MS-DOS DEVICE DRIVERS Page 2-11

Bit 15 is the error bit. If it is set, then the low 8 bits
indicate the error. The errors are:

o write protect violation
1 Unknown un i t
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure
D Reserved
E Reserved
F Invalid disk change

Bit 9 is the busy bit, which is set only by status calls and
the removable media call.

2.7 DEVICE DRIVER FUNCTIONS

Device drivers may perform all or some of these nine general
functions. In some cases, these functions break down into
several command codes, for specific cases. Each is
described in this section.

1. INIT

2. MEDIA CHECK

3. BUILD BPB

4. READ or WRITE or WRITE TIL BUSY or WRITE WITH
VERIFY or IOCTL Read or IOCTL Write

5. NON DESTRUCTIVE READ NO WAIT

6. OPEN or CLOSE (3.x)

7. REMOVABLE MEDIA (3.x)

8. STATUS

9. FLUSH

All strategy routines are called with ES:BX pointing to the
Request Header. The interrupt routines get the pointers to

MS-DOS DEVICE DRIVERS Page 2-12

the Request Header from the queue that the strategy routines
store them in. The command code in the request header tells
the driver which function to perform and what data follows
the request header.

Note

All DWORD pointers are stored offset first, then
segment.

2.7.1 INIT

Command code = 0

INIT - ES:BX ->

13-BYTE Request header

BYTE Number of units

DWORD End Address

DWORD Pointer to BPB array
(Not set by character devices)

BYTE Block device number

One of the functions defined for each device driver is INIT.
This routine is called only once when the device is
installed. The INIT routine must return the END ADDRESS,
which is a DWORD pointer to the end of the portion of the
device driver to remain resident. This pointer method can
be used to delete initialization code that is only needed
once, saving space.

The number of units, end address, and BPB pointer are to be
set by the driver. However, on entry for installable device
drivers, the DWORD that is to be set by the driver to the
BPB array (on block devices) points to the character after
the "=" on the line in CONFIG.SYS that caused this device
driver to be loaded. This allows drivers to scan the
CONFIG.SYS invocation line for parameters which might be
passed to the driver. This line is terminated by a Return
or a Line Feed. This data is read-only and allows the
device to scan the CONFIG.SYS line for arguments.

MS-DOS DEVICE DRIVERS Page 2-13

deVice=tdeV\vt52oSYS /1

BPB address points here

Also, for block devices only, the drive number assigned to
the first unit defined by this driver (A=O) as contained in
the block device number field. This is also read-only.

For installable character devices, the end address parameter
must be returned. This is a pointer to the first available
byte of memory above the driver and may be used to throw
away initialization code.

Block devices must return the following information:

1. The number of units must be returned. MS-DOS uses
this to determine logical device names. If the
current maximum logical device letter is F at the
time of the install call, and the INIT routine
returns 4 as the number of units, then they will
have logical names G, H, I and J. This mapping is
determined by the position of the driver in the
device list, and by the number of units on the
device (stored in the first byte of the device name
field).

2. A DWORD pointer to an array of word offsets
(pointers) to BPBs (BIOS Parameter Blocks) must be
returned. The BPBs passed by the device driver are
used by MS-DOS to create an internal structure.
There must be one entry in this array for each unit
defined by the device driver. In this way, if all
units are the same, all of the pointers can point
to the same BPB, saving space. If the device
driver defines two units, then the DWORD pointer
points to the first of two one-word offsets which
in turn point to BPBs. The format of the BPB is
described later in this chapter in section 2.7.3,
"BUILD BPB."

Note that this array of word offsets must be
protected (below the free pointer set by the
return) since an internal DOS structure will be
built starting at the byte pointed to by the free
pointer. The defined sector size must be less than
or equal to the maximum sector size defined by the
resident device drivers (BIOS) during
initialization. If it isn't, the installation will
fail.

3. The last thing that INIT of a block device must
pass back is the media descriptor byte. This byte
means nothing to MS-DOS, but is passed to devices

MS-DOS DEVICE DRIVERS Page 2-14

so that they know what parameters MS-DOS is
currently using for a particular drive unit.

Block devices may be either dumb or smart. A dumb device
defines a unit (and therefore-an internal DOS structure) for
each possible media-drive combination. For example, unit 0

drive 0 single sided, unit 1 = drive 0 double sided. For
this approach, media descriptor bytes do not mean anything.
A smart device allows multiple media per unit. In this
case, the BPB table returned upon INIT must define
sufficient space to accommodate the largest possible media
supported. Smart drivers will use the media descriptor byte
to pass information about what media is currently in a unit.

For more information on the media descriptor byte, see
Section 2.8, "Media Descriptor Byte."

Note

If there are multiple device drivers in a single
file, the ending address returned by the last INIT
called will be the one MS-DOS uses. It is recommended
that all of the device drivers in a single file
return the same ending address. The code to remain
resident for all the devices in a single file should
be grouped together low in memory with the initializa
tion code for all devices following it in memory.

2.7.2 MEDIA CHECK

Command Code = 1

MEDIA CHECK - ES:BX ->

13-BYTE Request header

BYTE Media descriptor from BPB

BYTE Returned

Returned DWORD pointer to previous
Volume ID if bit 11 set and
Disk Changed is returned

MS-DOS DEVICE DRIVERS Page 2-15

The MEDIA CHECK function is used with block devices only.
It is called when there is a pending drive access call other
than a file read or write, such as open, close, delete and
rename. Its purpose is to determine whether the media in
the drive has been changed. If the driver can assure that
the media has not been changed (through a door-lock or other
interlock mechanism), MS-DOS performance is enhanced because
MS-DOS does not need to reread the FAT and invalidate
in-memory buffers for each directory access.

When such a disk access call to the DOS occurs (other than a
file read or write), the following sequence of events takes
place:

1. The DOS converts the drive letter into a unit
number of a particular block device.

2. The device driver is then called to request a media
check on that subunit to see if the disk might have
been changed. MS-DOS passes the old media
descriptor byte. The driver returns:

Media not changed ...••• (1)
Don't know if changed ••• (0)
Media changed •.•••.••.•• (-1)
Error

If the media has not been changed, MS-DOS proceeds
with the disk access.

If the value returned is "Don't know," then if
there are any disk sectors that have been modified
and not written back out to the disk yet for this
unit, MS-DOS assumes that the disk has not been
changed and proceeds. MS-DOS invalidates any other
buffers for the unit and does a BUILD BPB device
call (see step 3, below).

If the media has been changed, MS-DOS invalidates
all buffers associated with this unit including
buffers with modified data that are waiting to be
written, and requests a new BIOS Parameter Block
via the BUILD BPB call (see step 3, below).

3. Once the BPB has been returned, MS-DOS corrects its
internal structure for the drive from the new BPB
and proceeds with the access after reading the
directory and the FAT.

Note that the previous media ID byte is passed to the device
driver. If the old media ID byte is the same as the new
one, the disk might have been changed and a new disk may be

MS-DOS DEVICE DRIVERS

in the drive; therefore, all FAT,
sectors that are buffered in memory
considered to be invalid.

Page 2-16

directory, and data
for the unit are

If the driver has bit 11 of the device attribute word set to
1, and the driver returns -1, Media Changed, the driver must
set the DWORD pointer to the previous Volume ID field. If
the DOS determines that Media Changed is an error based on
the state of the DOS buffer cache, the DOS will generate a
OFH error on behalf of the device. If the driver does not
implement Volume ID support, but has bit 11 set, (it should
set a static pointer to the string "NO NAME",O.)

A creative solution to the problem of no door-locks follows:

It has been determined that it is impossible for a user to
change a disk in less than 2 seconds; therefore, when MEDIA
CHECK occurs within 2 seconds of a disk access, the driver
reports "1," "Media not changed." This makes a tremendous
improvement in performance.

Note

If the media ID byte in the returned BPB is the same as
the previous media ID byte, MS-DOS will assume that the
format of the disk is the same (even though the disk
may have been changed) and will skip the step of up
dating its internal structure. Therefore, all BPBs must
have unique media bytes regardless of FAT ID bytes.

MS-DOS DEVICE DRIVERS Page 2-17

2.7.3 BUILD BPB (BIOS Parameter Block)

Command code = 2

BUILD BPB - ES:BX ->

13-BYTE Request header

BYTE Media descriptor from BPB

DWORD Transfer address
(Points to one sector worth of
scratch space or first sector
of FAT depending on the value
of Bit 13 in the device attribute
word.)

DWORD Pointer to BPB

The Build BPB function is used with block devices only. As
described in the MEDIA CHECK function, the BUILD BPB
function will be called any time that a preceding MEDIA
CHECK call indicates that the disk has been or might have
been changed. The device driver must return a pointer to a
BPB. This is different from the IN IT call where a pointer
to an array of word offsets to BPBs is returned.

The BUILD BPB call gets a DWORD pointer to a one-sector
buffer. The contents of this buffer are determined by the
NON FAT ID bit (bit 13) in the attribute field. If the bit
is zero, then the buffer contains the first sector of the
first FAT. The FAT ID byte is the first byte of this
buffer. In this case, the driver must not alter this
buffer. Note that the location of the FAT must be the same
for all possible media because this first FAT sector must be
read before the actual BPB is returned. If the NON FAT ID
bit is set, then the pointer points to one sector of scratch
space (which may be used for anything). Refer to Section
2.8, "Media Descriptor Byte,"" and Section 2.9, "Format of a
Media Descriptor Table," for information on how to construct
the BPB.

MS-DOS 3.x includes additional support for devices that have
door-locks or some other means of telling when a disk has
been changed. There is a new error that can be returned
from the device driver (error 15). The error means "the
disk has been changed when it shouldn't have been," and the
user is prompted for the correct disk using a Volume ID.
The driver may generate this error on read or write. The
DOS may generate the error on MEDIA CHECK if the driver
reports media changed, and there are buffers in the DOS
buffer cache that need to be flushed to the previous disk.

MS-DOS DEVICE DRIVERS Page 2-18

For drivers that support this error, the BUILD BPB function
is a trigger that causes a new Volume ID to be read off the
disk. This action indicates that the disk has been legally
changed. A Volume ID is placed on a disk by the FORMAT
utility, and is simply an entry in the root directory of the
disk that has the Volume ID attribute. It is stored by the
driver as an ASCIZ string.

The requirement that the driver return a Volume ID does not
exclude some other Volume identifier scheme as long as the
scheme uses ASCIZ strings. A NUL (nonexistent or
unsupported) Volume ID is by convention the string:

DB "NO NAME ",0

2.7.4 READ or WRITE

Command codes = 3,4,8,9, 12, and 16

READ OR WRITE (Including IOCTL) or
OUTPUT UNTIL BUSY - ES:BX ->

13-BYTE Request header

BYTE Media descriptor

DWORD Transfer address

WORD Byte/sector count

from

WORD Starting sector number

BPB

(Ignored on character devices)

Returned DWORD pointer to requested
Volume ID if error OFH

COMMAND CODE REQUEST

3 IOCTL READ
4 READ (block or character)
8 WRITE (block or character)
9 WRITE WITH VERIFY

12 IOCTL WRITE
16 OUTPUT TIL BUSY (char devs only)

The driver must perform the READ or WRITE call depending on
which command code is set. Block devices read or write
sectors; character devices read or write bytes.

MS-DOS DEVICE DRIVERS Page 2-19

When I/O completes, the device driver must set the status
word and report the number of sectors or bytes successfully
transferred. This should be done even if an error prevented
the transfer from being completed. Setting the error bit
and error code alone is not sufficient.

In addition to setting the status word, the driver must set
the sector count to the actual number of sectors (or bytes)
transferred. No error check is performed on an IOCTL I/O
call. The device driver must always set the return
byte/sector count to the actual number of bytes/sectors
successfully transferred.

If the verify switch is on, the device driver will be called
with command code 9 (WRITE WITH VERIFY). Your device driver
will be responsible for verifying the write.

If the driver returns error code OFH (Invalid disk change),
it must return a DWORD pointer to an ASCIZ string (which is
the correct Volume ID). Returning this error code triggers
the DOS to prompt the user to re-insert the disk. The
device driver should have read the Volume ID as a result of
the BUILD BPB function.

Drivers may maintain a reference count of open files on the
disk by monitoring the OPEN and CLOSE functions. This
allows the driver to determine when to return error OFH. If
there are no open files (reference count = 0), and the disk
has been changed, the I/O is okay. If there are open files,
however, an OFH error may exist.

The OUTPUT UNTIL BUSY call is a speed optimization on
character devices only for print spoolers. The device
driver is expected to output all the characters possible
until the device returns busy. Under no circumstances
should the device driver block during this function. Note
that it is not an error for the device driver to return the
number of bytes output being less than the number of bytes
requested (or = 0).

The OUTPUT UNTIL BUSY call allows spooler programs to take
advantage of the burst behavior of most printers. Many
printers have on-board RAM buffers which typically hold a
line or a fixed amount of characters. These buffers fill up
without the printer going busy, or going busy for a very
short period (less than 10 instructions) between characters.
A line of characters can be very quickly output to the
printer, then the printer is busy for a long time while the
characters are being printed. This new device call allows
background spooling programs to use this burst behavior
efficiently. Rather than take the overhead of a device
driver call for each character, or risk getting stuck in the
device driver outputting a block of characters, this call
allows a burst of characters to be output without the device
driver having to wait for the device to be ready.

MS-DOS DEVICE DRIVERS page 2-20

THE FOLLOWING APPLIES TO BLOCK DEVICE DRIVERS: ----
Under certain circumstances, the BIOS may be asked to
perform a write operation of 64K bytes, which seems to be a
"wrap around" of the transfer address in the BIOS I/O
packet. This request arises due to an optimization added to
the write code in MS-DOS. It will only manifest on user
writes that are within a sector size of 64K bytes on files
"growing" past the current EOF. It is allowable for the
BIOS to ignore the balance of the write that "wrapsaroul1d"
if it so chooses. For example, a write of 10000H bytes
worth -Of sectors with a transfer address of XXX:l could
ignore the last two bytes. A user program can never request
an I/O of more than FFFFH bytes and cannot wrap around (even
to 0) in the transfer segment. Therefore, in this case, the
last two bytes can be ignored.

MS-DOS maintains two FATS. If the DOS has problems reading
the first, it automatically tries the second before
reporting the error. The BIOS is responsible for all
retries.

Although the COMMAND.COM handler does no automatic retries,
there are applications that have their own Interrupt 24H
handlers that do automatic retries on certain types of
Interrupt 24H errors before reporting them.

2.7.5 NON DESTRUCTIVE READ NO WAIT

Command code = 5

NON DESTRUCTIVE READ NO WAIT - ES:BX ->

l3-BYTE Request header

BYTE read from device

This call allows MS-DOS to look ahead one input character.
The device sets the done bit in the status word.

If the character device returns busy bit 0 (there are
characters in the buffer), then the next character that
would be read is returned. This character is not removed
from the input buffer (hence the term "Non Destructive
Read"). If the character device returns busy bit = 1, there
are no characters in the buffer.

MS-DOS DEVICE DRIVERS Page 2-21

2.7.6 OPEN or CLOSE

Command codes = 13 and 14

OPEN or CLOSE - ES:BX ->

13-BYTE Static request header

These functions are only called by MS-DOS 3.x if the device
driver sets the OPEN/CLOSE/RM attribute bit in the device
header. They are designed to inform the device about
current file activity on the device. On block devices, they
can be used to manage local buffering. The device can keep
a reference count. Every OPEN causes the device to
increment the count, every CLOSE to decrement. When the
count goes to zero: it means there are no open files on the
device, and the device should flush any buffers that have
been written to that may have been used inside the device
because it is now "legal" for the user to change the media
on a removable media drive.

There are problems with this mechanism on block devices
because programs that use FCB calls can open files without
closing them. It is therefore advisable to reset the count
to zero without flushing the buffers when the answer to "has
the media been changed?" is yes and the BUILD BPB call is
made to the device.

These calls are of more use on character devices. The OPEN
call can be used to send a device initialization string. On
a printer, this could cause a string for setting font and
page size characteristics to be sent to the printer so that
it would always be in a known state at the start of an I/O
stream. Using IOCTL to set these pre- and post-strings
provides a flexible mechanism of serial I/O device stream
control. The reference count mechanism can also be used to
detect a simultaneous access error. It may be desirable to
disallow more than one OPEN on a device at any given time.
In this case, a second OPEN would result in an error.

Note that since all processes have access to stdin, stdout,
stderr, stdaux, and stdprn (handles 0,1,2,3,4), the CON,
AUX, and PRN devices are always open.

MS-DOS DEVICE DRIVERS Page 2-22

2.7.7 REMOVABLE MEDIA

Command code = 15

REMOVABLE MEDIA - ES:BX ->

13-BYTE Static request header

This function is only called by MS-DOS 3.x if the device
driver sets the OPEN/CLOSE/RM attribute bit in the device
header. This call is given only to block devices by a
subfunction of the IOCTL system call. It is sometimes
desirable for a utility to know whether it is dealing with a
non-removable media drive (such as a hard disk), or a
removable media drive (like a floppy). An example is the
FORMAT utility which prints different versions of some of
the prompts.

The information is returned in the busy bit of the status
word. If the busy bit is 1, then the media is
non-removable. If the busy bit is 0, then the media is
removable. Note that no checking of the error bit is
performed. It is assumed that this call always succeeds.

2.7.8 STATUS

Command codes = 6 and 10

STATUS Calls ES:BX ->

, 13-BYTE request header

This call returns information to the DOS as to whether data
is waiting for input or output. All the driver must do is
set the status word and the busy bit as follows:

For output on character devices: If the driver
sets bit 9 to 1 on return, it informs the DOS that
a write request (if made) would wait for completion
of a current request. If it is 0, there is no
current request and a write request (if made) would
start immediately.

For input on character devices with a buffer: A
return of r-implies that no characters are buffered
and that a read request (if made) would go to the
physical device. If it is 0 on return, then there
are characters in the device buffer and a read
would not be blocked. A return of a implies that

MS-DOS DEVICE DRIVERS Page 2-23

the user has typed something. MS-DOS assumes that
all character devices have an input type-ahead
buffer. Devices that do not have a type-ahead
buffer should always return busy = 0 so that the
DOS will not hang waiting for something to get into
a non-existent buffer.

2.7.9 FLUSH

Command codes = 7 and 11

FLUSH Calls - ES:BX ->

13-BYTE request header

The FLUSH call tells the driver
pending requests. This call
queue on character devices.

to flush (terminate) all
is used to flush the input

The device driver performs the flush function, sets the
status word, and returns.

2.8 MEDIA DESCRIPTOR BYTE

In MS-DOS, the media descriptor byte is used to inform the
DOS that a different type of media is present. The media
descriptor byte can be any value between 0 and FFH. It does
not have to be the same as the FAT ID byte. The FAT ID
byte, which is the first byte of the FAT, was used in MS-DOS
1.00 to distinguish between different types of disk media
and may be used as well under 2.x and 3.x disk device
drivers. However, FAT ID bytes only have significance for
block device drivers where the NON FAT ID bit is not set
(0) •

Values of the media descriptor byte or the FAT ID byte have
no significance to MS-DOS. They are passed to the device
driver to facilitate media determination in any way the OEM
chooses to implement.

MS-DOS DEVICE DRIVERS Page 2-24

Important

When the BPB call is made, if the media byte returned
in the new BPB is the same as the old media byte, the
DOS does not rebuild its internal structure for the
device. MS-DOS will treat the disk as though the
format has not changed, even though the physical disk
might have changed. Therefore, each BPB must have a
unique media descriptor byte.

2.9 FORMAT OF A MEDIA DESCRIPTOR TABLE

The MS-DOS file system uses a linked list of pointers (one
for each cluster or allocation unit) called the File
Allocation Table (FAT). Unused clusters are represented by
zero and end of file by FFF (or FFFF on units with 16-bit
FAT entries). No valid entry should ever point to a zero
entry, but if it does, the first FAT entry (which would be
pointed to by a zero entry) was reserved and set to end of
chain. Eventually, several end of chain va1ues were defined
([F]FF8-[F]FFF), and these were used to distinguish
different types of media.

A preferrable technique is to write a complete media
descriptor table in the boot sector and use it for media
identification. To ensure backward compatibility for
systems whose drivers do not set the NON FAT ID bit
(including the IBM PC implementation), it is necessary also
to write the FAT ID bytes during the FORMAT process.

To allow more flexibility for supporting many different disk
formats in the future, it is recommended that the
information relating to the BPB for a particular piece of
media be kept in the boot sector. Figure 2.3 shows the
format of such a boot sector.

MS-DOS DEVICE DRIVERS Page 2-25

3 BYTE Near JUMP to boot code

8 BYTES OEM name and version

B WORD Bytes per sector
P
B BYTE Sectors per allocation unit

~ WORD Reserved sectors

BYTE Number of FATs

WORD Number of root dir entries

t WORD Number of sectors in logical
image

B BYTE Media descriptor
P
B WORD Number of FAT sectors

WORD Sectors per track

WORD Number of heads

WORD Number of hidden sectors

Figure 2.3. Format of Boot Sector

The three words at the end ("Sectors per track," "Number of
heads," and "Number of hidden sectors") are not used by the
DOS but may be used by device drivers. They are intended to
help the device driver understand the media. "Sectors per
track" and "Number of heads" are useful for supporting
different media which may have the same logical layout but a
different physical layout (e.g., 40 track, double-sided
versus 80 track, single-sided). "Sectors per track" tells
the device driver how the logical disk format is laid out on
the physical disk. "Number of hidden sectors" may be used
to support drive-partitioning schemes.

The following procedure is recommended
determination by NON FAT ID format drivers:

for media

1. Read the boot sector of the drive into the I-sector
scratch space pointed to by the DWORD Transfer
address.

2. Determine if the first byte of the boot sector is
an E9H or EBIT (the first byte of a 3-byte NEAR or
2-byte short jump) or an EBH (the first byte of a

MS-DOS DEVICE DRIVERS Page 2-26

2-byte jump followed by a NOP). If so, a BPB is
located beginning at offset 3. Return a pointer to
it.

3. If the boot sector does not have a BPB table, it
probably is a disk formatted under a version l.x
mplementation of MS-DOS and probably uses a FAT ID
byte for media determination.

The driver may optionally attempt to read the first
sector of the FAT into the I-sector scratch area
and read the first byte to determine media type
based upon whatever FAT ID bytes may have been used
an disks that are expected to be read by this
system. Return a pointer to a hard-coded BPB.

2.10 THE CLOCK DEVICE

MS-DOS assumes that some sort of clock is available in the
system. This may either be a CMOS real-time clock or an
interval timer which is initialized at boot time by the
user. The CLOCK device defines and performs functions like
any other character device except that it is identified by a
bit in the attribute word. The DOS uses this bit to
identify it and consequently this device may take any name.
The IBM implementation uses "$CLOCK" so as not to conflict
with existing files named "CLOCK."

The CLOCK device is unique in that MS-DOS will read or write
a 6-byte sequence which encodes the date and time. A write
to this device will set the date and time, and a read will
get the date and time.

Figure 2.4 illustrates the binary time format used by the
CLOCK device:

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5

. I
days SInce 1-1-80
low bytelhi byte

minutes hours sec/lOO seconds

Figure 2.4 CLOCK Device Format

MS-DOS DEVICE DRIVERS Page 2-27

2.11 ANATOMY OF A DEVICE CALL

The following steps illustrate what happens when MS-DOS
calls on a block device driver to perform a WRITE request:

1. MS-DOS writes a request packet in a reserved area
of memory.

2. MS-DOS calls the block device driver strategy entry
point.

3. The device driver saves the ES and BX registers
(ES:BX points to the request packet) and does a FAR
return.

4. MS-DOS calls the interrupt entry point.

5. The device driver retrieves the pointer to the
request packet and reads the command code (offset
2) to determine that this is a write request. The
device driver converts the command code to an index
into a dispatch table and control passes to the
disk write routine.

6. The device driver reads the unit code (offset 1) to
determine to which disk drive it is supposed to
write.

7. Since the command is a disk write, the device
driver must get the transfer address (offset 14),
the sector count (offset 18), and the start sector
(offset 20) in the request packet.

8. The device driver translates
sector number into a track,
number.

the first
head, and

logical
sector

9. The device driver writes the specified number of
sectors, starting at the beginning sector on the
drive defined by the unit code (the subunit defined
by this device driver), and transfers data from the
transfer address indicated in the request packet.
Note that this may involve multiple write commands
to the disk controller.

MS-DOS DEVICE DRIVERS Page 2-28

10. After the transfer is complete, the device driver
must report the status of the request to MS-DOS by
setting the done bit in the status word (offset 3
in the request packet). It reports the number of
sectors actually transferred in the sector count
area of the request packet.

11. If an error occurs, the driver sets the done bit
and the error bit in the status word and fills in
the error code in the lower half of the status
word. The number of sectors actually transferred
must be written in the request header. It is not
sufficient just to set the error bit of the status
word.

12. The device driver does a FAR return to MS-DOS.

The device drivers should preserve the state of MS-DOS.
This means that all registers (including flags) should be
preserved. The direction flag and interrupt enable bits are
critical. When the interrupt entry point in the device
driver is called, MS-DOS has room for about 40 to 50 bytes
on its internal stack. Your device driver should switch to
a local stack if it uses extensive stack operations.

MS-DOS DEVICE DRIVERS Page 2-29

2.12 EXAMPLE OF DEVICE DRIVERS

The following examples illustrate a block device driver and
a character device driver program.

2.12.1 Block Device Driver

;********************* A BLOCK DEVICE *******************

TITLE 5 1/4" DISK DRIVER FOR SCP DISK-MASTER

;This driver is intended to drive up to four 5 1/4" drives
;hooked to the Seattle Computer Products DISK MASTER disk
;controller. All standard IBM PC formats are supported.

FALSE EQU o
TRUE EQU NOT FALSE

;The
DISK

I/O port
EQU

address of the DISK MASTER
OEOH

;DISK+O
1793 Command/Status

;DISK+l
1793 Track

;DISK+2
1793 Sector

;DISK+3
1793 Data

;DISK+4
Aux Command/status

;DISK+5
wait Sync

;Back side select bit
BACKBIT EQU 04H
;5 1/4" select bit
SMALBIT EQU lOH
iDouble Density bit
DDBIT EQU OSH

iDone bit in status register
DONEBIT EQU OlH

iUse table below to select head step speed.
;Step times for 5" drives
iare double that shown in the table.
,
iStep value 1771 1793

o 6ms 3ms

MS-DOS DEVICE DRIVERS Page 2-30

1 6ms 6ms
2 10ms 10ms
3 20ms ISms

i
STPSPD EQU 1

NUMERR EQU ERROUT-ERRIN

CR EQU ODH
LF EQU OAH

CODE SEGMENT
ASSUME CS:CODE,DS:NOTHING,ES:NOTHING,SS:NOTHING
--,

DEVICE HEADER
,
DRVDEV LABEL

DW
DW
DW
DW

DRVMAX DB

DRVTBL LABEL
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

WORD
-1,-1
0000 iIBM format-compatible, Block
STRATEGY
DRV$IN
4

WORD
DRV$INIT
MEDIA$CHK
GET$BPB
CMDERR
DRV$READ
EXIT
EXIT
EXIT
DRV$WRIT
DRV$WRIT
EXIT
EXIT
EXIT

STRATEGY

PTRSAV DD 0

STRATP PROC
STRATEGY:

MOV
MOV
RET

STRATP ENDP

FAR

WORD PTR [PTRSAV] ,BX
WORD PTR [PTRSAV+2] ,ES

MAIN ENTRY

MS-DOS DEVICE DRIVERS Page 2-31

CMDLEN
UNIT
CMDC
STATUS
MEDIA
TRANS
COUNT
START

DRV$IN:

o
1
2
3
13
14
18
20

iLENGTH OF THIS COMMAND
iSUB UNIT SPECIFIER
iCOMMAND CODE
iSTATUS
iMEDIA DESCRIPTOR
iTRANSFER ADDRESS
iCOUNT OF BLOCKS OR CHARACTERS
iFIRST BLOCK TO TRANSFER

PUSH SI
PUSH AX
PUSH CX
PUSH DX
PUSH DI
PUSH BP
PUSH DS
PUSH ES
PUSH BX

LDS BX, [PTRSAV] iGET POINTER TO I/O PACKET

MOV
MOV
MOV
MOV
PUSH
MOV
CMP
JA
CBW
SHL

MOV
ADD
POP

LES

PUSH
POP

AL,BYTE PTR [BX] .UNIT
AH,BYTE PTR [BX] .MEDIA
CX,WORD PTR [BX] .COUNT
DX,WORD PTR [BX] .START
AX
AL,BYTE PTR [BX] .CMDC
AL,IS
CMDERRP

AX,l

SI,OFFSET DRVTBL
SI,AX
AX

iAL UNIT CODE
iAH MEDIA DESCRIP
iCX COUNT
iDX START SECTOR

iCommand code

iBad command

i2 times command
iword table index

ilndex into table
iGet back media
iand unit

DI,DWORD PTR [BX] .TRANS iES:DI = TRANSFER
iADDRESS

CS
DS

ASSUME DS:CODE

JMP WORD PTR [SI] iGO DO COMMAND

---,

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH
,
ASSUME DS:NOTHING

MS-DOS DEVICE DRIVERS Page 2-32

CMDERRP:

CMDERR:
POP

MOV
JMP

ERR$CNT:LDS
SUB

ERR$EXIT:

AX iClean stack

AL,3 iUNKNOWN COMMAND ERROR
SHORT ERR$EXIT

BX, [PTRSAV]
WORD PTR [BX] .COUNT,CX i# OF SUCCESS. I/Os

iAL has error code
MOV AH,10000001B iMARK ERROR RETURN
JMP SHORT ERRI

EXITP PROC FAR

EXIT: MOV AH,OOOOOOOIB
ERRl: LDS BX, [PTRSAV]

MOV WORD PTR [BX] .STATUS,AX
iMARK OPERATION COMPLETE

POP BX
POP ES
POP DS
POP BP
POP DI
POP DX
POP CX
POP AX
POP SI
RET iRESTORE REGS AND RETURN

EXITP ENDP

CURDRV DB -1

TRKTAB DB -1,-1,-1,-1

SECCNT DW 0

DRVLIM 8 iNumber of sectors on device
SECLIM 13 iMAXIMUM SECTOR
HDLIM 15 iMAXIMUM HEAD

iWARNING - preserve order of drive and curhd!

DRIVE DB
CURHD DB
CURSEC DB
CURTRK DW

,
MEDIA$CHK:
ASSUME DS:CODE

TEST

o
o
o
o

iPHYSICAL DRIVE CODE
iCURRENT HEAD
iCURRENT SECTOR
i CURRENT TRACK

iAlways indicates Don't know

AH,OOOOOI00B iTEST IF MEDIA REMOVABLE

MS-DOS DEVICE DRIVERS page 2-33

JZ
XOR

MEDIA$EXT
DI,DI iSAY I DON'T KNOW

MEDIA$EXT:
LDS
MOV
JMP

BUILD$BPB:
ASSUME DS:CODE

MOV
CALL

SETBPB: LDS
MOV
MOV
MOV
JMP

BUILDBP:

BX, [PTRSAV]
WORD PTR [BX] .TRANS,DI
EXIT

AH,BYTE PTR ES:[DI]
BUILDBP
BX, [PTRSAV]
[BX] .MEDIA,AH
[BX] .COUNT,DI
[BX] .COUNT+2,CS
EXIT

iGET FAT ID BYTE
iTRANSLATE

ASSUME DS:NOTHING
iAH is media byte on entry
iDI points to correct BPB on return

GOODID:

HAS8:

HAS1:

PUSH AX
PUSH CX
PUSH DX
PUSH BX
MOV CL,AH iSAVE MEDIA

iNORMALIZE AND CL,OF8H
CMP CL,OF8H iCOMPARE WITH GOOD MEDIA BYTE
JZ GOODID
MOV AH,OFEH iDEFAULT TO 8-SECTOR,

iSINGLE-SIDED

MOV
MOV
MOV
MOV
MOV
TEST
JNZ
INC
INC
ADD
TEST
JZ
ADD
MOV
INC
INC
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AL,l iSET NUMBER OF FAT SECTORS
BX,64*256+8 ;SET DIR ENTRIES AND SECTOR MAX
CX,40*8 iSET SIZE OF DRIVE
DX,Ol*256+l iSET HEAD LIMIT & SEC/ALL UNIT
DI,OFFSET DRVBPB
AH,OOOOOOlOB iTEST FOR 8 OR 9 SECTOR
HAS8 iNZ = HAS 8 SECTORS
AL iINC NUMBER OF FAT SECTORS
BL iINC SECTOR MAX
CX,40 iINCREASE SIZE
AH,OOOOOOOlB iTEST FOR 1 OR 2 HEADS
HASl iZ = 1 HEAD
CX,CX iDOUBLE SIZE OF DISK
BH,112 iINCREASE # OF DIREC. ENTRIES
DH iINC SEC/ALL UNIT
DL ;INC HEAD LIMIT
BYTE PTR [DI] .2,DH
BYTE PTR [DI] .6,BH
WORD PTR [DI].8,CX
BYTE PTR [DI] .10,AH
BYTE PTR [DI] .11,AL
BYTE PTR [DI] .13,BL
BYTE PTR [DI] .15,DL

MS-DOS DEVICE DRIVERS Page 2-34

POP BX
POP DX
POP CX
POP AX
RET

i--

DISK I/O HANDLERS
,
;ENTRY:

;EXIT:

AL DRIVE NUMBER (0-3)
AH MEDIA DESCRIPTOR
CX SECTOR COUNT
DX FIRST SECTOR
DS CS
ES:DI = TRANSFER ADDRESS

IF SUCCESSFUL CARRY FLAG = 0
ELSE CF=l AND AL CONTAINS (MS-DOS) ERROR CODE,
CX # sectors NOT transferred

DRV$READ:
ASSUME DS:CODE

JCXZ
CALL

DSKOK
SETUP
DSK$IO
DISKRD

JC
CALL
JMP SHORT DSK$IO

DRV$WRIT:
ASSUME DS:CODE

JCXZ DSKOK
CALL SETUP
JC DSK$IO
CALL DISKWRT

ASSUME DS:NOTHING
DSK$IO: JNC DSKOK

JMP ERR$CNT
DSKOK: JMP EXIT

SETUP:
ASSUME DS:CODE
;Input same as above
iOn output

ES:DI = Trans addr
DS:BX Points to BPB
Carry set if error (AL is error code (MS-DOS»
else

[DRIVE] = Drive number (0-3)
[SECCNT] Sectors to transfer
[CURSEC] Sector number of start of I/O
[CURHD] Head number of start of I/O iSet

MS-DOS DEVICE DRIVERS Page 2-35

[CURTRK] = Track # of start of I/O iSeek performed
All other registers destroyed

INRANGE:

SEEK:

TRYSK:

NOHOME:

BX,DI
BUILDBP
SI,CX
SI,DX

iES:BX
iDS:DI

TRANSFER ADDRESS
PTR TO B.P.B

XCHG
CALL
MOV
ADD
CMP SI,WORD PTR [DI].DRVLIM

JBE
MOV
STC
RET

MOV
MOV
XCHG

INRANGE
AL,8

[DRIVE] ,AL
[SECCNT] ,CX
AX,DX

XOR DX,DX

iCOMPARE AGAINST DRIVE MAX

iSAVE SECTOR COUNT
iSET UP LOGICAL SECTOR
iFOR DIVIDE

DIV WORD PTR [01] .SECLIM iDIVIDE BY SEC PER TRACK
INC DL
MOV [CURSEC] ,DL iSAVE CURRENT SECTOR
MOV CX,WORD PTR [01] .HDLIM ;GET NUMBER OF HEADS
XOR DX,DX iDIVIDE TRACKS BY HEADS PER CYLINDER
DIV CX
MOV [CURHD] ,DL iSAVE CURRENT HEAD
MOV [CURTRK] ,AX i SAVE CURRENT TRACK

PUSH
PUSH
CALL
CALL
MOV
XOR
ADD
MOV
MOV
XCHG
OUT
CMP
JZ
MOV
CMP
JNZ

BX
01
CHKNEW
DRIVESEL
BL, [DRIVE]

iXaddr
iBPB pointer
iUnload head if change drives

BH,BH iBX drive index
BX,OFFSET TRKTAB iGet current track
AX, [CURTRK]
DL,AL
AL ,DS: [BX]
DISK+l,AL
AL,DL
SEEKRET
BH,2
AL,-l
NOHOME

iSave desired track
iMake desired track current
iTell Controller current track
iAt correct track?
iDone if yes
iSeek retry count
iposition Known?
iIf not home head

CALL HOME
JC SEEKERR

AL,DL
DISK+3,AL
AL,lCH+STPSPD
DCOM

iDesired track
iSeek

MOV
OUT
MOV
CALL
AND
JZ

AL,98H
SEEKRET

iAccept not rdy, seek, & CRC errors

MS-DOS DEVICE DRIVERS Page 2-36

SEEKERR:

SEEKRET:

JS
DEC
JNZ

MOV
XOR
ADD
MOV

CALL
MOV
POP
POP
RET

POP
POP
CLC
RET

SEEKERR
BH
TRYSK

BL, [DRIVE]

;No retries if not ready

BH,BH ;BX drive index
BX,OFFSET TRKTAB ;Get current track
BYTE PTR DS: [BX],-l ;Make current track

iunknown
GETERRCD
CX, [SECCNT]
BX
DI

BX
DI

;Nothing transferred
;BPB pointer
iXaddr

;BPB pointer
;Xaddr

1---

READ

DISKRD:
ASSUME DS:CODE

MOV CX, [SECCNT]
RDLP:

CALL PRESET
PUSH BX
MOV BL,lO ;Retry count
MOV DX,DISK+3 ;Data port

RDAGN:
MOV AL,80H ;Read command
CLI ;Disable for 1793
OUT DISK,AL ;Output read command
MOV BP,DI ;Save address for retry
JMP SHORT RLOOPENTRY

RLOOP:
STOSB

RLOOPENTRY:
IN AL,DISK+5 ;Wait for DRQ or INTRQ
SHR AL,l
IN AL,DX ;Read data
JNC RLOOP
STI ;Ints OK now
CALL GETSTAT
AND AL,9CH
JZ RDPOP ;Ok
MOV DI,BP ;Get back transfer
DEC BL
JNZ RDAGN
CMP AL,lOH iRecord not found?

MS-DOS DEVICE DRIVERS

JNZ
MOV

GOT CODE:
- CALL

RDPOP:

POP
RET

GOT CODE
AL,!

GETERRCD
BX

POP BX
LOOP RDLP
CLC
RET

iNo
iMap it

page 2-37

--,

WRITE

DISKWRT:
ASSUME DS:CODE

MOV CX, [SECCNT]
MOV SI,DI
PUSH ES
POP DS

ASSUME DS:NOTHING
WRLP:

CALL PRESET
PUSH BX
MOV BL,lO iRetry count
MOV DX,DISK+3 iData port

WRAGN:
MOV AL,OAOH Write command
CLI Disable for 1793
OUT DISK,AL Output write command
MOV BP,SI Save address for retry

WRLOOP:
IN AL,DISK+S
SHR AL,l
LODSB ;Get data
OUT DX,AL ;Write data
JNC WRLOOP
STI ;Ints OK now
DEC SI
CALL GETSTAT
AND AL,OFCH
JZ WRPOP iOk
MOV SI,BP iGet back transfer
DEC BL
JNZ WRAGN
CALL GETERRCD
POP BX
RET

WRPOP:

MS-DOS DEVICE DRIVERS Page 2-38

PRESET:

POP
LOOP
CLC
RET

BX
WRLP

ASSUME DS:NOTHING

SETHEAD:

GOTSEC:

STEP:

MOV AL,[CURSEC]
CMP AL,CS:[BX].SECLIM
JBE GOTSEC
MOV DH,[CURHD]
INC DH
CMP DH,CS: [BX] .HDLIM
JB SETHEAD
CALL STEP
XOR DH,DH

MOV
CALL
MOV
MOV

OUT
INC
RET

[CURHD] ,DH
DRIVESEL
AL,1
[CURSEC] , AL

DISK+2,AL
[CURSEC]

Select new head
Go on to next track
Select head zero

;First sector
;Reset CURSEC

;Tell controller which sector
;We go on to next sector

ASSUME DS:NOTHING
MOV AL,58H+STPSPD ;Step in wi update, no verify
CALL DCOM
PUSH BX
MOV BL,[DRIVE]
XOR BH,BH ;BX drive index
ADD BX,OFFSET TRKTAB ;Get current track
INC BYTE PTR CS: [BX] ;Next track
POP BX
RET

HOME:
ASSUME DS:NOTHING

TRYHOM:

HOMERR:

MOV BL,3

MOV
CALL
AND
JZ
JS
PUSH
MOV
CALL
DEC
POP
JNZ

AL,OCH+STPSPD
DCOM
AL,98H
RET3
HOMERR
AX
AL,58H+STPSPD
DCOM
BL
AX
TRYHOM

;Restore with verify

;No retries if not ready
;Save real error code
;Step in wi update no verify

;Get back real error code

MS-DOS DEVICE DRIVERS Page 2-39

STC
RET3: RET

CHKNEW:
ASSUME DS:NOTHING

MOV AL,[DRIVE] iGet disk drive number
MOV AH,AL
XCHG AL,[CURDRV] iMake new drive current.
eMP AL,AH iChanging drives?
JZ RETl iNo

i If changing drives, unload head so the head load delay
ione-shot will fire again. Do it by seeking to the same
itrack with the H bit reset.

DCOM:

IN
OUT
MOV

AL,DISK+l
DISK+3,AL
AL,lOH

jGet current track number
jMake it the track to seek
jSeek and unload head

ASSUME DS:NOTHING

GETSTAT:

RET1:

OUT DISK,AL
PUSH AX
AAM
POP

IN
TEST
JZ
IN
RET

AX

AL,DISK+4
AL,DONEBIT
GETSTAT
AL,DISK

;Delay 10 microseconds

DRIVESEL:
ASSUME DS:NOTHING
iSelect the drive based on current info
;Only AL altered

MOV AL, [DRIVE]
OR AL,SMALBIT + DDBIT ;5 1/4" IBM PC disks
CMP [CURHD] ,0
JZ GOTHEAD
OR AL,BACKBIT ;Select side 1

GOTHEAD:
OUT DISK+4,AL iSelect drive and side
RET

GETERRCD:
ASSUME DS:NOTHING

PUSH CX
PUSH ES
PUSH DI
PUSH CS
POP ES ;Make ES the local segment
MOV CS: [LSTERR] ,AL iTerminate list wi error code
MOV CX,NUMERR ;Number of error conditions
MOV DI,OFFSET ERRIN ;Point to error conditions

MS-DOS DEVICE DRIVERS Page 2-40

REPNE
MOV
STC
POP
POP
POP
RET

SCASB
AL,NUMERR-l[DI] ;Get translation

;Flag error condition
DI
ES
CX

;and return

;***
BPB FOR AN IBM FLOPPY DISK, VARIOUS PARAMETERS ARE
PATCHED BY BUILDBP TO REFLECT THE TYPE OF MEDIA
INSERTED

DRVBPB:
This is a nine sector single side BPB

DW
DB
DW
DB
DW
DW
DB
DW
DW
DW

512
1
1
2
64
9*40
11111100B
2
9
1

;Physical sector size in bytes
;Sectors/allocation unit
;Reserved sectors for DOS
;# of allocation tables
;Nurnber directory entries
;Nurnber 512-byte sectors
;Media descriptor
;Nurnber of FAT sectors
;Sector limit
;Head limit

INITAB DW
DW
DW
DW

DRVBPB
DRVBPB
DRVBPB
DRVBPB

;Up to four units

ERRIN:

LSTERR

;DISK
DB
DB
DB
DB
DB
DB

DB

ERRORS
80H
40H
20H
10H
8
1

o

RETURNED FROM THE 1793 CONTROLER
;NO RESPONSE
;Write protect
;Write Fault
;SEEK error
;CRC error
;Mapped from 10H
; (record not found) on READ
iALL OTHER ERRORS

ERROUT: jRETURNED ERROR CODES CORRESPONDING TO ABOVE
DB 2 iNO RESPONSE
DB 0 ;WRITE ATTEMPT

iON WRITE-PROTECT DISK
DB OAH ;WRITE FAULT
DB 6 ;SEEK FAILURE
DB 4 iBAD CRC
DB 8 iSECTOR NOT FOUND
DB 12 ;GENERAL ERROR

DRV$INIT:
;
; Determine number of physical drives by reading CONFIG.SYS

MS-DOS DEVICE DRIVERS Page 2-41

,
ASSUME OS:CODE

PUSH DS
LDS SI, [PTRSAV]

ASSUME DS:NOTHING
LOS SI,DWORD PTR [SI.COUNT] iDS:SI points to

SCAN LOOP:
- CALL

MOV
OR
JZ
CMP
JZ

WERROR: POP
ASSUME DS:CODE

MOV
WERROR2: MOV

INT
XOR
PUSH
JMP

BADNDRV:

SCAN4:

POP
MOV
JMP

SCAN SWITCH
AL,CL
AL,AL
SCAN4
AL,"s"
SCAN4

DS

DX,OFFSET ERRMSG2
AH,9
21H
AX,AX
AX
SHORT ABORT

DS
DX,OFFSET ERRMSGl
WERROR2

ASSUME DS:NOTHING
iBX is number of floppies

OR BX,BX

iCONFIG.SYS

iNo units

JZ BADNDRV ;User error
CMP BX,4
JA BADNDRV iUser error
POP DS

ASSUME DS:CODE
PUSH BX iSave unit count

ABORT: LOS BX,[PTRSAV]
ASSUME DS:NOTHING

POP AX
MOV BYTE PTR [BX].MEDIA,AL iUnit count
MOV [DRVMAX] ,AL
MOV WORD PTR [BX].TRANS,OFFSET DRV$INIT ;SET

i BREAK ADDRESS
MOV [BX].TRANS+2,CS
MOV WORD PTR [BX].COUNT,OFFSET INITAB

iSET POINTER TO BPB ARRAY
MOV [BX] .COUNT+2 ,CS
JMP EXIT

PUT SWITCH IN CL, VALUE IN BX
i
SCAN SWITCH:

MS-DOS DEVICE DRIVERS Page 2-42

XOR
MOV
LODSB
CMP
JZ
CMP
JZ
CMP
JNZ

GOT SWITCH:
CMP
JNZ
LODSB
OR
MOV
LODSB

BX,BX
CX,BX

AL,lO
NUMRET
AL,"-"
GOT SWITCH
AL,"/"
SCAN SWITCH

BYTE PTR [SI+l],":"
TERROR

AL,20H
CL,AL

CONVERT TO LOWERCASE
GET SWITCH
SKIP ":"

GET NUMBER POINTED TO BY [SI]

WIPES OUT AX,DX ONLY BX RETURNS NUMBER
,
GETNUM1:LODSB

SUB
JB
CMP
JA
CBW
XCHG
MOV
MUL
ADD
JMP

CHKRET: ADD
CMP
JBE
CMP
JZ
CMP
JZ

TERROR:
POP
JMP

NUMRET: DEC
RET

ERRMSGl DB
ERRMSG2 DB
CODE ENDS

END

AL, "0"
CHKRET
AL,9
CHKRET

AX,BX
DX,lO
DX
BX,AX
GETNUMl

AL,"O"
AL," "
NUMRET
AL,"-"
NUMRET
AL,"/"
NUMRET

DS
WERROR
SI

GET RID OF RETURN ADDRESS

"SMLDRV: Bad number of drives",13,10,"$"
"SMLDRV: Invalid pararneter",13,10,"$"

MS-DOS DEVICE DRIVERS page 2-43

2.12.2 Character Device Driver

The following program illustrates a character device driver
program.

i******************** A CHARACTER DEVICE *******************

TITLE VT52 CONSOLE FOR 2.0 (IBM)

... ,
IBM ADDRESSES FOR I/O

... ,

CODE

CR=13
BACKSP=8
ESC=lBH
BRKADR=6CH
ASNMAX=200

SEGMENT BYTE

:CARRIAGE RETURN
: BACKSPACE

:006C BREAK VECTOR ADDRESS
:SIZE OF KEY ASSIGNMENT BUFFER

ASSUME CS:CODE,DS:NOTHING,ES:NOTHING
---,

CON - CONSOLE DEVICE DRIVER
,
CONDEV: iHEADER FOR DEVICE "CON"

DW -1,-1
DW 1000000000010011B iCON IN AND CON OUT
DW STRATEGY
DW ENTRY
DB 'CON

;---

COMMAND JUMP TABLES
CONTBL:

DW CON$INIT
DW EXIT
DW EXIT
DW CMDERR
DW CON$READ
DW CON$RDND
DW EXIT
DW CON$FLSH
DW CON$WRIT
DW CON$WRIT
DW EXIT
DW EXIT

CMDTABL DB 'A'

MS-DOS DEVICE DRIVERS Page 2-44

DW CUU ;cursor up
DB 'B'
DW CUD ;cursor down
DB 'c'
DW CUF ;cursor forward
DB 'D'
DW CUB ;cursor back
DB 'H'
DW CUH ;cursor position
DB 'J'
DW ED ierase display
DB 'K'
DW EL ;erase line
DB 'Y'
DW CUP ;cursor position
DB 'j'
DW PSCP ;save cursor position
DB ' k'
DW PRCP ;restore cursor position
DB 'y'
DW RM ;reset mode
DB 'x'
DW SM ;set mode
DB 00

PAGE
--,

Device entry point
,
CMDLEN 0 ;LENGTH OF THIS COMMAND
UNIT 1 ;SUB UNIT SPECIFIER
CMD 2 ;COMMAND CODE
STATUS 3 ; STATUS
MEDIA 13 ;MEDIA DESCRIPTOR
TRANS 14 iTRANSFER ADDRESS
COUNT 18 iCOUNT OF BLOCKS OR CHARACTERS
START 20 iFIRST BLOCK TO TRANSFER

PTRSAV DD 0

STRATP PROC FAR

STRATEGY:
MOV WORD PTR CS: [PTRSAV] ,BX
MOV WORD PTR CS: [PTRSAV+2] ,ES
RET

STRATP ENDP

ENTRY:
PUSH SI
PUSH AX
PUSH CX
PUSH DX

MS-DOS DEVICE DRIVERS Page 2-45

PUSH
PUSH
PUSH
PUSH
PUSH

LDS

MOV

MOV
CBW
MOV
ADD
ADD
CMP
JA

LES

PUSH
POP

ASSUME

JMP

PAGE

DI
BP
DS
ES
BX

BX,CS:[PTRSAV] iGET POINTER TO I/O PACKET

CX,WORD PTR DS: [BX] .COUNT

AL,BYTE PTR DS: [BX].CMD

SI,OFFSET CONTBL
SI,AX
SI,AX
AL,II
CMDERR

DI,DWORD PTR DS: [BX] .TRANS

CS
DS

DS:CODE

WORD PTR lSI]

iCX = COUNT

iGO DO COMMAND

;===
;=
i= SUBROUTINES SHARED BY MULTIPLE DEVICES
i=
;===
--,

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH

BUS$EXIT:

CMDERR:

MOV
JMP

MOV

ERR$EXIT:

EXITP

EXIT:
ERRI:

MOV
JMP

PROC

MOV
LDS
MOV

AH,OOOOOOlIB
SHORT ERRI

AL,3

AH,IOOOOOOIB
SHORT ERRI

FAR

AH,OOOOOOOIB
BX,CS: [PTRSAV]

iDEVICE BUSY EXIT

iUNKNOWN COMMAND ERROR

iMARK ERROR RETURN

WORD PTR [BX] • STATUS ,AX iMARK
iOPERATION COMPLETE

MS-DOS DEVICE DRIVERS

EXITP

POP
POP
POP
POP
POP
POP
POP
POP
POP
RET
ENDP

BX
ES
DS
BP
DI
DX
CX
AX
SI

page 2-46

iRESTORE REGS AND RETURN

--,

BREAK KEY HANDLING
,
BREAK:

MOV
INTRET: IRET

PAGE

CS:ALTAH,3 iINDICATE BREAK KEY SET

WARNING - variables are very order dependent,
so be careful when adding new ones!

i
WRAP DB
STATE DW
MODE DB
MAXCOL DB
COL DB
ROW DB
SAVCR DW
ALTAH DB

o
Sl
3
79
o
o
o
o

i 0 = WRAP, 1 = NO WRAP

;special key handling

e __ _ ,

CHROUT - WRITE OUT CHAR IN AL USING CURRENT ATTRIBUTE
,
ATTRW LABEL WORD
ATTR DB OOOOOlllB iCHARACTER ATTRIBUTE
BPAGE DB 0 iBASE PAGE
base dw Ob800h

chrout: cmp al,13
jnz trylf
mov [col] ,0
jmp short setit

trylf: cmp al,lO
jz If
cmp al,7
jnz tryback

torom:
mov bx, [attrw]
and bl,7
mov ah,14

MS-DOS DEVICE DRIVERS Page 2-47

int 10h
retS: ret

tryback:
cmp al,8
jnz outchr
cmp [col] ,0
jz retS
dec [col]
jmp short setit

outchr:
mov bx, [attrw]
mov cx,l
mov ah,9
int 10h
inc [col]
mov al, [col]
cmp al, [maxcol]
jbe setit
cmp [wrap] ,0
jz outchrl
dec [col]
ret

outchrl:
mov [col] ,0

If: inc [row]
cmp [row] ,24
jb setit
mov [row] ,23
call scroll

setit: mov dh,row
mov dl,col
xor bh,bh
mov ah,2
int lOh
ret

scroll: call getmod
cmp al,2
jz myscroll
cmp al,3
jz myscroll
mov al,IO
jmp toroID

myscroll:
mov bh, [attr]
mov bl, , ,
mov bp,80
mov ax, [base]
mov es,ax
mov ds,ax
xor di,di
mov si,160

MS-DOS DEVICE DRIVERS Page 2-48

mov cx,23*80
cld
cmp ax,Ob800h
jz colorcard

rep movsw
mov ax,bx
mov cx,bp
rep stosw

sret: push cs
pop ds
ret

colorcard:
mov dx,3dah

wait2: in al,dx
test al,8
jz wait2
mov al,25h
mov dx,3d8h
out dx,al jturn off video
rep movsw
mov ax,bx
mov cx,bp
rep stosw
mov al,29h
mov dx,3d8h
out dx,al jturn on video
jmp sret

GETMOD: MOV AH,15
INT 16 jget column information
MOV BPAGE,BH
DEC AH
MOV WORD PTR MODE,AX
RET

;--

CONSOLE READ ROUTINE
,
CON$READ:

JCXZ
CON$LOOP:

PUSH
CALL
POP
STOSB
LOOP

CON$EXIT:
JMP

CON$EXIT

CX
CHRIN
CX

CON$LOOP

EXIT

jSAVE COUNT
iGET CHAR IN AL

iSTORE CHAR AT ES:DI

i---

INPUT SINGLE CHAR INTO AL
,
CHRIN: XOR AX,AX

MS-DOS DEVICE DRIVERS Page 2-49

XCHG AL,ALTAH iGET CHARACTER & ZERO ALTAH
OR AL,AL
JNZ KEYRET

INAGN: XOR AH,AH
INT 22

ALTIO:
OR AX,AX iCheck for non-key after BREAK
JZ INAGN
OR AL,AL ;SPECIAL CASE?
JNZ KEYRET
MOV ALTAH,AH iSTORE SPECIAL KEY

KEYRET: RET
j--

KEYBOARD NON DESTRUCTIVE READ, NO WAIT
,
CON$RDND:

RDl:

MOV
OR
JNZ

MOV
INT
JZ
OR
JNZ
MOV
INT
JMP

RDEXIT: LDS
MOV

EXVEC: JMP
CONBUS: JMP

AL, [ALTAH]
AL,AL
RDEXIT

AH,l
22
CONBUS
AX,AX
RDEXIT
AH,O
22
CON$RDND

BX, [PTRSAV]
[BX] .MEDIA,AL
EXIT
BUS$EXIT

---,

KEYBOARD FLUSH ROUTINE
,
CON$FLSH:

MOV [ALTAH] ,0 iClear out holding buffer

PUSH
XOR
MOV
MOV

MOV
POP
JMP

DS
BP,BP
DS,BP
DS:BYTE PTR 4lAH,lEH

DS:BYTE PTR 4lCH,lEH
DS
EXVEC

iSelect segment 0
iReset KB queue head
ipointer
iReset tail pointer

j--
CONSOLE WRITE ROUTINE

CON$WRIT:

MS-DOS DEVICE DRIVERS Page 2-50

JCXZ EXVEC
PUSH CX
MOV AH,3 iSET CURRENT CURSOR POSITION
XOR BX,BX
INT 16
MOV WORD PTR [COL] ,DX
POP CX

CON$LP: MOV AL,ES: [DI] iGET CHAR
INC DI
CALL OUTC ~OUTPUT CHAR
LOOP CON$LP ; REPEAT UNTIL ALL THROUGH
JMP EXVEC

COUT: STI
PUSH DS
PUSH CS
POP DS
CALL OUTC
POP DS
IRET

OUTC: PUSH AX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH ES
PUSH BP
CALL VIDEO
POP BP
POP ES
POP DI
POP SI
POP DX
POP CX
POP AX
RET

1--

OUTPUT SINGLE CHAR IN AL TO VIDEO DEVICE
i
VIDEO: MOV SI,OFFSET STATE

JMP [SI]

SI: eMP AL,ESC iESCAPE SEQUENCE?
JNZ SIB
MOV WORD PTR [SI] ,OFFSET S2
RET

SIB: CALL CHROUT
SIA: MOV WORD PTR [STATE] ,OFFSET SI

RET

MS-DOS DEVICE DRIVERS Page 2-51

S2: PUSH AX
CALL GETMOD
POP AX
MOV BX,OFFSET CMDTABL-3

S7A: ADD BX,3
CMP BYTE PTR [BX] ,0
JZ SlA
CMP BYTE PTR [BX] ,AL
JNZ S7A
JMP WORD PTR [BX+l]

MOVCUR: CMP BYTE PTR [BX] ,AH
JZ SETCUR
ADD BYTE PTR [BX] ,AL

SETCUR: MOV DX,WORD PTR COL
XOR BX,BX
MOV AH,2
INT 16
JMP SlA

CUP: MOV WORD PTR [SI] ,OFFSET CUPl
RET

CUP1: SUB AL,32
MOV BYTE PTR [ROW] ,AL
MOV WORD PTR [SI] ,OFFSET CUP2
RET

CUP2: SUB AL,32
MOV BYTE PTR [COL] ,AL
JMP SETCUR

SM: MOV WORD PTR [SI],OFFSET SlA
RET

CUH: MOV WORD PTR COL,O
JMP SETCUR

CUF: MOV AH,MAXCOL
MOV AL,l

CUF1: MOV BX,OFFSET COL
JMP MOVCUR

CUB: MOV AX,OOFFH
JMP CUFl

CUU: MOV AX,OOFFH
CUU1: MOV BX,OFFSET ROW

JMP MOVCUR

CUD: MOV AX,23*256+1
JMP CUUl

MS-DOS DEVICE DRIVERS page 2-52

PSCP: MOV AX,WORD PTR COL
MOV SAVCR,AX
JMP SETCUR

PRCP: MOV AX,SAVCR
MOV WORD PTR COL,AX
JMP SETCUR

ED: CMP BYTE PTR [ROW] ,24
JAE ELI

MOV CX,WORD PTR COL
MOV DH,24
JMP ERASE

ELI: MOV BYTE PTR [COL],O
EL: MOV CX,WORD PTR [COL]
EL2: MOV DH,CH
ERASE: MOV DL,MAXCOL

MOV BH,ATTR
MOV AX,0600H
INT 16

ED3: JMP SETCUR

RM: MOV WORD PTR [SI] ,OFFSET RMI
RET

RMl: XOR Cx,CX
MOV CH,24
JMP EL2

CON$INIT:
int Ilh
and al,OOllOOOOb
cmp al,OOllOOOOb
jnz iscolor
mov [base] ,0bOOOh ilook for bw card

iscolor:
cmp al,OOOlOOOOb ilook for 40 col mode
ja setbrk
mov [mode] ,0
mov [maxcol],39

setbrk:
XOR BX,BX
MOV DS,BX
MOV BX,BRKADR
MOV WORD PTR [BX],OFFSET BREAK
MOV WORD PTR [BX+2] ,CS

MOV BX,29H*4
MOV WORD PTR [BX] ,OFFSET COUT
MOV WORD PTR [BX+2] ,CS

MS-DOS DEVICE DRIVERS page 2-53

LDS BX,CS:[PTRSAV]
MOV WORD PTR [BX].TRANS,OFFSET CON$INIT

;SET BREAK ADDRESS
MOV [BX] .TRANS+2,CS
JMP EXIT

CODE ENDS
END

Chapter 3
MS-DOS Technical Information

3.1 MS-DOS Initialization 3-1

3.2 The Command Processor 3-1

3.3 MS-DOS Disk Allocation 3-2

3.4 MS-DOS Disk Directory 3-2

3.5 File Allocation Table (FAT) 3-.5
3.5.1 How To Use the FAT (12-bit FAT Entries) 3-6
3.5.2 How To Use the FAT (lfi-bit FAT Entries) 3-7

3.6 MS-DOS Standard Disk Formats 3-8

CHAPTER 3

MS-DOS TECHNICAL INFORMATION

3.1 MS-DOS INITIALIZATION

MS-DOS initialization consists of several steps. Typically,
a ROM (Read Only Memory) bootstrap obtains control, and then
reads the boot sector off the disk. The boot sector then
reads the following files:

IO.SYS
MSDOS.SYS

Once these files are read, the boot process begins.

3.2 THE COMMAND PROCESSOR

The command processor supplied with
COMMAND.COM.) consists of three parts:

MS-DOS (file

1. ~ resident part resides in memory immediately
following MSDOS.SYS and its data area. This part
contains routines to process Interrupts 23H
(Control-C Exit Address) and 24H (Critical Error
Handler Address), as well as a routine to reload
the transient part, if needed. All standard MS-DOS
error handling is done within this part of
COMMAND.COM. This includes displaying error
messages and processing the Abort, Retry, or Ignore
messages.

2. An initialization part follows the resident part.
During startup, the initialization part is g1ven
control; it contains the AUTOEXEC file processor
setup routine. The initialization part determines
the segment address at which programs can be
loaded. It is overlaid by the first program
COMMAND.COM loads because it is no longer needed.

MS-DOS TECHNICAL INFORMATION Page 3-2

3. ~ transient part is loaded at the high end of
memory. This part contains all of the internal
command processors and the batch file processor.

The transient part of the command processor
produces the system prompt (such as A», reads the
command from keyboard (or batch file), and causes
it to be executed. For external commands, this
part builds a command line and issues the EXEC
system call (Function Request 4BOOH) to load and
transfer control to the program.

3.3 MS-DOS DISK ALLOCATION

The MS-DOS area is formatted as follows:

Reserved area - variable size

First copy of file allocation
table - variable size

Additional copies of file
allocation table - variable
size (optional)

Root directory variable size

File data area

Space for a file in the data area is not pre-allocated. The
space is allocated one cluster at a time. A cluster
consists of one or more consecutive sectors (the number of
sectors in a cluster must be a power of 2) ~ The cluster
size is determined at format time. All of the clusters for
a file are "chained" together in the File Allocation Table
(FAT). (Refer to Section 3.5, "File Allocation Table," for
more information on the FAT.) A second copy of the FAT is
normally kept for consistency except in the case of
extremely reliable storage such as a virtual RAM disk.
Should the disk develop a bad sector in the middle of the
first FAT, the second can be used. This avoids loss of data
due to an unreadable FAT.

3.4 MS-DOS DISK DIRECTORY

FORMAT builds the root directory
location on disk and the maximum
dependent on the media.

for all disks. Its
number of entries are

MS-DOS TECHNICAL INFORMATION Page 3-3

Since directories other than the root directory are regarded
as files by MS-DOS, there is no limit to the number of files
they may contain.

All directory entries are 32 bytes in length, and are in the
following format (note that byte offsets are in
hexadecimal):

0-7 Filename. Eight characters, left aligned and
padded, if necessary, with blanks. The first
byte of this field indicates the file status
as follows:

8-0A

OB

OOH The directory entry has never been
used. This is used to limit the
length of directory searches, for
performance reasons.

05H Indicates that the first character
of the filename actually has an E5H
character.

2EH The entry is for a directory. If
the second byte is also 2EH,
then the cluster field contains
the cluster number of this
directory's parent directory
(OOOOH if the parent directory
is the root directory). Other
wise, bytes OlH through OAH
are all spaces, and the cluster
field contains the cluster
number of this directory.

E5H The file was used, but it has been
erased.

Any other character is the first character
of a filename.

Filename extension.

File attribute. The attribute byte is
mapped as follows (values are in hexa
decimal):

01 File is marked read-only. An attempt
to open the file for writing using
the Open Handle system call (Function
Request 3DH) results in an error
code being returned. This value
can be used along with other
values below. Attempts to delete
the file with the Delete File
system call (13H) or Delete

MS-DOS TECHNICAL INFORMATION Page 3-4

OC-15

16-17

Directory Entry (41H) will also
fail.

02 Hidden file. The file is excluded
from normal directory searches.

04 System file. The file is excluded
from normal directory searches.

08 The entry contains the volume label
in the first 11 bytes. The entry
contains no other usable information
(except date and time of creation),
and may exist only in the root
directory.

10 The entry defines a subdirectory,
and is excluded from normal
directory searches.

20 Archive bit. The bit is set to "on"
whenever the file has been written
to and closed.

RESERVED.

Note: The system files (IO.SYS and
MSDOS.SYS) are marked as read-only,
hidden, and system files. Files can
be marked hidden when they are created.
Also, the read-only, hidden, system,
and archive attributes may be changed
through the Get/Set File Attributes
system call (Function Request 43H).

Time the file was created or last updated.
The hour, minutes, and seconds are mapped
into two bytes as follows (bit 7 on left,
o on right):

Offset 17H
I H I H I H

Offset 16H
IMIM 1M

where:

H H

S S

M M M

S S S

H is the binary number of hours (0-23)
M is the binary number of minutes (0-59)
S is the binary number of two-second

increments

MS-DOS TECHNICAL INFORMATION

18-19

lA-lB

Date the file was created or
The year, month, and day are
as follows:

Offset 19H
I y I y I y y y y

Offset 18H
I M I M I M D D D

where:

Y is 0-119 (1980-2099)
M is 1-12
D is 1-31

y

D

last updated.
mapped into two

M

D

Starting cluster; the cluster number
of the first cluster in the file.

Note that the first cluster for data space
on all disks is cluster 002.

The cluster number is stored with the
least significant byte first.

Note

Page 3-5

bytes

Refer to Sections 3.5.1 and 3.5.2 for details about
converting cluster numbers to logical sector numbers.

lC-lF File size in bytes. The first word of this
four-byte field is the low-order part of
the size.

3.5 FILE ALLOCATION TABLE (FAT)

The following information is included for system programmers
who wish to write installable device drivers. This section
explains how MS-DOS uses the File Allocation Table to
convert the clusters of a file to logical sector numbers to
allocate disk space for a file. The driver is then
responsible for locating the logical sector on disk.
Programs should use the MS-DOS file management function
calls for accessing files; programs that access the FAT are
not guaranteed to be upwardly-compatible with future
releases of MS-DOS.

The File Allocation Table is an array of 12-bit entries (1.5
bytes) for each cluster on the disk. For disks containing

MS-DOS TECHNICAL INFORMATION Page 3-6

more than 4085 (note that 4085 is the correct number)
clusters, a 16-bit FAT entry is used.

The first byte may be used by the device driver as a FAT ID
byte for media determination. The first two FAT entries are
reserved.

The third FAT entry, which starts at byte offset 4, begins
the mapping of the data area (cluster 002). Files in the
data area are not always written sequentially on the disk.
The data area is allocated one cluster at a time, skipping
over clusters already allocated. The first free cluster
following the last cluster allocated for that file will be
the next cluster allocated, regardless of its physical
location on the disk. This permits the most efficient
utilization of disk space because clusters made available by
erasing files can be allocated for new files.

Each FAT entry contains three or four hexadecimal characters
depending on whether it is a 12- or 16-bit entry:

(0)000

(F)FF7

If the cluster is unused and available.

The cluster has a bad sector in it if this
cluster is not part of any cluster chain.
MS-DOS will not allocate such a cluster.
Chkdsk counts the number of bad clusters
for its report. These bad clusters are
not part of any allocation chain.

(F)FF8-FFF Indicates the last cluster of a file.

(X)XXX Any other characters that are the cluster
number of the next cluster in the file.
The cluster number of the first cluster
in the file is kept in the file's directory
entry.

The File Allocation Table always begins on the first sector
after the reserved sectors. If the FAT is larger than one
sector, the sectors are contiguous. Two copies of the FAT
are usually written for data integrity. The FAT is read
into one of the MS-DOS buffers whenever needed (open, read,
write, etc.). For performance reasons, this buffer is given
a high priority to keep it in memory as long as possible.

3.5.1 How To Use the FAT (12-bit FAT Entries)

Use the directory entry to find the starting cluster of the
file. Next, to locate each subsequent cluster of the file:

MS-DOS TECHNICAL INFORMATION Page 3-7

1. Multiply the cluster number just used by 1.5 (each
FAT entry is 1.5 bytes long).

2. The whole part of the product is an offset into the
FAT, pointing to the entry that maps the cluster
just used. That entry contains the cluster number
of the next cluster of the file.

3. Use a MOV instruction to move the word at the
calculated FAT offset into a register.

4. If the last cluster used was an even number, keep
the low-order 12 bits of the register by ANDing it
with FFFi otherwise, keep the high-order 12 bits
by shifting the register right 4 bits with a SHR
instruction.

5. If the resultant 12 bits are FF8H-FFFH, the file
contains no more clusters. Otherwise, the 12 bits
contain the cluster number of the next cluster in
the file.

To convert the cluster to a logical sector number (relative
sector, such as that used by Interrupts 25H and 2GH and by
DEBUG):

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors per
cluster.

3. Add to this result the logical sector number of the
beginning of the data area.

3.5.2 How To Use The FAT (16-bit FAT Entries)

Use the directory entry to get the starting cluster of the
file. To find the next file cluster:

1. Multiply the cluster number used by 2 (each FAT
entry is 2 bytes).

MS-DOS TECHNICAL INFORMATION Page 3-8

2. Use a MOV WORD instruction to move the word at the
calculated FAT offset into a register.

3. If the resultant 16 bits are FFF8-FFFFH, then there
are no more clusters in the file. Otherwise, the
16 bits contain the cluster number of the next
cluster at the file.

3.6 MS-DOS STANDARD DISK FORMATS

On an MS-DOS disk, it is recommended that the clusters be
arranged on disk to minimize head movement for multi-sided
media. All of the space on a track (or cylinder) is
allocated before moving on to the next track. This is
accomplished by uSlng the sequential sectors on the
lowest-numbered head, then all the sectors on the next head,
and so on, until all sectors on all heads of the track are
used. The next sector to be used will be sector 1 on head 0
of the next track.

The formats in Table 3.1 are considered to be standard and
should be readable if at all possible.

MS-DOS TECHNICAL INFORMATION Page 3-9

Table 3.1 MS-DOS Standard Disk Formats

Disk Size (in inches) 3-1/2 or 5-1/4 5-1/4 8

Number of tracks 80 80 80 80 40 40 40 40 80 77 77 77

3 byte JUMP
8 byte name
WORD bytes/sector 00 00 00 00 00 00 00 00 00 80 80 00

02 02 02 02 02 02 02 02 02 00 00 04
BYTE cluster size 02 02 02 02 01 02 01 02 01 04 04 01
WORD reserved sectors 01 01 01 01 01 01 01 01 01 01 04 01

00 00 00 00 00 00 00 00 00 00 00 00
BYTE * FATs 02 02 02 02 02 02 02 02 02 02 02 02
WORD * Dir entries 70 70 70 70 40 70 40 70 EO 44 44 CO

00 00 00 00 00 00 00 00 00 00 00 00
WORD * sectors DO AO 80 00 68 DO 40 80 60 D2 D2 68

02 05 02 05 01 02 01 02 09 07 07 02
BYTE media F8 F9 FA FB FC FD FE FF F9 FE FD FE
WORD sectors/FAT 02 03 01 02 02 02 01 01 07 06 06 02

00 00 00 00 00 00 00 00 00 00 00 00
WORD sectors/track 09 09 08 08 09 09 08 08 OF lA lA 08

00 00 00 00 00 00 00 00 00 00 00 00
WORD * heads 01 02 01 02 01 02 01 02 02 01 01 02

00 00 00 00 00 00 00 00 00 00 00 00
WORD hidden sectors 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00

Chapter 4
MS-DOS Control Blocks
and Work Areas

4.1 Typical MS-DOS Memory Map 4-1

4.2 MS-DOS Program Segment 4-2

CHAPTER 4

MS-DOS CONTROL BLOCKS AND WORK AREAS

4.1 TYPICAL MS-DOS MEMORY MAP

Interrupt vector table

Optional extra space (used by IBM for ROM data area)

IO.SYS - MS-DOS interface to hardware

MSDOS.SYS - MS-DOS interrupt handlers, service routines
(In~errupt 2lH functions)

MS-DOS buffers, control areas, and installed device
drivers

Resident part of COMMAND.COM - Interrupt handlers for
Interrupts 22H (Terminate Process Exit Address), 23H
(Control-C Handler Address), 24H (Critical Error
Handler Address) and code to reload the transient part

External command or utility - (.COM or .EXE file)

User stack for .COM files (256 bytes)

Transient part of COMMAND.COM Command interpreter,
internal commands, batch processor

User memory is allocated from the lowest end of available
memory that will meet the allocation request.

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-2

4.2 MS-DOS PROGRAM SEGMENT

When an external command is typed, or when you execute a
program through the EXEC system call, MS-DOS determines the
lowest available free memory address to use as the start of
the program. This area is called the Program Segment.

The first 256 bytes of the Program Segment are set up by the
EXEC system call for the program being loaded into memory.
The program is then loaded following this block. An .EXE
file with minalloc and maxalloc both set to zero is loaded
as high as possible.

At offset 0 within the Program Segment,
Program Segment Prefix control block.
from EXEC by one of five methods:

MS-DOS builds the
The program returns

1. By issuing an Interrupt 21H with AH=4CH

2. By issuing an Interrupt 21H with AH=31H (Keep
Process)

3. A long jump to offset 0 in the Program Segment
Prefix

4. By issuing an Interrupt 20H with Cs:o pointing at
the PSP

5. By issuing an Interrupt 21H with register AH=O and
with Cs:o pointing at the PSP.

Note

Methods 1 and 2 are preferred for both functionality
and best operation in future versions of MS-DOS.

All five methods result in transferring control to the
program that issued the EXEC. Using method 1 or 2 allows a
completion code to be returned. During this returning
process, Interrupts 22H, 23H, and 24H (Terminate Process
Exit Address, Control-C Handler Address, and Critical Error
Handler Address) addresses are restored from the values
saved in the Program Segment Prefix of the terminating
program. Control is then given to the terminate address.
If this is a program returning to COMMAND.COM, control
transfers to its resident portion. If a batch file was in
process, it is continued; otherwise, COMMAND.COM performs a
checksum on the transient part, reloads it if necessary,
then issues the system prompt and waits for you to type the
next command.

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-3

When a program receives control, the following conditions
are in effect:

For all programs:

The segment address of the
contained at offset 2CH
Prefix.

passed environment is
in the Program Segment

The environment is a series of ASCII strings
(totaling less than 32K) in the form:

NAME=parameter

Each string is terminated by a byte of zeros, and
the set of strings is terminated by another byte of
zeros.

Following the last byte of zeros is a set of
initial arguments passed to a program that contains
a word count followed by an ASCIZ string. If the
file is found in the current directory, the ASCIZ
string contains the drive and pathname of the
executable program as passed to the EXEC function
call. If the file is found in the path, the
filename is concatenated with the information in
the path. Programs may use this area to determine
where the program was loaded.

The environment built by the command processor
contains at least a COMSPEC= string (the parameters
on COMSPEC define the path used by MS-DOS to locate
COMMAND.COM on disk). The last Path and prompt
commands issued will also be in the environment,
along with any environment strings defined with the
MS-DOS Set command.

The environment that is passed is a copy of the
invoking process environment. If your application
uses a "keep process" concept, you should be aware
that the copy of the environment passed to you is
static. That is, it will not change even if
subsequent Set, Path, or Prompt commands are
issued. Conversely, any modification of the passed
environment by the application will not be
reflected in the parent process environment. For
instance, a program cannot change the MS-DOS
environment values as the Set command does.

The Disk Transfer Address (DTA) is set to 80H
(default DTA in the Program Segment Prefix). At
5CH and 6CH in the Program Segment Prefix are file
control blocks. These are formatted from the first
two parameters, typed when the command was entered.

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-4

If either parameter contained a pathname, then the
corresponding FCB contains only the valid drive
number. The filename field will not be valid.

An unformatted parameter area at BIH contains all
the characters typed after the command (including
leading and imbedded delimiters), with the byte at
BOH set to the number of characters. If the <, >,
or parameters were typed on the command line, they
(and the filenames associated with them) will not
appear in this area; redirection of standard input
and output is transparent to applications.

Offset 6 (one word) contains the number of bytes
available in the segment.

Register AX indicates whether or not the drive
specifiers (entered with the first two parameters)
are valid, as follows:

AL=FF if the first parameter contained an
invalid drive specifier (otherwise AL=OO)

AH=FF if the second parameter contained an
invalid drive specifier (otherwise AH=OO)

Offset 2 (one word) contains the segment address of
the first byte of unavailable memory. Programs
must not modify addresses beyond this point unless
they were obtained by allocating memory via the
Allocate Memory system call (Function Request 4BH).

For Executable (.EXE) programs:

DS and ES registers are set to point to the Program
Segment Prefix.

CS,IP,SS, and SP registers are set to the values
set by MS-LINK in the .EXE image.

For Executable (.COM) programs:

All four segment registers contain the segment
address of the initial allocation block that starts
with the Program Segment Prefix control block.

All of user memory is allocated to the program. If
the program invokes another program through
Function Request 4BH, it must first free some
memory through the Set Block (4AH) function call,
to provide space for the program being executed.

The Instruction Pointer (IP) is set to IOOH.

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-5

The Stack Pointer register is set to the end of the
program's segment. The segment size at offset 6 is
reduced by lOOH to allow for a stack of that size.

A word of zeros is placed on top of the stack.
This is to allow a user program to exit to
COMMAND.COM by doing a RET instruction last. This
assumes, however, that the user has maintained his
stack and code segments.

Figure 4.1 illustrates the format of the Program Segment
Prefix. All offsets are in hexadecimal.

(Offsets in Hex)
o

End of Reser- Long Offset add
INT 20H alloc. ved call Function

block (5 bytes) dispatcher
8

Segment addr. Terminate address Control-C exit
Function (IP, CS) address (IP)
dispatcher

10
Control-C Hard error exit address
exit (IP, CS)
address (CS)

Used by MS-DOS

5CH

Formatted Parameter Area 1 formatted as standard
unopened FCB 6CH

Formatted Parameter Area 2 formatted as standard
unopened FCB (overlaid if FCB at 5CH is opened)

80
Unformatted Parameter Area

(default Disk Transfer Area)
Initially contains command invocation line.

100
Figure 4.1 Program Segment Prefix

MS-DOS CONTROL BLOCKS AND WORK AREAS Page 4-6

Important

Programs must not alter any part of the Program Segment
Prefix below offset SCH.

Chapter 5
.EXE File Structure and Loading

CHAPTER 5

.EXE FILE STROCTURE AND LOADING

Note

This chapter describes .EXE file structure and loading
procedures for systems that use a version of MS-DOS
that is lower than 2.0. For MS-DOS 2.0 and higher, use
Function Request 4BOOH, Load and Execute a Program, to
load (or load and execute) an .EXE file.

The .EXE files produced by the Microsoft(R) Linker (MS-LINK)
consist of two parts:

Control and relocation information

The load module

The control and relocation information is at
of the file in an area called the header.
immediately follows the header.

the beginning
The load module

The header is formatted as follows.
in hexadec imal •)

(Note that offsets are

Offset

00-01

02-03

04-05

06-07

08-09

Contents

Must contain 4DH, SAH.

Number of bytes contained in last page;
this is useful in reading overlays.

Size of the file in 512-byte pages,
including the header.

Number of relocation entries in table.

Size of the header in 16-byte paragraphs.

.EXE FILE STRUCTURE AND LOADING Page 5-2

OA-OB

OC-OD

OE-OF

10-11

12-13

14-15

16-17

18-19

lA-lB

This is used to locate the beginning of
the load module in the file.

Minimum number of 16-byte paragraphs
required above the end of the loaded
program.

Maximum number of 16-byte paragraphs
required above the end of the loaded
program. If both minalloc and max
alloc are 0, then the program will
be loaded as high as possible.

Initial value to be loaded into stack
segment before starting program exe
cution. This must be adjusted by
relocation.

Value to be loaded into the SP register
before starting program execution.

Negative sum of all the words in the
file.

Initial value to be loaded into the IP
register before starting program
execution.

Initial value to be loaded into the CS
register before starting program
execution. This must be adjusted by
relocation.

Relative byte offset from beginning of
run file to relocation table.

The number of the overlay as generated by
MS-LINK.

The relocation table follows the formatted area described
above. This table consists of a variable number of
relocation items. Each relocation item contains two fields:
a two-byte offset value, followed by a two-byte segment
value. These two fields contain the offset into the load
module of a word which requires modification before the
module is given control. The following steps describe this
process:

1. The formatted part of the header is read into
memory. Its size is IBH.

.EXE FILE STRUCTURE AND LOADING Page 5-3

2. A portion of memory is allocated depending on the
size of the load module and the allocation numbers
(OA-OB and OC-OD). MS-DOS attempts to allocate
FFFFH paragraphs. This will always fail, returning
the size of the largest free block. If this block
is smaller than minalloc and loadsize, then there
will be no memory error. If this block is larger
than maxalloc and loadsize, MS-DOS will allocate
(maxalloc + loadsize). Otherwise, MS-DOS will
allocate the largest free block of memory.

3. A Program Segment Prefix is built in the lowest
part of the allocated memory.

4. The load module size is calculated by subtracting
the header size from the file size. Offsets 04-05
and 08-09 can be used for this calculation. The
actual size is downward-adjusted based on the
contents of offsets 02-03. Based on the setting of
the high/low loader switch, an appropriate segment
is determined at which to load the load module.
This segment is called the start segment.

5. The load module is read into memory beginning with
the start segment.

6. The relocation table items are read into a work
area.

7. Each relocation table item segment value is added
to the start segment value. This calculated
segment, plus the relocation item offset value,
points to a word in the load module to which is
added the start segment value. The result is
placed back into the word in the load module.

8. Once all relocation items have been processed, the
SS and SP registers are set from the values in the
header. Then, the start segment value is added to
SSe The ES and DS registers are set to the segment
address of the Program Segment Prefix. The start
segment value is added to the header CS register
value. The result, along with the header IP value,
is the initial CS:IP to transfer to before starting
execution of the program.

Chapter 6
Intel Relocatable Object Module Formats

6.1 Introduction 6-1

6.2 Definition of Terms 6-2

6.3 Module Identification and Attributes 6-4

6.4 Segment Definition 6-4

6.5 Segmen t Addressing 6-5

6.6 Symbol Definition 6-6

6.7 Indices 6-7

6.8 Conceptual Framework for Fixups 6-8

6.9 Self-Relative Fixups 6-13

6.10 Segment-Relative Fixups 6-14

6.11 Record Order 6-14

6.12 Introduction to the Record Formats 6-16

6.13 Numeric List of Record Types 6-47

6.14 Microsoft Type Representations for Communal
Variables 6-48

CHAPTER 6

INTEL RELOCATABLE OBJECT MODULE FORMATS

6.1 INTRODUCTION

This chapter presents the object record formats that define
the re10catable object language for the 8086 microprocessor.
The 8086 object language is the output of all language
translators that have the 8086 as the target processor and
are to be linked using the Microsoft Linker. The 8086
object language is input and output for object language
processors such as linkers and librarians.

The 8086 object module formats permit you to specify
relocatable memory images that may be linked together.
Capabilities are provided that allow efficient use of the
memory mapping facilities of the 8086 microprocessor.

The following table lists the record formats that are
supported by Microsoft. These record formats are described
in this chapter. Record formats that are preceded by an
asterisk (*) deviate from the Intel(R) specification.

INTEL RELOCATABLE OBJECT MODULE FORMATS

Table 6.1 Object Module Record Formats

T-MODULE HEADER RECORD
LIST OF NAMES RECORD

*SEGMENT DEFINITION RECORD
*GROUP DEFINITION RECORD
*TYPE DEFINITION RECORD

Symbol Definition Records
*PUBLIC NAMES DEFINITION RECORD
*EXTERNAL NAMES DEFINITION RECORD
*LINE NUMBERS RECORD

Data Records
LOGICAL ENUMERATED DATA RECORD
LOGICAL ITERATED DATA RECORD

FIXUP RECORD
*MODULE END RECORD

COMMENT RECORD

6.2 DEFINITION OF TERMS

Page 6-2

The following terms are fundamental to the 8086 relocation
and linkage.

OMF - Object Module Formats.

MAS - Memory Address Space. The 8086 MAS is 1 megabyte
(1,048,576). Note that the MAS is distinguished from actual
memory, which may occupy only a portion of the MAS.

MODULE - an "inseparable" collection of object code and
other information produced by a translator.

T-MODULE - A module created by a translator, such as Pascal
or FORTRAN.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-3

The following restrictions apply to object modules:

1. Every module should have a name. Translators will
provide names for T-modules, providing a default
name (possibly the filename or a null name) if
neither source code nor user specifies otherwise.

2. Every T-module in a collection of linked modules
must have a different name, so that symbolic
debugging systems can distinguish the various line
numbers and local symbols. This restriction is not
required by the Linker, and is not enforced by it.

FRAME - A contiguous region of 64K of MAS, beginning on a
paragraph boundary (i.e., on a multiple of 16 bytes). This
concept is useful because the content of the four 8086
segment registers defines four (possibly overlapping)
FRAMEs; no 16-bit address in the 8086 code can access a
memory location outside of the current four FRAMEs.

LSEG - Logical Segment - A contiguous region of memory whose
contents are determined at translation time (except for
address-binding). Neither size nor location in MAS are
necessarily determined at translation time: size, although
partially fixed, may not be final because the LSEG may be
combined at LINK time with other LSEGs, forming a single
LSEG. An LSEG must not be larger than 64K, so that it can
fit in a FRAME. This means that any byte in an LSEG may be
addressed by a l6-bit offset from the base of a FRAME
covering the LSEG.

PSEG - Physical Segment - This term is equivalent to FRAME.
Some people prefer "PSEG" to "FRAME" because the terms
"PSEG" and "LSEG" reflect the "physical" and "logical"
nature of the underlying segments.

FRAME NUMBER - Every FRAME begins on a paragraph boundary.
The "paragraphs" in MAS can be numbered from 0 through
65535. These numbers, each of which defines a FRAME, are
called FRAME NUMBERS.

PARAGRAPH NUMBER - This term is equivalent to FRAME NUMBER.

PSEG NUMBER - This term is equivalent to FRAME NUMBER.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-4

GROUP - A collection of LSEGs defined at translation time,
whose final locations in MAS have been constrained such that
there will be at least one FRAME that covers (contains)
every LSEG in the collection.

The notation "Gr A(X,Y,Z,)" means that LSEGs X, Y and Z form
a group whose name is A. The fact that x, Y and Z are all
LSEGs in the same group does not imply any ordering of!L !
and ~ in MAS, nor does it imply any contiguity between !L !
and Z.

The Microsoft Linker does not currently allow an LSEG to be
a member of more than one group. The Linker will ignore all
attempts to place an LSEG in more than one group.

CANONIC - Any location in MAS is contained in exactly 4096
distinct FRAMES; but one of these FRAMEs can be
distinguished because it has a higher FRAME NUMBER. This
distinguished FRAME is called the canonic FRAME of the
location. In other words, the canonic frame of a given byte
is the frame so chosen that the byte's offset from that
frame lies in the range 0 to 15 (decimal). Thus, if FOO is
a symbol defining a memory location, one may speak of the
"canonic FRAME of FOO", or of "FOO's canonic FRAME". By
extension, if S is any set of memory locations, then there
exists a unique FRAME which has the lowest FRAME NUMBER in
the set of canonic FRAMEs of the locations in S. This
unique FRAME is called the canonic FRAME of the set S.
Thus, we may speak of the canonic FRAME of an LSEG or of a
group of LSEGs.

SEGMENT NAME LSEGs are assigned segment names at
translation time. These names serve two purposes:

1. They playa role at LINK time in determining which
LSEGs are combined with other LSEGs.

2. They are used in assembly source code to specify
groups.

CLASS NAME - LSEGs may optionally be assigned Class Names at
translation time. Classes define a partition on LSEGs: two
LSEGs are in the same class if they have the same Class
Name.

The Microsoft Linker applies the following semantics to
class names. The class name "CODE" or any class name whose
suffix is "CODE" implies that all segments of said class

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-5

contain only code and may be considered read-only. Such
segments may be overlayed if the user specifies the module
containing the segment as part of an overlay.

OVERLAY NAME - LSEGs may optionally be assigned an overlay
name. The overlay name of an LSEG is ignored by MS-LINK
(version 2.40 and later versions), but it is used by Intel
Relocation and Linkage products.

COMPLETE NAME - The complete name of an LSEG consists of the
Segment Name, Class Name, and Overlay Name. LSEGs from
different modules will be combined if their Complete Names
are identical.

6.3 MODULE IDENTIFICATION AND ATTRIBUTES

A module header record is always the- first record in a
module. It provides a module name.

In addition to a name, a module may have the attribute of
being a main program as well as having a specified starting
address. When linking multiple modules together, only one
module with the main attribute should be given.

In summary, modules mayor may not be main and mayor may
not have a starting address.

6.4 SEGMENT DEFINITION

A module is a collection of object code defined by a
sequence of records produced by a translator. The object
code represents contiguous regions of memory whose contents
are determined at translation time. These regions are
called LOGICAL SEGMENTS (LSEGs). A module defines the
attributes of each LSEG. The SEGMENT DEFINITION RECORD
~EGDEF} is the vehicle by which all LSEG information (name,
length, memory alignment, etc.) is maintained. The LSEG
information is required when multiple LSEGs are combined and
when segment addressability (See Section 6.5, "Segment
Addressing") is established. The SEGDEF records are
required to follow the first header record.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-6

6.5 SEGMENT ADDRESSING

The 8086 addressing mechanism provides segment base
registers from which a 64K-byte region of memory, called a
FRAME, may be addressed. There is one code segment base
register (CS), two data segment base registers (DS, ES), and
one stack segment base register (SS).

The
far
base
the
code

possible number of LSEGs that may make up a memory image
exceeds the number of available base registers. Thus,
registers may require frequent loading. This would be
case in a modular program with many small data and/or
LSEGs.

Since such frequent loading of base registers is
undesirable, it is a good strategy to collect many small
LSEGs together into a single unit that will fit in one
memory frame so that all the LSEGs may be addressed using
the same base register value. This addressable unit is a
GROUP and has been defined earlier in Section 6.2,
"Definition of Terms."

To allow addressability of objects within a GROUP to be
established, each GROUP must be explicitly defined in the
module. The GROUP DEFINITION RECORD (GRPDEF) provides a
list of constituent segments either by segment name or by
segment attribute such as "the segment defining symbol FOO"
or "the segments with class name ROM."

The GRPDEF records within a module must follow all SEGDEF
records as GRPDEF records may reference SEGDEF records in
defining a GROUP. The GRPDEF records must also precede all
other records except header records, as the Linker must
process them first.

6.6 SYMBOL DEFINITION

MS-LINK supports three different types of records that fall
into the class of symbol definition records. The two most
important types are PUBLIC NAMES DEFINITION RECORDs
(PUBDEFs) and EXTERNAL NAMES DEFINITION RECORDS (EXTDEFs).
These types are used to define globally visible procedures
and data items and to resolve external references. In
addition, TYPDEF records are used by MS-LINK for the
allocation of communal variables (see Section 6.14
"Microsoft Type Representations for Communal Variables").

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-7

6.7 INDICES

"Index" fields occur throughout this document. An index is
an integer that selects some particular item from a
collection of such items. (List of examples: NAME INDEX,
SEGMENT INDEX, GROUP INDEX, EXTERNAL INDEX, TYPE INDEX.)

Note

An index is normally a positive number. The index
value zero is reserved, and may carry a special meaning
dependent upon the type of index (e.g., a Segment Index
of zero specifies the "Unnamed," absolute pseudo
segment; a Type Index of zero specifies the "Untyped
type", which is different from "Decline to state").

In general, indices must assume values quite large (that is,
much larger than 255). Nevertheless, a great number of
object files will contain no indices with values greater
than 50 or 100. Therefore, indices will be encoded in one
or two bytes, as required.

The high-order (left-most) bit of the first (and possibly
the only) byte determines whether the index occupies one
byte or two. If the bit is 0, then the index is a number
between 0 and 127, occupying one byte. If the bit is 1,
then the index is a number between 0 and 32K-l, occupying
two bytes, and is determined as follows: the low-order 8
bits are in the second byte, and the high-order 7 bits are
in the first byte.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-8

6.8 CONCEPTUAL FRAMEWORK FOR FIXUPS

A "fixup" is some modification to object code, requested by
a translator, performed by the Linker, achieving address
binding.

Note

This definition of "fixup" accurately represents the
viewpoint maintained by the Linker. Nevertheless, the
Linker can be used to achieve modifications of object
code (i.e., "fixups") that do not conform to this
definition. For example, the binding of code to either
hardware floating point or software floating point
subroutines is a modification to an operation code,
where the operation code is treated as if it were an
address. The previous definition of "fixup" is not
intended to disallow or disparage object code
modifications.

8086 translators specify a fixup by giving four data:

1. The place and type of a LOCATION to be fixed up.

2. One of two possible fixup MODEs.

3. A TARGET, which is a memory address to which
LOCATION must refer.

4. A FRAME defining a context within which the
reference takes place.

LOCATION. - There are 5 types of LOCATION: a POINTER, a
BASE, an OFFSET, a HIBYTE, and a LOBYTE.

The vertical alignment of the following figure illustrates
four points. (Remember that the high-order byte of a word
in 8086 memory is the byte with the higher address.)

1. A BASE is the high-order word of a pointer (and the
Linker doesn't care if the low-order word of the
pointer is present or not).

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-9

2. An OFFSET is the low-order word of a pointer (and
the Linker doesn't care if the high-order word
follows or not).

3. A HIBYTE is the high-order half of an OFFSET (and
the Linker doesn't care if the low-order half
precedes or not).

4. A LOBYTE is the low-order half of an OFFSET (and
the Linker doesn't care if the high-order half
follows or not).

Pointer:

Base:

Offset:

Hibyte: D
Lobyte: D

Figure 6.1 LOCATION Types

A LOCATION is specified by two data: (1) the LOCATION type,
and (2) where the LOCATION is. The first is specified by
the LOC subfield of the LOCAT field of the FIXUP record;
the second is specified by the DATA RECORD OFFSET subfield
of the LOCAT field of the FIXUP record.

MODE The Linker supports two kinds of fixups:
"self-relative" and "segment-relative."

Self-relative fixups support the 8- and 16-bit offsets that
are used in the CALL, JUMP and SHORT-JUMP instructions.
Segment-relative fixups support all other addressing modes
of the 8086.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-10

TARGET - The TARGET is the location in MAS being referenced.
(More explicitly, the TARGET may be considered to be the
lowest byte in the object being referenced.) A TARGET is
specified in one of eight ways. There are four "primary"
ways, and four "secondary" ways. Each primary way of
specifying a TARGET uses two kinds of data: an
INDEX-or-FRAME-NUMBER 'X', and a displacement 'D'.

(TO) X is a SEGMENT INDEX. The TARGET is the Dth
byte in the LSEG identified by the INDEX.

(Tl) X is a GROUP INDEX. The TARGET is the Dth
byte in the LSEG identified by the INDEX.

(T2) X is an EXTERNAL INDEX. The TARGET is the Dth
byte following the byte whose address is
(eventually) given by the External Name identified
by the INDEX.

(T3) X is a FRAME NUMBER. The TARGET is the Dth
byte in the FRAME identified by the FRAME NUMBER
(i.e., the address of TARGET is (X*16)+D).

Each secondary way of specifying a TARGET uses only one data
item: the INDEX-or-FRAME-NUMBER X. An implicit
displacement equal to zero is assumed.

(T4) X is a SEGMENT INDEX. The TARGET is the Oth
(first) byte in the LSEG identified by the INDEX.

(TS) X is a GROUP INDEX. The TARGET is the Oth
(first) byte in the LSEG in the specified group
that is eventually LOCATEd lowest in MAS.

(T6) X is an EXTERNAL INDEX. The TARGET is the
byte whose address is the External Name identified
by the INDEX.

(T7) X is a FRAME NUMBER. The TARGET is the byte
whose 20-bit address is (X*16).

Note

The Microsoft Linker does not support methods T3 and T7.

The following nomenclature is used to describe a TARGET:

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-11

TARGET: SI«segment name», <displacement> [TO]

TARGET: GI«group name», <displacement> [Tl]

TARGET: EI«symbol name», <displacement> [T2]

TARGET: SI «segment name» [T4]

TARGET: GI «group name» [TS]

TARGET: EI «symbol name» [T6]

The following examples illustrate how this notation is used:

TARGET: SI(CODE) , 1024

TARGET: GI(DATAAREA)

TARGET: EI(SIN)

TARGET: EI(PAYSCHEDULE), 24

The l02Sth byte in
the segment "CODE".

The location in MAS of
a group called
"DATAAREA" •

The address of the
external subroutine
"SIN".

The 24th byte
following the location
of an EXTERNAL data
structure called
"PAYSCHEDULE".

FRAME - Every 8086 memory reference is to a location
contained within some FRAME; where the FRAME is designated
by the content of some segment register. For the Linker to
form a correct, usable memory reference, it must know what
the TARGET is, and to which FRAME the reference is being
made. Thus, every fixup specifies such a FRAME, in one of
six ways. Some ways use data, X, which is in
INDEX-or-FRAME-NUMBER, as above. Other ways require no
data.

The six ways of specifying frames are:

(FO) X is a SEGMENT INDEX. The FRAME is the
canonic FRAME of the LSEG defined by the INDEX.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-12

(Fl) X is a GROUP INDEX. The FRAME is the canonic
FRAME defined by the group (i.e., the canonic FRAME
defined by the LSEG in the group that is eventually
LOCATEd lowest in MAS).

(F2) X is an EXTERNAL INDEX. The FRAME is
determined when the External Name's public
definition is found. There are three cases:

• (F2a) The symbol is defined relative to some
LSEG, and there is no associated GROUP. The
LSEGs canonic FRAME is specified.

• (F2b) The symbol is defined absolutely, without
reference to an LSEG, and there is no
associated GROUP. The FRAME is specified by
the FRAME NUMBER subfield of the PUBDEF record
that gives the symbol's definition.

• (F2c) Regardless of how the symbol is defined,
there is an associated GROUP. The canonic
FRAME of the GROUP is specified. (The group is
specified by the GROUP INDEX subfield of the
PUBDEF Record.)

(F3) X is a FRAME NUMBER (specifying the obvious
FRAME) •

(F4) No X. The FRAME is the canonic FRAME of the
LSEG containing LOCATION.

(FS) No X. The FRAME is determined by the TARGET.
There are four cases:

• (FSa) The TARGET specified a SEGMENT INDEX: in
this case, the FRAME is determined as in (FO).

• (FSb) The TARGET specified a GROUP INDEX: in
this case, the FRAME is determined as in (Fl).

• (FSc) The TARGET specified an EXTERNAL INDEX:
in this case, the FRAME is determined as in
(F2) •

• (FSd) The TARGET is specified with an
FRAME NUMBER: in this case the
determined as in (F3).

explicit
FRAME is

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-13

Note

The Microsoft Linker does not support frame methods
F2b, F3, and F5d.

Nomenclature describing FRAMEs is similar to the above
nomenclature for TARGETs.

FRAME: SI «segment name» [FO]

FRAME: GI «group name» [Fl]

FRAME: EI «symbol name» [F2]

FRAME: LOCATION [F4]

FRAME: TARGET [F5]

FRAME: NONE [F6]

For an 8086 memory reference, the FRAME specified by a
self-relative reference is usually the canonic FRAME of the
LSEG containing the LOCATION, and the FRAME specified by a
segment relative reference is the canonic FRAME of the LSEG
containing the TARGET.

6.9 SELF-RELATIVE FIXUPS

A self-relative fixup operates as follows: A memory address
is implicitly defined by LOCATION: namely the address of
the byte following LOCATION (because at the time of a
self-relative reference, the 8086 IP (Instruction Pointer)
is pointing to the byte following the reference).

For 8086 self-relative references, if either LOCATION or
TARGET are outside the specified FRAME, the Linker gives a
warning. Otherwise, there is a unique l6-bit displacement
which, when added to the address implicitly defined by
LOCATION, will yield the relative position of TARGET in the
FRAME.

If the LOCATION is an OFFSET, the displacement is added to
LOCATION modulo 65536: no errors are reported.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-14

If the LOCATION is a LOBYTE, the displacement must be within
the range {-128:127}, otherwise the Linker will give a
warning. The displacement is added to LOCATION modulo 256.

If the LOCATION is a BASE, POINTER, or HIBYTE, it is unclear
what the translator had in mind, and the action taken by the
Linker is undefined.

6.10 SEGMENT-RELATIVE PIXUPS

A segment-relative fixup operates in the following way: a
non-negative 16-bit number, FBVAL, is defined as the FRAME
NUMBER of the FRAME specified by the fixup, and a signed
20-bit number, FOVAL, is defined as the distance from the
base of the FRAME to the TARGET. If this signed 20-bit
number is less than 0 or greater than 65535, the Linker
reports an error. Otherwise, FBVAL and FOVAL are used to
fixup LOCATION in the following fashion:

1. If LOCATION is a POINTER, then FBVAL is added
(modulo 65536) to the high-order word of POINTER,
and FOVAL is added (modulo 65536) to the low-order
word of POINTER.

2. If LOCATION is a BASE, then FBVAL is added (modulo
65536) to the BASE; FOVAL is ignored.

3. If LOCATION is an OFFSET,
(modulo 65536) to the OFFSET;

then FOVAL is added
FBVAL is ignored.

4. If LOCATION is a HIBYTE, then (FOVAL/256) is added
(modulo 256) to the HIBYTE; FBVAL is ignored.
(The indicated division is "integer division",
i.e., the remainder is discarded.)

5. If LOCATION is a LOBYTE, then (FOVAL modulo 256) is
added (modulo 256) to the LOBYTE; FBVAL is
ignored.

6.11 RECORD ORDER

A object code file must contain a sequence of (one or more)
modules, or a library containing zero or more modules. A
module is defined as a collection of object code defined by
a sequence of object records. The following syntax shows
the valid orderings of records to form a module. In

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-15

addition, the given semantic rules provide information about
how to interpret the record sequence.

Note

The syntactic description language used below is
defined in WIRTH: CACM, November 1977, vol.i20, no.ill,
pp.i822-823. The character strings represented by
capital letters above are not literals but are
identifiers that are further defined in the section
describing the record formats.

object file

tmodule

component

data

debug_record

content def

thread def

data record

mod tail

tmodule

THEADR seg-grp {component} mod tail

{LNAMES} {SEGDEF} {TYPDEF I EXTDEF I GRPDEF}

data I debug_record

content def I thread def I
TYPDEF PUBDEF-I EXTDEF

LINNUM

data record {FIXUPP}

FIXUPP (containing only thread fields)

LIDATA I LEDATA

MODEND

The following rules apply:

1. A FIXUPP record always refers to the previous DATA
record.

2. All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF
records must precede all records that refer to
them.

3. COMENT records may appear anywhere in a file,
except as the first or last record in a file or
module, or within a contentdef.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-16

6.12 INTRODUCTION TO THE RECORD FORMATS

The following pages present diagrams of
schematic form. Here is a sample
illustrate the various conventions.

SAMPLE RECORD FORMAT
(SAMREC)

record
record

formats
format,

REC
TYP
xxH

RECORD
LENGTH

/ /f--.....,r---~ II :EJ
NAME NUMBER CRK

SUM

//1---+---1 "

-rpt

TITLE and OFFICIAL ABBREVIATION

in
to

At the top is the name of the record format described, with
an official abbreviation. To promote uniformity among
various programs, including translators and debuggers, the
abbreviation should be used in both code and documentation.
The record format abbreviation is always six letters.

The BOXES

Each format is drawn with boxes of two sizes. The narrow
boxes represent single bytes. The wide boxes represent two
bytes each. The wide boxes with three slashes in the top
and bottom represent a variable number of bytes, one or
more, depending upon content. The wide boxes with four
vertical bars in the top and bottom represent 4-byte fields.

RECTYP

The first byte in each record contains a value between 0 and
255, indicating which record type the record is.

RECORD LENGTH

The second field in each record contains the number of bytes
in the record, exclusive of the first two fields.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-17

NAME

Any field that indicates a "NAME" has the following internal
structure: the first byte contains a number between 0 and
127, inclusive, that indicates the number of remaining bytes
in the field. The remaining bytes are interpreted as a byte
string.

Most translators constrain the character set to be a subset
of the ASCII character set.

NUMBER

A 4-byte NUMBER field represents a 32-bit unsigned integer,
where the first 8 bits (least-significant) are stored in the
first byte (lowest address), the neKt 8 bits are stored in
the second byte, and so on.

REPEATED OR CONDITIONAL FIELDS

Some portions of a record format contain a field or a series
of fields that may be repeated one or more times. Such
portions are indicated by the "repeated" or "rpt" brackets
below the boxes.

Similarly, some portions of a record format are present only
if some given condition is true; these fields are indicated
by similar "conditional" or "cond" brackets below the boxes.

CHKSUM

The last field in each record is a check sum, which contains
the 2's complement of the sum (modulo 256) of all other
bytes in the record. Therefore, the sum (modulo 256) of all
bytes in the record equals O.

BIT FIELDS

Descriptions of contents of fields will sometimes be at the
bit level. Boxes with vertical lines drawn through them
represent bytes or words; the vertical lines indicate bit
boundaries; thus the byte represented below, has three
bit-fields of 3-, 1-, and 4-bits.

INTEL RELOCATABLE OBJECT MODULE FORMATS

REC
TYP
BOH

I I
3 1 4

T-MODULE HEADER RECORD
(THEADR)

///

RECORD T
LENGTH MODULE

NAME

, / '

Page 6-18

CHK
SUM

Every module output from a translator must have aT-MODULE
HEADER RECORD.

T-MODULE NAME

The T-MODULE NAME provides a name for the T-MODULE.

INTEL RELOCATABLE OBJECT MODULE FORMATS

LIST OF NAMES RECORD
-- (LNAMES)

r---~----------~--~/r----r----~

REC
TYP
96H

RECORD
LENGTH

NAME CHK
SUM

" /r-----t-------"

-rpt

This Record provides a list of names that
following SEGDEF and GRPDEF records
Segments, Classes and/or Groups.

may be
as the

Page 6-19

used
names

in
of

The ordering of LNAMES records within a module, together
with the ordering of names within each LNAMES Record,
induces an ordering on the names. Thus, these names are
considered to be numbered: 1, 2, 3, 4, .•• These numbers
are used as "Name Indices" in the Segment Name Index, Class
Name Index and Group Name Index fields of the SEGDEF and
GRPDEF Records.

NAME

This repeatable field provides a name, which may have zero
length.

INTEL RELOCATABLE OBJECT

SEGMENT

, /,

REC RECORD SEGMENT
TYP LENGTH ATTR
98H

, //

MODULE FORMATS

DEFINITION RECORD
(SEGDEF)

//

SEGMENT SEGMENT
LENGTH NAME

INDEX

//

Page 6-20

CRR
SUM

SEGMENT INDEX values 1 through 32767, which are used in
other record types to refer to specific LSEGs, are defined
implicitly by the sequence in which SEGDEF Records appear in
the object file.

SEG ATTR

The SEG ATTR field provides information on various
attributes of a segment, and has the following format:

ACB FRAME OFF
P NUMBER SET

---condi t ional-

The ACBP byte contains four numbers which are the A, C, B,
and P attribute specifications. This byte has the following
format:

A C

"A" (Alignment) is a 3-bit subfield that specifies the
alignment attribute of the LSEG. The semantics are defined
as follows:

A=O SEGDEF describes an absolute LSEG.
A=l SEGDEF describes a relocatable, byte-aligned LSEG.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-21

A=2 SEGDEF describes a relocatable, word-aligned LSEG.
A=3 SEGDEF describes a relocatable, paragraph-aligned

LSEG.
A=4 SEGGDEF describes a relocatable, page-aligned LSEG.

If A=O, the FRAME NUMBER and OFFSET fields will be present.
Using MS-LINK, absolute segments may be used for addressing
purposes only; for example, defining the starting address
of a ROM and defining symbolic names for addresses within
the ROM. MS-LINK will ignore any data specified as
belonging to an absolute LSEG.

"c" (Combination) is a 3-bit subfield that specifies the
combination attribute of the LSEG. Absolute segments (A=O)
must have combination zero (C=O). For relocatable segments,
the C field encodes a number (0,1,2,4,5,6 or 7) that
indicates how the segment can be combined. The
interpretation of this attribute is best given by
considering how two LSEGs are combined: Let X,Y be LSEGs,
and let Z be the LSEG resulting from the combination of X,Y.
Let LX and LY be the lengths of X and Y, and let MXY denote
the maximum of LX, LY. Let G be the length of any gap
required between the X- and Y-components of Z to accommodate
the alignment attribute of Y. Let LZ denote the length of
the (combined) LSEG Z; let dx (O<=dx<LX) be the offset in X
of a byte, and let dy similarly be the offset in Y of a
byte. The following table gives the length LZ of the
combined LSEG Z, and the offsets dx' and dy' in Z for the
bytes corresponding to dx in X and dy in Y. Intel defines
additionally alignment types 5 and 6 and also processes code
and data placed in segment with align-type.

Table 6.2 Combination Attribute Example

C LZ dx' dy'

2 LX+LY+G dx dy+LX+G "Public"
5 LX+LY+G dx dy+LX+G "Stack"
6 MXY dx dy "Common"

Table 6.2 has no lines for C=O, C=l, C=3, C=4 and C=7. c=o
indicates that the relocatable LSEG may not be combined;
C=l and C=3 are undefined. C=4 and C=7 are treated like
C=2. Cl, C4, and C7 all have different meanings according
to the Intel standard.

"B" (Big) is a I-bit subfield which, if 1,
the Segment Length is exactly 64K (65536).
SEGMENT LENGTH field must contain zero.

indicates that
In this case the

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-22

The "pH field must always be zero. The "pH field is the
"Page resident" field in Intel-Land.

The FRAME NUMBER and OFFSET fields (present only for
absolute segments, A=O) specify the placement in MAS of the
absolute segment. The range of OFFSET is constrained to be
between 0 and 15 inclusive. If a value larger than 15 is
desired for OFFSET, then an adjustment of the FRAME NUMBER
should be done.

SEGMENT LENGTH

The SEGMENT LENGTH field gives the length of the segment in
bytes. The length may be zero; if so, MS-LINK will not
delete the segment from the module. The SEGMENT LENGTH
field is only big enough to hold numbers from 0 to 64K-l
inclusive. The B attribute bit in the ACBP field (see SEG
ATTR section) must be used to give the segment a length of
64K.

SEGMENT NAME INDEX

The Segment Name is a name the programmer or translator
assigns to the segment. Examples: CODE, DATA, TAX DATA ,
MODULENAME CODE, STACK. This field provides the Segment
Name, by -indexing into the list of names provided by the
LNAMES Record(s).

CLASS NAME INDEX

The Class Name is a name the programmer or translator can
assign to a segment. If none is assigned, the name is null,
and has length O. The purpose of Class Names is to allow
the programmer to define a "handle" used in the ordering of
the LSEGs in MAS. Examples: RED, WHITE, BLUE; ROM
FASTRAM, DISPLAYRAM. This field provides the Class Name, by
indexing into the list of names provided by the LNAMES
Record(s) •

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-23

OVERLAY NAME INDEX

Note

This is ignored in MS-LINK versions 2.40 and later, but
supported in all earlier versions. However, semantics
differ from Intel semantics.

The Overlay Name is a name the translator and/or MS-LINK, at
the programmer's request, applies to a segment. The Overlay
Name, like the Class Name, may be null. This field provides
the Overlay Name, by indexing into the list of names
provided by the LNAMES Record(s).

Note

The "Complete Name" of a segment is a 3-component
entity comprising a Segment Name, a Class Name and an
Overlay Name. (The latter two components may be null.)

INTEL RELOCATABLE OBJECT MODULE FORMATS

REC
TYP
9AH

GROUP DEFINITION RECORD
(GRPDEF)

/1 /1/

RECORD GROUP GROUP
LENGTH NAME COMPONENT

INDEX DESCRIPTOR

/1/ II'

repeated-

GROUP NAME INDEX

Page 6-24

CHK
SUM

The Group Name is a name by which a collection of LSEGs may
be referenced. The important property of such a group is
that, when the LSEGs are eventually fixed in MAS, there must
exist some FRAME which "covers" every LSEG of the group.

The GROUP NAME INDEX
indexing into the
Record(s) .

field provides the Group Name, by
list of names provided by the LNAMES

GROUP COMPONENT DESCRIPTOR

Each GROUP COMPONENT DESCRIPTOR has the following format:

r----..,---II

SI SEGMENT
INDEX

(FFH)

The first byte of the DESCRIPTOR contains OFFH~ the
DESCRIPTOR contains one field, which is a SEGMENT INDEX that
selects the LSEG described by a preceding SEGDEF record.

Intel defines 4 other group descriptor types, each with its
own meaning. They are OFEH, OFDH, OFBH, and OFAH. The
Microsoft Linker will treat all of these values the same as
OFFH (i.e., it always expects OFFH followed by a segment
index, and it does not, in fact, check to see if the value
is actually OFF).

INTEL RELOCATABLE OBJECT MODULE FORMATS

REC
TYP
8EH

TYPE DEFINITION RECORD
(TYPDEF)

I 1/

RECORD NAME EIGHT
LENGTH (USUALLY LEAF

NULL) DESCRIPTOR

, I, 1/

repeated-

Page 6-25

CHK
SUM

The Microsoft Linker uses TYPDEF records only for communal
variable allocation. This is not Intel's intended purpose.
See Section 6.14, "Microsoft--;Y;ype Representations for
Communal Variables."

As many "EIGHT LEAF DESCRIPTOR" fields as necessary are used
to describe a branch. (Every such field except the last in
the record describes eight leaves; the last such field
describes from one to eight leaves.)

TYPE INDEX values 1 through 32767, which are contained in
other record types to associate object types with object
names, are defined implicitly by the sequence in which
TYPDEF records appear in the object file.

NAME

Use of this field is reserved. Translators should place a
single byte containing a in it (which is the representation
of a name of length zero).

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-26

EIGHT LEAF DESCRIPTOR

This field can describe up to eight Leaves.

/ /1------.

E LEAF
N DESCRIPTOR

//1------1

-rpt-----'

The EN field is a byte: the 8 bits, left to right, indicate
if the following 8 Leaves (left to right) are Easy (bit=O)
or Nice (bit=l).

The LEAF DESCRIPTOR field, which occurs between land 8
times, has one of the following formats:

~ to
128

o
129 to

64K-l

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-27

132

136

o
to

l6M-l

-2G-l
to

2G-l

The first format (single byte), containing a value between a
and 127, represents a Numeric Leaf whose value is the number
given.

The second format, with a
represents a Numeric Leaf.
following two bytes.

The third format, with a
represents a Numeric Leaf.
following three bytes.

leading byte containing 129,
The number is contained in the

leading byte containing 132,
The number is contained in the

The fourth format, with a leading byte containing 136,
represents a Signed Numeric Leaf. The number is contained
in the following four bytes, sign extended if necessary.

INTEL RELOCATABLE OBJECT MODULE FORMATS

PUBLIC NAMES DEFINITION RECORD
--(PUBDEF)

Page 6-28

r---~------~-~,J/rL--~----,

REC
TYP
90R

RECORD
LENGTH

PUBLIC
BASE

PUBLIC
NAME

PUBLIC
OFFSET

TYPE
INDEX

CHK
SUM

//r--+--~/r---~------~-7,/,rL--~----~

~--------repeated--------~

This record provides a list of one or more PUBLIC NAMEs;
for each one, three data are provided: (1) a base value for
the name, (2) the offset value of the name, and (3) the type
of entity represented by the name.

PUBLIC BASE

The PUBLIC BASE has the following format:

GROUP SEGMENT
INDEX INDEX

FRAME
NUMBER ~

/~----r-----I/ ,

/r---~--~/r---r-------~

conditional

The GROUP INDEX field has a format given earlier, and
provides a number between 0 and 32767 inclusive. A non-zero
GROUP INDEX associates a group with the public symbol, and
is used as described in Section 6.8, "Conceptual Framework
for Fixups," case (F2c). A zero GROUP INDEX indicates that
there is no associated group.

The SEGMENT INDEX field has a format given earlier, and
provides a number between 0 and 32767, inclusive.

A non-zero SEGMENT INDEX selects an LSEG. In this
location of each public symbol defined in the
taken as a non-negative displacement (given by
OFFSET field) from the first byte of the selected
the FRAME NUMBER field must be absent.

case, the
record is
a PUBLIC
LSEG, and

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-29

A SEGMENT INDEX of 0 (legal only if GROUP INDEX is also 0)
means that the location of each public symbol defined in the
record is taken as a displacement from the base of the FRAME
defined by the value in the FRAME NUMBER field.

The FRAME NUMBER is present if both the SEGMENT INDEX and
GROUP INDEX are zero.

A non-zero GROUP INDEX selects some group; this group is
taken as the "frame of reference" for references to all
public symbols defined in this record; that is, MS-LINK
will perform the following actions:

1. Any fixup of the form:

TARGET: EI{P)

FRAME: TARGET

(where "pH is a public symbol in this PUBDEF
record) will be converted by MS-LINK to a fixup of
the form:

TARGET: SI(L),d

FRAME: GI (G)

where "SI(L)" and "d" are provided by the SEGMENT
INDEX and PUBLIC OFFSET fields. (The "normal"
action would have the frame specifier in the new
fixup be the same as in the old fixup: FRAME:
TARGET.)

2. When the value of a public symbol, as defined by
the SEGMENT INDEX, PUBLIC OFFSET, and (optionally)
FRAME NUMBER fields, is converted to a
{base,offset} pair, the base part will be taken as
the base of the indicated group. If a non-negative
l6-bit offset cannot then complete the definition
of the public symbol's value, an error occurs.

A GROUP INDEX of zero selects no group. MS-LINK will not
alter the FRAME specification of fixups referencing the
symbol, and will take, as the base part of the absolute
value of the public symbol, the canonic frame of the segment
(either LSEG or PSEG) determined by the SEGMENT INDEX field.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-30

PUBLIC NAME

The PUBLIC NAME field gives the name of the object whose
location in MAS is made available to other modules. The
name must contain one or more characters.

PUBLIC OFFSET

The PUBLIC OFFSET field is a l6-bit value, which is either
the offset of the Public Symbol with respect to an LSEG (if
SEGMENT INDEX> 0), or the offset of the Public Symbol with
respect to the specified FRAME (if SEGMENT INDEX = 0).

TYPE INDEX

The TYPE INDEX field identifies a single preceding TYPDEF
(Type Definition) Record containing a descriptor for the
type of entity represented by the Public Symbol. This field
is ignored by the Linker.

INTEL RELOCATABLE OBJECT MODULE FORMATS

REC
TYP
8CH

EXTERNAL NAMES DEFINITION RECORD
--(-EXTDEF)

RECORD
LENGTH

EXTERNAL TYPE
NAME INDEX

Page 6-31

CHK
SUM

'/~/,'

~----~----------~--~// /,r---~----~

~------repeated--------~

This record provides a list of external names, and for each
name, the type of object it represents. MS-LINK will assign
to each External Name the value provided by an identical
Public Name (if such a name is found).

EXTERNAL NAME

This field provides the name, which must have non-zero
length, of an external object.

Inclusion of a Name in an External Names Record is an
implicit request that the object file be linked to a module
containing the same name declared as a Public Symbol. This
request obtains whether or not the External Name is
referenced within some FIXUPP Record in the module.

The ordering of EXTDEF Records within a module, together
with the ordering of External Names within each EXTDEF
Record, induces an ordering on the set of all External Names
requested by the module. Thus, External Names are
considered to be numbered 1, 2, 3, 4, These numbers
are used as "External Indices" in the TARGET DATUM and/or
FRAME DATUM fields of FIXUPP Records to refer to a
particular External Name.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-32

Note

8086 External Names are numbered positively: 1,2,3, •••
This is a change from 8080 External Names, which were
numbered starting from zero: 0,1,2, ..• This conforms
with other 8086 Indices (Segment Index, Type Index,
etc.) which use 0 as a default value with special
meaning.

External indices may not reference forward. For example, an
external definition record defining the kth object must
precede any record referring to that object with index k.

TYPE INDEX

This field identifies a single preceding TYPDEF (Type
Definition) record containing a descriptor for the type of
object named by the External Symbol.

The TYpE INDEX is used only in communal variable allocation
by the Microsoft Linker.

INTEL RELOCATABLE OBJECT MODULE FORMATS

REC
TYP
94H

RECORD
LENGTH

LINE NUMBERS RECORD
(LINNUM)

,I ,

LIN
NUMB

BAS

,I

E
ER
E

, ,

LINE
NUMBER

LINE
NUMBER
OFFSET

re eated p

Page 6-33

CHK
SUM

This record provides the means by which a translator may
pass the correspondence between a line number in source code
and the corresponding translated code.

LINE NUMBER BASE

The LINE NUMBER BASE has the following format:

~R~UP SEG~~NT
INDEX INDEX

(ig/nOred)

I---""----fl

The SEGMENT INDEX determines the location of the first byte
of code corresponding to some source line number.

LINE NUMBER

A line number between 0 and 32767, inclusive, is provided in
binary by this field. The high-order bit is reserved for
future use and must be zero.

LINE NUMBER OFFSET

The LINE NUMBER OFFSET field is a l6-bit value, which is the
offset of the line number with respect to an LSEG (if
SEGMENT INDEX > 0).

INTEL RELOCATABLE OBJECT MODULE FORMATS

LOGICAL ENUMERATED DATA RECORD
(LEDATA)--

~----~----------~--~// /
/

REC
TYP
AOH

RECORD
LENGTH

SEGM
IND

,'/

ENT ENUMERATED
EX DATA

OFFSET

,

page 6-34

CHK
DAT SUM

'--' '-rpt

This record provides contiguous data from which a portion of
an 8086 memory image may be constructed.

SEGMENT INDEX

This field must be non-zero and specifies an index relative
to the SEGMENT DEFINITION RECORDS found previous to the
LEDATA RECORD.

ENUMERATED DATA OFFSET

This field specifies an offset that is relative to the base
of the LSEG that is specified by the SEGMENT INDEX and
defines the relative location of the first byte of the DAT
field. Successive data bytes in the DAT field occupy
successively higher locations of memory.

DAT

This field provides up to 1024 consecutive bytes of
relocatable or absolute data.

INTEL RELOCATABLE OBJECT MODULE FORMATS

REC RECORD
TYP LENGTH
A2H

LOGICAL ITERATED DATA RECORD
(LIDATA-) -

~/~

SEGMENT ITERATED
INDEX DATA

OFFSET

//~

Page 6-35

, //
ITERATED CHK

DATA SUM
BLOCK

//~

~repeated-

This record provides contiguous data from which a portion of
an 8086 memory image may be constructed.

SEGMENT INDEX

This field must be non-zero and specifies an index relative
to the SEGDEF records found previous to the LIDATA RECORD.

ITERATED DATA OFFSET

This field specifies an offset that is relative to the base
of the LSEG that is specified by the SEGMENT INDEX and
defines the relative location of the first byte in the
ITERATED DATA BLOCK. Successive data bytes in the ITERATED
DATA BLOCK occupy successively higher locations of memory.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-36

ITERATED DATA BLOCK

This repeated field is a structure specifying the repeated
data bytes. The structure has the following format:

REPEAT BLOCK '/j
~ __ C_O_U_N_T __ ~ ___ C_O_U_N_T ____ ~_C_O~N:ENT

Note

The Linker cannot handle LIDATA records whose ITERATED
DATA BLOCK is larger than 512 bytes.

REPEAT COUNT

This field specifies the number of times that the CONTENT
portion of this ITERATED DATA BLOCK is to be repeated.
REPEAT COUNT must be non-zero.

BLOCK COUNT

This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA
BLOCK. If this field has value zero, then the CONTENT
portion of this ITERATED DATA BLOCK is interpreted as data
bytes. If non-zero, then the CONTENT portion is interpreted
as that number of ITERATED DATA BLOCKs.

CONTENT

This field may be interpreted in one of two ways, depending
on the value of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a l-byte count
followed by the indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted
as the first byte of another ITERATED DATA BLOCK.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-37

Note

From the outermost level, the number of nested ITERATED
DATA BLOCKS is limited to 17, i.e., the number of
levels of recursion is limited to 17.

INTEL RELOCATABLE OBJECT MODULE FORMATS

FIXUP RECORD
----CFIXUPP)

~----~----------~----~,'/,~'----~----~

REC
TYP
9CH

RECORD
LENGTH

THREAD
or

FIXUP

CHK
SUM

~----~-----------+----~,'/,~'----~-----

-rpt-

Page 6-38

This record specifies 0 or more fixups. Each fixup requests
a modification (fixup) to a LOCATION within the previous
DATA record. A data record may be followed by more than one
fixup record that refers. Each fixup is specified by a
FIXUP field that specifies four data: a location, a mode, a
target and a frame. The frame and the target may be
specified totally within the FIXUP field, or may be
specified by reference to a preceding THREAD field.

A THREAD field specifies a default target or frame that may
subsequently be referred to in identifying a target or a
frame. Eight threads are provided; four for frame
specification and four for target specification. Once a
target or frame has been specified by a THREAD, it may be
referred to by following FIXUP fields (in the same or
following FIXUPP records), until another THREAD field with
the same type (TARGET or FRAME) and Thread Number (0 - 3)
appears (in the same or another FIXUPP record).

THREAD

THREAD is a field with the following format:

//

TRD INDEX

//

conditional

The TRD DAT (ThReaD DATa) subfield is a byte with this
internal structure:

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-39

I I I
METHOD THRED

I I I

The HZ" is a I-bit subfield, currently without any defined
function, that is required to contain O.

The "0" subfield is one bit that identifies what type of
thread is being specified. IE 0=0, then a target thread is
being defined; if 0=1, then a frame thread is being
defined.

METHOD is a 3-bit subfield containing a number between 0 and
3 (D=O) or a number between 0 and 6 (0=1).

If 0=0, then METHOD = (0, 1, 2, 3, 4, 5, 6, 7) mod 4, where
the 0, ••• , 7 indicate methods TO, .•• , T7 of specifying a
target. Thus, METHOD indicates what kind of Index or Frame
Number is required to specify the target, without indicating
if the target will be specified in a primary or secondary
way. Note that methods 2b, 3, and 7 are not supported by
MS-LINK.

If D=l, then METHOD 0, 1, 2, 4, 5, corresponding to
methods FO, .•• , of specifying a frame. Here, METHOD
indicates what kind (if any) of Index is required to specify
the frame. Note that methods 3 and 5d are not supported by
MS-LINK.

THRED is a number between 0 and 3, and associates a Thread
Number to the frame or target defined by the THREAD field.

INDEX contains a Segment Index, Group Index, or External
Index depending on the specification in the METHOD subfield.
This subfield will not be present if F4 or F5 are specified
by METHOD.

INTEL RELOCATABLE OBJECT MODULE FORMATS

FIXUP

FIXUP is a field with the following format:

LOCAT FIX
DAT

/ /1----,.....--1

FRAME
DATUM

TARGET
DATUM

Page 6-40

TARGET
DIS

PLACEMENT

conditional conditional conditional

LOCAT is a byte pair with the following format:

I I I I J I I I I I I
1 M S LOC D A T A R E C o R D o F F S E T

I I I I I I I I I I

10 b y te I hi b y te

M is a I-bit subfield that specifies the mode of the fixups:
self-relative (M=O) or segment-relative (M=l).

Note

Self-relative fixups may not be applied to LIDATA
records.

US" is a I-bit subfield that specifies that the length of
the TARGET DISPLACEMENT subfield. If it is present in this
FIXUP field (see below), it will be either two bytes
(containing a 16-bit non-negative number, S=O) or three
bytes (containing a signed 24-bit number in 2's complement
form, S=l).

I

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-41

Note

3-byte subfields are a possible future extension, and
are not currently supported. Thus, S=O is currently
mandatory.

LOC is a 3-bit subfield indicating that the byte(s) in the
preceding DATA Record to be fixed up are a "lobyte" (LOC=O),
an "offset" (LOC=l), a "base" (LOC=2), a "pointer" (LOC=3),
or a "hibyte" (LOC=4). Other values in LOC are invalid.

The DATA RECORD OFFSET is a number between 0 and 1023,
inclusive, that gives the relative position of the lowest
order byte of LOCATION (the actual bytes being fixed up)
within the preceding DATA record. The DATA RECORD OFFSET is
relative to the first byte in the data fields in the DATA
RECORDs.

Note

If the preceding DATA record is an LIDATA record, it is
possible for the value of DATA RECORD OFFSET to
designate a "location" within a REPEAT COUNT subfield
or a BLOCK COUNT subfield of the ITERATED DATA field.
Such a reference is an error. MS-LINK's action on such
a malformed record is undefined.

FIX DAT is a byte with the following format:

Note 1:
supported.

I I I
FRAME TARGT

I I I
See Note 1 See Note 2

Frame method 2b, F3, and FSd are

Note 2: Target method T3 and T7 are not supported.

not

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-42

F is a I-bit subfield that specifies whether the frame for
this FIXUP is specified by a thread (F=l) or explicitly
(F=O) .

FRAME is a number interpreted in one of two ways as
indicated by the F bit. If F is zero, FRAME is a number
between 0 and 5 and corresponds to methods FO, ... , F5 of
specifying a FRAME. If F=l, then FRAME is a thread number
(0-3). It specifies the frame most recently defined by a

THREAD field that defined a frame thread with the same
thread number. (Note that the THREAD field may appear in
the same, or in an earlier FIXUPP record.)

"T" is a I-bit subfield that specifies whether the target
specified for this fixup is defined by reference to a thread
(T=l), or is given explicitly in the FIXUP field (T=O).

"p" is a I-bit subfield that indicates whether the target is
specified in a primary way (requires a TARGET DISPLACEMENT,
P=O) or specified in a secondary way (requires no TARGET
DISPLACEMENT, P=l). Since a target thread does not have a
primary/secondary attribute, the P bit is the only field
that specifies the primary/secondary attribute of the target
specification.

TARGT is interpreted as a 2-bit subfield. When T=O, it
provides a number between 0 and 3, corresponding to methods
TO, •.• , T3 or T4, •.• , T7, depending on the value of P (P
can be interpreted as the high-order bit of TO, .•• , T7).
When the target is specified by a thread (T=l), then TARGT
specifies a thread number (0-3).

FRAME DATUM is the "referent" portion of a frame
specification, and is a Segment Index, a Group Index, an
External Index. The FRAME DATUM subfield is present only
when the frame is specified neither by a thread (F=O) nor
explicitly by methods F4 or F5 or F6.

TARGET DATUM is the "referent" portion of a targel
specification, and is a Segment Index, a Group Index, an
External Index or a Frame Number. The TARGET DATUM subfield
is present only when the target is not specified by a thread
(T=O) •

TARGET DISPLACEMENT is the 2-byte displacement required by
"primary" ways of specifying TARGETs. This 2-byte subfield
is present if P=O.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-43

Note

All these methods are described in Section 6.8,
"Conceptual Framework for Fixups."

REC
TYP
8AH

MODULE END RECORD
(MODEND)

/
/ /,I----r---,

RECORD MOD ST ART CHK
LENGTH TYP AD DRS SUM

/
/
/~/_-I------I

+conditional+

This record serves two purposes. It denotes the end of a
module and indicates whether the module just terminated has
a specified entry point for initiation of execution. If the
latter is true, the execution address is specified.

MOD TYP

This field specifies the attributes of the module. The bit
allocation and associated meanings are as follows:

MATTR is a 2-bit subfield that specifies the following
module attributes:

MAT"rR

o
I
2
3

MODULE ATTRIBUTE

Non-main module with no START ADDRS
Non-main module with START ADDRS
Main module with no START ADDRS
Main module with START ADDRS

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-44

"L" indicates whether the START ADDRS field is interpreted
as a logical address that requires fixing up by MS-LINK.
(L=l). Note: with MS-LINK, L must always equal 1.

"Z" indicates that this bit has not currently been assigned
a function. These bits are required to be zero.

Physical start addresses (L=O) are not supported.

The START ADDRS field (present only if MATTR is 1 or 3) has
the following format:

START ADDRS

J J J
I I I I I

END FRAME TARGET TARGET
DAT DATUM DATUM DIS-

PLACEMENT

I I
I I

+condltlonal+condltlonal+condltional+

The starting address of a module has all the attributes of
any other logical reference found in a module. The mapping
of a logical starting address to a physical starting address
is done in exactly the same manner as mapping any other
logical address to a physical address as specified in the
discussion of fixups and the FIXUPP record. The above
subfields of the START ADDRS field have the same semantics
as the FIX DAT, FRAME DATUM, TARGET DATUM, and TARGET
DISPLACEMENT fields in the FIXUPP record. Only "primary"
fixups are allowed. Frame method F4 is not allowed.

REC RECORD
TYP LENGTH
aaH

COMMENT RECORD
(COMENT)

COMMENT
TYPE

J

CO I:EJ CHK

~NT SUM

This record allows translators to include comments in object
text.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-45

COMMENT TYPE

This field indicates the type of comment carried by this
record. This allows comments to be structured for those
processes that wish to selectively act on comments. The
format of this field is as follows:

COMMENT
CLASS

The NP (NOPURGE) bit, if 1, indicates that it is not able to
be purged by object file utility programs which implement
the capability of deleting COMENT record.

The NL (NOLIST) bit, if 1, indicates that the text in the
COMMENT field is not to be listed in the listing file of
object file utility programs which implement the capability
of listing object COMENT records.

The COMMENT CLASS field is defined as follows:

o

1

2-155

156-255

COMMENT

Language translator comment.

Intel copyright comment. The NP bit must be
set.

Reserved for Intel use. (See note 1 below.)

Reserved for users. Intel products will
apply no semantics to these values. (See
Note 2 below.)

This field provides the commentary information.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-46

Notes:

1. Class value 129 is used to specify a library to add
to the Linker's library search list. The comment
field will contain the name of the library. Note
that unlike all other name specifications, the
library name is not prefixed with its length. Its
length is determined by the record length. The
"NODEFAULTLIBRARYSEARCH" switch causes the linker
to ignore all comment records whose class value is
129.

2. Class value 156 is used to specify a DOS level
number. When the class value is 156, the comment
field will contain a two-byte integer specifying a
DOS level number.

INTEL RELOCATABLE OBJECT MODULE FORMATS

6.13 NUMERIC LIST OF RECORD TYPES

*6E RHEADR
*70 REGINT
*72 REDATA
*74 RIDATA
*76 OVLDEF
*78 ENDREC
*7A BLKDEF
*7C BLKEND
*7E DEBSYM

80 THEADR
*82 LHEADR
*84 PEDATA
*86 PIDATA

88 COMENT
8A MODEND
8C EXTDEF
8E TYPDEF
90 PUBDEF

*92 LOCSYM
94 LINNUM
96 LNAMES
98 SEGDEF
9A GRPDEF
9C FIXUPP

*9E (none)
AO LEDATA
A2 LIDATA

*A4 LIBHED
*A6 LIBNAM
*A8 LIBLOC
*AA LIBDIC

Note

Page 6-47

Record types preceded by an asterisk (*) are not
supported by the Microsoft Linker. They will be
ignored if they are found in an object module.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-48

6.14 MICROSOFT TYPE REPRESENTATIONS FOR COMMUNAL VARIABLES

This section defines the Microsoft standard for communal
variable allocation on the 8086 and 80286.

A communal variable is an uninitialized public variable
whose final size and location are not fixed at compile time.
Communal variables are similar to FORTRAN common blocks in
that if a communal variable is declared in more than one
object module being linked together, then its actual size
will be the largest size specified in the several
declarations. In the C language, all uninitialized public
variables are communal. The following example shows three
different declarations of the same C communal variable:

char
char
char

foo[4] ;
foo [1] ;
foo [1024] ;

1* In file a.c *1
1* In file b.c *1
1* In file c.c *1

If the objects produced from a.c, b.c, and c.c are linked
together, then the linker will allocate 1024 bytes for the
char array "foo".

A communal variable is defined in the object text by an
external definition record (EXTDEF) and the type definition
record (TYPDEF) to which it refers.

The TYPDEF for a communal variable has the following format:

, 11-'------.
REC RECORD EI GHT CHK
TYP LENGTH 0 LE AF SUM
8EH DESCR IPTOR

, 1,1-'---'----.....

The EIGHT LEAF DESCRIPTOR field has the following format:

ITJ;/g E LEAF
N DESC~IPTOR

The EN field specifies whether the next 8 leaves in the LEAF
DESCRIPTOR field are EASY (bit = O) or NICE (bit = I). This
byte is always zero for TYPDEFS for communal variables.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-49

The LEAF DESCRIPTOR field has one of the following two
formats. The format for communal variables in the default
data segment (near variables) is as follows:

NEAR
62H

VAR
TYP IN SUBTYP

BITS
LEN~Tq:~A~

~----~----~----~/// /

The VARiable TYPe field may
(79H), or ARRAY (77H).
ignored by the Linker. The
not in the default data
follows:

FAR
6lH

VAR
TYP
77H

+ +
(optional)

be either SCALAR (7BH), STRUCT
The VAR SUBTYP field (if any) is
format for communal variables

segment (far variables) is as

OF TYPE
ELEMENTS INDEX

~ER ELE1jNT I
~--~----~--~//r-~--~/

The VARiable TYPe field must be ARRAY (77H). The length
field specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE
INDEX is an index to a previously defined TYPDEF whose
format is that of a near communal variable.

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS
fields is the same as the format for the LEAF DESCRIPTOR
field, described in the TYPDEF record format section of this
manual.

INTEL RELOCATABLE OBJECT MODULE FORMATS Page 6-50

Link time semantics:

All EXTDEFs referencing a TYPDEF of one of the previously
described formats are treated as communal variables. All
others are treated as externally defined symbols for which a
matching public symbol definition (PUBDEF) is expected. A
PUBDEF matching a communal variable definition will override
the communal variable definition. Two communal variable
definitions are said to match if the names given in the
definitions match. If two matching definitions disagree
about whether a communal variable is near or far, the linker
will assume the variable is near.

If the variable is near, then its size is the largest of the
sizes specified for it. If the variable is far, then the
Linker issues a warning if there are conflicting array
element size specifications: if there are no such
conflicts, then the variable's size is the element size
times the largest number of elements specified. The sum of
the sizes of all near variables must not exceed 64K bytes.
The sum of the sizes of all far variables must not exceed
the size of the machine's addressable memory space.

-Huge- communal variables:

A far communal variable whose size is larger than 64K bytes
will reside in segments that are contiguous (8086) or have
consecutive selectors (80286). No other data items will
reside in the segments occupied by a huge communal variable.

If the linker finds matching huge and near communal variable
definitions, it issues a warning message, since it is
impossible for a near variable to be larger than 64K bytes.

Chapter 7
Programming Hints

7.1 Introduction 7-1

7.2 Interrupts 7-1

7.3 System Calls 7-3

7.4 Device Management 7-3

7.5 Memory Management 7-4

7.6 Process Management 7-5

7.7 File and Directory Management 7-5
7.7.1 Locking Files 7-6

7.8 Miscellaneous 7-6

CHAPTER 7

PROGRAMMING HINTS

7.1 INTRODUCTION

This chapter describes recommended MS-DOS 3.1 programming
procedures. By using these programming hints, you can
ensure compatibility with future versions of MS-DOS.

The hints are organized into the following categories:

Interrupts

System Calls

Device Management

Memory Management

Process Management

File and Directory Management

Miscellaneous

7. 2 INTERRUPTS

Never explicitly issue Interrupt 22H (Terminate Process Exit
Address) •

This should only be done by the DOS. To change the
terminate address, use Function 35H (Get Interrupt
Vector) to get the current address and save it, then
use Function 25H (Set Interrupt Vector) to change
the Interrupt 22H entry in the vector table to point
to the new terminate address.

PROGRAMMING HINTS Page 7-2

Use Interrupt 24H (Critical Error Handler Address) with
care.

The Interrupt 24H handler must preserve the ES
register.

Only system calls OIH-OCH can be made by an
Interrupt 24H handler. Making any other calls will
destroy the MS-DOS stack and prevent successful use
of the Retry or Ignore options.

The registers SS, SP, DS, BX, CX, and DX must be
preserved when using the Retry or Ignore options.

When an Interrupt 24H (Critical Error Handler
received, always IRET back to MS-DOS with
standard responses.

Address) is
one of the

Programs that do not IRET from Interrupt 24H leave
the system in an unpredictable state until a
function call other than OIH-OCH is made. The
Ignore option may leave data in internal system
buffers that is incorrect or invalid.

Avoid trapping Interrupt 23H (Control-C Handler Address) and
Interrupt 24H (Critical Error Handler Address). Don't rely
on trapping errors via Interrupt 24H as part of a copy
protection scheme.

These might not be included in future releases of
the operating system.

Interrupt 23H (Control-C Handler Address) must never be
issued by a user program.

Interrupt 23H must be issued only by MS-DOS.

Save any registers your
Interrupt 25H {Absolute
(Absolute Disk Write) •

program uses before issuing
Disk Read) or Interrupt 26H

These interrupts destroy all registers except for
the segment registers.

Avoid writing or reading an
directly to or from memory.

interrupt vector

Use Functions 25H and 35H (Set Interrupt Vector and Get
Interrupt Vector) to set and get values in the interrupt
table.

PROGRAMMING HINTS Page 7-3

1.3 SYSTEM CALLS

Use new system calls.

Avoid using system calls that have been superseded
by new calls unless a program must maintain backward
compatibility with pre-2.0 versions of MS-DOS. See
Section 1.8, "Old System Calls," of this manual for
a list of these new calls.

Avoid using system calls OlH-OCH and 26H (Create New PSP).

Use the new "tools" approach for reading and writing
on standard input and output. Use Function 4BOOH
(Load and Execute Program) instead of 26H to execute
a child process.

Use file-sharing calls if more than one process is in
effect.

See "File Sharing," in Section 1.5.2,
Function Requests" in Chapter
information.

Use networking calls where appropriate.

"File-Related
1 for more

Some forms of IOCTL can only be used with Microsoft
Networks. See Section 1.6, "Microsoft Networks," in
this manual for a list of these calls.

When selecting a disk with Function OEH (Select Disk), treat
the value returned in AL with care.

The value in AL
logical drives;
are valid.

7.4 DEVICE MANAGEMENT

specifies the maximum number of
it does not specify which drives

Use installable device drivers.

MS-DOS provides a modular device driver structure
for the BIOS, allowing you to configure and install
device drivers at boot time. Block device drivers
transmit a block of data at a time, while character
device drivers transmit a byte of data at a time.

Examples of both types of device drivers are given
in Chapter 2, "MS-DOS Device Drivers."

PROGRAMMING HINTS Page 7-4

Use buffered I/O.

The device drivers can handle streams of data up to
64K. When sending a large amount of output to the
screen, you can send it with one system call. This
will increase performance.

Programs that use direct console I/O via Function 06H and
07H (Direct Console I/O and Direct Console Input) and that
want to read Control-C as data should ensure that Control-C
checking is off.

The program should ensure that Control-C checking is
off by using Function 33H (Control-C Check).

Be compatible with international support.

To provide support for international character sets,
MS-DOS recognizes all possible byte values as
significant characters in filenames and data
streams. Pre-2.x versions ignored the high bit in
the MS-DOS filename.

7.5 MEMORY MANAGEMENT

Use memory management.

MS-DOS keeps track of allocated memory by writing a
memory control block at the beginning of each area
of memory. Programs should use Functions 48H
(Allocate Memory), 49H (Free Allocated Memory), and
4AH (Set Block) to release unneeded memory.

This will allow for future compatibility.

See Section 1.3, "Memory Management," for more
information.

Only use allocated memory.

Don't directly access memory that was not provided
as a result of a system call. Do not use fixed
addressing, use only relative references.

A program that uses memory that has not been
allocated to it may destroy other memory control
blocks or cause other applications to fail.

PROGRAMMING HINTS Page 7-S

7.6 PROCESS MANAGEMENT

Use the EXEC Function Call to load and execute programs.

The EXEC Function (4BOOH) is the preferred way to
load programs and program overlays. Using the EXEC
call instead of hard-coding information about how to
load an .EXE file (or always assuming that your file
is a .COM file) will isolate your program from
changes in future releases of MS-DOS and .EXE file
formats.

Use Function 31H (Keep Process), instead of Interrupt 27H
(Terminate But Stay Resident). Function 31H allows programs
to terminate and stay resident that are greater than 64K.

Programs should terminate using End Process (4CH).

Programs that terminate by
a long jump to offset 0 in the PSP,
issuing an Interrupt 20H with Cs:o pointing at the PSP,
issuing an Interrupt 21H with AH=O, Cs:o pointing at the
PSP, or
a long call to location SOH in the PSP with AH=O

must ensure that the CS register contains the segment
address of the PSP.

7.7 FILE AND DIRECTORY MANAGEMENT

Use the MS-DOS file management system.

Using the MS-DOS file system will ensure program
compatibility with future MS-DOS versions through
compatible disk formats and consistent internal
storage. This will ensure compatibility with future
MS-DOS versions.

Use file handles instead of FCBs.

A handle is a 16-bit number that is returned by
MS-DOS when a file is opened or created using
Functions 3CH, 3DH, SAH, or SBH (Create Handle, Open
Handle, Create Temporary File, or Create New File) .
The MS-DOS file-related function requests that use
handles are listed in Table 1.S in Chapter 1,
"System Calls."

These calls should be used instead of the old
file-related functions that use FCBs (file control
blocks). This is because a file operation can
simply pass its handle rather than having to

PROGRAMMING HINTS Page 7-6

maintain FCB information. If FCBs must be used, be
sure the program closes them and does not move them
around in memory.

Close all files that have changed in length before issuing
an Interrupt 20H (Program Terminate), Function OOH
(Terminate Program) I Function 4CH (End process), or Function
ODH (Reset Disk) .

If a changed file is not closed, its length will not
be recorded correctly in the directory.

Close all files when they are no longer needed.

Closing unneeded files will optimize performance in
a networking environment.

Only change disks if all files on the disk are olosed.

Information in internal system buffers may be
written incorrectly to a changed disk.

7.7.1 Locking Files

Programs should not rely on being denied access to a locked
region.

Determine the status of the region by attempting to
lock it, and examine the error code.

Programs should not close a file with a locked region or
terminate with an open file that contains a locked region.

The result is undefined. Programs that might be
terminated by an Interrupt 23H or Interrupt 24H
(Control-C Handler Address or Critical Error Handler
Address) should trap these interrupts and unlock any
locked regions before exiting.

7.8 MISCELLANEOUS

Avoid timing dependencies.

various machines use CPUs of different speeds.
Also, programs that rely upon the speed of the clock
for timing will not be dependable in a networking
environment.

PROGRAMMING HINTS Page 7-7

Use the documented interface to the operating system. If
either the hardware or media change, the operating system
wi~l be able to use the features without modification.

Don't use the OEM (Original Equipment Manufacturer)
-provided ROM support.

Don't directly address the video memory.

Don't use undocumented function calls, interrupts,
or features. These items may change or not continue
to exist in future versions of MS-DOS. Use of these
features would make your program highly
non-portable.

Use the .EXE format rather than the .COM format •

. EXE files are relocatable and .COM files are direct
memory images that load at a specific place and have
no room for additional control information to be
placed in them. .EXE files have headers that can be
expanded for compatibility with future versions of
MS-DOS.

Use the environment to pass information to applications.

The environment allows a
information to a child
usually the parent process
default drive and path
passed to the application.

parent process to pass
process. COMMAND.COM is
to every application, so
information can easily be

.COM files .

.EXE files . .

INDEX

2-14
.. 5-1

Page Index-l

Absolute Disk Read (Interrupt 25H) 1-41
Absolute Disk write (Interrupt 26H) 1-43
Allocate Memory (Function 48H) 1-184
Archive bi t • . 3-4
ASCIZ string• 1-191, 1-200
Assign list 1-14
Attribute byte . 1-13
Attribute field 2-7
AUTOEXEC file .• . . • . 3-1
Auxiliary Input (Function 03H) 1-51
Auxiliary Output (Function 04H) 1-52

BASE • • . • . . 6-8
BIN format file 2-2
BIOS Parameter Block (BPB) 2-13, 2-18, 2-25
Bit 8 2-10
Bit 9 ••.. . 2-11
Block devices

device drivers • •. 2-21
disk drives • 2-3
example. 2-30
installation . 2-13

Boot sector • 2-25
BPB pointer •.•. • 2-12 to 2-13
Buffered Keyboard Input (Function OAH) 1-61
BUILD BPB .• . 2-7, 2-18
Busy bit • • . . • • 2-11, 2-21, 2-23

Cancel Assign List Entry (Function 5FH, Code 04H)
1-235

Canonic Frame 6-4
Carry flag • • . • • • • . 1-21
Case-Mapping Call .•.. 1-134
Change Current Directory (Function 3BH) 1-142
Change Directory Entry (Function 56H) 1-205
Character device driver, example 2-44
Character devices •••. 2-3
Check Keyboard Status (Function OBH) 1-63
Class name, LSEG •.••. 6-4
CLOCK device •.••••. 2-7, 2-27
Close File (Function 10H) 1-70
Close Handle (Function 3EH) 1-150
Cluster ••••••••. 3-2
Combination Attribute .. 6-22
COMENT . • . • .• .. 6-45
Command code field • 2-10
Command processor . • 3-1

COMMAND.COM ••••..• 3-1
COMMENT RECORD • • • . . . 6-45
Compatibility, ensuring • 7-1
Complete name, LSEG . 6-5
COMSPEC • 4-3
CON device . . • . • • • . 2-4
CONFIG.SYS • • •• 2-1, 2-5
Control blocks • • . . . • 4-1
Control information • 5-1
Control-C Address (Interrupt 23H) 3-1
Control-C Check (Function 33H) 1-127

Page Index-2

Control-C Handler Address (Interrupt 23H) 1-36
Create Directory (Function 39H) 1-138
Create File (Function 16H) 1-82
Create Handle (Function 3CH) 1-144
Create New File (Function 5BH) 1-217
Create New PSP (Function 26H) 1-102
Create Temporary File (Function 5AH) 1-214
Critical Error Handler Address (Interrupt 24H)

1-37, 3-1

Delete Directory Entry (Function 41H) 1-156
Delete File (Function 13H) 1-76
Device control • • • 1-11
Device drivers

block • • • •. .. 2-3
creating ..•..••• 2-4, 3-6
dumb • . . . • 2-14
example .•.•• 2-30, 2-44
installable . • 2-1
installing . • 2-5
non-resident • 2-1
preserving registers • . 2-29
resident • • 2-1
smart . • • • • • 2-14

Device handles • . • 1-8
Device header . . 2-6
Device interrupt routine • 2-5
Device management, programming hints 7-3
Device strategy routine • 2-5
Device-related function requests 1-11
Direct Console I/O (Function 06H) 1-56
Direct Console Input (Function 07H) 1-58
Directory entry . • • • • 1-12
Directory-related function requests 1-11 to 1-12
Disk allocation • 3-2
Disk Directory • • • 3-3
Disk formats

IBM . • • • •• •• 3-9
standard MS-DOS • 3-9

Disk Transfer Address (DTA) 1-80, 1-200, 4-3
Dispatch table • . • • • . 2-28
Display Character (Function 02H) 1-50
Display String (Function 09H) 1-60
Done bit ••••.•••• 2-10, 2-29

Page Index-3

Dumb device driver •••• 2-14
Duplicate File Handle (Function 45H) 1-178

EIGHT LEAF DESCRIPTOR 6-27
End address • . • .• 2-13
End Process (Function 4CH) 1-197, 4-2
Error bit • 2-29
Error codes • 1-21
Error handling. • • 1-26, 3-1
EXE device drivers • • 2-2
EXE files •• • • • 5-1
EXE format file • . • • • 2-2
EXE loader • 2-2
EXTDEF • • 6-32
Extended error codes • 1-23
Extended FCB • • • • • • • 1-19
EXTERNAL NAMES DEFINITION RECORD 6-32

FAT •••••• 2-18, 3-6
FAT ID byte • • • • • • • 2-24
FCB • • • • • • • • • • • 1-16
File Allocation Table 3-6
File and directory management, programming hints

7-5
File attributes •.•.• 1-13
File Control Block

definition • • 1-16
extended • 1-19
fields. • 1-17
format. • • • •.• 1-17
opened • • • • 1-16
unopened • • • • 1-16

File locking, programming hints 7-6
File-related function requests 1-9
File-sharing function requests 1-10
Filename separators ••• I-Ill
Filename terminators • • • I-Ill
Find First File (Function 4EH) 1-200
Find Next File (Function 4FH) 1-202
FIXUP RECORD • • 6-39
FIXUPP • • • • • 6-39
Fixups

definition • • 6-8
segment-relative. • 6-9, 6-15
self-relative ••••• 6-9, 6-13

FLUSH • • • • • • • 2-24
Flush Buffer, Read Keyboard (Function OCH) 1-64
Force Duplicate File Handle (Function 46H) 1-180
Format • • • • • 3-3
FRAME

definition • • 6-3
specifying • • 6-11

FRAME NUMBER • • 6-3
Free Allocated Memory (Function 49H) 1-186

Function requests
alphabetic order .
calling ••••
definition •••
device-related •
directory-related
file-related
file-sharing
Function OOH
Function 01H
Function 02H
Function 03H
Function 04H
Function 05H
Function 06H
Function 07H
Function 08H
Function 09H
Function OAH
Function OBH
Function OCH
Function ODH
Function OEH
Function OFH
Function 10H
Function IlH
Function 12H
Function 13H
Function 14H
Function 15H
Function 16H
Function 17H
Function 19H
Function lAH
Function IBH
Function lCH
Function 21H
Function 22H
Function 23H
Function 24H
Function 25H
Function 26H
Function 27H
Function 28H
Function 29H
Function 2AH
Function 2BH
Function 2CH
Function 2DH
Function 2EH
Function 2FH
Function 30H
Function 31H
Function 33H
Function 35H
Function 36H

• 1-29
• • 1-20
• • 1-1, 1-20
• • 1-11

• 1-11 to 1-12
• • 1-9
• • 1-10

• 1-47
• • 1-49
• • 1-50

1-51
• 1-52

• • 1-53
1-56

• 1-58
• 1-59
• 1-60

1-61
• 1-63

• • 1-64
• 1-65, 1-80
• 1-66

• • 1-68
• 1-70
• 1-72
• 1-74

1-76
• • 1-78

• 1-80
• 1-82
• 1-84

• • 1-86
• • 1-87

• 1-89
• 1-91

1-93
• • 1-95

• 1-98
• • 1-100

Page Index-4

• • 1-35 to 1-37, 1-101
• • 1-102

• 1-104
• • 1-107
• • 1-110

1-113
• • 1-115

• 1-117
• 1-119
• 1-121

• • 1-123
• • 1-124
• • 1-125

• 1-127
• • 1-35 to 1-36, 1-129
• • 1-131

Page Index-5

Function 38H · · 1-133, 1-136
Function 39H · · · 1-138
Function 3AH · · 1-140
Function 3BH · 1-142
Function 3CH · 1-144
Function 3DH · · 1-146
Function 3EH · 1-150
Function 3FH · · 1-152
Function 40H · · · · 1-154
Function 41H · · 1-156
Function 42H · · · · 1-158
Function 43H · · 1-160
Function 44H, Codes OOH and 01H 1-162
Function 44H, Codes 02H and 03H 1-164
Function 44H, Codes 04H and 05H 1-166
Function 44H, Codes 06H and 07H 1-168
Function 44H, Code 08H 1-170
Function 44H, Code 09H · 1-172
Function 44H, Code OAH 1-174
Function 44H, Code OBH 1-176
Function 45H · · 1-178
Function 46H 1-180
Function 47H · 1-182
Function 48H · · 1-184
Function 49H · · · · · 1-186
Function 4AH · · · 1-188
Function 4BH, Code OOH 1-190
Function 4BH, Code 03H 1-194
Function 4CH · 1-197
Function 4DH · · 1-199
Function 4EH · · · · · 1-200
Function 4FH · · · · · 1-202
Function 54H · · 1-204
Function 56H · · 1-205
Function 57H · · · 1-207
Function 58H · . · · · · 1-209
Function 59H · · · 1-211
Function 5AH · · 1-214
Function 5BH · 1-217
Function 5CH, Code OOH 1-219
Function 5CH, Code 01H 1-222
Function 5EH, Code OOH 1-225
Function 5EH, Code 02H · 1-227
Function 5FH, Code 02H 1-229
Function 5FH, Code 03H 1-232
Function 5FH, Code 04H 1-235
Function 62H · · 1-237
handling errors 1-21
memory management 1-4
network-related · 1-14
numeric order · 1-27
process management · 1-5
standard character I/O 1-2
system-management 1-15

Page Index-6

Get Assign List Entry (Function 5FH, Code 02H)
1-229

Get Country Data (Function 38H) 1-133
Get Current Directory (Function 47H) 1-182
Get Current Disk (Function 19H) 1-86
Get Date (Function 2AH) • 1-113
Get Default Drive Data (Function 1BH) 1-89
Get Disk Free Space (Function 36H) 1-131
Get Disk Transfer Address (Function 2FH) 1-123
Get Drive Data (Function lCH) 1-91
Get Extended Error (Function 59H) 1-211
Get File Size (Function 23H) 1-98
Get Interrupt Vector (Function 35H) 1-35 to 1-36,

1-129
Get Machine Name (Function 5EH, Code OOH) 1-225
Get MS-DOS Version Number (Function 30H) 1-124
Get PSP (Function 62H) • • 1-237
Get Return Code Child Process (Function 4DH) 1-199
Get Time (Function 2CH) • 1-117
Get Verify State (Function 54H) 1-204
Get/Set Allocation Strategy (Function 58H) 1-209
Get/Set Date/Time of File (Function 57H) 1-207
Get/Set File Attributes (Function 43H) 1-160
GROUP • • • • • • • . • • 6-4
Group Definition Record • 6-25
GRPDEF • • • .• • • • 6-25

Handles
definition
device

Handling errors
Header • • • • • •
HIBYTE • • • • • •
Hidden files • . •
High-level language

• • 1-8
• • 1-8
• • 1-21

5-1
• • 6-9
• • 1-72, 1-74, 3-4

.•• 1-20

I/O Control for Devices (Function 44H) 2-8
IBM disk format • • 3-9
Index fields • • 6-7
Indices ••••• 6-7
INIT • • • • • •. • • 2-12, 2-14
INIT code • • . • • 2-8
Installable device drivers 2-4
Instruction Pointer (IP) • 4-4
Internal stack • • •. 1-21, 2-29
Interrupt entry point •• 2-1 to 2-2, 2-28
Interrupt handlers •• 1-19, 1-35 to 1-37, 4-1
Interrupt routines . . • • 2-8
Interrupt-handling routine 1-102
Interrupts

address of handlers •• 1-19
alphabetic order • 1-26
definition 1-1
Interrupt 20H •• 1-32, 1-47

Page Index-7

Interrupt 21H . 1-20, 1-34
Interrupt 22H . 1-35
Interrupt 23H •.... 1-36, 1-49 to 1-50, 1-53,

1-59, 1-61
Interrupt 24H • 1-37
Interrupt 25H • • • . . 1-41
Interrupt 26H • • • • . 1-43
Interrupt 27H • • . • . 1-45
issuing 1-19
numeric order .•.•. 1-26
programming hints . 7-1
vector table • • • 1-19

IO.SYS file . 3-4
IOCTL • • • • • 1-11
IOCTL bit . 2-7
IOCTL Block (Function 44H, Codes 4 and 5) 1-166
IOCTL Character (Function 44H, Codes 2 and 3) 1-164
IOCTL Data (Function 44H, Codes 0 and 1) 1-162
IOCTL Is Changeable (Function 44H, Code 08H) 1-170
IOCTL Is Redirected Block (Function 44H, Code 09H)

1-172
IOCTL Is Redirected Handle (Function 44H, Code OAH)

1-174
IOCTL Retry (Function 44H, Code OBH) 1-176
IOCTL Status (Function 44H, Codes 6 and 7) 1-168

Keep Process (Function 31H) 1-125

LEDATA • • • • • • • . •
Length of Record Field •
LIDATA • • • •
LINE NUMBERS RECORD
LINNUM • • . • • • •
List of Names Record • •
LNAMES • • • • •
Load and Execute Program

• 6-35
• 2-9
• 6-36
• 6-34
· 6-34
• 6-20
• 6-20
(Function 4BH, Code OOH)

1-190
Load module .•••••• 5-1, 5-3
Load Overlay (Function 4BH, Code 03H) 1-194
Loadsize • • • . • • • • • 5-3
LOBYTE • • • . • • • • • • 6-9
Local buffering ••••• 2-5
LOCATION, types •• 6-8
Lock (Function 5CH, Code OOH) 1-219
LOGICAL ENUMERATED DATA RECORD 6-35
LOGICAL ITERATED DATA RECORD 6-36
Logical sector . • • • • • 3-6
Logical sector numbers • • 3-8
Logical Segment • • 6-3
LSEG • • • • • . • • 6-3

Make Assign List Entry (Function 5FH, Code 03H)
1-232

MAS •••• • . • • 6-2
Maxa110c • • . • . • . • • 5-3

MEDIA CHECK • . • • • • . 2-14
Media descriptor byte •. 2-14, 2-24
Media, determining . • • . 2-26
Memory Address Space • • . 6-2
Memory control block . . . 1-4

Page Index-8

Memory management function requests 1-4
Memory management, programming hints 7-4
Microsoft Networks •••. 1-14, 7-3
Microsoft Networks Manager's Guide 1-14
Microsoft Networks User's Guide 1-14
Microsoft record types • . 6-49
Minalloc • . 5-3
MODE . . 6-9
MODEND • . 6-44
MODULE • • • • • . 6-2
MODULE END RECORD . 6-44
Module header record • . . 6-5
Move File Pointer (Function 42H) 1-158
MS-DOS initialization •. 3-1
MS-DOS memory map . 4-1
MS-DOS User's Reference . 1-7
MS-LINK . • • • • • • • . 5-1
MSDOS.SYS file . 3-1, 3-4
Mul tiple med ia • . • • • . 2-14
Multitasking • . . 2-1

Name field • • . 2-8
Network-related function requests 1-14
NON DESTRUCTIVE READ NO WAIT 2-21
NON FAT ID bit . 2-7
Non IBM format bit. . 2-7
NUL device • . . 2-7
Numeric record types . 6-48

Object Module Formats . . 6-2
OFFSET • • • • • • . 6-9
Old system calls . • • • . 1-15
OMF . • • • • . . • • • . 6-2
Open File (Function OFH) . 1-68
Open Handle (Function 3DH) 1-146
Opened FCB • . • • . . 1-16
Overlay Name, LSEG • . 6-5

PARAGRAPH NUMBER • . 6-3
Parameter block .•.• . 1-191
Parse File Name (Function 29H) 1-110
Path command • . • • • • • 4-3
Physical Segment • • • • . 6-3
Pointer to Next Device field 2-7
Predefined device handles 1-8
Print Character (Function 05H) 1-53
Printer Setup (Function 5EH, Code 02H 1-227
Process management function requests 1-5
Process management, programming hints 7-5
Program End Process (Interrupt 20H) 1-32

Page Index-9

Program segment ..••. 4-1
Program Segment Prefix •• 1-16, 1-20, 1-37, 1-103,

1-190, 4-2, 5-3
Programming hints

device management 7-3
file and directory management 7-5
file locking . . • 7-6
interrupts . . . •• 7-1
memory management 7-4
miscellaneous 7-6
process management . 7-5
recommendations 7-1
system calls . 7-3

Prompt command • 4-3
PSEG

definition ••• 6-3
NUMBER • • •• 6-3

PUBDEF . • • . • • 6-29
PUBLIC NAMES DEFINITION RECORD 6-29

Random Block Read (Function 27H) 1-104
Random Block Write (Function 2BH) 1-107
Random Read (Function 21H) 1-93
Random Write (Function 22H) 1-95
Read Handle (Function 3FH) 1-152
Read Keyboard (Function 08H) 1-59
Read Keyboard and Echo (Function 01H) 1-49
Read Only Memory . • . • . 3-1
READ or WRITE • . •• 2-19
Record format, sample •. 6-17
Record formats • . 6-1
Record order . . . 6-15
Record size . • I-BO
Record types

Microsoft . • 6-49
numeric . . • . 6-48

Registers, treatment of . 1-21
Relocatab1e memory images 6-1
Relocation information . . 5-1
Relocation item offset value 5-3
Relocation table • . . • . 5-2
Remove Directory (Function 3AH) 1-140
Rename File (Function 17H) 1-84
request header • • • . . . 2-9
Request packet • • • • . . 2-2
Reset Disk (Function ODH) 1-65, 1-80
Resident device drivers • 2-1
ROM • • • • . • . . 3-1
Root directory . . • . • . 3-3

Search for First Entry (Function IlH) 1-72
Search for Next Entry (Function 12H) 1-74
Sector count • •• .. 2-28 to 2-29
SEGDEF • • • . • • 6-21
Segment addressing . . • . 6-6

Segment definition •••• 6-5
Segment definition record 6-21
Segment Name, LSEG •••• 6-4
Segment-relative fixups • 6-9, 6-15
Select Disk (Function OEH) 1-66
Self-relative fixups •.• 6-9, 6-13
Sequential Read (Function 14H) 1-78
Sequential Write (Function ISH) 1-80
Set Block (Function 4AH) • 1-188, 4-4
Set command .•••• . • 4-3
Set Country Data (Function 38H) 1-136
Set Date (Function 2BH) • 1-115

Page Index-10

Set Disk Transfer Address (Function 1AH) 1-87
Set Interrupt Vector (Function 25H) 1-35 to 1-37,

1-101
Set Relative Record (Function 24H) 1-100
Set Time (Function 2DH) . 1-119
Set/Reset Verify Flag (Function 2EH) 1-121
Smart device driver ••. 2-14
Standard character I/O function requests 1-2
Start sector • • • •• 2-28
start segment value . • • 5-3
static request header •• 2-2
STATUS • • • • • . . • • • 2-23
Status field • • .• • 2-10
Strategy entry point .•. 2-1 to 2-2, 2-28
Strategy routines • • 2-8
Superseded system calls • 1-15
Symbol definition .••• 6-6
SYSINIT • • • 2-2
System calls

definition ..•..•• 1-1
programming hints • • • 7-3
replacements for old • • 1-15
superseded calls . . • • 1-2
types of • • • • • • • • 1-1

System files ..••••. 1-72, 1-74, 3-4
System prompt . • • • • • 3-2
System-management function requests 1-15

T-MODULE • • • • . . • • • 6-2
T-module Header Record (THEADR) 6-19
TARGET . • • • • . • • • • 6-10
Terminate But Stay Resident (Interrupt 27H) 1-45
Terminate Process Exit Address (Interrupt 22H) 1-35
Terminate Program (Function OOH) 1-47
THEADR • • • • • • • • • . 6-19
Transfer address • • • • • 2-28
TYPDEF • • . • • • •• 6-25
Type Definition Record •• 6-25
Type-ahead buffer •••• 2-24

Unit code field •• 2-9
Unlock (Function 5CH, Code 01H) 1-222
Unopened FCB • . . • • • • 1-16

User stack ••.

Vector table • .
Volume ID
Volume label •

4-1

· 1-19
· 2-19
• 3-4

Page Index-II

Wildcard characters ••. 1-72, 1-74, I-Ill
Write Handle (Function 40H) 1-154

	001
	002
	003
	004
	005
	006
	1-0001
	1-0002
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	1-163
	1-164
	1-165
	1-166
	1-167
	1-168
	1-169
	1-170
	1-171
	1-172
	1-173
	1-174
	1-175
	1-176
	1-177
	1-178
	1-179
	1-180
	1-181
	1-182
	1-183
	1-184
	1-185
	1-186
	1-187
	1-188
	1-189
	1-190
	1-191
	1-192
	1-193
	1-194
	1-195
	1-196
	1-197
	1-198
	1-199
	1-200
	1-201
	1-202
	1-203
	1-204
	1-205
	1-206
	1-207
	1-208
	1-209
	1-210
	1-211
	1-212
	1-213
	1-214
	1-215
	1-216
	1-217
	1-218
	1-219
	1-220
	1-221
	1-222
	1-223
	1-224
	1-225
	1-226
	1-227
	1-228
	1-229
	1-230
	1-231
	1-232
	1-233
	1-234
	1-235
	1-236
	1-237
	1-238
	1-239
	1-240
	1-241
	1-242
	1-243
	1-244
	1-245
	1-246
	1-247
	1-248
	1-249
	1-250
	1-251
	1-252
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	7-001
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11

