
CUSTOMIZING MS-DOS version 1.23 and later

Setting the Special Editing Commands

The escape codes used by Function 10, buffered console input, can be set for
the convenience of the user, using a table starting at address 0003 in MS-DOS.
The beginning of MS-DOS looks like this:

0000

0003

00&<\ "
0005
0006
0007
0008
0009
O.OOA
OOOB
OOOC
0000
OOOE
OOOF

JMP

Jl$CCHAR:

t
, DB

~ABI
DB
DB
DB
DB
DB
DB
DB
DB
DB
PB
DB
DB

INIT

IBH

"S"
"V"
"T"
"W"
"U"
"E"
"J"
"0"
"P"
"Q"
"R"
"R"

;ASCII value to' use for escape character

;Copy one character from template
,Skip over one character in template
;Copy up to specified character
;Skip up to specified- character
;Copy rest of template
;Kill line with no change in template (Ctrl-X)
;Cancel line and update template
;Backspace (same as Ctrl-H)
iEnter Insert mode
;Exit Insert mode
iEscape sequence to represent escape character
;Bnd of table - must be same as a previous byte

For example, the character sequence ESC S will copy one character from the
template to the new line. The next to last entry in the table is the escape
sequence to be used to pass the escape character. In the standard table shown
here, . this is done by typing ESC R, but it could also be set up for any
other escape sequence, including ESC ESC (hitting escape twice).

Customizing the I / O system

In order to provide the user with maximum flexibility, the disk and simple
device I/O handlers of MS-DOS are a separate subsystem which may be configured
for virtually any real hardware. This I / O system is located starting at
absolute address 400 hex, and may be any length. The DOS itself is completely
relocatable and normally starts immediately after the I/O system.

Beg inning at the
series of 3-byte
the I / O system.
look like this:

very start of the I / O system (absolute address 400 hex) is a
jumps (long intra-segment jumps) to various routines within
These jumps and their starting offsets (relative segment 40H)

0000 JMP INIT 1 System initialization
0003 JMP STATUS Console status check
0006 JMP CONIN Console input
0009 JMP CONOUT Console output
OOOC JMP PRINT Printer output
OOOF JMp AUXIN Auxiliary input
0012 JMp AUXOUT Auxiliary output
0015 JMP READ Disk read
0018 JMP WRITE 1 Disk write
OOlB JMP DSKCHG Return disk change status
OOlE JMP SETDATE Set current date
0021 JMP SETTIME 1 Set current time
0024 JMP GETDATE Read time and date
0027 JMp FLUSH 1 Flush keyboard input buffer
002A JMP MAPOEV Device mapping

The first jump, to INIT, is the entry point from the s ystem boot. All the rest
are entry points for subroutines called by the DOS. Inter-segment calls are
used so that the code segment is always 40 hex (corresponding to absolute
address 400 hex) with a displacement of 3, 6, 9, etc. Thus each routine must
make an inter-segment return when done.

The function of each routine is as follows:

IN IT - System initialization

Entry conditions are established by the system bootstrap loader and should be
considered unknown. The following jobs must be performed:

A. All devices are initialized as necessary.

B .. A local stack is set .up, OS-:SI are set to point to an initialization
table, and DX is set with the number of paragraphs (16-byte units) of total
memory . If DX is set 0001, then MS-DOS will perform a memory scan to determine
s i ze. Then an inter-segment call is made to the first byte of the DOS, using
a displacement of zero.. For example:

MOV AX,eS ; Get current segment
MOV -DS,AX
MOV SS,AX
MOV SP,OFFSET STACK
MOV SI,OFFSET INITTAB
MOV DX,l ;Use automatic size determination
CALL DOSSEG:O

The initialization table provides the DOS with information about the disk
system . The first entry in the table is one byte wi th the nwaber of disk
I / O drivers, N. This byte is followed by N 3-byte entries, each of which
consists of:

1. 1 Byte. The physical drive number this entry refers to.

2. 2 Bytes. The offset of this drive's Drive Parameter Table (DPT)
in DS--see below. Similar drives may share a OPT.

Each entry in this table is considered a separate I/O driver, numbered from
o to N-l. Each physical disk drive may have more than one I/O driver, thus
allowing more than one format/density/ configuration for each drive. Each drive
has only one File Allocation Table in memory, which is equal in size to the
largest table needed for any configuration specified for that drive.

For example, if a system has two disk drives, both of which may contain
either _ single or double density diskettes, then the table mignt look like this:

DB 4 ,4 I/O drivers

DB 0 ;Orive 0
DW SDRlVE ;5in91e density DPT
DB 0 ,Still drive 0
OW DDRlVE ;Double density DPT

DB 1 ;Repeat it all for drive 1
OW SDRlVE
DB 1
OW DDRlVE

The Drive Parameter Table, or OPT, has the following entries:

1. SECSIZ. 2 Bytes. The size, in bytes, of the physical disk sector.
The minimum value is 32 bytes, the maximum practical value is 16K. This
number need not be a power of 2.

2. CLUSSIZ. 1 Byte. The number of sectors in an allocation unit.
This number must be a power of 2. This limits it to the values 1, 2, 4, 8,
16, 32, 64, and 128. By making the allocation unit small, less disk space is
wasted because the last allocation unit of each file is only half full on the
average. By making the allocation unit large, less space is taken up both
on the disk and in memor·y for the File Allocation Table. A good choice is
to make the allocation unit approximately equal to the square root of the
disk size (to the nearest power of 2). For example, a standard floppy disk
with 256K would use an allocation unit of 512 bytes, or 4 physical sectors.
A 20 floppy disk with lK sectors has 1.2 Mbytes, and would use an allocation un!
of lK, or 1 physical sector.

3. RESSEC . 2 Bytes. The number of reserved sectors at the start
of the disk. At least one sector is usually reserved for a disk bootstrap
loader and more may be reserved to place the I / O system or all of MS-DOS
in this reserved area.

4. FATCNT. 1 Byte. The number of File Allocation Tables. This
is noramlly two, to provide one backup.

s. MAXENT. 2 Bytes. The number of directory entries. This may be any
number less than 4080. For maximum efficiency, however, it should be a multiple
of the number of directory entries that can fit in one physical sector, at
32 bytes per directory entry.

6. DSKSIZ. 2 Bytes. The number of physical disk sectors. Being
represented with only 16 bits, this number clearly must be less than 64K.
If a large disk has more physical sectors than this, the size of the physical
sector seen by MS-DOS must be increased by using multiples of the physical secto
Every time the I/O system documentation says "physical sector," consider
this to mean, for example, two physical sectors. Then the size of this new
"physical sector," SECSIZ, is twice as big as before, DSKSIZ is half as big,
and the READ and WRITE routines must work in terms of these new sectors.

Below are the Microsoft standard Drive Parameter Tables for the most popular
floppy disk formats. The FAT identification byte is placed in the first byte
of the FAT when the disk directory is cleared by FORMAT, and may be used by
MAPDEV to support mulitple formats. If your format is not listed and you wish
to be interchange coapatible with other manufacturers, contact Microsoft.

8- IBM 3740 format, singled-sided, single-density, 128 bytes per sector,
soft sectored:

FAT

ow
DB
OW
DB
OW
OW

identification byte

128
4
1
2
68
77*26
is FE

1128 bytes/sector
;4 sectors/allocation unit
,Reserve one boot sector
;2 PATs - one for backup
;17 directory sectors
;Tracks • sectors/track • disk size

hex.

8- Double-sided, double-density, 1024 bytes per sector, soft sectored:
OW 1024
DB 1
OW 1
DB 2
OW 192
OW 77*8*2

FAT identification byte is FE hex. Multiple sectors are to be transferred
by transferring all sectors on side 0 of a track, then all sectors of side
on that track, then stepping to the next track. Prom the beginning of the
disk, the order is: Track 0, side 0, sectors 1 - 8; track 0, side 1,
sectors 1 - 8; track 1, side ' 0, sectors 1 - 8; track 1, side 1, sectors I - 8;
etc.

5- Single-sided, double-density, 512 bytes per sector, soft sectored:
OW 512 1512 bytes/sector
DB 1 ;1 sector/allocation unit
DW 1 ;Reserve one boot sector
DB 2 ;2 FATs - one for backup
DW 64 ;4 directory sectors
OW 40*8 ;Tracks * sectors/ track a disk size

FAT identification byte is FE hex.

5- Double-sided, double-density, 512 bytes per sector, soft sectored:
OW 512 ;512 bytes/sector
DB 2 ;2 sectors/ allocation unit
OW 1 ;Reserve one boot sector
DB 2 ;2 FATs - one for backup
OW 112 ;7 directory sectors
DW 40*8*2 ;Tracks * sectors/track * sides = disk size

FAT identification byte is FF hex. The sector order is the same as for
double-sided, double-density 8- disks above.

5· Double-sided, double-density, double track density, 512 bytes per sector,
soft sectored:

ow
DB
OW
DB
OW
OW

FAT identification byte

512 ;512 bytes/sector
4 ;2 sectors/allocation unit
1 ;Reserve one boot sector
2 ;2 FATs - one for backup
144 ;9 directory sectors
80*8*2 ;Tracks * sectors/track * sides
is FD hex.

disk size

C. When the DOS returns to the INIT routine in the I/O system, OS has the
segment of the start of free memory, where a program segment has been set up.
The remaining task of INIT is to load and execute a program at 100 hex in this
segment, normally COMMAND.COM. The steps are:

1. Set the disk transfer address to OS:lOOH.

2. Open COMMANO.COH. If not on disk, report error.

3. Load COMMAND using the block read function (Function 39). If end-of-file was
not reached, or if no records -were read, report an error.

4. Set up the standard initial conditions and jump to 100 hex in the new
program segment.

MOV
MOV
INT
MOV
MOV

OS must be
MOV
MOV
MOV
MOV
INT
OR
JNZ
MOV
MOV
INT
JCXZ
CMP
JNZ
MOV
MOV
MOV
MOV
XOR
PUSH
MOV
MOV
INT
PUSH
MOV
PUSH
RET

COHERR:
MOV
MOV
INT

STALL: JMP

BADCOM: DB

FCB: DB
DB

OX,lOOH
AII,26
.21H
CX,WORD
BX,OS

,Set transfer address to 05:100H
PTR 05:6 1Get maximum size of segment

:Save segment for later
set to CS so

AX,CS
DS,AX
DX,OFFSET
AR,IS
21H
AL,AL
COMERR
WORD PTR
AII,39
21H
COMERR
AL,l
COMERR
OS,BX
ES,BX
SS,BX
SP,SCH
AX ,AX
AX
DX,80H
AH,26
21H
BX
AX,lOOR
AX

DX,BADCOH
AII,9
21H
STALL

we can point to the FeB

PCB ;File Control Block for COMMANO.COH

;Open COMMAND.COH

iError if file not found
PCB+14,1 ;Set record length to 1 byte

iBlock read
:ErIor if no records read

;Error if not end-af-file
JAIl segment reg.s must be the same

;Stack must be SC hex

,Put zero of top of stack

:Set transfer address to default

;FAR return - jump to COMMAND

;Print error message
;Don't know what to do

13,10, "Bad or missing Command Interprete·r", 13,10, "$"

1, "COMMAND COM"
2S DUP (0)

$TATUS - Console input status

If a character is ready at the console, this routine returns with the 2ero
flag cleared and the character in AL, which is still pending. Once a character
has been returned with this call, that same character must be returned every
time the call is made until a CONIN call is made. In other words, this call
leaves the character in the input buffer, and only CONIN can remove it.
If no character is ready, the 2ero flag is set. No registers other than AL
may be changed.

CONIN - Console input

Wait for a character from the console, then return with the character in AL. No
other registers may be changed.

CONOUT - Console output

Output the character in AL to the console. No registers may be affected.

PRINT - Printer output

Output the character in AL to the printer. No registers may be affected.

AUXIN - Auxiliary input

Wait for a byte from the auxiliary input device, then return with the byte in
AL. No other registers may be affected.

AUXOUT - Auxiliary output

Output the byte in AL to the auxiliary output device. No registers may be
affected.

READ - Disk read
WRITE - Disk write

On entry,

AL I/O driver number (starting with zero)
AH Verify flag (WRITE only) O-no verify, I-verify after write
ex Number of physical sectors to transfer
ox Logical sector number
DS:BX = Transfer address.

The number of sectors specified are transfered using the given I/O driver at
the transfer address. "Logical sector numbers" are obtained by numbering each
sector sequentially starting from zero, and continuing across track boundaries.
Thus for standard 8" floppy disks, for example, logical sector 0 is track 0 secto
1, and logical sector 53 is track 2 sector 2. This conversion from logical
sector number to physical track and sector is done simply by dividing by the numb
sectors per track. The quotient is the track number, and the remainder is the
sector on that track. (If the first sector on a track is 1 instead of 0, as
wi th standard floppy disks, add one to the remainder.)

-Sector mapping- is not used by this scheme, and is not recommended unless
contiguous sectors cannot be read at full speed. If sector mapping is desired,
however, it may be done after the logical sector number is broken down into
track and sector. The 8086 instruction XLAT is quite useful for this mapping.

All registers except the segment registers may be destroyed by these routines.
If the transfer was successfully completed, the routines should return with the
carry flag clear. If not, the carry flag should be set, and ex should have the
number of sectors remaining to be transfered (including the sector in
error). A code for the type of error should be returned in AL, which will be
used to pr int one of the following messages:

AL Er ror type

a Write protect (disk writes only, of course)
2 Not ready
4 Data
6 Seek
8 Sector not found
10 write fault
12 Disk - This is a catch-all for any other errors

DSKCHC - Oi sk change tes t

This routine takes as input a disk drive number in AL and AS is zero. It
returns

AH = -1 if disk has been changed.
AU 0 if it is not known whether the disk has been changed.
AD = I if disk could not have been changed.

and AL = I/O driver number to use for this diskette and drive.
Carry flag clear

If this routine requires a disk read and the read is unsuccessful, it should
return with carry set and error code in AL (same as READ or WRITE). This will
invoke normal hard disk error handling, except the error can not be ignored.

This routine is. called whenever a directory search has be'n made and the disk
could legally have been changed. The purpose is to minimize unnecessary
re-reading of disk directory information if the disk has not been changed,
and to provide configuration information if it has. If, for example, a drive
will be required to read both single and double density disks, this routine
will make the determination of which format is currently present, and provide
the corresponding I / O driver number.

Examining this example more closely, suppose the ini tialization table
appeared as follows:

DB 74 I / O drivers

DB 0 ;Orive a
ow SDRIVE ;Single densi ty DPT
DB 0 1Still drive 0
DW DDRIVE ;Oouble density DPT

DB ;Repeat it all for drive
DW SDRIVE
DB 1
DW DDRIVE

If a directory search is to be made on drive a, this routine will be called
wi th AS- O, AL=l. If the routine determines that a single-density disk is
presently in the drive, it will return with AL=2; if a double density disk,
AL-3. If this is a change from the previous density used in this drive, is
should also set AH--lj otherwise, AHz:O.

~~--c....._~. ____ ... _ _ __ ._ .. _ .. '. ____ :.... _ ___ •. ___ . _ _ .. __ _ .• ___ ~ , . .,._ .•• _~ ___ ~

One way to determine density is to simply try to read the disk with the same
density as last time; if that doesn't work, switch densities and try again.
If neither can be read (after suitable re-tries), the routine should return
with the carry flag set and the error code (same as READ or WRITE, above) in
AL. Other systems will always have track 0 formatted single density, with
a flag indicating what the rest of the disk is formatted like. Again, if a
hard disk error occurs attempting to read this information, return the same
error indicator as READ or WRITE woulda

Eight-inch double sided .disks have their index hole punched in a different
place from the single-sided disks, and sOJae drives provide a Wtwo-side w

status signal to indicate which is being used. This provides an easy way
to distinguish format.

If there is a one-to-one mapping between physical disk drives and I/O drivers,
then AL may be .left unchanged. AS must still return disk change information,
if available.

Floppy disk systems with no way to know if the disk has been changed will
simply return AS = 0 whenever this routine is called. Some floppy disk
drives provide a disk change signal, which simply latches the fact that
the drive door has been opened since the last disk access 4 Another way
to tell is if the head of the drive is still loaded from. the last disk command,
then One may assume the disk has not been changed. (In this case, the
head not loaded does not mean the disk has been changed, it means unknown 4)

A non-removable hard disk should always return that disk is not changed.

SETDATE - Set date

On entry, AX has the count of days since January 1, 1980. If the system has
time-keeping hardware, the date should rollover at midnight. Otherwise, it
should simply be stored for return by GETDATE.

SETTIME - Set time

On entry, ex and OX have the current time:

CD = hours (0-23)
CL = minutes (0-59)
DB = seconds (0-59)
OL = hundredths of seconds (0-99)

Each of these is a binary number that has been checked for proper range. If
time-keeping hardware is not used, the time should simply be stored for return
by GETDATE.

GETOA'l'E - Read date and title

Returns the following information:

AX = count of days since 1-1-80.
CH = hours
CL = minutes
DB = seconds
DL = hundredths of seconds

No other registers may be affected.

FLUSH - Flush keyboard buffer

If the console input keyboard has a hardware or software type-ahead buffer,
the buffer should be cleared with this call. If there is no buffer, this
routine should simply return.

... -.... . -- -.. ~.--- ~---

MAPDEV - Map disk I / O drivers

This routine can be used to map physical disk drives with their I/O drivers.
It is called AFTER the File Allocation Table is read (which is after the
DSKCHG call), which means that DSKCBG must have returned an I/O driver which
could properly read the disk, and for which the File Allocation Tables are
the same number of sectors and in the same place on the disk. Then, the first
byte of the FAT is used to determine the rest of the disk format. This byte
may legally be in the range OFS hex to OFF hex, and is normally set at format
time.

On entry,

AL = I/O driver used to read the FAT
AH = First byte of FAT (range F8 to FF)

on exit,

AL • I/O driver for this diskette and drive.

This routine is particularly suited for distinguishing between double-sided
and single-sided disks~ For example, the double-sided drive might use an
allocation unit twice as large as the single-sided, so the allocation table
will be the sarRe size~ The first byte of the FAT could be: Fl!" for single-sided,
FE for double sided~ The I/O driver for double sided would use an
initialization table with more directory entries and more sectors; the driver
itself could interleave sides of the disk between stepping the head, provided
all of the FATs fit in one track~ DSKCaG could return the I/O driver for the
single-sided disks, which would be adequate for reading the PAT from. double
sided disks. Then MAPDBV could use the least significant bit of the first byte
of the FAT to return the correct I/O driver.

The advantage of using MAPDEV over returning the completely correct I / O driver
in OSKCHG is that their are no- extra disk accesses, since the FAT will be
read anyway ~

In most systems, the entire input range Fa to FF will not be meaningful. This
routine, however, should always return a valid I/O driver number of the drive.

MS-DOS DISK CONFIGURATION AND BOOTSTRAP LOADING

MS-OOS disks are divided into four areas:

l~ Reserved
2. File allocation tables
3. Directory
4. File data

The size of the reserve" area is specified by the OEM and should be as 511al1
as possible. Normally, only one sector is needed for a bootstrap loader. In
systems where the first track is formatted single density while the rest of
the disk is double density, it may be simplest to include the entire first
track in the reserved area. Sectors in the reserved area need not be the same
size as the sectors on the rest of the disk since they are never accessed by
the file system.

The size of the Pile Allocation Tables and the directory are computed dut ing
initialization from the OEM's Drive Parameter Table. The size of the data
area is simply everything that's left, truncated to whole Allocation Units.
(Any sectors so truncated are never used.)

MS-DOS and the OEM'S I/O system reside in the data area of the disk. They are
each in their own file, properly recorded in both the directory and the File
Allocation Table. However, in order to simplify bootstrap loading of these
files, they can be guaranteed to be in fixed locations on the disk, on
consecutive sectors. Specifically, the file IO.SYS always starts on the first
sector of the data area. The file MSDOS.SYS always starts on the first
allocation unit inunediately after IO.SYS. Thus the bootstrap loader need only
deal with loading consecutive sectors beginning at a fixed location on the
disk.

In order to ensure these .SYS files are in their proper locations, the files
are hidden from all ordinary directory operations by an attribute bit in the
directory. This means the files cannot be seen with the DIR command nor copied
with the COPY command. Instead, the program SYS.COM is provided to allow
copying these files from. disk to disk. SYS will only perform the copy if either:

1) The destination disk has no files on it (this is the basic
requirement for locating the .. SYS files in the right place).

2. The destination already has both .. SYS files (which are assumed
to be in the right place, so the copy operation will just overwrite
them) •

The primary purpose of for putting MS-DOS and the I / O system in the data area
is to allow "system disks·, from which MS-DOS can be loaded, and "data disks·,
which have more data space. It also allows the size of MS-DOS or the I/O
system to change, instead of locking them into a fixed size reserved area.
(NOTE: If either MS-DOS or the I / O system grow to exceed the number of
allocation units they have been assigned on the disk, then previous system
disks can NOT be updated with the larger version. The solution for the user
is to create a new system disk, and copy files to it. The old system disk
may then be used to load an old syste., or it. may be used as a data disk.
This is the price paid to have a simple bootstrap loader for consecutive
sectors.)

Writing the bootstrap loader requires knowing where the data area starts, since
IO.SYS is the first thing in the data area. Here are the starting locations
for Microsoft standard formats:

Sector number
FORMAT dec hex track, side, sector

8" single side , single density 30 lE 1,0,5

8" double side, double density 11 OB 0,1,4

5" single side, double density 0,0 ,8

5" double side, double density 10 OA 0,1,3

If you are not using one of Microsoft's standard formats, you can figure out
the start of the data area using the drive initialization table. The approach
is simply to determine the _size of each cOllponent preceding the data area,
and add it up.

First, the size of the reserved area. This appears directly in the
initialization table.

Next the size of the directory. Divide the sector size by 32 to find the
number of entries per sector. Divide this result into the number of directory
entries, rounding up if there is any remainder. This is the number of directory
sectors.

The number of sectors in the File Allocation Tables depends on the size of the
data area, which in turn depends on the size of the FAT. Start by assuming a
FAT size of one sector. Compute the start of the data area with

[{FAT size} * (number of PATs)] + (nullber of directory sectors) +
(nUmber of reserved sectors) = start of data area

then figure the size of the data area with

(size of disk) - (start of data area) ,. size of data area.

The number of allocation uni ts on the disk is what actually determines the
size of the FAT. This is simply

(size of data area) / (sectors per allocation unit) = number of allocation units

Each allocation unit requires 1.5 bytes in the FAT, plus three extra bytes are
needed because allocation units 0 and 1 are reserved.

[(number of allocation units) * 1.5] + 3 = FAT size (round up if not integer)

This is a good estimate of the' FAT size, but it is still only an estimate.
Now go back and do it allover again, except this time when COMputing the size
of the data area, use this estimate of FAT size instead of 1. This
re-computation should be repeated until the estimate of FAT size is the sarae
twice in a row.

If the final calculation of the number of allocation units (a division) results
in a remainder, . these are sectors that will go completely unused, since there
are not enough to make a whole allocation unit. To prevent this from being a
total waste, the number of sectors in the directory can be adjusted so there
are just enough sectors left to fill out the last allocation unit. For example,
the initial selection for single density 8- disks was 64 directory entries.
This, however, leaves one sector unused; so instead, one sector was added to
the directory, and the allocation units come out with an exact number of
sectors. This added sector in the directory is still not used very often, but
it is available if needed.

TITLE IOSYS - - Skeleton 10. SYS for MSDOS

********.************""***********************************'*************

I / O System for MSDOS version 1.20 and later.

BIOSSEG SEGMENT AT 40H

DOSSTART EQU 0800H ;Pasition of DOS after SIOS on disk
DOSSIZE EQU 20008 ;Max size of DOS

ASSUME CS:BIOSSEG

JMP NEAR PTR INIT
JMP NEAR PTR CONSTAT
JMP NEAR PTR CONIN
JMP NEAR PTR CONOUT
JMP NEAR PTR PRINT
JMP NEAR PTR AUXIN
JMP NEAR PTR AUXOUT
JMP NEAR PTR READ
JMP NEAR PTR WRITE
JMP NEAR PTR DSKCHG
JMP NEAR PTR SETDATE
JMP NEAR PTR SETTIME
JMP NEAR PTR GDATTIM
JMp NEAR PTR FLUSH
JMP NEAR PTR MAPDEV

BAUCOM : DB 13,10, "Error in loading Command Interpreter",lJ,lO,"S"
FCB: DB 1, ·COMMAND COM"

DB 25 DUP(O)

INIT PROC FAR
XOR BP,BP , Set up s tack just below I / O system.
MOV SS,BP
MOV SP,BOOH ;BIOSEG offsetted from standard.
PUSH CS
POP DS
PUSH CS
POP ES

ASSUME DS: BIOSSEG, ES: BIOSSEG

;Perform initialization of all hardware here

MOV SI ,DOSSTART
MOV DI ,OFFSET ENDBIOS
MOV ex, DOSSI ZE/ 2
REP MOVSW
MOV SI,OFFSET INITTAB
MOV DX,l ;Cause auto top of memory scan.
CALL FAR PTR MSDOS
MOV DX,lOOH

HOV
INT
HOV
HOV

AH,26
33
CX,DS:6
Bx,ns

;Set DMA address

:Get size of segment
1 Save segment for 1a ter

os must be set to cs so we can point to the FeB.

PUSH CS
POP OS
HOV. OX ,OFFSET FCB :File Control Block for COMMAND.COM
HOV AH,15
INT 33 ,Open COMMAND. COM
OR AL,AL
JNZ COHERR ;Error if file not found
HOV WORD PTR FCB+14,l ;Set record length field
HOV AH,39 ;Block read (CX already set)
INT 33
JCXZ COHERR ;Error if no records read
TEST AL,l
JZ COMERR ;Error if not end-af-file

Make all segment registers the same.

HOV DS,BX
HOV ES,BX
HOV SS,8X
HOV SP,SCH ;Set stack to standard value
XOR AX ,AX
PUSH AX ;Put zero on top of stack for return
HOV OX,80H
HOV AH,26
INT 33 ;Set default transfer address (05:0080)
PUSH BX ;Put segment on stack
HOV AX,lOOH
PUSH AX ; Put address to execute wi thin segment on
RET ; Jump to COMMAND

INIT ENDP

COMERR:
HOV ox ,OFFSET BAUCOM
HOV AH,9 ;Print string
INT 33
STI

STALL: JMP STALL

PAGE

stack

ASSUME OS: NOTHING, ES: NOTHING

Temporary storage for Date and Time Variables.

DATE OW 0000
TIMECX OW 0000
TIMEDX OW 0000

Routine to retrieve Date and Time from storage .

On exit:
AX a Count of days since January 1, 1980
CB • Bours
CL - Minutes
DB - Seconds
DL - Bundreths of seconds

GDATTIM PROC
HOV
MOV
MOV
RET

GDATTIM ENDP

PAR
AX, DATE
CX,TIMECX
DX,TIMEDX

Routine to set the time.

on entry;

CH • Bours (0 - > 23)
CL a Minutes (0 => 59)
OR ,. Seconds (0 -=> 59)
DL ~ Hundredths of seconds (0 -> 99)

SETTIME PROC
MOV
MOV
RET

SETTIME ENDP

FAR
TIMECX,CX
TIMEDX,DX

Routine to set the date.

on entry;

AX - Count of days since January 1, 1980

SETDATE PROC
MOV
RET

SETDATE ENDP

PAGE

FAR
DATE, AX

Routine to retrieve console status and snap of character.

On exit:
AL - Copy of character waiting in buffer.
Z - Non-Zero if character is waiting.

"" Zero if no character is wai ting.

No registers beside AL may be used . The routine
must be able to return a copy of the same character
waiting in the buffer, until the character is actually
read wi th CONIN.

CONSTAT PROC FAR

RET
CONSTAT ENOP

Routine to retrieve the character from the console buffer.

On exit:
AL - The character waiting in the buffer.

CONIN PROC

RET
CONIN ENOP

Routine does not return until a valid character
is available. No other registers can be used
except the AL.

FAR

Routine to flush any type a head characters from Console input
buffer.

On exit:
No registers may be changed.

FLUSH PROC FAR
RET

FLUSH ENOP

Routine to output a character to the console.

On entry:
AL - Character to be output

No registers may be changed.

CON OUT PROC FAR

RET
CONOUT ENOP

PAGE

Routine to output a character to the printer .

On entry:
AL - Character to be output.

No registers may be changed.

PRINT PROC FAR
RET

PRINT ENOP

Routine to read a character from the auxilary port.

On exit:
AL = Character .

No other reqisters may be changed.

AUXIN PROC FAR
RET

AUXIN ENOP

Routine to send a character to the auxilary port.

On entry:
AL • Character to send.

No registers may be changed.

AUXOUT PROC FAR
RET

AUXOUT ENOP

Disk change function.
On entry:

AL - disk drive number.
On exit:

AH z -1 (FF hex) if disk is changed.
AU ::I: a if don't know.
AH - 1 if not changed.

CF clear if no disk error.
AL - disk I / O driver number.

CF set if disk error.
AL - disk error code (see disk read below).

DSKCHG PROC . FAR

RET

DSKCHG ENDP

PAGE

Map Disk I / O drivers

On entry:
AL 2 I / O driver used to read the FAT
AH = Fir s t by te of FAT (range Fa to FP)

On exit :
AL a I / O driver for this drive .

MAPDEV PROC FAR

RET

MAPDEV ENDP

PAGE

Disk read function.

On entry:
AL = Disk I/O driver number
BX = Disk transfer address in DS
CX = Number of sectors to transfer
ox = Logical record number of transfer

On exit:

READ

CF clear if transfer complete

CF set if hard disk error.
cx number of sectors left to transfer.
AL disk error code

PROC

RET

o = wr i te protect er ror
2 not ready er ror
4 = CRe error
6 = seek er ror
8 = sector not found

10 = write fault
12 "data error" (any other error)

FAR

READ ENDP

PAGE

Disk write function.

on entry:
AL ,. Disk I / O driver number
BX - Di s k transfer address in DS:
ex Number of sectors to transfer .
DX = Logical Record number of transfe r.

on exit:

WRITE

CF = Clear if transfer completed .
CF - Set if Hard disk -error.
cx - number of sectors left to transfer.
AL • Disk error code:

PRce

a - Wr i te protect error.
2 - Not ready error.
4 ::II CRe error.
6 a Seek error •

. 8 - Sector not found.
10- write fault.
12- Data error. (catch all)

FAR

RET
WRITE ENDP

PAGE

Generalized error handler for a paticular status word that
may be returned by a disk controller chip.

ERROR PRce

GETCOD:

MOV
MOV
MOV

INC
LODS
TEST
JZ
MOV
SHL
STC
RET

ERROR ENDP

ERRTAB:
DB
DB
DB
DB
DB
DB
DB

PAGE

FAR
BL.-l
CS: (OI] ,BL ; Indicate we don1t know where head is.
SI • OFFSET ERRTAB

BL Increment to next error code.
C5:BYTE PTR [5IJ
AB,AL See if error code matches disk status .
GETCOD Try another if not.
AL,BL Now welve got the code.
AL,I Multiply by two.

408
80H
8
2
lOB
20H
7

1 Some sample sta tus bi ts
;Wr i te protect error
:Not ready error
;CRC error
;Seak error
; Sector not found
;Write fault
:Data error

Function:
Seeks to proper track.

On entry:
Same as for disk read or write above.

On exit:

SEEK:

AH = Drive select byte
DL = Track number
DB = Sector number
51 = Disk transfer address in DS
01 = pointer to drive'-s track counter in CS
ex unchanged (number of sectors)

RET

PAGE

MSDOS drive initialization tables and other what not.

Some example drives are shown.

Drives 0 and 1 are:
Single Density 8-inch 26 sector drives. (256,256 bytes)
or
Double Density / Double Sided 8-inch 8 sector drives4
(1,261,568 bytes)

Drive 2 is a:

Drive 3 is a:

INITTAB DB
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW

DDRIVE STRUC
BYTSEC OW
SECALLC DB
RESSEC OW
NUMFAT DB
NUMDIR OW
TOTSEC OW
DDRIVE ENDS

LSDRlVE DDRIVE

LDDRlVE DDRIVE

HDDRIVE DDRIVE

8-inch Winchester with 256 cylinders, 4 heads and formatted
for 17 sectors of 512 bytes per track. (8,912,896 bytes)

Section of main memory to use as a high speed RAM drive.
40000 hex bytes (262,144 bytes) broken up into 512 byte
sec tors, with 8 sectors per track and 64 tracks per RAM
drive.

6
0
LSD RIVE
0
LDDRIVE
1
LSDRIVE
1
LDDRIVE
2
!!DDRIVE :Hard disk.
3
MDDRIVE ;Memory drive.

0000 ; Bytes / sector.
00 ,Sectors / Allocation Unit.
0000 ;Reserved sectors.
00 ;Number of FAT's
0000 ;Number of directory entries.
0000 ;TOtal Number of sectors .

<128,4,2,2,68,2002>

<1024,1,0,2,192,1232>

<512,2,0,2,1024,17408 >

MDDRIVE DDRIVE <512,1,0,2,68,512>

PAGE

ENDBIOS LABEL BYTE
BIOSSEG ENDS

DOSSEG SEGMENT
MSDOS LABEL FAR
DOSSEG ENDS

END

FORMAT - formats a new disk, clears the FAT and DIRECTORY and
optionally copies the SYSTEM and COMMAND.COM to this new disk.

Command syntax:

FORMAT [drive:] [/switchl] [fswitch2] ••• [fswitch16]

Where "deive:· is a legal drive specification and if omitted
indicates that the default drive will be used. There may be
up to 16 legal switches included in the command line.

The OEM must supply four (NEAR) routines to the program along with 4 data
items. The names of the routines are INIT, OISKFORMAT, BADSECTOR, and DONE,
and their flow of control (by the Microsoft module) is like this:

INIT

I <------------------------------
1 DISKFORMAT 1

------~::::::--I-ThiS loop is done
1 BADSECTOR 1 for each group of
------------- bad sector s

1----->--

-This loop done once for
each di sk to be
formatted.

1 DONE 1

1---->--------------------------
The INIT, DISKFORMAT, and BADSECTOR routines are free to use any MS-DOS
system calls, except for file I/O and FAT pointer calls on the disk being
formatted. DONE may use ANY calls, since by the time it is called the
new disk has been formatted.

The following data must be declared PUBLIC in a module provided by the OEM:

SWITCHLIST - A str ing of bytes. The first byte is count N,
fOllowed by N characters which are the switches to
be accepted by the COfMIand line scanner. Alphabetic
characters must be in upper case. The switch to
indicate that you want a system transferred, normally
"5", must be the last switch in the list. Up to 16
awi tches are permitted. Normally a "C" swi tch is
specified for "Clear·. This switch should cause the
formatting operation to be bypassed (within DISKFORMAT
or BAD SECTOR) • This is provided as a time-saving
convenience to the user, who may wish to "start fresh"
on a previosly formatted and used disk.

rATIO - BYTE location containing the value to be used in the
first byte of the FAT. Must be in the range Fa hex to FF hex.
This byte may be used to differentiate between various formats
for the same physical deive (like single or double
sided).

STARTSECTOR - WORD location containing the sector number of the first
sector of the data area.

FREESPACE - WORD location which contains the address of the start
of free memory space. This is where the system will be loaded,
by the Microsoft module, for transferr ing to the newly
formatted disk. Memory should be available from this address
to the end of memory, so it is typically the address of the
end of the OEM module.

The following routines must be declared PUBLIC in the OEM-supplied module:

INIT - An initialization routine. This routine is called once
at the start of the PORMAT run after the switehes have
been processed. This routine should perform any functions
that only need to be done once per FORMAT run.
An example of what this routine might do is read the boot
sector into a buffer so that it can be transferred to
the new disks by OISKFORMAT. If this routine returns with
the CARRY flag set it indicates an error, and FORMAT will
print "Fatal format error" and quit. This feature can be used
to detect conflicting switches (like specifying both single
and double density) and cause FORMAT to quit without doing
anything.

OISKFORMAT - Formats the disk according to the options
indicated by the swi tches and the value of FATIO must
be defined when it returns (although INIT may have
already done it). This routine is called once for EACH
disk to be formatted. If neccessary it must transfer
the Bootstrap loader. If any error conditions
are detected, set the CARRY flag and return to FORMAT.
FORMAT will report a 'Format failure' and
prompt for another disk. (If you only require a clear
directory and PAT then simply setting the appropriate
PATIO, if not done by INIT, will be all that OISKFORMAT
must do.)

BAOsECTOR - Reports the sector number of any bad sectors
that may have been found during the formatting of
the disk. This routine is called at least once for EACH
disk to be formatted, and is called repeatedly until
AX is zero or the carry flag is set. The carry flag is used
just as in DISKFORMAT to indicate an error, and FORMAT
handles it in the same way. The first sector in the data
area must be in STARTsECTOR for the returns from this
routine to be interpreted correctly. If there are bad
sectors, BAD SECTOR must return a sector number in
in register BX, the number of consecutive bad sectors
in register AX, and carry clear. FORMAT will then
proces-s the bad sectOrs and call BADSECTOR again. When
BADSECTOR returns wi th AX = a this means there are
no more bad sectors; FORMAT clears the directory
and goes on to DONE, so for this last return ax
need not contain anything meaningful.

FORMAT processes bad sectors by determining their corresponding
allocation unit and marking that unit with an FF7 hex in the
File Allocation Table. CHKDSK understands the FF7 mark as a
flag for bad sectors and accordingly reports the number of
bytes marked in this way.

NOTE: Actual formatting of the disk can be
done in BADSECTOR instead of DIsKFORMAT on a "report as
you go· basis. Formatting goes until a group of bad sectors
is encountered, BAD SECTOR then reports them by returning
with AX and ax set. FORMAT will then call BAOSECTOR again and
formatting can continue.

DONE - This routine is called after the formatting is complete,
the disk directory has been initialized, and the system
has been transferred. It is called once for EACH disk to
be formatted. This gives the chance for any finishing-up
operations, if needed. If the OEM desires certain extra
files to be put on the diskette by default, or according
to a switch, this could be done in DONE. Again, as in BADSECTOR
and DISKFORMAT, carry flag set on return means an error has
occurred: 'Format failure' will be printed and FORMAT will
prompt for another disk.

The following data is declared PUBLIC in Microsoft's FORMAT module:

SWITCHMAP - A word with a bit vector indicating what switches
have been included in the command line. The correspondence
of the bits to the switches is determined by SWITCBLIST.
The right-most (highest-addressed) switch in SWITCBLIST (which
must be the system transfer switch, normally ·S·) corresponds
to bit 0, the second frail the right to bi t I, etc. For example,
if SWITCBLIST is the string ·S,'AGI2S'·, and the user
specifies ·/G/S· on the command line, then bit 4 will be
o (A not specified), bit 3 will be 1 (G specified), bits
2 and I will be 0 (neither I not' 2 specified), and bit 0
will be 1 (S specified).

Bit 0, the system transfer bit, is the only switch used in
Microsoft' 5 FORMAT module. This switch is used 1) after INIT
has been called, to determine if it is necessary to load the
system; 2) after the last BADSECTOR call, to determine if the
system is to be written. INIT may force this bit set or reset
if desired (for example, some drives may never be used as
system disk, such as hard disks). After INIT, the bit may be
turned off (but not on, since the system was never read) if
something happens that means the system should not be
transferred.

After INIT, a second copy of SWITCHMAP is made internally
which is used to restore SWITCHMAP for each disk to be
forMatted. FORMAT itself will tUrn off the system bit if
bad sectors are reported in the system area; OISKFORMAT and
BAD SECTOR are also allowed to change the map. However, these
changes affect only the current disk being formatted, since
SWITCHMAP is restored after each disk. (Changes made to
SWITCHMAP by INIT do affect ALL disks.)

DRIVE - A byte containing the drive specified in the
command line. O=A, l=B, etc.

Once the OEM-supplied module has been prepared, it must linked with Microsoft '5
FORMAT.OBJ module. If the Oni-supplied module is called OEMPOR.OBJ, then the
following linker command will do:

LINK FORMAT+OEMFOR;

This command will produce a file called FORMAT.EXE. FORMAT has been designed
to run under MS-DOS as a simple binary .COM file. This conversion is performed
by EXE2BIN with the command

EXE2BIN FORMAT . COM {Note the space between -FORMAT- and - .COM- J

which will produce the file FORMAT. COM. (If the - .COM- had been omitted, the
result would have been named FORMAT.BIN.) FORMAT.COM should be ready to run.

; ***** * ***** * * **** ***** ****** ** **** * ******

A Sample OEM module

~ **** * ** **** * **** * *** * * ********** * ***** ***
CODE SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:CODE,DS : CODE,ES:CODE

;This segment must be nailed CODE
:And it must be PUBLIC
;And it's classname must be 'COOE'

:Must declare data and rout i nes PUBLIC

PUBLIC FATIO, STARTSECTOR, SWITCHLIST ,FREESPACE
PUBLIC INIT ,DISKFORMAT ,BADSECTOR,DONE

~This data defined in Microsoft-supplied module

EXTRN SWITCHMAP:WORD,DRlVE:BYTE

INIT:

; Read the boot sector in to memory
CALL READBOOT

,Set FATIO to double sided if "D" switch specified
TEST SWITCHMAP, 4
JNZ SETDBLSIDE

RET

DISKFORMAT:

:Use the bitmap in SWITCHMAP to determine what swi tches are set
TEST SWITCHMAP,2 ;Is there a "/ C"?
JNZ CLEAR ;Yes -- clear operation requested

jump around the format code:

< format the disk >

CLEAR :

,Transfer the boot from memory to the new disk
CALL TRANSBOOT

RET

;Error return - set carry

ERRET:
STC
RET

BADSECTOR:

RET

DONE:

RET

FATID

STARTSECTOR

SWITCHLIST

FREESPACE

BOOT
ENDBOOT

CODE ENDS
END

DB

OW

DB

OW

DB
LABEL

OFEH ;Default Single sided

3, "DCS" ;·S· must be the last switch in the list

El/DBOOT

BOOTSIZE DUP(?) ;Buffer for the boot sector
BYTE

RDCPM:
Reads a file from a disk. that has been formatted with a CP/M
compatible system and copies that file to a different drive
assumed to be formatted with MS-DOS.

COMMAND SYNTAX:

The ROCPM cOllmand is similar to the COPY command except that
the source file is assumed to be on a CP/M disk:

RDCPM filel
RDCPM file1 drive
RDCPM filel file2

A special form of RDCPM parameters allows the directory of the
CP/M disk to be displayed:

RDCPM DIR filel
RDCPM DIR drive

Wildcard characters (ft*_ and "?") are acceptable in file names.

ROW RDCPM WORKS:

RDCPM is designed to combine with the CP/M Bios and
essentially 51 ts in the space usually used by the
CP/M operating system itself.
RDCPM can be be build using an existing CP/M Bios with a
minor modification or with a new CP/M Bios that contains
a subset of the calls required by the CP/M operating system.

WITH AN EXISTING BIOS:

If you have a CP/M. Bios for CP/M-86 then only a slight change
to your existing Bios is needed. The GETSEGB call which returns
with the address of the Memory Region Table in BX must be
modified. The first l6-bit entry in that table must contain
the size of your Bios in paragraphs. The calculation is
simple:

(Size of the Bios in bytes +15) /16

This information can be patched into your existing Bios
by finding the location of the Memory Region Table and
putting this value in the first entry.

ROCPM expects this information in the memory table rather
than the usual information required by CP/M.

You must then append this modified Bios to the ROCPM
program at location 2500 hex. In order to 60 this
you would load your Bios with the debugger and be sure
to remember the size of that program in bytes (register
cx contains the size of the program). Then name
RDCPM.COH and load it into memory. Change register
cx to reflect the size of the Bios and then write
RDCPM.COM back out to the disk. You should now have
a RDCPM.COM that is executable. See the sequence of
debugger commands under -BUILDING ROCPM-.

WITH A NEW BIOS:

If you do not have a CP/M Bios written for the 8086 then
you mus t wr i te a Bios to use wi th ROCPM. You only need
to include the following routines:

SELDSK
. SETTRK

SETSEC
SETDMA
READ
SECTRAN
SETDMAB
GETSEGB

Select a disk drive
Set track number
Set sector number
Set DMA offset address
Read selected sector
sector translate
Set DNA segment address
Get memory table offset

However you must set up the Bios jump vector as if you
were writing a full-blown CP/ M Bios so that ROCPM will
he calling the correct routines for both an existing
Bios and a new Bios.

Your CP/ M Bios should begin at location 2500H.
A typi cal CP/ M Jump Vector looks like this:

ORG 2 500H

JMP INIT
JMP WBOOT
JMP CONIN
JMP CONOUT
JMP LIST
JMP PUNCH
JMP READER
JMP HOME
JMP SELDSK ~ ********** Need to include
JMP SETTRK :********** Need to include
JMP SETSEC :********** Need to include
JMP SETDMA : ********** Need to include
JMP . READ :********** Need to include
JMP WRITE
JMP LISTST
JMP SECTRAN ;********** Need to include
JMp SETDMAB :********** Need to include
JMP GETSEGB ;********** Need to include
JMP GETIOB
JMP SETIOB

this routine
this routine
this routine
this routine
this routine

th routine
th routine
th s routine

BRIEF DESCRIPTION of CP/M BIOS ROUTINES for USE with RDCPM:

SELDSK

SETTRK

SETSEC

SETDMA

READ

The disk specified in CL is selected for reading
or writing. (O=A,1=B,2aC,etc.) The bios saves
this information for the next disk I / O operation.
On return BX contains the base address of the
Disk Parameter Beader for the selected drive.
For an example of the disk parameter information
used by CP/M see "DISK DEFINITION TABLES".
If an attempt is raade to reference a non-existent
drive then BX=O.

Register ex contains the track number for the next
disk access. The bios saves this information for
the next disk I/O operation.

Register ex contains the translated sector number
for the next disk access. The bios saves this
information for the next disk I/O operation.

Register ex contains the DMA addres s for the next
I / O operation. This address is the offset fr01ll the
segment address specified in the SETDMAB bios call.
The bios saves this information for the next disk
I / O operation.

Reads one sector based on the information saved
by the previous calls to SELDSK, SETTRK, SETSEC,
SETOMA, and SETDMAB.
On return:

AL=O if no errors occurred.
AL=l if a non-recoverable error occurred.

SECmAN

SETDMAB

GETSEGB

Translates a logical sector number to the appropriate
physical sector based on the skew factor of the CP/M
system.. Register ex contains a logical sector number.
Register DX contains the address of the translate
table (as returned by the previous call to SELDSK) ..
If DX-O then no translation takes place otherwise on
retur n ax contains the translated sector number ..

Register ex contains the s egment base of the DMA
address. The bios saves this information for the
next disk I / O operation.

Returns with the address of the Memory Region table
in BX.

The table should conta i ns the following information
for RDCPM:

a-bit

I x (RDCPM doesn't care what I 5 here) ------------------
I nnnn SiZe of the Bios in paragraphs

16-bit

DISK DEFINITION TABLES:

For a standard 8- single density diskette, the disk definition
tables would contains the following information:

Disk Parameter Header

I XLT I x x x x I DPB I x x

16b 16b 16b 16b 16b 16b 16b 16b

Where:

XLT is the offset of the logical to physical
TRANSLATION TABLE.

DPB is the offset of the DISK PARAMETER BLOCK
for the. selected drive.

None of the other values in the table are significant
as far as RDCPM is concerned.

The DISK PARAMTER BLOCK is def ined as follows for a
standard 8" single density diskette:

SPT
BSH
BSM
EXM
DSM
DRM

OFF

ow
DB
DB
DB
OW
OW
DB
DB
OW
OW

26
3
7
o

242
63

?

;Sectors per track
,Block shift (log2 (records/block) J
,Block mask (record/block-I)
;Extent size/16k-l
;Number of blocks on drive-l
;Number of directory entries-l
iUsed by CP/M operating system

iNc. of reserved tracks at start of disk

The logical to physical TRANSLATION TABLE is:

XLT DB
DB
DB
DB
DB
DB
DB

1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

: .. Skew factor" of 6

Once you have written your mini-Bios you must append
it to RDCPM . COM in order to produce a working version
o f RDCPM.

BUILDING RDCPM:

using the MS-DOS debugger you will append the CP/ M
Bios to the main RDCPM module at location 25008.

A: DEBUG <cp1ll.bios >

Debug Version n. nn

-R
<register display Register ex contains the
size of your Bios file -- remember this number >
-N RDCPM.COM
-L
-R CX
<register display>
<enter remembered value of CX >
-Ii
-Q

A:

A SAMPLE BIOS for USE wi th RDCPM;

CODE SEGMENT

ASSUME CS;CODE,DS;CODE,ES ;CODE,SS;CODE

ZERO ElQU $
ORG 2500H

JMp RETURN 7These "JMP RETURN" are just place holders
JMp RETURN
JMP RETURN
JMP RETURN
JMP RETURN
JMp RETURN
JMp . RETURN
JMp RETURN
JMp RETURN
JMp SELDSK
JMp SETTRK
JMP SETSEC
JMp SETDMA
JMP READ
JMp RETURN
JMp RETURN
JMp SECTRAN
JMp SETDMAB
JMp GETSEGT

SELDSK;

RET

SETTRK ;

RET

SETSEC;

RET

SECTRAN:

RET

SETDMA:

RET

SETDMAB:

RET

GETSEGT :

RET

READ:

RETURN:
RET

;CP/M Tables

SEGTAB DB
MEMCOUNT OW

DPBASE LABEL

DPEO DW
DW
DW
DW

DPE1 DW
DW
DW
DW

DPB OW
DB
DB
DB
DW
DW
DB
DB
DW
DW

XLT DB
DB
DB
DB
DB
DB
DB

CODESIZ EQU
CPMBIOSI Z EQU

CODE ENDS
END

for standard S" diskettes

WORD

XLT,O
0,0
O,DPB
0,0
XLT,O
0,0
D,OPS

0, °
26

·3
7

° 242
63
192

° 16
2

1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

$-ZERO-2500H
(CODESIZ+l5) /16

;Drive "A"

;Drive "B"

EXE2BIN - Convert files from EXE format to binary

Command s yntax :

EXE2BIN filespec [d:] [filename] [. ext]

The first parameter is the input file: if no extension is given, it will
default to .EXE. The second parameter is the output file. If no drive is
given, the drive of the input 'file is used: if no filename is given, the
filename of the input file is used: if no extension is given, . BIN is used.

The input must be in valid EXE format produced by the linker. The -resident-,
or actual code and data part of the file, must be less than 64K . There must
be no STACK segment. Two kinds of conversion are possible depending on the
specified initial CS:IP. 1) If CS:IP is not speCified, a pure binary con
version is assumed. If segment fix-ups are necessary, the user will be
prompted for the fix-up value. 2) If CS : IP is specified as 100H, then it
i s assumed the file is to be run as a COM file ORGed at 1008, and the first
100H of the file will be deleted . No segment fix-ups are allowed, as COM files
must be segment relocatable.

If CS:IP does not meet one of these criteria, or meets the COM file criterium
but has segment fix-ups, the error message "File cannot be converted" will be
displayed.

Note that to produce standard COM files with the as sembler, one must both
ORG the file at 100B and specify the first location as the start address
(this is done in the END statement). For example:

ORG 100H
START :

END START

Output formats for the Microsoft 8086 Linker

RunFile

The Microsoft Linker outputs I run' files in a relocatable
format, suitable for quick loading into memory and
relocation. Run files consist of several parts:

o Fixed length header
o Relocation table
o Memory image of res iden t prog r am.

A run file is loaded as follows:

o It is read into memory at any 16 byte (paragraph) boundary
o Relocation is applied to all words described by the

relocation table

The resulting relocated program is then executable.
Typically, programs in the PL/ M small model of computation
for the 8086 have little or no relocation; programs in the
medium or large model have relocation for long calls, jumps,
static long pointers, etc.

The following is a detailed description of the format of a
run file, given as an annotated C structure declaration.

struct runType
short wSignature;
short cbLastp;

short cpnRes;

short irleMax:
short cparDirectory;
short cparMinAlloc;

short cparMaxAlloc;

short saStack:

short ra5tacklnit;

short wchksumJ

short raStart;

short saStart,

short rbrgr1e;

short iov;

1*
1*

1*

1*
1*
1*

1*

1*

1*

1*

I"

1*

1*

I"

1*

must contain 4D5A hex */
number of bytes contained in last page; this
is useful in reading overlays */
number of 512 byte pages of memory needed to
load the resident and the run file header * /
number of relocation entr ies in the table * /
number of paragraphs in run file header */
minimum number of 16 byte paragraphs
required above the end of the loaded
program */
ignored for version l.x of M5DOS, will be
supported in 2.x.
maximum number of 16 byte paragraphs
required above the end of the loaded
program. OFFFFh means that the program is
located as low as possible in memory */
in1 tial value to be loaded into S5 before
starting program execution. This must be
adjusted by relocation */
ini tial value to be loaded into SP before
starting program execution */
negative of the sum of all of the words in
the run file. * /
initial value to be loaded into IP before
starting program execution */
ini tial value to be loaded into CS before
starting program execution. This must be
adjusted by relocation */
relative byte offset from beginning of run
file to the relocation table */
number of the overlay as generated by
LINK-a6. The resident part of a program will
have iov - 0 */

The relocation table follows the fixed portion of the run
file header and contains irleMax entries of type rleType,
defined by:

struct rleType
SHORT
SHORT

ra:
sa:

l,
Taken together, the ra and sa fields are an 8086 long
painter to a word in the run file to which the relocation
factor is to be added. The relocation factor is expressed as
the physical address of the first byte of the resident
divided by 16. Note that the sa portion of an rle must first
be relocated by the relocation factor before it in turn
points to the actual word requiring relocation. For
overlays, the rle is a long pointer FROM THE BEGINNING OF
THE RESIDENT into the overlay area.

The resident begins at the first 512 byte boundary following
the end of the relocation table ~

The layout of the runFile is:

+-----------------------+
I 28-Byte Header I
+-----------------------+
I Relocation table I
+-----------------------+
I padding «200h bytes) I
+-----------------------+
I memory image I
+-----------------------+

CONCATENATION WITH THE COpy COMMAND

MS-DOS 1.2 has a variation of the COPY command will allows file concatenation
while copying. Concatenation is invoked by simply listing any number of
source files to the copy operation, separated by w+". For example,

COPY A.XYZ + B.COM+B:C.TXT BIGFILE.CRP

This eormaand will create a new file on the default drive called BIGFlLE.CRP,
and will put in it the concatenation of A.XYZ, B.COM, and B:C.TXT.

The concatenation operation is normally carried out in text (or ASCII) mode,
meaning a Ctrl-Z (lA hex) in the file is interpreted as end-af-file mark.
To combine binary files, this may be overridden with the /B switch, which
will force the ,command to use physical end-af-file (i.e., the file length
seen in the OIR command). For example,

COPY/B A.COtHB.COM

Also in this example, no result file name was given . In this case, COpy will
seek to the end of A.COM and append B.COM to it, leaving the result called
A.COM.

ASCII and binary files may be arbitrarily combined by using /B on binary files
and /A on ASCII files. The first example might have intended

COpy A.XYZ + B.COM/ B+B:C.TXT/A BIGFILE.CRP

A switch (/ A or / B) takes effect on the file it is placed after and applies
to all subsequent files until another switch is found. Thus the / A after
B:C.TXT was necessary.

/A or /B on the destination file determines
whether or not a Ctrl-Z will be placed on the end of the file. (Source files
read while /A is in effect have Ctrl-Z stipped off. If /A is in effect when
the file is written, a single Ctrl-Z will be put back.) Thus an additional
Ctrl-Z would be appended with a command such as

COPY A.ASM/ B B.ASM/ A

since the /B on the first file prevents the Ctrl-Z from be i ng stripped, and
the / A on the second puts one on. The primary practical application may be
the reverse, where a Ctrl-Z is stripped from the file. For example,

COpy PROG.COM/B + ERRMSG.TXT/ A NEWPROG.COM/ B

It is assumed here that ERRMSG.TXT was generated by an editor, but is actually
considered constant data (error messages) by the program it is being appended
to. Since the result is a COM file, a Ctrl-z at the end is not needed.

Even when NOT concatenating files, the fA and IB switches are still processed.
When not concatenating, the copy command defaults to binary copy 7 by using
the /A switch, the result file may be truncated at the first end-af-file mark:

COPY A.TXT/ A B.TXT

B.TXT may be shorter than A.TXT if A.TXT contained a Ctrl-Z before the last
character. B.TXT will have exactly one Ctrl-Z, the last character of the file.

Concatenation with ambiguous file names is allowed, and the COPY command
normally "does what you want". To combine several files, specified with an
ambiguous name,. into one file, use a command like

COpy •• LST COMB IN. PRN

All tiles matching '* .LST will combin~ into one file call COMBIN.PRN . Another
type of task is performing several individual concatenations:

COPY *.LST+*.REF *.PRN

In this example, for each file matching * .LST found, it will be combined with
the corresponding .REP file, with the result given the same name but extension
.PRN. Thus FILEI.LST will be combined with FILEI.REF to form FILEI.PRN, then
XYZ.LST with XYZ.REF to form XYZ.PRN, and so on. The command

COPY *.LST+*.REF CCMBIN . PRN

will combine all files matchin *.LST, then all files matching -.REF, into one
file call COMBIN.PRN .

It is easy to enter a COPY command with concatenation where one of the
source files is the same as the destination, yet this often cannot be detected.
For example,

COpy * .LST ALL.LST

is an error if ALL . LST already exists. This will not be detected, however,
until it is ALL.LST'S turn to appended: at this point it could already have
been destroyed.

·~ .-, I

• ,,-
COpy will handle this problem like this: As each input file is found, its
name will be compared with the destination. If they are the same, that one
input file will be skipped, and the message ·Content of destination lost
before copy" will be printed. Further concatenation will proceed normally.
This does allow "summing" files, with a command like

COPY ALL.LST + ".LST

This command will append all *.LST files, except ALL.LST itself, to ALL.LST.
The error mess'age will be suppressed in this case, since this is produced
by a true physical append to ALL. LST.

