e e
mming can
prog o RayDWc= =

EXTENDING DOS

EXTENDING DOS

Edited by Ray Duncan

Ray Duncan
Charles Petzold
M. Steven Baker
Andrew Schulman
Stephen R. Davis
Ross P. Nelson
Robert Moote

A
vy
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial capital letters.

Copyright © 1990 by Ray Duncan

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission
of the publisher. Printed in the United States of America. Published simulta-
neously in Canada.

Production Editor: Amorette Pedersen

Manuscript Editor: Kate Lee Johnson

Technical Consultant: Andrew Schulman

Cover Design by: Copenhaver Cumpston
Illustrators: Eddie O’Brien and Kathy Turok

Set in 10.5-point Palatino by Benchmark Productions

ABCDEFG-MW-943210
First Printing, April 1990

ISBN 0-201-55053-9

Windows is a registered trademark of Microsoft Corporation. Microsoft C, MS-DOS, Presenta-
tion Manager, and Windows 386 are trademarks of Microsoft Corporation.

DESQview and QEMM-386 are trademarks of Quarterdeck Office Systems.

Paradox, Turbo C, and Sidekick are registered trademarks of Borland International.

dBASE is a registered trademark of Ashton-Tate Inc. dBASE IV is a trademark of Ashton-Tate, Inc.

WordPerfect is a trademark of WordPerfect Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

PC/AT, IBM, and PS/2 are registered trademarks of International Business Machines Corpora-
tion. OS/2 and PC-DOC are trademarks of International Business Machines Corporation.

NeWs is a trademark of Sun Microsystems, Inc.

AutoCAD is a trademark of Autodesk, Inc.

PARC is a trademark of Xerox Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Clipper is a trademark of Nantucket, Inc.

Apple and Macintosh are trademarks of Apple Corporation.

Compaq and SystemPro are trademarks of Compaq Computer Corporation.

CompuServe is a registered trademark of CompuServe Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard Corporation.

INTEL is a registered trademark of Intel Corporation.

MacDraw is a registered trademark of CLARIS Corporation.

386”Max is a trademark of Qualitas, Inc.

Phar Lap is a registered trademark of Phar Lap Software Inc. 386 | VMM and 386 | DOS ex-
tender are trademarks of Phar Lap Software, Inc.

NeXT is a trademark of NeXt, Inc.

ORACLE is a registered trademark of Oracle Corp.

Informix is a registered trademark of Informix Software, Inc.

PICK is a registered trademark of Pick Systems, Inc.

OSF /Motif is a trademark of the Open Software Foundation.

CHIPS is a registered trademark of Chips and Technologies, Inc.

Watcom is a trademark of Watcom Systems, Inc.

Instant-C is a trademark of Rational Systems, Inc.

Golden Common Lisp is a registered trademark of Gold Hill Computers, Inc.

TOPS is a registered trademarak of Sun Microsystems.

Logitech is a trademark of Logitech, Inc.

Commonview is a trademark of Glockenspiel.

Zortech C++ is a trademark of Zortech, Inc.

MetaWare, Hich-C, and Professional Pascal are trademarks of MetaWare, Inc.

LMI FORTH is a trademark of Laboratory Microsystems, Inc.

1167 and 3167 are trademarks of Weitek Corp.

68881 is a trademark of Motorola Corp.

Pocket Soft is a trademark of Pocket Soft, Inc.

Introduction
About the Contributors

Chapter 1
The IBM PC Programming Architecture
By Ross P. Nelson

IBM’s First Personal Computer
The 8086 Becomes a Family
Solving Real Problems

Using Protected Mode

DOS Extenders

Intel’s 32-bit Microprocessors
Operating Environments

What About OS/2?

Choosing Your Market

Chapter 2

Expanded Memory and the EMS

By Ray Duncan
Components of Expanded Memory
Obtaining Access to Expanded Memory

Table of Contents

xi

XU

31

33
35

vii

viii EXTENDING DOS

Using Expanded Memory 39
EMS Pitfalls for Drivers and TSRs 44
EMS Emulators 46
EMS Example Program 49
Chapter 3
Extended Memory and the XMS 79
By Ray Duncan
Reaching Extended Memory in Real Mode 81
The ROM BIOS Extended Memory Functions 82
Primitive Extended Memory Management 88
The eXtended Memory Specification (XMS) 93
LOADALL: The Back Door to Extended Memory 100
Chapter 4
80286-based Protected-Mode DOS Extenders 109
By Andrew Schulman
Why develop for the 286? 110
Protected-Mode MS-DOS 112
How does it work? 116
More Than One Int 21H 122
An In-Depth Look at the DOS/16M Toolkit 124
Isn’t there any work involved? 134
Bugs! 146
#ifdef DOS16M: The DOS/16M Library 147
0S/286 and the Two-Machine Model 154
Performance 162
Programming Project 169
By Andrew Schulman
Exploring Protected Mode with Instant-C 169
Chapter 5
80386-based Protected-Mode DOS Extenders 193

By M. Steven Baker and Andrew Schulman
386 DOS Extenders in the Marketplace 194

Table of Contents ix

32 Bits

Benefits of Using 386 Protected-Mode DOS Extenders

A 386 DOS Extender Application

Moving to 32-bit Programming

Tools for 386 DOS Extender Programming

The 386 DOS Assembly Language Interface—How It Works
Special DOS Extender Features

Hardware Requirements

Using Numeric Coprocessors with DOS Extenders
Summary

Chapter 6
The Windows Operating Environment
By Charles Petzold

Windows: A GUI for MS-DOS
Architecture and Features

A Sample Program
The Path to OS/2

Chapter 7
DESQuiew
By Stephen R. Davis

The DESQview API

The Clock Example
Windowing

Panels

DESQview Tasks
DESQview Processes
Memory Under DESQview
Intertask Communication
Intertask Messages

How DESQview Uses Messages
Why use DESQview?

195
198
204
219
222
234
237
251
252
257

259

260
265
284
309

311

312
315
326
329
333
337
341
347
351
356
363

x EXTENDING DOS

Chapter 8
VCPI for EMS/DOS Extender Compatibility 365
By Robert Moote
Incompeatibilities Between EMS Emulators and DOS Extenders 367
The VCPI Interface 372
Scenario of VCPI Use 378
Inside VCPI 383
VCPI Calls 391
Summary 395
Chapter 9
The DOS Protected-Mode Interface (DPMI) 397
By Ray Duncan
The DPMI Interface 398
Using the DPMI _ 402
Summary 404
Chapter 10
Multitasking and DOS Extenders 405
By Robert Moote
Multitasking on 80286-Based PCs 406
Sources of Incompatibilities on 386- and 486-Based PCs 407
Possible Solutions 409
DESQview 386 and DOS Extenders 410
Summary 415
Vendor Guide 417

Index 421

Introduction

As we entered the latter half of the 1980s, there was a widespread sense among
PC software developers, analysts, and journalists that DOS’s useful life had run
its course. Programmers were eagerly looking forward to the availability of pro-
tected-mode, multitasking, virtual memory operating systems such as OS/2 and
UNIX. PC Tech Journal, in an August 1987 article entitled "The Twilight of DOS,"
went so far as to say "Although it adds some new capabilities, DOS 3.3, unable to
provide the multitasking capabilities promised with OS/2, may be this aging op-
erating system’s swan song."

In 1990, PC Tech Journal is just a memory, but DOS is still very much alive and
kicking. In fact, the prophecies of DOS’s doom that were popular just a few years
back have been totally confounded. DOS accounted for nearly 11 million (61 per-
cent) of the 18 million PC operating systems shipped worldwide in 1989, while
Macintosh System 6 shipments were estimated at 1.2 million (6.6 percent), UNIX
shipments approximately 440,000 (2.4 percent) and OS/2 merely 125,000 (0.7 per-
cent). The installed base of DOS systems now numbers over 45 million, surpass-
ing all other operating systems combined.

What happened? In part, UNIX and OS/2 simply failed to live up to their ad-
vertising. The world of UNIX implementations is still splintered into multiple in-
compatible variants, and has not yet delivered the much-discussed and
much-anticipated source and binary portability that was supposed to arrive with
UNIX System V. OS/2 has revealed itself to be much more difficult to program
than anyone expected; even Microsoft labored over two years to get its first

xi

xii EXTENDING DOS

graphical OS/2 application (Excel) out the door. And both systems demand
amounts of RAM, fixed disk storage, and CPU horsepower that exclude their use
on most existing PCs.

DOS, on the other hand, has made no promises it can’t keep; instead, it has
evolved steadily through eight major releases without loss of backward compati-
bility. DOS is simple enough to be easily understood, small enough to run well
on even the most humble 8088 machine with one floppy disk, powerful enough
to serve as a respectable networking platform, and versatile enough to handle pe-
ripheral devices of every description. In this respect, the entire PC industry owes
a tremendous debt to Mark Zbikowski and Aaron Reynolds, the Microsoft pro-
grammers who wrote DOS version 2.0 and were responsible for its installable de-
vice drivers, hierarchical file system, stream file and device I/O, and network
hooks.

More germane to this book, DOS’s simplicity has also allowed it to be ex-
tended in directions never foreseen by its authors. In retrospect, the first wave of
"DOS extenders" was the class of application known as Terminate-And-Stay-Resi-
dent Utilities (TSRs). TSRs introduced novel new capabilities to the DOS environ-
ment, but brought with them novel new types of problems: TSRs battling over
hardware interrupts, TSR interactions resulting in mysterious system crashes
and, of course, the notorious "RAM-cram," caused by TSRs competing for mem-
ory with the very applications they were supposed to enhance.

But TSRs are old news now. This book is about the second wave of DOS ex-
tenders: products and programming interfaces that allow software developers to
take advantage of the 80286, 80386, and 80486 CPUs without abandoning the
DOS installed base and distribution channels. The remedies offered range from
increased amounts of fast storage for data (EMS and XMS), to true protected-
mode execution with relief of memory constraints for both code and data (286
and 386 DOS Extenders), to DOS-based multitasking environments (DESQview
and Windows). Some of these solutions can even be made to work together, by
means of the Virtual Control Program Interface (VCPI) and DOS Protected-Mode
Interface (DPMI).

We, the authors of Extending DOS, recognize that this is a rapidly changing
field, and we know that no treatment of such a diverse set of topics can be both
exhaustive and timely. We have, however, drawn on our own practical experi-
ence to provide you with detailed information on the issues that we consider
most important.

Introduction xiii

We hope that this book will serve you well—both in deciding which strate-
gies for extending DOS to adopt, and which to avoid—and we welcome your
comments and suggestions for future editions.

Ray Duncan
Los Angeles, California
March, 1990

About the Contributors

M. Steven Baker is the Editor of Programmer’s Journal. He has written articles on
TSRs, undocumented DOS functions, serial communications, X Window, number
crunching, and 80386 development tools. He wrote the chapter on "Safe Memory-
Resident Programming” in the Waite Group’s MS-DOS Papers (Howard Sams,
1988). Baker holds bachelor degrees in Architecture and Electrical Engineering
from MIT and Master’s degrees in Urban Planning and Architecture from the
University of Oregon.

Stephen Randy Davis is the author of two books from M&T Publishing: DESQ-
view: A Guide to Programming the DESQuiew Multitasking Environment, and Turbo
C: The Art of Advanced Program Design, Optimization, and Debugging. He graduated
from Rice University in Houston, Texas. Davis has worked in the defense indus-
try since 1979, and heads a consulting firm, North Texas Digital Consulting, Inc.

Ray Duncan is the author of the Microsoft Press books Advanced MS-DOS Pro-
gramming and Advanced OS/2 Programming, and was general editor of The MS-
DOS Encyclopedia, also from Microsoft Press. He is a contributing editor to PC
Magazine and Embedded Systems Programming. Duncan received a B.A. in Chemis-
try from the University of California at Riverside and an M.D. from the Univer-
sity of California at Los Angeles. He is the founder and owner of Laboratory
Microsystems Inc., a vendor of Forth interpreters and compilers for microproces-
sors since 1979.

Robert Moote is a co-founder and vice president of software at Phar Lap Soft-
ware, Inc., and is the author of Phar Lap’s 386 | DOS Extender and 386 | VMM

XU

xvi EXTENDING DOS

products. He received a B.A. in Electrical Engineering and a B.A. in Mathematics
from the University of Rochester, and has worked in the microcomputer and
minicomputer industry since 1977.

Ross Nelson is the author of The 80386 Book from Microsoft Press, as well as
several articles for BYTE and Dr. Dobb’s Journal. He has a Computer Science de-
gree from Montana State University, and has been involved with microcomputers
for over a dozen years. Currently Manager of Software Engineering at Answer
Software, Nelson has worked in the Silicon Valley for the last decade, including
two years at Intel Corp.

Charles Petzold is the author of the Microsoft Press books Programming Win-
dows and Programming the OS/2 Presentation Manager; his latest book, The OS/2
Graphics Programming Interface, is scheduled to be published in 1990. He is a con-
tributing editor to PC Magazine where he writes about OS/2 in the Environments
column, and his work appears frequently in Microsoft Systems Journal. Prior to his
writing career, Petzold worked ten years for a large insurance company, pro-
gramming and teaching programming on IBM mainframes and personal com-
puters.

Andrew Schulman is a contributing editor to Dr. Dobb’s Journal, where he spe-
cializes in writing about protected-mode programming. He has also written arti-
cles for BYTE and Microsoft Systems Journal. Schulman is a software engineer
responsible for CD-ROM network programming at a large software house in
Cambridge, Massachusetts. He has ported several large applications to
DOS/16M.

Chapter 1

The IBM PC Programming Architecture

Ross Nelson

The advances in microprocessor technology during the last decade have pre-
sented software developers with a dilemma. The latest generation microproces-
sors from Intel—the 80386 and 80486—place mainframe potential in the hands of
a single user. But MS-DOS, the operating system on over 90 percent of the per-
sonal computers using an Intel microprocessor, was designed three CPU genera-
tions ago. Some of the software technology supporting MS-DOS application
development is nine years old, and the decisions which shaped that software go
back as far as 1974. In addition, the majority of the IBM-compatible PCs in use
today—regardless of the CPU they are based on—try to maintain a high degree
of hardware compatibility with the original IBM PC based on the Intel 8088.
Taking full advantage of the power of the latest Intel microprocessors would
require abandoning DOS and IBM PC compatibility altogether, but this is a lux-
ury few software developers can afford. In order to maintain a presence in the
enormous DOS software market, the majority of developers must attempt to sat-
isfy their customers by balancing requests for more performance and more fea-
tures with the constraints of DOS and the demands of the IBM PC architecture.
This chapter will survey the possibilities for extending DOS that are inherent in
the architecture of the Intel 80x86 family of processors (see Figure 1-1), in order to
set the stage for more detailed treatments throughout the remainder of this book.

1

2 EXTENDING DOS

Figure 1-1: The Intel 80x86 family tree.

8086

©® 16—bit processor

® 16-bit path to memory
® 1MB address space

® Real mode only

8088

©® 16-blt processor

@ 8-blt path to memory
@ 1MB address space

©® Real mode only

80186

@ 8086 architecture with minor
Instruction set enhancements

@ Real mode only

80188

@ B0186 architecture
@ 8-bit path to memory

80286

@ 16-bit processor

@ 16—bit path to memory

® 16MB physical address space
® 512MB virtual address space

80386

80386SX

@ 32—-bit processor

@ 32-blt path to memory
©® 4—gigabyte physical address space
©® 64—terabyte virtual address space

® 32-bit processor

® 16—-blt path to memory

@ 16MB physical address space

® 64-terabyte virtual oddress space

80486

@ 80386 instruction set and address
space with minor enhancements

® On—chip cache

©® Bullt—In numerlc coprocessor

Chapter 1 The IBM PC Programming Architecture 3

IBM’s First Personal Computer

When the IBM PC first appeared in 1981, it was available in two configurations: a
"low-end" system with BASIC in ROM, 16K of RAM, and a cassette port for ex-
ternal storage, and a "high-end" system with a 5-1/4-inch floppy disk drive, 64K
of RAM, and a disk operating system. Although the first IBM PC may not sound
very impressive today, it set several important precedents at the time. It had an
open architecture with an extensively documented expansion bus; it was built with
off-the-shelf components and therefore could easily be cloned; and it was based on
a 16-bit CPU, leapfrogging the other personal computers of the era which were
based on 8-bit microprocessors such as the 8080, Z-80, and 6502.

The central processor processor chosen by IBM for its first PC was the Intel
8088, a slightly slower variant of the 8086. (As all the recent members of the pro-
cessor family contain the numbers "86," we can reduce confusion by referring to
both the 8088 and the 8086 by the designation 8086. The processors are fully soft-
ware compatible.) The 8086 supported a physical address space of 1024K, or 1
megabyte, but IBM’s design restricted the operating system and application pro-
grams to the first 640K of the address space, reserving the remaining 384K for use
by routines in read-only memory (ROM) and by hardware subsystems. Figure 1-2
shows how the address space was divided.

It cannot be said that the reserved portion of the address space was wasted.
The top 64K was used by the ROM BIOS (Basic Input/Output System), a set of
routines that provided a standard software interface to essential PC components
such as the video display, keyboard, and diskette controller. The ROM BIOS also
contained test routines that checked out the PC’s hardware when it was turned
on or restarted, and a "bootstrap" program that initiated the loading of an operat-
ing system from a diskette. The PC’s video adapters—the Monochrome Display
Adapter (MDA) and Color/Graphics Adapter (CGA)—used the memory ad-
dresses 0BO0OOh to OBFFFFh for RAM refresh buffers that controlled the appear-
ance of the display.

As additional subsystems and adapters were introduced, they too were as-
signed ranges of memory addresses in the reserved 384K area. For example,
when the fixed disk controller was introduced in 1982, 16K was allocated for its
on-board ROM containing the fixed disk firmware. The Enhanced Graphics
Adapter (EGA), which arrived soon afterward, had 16K of on-board ROM too,
and also used the memory addresses from 0A0000h to OAFFFFh for its video re-
fresh RAM in high-resolution graphics modes. By the time the PS/2 was an-

4 EXTENDING DOS

nounced in 1987, nearly every address in the upper 384K had been spoken for,
and the ROM BIOS itself had grown from 64K to 128K.

Figure 1-2: The IBM PC address space.

1024K 100000H
960K ‘T?(:h:er?):ds FOOOOH
896K EOOOOH
Reserved
832K Reserved DOOOOH
768K . COO0O0H
Reserved (Video)
704K R d (V'd) BOOOOH
640K LREServe ideo) B »0000H
System RAM
OK 00000
Address Address

Although the ROM BIOS supplied a programmatic interface to the hardware,
it provided no mechanisms for loading and executing programs, set no standards
for disk formats, and had no ability to manage peripheral devices. Those duties
fell to the operating system, and in fact the original IBM PC was announced with
no less than three different operating systems: Microsoft's MS-DOS, Digital
Research’s CP/M-86, and Softech’s P-System. For various reasons, MS-DOS
(marketed by IBM as PC-DOS, and usually referred to as DOS) rapidly became
the operating system of choice, and the other two operating systems never
achieved any significant base of users.

DOS proved to be another limiting factor in the evolution of personal com-
puters, albeit in ways more subtle than the 640K limit. Ironically, the earliest ver-
sions of MS-DOS were patterned closely after Digital Research’s CP/M-80

Chapter 1 The IBM PC Programming Architecture 5

operating system, to aid developers in porting their applications from the 8-bit
8080- and Z-80-based microcomputers that preceded the IBM PC; this resem-
blance underlies many problems that are still with us today. The first version of
DOS, for example, had no programmatic interface for managing memory—when
an application was loaded, it could use the entire address space in whatever
manner it chose—and the performance of the video display drivers provided by
DOS and the ROM BIOS was notoriously poor.

As a result, the halls of software development companies buzzed with PC
"folklore” on how to do things faster or better—such as how DOS used certain
undocumented locations in memory, the fastest techniques for direct control of
the video adapter, and how the serial communications controller could be
pushed beyond its documented capabilities. Many of the programs that exploited
these non-standard techniques became best-sellers, sometimes because their di-
rect access to the hardware gave them a performance edge unequaled by their
competitors. This, in turn, led others to use the same hardware-dependent tech-
niques, all of which would later come back to haunt the manufacturers of PC
software and hardware.

The 8086 Becomes a Family

Intel first began shipping its second generation 16-bit microprocessor, the 80286,
in 1982. To those who were paying attention, the 80286 represented a significant
advance in the capabilities of the microprocessor, and pointed out the path that
future generations would take. It extended the physical address space from 1
megabyte to 16 megabytes. It provided for the development of secure multitask-
ing systems, by including a mechanism with which one program could be pre-
vented from corrupting the code or data of another. And it allowed applications
to "overcommit" memory, running in a logical address space that was much
larger than the physically available memory. It accomplished all this though a
mechanism called protected virtual address mode.

Before we discuss protected mode in more detail, however, we should
quickly review memory addressing on the 8086.

8086 Memory Addressing

On the 8086, a memory address is made up of two parts: a segment and an offset.
The 16-bit segment portion of the address, which is loaded into one of the 8086’s
four segment registers (CS, DS, ES, and S9), is simply multiplied by 16 by the

6 EXTENDING DOS

hardware to specify the starting physical address of a block of memory (to make
the terminology even more confusing, such a block is also often referred to as a
segment). The offset, which is likewise a 16-bit value, determines which byte in a
block of memory, or segment, is referenced: offset 0 referring to the first byte, off-
set 1 to the next, and so on. Since the offset can only take on values in the range
0000H through FFFFH, the largest contiguous chunk of memory that can be easily
and continuously addressed is 64K—although, since the values in segment regis-
ters correspond directly to memory addresses, a program can manipulate these
values in order to use larger data structures.

The segment:offset nature of 8086 addressing is actually a remnant of an even
earlier architecture. One of the goals of the Intel designers in creating the 8086
was a simple transition from the previous generation, the Intel 8080. On the 8080,
all addresses were 16-bit values stored either in a register or as a direct reference
in an assembly language instruction. Division of the 8086’s 1-megabyte address
space into 64K segments allowed a straightforward emulation of the 8080’s mem-
ory addressing. Programs could be ported directly from the 8080 to the 8086 by
setting CS=DS=ES=SS, resulting in a single combined code and data segment and
retaining the 16-bit, 64K addressing model. New programs for the 8086 could use
32-bit addresses (both segment and offset) and access an entire megabyte.

The 8086's segmented architecture led to various styles of programming. If a
program requires no more than 64K of code and 64K of data, it can load the seg-
ment registers once during its initialization, and then ignore them. This style of
application is called a small model program. The other extreme, called the large
model, requires the programmer to deal with addresses as 32-bit quantities, load-
ing a segment register with a new value for nearly every memory reference.
Most 8086 high-level language compilers support both of these models. Many
support other models as well; for example, using 32-bit addresses for code but
only 16-bit references for data (medium model) or vice versa (compact model).

Protected Mode Versus Real Mode

The 80286’s protected mode derives its unique capabilities from a change in the
way memory addresses are interpreted.

The 80286 CPU starts up in so-called real mode, which is basically an 8086 em-
ulation mode; in this mode the 80286 forms addresses in exactly the same man-
ner as an 8086. When the 80286 is switched into protected mode, however, it
interprets the contents of a segment register in a radically different way. The
value in a segment register is called a selector, and it is used by the CPU hard-

Chapter 1 The IBM PC Programming Architecture 7

ware as an index into a look-up table—called a descriptor table—which contains
24-bit physical base addresses for all the memory segments in the system.

Combination of a 24-bit base address from the look-up table with a 16-bit off-
set allows the CPU to address 16 megabytes of physical memory. Furthermore,
because the same selector and offset (2CA7:0912, for example), may reference
any one of many different physical addresses, depending on the base address in
the look-up table, the protected-mode selector:offset pair is called a virtual ad-
dress. The addressing methods used by the 8086 and by the 80286 in protected
mode are contrasted in Figure 1-3.

Figure 1-3: Addressing modes contrasted.

Address space Address space
Segment M Offset Selector 16M Offset
| 64K I
descriptor)
table
OK
8086 80286 Protected mode

To recapitulate, a program running on the 8086, or in real mode on the 80286
(or its successors), can read or write any desired memory location at any time,
simply by loading an arbitrary value into a segment register. A real-mode operat-
ing system cannot monitor or restrict an application program’s access to memory,
shielding one application from another, because there is no hardware support for

8 EXTENDING DOS

such restriction. A protected-mode application, however, can only "see" the mem-
ory addresses that the descriptor tables permit it to see. Control over the descrip-
tor tables—and thus the correspondence between values in segment registers and
physical memory addresses—is ordinarily reserved to an operating system.

The period immediately following the introduction of the 80286 represents
one of the great missed opportunities of the computer industry. If IBM and
Microsoft had taken early notice of the 80286's characteristics to the extent of re-
quiring adherence to DOS 2.0’s memory management techniques, discouraging
programmers from using hard-wired memory addresses and hardware I/O port
addresses in their programs, and enhancing DOS and the ROM BIOS with some
efficient and flexible video drivers, the transition between the 8086 and the pro-
tected-mode operation of the 80286 might have been relatively painless. Instead,
direct hardware access techniques became even more entrenched in PC applica-
tion software, and the design of DOS and the PC’s hardware became a captive of
the applications’ behavior.

Solving Real Problems

Since protected mode didn’t really become an issue for most programmers until
several years after the PC/AT was introduced, other methods had to be used to
squeeze programs into the limited memory supported by DOS. Among these
were overlays, expanded memory (LIM EMS memory), and the limited use of ex-
tended memory by real-mode programs for storage of data.

Overlays

The first technique invented to deal with the problem of "too much program and
not enough memory" is called overlaying. It predates the personal computer by
many years, and is best suited to applications that process data in orderly stages,
or those in which one of many different possible operations is selected early in
the execution process.

An example of a program that might employ overlays is a compiler, which
operates, let us say, in three stages or passes. The first pass reads in the source
program, building the symbol table and checking for syntax errors. It creates a
tokenized form of the source for use by the next pass. The second pass operates
on the tokenized output of pass one, translating the high-level language to
pseudo-assembler output. The third pass performs optimizations and converts
the pseudo-assembler code to true object code.

Chapter 1 The IBM PC Programming Architecture 9

Let us assume that the portion of our hypothetical compiler that performs
I/O is used in all three passes, the symbol table functions are used in pass 1 and
pass 2, the parser is only used in pass 1, the optimizer is only used in pass 3, and
so on. To conserve memory, the parts of the compiler might be organized as
shown in Figure 1-4. At any given time, only the code that is necessary for the
current phase of the compiler’s execution is present in memory; the remainder is
stored on disk until it is needed.

Figure 1-4: Overlaid processing.

Pass 1 Pass 2 Pass 3
640 640 640

N N 7
Data Data Data Data
Tokenizer
Parser Code Generator Object code
Symbol table Symbol table Optimizer
Root 1/0 code I/0 code I/0 code

—_ =y =

0 0 i 0]

The portion of an overlaid program that is always resident is called the root.
The portions that replace one another in memory as execution of the program
progresses are called overlays. In the figure, the I/O code corresponds to the root;
the other routines are the overlays. The code fragments that make up an overlay
are grouped together and given an overlay name or number.

Overlays are typically built by a linker, which also generates or includes
overlay manager code to manage the overlay loading process. The simplest link-

10 EXTENDING DOS

ers, such as Microsoft LINK, create a root area and a single level of overlays.
More sophisticated linkers, such as Phoenix Technology’s PLINK86 or Pocket
Soft’s .RTLINK, can create a hierarchical system of overlays, as shown in Figure
1-5. In this example, overlays 1 and 2, or 1 and 3, can be resident simultaneously.
Overlay 4 replaces all other overlays.

Overlaid programs run on any DOS system and generally require no special
programming techniques. However, use of overlays has two important draw-
backs: the overlay segments must be loaded from secondary storage on disk,
which can be quite a slow process; and overlays are useful mainly for programs
with a great deal of code and relatively little data, because most overlay manag-
ers cannot overlay or swap data. Programs manipulating large amounts of data,
like spreadsheets, must find other ways to expand their effective memory space.

Figure 1-5: Hierarchical overlays.

Overlay 1

Overlay 4
Overlay 2 Overiay 3

Data

Expanded Memory

Lotus 1-2-3 is the archetypal spreadsheet, and it illustrates the needs of such pro-
grams for large amounts of fast storage. The basic concept of a spreadsheet is
quite straightforward. The user is presented with a two-dimensional array of lo-
cations, or cells, each of which can contain either data or a formula to be evalu-
ated. The more cells in use, the more memory is required.

By 1984, Lotus’s customers were building spreadsheet models with thou-
sands of cells, and were running out of memory within the 640K confines of

Chapter 1 The IBM PC Programming Architecture 11

DOS. Lotus needed a way to add more memory to the 8088. Since the data was
accessed frequently, it was necessary to have rapid access, as close as possible to
the speed of primary memory. Disk storage was out of the question. Eventually,
Lotus worked together with Intel and Microsoft to devise a new species of fast
storage: expanded memory.

Typically, when you add a memory board to a computer, the RAM addresses
are fixed. For example, if you had two boards with 256K RAM each, the first
would most likely start at address 00000h, and the second at address 040000h. In
contrast, the memory on an expanded memory board has no fixed address. In-
stead, when an expanded memory board is installed, a page frame is chosen—a
64K block within the 384K reserved area that doesn’t conflict with other hard-
ware, such as a video adapter or network card. Each 16K chunk, or page, of ex-
panded memory can then be dynamically assigned to an address within the page
frame.

Lotus, Intel, and Microsoft also standardized a software interface for ex-
panded memory boards and called it the Expanded Memory Specification, or
EMS for short. The interface is typically implemented in a software module
called an expanded memory manager, which is provided by the expanded mem-
ory board’s manufacturer. The manager keeps track of which pages are in use,
which may be used by a new application, and which pages are currently accessi-
ble. To make use of expanded memory, an application calls the manager to re-
quest the number of pages it needs, to make its expanded memory pages
available within the page frame as necessary, and finally to release its expanded
memory pages before it terminates.

The primary advantage of expanded memory is that it works in any existing
PC-compatible computer. An EMS-compatible memory board can be added to ei-
ther an 8086- or 80286-based system. In newer machines with 80386 or 80486 mi-
croprocessors, no special expanded memory hardware is required at all; instead,
software emulators use advanced features of these CPUs to implement the EMS
standard. The main drawback to the use of expanded memory is that it requires
special programming within the application; each page must be explicitly en-
abled by a call to the expanded memory manager when the data it contains is
needed. Further discussion of expanded memory can be found in Chapter 2.

Extended Memory

The first IBM personal computer to incorporate the Intel 80286 CPU was the
PC/AT, introduced in 1984. The PC/AT had a true 16-bit bus and the capacity to

12 EXTENDING DOS

support the full 16 megabytes of RAM addressable by the 80286. The memory
above the 1-megabyte boundary (called extended memory by IBM) could only be
accessed by a program running in the 80286’s protected mode. Realizing that a
protected-mode operating system for the PC/AT might be a long time coming,
IBM provided real-mode programs with limited access to the extra memory and
protected mode in the form of several new ROM BIOS function calls.

The most important of the new ROM BIOS functions, Int 15h Function 87h,
places the 80286 into protected mode, copies a block of data from an address any-
where in the 16-megabyte range to any other address, and returns to real mode.
This simple function might have contended with EMS as a solution to the data
storage problems of spreadsheets and similar programs, but there were a number
of obstacles to its success. First, the function was not widely publicized when the
PC/ AT first appeared; most programmers had to stumble on it while reading the
ROM BIOS program listings. The function was also significantly slower than ex-
panded memory; an EMS driver can access a block of memory simply by en-
abling the required page, but the ROM BIOS function must change the CPU
mode twice as well as copying the data back and forth.

The most important weakness of ROM BIOS Int 15H Function 87H, however,
is that it assumes a very simple operating model: one program "owns" all of ex-
tended memory. The EMS standard, by comparison, allows expanded memory to
be shared between applications, TSRs, interrupt routines, and so on. In 1988, a
standard called XMS (eXtended Memory Specification) was agreed upon to ad-
dress ownership and allocation of extended memory blocks by multiple applica-
tions, in a manner similar to EMS. The details of programming under the XMS
standard are covered in Chapter 3.

Although both EMS and XMS could satisfy a program’s needs for large
amounts of fast storage, neither proved to be without annoyances. An applica-
tion has to specifically map or move data in and out of its conventional memory.
A program has to deal somehow with data structures that don’t fit into the maxi-
mum block that can be copied by a single call to Int 15H Function 87H, or into a
single expanded memory page (or even the entire expanded memory page
frame). Developers of large programs began to sigh longingly, "If we could run in
protected mode, we could use all 16 megabytes as regular memory."

Chapter 1 The IBM PC Programming Architecture 13

Using Protected Mode

The "protection” in protected mode is derived from an "operating system’s-eye"
view of the world. If you assume that microcomputers are just like mainframes
and minicomputers, and as they get faster and more powerful, people will want
them to do anything a mainframe or mini can do, you must plan for multitasking.

If the computer is doing many things "simultaneously"—printing one docu-
ment, editing another, and updating a database, for example—you don’t want a
bug in one program to affect any of the others. Protected mode isolates one pro-
gram from another by not allowing direct access to any of the system resources.
A level of indirection is imposed on all memory accesses, which can be validated
by the operating system. We saw this in Figure 1-3: in protected mode, segment
registers contain special values called selectors, which point to a system resource
called a descriptor table. This table is interpreted by the CPU, but maintained by
the operating system.

Under a true protected operating system, application programming is actu-
ally simplified. Selectors become just one less thing to worry about. No need to
compute addresses or do segment arithmetic; the operating system doles out se-
lectors at load time, or in response to memory allocation requests. Any attempt
by an application to use an invalid or inappropriate selector results in a trap
(software interrupt) that is serviced by the operating system. The operating sys-
tem may handle the trap in a variety of ways, the most common being to termi-
nate the offending program.

But the lack of a DOS-compatible operating system to manage the descriptor
tables and other system resources tended to put a damper on the development of
protected-mode PC software, no matter how desirable it appeared. For those
who chose not to wait for a brand new operating system, protected mode created
a bit of a mess. Their only option was to use a variation on the method IBM origi-
nally provided for memory transfers, that is, to run in protected mode part of the
time, and in real mode part of the time. When the application was running and
needed access to large amounts of memory, the processor would be in protected
mode; when the application needed an operating system service (opening a file,
for example), it would switch to real mode so that DOS could handle the request.

This simple-sounding solution is really quite a technical challenge, because it
requires a far deeper understanding of protected mode than an application pro-
grammer would typically want or need under a true protected-mode operating

14 EXTENDING DOS

system. To get a feel for the steps involved, we must examine protected mode in
more detail.

Protected-Mode Details

The 80286 architecture assumes as an underlying model a group of cooperating
tasks, supported by a reliable kernel operating system. To prevent intentional or
inadvertent damage of one task by another, each task has a separate, local address
space and access to the system’s global address space. A privilege mechanism
keeps operating system-level code and data secure from outside tampering.

As we have already seen, this entire system was made possible through one
key architectural change in the transition between the 8086 and the 80286: the use
of indirection in segment addressing. In the 8086, the contents of a segment regis-
ter are simply multiplied by 16 to generate the base address of a memory seg-
ment. In the 80286’s protected mode, the selectors found in segment registers are
made up of three separate components, as shown in Figure 1-6.

Figure 1-6: A protected-mode selector.

15 3 2
-:- RPL

Table Requested
Indicator Privilege
Level

Index

The two low-order bits of the selector make up the Requested Privilege Level,
or RPL. The 80286 supports four privilege levels, numbered from zero (most
privileged) to three (least privileged). Applications almost universally run at the
lowest privilege levels, and all their selectors have an RPL of three. Bit 2 of the se-
lector, the Table Indicator, or TI bit, indicates whether the specified segment

Chapter 1 The IBM PC Programming Architecture 15

comes from the local address space or the global address space. A value of 0 se-
lects global addressing; a 1 selects local addressing. The 13 high-order bits act as
an index into a descriptor table. The descriptor table—either a Global Descriptor
Table (GDT) or a Local Descriptor Table (LDT), depending on the value of the TI
bit—contains information about the segment, including the starting address.
Descriptors are at the heart of protected-mode operation because they fully
describe and control all aspects of their corresponding memory blocks, or seg-
ments. Each descriptor contains a base (or starting) physical memory address for
its segment, the length of the segment, the privilege level required to access the
segment, and some bits that define usage attributes of the segment. A descriptor
takes up eight bytes. The C data structure used to access individual components
of the descriptor is shown below:
#pragma 1int16 -
typedef unsigned char byte;
typedef unsigned int word;

typedef unsigned long dword;
struct MEMSEG {

word Limit;

word base_lo;

struct {

unsigned base_hi : 8; // Note: Ordering of bit fields is
unsigned type : 4; // compiler dependent. Check your
unsigned s : 1; // manual before using this struct.

unsigned dpl : 2;
unsigned present : 1;
} ar;
word unused;
};
end
Note that the base address found in a descriptor is 24 bits long, comprising the
second word of the descriptor, as well as the lower eight bits of the third word;
this allows a segment to begin anywhere in the 80286’s 16-megabyte address
space. The descriptor’s limit field defines the last legal offset that can be ad-
dressed within the corresponding segment. In protected mode, segments are not
always 64K in size; the segment size is actually limit+1. If a program has only 20K
of code, for example, the limit of the code segment descriptor is set accordingly;
any attempt to branch beyond the bounds of the segment is automatically de-
tected by the hardware, and causes a special type of interrupt called a fault. Fig-
ure 1-7 shows the structure of an 80286 segment descriptor in a more
diagrammatic fashion.

16 EXTENDING DOS

Figure 1-7: The 80286 segment descriptor.

15 0

0 Limit

|
) Base Address

0..15
I
§ Base Address

4 |P D'l’L 3| Type 23..16
6 0 (Reserved)

1

The access rights (AR) byte is located in the upper half of the third word of the
descriptor. The fourth word is unused in the 80286 and must contain the value 0.
The descriptor for a segment is accessed whenever a selector that points to it is
loaded into a segment register, and the access rights byte is the first thing the pro-
cessor examines. The bits in the AR byte are defined as follows:

m P—Present: This bit must be set to 1 to indicate that the data for this seg-

ment is actually present in memory. If P=0, a fault occurs when the selector
is loaded.

DPL—Descriptor Privilege Level: To access a segment, the privilege level
of the executing program (called the Current Privilege Level, or CPL) must
be equal to or more privileged than the DPL. Attempts to access a descrip-
tor that is more privileged than the executing code result in protection
faults.

S—Segment: This bit is set to 1, indicating a memory segment. When 5=0,
the descriptor has a slightly different format and is used to define special
system constructs.

TYPE—Type: This field defines additional attributes of the segment. Bit 3
(mask 0x08) of this field is set to 1 if the segment is an executable segment.
Any attempt to write to an executable segment causes a fault. For execut-
able segments, bit 2 (mask 0x04) is set to 1 to indicate a conforming segment

Chapter 1 The IBM PC Programming Architecture 17

(that is, a segment that changes privilege according to the privilege of the
calling routine), and bit 1 (mask 0x02) is set to 1 if the segment may be
read as data, as well as executed as code. As you might expect, attempts to
read non-readable segments result in protection faults. If bit 3 is 0, the seg-
ment is a data segment. In this case, bit 2 is set to 1 to indicate an expand
down segment (a special segment type for stacks) and bit 1 is set to 1 to
mark the segment as writable. If bit 1 is 0, the segment is read-only; this at-
tribute is enforced via the protection mechanism as well. For both code
and data segments, bit 0 (mask 0x01) of the TYPE field is 0 if the descriptor
has never been accessed. The hardware sets bit 0 to 1 each time a selector
pointing to the descriptor is loaded into a segment register.

Descriptors are grouped into tables, two of which are necessary for the sys-
tem to operate correctly. The Global Descriptor Table (GDT) contains descriptors
that are shared across the entire system, and defines the global address space of
the machine when it is in protected mode. The size and starting address of the
GDT are defined by values in a special register, GDTR, which must be initialized
before entering protected mode. Similarly, the IDTR contains the starting address
and size of the Interrupt Descriptor Table (IDT). The IDT helps the system man-
age interrupts and is analogous to the set of interrupt vectors running from
0000:0000h to 0000:03FFh in real mode. In protected mode, however, the IDT is
not restricted to starting at physical address 0, and it contains 8-byte descriptors
rather than 4-byte pointers.

As described so far, the protected-mode model is defined by the GDT and
IDT, which contain descriptors that define code and data segments. These are not
sufficient, however, to support two other 80286 features previously mentioned:
multitasking, and a local address space for use by each task. In order to see how
these features are implemented, we must look at another class of descriptors,
called system descriptors. These descriptors are identified by a 0 in the S bit of the
AR byte. The two possible formats are shown diagrammatically in Figure 1-8; the
code structure is shown below:

#pragma 1int16

typedef unsigned char byte;
typedef unsigned int word;
typedef unsigned Long dword;
struct SYSSEG {

word Limit;
word base_lo;

18 EXTENDING DOS

struct {

unsigned base_hi : 8; // Note: Ordering of bit fields is
unsigned type : &; // compiler dependent. Check your
unsigned s : 1; // manual before using this struct.

unsigned dpl : 2;
unsigned present : 1;

} ar;
word unused;
};
struct GATE {
word offset;
word select;

struct {

unsigned wc : 5;

unsigned unused

unsigned type :

unsigned s : 1;

unsigned dpl : 2;

unsigned present : 1;
} ar;

word unused;

};

: 3;
4;

The Present bit and DPL fields of system descriptors are used in the same
manner as in segment descriptors. The TYPE field takes one of the following val-
ues, and determines which of the two descriptor formats is being used.

0 Invalid descriptor

Task State Segment (TSS)
Local Descriptor Table (LDT)
Busy TSS

Call gate

Task gate

Interrupt gate

7 Trap gate.

Descriptor types 1 through 3 have the format described by the SYSSEG struc-
ture in the C code above; types 4 through 7 use the GATE structure. A gate is a
special kind of descriptor that allows transfer of control (via interrupt or subrou-
tine call) between routines executing at different privilege levels. The SYSSEG de-
scriptors look much like memory segments and, in fact, describe areas of
memory. Selectors pointing to these descriptors, however, cannot be loaded into
segment registers. Editing the contents of a TSS or LDT requires creation of a

NG W=

Chapter 1 The IBM PC Programming Architecture 19

data segment with the same base address and limit as the system segment. This
technique is called aliasing.

Figure 1-8: 80286 system descriptors.

15 0
0 Limit 0 Offset
% %
2 Base Addreoss15 2 Selector
.‘ . 1 1 1
1 s B Add I s LI lwolrdl ¥
= ase ress 2
4 (p|DPL 5 Type 015 4 [p|DPL 5|Tyee| 0 Count
! ' HA———
6 0 (Reserved) 6 0 (Reserved)
1 1
System Segment (e.g., TSS) System Gate

The Local Descriptor Table (LDT) and Task State Segment (TSS) are critical to
the implementation of multitasking and a local address space. The LDT descrip-
tor points to a descriptor table that is used when the TI bit of a selector is 1, and
the LDTR register always contains the selector of the currently active LDT. Each
task has its own LDT, so that its private memory is "invisible" to all other tasks,
and the operating system changes the value in LDTR as it transfers control of the
CPU from one task to another. The TSS contains a copy of all the general and seg-
ment registers for a given task. The operating system’s dispatcher can switch
tasks simply by branching to a TSS. All the registers and flags belonging to the
current task are saved in its TSS, and the registers are loaded with the data saved
in the new TSS.

A full description of the multitasking capabilities of 80286 protected mode is
beyond the scope of this book; it is the addressing capabilities that concern us
here. We now have enough information to create a picture of the structures that
must be present in memory before protected-mode operation can continue.

Because protected-mode addressing is table-oriented, it is not possible for an
application to "manufacture" segment addresses, as it can on the 8086. For exam-
ple, the address of the video bulffer for a color monitor begins at 088000h in most

20 EXTENDING DOS

PCs. The real-mode segment value 08800h points perfectly to the beginning of
the buffer. In protected mode, however, the selector value 0B800his an index into
descriptor 1700h of the GDT with a Requested Privilege Level of 0. Only the op-
erating system knows what descriptor is at that index, and any program running
at application privilege level (usually 3), and attempting to access a segment at
the highest privilege level, will cause a protection fault.

Clearly, programs that run in protected mode must rely on the operating sys-
tem to give them access to system memory and other hardware resources. "Well-
behaved" real-mode applications that already do so will port easily to protected
mode. In general, the things that must be avoided include:

» the use of constant or "hard-wired" segment or selector values

= segment or selector arithmetic, or use of segment registers for "scratch”
storage

® access to memory not specifically allocated to the application by the oper-
ating system

® writing to code segments

» direct port I/0.

Note that access to the I/O ports is restricted in protected mode as well. It's
easy to see why, of course. If you assume a multitasking environment, it won’t do
to have more than one program attempting to control the same device. Requests
for device input and output must be routed through the operating system, which
can ensure sequential "ownership" of the device.

DOS Extenders

When a DOS-compatible protected-mode operating system failed to arrive in a
timely fashion for the 80286, DOS extenders appeared instead. DOS extenders are
something less than an operating system, but more than a subroutine library. Es-
sentially, they act like an operating system when it comes to memory manage-
ment features, hiding descriptor table management the way an operating system
would, but they have no device handlers or file system. The DOS extender passes
an application’s requests for these features on to DOS.

The mechanism used to perform this digital legerdemain is called mode
switching, and it is not something Intel had in mind when the 80286 was first cre-
ated. The 80286, you may recall, was introduced in 1982, only one year after the
IBM PC. Intel assumed that the advantages of protected mode were so apparent
that everyone would convert, and real mode would become a distant memory.

Chapter 1 The IBM PC Programming Architecture 21

Besides, a transition mechanism between the two modes could jeopardize the se-
curity of protected-mode operation. Intel didn’t realize that almost no one would
pay any attention to protected mode until much later, when DOS applications
dominated the marketplace.

As a result, the 80286 can only be returned to real mode by resetting the pro-
cessor. Fortunately, the designers at IBM included a mechanism to perform this
reset under software control when they created the PC/AT. They also included
an option in the BIOS that provides for the resumption of program execution at a
predetermined location after a reset, rather than always booting the operating
system and starting from scratch. The combination of these two capabilities al-
lows an 80286 to run in protected mode, reset to real mode, run a specific routine,
and reenter protected mode—or vice versa. One of the main functions of a DOS
extender is to ensure that these mode transitions are properly managed.

If mode switches happened only at DOS system calls (Int 21h), the work of a
DOS extender would be relatively straightforward; however, a number of the
events in a PC are asynchronous or interrupt-driven. For example, when one of
the keyboard'’s keys is pressed or released, the processor is signalled via an inter-
rupt, and the interrupt handler routine for the keyboard is real-mode code lo-
cated in the ROM BIOS. Similarly, DOS’s date and time are updated by the
real-mode interrupt handler for a timer chip interrupt which occurs 18.2 times
per second.

The DOS extender must field all interrupts in protected mode, save the pro-
cessor state, switch into real mode, reissue the interrupt so that it can be serviced
by the appropriate interrupt handler, switch back to protected mode, and resume
execution of the application. With these details taken care of, however, the appli-
cation programmer is free to make use of the full protected-mode address space
and other features of the 80286. Chapter 4 covers two popular DOS extenders for
the 80286: DOS/16M and OS/286.

Intel’s 32-bit Microprocessors

The lure of protected mode became even stronger in 1985, when Intel introduced
its first 32-bit microprocessor, the 80386. The 80386 was followed in 1987 by the
80386SX, a 32-bit processor with a 16-bit hardware bus, and in 1989 by the 80486,
a very fast processor with an on-chip cache and floating-point hardware. From a
software point of view, the 803865X and 80486 are virtually undistinguishable

22 EXTENDING DOS

from the 80386. The following description of the 80386, therefore, applies to the
803865X and 80486 as well.

Like the 80286, the 80386 supports real-mode operation, for the sake of com-
patibility with DOS and its applications. It also supports all the features of 16-bit
protected mode on the 80286. But when the 80386 is running in its preferred, na-
tive protected mode, it is a true 32-bit CPU with many new capabilities. All the
registers and instructions on the 80386 (with the exception of segment registers
and the instructions that manipulate them) can perform their operations 32 bits
at a time. 16-bit operations are still supported, so the 32-bit registers have new
names to distinguish them in instruction mnemonics. Table 1-1 lists the 16-bit
general register names and their 32-bit counterparts.

Table 1-1: 16- and 32-bit general registers.

80286 General Registers 80386 General Registers
AX, BX, CX, DX EAX, EBX, ECX, EDX
SP, BP, D], S, IP ESP, EBP, ED], ES], EIP

Even more importantly, addressing capabilities are extended on the 80386
too. Though selector values remain 16-bit, using the same GDT- and LDT-based
descriptor table look-ups, the offset portion of an address is extended to 32-bits,
allowing segment sizes of up to 4,096 megabytes, or 4 gigabytes. The small model
of one code segment and one data segment now allows programs to use as much
as 8 gigabytes of memory.

Intel achieved these extensions to the programming model without sacrific-
ing 80286 compatibility by making use of the reserved field in the descriptor. Fig-
ure 1-9 shows the 80386 descriptor format. (For ease of comparison, the
descriptors are shown in 16-bit format. On the 80386, however, only two 32-bit
reads are required to load a descriptor, compared with the four 16-bit reads re-
quired on the 80286.)

For memory-referencing descriptors, the base address portion has been ex-
tended from 24 bits to 32. The limit field is now 20 bits rather than 16, and two
bits named "G" and "D" have been added.

The G bit controls the granularity of the limit field. When G=0, the limit field
has byte granularity, allowing a maximum segment size of 2%, or 1 megabyte.
When G=1, the limit field has 4K or "page" granularity: each increment in the
value of the limit increases the maximum segment size by 4,096 bytes. For in-
stance, a page-granular segment with limit=3 contains 16K of data.

Chapter 1

The IBM PC Programming Architecture 23

Figure 1-9: 80386 segment descriptor.

15 0
0 L|m|f9..15
2 Base Address
0..1
I
§ Base Address
4 |7 |DPLIF| Type 23..16
Base Address AlLimit
G|D \
6 24..31 oWl 16..19

The D bit determines the default operand and addressing modes. When D=0,
segments behave as in 80286 protected mode, that is, instruction operands are 16
bits, and segment offsets may not exceed OF FFFh. When D=1, the default operand
size is 32 bits, and segment offsets may vary throughout the entire 4 gigabyte
range; restricted, of course, by the descriptor’s limit value.

The 80386 also introduced a significant change to the familiar 8086 instruc-
tion set. In the 8086 and 80286, registers can only be used as base or index regis-
ters for memory references in certain combinations, which are listed in Table 1-2.
These restrictions apply in both real and protected modes.

Table 1-2: 8086/80286 addressing modes.

Operand

DISP
[BX1+DISP
[BP]+DISP
[SI]+DISP
[DI]+DISP
[BX]+[SI]+DISP
[BX]+[DI]+DISP
[BP]+[SI]+DISP
[BPI+{DI]+DISP

Description

16-bit displacement (offset)

Base register + displacement

Stack frame + displacement

Source index + displacement
Destination index + displacement
Base + index + displacement

Base + index + displacement

Stack frame + index + displacement
Stack frame + index + displacement

24 EXTENDING DOS

As you can see, the registers AX, CX, DX, and SP cannot be used in 8086 or
80286 address computations. In contrast, on the 80386, register addressing is fully
generalized, and any of the eight general registers, EAX, EBX, ECX, EDX, EBP,
ESP, ESI, and EDI, may be used. The three fundamental forms of 80386 address-
ing are shown in Table 1-3.

Table 1-3: 80386 addressing modes.

Operand Description

DISP Displacement alone (32-bits)

[REG]+DISP Base register + displacement
[REGI+[REG*SCALE]+DISP Base register + scaled index register + displacement

The first two 80386 addressing modes are simply generalized forms of the
original 8086 displacement and base-plus-displacement addressing modes. The
third 80386 form is like 8086 base-plus-index addressing, except that the index
register is automatically multiplied by a scale value of 1, 2, 4, or 8. To illustrate,
consider the C language code fragment below and the assembler code that a
compiler might generate.

/* C language */
int i;
Long sum, vector[4001];

sum += vectorlil

; 8086/80286 assembler

1 DW ?
SUM DD ?
VECTOR DD 400 * (?2)
MoV SI, I ; get index
SHL SI, 2 ; scale for long integers

MOV AX, VECTORLSI] ; fetch array value
Mov DX, VECTORLSI1+2

ADD SUM, AX ; compute sum

ADC SUM+2, DX

; 80386 assembler

1 DD ?

SUM DD ?

VECTOR DD 400 * (?)

Mov EAX, I ; get index
MoV EAX, VECTORLEAX*41; fetch indexed array value
ADD SUM, EAX ; compute sum

Chapter 1 The IBM PC Programming Architecture 25

The 8086 or 80286 version uses three registers and includes a separate opera-
tion to adjust the index for the operand size. The 80386 version requires only one
register and performs the index scaling on the fly.

- If you are willing to limit your market to customers who have 80386 ma-
chines, there are DOS extenders that allow you to create applications that fully
exploit the 32-bit registers, enhanced instruction set, and enormous address space
of the processor. Chapters 5 and 8 contain a discussion of these products.

The 80386 has other capabilities too; among them is a new form of address in-
direction called paging. Recall that in protected mode on the 80286, a selector:off-
set pair is converted to a physical address by fetching the base address from the
descriptor table and adding the offset. On the 80386, the base address and offset
are combined to form a 32-bit linear address which can then be passed through the
CPU'’s paging mechanism to yield the final, physical address. In effect, paging al-
~ lows each 4K block of RAM to have its own virtual address. Figure 1-10 illus-
trates a simplified version of what happens on the 80386 when paging is enabled.

The designers of the 80386 added paging to support the needs of high-perfor-
mance, virtual-memory operating systems. But paging can also be put to use
serving DOS applications by emulating EMS hardware with extended memory.
Since the 80386’s paging operates on 4K boundaries, four 80386 pages can be
used to simulate one EMS page. By manipulating the page tables, an EMS emula-
tor can in effect create an EMS page frame—responding to an application’s EMS
mapping requests by page-table mapping linear addresses within the page frame
onto physical addresses above the 1-megabyte boundary.

One 80386 = Many DOS Machines

One of the most interesting features of the 80386 is its virtual 86 (V86) mode. As
we saw earlier in the chapter, the model underlying protected mode is one of
multiple tasks sharing the resources of the processor. The state of each task, that
is, the contents of its CPU flags and registers, is stored in the TSS for a suspended
task, and in the actual machine registers when the task is running. On the 80386,
a bit named "VM" was added to the flags register. When VM=1 in an executing
task, the task is executing in virtual 86 mode, and the GDT and LDT are not used.
Instead, the selector values are multiplied by 16 (as in real mode) to generate a
linear address, which is still subject to translation via the paging mechanism.
Consequently, it is possible on the 80386 to run more than one real-mode pro-
gram at a time in separate "V86 machines”; each program under the illusion that
it is running in the fixed, 1-megabyte address space of the 8086.

26 EXTENDING DOS

Figure 1-10: Virtual address translation through paging.

16-bit selector
from segment
register

Descriptor table

i

32-bit offset from index registers
and/or machine instruction

'

'| 32-blit base address from descriptor

o

e

Page directory

Page table

32-bit linear memory|| address

12-bit
page offset

32-bit base address from page table

32-bit physical memory address

Chapter 1 The IBM PC Programming Architecture 27

Because the paging hardware allows the system to protect memory on a
page-by-page basis, an operating system can trap a V86 program’s writes to
screen memory, possibly redirecting (remapping) the output to a "shadow"
buffer. This makes it possible to "window" real-mode applications that do not use
the DOS or ROM BIOS video drivers. The 80386 also allows an operating system
to selectively intercept a V86 application’s I/O port reads and writes. The operat-
ing system can then let the I/O operation proceed, divert the I/O to a different
port, or even carry out the I/O on behalf of the application. Interrupts that are
serviced by the protected-mode operating system can also be "reflected" into a
V86 machine for service by the V86 application. This global ability of an 80386
operating system or control program to monitor and control a V86 program’s
I/O and memory access is known as device virtualization.

0OS/2 version 2.0, Windows/386, DESQView/386, and some versions of
UNIX exploit the 80386’s page tables and virtual 86 mode to run multiple DOS
applications concurrently. The major weaknesses in this scheme are that each
DOS program is confined within its V86 machine to the 640K limit, and that the
DOS programs—not being written with multitasking in mind—can’t communi-
cate or cooperate effectively with each other.

Operating Environments

We have seen some of the techniques by which a developer can create an applica-
tion that surpasses DOS-imposed boundaries. Another possibility is to make use
of the features provided by operating environments. Operating environments are
similar to DOS extenders, but appear more like separate operating systems. They
are not complete; however, they reside "on top" of DOS and make use of DOS
services and the DOS file system.

Two of the most popular operating environments are DESQview and Win-
dows. These programs are covered extensively in Chapters 6 and 7. They em-
body two very different philosophies, and place very different requirements on
the developer.

DESQview, from Quarterdeck, is the simpler of the two environments. Its pri-
mary advantage to the end user is multitasking. Developers get a larger task
space for their applications than would be available under DOS. DESQview
makes more memory available by managing EMS memory in a very efficient
manner. DESQview runs well on any computer with EMS hardware, or on an

28 EXTENDING DOS

80386- or 80486-based system using V86 mode and paging. Very little extra work
is required to make an application DESQview-compatible.

Windows, on the other hand, imposes a radically different "world view" on
an application. Standard DOS programs are essentially incompatible with Win-
dows; applications must be completely redesigned to use the features Windows
provides. In return, Windows offers a great deal to the end user: a uniform
graphical interface, multitasking with transparent swapping of applications to
expanded memory, "cut and paste” of text and graphics between applications,
and more. But these features come at a price. Users will want an 80286 or faster
processor in their machine and a high resolution monitor.

Developers pay a price as well; application development time is far longer
under Windows than under DOS, and there is a steep learning curve. Applica-
tions developed under Windows do, however, have some advantages that DOS
programs do not, and device independence is one of the most important. Appli-
cations developed for DOS have to deal with display and printer hardware on
their own. Software developers must be aware of the popular monitors and
printers, and write the appropriate support code for their applications. Windows
applications, on the other hand, will work unchanged on any hardware sup-
ported by Windows device drivers.

What About 0S/2?

The first version of OS/2, IBM, and Microsoft’s protected-mode operating system
for the 80286, finally arrived in 1987. OS/2’s road to acceptance has been long
and arduous. It would have been a difficult one even if its only obstacle had been
the lack of applications written for it, but there were additional problems as well.
A shortage of RAM chips in 1987-1988 made conversion to OS/2 prohibitively
costly, the arrival of OS/2’s graphical user interface, the Presentation Manager,
was delayed until late 1988, and the initial versions of OS/2 could not take ad-
vantage of the 80386’s 32-bit addressing and paging capabilities.

In 1990, OS/2’s role is more clearly defined, and its future appears somewhat
brighter. Presentation Manager has been stabilized and is shipped with all ver-
sions, a new file system offers much better disk performance than DOS, key ap-
plications such as Microsoft Excel and Aldus Pagemaker have become readily
available, and support for 80386-specific, 32-bit applications is offered in OS/2
version 2.0. But growth in the installed base of OS/2 continues to be painfully

Chapter 1 The IBM PC Programming Architecture 29

slow. If you choose to develop for OS/2, you should view it as a strategic invest-
ment of time and effort that is not likely to pay off for several years.

Choosing Your Market

Though part of DOS's popularity stems from sheer inertia, market dynamics
plays a part as well. In 1984, 8086/8088-based machines numbered just under
three million and accounted for 99 percent of the PC-compatible market, with 1
percent of the market owned by the 80286-based AT and its clones. Three years
later, the 1987 market share of the 8086-class machines had slipped to 69 percent,
but the total number of machines was far greater, over 10 million. The 80286 ma-
chines had garnered 29 percent of the market with over four and a quarter mil-
lion units, and the 80386-based computers were just trickling in at 2 percent
market share and 300,000 machines sold.

The market for 8086-class PCs is still growing, though at a slower rate. New
computers that are 8086-class machines accounted for approximately 15 percent
of total sales in 1989. But these new sales are building on a large base of existing
machines. None of these machines will ever run a protected-mode application.
Even if you choose to develop for the growing population of 80286/386/486 ma-
chines, you may still find it advantageous to support the DOS market; although
the future may belong to OS/2, DOS is still the operating system of choice today.

For those who plan to continue serving the DOS market, the rest of this book
describes a number of specific tools available to help you push beyond the histor-
ical limits of DOS. Table 1-4, below, outlines the options available to you, along
with their advantages and disadvantages.

Table 1-4: Current options for extending or replacing DOS.

Method Advantages Disadvantages
Overlay Works on any PC. Does not support "large data” applications
well. Not very fast.
EMS Works on any PC, no special hard- Cost of memory board on 286 PCs. Requires
ware on 386/486 PCs. special programming.
XMS No special hardware required. Ac- Requires 80286 or newer CPU. Requires spe-

cess to "unused” extended memory. cial programming. Not fast.

286 DOS Extender All protected-mode features avail- Not compatible with OS/2. Requires 286 or
able. Transparent access >640K. newer machine.

386 DOS Extender ~ 32-bit math and addressing. Trans- Not compatible with OS/2. Requires 386 or
parent access >640K. newer machine.

30 EXTENDING DOS

Method Advantages Disadvantages

DESQview Multitasking and other features with- Not compatible with OS/%. Requires EMS for
out special programming. best performance.

Windows Graphical user interface. Device inde- Slow on 8086-class machines. Steep learning

pendence. Rapidly expanding user ~ curve.
base. Easy port to OS/2 PM.

05/2 Transparent access >640K. Multitask- Current user base very small. Steep learning
ing, graphical user interface, and net- curve. Requires at least 3 megabytes RAM.
working.

UNIX Well known/liked in academic and ~ Small, specialized user base. Higher hard-

workstation markets. Multitasking ~ ware and software costs. Little or no binary
and networking. Applications porta- compatibility.
ble to other UNIX systems.

Chapter 2

Expanded Memory and the EMS

Ray Duncan

Expanded memory is essentially bank-switched memory—fast storage, which
can be larger than the CPU’s normal address space, and which is subdivided into
smaller chunks (called pages) that can be independently mapped in or out of the
CPU’s address space on demand. As a simple approximation, you can think of
bank-switched memory as a deck of cards, where different information can be
stored on each of the cards, but only the information on the card that is currently
at the top of the deck can be read or changed.

Bank-switched memory is not exactly a new concept. It was used extensively
on Apple II and S-100 bus computers to overcome the 64K address limitations of
their CPUs, and in the earliest days of the IBM PC, bank-switched memory
boards called JRAMs were sold in truckloads by a company named Tall Tree Sys-
tems. But the particular type of bank-switched memory known as expanded mem-
ory has been enormously successful because its sponsors defined it as a software
interface rather than in hardware.

The origins of the Lotus/Intel/Microsoft (LIM) Expanded Memory Specifica-
tion (EMS) have already become somewhat apocryphal. The first EMS, devel-
oped jointly by Intel and Lotus, was announced and distributed to software
developers at the Atlanta Spring Comdex in 1985. For some unknown reason this
document was given the version number 3.0. Microsoft, which was looking for a

31

32 EXTENDING DOS

way to relieve Windows’ hunger for memory, quickly bought into the EMS con-
cept. After some minor changes, a new specification—version 3.2—was released
as a joint effort of Intel, Lotus, and Microsoft in September of the same year.

EMS didn’t become an industry standard without a few squeaks of dissent,
however. The ink was hardly dry on the EMS before some of the LIM axis’ com-
petitors proposed an alternative standard called the AST/Quadram/Ashton-Tate
Enhanced Expanded Memory Specification (AQA EEMS). The EEMS was a
proper superset of the original EMS, but expanded, with more flexible mapping
functions for use in multitasking environments such as DESQview. Fortunately
for software and memory board designers everywhere—who already had
enough things to worry about—the good sense of the marketplace prevailed, and
the AQA EEMS quickly faded into obscurity.

EMS version 3.2 was completely stable for about two years, and by the end of
that period it had gained remarkably broad support among both software and
hardware manufacturers. Scores of memory expansion boards appeared on the
market that could be configured as expanded memory, while the ability to exploit
expanded memory turned up in every class of software from spreadsheets to net-
work drivers to pop-up notepads. And, of course, expanded memory became the
natural ally of every vendor of a RAMdisk, disk cache, or print spooler. The pro-
grammers responsible for maintaining MS-DOS itself, on the other hand, were
much slower to take advantage of expanded memory. MS-DOS 4.0, released in
1988, was the first version that recognized expanded memory at all, and it used
that memory only for certain private tables and buffers.

In October, 1987, Lotus, Intel, and Microsoft released version 4.0 of the EMS.
Version 4.0 supports four times as much expanded memory as version 3.2, as
well as many additional function calls for use by multitasking operating systems.
In particular, EMS 4.0 theoretically allows an operating system to run multiple
applications at the same conventional memory addresses by paging the applica-
tions in and out of expanded memory. EMS 4.0 has not yet become generally sig-
nificant for software developers as of this writing, because full exploitation of its
capabilities requires hardware assistance not available on older EMS boards; the
vast majority of EMS-aware applications still relies only on the functions avail-
able in EMS 3.2. Some of the characteristics of the three versions of EMS are com-
pared in Table 2-1.

Chapter 2 Expanded Memory and the EMS 33

Table 2-1: Comparison of the various EMS versions. The number of
function calls shown here includes all distinct subfunctions defined in the EMS.

EMS Version Release Date Memory Supported Function Calls Page Size Page Mapping
3.0 April ‘85 8 megabytes 14 16K above 640K
3.2 September ‘85 8 megabytes 18 16K above 640K
4.0 October ‘87 32 megabytes 58 any size anywhere

Components of Expanded Memory

It is important not to confuse expanded memory and extended memory. Both are
frequently available on the same machine; in fact, many memory boards can be
set up to provide either expanded memory or extended memory or a mixture of
both. But extended memory can only be accessed in the protected mode of the
80286, 386, and 486 processors, whereas expanded memory can be accessed in
real mode and therefore can be installed and used on 8086/88-based machines
such as the original PC and PC/XT. If you skipped Chapter 1, it may be helpful
to go back and review the material in that chapter now, before reading on.

When you install expanded memory in your computer, you are really install-
ing a closely integrated hardware/software subsystem (we’ll ignore EMS emula-
tors and simulators for the moment). In most cases, the hardware portion is a
plug-in board that has some of the elements of an ordinary memory board and
some of an "adapter" for a peripheral device: it has memory chips, to be sure, but
it also has I/O ports, which must be written by the CPU to make portions of that
memory addressable. On some of the more recent, highly integrated PCs based
on the Chips and Technology chip sets, the logic to control expanded memory is
located right on the system board and can be configured with the ROM BIOS
SETUP utility.

The software component of an expanded memory subsystem is called the Ex-
panded Memory Manager (EMM). It is installed when the system is booted, with
a DEVICE= directive in the CONFIG.SYS file, just like a device driver. In fact, an
EMM has several of the attributes of a real character device driver: it has a device
driver header, a routine that can handle a subset of the requests that the DOS ker-
nel likes to make on device drivers, and it has a logical device name. This device
name is always EMMXXXXO, regardless of who manufactured the expanded
memory board or wrote the EMM.

But the device driver aspects of an EMM are really tangential. The EMM’s
main jobs are to control the expanded memory hardware, to administer ex-

34 EXTENDING DOS

panded memory as a system resource that may be used by many different pro-
grams at once, and to service the function calls defined in the EMS. Programs re-
quest these expanded memory functions from the EMM directly, via a software
interrupt that MS-DOS considers "reserved"; the MS-DOS kernel does not partici-
pate in expanded memory management at all.

A summary of the complete EMS interface can be found in Table 2-4 at the
end of the chapter. The summary may appear bewildering at first, but for pur-
poses of a typical application program, you can ignore all but the rather small
subset of EMS functions that are listed in Table 2-2. This subset is straightforward
to use and reasonably symmetric. For example, the EMS function number is al-
ways placed in register AH, logical page numbers typically go in register BX, ex-
panded memory handles in register DX, and so on. Control is transferred from
the application program to the EMM by executing a software Int 67H. All EMS
functions indicate success by returning zero in register AH, or failure by return-
ing an error code in AH with the most significant bit set (see Table 2-5 at the end
of the chapter).

Table 2-2: Summary of the EMS functions most commonly used in application programs.

Expanded Memory Function Call With Returns
Get Status AH =40H AH = status
Get Page Frame Address AH =41H AH = status

BX = page frame segment
Get Number of Expanded AH =42H AH = status
Memory Pages BX = available pages

DX = total pages
Allocate Pages AH =43H AH = status

BX = number of pages DX = EMM handle

Map Expanded Memory Page AH =44H AH = status

AL = physical page
BX = logical page
DX = EMM handle

Release Pages AH =45H AH = status
DX = EMM handle
Get EMM Version AH =46H AH = status

AL = version

Chapter 2 Expanded Memory and the EMS

35

In short, the general form of an assembly language EMM function call is:

mov ah,function ; AH = EMS function number
. ; load other registers

; with function-specific
. ; values or addresses
int 67h ; transfer to EMM
or ah,ah ; test EMS function status
jnz error ; jump, error detected

If you prefer to program in C, you can easily request EMS services without
resorting to assembly language by means of the int86() or int86x() functions.
The framework for such calls is:

#include <dos.h>
union REGS regs;

regs.h.ah = function; // AH = EMS function number
// load other registers
// with function-specific
. // values or addresses
int86(0x67, ®s, ®s); // transfer to EMM
if(regs.h.ah) // test EMS function status
error(); // execute if error detected
The remainder of the examples in this chapter are provided in assembly lan-
guage, but you should find it quite straightforward to convert these to the equiv-

alent C code, using the example above as a model.

Obtaining Access to Expanded Memory

When you want to use expanded memory in one of your programs, the first step
is to establish whether the EMM is present or not. You can do this by one of two
methods: the open file method or the interrupt vector method.

The "open file" method is so called because it is based on using MS-DOS 1nt
21H Function 3DH to open the EMM by its logical name—just as though it were a
character device or a file. Assuming that the open operation is successful, your
program must then make sure that it didn’t open a real file with the same name
by accident. This unlikely possibility can be ruled out by calling the Int 21H
Function 44H (10CTL) subfunctions 0 (get device information) and 7 (get output
status). Finally, the program should close the EMM with Int 21H Function 3EH to
avoid the needless expenditure of a handle—you can’t do anything else with the

36 EXTENDING DOS

handle anyway. The procedure for testing for the presence of the Expanded
Memory Manager using the DOS open and 10CTL functions is illustrated below:

emmname db

mov
mov
mov
mov
int
jc

mov
mov

int
jc

and
jz

mov

int
jc
or
jz

mov
int
jc

'EMMXXXX0',0

dx,seg emmname
ds,dx

4

4

4
.
4

4

dx,offset emmname

ax,3d00h
21h
error

bx ,ax
ax,4400h

21h
error

dx,80h
error

ax,4407h

21h

error
al,al
error

ah,3eh
21h
error

4

14

I'4

Ne Ne Ne Ne Ne N N

Ne Nu Ne Ne Ne Na Na Ns Ne Ne N Ne N N Ng N

; guaranteed device name for
; Expanded Memory Manager

; attempt to "open'" EMM...

DS:DX = address of EMM
logical device name

; fxn. 3DH = open
; transfer to MS-DOS
; jump if open failed

open succeeded, make sure
it was not a file...

BX = handle from open
fxn. 44H subfun. 00H =
IOCTL get device info.
transfer to MS-DOS

jump if IOCTL call failed

bit 7=1 if char. device
jump if it was a file

EMM is present, make sure
it is available...

(BX still contains handle)
fxn. 44H subf. O7H =

IOCTL get output status
transfer to MS-DOS

jump if IOCTL call failed
test device status

if AL=0 EMM not available
now close handle ...

(BX still contains handle)
fxn. 3EH = close

transfer to MS-DOS

jump if close failed

The interrupt vector method relies on the fact that an EMM, if it is installed,
will necessarily have captured the vector for Int 67H, by placing the address of
its EMS function call entry point in the vector. An application program testing for

Chapter 2 Expanded Memory and the EMS

37

the presence of an EMM can simply fetch the contents of the vector, then deter-
mine whether the segment portion of the vector points to a device driver header
that contains the logical device name EMMXXXXO0. Example code for testing for
the presence of the Expanded Memory Manager by inspection of the EMM's in-
terrupt vector and device driver header can be found below:

emmint equ 67h ; Expanded Memory Manager
; software interrupt

emmname db 'EMMXXXX0"* ; guaranteed device name for
; Expanded Memory Manager

xor bx,bx ; first fetch segment from
mov es , bx ; EMM interrupt vector
mov es,es:L(emmint*4)+2]

; assume ES:0000 points
; to base of the EMM...
mov di, 10 ; ES:DI = address of name
; field in driver header

mov si,seg emmname DS:SI = EMM driver name
mov ds,si

mov si,offset emmname

mov cx,8 ; length of name field
cld

repz cmpsb ; compare names...

jnz error ; jump if driver absent

Which method you choose for detecting the presence of the EMM depends
on the type of program you are writing. For conventional application programs,
the open file method is preferred, because it is "well-behaved"—it relies only on
standard MS-DOS function calls, and is thus least likely to run into conflicts with
TSRs, device drivers, interrupt handlers, or multitasking program managers. The
interrupt vector method is considered "ill-behaved" because it involves inspec-
tion of memory not owned by the program. But when you are designing a device
driver that uses expanded memory, you must employ the interrupt vector
method, for reasons that will be explained later in the chapter.

38 EXTENDING DOS

Once your program has established that an EMM is present, it should call the
EMM'’s "get status” function (Int 67H Function 40H) to make sure the expanded
memory hardware is present and functional. After all, the fact that the EMM it-
self is installed doesn’t guarantee that the associated hardware is also installed
(although most EMMs do abort their own installation if the hardware is missing).
It is also appropriate for your program to call the "get EMM version" function
(Int 67H Function 46H) at this point, to make sure that all of the EMS functions
that it intends to use are actually supported by the resident EMM.

Next, your program should call the "get number of pages" function (Int 67H
Function 42H) to determine how much expanded memory is available. This func-
tion returns both the total number of physically installed pages, and the number
of pages that have not already been allocated to other programs. In most cases
the two numbers will be the same, unless your program is running under a
multitasking program manager alongside other applications that use expanded
memory, or unless TSRs or device drivers that use expanded memory have been
previously loaded.

If the number of free expanded memory pages is less than your program
needs or expects, it must decide whether to continue execution in a "degraded”
fashion or simply display an advisory message and terminate. If there are suffi-
cient pages available, however, the program can proceed to call the "allocate EMS
pages” function (Int 67H Function 43H) for the necessary amount of expanded
memory. The EMM'’s allocation function returns an "EMS handle"—a 16-bit value
that symbolizes the program’s expanded memory pages, and must be used in all
subsequent references to those pages. This handle is exactly analogous to the file
or device handles you are already accustomed to from your previous MS-DOS
programming experience.

The last step in obtaining expanded memory resources is to call the EMS "get
page frame address" function (Int 67H Function 41H). This function returns the
segment, or paragraph, address of the base of the EMM’s page frame—the area
used by the EMM to map logical expanded memory pages into conventional
memory. The page frame address never changes after the system is booted, so
you only need to request it once, during your program’s initialization code.

A typical sequence of testing EMM status, allocating some EMS pages, and
fetching the page frame address is demonstrated below:

pneeded equ 4 ; number of EMS pages needed

pframe dw 0 ; page frame address
tpages dw 0 ; total EMS pages

Chapter 2

Expanded Memory and the EMS 39

apages dw 0
handle dw 0
mov ah,40h
int 67h
or ah,ah
jnz error
mov ah,46h
int 67h
or ah,ah
jnz error
cmp al,32h
jb error
mov ah,42h
int 67h
or ah,ah
jnz error
mov tpages,dx
mov apages,bx
cmp bx ,pneeded
jb error
mov ah,43h
mov bx,pneeded
int 67h
or ah,ah
jnz error
mov handle ,dx
mov ah,41h
int 67h
or ah,ah
jnz error
mov pframe,bx
Using Expanded Memory

Ne N N N

Ne Na Ne Ne N N

N Ne Ne N Ne Ne N NG

Ne Ne Na Ne N N,

Ne Ne Na No N

available EMS pages
handle for allocated pages

get EMS system status
transfer to EMM

check for EMM error
jump, error occurred

check EMM version
transfer to EMM
check for EMM error
jump, error occurred
make sure EMS 3.2+
jump if EMS 3.0

get number of EMS pages
transfer to EMM

check for EMM error
jump, error occurred
save total EMS pages
save available EMS pages
enough pages available?
jump, too few pages

allocate EMS pages

number of pages needed
transfer to EMM

check for EMM error

jump, pages not allocated
got pages, save handle

get page frame address
transfer to EMM

check for EMM error

jump, error occurred

save segment of page frame

The logical EMS pages owned by a program and associated with a particular
EMS handle are numbered 0 through n-1, where # is the total number of pages
originally allocated to that handle. In EMS 3.0 and 3.2, the pages are always 16K

40 EXTENDING DOS

in length. EMS 4.0 allows pages of other sizes to be allocated and used, but it is
best to avoid use of "nonstandard" page sizes so that your program will be com-
patible with the broadest possible range of EMS hardware and software.

A program gains access to the contents of one of its expanded memory pages
by calling the "map EMS page" function (Int 67H Function 44H). The EMM
accomplishes the mapping by writing commands to the I/O ports on the ex-
panded memory board; logic on the board then ties the memory chips that hold
the data for that logical page to the address and data lines of the system bus, so
that the logical page becomes visible in the CPU’s normal address space.

In EMS 3.0 and 3.2, a mapped page is always made available in the EMM’s
page frame, which is in turn located at unused addresses above the 640K bound-
ary. The page frame is 64K long, and is divided into four 16K physical pages
numbered 0 through 3; thus, a maximum of four different logical pages can be si-
multaneously accessible. This mapping process is diagrammed in Figure 2-1.

Figure 2-1: Diagram of the relationship betweet expanded memory and conventional memory.

Expanded Memory

Logical Page n

Conventional Memory

1024 KB
ROM BIOS

e — - Physical Page 3
= -0 Physical Page 2

EMS Page Frame y 9
e —_—— Physical Page 1
\\\\\\ Physical Page O

640 KB~ ~

Application Programs

MS-DOS

0 KB Logical Page O

Chapter 2 Expanded Memory and the EMS 41

In EMS 4.0, an EMS 3.x-compatible page frame is supported for compatibility
reasons, but the page frame may be larger than 64K, and there may also be multi-
ple page frames. EMS 4.0 also allows pages to be mapped below the 640K bound-
ary on demand, if the proper hardware support is present. Again, it is best to
avoid use of these capabilities—which are peculiar to EMS 4.0—unless your pro-
gram absolutely cannot be made to work without them.

Once a logical page has been mapped to a physical page, it can be inspected
and modified with the usual CPU memory instructions. When dealing with the
standard EMS 3.x page frame and page sizes, address calculations are straightfor-
ward. A far pointer to a mapped page, which is composed of a segment and off-
set, is built up as follows. The page frame base address returned by Int 67H
Function 41H is already in a form that can be loaded directly into a segment regis-
ter. The offset portion of the far pointer is obtained by multiplying the physical
page number (0-3) by 16,384 (4000H), and adding a logical page displacement in
the range 0-16,383 (0-3FFFH).

For example, if the address returned by the "get page frame address" function
is DOOOH, and logical page 1 for a particular EMM handle has been mapped to
physical page 3, then the data in that logical page can be accessed at physical
memory addresses D000: COO0H through DOOOH: FFFFH. The process of mapping a
logical page to a physical page, calculating the memory address of the page, and
writing data to it, is demonstrated below:

pagelen equ 4000h ; standard EMS page size
pframe dw 0 ; page frame address
logpage dw 1 ; Logical page number
phypage dw 3 ; physical page number
handle dw 0 ; handle for EMS pages

mov ah,44h ; map EMS page

mov bx,logpage ; logical page 1

; physical page 3
mov al, byte ptr phypage
mov dx,handle ; EMS handle

int 67h ; transfer to EMM
or ah,ah ; check for EMM error
jnz error ; jump, error occurred

42 EXTENDING DOS

form far pointer to page

r
mov es,pframe ; ES = page frame segment
mov ax,pagelen ; calculate offset of
mul phypage ; physical page in frame
mov di,ax ; let ES:DI = page address
xor ax,ax ; now zero out the
mov cx,pagelen ; mapped page
rep stosb

This code fragment assumes the page frame address was fetched with a call
to Int 67H Function 41H earlier in the program’s execution, and that a valid EMS
handle was previously obtained with a call to Int 67H Function 43H.

In programs that take advantage of EMS 4.0’s ability to support more than
four physical pages or more than one page frame, it may be preferable to use a
lookup technique to translate physical page numbers to far pointers. Your pro-
gram can call EMS Int 67H Function 58H Subfunction 00H to get a list of the phys-
ical page numbers and their physical memory addresses.

It is often helpful to think of the expanded memory owned by a program as a
sort of virtual file with a length of 7*16,384 bytes (where 7 is the number of allo-
cated EMS pages). To access a particular piece of data in the file, the program first
performs a "seek" operation to the nearest sector boundary: it divides the byte
offset of the data within the virtual file by 16,384 to find the logical page number,
and maps that logical page to a physical page. The remainder, when the byte off-
set is divided by 16,384, is the offset of the data within the logical page, which
can be combined with the page frame base address and the offset of the physical
page within the page frame to form a far pointer in the manner described.

When your program is finished using expanded memory, it must be sure to
deallocate its EMS handle and logical pages by calling the "release EMS handle”
function (Int 67H Function 45H) before terminating. If it fails to do so, the ex-
panded memory owned by the program will be lost and unavailable for use by
other programs until the system is restarted. MS-DOS cannot clean up a
program’s expanded memory resources automatically at termination because
MS-DOS does not participate in the expanded memory management in the first
place. For the same reason, programs using EMS should contain their own criti-
cal error and Control-C handlers, so they cannot be terminated unexpectedly.

A sketch of the entire process of using expanded memory in an application is
shown in Figure 2-2.

Chapter 2 Expanded Memory and the EMS 43

Figure 2-2: General procedure for expanded memory usage by an application program.

Expanded
Memory Manager
Present?

No Continue Without
Expanded Memory
or Terminate

Expanded No
Memory Subsystem

unctional?

Allocated Expanded <
Memory Pages

Can Continue

Allocation With Less Pages?

Successful?

Terminate

Get Page Frame
Address

v

Map Extended ¢
Memory Pages

v

Release Expanded
Memory Pages

44 EXTENDING DOS

EMS Pitfalls for Drivers and TSRs

Using expanded memory in a device driver or TSR utility is somewhat more
problematic than in a normal application program. You must concern yourself
not only with the logic of your own program, but with protecting yourself
against every possible use (and misuse) of expanded memory by other active
programs, whether they be drivers, TSRs, or applications.

When a driver or TSR gets control, the state of the system is, by nature, sensi-
tive and unpredictable. In the first place, the driver or TSR was undoubtedly
called as the direct or indirect result of the user’s interaction with an application
program, and that application may well be using expanded memory too. It is
crucial that any use of expanded memory by the foreground application not be
disturbed. Therefore, it is vitally important that the driver or TSR save the ex-
panded memory mapping context (the association of specific logical expanded
memory pages with physical locations in the CPU’s address space) at entry, and
restore that same context before it exits.

In each successive revision of the EMS, new functions have been defined for
saving and restoring the expanded memory subsystem state (summarized in
Table 2-3). In EMS version 3.0, Functions 47H and 48H provided all-or-nothing ca-
pability on a per-handle basis. If the driver or TSR owned only one expanded
memory handle, then it could save only one mapping context at a time. In EMS
version 3.2, Function 4EH (which actually consists of four distinct subfunctions)
was added, allowing a program to selectively save and restore as many mapping
contexts as it had memory to put them in. This made things a lot easier for multi-
tasking program managers, since it allowed them to associate a mapping context
with each active application.

Table 2-3: Summary of the EMS functions related to
saving and restoring the expanded memory mapping context.

Expanded Memory Function Call With Returns EMS Version
Save Page Map AH =47H AH = status 3.0
DX = EMM handle
Restore Page Map AH =48H AH = status 3.0
DX = EMM handle
Save Page Map AH =4EH AH = status 3.2
AL = 00H

ES:DI = buffer

Chapter 2 Expanded Memory and the EMS 45

Expanded Memory Function Call With Returns EMS Version
Restore Page Map AH =4EH AH = status 3.2

AL =01H '

DS:SI = buffer
Save and Restore Page Map AH =4EH AH = status 32

AL =02H

DS:SI = restore buffer
ES:DI = save buffer

Get Size of Page Map AH =4EH AH = status 3.2

Information AL = 03H AL = size (bytes)

Save Partial Page Map AH =4FH AH = status 4.0
AL = 00H

DS:SI = map list
ES:DI = buffer

Restore Partial Page Map ~ AH =4FH AH = status 4.0
AL =01H
DS:SI = buffer
Get Size of Partial Page AH =4FH AH = status 4.0
Map Information AL =02H AL = size (bytes)

BX = number of pages

In EMS version 4.0, the number of expanded memory pages that can be si-
multaneously mapped into.conventional memory is much larger, and the over-
head of saving and restoring the complete mapping state has grown
proportionately. Consequently, Function 4FH was added to manipulate partial
mapping contexts. Version 4.0 also defines a host of other new functions directly
or indirectly related to page mapping, ranging from mapping of multiple pages
with one call (optionally followed by a jump or call to code within the pages) to
support for multiple sets of hardware mapping registers. These functions are in-
tended primarily for use by operating systems, so we won’t discuss them further here.

When you are writing a device driver or TSR, you must also concern yourself
with a difficult issue that doesn’t arise in normal MS-DOS application program-
ming: the lack of availability of MS-DOS services after your program is originally
installed. A device driver is allowed to use a limited number of MS-DOS Int 21H
functions during installation, but none at all thereafter. As for TSRs, they are typi-
cally activated during a hardware interrupt (such as the reception of a keystroke),
and since the state of MS-DOS at the time of the interrupt cannot be known in ad-
vance, they must rely on undocumented flags and structures to determine

46 EXTENDING DOS

whether MS-DOS function calls can be made safely. This all implies that your
driver or TSR should perform all the status checks it can, and acquire all the ex-
panded memory resources it expects to ever need, at the time it gets loaded—be-
cause interaction with the user at any later point (even to display an error
message) will be much more difficult.

One last potential problem we should mention is that the amount of stack
space available at the time your TSR or driver is invoked is indeterminate. MS-
DOS itself uses three different stacks, depending on the type of function call in
progress; applications customarily have their own stacks, whose depth is totally
at the discretion of the developer; interrupt handlers often switch to their own
stacks; and last but not least, the amount of stack space required by EMS func-
tions may vary from one Expanded Memory Manager (EMM) to another as well
as from version to version. The safest strategy is for your driver or TSR to always
switch to its own generously sized stack, before using any EMS functions.

EMS Emulators

From the very beginning, the Expanded Memory Specification was formulated
strictly as a software interface, without hardware dependence of any kind (other
than the assumption that the software is running on an Intel 80x86 CPU). We'll
never know whether this was just a happy accident or a stroke of genius on the
part of the original Lotus/Intel/Microsoft designers, but the payoff is the same in
any event: the nature of the Expanded Memory Specification allows expanded
memory functionality to be provided on systems that do not contain any ex-
panded memory hardware at all. Programs that provide expanded memory ser-
vices in the absence of expanded memory hardware are called expanded memory
emulators or simulators, and they fall into three classes: disk-based EMS emula-
tors, 286 extended memory-based EMS emulators, and 386/486-specific memory
managers that export the EMS interface.

Disk-based EMS emulators, such as Turbo EMS or Above Disk, support the
EMS 1nt 67H interface, but store the data in allocated EMS pages in a swap file on
disk. When an application requests an EMS page to be mapped into the page
frame, the emulator reads the EMS page’s data in from the swap file and makes it
available in RAM. Disk-based EMS emulators will run on any type of PC, from
the original 8088-based model on up, but have two severe disadvantages: they
are very slow compared to true EMS based on bank-switched memory, and the
page frame is almost always located low in conventional memory rather than

Chapter 2 Expanded Memory and the EMS 47

above the 640K boundary. The unusual location of the page frame causes trouble
for some application programs that are not completely well-behaved in their use
of EMS services.

80286 extended memory-based EMS emulators are similar to disk-based EMS
emulators, in that they typically create a page frame in conventional memory
below the 640K boundary. However, these emulators are drastically faster than
disk-based emulators because they store the data in the simulated EMS pages in
extended memory rather than on disk, using ROM BIOS Int 15H Function 87H to
move the data between extended memory and the page frame when a mapping
is requested by an application program. On older PC/ATs and clones, such an
extended memory-based EMS emulator may allow you to gain the benefits of
EMS without purchasing any additional hardware. However, better performance
will be obtained by reconfiguring the system’s extended memory as expanded
memory when the hardware allows it, or by purchasing and plugging in a new
board that can supply true expanded memory.

A 386/486-based memory manager such as Qualitas’s 386-to-the-Max,
Quarterdeck’s QEMM, and Microsoft’'s Windows/386, implements EMS emula-
tion by taking on the role of a little operating system. The memory manager itself
runs in the 386/486’s 32-bit protected mode, and MS-DOS and its application
programs run under the memory manager’s supervision in Virtual 86 Mode.
This arrangement gives the memory manager complete control over the address
space seen by MS-DOS and other real-mode programs; it can use the 386/486
page tables to make any 4K physical memory page appear at any address within
the Virtual 86 Machine. For example, 386-to-the-Max can remap extended mem-
ory into the "holes" between video adapters and the ROM BIOS, so that device
drivers and TSRs can be loaded above the 640K boundary.

Use of Virtual 86 Mode also allows a 386/486-based memory manager to in-
tercept software interrupts, which puts it into a position to simulate EMS mem-
ory without the real-mode application’s knowledge or cooperation. The memory
manager uses extended memory for storage of EMS pages, and simply uses the
386/486 page tables to map the simulated EMS pages on demand into a simu-
lated EMS page frame within the Virtual 86 Machine. The speed of EMS emula-
tion by 386/486-based memory managers is uniformly excellent, because page
table manipulation and mode switching on 80386/486 CPUs is very fast. Some
memory managers provide additional capabilities as well: 386-to-the-Max actu-
ally exports all three of the important software interfaces for memory manage-
ment: EMS, XMS (Chapter 3), and the VCPI (Chapter 8), while Windows /386 can

48 EXTENDING DOS

set up multiple Virtual 86 Machines and perform true preemptive multitasking of
MS-DOS applications.

Programming Example: The EMSDISK.SYS Driver

In order to provide a practical example of expanded memory usage by an appli-
cation program, TSR, or device driver, I've included the source code for a simple
EMS-aware RAMdisk (virtual disk) called EMSDISK.ASM. EMSDISK demon-
strates the procedure for testing for the existence and functionality of expanded
memory that must be used by a driver or TSR. It contains examples of expanded
memory allocation, mapping, and the saving and restoring of mapping contexts.
For maximum portability, EMSDISK does not attempt to take advantage of
the features of EMS version 4.0; it only relies on functions that are available in
EMS version 3.2. Furthermore, EMSDISK.SYS is a simple program as device driv-
ers go; it contains only the essential routines (initialization, build BPB, media
check, read, and write) that allow MS-DOS to recognize it as a valid block device.
You may find it helpful to consult a general text on MS-DOS (such as my own
book Advanced MS-DOS Programming, 2nd Edition) for further information about
device driver structure and components.
To assemble and link the file EMSDISK.ASM into the executable device
driver EMSDISK.SYS, enter the following commands:
MASM EMSDISK;
LINK EMSDISK;
EXE2BIN EMSDISK.EXE EMSDISK.SYS
DEL EMSDISK.EXE
(The Linker will display the message Warning: No Stack Segment. This warn-
ing can be ignored.) To install EMSDISK, add the line:

DEVICE=EMSDISK.SYS nnnK

to your CONFIG.SYS file and reboot the system. Make sure that the DEVICE=
line for EMSDISK.SYS follows the DEVICE-= line that loads your expanded mem-
ory manager (such as EMM.SYS for Intel Above Boards). The logical drive identi-
fier that will be assigned to EMSDISK depends on the number of block devices
that are already present in the system at the time EMSDISK is loaded.

The parameter nnnK on the DEVICE= directive is the desired size of the
RAMdisk in kilobytes. If this parameter is missing, or is larger than the amount
of free expanded memory, EMSDISK will use all of the expanded memory that is
available. For example, if fixed disk drive C: is currently the last-drive in your

Chapter 2 Expanded Memory and the EMS 49

system, you could create a 1-megabyte virtual disk drive D: by adding the fol-
lowing line to CONFIG.SYS:

DEVICE=EMSDISK.SYS 1024K

When EMSDISK is loaded, it will display a sign-on message and, under DOS
3.0 or later, its drive identifier. If EMSDISK can’t find a previously loaded ex-
panded memory manager, or is unable to allocate or initialize its expanded mem-
ory pages, it will abort its own installation with an error message.

EMS Example Program

; EMSDISK.ASM --- Expanded Memory RAMdisk
Copyright (C) 1989 Ray Duncan

To build: MASM EMSDISK;
LINK EMSDISK;
EXE2BIN EMSDISK.EXE EMSDISK.SYS
DEL EMSDISK.EXE

To install: copy EMSDISK.SYS to the root directory of your
boot disk, then add the Line

DEVICE=EMSDISK.SYS nnnK

to the CONFIG.SYS file. This line must follow
the DEVICE= line that loads the Expanded Memory
Manager. The parameter nnn is the desired
RAMdisk size in KB. If nnn is missing or zero,
all available expanded memory is used.

TEXT segment public '"CODE'

assume cs:_TEXT,ds:_TEXT,es:_TEXT

org 0
maxcmd equ 24 ; maximum driver command code
cr equ 0dh ; ASCII carriage return
Lf equ Oah ; ASCII line feed
blank equ 020h ; ASCII space code
tab equ 09%9h ; ASCII tab character
eom equ '$! ; end of message signal
emm_int equ 67h ; EMM software interrupt

50 EXTENDING DOS

psize equ 16384 ; bytes per EMS page
ssize equ 512 ; bytes per sector
dsize equ 256 ; entries in root directory
spp equ psize/ssize ; sectors per page
request struc ; request packet template
rlength db ? ; length of request packet
unit db ? ; unit number
command db ? ; driver command code
status dw ? ; driver status word
reserve db 8 dup (?) ; reserved area
media db ? ; media descriptor byte
address dd ? ; memory address for transfer
count dw ? ; byte/sector count
sector dw ? ; starting sector number
request ends ; end request packet template
; device driver header
header dd -1 ; Link to next driver in chain
dw 0 ; driver attribute word
dw strat ; "Strategy" entry point
dw intr ; "Interrupt”" entry point
db 1 ; number of units, this device
db 7 dup (0 ; reserved area
rgptr dd ? ; address of request packet
savesp dw 0 ; save MS-DOS kernel's SS:SP
savess dw 0
availp dw 0 ; logical EMS pages available
totalp dw 0 ; total EMS pages in system
ownedp dw 0 ; RAMdisk size in EMS pages
pframe dw 0 ; segment address of page frame
handle dw 0 ; expanded memory handle
dosver db 0 ; MS-DOS major version no.
xfrsec dw 0 ; current sector for transfer
xfrcnt dw 0 ; sectors already transferred
xfrreq dw 0 ; number of sectors requested
xfraddr dd 0 ; working address for transfer
array dw bpb ; BPB pointer array
bootrec equ $; EMSDISK boot record

jmp $; phony JMP dinstruction

Chapter 2

Expanded Memory and the EMS 51

nop
db

bpb dw
db
dw
db
dw
dw
db
dw

br_len equ

even
dw
stk equ

'IBM 3.3

ssize

0

1

1

dsize

0

0f8h

0
$-bootrec

128 dup (0)
$

;
’
I 4
’
;
r’
4
4
’

4

-
r

-
’

.
r

OEM identity field

BIOS Parameter Block (BPB)
bytes per sector
sectors per cluster
reserved sectors
number of FATs

root directory entries
total sectors

cCOONUT NN O

; OAH media descriptor

OBH sectors per FAT
length of boot record

force word alignment

local stack for device driver

Driver 'strategy' routine; called by MS-DOS kernel with

’

14

; ES:BX pointing to driver request packet.
;

s

trat proc
mov
mov
ret

strat endp

far

word ptr cs:rqptr,bx
word ptr cs:rqptr+2,es

’

r

save address of request packet

; back to MS-DOS kernel

r

; Driver 'interrupt' routine, called by MS-DOS kernel immediately
; after call to 'strategy' routine to process I/0 request.
;
i

intr proc far

push ax

push bx

push cX

push dx

push ds

push es

push di

push si

push bp

mov ax,cs

mov ds,ax

mov savess,ss
mov savesp,sp

’

4

4

save general registers

make local data addressable

save DOS's stack pointers

52 EXTENDING DOS

intr1:

intr2:

intr3:

intré:

mov
mov

les
mov
xor
cmp
jle
mov
jmp

or
jz
mov
mov
int
or
jnz

shl
call

les

or
mov
mov
or
jz

mov
mov
int
or

jnz

mov
mov
pop
pop
pop
pop
pop
pop
pop
pop
pop
ret

ss,ax
sp,offset stk

di,rgptr
bl,es:[di.command]
bh,bh

bx,maxcmd

intr1

ax,8003h

intr3

bx ,bx
intr2
ah,47h
dx,handle
emm_int
ah,ah
intr5

bx,1
word ptr Cbx+dispchl

di,rgptr

ax,0100h
es:[di.status], ax
bl,es:[di.command]
bL,bl

intré

ah,48h
dx,handle
emm_int
ah,ah
intr5

ss,savess
sp,savesp
bp
si
di
es
ds
dx
cX
bx
ax

Ne

N Ne Ns NG

Ne N5 Ne N Ne N N

Ne No Nu Ne N N N Ns Ne N N

N

set SS:SP to point to
driver's local stack

let ES:DI = request packet
get BX = command code

make sure it's legal
jump, function code is ok
set Error bit and code
for "unknown command"

is it init call? (function 0)
yes, skip save of context

fxn 47h = save page mapping
EMM handle for this driver
transfer to EMM

jump if EMM error while
saving page mapping context

form index to dispatch table
branch to command code routine
should return AX = status
restore ES:DI = request packet

merge Done bit into status,
store into request packet
was this initialization call?

yes, skip restore of context

fxn 48h = restore page mapping
EMM handle for this driver
transfer to EMM

jump if EMM error while
restoring page mapping

central exit point

restore DOS kernel's stack
restore general registers

back to MS-DOS kernel

Chapter 2

Expanded Memory and the EMS 53

intr5: ; catastrophic errors come here
les di,rgptr ; ES:DI = addr of request packet
mov es:[di.status],810ch ; set Error bit, Done bit, and
jmp intré4 ; error code for general failure
intr endp

.
r

; Dispatch table for device driver command
dispch dw init ; 0=
dw medchk ; 1=
dw bldbpb ; 2=
dw error ; 3=
dw read ; 4=
dw error ; 5=
dw error ; 6=
dw error ; 7=
dw write ; 8 =
dw write ; 9=
dw error ;10 =
dw error ;11 =
dw error ;12 =
dw error ; 13 =
dw error ; 14 =
dw error ; 15 =
dw error ; 16 =
dw error ; 17 =
dw error ; 18 =
dw error ;19 =
dw error ; 20 =
dw error ; 21 =
dw error ; 22 =
dw error ; 23 =
dw error ; 24 =

4

codes

initialize driver

media check on block device
build BIOS parameter block
I/0 control read

read from device
non-destructive read

return current input status
flush device input buffers

: Wwrite to device

write with verify

return current output status
flush output buffers

1/0 control write

device open (DOS 3.0+)
device close (DOS 3.0+)
removeable media (DOS 3.0+)
output until busy (DOS 3.0+)
not used

not used

generic IOCTL (DOS 3.2+)
not used

not used

not used

get logical device (DOS 3.2+)
set logical device (DOS 3.2+)

; Media Check routine (command code 1). Returns code indicating
; whether medium has been changed since last access.

’

medchk proc near
mov byte ptr es:[di+141,1 ; set "media not changed" code
xor ax,ax return success status

ret

54 EXTENDING DOS

medchk endp

N N

Ne

o N

Ldbpb proc

mov
mov
xor
ret

bldbpb endp

Ne N

N

= .

ead proc
call

readl1: mov
cmp
je
mov
call
jc
Lles
mov
mov
mov
cld

Read routine (command code 4).
from RAMdisk storage to specified address.

near

word ptr es:Ldi+201,cs

7

Build BPB routine (command code 2). Returns pointer to valid
BIOS Parameter Block for logical drive.

put BPB address in packet

word ptr es:[di+18],0ffset bpb

ax,ax

near
setup

ax,xfrcnt
ax,xfrreq
read2
ax, xfrsec
mapsec
readé4
di, xfraddr
si,ax
ds,pframe
cx,ssize/2

rep movsw

push
pop
inc
add
inc
jmp
read2:

xor

read3: Lles
mov
mov

cs

ds

xfrsec

word ptr xfraddr,ssize
xfrcnt

read1

ax,ax
di,rqptr

bx,xfrcnt
es:[di.countl, bx

’

N

Nes Ne Na N N

Na

N

Ne N N N

N N Ns N

Ne

return success status

Transfers logical sector(s)

set up transfer variables
done with all sectors yet?

jump if transfer completed
get next sector number

and map it

jump if mapping error
ES:DI = requestor's buffer
DS:SI = RAMdisk address

transfer logical sector from
RAMdisk to requestor

restore local addressing

advance sector number
advance transfer address
count sectors transferred
go do another sector

all sectors successfully
transferred, return ok status

get address of request packet
poke in actual transfer count
(in case an error aborted

Chapter 2 Expanded Memory and the EMS 55

ret ; the transfer early)
read4: mov ax,800bh ; come here if mapping error,
jmp read3 ; return read fault error code
read endp
;
; Write (command code 8) and Write with Verify (command code 9)
; routine. Transfers logical sector(s) from specified address
; to RAMdisk storage.
’
write proc near
call setup ; set up transfer variables
writel: mov ax,xfrcnt ; done with all sectors yet?
cmp ax,xfrreq
je Wwrite2 ; jump if transfer completed
mov ax,xfrsec ; get next sector number
call mapsec ; and map it
jc writeé ; jump if mapping error
mov di,ax ; ES:DI = RAMdisk address
mov es,pframe
lds si, xfraddr ; DS:SI = requestor's buffer
mov cx,ssize/2 ; transfer logical sector from
cld ; requestor to RAMdisk
rep movsw
push cs ; restore local addressing
pop ds
inc xfrsec ; advance sector number
add word ptr xfraddr,ssize ; advance transfer address
inc xfrcnt ; count sectors transferred
jmp writel ; go do another sector
write2: ; all sectors successfully
xor ax,ax ; transferred, return ok status
write3: les di,rqptr ; get address of request packet,
mov bx,xfrcnt ; poke in actual transfer count
mov es:[di.countl], bx ; (in case an error aborted
ret ; the transfer early)
Wwrite4: mov ax,800ah ; mapping error detected,
jmp write3 ; return write fault error code

Wwrite endp

56 EXTENDING DOS

;
; Dummy routine for command codes not supported by this driver.

-
4

error proc near
mov ax,8103h ; return error code 3
ret ; indicating 'unknown command'

error endp

; Map into memory a logical "disk" sector from the EMS
; pages allocated to the RAMdisk.

Call with: AX

logical sector number

I 4
’
r
’
14
r
; Returns: cYy clear if no error

; AX = offset within EMS page frame
; AX,CX,DX destroyed

r

’

r

r

m

cYy = set if EMM mapping error
AX,CX,DX destroyed
apsec proc near

mov dx,0 ; divide sector no. by sectors
mov CcX,Spp ; per page, to get EMS page number
div cX ; now AX=EMS page,DX=rel. sector
push dx ; save sector within page
mov bx,ax ; BX <- EMS page number
mov ax,4400h ; fxn 4400h = map phys. page O
mov dx,handle ; EMM handle for this driver
int emm_int ; transfer to EMM
or ah,ah ; test for EMM error
jnz maps1 ; jump, EMM error detected
pop ax ; get relative sector in page
mov cx,ssize ; relative sector * size =
mul cX ; offset into EMS logical page
cle ; return CY=clear for no error
ret ; back to caller

maps1: add sp,2 ; EMM mapping error detected
stc ; clear stack and return CY=set
ret ; to indicate error

mapsec endp

Chapter 2

Expanded Memory and the EMS 57

N N

N

s
’
setup proc near
push es
push di
mov ax,es:[di.sectorl]
mov xfrsec,ax
mov ax,es:[di.countl]
mov xfrreq,ax
les di,es:[di.address]
mov word ptr xfraddr,di
mov word ptr xfraddr+2,es
mov xfrcnt,0
pop di
pop es
ret
setup endp
’
; Initialization routine,
; address of 'init' Llabel
; that memory occupied by 'init'
’
init proc near
init1: mov ax,3000h
int 21h
mov dosver,al
init2: xor ax,ax
mov es, ax
mov bx,emm_int*4
mov es,es:[bx+2]
mov di, 10
mov si,offset emm_name
mov cx,8
cld
repz cmpsb
jz init3
mov dx,offset msg1
jmp abort
init3: mov ah,40h

Na

N Ne N

Ne

called at driver load time.

N

Ne N

N Na NG

Ns N Ne No N N

Ne N

Na

Set up to perform Read or Write subfunction by copying
requestor's buffer address, starting sector, and sector
count out of request packet into local variables.

save request packet address
initialize starting sector
initialize sectors requested

initialize requestor's
buffer address

initialize transfer count
restore request packet address

Returns

to MS-D0OS as start of free memory, so
and its subroutines is reclaimed.

fxn 30h = get DOS version
transfer to MS-DOS
save major version number

check if EMM driver present
if EMM is present, address in
vector points to EMM driver.
now ES:0000 = EMM header
ES:DI = addr of device name
DS:SI = name to match

length of device name

compare EMM name

jump if name matched
if name didn't match,
driver is absent, exit

fxn 40h = get EMM status

58 EXTENDING DOS

inité:

init45:

init5:

inité:

init7:

init71:

int
or
jz
mov
jmp

mov
int
or
jz
mov
jmp

cmp
jae
mov
jmp

mov
int
or

jnz
mov

mov
int
or

jnz
mov
mov
mov
or

jnz
mov
jmp

les
lds

Lodsb
cmp
ja
dec
call
push
pop
or

emm_int

ah,ah

inité
dx,offset msg2
abort

ah,46h

emm_int

ah,ah

init5

dx ,offset msg3
abort

al ,030h

inité

dx ,offset msgé
abort

ah,41h
emm_int
ah,ah
inité45
pframe, bx

ah,42h
emm_int
ah,ah
init45
totalp,dx
availp,bx
ownedp,bx
bx ,bx
init7
dx,offset msgé
abort

di,rqgptr
si,es:[di+18]

al,blank
init71
si

atoi

cs

ds

ax,ax

Ne Ne Ne NE N N Ne Ne Yo Ne N

N

Ne Ne N Nes Ne N2 N N

Ne Na Ne Ne N N N

Nae Ne Ne N

transfer to EMM

check for EMM error
jump, driver is 0K

EMM is non-functional,
error message and exit

fxn 46h = get EMM version
transfer to EMM

check for EMM error

jump, no error

error occurred, display
error message and exit

must be version 3.0+
jump if version is 0K

wrong EMM version, exit

fxn 41h = get page frame
transfer to EMM

check for EMM error
error occurred, exit
save page frame segment

fxn 42h = get no. of pages
transfer to EMM

check for EMM error

error occurred, exit

save total EMS pages

save available EMS pages
default allocated=available
any pages available?

yes, proceed

no pages left, exit

get KB from DEVICE= Lline
ES:DI request packet
DS:SI CONFIG.SYS text

scan for end of driver name

loop while within name
point to delimiter and
convert KB size parameter
make our data addressable

size parameter missing?

Chapter 2

Expanded Memory and the EMS 59

jz

mov
mov
shr
and
jz

inc

init73: cmp
ja
mov

init74: mov
mov
int
or
jz
mov
jmp

init8: mov
call
call
jnc
mov
jmp

init9: call
les
mov
mov
mov
mov
mov
xor
ret

bort: push
mov
mov
int
mov
pop
int

init74
dx ,ax
cx,4
ax,cl
dx ,0fh
init73
ax

ax,availp

yes, use available pages
save copy of KB

divide KB by 16 to get
requested EMS pages

round up needed?

jump if multiple of 16 KB
round up to next page

Na Ne Ne Ne Ne NN

requested > available?

N

init74 ; yes, use available

ownedp,ax ; no, save requested pages
ah,43h ; fxn 43h = allocate pages

bx ,ownedp ; no. of pages to request
emm_int ; transfer to EMM

ah,ah ; check for EMM error

init8 ; jump if allocation 0K
dx,offset msg5 ; allocation failed, display
abort ; error message and exit
handle,dx ; save EMM handle for pages
makebpb ; set up BIOS Parameter Block
format ; format the RAMdisk

init9 ; jump if format was OK
dx,offset msg7 ; error during formatting,
abort ; display error and exit

signon ; display driver sign-on message
di,cs:rgptr ; restore ES:DI=request packet
word ptr es:[di.address],offset init ; set address of
word ptr es:[di.address+2],cs ; end of driver
byte ptr es:[di+131,1 ; driver has 1 logical unit
word ptr es:Ldi+20]1,cs ,; address of BPB array

word ptr es:L[di+181,0ffset array

ax,ax ; return success status

dx
ah,9

dx,offset ermsg

21h
ah,9
dx
21h

EMM initialization failed, display error message and abort
installation of the EMSDISK device driver.

save error message address
fxn 9 = display string
address of error heading
transfer to MS-DOS

fxn 9 = display string
address of error description
transfer to MS-DOS

Ne Yo No Noe Ne N N

60 EXTENDING DOS

les di,cs:rgptr ; restore ES:DI=request packet
mov word ptr es:[di.address],0 ; set break address
mov word ptr es:[di.address+2],cs ; to start of driver
mov byte ptr es:Ldi+131,0 ; set logical units =0
xor ax,ax ; but return success status
ret
init endp
I 4
; Set up total sectors, sectors per cluster, and sectors per FAT
; fields of BIOS Parameter Block according to size of RAMdisk.
’
makebpb proc near
mov ax,ownedp ; calc RAMdisk total sectors,
mov CX,Spp ; update BIOS parameter block
mul cx
mov bpb+8,ax
mov cx,2 ; calc sectors per cluster
makeb1: mov ax,bpb+8 ; try this cluster size...
mov dx,0 ; divide total sectors by
div cX ; sectors per cluster.
cmp ax,4086 ; resulting clusters < 4087?
jna makeb?2 ; yes, use it
shl cx,1 ; no, sec/cluster*?2
jmp makeb1 ; try again
makeb2: mov byte ptr bpb+2,cl ; sectors per cluster into BPB
mov dx,ax ; now AX = total clusters
add ax,ax ; clusters*1.5 = bytes in FAT
add ax ,dx
shr ax,1
mov dx,0 ; bytes in FAT/ bytes/sector
mov cx,ssize ; = number of FAT sectors
div cX
or dx,dx ; any remainder?
jz makeb3 ; no,jump
inc ax ; round up to next sector
makeb3: mov bpb+0bh,ax ; FAT sectors into BPB
ret ; done with BPB now
makebpb endp

-
’

Format RAMdisk.

First write zeros into

all sectors of reserved

Chapter 2

Expanded Memory and the EMS 61

f

area, FAT,

and root directory.

Then copy phony boot record to

boot sector, initialize medium ID byte at beginning of FAT, and
place phony volume Label in first sector of root directory.

Returns Ca
proc

mov
cmp
je
push
mov
mov
int
pop
or
jnz
mov
xor
mov
xor
cld
rep
inc
jmp

mt2:

mov
call
jc
mov
mov
mov
mov
rep
mov
call
jc
mov
mov
mov
mov
mov
mov
xor
mul
add
call

rry =
near

bx,0
bx,ownedp
fmt2

bx
ax,4400h
dx,handle
emm_1int
bx

ah,ah
fmt9
es,pframe
di,di
cx,psize/2
ax,ax

stosw
bx
fmt1

ax,0
mapsec
fmt9
di,ax
es,pframe
si,offset bootrec
cx,br_Llen
movsb
ax,1
mapsec
fmt9
di,ax
es, pframe
al ,byte ptr Cbpb+0ahl
es:[dil,al
word ptr es:[di+1],-1
al ,byte ptr LCbpb+51]
ah,ah
word ptr L[bpb+0bhl]
ax,word ptr L[bpb+3]
mapsec

clear if successful, Carry =

Ne No Ne Ne Ne Ne Ne Ne Ne N N

N

Na

Ne Ne Ne N2 Ne N NS

Ne Na Ne No NN

set if failed.

first clear RAMdisk area
done with all EMS pages?
yes, jump

save current page number
fxn 4400h = map phys. page 0
EMM handle for this driver
transfer to EMM

restore page number

if bad mapping give up
(should never happen)

set ES:DI = EMS page

page length in words
fill page with zeros

increment page and Loop

copy phony boot sector
map in logical sector 0

jump if mapping error
ES:DI = sector O

DS:SI = boot record

CX = Llength to copy
transfer boot sector data
map in logical sector 1
(first sector of FAT)
jump if mapping error
ES:DI = sector 1

put media descriptor byte
into FAT byte 0, force
bytes 1-2 to FFH

first directory sector =
no. of FATS * length of FAT
plus reserved sectors

map in directory sector

62 EXTENDING DOS

r

; Display sign-on message,

; amounts of installed, available, and allocated expanded memory.
;

s

ignon

jc

mov
mov
mov
mov
rep
clc
ret

stc
ret

endp

fmt9
di,ax
es, pframe

si,offset volname

cx,vn_Llen

movsb

jump if mapping error
copy volume Llabel to
first sector of directory

return CY = clear,
format was successful

return CY = set,
error during format

logical volume (if DOS 3.0 or Llater),

proc near

les di,rgptr

mov al ,es:[di+22]
add al,"A!

mov dcode,al

mov ax,totalp

mov dx,16

mul dx

mov cx,10

mov si,offset kbins
call itoa

mov ax,availp

mov dx ,16

mul dx

mov cx,10

mov si,offset kbavail
call itoa

mov ax,ownedp

mov dx ,16

mu L dx

mov cx,10

mov si,offset kbasn
call itoa

mov ah,9

mov dx,offset ident

Ne Ne N N

ES:DI = request packet

get drive code from header,
convert it to ASCII, and
store into sign-on message
format KB of EM dinstalled

pages * 16 = KB

convert KB to ASCII
format KB of EM available

pages * 16 = KB

convert KB to ASCII

format KB assigned to RAMdisk

pages * 16 = KB

convert KB to ASCII

fxn 9 = display string
address of program name

Chapter 2 Expanded Memory and the EMS 63

int 21h ; transfer to MS-DOS

mov dx,offset dos2m ; check DOS version, if

cmp dosver,2 ; DOS 2 can't know drive

je sign1

mov dx,offset dos3m ; 1f DOS 3 can display drive
sign1: mov ah,9 ; display KB of EMS memory

int 21h ; installed, available, assigned

ret ; back to caller

signon endp

Convert ASCII string to 16-bit binary integer. Overflow
is ignored. Conversion terminates on first illegal character.

Call with: DS:SI = address of string
where 'string' is in the form
Cwhitespacellsignlldigits]

Q) Ne N N2 Ne Ne Ne Na Na NG N N

Returns: AX = result
DS:SI = address+1 of terminator
toi proc near ; ASCII to 16-bit integer
push bx , save registers
push cXx
push dx
xor bx,bx ; initialize forming answer
xor cX,CX ; initialize sign flag
atoil: Llodsb ; scan off whitespace
cmp al,blank ; ignore leading blanks
je atoi1
cmp al ,tab ; ignore leading tabs
je atoi1
cmp al,'+' ; proceed if + sign
je atoi2
cmp al,'-! ; is it - sign?
jne atoi3 ; no, test if numeric
dec cX ; was - sign, set flag

atoi2: Llodsb ; get next character

atoi3: cmp al,'0’ ; is character valid?
jb atoié4 ; jump if not '0' to '9’

64 EXTENDING DOS

atoié:

atoi5:

atoi

wde Na N2 Ne Ne N Ne Ne Ns N Ne N

toa

itoal:

itoa2:

cmp
ja

and
xchg
mov
mu l

add

jmp

mov
jcxz
neg

pop
pop
pop
ret

endp

Call with:

Returns:

proc

add
push
or
pushf
jns
neg

cwd
div
add
cmp
jle
add

dec

al,'9!
atoié4
ax,0fh
bx ,ax
dx,10
dx

bx ,ax
atoi2

ax,bx
atoi5
ax

dx
cx
bx

AX
DS:SI

CcX

DS:SI
AX

near

si, b
si
ax,ax

itoal
ax

cX
diL,'o0’
dL,'9!
itoa?2

16-bit integer

jump if
isolate

not '0' to '9'
lower four bits

multiply answer x 10

add this digit

convert

next digit

result into AX

jump if

sign flag clear

make result negative

restore

back to

Convert 16-bit binary integer to ASCII string.

buffer to receive string,
must be at least 6 bytes long

radix

registers

caller

address of converted string

Llength of string

dL,'AT=1971=1

si

Ne N N Ne Ne N

Ne Ne Vo Ne Ne N

convert

advance

binary int to ASCII

to end of buffer:

and save that address
test sign of 16-bit value,
and save sign on stack

jump if

value was positive

find absolute value

divide value by radix to

extract
convert
in case
jump if
correct

back up

next digit

remainder to ASCII
converting to hex

in range 0-9

digit if in range A-F

through buffer

Chapter 2 Expanded Memory and the EMS 65

mov Csil,dl ; store this character
or ax,ax ; value now zero?
jnz itoal ; no, convert another digit
popf ; original value negative?
jns itoa3 ; no, jump
dec si ; yes,store sign into output
mov byte ptr [sil,'-!

itoa3: pop ax ; calculate length of string
sub ax,si
ret ; return to caller

itoa endp

;
; Miscellaneous data and text strings used only during
; initialization, discarded afterwards to save memory.

ident db cr,Lf, Lf
db 'EMSDISK Expanded Memory RAMdisk 1.1"
db cr,Lf
db 'Copyright (C) 1989 Ray Duncan'
db cr,Lf,Lf,eom
dos3m db 'RAMdisk will be drive '
dcode db 'x.!'
db cr, Lf, Lf
dos2m Label byte
kbins db ' KB expanded memory installed.'’
db cr, Lf
kbavail db ' KB expanded memory available.'
db cr, Lf
kbasn db ' KB assigned to RAMdisk.'
db cr,Lf,eom
emm_name db 'EMMXXXX0',0 ; logical device name for
; expanded memory manager
ermsg db cr, Lf
db 'EMSDISK installation error:’
db cr,Lf,eom
msg1 db 'expanded memory manager not found.'
db cr,Lf,eom
msg2 db 'expanded memory not functional.'
db cr,Lf,eom

msg3 db 'expanded memory manager error.'

66 EXTENDING DOS

db cr,Lf,eom
msgé db 'no expanded memory pages available.'
db cr,Lf,eom
msg5 db 'expanded memory allocation failed.'
db cr,Lf,eom
msgéb db 'wrong expanded memory manager version.'
db cr,Lf,eom
msg7 db 'unable to format RAMdisk.'
db cr,Lf,eom
volname db '"EMSDISK ' ; phony volume Llabel
db 08h ; volume Llabel attribute byte
db 10 dup (0) ; reserved
dw 0 ; time = 00:00:00
dw 1441h ; date = February 1, 1990
db 6 dup (0)
vn_Llen equ $-volname
_TEXT ends
end
Table 2-4: The EMS Programming Interface.
Function EMS Version Parameters Results if Successful*
EMS Function 40H 3.0 AH =40H AH = 00H

Get Status

Note: This function should only be used after an application has established that the expanded memory
manager is in fact present.

EMS Function 41H 3.0 AH =41H AH =00H
Get Page Frame Address BX = segment base of page
frame

Note: The page frame is divided into four 16K pages. In EMS 4.0, pages may be mapped to other locations
than the page frame.

EMS Function 42H 3.0 AH =42H AH =00H
Get Number of Pages BX = unallocated pages
DX = total pages

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 67

Function EMS Version Parameters Results if Successful*

EMS Function 43H 3.0 AH =43H AH = 00H

Allocate Handle and Pages BX = pages to allocate DX = EMM handle
(must be nonzero)

Note: The pages allocated by this function are always 16K. Zero pages may not be allocated.

EMS Function 44H 3.0 AH =44H AH =00H

Map Expanded Memory Page AL = physical page

BX = logical page
DX = EMM handle
Note: In EMS 4.0, if this function is called with BX = -1, the specified physical page is unmapped.

EMS Function 45H 3.0 AH =45H AH = 00H
Release Handle and Expanded DX = EMM handle

Memory Pages

EMS Function 46H 3.0 AH =46H - AH =00H

Get EMS Version AL = EMS version

Note: The version number is returned in binary coded decimal (BCD) format, with the integer portion in
the upper 4 bits of AL and the fractional portion in the lower 4 bits.

EMS Function 47H 3.0 AH =47H AH =00H
Save Page Map DX = EMM handle

Note: This function saves the mapping state only for the 64K page frame defined in EMS 3.x.
EMS Function 48H 3.0 AH =48H AH =00H
Restore Page Map DX = EMM handle

Note: This function restores the mapping state only for the 64K page frame defined in EMS 3.x.
EMS Function 499H 3.0

Reserved

EMS Function 4AH 3.0

Reserved

EMS Function 4BH 3.0 AH =4BH AH =00H

Get Number of Active Handles BX = number of active
handles

Note: The maximum number of active handles is 2565.

EMS Function 4CH 3.0 AH =4CH AH =00H

Get Number of Pages for DX = EMM handle BX = number of pages

Handle

Note: The maximum number of pages which may be allocated to a handle is 512 in EMS 3.x and 2,048 in
EMS 4.0.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

68 EXTENDING DOS

Function EMS Version Parameters Results if Successful*
EMS Function 4DH 3.0 AH =4DH AH =00H \
Get Pages for All Handles ES:DI = buffer address BX = number of active
handles
and page information in
buffer

Note: The buffer is filled in with a series of dword (32-bit) entries, one per active EMM handle. The first
word of an entry contains the handle, and the second word contains the number of pages allocated to that
handle.

EMS Function 4EH 3.2 AH =4EH AH =00H
Subfunction 00H AL = 00H and mapping information in
Save Page Map ES:DI = buffer address buffer

Note: The size of the buffer required by this function can be obtained with EMS Function 4EH Subfunc-
tion 03H.

EMS Function 4EH 32 AH =4EH AH =00H
Subfunction 01H AL =01H
Restore Page Map DS:SI = buffer address

Note: The mapping information in the buffer must be prepared by a previous call to EMS Function 4EH
Subfunction 00H or 02H.

EMS Function 4EH 3.2 AH =4EH AH =00H
Subfunction 02H AL =02H and mapping information in
Save and Restore Page Map DS:SI = buffer containing buffer pointed to by
mapping information ES:DI
ES:DI = buffer to receive
mapping information

Note: The mapping information in the buffer pointed to by DS:SI must be prepared by a previous call to
EMS Function 4EH Subfunction 00H or 02H. The size of the buffers required by this function can be ob-
tained with EMS Function 4EH Subfunction 03H.

EMS Function 4EH 3.2 AH =4EH AH = 00H
Subfunction 03H AL =03H AL = buffer size (bytes)
Get Size of Page Map
Information
\

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 69

Function EMS Version Parameters Results if Successful*

EMS Function 4FH 4.0 AH =4FH AH =00H

Subfunction 00H AL = 00H and buffer pointed to by

Save Partial Page Map DS:SI = map list ES:DI filled in with
ES:DI = buffer to receive mapping information

mapping state
Note: The map list contains the number of mappable segments in the first word, followed by the segment

addresses of the mappable memory regions (one segment per word). EMS Function 4FH Subfunction 02
can be called to obtain the size of the buffer to receive the mapping information. ‘

EMS Function 4FH 4.0 AH =4FH AH = 00H
Subfunction 01H AL =01H
Restore Partial Page Map DS:SI = address of buffer

containing mapping

information

Note: The buffer containing the mapping information must be prepared by a previous call to EMS Func-
tion 4FH Subfunction 00H.

EMS Function 4FH 4.0 AH =4FH AH =00H

Subfunction 02H AL =02H AL = buffer size (bytes)
Get Size of Partial Page Map BX = number of pages

Information

EMS Function 50H 4.0 AH =50H AH =00H

Subfunction 00H AL = 00H

Map Multiple Pages by CX = number of pages

Number DX = EMM handle

DS:SI = address of buffer
containing mapping
information

Note: The buffer contains a series of dword entries which control the pages to be mapped. The first word
of each entry contains the logical page number, and the second word contains the physical page number.
If the logical page is -1 the physical page is unmapped.

EMS Function 50H 4.0 AH =50H AH =00H
Subfunction 01H AL =01H

Map Multiple Pages by CX = number of pages

Address DX = EMM handle

DS:SI = address of buffer
containing mapping
information

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

70 EXTENDING DOS

Function EMS Version Parameters Results if Successful*

Note: The buffer contains a series of dword entries which control the pages to be mapped. The first word
of each entry contains the logical page number, and the second word contains the physical segment ad-
dress. If the logical page is -1, the physical page is unmapped.

EMS Function 51H 4.0 AH =51H AH =00H
Reallocate Pages for Handle BX = new number of pages BX = pages owned by
DX = EMM handle handle

Note: If the requested number of pages is zero, the handle is still active and its allocation can be changed
again at a later time.

EMS Function 52H 4.0 AH =52H AH =00H
Subfunction 00H AL = 00H AL = attribute
Get Handle Attribute DX = EMM handle 0 = volatile

1 = nonvolatile

Note: A non-volatile memory handle and the contents of the expanded memory pages which are allocated
to it are maintained across a system restart using Ctrl-Alt-Del.

EMS Function 52H 4.0 AH =52H AH =00H
Subfunction 01H AL=01H
Set Handle Attribute BL = attribute

0 = volatile

1 = nonvolatile
DX = EMM handle
Note: If the system does not support non-volatile handles, an error is returned.

EMS Function 52H 40 AH =52H AH =00H
Subfunction 02H AL =02H AL = handle attribute
Get Attribute Capability capability

0 = volatile only
1 = volatile and non-

volatile
EMS Function 53H 40 AH =53H AH =00H
Subfunction 00H AL = 00H and buffer contains 8-byte
Get Handle Name DX = EMM handle handle name

ES:DI = buffer address
Note: A handle’s name is initialized to 8 zero bytes when it is allocated or deallocated.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 71

Function EMS Version Parameters Results if Successful*
EMS Function 53H 40 AH =53H AH = 00H
Subfunction 01H AL =01H

Set Handle Name DX = EMM handle

DS:SI = address of 8-byte
handle name

Note: The bytes in a handle name need not be ASCII characters. The default name for a handle is 8 zero
bytes. The name of a non-volatile handle will be preserved across a warm boot.

EMS Function 54H 4.0 AH =54H AH =00H
Subfunction 00H AL = 00H AL = number of active
Get All Handle Names ES:DI = buffer address handles

and handle name
information in buffer

Note: The buffer is filled with a series of 10-byte entries. The first two bytes of an entry contain an EMM
handle, and the next eight bytes contain the handle’s name. The maximum size of the returned informa-
tion is 2,550 bytes.

EMS Function 54H 4.0 AH =54H AH =00H
Subfunction 01H AL=01H DX = EMM handle
Search for Handle Name DS:SI = address of 8-byte

handle name
EMS Function 54H 4.0 AH =54H AH = 00H
Subfunction 02H AL =02H BX = number of handles
Get Total Handles
EMS Function 55H 4.0 AH =55H AH = 00H
Subfunctions 00H and 01H AL = 0 to map by physical
Map Pages and Jump page numbers, 1 to map

by physical page segments

DX = EMM handle
DS:SI = buffer address
Note: The buffer pointed to by DS:SI is formatted as:

dword far pointer to jump target /
byte number of pages to map before jump
dword far pointer to map list

The map list consists of dword entries; one per page to be mapped. The first word of an entry contains the
logical page number, and the second word contains a physical page number or segment (depending on
the value in AL).

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

72 EXTENDING DOS

Function EMS Version Parameters Results if Successful*
EMS Function 56H 4.0 AH =56H AH =00H
Subfunctions 00H and 01H AL = 0 to map by physical

Map Pages and Call page numbers, 1 to map

by physical page segments
DX = EMM handle
DS:SI = buffer address
Note: The buffer pointed to by DS:SI is formatted as:

dword far pointer to call target

byte number of pages to map before call
dword far pointer to call map list

byte number of pages to map before return
dword far pointer to return map list

8 bytes reserved

Both map lists consist of dword entries; one per page to be mapped. The first word of an entry contains the
logical page number, and the second word contains a physical page number or segment (depending on
the value in AL).

EMS Function 56H 4.0 AH =56H AH =00H
Subfunction 02H AL = 02H BX = stack space required
Get Stack Space Required for (bytes)
Map Page and Call
EMS Function 57H 4.0 AH =57H AH =00H
Subfunction 00H AL = 00H
Move Memory Region DS:SI = buffer address
Note: The buffer pointed to by DS:SI controls the move operation and is formatted as:

dword region length in bytes

byte source memory type (0 = conventional, 1 = expanded)

word source memory handle

word source memory offset

word source memory segment or logical page number

byte destination memory type (0 = conventional, 1 = expanded)

word destination memory handle

word destination memory offset

word destination memory segment or logical page number

The maximum length of a move is 1 megabyte. If the length exceeds a single page, consecutive pages
supply or receive the data. Overlapping addresses are handled correctly.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 73

Function EMS Version Parameters Results if Successful*
EMS Function 57H 4.0 AH =57H AH = 00H
Subfunction 01H AL =01H

Exchange Memory Regions DS:SI = buffer address

Note: The format of the buffer controlling the exchange operation is the same as for EMS Function 57H
Subfunction 00H. The maximum length of an exchange is 1 megabyte. Consecutive pages are used as re-
quired. Source and destination addresses may not overlap.

EMS Function 58H 4.0 AH =58H AH = 00H

Subfunction 00H AL = 00H CX = number of entries in

Get Addresses of Mappable ES:DI = buffer address buffer

Pages and address information
placed in buffer

Note: The returned information in the buffer consists of dword entries, one per mappable page. The first
word of an entry contains the page’s segment base address, and the second contains its physical page
number. The entries are sorted in order of ascending segment addresses.

EMS Function 58H 4.0 AH =58H AH = 00H
Subfunction 01H AL=01H CX = number of mappable
Get Number of Mappable pages
Pages
EMS Function 59H 4.0 AH =59H AH =00H
Subfunction 00H AL = 00H and hardware configuration
Get Hardware Configuration ES:DI = buffer address information in buffer
Note: The format of the information returned in the buffer is:

word size of raw expanded memory pages (paragraphs)

word number of alternate register sets

word size of context save area (bytes)

word number of register sets assignable to DMA channels

word DMA operation type (0 = DMA can be used with alternate register sets, 1 = only one

DMA register set available)

EMS Function 59H 4.0 AH =59H AH =00H
Subfunction 01H AL =01H BX = number of free raw
Get Number of Raw Pages pages

DX = total raw pages
Note: Raw memory pages may have a size other than 16K.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

74 EXTENDING DOS

Function EMS Version Parameters Results if Successful*
EMS Function 5AH 4.0 AH =5AH AH =00H
Subfunction 00H AL = 00H DX = EMM handle
Allocate Handle and Standard BX = number of 16K pages

Pages

Note: Allocation of zero pages with this function is not an error.

EMS Function 5AH 4.0 AH =5AH AH =00H
Subfunction 01H AL =01H DX = EMM handle
Allocate Handle and Raw BX = number of raw pages

Pages

Note: Raw memory pages may have a size other than 16K. Allocation of zero pages is not an error.
EMS Function 5BH 4.0 AH =5BH AH =00H
Subfunction 00H AL = 00H BL = current alternate
Get Alternate Map Registers register set, or zero if

alternate set not active

ES:DI = address of alternate
map register set save
area (if BL=10)

Note: The address of the save area must be specified in a previous call to EMS Function 5BH Subfunction
01H, and the save area initialized with a previous call to EMS Function 4EH Subfunction 00H.

EMS Function 5BH 4.0 AH =5BH AH = 00H
Subfunction 01H AL=01H
Set Alternate Map Registers BL = alternate map register

set number, or zero

ES:DI = address of map
register context save
area (if BL = 0)

Note: The buffer address specified in this call is returned by subsequent calls to EMS Function 5BH Sub-
function 00H. The save area must be initialized by a previous call to EMS Function 4EH Subfunction 00H.

EMS Function 5BH 4.0 AH =5BH AH = 00H

Subfunction 02H AL =02H DX = size of buffer required
Get Size of Alternate Map (bytes)

Register Save Area

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these erfor codes may
be found in Table 2-5.

Chapter 2 Expanded Memory and the EMS 75
Function EMS Version Parameters Results if Successful*
EMS Function 5BH 4.0 AH =5BH AH =00H
Subfunction 03H AL = 03H BL = alternate map register
Allocate Alternate Map set number, or zero if no
Register Set alternates available
Note: The contents of the currently active map registers are copied into the newly allocated alternate map
registers.
EMS Function 5BH 4.0 AH =5BH AH =00H
Subfunction 04H AL = 04H
Deallocate Alternate Map BL = alternate map register
Register Set set number
Note: The current alternate map register set cannot be deallocated.
EMS Function 5BH 4.0 AH =5BH AH =00H
Subfunction 05H AL = 05H BL = DMA register set
Allocate DMA Register Set number, or 0 if none
available
EMS Function 5BH 4.0 AH =5BH AH =00H
Subfunction 06H AL = 06H
Enable DMA on Alternate Map BL = alternate map register
Register Set set number
DL = DMA channel
number

Note: If a DMA channel is not assigned to a specific register set, DMA for that channel will be mapped

through the current register set.

EMS Function 5BH 4.0 AH =5BH AH = 00H
Subfunction 07H AL=07H
Disable DMA on Alternate BL = alternate map register
Map Register Set set number
EMS Function 5BH 4.0 AH =5BH AH = 00H
Subfunction 08H AL = 08H
Deallocate DMA Register Set BL = DMA register set

number
EMS Function 5CH 4.0 AH =5CH AH = 00H
Prepare Expanded Memory

Manager for Warm Boot

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may

be found in Table 2-5.

76 EXTENDING DOS

Function EMS Version Parameters Results if Successful*

Note: This function affects the current mapping context, the alternate register set in use, and any other
hardware dependencies that would ordinarily be initialized when the system is reset.

EMS Function 5DH 4.0 AH =5DH AH =00H

Subfunction 00H AL = 00H BX:CX = access key (if first
Enable EMM Operating BX:CX = access key (if not call)

System Functions first call)

Note: Enables EMS Functions 59H, 5BH, and 5DH (this is the default condition). An access key is returned
on the first call to either Subfunction 00H or 01H of EMS Function 5DH. This key must be used in subse-
quent calls to either subfunction.

EMS Function 5DH 4.0 AH =5DH AH =00H

Subfunction 01H AL =01H BX:CX = access key (if first
Disable EMM Operating BX:CX = access key (if not call)

System Functions first call)

Note: Disables EMS Functions 59H, 5BH, and 5DH.

EMS Function 5DH 4.0 AH =5DH AH =00H

Subfunction 02H AL=02H

Release Access Key BX:CX = access key

Note: A new access key will be returned by the next call to EMS Function 5DH Subfunction 00H or 01H.

*Failure of an EMS Function is indicated by return of a nonzero error code in register AH. A list of these error codes may
be found in Table 2-5.

Table 2-5: Expanded Memory Manager standardized error codes.
The error codes 90H and above are only supported in EMS version 4.0.

Error Code Meaning

80H Internal error in expanded memory manager software (may indicated cor-
rupted memory image of driver)

81H Malfunction in expanded memory hardware

82H Memory manager busy

83H Invalid handle

84H Function not defined

85H Handles exhausted

86H Error in save or restore of mapping context

" 87H Allocation request specified more pages than are physically available in sys-

tem; no pages were allocated

88H Allocation request specified more pages than are currently available; no pages

were allocated
89H Zero pages cannot be allocated

Chapter 2 Expanded Memory and the EMS 77

Error Code Meaning

8AH Requested logical page is outside range of pages owned by handle

8BH Illegal physical page number in mapping request

8CH Page mapping hardware-state save area is full

8DH Mapping context save failed; save area already contains context associated
with specified handle

8EH Mapping context restore failed; save area does not contain context for specified
handle

8FH Subfunction parameter not defined

90H Attribute type not defined

91H Feature not supported

92H Source and destination memory regions have same handle and overlap; re-
quested move was performed, but part of the source region was overwritten

93H Specified length for source or destination memory region is longer than actual
allocated length

94H Conventional memory region and expanded memory region overlap

95H Specified offset is outside logical page

96H Region length exceeds 1 megabyte

97H Source and destination memory regions have same handle and overlap; ex-
change cannot be performed

98H Memory source and destination types are undefined

99H Error code currently unused

9AH Alternate map or DMA register sets are supported, but specified alternate reg-
ister set is not supported

9BH Alternate map or DMA register sets are supported, but all alternate register
sets are currently allocated

9CH Alternate map or DMA register sets are not supported, and specified alternate
register set is not zero

9DH Alternate map or DMA register sets are supported, but the alternate register
set specified is not defined or not allocated

9EH Dedicated DMA channels not supported

9FH Dedicated DMA channels are supported, but specified DMA channel is not
supported

AOH No handle found for specified name

AlH Handle with same name already exists

A3H Invalid pointer passed to function, or contents of source array corrupted

A4H Access to function denied by operating system

Chapter 3

Extended Memory and the XMS

Ray Duncan

Extended memory is the term for RAM storage at addresses above the 1-megabyte
boundary on 80286-, 80386-, and 80486-based PCs. This distinguishes such mem-
ory from conventional memory, which is at addresses below 1 megabyte, or ex-
panded memory, which is essentially bank-switched memory divided into pages
that can be mapped into the conventional memory address space (expanded
memory is discussed in Chapter 2). A sketch of the relationship between conven-
tional memory and extended memory is shown in Figure 3-1.

If you own a PC/ AT clone of almost any brand, you probably have at least a
small amount of extended memory in your system. These days, such clones typi-
cally arrive with 1 megabyte or more of RAM installed on the motherboard, of
which 512K or 640K starts at address 0, and the remainder begins at 1 megabyte.
In addition, if you have purchased an add-in memory board for an AT-class ma-
chine, that board can probably be configured either as extended memory, ex-
panded memory, or a combination of both.

Thus, extended memory is a readily available resource, and protected-mode
operating systems such as OS/2 and UNIX can effectively use all the extended
memory you can plug into your machine for execution of programs and storage
of data. MS-DOS and its client programs, on the other hand, can gain access to
this memory only with great difficulty. Why? The reason is neither complicated

79

80 EXTENDING DOS

nor obscure. It is because MS-DOS runs on 80286/386/486 CPUs in real mode—a
sort of 8086/88 emulation mode—which has important implications for the way
addresses are generated.

Figure 3-1: Relationships between conventional and extended memory.

16 MB
Extended
Memory
1 MB
ROM BIOS
ROM BASIC
Video buffers
Conventional 640 K
Memory
MS-DOS and
its applications
0 K

Programmers think in terms of segments, selectors, and offsets, but the CPU
views memory as a simple, linearly addressed array of bytes. In real mode, the
CPU selects a particular memory location by shifting the contents of a segment
register left four bits and adding it to a 16-bit offset, forming a 20-bit physical ad-
dress. But extended memory lies (by definition) above the 1-megabyte boundary
(100000H), so all physical addresses that correspond to extended memory have at
least 21 significant bits. In other words, real-mode programs can’t "see" extended
memory because they simply can’t generate the appropriate addresses.

There are ways around this seemingly impenetrable addressing barrier, how-
ever, as we all know from our own daily experience. We've all got RAMdisks,
disk caches, print spoolers, and TSRs that ostensibly run in real mode but are

Chapter 3 Extended Memory and the XMS 81

able to exploit extended memory when it is present. The eXtended Memory Spec-
ification (XMS), which was released in 1988 as a collaborative effort of Microsoft,
Intel, Lotus, and AST Research, was designed to bring all such programs into
harmony: it defines a software interface for extended memory access comparable
to the role of the LIM EMS for expanded memory.

Unfortunately, it will not suffice to simply describe the XMS and be done
with it, as we could safely do for EMS in Chapter 2. By the time the XMS ap-
peared, 80286-based PCs had been on the market for four years, and other meth-
ods of extended memory access and management had already evolved and were
in common use. Today’s software developer who wishes to write programs that
are extended memory-aware, and that will be compatible with the widest possi-
ble range of other software, faces a rather complex situation, as we shall see in
this chapter.

Reaching Extended Memory in Real Mode

The first thing to understand about using extended memory is that there is no
free lunch: a program does (with two bizarre exceptions, to be explained later in
this chapter) need to be running in protected mode in order to read and write
memory locations above the 1-megabyte boundary. And moving safely from real
mode to protected mode and back again is a nontrivial chore.

The first step, getting into protected mode from real mode, is not all that dif-
ficult. Simply set the PE (protect enable) bit in the CPU’s machine status word
(known as MSW on the 80286, CRO on the 80386 and 80486). Unless the other re-
quired housekeeping has been done, though, your program will just crash imme-
diately. As we saw in Chapter 1, certain data structures and CPU registers must
be initialized for protected-mode execution that have no meaning in real mode.
For example, your program must set up a global descriptor table (GDT) that con-
trols protected-mode memory mapping, segment types, and access rights; load
the address of the table into the CPU’s GDT pointer register; and finally, load all
segment registers with valid selectors that refer to the GDT.

Assuming that your program manages to enter protected mode properly, and
read or write the data in extended memory that it is interested in, it must then re-
turn to real mode to continue its main line of execution. After all, your program
needs to be able to invoke MS-DOS to read or write files and interact with the
user, but MS-DOS will be quite confused if your program calls it in protected
mode.

82 EXTENDING DOS

Faced with this challenge, your first inclination might be to haul down your
handy Intel 80286 Programmer’s Reference and look up the machine instruction
that switches the CPU from protected mode to real mode. Surprisingly enough,
there is no such instruction. When the 80286 was designed, the Intel engineers
never dreamed that somebody would ever want to make a transition from the
clearly superior protected mode back to dull old real mode! Luckily, there is an
escape hatch, however undesirable it may sound: if the CPU is halted and re-
started, it restarts in real mode.

On 80286-based PC/AT class machines, the actual technique used by the
ROM BIOS (and hence by VDISK and most other extended-memory-aware pro-
grams) to return to real mode is as follows: a "magic" value is stored into a re-
served memory location, the contents of the stack and general registers are saved
in other reserved memory locations, a special command is sent to the keyboard
controller, and the CPU is halted. The keyboard controller, in its own good time,
recognizes the command and responds with a signal that resets the CPU.

After the reset by the keyboard controller, the CPU begins execution at
FFFF:0000H, as usual, and enters the ROM BIOS Power-Up-Self-Test (POST) se-
quence. The POST checks for the "magic" value that was saved in RAM earlier,
recognizes that the machine is waking up from an intentional halt, restores the
stack and registers, and returns control to the previously executing program
rather than continuing with the ROM bootstrap. The turnaround time on this
process can be on the order of several milliseconds, and it has been aptly charac-
terized by Microsoft’s Gordon Letwin as "turning off the car to change gears."

Things aren’t quite so bad on 80286-based PS/2 or 80386/486-based ma-
chines. 80286-based PS/2s have special hardware support that allows a faster
reset cycle (though the CPU still needs to be halted to accomplish it). 80386/486-
based machines, on the other hand, can accomplish the switch back to real mode
by simply clearing the PE bit in CR0, and don’t need to halt the CPU at all. This is
because by the time the 80386 was being designed, it was becoming obvious that
MS-DOS and the programs that run under it weren’t going to disappear.

The ROM BIOS Extended Memory Functions

Luckily, even from the earliest days of the PC/AT, MS-DOS programmers who
wish to use extended memory for data storage have never needed to worry too
much about the details of protected-mode programming and mode transitions.
The PC/AT ROM BIOS provides two functions that give access to extended

Chapter 3 Extended Memory and the XMS 83

memory in a hardware-independent manner: Int 15H Function 87H, which copies
a block of data from any location in conventional or extended memory to any
other location, and Int 15H Function 88H, which returns the amount of extended
memory installed in the system. The parameters and results of these two func-
tions are outlined below:

Int 15H Function 88H—Get Extended Memory Size

Call with:

AH = 88H

Returns:

AX = amount of extended memory (in KB)

Int 15H Function 87H—Move Extended Memory Block

Call with:
AH = 87H
CcX = number of words to move
ES:SI = segment:offset of global descriptor table
Returns:
If function successful
Carry flag = clear
AH = 00H
If function unsuccessful
Carry flag = set
AH) = status
01H if RAM parity error
02H if exception interrupt error
03H if gate address line 20 failed

When Int 15H Function 87 is called, registers ES:SI point to a partially filled-
in global descriptor table (GDT), with room for six descriptors (see Figure 3-2).
The first descriptor is a dummy and corresponds to a null selector in the range
0000-0003H. Null selectors get special treatment from the hardware in protected
mode; they are safe values that you can always load into a segment register as
long as you don’t try to address anything with them.

84 EXTENDING DOS

Figure 3-2: The descriptor table used by ROM BIOS Int 15H Function 87H.

00H
Dummy
08H
Maps this table
10H
Maps source of move
operation
18H
Maps destination of
move operation
20H
Maps ROM BIOS code
28H
Maps ROM BIOS stack
30H
Byte Offset

Table 3-1: The portions of the global descriptor table for Int 15H
Function 87H that must be initialized by the calling program.

Byte(s) Contents

00H-0FH reserved (should be 0)

10H-11H segment length in bytes (2*CX-1 or greater)
12H-14H 24-bit linear source address

15H access rights byte (always 93H)

16H-17H reserved (should be 0)

18H-19H segment length in bytes (2*CX-1 or greater)
1AH-1CH 24-bit linear destination address

1DH access rights byte (always 93H)

1EH-2FH reserved (should be 0)

Two of the descriptors supply the source and destination addresses of the
memory block that the program is asking the ROM BIOS to move on its behalf.

Chapter 3 Extended Memory and the XMS 85

The descriptors must be initialized with base addresses, an appropriate length,
and an "access rights" byte of 93H. The remaining three descriptors are used by
the ROM BIOS to provide addressability to its own code, data, and stack while it
is executing in protected mode. The calling program initializes these to zero, and
the ROM BIOS takes care of the remaining necessary initialization of the table be-
fore it switches the CPU into protected mode.

The most important thing you need to notice about the descriptor table is
that the addresses you place in it are 24-bit linear byte addresses—numbers from
000000H to FFFFFFH—rather than the more familiar segment:offset pairs. As we
have already said, to convert the latter into the former, you merely shift the seg-
ment left 4 bits and then add the offset. The three bytes of a linear address are
stored in their natural order, with the least significant byte at the lowest address.

The easiest way to cope with extended memory in an application program is
to encapsulate the Int 15H Function 87H function calls inside MASM subroutines
with more sensible parameters. The source file EXTMEM.ASM, shown below,
contains two such routines for use with small model C programs: GETXM and
PUTXM. These procedures are called with source and destination addresses and a
length in bytes. The conventional memory address is assumed to be a normal far
pointer (segment and offset), while the extended memory address is a linear,
physical address.

; EXTMEM.ASM --- Routines to transfer data between

; conventional and extended memory.

; For use with small model C programs.

; Copyright (C) 1989 Ray Duncan

;

; Assemble with: MASM /Zi /Mx EXTMEM;

DGROUP group _DATA

_DATA segment word public 'DATA®

gdt db 30h dup (0) ; global descriptor table

_DATA ends

_TEXT segment word public 'CODE'
assume cs:_TEXT,ds:DGROUP

args equ Cbp+41] ; offset of arguments, small model

86 EXTENDING DOS

source equ word ptr args

dest equ word ptr source+é

len equ word ptr dest+é4

;

; GETXM copies data from extended memory to conventional memory.

;

; status = getxm(unsigned long source, void far *dest, unsigned len)
’

; Status is zero if move successful, nonzero if move failed:

; 1 = parity error, 2 = exception interrupt error, 3 = gate A20 failed
;

public _getxm

_getxm proc near

push bp ; set up stack frame
mov bp,sp
push si ; protect register variables
push di

; DS: SI points to GDT
mov si,offset DGROUP:gdt

; store access rights bytes
mov byte ptr Lsi+15h1,93h
mov byte ptr [si+1dh],93h _
mov ax,source ; store source address
mov [si+12h],ax ; into descriptor
mov ax,source+2
mov [Lsi+14h],al
mov ax,dest+2 ; destination segment * 16
mov dx,16
mul dx
add ax,dest ; + offset -> linear address
adc dx,0
mov Csi+1ah],ax ; store destination address
mov [si+1chl,dl ; into descriptor
mov cx,len ; store length into source
mov [si+10h],cx ; and destination descriptors
mov Lsi+18h],cx
shr cx,1 ; convert length to words
mov ah,87h ; Int 15H Fxn 87h = block move

int 15h ; transfer to ROM BIOS

Chapter 3 Extended Memory and the XMS 87
mov al ,ah ; form status in AX
cbw
pop di ; restore registers
pop si
pop bp
ret ; back to caller
_getxm endp

Ne N

N

stat

Ne N

Na

1 =

N,

N

_putxm

PUTXM copies data from conventional memory to extended memory.

us = putxm(void far *source, unsigned long dest, unsigned LlLen)

Status is zero if move successful, nonzero if move failed:

parity error, 2 = exception interrupt error, 3 = gate A20 failed

public

proc

push
mov

push
push

mov

mov
mov

mov
mov
mov
mov

mov
mov
mu L
add
adc
mov
mov

mov
mov

_putxm
near

bp
bp,sp
si
di

4

’

set up stack frame

protect register variables

DS: SI points to GDT

si,offset DGROUP:gdt

’

store access rights bytes

byte ptr Lsi+15h]1,93h
byte ptr [si+1dh],93h

ax,dest
[Lsi+1ah],ax
ax,dest+2
Csi+1chl,al

ax,source+2
dx,16

dx
ax,source
dx,0
[si+12h],ax
Csi+14h],dlL

cx,len
Csi+10h],cx

Ne

N

N

N Ne No

Ne

store destination address
into descriptor

source segment * 16

+ offset -> Llinear address

store source address
into descriptor

store Length into source
and destination descriptors

88 EXTENDING DOS

mov [si+18h],cx

shr cx,1 ; convert length to words

mov ah,87h ; Int 15H Fxn 87h = block move
int 15h ; transfer to ROM BIOS

mov al ,ah ; form status in AX

cbw

pop di ; restore registers

pop si

pop bp

ret ; back to caller

_putxm endp
_TEXT ends

end

GETXM and PUTXM do all the necessary housekeeping required by the ROM
BIOS, converting addresses as necessary and placing the addresses, lengths, and
access right bytes into the descriptor table. Both routines return a false flag if the
move was successful, or a true flag if it failed. In the latter case, the value of the
flag is 1 if there was a memory parity error, 2 if an interrupt exception occurred,
or 3 if extended memory could not be accessed due to a problem with the A20 ad-
dress line.

Primitive Extended Memory Management

You've probably noticed the major flaw in the extended memory functions sup-
ported by the ROM BIOS: while they let you access any location in extended
memory quite freely, they do not make any attempt to arbitrate between two or
more programs or drivers that are using extended memory at the same time. For
example, if both an application program and a RAMdisk use the ROM BIOS
functions to put data in the same area of extended memory, no error is returned
to either program, but the data of one or both programs may be destroyed.

Since neither IBM nor Microsoft came up with any standard scheme for the
cooperative use of extended memory by DOS programs during the first few
years of the PC/AT'’s existence, third-party software developers were left to their
own devices. Eventually, almost all of them settled on one of two methods for ex-

Chapter 3 Extended Memory and the XMS 89

tended memory management, which we may call the "VDISK method" and the
"Int 15H method."

VDISK.SYS is a fairly conventional RAMdisk installable device driver that
IBM has been supplying with PC-DOS since version 3.0. From the beginning,
VDISK was capable of using either conventional or extended memory to create a
virtual disk drive and, in the most recent versions, can make use of expanded
memory as well. The source code for VDISK has always been included in the PC-
DOS retail package, so it has (for better or worse) become a model for the imple-
mentation of many other companies” RAMdisks.

When VDISK is loaded, it allocates extended memory to itself from the 1-
megabyte boundary, upwards, and saves information about the amount of ex-
tended memory it is using in two places: in a data structure located in
conventional memory and found via the Int 19H vector, and in a data structure
located in extended memory at the 1-megabyte boundary. If additional copies of
VDISK are loaded (to create additional logical RAMdisk drives), they look at
each of these areas to determine the amount and location of extended memory
still available, then update them to reflect any additional extended memory they
have reserved for their own use.

Applications which adopt the VDISK method of extended memory manage-
ment merely need to inspect and update the Int 19H and extended memory indi-
cators in the same manner as VDISK itself. Unfortunately, in actual practice,
some applications update only the Int 19H area and some update only the ex-
tended memory area. This means that if you adopt the VDISK technique in your
own applications, you must program very defensively and check both areas. If
the two indicators differ, you must assume that the lesser amount of extended
memory is available, then update both allocation signatures to be correct and
consistent for any programs that are loaded after yours.

The 1nt 15H method of extended memory management is much less compli-
cated. The application calls Int 15H Function 88H first to find out how much ex-
tended memory is available, then "hooks" the Int 15H vector to intercept calls by
other programs. When the program sees a subsequent call to Int 15H Function
88H, it returns a reduced value that reflects the amount of extended memory it is
using (passing all other Int 15H calls onward to the original owner of the inter-
rupt vector). In this way, the program can deceive subsequently loaded applica-
tions into believing that the extended memory it is using does not exist.

In summary, the VDISK method allows extended memory to be allocated up-
ward from the 1-megabyte boundary, and the Int 15H method allows extended

90 EXTENDING DOS

memory to be allocated downward from the top. Both management methods are
in common use, so you must take both into account in your own programs if you
intend to use extended memory at all.

The VDISK Indicators

Now we can examine the specific details of how the VDISK memory manage-
ment approach works.

VDISK takes over the Int 19H vector, which normally contains the address of
the ROM BIOS routine to reboot the system, and points it to an Int 19H handler
within itself. This new handler does nothing more than transfer control to the
original handler, so its presence does not affect the system’s operation at all.
However, a program can fetch the segment portion of the Int 19H vector, assume
that it points to the beginning of a VDISK driver if one is loaded, and use it to de-
termine whether a VDISK driver is, in fact, present. If a VDISK driver is loaded,
its name and the address of the first free (unallocated) extended memory can be
found at fixed offsets from its base.

The exact memory addresses to be inspected may vary from one version of
VDISK and PC-DOS to another, but you can extract the necessary information
from the VDISK.ASM source file that is included on the IBM PC-DOS distribu-
tion disks. As an example, suppose we placed the line:

DEVICE=VDISK.SYS /E

in the CONFIG.SYS file for a PC-DOS 3.3 system and rebooted. (The /E switch
directs VDISK to use extended memory.) During system initialization VDISK
would display a message advising that it had created a 64K RAMdisk (the de-
fault size) on logical drive F. We then inspect the Int 19H vector, and find that it
contains the address 1BF3:008EH. Figure 3-3 contains a hex dump of addresses
1BF3:0000H through 1BF3:003FH—the first 64 bytes of the VDISK driver.

Bytes 00H through 11H are the VDISK device driver header, which contains
information about the driver’s entry points, capabilities, and other information of
interest to the MS-DOS kernel. In this example, bytes 12H through 2BH are the ini-
tial portion of a volume label that VDISK places in the root directory of its
RAMDISK. As you can see, the label contains the string "VDISK," and the PC-
DOS version number. Finally, bytes 2CH through 2EH contain the linear address of
the first free byte of extended memory: 110000H in this example (IMB + 64K,
since VDISK is using the 64K starting at 1 megabyte).

Chapter 3 Extended Memory and the XMS 91

Figure 3-3: The first 64 bytes of the VDISK device driver for PC-DOS 3.3.

VDISK device
driver header

0 1742 3 4 5 6 7 8 9 A B C D E F
1BF3:0000 ‘00 00 E7 19 00 08 A9 00 b4 00 01 00 00 00 00 00]
1BF3:0010 (00 00 B E
1BF3:0020 [00 00 00O 00 00 0O 00 00 00 60 86 09||00 00 11|EO
1BF3:0030 18 70 00 08‘[00 21 1C 45 00 00 00 00 10 ‘IOIOO 08

VDISK volume Linear address of first
label free extended memory

Now let’s take a look at the VDISK allocation information stored in extended
memory. Figure 3-4 contains a hex dump of addresses 100000H through 10003FH,
in other words, the first 64 bytes at the 1-megabyte boundary. This memory is
part of the first logical sector of VDISK’s RAMdisk storage, so VDISK makes it
look like the boot sector of a normal MS-DOS block device. Offsets 00H~02H con-
tain zero to show that the disk is not bootable, bytes 03H-0AH are the "OEM iden-
tity field" and contain the string "VDISK3.3," and bytes 0BH-1DH are the "BIOS
Parameter Block" (BPB) from which MS-DOS can calculate the locations of the
FAT, root directory, and so on.

The two bytes at offset 01EH and 1FH are the ones we are particularly inter-
ested in here. By studying the source code for VDISK, we find that these two
bytes are treated as a WORD field, and contain the address of the first free ex-
tended memory in kilobytes. In this particular case, the word contains 0440H
(1088), which is again 1MB (1024K) + 64K.

The responsibilities of a program that wants to use the VDISK method for ex-
tended memory management are now more clear. It must first find the total
amount of extended memory available by calling Int 15H Function 88H (this pro-
tects it against programs that use the Int 15H management method). It must then
inspect the Int 19H vector to determine whether the vector points to the base of a
previously loaded VDISK driver.

92 EXTENDING DOS

Figure 3-4: The first 64 bytes of extended memory when VDISK is loaded.

Disk is not
bootable OEM Identity Field

011234516789ABCDEF

100000 [00 00 00J[56 44 49 53 4B 33 2E 33|80 00 01 _01 00|
100010 A 0 02 FE 8 07 00 00 00|/[40 04

100020 51 8A C3!AA B8 FF FF AB 8B CA 33 CO F3 AA 59!E2

100030 EF B9 1A |00 F3 A4 B8 20 00 F7 26 51 00 2p 1A|00

BIOS Parameter Address of the
Block first free extended
memory (in
kilobytes)

If a VDISK driver is already resident, the new program must inspect the
fields within the driver itself and the boot block at the 1-megabyte boundary to
determine the starting address of available extended memory, using the higher of
the two if they are inconsistent. It must then decide how much memory to re-
serve for itself, and update the two fields just mentioned to reflect that amount of
allocated extended memory.

If no VDISK driver is present in the system, the program can take the easy
way out and hook the Int 15H vector to use the Int 15H method of memory man-
agement. Alternatively, it can pretend that it is a VDISK, pointing the Int 19H
vector to something that appears to be a VDISK driver header, and creating a
phony boot block at 1 megabyte. In either case, the program must also install its
own Control-C (Int 23H) and critical-error (Int 24H) handlers so that it cannot be
terminated unexpectedly.

Regardless of the allocation method used, the program must be careful to exit
gracefully, so that it removes all evidence of its presence, and any extended mem-
ory it used is not orphaned. If the Int 15H vector was captured, the vector must
be restored to point to the previous owner; if the VDISK indicators were modi-
fied, they must be returned to their proper state to "release" the memory. This can
be quite tricky if another driver or TSR has allocated some extended memory to
itself after the application program in question.

Chapter 3 Extended Memory and the XMS 93

The eXtended Memory Specification (XMS)

The VDISK and Int 15H management methods described have serious
weaknesses. First, neither method is immune to non-cooperating applications
that simply switch into protected mode, find the size of extended memory by
reading and writing it directly, and then use it all without regard to other, pre-
viously loaded programs. Second, neither management technique is dynamic;
both allocate memory in a first-in-last-out manner. If a program terminates out of
order, that program’s extended memory is not available for use by other pro-
grams until all the extended memory that was allocated afterward by other ap-
plications is also released. Finally, MS-DOS does not participate in the expanded
memory management, so it cannot "clean up" a program'’s expanded memory re-
sources if the program terminates unexpectedly.

During 1988 (four years after the introduction of the PC/AT), two long over-
due proposals for a more sophisticated, cooperative use of extended memory
under DOS appeared. One of the proposals, the Virtual Control Program Inter-
face, is applicable only to 80386/486-based systems, and is discussed in more de-
tail in Chapter 8. The other is the eXtended Memory Specification (XMS), which
was a collaborative effort of Microsoft, Intel, AST Research, and Lotus Corp.

The XMS defines a software interface for 80286-, 80386-, and 80486-based PCs
that allows real-mode application programs to use extended memory, as well as
certain areas of conventional memory not ordinarily managed by MS-DOS, in a
cooperative and hardware-independent manner. The XMS defines functions calls
that allocate, resize, and release memory blocks of three basic types:

® upper memory blocks (UMBs) at addresses between 640K and 1024K
(1IMB)

s the so-called "high memory area" (HMA) at addresses between 1024K and
1088K (more about this later)

8 extended memory blocks (EMBs) from addresses above 1088K.

The XMS also provides hardware-independent control over the CPU’s ad-
dress line A20, which must be enabled to read or write extended memory. A sum-
mary of the XMS functions can be found in Table 3-2, and a complete description
of the XMS programming interface can be found in Table 3-5 at the end of this
chapter.

94 EXTENDING DOS

Table 3-2: Summary of functions defined by the
Microsoft/Intel[Lotus/AST eXtended Memory Specification (XMS).

Function Description

Driver information

00H Get XMS version

High memory area management

01H Allocate high memory area
02H Free high memory area

A20 line management

03H Global enable A20 line

04H Global disable A20 line

05H Local enable A20 line

06H Local disable A20 line

07H Query A20 line state

Extended memory block (EMB) management

08H Query free extended memory
09H Allocate extended memory block
0AH Free extended memory block
0BH Move extended memory block
0CH Lock extended memory block
O0DH Unlock extended memory block
OEH Get handle information

OFH Resize extended memory block
Upper memory block (UMB) management

10H Allocate upper memory block
11H Free upper memory block
Using XMS Support

An installable device driver that implements the XMS is called an eXtended
Memory Manager (XMM). The prototype XMM provided by Microsoft, named
HIMEM.SYS, is installed by adding a DEVICE= line to the CONFIG.SYS file, and

rebooting the system. HIMEM.SYS accepts two optional switches on the DE-

VICE= line that loads the driver:

Chapter 3 Extended Memory and the XMS 95

= /HMAMIN=n specifies the minimum number of kilobytes in the
high memory area (HMA) that a program may
use (0-63, default = 0).

s /NUMHANDLES=n sets the maximum number of XMS handles that
may be active at any one time (0-128, default =
32).

A program can determine whether any XMM is available by setting AX to
4300H and executing an Int 2FH. If the driver is present, the value 80H is returned
in AL; if the driver is absent, AL is returned unchanged or with some other value.
For example:

mov ax,4300h
int 2fh

cmp al.80h
je present
jmp absent

4300H = get install status
call driver

status = installed?

yes, driver is present

no, driver is absent

N Ne Ne N

N

This differs from the convention used by the MS-DOS extensions PRINT,
SHARE, ASSIGN, and APPEND, which are also accessed via Int 2FH (using other val-
ues in AH, of course). These return AL = FFH if they are already installed.

After a program has established that the XMS driver is available, it obtains
the entry point of the driver by executing Int 2FH with AX = 4310H. The entry
point is returned in registers ES:BX and must be saved in a variable:

xmsaddr dd ? ; receives entry point

; get address of XMS

; driver entry point...
mov ax,4310h ; func. 43H subf. 10H
int 2fh ; invoke driver
mov word ptr xmsaddr,bx

; save far pointer
mov word ptr xmsaddr+2,es

; to entry point...

Once the entry point is in hand, the program enters the driver by a far call,
without further resort to Int 2FH. A particular XMS function is selected by the
value in AH; other parameters are passed in registers. At least 256 bytes of stack

space should be available when your program requests an XMS function. The
general form of the call is:

96 EXTENDING DOS

xmsaddr dd ? ; receives entry point

request XMS function...

AH = function number

load other registers with
function-specific values
indirect far call to driver

mov ah,function

Ne N N Ne N

call [xmsaddrl]

Most XMS functions return a status in register AX: 0001H if the function suc-
ceeded, or 0000H if the function failed. In the latter case, an error code is also re-
turned in register BL with the high bit set (see Table 3-6 at the end of the chapter).
Other results are also passed back in registers.

A typical program’s use of an XMM to manage extended memory is shown
in the following list:

1. Establish presence of the XMM using Int 2FH. If the XMM is not present, the
program must determine whether it can continue without extended memory,
or attempt to allocate extended memory using the VDISK or Int 15H meth-
ods described earlier in this chapter.

2. Allocate one or more extended memory blocks with XMS Function 09H. The
XMM returns a handle for each allocated block. (An extended memory block
handle, like a file handle, is an arbitrary number, and its value has no direct
relationship to the memory block’s location).

3. Copy data between conventional memory and extended memory using XMS
Function 0BH. This function requires a parameter block that specifies the
source and destination addresses in terms of a handle and a 32-bit offset. If a
handle is nonzero, it refers to an allocated extended memory block, and the
offset is from the base of that block. If the handle is zero, then conventional
memory is being addressed, and the 32-bit offset position contains a far
pointer in standard Intel format.

4. Before terminating, the program releases its extended memory block han-
dle(s) with XMS Function 0AH, so that the corresponding memory can be re-
used by other programs.

A code skeleton for the complete process of detecting the XMS driver, obtain-
ing its entry point, allocating extended memory, and releasing extended memory
is listed below:

Chapter 3 Extended Memory and the XMS 97

reqsize equ 64 ; KB extended memory to allocate
xmm dd 0 ; far pointer to XMM entry point
total dw 0 ; total KB ext. memory avail.
Largest dw 0 ; size of largest block in KB
handle dw 0 ; extended memory block handle

movpars equ $; XMS Function OBH param block
movelen dd 0 ; length to move in bytes
shandle dw 0 ; source handle
soffset dd 0 ; source offset or far pointer
dhandle dw 0 ; destination handle
doffset dd 0 ; dest. offset or far pointer
mybuf db 256 dup (?) ; contains data to be moved to
; extended memory block
bufsize equ $-mybuf ; length of data to be moved
mov ax,4300h ; check if XMM present
int 2fh ; using multiplex interrupt
cmp al ,80h ; status = dinstalled?
jne error ; no, proceed
mov ax,4310h ; XMM available, request
int 2fh ; entry point via multiplex
mov word ptr xmm,bx ; interrupt and save it
mov word ptr xmm+2,es
mov ah,8 ; get available extended memory
call xmm ; transfer to XMM
mov total,dx ; save total KB available
mov Largest, ax ; save largest free block
cmp dx,reqsize ; enough memory?
jb error ; insufficient memory, jump
mov ah,9 ; function 9 = allocate block
mov dx,reqsize ; DX = block size desired in KB
call xmm ; transfer to XMM driver
or ax,ax ; allocation successful?
jz error ; jump if allocation failed
mov handle,dx ; save extended memory handle

98 EXTENDING DOS

; set up param block for move
; from "mybuf' to ext. memory

mov shandle,0 ; zero out source handle

mov word ptr soffset,offset mybuf ; source address in
mov word ptr soffset+2,seg mybuf ; conventional memory
mov ax,handle ; destination handle for

mov dhandle,ax ; extended memory block

mov word ptr doffset,0 ; destination 32-bit offset
mov word ptr doffset+2,0 ; Wwithin extended memory block
mov word ptr movelen,bufsize; lLength of data to move

mov word ptr movelen+2,0

mov ah,0Obh ; function OBH = move data

mov si,offset movpars ; DS:SI = param block address
call xmm ; transfer to XMM driver

or ax,ax ; any error?

jz error ; jump if error occurred

mov ah,0ah ; function OAH = release block
mov dx ,handle ; DX = extended memory handle
call xmm ; transfer to XMM driver

or ax,ax ; any error?

jz error ; jump if error occurred

As an alternative to using XMS Function 0BH, the program can "lock" its ex-
tended memory block with XMS Function OCH, obtaining the current physical
base address of the block. The program can then use Int 15H Function 87H to
move data in or out of extended memory. When the program is finished with an
access to extended memory, it unlocks its block again with XMS Function 0DH, al-
lowing the XMM to move the allocated block around in order to coalesce free
blocks and satisfy other allocation requests.

The High Memory Area

If you follow the trade press, you may remember a certain amount of publicity
and claims of increased performance surrounding the release of Microsoft Win-
dows version 2.1, which was concurrently—by a strange coincidence—renamed
Windows/286. In its press releases, Microsoft stated that it had "found" an extra
64K of memory to put Windows kernel code in, and this allowed Windows to
run much faster because it drastically reduced the amount of segment swapping.
This mysterious 64K of memory, which Microsoft dubbed the "high memory
area" (HMA), is actually the first 64K of extended memory, less 16 bytes. But how
can it be possible for Windows/286, which is a real-mode program, to execute
code out of extended memory?

Chapter 3 Extended Memory and the XMS 99

The answer is clever, yet extremely simple. Recall the scheme by which phys-
ical addresses are generated in real mode: the contents of a segment register are
shifted left four bits and added to a 16-bit offset. On an 8086/88 machine, if the
result overflows the 20-bit addresses supported by the CPU, the address simply
wraps; i.e., the upper bits are discarded. For example, an 8086/88 will interpret
the address FFFF: FFFFH as 0000: FFEFH. Of course, 80286- and 80386/486-based
PCs can support larger physical addresses (24 bits and 32 bits respectively), but
this is ordinarily not apparent when MS-DOS is running, because these machines
have special hardware to disable the most significant address lines in real mode,
making them behave more like a classic 8086/88-based PC.

Now imagine the consequences if your program is running on an 80286-
based PC and you enable the A20 line to allow the generation of 21-bit physical
addresses, and then place the value FFFFH in one of the segment registers. When
FFFFH is shifted left four bits and added to a 16-bit offset, the result is in the range
FFFFOH-10FFEFH. In other words, enabling the A20 line allows the first 65,520
bytes of extended memory to be addressed without leaving real mode.

The XMS specification bears on the discovery of the HMA in two ways. First,
it provides a hardware-independent method of enabling or disabling the A20 line.
This eliminates the need for programs to write directly to the ports that control
the A20 line (possibly interfering with each other, especially in the case of inter-
rupt handlers), and ensures that the toggling of the A20 line is always done in the
most efficient way. Second, it arbitrates the use of the high memory area between
competing programs.

The management of the high memory area is not very complex, since the
HMA is so small, and it is always allocated as a unit. A device driver or TSR pro-
gram that uses the HMA should store as much of its code there as possible, since
the remainder will simply be lost for use by other programs. If the driver or TSR
cannot exploit nearly all of the HMA, it should leave it available for use by subse-
quently loaded programs. The user can enforce such good behavior with the
/HMAMIN switch, which causes allocation requests for the HMA to fail if they
are smaller than the specified value. '

Device drivers and TSRs must not leave the A20 line permanently turned on.
Although it might seem difficult to believe, some applications rely on the wrap-
ping of memory addresses at the 1-megabyte boundary, and will overwrite the
HMA instead if the A20 line is left enabled. Similarly, interrupt vectors must not
point directly into the HMA, since the A20 line will not necessarily be enablcd at
the time that the interrupt is received, so the code that comprises the interrupt

100 EXTENDING DOS

handler might not be visible. If the HMA is still available when a normal applica-
tion runs, the application is free to use as much or as little of the HMA as it
wishes, with the following restrictions:

» Far pointers to data located in the HMA cannot be passed to MS-DOS
since MS-DOS normalizes pointers in a manner that invalidates HMA ad-
dresses.

» Disk I/O directly into the HMA by any method is not recommended. The
behavior of some clone disk controllers—when handed addresses that fall
within the HMA—may vary.

An application that finds the HMA available and allocates it must also be
sure to release it before terminating. Otherwise, the HMA will be unavailable for
use by any other program until the system is restarted.

LOADALL: The Back Door to Extended Memory

There are two methods by which programs can obtain access to data in extended
memory while the CPU is in real mode. The first of these methods, which relies
on placing the special value FFFFH in a segment register along with manipulation
of the bus’s A20 address line, has already been described in the section on the
High Memory Area. Unfortunately, this technique only provides access to the first
65,520 bytes of extended memory. The second method, which employs the
80286’s undocumented LOADALL instruction, can be used to reach any location
in extended memory.

To understand how LOADALL can provide this magical capability, we must
first recall how the Intel CPUs generate physical memory addresses. In real
mode, the contents of a segment register is shifted left by four bits (i.e., multi-
plied by 16) and added to a 16-bit offset to form a 20-bit physical address. In pro-
tected mode, an additional layer of address indirection is added. The upper 13
bits of the segment register are used as an index into a descriptor table—a special
data structure that is manipulated by the operating system and interpreted by
the hardware—and a 24-bit physical memory address is generated by combining
a base address from a descriptor with a 16-bit offset.

Fortunately, while the explanation in the preceding paragraph is correct and
useful in the abstract, it-is not a complete description of how the CPU produces
physical memory addresses. Imagine the penalty in CPU cycles and execution
time if the CPU actually had to perform a 4-bit shift on the contents of a segment
register each time a program referenced memory in real mode! Worse yet, try to

Chapter 3 Extended Memory and the XMS 101

envision the cost in CPU cycles and bus traffic if the CPU had to fetch a 24-bit
physical address from a descriptor each time a program accessed memory in pro-
tected mode! By looking in the Intel manuals, however, we can see that the cost
of a memory reference in protected mode is usually the same as in real mode (un-
less a segment register is also being loaded, as in the case of "far" JMPs and
CALLs), which is a clue that something else must be going on.

This something else turns out to involve the existence of a set of shadow regis-
ters on the CPU chip called descriptor caches—one for each segment register.
Whenever a segment register is loaded with a POP or MOV instruction, the CPU
calculates (in real mode) or fetches (in protected mode) the true physical base ad-
dress and length of the designated memory segment, and caches these values in
the associated shadow register. Subsequently, each time the segment register is
referenced by an instruction that accesses memory, the CPU simply adds the base
address from the descriptor cache to the offset specified in the instruction to
quickly form the final physical memory addtess.

The essential action of the LOADALL instruction is to initialize the contents
of every CPU register and flag including the descriptor caches we have just been
discussing from a 102-byte table stored in a specific format at physical memory
address 00800H (see Tables 3-3 and 3-4). It seems that the original intent of the
LOADALL instruction was only to aid in CPU testing, which is why it was never
included in any Intel manuals. But since LOADALL allows arbitrary physical
base addresses to be forced into the shadow registers, it can also be exploited by
a real-mode application program to read or write memory locations that would
not otherwise be addressable.

The LOADALL instruction is not supported by the Microsoft Macro Assem-
bler, but you can include its op-code (OFH 05H) in your programs with DB state-
ments. LOADALL must be used with great caution though. If an interrupt occurs
after you execute LOADALL, but before you complete the access to extended
memory, the interrupt handler may load the segment register and thus change
the contents of the associated descriptor cache, and your extended memory read
or write will go astray. Therefore, interrupts must be blocked throughout the exe-
cution of code that relies on LOADALL. Furthermore, the 102 bytes starting at
address 00800H lie within memory controlled by MS-DOS, so you must carefully
save and restore this area.

Assuming LOADALL is used cautiously, can it be used safely? That is, can
we expect a program containing the LOADALL instruction to run correctly and
reliably on a range of DOS versions, PC clone brands, and hardware configura-

102 EXTENDING DOS

tions? The answer, at least on 80286-based PCs, seems to be a qualified yes.
Microsoft uses LOADALL in the RAMDRIVE.SYS virtual disk driver supplied
with Windows and the OEM versions of MS-DOS, and also uses it in the DOS
compatibility environment of OS/2, so we can predict (given Microsoft’s close re-
lationship with Intel) that LOADALL isn’t likely to vanish from future steppings
of Intel’s 80286 chips. For the same reason, the 80286 CPUs from second sources
such as AMD and Harris will be obligated to support LOADALL indefinitely.

On 80386~ or 80486-based PCs, the answer is not so clear-cut. The Intel 80386
and 80486 CPUs do not have a LOADALL instruction, so execution of LOADALL
triggers an invalid op-code exception. In order for programs containing LOADALL
to run properly, the ROM BIOS must field the exception, examine the instruction
that caused the interrupt, and emulate the action of LOADALL if necessary.
High-quality ROM BIOSes (such as those found on Compaq 80386 and 80486 ma-
chines) can be relied on in this area but other companies’ ROM BIOSes are not as
predictable, which is one of several reasons why OS/2 doesn’t run on many
PC/AT clones.

Table 3-3: The data structure used by the undocumented 80286
LOADALL instruction. This structure must always be located at physical
memory address 00800H, and is used to initialize all CPU registers and flags.

Memory Access CPU Register

0800-0805H none

0806-0807H MSW (Machine Status Word)
0808-0815H none

0816-0817H TR Register (Task Register)
0818-0819H CPU Flags Word

081A-081BH IP Register (Instruction Pointer)
081C-081DH LDTR Register (Local Descriptor Table Register)
081E-081FH DS Register

0820-0821H SS Register

0822-0823H CS Register

0824-0825H ES Register

0826-0827H DI Register

0828-0829H SI Register

082A-082BH BP Register

082C-082DH SP Register

082E-082FH BX Register

0830-0831H DX Register

0832-0833H CX Register

Chapter 3 Extended Memory and the XMS 103

Memory Access CPU Register

0834-0835H AX Register

0836-083BH ES Descriptor Cache

083C-0841H CS Descriptor Cache

0842-0847H SS Descriptor Cache

0848-084DH DS Descriptor Cache

084E-0853H GDTR (Global Descriptor Table Register) Cache
0854-0859H LDTR (Local Descriptor Table Register) Cache
085A-085FH IDTR (Interrupt Descriptor Table Register) Cache
0860-0865H TSS (Task State Segment) Descriptor Cache

*See Table 3-4 for the format of the fields for the descriptor cache, GDTR cache, LDTR cache, and IDTR
cache.

Table 3-4: The format of the 6-byte fields in the LOADALL data structure which
are used to load the CS, DS, ES, and SS descriptor caches, GDTR cache, LDTR cache, and IDTR cache.

Offset Contents

0-2 24-bit segment base address, with least significant byte at lowest address, and most
significant byte at highest address

3 Access rights byte for CS, DS, ES, and SS descriptor caches; 0 for GDTR, LDTR, and
IDTR caches

4-5 16-bit segment size

Table 3-5: The XMS Programming Interface

Function Parameters Results if Successful Results if Unsuccessful
XMS Function 00H AH = 00H AX = XMS version AX = 0000H
Get XMS Version BX = XMM (driver) version BL = error code
DX = HMA indicator
0000H if no HMA
0001H if HMA exists

Note: Version numbers are binary coded decimal (BCD). The value returned in DX is not affected by any pre-
vious allocation of the HMA by another program.

XMS Function 01H AH =01H AX =0001H AX = 0000H
Allocate High Memory DX = HMA bytes BL = error code
Area (HMA) needed (driver or

TSR) or OFFFFH

(application

program)

104 EXTENDING DOS

Function Parameters Results if Successful Results if Unsuccessful

Note: The maximum HMA allocation is 65,520 bytes. The base address of the HMA is OFFFF:0010H. If an ap-
plication fails to release the HMA before it terminates, the HMA becomes unavailable to other programs until
the system is restarted.

XMS Function 02H AH = 02H AX =0001H AX = 0000H
Free High Memory Area BL = error code
(HMA)

XMS Function 03H AH = 03H AX=0001H AX = 0000H
Global Enable A20 Line BL = error code

Note: This function should only be used by programs that have successfully allocated the HMA. The A20 line
should be disabled before the program releases control of the system.

XMS Function 04H AH = 04H AX =0001H AX = 0000H
Global Disable A20 Line BL = error code
Note: This function should only be used by programs that have successfully allocated the HMA.

XMS Function 05H AH = 05H AX =0001H AX = 0000H
Local Enable A20 Line BL = error code

Note: This function should be used by programs that do not own the HMA. The A20 line should be disabled
before the program releases control of the system.

XMS Function 06H AH = 06H AX=0001H AX = 0000H
Local Disable A20 Line BL = error code
Note: This function should be used by programs that do not own the HMA.
XMS Function 07H AH =07H If A20 line is enabled AX = 0000H
Query A20 Address Line AX =0001H BL = error code
Status If A20 line is disabled

AX = 0000H

BL = 00H
XMS Function 08H AH = 08H AX = largest free AX = 0000H
Query Free Extended Mem- extended memory BL = error code
ory block (KB)

DX = total free extended

memory (KB)
Note: The size of the HMA is not included in the returned values, even if it is not in use.
XMS Function 09H AH = 09H AX =0001H AX = 0000H
Allocate Extended Memory DX = requested block DX = EMB handle BL = error code
Block (EMB) size (KB)

Note: An EMB block length of zero is explicitly allowed.

Chapter 3 Extended Memory and the XMS 105

Function Parameters Results if Successful Results if Unsuccessful
XMS Function 0AH AH =0AH AX =0001H AX = 0000H

Free Extended Memory DX = EMB handle BL = error code
Block (EMB)

Note: If an application fails to release its extended memory before it terminates, the memory becomes un-
available for use by other programs until the system is restarted.

XMS Function 0BH AH = 0BH AX =0001H AX = 0000H
Move Extended DS:SI = segment:offset BL = error code
Memory Block (EMB) of parameter block
Note: Parameter block format:

dword length of block (bytes)

word source EMB handle

dword source offset

word destination EMB handle

dword destination offset.

If source and/or destination handle is zero, the corresponding offset is assumed to be a normal far pointer.
The EMB need not be locked. The state of the A20 line is preserved.

XMS Function 0CH AH = 0CH AX =0001H AX = 0000H
Lock Extended DX = EMB handle DX:BX = 32-bit linear address of BL = error code
Memory Block (EMB) locked block

Note: This function is intended for use by programs which enable the A20 line and then access extended
memory directly. Lock calls may be nested.

XMS Function 0DH AH = 0DH AX =0001H AX = 0000H
Unlock Extended DX = EMB handle BL = error code
Memory Block (EMB)

Note: After an EMB is unlocked, the 32-bit linear address returned by any previous lock call becomes invalid
and should not be used.

XMS Function 0EH AH = 0EH AX =0001H AX = 0000H
Get EMB Handle DX = EMB handle BH = lock count (0 if block not BL = error code
Information locked)

BL = number of handles still

available

DX = block size (KB)
XMS Function OFH AH = 0FH AX =0001H AX = 0000H
Resize Extended BX = new block size BL = error code
Memory Block (EMB) (KB)

DX = EMB handle
Note: Blocks may not be resized while they are locked.

106 EXTENDING DOS

Function Parameters Results if Successful
XMS Function 10H AH =10H AX =0001H
Allocate Upper

Memory Block (UMB) size (paragraphs)

DX =requested block BX = segment base of allocated

DX = actual block size (para-

Results if Unsuccessful

AX = 0000H

BL = error code

DX = size of
largest avail-
able block
(paragraphs)

Note: Upper memory blocks are always paragraph aligned. The A20 line need not be enabled to access an

XMS Function 11H AH =11H AX =0001H

Free Upper Memory Block DX = segment base of

(UMB)

block

Table 3-6: XMS error codes.

AX = 0000H
BL = error code

Value
80H
81H
82H
8EH
8FH
90H
91H
92H
93H
94H
AOH
AlH
A2H
A3H
A4H
A5H
A6H
A7H
A8H
A9H
AAH
ABH
ACH

Meaning

Function not implemented
VDISK device driver was detected
A20 error occurred

General driver error
Unrecoverable driver error

High memory area does not exist
High memory area already in use
DX is less than /HMAMIN= parameter
High memory area not allocated
A20 line still enabled

All extended memory is allocated
Extended memory handles exhausted
Invalid handle

Invalid source handle

Invalid source offset

Invalid destination handle

Invalid destination offset

Invalid length

Invalid overlap in move request
Parity error detected

Block is not locked

Block is locked

Lock count overflowed

Chapter 3 Extended Memory and the XMS 107
Value Meaning

ADH Lock failed

BOH Smaller UMB is available

B1H No UMBs are available

B2H Invalid UMB segment number

Chapter 4

80286-based Protected-Mode DOS Extenders

Andrew Schulman

Several software manufacturers sell products that allow programs written for
MS-DOS to access up to 16 megabytes of memory, in contrast to the 640K limit of
MS-DOS. Unlike EMS or XMS, the memory access these products provide is
transparent, in that "normal" pointers can be used. Programs developed with
these products continue to use MS-DOS, but run in the "protected mode" of the
80286 and higher Intel microprocessors. We refer to these products as 80286-
based protected-mode DOS extenders.

Lotus 1-2-3 Release 3 is one example of a program that uses an 80286-based
protected-mode DOS extender, Rational Systems’ DOS/16M. Other products that
employ DOS/16M include AutoCAD Release 10.0 (AutoDesk), the TOPS net-
work (Sun/TOPS), Informix SQL and Informix 4GL (Informix), Glockenspiel C++
(ImageSoft), and Rational Systems’ own Instant-C. DOS/16M is planned for in-
clusion in the next release of Ashton-Tate’s dBASE IV. DOS extenders—once ob-
scure boutique items—have moved into the mainstream, and even the forefront,
of commercial PC software development.

By 80286-based, we mean software that requires at least an IBM PC/AT or
compatible, and that runs in 16-bit protected mode. Programs such as the MS-
DOS version of Lotus 1-2-3 Release 3 also run on PC-compatible computers with
Intel 80386 or 80486 CPUs. Just as these 32-bit protected-mode processors can

109

110 EXTENDING DOS

lower themselves by emulating the real-mode 8088, so too can they emulate the
16-bit protected mode native to the 80286.

Why develop for the 286?

The 80286 is on the way out. Even Intel, which designed the 286, is running ads
that flatly state, "It just doesn’t make sense to buy another 286-based personal
computer," and that encourage you to "invest in the future, not in the past.”

While Intel may have ulterior motives in downplaying the 286 (several other
companies now produce 286 chips), the company’s ads are right. You probably
shouldn’t buy a 286-based computer. So why produce 286-based software?

Because right now, if you are developing software to run under real-mode
MS-DOS, you are producing 8088-based software. 286-based protected-mode
software may not sound "cutting edge,” but it is way ahead of where most PC
software is today. Without some form of protected-mode operating environment,
such as OS/2 or a DOS extender, even the fastest 80486 can only be used as a fast
8088. Without protected mode, the new machines are all dressed up with no-
where to go. Protected mode junks 8088 compatibility.

Why not go straight to 386-based protected mode? Doesn’t developing for a
286-based DOS extender repeat the mistake that Microsoft and IBM apparently
made when they developed OS/2 for the 286 instead of the 386?

It all depends on your application. If you can guarantee that your potential
customers have 386 computers, then 32-bit protected mode is the way to go. Oth-
erwise, the 16-bit protected mode of the 286 is a better base. While there are still
only two million 386-based PCs currently in use worldwide, there are about
twelve million 286-based PC/ ATs and compatibles.

After all, why is there so little 80386-dependent software for all the 80386
hardware that the computer trade press is urging we buy? Because of compatibil-
ity. As long as there are XTs and ATs out there, software vendors are rightly hesi-
tant to lock themselves solely into a 386 market.

By using a 286-based protected-mode DOS extender like DOS/16M, you cut
yourself off from customers with XTs, but not from customers with ATs. Thus, 16-
bit 286-based DOS extenders appear to be a good compromise between the desire
for software to finally catch up with hardware, and the desire not to be locked in
to the small (though rapidly growing) 386 market.

In many ways, a DOS extender combines the best of both worlds: continued
access to MS-DOS (Int 21H) and BIOS services, but with the ability to develop

Chapter 4 80286-based Protected-Mode DOS Extenders 111

multi-megabyte programs and use the native protection capabilities of the Intel
microprocessors, which lie fallow in real mode.

Focusing on Rational Systems’ DOS/16M, which provides up to 16 mega-
bytes of memory while running under MS-DOS 3.x and higher, this chapter
shows you how to reap the benefits of DOS extenders. First, it shows how a 286-
based DOS extender works, and how to port programs from real mode to this
protected-mode MS-DOS hybrid, with a minimum of changes. (Often, this barely
merits being called a port, since in many cases the 286-based DOS extender ver-
sion of your program can use the same .OB] files as the real-mode version.) Fi-
nally, it shows how to eliminate protection violations and how to improve
performance.

Since the primary benefit of a DOS extender is access to multi-megabytes of
memory, very large programs have the most to gain from using a DOS extender.
(Though programs with a small amount of code, but very large data require-
ments, clearly also benefit.) Such large programs are frequently written in C, so
this chapter contains a number of sample programs in C.

On the other hand, when you port to protected mode, the few thorny areas
tend to be confined to a small part of the program written in assembler, so we use
assembler examples as well.

Rational Systems also makes a protected-mode integrated development envi-
ronment, Instant-C, which runs under DOS/16M. We use Instant-C examples in
an appendix to this chapter; its interactive style provides a convenient base for
exploring protected mode, and its price is substantially less than that of
DOS/16M. While not intended as a substitute for DOS/16M, it can run most of
the sample code in this chapter.

This chapter also examines Eclipse Computer Solutions’ OS/286, which pro-
vides many of the same capabilities as DOS/16M. Most of the programs in this
chapter can also be compiled for OS/286. But there are important differences be-
tween DOS/16M and OS/286. One key difference is that DOS/16M is much eas-
ier to use than OS/286, while OS/286 is much cheaper than DOS/16M. In
addition to applications like CadKey 3 Plus, OS/286 is incorporated in a number
of programming languages, such as Golden Common Lisp (Gold Hill), Lahey
Fortran 77L-EM/16, and the Lattice 80286 C Development System.

Most of the changes required when porting your program from real mode to
a protected-mode DOS extender are also required when porting to OS/2. In fact,
most of the principles involved in programming for a 286-based DOS extender
apply to any 16-bit protected-mode environment, including OS/2.

112 EXTENDING DOS

While this chapter emphasizes porting code from real-mode MS-DOS to a
protected-mode DOS extender, a different scenario involves porting a mainframe
application, which, without a DOS extender or other protected-mode environ-
ment, would never be able to run on a PC/AT. Such ports should be far simpler
than those described here.

Protected-Mode MS-DOS

To demonstrate how programming for a 286-based DOS extender differs from
"normal” DOS programming, it is useful to construct a program that manipulates
a large amount of data. One of the touted benefits of DOS extenders is that they
break the 640K barrier, so we need to see how difficult it is to get at this extra
memory, and what special steps are involved.

The following C program builds a linked list as large as available memory. It
allocates nodes and adds them to the linked list until the C memory-allocation
function mal Loc () returns NULL, indicating that memory is exhausted. The pro-
gram prints out the number of nodes in the list and how many bytes of memory
it has allocated. It then walks back through the list, using the free() function to
deallocate the nodes:

/*
LIST.C

Microsoft C 5.1 real mode:
cl -AL -0x -W3 Llist.c

DOS/16M protected mode:
; use same OBJ file; just relink and postprocess
link /noe/map \16m\preload \16m\crt0_16m \16m\pml Llist,list,list;
\16m\makepm Llist
\16m\splice List.exe List.exp \16m\loader.exe

0S/286 protected mode:
; use same OBJ file; just relink and postprocess
Link /noe/map Llist,list,list,\os286\Llibce.lib;
\os286\express Llist
\0s286\bind -0 list.exe =L \os286\tinyup.exe \
-k \os286\0s286.exe -1 list.exp

Turbo C real mode:
tcc -ml Llist

DOS/16M Turbo C version:
; use same OBJ file; just relink and postprocess

Chapter 4

80286-based Protected-Mode DOS Extenders 113

tlink /m \1ém\tc\preload \16m\tc\cOl Llist \1é6m\tc\pml \
\16m\tc\setargv \1ém\tc\mem_16m,Llist,list,\tc\lib\cl;

\16m\makepm -stack 8192 Llist

\16ém\splice list.exe List.exp \16m\loader.exe

to run:
LIST Cnode sizel

output on 2meg Compaq:
real mode: 527k
DOS/16M: 1692k
0S/286: 1372k
*/

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>
#include <time.h>

typedef struct node {
unsigned long num;
void *data;
struct node *next;
} NODE;

main(int argc, char *argv[1)
{

NODE *p, *q;

time_t t1, t2;

unsigned Llong nodes = 0;

unsigned nodesize = (argc > 1) ? atoiCargv[11) : 512;

time(&t1);

/* allocate Linked list that consumes all available memory */

for (g = NULL; ; g->next = p)

{

P =4q;

if ((qg = malloc(sizeof(NODE))) == NULL)
break;

if ((g->data = malloc(nodesize)) == NULL)

{
free(q);
break;

}

g->num = nodes++;
if ((nodes % 1000) == 0)

114 EXTENDING DOS

printf("%Llu nodes: %lu seconds\n", nodes, time(&t2) - t1);
}

printf("%lu nodes: %lu seconds\n", nodes, time(&t2) - t1);
printf("Allocated %4uk\n", (nodes * (sizeof(NODE)+nodesize)) >> 10);

/* in reverse order, deallocate the nodes */
for (; p '= NULL; p = q)

{
q = p->next;
if (p=>num != --nodes)
printf("list corrupt: nodes=%lu num=%lu\n", nodes, p->num);
free(p->data);
free(p);
}

/* zero nodes remaining indicates success */
return nodes;

When this program is compiled for real-mode MS-DOS, using large model
(which manipulates far pointers), and run on an IBM PC/AT with two mega-
bytes of memory, the program allocates about 550K, oblivious to the presence of
more memory in the machine. This real-mode version can be compiled with
Microsoft C 5.1, for example, using the following command-line:

cl -AL -0x -W3 list.c

The cl driver program first runs the C compiler to produce LIST.OBJ, and
then runs the Microsoft linker to produce LIST.EXE.

Surprisingly, to make a protected-mode version of the same program, we can
use the exact same LIST.OB]J that the compiler produced for real mode. These are
the commands to produce a DOS/16M version of LIST.EXE, using the object
module LIST.OB]J:

Link /noe/map \16m\preload \16m\crt0_16m \16m\pml Llist,list, list;
\16m\makepm List
\16m\splice List.exe List.exp \16m\loader.exe

Since this protected-mode LIST.EXE uses the same LIST.OBJ as the real-mode
LIST.EXE, it is a little difficult to believe that it behaves any differently. Neverthe-
less, it does. On the same 286 machine with 2 megabytes of memory, the
DOS/16M version of LIST.EXE allocated 1692K, more than three times as much
as in real mode. On a machine with more memory, the protected-mode program

Chapter 4 80286-based Protected-Mode DOS Extenders 115

allocates an even longer (up to 16 megabytes) linked list, whereas in real mode it
is always stuck at around 550K.

With the same .OB]J as in real mode, it’s obvious that no additional code has
been written to access extended memory. Contrast this to DOS extensions such as
EMS or XMS, which also provide access to more memory, but which do so indi-
rectly. As explained in Chapters 2 and 3, in order to allocate expanded memory
with EMS or extended memory with XMS, you need to make separate calls to
these memory managers. In real mode, for example, the C memory-allocation
function mal Loc () cannot allocate out of EMS or XMS memory.

And allocation is just the beginning. When using memory in a high-level lan-
guage, you would like to use a simple pointer dereference. But EMS requires that
you map the logical page to a physical page, and XMS requires that you move
from extended to conventional memory, before you can access memory allocated
using these specifications.

In contrast, LIST.C freely uses, say, p—>num, without knowing whether it is in
extended or conventional memory. In fact, with a DOS extender, this distinction
nearly disappears: it’s all just memory.

This is big memory, but not virtual memory (VM). Here is one of several im-
portant differences between a DOS extender and a genuine operating system
such as OS/2. Rational Systems does offer VM as an add-on to DOS/16M. But as
built here, while LIST.EXE uses all available memory, it doesn’t expand onto your
hard disk, as it would under OS/2.

Note also that slightly different coding of LIST.C could have produced in-
compatibilities with protected mode. LIST.C uses the time () function to calculate
how long memory allocations take in protected versus real mode. (It takes about
the same amount of time per allocation.) Now if, instead of calling time (), we
peeked at low-memory BIOS location 46CH, this could, depending on how we
formed the pointer, generate a protection violation under a DOS extender. Later
on, we will see why this is so, and will show how you can safely peek directly at
absolute physical locations under a protected-mode DOS extender.

In the three lines used to produce the DOS/16M version of LIST.EXE, we first
used the standard Microsoft linker to relink LIST.OBJ along with some additional
.OB] files supplied with DOS/16M. The resulting file, LIST.EXE, is then run
through a postprocessor, MAKEPM.EXE, that (as its name implies) makes a pro-
tected-mode (PM) executable from a real-mode executable. The output from this
process is LIST.EXP. The extension .EXP designates a protected-mode executable.

Now, how do we run one of these .EXP files?

116 EXTENDING DOS

On the one hand, it would seem that we can’t run it simply by typing its
name on the DOS command line, since this is a protected-mode program,
whereas MS-DOS is a real-mode operating system. On the other hand, DOS/16M
is not an environment like DESQview or Windows: the user of a program built
with a DOS extender does not go out and buy a special run-time shell.

Instead, from DOS you run a small (38K) program supplied with DOS/16M,
called LOADER.EXE, which manages the interface between MS-DOS and pro-
tected mode.

But wait a minute—you don’t want the users of your program to have to run
some other program first just in order to run yours. To solve this problem, all
DOS extenders provide a program that binds the loader/kernel together with
your program, so that users can run your program from the DOS command line,
simply by typing its name. In DOS/16M, this binder is SPLICE.EXE. In our ex-
ample, SPLICE binds LIST.EXP together with LOADER.EXE to form LIST.EXE.

The file sizes involved are fairly reasonable. Whereas the real-mode LIST.EXE
produced by Microsoft C 5.1 is 12K, protected-mode LIST.EXP is 13K; when
SPLICE merges this with the 38K LOADER.EXE, the resulting protected-mode
LIST.EXE is 51K: not bad for a program that has the convenience of MS-DOS
without its restrictions.

How does it work?

It may seem rather odd to be reading about protected mode in a book on MS-
DOS. After all, this is the sort of discussion usually found in books on OS/2 or on
the Intel 286/386 architecture.

The strange thing about DOS extenders is that they provide a way to take ad-
vantage of the large address space and protection mechanism discussed in Chap-
ter 1, all the while employing the services of real-mode MS-DOS.

This interface between MS-DOS and protected mode can be made to sound
magical. In fact, the mechanism is rather simple.

Let’s look behind the scenes and see how this works. In the remainder of this
section, it is important to emphasize that we are talking about what a DOS ex-
tender like DOS/16M does, not what you have to do. All you have to do is more-
or-less blindly follow the three steps—relink, postprocess, splice—and the DOS
extender takes care of the rest. "The rest" is what we will now proceed to relate.

A protected-mode loader like DOS/16M’s LOADER.EXE starts off running in
real mode under MS-DOS. The loader constructs a global descriptor table (GDT),

Chapter 4 80286-based Protected-Mode DOS Extenders 117

local descriptor table (LDT), and interrupt descriptor table (IDT) for your pro-
gram, switches the machine into protected mode, and then spawns your pro-
gram. By setting up the IDT, the loader sets up interrupt handlers for MS-DOS
(Int 21H) and BIOS services (Int 10H, Int 16H, etc.). Whenever your program
makes a DOS or BIOS request, the DOS/16M kernel’s handler catches it and acts
either as a front end to, or as a replacement for, the corresponding interrupt ser-
vice routine in real mode. When your program exits, DOS/16M puts the com-
puter back into real mode and exits back to DOS.

A DOS extender is not an operating system. In contrast to OS/2, a DOS ex-
tender exists simply to provide the minimal facilities for running your DOS pro-
gram in protected mode. Thus, the descriptor tables need serve only your
program; running only one task simplifies things considerably (though this is
one of the important differences between DOS/16M and OS/286, which we will
discuss later).

Protected-mode descriptor tables can be built in real mode (in fact, the GDT
must be built in real mode, which is why 286 and 386 machines boot up in real
mode, even though their "native" mode is protected); the GDT register (GDTR)
and IDT register (IDTR) are each loaded with six bytes containing the size and
physical base address of the corresponding table, and the LDT register (LDTR) is
loaded with a selector to the LDT. For example:

Lgdt fword ptr gdt_desc ; load GDT

Lidt fword ptr idt_desc ; load IDT
Lldt ax ; Lload LDT

Now that there is a GDT, the computer can be put into protected mode by
setting the bottom bit of the machine status word (MSW), using the following in-
structions (the jmp clears the 286 instruction pipeline):

smsw ax store MSW

;
or al, 1 ; set protected-mode bit
lmsw ax ; load MsSw
jmp $+2 ; clear pipeline

The machine is now in protected mode, and the DOS extender can spawn
your protected-mode program.

The IDT is crucial to the operation of a DOS extender. It serves the same pur-
pose in protected mode as the low-memory interrupt vector table in real mode,
except that the IDT is composed of eight-byte gates, descriptors used to control
access to code segments. In building an IDT for your program, a DOS extender
most importantly includes a descriptor for Int 21H. This descriptor points not to the

118 EXTENDING DOS

real-mode entry point for Int 21H (which could be MS-DOS itself or some other
program that has hooked Int 21H, such as Sidekick), but to the DOS extender’s
protected-mode Int 21H handler. Thus, a DOS extender hooks Int 21H by setting
up an interrupt gate in a protected-mode IDT, rather than by calling Int 21H
AH=25H (Set Vector) or directly poking the low-memory interrupt vector table.
The original Int 21H vector in the real-mode interrupt vector table is left alone.

Whenever your protected-mode program issues an Int 21H (to open a file,
say, or to allocate memory), the DOS extender catches it, checks the function re-
quest in the AH register, and acts either as a replacement for, or as a front end to,
real-mode MS-DOS. The DOS extender can service the request itself, or it can
modify it, switch the machine back into real mode, resignal the Int 21H (in
DOS/16M this is called a passdown interrupt), modify the return value, and
switch the machine back into protected mode. This happens "inside" the Int in-
struction, without your program’s knowledge.

This procedure works much like normal interrupt chaining, in which a pro-
gram that has hooked an interrupt also passes it along to the previous owner.
The difference here is that a CPU mode switch takes place before passing the in-
terrupt down the chain.

You might have doubts about switching the machine from protected down to
real mode. Switching from real to protected mode isn’t a problem, and on a 386
switching from protected back to real mode is a simple matter as well, but the
286 is like a cat that knows how to climb up a tree but doesn’t know how to get
back down: it doesn’t allow for switching back into real mode. The only way to
make the transition is by resetting the chip. DOS extenders on the 286 use the
same weird, but effective, "triple fault” technique for switching into real mode
that Microsoft uses in the OS/2 compatibility box. One way to force a triple fault
is to issue an Int 3H after setting the IDT limit to zero.

Can this really take place quickly enough? As measured by DOS/16M'’s
PMINFO utility, while a 16 MHz Compaq 386 can switch back and forth between
real and protected mode over 7,000 times per second, an 8 MHz IBM PC/AT can
only switch about 1,200 times per second. But this is more than adequate for
most applications. A program that needed to telecommunicate at 9600 baud on
an IBM AT could avoid the costly gear shift, using several techniques docu-
mented in the DOS/16M and OS/286 manuals.

Getting back to our protected-mode program, when it finally exits back to
DOS with Int 21H AH=4CH, it is actually exiting back to the DOS extender. The

Chapter 4 80286-based Protected-Mode DOS Extenders 119

DOS extender cleans up its descriptor tables, puts the machine back into real
mode, and exits back to the "real” MS-DOS.

So that is how protected-mode programs can be run from the DOS command
line and use DOS services. But the Int 21H program interface is not sufficient.
The same mechanism used with Int 21H is also used for BIOS services such as
the keyboard (Int 16H) and video (Int 10H). Programmers can use the same
mechanism to communicate with other real-mode services (for example, the
mouse, the DESQview API, or NetBIOS), or to call functions in a real-mode li-
brary (for example, a graphics library that requires conversion to run in protected
mode, but for which you lack source code). '

Even this is insufficient. Only the rarest well-behaved DOS program uses just
DOS and BIOS calls. The IN and OUT instructions don’t present a problem, since,
for example, port 20H is as valid in protected as in real mode. But most applica-
tions peek and poke various well-known memory locations. So a second tech-
nique allows protected-mode programs to use many protected-mode selectors as
though they were well-known real-mode segment addresses. For instance, pro-
tected-mode selector B8OOH can be made to correspond to real-mode physical ad-
dress B800OH. Similar to bimodal pointers used in OS/2 device drivers, these are
referred to as transparent addresses by DOS/16M.

Now, isn’t this all a kludge? In one way it certainly is, since MS-DOS was
never intended to be called from protected mode. On the other hand, numerous
programs piggyback Int 21H. By providing system services via interrupts, and
by allowing complete flexibility in getting and setting the interrupt vectors, MS-
DOS provides a powerful mechanism for patching and extending itself. DOS ex-
tenders are merely using this aspect of the PC architecture.

DOS extenders treat MS-DOS as a place to plug in an installable memory-
management system. This is possible because of the interrupt-based architecture
of PC system services. The existence of the MS-DOS Set Vector function means
that such services, including Int 21H itself, are assumed to be replaceable, patch-
able, and chainable. (Remember, though, that the DOS extender plugs in its re-
placements by setting up a protected-mode IDT.)

To examine the interface a DOS extender provides between protected mode
and MS-DOS, and to show that the DOS extender does its work, not through li-
braries or startup code, but at a much lower level, we can run a small assembler
program under the DOS/16M debugger, Instant-D.

This program, FILEREAD.ASM, merely reads its own source code from disk
and displays it on stdout; it can be assembled with the Microsoft assembler

120 EXTENDING DOS

(MASM) or Turbo assembler (TASM), linked with a DOS/16M module (PRE-
LOAD.OB]J) that contains placeholders for the GDT, IDT, and other segments,
and then run through the MAKEPM utility. The resulting program,
FILEREAD.EXP, is 368 bytes. The source code can also be used for a real-mode
version or for an Eclipse OS/286 version:

fileread.asm

real-mode version:
masm -Zi fileread;
link /co fileread;
cv fileread

DOS/16M version:

masm -Zi fileread;

Link /co \16m\asm\preload fileread,fileread;
\16m\makepm fileread

\16m\d fileread

0S/286 version (within CP environment):
\os286\cp

masm -Zi fileread;

Link /co/map fileread,fileread,fileread;
\os286\express -nsg -wb fileread
\os286\symtab fileread

load fileread

Ne Ne Ne No Ne Ne N Ne N NE N Ne Ne Ne Ne N Na Na NN

dosseg
.model small

.stack

.data
fname db "fileread.asm", 0

.code
start: mov dx, dgroup .
mov ds, dx

; to allocate memory under DOS, first shrink down image
; not needed for DOS extender, but doesn't hurt

mov ah, 4ah

mov bx, 100h

int 21h ; ignore any errors here
mov ah, 48h ; allocate buffer
mov bx, 100h

int 21h
jc error

Chapter 4

80286-based Protected-Mode DOS Extenders 121

error:

fini:

mov di, ax

mov ah, 3dh

mov al, O

mov dx, offset fname
int 21h

jc error

mov si, ax

mov bx, si
mov ah, 3fh
mov cx, 1000h
push ds

mov ds, di
mov dx, O

int 21h

pop ds

jc error

mov cX, ax
mov ah, 40h
mov bx, 1
push ds

mov ds, di
mov dx, O
int 21h

pop ds

jc error

mov ah, 3eh
mov bx, si
int 21h

jc error

mov ah, 49%h
mov es, di
int 21h

jc error

mov al, OOh
jmp short fini

; di = buffer selector

; open file

; si = file handle

; read file into buffer

; ax = count of bytes read

; write buffer to stdout

; close file

; free buffer

; program succeeded

mov al, 01h ; program failed

mov ah, &4ch ; exit to DOS

int 21h

end start

122 EXTENDING DOS

It is hard to see how this constitutes a DOS extender program: it makes no
calls to a special API. That is largely the point of using a DOS extender.

But running under the DOS/16M debugger shows that something unusual is
happening behind the scenes. After this program allocates a buffer with the stan-
dard MS-DOS function Int 21H AH=48H, we can examine the segment of the
buffer returned in AX, which this program then stores in DI. Right away we can
see something different from normal MS-DOS: the segment number is 90H, which
would never be returned by Function 48H under normal circumstances. This num-
ber 90H is a protected-mode selector. Instant-D provides a command that allows
us to see the selector’s physical base address, size, and other attributes:

>sel di
90: Llinear 1.ABFC.0, limit FFF, data, NotRefd

This data segment is located above the first megabyte of memory, at physical
address 1ABFCOH. The last legal offset within the segment (the limit) is 4095
(FFFH). One important note: if you are running on a 386 with a control program
like 386MAX or QEMM, the selector command does not display an absolute
physical address, but instead shows a linear address based on 386 paging.

In real mode, the highest possible absolute address is FFFFFH, or at best
10FFEFH if the A20 line is enabled with a utility like Microsoft’'s HIMEM.SYS. The
absolute address 1ABFCOH is way beyond the normal reach of MS-DOS.

After opening the file and calling Int 21H AH=3DH to read its contents into the
buffer, we can examine the selector again:

>sel di
90: Llinear 1.ABFC.0, Limit FFF, data

The NotRefd attribute has gone away, indicating that this block of memory

has now been accessed. We can also examine the segment directly:

>db di:0
0090:0000 = 3B 20 20 20 20 20 20 20 ;
0090:0008 = 66 69 6C 65 72 65 61 64 fileread
0090:0010 = 2E 61 73 6D OD OA 3B OD .asm ;

Thus, Int 21H Function 3FH really has read from a file into an extended-mem-
ory buffer, without us doing anything besides relinking and postprocessing.

More Than One Int 21H

The DOS/16M debugger has a command to display entries from the protected-
mode IDT:

Chapter 4 80286-based Protected-Mode DOS Extenders 123

>di 21
21: RM = OEC4'06C3, PM = 0070:076D

This shows that there are two interrupt service routines for Int 21H. The dis-
play interrupt command shows both the real-mode interrupt vector and the pro-
tected-mode interrupt gate. Instant-D uses the notation xxxx‘xxxx to indicate
real-mode addresses; xxxx:xxxx is used solely for protected-mode addresses.
Here, the real-mode vector is the same as it was before DOS/16M took over. The
protected-mode gate catches all Int 21H requests made by the protected-mode
program. Some of these are serviced entirely in protected mode, and some are
passed to the real-mode interrupt service routine (ISR).

Again, this is not all that different from the normal operation of MS-DOS. On
a normal PC with a few TSRs loaded, every time a program issues an Int 21H,
several different ISRs see it. The only difference here is that the first of these ISRs
runs in protected mode.

Under what circumstances is an Int 21H request serviced entirely in pro-
tected mode, and when is it passed down to real-mode MS-DOS?

In the case of memory allocation (AH=48H), it depends on DOS/16M’s alloca-
tion strategy, and on how much extended memory is available. If the DOS/16M
strategy is "prefer extended," and if there is sufficient extended memory, the re-
quest can be handled entirely in protected mode. On the other hand, if the
DOS/16M strategy is "force low," or if there is insufficient extended memory, the
request must be subcontracted out to real-mode MS-DOS.

For file I/O, all Int 21H requests must be passed down to MS-DOS, because
the DOS extender rightly knows nothing about the file system.

The DOS extender, however, cannot simply pass file I/O requests through to
real mode. The example FILEREAD.ASM shows why: the buffer we want to use
is located in extended memory, and MS-DOS doesn’t really know how to access
extended memory (a DOS extender just makes it look as if it did). In this pro-
gram, even the tiny string containing the filename is located in extended mem-
ory, at 19B740H:

>sel ds
88: Llinear 1.9B74.0, Limit FFFF, data

In any event, even if the physical addresses were in low memory, DOS/16M
would still have to translate the program’s protected-mode selectors into real-
mode segment numbers for MS-DOS.

124 EXTENDING DOS

When a protected-mode program requests a DOS file read (AH=3FH), on en-
trance to the DOS extender’s Int 21H handler DS:DX holds a protected-mode ad-
dress. After switching to real mode in preparation for resignaling the Int 21H, the
selector in DS must be changed to a real-mode segment number (note that it can’t
be changed while the CPU is still in protected mode, since that would involve
loading segment registers with values that are probably invalid in protected
mode). After returning from the old Int 21H, but before putting the processor
back in protected mode, DS must be restored. The offset in DX doesn’t change.
This is all that is required if DS happens to contain a selector that corresponds to
an address in the first megabyte of memory.

But if DS corresponds to extended memory, it has no simple translation to a
real-mode segment. A DOS extender maintains a buffer in low memory and,
when reading from a file, will, behind the scenes, pass the low-memory buffer to
MS-DOS for I/O, and then copy this buffer back into your extended-memory
buffer. For writing to a file, the process is reversed: the DOS extender first copies
your extended-memory buffer into low memory and then invokes the real-mode
service. Your program is unaware that this is taking place. Since this process only
occurs when extended-memory buffers are passed to real-mode services, and
since the time required for file I/O is an order of magnitude greater than that re-
quired for the memcpy (REP MOVSB), there is hardly any performance penalty.

To summarize, a DOS extender allows MS-DOS to be called from protected
mode by installing a protected-mode Int 21H handler, which does the following:

puts the CPU into real mode

performs various protected- to real-mode translations
invokes the old real-mode Int 21H

performs real- to protected-mode translation

returns to protected mode.

Real-mode MS-DOS thinks it is talking to a normal program, and a protected-
mode program thinks that MS-DOS knows how to handle its requests. The DOS
extender sits in the middle, lying out of both sides of its mouth.

An In-Depth Look at the DOS/16M Toolkit

Because it examined an assembler program, the preceding discussion failed to
answer one question: in the more realistic scenario of porting a C program to "Ex-
tended DOS," how is the real-mode output from the C compiler, particularly the
real-mode code linked in from the C standard library, made to work in protected

Chapter 4 80286-based Protected-Mode DOS Extenders 125

mode? This seems almost as magical as performing DOS calls with protected-
mode selectors to extended-memory buffers.

For the most part, a 286-based protected-mode DOS extender relies on your
existing real-mode tools: same compiler, same libraries, same linker. To explain
how real-mode .OBJ, .LIB, and .EXE files are massaged for protected mode, we
need to once more go over the three steps involved in producing the DOS/16M
version of LIST.EXE from the real-mode LIST.OBJ produced by the standard
Microsoft C compiler:

Link /noe/map \16m\preload \16m\crt0_16m \16m\pml List,list,list;
\16m\makepm Llist
\16m\splice List.exe l.'ist.e_xp \16m\loader.exe

First, we linked in some additional .OBJ modules supplied with DOS/16M.
286-based DOS extenders generally support several different programming lan-
guages and compilers. DOS/16M supports Microsoft C, Turbo C, Watcom C, Lat-
tice C, Microsoft Fortran, Zortech C++, Logitech Modula-2, as well as assembler
(which, as we've seen, requires minimal support).

In the case of Microsoft C 5.1, the DOS/16M module CRT0_16M.OB]J replaces
the default Microsoft startup code (CRT0.0BJ), and PRELOAD.OB] provides
placeholders for your program’s GDT, IDT, and other selectors. Other modules
are substitutes for the surprisingly few parts of the Microsoft function library
that would generate a GP fault in protected mode.

For example, the int86() family of functions is important to low-level PC
programming in C, but because the Intel Int instruction accepts only immediate
values (MOV AX, 5Ch followed by Int AX is illegal: you must say Int 5Ch),
Microsoft implements int86() by assembling the Int instruction while the pro-
gram is running: three bytes of code are assembled on the stack and then CALL-
ed. But this constitutes executing data, which is illegal in protected mode.

Also, when using int86x() or intdosx(), it is very easy to load a segment
register with an uninitialized segment number: in real mode, an unused bogus
value in ES doesn’t cause a problem, but in protected mode, the simple act of
loading an invalid value into ES, even if you don’t intend to use it, instantly
causes a GP fault.

For these reasons, one of the modules provided by DOS/16M replaces
Microsoft’s version of int86x() with one that works in protected mode. The re-
placement looks up the interrupt in the IDT (which in DOS/16M-based pro-
grams is always at segment 10H), pushes the interrupt handler’s address on the
stack, and does an IRET. Before loading segment registers, the int86x() and the

126 EXTENDING DOS

intdosx () functions use the Intel LAR instruction to make sure the segment regis-
ters contain valid values.

With this fix, int86x() can work in protected mode. And this is one of the
more substantial changes that a DOS extender needs to make to a real-mode C li-
brary. It illustrates the minimal changes needed to get even low-level PC code
running under a DOS extender, and is a good indication of the type of changes
you may need to make to your own code. The low-level DOS and BIOS interface
routines provided with Microsoft C 5.1, such as _dos_findfirst() and
_bios_disk(), operate in protected mode without modification.

The few DOS/16M object modules, together with real-mode libraries and
your program’s object modules, can be passed to a DOS linker such as LINK.EXE
or PLINK. |

There is one problem with DOS/16M'’s use of the DOS linker: what if your
program’s code exceeds one megabyte? DOS linkers can’t handle this much code,
except as overlays. DOS/16M therefore allows you to link a huge executable as
though it were using overlays. This is merely to make the program acceptable to
LINK; the overlay structure is flattened again by MAKEPM.

Another way to avoid the one-megabyte limitation of LINK is to use Phar
Lap’s LinkLoc, which can link programs directly for 286 protected mode. When
using LinkLoc with DOS/16M, there is no need to use MAKEPM, since LinkLoc
already assigns protected-mode selectors for addresses.

MAKEPM.EXE: A Postprocessor

If you are using the DOS linker, the next step is to run the DOS/16M MAKEPM
utility, which prepares executables for protected mode. Its screen output, shown
in Figure 4-1, shows what MAKEPM does.

The MAKEPM display says that it has relocated real-mode segment refer-
ences to protected-mode selectors. If you were to examine the file LIST.EXE be-
fore passing it to MAKEPM, you might find code such as:

4EF4:0091 CALLF 4EF4:0434

After running MAKEPM, in the file LIST.EXP, this same piece of code be-
comes:

0080:0091 CALLF 0080:0434

Chapter 4 80286-based Protected-Mode DOS Extenders 127

Using the relocation table in LISTEXE, MAKEPM locates all inter-segment
references (segment fixup locations) and, without altering the offset portion,
patches the segment to refer instead to a protected-mode selector.

Figure 4-1: MAKEPM screen output.

- I

C:\BOOK>\16m\makepm list
DO0S/16M Protected Mode Run-Time Uersion 3.69
Copyright (C> 1987,1988,1989 by Rational Systems, Inc.

MAKEPM -- Convert DOS .EXE program to Protected Mode/16MB Capability.

Reading LIST.EXE into 14 K bytes memory.
Finding segment references.

Analyzing 119 segment fixup locations.

Sorting segment references.

19 segments in use (80808 to 80890)
Relocate real mode segment references to protected mode selectors.
Uriting protected mode executable file LIST.EXP.

Stack size 888 (2848) bytes. SS == DS.

GDT max selector FFF8.

Constructing symbol table from LIST.MAP.

Sorting 137 symbols
Writing debugging information to LIST.DBG.

- /

The number 4EF4H in the real-mode executable depends entirely on where
this program is loaded in memory. Loading on a different machine, with a differ-
ent version of DOS or with a different mix of TSRs running, would result in a dif-
ferent segment number. But in the protected-mode .EXP file, the selector 0080
will never change. Selectors, remember, are logical rather than physical units. The
physical base address for the selector may well change from one run of the pro-
gram to the next, but the selector itself remains fixed. This extra level of indirec-
tion greatly eases debugging.

Since MAKEPM takes an already compiled and linked executable and trans-
forms it, it is a postprocessor, a mechanical translator.

The Microsoft linker has an option, /FARCALLTRANSLATION, which re-
lates to the operation of MAKEPM. With far-call translation, when the linker sees
an inter-segment reference in which the source and target are the same, such as:

4EF4:0091 CALLF 4EF4:0434

it is able to translate the far/long call into a near/short call:
4EF4:0091 NOP
4EF4:0092 PUSH CS

4EF4:0093 CALL 0434

128 EXTENDING DOS

This is no longer a segment fixup location, so MAKEPM has nothing to do
here. The resulting protected-mode executable runs faster since this block of code
is no longer loading a value into the CS register. Loading segment registers—
even redundantly loading them with the same values as their current value—is
expensive in protected mode, so far-call translation can be a useful protected-
mode optimization (though explicitly using the near keyword is even better).

MAKEPM has many command-line options to alter the run-time configura-
tion of a DOS/16M program. These can give a program more memory to run,
speed up its performance, or help with debugging. Recall that if we simply ran
MAKEPM on the LIST program, without any options, the resulting executable
was able to allocate 1696K of memory on a 2-megabyte Compaq 286. By tweak-
ing MAKEPM, we can get 1772K, almost another 100K:

\16m\makepm —-gdt O0x400 -buffer 2048 Llist

By default, MAKEPM creates a 64K GDT for your program. This program
doesn’t use the transparent selectors that account for much of the GDT’s size, so
we use the -gdt switch to allocate a smaller GDT, freeing up more memory for
the linked list. Furthermore, DOS/16M, by default, creates an 8K low-memory
buffer for I/O transfer with MS-DOS. A program that does a lot of file I/O would
get better performance by making the buffer larger. But our sample program
does no file I/O whatsoever, so we can reduce the buffer size. In a genuine pro-
gram, this would be a time/space trade-off.

Another MAKEPM option, -mfl, forces all memory allocation to take place in
the lower 640K. This is extremely useful if you want to port an application to pro-
tected mode solely for debugging or protection purposes. By using the -mfl op-
tion from MAKEPM, together with the DOS/16M function call D16MemStrategy
(MTransparent), and occasional calls to D16RealPtr(), you can get the advan-
tages of hardware-enforced protection, even for programs that don’t require ex-
tended memory.

SPLICE.EXE, Packages, and Transparency

In order to take the EXP file produced by MAKEPM and run it from the DOS
command line, you must use the DOS/16M SPLICE utility. In earlier releases of
DOS/16M, SPLICE merely took your protected-mode program and DOS/16M’s
kernel/loader (LOADER.EXE) and merged them. But since the kernel/loader is a
separate executable, this opened up the possibility for splicing in alternate load-
ers. For example, DOS/16M provides WINLOAD.EXE, which can be used to cre-

Chapter 4 80286-based Protected-Mode DOS Extenders 129

ate protected-mode executables for Windows/286 (they won’t load under Win-
dows/ 386, though).

SPLICE has evolved into a utility for merging several different .EXP files, to-
gether with a protected-mode loader, into one protected-mode MS-DOS execut-
able. Since DOS/16M, like other DOS extenders, does not provide concurrent
tasks, what does it mean when several different .EXP files are run together? One
of the .EXP files is your application program; the others are what Rational Sys-
tems calls packages. In addition to such add-ins as the VM and overlay managers,
packages allow transparent access to those software interrupts which are other-
wise unsupported by the DOS/16M kernel.

In order to provide transparent protected-mode access to a real-mode service,
the DOS/16M kernel must know about the service. Thus, DOS/16M knows
about the individual functions provided by Int 21H. But what if you want to use
some other real-mode service, such as the Microsoft mouse driver (Int 33H) or
NetBIOS (Int 5CH), knowledge of which is not hard-wired into the DOS/16M
kernel? You could use the DOS/16M function library to non-transparently man-
age protected- to real-mode translation each time you use the software interrupt,
but a better way would be to use the DOS/16M function library to write a sepa-
rate application, a package, which takes over the interrupt and provides other
applications transparent access to it in the same way that transparent access is
provided for Int 21H.

DOS/16M currently comes with packages for the mouse, for those Int 10H
functions not supported by the DOS/16M kernel (for example, palette manipula-
tion and character generator), and for NetBIOS.

Packages enable DOS/16M capabilities to be extended without adding over-
head to the kernel. Future releases will enable you to build your own packages,
and build applications that consist of several cooperating programs that share the
same address space. Note that packages are not linked together with your applica-
tion: they are spliced together after link-time and after MAKEPM postprocessing.
Thus, the memory model, compiler, and so on, used to build the package are ir-
relevant to your application.

DOS/16M packages are another instance of the DOS extender emphasis on,
above all, transparency. James Smith, in The IBM PC/AT Programmer’s Guide, ob-
serves that "Something is transparent if it is really there but seems not to be."
Somewhat reminiscent of early MS-DOS’s relationship to CP/M, DOS extenders
want you to have to break as few of your habits, bad or otherwise, as possible.
DOS extenders represent a clean break from the 8088, without breaking from MS-

130 EXTENDING DOS

DOS. Contrast this to OS/2, which requires a totally different programming
world view.

Both approaches—the "Extended DOS" emphasis on transparency, and the
OS/2 emphasis on making a complete break with the past—make perfect sense.

BANNER.EXE

At this point, we have this strange beast, a protected-mode executable that runs
from real-mode MS-DOS. When we start the program from the DOS command
line, it displays a brief copyright message:

C:\BOOK>Llist

DOS/16M Protected Mode Run-Time Version 3.69
Copyright (C) 1987,1988,1989 by Rational Systems, Inc.

This is useful during development so you know which version of the execut-
able you are running (though it is usually obvious: the DOS/16M version is the
one that doesn’t produce Fatal error: out of memory messages), but your users
probably don’t need to see this message. For example, Lotus 1-2-3 Release 3 does
not display this message. To turn the message off, you can use the DOS/16M
BANNER utility:

banner List off

D.EXE

Using the DOS/16M debugger with an assembler program, as we did earlier,
does not show D.EXE in its true light, since this is a source-level debugger (see
Figure 4-2). In addition to the usual features found in CodeView and Turbo De-
bugger, and the selector and display interrupt commands we’ve already used, In-
stant-D provides commands such as those shown in Table 4-1.

Table 4-1: Instant-D commands.

Command Description

absolute Display absolute physical address for selector and offset

cpu Display the MSW on 286 machines, or CR0 on 386s

files List all open files

freelist Display DOS/16M extended-memory free list

imr Display the Interrupt Mask Register

opt Set DOS/16M run-time options

snap Record top of stack to a file

where Displays absolute address, source file, and any protected-mode aliases for

a symbol

Chapter 4 80286-based Protected-Mode DOS Extenders 131

Figure 4-2: Instant-D, the DOS/16M source level debugger.

Step at _main + 7C ’ LIST.EXP - Instant-D

_main+68 _ LIST. C49]

for '(p = node: p:)
€

P = p-Onext:
nodes++;
b

printfC"\n%lu nodes\n", nodes):
printf("ExtAvail: “lu\n", D16ExtRvail(d):
printf("LouAvail: “lu\n", D16Loufvail(>):

if C(nodesZ != nodes)
printf("'<nodes2 Z1u> <nodes “lud\n", nodes2, nodes):

Instant-D .version 3.75

Copyright (C) 1987,1988,1989 by Rational Systems, Inc. 88B6
ae8e
eeo1
1792

¢ linear 4.5988.8, limit 1FF, 8898

DS= 98: linear 4.B8A2.8, limit FFFF, data 1780
ES= AB: linear 4.9721.8, limnit 1FFF, data 8898
k\»ss: 98: linear 4.B8A2.8, linit FFFF, data 179A
> 80898

Several other Instant-D commands are crucial in porting programs to pro-
tected mode. The sampler command, for instance, controls Instant-D’s built-in
performance monitoring facility. This facility can help you radically improve the
performance of your protected-mode program. The backtrace command is useful
when your program GP faults. By tracing back along the call chain, you can find
out where your program went wrong. (Instant-D also implements a visual back-
trace in which Ctrl-PgUp displays the caller’s code.)

In addition to displaying real-mode addresses as xxxx‘xxxx, and protected-
mode addresses as xxxx:xxxx, Instant-D also accepts input in this form (for exam-
ple, bp 12345678 sets a breakpoint on that real-mode address), and &xxxxxx is
used to refer to absolute addresses.

A final important feature of Instant-D is the ability to invoke it from within
your program. For example:

if (fp == NULL)
D16CallDebug("backtrace”); // how did I get here?

This programmatic interface to the debugger is such a good idea that it is sur-
prising more debuggers don’t provide it.

132 EXTENDING DOS

PMINFO.EXE and RMINFO.EXE

The DOS/16M toolkit includes a number of useful utilities that you can distrib-
ute to customer sites along with your executable.

PMINFO is somewhat like Norton’s SI, for protected mode: in addition to the
amount of extended memory available to DOS/16M programs and the memory
transfer rate, PMINFO measures the all-important protected/real switch rate—
both the maximum number of round-trip switches that occur per second, and the
number of microseconds required for one switch, broken into its real-to-protected
(up) and protected-to-real (down) components—and indicates which of several
different switch techniques DOS/16M will use on the particular machine.

Figures 4-3 and 4-4 show PMINFO output, first for an 8 MHz IBM AT, then
for a 16 MHz Compaq 386. This shows that, as mentioned earlier, an IBM AT
(286) can switch about 1,200 times per second, while a Compaq 386 can switch
over 7,000 times per second.

On a 386 computer, if Qualitas’s famous memory manager 386-to-the-Max is
loaded, PMINFO holds a surprise: the switch rate drops from over 7,000 round
trips per second, to around 2,000—not much better than a 286.

Figure 4-3: PMINFO display for an 8 MHz IBM AT.

~

//>C=\16H)pninfo
Protected Mode and Extended Memory Performance Measurement —— 3.62
Copyright 1988 by Rational Systems, Inc.

DOS memory Extended memory CPU is 8.8 MHz 808286.
640 1536 K bytes configured C(according to BIOS).
181 1535 K bytes available for D0S/16M programs.
1536 (D0S/16M mMemory range 1824K to 2560K)
2.5 1.® 2.5 (1.8 MB/sec uword transfer rate (uait states).

Ouerall cpu and memory performance (non—floating pointd for typical

DOS programs is 1.80 times and 8MHz IBM PC/AT.

Protected/Real suitch rate = 1237/sec (887 usec/suitch, 428 up + 379 doun),
using D0S/16M suitch mode 9 C(AT). //

N

Since PMINFO is itself a DOS/16M program, it can be used as a basic test of
a configuration’s ability to run your program. If PMINFO fails (possible mes-
sages include Protected mode failure, Not enough extended memory, Computer must
have 80286 or 80386 CPU, and Protected mode requires VCPI within Virtual 8086), the

Chapter 4 80286-based Protected-Mode DOS Extenders 133

solution is often extremely simple, such as getting the new VCPI-compatible ver-
sion 4.0 of CEMM (Compaq expanded-memory manager). The issue of software
incompatibilities is discussed in Chapter 8.

Figure 4-4: PMINFO display for a 16 MHz Compag 386.

//E;\Dpninfo 4\\

Protected Mode and Extended Memory Performance Measurement -- 3.72
Copyright 1988, 1989 by Rational Systems, Inc.

DOS memory Extended memory CPU is 16.0 MHz 80386.

640 1624 K bytes configured C(according to BIOS).

442 1186 K bytes available for D0S/16M programs.
3.8 (2. 3.8 (2.8 HMB/sec uord transfer rate (uait states).
7.7 2. 7.7 (2.8 HMB/sec 32-bit transfer rate (uait states).
7.6 (8.8 7.6 (8.8 MB/sec uord transfer rate [Static Columnl.
15.2 (8.8 15.2 (8.8> MB/sec 32-bit transfer rate [Static Columnl.

Cuerall cpu and memory performance (non-floating point) for typical

DOS programs is 2.75 +-.22 times an 8MHz IBM PC/AT.

Protected/Real suitch rate = 7328/sec (136 usec/suitch, 75 up + 61 doun),
\fsing DOS/16M suitch mode 3 (386). ,/

Sometimes, though, PMINFO detects a hardware incompatibility. The BIOS
in a few AT clones was designed solely for real-mode compatibility; no one was
thinking about protected mode at the time. These clones are incompatible in their
handling of the protected-to-real-mode shutdown switch as well as in their han-
dling of the A20 line, and will have the same problem running OS/2 as they have
running DOS/16M or OS/286. For DOS/16M, there is often a simple work-
around that uses SET D0S16M= in the DOS environment.

The RMINFO utility is similar to PMINFO, but stops just short of switching
into protected mode. RMINFO reports the presence of other extended-memory
users (such as VDISK, XMS, and VCPI), indicates whether DOS/16M would use
triple faulting to switch back to real mode from protected mode, indicates how
DOS/16M will handle the A20 line while switching modes, and also tells
whether any DOS/16M TSRs are loaded (DOS/16M is already running).

134 EXTENDING DOS

Isn’t there any work involved?

At this point it should be clear that most real-mode DOS code will work, as is,
under a 286-based protected-mode DOS extender. All you do is add a few extra
.OBJ modules, link, and run the executable through a mechanical translator.

The best way to port a DOS program to a 286-based DOS extender is just to do
it. Construct a new batch file or make file, link the DOS/16M-provided .OB]Js
with your present .OBJ modules, and see if it runs. This is the point at which the
typical software engineer asks, "Where’s the work?"

The likelihood is that such a simply ported program will run for a while, but
will eventually break one of protected mode’s rules, and be terminated with a
protection violation (GP fault). These rules include:

® Don’t peek or poke memory not owned by your task.
Example: * ((unsigned Long far *) 0x0000046C)

s Don’t execute data.
Example: Microsoft’s int86x()

® Don’t move data into code segments.
Example: MOV CS: foo, AX

® Don’t misuse segment registers.
Example: using ES as a scratchpad register

= Don't perform real-mode address arithmetic.
Example: pointer normalization

You now have work to do: fixing the code so that it runs in protected mode.
In practice, two areas tend to require the most work when you convert to a DOS
extender: storing data in a code segment, and performing address arithmetic.

Impure Code

Protected mode forbids storing into a code segment. Normally, this is a wonder-
ful feature: it prevents overwriting-code bugs. Furthermore, making sure that a
code segment contains only executable code (pure code) allows it to be shared by
tasks in a multitasking environment.

But what if your program deliberately stores data in a code segment?

It seems that almost any .ASM file you pick will contain at least one instance
of this. Now, using a CS: override in the source for a MOV does not cause a GP fault,
because reading from a code segment is permissible:

mov ax, cs:request

Chapter 4 80286-based Protected-Mode DOS Extenders 135

But using a CS: override in the destination for a MOV, writing into a code seg-
ment, definitely causes a GP fault:

mov cs:request, ax

Unfortunately, the use of CS as a storage area is not always so explicit. For ex-
ample, assembler that uses the SEGMENT and ASSUME directives can easily
construct "impure code" without using an explicit CS: override:

_TEXT segment public 'CODE'
assume CS:_TEXT, DS:_TEXT

mov request, ax

Code that uses the new directives, such as DOSSEG and .CODE, is less likely
to contain impure code, but is still possible:

286

dosseg

model Llarge

.code
request dw ?

start:
mov request, 1234h
end start

Fortunately, the Microsoft assembler (MASM) has an option to check for im-
pure code. If you put the .286 directive at the top of a source file, and use the op-
tion -p when you assemble, MASM locates all lines containing an impure
memory reference. Borland’s Turbo assembler (TASM) provides the same feature,
with the warning CS override in protected mode.

Having located all such places in your code, you have to ask why data is
being stored in a code segment. Often, it’s simply unnecessary, and can easily be
fixed. The previous example could be rewritten so that it works in both protected
and real mode, simply by putting the data where it belongs, in the data segment:

.286
dosseg
.model large
.data
request dw ?
.code
start:

mov request, 1234h
end start

136 EXTENDING DOS

Sometimes, however, it really does make sense to keep data in a code seg-
ment. For example, an interrupt service routine (ISR) generally must have at least
one variable accessible from CS, since this is the only segment register whose
value is known when the ISR is invoked.

The easiest way to make such code work in a DOS extender is to read the
data from the code segment with a CS: override, and write data into the code seg-
ment using an "alias" selector.

If you are at all familiar with OS/2 programming, you may know about the
function DosCreateCSAlias(), which creates a selector that points to the same
absolute address as a given data selector, but is executable.

DOS extenders also have "alias" selectors and, in addition to the function
D16SegCSALias(), the DOS/16M library (which we’ll discuss in more detail
later) also has D16SegbSAlias(), which creates a selector that points to the same
absolute address as a given code selector, but is writable. That is exactly what we
need here.

To avoid the overhead of allocating and cancelling the alias each time we
need to use it, which will probably be in an ISR, we create the alias during initial-
ization and store the alias in the segment to which the alias points. At invocation,
we read the alias out of CS:alias and then move the alias into DS (remembering,
of course, to save and restore the previous value in DS). Before exiting, we cancel
the selector.

The two DOS/16M functions used here expect to be called from a high-level
language, and have the following C prototypes:

void far *D16SegDSAlias (void (far *pm_codeptr)());
int D16SegCancel (void far *pm_dataptr);

The following example is in assembler, because while this issue has fre-
quently come up in assembler subroutines for C programs (for example, in the
Greenleaf telecommunications library), one usually has no occasion to call these
functions from C. To call the DOS/16M functions from assembler, the parameters
are pushed on the stack and cleared off afterwards:

; a.asm

.286
public _init, _subr, _fini

ifdef DOS16M
extrn _D16SegDSAlias : far
extrn _D16SegCancel : far
endif

Chapter 4 80286-based Protected-Mode DOS Extenders 137

A_TEXT segment public 'CODE'
assume CS:A_TEXT, DS:ATEXT

foo dw ? ; the data we're interested in
alias dw ? ; the alias for code segment

_init proc far
ifdef DOS16M

push bx

push A_TEXT

push 0

call far ptr _D16SegDSAlias

add sp, &4 ; alias SEG is now 1in DX
push ds remember to save DS

move alias for CS into DS
store alias sel in alias seg!
restore DS

mov ds, dx
mov alias, dx
pop ds

pop bx

Ne Ne N N N

else
push ds
mov ax, A_TEXT ; for portability, pretend we need
mov ds, ax ; an alias in real mode too
mov alias, ax
pop ds
endif
ret
init endp

_subr proc far

push ds

mov ax, cs:alias ; okay to read from CS

mov ds, ax ; put alias for CS into DS
mov foo, 1234h ; do the work!

pop ds

ret

_subr endp

_fini proc far
ifdef DOS16M
push bx
push word ptr cs:alias
push 0
call far ptr _D16SegCancel
add sp, 4
pop bx
endif
ret

138 EXTENDING DOS

_fini endp
A_TEXT ends

end

This example could be called from a C program such as the following
(though remember that subr () would probably be part of an interrupt handler):

/* c.c */
extern void init(void), subr(void), fini(void);
main()
{
int i;
initQ);
for (i=0; i<10000; i++) // simulate real work
subr();
fini();
}

For the functions D16DSALlias() and D16SegCancel (), we need to link with
the DOS/16M function library (which is provided as C source code):
if not exist \1ém\dos16lib.obj cl -AL -0x -Gs2 -c \16m\dos16lib.c
masm -ml -DDOS16M a;
cl -AL -0x -c c.c
link /noe \16m\msc5.1\preload \1é6m\msc5.1\crt0_16m c a \
\16m\msc5.1\pml \16m\dos16lib,c,c;
makepm c
splice ¢ ¢ \16m\loader.exe

Notice that the C module is unchanged for protected mode and that the over-
head of creating and cancelling the alias is confined to infrequently-called parts
of the program.

The ability to create a DS alias is not unique to DOS/16M. OS/286 has a sim-
ilar "create data window" function in its "extended segment services" (Int 21H
AX=E801H). Note, however, that in OS/286, every code selector by default comes
with its own matching data window.

Address Arithmetic

In addition to impure code, the other issue that comes up repeatedly when you
port to protected mode is address arithmetic. Aspects of real-mode address arith-
metic include adding a length to a pointer to compute the next pointer, perform-
ing a carry from the offset to the segment portion of an address, and relying on a
simple conversion from segment:offset pointers to absolute physical addresses.

Chapter 4 80286-based Protected-Mode DOS Extenders 139

Some large applications implement their own dynamic code loaders, virtual
memory managers, or overlay schemes; some object-oriented programs support
"persistent objects” which can be written out to disk and later read back in (per-
haps on a different machine). All of these use address arithmetic to perform ad-
dress relocations or fixups. When reading objects (code or data) in from disk,
pointers can be computed simply by adding an offset to a base "load address."
Pointers are stored on disk as offsets from location zero.

It is often said that protected mode forbids any form of address arithmetic.
After all, the selectors in addresses returned by malloc() are just "magic cook-
ies," bearing no relation to their underlying physical addresses.

In fact, certain forms of address manipulation are the same as in real mode,
and, should you need it, there is even the potential for a kind of protected-mode
address arithmetic.

First, the useful FP_SEG(), FP_OFF(), and MK_FP() macros all still work in 16-
bit protected mode (though they are totally different in 32-bit protected mode):

typedef unsigned WORD;

typedef unsigned Long DWORD;

typedef void far *FP;

#ifdef LVALUE

#define FP_SEG(fp) (*((WORD *)&(fp) + 1))
#define FP_OFF(fp) (*((WORD *)&(fp)))

Helse

#define FP_OFF(fp) ((WORD)(fp))

#define FP_SEG(fp) ((WORD)((DWORD)(fp) >> 16))
#endif

#define MK_FP(Ca,b) (C(FP)CC(DWORD)(a) << 16) | (b)))

For example:

extern char far *foo;
WORD sel = FP_SEG(foo0);

or:
extern WORD _psp;
struct PSP far *psp_ptr = MK_FP(_psp, 0);
Here, however, the similarity to real mode ends. For example, the following,
which uses the "LVALUE" form of the macros, makes no sense in protected mode:

FP_SEG(foo)++;

In real mode, adding 1 to a segment value describes a physical location one
paragraph (16 bytes) higher in memory, and is equivalent to adding 10H (16) to
the segment offset. In protected mode, there is no such carry from the offset into

140 EXTENDING DOS

the segment, and while adding 1 to a selector is permissible (the preceding code
does not cause a GP fault), dereferencing the resulting pointer definitely does not
produce the expected results, and on some systems (such as OS/2) even gener-
ates a protection violation.
Code written for real mode often relies on the ability to convert between a
real-mode pointer and its underlying physical address:
#define PTRTOABS(fp) (DWORD) ((FP_SEG(fp) << 4) + FP_OFF(fp))
#define ABSTOPTR(abs) (MK_FP((DWORD) (abs) >> 4, (abs) & 0x0F))
It was mentioned earlier that real-mode segments overlap, so that 0000:046¢
and 0040:006C are equivalent. To reliably compare two real-mode pointers for
equality, the pointers thus must be "normalized." The preceding macros can be
bundled together in real mode to reduce pointers to canonical form, so that their
offset is always less than 16:

#define NORMALIZE(fp) (ABSTOPTR(PTRTOABS(fp)))
#define CMP_PTR(fp1,fp2) (NORMALIZE(fp1) == NORMALIZE(fp2))
But this doesn’t make any sense in protected mode. Instead, you can think of
protected-mode pointers as already "normalized." To compare two pointers for
equality, just compare them:

#define CMP_PTR(fp1,fp2) ((fp1) == (fp2))

To see if one pointer is located within the same segment as another pointer,
real-mode code generally manipulates their underlying absolute addresses. But
since the underlying absolute address is of almost no importance in protected
mode, and since the only meaningful item you can look at is the selector, this
comparison becomes:

#define SAME_SEG(fp1,fp2) (FP_SEG(fp1) == FP_SEG(fp2))

In short, certain operations that are required in real mode because of overlap-
ping segmentation are simply unnecessary in protected mode.

How much does this buy us? A fair amount, but there is still a problem. The
MS-DOS memory-allocation function (Int 21H AH=48H) can allocate blocks of
memory larger than 64K. This function is passed the number of 16-byte para-
graphs to be allocated, and returns the initial segment of the entire block. With a
16-bit parameter, a one-megabyte block can potentially be allocated. In real
mode, this is a fiction, but in protected mode it is a very real possibility. In either
mode, with a 16-bit offset, any given segment or selector can at most address
64K. How, then, do you jump from one segment or selector to the next?

Chapter 4 80286-based Protected-Mode DOS Extenders 141

If you use your compiler’s huge model, the segment arithmetic is taken care
of for you. But programs that do their own relocations and fixups don’t use huge
model; they do the arithmetic themselves. Even some programs that do use the
slower huge model rely on the ability to convert between huge and far pointers.

An example of code that relies on the ability to jump from one memory seg-
ment to the next, using some fixed increment, is Microsoft’'s own heapwalk()
and heapchk() functions. As is, these functions do not work in a program pre-
pared for DOS/16M. But they can be made to work by linking in a tiny object
module, HDIFEOB]J, which comes from the OS/2 Microsoft C libraries, and
which is included with the DOS/16M toolkit.

So what increment is used in DOS/16M to jump from one 64K block to the
next? The following small program investigates this. It calls the Microsoft C func-
tion _dos_allocmem(), which is a C front-end to Int 21H AH=48H. The program
allocates ADOOH paragraphs (640K), and then loops 10 times, each time increment-
ing the segment portion of a pointer and printing out the base address and limit
(size - 1) of the segment. Two DOS/16M functions, D16SegLimit() and D16Abs-
Address(), are called to get this information. The program uses the FP_SEG()
macro from Microsoft’s dos.h, and prints the far pointer using the printf()
"%Fp" mask:

#include <stdio.h>
#include <dos.h>
#include "dos16.h"

main()

{
char far *fp = NULL;
unsigned seg;

_dos_allocmem(0xAQ00, &segq);
for (FP_SEG(fp)=seg; FP_SEG(fp) < seg+10; FP_SEG(fp)++)
printf("FP=%Fp LIMIT=%04X ABS_ADDR=%08lX\n",
fp, D16SegLimit(fp), D16AbsAddress(fp));
_dos_freemem(seg);
}

The output of this DOS/16M program indicates there really is a protected-
mode segment arithmetic, but that it is quite different from real mode. Even the
segment numbers themselves are different from anything seen in real mode:

FP=00B0:0000 LIMIT=FFFF ABS_ADDR=00150CFO

FP=00B1:0000 LIMIT=FFFF ABS_ADDR=00150CF0
FP=00B2:0000 LIMIT=FFFF ABS_ADDR=00150CF0

142 EXTENDING DOS

FP=00B3:0000 LIMIT=FFFF ABS_ADDR=00150CFO0
FP=00B4:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=00B5:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=00B6:0000 LIMIT=FFFF ABS_ADDR=00150CF0
FP=00B7:0000 LIMIT=FFFF ABS_ADDR=00150CFO
FP=00B8:0000 LIMIT=FFFF ABS_ADDR=00160CFO
FP=00B9:0000 LIMIT=FFFF ABS_ADDR=00160CF0
The program is able to increment the segment portion of the address using
FP_SEG(fp)++, but what does that mean? The physical address 150CFOH, first of
all, bears no relation to the segment numbers and, furthermore, doesn’t even
change until we get to segment B8H. When the absolute address does change, it
jumps by 64K.
In contrast, a real-mode version of this program might produce output some-
thing like this:
FP=4309:0000 LIMIT=0010 ABS_ADDR=00043090

FP=430A:0000 LIMIT=0010 ABS_ADDR=000430A0
FP=430B:0000 LIMIT=0010 ABS_ADDR=000430B0

FP=5309:0000 LIMIT=0010 ABS_ADDR=00053090
FP=530A:0000 LIMIT=0010 ABS_ADDR=000530A0

In real mode, adding one to the segment value takes us to the next para-
graph. Thus, there are no abrupt quantum jumps as in protected mode, but it
does require a large increment of 1000H (4096) to move from one 64K block to the
next. This just reflects the tiny address space available in real mode.

That it has taken eight segment numbers for the physical base address to
change in protected mode is no accident. This will be explained when we exam-
ine the protected-mode data structures in detail using Instant-C, but the bottom
three bits of a protected-mode selector have special meaning. To ignore these bits
we must increment a selector by 2”3, or 8. This is the minimum increment to
move from one 64K block to the next in a protected mode "huge" allocation.
While DOS/16M uses the minimum increment of 8, OS/2, for example, uses an
increment of 16.

OS/2 provides a function, DosGetHugeShift(), which returns a left-shift
count which, applied to the number 1, produces the segment-arithmetic incre-
ment. In current releases of OS/2, bosGetHugeShift() returns 4 (1 << 4 = 16).
Since DosGetHugeShift() is a "Family API" function for use in dual-mode exe-

Chapter 4 80286-based Protected-Mode DOS Extenders 143

cutables, we could write our own DOS/16M-specific version. This uses the
DOS/16M function ispm() to make sure the machine is in protected mode:
USHORT APIENTRY DosGetHugeShift(PUSHORT puShift)
{
*puShift = (_is_pm()) ?2 3 : 12;
return 0;
}

We can apply all this to the problem of address relocation. If you have real-
mode code that stores pointers on disk with something like:

extern void far *base;

DWORD disk_ptr = PTRTOABS(fp) - PTRTOABS(base);
(where base is the starting position for the workspace that is being saved to disk),
and then reads them back in with something like:

FP ptr = ABSTOPTR(base + disk_ptr);

(where base is now the new "load address") in protected mode you will instead
have to save pointers on disk in a way that preserves the distinction between the
segment and offset:

DWORD disk_ptr;

WORD huge_shift;

DosGetHugeShift(&huge_shift);

disk_ptr = MK_FP((FP_SEG(fp) - FP_SEG(base)) >> huge_shift,

FP_OFF(fp));

For example, if the base address is 00A8:0000 and we are storing the pointer
00C0:FEDC to disk, in real mode this could be stored in normalized form as
27EDCH, but in protected mode, if the huge_shift is 3, we would store 3FEDCH. To
read this back in, we would use:

FP ptr = MK_FP(FP_SEG(base) + (FP_SEG(disk_ptr) << huge_shift),
FP_OFF(disk_ptr));

If you are porting a program that does fixups or address relocation to pro-
tected mode, there are actually several possible solutions.

First, you can see if the code is still necessary under protected mode. Perhaps
you have implemented your own overlay manager. After all, you may be using
overlays or dynamic linking just to get around the DOS 640K limit. But remem-
ber, DOS/16M and OS/286 provide big memory but not virtual memory. Don’t
be too hasty to get rid of overlays, just because your computer has 4 megabytes.
Users may have only 1 or 2 megabytes. But if you know that your users will have

144 EXTENDING DOS

sufficient physical memory on their computers, you may be able to eliminate
overlays entirely. Or you may want to use DOS/16M’s overlay manager or VM
manager instead.
Second, you can avoid use of Int 21H AH=48H to allocate more than 64K at a
time. Code that performs address fixups might then require two passes, however.
Third, you can rely on the structure of protected-mode selectors and use the
"huge shift."

Limits to Transparency

Aside from real-mode coding practices that must be changed for protected mode,
a few other strictly MS-DOS programming practices might not work transpar-
ently under a DOS extender:

® using unsupported software interrupts
Example: Int 5CH(NetBIOS)
» using undocumented DOS calls
Example: Int 21H AH=52H ("get DOS pointer table")
® using unsupported absolute memory locations
Example: *((unsigned Long far *) 0x46C)

Don’t be alarmed by this list. Unsupported simply means that the DOS ex-
tender doesn’t provide transparent access. You can still do all this, but you do
have to take some extra steps.
For example, we mentioned earlier that if the sample program LIST.C had
been coded slightly differently, it could have caused a protection violation. In-
stead of calling the C time() function, the code could have slightly more effi-
ciently—and considerably less portably—peeked at the BIOS data location 46CH:
#define TICKS() *((unsigned Long far *) Ox46c¢) // 0000:046C
#define SECONDS() (TICKS() / 18)

/1l ...
unsigned Long t1 = SECONDS();

If a program executes this code in protected mode, it is terminated with a GP
fault (Int ODH):

C:\BOOK>Llist
DOS/16M Protected Mode Run-Time Version 3.73
Copyright (C) 1987,1988,1989 by Rational Systems, Inc.

DOS/16M: Unexpected~Interrupt=0000 at 0088:0049
code=0000 ss=00A0 ds=00A0 es=0000
ax=0200 bx=046C cx=0012 dx=001A sp=1A48 bp=1A76 si=0082 di=1AAD

Chapter 4 80286-based Protected-Mode DOS Extenders 145

In the register dump, ES:BX is 0000:046CH. The CPU generated a GP fault
when we tried to dereference this pointer. DOS/16M’s Int ODH handler caught
the fault and shut down the application, just as OS/2 would do (OS/2 displays a
similar register dump when an application GP faults). Note that even in the event
of extremely serious bugs, the program does not crash or hang the machine; it
exits cleanly back to the operating system.

Protected mode forbids you to peek or poke any memory not owned by your
task. So how do you examine well-known memory locations on the PC? We saw
earlier that DOS/16M provides a large number of "transparent” selectors where,
for example, protected-mode selector B80OOH corresponds to real-mode segment
B80OH. These transparent selectors are mapped into your task’s address space, so
you can freely peek or poke their corresponding absolute physical addresses.

Why, then, didn’t peeking at 46 CH work? Apparently, selector 0 is not a trans-
parent selector. Under Instant-D, the debugger displays this message:

Interrupt OD is a general protection exception.
Null selector.

In protected mode, any selector < 8 references descriptor zero in either the
GDT or LDT, and is considered the null selector. Any number less than eight
(usually zero) can be loaded into a segment register, but attempting to derefer-
ence the resulting pointer causes a GP fault. This way, protected mode provides
support for the high-level language concept of a null pointer. But this also means
that selector 0 can’t be used as a transparent selector to the 64K starting at mem-
ory location zero.

This is not such a big loss. There is no point in directly reading the low-mem-
ory real-mode interrupt vector table in protected mode. And the next block of
memory, the BIOS data area beginning at paragraph 40H, is transparently han-
dled by DOS/16M selector 40H.

By using "pointer normalization" on the real-mode address (which is illegal
for a protected-mode address), we can access the tick count through selector 40H
instead of illegally trying to dereference selector 0:

#define TICKS() *((unsigned long far *) 0x40006CL) // 0040:006C
#define SECONDS() (TICKS() / 18)

/! ...
unsigned long t1 = SECONDS();

Now it works. And this code works just as well in real mode, so it doesn’t re-
quire #ifdef DOST6M.

146 EXTENDING DOS

The same principle applies in assembler. For example, to check if any key has
been pressed, on a PC you might say:

xor bx, bx
mov es, bx
mov ax, es:[41Ah]
cmp ax, es:L[41Chl

But in order to run under DOS/16M also, this must be changed to:

mov bx, 40h
mov es, bx
mov ax, es:[1Ahl]
cmp ax, es:[1Ch1]

While this change isn’t necessarily portable to other DOS extenders (Eclipse’s
0S/286, for instance, does not provide selector 40H as a built-in transparent se-
lector), all DOS extenders do provide some mechanism for creating a protected-
mode selector and setting its physical base address. While the resulting selector is
not transparent, it does provide access to a location in memory. In DOS/16M,
you would use the functions D16ProtectedPtr() or D16SegAbsolute(), and in
0S/286 you would use the "extended segment service" Int 21H AX=E803H ("create
real window"), which we will use when we talk more about OS/286. In the above
example, the selector returned from this service would then be used rather than
the constant 40H.

In keeping with known rules of software engineering, you will probably
spend 95 percent of your time porting a few lines of code to protected mode,
while the vast majority of the code will take no time at all.

Bugs!

One other item must be added to the list of things that could cause a DOS pro-
gram to GP fault in protected mode: code that ought never to have worked in the
real-mode version of your program, but somehow did.

For example, if you run the following tiny program in real mode and forget
the command-line argument, it prints out a zero:

/* BAD.C */
#include <stdlib.h>
#include <stdio.h>
main(int argc, char *argv[1)
{
printf("%d\n", atoiCargvL11));
}

Chapter 4 80286-based Protected-Mode DOS Extenders

147

C:\B0OOK>bad 100
100

C:\BOOK>bad

0

But in protected mode, forgetting the command-line argument causes a pro-
tection violation:

C:\B00OK>bad
DOS/16M Protected Mode Run-Time Version 3.73
Copyright (C) 1987,1988,1989 by Rational Systems,Inc.

DO0S/16M: Unexpected Interrupt=000D at 0080:12EC
code=0000 ss=00A0 ds=0000 es=00A0
ax=0000 bx=0000 cx=0012 dx=0000 sp=17A0 bp=17AC si=0000 di=17

The protected-mode response is actually the correct one. In real mode, the
program works by accident. There is almost a magical quality to real mode: prac-
tically nothing is illegal, so almost any operation does something and conse-
quently many things work even though they ought not to. In protected mode,
fewer operations are legal. This is a case where limitations and restrictions actu-
ally help by hindering.

DOS/16M or OS/2 versions of a program often flush out problems. Whereas
the behavior of a buggy real-mode program often depends on the current con-
tents of uninitialized memory, a protected-mode program usually does not ex-
hibit such seemingly nondeterministic behavior.

#ifdef DOS16M: The DOS/16M Library

The DOS/16M library provides a small but powerful set of functions for memory
management and interrupt handling in protected mode, and is provided in
source form (DOS16LIB.C and DOS16.H) along with DOS/16M and Instant-C.
Functions that make up the library are shown below:

Access Protected-Mode Selectors

D16AbsAddress Return absolute address of protected-mode pointer
D16GetAccess Return access-rights byte of protected-mode pointer
D16SegLimit Return limit of protected-mode pointer

Allocate Protected-Mode Selectors

D16ProtectedPtr Create protected-mode pointer from real-mode pointer
D16RealPtr Create real-mode pointer from protected-mode pointer

148 EXTENDING DOS

D16SegAbsolute
D16SegCSAlias
D16SegDSAlias
D16SegDataPtr
D16SegTransparent
D16MemAlloc
D16HugeAlloc

Create protected-mode selector for absolute address
Create executable alias, e.g., for data segment

Create read / write data alias, e.g., for code segment
Create data selector, base is offset of another pointer
Create transparent selector to real-mode segment
Allocate a data segment

Huge-model allocator; can allocate blocks > 1 megabyte

Alter Protected-Mode Selectors

D16SegProtect
D16SegRealloc
D16SegResize
D16HugeResize
D16SetAccess
D16SegCancel
D16MemFree
D16MemStrategy

Query Functions

D16ExtAvail
D16LowAvail
D16isDOS16M
_is_pm

Interrupt Handling

D16IntTransparent
D16Passdown
D16Passup
D16pmGetVector
D16pminstall
D16rmGetVector
D16rmInstall
_intflag

Calling Real-mode Code

D16rminterrupt
D16rmRCall

Set segment to be read-only or read / write

Set segment allocation to current strategy

Set segment size

Huge-model reallocator

Set selector access-rights byte

Cancel a protected-mode selector

Free a protected-mode segment and cancel its selector
Set memory-allocation strategy, e.g., MTransparent

Return bytes of extended memory available
Return bytes of DOS-managed memory available
Return true if running under DOS/16M

Return true if CPU in protected mode

Install protected-mode BIOS interrupt handlers

Set protected-mode interrupt to resignal in real mode
Set real-mode interrupt to resignal in protected mode
Get protected-mode interrupt vector

Set protected-mode interrupt vector

Get real-mode interrupt vector

Set real-mode interrupt vector

Set CPU interrupt-enabled flag

Real-mode interrupt, set real-mode segment registers
Real-mode far call, set real-mode segment registers

Chapter 4 80286-based Protected-Mode DOS Extenders 149

Miscellaneous

D16MoveStack Switch location of the CPU stack

D16ToReal Switch CPU to real mode

D16ToProtected Switch CPU to protected mode

D16SelReserve Reserve selectors to be used for D16HugeResize
D16TermFunction Install callback function for program termination
D16CallDebug Programmatic interface to Instant-D debugger

Some of these functions are similar to functionality provided at different lev-
els in OS/2. D16SegCSALias, which creates an executable (CS) alias selector for a
data segment, is similar to OS/2’s DosCreateCSAlias. D16SegAbsolute, which
can map any absolute physical address into the user’s address space, is like a
more powerful version of OS/2’s VioGetPhysBuf (which is limited to addresses
from AOOOOH to BFFFFH). Whereas only OS/2 device drivers are allowed total ac-
cess to the entire range of absolute addresses (via the PhysToUVirt DevHlp),
under DOS/16M, any "normal" application can call D16SegAbsolute.

The DOS/16M interrupt-handling functions are most useful when you write
real-mode ISRs. In a DOS extender, Int 21H AH=25H and AH=35H work with pro-
tected-mode ISRs, so DOS code that installs, for example, a divide-by-zero inter-
rupt handler or a critical error handler, does not have to be changed.
Furthermore, DOS/16M classifies most real-mode interrupts as "auto-passup," so
they are automatically resignaled in protected mode. To establish real-mode in-
terrupt handlers that do not cause a mode switch (this is what you would need in
the case mentioned earlier of 9600 baud asynch communications on an IBM AT),
you need D16rmInstall() and D1é6rmGetVector(). The functions D16pm-
Install() and D16pmGetVector() are in most cases identical to protected-mode
Int 21H AH=25H and AH=35H, except that the DOS/16M functions are useful when
installing interrupt handlers for processor exceptions such as Int ODH, the GP
fault (see "Stalking GP Faults," Part 1, Dr. Dobb’s Journal, January 1990).

Many of the DOS/16M functions allocate selectors in the GDT. For example,
D16SegAbsolute does not allocate any memory, but it must use a selector.
DOS/16M sets the selector’s base address to point to an absolute memory loca-
tion. Likewise, D16SegCSALias must allocate a selector: DOS/16M copies a data
segment’s selector into the new selector, and then changes the new selector’s ac-
cess-rights byte so that it is executable.

While protected mode on a 286 offers a large address space, the descriptor ta-
bles are themselves just data segments and can therefore be no larger than 64K in

150 EXTENDING DOS

16-bit protected mode. Consequently, selectors are a limited resource. You must
therefore be prepared for calls like D16SegCSALias and D16SegAbsolute to fail.

Some of these functions are used in the following program, NB.C, which tests
whether NetBIOS (a semi-portable network communications protocol) is loaded.
NetBIOS (1nt 5CH) is a typical real-mode service for which DOS extenders do not
provide transparent access. The function netbios_loaded() places an invalid
command in a NetBIOS control block (NCB), puts the address of the NCB in
ES:BX, and generates Int 5CH. On return from Int 5CH, if the retcode field in the
NCB is set to ERROR_INVALID_COMMAND, NetBIOS is present.

Since NetBIOS runs in real mode, the address expected in ES:BX must be a
real-mode address. The protected-mode version of NB.EXE can’t simply allocate
an NCB and put its address in ES:BX. Instead, the NCB must be allocated in low
memory and, when Int 5CH is resignaled in real-mode, ES must contain a real-
mode segment.

Under DOS/16M, NB.C tries to allocate a "transparent” selector and, failing
that, tries to allocate a low-memory selector. Fields of the NCB are set and tested
using the protected-mode pointer, but its real-mode equivalent is passed to Net-
BIOS. Since the Int instruction in protected mode invokes a protected-mode in-
terrupt, and since DOS/16M installs protected-mode handlers for only the most
important interrupts, NB.C uses dD16rmInterrupt(), which invokes a real-mode
interrupt, and sets the real-mode segment registers:

/*
NB.C —-- test for presence of NetBIOS

MSC 5.1:
cl -AL -0x nb.c

DOS/16M:
cl -AL -DDOS16M -c -Zi nb.c
link preload crt0_16m pml nb dos16lib /map/noe/co,nb;
makepm nb
splice nb nb

DOS/16M with NETBIOS package:
; with packages, don't compile with -DD0S16M
cl -AL -c¢ -Zi nb.c
link \16m\preload \16m\crt0_16m \16m\pml nb /map/noe/co,nb;
makepm nb
splice nb.exe \1ém\packages\net5c.exp nb.exp \16m\loader.exe

Instant-C:

Chapter 4 80286-based Protected-Mode DOS Extenders 151

_CodeView = 1;
_struct_alignment = 1;
#idefineg DOS16M
#load dos16lib.c
#load nb.c
#run

*/

#if ! defined(M_I86CM) && ! defined(MI_86LM)
#error "Requires large data pointers”
#lendif

#pragma pack(1)

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
#ifdef DOS16M
#include "dos16.h"
#endif

typedef enum { preferext, preferlow, extended, low, transparent
} STRATEGY;

typedef enum { FALSE, TRUE } BOOL;

typedef unsigned char BYTE;

typedef char far *FP;

typedef unsigned WORD;

typedef unsigned lLong DWORD;

#define MK_FP(seg,ofs) ((FP)(((DWORD)(seg) << 16) | (ofs)))

typedef struct {
BYTE command, retcode, Llsn, num;
FP buffer;
WORD Llen;
BYTE callnameL16]1, namel161];
BYTE rto, sto;
FP postrtn;
BYTE lananum, cmdcplt;
BYTE reserved[14];

} NCB;
#define NETBIOS_INT 0x5¢C
#define INVALID_COMMAND Ox7F
#define ERROR_INVALID_COMMAND 0x03

BOOL netbios_loaded(void);
void netbios_request(NCB far *ncb);

152 EXTENDING DOS

FP alloc(WORD size, STRATEGY strat);
void dealloc(FP fp);
FP getvect(WORD intno);

BOOL trans = TRUE;

void fail(char *s) { puts(s); exit(1); 2}

main()

{

}

BOOL net = netbios_Lloaded();
puts(net ? "NetBIOS loaded" : "NetBIOS not loaded");
return !'net; // MS-DOS ERRORLEVEL 0 = success

BOOL netbios_LlLoaded(void)

{

}

if (! getvect(NETBIOS_INT))
return FALSE;
else
{
BOOL ret;
NCB far *ncb = (NCB far *) alloc(sizeof(NCB), transparent);
if (ncb == NULL)

{
if ((ncb = (NCB far *) alloc(sizeof(NCB), Llow)) == NULL)
fail("cannot allocate lLow-memory pointer");
else
trans = FALSE;
}

ncb->command = INVALID_COMMAND;
netbios_request(ncb);

ret = (ncb->retcode == ERROR_INVALID_COMMAND);
dealloc((FP) ncb);

return ret;

void netbios_request(NCB far *ncb)

{

#ifdef DOS16M

NCB far *real_ncb = (trans) ? ncb : D16RealPtr(ncb);

D16REGS r;

r.es = FP_SEG(real_ncb);

r.bx = FP_OFF(real_ncb);

/* signal interrupt in real mode, set real-mode segment regs */
D16rmInterrupt (NETBIOS_INT, &r, &r);

#else

Chapter 4 80286-based Protected-Mode DOS Extenders 153

union REGS r;

struct SREGS s;

s.es = FP_SEG(ncb);

r.x.bx = FP_OFF(ncb);

int86x (NETBIOS_INT, &r, &r, &s);
#endif
}

/* INT 21H AH=35H in pmode returns pmode interrupt vector */
/* to get real-mode vector, call D16rmGetVector */
FP getvect(WORD intno)
{
#ifdef DOS16M
INTVECT iv;
return D16rmGetVector(intno, &iv) ? MK_FP(iv.sel, iv.off) : (FP) O;
#else
return _dos_getvect(intno);
#endif
}

FP alloc(WORD size, STRATEGY strat)

{

#ifdef DOS16M
STRATEGY old = D16MemStrategy(strat); /* set allocation strategy */
FP fp = D16MemAlloc(size); /* can't use calloc here! */
/* can't use calloc, but must zero out structure */
/* could also use MAKEPM -INITO0 option */
if (fp) memset(fp, 0, sizeof(NCB)); /* large-model memset */
D16MemStrategy(old); /* restore previous strategy */
return fp;

#Helse
return calloc(1, size);

#endif

}

#ifdef DOS16M
void dealloc(FP fp) { D16MemFree(fp); }
#else
void dealloc(FP fp) { free(fp); }
#endif

There is no single DOS/16M call to allocate out of low memory. Instead, you
first call D16MemStrategy() to set the DOS/16M memory-allocation strategy,
then allocate memory, and then restore the previous allocation strategy. To move
a block of memory from, for example, extended to low memory, call b16Mem-
Strategy(), then call D16SegRealloc(), which compares the segment’s alloca-

154 EXTENDING DOS

tion with the current strategy. The DOS/16M allocation strategies are prefer-ex-
tended, prefer-low, force-extended, force-low, transparent, and transparent-stack.

Note that after setting the strategy, NB.C does not call C memory manage-
ment routines such as malloc() or calloc(). These functions allocate out of
pools of storage, and are not affected by the DOS/16M allocation strategy until
the next time they happen to call DOS to add to their pools. To guarantee that al-
location requests reflect the current strategy, D16MemALLloc () is called instead.

While NB.C manages to isolate the differences between real and protected
modes inside subroutines like netbios_request() and alloc(), clearly this
code is nonetheless heavily dependent on DOS/16M.

This same code can run under DOS/16M, without explicitly using the
DOS/16M library, and without any #ifdef D0S16M code. All we do is splice in
the NET5C package supplied with DOS/16M:

splice nb.exe packages\net5c.exp nb.exp

While packages provide an elegant way to completely isolate changes for
protected mode, packages themselves must be written using the DOS/16M li-
brary, so they don’t eliminate the need to know about the DOS/16M functions.
Behind the scenes, the NET5C.EXP package uses D16pmInstall() to install a
protected-mode interrupt handler for Int 5CH, and to install a handler for Net-
BIOS "post" (asynchronous callback) routines. The Int 5CH handler itself uses
such DOS/16M routines as D16RealPtr() and D16rmInterrupt(). The result is
that Int 5CH is handled almost as transparently as is Int 21H.

In addition to using the NET5C package, the header to NB.C indicates yet an-
other way to run the program in protected mode: using the Instant-C develop-
ment environment. All the DOS/16M functions can be called from within
Instant-C, and, as we will see later on, Instant-C provides an excellent environ-
ment in which to work with the DOS/16M library and explore protected-mode C
programming in general.

0S/286 and the Two-Machine Model

It is important that we look at another DOS extender: OS/286, from Eclipse Com-
puter Solutions, formerly A. I. Architects. Most code ported to DOS/16M also
runs under OS/286, but there are a number of important differences between the
two products.

Whereas Rational Systems’ first product was Instant-C, and DOS/16M was
an outgrowth of this work, A. I. Architects started out as a hardware company,

Chapter 4 80286-based Protected-Mode DOS Extenders 155

making the HummingBoard, a 386 protected-mode coprocessor for PCs. The
best-known client for the HummingBoard is Gold Hill, makers of LISP systems
for the PC. Unlike other 386 accelerator boards that replace the PC’s CPU, the
HummingBoard is used in addition to the native CPU, much like a math or graph-
ics coprocessor.

This experience with running a protected-mode processor alongside an exist-
ing real-mode processor is the basis for Eclipse’s DOS extender products. Even
when OS/286 runs on a single processor, switching it between real and protected
mode, the OS/286 model is: DOS extender as coprocessor.

One of the OS/286 architects, Fred Hewett, explained this in a paper, "DOS
Extenders and the Two-Machine Model":

It is useful to think of the 286 (or 386) as two distinct microprocessors
sharing a single package. The core of a DOS extender is a communication
system between the two machines. . . . Interestingly, in the initial implemen-
tation of OS/x86, the real-mode processor and the protected-mode proces-
sor were physically different chips. The real-mode chip was the 80x86 of a
PC, and the protected-mode processor was a 386 on an add-in card. The ar-
chitecture of OS/x86, which began with a true two-processor mode, reflects
the dual nature of the 286 and 386 processors.

In this model, the real-mode machine is used for I/O and user interface,
while the protected-mode machine is used for memory and task management.

The two machines communicate via "real procedure calls" (RPC), a name in-
tentionally similar to the "remote procedure calls" used in networking. The ma-
chines do not share address space, even when inhabiting the same processor:
we’ve seen several times that protected-mode selectors have no meaning in real
mode, and that real-mode segment values have no meaning in protected mode.
(Transparent or bimodal selectors only look like an exception to this rule.) Since
the real- and protected-mode address spaces are disjoint, the two modes can be
viewed as a very local area network. Pointers cannot be shared between the two
modes, any more than they can be shared between two nodes on a network; com-
munication must be by value, not by reference. Thus, RPC is an excellent model
for the address translation performed by a DOS extender.

But aside from having a perhaps more thought-out philosophical outlook on
DOS extenders than does DOS/16M, how does the two-machine model of
0OS/286 relate to actual differences between the two products?

156 EXTENDING DOS

In some ways, of course, it doesn’t. When implemented on a single processor,
for example, OS/286’s RPC is no different from DOS/16M’s interrupt chaining
with a mode switch. Interrupts are used for inter-mode communication.

At least one crucial respect of OS/286 differs substantially from DOS/16M:
OS/286 maintains a rigid separation between your protected-mode application
on the one hand, and the OS/286 kernel on the other. We've already seen that
DOS/16M runs your application at the same protection level as the kernel (Ring
0), and that DOS/16M uses the GDT, rather than an LDT, for your application’s
selectors. In contrast, the OS/286 kernel uses the GDT and runs in Ring 0, while
your task has its own LDT and runs in Ring 3.

In a multitasking operating system such as OS/2, the distinction between the
kernel on the one hand and applications on the other is crucial. But what about in
the world of DOS extenders, where only one task is running, and where the ker-
nel exists largely in order to run this one task? Is the distinction between kernel
and task still useful?

Several trade-offs are inherent in OS/286’s use of Ring 3 and the LDT. Be-
cause of the decision to use Ring 3 for applications and Ring 0 for the kernel,
some operations involved with interrupt handling become more difficult or more
time-consuming for DOS applications ported to protected mode. In an informal
test, a program generated 200,000 software interrupts in 23 seconds in real mode,
32 seconds under DOS/16M, and 51 seconds under OS/286.

0OS/286 is much closer to the architecture of a genuine protected-mode oper-
ating system such as OS/2, while DOS/16M is much closer to DOS. (Even the
names reflect this.) While porting to OS/286 probably involves more work than
porting to DOS/16M, you might find that it puts you closer to the goal of OS/2
compatibility (if that is, in fact, your goal). While not an OS, OS/286 has more of
a bona fide kernel than DOS/16M.

Still, this helps explain why OS/286 is generally less convenient to work with
than DOS/16M, and why it is larger and a bit slower: OS/286 has "more architec-
ture" than DOS/16M. There are also all sorts of issues involving privilege transi-
tions, gates, and the protected-mode TSS, all of which are important, but none
that we need to discuss here.

Another aspect of OS/286's clear demarcation between kernel and applica-
tion is that the OS/286 kernel is loaded as a separate TSR. OS/286 is a little more
akin to an environment than is DOS/16M. Before running OS/286 executables,
one first runs the O5286.EXE TSR. This can be bound into OS/286 executables,
but they then become extremely large. Once the kernel has been installed, execut-

Chapter 4 80286-based Protected-Mode DOS Extenders 157

ables can be run using a loader called UP.EXE, or by running a bound executable
which includes UP.EXE, or by using a custom loader. The OS/286 manual de-
votes an entire chapter to writing your own loader, which can communicate with
the OS/286 kernel. Finally, OS/286 comes with a combined command processor
and debugger, CP, which runs under the kernel, and which can load and run both
real-mode and protected-mode executables.

This brings up one interesting benefit to OS/286's architecture. Because
0S/286 uses the LDT, the DOS EXEC function in OS/286 (Int 21H AH=4BH) is able
to spawn protected-mode .EXP files: the kernel owns the GDT, each task gets its
own LDT, and parent and child tasks can share selectors in the GDT. In contrast,
DOS/16M, which uses the GDT for everything, has less opportunity for handling
more than one protected-mode task.

0S/286 does not support full multitasking, however. Instead, it just supports
"task management” a la MS-DOS, where:a parent can spawn a child task but
must wait for it to complete.

Of course, DOS also has an unofficial form of multitasking: the TSR.
DOS/16M supports Int 21H AH=31H ("terminate and stay resident") in protected
mode, allowing you to write protected-mode TSRs. While every DOS/16M task
gets its own loader and GDT, there is also limited communication between
DOS/16M tasks using Int 15H. OS/286 also allows you to create protected-mode
TSRs, but Int 21H AH=31H can only be called from a custom version of the loader.
Again we see various trade-offs between the two DOS extender architectures.

Another important difference is that whereas Rational Systems currently only
produces a 286-based product, Eclipse produces not only OS/286, but also
0S/386 and OS/386 HB (HummingBoard)—see Chapter 5 for more information.
The compatibility between these products is very high. All share the same man-
ual. The OS/286 API is directly based on OS/386, and in fact the functions
needed to write your own loader bear such names as 05386_Get_GDT() and
05386_Create_Task(), even when used in OS/286. The Eclipse extensions to
DOS were designed around 32-bit values. While each Eclipse product has its own
kernel (OS286.EXE versus OS386.EXE), the tools that communicate with each
kernel are identical. Thus, EXPRESS.EXE, CP.EXE, and UP.EXE in OS/286 are
identical to the versions included with OS/386. This is a major advantage to
keeping the kernel separate from utilities that talk directly to your application.

At this point, we had better discuss these utilities. Just as we did with
DOS/16M, to take the LIST program and prepare it for OS/286, we can start with
the same LIST.OBJ as in real mode. The next steps are:

158 EXTENDING DOS

Link /noe/map Llist,list,list,\0os286\llibce;
\os286\express Llist
\os286\bind -o list.exe -L \os286\tinyup.exe \
-k \os286\o0s286.exe -i Llist.exp

Whereas DOS/16M provides loose .OB] modules for you to link in with your
application, OS/286, during installation, makes a copy of your real-mode library
and adds in its .OBJ modules. To link, you simply specify this .LIB rather than
use the one that came with the compiler.

An important point is that the resulting executable will still run in real mode.
The OS/286 .OB] modules simply correct flaws in the real-mode library, but
don’t otherwise tie it to protected mode or to OS/286. In contrast, some of the
DOS/16M .OBJ modules prevent the executable from running in real mode, be-
cause the LINK output is just meant as preparation for MAKEPM.

At this stage, whereas for DOS/16M you run the MAKEPM utility, for
0S/286 you run EXPRESS. EXPRESS takes a well-behaved DOS application and
its MAP file and, like MAKEPM, translates segments to selectors, producing an
.EXP file. So the sole job of the OS/286 replacement .OBJ modules is to make a
DOS executable well behaved. Some compiler libraries (for example, MetaWare
High C) don’t require patching; Microsoft C appears to be the most ill-behaved,
as it requires the most patches.

While OS/286, DOS/16M, and 32-bit DOS extenders all produce protected-
mode executables with an .EXP extension, this extension is about all the files
have in common. There is unfortunately no common protected-mode executable
file format.

The .EXP file produced by EXPRESS can, as stated earlier, be run in several
ways. The OS/286 equivalent of SPLICE is the BIND utility, which must be pur-
chased separately from Eclipse.

The OS/286 API has two levels. One, already mentioned, allows you to write
custom loaders by communicating with the Eclipse kernel. As noted earlier,
while bearing the prefix "OS386_," these are also used in OS/286, and include:

Initializing and Loading

0S386_Init_Machine Boot protected mode
0S386_Create_Task Load a task

Real Procedures and Signals
0S386_Declare_RPC Assign ASCIIZ name to real-mode procedure

Chapter 4

80286-based Protected-Mode DOS Extenders 159

0S386_Delete_ RPC
0S386_Generate_Signal

Information Services

05386_Get_Exit_Code
05386_Get_Protected_Machine
05386_Get_GDT
0S386_Get_LDT
05386_Get_Segment_Info
05386_Get_Task_ID
05386_Get_Version

Debugging Calls

0S386_Read_Mem
05386_Write_Mem
0S386_Step_Task
05386_Task_Control

Remove a real-mode procedure
Call real-mode procedure from protected mode

Get exit code

Get processor type

Get Global Descriptor Table selector
Get Local Descriptor Table selector
Look at descriptor

Get a task ID

Get OS/x86 version

Read protected memory

Write protected memory

Step task

Step, suspend, start, or kill task

The other level has roughly the same functionality as the DOS/16M library,
though it uses the Int 21H interface rather than the C language far-call interface
used by the DOS/16M library. The Eclipse extensions to Int 21H include:

Real Procedure Calls

AH=EOH
AH=EIH

Initialize real procedure
Issue real procedure call

Interrupts, Heap Management, and Signals

AH=E2H
AH=E3H
AH=E4H AL=00H
AH=E4H AL=02H
AH=E4H AL=03H
AH=E5H AL=00H
AH=E5H AL=01H
AH=E6H

Extended Segment Services

AH=E7H
AH=ES8H AL=00H

Set real procedure signal handler

Issue real interrupt

Chain to real-mode handler

Set protected-mode task gate

Remove protected-mode task gate

Heap management strategy

Force heap compaction

Issue real procedure signal from protected mode

Create code segment
Create data segment

160 EXTENDING DOS

AH=ES8H AL=01H Create data window/alias

AH=E8H AL=02H Create real segment

AH=ES8H AL=03H Create real window/alias

AH=E8H AH=06H Create shareable segment

AH=E9H AL=01H,02H Change segment parameters (code/data)
AH=E9H AL=05H Change segment parameters (adjust limit)
AH=FE9H AL=06H Change segment parameters (base address)
AH=EAH Allocate multiple windows (huge segments)
AH=ECH Block transfer

AH=EDH Get segment or window descriptor

Some of these calls are used in the following modifications to the program
NB.C, which allocated a low-memory protected-mode selector (possibly a trans-
parent one) and issued a real-mode Int 5CH, to test if NetBIOS is present. The

upper half of the program is unchanged; only the alterations for OS/286 are
shown here:

#ifdef 05286

/* given protected-mode pointer, returns physical base address */
DWORD prot2abs(FP fp)

{
union REGS r;
r.h.ah = OxED; /* "get segment or window information" */
r.h.al = 0x02; /* real segment */
r.x.bx = FP_SEG(fp);
intdos(&r, &r);
return (r.x.cflag) ? OL : (DWORD) MK_FP(r.x.si, r.x.bx);
)
#endif

void netbios_request(NCB far *ncb)
{
#ifdef 0S286
typedef struct { WORD ax,bx,cx,dx,flags,si,di,ds,es; } MACHINE_STATE;
MACHINE_STATE state, *pstate = &state;
union REGS r;
struct SREGS s;
DWORD absaddr;

segread(&s);

r.h.ah = 0xE3; /* "issue real interrupt" */
r.h.al = NETBIOS_INT; /* interrupt number */
r.x.dx = FP_OFF(pstate);

s.ds = FP_SEG(pstate);

r.x.bx = 0; /* don't need any return registers */
/* now set up registers for real-mode interrupt */

absaddr = prot2abs(ncb);

Chapter 4 80286-based Protected-Mode DOS Extenders 161

state.es = absaddr >> 4;

state.bx = absaddr & OxOF;
intdosx(&r, &r, &s);
#endif
)
FP getvect(WORD intno)
{
/* okay for 0S/286: returns address of protected-mode surrogate */
return _dos_getvect(intno);
}

FP alloc(WORD size, STRATEGY strat)
{
#ifdef 05286
union REGS r;
r.x.cx = 0;
r.x.dx = size;
/* use "extended segment service":
either '"create real segment” or "create data segment" */

if (strat == Llow) r.x.ax = OxE802;
else if (strat == extended) r.x.ax = 0xE800;
else return (FP) 0; /* not supported */

intdos(&r, &r);

return (r.x.cflag) ? (FP) 0 : MK_FP(r.x.ax, 0);
#endif
}

#ifdef 05286

/* use standard DOS call, even for segments allocated with
"extended segment services" */

void dealloc(FP fp) { _dos_freemem(FP_SEG(fp)); }

#endif

As with DOS/16M, we test for the presence of NetBIOS by putting an invalid
command in a NetBIOS control block (NCB). This control block must be in low
memory, because NetBIOS runs in real mode. The function alloc() uses an
0S/286 "extended segment service" to allocate a segment whose physical base
address is in low memory. After setting up the low-memory NCB using the pro-
tected-mode pointer, the function netbios_request() is called to put the real-
mode address of the NCB in ES:BX, switch to real mode, issue an Int 5CH, and
switch back to protected mode. To do this in DOS/16M, we called D16rm—
Interrupt(). In OS/286, we use the "issue real interrupt" service. This expects
the address of a MACHINE_STATE block in DS:DX. The fields of the MACHINE_STATE
block hold register values destined for real mode. To get the real-mode address of

162 EXTENDING DOS

the NCB to place in the ES:BX fields of the MACHINE_STATE block, we call the
function prot2abs() which, in turn, uses the OS/286 "get segment or window
information" service. Finally, we deallocate the low-memory segment using the
Microsoft C _dos_freemem() call, which performs an Int 21H AH=49H.
Once this is substituted for the #ifdef D0S16M sections of NB.C, the program
can be prepared for OS/286 with the following commands:
cl -AL -0x -G2 -c -D0S286 nb.c

Llink /map nb,nb,nb,\0s286\Lllibce.lib;
express nb

Lattice C and "Extended Family Mode"

It is also important to mention OS/286’s forthcoming inclusion in the Lattice
80286 C Development System. OS/286 is already bundled with a number of
other languages, including Gold Hill Lisp and Lahey Fortran.

Lattice will be using the DOS extender as part of its "Extended Family Mode"
for portability between MS-DOS and OS/2. Microsoft has dubbed a small subset
of the OS/2 API the "Family API": OS/2 API functions that can be called under
either OS/2 or MS-DOS. Lattice is using the larger address space available under
the OS/286 DOS extender to extend the range of OS/2 functionality that can also
be used under MS-DOS.

The output of this process is not a .EXP file. Since family-mode applications
already include a real-mode stub loader, which loads a protected-mode OS/2 ex-
ecutable in DOS and connects it to real-mode API simulator functions, this same
mechanism can be extended to run an OS/2 executable in protected-mode MS-
DOS. Lattice’s LBIND utility, which attaches a stub loader to an OS/2 executable,
can be used to attach a DOS extender loader (similar to OS/286’s UP.EXE) to an
"Extended Family Mode" application.

Lattice president David Schmitt argues that this is the future for 286 ma-
chines: "The 80286 is just too weak for OS/2. On the other hand, the 80286 is too
strong for DOS."

Performance

There are two reasons for concern about the performance of programs that run
under a 286-based protected-mode DOS extender. First, precisely because it is
protected, protected mode is, at a raw level, inherently slower than real mode. We
saw earlier that the LES BX instruction requires more clocks in protected than in

Chapter 4 80286-based Protected-Mode DOS Extenders 163

real mode. As Table 4-2 shows, the same is true for any 286 instruction that loads
segment registers. This penalty is especially severe for large models.

Table 4-2: 286 performance.

Instruction Real Protected

CALLF 13+ 26+m

INT 23+ ' (40,78)+m ;loads CS
IRET 17+ < (31,55)+m

JMP FAR 11+m 23+

LES etc. 7 21

MOV seg 5 19

POP seg 5 20

RETF 15+m 25+m,55

The second reason to worry about protécted-mode performance is the notori-
ously expensive protected-to-real mode switch on the 286. Since a DOS extender
very frequently switches into real mode (not only to service explicit DOS and
BIOS requests from your program, but also to handle external interrupts from the
clock, keyboard, network adapter, and so on), one might think such a program
would be unusable on a 286.

In fact, the protected-mode version of a large piece of commercial software
generally performs better than the real-mode version. The reason is not difficult
to find. Contrary to the often noted time/space trade-off in software, in many
programs that are cramped for space; there is no such trade-off: giving the program
more space makes it faster. This is particularly true for programs that use over-
lays or some form of virtual memory (VM). When a program doesn’t have to
spend all its time inside the VM manager (which is pure overhead), it is able to
get some actual work accomplished. A program that doesn’t have a time/space
trade-off usually performs better in protected mode than in real mode.

On machines with souped up "power user” CONFIG.SYS files, the real-mode
version may still perform better than the DOS extender version. Interestingly,
though, the performance of the DOS extender version is largely insensitive to any
installed speedup and caching utilities. Thus, rather than advise users to install
various utilities to improve your program’s performance, you can provide the
possibility of simplified configuration by using a DOS extender.

In one piece of commercial software with its own built-in VM, the vastly in-
creased headroom brought about by DOS/16M did introduce one major prob-
lem: while the VM "garbage collector" was not getting called anywhere as

164 EXTENDING DOS

frequently as under real mode, when it did eventually get called, it had enormous
amounts of garbage to mark and sweep, and would take forever. To cope with
the larger memory available in protected mode, the garbage collector had to be
rewritten to operate incrementally.

On a related issue, one also needs to be concerned about badly behaved heaps.
The memory-management routines in PC compiler run-time libraries such as
MSC 5.1 were not written to handle megabytes of memory. Microsoft’s startup
code, in fact, establishes an upper bound of 20 heaps. The DOS/16M and OS/286
startup codes change this to a larger number, but the heap routines themselves
do not expect to be handling huge lists.

The LIST.C program presented at the beginning of this chapter defaults to
creating 512-byte nodes, but if we tell it to create much smaller nodes, the pro-
gram performs more calls to mal Loc(). When the list gets very large, the perfor-
mance of the heap code totally falls apart. Allocating six-byte nodes, it takes the
real-mode version only one second to allocate the first 22,000 nodes, but allocat-
ing the last 1,000 nodes takes 185 seconds. This seems pretty badly behaved, but
the disparity between the early allocations and the later allocations is even worse
in protected mode: whereas the first 75,000 nodes can be allocated in 72 seconds,
allocating the last 1,000 nodes (6K) takes ten minutes!

When memory is finally exhausted, the protected-mode version has allocated
80,000 nodes in 1,700 seconds (45 nodes/second), and the real-mode version has
allocated only 25,000 nodes in 500 seconds (50 nodes/second), so the overall per-
formance per node is about the same. But in protected mode, it’s that last 10 min-
utes that kills you. This is definitely something to plan for.

Returning to normal behavior, Table 4-3 shows run-time and allocation fig-
ures for the LIST program, using 512-byte nodes, and running on three different
machines:

Table 4-3: Run-time and allocation figures for LIST.

DOS/16M Real Mode
Machine alloc sec kisec alloc sec kisec
IBM PC/AT 8 MHz (2 meg) 1714K 22 77 454K 5 90
Compaq 386/20e (4 meg) 3240K 16 202 500K 2 250
PS/2 Model 80 (6 meg) 5575K 31 179 505K 2 253

Mainly, this shows that the real-mode version is, as expected, oblivious to the
amount of memory installed on a machine. On the PS/2 Model 80 with 6 mega-

Chapter 4 80286-based Protected-Mode DOS Extenders 165

bytes of memory, the DOS/16M version allocates more than 10 times as much
memory as the real-mode version. And remember, the source code for the two
versions is identical. But these throughput figures do also show that this
DOS/16M version consistently allocates fewer kilobytes per second than the real-
mode version.

While this toy program is hardly representative of the large applications that
are likely to use a DOS extender, and while large protected-mode applications are
likely to be faster than their real-mode version, it is still useful to look at the LIST
program and ask, where is it spending its time?

The DOS/16M debugger sampler command controls a built-in performance
monitor. In addition to showing the amount of time spent in each function, the
performance monitor also reveals time spent in protected versus real mode, as
well as the number of mode switches and interrupts, and provides a complete
census of DOS calls.

On the IBM AT, the LIST program spends about 3/4 of its time in protected
mode and 1/4 in real mode. The program does about 3,300 mode switches, al-
most all of them to service Int 21H requests. The most frequently-called DOS re-
quest is Int 21H AH=4AH (realloc), which accounts for over seven seconds of
run-time! Microsoft’s internal routines amalloc() and mem0() account for over
90 percent of the time spent in user code.

In addition, the LIST program itself displays the elapsed time for each 1,000
nodes it allocates. This display, together with our discussion of badly-behaved
heaps, indicates that the program spends the bulk of its time allocating the last
few nodes: time seems to pass more slowly toward the end.

This suggests that one way to optimize this program is to tinker with
DOS/16M’s allocation strategy. For example, we can force the program to use
only extended memory, either by calling D16MemStrategy () at the beginning of
the program, or, if we want to a avoid coding in DOS/16M dependencies, by
using a MAKEPM option to "force extended":

makepm -mfx Llist

On the IBM AT, the DOS/16M version now allocates only 1268K, but this is
still three times as much as in real mode. Meanwhile, the run time is slashed from
22 to nine seconds. Pretty good for throwing one MAKEPM switch, but the loss
of almost 500K on a two-megabyte machine is probably unacceptable. We need a
way to maintain this performance, while still allowing low-memory allocations.

166 EXTENDING DOS

One way is to keep the change that forces extended-memory allocations, but
to switch over to low memory when extended memory is exhausted. This does
require inclusion of "dos16.h" and use of the DOS/16M library, but actual
pointer handling remains unchanged. The changed code inside the allocation
loop now reads:

if ((g->data = malloc(nodesize)) == NULL)

{
D16MemStrategy(MForcelLow);
/* try again */
if ((q->data = malloc(nodesize)) == NULL)
{
/* exhausted all memory in the machine */
free(q);
break;
}
printf("Switched to Low memory!\n");
}

The new throughput figures for the program, alongside those for the original
DOS/16M and real-mode versions, are shown in Table 4-4.

Table 4-4: Throughput figures for LIST.

Machine alloc sec k/sec Original Real Mode
IBMPC/AT 8 MHz (2 meg) 1708K 13 131 77 90
Compaq 386/20e (4 meg) 3201 12 266 202 250
PS/2 Model 80 (6 meg) 5566 30 185 179 253

On both the two-megabyte and four-megabyte computers, the DOS/16M
version now not only allocates far more memory than the real-mode version, but
is also faster. Clearly, this optimization plays an important role on computers
where low memory is a significant percentage of total memory on the machine.

Benefits and Limitations of 286-based DOS Extenders

In conclusion, it would be useful to review the advantages and disadvantages of
286-based protected-mode DOS extenders, compared with each of: 640K MS-
DOS, 386-based DOS extenders, and OS/2.

MS-DOS

The advantages of DOS/16M and OS/286 over "plain vanilla” MS-DOS are
pretty obvious: access to up to 16 megabytes of memory versus access to 640K of

Chapter 4 80286-based Protected-Mode DOS Extenders 167

memory, and hardware-assisted memory protection versus a total absence of
rules. Because of the larger real estate available in protected mode, large applica-
tions may also run faster in protected mode than in real mode.

But 286-based DOS extenders have a number of disadvantages you should be
aware of. Users must have an IBM AT, or better, to run a DOS-extended program.
8088-based PCs are definitely on the way out, but the XT is still dominant in Eu-
rope. Furthermore, for small programs, protected mode can be slower than real
mode, and switching between protected and real mode on a 286 machine may be
too slow for some applications.

One other disadvantage of a DOS extender is that the vastly increased re-
sources suddenly available, with very little work, may seem like a license to write
really bad code. Limitations aren’t always such a bad thing; a lot of programs out
there would benefit from having some stringent limitations placed on them.

386-based DOS Extenders

DOS/16M and OS/286 have three primary advantages over 32-bit DOS extend-
ers like OS/386 and Phar Lap’s 386 | DOS-Extender (which are discussed in detail
in the following chapter). First, programs developed with DOS/16M and OS/286
can run on IBM PC/ATs or other 286-based PC compatibles, whereas 32-bit DOS
extenders require 386-based or higher computers. Second, because 32-bit applica-
tions generally use a linear address space with very little segmentation, they do
not have the debugging advantages of highly segmented 16-bit protected-mode
programs. Third, moving from 16-bit real mode based on the 8088 to 16-bit pro-
tected mode based on the 80286, requires fewer changes to your source code than
moving all the way to 32-bit protected mode.

The advantages of 32-bit protected mode over 16-bit protected mode are tre-
mendous: anyone who has seen the code produced by 32-bit C compilers never
wants to go back to 16-bit code. Make no mistake, 32-bit code is the wave of the
future. Furthermore, while 286-based protected mode offers 16 megabytes of
physical memory, any individual item cannot be larger than 64K, unless you re-
sort to huge model. In contrast, 32-bit protected mode allows objects as large as
four gigabytes. And while the lack of segmentation when using a single linear
address space in 32-bit protected mode means you lose some debugging advan-

tages, in general, most PC programmers would be happy if they never saw an-
other segment.

168 EXTENDING DOS

0S/2

Finally, what about OS/2? There seem to be three reasons to use DOS/16M or
0OS/286 rather than OS/2. First, porting to a 286-based DOS extender may take
only days or weeks, in contrast to an OS/2 port, which may take months, or even
involve a total rewrite of your program. Second, with a DOS extender you do not
have to convince your users to buy a new operating system: DOS/16M and
0S/286 work with the MS-DOS 3.x they already have. Finally, in contrast to
0S/2, 286-based DOS extenders perform reasonably on 286 machines. One ad for
the Glockenspiel C++ compiler reports that in one test, the OS/2 version took
2.45 minutes as opposed to 45 seconds under the DOS extended version.

But the ease of working with DOS extenders, and their raw performance ad-
vantages, should not blind us to the benefits of OS/2. In fact, the reason it takes
so much work to port to OS/2 is that the benefits are so great. In addition to the
large address space and memory management offered by DOS extenders, OS/2
offers virtual memory, multitasking, inter-process communications, graphics, and
windows. A program such as Lotus 1-2-3/G (the OS/2 Presentation Manager
version of 1-2-3) simply could not be written without such facilities.

The ability to do several things at once largely diminishes the importance of
raw throughput figures: while the DOS/16M version of a product takes only 45
‘seconds to do something for which the OS/2 version requires 2.45 minutes, on
the other hand let’s not forget that during those 45 seconds, you can’t do anything
else. It's strictly one thing at a time in the world of DOS extenders (though
DOS/16M does support traditional DOS pseudo-multitasking techniques such as
TSRs, and both OS/286 and DOS/16M programs can run inside the DESQview
multitasker).

Of course, not every application needs OS/2’s advanced features, and you
can’t always go on to something else while the compiler is taking 2.45 minutes to
compile your program. Where OS/2 might be perfect for one application, a DOS
extender, or perhaps even real-mode MS-DOS itself, might be right for another.
Actually, all these different environments complement each other rather nicely.
There is no one perfect operating system, any more than there is one perfect pro-
gramming language, or one true method for brewing tea. Perhaps in the future
we will see a loose merger of real-mode MS-DOS, 286- and 386-based protected-
mode MS-DOS, and OS/2, with developers able to freely use whichever one is
appropriate for the job at hand.

Exploring Protected Mode with Instant-C 171

y ways, IC represents the interactive style of languages like Forth and

made available for the C programmlng language But, contrary to the ste-
otype anmterpreter, IC uses native object code: In fact, IC can dynamically
' OB] and LIB ﬁles, and can write out stand—alone .EXE files. Such
alone executables mclude a built-in protected-mode DOS extender

s ‘space—mesh with the needs ofaC development environment. The large
space (up to 16 megabytes of memory) means that even very large C pro-
developed interactively. Hardware-based memory protection helps
rom bugs in user code, and ass1sts IC in fmdmg bugs ‘An mterpreter ;

y a product bu1lt usmg a DOS extender, it is also an example of
,ded'DOS is necessary in the flrst place IC has been in ex15tence smce

‘umptlon Thus, DOS/ 16M is based onlC, as much as IC is based on

For a short tlme, Ratlonal Systems marketed a separate protected—mode
C/ 16M along51de its real-mode IC. For an even shorter time, the name was

h, ged to IC/PM but un.fortunately this sounded like a reference either to
's Presentatron ‘Manager or to the CP/M operating system! In October 1989,

with IC versron 4.0, Ratlonal Systems discontinued the real-mode version.

ere;s‘, one more reason to use IC as a tool for exploring protected mode:
ce. At $795, IC is not cheap, but it is more affordable than the $5,000 that Ratio-
: tems charges for DOS/16M. It should be noted that IC and DOS/16M are
roducts. IC is not a scaled-down version of DOS/16M, nor is it
be used by itself as a DOS extender. For commercial software houses
nove their ‘products to protected-mode MS-DOS, the cost of -
ight well be msrgmﬁcant But because it is both interactive and

0 extender, IC does provrde an excellent base to explore protected- :

174 EXTENDING DOS

B
frh
A

i
PR
5

ey
o

2 :
P
7[& i
.‘%ﬁ
el e

. Exploring Protected Mode with Instant-C 185

Chapter 5

80386-based Protected-Mode DOS Extenders

M. Steven Baker and Andrew Schulman

In the PC arena, new hardware outstrips software. It is common to find 80386
computers used merely as fast XT machines, because the truly powerful features
of this CPU are unavailable in the real mode used by the venerable MS-DOS op-
erating system. But as long as speed and power spur marketing, the developer
can’t neglect the powerful features of the 80386 and 80486 CPUs, even in the DOS
marketplace.

386-based protected-mode DOS extenders grew out of the need to take ad-
vantage of the more powerful features of 80386 computers, without forgoing MS-
DOS. 386 DOS extenders allow large applications to run under DOS until (if ever)
a true 386 operating system displaces DOS.

These 386 DOS extenders set up a bridge to the DOS environment and put
the 80386 chip into protected mode so that both the larger memory space and the
full 386 instruction set are available. To an end user, an application built with a
DOS extender can look like any other DOS program. When the user executes the
program, control passes invisibly to the 386 DOS extender, which loads and runs
the application in protected mode. Such a protected-mode application can trans-
parently invoke real-mode DOS or BIOS services: 386 DOS extenders use essen-
tially the same mechanism as was explained in detail in Chapter 4 (though a 386
DOS extender has the option of running DOS and BIOS in Virtual 8086 mode

193

194 EXTENDING DOS

rather than in real mode). The application built with a DOS extender is likely to
be much faster and have more features than a comparable DOS program, and it
is often difficult or impossible to build a comparable real-mode DOS program.

In early 1987, when 386 DOS extenders were first introduced, many industry
watchers predicted their demise within two years. Even the software developers
who were marketing DOS extenders thought they had only a narrow "window of
opportunity,” as DOS would presumably soon be replaced by a true protected-
mode operating system. By fall 1987, it seemed that MS-DOS, and DOS extend-
ers, would have a much longer life, perhaps up to five years. Now, a few years
later, 386 DOS extenders are solidly entrenched in the PC developer’s market.
MS-DOS, suitably extended, remains the operating system standard for the IBM
microcomputer world, and the number of high-end commercial applications
built with 386 DOS extenders continues to grow.

The best-known 32-bit DOS extender is Phar Lap Software’s 386 | DOS-Ex-
tender. Applications built using the Phar Lap DOS extender include Interleaf
Publisher (IBM), Mathematica (Wolfram Research), and AutoCAD 386 (Au-
todesk). In addition, Phar Lap defined the EASY OMF-386 format for 32-bit ob-
ject files, and produces the industry-standard tools 3861 ASM and 386 | LINK,
used even with their competitors’ DOS extenders.

While this chapter deals primarily with Phar Lap’s 386 | DOS-Extender, we
will also examine OS/386 from Eclipse Computer Solutions. We have already
said a good deal about the Eclipse product in Chapter 4 since, as noted there,
0S/286 and OS/386 are tightly coupled. We will also briefly examine X-AM from
Intelligent Graphics Corporation (IGC). While IGC is not currently marketing X-
AM, it is incorporated in a number of important applications, including the
dBase-compatible database manager FoxBase+ /386 (Fox Software).

386 DOS Extenders in the Marketplace

The high-end CAD market on the PC is dominated by versions of applications in-
corporating 386 DOS extenders. These math-intensive, memory-intensive prod-
ucts benefit significantly from the 386 programming features made available by
DOS extenders. The vendors in this market are compelled to offer 386 versions in
order to remain competitive.

386 DOS extenders may be found in other graphics- and numerics-intensive
applications ranging from symbolic math packages such as Mathematica to high-

Chapter 5 80386-based Protected-Mode DOS Extenders 195

end page printing programs such as Interleaf Publisher. Both of these products
were ported from the UNIX workstation platform to DOS.

386 DOS extenders also appear in database products—most notably Para-
dox/386 and FoxBase+/386. A number of program development environments
employ 386 DOS extenders, including Smalltalk-80/386 (ParcPlace), Common
Lisp CLOE-386 (Symbolics), Laboratory Microsystems UR/Forth and APL-PLUS
IT (STSC).

Certainly, other schemes such as EMS can provide partial solutions to DOS
memory limits. But 386 DOS extenders solve both memory and speed problems
simply and directly. When your application outgrows memory space or needs a
performance boost, it’s time to consider 32-bit programming.

32 Bits

How is a 386-based protected-mode DOS extender different from the 286-based
extenders we examined in Chapter 4? Remember that these 286 extenders, while
based on AT class machines, can also run on the 386 and 486. Since a purely 386-
based extender has the obvious disadvantage of addressing a smaller share of the
market, what advantages does it have over a 286-based DOS extender?

All the advantages of using the 386’s native mode can be summed up in the
single phrase 32 bits. If you have heard this phrase bandied about in the trade
press, but have never seen a sample of 32-bit code, then you are in for a treat.
Once you've used 32-bit code, you will never want to go back to the 16-bit code
you’ve been using.

Let us take a somewhat contrived C function and examine the way it might
be implemented, first using 16-bit code, and then using 32-bit code:

int foo(char *p)

{
char *q;
q =0p;
return *q;
}

Were you to compile this in small model (16-bit pointers) with a typical 16-bit
MS-DOS compiler such as Borland’s Turbo C, the resulting assembly output
might look something like this:
mov si, word ptr _p ; move p into an index register

mov al, byte ptr [sil ; dereference the index register
cbw ; sign-extend AL into AX

196 EXTENDING DOS

This assembly language implementation closely matches the higher-level C
representation. It is hard to improve on this code.

Unfortunately, most commercial software (word processors, spreadsheets,
database managers, telecommunications programs, etc.) require more data space
than the 64K maximum allowed by small model. Thus, commercial PC software
is frequently compiled with the compact or large model, using 32-bit (four-byte)
pointers in a 16-bit environment. Using, for example, another typical 16-bit DOS
compiler (Microsoft C 5.1), the large-model implementation of foo() looks like
this:
mov ax, word ptr _p
mov dx, word ptr _p+2
mov word ptr _qg, ax
mov word ptr _qg+2, dx
les bx, dword ptr [_ql

mov al, byte ptr es:[Cbx]
cbw

move bottom half of p into AX
move top half of p into DX
move AX into bottom half of q
move DX into top half of q
load far pointer into ES:BX
dereference ES:BX

sign-extend AL into AX

Ne Na N2 Ne Ne N N

What happened? Why did three simple C constructs swell into seven assem-
bly-language statements? An inherent inefficiency of 16-bit code is revealed: 32-
bit quantities such as longs (dwords) and far pointers are moved piecemeal, 16
bits (two bytes) at a time. Remember that these 32-bit quantities are the rule
rather than the exception in commercial software. Also remember that running
this code on the fastest 386 or 486 CPU will not make it transfer more than two
bytes at a time. To do that, you need 32-bit protected mode: not just protected
mode, mind you, but 32-bit protected mode, since a 286-based DOS extender,
even running on a 386 machine, is still very much a 16-bit beast.

Now for a breath of fresh air. Here is how foo () is implemented in flat model
(four-byte pointers) by one 32-bit C compiler, Watcom C 7.0/386, that produces
code suitable for a 386 DOS extender:

mov eax, _p ; move p into extended AX (EAX) register
movzx eax, byte ptr [eax] ; dereference EAX, zero-extend into EAX

These two lines of 32-bit code illustrate many of the advantages of using a
386 machine as it was meant to be used, in protected mode, not as a fast 8088.

First of all, we see that, once one decides to use the full 32-bit registers on the
386 (such as EAX instead of AX), 32-bit quantities can obviously be MOVed into
them in one fell swoop.

Second, having 32-bit registers opens the possibility of keeping 32-bit quanti-
ties in registers rather than on the stack.

Chapter 5 80386-based Protected-Mode DOS Extenders 197

Third, since the 386 allows dereferencing of almost any register, instead of
only the old base (BX and BP) and index registers (SI and DI), a construct such as
[EAX] can be used, instead of having to do something like MOV BX, AX followed
by [BX]. This more flexible use of registers helps with the notorious "too few reg-
isters" problem faced by compiler writers.

Fourth, note how the LES BX instruction disappeared when we switched to
32-bit protected mode. In fact, all mention of segmentation disappeared entirely.
Again, this provides a sharp contrast with a 286-based protected-mode version,
which not only requires the LES BX instruction, but which additionally exacts a
stiff penalty for its use, as noted in Table 4-2 in the previous chapter. Throughout
this chapter, we will see that 32-bit protected-mode allows you to largely forget
about segmentation.

Fifth, the 386 supports many new instructions, such as MOVZX in the exam-
ple on the preceding page.

With all the advantages exhibited in this tiny example, it is not surprising
that 32-bit code can easily execute much faster than comparable 16-bit code on
the exact same hardware. The massive waste involved in using 386s as "fast" XTs
should now be clear.

It should also be clear that, to reap these benefits, we cannot simply cannibal-
ize the output of a 16-bit compiler as we did when using 286-based DOS extend-
ers. Unless you are writing entirely in assembly language, using a 386 DOS
extender requires that you switch to a 32-bit compiler, such as MetaWare High C-
386, Watcom C/386, NDP Pascal-386, or Lahey FORTRAN F77/L32.

Now, it is true that the full 32-bit registers can be used in real mode as well.
Few standard MS-DOS compilers provide an option to generate 80386 instruc-
tions (for example, Microsoft C has a -G2 switch to generate 286 instructions, but
no equivalent -G3 switch), but, in parts of your program that will only run on a
386 or 486, you could include statements such as the following, which reads the
four-byte BIOS timer count into EAX:

Xor ax,ax ; zero ax
mov es,ax ; mov 0 into ES
mov eax, es:[46Chl] ; dereference dword ptr 0000:046C into EAX

There are at least two limitations to this approach, however.

Multitasking software such as Windows or the OS/2 compatibility box,
which use only the bottom 16 bits of the registers to save a program’s context,
can wreak havoc with real-mode programs that use 32-bit registers.

198 EXTENDING DOS

Second, when using 386 instructions in real mode, we are still stuck with the
640K limit of MS-DOS, and the one-megabyte limit of real mode itself. The bene-
fit of 32-bit processing in 386 protected mode is not simply greater speed, but far
greater space as well.

32-bit protected mode removes not only the 640K DOS barrier, but also the
equally important 64K limit on segment size. Since 32-bit registers can be used as
base and index registers, the near pointers loaded into these registers can use up
to 32 bits for addressing memory. This in turn means that the maximum index
within a memory segment is no longer FFFFH (64K), but FFFFFFFFH (four
gigabytes).

Benefits of Using 386 Protected-Mode DOS Extenders

We have seen that, once a DOS extender opens up the power of the 80386/80486
CPU, a number of key features are available to the programmer. Let’s now dis-
cuss the following benefits more systematically: '

= large memory spaces for code and data
powerful 32-bit instructions

® virtual memory options

= highly-optimizing compilers

» faster numerics using Weitek math coprocessors.

Wide Open Spaces

While the 8088 microprocessor used in the original IBM PC could address only 1
megabyte of physical memory, the 80386 and 80486 CPUs can access much larger
memory spaces—up to 4 gigabytes. Typical 80386 AT and PS/2 style machines
support up to 16 megabytes of physical memory, but some of the new EISA 80486
computers (for example, Compaq SystemPro) can support up to 256 megabytes
of physical memory.

In this context, the 640K DOS memory limit is a barrier to developing large
applications for the PC, or moving large applications to the PC. With the 640K
DOS limit, large PC programs that depend on overlays and swapping code or
data to disk are prevented from taking advantage of the larger memory capacity
of the 386/486 PCs. Furthermore, the segmented architecture of 80X86 real mode
still limits code and data segments to 64K, so 80386 instructions that would ac-
cess memory without the inconvenience of 64K segment limits can’t be used. The

Chapter 5 80386-based Protected-Mode DOS Extenders 199

instructions include all the memory indirect and indexing instructions that use
registers such as EBX with values greater than 64K, the maximum value of BX.

Because 32-bit protected mode breaks this 64K segment barrier in addition to
the 640K DOS barrier, the most common memory model is a flat one (analogous
to real-mode "tiny" model used in .COM files), in which all segment selectors
point to the same block of memory—up to four gigabytes of 32-bit address space,
with no segments. In a high-level language such as C, a 32-bit near pointer is a
four-byte quantity. This in turn means that you almost never have to deal with
segmented far pointers: once loaded, DS and CS can stay constant.

While it is no longer needed for an application’s data and code, however, seg-
mentation may be used to implement sharing and to enforce protection. In a DOS
extender, segments are sometimes needed to use real-mode services. When you
do need to specify a segment as well as an offset, the resulting far pointer is a six-
byte quantity (an FWORD).

On those rare occasions when you have to change a segment register, the
same penalty applies to 386 instruction times as we found in 286 protected mode
(see Table 4-2).

32-bit Instructions

The 80386/486 microprocessors are full 32-bit CPUs that feature instruction sets
much closer in power to the CPUs used in minicomputers than to older micro-
processors like the 8086:

m Register and memory access is widened to 32 bits. 16-bit registers such as
BX, BP, IP, and FLAGS, have been extended to 32-bit registers such as EBX,
EBP, EIP, and EFLAGS.

» All 32-bit registers, except ESP, can be used as either base or index registers
for memory addressing.

= A scaling factor (2, 4, or 8) can be applied to an index register for memory
addressing.

= Two additional segment registers (FS and GS) have been added for ad-
dressing memory. Additional control registers (CR0, CR2, CR3), test regis-
ters (TR6, TR7), and debug registers (DR0O, DR1, DR2, DR3, DR6, DR?7)
have been added.

® String instructions can now operate on double words (4 bytes).

® Instructions are available for converting an 8-bit or 16-bit operand to 32 or
64 bits (CWDE, CDQ, MOVSX, MOVZX).

200 EXTENDING DOS

= Bit manipulation instructiond are added for testing, setting, and scanning
bits (BT, BTC, BTR, BTS, BSF, BSR).

s The signed multiply (IMUL) instruction has a more general form that al-
lows the use of any register for a destination.

» The LEA instruction is enhanced to perform fast integer multiplication.

m Instructions are added to set or clear bytes based on condition codes in the
flags register (SETcc).

m 386 shift instructions support 32-bit and 64-bit shifts (SHLD, SHRD).

These instructions are available in 386 real mode as well as in protected
mode. But in order to use the features of the 80386 within real-mode DOS, the de-
veloper would have to provide two versions of an application—one for the 8086
and one for the 80386. The preferred scheme would be to have the program sense
the presence of the 80386 at runtime and use the faster 386 instructions available.
To be most beneficial, the 80386 instructions would need to be programmed as
in-line code. Only a few 80386 instructions can justify such effort in real mode.
These instructions include MOVSD (double word move) and DIV and IDIV (long
integer divide).

The true power of the 386 instruction set can be realized only when a pro-
gram is targeted directly for 32-bit protected mode. Instructions now operate on
32-bit registers as well as the 8-bit and 16-bit registers of earlier Intel chips. The
IDIV and DIV instructions were the slowest instructions on the 8086. In support-
ing the four-byte data type such as "long" in C, and INTEGER in Fortran, subrou-
tines for addition, subtraction, division, and multiplication needed to be called.
On the 80386, these subroutines can be replaced with single in-line instructions.
In terms of clock cycles, long division shows the greatest benefit in execution
speed. A long divide library routine is one place where using these 386 instruc-
tions in real mode justifies the effort to detect the 80386.

In the earlier Intel CPUs, memory could be addressed using the BP and BX
registers as base pointers, and SI and DI registers for indexing. The BX register
defaulted to addressing the data segment (DS), and the BP register defaulted to
the stack segment (SS) for local (dynamic) storage. The 80386 makes memory ad-
dressing more general: any 32-bit register can be used as a base register. And all
eight 32-bit registers, except ESP, can be used for indexing. In addition, a "scaling"
factor of 2, 4, or 8 can be applied to any register used for indexing when referenc-
ing memory. This is a very attractive feature for indexing arrays of words (2-byte
integers), double words (4-byte long integers and reals), quad words (8-byte dou-

Chapter 5 80386-based Protected-Mode DOS Extenders 201

ble precision reals), and some multidimensional arrays. These addressing modes
are well suited to the needs of high-level languages. In the following examples,
note that the notation 12Ledx1is equivalent to Ledx+121:

mov esi, L[eax] ; using EAX as a base register
mov eax, 12Ledx] ; using EDX as base with displacement

mov eax, Lecx + edx*4] using ECX as base pointer and

;
; EDX as an index register with scaling
;
;

mov eax, 256Lesp + edx*8] using ESP as base, EDX as index with

a displacement (stack segment)

The string instructions now support forms that operate on up to 32 bits at a
time, and can use the EAX register rather than AX. These instructions include
LODSD, STOSD, MOVSD, CMPSD, and SCASD. The MOVSD (move double
from [ESI] to [EDI]) instruction executes in the same time as the earlier MOVSW
(move word from [ESI] to [EDI]). When used with the REP (repeat) prefix opera-
tor for block moves, MOVSD is another instruction that is valuable to use in real
mode and justifies the effort to detect the 386 chip. Since the ECX register is used
for the loop counter, large blocks (up to 4 gigabytes) can be moved at one time:

cld ; set forward direction for block move
mov ecx, 28000h count of double words to move

mov esi, source point to source

mov edi, destination and destination

rep movsd and move them

Ne Ne Ne N N

Several instructions are available for converting one operand size to a larger
one. CWDE (convert word to dword, extended) sign-extends AX into EAX. CDQ
(convert dword to quadword) sign-extends EAX into EDX:EAX. MOVSX is a
more general form that sign-extends a byte or a word into a 16-bit or 32-bit regis-
ter. MOVZX is a similar instruction that zero-extends into a wide register from ei-
ther register or memory.

Six instructions are added to operate on bits in either registers or memory. BT
(bit test) can be used to determine the setting of any arbitrary bit. For simple bit
testing, the AND (logical) instruction can execute faster. But the BTC (bit test and
complement), BTR (bit test and reset), and BTS (bit test and set) instructions com-
bine bit testing with bit setting, clearing, and complementing, and are useful for
implementing semaphores. BSF (bit scan forward) and BSR (bit scan reverse) find
the first set bit (value of 1) in a bit stream. These instructions can be very useful
when working on bit arrays, including graphics routines and allocation schemes

202 EXTENDING DOS

for memory or disk space. A key feature is that these instructions can operate on
bitmaps as large as 4 gigabits in length.

Several enhancements handle integer multiplication. IMUL (signed multipli-
cation) is no longer limited to only the EAX register; any register can be the desti-
nation, providing greater flexibility. The fastest execution improvement is a new
form of the LEA (Load Effective Address) instruction using scaled index address-
ing that performs fast integer multiplication in registers. This LEA form is limited
to multiplications by small integers (2, 3, 4, 5, 8, and 9). However, this instruction
executes in two clock cycles—far faster than either multiply or shift instruc-
tions—so a couple of LEA instructions can still execute faster than one regular
multiply. The following example converts hours in the CH register to minutes in
the EAX register:

; the traditional method

mov eax,60
mul ch

; using fast small integer multiplies
movzx eax,ch ; start with hours

lea eax,[eax+eax*4] ; x 5 use some fast integer multiplies
lea eax,[eax*4] ; x 20

lea eax,[eax+eax*2] ; x 60

A large group of SETcc (set byte on condition code) instructions are added to
set or clear bytes based on boolean conditions. All conditions supported by the
JMP instructions are allowed. These instructions provide a way to set logical vari-
ables, without using conditional JMPs that empty the prefetch instruction queue:

; the traditional method

xor edx,edx ; assume boolean variable is false

or eax,eax ; test EAX for non-zero

jz next ; if zero, this JMP flushes the prefetch queue
inc edx ; set EDX to true

next:

; using SETcc instruction

xor edx,edx ; assume this boolean variable is false
or eax,eax ; and test for non-zero in EAX

setnz dil ; set flag DL=true if EAX is non-zero

Chapter 5 80386-based Protected-Mode DOS Extenders 203

Paging and Virtual Memory

Along with the segmented memory management also found in 286-based pro-
tected mode, the 386 provides the ability to use paging, in which physical mem-
ory is tiled with 4K pages to form a linear address space. The use of paging and
segmentation combines the best of both memory-management techniques; such a
combination is not unique to the 386, and is described in many standard text-
books on computer architecture.

Using the hardware paging capabilities of the 80386/486, Phar Lap’s
386 | DOS-Extender has a virtual-memory option, 386 | VMM (Virtual Memory
Manager). As under more powerful operating systems like UNIX and OS/2, the
amount of memory available for an application is limited by available disk space
rather than by physical memory in the machine. The virtual memory feature al-
lows you to run memory-hungry applications on 386 machines configured with
relatively small amounts of physical memory. In one high-end technical publish-
ing program ported from a workstation environment (Interleaf Publisher), the
original version for the 386 required a minimum of 5 megabytes of physical
memory to run. The same program incorporating the Phar Lap Virtual Memory
Manager needs only a 2-megabyte machine.

Of course, you incur a performance penalty when you use virtual memory. If
the entire application will not fit in physical memory, inevitably, some code or
data is paged to a disk file. Depending on the organization of the program, code
and data are automatically brought into memory as needed from disk. The less
swapping that takes place, the faster the program executes. A program targeted
for operation under a virtual memory manager will benefit from up-front plan-
ning and design to minimize swapping.

In addition, paging itself can also slow down memory access. Although the
80386 has a built-in, on-chip cache (the translation lookaside buffer—TLB) of the
32 most-recently-used page table entries to speed memory access, that represents
only 128K of memory. Intel’s simulations suggest that this should accommodate
about 98 percent of normal memory access, but this depends on the code. If a
page table entry is not in the cache, the 386 must read two double-word entries
from the page translation table in memory before it can access the actual memory
location of interest.

204 EXTENDING DOS

Optimizing Compilers

In addition to the language compilers moved up to the 386 from the DOS world,
a number of highly optimizing compilers have been ported to the 386 from mini-
computers and the UNIX workstations. Because the 80386 is a full 32-bit micro-
processor, minicomputer vendors have been able to retarget their compilers to
this CPU. These include the Numeric Data Processor (NDP) series from Micro-
Way (retargeting Green Hills compilers), and compilers from Silicon Valley Soft-
ware (SVS) and Language Processors, Inc. (LPI).

Many of these compilers have a mainframe rather than a PC "feel." For in-
stance, NDP FORTRAN-386 and SVS FORTRAN-386 are more likely to be used
for porting an application "down" from the VAX to the 386, than for porting an
application "up" from the PC.

Because these compilers run on the 386, both local and global optimizations
are possible that would be difficult or impossible within DOS memory limits. The
execution speed of the code generated from these optimizing compilers is most
noticeable for math-intensive CAD and scientific applications.

Many compilers perform local optimizations within a function. However,
global optimization across an entire source file requires keeping in memory (usu-
ally a tree structure) information concerning the entire source file’s code. This
tree structure can require large amounts of memory as the source file size grows.
Under DOS’ 640K limits, even local optimizations can be limited—unless the
compiler pages its own tree structures to disk (MetaWare pages to disk in its DOS
compilers). Global optimization on large Fortran source code files, for example,
can become very difficult under DOS memory limits. With virtual memory on
workstations, and now on 386 DOS extenders, compiler vendors are able to per-
form more complex local and global optimizations.

Not all 386 compilers are targeted for use with a DOS extender, though. A
number of 386 compilers are designed to generate code for UNIX or other operat-
ing systems. For example, Intel itself markets compilers such as C-386/486 and
FORTRAN-386, but these generate code for embedded applications, not for DOS
extenders.

A 386 DOS Extender Application

Many of the benefits of 386 DOS extenders, as well as some of the mechanics of
compiling, linking, and running a 32-bit protected-mode DOS application, are il-
lustrated in the following C program, which can produce a very large bitmap of

Chapter 5 80386-based Protected-Mode DOS Extenders 205

prime numbers, using the Sieve of Eratosthenes. The Sieve has a bad name due to
its overuse in computer benchmarking, but this sieve is a little more interesting
than most: it uses a bitmap rather than an array of integers; the bitmap is dense,
in that multiples of the first two primes, 2 and 3, are neither computed nor
stored.

The end result is a program that, running under the Phar Lap 386 | DOS-Ex-
tender on a 16 MHz Compaq Deskpro 386, takes only seven seconds to find the
78,498 primes <= 1,000,000, using a 41K bitmap. Since this sieve algorithm runs
in linear time, and since the bitmap size also progresses linearly, you can extrapo-
late the time and space required to find p(n), the number of primes <= #, for any
n. For instance, to find p(100,000,000) would take about 700 seconds and require
a 4-megabyte bitmap (however, 80386/486 machines with static RAM caches will
execute the sieve non-linearly for smaller values of n).

/*
SIEVE.C

Author: Andrew Schulman, February 1990
*/

#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include <limits.h>
#include <time.h>

#include "bitmap.h"
#define N(x) ((x) / 3) // exclude multiples of 2 and 3
void fail(char *s) { puts(s); exit(1); }

main(int argc, char *argv[1)
{
BITMAP map;
FILE *f;
double dsize;
clock_t t1, t2;
float runtime;
ULONG i, j, n, primes, size, sqrt_size, map_size;
int incr, jincr;

if (argc 2)
fail("syntax: LCrun386] sieve <x>");

206 EXTENDING DOS

if ((dsize = strtod(argv[11, 0)) 5)
return 1;

// estimate number of primes, using Legendre formula (1778)
printf("Prime Number Theorem estimates: %.0f primes <= 7.0f\n",
floor(dsize / (log(dsize) - 1.08366)), dsize);

if (dsize ULONG_MAX)
fail("number too large");

size = (ULONG) dsize;

map_size = N(size) + 1;

if (! (map = make_bitmap(map_size)))
fail("Insufficient memory");

printf("bitmap: %lu bytes\n", bytes(SIZE(map)));

// set composites
sqrt_size = sqrt(dsize);
t1=clock();
for (i=5, dincr=4, n=1; i<=sqrt_size; i+=(incr=6-incr), n++)
if (BIT_OFF(map, n)) // bit clear -> prime
for (j=i, jincr=incr; j<=size/i; j+=(jincr=6-jincr))
SET_TRUE(map, N(i*j)), // bit set -> composite

// count primes
// printf("2 3 ");
for (i=5, incr=4, n=1, primes=2; i<=size; i+=(incr=6-incr), n++)
if (BIT_OFF(map, n))
{
primes++;
// printf("%lu ", 1);
}

runtime=(t2=clock())-t1;

printf("\n%lu primes <= %lu\n", primes, size);
printf("%.2f seconds\n", runtime/CLOCKS_PER_SEC);

puts(”Saving bitmap file PRIMES.DAT");

f = fopen("primes.dat", "wb");

fwrite(&size, sizeof(ULONG), 1, f);

furite(map, 1, bytes(SIZE(map)), f); // write out entire bitmap
fclose(f);

The file BITMAP.H provides a BITMAP data type and a set of operations to
set and test bits:

Chapter 5 80386-based Protected-Mode DOS Extenders 207

/* BITMAP.H */

typedef unsigned long ULONG;
typedef unsigned char BYTE;

#ifdef HUGE_MAP
// only required for 16-bit code

#define ALLOC halloc

#define FREE hfree

typedef BYTE huge *BITMAP;

#else

#define ALLOC calloc

#define FREE free

typedef BYTE *BITMAP;

#define SIZE(map) (*((ULONG *) map))
#define index(c) ((Cc) >> 3) + sizeof(ULONG))
#define mask(c) (1 << ((c) & 0x07))
#define BIT_ON(map,c) (mapLindex(c)] & mask(c))

#define BIT_OFF(map,c) (! BIT_ON(map,c))
#define SET_TRUE(map,c) mapLindex(c)] |= mask(c)
#define SET_FALSE(map,c) maplLindex(c)] &= mask(c)
#define free_bitmap(map) FREE(map)

void set_true(BITMAP map, ULONG c¢) { SET_TRUE(map,c); 2}

ULONG bytes(ULONG size)

{

return (size >> 3) + ((size & 0x07) ?2 1 : 0) + sizeof(ULONG);
}
BITMAP make_bitmap(ULONG size)
{

BITMAP map;

if (map = (BITMAP) ALLOC(bytes(size), 1))

SIZE(map) = size;

return map;

}

To compile this program for a 386 DOS extender using Watcom C 7.0/386,
use the following DOS command line:

wcl386 -3r -mf -0axt -fpc sieve.c

The WCL386 driver program will first run the Watcom C compiler,
WCC386.EXE (and the back-end code generator 386WCG.EXE), and will then in-
voke the linker, 386LINK.EXE (which you must purchase separately from Phar

208 EXTENDING DOS

Lap, and place somewhere on the DOS PATH). The resulting program,
SIEVE.EXP, requires a 386 DOS extender. Phar Lap’s DOS extender is contained
in the loader program RUN386.EXE, and this can either be bound together with
SIEVE.EXP to form SIEVE.EXE (assuming you have purchased a redistribution li-
cense from Phar Lap), or can be invoked from the DOS command line:

C:\EXTDOS>run386 sieve 30000000

Prime Number Theorem estimates: 1859537 primes <= 30000000
bitmap: 1250005 bytes

1857859 primes <= 30000000

Estimate off by 1678 (0.090319%)

233.000000 seconds

To compile the program using MetaWare High C 1.6, the command line is:

hc386 sieve.c

The HC386 driver first invokes the High C compiler, HCD386P.EXE, and then
386LINK. The Microsoft linker LINK.EXE cannot be used to produce 386 DOS ex-
tender applications. Note that, in contrast to the 286-based DOS extenders dis-
cussed in Chapter 4, no postprocessor (such as MAKEPM) is required.

Eclipse OS/386 can run Phar Lap executables. To distinguish these .EXP files
from executables produced by another 32-bit linker, Lahey LINK-EM /32 (sup-
plied with Lahey FORTRAN F77L-EM/32), Eclipse recommends renaming the
file with a .PLX extension. There are two variants of Eclipse OS/386: a uni-
processor (UP) version, and a version using Eclipse’s HummingBoard (HB)
coprocessor. You can purchase a program to bind these OS/386 runtimes with
the protected-mode executable to form a stand-alone DOS executable.

Now, this program can also be compiled with any other DOS C compiler. For
example, a real-mode, large-model Microsoft C 5.1 version can be compiled and
linked using the following DOS command line:

cl -AL -0x sieve.c

But the resulting program has a fundamental limitation in real-mode MS-
DOS: the 64K segment limit means that the bitmap must be less than 64K this in
turn means that, at most, this real-mode SIEVE.EXE can be used to find
p(1,600,000).

In order to work around this limitation in real-mode MS-DOS, the program
can be recompiled to use a "huge" pointer for the bitmap:

cl -AL -DHUGE_MAP -0x sieve.c

Chapter 5) 80386-based Protected-Mode DOS Extenders 209

But this only provides the program with an amount of memory less than
640K. Furthermore, huge pointers, while largely transparent to the programmer,
impose a penalty in execution time.

It is interesting to note that, in order to take advantage of the larger address
space available under one of the 286-based protected-mode DOS extenders dis-
cussed in the preceding chapter, the program still requires huge pointers. That is
the only way, for example, to apply the benefits of DOS/16M or OS/286 to this
program. One of the key differences between 286- and 386-based DOS extenders
is that, while both break the 640K DOS barrier, only 386-based extenders also
break the 64K segment barrier.

Since SIEVE.C can be compiled and linked for so many other environments,
what makes it a 386 DOS extender program? In addition to removing space limi-
tations, compiling this as a 32-bit application also produces an enormous jump in
performance. Table 5-1 shows execution times for different versions of the SIEVE
program, running on a 16 MHz Compaq 386 with 2 megabytes of memory:

Table 5-1: Execution times for a bitmap sieve.

Seconds
X p(x) Bitmap Size MSCS51Large MSC51 Huge DOS/16M Huge High C-386
100,000 9,592 4K 2 2 2 <1
1,000,000 78,498 41K 21 21 23 7
10,000,000 664,579 416K N/A* 237 270 76
30,000,000 1,857,859 12M N/A N/A 827 236

*N/A—Insufficient memory

This comparison shows that, with identical source code and hardware, the
32-bit sieve runs more than three times faster than the 16-bit sieve. While this
program is atypical in that it performs no I/0, its extensive manipulation of four-
byte pointers and large data arrays are typical of most programs that one would
consider porting to the 386.

Since all these programs were run on the same 386 machine, this test under-
lines the fact that running a program on a 386 does not make it a 386 program. To
make good use of the 386 machine sitting on your desk, you need 32-bit software.

In order to remove as many restrictions as possible when running this code
with 16-bit instructions, all indices were made unsigned longs (ULONG), and the
printf() "%lu" mask was used. But in 32-bit code, a plain unsigned int would
work equally well, as would the printf() "%u" mask, since an int is the same as

210 EXTENDING DOS

a long in 32-bit C. sizeof(int) and sizeof(unsigned) are each 4, not 2. Like-
wise, sizeof(void *) is 4. (Note that the DOS-specific construct sizeof(void
near *) is also 4, and that sizeof(void far *) is 6.)

Likewise, the all-important ANSI C identifier, size_t, which is the unsigned
type of the result of the sizeof () operator and the type used by function param-
eters that accept the size of an object, is a four-byte quantity.

That has many ramifications for programming in 32-bit C. C standard library
functions such as malloc(), furite(), and strncpy() all take size_t parame-
ters, and strlen() returns a size_t. These standard library functions deal in
quantities between 0 and UINT_MAX. In the 16-bit code generated by MS-DOS
compilers such as Microsoft C, UINT_MAX is OxFFFF (65,535), yielding the familiar
64K limit on PC array lengths, string lengths, and malloc blocks. But in 32-bit
code, UINT_MAX is OxFFFFFFFF, or 4,294,967,295: the magical upper "limit" of four
gigabytes. In the native mode of the 386, this is the upper bound on array
lengths, string lengths, and malloc() blocks: hardly a limit at all.

Using the SIEVE program to build a 1.2 megabyte bitmap to represent all
prime numbers <= 30,000,000, we could save this entire bitmap to disk in one call
to furite(d:

FILE *f = fopen("primes.dat"”, "wb");

fwrite(&size, sizeof (ULONG), 1, f);

fwrite(map, 1, bytes(SIZE(map)), f); // write out entire bitmap
fclose(f);

This code would not work reliably when using an MS-DOS compiler such as
Microsoft C or Turbo C. The third parameter to fwrite() isa size_t num_i tems,
yet we are passing in an unsigned Long; in addition, huge pointers cannot be reli-
ably passed to standard-library functions. This is an example of how 16-bit mode
forces the programmer to remember low-level aspects of the machine architec-
ture. In contrast, 32-bit mode allows a far more "forgetful" style of programming,
in which many more things work the way you wish they worked: passing a 1.2-
megabyte buffer to fwrite () works just fine. "Normal" objects in 32-bit program-
ming are true huge objects, without any of the limitations of what Microsoft calls
huge objects.

How does this call to fwrite() actually work in a 32-bit DOS extender?
Under MS-DOS, the C function fwrite() must eventually call Int 21H AH=40H
(Write File or Device). A 32-bit DOS extender supports the Int 21H interface, even
for objects that MS-DOS can’t handle. We saw in Chapter 4 how a 16-bit DOS ex-
tender skillfully creates the illusion of an MS-DOS that can handle objects in ex-

Chapter 5 80386-based Protected-Mode DOS Extenders 211

tended memory. A 32-bit DOS extender must support not only this fiction, but
also the fiction of an MS-DOS that can handle objects whose size is greater than
64K. Standard references to the MS-DOS programmer’s interface carry the fol-
lowing description for the DOS wr1 te function:
Int 21H Function 40H
Write File or Device
BX = handle
CX = number of bytes to write
DS:DX = segment:offset of buffer area

In a subtle but important difference, the manuals for Phar Lap 386 | DOS-Ex-
tender, Eclipse OS/386, and IGC XAM show the following description:
Int 21H AH=40H
Write File or Device
BX = handle

ECX = number of bytes to write
DS:EDX = segment:offset of buffer area

The mention of the 32-bit ECX and EDX registers instead of the 16-bit CX and
DX registers is crucial. In its underlying implementation, this eventually calls the
“real” Int 21H Function 40H, and so breaks up large requests into a series of
smaller requests, and moves data from extended memory to conventional mem-
ory, But this is all transparent to the programmer, particularly the programmer
using the standard library functions in a high-level language.

As noted later on, though, file I/O might be slower under a DOS extender
than in real mode. In order to correct this, you might need to make sure that the
DOS extender doesn’t break your large fwrite() call into many tiny DOS calls.
The C function setvbuf() is useful here, as are the Phar Lap command-line
switches -MINIBUF and -MAXIBUEF, which control the size of the low-memory
data buffer used for DOS function calls. A program like SIEVE.EXP, which writes
a large amount of data at one time, should allocate a large I/O buffer:

run386 -minibuf 32 -maxibuf 48 sieve 30000000

On occasion, you may have to be aware of small differences between the in-
terface provided by a 32-bit DOS extender and that provided by MS-DOS, or be-
tween the different DOS extenders. The best example is Int 21H AH=48H (Allocate
Memory Block). Real-mode MS-DOS expects in BX the number of 16-byte para-
graphs of memory needed. (Since BX can hold values up to 65,535, this means
that Int 21H AH=48H can be used to allocate 16 * 65,535 bytes at once, which is the
basis for real-mode huge pointers.) Eclipse OS/386 mimics the DOS interface, ex-

212 EXTENDING DOS

pecting in EBX the number of paragraphs needed, but Phar Lap 386 | DOS-Ex-
tender instead expects in EBX the number of 4K pages an application needs!
Code generated by a compiler should detect which environmerit it is running
under and pass the proper parameters.

Adding 80386 Bit Test Instructions

Once we've decided to make SIEVE.C a 32-bit program, there are further im-
provements we can make. For example, the bitmap operations in SIEVE.C are
typical of testing, setting, and resetting bits in C. To set a bit (turn it on), which
the sieve program does a lot, you need:

#define index(bit) (bit >> 3)
#define mask(bit) (1 << (bit & 7))
#define SET_TRUE(map,c) mapLindex(c)]1 |= mask(c)

C compilers such as Watcom 386 and MetaWare High C take SET_TRUE
(map,¢) and have to turn it into:

mov eax, _map

mov edx, _cC

mov ebx, edx

shr ebx, 3

mov cl, dl

and cl, 7

mov dl, 1

shl dL, cl

or 4[Lebx+eaxl, dl

This is better than 16-bit code, but is still not a very efficient way to operate
on a bitmap.

As you may recall from our earlier discussion of the 386 instruction set, the
Intel 80386, like the Motorola 680x0 family, has a set of bit test instructions. These
are perfect for graphics, for implementing large sets, for semaphores, or for ma-
nipulating any sort of bitmap. Not exactly RISC! BT does a bit test, BTS sets a bit
true, BTR resets a bit to false, BSF scans for the first set bit, and so on. The call
SET_TRUE(map, c) could be implemented with:
mov esi, _map
mov eax, _C
bts Lesil, eax

Such a CISC instruction takes longer to execute than a simple instruction like
NOW or AND. But it’s faster than the MOV /SHR/AND/SHL/OR series shown
earlier, and certainly takes less room.

Chapter5 80386-based Protected-Mode DOS Extenders 213

The bit test instructions also work in 16-bit code on a 386. But in 32-bit mode,
since a 4-byte register can be used to hold the offset into the bitmap, the instruc-
tions handle maps with up to 4 gigabits (536 megabytes).

This is all well and good, but how can we get the compiler to use the 386 bit
test instructions? If we were to code these as functions in a separate assembler
module, any performance gain from using the bit test instructions would proba-
bly be lost in function-call overhead. However, many 386 C compilers come with
a facility for in-line assembler. For example, the Watcom C #pragma aux facility
can be used to describe a symbol’s attributes, such as how a function receives it
parameters, how it returns a value, and what registers its modifies. This makes it
easy to tell the compiler how to generate code for a particular symbol. The fol-
lowing three lines tell the Watcom compiler to use the BTS instruction whenever
it sees a call to set_true():
void set_true(BITMAP map, ULONG bit);

#define BTS_ESI_EAX Ox0OF OxAB 0x06
#ipragma aux set_true = BTS_ESI_EAX parm L[esil [eax] ;

This tells Watcom 386 that the block of code named set_true takes its pa-
rameters in ESI and EAX, but does not create an actual function set_true(). In-
stead, the call set_true(map, c) will now generate the following code:
mov esi, _map
mov eax, _cC
bts [esil, eax

How much of a difference does this make to the performance of the sieve
program? Whereas the Watcom 386 version took 74 seconds to find p(10,000,000)
using standard C bit operations, a version that uses the 386 bit instructions takes
67 seconds: another 10 percent shaved off a program that was already three times
faster than its 16-bit equivalent. A 386 replacement for BITMAPH follows:

/* BTMAP386.H */

#if 'defined(__WATCOMC__) || 'defined(__386_)
#error BTMAP386.H requires Watcom C 7.0/386
Hendif

typedef unsigned Long ULONG;
typedef unsigned char BYTE;

#define ALLOC(x,y) calloc(x,y)
#define FREE(x) free(x)
typedef BYTE *BITMAP;

214 EXTENDING DOS

void set_false(BITMAP map, ULONG bit);
void set_true(BITMAP map, ULONG bit);
ULONG test_bit(BITMAP map, ULONG bit);
/* 386 bit test instructions */

#define BTR_ESI_EAX OxOF OxB3 0x06

#define BTS_ESI_EAX OxOF OxAB 0x06

#define BT_ESI_EAX Ox0F OxA3 0x06

#define PUSHF 0x9cC

#define POP_EAX 0x58

#define AND_EAX_1 0x25 0x01 0x00 0x00 0x00
#define MOV_EAX_CARRY PUSHF POP_EAX AND_EAX_1

#pragma aux set_false = BTR_ESI_EAX parm Lesil L[eax] ;

#pragma aux set_true BTS_ESI_EAX parm Lesil [eax] ;

#pragma aux test_bit BT_ESI_EAX MOV_EAX_CARRY \

parm [Cesil [eax] value [eax] ;

/* skip past 32-bit ULONG size header */
#define SIZE(map) (*((ULONG *) map))
#define BIT_ON(map, i) test_bit(map, (i)+32)
#define BIT_OFF(map, i) (! BIT_ONCmap, 1))
#define SET_TRUE(map, i) set_true(map, (i)+32)
#define SET_FALSE(map, i) set_false(map, (i)+32)
#define free_bitmap(map) FREE(map)

// ... identical to tail of BITMAP.H

Here, we used Watcom C 7.0/386 because it is the most convenient for this
task. For large commercial applications, however, you may find that MetaWare
High C 386 is a more appropriate tool.

Virtual Memory

Another obvious 386 feature to use is virtual memory. Since the test machine
we’ve been using has only two megabytes of memory, but a lot of free disk space,
it would seem that this would be a perfect opportunity to try out the virtual
memory option available with 386 DOS extenders. Unfortunately, though, a sieve
is the worst possible test for virtual memory, since the program runs through the
entire bitmap for every prime number found. While this implementation is fine if
the entire bitmap is in memory, it would cause serious thrashing if any part of the
bitmap was located on disk.

Chapter 5 80386-based Protected-Mode DOS Extenders 215

The following program, PRIMES.C, is a better demonstration of virtual mem-
ory under a 386 DOS extender. The program reads in the bitmap file
PRIMES.DAT that was saved by the SIEVE program, and can be run on a 386
computer with less memory than the machine which created the PRIMES.DAT
file. The program allows the user to type a ‘?’ to query the prime-number bitmap,
a ‘V’ to see virtual-memory statistics, or a ‘Q’ to quit. The following example not
only shows the difference a little virtual memory can make, but also shows the
mechanics of using Phar Lap’s 386 | VMM:

C:\B0OOK>run386 primes
Insufficient memory

C:\BOOK>run386 -vm \pharlap\vmmdrv primes
;;; A LOT OF DISK ACTIVITY ;;;

> ? 99998000099

9998000099 is not prime

Prime factors: 99989 99991

> Vv

VM active for 36 seconds

Page faults: 248

Pages written to swap file: 245

Reclaimed pages: 105

Application physical pages: 175
Application VM pages: 316

Swap file pages: 146

> ? 1000000000061

1000000000061 is prime

> q :

When we tried to run PRIMES without benefit of virtual memory, the pro-
gram complained and exited back to DOS. But with the virtual-memory man-
ager, the program’s call to calloc() succeeds. 386 | VMM is enabled by using the
-vm flag on the DOS command line to RUN386. In the distribution version of an
application, the VM driver would be bound together with the DOS extender and
the application itself into a single .EXE file, and so would be invisible to the user.
For example, Mathematica and UR/Forth both have 386 | VMM built into their
executables.

In this session, the PRIMES program allocated 316 4K pages of memory, of
which only 175 were located in physical memory. Thus, 141 pages of memory
were located on disk in a swap file. The application must make a special system
call to 386 | VMM in order to find these statistics, since in normal operation VM is
invisible to the programmer. In the following source code for PRIMES.C, note

216 EXTENDING DOS

that we allocate memory for the bitmap using the same make_bitmap() function
used in SIEVE.C; this function in turn calls calloc(), which succeeds even
though there isn’t adequate physical memory to satisfy the request. There is a
strong resemblance between VM and a government’s ability to freely print paper
money! Of course, here too there is no such thing as a free lunch, and VM opens
the possibility of slower execution time than code using only physical memory.
In the following code, note that Int 21H AX=2520H is used to get VM statistics.
As will be explained later, the interface to Phar Lap’s API replaces MS-DOS'’s Int
21H AH=25H. Both MetaWare High C-386 and Watcom C/386 support a 32-bit ex-
tended version of the Microsoft C intdos() and int86() functions for invoking
software interrupts:
/*
PRIMES.C

Author: Andrew Schulman, February 1990
*/

#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <limits.h>
#include <dos.h>

typedef enum { FALSE, TRUE } BOOL;

void fail(char *s) { puts(s); exit(1); }

#include "bitmap.h"

#define N(x) ((x) / 3) // exclude multiples of 2 and 3

// don't test double for equality: DBL_EPSILON in <float.h>
#define EQ(x,y) (((x) = (y)) < DBL_EPSILON)

BOOL is_prime(double x);

void prime_factors(double x);
void vm_stats(void);

void help(void);

BITMAP map;
ULONG size;

Chapter 5

80386-based Protected-Mode DOS Extenders

217

main()

{

}

char buf[801, *s=buf;
double d;

FILE *f;

ULONG map_size;

if (! (f = fopen("primes.dat", "rb")))
fail("requires PRIMES.DAT");

fread(&size, sizeof(ULONG), 1, f);

fread(&map_size, sizeof(ULONG), 1, f);

if (! (map = make_bitmap(size)))
fail("Insufficient memory");

fseek(f, 4, SEEK_SET);

fread(map, 1, bytes(map_size), f);

for (;;)
{
printf("> ");
gets(s);
if (strlen(s+2) > DBL_DIG)
{

printf("Number too large\n");
continue;
}
switch (toupper(*s))
{
case '?!'
d = strtod(s+2,0);
if (is_prime(d)) printf("%Z.0f is prime\n", d);
else
{
printf("%Z.0f is not prime\n", d);
prime_factors(d);
}
break;
case 'Q' : fclose(f); exit(1);
case 'V' : vm_stats(); break;
default : help(); break;

void help(void)

{

puts("? [x] -- is x prime? if not, show prime factors");
puts("Q -- quit");
puts("V —— virtual memory stats");

218 EXTENDING DOS

BOOL is_prime(double x)

{
ULONG i, n, Llx, sqrt_x;
int dincr;
if (x <= (double) size)
{
lx = x;
if ((lx == 2) || (lx == 3)) return TRUE;
if ((lx % 2) && (Lx % 3) && BIT_OFF(map, N(lx))) return TRUE;
else return FALSE;
}
else
{
if (EQ(fmod(x,2),0) || EQ(fmod(x,3),0)) return FALSE;
sqrt_x = sqrt(x);
for (i=5, incr=4, n=1; di<=sqrt_x; i+=Cincr=6-incr), n+#+)
if (BIT_OFF(map, n) && EQ(fmod(x,i),0)) return FALSE;
// still here -- primes are residue
return TRUE;
}
)}
void prime_factors(double x)
{
ULONG i, n;
int incr;
printf("Prime factors: ");
while (! EQ(x,1))
{
if (is_prime(x)) { printf("%.0f\n", x); return; }
if (EQ(fmod(x,2),0)) { printf("2 "); x /= 2; }
if (EQ(fmod(x,3),0)) { printf("3 "); x /= 3; }
else for (i=5, dincr=4, n=1; i <= x; i+=(incr=6-incr), n++)
if (BIT_OFF(map, n) &8& EQ(fmod(x,i),0))
{
printf("%Llu ", i);
x /= 1;
}
}
printf("\n");
)
void vm_stats(void)
{

ULONG bufL251;

union REGS r;
#ifdef __WATCOMC__

r.x.edx = buf;

Chapter 5 80386-based Protected-Mode DOS Extenders 219

r.x.ebx = 0; // don't reset VM stats
r.x.eax = 0x2520;
#else
r.x.dx = (unsigned) (void *) buf;
r.x.bx = 0;
r.x.ax = 0x2520;
#endif
intdos(&r, &r);
if (bufL01) // VM is present
{

printf("VM active for %lu seconds\n", buf[111);
printf("Page faults: %lu\n", buf[121);
printf("Pages written to swap file: Zlu\n", buf[13]);
printf("Reclaimed pages: 7lu\n", buf[141);
printf("Application physical pages: Zlu\n", buf[51);
printf("Application VM pages: %lu\n", bufC151);
printf(”"Swap file pages: %lu\n", buf[161);

)}

else
puts("VM not present");

}

Moving to 32-bit Programming

The preceding examples have shown that, if you are to have a PC background,
then making the transition to 386 programming largely involves forgetting all the
tricks you’ve learned to get around DOS and its real-mode limitations. Forget
about dealing with objects in chunks smaller than 64K; forget about distinguish-
ing between near and far memory; forget about distinguishing between different
memory models; pretty much forget about segmentation. Under VM, forget
about available memory (but you had better be aware of disk space, and of the
cost of using it!).

You're likely to use a high-level language for the bulk of your development
efforts. C is a popular development tool; from the outset of 386 DOS extender de-
velopment, 386 C compilers have been readily available. MetaWare High C was
the first available C compiler targeted for 386 DOS extenders; the High C 386
start-up code detects all three DOS extender runtimes and responds accordingly.
Therefore, MetaWare High C-386 can be used for development targeted to work
with any of the DOS extenders.

Most development work is likely to depend on the high-level language that
the developer or team feels most comfortable with. If the primary programming
task is porting a large application from a workstation, minicomputer, or main-

220 EXTENDING DOS

frame environment, it makes sense to choose the 386 compiler that most closely
corresponds with the mainframe compiler. Note that most FORTRAN 386 com-
pilers support some idiosyncratic mixture of VAX and IBM mainframe anachro-
nisms. Several 386 compiler vendors are from the UNIX marketplace, so their
products are likely to support UNIX nuances and anomalies. If the application is
being moved from the DOS world, better DOS compatible libraries are generally
available from vendors moving up from the DOS marketplace. Those unusual
programs to be written from scratch allow the most flexibility in choosing 386 de-
velopment tools.

One major consideration in developing with C on the 80386 is that the widths
of various data types are different from the widths of equivalent DOS counter-
parts. As noted earlier, on the 386, the int (integer) data type is now a full 32 bits
wide, comparable to the Long data type under 8086 DOS C compilers. A side ben-
efit is that code from the UNIX and minicomputer world which assumed that an
int was 32 bits wide will port quite easily to the 386.

If the major part of a programming project is in a high-level language (Ada,
C, Pascal, or Fortran, for example), porting to the 386 DOS extenders can be a rel-
atively painless task. High-level language compiler vendors have complied with
protected-mode restrictions by modifying their libraries for protected mode, and
can shield the programmer from much of the changes wrought by memory and
hardware protection. Such problems are more likely to arise in small sections of a
large application that have traditionally been hand-coded in assembly language.
Assembly language may have been used for the following reasons:

® faster execution speed

= smaller memory space requirements

= the need to communicate directly with video or other hardware
» the need to interface with existing real-mode libraries.

A reasonable strategy is to minimize assembly language usage and focus on
the best algorithms at the compiler language level. A parallel routine in C that
operates slowly can always be replaced at a later phase with a faster hand-coded
80386 assembly language function.

Although useful and sometimes necessary, interfacing with real-mode librar-
ies will commonly create more problems than are solved. Although real proce-
dure call (RPC—analogous to, but not to be confused with, remote procedure call
in networking) and signal mechanisms are available with DOS extenders (the
0S/386 RPC mechanism is quite elegant), a steep learning curve is involved in

Chapter 5 80386-based Protected-Mode DOS Extenders 221

coming up to speed with these special DOS extender features. If source code for
real-mode libraries is available (whether in assembly language or a high-level
language), it is almost always preferable to revise and recompile or reassemble
the source code expressly for the 386/486.

When programming in 386/486 protected mode, the developer must disci-
pline the casual programming style typical of programming under DOS. Access
to physical memory is no longer direct. Memory protection is enabled, and seg-
ment registers must be used with more care. Segment registers can no longer be
used for arithmetic. Any value loaded into a segment register must now be a le-
gitimate selector. As noted in Chapter 1, a selector represents an index to an entry
in a local or global descriptor table. These descriptors hold information about the
segment type, length, privilege level, and base address. Without paging, the base
address is the actual physical address in memory. With paging enabled, yet an-
other level of logical-to-physical address translation takes place. In any event, ac-
tual addresses are no longer directly accessible to a program.

In addition, a code segment (selector) is marked read-only/executable and
usually can’t be written to. Actually, 386 DOS extenders support a data selector
alias for the code segment that does allow such programming practices.

A selector will also have a limit (size), which, if exceeded, can cause a mem-
ory protection violation. Even the stack can cause a memory protection violation
if not enough stack space has been allocated and marked in the descriptor table.

This opens the question of how to handle memory-mapped video and graph-
ics under a 386 DOS extender. For speed, high-end applications often choose to
write directly to video memory, bypassing the ROM and video ROM BIOS. Both
text and graphics modes are often handled in this way. Because of memory pro-
tection issues in protected mode, video memory cannot be accessed at an abso-
lute physical address, as it is under DOS. Under DOS extenders, a selector that
points to the actual block of video or graphics memory must be used. All of the
DOS extenders provide some built-in mechanism to readily address video mem-
ory. This mechanism is usually a hard-wired selector pointing to a chunk of video
RAM. Also, extended functions provided by the DOS extenders allow allocating
a memory segment for any block of physical memory. These functions provide a
scheme to handle most atypical video and graphic card options.

Access to the interrupt vector tables and hardware can be more problematic
than in simple DOS programming. The interrupt vector table is internal to the
DOS extender. To install a replacement interrupt handler requires using a 386

222 EXTENDING DOS

DOS extender function. There can be two interrupt handlers for each hardware
interrupt:

® a real-mode handler that gains control when DOS is executing in lower
memory

= a protected-mode handler that gains control when the program is operat-
ing in protected mode and the DOS extender is active.

DOS extenders all support some way to pass the real-mode interrupt up to a
protected-mode interrupt handler and some way to pass interrupts from pro-
tected mode down to a real-mode handler. DOS extenders can also provide fea-
tures to install dual interrupt handlers, which operate in both situations. Dual
interrupt handlers provide the best interrupt response, because the DOS extender
does not have to perform a switch from real to protected mode in order to pro-
cess an event. The most common use for dual interrupt handlers would be a se-
rial device that generated many interrupts (graphics tablet, plotter, and
high-speed modem. A dual interrupt handler could be set up to share a common
data buffer in low memory to maximize response time. On fast 80386 machines,
dual interrupt handlers are less necessary.

Tools for 386 DOS Extender Programming

All three 386 DOS extenders include a debugger, utility programs, and examples
of their use to create and execute protected-mode 386 programs. All three emu-
late DOS and the BIOS to a substantial degree. For most conventions, the Eclipse
and Phar Lap extenders are similar enough to be used somewhat interchange-
ably. The three runtimes support four different executable file formats (Phar Lap
supports both an old and a new EXP executable). From the programmer’s per-
spective, it would be preferable if the three runtimes were closer together in their
DOS and BIOS emulation and EXE file formats, and in the way they handle other
hardware issues (the Weitek chip, for example).

Choosing a 386 DOS Extender

Most programmers would rather choose 80386 compilers and development tools
without being forced to make a choice of development and runtime environ-
ments at the same time. Unfortunately, with the exception of a few compilers
such as MetaWare High C-386, choosing a 386 compiler locks a programmer into
its associated DOS extender and debugger.

Chapter 5 80386-based Protected-Mode DOS Extenders 223

Let’s take a typical application and divide the time spent on various tasks.
You might spend 20 percent on planning and design, 40 percent on program-
ming, and 40 percent on debugging. When you decide on a runtime environ-
ment, you are also choosing a debugger and technical support. Because of
software differences among them, a debugger from one vendor will not work in
another 386 environment.

There is one disadvantage to the near-absence of segmentation in 32-bit pro-
tected-mode; it makes debugging fairly difficult. While page-level protection is
still available when using the 386 as a linear address space, it does not provide
nearly as adequate protection as segment-based protection in 16-bit protected
mode. While the 386 provides a new set of registers for debugging, to date actual
debugging facilities for 386-based DOS extenders are more primitive than under
real-mode DOS, 286-based extended DOS, or OS/2. One of the benefits of 16-bit
protected mode’s extensive use of segmentation is the support it provides for de-
bugging: many software developers might use OS/2 and 286-based DOS extend-
ers for this, if for nothing else.

Phar Lap 386/DOS Extender

Phar Lap markets 386 | DOS Extender (RUN386), a 386 assembler, linker, librar-
ian, and debugger package (386/ASM/LINK), a symbolic debugger
(386 | DEBUG), and tools for embedded applications (LinkLoc). Phar Lap has
been the traditional supplier for the assembler and linker used for 386 develop-
ment under DOS. Phar Lap defined the 386 object module (EASY-OMF) most
commonly used under DOS. EASY-OMF is an extension of the Intel OMF-86 ob-
ject module, in which some fields are extended to 32 bits for the 80386. An EASY-
OMF object module is denoted by a comment record at the start of the file
containing "80386." With the exception of Lahey FORTRAN F77/132, all 386
compilers can generate Phar Lap 386 object files and are supplied with Phar Lap
compatible libraries. (The Lahey compiler uses the Microsoft 32-bit object module
format, and requires the Lahey linker, L32.)

Phar Lap’s assembler and linker are provided in two forms under DOS: a
real-mode version, and a protected-mode version that runs under DOS on an
80386 with more than 1 megabyte of extended memory. The protected-mode ver-
sion operates much faster but is otherwise equivalent to the real-mode version.
FASTLINK, the protected-mode version of 386LINK, can link larger programs.
386 | DEBUG is very similar to Microsoft's SYMDEB and supports symbolic de-
bugging at the assembly language level.

224 EXTENDING DOS

RUN386, the 386 DOS extender, supports a number of switches and options,
and automatically senses the presence of other programs using extended mem-
ory (RAMdisks, EMS emulators, and so on). RUN386 supports the Virtual Con-
trol Program Interface (VCPI) drafted with Quarterdeck Systems to allow
multiple 386 programs to cooperate, averting the chaos that characterizes TSRs
under DOS. RUN386 supports calls from protected mode to real mode. Phar Lap
was the first vendor to support virtual memory for 386 applications, and, as
noted earlier, a number of commercial products already incorporate the Phar Lap
Virtual Memory Manager (386 | VMM). Another interesting aspect of 386 | DOS-
Extender is its support for protected-mode TSRs: when a protected-mode pro-
gram makes a TSR system call (e.g., Int 21H AH=31H), both the protected-mode
program and RUN386 stay resident in memory.

Phar Lap developed and supports two different EXP file formats:

» the original EXecutable Protected mode (EXP)
= a P3 format EXP, which now supports a packed mode that creates smaller
executable file sizes.

Although RUN386 can load a Relocatable EXecutable (IGC’s REX) file (Phar
Lap wrote the assembler/linker originally used by all three vendors), it cannot,
in general, execute REX programs because of differences in the Phar Lap and IGC
runtime environments.

The Phar Lap runtime is a flat memory model with several hardwired seg-
ment selectors for memory mapping. For example, a program CS is set to OCH,
and DS and ES are set to 14H—all pointing to the same block of physical mem-
ory. There are also hardwired selectors for the video refresh buffer, the lower 1
megabyte of memory, and the program’s environment block and program seg-
ment prefix (PSP). These are listed in Table 5-5 (Phar Lap and Eclipse LDT hard-
wired selectors), later in this chapter.

Normally, both RUN386 and your application run at ring 0 (most privileged).
This allows complete machine control from within your application. RUN386 can
turn paging on or off. With paging enabled, RUN386 can also use memory below
640K for 386 applications. The Phar Lap DOS extender uses about 100K of low
memory aside from DOS, leaving about 500K of low memory, plus any extended
memory above 1 megabyte available for protected-mode use. This DOS extender
makes the largest quantity of memory available for 386 programs. This can be a
consideration for machines with relatively low memory (2 megabytes).

Chapter 5 80386-based Protected-Mode DOS Extenders 225

DOS protected-mode function calls are reasonably similar to normal DOS
calls, with a few exceptions. Of course, registers are 32-bits wide instead of 16
(EAX versus AX). DOS GetVersion (AH=30H) is used to return information about
the runtime. The DOS Get Vector (AH=35H) and Set Vector (AH=25H) calls are not
supported, but are replaced with DOS extender calls. FCB-type file I/O calls are
not supported. Memory management and EXEC calls are slightly different from
their DOS counterparts. The Weitek math chip is supported by mapping it into a
64K block of memory pointed to by segment register FS.

Phar Lap provides a set of system calls via Int 21 AH=25H. Since this MS-DOS
function to set interrupt vectors was likely to be changed anyway for 32-bit pro-
tected mode, Phar Lap chose to use this as the interface to all Phar Lap system
services. These services include support for protected- and real-mode interrupt
handling, memory management, intermode communication (calling real-mode
procedures from protected mode), and virtual memory. A service is chosen with a
function number in the AL register. Below is a listing of the various functions:

Interrupt Handling
AH=25H AL=02H Get protected-mode interrupt vector
AH=25H AL=03H Get real-mode interrupt vector
' AH=25H AL=04H Set protected-mode interrupt vector
AH=25H AL=05H Set real-mode interrupt vector
AH=25H AL=06H Set interrupt to always gain control in protected mode
AH=25H AL=07H Set real- and protected-mode interrupt vectors
=25H AL=0CH Get hardware interrupt vectors (IRQ0-15)
Memory Management
AH=25H AL=08H Get segment linear base address
AH=25H AL=09H Convert linear to physical address
AH=25H AL=0AH Map physical memory to end of segment
AH=25H AL=13H Alias segment descriptor
AH=25H AL=14H Change segment access rights or USE16/USE32 flag
AH=25H AL=15H Get segment access rights and USE16/USE32 flag
AH=25H AL=16H Free all memory owned by LDT
AH=25H AL=18H Specify handler for moved segments

Real-mode Communications

AH=25H AL=0DH Get information for real-mode function call
AH=25H AL=0EH Call real-mode procedure, stack-based

226 EXTENDING DOS

AH=25H AL=0FH
AH=25H AL=10H
AH=25H AL=11H
AH=25H AL=17H

Virtual Memory (VMM)

AH=25H AL=19H
AH=25H AL=1AH
AH=25H AL=1BH
AH=25H AL=1DH
AH=25H AL=1EH
AH=25H AL=1FH
AH=25H AL=20H
AH=25H AL=21H
AH=25H AL=22H
AH=25H AL=23H
AH=25H AL=24H
AH=25H AL=25H

Miscellaneous

AH=25H AL=01H
AH=25H AL=12H
AH=25H AL=26H
AH=25H AL=C3H
AH=25H AL=COH

=25H AL=C1H
AH=25H AL=C2H

Convert protected-mode address to MS-DOS
Call real-mode procedure, register-based
Invoke real-mode software interrupt

Get information on DOS data buffer

Get additional memory error information
Lock pages in memory

Unlock pages

Read page-table entry

Write page-table entry

Exchange two page-table entries

Get virtual memory statistics

Limit program’s extended memory usage
Specify alternate page-fault handler
Specify out-of-swap-space handler

Install page-replacement handlers

Limit program’s conventional memory usage

Reset 386 | DOS-Extender data structures
Load program for debugging

Get configuration information

Execute program

Allocate MS-DOS memory block
Release MS-DOS memory block

Modify MS-DOS memory block

AH=30H EBX="PHAR" Get 386 | DOS-Extender version

The majority of 386 compilers run under, and generate code to operate using
Phar Lap’s DOS Extender. These include products from MetaWare, SVS, Micro-
Way, Alsys, and Watcom.

Eclipse Computer Solutions 0S/386

Eclipse Computer Solutions markets two DOS extenders: OS/386, designed for
386 machines and their Hummingboard 80386/80387 coprocessor boards, and
0S/286, a 16-bit DOS extender, already discussed in Chapter 4.

Chapter 5 80386-based Protected-Mode DOS Extenders 227

Eclipse’s Developer’s Kit includes the OS/386 kernel, a symbolic debugger,
and several utility programs. Eclipse’s OS/286 supports a multiple segmented
memory model on the 286, allowing applications to break the 640K memory bar-
rier under DOS. The same memory map is supported on the OS/386 runtime,
along with the more common flat, unsegmented memory model. For develop-
ment purposes, the kernel is installed as a TSR (which can be removed from
memory when not needed). This speeds the loading of protected-mode programs
during both development and testing. The kernel runs at ring 0 (most privi-
leged), while your protected-mode program runs at ring 3 (least privileged). The
1/0 privilege level (IOPL) for applications is set at 3 so that your application can
input and output to hardware ports.

The OS/386 DOS extender’s support of VCPI allows programs to run under
Quarterdeck’s DESQview 386, which provides multitasking capabilities. VCPI
adherence also provides for compatibility with other conforming DOS extender
applications. The resident OS/386 kernel can be configured to use only about
60K of the lower 640K DOS memory space, freeing more memory for other real-
mode applications and TSRs. Memory management features include multiple
heaps, automatic compaction, and control over where the protected-mode com-
ponent of the kernel is loaded—below or above the 1-megabyte boundary. Mem-
ory management service functions allow access to page tables, selection of low or
high memory heaps, and control over compaction. Interrupt handlers can be eas-
ily chained to real-mode handlers or shared between parent and child tasks. A
supplied setup program tunes the OS/386 DOS extender runtime for optimum
performance on 386 machines.

Eclipse’s protected-mode programs use the file extension .EXP (EXecutable
Protected mode) for both 16-bit and 32-bit programs. Unfortunately, this is the
name Phar Lap adopted for their default executable files even though Eclipse’s
and Phar Lap’s files have different structures. Eclipse can run the Phar Lap 32-bit
files, using either the .PLX (Phar Lap eXtended) or .EXP extension. A strength of
the Eclipse product is its support for both 80286 and 80386/486 protected-mode
DOS.

Among the three runtime environments, OS/386 offers the closest emulation
of DOS and BIOS. The OS/386 manual describes both compatible and slightly in-
compatible DOS calls supported. Primary variances from DOS are with FCB I/O
calls (records are limited to 16K), DOS memory allocation, and EXEC calls. Oth-
erwise, all DOS calls are fully supported, except that 32-bit registers are used.

228 EXTENDING DOS

A number of extended DOS calls are supported for calling real-mode proce-
dures, setting arbitrary interrupt vectors, creating code and data segments, get-
ting segment information, and doing block transfers to low memory. These
services are invoked with Int 21Hwith AHranging from EOH to EDH, and are iden-
tical to those listed in the section of Chapter 4 on 0S/286 and the Two-Machine
Model—an indication of the strong ties between OS/286 and OS/386.

As an option, Eclipse provides a demand-paged virtual-memory version of
the OS/386 TSR. This is similar to the Phar Lap virtual-memory manager dis-
cussed earlier. In addition to its normal transparent operation, the Eclipse virtual-
memory option adds the following extended functions to the OS/386 Int 21H
programming interface:

AH=EBHAL=00H Get a page table entry (PTE) by linear address
AH=EBHAL=02H Get a page table entry (PTE) by 16-bit segment:offset
AH=EBHAL=03H Free mapped pages

AH=EBHAL=04H Get a page table entry (PTE) by 32-bit segment:offset
AH=EBHAL=05H Map pages

AH=EBHAL=06H Lock pages in memory

AH=EBHAL=07H Unlock pages.

The Eclipse debugger, Command Processor (CP), is a command shell that can
execute DOS-like built-in commands and batch files, as well as be used as an as-
sembly language symbolic debugger. The shell includes a history command and
a built-in command line editor using key bindings similar to the standard
EMACS editor defaults. The shell has a macro processor that allows invoking a
batch file of macros to make the debugger or shell look similar to SYMDEB, and
other user interfaces are only a macro file away. A utility converts a link map or
object file into a symbol file suitable for use with CP, providing symbolic debug-
ging. During development, execution of a 386 program is preceded by UP (uni-
processor) or, if using Eclipse’s 386 coprocessor, by HB (HummingBoard), on the
DOS command line.

0S/386 supports a real procedure call (RPC) mechanism that facilitates com-
munication with real-mode routines, such as graphics and communications, lo-
cated in low memory. RPCs allow 386 applications to use the extensive real-mode
libraries until 386 versions of the libraries are available. This OS/386 RPC mecha-
nism allows RPCs to be written in either C or assembly language, and is dis-
cussed at length later in this chapter.

Chapter 5 80386-based Protected-Mode DOS Extenders 229

Currently, the 80386 compilers that support the OS/386 runtime and produce
32-bit code are MetaWare High C-386 and Professional Pascal-386, Watcom
C/386, and Lahey FORTRAN F77/L32. The Lahey 32-bit linker and librarian are
supplied for development along with several other utilities.

IGC X-AM Development Environment

IGC offers two families of 80386 system products—VM /386 (a multitasking con-
trol program similar to Microsoft Windows/386 and Quarterdeck DESQview)
and X-AM, their 386 DOS extender. Although the IGC X-AM (eXtended Address
Mode) runtime, called VM/RUN, doesn’t implement virtual memory, the overall
design is based on creating virtual machines with complete protection of the op-
erating system from damage by an errant program.

The other DOS extenders run DOS in real mode and 386 applications in pro-
tected mode. VM/RUN puts the entire system in protected mode and runs the
DOS kernel in lower memory in the virtual 8086 mode. VM/RUN provides a
completely flat memory model for the system, with applications loaded at the 32-
megabyte address. No hardwired segments are used. Monochrome screen video
memory is mapped at offset BOOOOH, and BIOS data at 400H—their actual physi-
cal addresses. All of this is done with paging. Because paging cannot be turned
off, the IGC runtime can exhibit an Intel bug in older 386 machines that occurs
only when 387 instructions are executing and paging is enabled (see the later dis-
cussion under Hardware Requirements).

VM/RUN is the largest DOS extender (200K) and takes up the most memory.
After it is loaded and has allocated buffers for I/O, EXECing other applications
and TSRs, memory below 640K is pretty much used up. These memory protec-
tion features are justified for VM/386; the necessity for these features in the sin-
gle-tasking X-AM system, however, is arguable. X-AM supports the Weitek math
chip, memory-mapped up high in the 386 address space, at the same location
UNIX vendors chose on the 386.

Of the three DOS extenders, VM/RUN provides the weakest emulation of
DOS. VM/RUN doesn’t support a number of system calls, or supports them dif-
ferently than DOS does. On startup, X-AM passes a global data structure (GDA)
with system information to your application. (MetaWare High C-386 1.6 provides
an include file, GDA.H, for accessing this structure.)

X-AM requires a REX (Relocatable EXecutable) file extension for 386 pro-
grams. The REX file can be generated by the Phar Lap 386 linker and includes re-
location information. The runtime consists of four REX files and a main loader

230 EXTENDING DOS

file (VMRUN.COM). The VM/RUN REX files must be available along the current
path. For debugging, a special debug REX file must be substituted for one of
these standard X-AM REX runtime files. The main COM file is a program loader
used to make profiles for the executable 386 program. Similar to a feature found
in UNIX, the loader uses argL0] (the name of the command invoked) under DOS
3.x to determine the REX file to load. A utility supplied with the runtime concate-
nates these files into a single executable for distribution. But during development
this then requires an additional 110K loader file with the same name as your 386
REX application file. This makes more sense under UNIX, where multiple links
(with different names) to the same physical file can exist. Under DOS during the
development stage, each one of your REX programs carries this extra file around.

Under VM/RUN, the stack is completely protected and doesn’t grow in size.
You use a utility program to set the maximum stack size in executable programs.
During development, the first execution of a program will typically crash with a
stack protection fault until the stack size is increased. The X-AM assembly lan-
guage debugger is the weakest of the three DOS extenders. VM /RUN does not
currently incorporate the VCPI interface, nor recognize when other programs are
using extended memory.

Some of the items in the IGC VM/RUN Global Data Area (GDA) may be use-
ful to your program. These include the PSP address, the data transfer address
(DTA), the application start address, pointers to interrupt tables, the code and
data selector for the application, available high and low memory, stack parame-
ters, and pointers to other data structures. These other data structures in turn
contain pointers to the GDT, IDT, page directory tables, an asynchronous termi-
nal profile block for the COM ports, and a variety of internal data fields and
working areas used by VM/RUN itself.

An entry in the GDA (GDA_SERV) points to a routine that provides a variety
of extended services to VM /RUN. These extended functions can also be accessed
from an application. X-AM does not use software interrupts for this interface. In-
stead, the AH register is loaded with AOH, AL is loaded with a subfunction num-
ber, and then EAX is loaded from the 386’s CRO register. Rather than overwrite
the contents of EAX, MOV EAX,CRO is a privileged instruction in Ring 3 protected
mode and in Virtual 8086 mode, and causes a trap which allows X-AM to gain
control. For example, to get the address of the GDA, an application running
under XAM would do the following:

gdaptr dd O

Y2

Chapter 5 80386-based Protected-Mode DOS Extenders 231

mov eax, 0A007h ; subfunction 7: get GDA address
mov eax, cr0 ; invoke extended function
mov gdaptr, edx ; the GDA pointer is returned in EDX

A list of these extended functions is shown below:

Interrupt Handling

AH=A0H AL=04H Issue a soft IRET from Virtual 8086 mode
Memory Management

AH=A0H AL=01H Move memory

AH=A0H AL=05H Load a real address from a virtual address
AH=A0H AL=06H Relocate a memory block

Real-mode Communications

AH=A0H AL=08H Call a 386 process from a Virtual 86 process
AH=A(0H AL=09H Restart a 386 process from a Virtual 86 process
AH=A(0H AL=0AH Call a virtual 86 routine from a 386 process
Miscellaneous

AH=A0H AL=00H Initialize GDA from Virtual 86

AH=A0H AL=02H Transfer from Virtual 8086 to 386

AH=A0H AL=03H Exit Virtual 86 and return to VM/RUN in real mode
AH=A0H AL=07H Get GDA address

Limitations and Trade-offs

Each of the 386 DOS extenders has a certain amount of overhead associated with
it. In terms of memory used by the DOS extender, the difference is about 500K
from smallest memory needs (Phar Lap) to largest (IGC’s X-AM). On 386 ma-
chines with limited installed memory (2 megabytes, for example), this difference
can represent a sizable chunk of potential program and data space.

The DOS extenders are not ideal candidates for fast file I/O. Whenever a
DOS call is made by a protected-mode application, the machine state is saved
twice—once by the DOS extender and once by the underlying DOS system. Also,
under normal circumstances, file I/O is handled by the real DOS and BIOS down
low in physical memory, and block moved by the DOS extender to your
program’s disk buffers in high memory. This additional block move and save will
impose a performance penalty on file I/O. Therefore, it is best to minimize DOS

232 EXTENDING DOS

file calls and perform file I/O in large chunks if possible. These are good recom-
mendations even in real-mode programs.

When programs operate in protected mode, memory protection has its bene-
fits and costs. From a development standpoint, some programming errors that
are often overlooked or missed when using DOS show themselves quite dramati-
cally as memory protection violations. These include null pointer assignments,
bad pointer values that exceed the limits of the data selector, and writing care-
lessly into code segments. Depending on the runtime, the DOS extender system
may actually crash and reboot as a result of the processor exception. This is par-
ticularly true of stack violations. In any case, a crashed DOS extender makes for
difficult debugging.

Another limit is that the debuggers supplied or available from the 386 DOS
extender vendors are primitive by current PC programming standards. All three
DOS extender debuggers are, at best, symbolic debuggers at the assembly lan-
guage level. Some of the compiler vendors (SVS and Watcom) either bundle a
high-level language debugger with their compiler or make one available as an
optional product. These language debugging tools are certainly an improvement
over stepping back in time to assembly language debugging.

Assembly Language

Assembly language tools for the 386 have traditionally been supplied by Phar
Lap, as part of its "80386 Software Development Series." Its 386 | ASM/LINK
package includes an assembler, a linker, a librarian, and a mini-debugger. The
Phar Lap assembly language tools generate EASY-OMF object modules, which
are supported by most 386 compiler vendors.

Microsoft MASM 5.0+ can also be used to assemble 80386 code, and gener-
ates a different (Microsoft extension) 386 object module format. Microsoft does
not offer a linker or librarian to handle 386 object files. Eclipse bundles with
0OS/386 a 386 linker and librarian written by Lahey Computer Systems, which
handles both Microsoft and Phar Lap 386 object modules. The Lahey librarian
can also convert Phar Lap libraries to their own 386 Lahey library format. These
tools are the same language utilities supplied with Lahey F77/LEM-32 (their 386
FORTRAN development system).

MetaWare bundles with their High C 386 and Professional Pascal 386 a useful
binary dump utility (BD.EXE) that handles both Phar Lap and Microsoft 386 ob-
ject modules, and that can convert from one object module format to the other.

Chapter 5

80386-based Protected-Mode DOS Extenders 233

High-Level Languages

In 1987, MetaWare High C-386 and Professional Pascal-386 were the first compil-
ers available for the 386 DOS extender environment. In fact, 386 DOS extender
development depended on the availability of MetaWare High C-386, which was
used for generating parts of the runtimes, assemblers, linkers, librarians, and de-
buggers that make up these environments. Table 5-2 shows the wide range of
high-level languages that are now available for developing 386 DOS extender ap-

plications.

Table 5-2: Programming languages for 386 DOS extenders.

Language
ADA:

BASIC:

C++:

COBOL:
FORTH:

FORTRAN:

LISP:

Vendor

Alsys

RR Software

Telesoft

STSC, Inc.

dyadic

Language Processors, Inc.
Silicon Valley Software
TransEra Corp.
MetaWare

MicroWay, Inc.

OASYS (Green Hills)
Silicon Valley Software
Watcom Systems, Inc.
INTEK

MicroWay, Inc.

Language Processors, Inc.
Laboratory Microsystems (LMI)
Lahey Computer Systems
Language Processors, Inc.
MicroWay, Inc.

OASYS (Green Hills)
OTG Systems, Inc.
Science Applications (SAIC)
Silicon Valley Software
Symbeolics, Inc.

Product

Alsys Ada 386
386/ADA
Telesoft-Ada
APL-PLUS II
dyalog APL /386
LPI Basic

SVS 386 /BASIC PLUS
HTBasic

High C-386

NDP C-386

C-386

SVS 386/C

Watcom C /386
C++

NDP C++

LPI Cobol
UR/FORTH
F771L-EM/32

LPI FORTRAN
NDP FORTRAN-386
FORTRAN-386
FIN77/386

SVS FORTRAN-386
SVS 386/FORTRAN
CLOE-386

234 EXTENDING DOS

Language Vendor Product
PASCAL: MetaWare Professional Pascal-386
MicroWay, Inc. NDP Pascal-386
OASYS (Green Hills) Pascal-386
Science Applications (SAIC) SVS Pascal-386
Silicon Valley Software SVS 386 /Pascal
PL/I: Language Processors, Inc. LPIPL/I
PROLOG: Epsilon MProlog
Expert Systems Int'l Inc. Prolog-2
SMALLTALK: ParcPlace Systems Smalltalk-80/386
SPITBOL: Catspaw Spitbol-68K /386

The 386 DOS Assembly Language Interface—How It Works

DOS and the PC ROM BIOS, combined, provide operating system services in five
general areas:

the file system

I/0 (keyboard, screen, printer, etc.)
memory management

processor management

other information (clock, critical errors, etc.).

In addition, real-mode DOS can be bypassed if you install an interrupt hand-
ler to replace or enhance some DOS or BIOS facility.

A DOS extender can be perceived as a protected-mode version of DOS. Pro-
grams running under a DOS extender are provided services similar to those pro-
vided to a program running in real mode. From the perspective of the
protected-mode application, the operating system looks like a 32-bit MS-DOS.
The DOS extender, in turn, looks like an application to the actual DOS operating
system located in low memory. 386 DOS extenders generally pass file manage-
ment, I/0, and other information requests on to DOS. The results returned from
DOS are passed back through the DOS extender to the application. Processor and
memory management, however, except memory allocation in the lower 640K, are
handled solely in protected mode by the DOS extender.

To use protected mode, software must first set up the prerequisite memory
management tables, including segmentation and paging tables, if paging is en-
abled. The memory management tables are the global (GDT), the local (LDT),
and the interrupt descriptor tables (IDT), discussed in Chapters 1 and 4.

Chapter 5 80386-based Protected-Mode DOS Extenders 235

In addition, some gateway or bridge to DOS must be constructed—this is the
task of the 386 DOS extenders. These control programs set up the required mem-
ory management structures, including a gateway to DOS and other operating
system and hardware services, load a 386 program into memory, and start it. In
general, these runtime extenders set up an emulation of the DOS and BIOS call-
ing conventions, using INT instructions. They intercept DOS calls, transform
them for passing to the real DOS kernel that sits in low memory, pass the call to
the real DOS and BIOS, and pass the returned information back to your 386 pro-
gram. The subtle differences between one DOS extender and another lie in this
emulation of DOS and BIOS that your application sees, and in special features—
for instance, the DOS extender can allow a 386 protected-mode program to call
an 8086 real-mode procedure (say, a graphics routine or a TSR) sitting down in
low memory, or load other 80386 programs.

DOS extenders appear like DOS to a 386 application. If DOS or BIOS services
need to be called directly from an application, the DOS or BIOS emulation pro-
vided by the DOS extender needs to be understood. DOS calls are still made by
loading a function in register AH and executing an Int 21H. The primary differ-
ence is that the registers used are now a full 32 bits wide. The most common mis-
take is to forget that most pointers need to be a full 32 bits to point at an object.

The sample code below illustrates a simple assembly language function to
emulate the UNIX clock routine. This function calls the DOS GetTime function
and returns the number of 1/100 seconds since midnight. The assembly language
code uses a few fast 80386 instructions for zero-extending a register (MOVZX)
and small integer multiplies (LEA). This routine can be used with most 386 com-
pilers that expect the results of a function in the EAX register. This particular
function has been used to time the code generated by various compilers for
speed of execution. The name might need to be changed depending on the com-
piler chosen: some C compilers emit C function symbols with a leading under-
score; most Fortran compilers expect uppercase names without underscores.

; CLOCK.ASM

; A clock function for NDP C-386, LAHEY F77-EM/32, SVS 86/FORTRAN, etc.
; returns 1/100 seconds since midnight as a long.

; assemble with either Phar Lap 386|ASM or Microsoft ASM

; C calling convention
;
’
s
’

extern Llong clock();
long t;
t = clock();

236

EXTENDING DOS

.386

Ns N

Ns N

Ne Nu N

dataseg segment dword
dataseg ends

’

required to generate 32-bit code/data

It is important when Llinking to F77L-EM/32 program units that data
segments your assembly code uses have class name 'DATA'
to Link correctly. You must also use the GROUP directive to

include the data in DGROUP. DS and ES are set to DGROUP by the
FORTRAN code, and must be set that way on return. Your code segment
must also be included in CGROUP and include the directive:
ASSUME DS:DGROUP, CS:CGROUP)

in order

codeseg segment para public use32
assume cs:codeseg, ds:dataseg

public _clock

align 4

_clock proc near

mov ah,2ch
Int 21H

'; mov eax,60
; mul ch

Na

.
' 4

movzx eax,ch

lea eax,[eax+eax*4]
lea eax,Leax*4]

lea eax,[eax+eax*2]

movzx ecx,cl

add eax,ecx

lea eax,[Leax+teax*4]
lea eax,[eax*4]

lea eax,[eax+eax*2]

movzx ecx,dh

add eax,ecx

lea eax,Leax+eax*4]
lea eax,Leax*4]

lea eax,Leax+eax*4]
movzx ecx,dl

add eax,ecx

ret

_clock endp

codeseg ends

end

Ne

Ne Ne Na e Y NGl N.

Ne Na Ne N N

Ne Na

Ns N

align location counter

DOS Get Time function

CH=hour, CL=min, DH=sec DL=hundredths
USING LEA INSTEAD OF MUL

FOR FAST INTEGER MULTIPLY

start with hours

x 5

x 20

x 60

zero top of register

now add in minutes

X 5 use some fast integer multiplies
x 20

x 60

add in seconds

X 5 use some fast integer multiplies
x 20

x 100

now add in hundredths of seconds

Chapter 5 80386-based Protected-Mode DOS Extenders 237

Special DOS Extender Features

A number of special features are provided by the various 386 DOS extenders, in-
cluding the following;:

writing directly to video memory

writing into code segments

installing interrupt handlers (real and protected mode)
real-mode procedure calls (RPCs)

virtual memory and page locking extensions.

In general, these features or options are implemented differently depending
on the DOS extender runtime.

Writing Directly to Video Memory

All three DOS extenders discussed in this chapter provide the capability to write
directly to memory-mapped video for fast screen output. Both Phar Lap and
Eclipse provide hardwired selectors that point to the default video RAM (B00OOH
or B80OH are typical). IGC uses the linear model so that video RAM is addressed
at an offset corresponding to its physical address (B0O00OOH or B800OH). Both Phar
Lap and Eclipse, however, support extended DOS function calls to map any
physical address to a selector (segment). This mechanism is the most general one
and will handle almost any memory-mapped device (standard video, high reso-
lution TMS34010 graphics cards, network cards, and SCSI adapters).

When a protected-mode program is loaded into memory, the Phar Lap and
Eclipse DOS extenders set up a number of hardwired segments (see Table 5-3).
These selector values are different, since by default, Phar Lap runs application
programs at ring 0, and Eclipse runs applications at ring 3. The lower 2 bits of the
selector value indicate the protection level, so these selector values are the same
after screening off the lower two bits.

Table 5-3: Phar Lap and Eclipse LDT hardwired selectors.

Phar Lap Segment Eclipse Segment Description

Selector Selector :

0004H A readable/writable data segment that points to the DOS program seg-
ment prefix (PSP) for the program.

000CH 000FH Code selector pointing to the load image. A readable/executable code

segment that points to the program. The initial selector value loaded in
the CS register.

238 EXTENDING DOS

Phar Lap Segment Eclipse Segment Description

Selector
0014H

001CH

0024H

002CH

0034H

003CH

Selector
0017H

001FH

0027H

002FH

0037H

003FH

00BOH

00B8H

Data window on the load image. A readable/writable data segment
that points to the program segment. This is the selector value initially
loaded into the DS, SS, ES, FS, and GS registers (note FS exception later).
Screen. A readable/writable data segment that points to physical screen
memory. This selector can be used by programs that write directly to
screen memory for speed. The base address and limit of this selector are
automatically updated by the DOS extender when BIOS system calls to
change the video mode (Int 10H, Function 0) are made.

Program segment prefix. A readable/writable selector that is a dupli-
cate of the descriptor that points to the program’s PSP.

Pointer to environment. A readable/writable data selector that points to
the DOS environment block for the program.

Base memory. A readable/writable data segment that maps the entire
first megabyte of memory used by DOS.

Weitek. A readable/writable selector that maps the memory space used
by the Weitek 1167 (or 3167) numeric coprocessor. If the 1167 is present,
this selector is initialized and the FS register is loaded with this selector
value (003CH for Phar Lap). If the Weitek coprocessor is not present,
the base and limit for this selector are both set to zero, and the FS regis-
ter contains the same selector value as DS.

Monochrome video. A readable/writable data selector that maps onto
the monochrome video refresh buffer at B000:0.

Color video. A readable/writable data selector that maps onto the color
video refresh buffer at B800:0.

The following listing provides sample code that writes directly to video
memory in text mode, using the appropriate protected-mode address for each of
the three environments. Graphics can be handled in a similar manner:

N Ne Na Ne N NN

Nu Na

Ns No

SCREEN.ASM - Screen test program
Based on the examples provided with Phar Lap 386|ASM/LINK

This program illustrates directly accessing screen memory when
running in 386 protected mode. Writes to screen memory in the
text mode.

Senses the DOS extender runtime dynamically and uses

the appropriate address as follows:
Phar Lap
Eclipse

001Ch:0
001Fh:0 But 001Ch:0 will also work
DS:0B0000h for Monochrome, else DS:0B8000h

Chapter 5 80386-based Protected-Mode DOS Extenders 239

.386 ; generate 386 code
; Some useful equates

CR equ 0dh

LF equ Oah

IGC_ENV equ 1

PL_ENV equ 2

AI_ENV equ 3

; Screen defines

SCR_HEIGHT equ 24 ; Screen height
SCR_WIDTH equ 80 ; Screen width
NORMAL equ 00700h ; Normal attribute byte

; Screen Memory Selectors and Offsets

14

PL_SCREEN equ 01CH ; Phar Lap selector
AI_SCREEN equ 01Fh ; Eclipse selector
MONO_OFFSET equ 0B0000h ; for IGC

COLOR_OFFSET equ 0B8000h H

; Special characters

ULCORNER equ 0C9H ; Double upper Lleft corner
URCORNER equ 0BBH ; Double upper right corner
LLCORNER equ 0C8H ; Double Lower Lleft corner
LRCORNER equ OBCH ; Double lower right corner
DVLINE equ 0BAH ; Double vertical Lline
DHLINE equ OCDH ; Double horizontal Lline

dseg segment public byte 'DATA'

scr_offset dd 0 ; offset to screen
env db 0 ; storage for XDOS type
_osmajor db 0 ; storage for DOS version
_osminor db 0
err_msg db 'Do not know what DOS Extender we are running!'
db CR,LF,'sS"'
; The line table
LINE_WIDTH equ 50
LINE_CNT equ 5
Line_tab Label byte
db ULCORNER, (LINE_WIDTH - 2) dup (DHLINE),URCORNER
db DVLINE, (LINE_WIDTH = 2) dup (' '),DVLINE

db DVLINE

240 EXTENDING DOS

db ! Screen test program for 386 protected mode '

db DVLINE

db DVLINE, (LINE_WIDTH - 2) dup (' '),DVLINE

db LLCORNER,CLINE_WIDTH - 2) dup (DHLINE),LRCORNER
dseg ends

?STACK segment dword stack 'STACK'
db 8*1024 dup (?) ; The default stack of 8K.
?STACK ends

DGROUP group dseg,?STACK
cseg segment dword public 'CODE'

CGROUP group cseg
assume cs:CGROUP,ds:DGROUP

public _start_,discover_env,print_string
start proc near
call discover_env
or eax,eax ; did we get back something
jnz short xdos_okay
H
mov ax,4C01h ; return error code and exit
int 21h.
;
xdos_okay:
cmp al ,IGC_ENV
jne short try_pharlap
’
int 11h ; get equipment
and al ,00110000b ; screen off video
cmp al,30h ; are we on MONO screen
mov scr_offset ,MONO_OFFSET
xor ax,ax
je short clr_screen
’
mov scr_offset ,COLOR_OFFSET
jmp short clr_screen
’
try_pharlap:
cmp al ,PL_ENV
jne short try_aia
’
mov ax,PL_SCREEN ; Screen memory selector
mov es, ax ; to ES.

jmp short clr_screen

Chapter 5 80386-based Protected-Mode DOS Extenders 241

F 4

try_aia:
cmp al ,AI_ENV
jne short exit

;
mov ax,AI_SCREEN
mov es, ax

4
clr_screen:

cld ; Set forward direction
mov ax,NORMAL + ' ' ; Clear the screen.

mov ecx,SCR_HEIGHT*SCR_WIDTH

mov edi,scr_offset ; point to start of screen
rep stosw ;

r
write_screen:

mov ax,NORMAL ; Load normal attrib into AH,
mov edx,LINE_CNT ; line count in EDX, pointer
mov esi,offset Lline_tab ; to first text Lline into ESI
mov edi,scr_offset
add edi,SCR_WIDTH-LINE_WIDTH ; EDI to address screen mem
add edi,((SCR_HEIGHT-LINE_CNT)/2)*(SCR_WIDTH*2)
loop1: mov ecx,LINE_WIDTH ; Load Lline width into ECX
loop2: Llodsb ; Move next text character to
stosb ; screen with normal attrib
inc edi ; Increment screen to next char
; i.e., skip attribute byte
dec ecx ; Decrement char count and
jne Loop?2 ; loop if not zero.
add edi,(SCR_WIDTH-LINE_WIDTH) * 2 ; Bump EDI to next Line
dec edx ; Decrement Lline count and Lloop
jne Loop1 ; if not zero.
exit: mov ax,04C00h ; Exit the program.
int 21h ;

discover_env

determine which DOS extender we are running under
uses EAX, EBX, EDX
env returned in EAX

N

Q. Ne Ne Neo Ne N

iscover_env:

242 EXTENDING DOS

xor
mov
int
mov

Ne

push
shr
cmp
jne

N

pop
mov
jmp

’

not_igc:
cmp
pop
jne

mov
jmp

not_pl: push
shr
cmp
pop
jne
mov
jmp

4

not_any:
lea
call

14

got_env:
mov
movzx
ret

start endp

print_string
mov
int
ret

print_string

cseg ends

eax,eax
ah,30h

21h

word ptr _osmajor,ax

eax
eax,16
ax,'sG’
short not_igc

eax
env,IGC_ENV
short got_env

ax,'DX’
eax
short not_pl

env,PL_ENV
short got_env

ebx

ebx,16
bx,"AlI'"

ebx

short not_any
env,AI_ENV
short got_env

edx,err_msg
print_string

al ,env
eax,al

proc
ah,9
21h

near

endp

end _start_

N

N

zero register used for return

get DOS version & XDOS type
save DOS version
save EAX

IGC returns
of EAX

'SG' in top

; Phar Lap returns with 'DX’

Ne

N

in top 16 bits of EAX

display error and code

return XDOS env
zero extended to EAX

entry EDX=string uses AX

Chapter 5 80386-based Protected-Mode DOS Extenders 243

For the most part, coding in 80386 assembly language varies only slightly
from 8086 practices. In the code above, all the PUSH and POP instructions use the
full 32-bit registers. These are preferred over their 16-bit counterparts for two rea-
sons: First, a slight speed penalty is paid for non-aligned memory access on the
386. Second, whereas the instruction for the full 32-bit register PUSH and POP (for
example, PUSH EAX) is a single-byte op-code. The equivalent 16-bit PUSH (such as
PUSH AX) requires an additional prefix size override byte in "USE32" code, and
this increases program code size while providing no benefits.

The listing also illustrates how simple DOS calls are made from 32-bit code.
Note that all pointers (for example, the pointer to the string passed to the
print_string function) are loaded into 32-bit registers, because the value of the
pointer might be greater than the 64K limit of the DX register. The discover_env
routine determines which DOS extender the program is runinf under.

To assemble, link, and run this program under Phar Lap 386 | DOS-Extender,
use the following set of DOS commands:
386asm screen

386link screen
run386 screen

As noted earlier, once you purchase a redistribution package from Phar Lap,
you could bind RUN386.EXE and SCREEN.EXP together to form SCREEN.EXE
that can be run directly from the DOS command line.

For Eclipse OS/386, you would use still use Phar Lap’s assembler and linker,
but would normally give the executable a .PLX extension. The OS/386 TSR
(0S386.EXE) must already have been loaded:

0s386

386asm screen

386link —exe screen.plx screen
up screen

Purchasers of a redistribution package can bind UPEXE and SCREEN.EXP
together to form an Eclipse SCREEN.EXE. This still requires that the OS386.EXE
TSR be loaded separately, however. For complete transparency to the end-user,
0S386.EXE can also be bound into SCREEN.EXE, though this results in a bloated
file. During development, another way to run SCREEN with OS/386 is under the
CP command processor:

0s386

cp
screen

244 EXTENDING DOS

Finally, for IGC X-AM, you need to produce a relocatable 386 executable,
using the 386LINK -RELEXE option, and a renamed copy of the IGC DOS ex-
tender (VMRUN.COM):

386asm screen

386link -relexe screen screen
COpy Vmrum.com screen.com
screen

Writing Into Code Segments

Another capability that is sometimes needed is the ability to write into code seg-
ments. DOS extenders provide either system calls or a selector mechanism to
alias a code segment with a data segment selector.

Both the Phar Lap and the Eclipse DOS extenders use hardwired overlapping
segments for the initial code and data segments. The actual selectors would be
identical, except that Phar Lap applications normally run at ring 0, and OS/386
applications run at ring 3. The last 2 bits of the selector indicate the CPL (current
protection level) so that OS/386 selectors will have these bits turned on. Eclipse
creates an alias data selector for each code selector, using the code selector XOR 8.
This same mechanism also works with the initial hardwired code and data seg-
ments set up by the Phar Lap DOS extender. The code fragment below outlines
this scheme under both Phar Lap and Eclipse DOS extenders:

push ds ; save the DS register
mov ax,cs ; get our code selector
xor ax,8 ; and convert to data selector alias

mov ds,ax
; now write into our code segment

pop ds ; and restore our data selector

Installing Interrupt Handlers in Real and Protected Mode
Interrupts on the 80386/486 fall into three categories:

» hardware interrupts generated by an external hardware event

= software interrupts (commonly used for DOS and BIOS system services)

® processor exceptions generated by the 386/486 chip when memory protec-
tion or other programming errors (divide by zero, for example) are de-
tected.

Chapter 5 80386-based Protected-Mode DOS Extenders 245

All three types of interrupts are handled in a similar manner by the DOS ex-
tenders. When an interrupt occurs in protected mode, the DOS extender always
gains control unless your application has taken over an interrupt vector. Depend-
ing on the interrupt type, the DOS extender may switch the processor to the real
mode (or virtual 8086 mode under IGC) and reissue the interrupt as a software
interrupt. When the real-mode interrupt handler (a hardware interrupt, for ex-
ample) is finished, the DOS extender switches back to protected mode and re-
turns to the protected-mode code that was executing when the interrupt
occurred. The overhead required for a 386 DOS extender to switch from pro-
tected to real mode (and from real to protected mode) can range as high as 150
microseconds. Installation of a VCPI-compatible EMS emulator can also raise the
switch time (for example, one EMS emulator raised the round-trip switch time on
a 16 MHz Compaq 386 from 134 ms. to 552 ms.). Faster 25 and 33 MHz machines
have lower overhead.

On occasion, an application program may require control over one of the in-
terrupt vectors. When operating in protected mode, the interrupt table is not di-
rectly accessible. In general, a program cannot get interrupt addresses by reading
them from the interrupt descriptor table (IDT), nor can your application take
over interrupts by writing to the interrupt table. But all of the DOS extenders
support installing custom interrupt handlers. The actual function call mechanism
varies from one implementation to another. Both Phar Lap and Eclipse run DOS
in the real mode. Therefore, these runtimes support installing both a protected-
mode and a real-mode interrupt handler. If dual handlers are installed, a shared
data and variable buffer must be used from low (below 640K) memory. Writing
interrupt code for both real- and protected-mode handlers accessing a shared
data buffer can get a bit complicated.

Eclipse emulates DOS calls for handling protected-mode interrupt vectors
using standard functions with 32-bit register conventions (set interrupt vector
with AH=25H and get vector with AH=35H). As shown earlier in Table 5-2, Phar Lap
uses extended function calls (set protected-mode vector with AH=2504H and get
vector with AX=2502H). Both Phar Lap and Eclipse also provide extended func-
tions to get and set interrupt handler which gain control in real mode, protected
mode, or both.

The IGC runtime handles interrupts differently from the other runtimes. Be-
cause IGC runs DOS in the virtual 8086 mode, all interrupts are received by IGC
protected-mode handlers (which may pass them to a virtual 8086 DOS handler).
VM/RUN initially passes a global data structure (GDA) to a protected-mode ap-

246 EXTENDING DOS

plication upon execution. The GDA contains pointers to two tables of interrupt
vector intercepts—GDA_INTEL (the 32 lowest vectors reserved by Intel) and
GDA_HINT (the remaining high interrupt vectors). GDA_HINT points to a table con-
taining two dword entries for each interrupt vector. The first entry is a flat ad-
dress pointing to a routine to be executed before interrupt processing takes place,
and the second entry is a a similar flat address pointing to a routine to be exe-
cuted after interrupt processing completes. A non-zero value in either slot defines
an active interrupt handler (really an intercept). GDA_INTEL points to a similar
table for the 32 Intel-reserved interrupts, but only the first dword entry can be ac-
tive. Any intercept routines installed in these tables are actually CALLed by the
IGC runtime and must use a near return (RET) instruction. No extended function
calls are available to set values in these tables; an application program must ex-
plicitly add and remove table entries.

Under the Eclipse DOS extender, an application runs at the least privileged
ring 3 (386/486 protection level) and the Eclipse runtime operates at the most
privileged level of ring 0. Processor exception interrupts can only be vectored to a
ring 0 handler. Using this scheme, the Eclipse runtime handles all processor ex-
ception interrupts and passes only software and hardware interrupts to any user-
installed interrupt handler.

In contrast, the Phar Lap DOS extender runs both an application and the
DOS extender at ring 0 (most privileged). Therefore, any user-installed interrupt
handler must be prepared to handle processor exceptions if the Phar Lap han-
dlers are replaced. Since hardware and processor exception interrupts overlap on
the PC, this can pose additional programming difficulties. By default, the Phar
Lap DOS extender relocates the hardware interrupts IRQ0-7 (Int 08-0FH) to Int
78H-7FH so hardware interrupts no longer conflict with processor exceptions. The
hardware interrupts are remapped by reprogramming the Programmable Inter-
rupt Controller (8259 PIC chip). By default, the BIOS PrintScreen handler (Int
05) is also relocated to Int 80H. This scheme improves compatibility, particularly
for user-installed protected-mode handlers, since hardware interrupts can be
handled separately from processor exceptions.

For most interrupt vectors of interest under Eclipse and Phar Lap runtimes,
the address obtained by a GetVector function call is the address of a protected-
mode surrogate for the current real-mode handler. The surrogate takes an inter-
rupt received while the processor is in the protected mode and passes the
interrupt down to a real-mode handler.

Chapter 5 80386-based Protected-Mode DOS Extenders 247

The code below illustrates functions that can be used to install an interrupt
handler in protected mode under both Phar Lap and Eclipse DOS extenders:

; VECTOR.ASM
.386

CODE segment dword public 'CODE'
CODE ends

DATA segment dword public 'DATA'

extrn env:byte ;flag to indicate which DOS extender
extrn _gda:dword ;dd storage for IGC GDA structure

DATA ends

IGC_ENV equ 1
PL_ENV equ 2
AI_ENV equ 3

public get_vector,set_vector

cseg segment dword public 'CODE’
CGROUP group c¢seg,CODE
assume cs:CGROUP,ds:DATA

; get_vector
get an dinterrupt vector in protected mode

’
;
’
; Entry: AL = vector number

; Exit: ES:EBX contains old vector
; carry flag is clear if OKAY
’
g

et_vector proc
cmp env,AI_ENV ;is it 0S/386?
jne short get_pl
V4
mov ah,35h ;get vector address call
int 21h ;to ES:EBX
clc
ret
get_pl:
cmp env,PL_ENV ;is it Phar Lap?
jne short get_none
4
mov cl,al ;Phar Lap uses CL for vector
mov ax,2502h ;Get protected-mode interrupt
int 21h

ret

248 EXTENDING DOS

’
get_none: stc
ret
get_vector endp
; set_vector

Entry: DS:EDX
AL

et_vector proc
cmp
jne

Na

mov
int
clc
ret
set_pl:
cmp
jne

mov
mov
int
ret

’

set_none: stc
ret

set_vector endp

cseg ends

end

Real Procedure Calls (RPCs)

set an interrupt

;otherwise, it's IGC

vector in the protected mode

CS:IP for interrupt routine
interrupt number to set

env,AI_ENV
short set_pl
ah,25h

21h

env,PL_ENV
short set_none
cl,al

ax,2504h

21h

Exit: carry flag is clear if OKAY

;is it 0S/386?

;set vector address call

;is it Phar Lap?

;Phar Lap uses CL for vector
;Set protected-mode interrupt

;otherwise, it's IGC

Both Eclipse and Phar Lap support a mechanism to call real-mode libraries using
real procedure calls. These RPC mechanisms are recommended only when source
code to the real-mode procedures is not available. If source code is available, a
better approach is to convert the real-mode code to run in the protected mode.
This RPC mechanism is commonly used to incorporate real-mode libraries or
functions that are not yet available in the protected mode (graphics and serial
communications, for example). The RPC mechanism can also be used to access

Chapter 5 80386-based Protected-Mode DOS Extenders 249

undocumented DOS functions and make system calls to another program, such
as a network driver or SCSI device installed in memory at boot time.

In practice, a protected-mode RPC stub copies passed parameters off the
stack. These variables are passed through a data (transaction) buffer with an indi-
cation of what function to call (usually a table entry number) and block moved to
the RPC stub in low memory. The RPC stub in low memory recreates the stack
with suitable variables, loads the CPU registers with proper values, executes the
call, and passes any results back up to the protected-mode RPC stub. This feature
can always be implemented by a programmer using the 386 DOS extender mem-
ory block move functions, but the DOS extenders provide this simple interface.

0S/386 has an elegant RPC mechanism that also supports sending signal<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>