Microsoft

MS-DOS

Programmer’s Reference

The Official Reference Manual for MS-DOS Programming
P-R E S 8

New for Version 5

Microsoft’

MS-DOS

Programmer’s Reference

Written, edited, and produced by
Microsoft Corporation

Distributed by Microsoft Press

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than

the purchaser’s personal use, without the express written permission of Microsoft
Corporation.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way, Redmond, Washington 98052-6399

Copyright © 1991 Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data

MS-DOS programmer’s reference : version 5.0 / Microsoft Corporation.
p. cm.

Includes index.

ISBN 1-55615-329-5

1. MS-DOS (Computer operating system) I. Microsoft.
QA76.76.063M745 1991
005.4’46--dc20 91-8992

CIp

Printed and bound in the United States of America.

456789MLML 65432

Distributed to the book trade in Canada by Macmillan of Canada, a division
of Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Microsoft, the Microsoft logo, MS, and MS-DOS are registered trademarks and
Information at your fingertips, Making it all make sense, Windows, and Press
are trademarks of Microsoft Corporation.

U.S. Patent Nos. 4955066, 4974159

AST is a registered trademark of AST Research, Inc.

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

Lotus is a registered trademark of Lotus Development Corporation.

Document No. SY0766b-R50-0691

Contents

Chapter 1 Introduction
1.1 About This Manual......c.cccoeieuiiuiiniiiniiiiiiiiiriiieiinreneenes 3
1.2 Organization of the Manual.........cccoouuveniiuniiniiiniiniinniinnninnes 3
1.3 How to Use This Manual......c...ccceuvviuiinniiniieniinninniiniennianss 4
1.4 Notational Conventionsccceeeeremnreecennrencrenreneenrensecncaanss 5
1.5 Further Readingc.ccoeuviiniiiniiiiiiniiiniiniiiiniiiniieiinciennennes 6

Chapter 2 Overview of MS-DOS
P20 B 515 oY 175 1o s N 9
2.2 MS-DOS Programming Interface: System Functions 9
2.3 MS-DOS Featuresc.cccoeeeuiruniinnieniinieniiniienciinienccnnceanen. 9
2.4 MS-DOS Programs and Device Drivers.....c..ccoveuvieninncnnnene. 10
2.5 Programming Guidelines.........ccceuureuriuniiniiiniiniiiniincinnninnnn. 13
2.6 System Configurationccceuvviuiiniiuiiiniiuiiiniiiiiinciunnnnen. 14

Chapter 3 File System
3.1 INtroduCtion......cceeeiiiuniiieniiiiniiieniiiuiien e et e eeneeenesaneaeas 19
3.2 Names and Paths......cccoovuiiiieniiieiiiiniiiiiiiiiiiiiineceeaee. 19
3.3 Logical Drives...ccccciieiiuiieiieieeiieeieirnnieiresesiesenseosassessossnsnns 20
3.4 DIIECLOTIES cecuuuiemnnirinnnrreanieieneeeaeerennrreerennseennsenenrennsennnaens 22
3.5 FIles wuiiiuiiiiiiiiiiiiiiicie ettt e 23
3.6 Network DIives......cccuviiieuiiiuiiieniiiuiieniiiiiiiicieieenccennnees 27
3.7 File Sharing ...ccccuveviiuiiiiiuiiiniiiiiiiiiiiicrce e 28
3.8 Low-Level Input and Outputcccceuueieuiiinniirnirinniriencennnnnn. 29
3.9 SHIUCHUTES....cuuiiiuniiiieiiiiniiiiireirr et et et e e e saeaeas 33

Chapter 4 Character Input and Output
4.1 Introduction......ccoceeuiirienirieniiieniiiuiiieriiereereee et raneaeaens 55
4.2 Character DeviCescceuurreunrrenneeunerenncienseeneenenreneernneeenns 55
4.3 ANSI Escape SeqUeNCeScccceevuereenrranerenrennereneennsenneennnns 58
4.4 SHIUCHUTE ...cvvvriinniiiiniiiinnereneerenreeneernsesnsesensessnssenesnnnsrennns 61

iv

Chapter 5 Program Management

5.1 Introduction........ccciiiiiiiimminuuneniierineeeeiennneeeeeeennneeeeeeraaens 65
5.2 Programs and Program Resources...........cccceeereeeeeeeennnnennnnn. 65
5.3 Memory Management..........ccceeeeeeeieeeerennnnneereerenneneeeeeennnnes 68
5.4 Child Programscceeeeeereeereeunnnrnnnenennseneneeeeeeeeeeeeeeennens 71
5.5 Terminate-and-Stay-Resident Programs..........cccccceeerveenennnen. 74
5.6 OVerlays......cccueiiiiiiiiiiiiieiiireee e eaeeees 74
5.7 Program-File FOImatsccceeeeuueeuuuuneneneeeneeeeeeeeneerannnnnns 75
5.8 SHIUCIUIES....cciiiiiiiiiiieerieeeeeersnreeeeeereeeeeeeenarereeeesseennens 77

Chapter 6 National Language Support

6.1 INtroduction.......ccceeeevueeererieiiierereeeeeeeeeeiseeeeeeeeeeeseeanenes 89
6.2 Country Informationcceeeeuuueeeeeneeeeeeeeeeeeeeeeeeeeeeeesenananns 89
6.3 Code Pages.........cceeeureiiinuiiiiiiireeeeeeeee et e e 91
6.4 Keyboard Layouts.........ccceeruvueeeeeererereeeeeeeeeeenseesessessesnanns 92
6.5 Screen and Printer FONtsccceeuuueueueeenneeeeeeeeeeeeenannnnnn, 92
6.6 Code-Page Information Files (.CPI)cccovvuueeeeeereeeennnns 93
6.7 SHIUCHUIES.......eeiiiiiiiiniiieeeiiierrreeeeeceeeeee s eeeneeaennenns 94
Chapter 7 Interrupts
7.1 INtroduCtion.....ccceiiieeeeernsrreeeeneeeeeereeeeeeeeeeeeeeeeeeeeeennns 107
7.2 MS-DOS INtEITUPLSeeeerrrrreraerreeeerereeeeeeeeeeeeeeeeeeseeenennns 107
7.3 System INErTUPLScccceevrueeerreeesreeeeineeeeeeeeeeeeeneeeeesanens 108
7.4 EXCEPLONS....cciiiueeeeeeeeraritreeeerereeessaeeeesseeeesereseesssssssnes 110
7.5 Interrupt and Exception Handlers...........oeeeveeeeeeuenennnnn.... 110
7.6 Interrupt Chains.....cccccueeerevveeereercnreeeeieieeeeeee e eeeeeeeeeeaans 112
7.7 Multiplex Interrupt Handlers...........ccouveeeeneeeeeeenaeeeennnnnn. 112
7.8 Terminate-and-Stay-Resident Programs..............c.eenn......... 113
7.9 MS-DOS Interrupt Referencec.eeevveeenueerevveeeenneennn.. 116
7.10 Task-Switching Reference.........cocueeeeeeeoeeeeeeeeeeeeeeneneennn, 171
711 StIUCKUIES...ccuveiiueiieiieerteeeitreeeeee e aeeeeeeeeeeseeeeeseseneeeens 193
Chapter 8 Interrupt 21h Functions
8.1 INtroduCHiON....ccccuteeruieeiuireeteeceteeeeeeeeeeeeeeeeeeeee e e e 201
8.2 FUunction GIOUPS ...c..cceeevueeeiureerneeieeeeeeeeeeeeeeeeeasseeeseneons 201
8.3 Superseded FUnctionscceeuvveeeeeeueeeeeeeeeeeeeneeeeeeessnnns 209
8.4 Obsolete FUNCHONScccuereueerrerrrreenreeeeeeeeeeeeeeeeesseeesanens 210

8.5 Interrupt 21h Function Referenceccceeeeeeeeuevveeeesennnn. 210

Chapter 9 Device Drivers

9.1 INtrOdUCHION...ceuueieeeeeeennienieneeereneeeeeneeeesaneennsnneennsensennns 391
9.2 Character and BIock DEVICES .uuueuurennennienienerenrenernereneenneanns 391
9.3 Device-Driver FOImMat c..cuuvuieinieeinieeeeeeeeneeeeenereeneeesasnesaens 391
9.4 BloCK-DevViCe DIIVEIS .ccuvuiruiuiininieieinieiinieeeeraeneearasneearnenasns 394
9.5 Character-Device DIIVEIS .ouuveurenienieineeneeeeeenerneeneeeseasnasnnes 396
9.6 Request Packets and Function Requestsc.ccceeerernnnnnne. 397
9.7 Device-Driver Initialization «...cceueeeeereneeneeeeneeneeneeaeeaenneneennnn 398
9.8 Device-Driver Function Reference.....ccevuveeenieeeeeeneeeeernennnns 399
0.0 SIIUCIUIES . eeurenrnerneninienenieneeeeneasentecassnsnenennsnsnsenssneensasnnens 427
Appendix A Code Pages ...t 435
Appendix B Extended Key Codes............ccoooieeeeeeieeeeeeeeeeeeeeeeennn. 443
AppendiX C Error Values.................ooooeeeiioeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 447
Appendix D Task Switcher API Patch............ccoocooeovveeieeeeeeen. 453

Chapter

Introduction |

1.1 About This Manualcccceceuviniiiiieiineieeeieieieieienananss
1.2 Organization of the Manual.........ccceeviuieiinirninnenenennnns
1.3 How to Use This Manual........ccceceuvuenenineneienenenenenannnn.
1.4 Notational Conventions........ccecveveuiureeenenrnerneeenenrneanenss

1.5 Further Reading.......ccoccvviiuiiniiiiiiiiiiiiiiiciiniieeecenennen,

Chapter 1: Introduction 3
|

1.1 About This Manual

This manual describes the system functions, interrupts, and structures of the
Microsofte MS-DOS® operating system. These features enable MS-DOS pro-
grams to use the operating system to carry out tasks such as reading from and
writing to files; allocating memory; starting other programs; and using the key-
board, screen, and communications ports.

Topics include overviews of the MS-DOS system functions; a comprehensive
reference to the system functions, interrupts, and structures; an explanation of
device drivers; and a description of the function interfaces for MS-DOS exten-
sions, such as print spooling, national language support, and task switching.

MS-DOS system functions, interrupts, and structures are designed to be used in
assembly-language programs or in assembly-language modules that can be incor-
porated in C, Pascal, and other high-level-language programs. Therefore, to get
the most from this manual, readers should be familiar with the architecture of
the 8086 family of microprocessors and have some experience programming in
assembly language for the 8086 microprocessor.

Although this manual presents the basic concepts and tasks associated with the
system functions, it is not intended to teach programming in the MS-DOS
environment. The manual does not provide detailed information about interfaces
that are features of a given computer, device adapter, or software extension. For
additional resources about MS-DOS and related topics, see Section 1.5,
“Further Reading.”

1.2 Organization of the Manual

The MS-DOS Programmer’s Reference consists of nine chapters and three appen-
dixes.

This chapter, “Introduction,” shows how to use the manual and provides a brief
description of conventions used to present information.

Chapter 2, “Overview of MS-DOS,” discusses system features, functions, com-
ponents, and organization. It also presents a simple MS-DOS program, elabo-
rates the importance of device independence and cooperation as characteristics
of MS-DOS programs, and offers programming guidelines.

Chapter 3, “File System,” describes the MS-DOS file system, particularly as it
relates to disk drives and similar storage devices.

Chapter 4, “Character Input and Output,” presents the MS-DOS character
devices, such as the system console and communications ports, and describes
the system functions used to access these devices.

Chapter 5, “Program Management,” defines the resources that are available
when programs first start, explains how programs load and run other programs,
and shows the proper method for terminating a program. This chapter also
describes the format of MS-DOS program files and explains how MS-DOS loads
these files and transfers control to them.

4 MS-DOS Programmer’s Reference

Chapter 6, “National Language Support,” presents the features of MS-DOS that
provide support for foreign-language markets, such as country information, key-
board layouts, and code pages.

Chapter 7, “Interrupts,” provides information about software interrupts that a
program can use to request services from the operating system and from exten-
sions to the operating system.

Chapter 8, “Interrupt 21h Functions,” describes the MS-DOS system functions
available through Interrupt 21h. The functions are listed in numeric order
according to the number used to call the function.

Chapter 9, “Device Drivers,” describes the format of MS-DOS device drivers. It
explains how MS-DOS uses device drivers to provide an interface between the
operating-system kernel and hardware devices.

Appendix A, “Code Pages,” contains code-page tables for the six code pages
included with MS-DOS.

Appendix B, “Extended Key Codes,” lists the keys and key combinations that
generate the extended key codes MS-DOS retrieves when reading from the key-
board.

Appendix C, “Error Values,” lists the error values returned by MS-DOS system
functions.

Appendix D, “Task Switcher API Patch,” contains code that client programs
can use to ensure successful switching between tasks.

1.3 How to Use This Manual

The manual is designed to provide quick access to the syntax and usage of each
MS-DOS system function, interrupt, and structure. This section describes the
information presented on each reference page. A reference page has the follow-

ing format:
® » Function 02h Display Character Superseded

9 mov dl, OutputChar ;character to display
mov ah, 02h ;Display Character
int 21h

(3] Display Character (Function 02h) displays a character on the standard output
device.
This function has been superseded by Write File or Device (Function 40h).

(4] Parameter OutputChar Specifies the ASCII value of the character to be displayed.

© Return Value This function has no return value.

O Comment When the standard output device is the screen, displaying a backspace character
(ASCII 08h) moves the cursor back one position but does not erase characters.

@ See Also Function 40h Write File or Device

Chapter 1: Introduction 5
|

These are the elements shown:

1 The function, interrupt, or structure name. For any function that has been
superseded, the word “Superseded” appears to the far right of the function
name.

2 The function, interrupt, or structure syntax. The syntax specifies each parameter
(or field). It also gives the register that each parameter must be copied to. Com-
ments to the right briefly describe the purpose of each parameter (or field).

3 A description of the function, interrupt, or structure, including its purpose and
details of operation. This section may include any special consideration for the
function, such as whether the function has been superseded.

4 A full description of each parameter (or field), including permitted values and
related structures.

5 A description of the return value or values, including possible error values.

6 A description of special considerations related to use of the function, interrupt,
or structure in a program.

7 A list of related functions, interrupts, and structures.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Convention Description

bold Bold type is used for keywords—for example,
the names of commands and of structures and
their fields. These names are spelled exactly as
they should appear in source programs.

italic Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italic type is also used to show
emphasis in text.

monospace Monospace type is used for syntax and code
examples that are provided to illustrate system
calls and to show the format of data structures.

FULL CAPITALS Full capital letters are used for filenames and
paths, structure names, and constants.

SMALL CAPITALS Small capital letters are used for the names of
keys and key combinations.

6 MS-DOS Programmer’s Reference

1.5 Further Reading

Following are two of the books that readers may find useful:

Microsoft MS-DOS User’s Guide and Reference
MS-DOS Extensions, Ray Duncan, General Editor, for Addison-Wesley

The following books are available from Microsoft Press:

Advanced MS-DOS Programming, 2d ed, by Ray Duncan

Managing Memory with DOS 5, by Dan Gookin

The MS-DOS Encyclopedia, Ray Duncan, General Editor

The Programmer’s PC Sourcebook, 2d ed, by Thom Hogan
Programmer’s Quick Reference: MS-DOS Extensions, by Ray Duncan
Programmer’s Quick Reference: MS-DOS Functions, by Ray Duncan

For more information about references available on the 8086 family of micro-
processors, call (800) 548-4725 or write to Intel Literature Sales, P.O. Box
58130, Santa Clara, CA 95052-8130.

Readers who are interested in learning more about the technical details of a
computer, device adapter, or software extension should contact that product’s
manufacturer for additional books and pamphlets.

Chapter

Overview of MS-DOS

2.1 Introduction

--

2.2 MS-DOS Programming Interface: System Functions

2.3 MS-DOS Features
2.4 MS-DOS Programs and Device Drivers

2.4.1 MS-DOS Programs.....ccceeievereieiiinnreressenseccesannens

2411 A Simple MS-DOS Program

2.4.1.2 Terminate-and-Stay-Resident Programs

2.4.2 Device Drivers

--

2.5 Programming Guidelines........c.coeviiiureieiininiiiniiiiiiananans
2.5.1 Device-Independent Programscccevvvnviiinnnnnnnn.

2.5.2 Cooperative Programs

.......................................

2.6 System Configuration.........ccccveviniuiiiiiiiiiiininininicannnen,

Chapter 2: Overview of MS-DOS 9
|

2.1 Introduction

This chapter provides a brief overview of MS-DOS and MS-DOS programs. In
particular, it describes the following:

B MS-DOS programming interface

MS-DOS features

Programs and device drivers

Programming guidelines

System configuration

2.2 MS-DOS Programming Interface: System Functions

MS-DOS provides general, device-independent access to the resources of a com-
puter. The typical MS-DOS computer is a personal or laptop computer based on
the 8086 family of microprocessors. The computer operates in real mode and
provides devices for mass storage and for input and output—devices such as disk
drives, keyboard, screen, and parallel and serial ports.

From a programmer’s perspective, the heart of MS-DOS is its system functions,
which provide access to the computer’s devices and to a wide range of other ser-
vices, from memory management to national language support.

Programs that use MS-DOS system functions are device-independent—that is,
they need no device-specific code to use a given device. Instead, they rely on
MS-DOS and its device drivers to handle all device-specific operations.

Even though the number and capabilities of MS-DOS system functions grow
with each new version, programs written for the current version can often run
with earlier versions as well. A program should always check the version of MS-
DOS with which it is running and use this information to determine which MS-
DOS features and system functions it can use.

2.3 MS-DOS Features

Programs use MS-DOS system functions to allocate memory, load programs,
read from and write to files and devices, connect to a network, and so on.

Programs that use MS-DOS system functions have access to the following
features of MS-DOS:

B File system: The MS-DOS file system consists of the files, directories,
and supporting data structures on the disks of the computer. Although
MS-DOS controls the file system, programs can create, read from, write
to, and delete files and directories. The primary supporting data struc-
ture for the file system is the file allocation table (FAT). Programs do
not access the FAT directly. Instead, MS-DOS manages all the details of
the operations on files, including updating the FAT as files are created
and modified.

10 MS-DOS Programmer’s Reference

B Character devices: Character devices process data one byte (one charac-
ter) at a time. Examples of character devices are the computer’s key-
board, screen, and serial and parallel ports. Programs can open, read
from, and write to character devices by using the same functions as they
use for accessing files. Devices have logical names, such as CON and
PRN, that programs use to open them. Programs can set operating
modes for character devices by using input-and-output-control (IOCTL)
functions.

B Program execution: Although MS-DOS is a single-tasking operating
system—that is, it runs only one program at a time—programs can load
and run other programs. While one program runs, the program that
started it is temporarily suspended. MS-DOS ensures that adequate
memory and other resources are available to each program.

® Memory management: When it starts a program, MS-DOS allocates
memory for program code and data and copies the program file from the
storage medium into memory. Programs can free unneeded memory or
allocate additional memory while they run. MS-DOS organizes memory
in blocks of one or more paragraphs (a paragraph is 16 bytes).

B Networks: A network enables programs running on one computer to use
the drives and devices of other computers. Programs can make connec-
tions to network drives and devices and then access files and character
devices to open, read from, and write to the network drives and devices.

B National language support: National language support permits programs
to adapt themselves for operation in a variety of national markets. Pro-
grams use country information to prepare the characters and formats for
date, time, currency, and other information they display; they use code
pages to display and print characters that are language-specific or
country-specific.

B Interrupt handling: Programs can install custom interrupt handlers to
carry out special processing while they run. For example, a program can
install a CTRL+C handler that replaces the default action when the user
presses the CTRL+C key combination.

B Task-switcher notifications: Programs can add themselves to the
notification chain of the MS-DOS task switcher. Programs that are sensi-
tive to task switches, such as communication programs that must
respond immediately to asynchronous input, add themselves to the chain
to control when and under what conditions task switching occurs.

2.4 MS-DOS Programs and Device Drivers

MS-DOS supports a broad range of programs—from simple, text-based pro-
grams like More to sophisticated, interactive programs like MS-DOS Shell. The
MS-DOS system functions provide a comprehensive set of services that satisfy
the needs of most programs. Furthermore, programs that require additional
features, such as access to custom devices, can enhance MS-DOS by using
device drivers. Device drivers extend the capabilities of MS-DOS without requir-
ing changes to the MS-DOS system functions.

Chapter 2: Overview of MS-DOS 1
|

241 MS-DOS Programs

MS-DOS recognizes two program types: .COM and .EXE. A .COM program,
sometimes called a “tiny model” program, consists of code, data, and a stack, in
a single segment. Such programs typically have a single purpose: carrying out a
task and terminating. On the other hand, an .EXE program is usually large and
has code and data in separate segments. In fact, an .EXE program can have any
number of segments, the combined size of which is limited only by system
memory. An .EXE program can be loaded anywhere in memory. MS-DOS
adjusts any segment addresses in code and data when it loads the program.

24.1.1 A Simple MS-DOS Program

MS-DOS programs can use system functions to carry out their work. Programs
call the system functions by using the int instruction and specifying Interrupt
21h. For this reason, many MS-DOS programs are written in assembly language
or in a mixture of assembly language and a high-level language such as C.

When a program issues an interrupt, execution control transfers to the MS-DOS
routine that handles system-function requests. MS-DOS installs this routine at
system startup.

The following sample program shows how system functions are called. The pro-
gram writes the message “Hello, MS-DOS!” to the screen and then terminates
immediately.

title 'Sample Program'
.model small

.data
String db 'Hello, Ms-DOS!',6 13, 10
StringLen equ § - String
.code
Start:
mov bx, 1 ;handle of file or device
mov cx, StringLen ;maximum number of bytes to write
mov ax, seg String
mov ds, ax
mov dx, offset String ;ds:dx points to buffer containing data
mov ah, 40h ;Write File or Device
int 21h
mov al, O ;program-defined return value
mov ah; 4Ch ;End Program
int 21h
.stack 256

end Start

12 MS-DOS Programmer’s Reference

This program calls two system functions: Write File or Device (Interrupt 21h
Function 40h) and End Program (Interrupt 21h Function 4Ch).

Write File or Device writes the message. It requires a file or device handle in the
BX register; the length of the string, in bytes, in the CX register; the address of
the string in the DS:DX registers; and the function number, 40h, in the AH
register. In this example, the program uses the standard-output device handle
(1), which is supplied by COMMAND.COM when it starts the program. Unless
the user redirects output, the program can use the standard-output device handle
to write to the screen. '

End Program terminates the program and returns control to COMMAND.COM.
Every MS-DOS program must terminate by using a system function such as End
Program.

24.1.2 Terminate-and-Stay-Resident Programs

Although most programs offer their services to users only while the programs are
running, MS-DOS allows programs to offer their services even after they ter-
minate. Such programs are called terminate-and-stay-resident programs (TSRs).
These programs receive execution control through hardware or software inter-
rupts, such as the interrupt generated by pressing the SHIFT+PRINT SCREEN key
combination. The interrupt temporarily suspends the program that is currently
running and lets the TSR carry out work. When the TSR has completed its task,
it reactivates the suspended program by returning control to it.

Many MS-DOS programs are TSRs—for example, Nlsfunc, Keyb, Share, and
Doskey. MS-DOS uses these programs to provide extended capabilities in areas
such as national language support and file sharing.

2.4.2 Device Drivers

Programs that need access to custom devices need device drivers. A device
driver consists of a pair of routines that handle input and output for a given
device. Device drivers are similar to TSRs in that they do not run on their own.
Instead, MS-DOS calls the device driver’s routines whenever the system needs
access to the device. The driver then carries out whatever device-specific opera-
tions are required to read from or write to the device, passing information about
the operation to MS-DOS.

Most computers and custom devices provide device-support routines in read-only
memory (ROM). These routines are collectively called the ROM BIOS (ROM
basic input/output system). The ROM BIOS tests and initializes the devices and
provides service routines that device drivers can use to read from or write to the
devices.

Occasionally, the ROM BIOS for a given device may not be adequate for a
program’s needs. In such cases, the ROM BIOS for that device can be replaced
with a special TSR called a hardware support program. Such a program provides
low-level support for an interrupt-driven device. It installs an interrupt service
routine that handles interrupts generated by the device. Hardware support pro-
grams also define an interface that device drivers or programs can use to retrieve
input and send output. Although such programs use some features of MS-DOS,
they are extremely device-dependent.

Chapter 2: Overview of MS-DOS 13

2.5 Programming Guidelines

Two general characteristics enable MS-DOS programs to operate on various
computers and to avoid corruption of code and data: device independence and
cooperation. The next two sections present guidelines for writing programs that
use these characteristics effectively.

2.5.1 Device-Independent Programs

Programs written to use specific devices or to run under a specific version of
MS-DOS may not run successfully on all computers. To ensure device indepen-
dence, programmers should use the following guidelines:

H Avoid direct calls to ROM BIOS routines. Although most computers
provide a ROM BIOS, there is no guarantee that all ROM BIOSs are
100-percent compatible.

B Avoid direct access to devices. Programs that improve their performance
by accessing devices directly cannot be guaranteed to run successfully on
all MS-DOS computers. For example, a program that writes to video
memory will work only on computers that have the same or compatible
video adapters. Programs should rely on device drivers to access devices.

B Avoid using “undocumented” features. System functions, interrupts, and
structures that are internal to MS-DOS are subject to change at any
time. Programs that use these undocumented features cannot be
guaranteed to run with future versions of MS-DOS.

B Check the MS-DOS version number before using a version’s features.
Since users may attempt to run programs with older versions of MS-
DOS, programs that use features of the latest version should use the sys-
tem function that retrieves the MS-DOS version number. If the versions
do not match, a program can avoid using the features or terminate.

B Check the original equipment manufacturer (OEM) version number
before using OEM features. Many computer manufacturers adapt MS-
DOS for their own computers and in the process may provide additional
features that take advantage of the hardware. Although programs can use
these additional features, they should use the system function that
retrieves the OEM version number before proceeding.

2.5.2 Cooperative Programs

To prevent corruption of code and data, MS-DOS programs must run coopera-
tively. To ensure cooperation, programmers should use the following guidelines:

B Use only the memory and resources owned by the program. Since MS-
DOS provides no memory protection, it cannot prevent a program from
writing to memory it does not own. Unfortunately, writing to memory
owned by MS-DOS, by device drivers, or by other programs can corrupt
code or data and cause the system to fail.

14 MS-DOS Programmer’s Reference

B Check for invalid pointers and out-of-bounds indexes. Programs must
check the addresses they use, to prevent unintentionally writing to unal-
located memory. In particular, programs must not write to memory
beyond the end of any allocated block, since doing so may destroy data
belonging to another program or corrupt structures MS-DOS uses to
manage memory.

B Do not leave interrupts disabled. Programs should not disable interrupts
unless they need to carry out operations that must not be interrupted,
such as changing the stack registers. If a program disables interrupts, it
should complete the task and reenable the interrupts as quickly as possi-
ble.

B Do not switch the operating mode of the central processing unit (CPU).
MS-DOS runs in real mode. Programs that switch to other modes, such
as protected mode, effectively disable MS-DOS.

2.6 System Configuration

The system configuration defines limits for certain MS-DOS resources and
affects how much memory MS-DOS allocates to support these resources. The
system configuration is set by commands in the MS-DOS configuration file,
CONFIG.SYS. For programs with special needs, the user may need to add or
modify one or more commands.

The following is a list of the configuration commands that may affect programs:

Command Comments

buffers Sets the number of file buffers. More buffers can improve
performance of programs that repeatedly open the same
files or files in the same directories. Disk-caching pro-
grams, such as SMARTDrive, can also be used to speed
access to files.

country Sets the current country code. Programs that modify their
output for different national markets should require the
user to specify this command.

device Installs a device driver. Programs that require device
drivers must direct the user to supply an appropriate
device or devicehigh command.

dos Specifies whether MS-DOS is to relocate to the high
memory area (HMA) and whether MS-DOS is to make
upper memory blocks (UMBs) available to programs. Pro-
grams that either need more memory or can improve per-
formance with additional memory should recommend this
command.

fcbs Sets the number of file control blocks (FCBs) a program
can have open at one time. This setting is useful for pro-
grams that use FCBs.

Chapter 2: Overview of MS-DOS 15
|

Command Comments

files Sets the maximum number of files that may be open at any
one time. Programs that open many files or run child pro-
grams that open their own files should direct the user to
set an appropriate maximum.

install Loads a terminate-and-stay-resident program (a TSR). A
program that must run as a TSR can recommend that the
user install it by using this command.

lastdrive Sets the maximum number of drives MS-DOS permits
access to. Programs that connect to many network drives
may need to direct the user to set an appropriate max-
imum.

stacks Specifies the size and number of stacks used for hardware
interrupts. This command is useful for hardware support
programs that install interrupt service routines for selected
interrupts, especially if the service routines require large
amounts of stack space.

For more information about these commands, see the Microsoft MS-DOS User’s
Guide and Reference.

Chapter

3

File System

31
3.2
3.3

3.4

3.5

3.6
3.7
3.8

3.9

Introductioncccovevinieiniiiiiiiiiiini e 19
Names and Pathsccocoeviiiiiiiiiniiiiiiiiiiiinnn, 19
Logical DIivesccvvuveiiiiiiiiiniiiiiiiiiiiiiiiiiiinieeeenenn, 20
3.3.1 Removable-Media Drivesccceeeieiieneneiennenennnnns 21
Directoriesvvvureiiniiiiniiiiiiiiiiiiieiirr e 22
3.4.1 Directory Managementcoeveenriernrnenecnrnecaenenes 22
Files tuiniiiiniiiniiiiiiiiiiiiiiiiiiiiii e aas 23
3.5.1 File Managementccveviieininiienninenncnennineienaenns 23
3.5.2 File Input and OQutput........ccocvviiiieieneruinrnrncacnenes 25
3.5.3 Internal File Buffers........c.cocevieeuennrnneeecnennennncnenns 26
354 File Handles......cccoviiniiiiiiiiininniiiiieieriisnieninnnnns 27
Network Drivescccveviiveenieieieiiiiiiiiiiiiinnneenens 27
File Sharing......ccccoveiiiiiiiiiiiiiiiiiiiiiiiiiinnccnneaes 28
Low-Level Input and OQutput......ccccoviiiiiiiiiiiiieninennnne. 29
3.8.1 Device Parametersoeeverienienenererenereesaecnennenns 30
3.8.2 Absolute Disk Read and Write Operations............... 30
3.8.3 Input-and-Output-Control Functionscccceueunnn. 31
3.84 Logical-Drive Contents......cccoeveverneeeenceecnenenacnenns 31

Y 8 b (03 11§ (- S 33

Chapter 3: File System 19

3.1 Introduction

The MS-DOS file system consists of files, directories, and supporting data struc-
tures on a permanent storage device of the computer. MS-DOS controls the file
system but allows programs to access it through system functions. This chapter
describes these functions and explains the file-system data structures.

3.2 Names and Paths

Each drive, file, and directory has a name. Drive names consist of a single letter
(A through Z) followed by a colon (:). File and directory names can have up to
eight characters, optionally followed by a period (.) and an extension of up to
three characters.

Names and extensions can contain letters, digits, and any of the characters in
the following set:

t#8 2" &()--{1}~

MS-DOS does not distinguish between uppercase and lowercase letters in
filenames and extensions. In other words, the filenames abc and ABC are the
same. Although extended ASCII characters (characters with values greater than
127) are also permitted in names, programs should avoid them, since the mean-
ings of the extended characters may differ with different code pages. If a pro-
gram requires extended characters in names (for example, to spell foreign-
language names accurately), the program should use code page 850 to generate
the names.

Functions that search for files by pattern accept wildcards in filenames. The
MS-DOS wildcards are the asterisk (*) and the question mark (?). The asterisk
matches any combination of characters in a name, and the question mark
matches any single character.

A path is a combination of a drive name and a directory name that together
uniquely specify a directory, or a combination of a drive name, a directory
name, and a filename that together uniquely specify a file. The following are
valid paths:

a:\sample\abc.txt ;full path specifying a file

a:\sample ;full path specifying a directory

\sample\abc.txt ;partial path, assumes current drive

a:abc.txt ;partial path, assumes current directory

abc.txt ;partial path, assumes current drive and directory
..\abc.txt ;partial path, relative to the parent directory

Programs use full paths to make an unambiguous reference to a file, and partial
paths to let the system construct a full path based on the current drive, the
current directory, or both. A path, excluding drive name, must not exceed 64

characters. This rule also applies to full paths that MS-DOS constructs from par-
tial paths. '

A network name identifies a resource, such as a drive, file, or device, that is
available to a program when network software is installed. The name consists
of at least a computer name and a share name; it may also include a path. The
computer name uniquely identifies the network server owning the resource, and
the share name identifies the resource. If a path is given, it uniquely identifies a
directory or file on a network drive.

20 MS-DOS Programmer’s Reference
|

Network names have the following forms:

\\serverl\datafiles ;network drive
\\computer2\laser ;network printer
\\serverl\datafiles\readme.txt ;file on network drive

\\serverl\datafiles\log\june9l.txt ;file in path on network drive

Programs use network drive and printer names to connect to network resources;
they use network filenames to open or create files or directories on network
drives.

3.3 Logical Drives

MS-DOS creates one or more logical drives that map to the physical drives of a
computer. Programs access logical drives by using a single set of MS-DOS func-
tions, regardless of the type of hardware used by the physical drives.

A computer can have up to 26 logical drives. MS-DOS assigns each drive a
unique number, sequentially from 1 through 26 (or from 0 through 25 for the
Interrupt 21h functions Set Default Drive and Get Default Drive). The drive
numbers correspond to the drive letters used in paths: drive 1 corresponds to
drive A, drive 2 to drive B, and so on.

Drive 0 corresponds to the default drive—that is, the drive MS-DOS uses when-
ever a program supplies a path that does not explicitly specify a drive. When
MS-DOS first starts, the default drive is the same as the drive from which the
system files were loaded (the startup drive). A program can determine the
default drive by using Get Default Drive (Interrupt 21h Function 19h) to obtain
the drive number. A program can set the default drive by using Set Default
Drive (Interrupt 21h Function OEh). A program can determine the startup drive
by using Get Startup Drive (Interrupt 21h Function 3305h). On a ROM-based
version of MS-DOS, there may be no startup drive; in this case, Get Startup
Drive returns the number of the drive containing the CONFIG.SYS file.

Set Default Drive also returns the number of logical drives available. Since few
computers have a full set of 26 drives, programs that present a list of available
drives to the user must determine which drives are valid. If the CONFIG.SYS
file contains a lastdrive command, Set Default Drive returns either the number
of logical drives for the computer or the number of drives specified by lastdrive,
whichever is larger. The lastdrive command is typically used to prepare extra
drive numbers for use with network connections or commands such as subst.
The extra drive numbers are not valid until a connection to a physical drive is
established.

A program can check a logical drive to determine whether it has a correspond-
ing physical drive by using Is Drive Remote (Interrupt 21h Function 4409h). If
the logical drive is valid, Is Drive Remote clears the carry flag. Otherwise, the
function sets the carry flag and returns 000Fh (ERROR_INVALID_DRIVE).
For valid drives, Is Drive Remote also returns the device-attribute value and sets
bit 12 if the drive is remote (for example, if it represents a network connection)
or is a nonstandard file system (for example, CD-ROM).

Although a program may have determined that a drive is valid, the file system
associated with the drive may still be inaccessible. For example, drives with
removable media may have an open disk-drive door or no tape mounted on a

Chapter 3: File System 21
|

tape drive. If a program attempts to access a drive under these or similar condi-
tions, the system may prompt the user with an “Abort, Retry, or Fail?” mes-
sage; if the user selects Abort or Fail, the program terminates immediately. If it
is important to prevent the user from terminating the program at this point, the
program may need to replace Critical-Error Handler (Interrupt 24h) with a cus-
tomized handler that receives control whenever drive errors, such as an open
drive door, occur. For more information about Critical-Error Handler, see
Chapter 7, “Interrupts.” '

MS-DOS usually reserves the first two logical drives for floppy disk drives. On
computers that have only one floppy disk drive, the second logical drive is often
treated as an alias for the first. In this case, Is Drive Remote specifies the first
and second logical drives as valid drives, even though they share the same physi-
cal drive. A program can determine whether two or more logical drives share a
physical drive by using Get Logical Drive Map (Interrupt 21h Function 440Eh).
This function clears the carry flag and returns a nonzero drive number in the AL
register if the drive has aliases. This drive number specifies which logical drive is
currently being used to access the physical drive. If a program attempts to access
the physical drive by using another logical drive, the system prompts the user
with an “Insert diskette for drive...” message. A program can avoid this problem
by first using Set Logical Drive Map (Interrupt 21h Function 440Fh) to change
the logical drive that is to be used to access the physical drive.

If the file system is accessible, a program can determine how much space is
available in the file system by using Get Disk Free Space (Interrupt 21h Function
36h). The function returns the total number of clusters in the file system and the
number of available clusters. (A cluster is the smallest amount of space that
MS-DOS will allocate for a file or directory.) Get Disk Free Space also returns
the number of bytes per sector and the number of sectors per cluster, so the
program can compute the total number of bytes currently available in the file sys-
tem. A program can also use Get Disk Free Space to determine whether a logi-

cal drive has a corresponding physical drive. If there is no corresponding physi-
cal drive, the function returns OFFFFh.

3.3.1 Removable-Media Drives

Many programs use removable media, such as disks and tapes, to store data. A
program can determine whether a drive supports removable media by using Does
Device Use Removable Media (Interrupt 21h Function 4408h). If the specified

drive supports removable media, the function clears the carry flag and returns
zero in the AX register.

To help distinguish one removable disk or tape from another, the format com-
mand creates a unique identifier for each volume (for example, each disk or
tape) as it formats the volume. Programs can also create their own unique identi-
fiers by using Set Media ID (Interrupt 21h Function 440Dh Minor Code 46h) to
set the volume label, volume serial number, and file-system type. A program can
retrieve this information by using Get Media ID (Interrupt 21h Function 440Dh

Minor Code 66h). (A volume label consists of up to 11 characters of the same
type used in filenames.)

Since the user can change the volume in a removable-media drive at any time,
programs that read from or write to removable media need ways to prevent
inadvertently reading from or writing to the wrong volume. Some drives have

22

MS-DOS Programmer’s Reference

change-line capability that helps MS-DOS automatically detect media changes
and prompt the user to insert the proper volume so that read and write opera-
tions can be completed. A program can determine whether a drive has change-
line capability by examining the dpDevAttr field in the DEVICEPARAMS struc-
ture returned by Get Device Parameters (Interrupt 21h Function 440Dh Minor
Code 60h). This field also specifies whether the drive supports removable media.
(For a full description of the DEVICEPARAMS structure, see Section 3.7,
“Structures.”) If a drive does not have change-line capability, MS-DOS checks
for the proper volume before read and write operations. To ensure that data is
not lost when a disk is removed, a program may also need to direct MS-DOS to
write all data immediately to the volume (that is, commit the file).

3.4 Directories

MS-DOS arranges and stores file-system contents in directories. Every file sys-
tem has at least one directory, called the root directory, and may have additional
directories either in the root directory or ordered hierarchically below it. The
contents of each directory are described in individual directory entries. MS-DOS
strictly controls the format and content of directories.

The root directory is always the topmost directory. MS-DOS creates the root
directory when it formats the storage medium. The root directory can hold infor-
mation for only a fixed number of files or other directories, and the number can-
not be changed without reformatting the medium. A program can identify this
limit by examining the dpRootDirEnts field in the DEVICEPARAMS structure
returned by Get Device Parameters (Interrupt 21h Function 440Dh Minor Code
60h). This field specifies the maximum number of root-directory entries for the
medium.

MS-DOS keeps track of a current directory for each logical drive. The current
directory is the default directory MS-DOS uses whenever a program specifies a
file without giving a full path. A program can identify the current directory for a
drive by using Get Current Directory (Interrupt 21h Function 47h). It can set the
current directory for a drive by using Change Current Directory (Interrupt 21h
Function 3Bh). Note that changing the current directory for a drive does not
change the current drive.

A program can generate a complete list of the directories on a given drive (the
directory tree) by using Find First File (Interrupt 21h Function 4Eh) and Find
Next File (Interrupt 21h Function 4Fh). If the program specifies the attribute
ATTR_DIRECTORY when it calls these functions, they return information
about directories as well as files. To generate a complete tree, the program must
start the search in the root directory and recursively search each directory it
finds.

3.4.1 Directory Management

A program can use Create Directory (Interrupt 21h Function 39h) to add new
directories within the current directory, or within other directories if the full
path required to specify the new directory does not exceed 64 characters. Unlike

Chapter 3: File System 23
|

the root directory, the new directory is limited only by the amount of space
available on the medium, not by a fixed number of entries. MS-DOS initially
allocates only a single cluster for the directory, allocating additional clusters only
when they are needed.

Every directory except the root directory has two entries when it is created. The
first entry specifies the directory itself, and the second entry specifies its parent
directory—the directory that contains it. These entries use the special directory
names . (an ASCII period) and .. (two ASCII periods), respectively. Programs
can use these “names” to form partial paths.

Each directory has attributes that specify the type of access programs have to it.
Programs set these attributes by using Set File Attributes (Interrupt 21h Func-
tion 4301h). The most common attributes, hidden and system, are often set to
prevent users from displaying the directory with the dir command. A directory
can also be made read-only, although this attribute does not prevent the deletion
of the directory or its files. A program can retrieve a directory’s attributes by
using Get File Attributes (Interrupt 21h Function 4300h)

A program can rename a directory by using Rename File (Interrupt 21h Func-
tion 56h), but the new name must not cause the full path for the directory to
exceed 64 characters. The program must check the path length, since MS-DOS
does not.

A program deletes a directory by using Remove Directory (Interrupt 21h Func-
tion 3Ah). A directory cannot be deleted unless it is empty—that is, contains no
files or other directories.

3.5 Files

MS-DOS gives programs access to files in the file system. Programs can read
from and write to existing files, as well as create new ones.

Files can contain any amount of data, up to the limits of the storage medium.
(Since MS-DOS stores the size of a file as a 31-bit number, the theoretical max-
imum for file size is 2 gigabytes.) MS-DOS stores a file’s data in the order the
program writes the data, so the meaning and format of the data are entirely up
to the program.

Apart from its contents, every file has a name (possibly with an extension),
access attributes, and an associated date and time. This information is stored
in the file’s directory entry, not in the file itself.

3.5.1 File Management

A program can create a new file by using Create File with Handle (Interrupt 21h
Function 3Ch). This function creates a file, gives it the specified name, places it
in the specified directory on the specified drive (or in the current directory on
the current drive, if a path is not given), and returns a handle for the file. The
new file is initially empty (that is, it contains zero bytes), but it is opened for
both reading and writing, so the program can write to it by using Write File or
Device (Interrupt 21h Function 40h) and then read from it by using Read File or
Device (Interrupt 21h Function 3Fh).

24 MS-DOS Programmer’s Reference

When a program creates a file, it sets file attributes that specify the type of
access programs have to the file. These attributes can be any of the following:

Attribute Description

ATTR_READONLY (01h) Specifies a read-only file. Programs can-
not write to the file.

ATTR_HIDDEN (02h) Specifies a hidden file. System commands
such as dir do not list the file. Functions
such as Find First File and Find Next
File (Interrupt 21h Functions 4Eh and
4Fh) do not return information about the
file unless the search specifies this attri-
bute.

ATTR_SYSTEM (04h) Specifies a system file. This attribute is
usually reserved for system files such as
I0.SYS and MSDOS.SYS. This has the
same effect as ATTR_HIDDEN and,
when applied to program files, prevents
COMMAND.COM from finding and run-
ning the files.

ATTR_ARCHIVE (20h) Specifies a file that is new or has been
modified. The system automatically sets
this attribute when the file is created or
written to. The attribute does not affect
access to the file but gives programs a
quick way to check for potential changes
to the file contents.

A file is a normal file (ATTR_NORMAL) if it has no other attributes. Programs
have full access to normal files.

Note that, even if the program specifies the read-only attribute, a new file is
always opened for both reading and writing, so that the program can write to the
initially empty file. The read-only attribute does not take effect until after the file
is closed for the first time.

A program can determine a file’s attributes by using Get File Attributes (Inter-
rupt 21h Function 4300h), and it can change them by using Set File Attributes
(Interrupt 21h Function 4301h).

A program can retrieve a file’s date and time by using Get File Date and Time
(Interrupt 21h Function 5700h). MS-DOS initially sets the date and time when a
file is created and updates them when a program writes to the file. A program
can change the date and time for a file by using Set File Date and Time (Inter-
rupt 21h Function 5701h).

A program can retrieve the name, attributes, time, date, and size of one or more
files by using Find First File (Interrupt 21h Function 4Eh) and Find Next File
(Interrupt 21h Function 4Fh). These functions search for files having names and

Chapter 3: File System 25

attributes that match values supplied by the program. If the functions find files
that match, they return information for the files in a FILEINFO structure. (For a
full description of the FILEINFO structure, see Section 3.9, “Structures.”) If the
name supplied by the program contains wildcards, the functions return informa-
tion about all files that match the patterns. Wildcard searches are iterative—that
is, the program calls Find First File and then repeatedly calls Find Next File
until all files matching the name and attributes have been found. Both Find First
File and Find Next File copy the file information to the buffer pointed to by the
disk transfer address (DTA). By default, MS-DOS sets the DTA to point to the
last 128 bytes of the program segment prefix (PSP). (For information about the
PSP, see Chapter 5, “Program Management.”) If this default buffer is not ade-
quate, the program can change the DTA by using Set Disk Transfer Address
(Interrupt 21h Function 1Ah). A program can retrieve the current DTA by using
Get Disk Transfer Address (Interrupt 21h Function 2Fh).

A program can rename a file by using Rename File (Interrupt 21h Function 56h).
This function replaces the name and extension in the directory entry with a new
name and extension. All other information remains unchanged.

A program can also use Rename File to move files. If the program supplies a
new path for the file, the function moves the file’s directory entry from the old
directory to the new one. However, the function cannot move a file from one
drive to another.

A program can delete a file by using Delete File (Interrupt 21h Function 41h).
This function frees any space on the drive that has been allocated for the file
and marks the file’s directory entry as deleted.

3.5.2 File Input and Output

Most MS-DOS programs carry out file operations through file-handle functions
that use a unique 16-bit value, called a handle, to identify a file. The program
receives a file handle when it opens or creates a file and uses the handle with

subsequent functions to read from, write to, or carry out other operations on the
file.

Programs can open existing files by using Open File with Handle (Interrupt 21h
Function 3Dh). The program supplies a filename (or full path) and the type of
file access required: read-only, write-only, or read-and-write. The function opens
the file and returns a handle for reading from, writing to, and closing the file.

A program can read from a file opened for read access by using Read File or
Device (Interrupt 21h Function 3Fh). Similarly, a program can write to a file
opened for write access by using Write File or Device (Interrupt 21h Function
40h). When a program reads from or writes to a file, it specifies the number of
bytes of data to be read or written and supplies the address of the buffer that
contains or receives the data. A program can continue to read from a file until it
reaches the end of the file; it can continue to write to a file until the file system
has no more space available.

Every open file has a file pointer that specifies the next byte to read from the file
or the next position to receive a byte written to the file. When a file is opened
or created, the file pointer is set to zero, the beginning of the file. As a program

26 MS-DOS Programmer’s Reference
|

reads from or writes to the file, the system moves the file pointer by the number
of bytes read or written. When a program has read all bytes in a file, the file
pointer moves to the end of the file and no further reading is possible. When

a program writes to a file, the system writes over existing data unless the file
pointer is at the end of the file, in which case the system appends the new data
to the file and moves the file pointer to the new end of the file.

A program can move the file pointer by using Move File Pointer (Interrupt 21h
Function 42h). The program must specify the amount to move and where to
move from (beginning of file, end of file, or current position). The function
moves the pointer and returns its new position relative to the beginning of the
file.

When the number of bytes between the file pointer and the end of the file are
fewer than the program requests, MS-DOS reads only to the end of the file. For
example, if a program requests 512 bytes but only 250 bytes remain between the
file pointer and the end of the file, only those 250 bytes are read. Read File or
Device returns the number of bytes read, so that the program can determine
how many bytes in its buffer are valid. Similarly, Write File or Device returns
the number of bytes written, which may be fewer than requested if writing that
number of bytes would exceed the maximum file size or if all available space on
the storage medium has been used before the write operation is complete.

A program can truncate an existing file to zero bytes by using Create File with
Handle and specifying the name of the existing file. (If the existing file is already
open, however, Create File with Handle simply creates an additional handle for
it.) To avoid unintentionally destroying existing files when creating new ones,

a program should use Create New File (Interrupt 21h Function 5Bh), which
returns an error value if the new filename matches an existing filename.

Programs often use temporary files for short-term storage and delete the files
when no longer needed. A program can create temporary files with unique
names by specifying a path for Create Temporary File (Interrupt 21h Function
5Ah), which then creates a file having a name that does not conflict with the
name of any other file in that path.

Programs should close files when they are no longer needed. Leaving files open
can cause loss or corruption of data if a system fails. A program can close a file
by using Close File with Handle (Interrupt 21h Function 3Eh). If the program
changed the file, MS-DOS updates the file’s time and date and sets the archive
attribute. MS-DOS closes any open files when a program terminates.

3.5.3 Internal File Buffers

By default, MS-DOS collects data in internal file buffers before writing it to

a drive. This improves system performance by reducing the number of times
MS-DOS accesses the drive hardware. MS-DOS usually holds the data from a
write operation until the buffer is filled or the program closes the file. While held
in a buffer, data is inaccessible to the program.

If necessary, a program can transfer a file’s written data to a drive immediately
by using Commit File (Interrupt 21h Function 68h). If a program must ensure
that data written to a file is always committed to the drive immediately, it can

Chapter 3: File System 27
|

open or create the file by using Extended Open/Create (Interrupt 21h Function
6Ch) and specifying the OPEN_FLAGS_COMMIT option. This option causes
MS-DOS to commit the file after each write operation, without individual calls
to Commit File.

A program can commit the data in all internal file buffers in one step by using
Reset Drive (Interrupt 21h Function 0Dh). This function is typically used by
CTRL+C Handler (Interrupt 23h) to ensure that the contents of all open files are
updated before the program terminates. Note, however, that this function does
not update the directory entries for the files, so changes to time, date, and file
size may not be recorded.

3.5.4 File Handles

By default, MS-DOS imposes a system-wide limit of 8 on the number of file
handles available for all programs. This means that current programs (whether
running or suspended) can have no more than eight open files among them.
MS-DOS automatically opens three devices (CON, PRN, AUX) as standard
devices. Since the standard devices always remain open, the number of avail-
able open files is always 3 less than the system limit. If more files are needed,
the user can set a new limit (up to 255) by using the files command in the
CONFIG.SYS file.

MS-DOS also imposes a limit of 20 on the number of file handles available for
individual programs. Since most programs inherit copies of the standard-device
handles, the number of available handles is always 5 less than the program limit.
(Although MS-DOS opens only three standard devices, the program inherits 5
handles to access them.) If more handles are needed, a program can increase its
own limit by using Set Maximum Handle Count (Interrupt 21h Function 67h).
Increasing the number of available handles does not increase the maximum
number of open files. Alternatively, the program can close one or more of the
standard devices and free the handles for other files.

A program can open the same file more than once, receiving a unique handle
each time. The program can use any of the handles to access the file. For file
management, some of the information maintained by the system for each handle
is shared by all handles. For example, no matter how many handles exist for a
given file, the file never has more than one file pointer. This means a program
cannot access different parts of the file at the same time, because moving the file
pointer by using one handle also moves it for all other handles.

3.6 Network Drives

A program can access the files and directories on a network drive by connecting
to the drive using Make Network Connection (Interrupt 21h Function SF03h).
This function associates a drive name with the network drive, permitting the
program to use the network drive as a logical drive. A program can connect to
a network drive only if the network is running. To determine whether the net-
work is running, a program can use Get Machine Name (Interrupt 21h Function
SEOOh). This function returns an error value if the network is not running.

To connect to a network drive, a program must supply the drive’s network
name, which consists of a computer name and a share name. The computer

28 MS-DOS Programmer’s Reference
]

name uniquely identifies the network server owning the drive, and the share
name identifies the drive. A program creates a network name by combining the
computer and share names as a zero-terminated ASCII string with the form
shown in the following example:

NetworkDrive DB '\\SERVER\FILES',0,0

If the network drive is password-protected, the program must supply the pass-
word, as shown in the following example:

NetworkDrive DB '\\SERVER\FILES',O, 'PaSsWoRd',O

The drive name the program provides must be the name of one of the available
drives identified by using Set Default Drive (Interrupt 21h Function OEh). If

the specified drive is valid (that is, if it has a corresponding physical drive), the
physical drive is temporarily inaccessible while the drive name is associated with
the network drive.

After a network connection is made, a program can use functions such as Get
Disk Free Space (Interrupt 21h Function 36h) to retrieve information about the
network drive, and it can open or create files and directories on the network
drive, as long as the network grants read-and-write permission.

Once a program connects to a network drive, the connection is a global resource
until the drive is explicitly disconnected. A program can check for existing net-
work connections by using Is Drive Remote (Interrupt 21h Function 4409h). This
function sets bit 12 in the DX register if a logical drive is associated with a net-
work drive. A program can retrieve the drive’s network name by using Get
Assign-List Entry (Interrupt 21h Function 5F02h).

A program can disconnect from a network drive by using Delete Network Con-
nection (Interrupt 21h Function 5F04h) to remove any association between the
drive name and the network drive. In general, a program should close and
disconnect from any network device it no longer needs.

Some network software may provide other means to connect and disconnect net-
work drives. For more information about network connections, see the applica-
ble network documentation.

3.7 File Sharing

Any program can share its open files with any other program. By default, the
system permits programs to open and modify a file even if another program has
the file open already. Because unrestricted file sharing can lead to such problems
as one program writing over the data another program is trying to read, MS-
DOS provides file-sharing modes that restrict access to open files, as well as a
file-locking function that enables one program to temporarily deny other pro-
grams access to one or more regions (consecutive bytes) of a file.

File-sharing mode determines whether a file can be opened by more than one '
program at a time. When a program opens a file by using Open File with Handle
(Interrupt 21h Function 3Dh), it can set the file-sharing mode to one of the fol-
lowing:

Chapter 3: File System 29
|

Mode) Description

OPEN_SHARE_COMPATIBILITY (000h) Allows other pro-
grams full access to
the file.

OPEN_SHARE_DENYREADWRITE (0010h) Prevents other pro-
grams from opening
the file.

OEPN_SHARE_DENYWRITE (0020h) Permits other pro-
grams to open the file
for reading but not
for writing.

OPEN_SHARE_DENYREAD (0030h) Permits other pro-
grams to open the file
for writing but not for
reading.

OPEN_SHARE_DENYNONE (0040h) Permits other pro-
grams to open the file
for reading and writ-
ing, but not for com-
patibility access.

In general, programs that access files across a network or that leave files open
while running child programs should deny other programs access to those files,
to prevent unexpected changes to them. Some programs, however, are designed
to share their open files and must not deny access to them. These programs can
prevent unexpected changes by using Lock/Unlock File (Interrupt 21h Function
5Ch) to lock one or more regions of the file.

When a region is locked, other programs can open the file but cannot access the
locked region. Attempting to do so returns a lock-violation error. The program
that locks a region can also unlock it by using Lock/Unlock File.

In general, a program that locks regions should unlock them as soon as possible,
to keep other programs from waiting unnecessarily. To enhance the performance
of programs that lock regions, MS-DOS automatically retries access to a locked
region several times before returning the lock-violation error. This reduces the
number of times a program must retry access on its own. A program can set the
number of retries MS-DOS is to attempt by using Set Sharing Retry Count
(Interrupt 21h Function 440Bh).

File-sharing modes and file locking are available on a local computer only if the
Share program is loaded. A program can determine whether Share is loaded by
using Get SHARE.EXE Installed State (Interrupt 2Fh Function 10h). If Share is
loaded, this function clears the carry flag and sets the AL register to OFFh.

3.8 Low-Level Input and Output

Low-level input and output gives a program access to the individual sectors on
a logical drive. (A sector is a drive’s smallest storage unit.) This low-level input
and output completely bypasses MS-DOS file-system control and enables a pro-
gram to directly manipulate the data structures that support the file system. Pro-
grams that read and write sectors do so at their own risk.

30 MS-DOS Programmer’s Reference
|

3.8.1 Device Parameters

Programs that read and write sectors need device-parameter information to avoid
corrupting the medium. A program can retrieve a logical drive’s device parame-
ters by using Get Device Parameters (Interrupt 21h Function 440Dh Minor Code
60h). These parameters, returned in the form of a DEVICEPARAMS structure,
specify such information as the total number of sectors on the medium and the
sizes of the file-system data structures. The DEVICEPARAMS structure has the

following form:

DEVICEPARAMS STRUC
dpSpecFunc db ? ;special functions
dpDevType db ? ;device type
dpDevAttr dw ? ;device attributes
dpCylinders dw ? ;number of cylinders
dpMediaType db ? ;media type
;Start of BIOS parameter block (BPB)
dpBytesPerSec dw ? ;bytes per sector
dpSecPerClust db ? ;sectors per cluster
dpResSectors dw ? ;number of reserved sectors
dpFATs db ? ;number of file allocation tables
dpRootDirEnts dw ? ;number of root-directory entries
dpSectors dw ? ;total number of sectors
dpMedia db ? ;media descriptor
dpFATsecs dw ? ;number of sectors per FAT
dpSecPerTrack dw ? ;sectors per track
dpHeads dw ? ;number of heads
dpHiddenSecs dd ? ;number of hidden sectors
dpHugeSectors dd ? ;number of sectors 1f dpSectors = O
;End of BIOS parameter block (BPB)
DEVICEPARAMS ENDS

For a full description of the DEVICEPARAMS structure, see Section 3.9,
“Structures.”

A program can set the device parameters of a logical drive by using Set Device
Parameters (Interrupt 21h Function 440Dh Minor Code 40h). If the physical
drive permits a variety of media formats, this function enables the program to
select the specific format it requires. For example, a program can set the param-
eters to format a 360-kilobyte floppy disk in a 1.2-megabyte drive. The following
statements define device parameters for several common formats:

SS160 DEVICEPARAMS <0,1,2,40,0,512,1,1,2, 64, 320,0feh,1, 8,1,0,0>
SS180 DEVICEPARAMS <0,1,2,40,0,512,1,1,2, 64, 360,0fch,2, 9,1,0,0>
DD320 DEVICEPARAMS <0,1,2,40,0,512,2,1,2,112, 640,0ffh,1, 8,2,0,0>
DD360 DEVICEPARAMS <0,1,2,40,0,512,2,1,2,112, 720,0fdh,1, 9,2,0,0>
SH320 DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112, 640,0fah,1, 8,1,0,0>
DH360 DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112, 720,0fch,2, 9,1,0,0>
DH640 DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112,1280,0fbh,2, 8,2,0,0>
DH720 DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112,1440,0£f%h,3, 9,2,0,0>
DH144 DEVICEPARAMS <«0,1,2,80,0,512,1,1,2,224,2880,0f0h,9,18,2,0,0>
DH120 DEVICEPARAMS 5,2,0,0>

<0,1,2,80,0,512,1,1,2,224,2400,0f0h,7,1

3.8.2 Absolute Disk Read and Write Operations

A program can read one or more sectors from a drive by using Absolute Disk
Read (Interrupt 25h). The program must specify a drive number, a pointer to a
buffer, a starting-sector number, and the number of sectors to be read. The
function copies the specified sectors to a buffer.

A program can write one or more sectors to a drive by using Absolute Disk
Write (Interrupt 26h). Programs that write directly to sectors must take care not

Chapter 3: File System 31

to corrupt the data MS-DOS uses to maintain the file system. For information
about this data, see Section 3.8.4, “Logical-Drive Contents.”

Absolute Disk Read and Absolute Disk Write read and write only nonhidden
sectors. (Nonhidden sectors are numbered consecutively starting from zero.)
This means that neither function can be used on sectors containing partition
tables. For information about accessing all sectors of a logical drive, see Section
3.8.3, “Input-and-Output-Control Functions.”

3.8.3 Input-and-Output-Control Functions

MS-DOS provides input-and-output-control (IOCTL) functions to read from,
write to, and format sectors on drives. The IOCTL functions, like the Absolute
Disk Read and Write functions, can access one or more sectors at a time.
Unlike the Absolute Disk Read and Write functions, however, the IOCTL func-
tions can read and write hidden sectors, such as those containing partition tables
and other file-system data structures.

A program can read and write sectors on a drive by using Read Track on Logi-
cal Drive (Interrupt 21h Function 440Dh Minor Code 61h) and Write Track on
Logical Drive (Interrupt 21h Function 440Dh Minor Code 41h). These functions
require the program to specify the cylinder number, head number, and starting-
sector number of the sectors to read or write.

The numbers of cylinders, heads, and sectors are properties of the medium and
are specified in its device parameters. For example, the dpHeads field in a logi-
cal drive’s DEVICEPARAMS structure returned by the Get Device Parameters
function specifies the number of heads for the drive. For a full description of the
DEVICEPARAMS structure, see Section 3.9, “Structures.”

3.8.4 Logical-Drive Contents
A logical drive has the following general format:

Data area Description

Hidden sectors Although any logical drive can have hidden sectors,
these sectors are usually associated with disks that can
be divided into partitions. If a disk has partitions, its
first hidden sector contains a table of PARTENTRY
structures, each specifying the size and location of
the physical sectors in a single partition. The table is
placed at the end of the sector. For a full description
of the PARTENTRY structure, see Section 3.9,

“Structures.”
Reserved A logical drive can have any number of reserved sec-
sectors tors but usually has only one, called the startup sec-

tor. The startup sector contains the MS-DOS startup
program and information that defines the size and

format of the disk. The sector ends with the startup-
sector signature, 0A ASSh, stored in the last 2 bytes.

32 MS-DOS Programmer’s Reference
|

Data area Description

File allocation The file allocation table (FAT) is an array used by

table MS-DOS to keep track of which clusters on a drive
have been allocated for each file or directory. As a
program creates a new file or adds to an existing one,
the system allocates sectors for that file, writes the
data to the given sectors, and keeps track of the allo-
cated sectors by recording them in the FAT. To con-
serve space and speed up record-keeping, each record
in the FAT corresponds to two or more consecutive
sectors (called a cluster). The number of sectors in a
cluster depends on the type and capacity of the drive
but is always a power of 2.

Every logical drive has at least one FAT, and most
drives have two, one serving as a backup should sec-
tors containing the other fail. The FAT immediately
follows the startup sector and any other reserved sec-
tors.

Root directory Every volume has a root directory with entries that
specify the volume’s name, files, and other direc-

tories.
File and direc- All remaining space in the volume is reserved for files
tory space and additional directories.

Depending on the number of clusters on the drive, the FAT consists of an array
of either 12-bit or 16-bit entries. Drives with more than 4086 clusters have a 16-
bit FAT; those with 4086 or fewer clusters have a 12-bit FAT.

The first two entries in a FAT (3 bytes for a 12-bit FAT and 4 bytes for a 16-bit
FAT) are reserved. In most versions of MS-DOS, the first byte contains the
media descriptor (the same descriptor provided in the DEVICEPARAMS struc-
ture) and the additional reserved bytes are set to OFFh.

Each FAT entry represents a corresponding cluster on the drive. If the cluster is
part of a file or directory, the entry contains either a marker specifying the clus-
ter as the last in that file or directory, or an index pointing to the next cluster in
the file or directory. If a cluster is not part of a file or directory, the entry con-
tains a value indicating the cluster’s status. The following table shows possible
FAT entry values. The digit in parentheses represents the additional 4 bits of a

16-bit entry.
Value Meaning
(0)000h Available cluster.

(0)002h-(F)FEFh Index of entry for the next cluster in the file or
directory. Note that (0)001h does not appear in a
FAT, since that value corresponds to the FAT’s
second reserved entry. Index numbering is based
on the beginning of the FAT.

Chapter 3: File System 33

Value Meaning
(F)FFOh-(F)FF6h Reserved; do not use.
(F)FF7h Bad sector in cluster; do not use cluster.

(F)FF8h-(F)FFFh Last cluster of file or directory.

Each file and directory consists of one or more clusters, each cluster represented
by a single entry in the FAT. The deStartCluster field in the DIRENTRY struc-
ture corresponding to the file or directory specifies the index of the first FAT
entry for the file or directory. (For a full description of the DIRENTRY struc-
ture, see Section 3.9, “Structures.”) This entry contains O(F)FFFh if there are no
further FAT entries for that file or directory, or it contains the index of the next
FAT entry for the file or directory. For example, the following segment of a 16-
bit FAT shows the FAT entries for a file consisting of four clusters:

dw O003h ; Cluster 2 points to cluster 3

dw 000Sh ; Cluster 3 points to cluster 5

dw OFFF7h ; Cluster 4 contains a bad sector

dw 0006h ; Cluster 5 points to cluster 6

dw OFFFFh ; Cluster 6 is the last cluster for the file
dw O ; Clusters 7,8 and 9 are available

dw O

dw O

3.9 Structures

This section describes the structures MS-DOS uses in the system functions that

support file systems.

34

BOOTSECTOR

B BOOTSECTOR

Fields

BOOTSECTOR STRUC

bsJump
bsOemName

bsBytesPerSec
bsSecPerClust
bsResSectors
bsFATs
bsRootDirEnts
bsSectors
bsMedia
bsFATsecs
bsSecPerTrack
bsHeads
bsHiddenSecs
bsHugeSectors

bsDriveNumber
bsReservedl

bsBootSignature

bsVolumelD
bsVolumeLabel
bsFileSysType

BOOTSECTOR ENDS

db
db
db
dd
db
db

3 dup(?)
'eP??e????’

RV VBV VLV L VL VIEVEVIE VRV RV VEVEY

11 dup(?)
8 dup (?)

;E9 XX XX or EB XX 90

;OEM name and version

;Start of BIOS parameter block
;bytes per sector

;sectors per cluster

;number of reserved sectors
;number of file allocation tables
;number of root-directory entries
;total number of sectors

;media descriptor

;number of sectors per FAT
;sectors per track

;number of heads

;number of hidden sectors

;number of sectors if bsSectors = O
;End of BIOS parameter block
;drive number (80h)

;reserved

;extended boot signature (29h)
;volume ID number

;volume label

;file-system type

The BOOTSECTOR structure contains information about the disk (or other
storage medium) for a particular drive. The structure appears at the beginning of
the first sector (the boot, or startup, sector) of the disk.

operating system from the drive.

bsOemName

bsJump Contains a jump instruction to the bootstrap routine, which loads the

Specifies the name of the original equipment manufacturer

(OEM) and the manufacturer’s version of MS-DOS.
bsBytesPerSec

bsSecPerClust

Specifies the number of bytes per sector.
Specifies the number of sectors in a cluster. The sectors must

be consecutive, and the number must be a power of 2.

bsResSectors

Specifies the number of reserved sectors on the drive, begin-

ning with sector 0. Typically, this value is 1 (for the startup sector), unless the
disk-drive manufacturer’s software reserves additional sectors.

bsFATSs

Specifies the number of file allocation tables (FATs) following the

reserved sectors. Most versions of MS-DOS maintain one or more copies of the
primary FAT and use the extra copies to recover data on the disk if the first
FAT is corrupted.
bsRootDirEnts
tory.

bsSectors

Specifies the maximum number of entries in the root direc-

Specifies the number of sectors on the drive. If the size of the

drive is greater than 32 MB, this field is zero and the number of sectors is
specified by the bsHugeSectors field.

bsMedia

Specifies the media descriptor, a value that identifies the type of

media in a drive. Some device drivers use the media descriptor to determine
quickly whether the removable medium in a drive has changed. MS-DOS passes
the media descriptor to the device driver so that programs can check the media
type. Also, the first byte in the FAT is often (but not always) identical to the
media descriptor.

Comments

BOOTSECTOR 35

Following is a list of the most commonly used media descriptors and their
corresponding media:

Value Type of medium

OFOh 3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

OF8h Hard disk, any capacity.

0FSh 3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

OFAh 5.25-inch, 1 side, 8 sectors/track, (320K).
OFBh 3.5-inch, 2 sides, 8 sectors/track (640K).
OFCh 5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

OFDh 5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

OFEh 5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (160K). This value is
also used for 8-inch disks.

OFFh 5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

bsFATsecs Specifies the number of sectors occupied by each FAT.
bsSecPerTrack Specifies the number of sectors on a single track.
bsHeads Specifies the number of read/write heads on the drive.
bsHiddenSecs Specifies the number of hidden sectors on the drive.

bsHugeSectors Specifies the number of sectors if the bsSectors field is zero.
This value supports drives larger than 32 MB.

bsDriveNumber Specifies whether the drive is the first hard disk drive, in
which case the value is 80h; otherwise, the value is 00h. This field is used inter-
nally by MS-DOS.

bsReservedl Reserved; do not use.

bsBootSignature Specifies the extended boot-signature record. This value
is 29h.

bsVolumeID Specifies the volume serial number.
bsVolumeLabel Specifies the volume label.

bsFileSysType Specifies the type of file system, given as an 8-byte ASCII
string. This field can be one of the following values:

Name Meaning

FAT12 12-bit FAT
FAT16 16-bit FAT

If the name has fewer than eight characters, space characters (ASCII 20h) fill
the remaining bytes in the field.

The BOOTSECTOR structure shares the first sector with the bootstrap routine
and the boot-sector signature. The boot-sector signature, stored in the last two
bytes of the sector, must be 0AA55h.

36 DEVICEPARAMS

B DEVICEPARAMS

DEVICEPARAMS STRUC

dpHiddenSecs dd
dpHugeSectors dd

;number of hidden sectors
;number of sectors if dpSectors = O
;End of BIOS parameter block (BPB)

dpSpecFunc db 7?7 ;special functions
dpDevType db ? ;device type
dpDevAttr dw ? ;device attributes
dpCylinders dw ? ;number of cylinders
dpMediaType db ? ;media type
;Start of BIOS parameter block (BPB)

dpBytesPerSec dw ? ;bytes per sector
dpSecPerClust db ? ;sectors per cluster
dpResSectors dw ? ;number of reserved sectors
dpFATs db ? ;number of file allocation tables
dpRootDirEnts dw ? ;number of root-directory entries
dpSectors dw ? ;total number of sectors
dpMedia db ? ;media descriptor
dpFATsecs dw ? ;number of sectors per FAT
dpSecPerTrack dw ? ;sectors per track
dpHeads dw ? ;number of heads

?

?

DEVICEPARAMS ENDS

The DEVICEPARAMS structure contains device parameters for the medium in
a given logical drive.

Fields dpSpecFunc Specifies the special function or functions to be carried out by
Set Device Parameters (Interrupt 21h Function 440Dh Minor Code 40h). This
field can contain some combination of the following values:

Bit Meaning

0 0 = Use the fields dpBytesPerSec through dpHugeSectors to set the
default BIOS parameter block (BPB) for this device.

1 = Use the device BPB for all subsequent Build BPB requests.
1 0 = Read all fields.

1 = Ignore all fields, but read the TRACKLAYOUT structure appended
to the end of the structure.

2 0 = Do not use.

1 = The sectors in the track are all the same size, and the sector
numbers are in the range 1 through the total number of sectors on the
track. This bit should always be set.

All other bits are reserved and must be zero.
dpDevType Specifies the device type. This field can be one of the following

values:
Value Meaning
00h 320/360K
01h 1.2 MB
02h 720K
03h 8-inch, single-density

04h 8-inch, double-density

DEVICEPARAMS 37

Value Meaning

05h Hard disk

06h Tape drive

07h 1.44 MB

08h Read/write optical
0%h 2.88 MB

dpDevAttr Specifies device attributes. This field can contain some combina-
tion of the following values:

Bit Meaning

0 0 = The medium is removable.
1 = The medium is not removable.
1 0 = Disk change-line is not supported (no door-lock support).
1 = Disk change-line is supported (door-lock support).
All other bits are reserved and must be zero.

dpCylinders Specifies the maximum number of cylinders that the physical
device can support. This information is set by the device.

dpMediaType Specifies which medium the drive currently accepts (for drives
that accept more than one media type). For a 1.2-MB drive, if bit 0 is clear, it
indicates that the drive accepts quad-density, 1.2-MB disks (the default media
type); if bit 0 is set, the drive accepts double-density, 320/360K disks.

dpBytesPerSec Specifies the number of bytes per sector.

dpSecPerClust Specifies the number of sectors in a cluster. The sectors must
be consecutive, and the number must be a power of 2.

dpResSectors Specifies the number of reserved sectors on the drive, begin-
ning with sector 0. Typically, this value is 1 (for the startup sector), unless the
disk-drive manufacturer’s software reserves additional sectors.

dpFATs Specifies the number of file allocation tables (FATs) following the
reserved sectors. Most versions of MS-DOS maintain one or more copies of the

primary FAT and use the extra copies to recover data on the disk if the first
FAT is corrupted.

dpRootDirEnts Specifies the maximum number of entries in the root direc-
tory.

dpSectors Specifies the number of sectors on the drive. If the size of the
drive is greater than 32 MB, this field is set to zero and the number of sectors
is specified by the dpHugeSectors field.

dpMedia Specifies the media descriptor, a value that identifies the type of
media in a drive. Some device drivers use the media descriptor to determine
quickly whether the removable medium in a drive has changed. MS-DOS passes
the media descriptor to the device driver so that programs can check the media

type. Also, the first byte in the FAT is often (but not always) identical to the
media descriptor.

38 DEVICEPARAMS

Following is a list of the most commonly used media descriptors and their
corresponding media:

Value Type of medium

OFOh 3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

OF8h Hard disk, any capacity.

0F%h 3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

OFAh 5.25-inch, 1 side, 8 sectors/track, (320K).
OFBh 3.5-inch, 2 sides, 8 sectors/track (640K).
OFCh 5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

OFDh 5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

OFEh 5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (160K). This value is
also used for 8-inch disks.

OFFh 5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).
dpFATsecs Specifies the number of sectors occupied by each FAT.
dpSecPerTrack Specifies the number of sectors on a single track.
dpHeads Specifies the number of read/write heads on the drive.
dpHiddenSecs Specifies the number of hidden sectors on the drive.
dpHugeSectors Specifies the number of sectors if the dpSectors field is zero.
This value supports drives larger than 32 MB.

See Also Interrupt 21h Function 440Dh Minor Code 60h Get Device Parameters
Interrupt 21h Function 440Dh Minor Code 40h Set Device Parameters

B DIRENTRY

DIRENTRY STRUC
deName db '????????' ;name
deExtension db '???' ;extension
deAttributes db ? ;attributes
deReserved db 10 dup(?) ;reserved
deTime dw ? ;time
deDate dw ? ;date
deStartCluster dw ? ;starting cluster
deFileSize dd ? ;file size

DIRENTRY ENDS

The DIRENTRY structure contains information about a file or directory name,
attributes, date, time, and starting cluster.

Fields

DIRENTRY 39

deName Specifies the name of the file or directory. If the file or directory
was created by using a name with fewer than eight characters, space characters
(ASCII 20h) fill the remaining bytes in the field. The first byte in the field can be
a character or one of the following values:

Value Meaning

00h The directory entry has never been used. MS-DOS uses this value to
limit the length of directory searches.

05h The first character in the name has the value OE5Sh.

2Eh The directory entry is an alias for this directory or the parent direc-

tory. If the remaining bytes are space characters (ASCII 20h), the
deStartCluster field contains the starting cluster for this directory. If
the second byte is also 2Eh (and the remaining bytes are space char-
acters), deStartCluster contains the starting cluster number of the
parent directory, or zero if the parent is the root directory.

OESh The file or directory has been deleted.
deExtension Specifies the file or directory extension. If the extension has

fewer than three characters, space characters (ASCII 20h) fill the remaining
bytes in this field.

deAttributes Specifies the attributes of the file or directory. This field can
contain some combination of the following values:

Value Meaning

ATTR_READONLY (01h) Specifies a read-only file.

ATTR_HIDDEN (02h) Specifies a hidden file or directory.
ATTR_SYSTEM (04h) Specifies a system file or directory.
ATTR_VOLUME (08h) Specifies a volume label. The directory entry

contains no other usable information (except
for date and time of creation) and can occur
only in the root directory.

ATTR_DIRECTORY (10h) Specifies a directory.
ATTR_ARCHIVE (20h) Specifies a file that is new or has been modified.
All other values are reserved. (The two high-order bits are set to zero.)

If no attributes are set, the file is a normal file (ATTR_NORMAL).
deReserved Reserved; do not use.

40 DIRENTRY

See Also

H DISKIO

deTime Specifies the time the file or directory was created or last updated.
The field has the following form:

Bits Meaning

04 Specifies two-second intervals. Can be a value in the range 0 through
29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.
11-15 Specifies hours. Can be a value in the range O through 23.

deDate Specifies the date the file or directory was created or last updated.
The field has the following form:

Bits Meaning

04 Specifies the day. Can be a value in the range 1 through 31.
5-8 Specifies the month. Can be a value in the range 1 through 12.
9-15 Specifies the year, relative to 1980.

deStartCluster Specifies the starting cluster of the file or directory.
deFileSize Specifies the size of the file, in bytes.

Interrupt 21h Function 11h Find First File with FCB
Interrupt 21h Function 12h Find Next File with FCB

Fields

Comments

See Also

DISKIO STRUC
diStartSector dd ? ;sector number to start
diSectors dw ? ;number of sectors
diBuffer dd ? ;address of buffer
DISKIO ENDS

The DISKIO structure contains information specifying the location and number
of sectors to read or write.

diStartSector Specifies the number of the first sector to be read or written.
diSectors Specifies the number of sectors to read or write.

diBuffer Specifies a 32-bit address (segment:offset) to the buffer that receives
the data read or contains the data to write.

The DISKIO structure is used only if the number of sectors on the drive exceeds
65,535.

Interrupt 25h Absolute Disk Read
Interrupt 26h Absolute Disk Write

DPB 41

R DPB

DPB STRUC
dpbDrive db ? ;drive number (O = A, 1 = B, etc.)
dpbUnit db ? ;unit number for driver
dpbSectorSize dw ? ;sector size, in bytes
dpbClusterMask db ? ;sectors per cluster - 1
dpbClusterShift db ? ;sectors per cluster, as power of 2
dpbFirstFAT dw ? ;first sector containing FAT
dpbFATCount db ? ;number of FATs
dpbRootEntries dw ? ;number of root-directory entries
dpbFirstSector dw ? ;first sector of first cluster
dpbMaxCluster dw ? ;number of clusters on drive + 1
dpbFATSize dw ? ;number of sectors occupied by FAT
dpbDirSector dw ? ;first sector containing directory
dpbDriverAddr dd ? ;address of device driver
dpbMedia db ? ;media descriptor
dpbFirstAccess db ? ;indicates access to drive
dpbNextDPB dd ? ;address of next drive parameter block
dpbNextFree dw ? ;last allocated cluster
dpbFreeCnt dw ? ;number of free clusters

DPB ENDS

The DPB structure contains information about a drive and the medium in the

drive.

Fields dpbDrive Specifies the drive number (0 = A, 1 = B, and so on).

dpbUnit Specifies the unit number. The device driver uses the unit number
to distinguish the specified drive from the other drives it supports.

dpbSectorSize Specifies the size of each sector, in bytes.
dpbClusterMask Specifies one less than the number of sectors per cluster.

dpbClusterShift Specifies the number of sectors per cluster, expressed as a
power of 2.

dpbFirstFAT Specifies the sector number of the first sector containing the
file allocation table (FAT).

dpbFATCount Specifies the number of FATs.
dpbRootEntries Specifies the number of entries in the root directory.

dpbFirstSector Specifies the sector number of the first sector in the first
cluster.

dpbMaxCluster Specifies one more than the maximum number of clusters on
the drive.

dpbFATSize Specifies the number of sectors occupied by each FAT.

dpbDirSector Specifies the sector number of the first sector containing the
root directory.

dpbDriverAddr Specifies the 32-bit address (segment:offset) of the DEVICE-
HEADER structure for the device driver supporting the specified drive.

dpbMedia Specifies the media descriptor for the medium in the specified
drive.

dpbFirstAccess Specifies whether the medium in the drive has been
accessed. This field is OFFh if the medium has not been accessed.

42 DPB

See Also

B EXTENDEDFCB

dpbNextDPB Specifies the 32-bit address (segment:offset) of the next drive
parameter block.

dpbNextFree Specifies the cluster number of the last allocated cluster.
dpbFreeCnt Specifies the number of free clusters on the medium. This field
is OFFFFh if the number is unknown.

Interrupt 21h Function 1Fh Get Default DPB
Interrupt 21h Function 32h Get DPB

Fields -

EXTENDEDECB STRUC

extSignature db Offh ;extended FCB signature
extReserved db 5 dup (0) ;reserved bytes
extAttribute db ? ;attribute byte

;file control block (FCB)
extDrivelID db ? ;drive no. (O=default, 1=A, etc.)
extFileName db '????????' ;filename
extExtent db '???! ;file extension
extCurBlockNo dw ? ;ecurrent block number
extRecSize dw ? ;record size
extFileSize db 4 dup (?) ;size of file, in bytes
extFileDate dw ? ;date file last modified
extFileTime dw ? ;time file last modified
extReserved db 8 dup (?) ;reserved bytes
extCurRecNo db ? ;current record number
extRandomRecNo db 4 dup (?) ;random record number

EXTENDEDECB ENDS

The EXTENDEDFCB structure contains a file control block (FCB) and 7 addi-
tional bytes, including an attribute byte.

extSignature Specifies the extended FCB signature. This value must be OFFh.
extReserved Reserved; must be zero.

extAttribute Specifies the attributes of the file or directory. This field can
contain some combination of the following values:

Value Meaning

ATTR_READONLY (01h) Specifies a read-only file.

ATTR_HIDDEN (02h) Specifies a hidden file or directory.
ATTR_SYSTEM (04h) Specifies a system file or directory.
ATTR_VOLUME (08h) Specifies a volume label. The entry contains no

other usable information (except for date and
time of creation) and can occur only in the root

directory.
ATTR_DIRECTORY (10h) Specifies a directory.
ATTR_ARCHIVE (20h) Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)
If no attributes are set, the file is a normal file (ATTR_NORMAL).

See Also

EXTENDEDFCB 43

extDriveID Identifies the drive containing the file (0 = default, 1 = A, 2 =B,
and so on).

extFileName Specifies the name of the file. The filename must be padded
with space characters (ASCII 20h) if it has fewer than eight characters.

extExtent Specifies the extension. The extension must be padded with space
characters (ASCII 20h) if it has fewer than three characters.

extCurBlockNo Specifies the current block number, which points to the
block that contains the current record. A block is a group of 128 records. This
field and the extCurRecNo field make up the record pointer. When opening the
file, MS-DOS sets this field to zero.

extRecSize Specifies the size of a logical record, in bytes. MS-DOS sets this
field to 128. A program that uses a different record size must fill this field after
opening the file.

extFileSize Specifies the size of the file, in bytes. When opening an existing
file, MS-DOS initializes this field from the file’s directory entry.

extFileDate Specifies the date the file was created or last updated. When
opening an existing file, MS-DOS initializes this field from the file’s directory
entry. This 16-bit field has the following form:

Bits Meaning

0-4 Specifies the day. Can be a value in the range 1 through 31.
5-8 Specifies the month. Can be a value in the range 1 through 12.
9-15 Specifies the year, relative to 1980.
extFileTime Specifies the time the file was created or last updated. If the file

already exists, MS-DOS initializes this field from the file’s directory entry when
opening the file. This 16-bit field has the following form:

Bits Meaning
04 Specifies two-second intervals. Can be a value in the range 0
through 29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.

11-15 Specifies hours. Can be a value in the range 0 through 23.
extReserved Reserved; do not use.

extCurRecNo Specifies the current record number, which points to one of
128 records in the current block. This field and the extCurBlockNo field make
up the record pointer. MS-DOS does not initialize this field when opening the
file. The calling program must set it before performing a sequential read or write
operation. This field is maintained by MS-DOS.

extRandomRecNo Specifies the relative record number for random file
access. This field specifies the index of the currently selected record, counting
from the beginning of the file. MS-DOS does not initialize this field when open-
ing the file. The calling program must set it before performing a random read or
write operation. If the record size is less than 64 bytes, all 4 bytes of this field
are used. Otherwise, only the first 3 bytes are used.

Interrupt 21h Function 11h Find First File with FCB
Interrupt 21h Function 12h Find Next File with FCB

44 EXTHEADER

B EXTHEADER

Fields

See Also

H FCB

EXTHEADER STRUC

ehSignature db Offh ;extended signature
ehReserved db 5 dup (0) ;reserved
ehSearchAttrs db ? ;attribute byte

EXTHEADER ENDS
The EXTHEADER structure contains attributes for file and directory searches.

ehSignature Specifies the extended search-header signature. This value must
be OFFh.
ehReserved Reserved; must be zero.

ehSearchAttrs Specifies the attributes used in the search for files and direc-
tories. This field can contain some combination of the following values:

Value Meaning

ATTR_READONLY (01h) Specifies a read-only file.

ATTR_HIDDEN (02h) Specifies a hidden file or directory.
ATTR_SYSTEM (04h) Specifies a system file or directory.
ATTR_VOLUME (08h) Specifies a volume label. The entry contains no

other usable information (except for date and
time of creation) and can occur only in the root

directory.
ATTR_DIRECTORY (10h) Specifies a directory.
ATTR_ARCHIVE (20h) Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)
If no attributes are set, the file is a normal file (ATTR_NORMAL).

Interrupt 21h Function 11h Find First File with FCB
Interrupt 21h Function 12h Find Next File with FCB

FCB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

The FCB structure contains information that identifies a file and its characteris-
tics.

Fields

FCB 45

fcbDriveID Identifies the drive containing the file (0 = default, 1 = A, 2 = B,
and so on).

fcbFileName Specifies the name of the file. The filename must be padded
with space characters (ASCII 20h) if it has fewer than eight characters.

fcbExtent Specifies the filename extension. The filename extension must be
padded with space characters (ASCII 20h) if it has fewer than three characters.

fcbCurBlockNo Specifies the current block number, which points to the
block that contains the current record. A block is a group of 128 records. This
field and the fchCurRecNo field make up the record pointer. MS-DOS sets this
field to zero when opening the file.

fcbRecSize Specifies the size of a logical record, in bytes. MS-DOS sets this
field to 128. A program that uses a different record size must fill this field after
opening the file.

fcbFileSize Specifies the size of the file, in bytes. When opening an existing
file, MS-DOS initializes this field from the file’s directory entry.

fcbFileDate Specifies the date the file was created or last updated. When
opening an existing file, MS-DOS initializes this field from the file’s directory
entry. This 16-bit field has the following form:

Bits Meaning

04 Specifies the day. Can be a value in the range 1 through 31.

5-8 Specifies the month. Can be a value in the range 1 through 12.

9-15 Specifies the year, relative to 1980. .
fcbFileTime Specifies the time the file was created or last updated. If the file

already exists, MS-DOS initializes this field from the file’s directory entry when
opening the file. This 16-bit field has the following form:

Bits Meaning
04 Specifies two-second intervals. Can be a value in the range 0
through 29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.
11-15 Specifies hours. Can be a value in the range O through 23.

fcbReserved Reserved; do not use.

fcbCurRecNo Specifies the current record number, which points to one of
128 records in the current block. This field and the fcbCurBlockNo field make
up the record pointer. MS-DOS does not initialize this field when opening the
file. The calling program must set it before performing a sequential read or write
operation. This field is maintained by MS-DOS.

fcbRandomRecNo Specifies the relative record number for random file
access. This field specifies the index of the currently selected record, counting
from the beginning of the file. MS-DOS does not initialize this field when open-
ing the file. The calling program must set it before performing a random read or
write operation. If the record size is less than 64 bytes, all 4 bytes of this field
are used. Otherwise, only the first 3 bytes are used.

46 FCB

Comments When opening or creating a file, a program initializes an FCB that contains only
the drive number, the filename, and the filename extension. All other fields are
zero. MS-DOS fills in the remaining fields, as described in the preceding
“Fields” section, once the file is open.

See Also Interrupt 21h Function OFh Open File with FCB
Interrupt 21h Function 10h Close File with FCB
Interrupt 21h Function 11h Find First File with FCB
Interrupt 21h Function 12h Find Next File with FCB
Interrupt 21h Function 13h Delete File with FCB
Interrupt 21h Function 14h Sequential Read
Interrupt 21h Function 15h Sequential Write
Interrupt 21h Function 16h Create File with FCB
Interrupt 21h Function 17h Rename File with FCB
Interrupt 21h Function 1Bh Get Default Drive Data
Interrupt 21h Function 1Ch Get Drive Data
Interrupt 21h Function 21h Random Read
Interrupt 21h Function 22h Random Write
Interrupt 21h Function 23h Get File Size
Interrupt 21h Function 24h Set Random Record Number
Interrupt 21h Function 27h Random Block Read
Interrupt 21h Function 28h Random Block Write
Interrupt 21h Function 29h Parse Filename

B FILEINFO

FILEINFO STRUC
fiReserved db 21 dup (?) ;reserved
fiAttribute db ? ;attributes of file found
fiFileTime dw ? ;time of last write
fiFileDate dw ? ;date of last write
fiSize dd ? ;file size
fiFileName db 13 dup (?) ;filename and extension

FILEINFO ENDS

The FILEINFO structure contains information about a file or directory name,

access attributes, date, and time.

Fields fiReserved Reserved; do not use.

fiAttribute Specifies the access attributes of the file or directory. This field
can contain some combination of the following values:

Value Meaning

ATTR_READONLY (01h) Specifies a read-only file.

ATTR_HIDDEN (02h) Specifies a hidden file or directory.
ATTR_SYSTEM (04h) Specifies a system file or directory.
ATTR_VOLUME (08h) Specifies a volume label. The entry contains no

other usable information (except for date and
time of creation) and can occur only in the root
directory.

See Also

B FVBLOCK

FVBLOCK 47

Value Meaning
ATTR_DIRECTORY (10h) Specifies a directory.
ATTR_ARCHIVE (20h) Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)
If no attributes are set, the file is a normal file (ATTR_NORMAL).

fiFileTime Specifies the time the file or directory was created or last updated.
The field has the following form:

Bits Meaning
04 Specifies two-second intervals. Can be a value in the range 0
through 29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.
11-15 Specifies hours. Can be a value in the range 0 through 23.

fiFileDate Specifies the date the file or directory was created or last updated.
The field has the following form:

Bits Meaning

04 Specifies the day. Can be a value in the range 1 through 31.
5-8 Specifies the month. Can be a value in the range 1 through 12.
9-15 Specifies the year, relative to 1980.

fiSize Specifies the size of the file, in bytes.

fiFileName Specifies the name and extension of the file or directory.

Interrupt 21h Function 4Eh Find First File
Interrupt 21h Function 4Fh Find Next File

Fields

See Also

FVBLOCK STRUC

fvSpecFunc db O ;special functions (must be zero)
fvHead dw ? ;head to format/verify

fvCylinder dw ? ;cylinder to format/verify
EVBLOCK ENDS

The FVBLOCK structure specifies the head and cylinder to format or verify.

fvSpecFunc Must be zero.

fvHead Specifies the number of the read/write head. The head number is used
to determine the track to format or verify.

fvCylinder Specifies the number of the cylinder. The cylinder number is used
to determine the track to format or verify.

Interrupt 21h Function 440Dh Minor Code 42h Format Track on Logical Drive
Interrupt 21h Function 440Dh Minor Code 62h Verify Track on Logical Drive

48 MID

® MID

Fields

See Also

B PARTENTRY

MID STRUC
midInfoLevel dw O ;information level
midSerialNum dd ? ;serial number
midVolLabel db 11 dup (?) ;ASCII volume label
midFileSysType db 8 dup (?) ;file system type
MID ENDS

The MID structure contains information that uniquely identifies a disk or other
storage medium.

midInfoLevel Specifies the information level. This field must be zero.
midSerialNum Specifies the serial number for the medium.

midVolLabel Specifies the volume label for the medium. If the label has
fewer than 11 characters, space characters (ASCII 20h) fill the remaining bytes
in this field.

midFileSysType Specifies the type of file system, given as an 8-byte ASCII
string. This field can be one of the following values:

Name Meaning
FAT12 12-bit file allocation table (FAT)
FAT16 16-bit FAT

If the name has fewer than eight characters, space characters (ASCII 20h) fill
the remaining bytes in this field.

Interrupt 21h Function 440Dh Minor Code 66h Get Media ID
Interrupt 21h Function 440Dh Minor Code 46h Set Media ID

Fields

PARTENTRY STRUC

peBootable db ? ;80h = bootable, OOh = nonbootable
peBeginHead db ? ;beginning head

peBeginSector db ? ;beginning sector

peBeginCylinder db ? ;beginning cylinder

peFilleSystem db ? ;name of file system

peEndHead db ? ;ending head

peEndSector db ? ;ending sector

peEndCylinder db ? ;ending cylinder

peStartSector dd ? ;starting sector (relative to beg. of disk)
peSectors dd ? ;number of sectors in partition

PARTENTRY ENDS

The PARTENTRY structure specifies the size and the starting and ending sectors
of a partition on a disk that can be partitioned.

peBootable Specifies whether the partition is bootable. If this field is 80h,
the partition is bootable; if the field is 00h, the partition is not bootable.

peBeginHead Specifies the head number used to determine the first track in
the partition.

peBeginSector Specifies the number of the first sector in the partition. This
sector number is relative to the first track in the partition.

Comments

See Also

B RENAMEFCB

RENAMEFCB 49

peBeginCylinder Specifies the cylinder number used to determine the first
track in the partition.

peFileSystem Specifies the type of file system. This field can be one of the
following values:

Value Meaning

00h Unknown type

O1h 12-bit file allocation table (FAT); partition smaller than 10 MB
04h 16-bit FAT; partition smaller than 32 MB

05h Extended DOS partition

06h 16-bit FAT; partition larger than or equal to 32 MB

Although other values are possible, MS-DOS recognizes only those given.

peEndHead Specifies the head number used to determine the last track in the
partition.

peEndSector Specifies the number of the last sector in the partition. This
sector number is relative to the first track in the partition.

peEndCylinder Specifies the cylinder number used to determine the last
track in the partition.

peStartSector Specifies the number of the first sector in the partition. This
sector number is relative to the beginning of the disk.

peSectors Specifies the number of sectors in the partition.
MS-DOS supplies a partition table for every disk that can be partitioned. The

table, placed at the end of the first hidden sector on the logical drive, consists
of one or more PARTENTRY structures.

Interrupt 21h Function 440Dh Minor Code 41h Write Track on Logical Drive
Interrupt 21h Function 440Dh Minor Code 61h Read Track on Logical Drive

Fields

RENAMEFCB STRUC

renDrivelID db ? ;drive no. (O=default, 1=A, etc.)
renOldName db '????????' ;old filename

renOldExtent db '???' ;old file extension

renReservedl db 5 dup(?) ;reserved

renNewName db '??????°??' ;new filename

renNewExtent db '???' ;new extension

renReserved2 db 9 dup(?) ;reserved

RENAMEFCB ENDS

The RENAMEFCB structure contains the old and new names for a file that is
being renamed.

rer)lDriveID Specifies the drive number (0 = default, 1 = A, 2 = B, and so
on).

renOldName Specifies the old filename. If the filename has fewer than eight
characters, space characters (ASCII 20h) must fill the remaining bytes.

50 RENAMEFCB

renOldExtent Specifies the old extension. If the extension has fewer than
three characters, space characters must fill the remaining bytes.

renReservedl Reserved; do not use.

renNewName Specifies the new filename. If the filename has fewer than eight
characters, space characters must fill the remaining bytes.

renNewExtent Specifies the new extension. If the extension has fewer than
three characters, space characters must fill the remaining bytes.

renReserved2 Reserved; do not use.

See Also Interrupt 21h Function 17h Rename File with FCB

B RWBLOCK

RWBLOCK STRUC

rwSpecFunc db O ;special functions (must be zero)
rwHead dw ? ;head to read/write

rwCylinder dw ? ;cylinder to read/write

rwEFirstSector dw ? ;first sector to read/write

rwSectors dw ? ;number of sectors to read/write
rwBuffer dd ? ;address of buffer for read/write data

RWBLOCK ENDS

The RWBLOCK structure contains information that specifies the sectors that are
to be read or written.

Fields rwSpecFunc Must be zero.
rwHead Specifies the head number used to determine the track to read from
or write to.

rwCylinder Specifies the cylinder number used to determine the track to read
from or write to.

rwFirstSector Specifies the number of the first sector (relative to the begin-
ning of the track) to read or write.

rwSectors Specifies the number of sectors to read or write.

rwBuffer Specifies a 32-bit address (segment:offset) of the buffer that receives
the data to read or that contains the data to write.

See Also Interrupt 21h Function 440Dh Minor Code 61h Read Track on Logical Drive
Interrupt 21h Function 440Dh Minor Code 41h Write Track on Logical Drive

B TRACKLAYOUT

TRACKLAYOUT STRUC
tklSectors dw SECTORS ;number of sectors on track

tklNumSize dd SECTORS dup(?) ;array of sector numbers and sizes
TRACKLAYOUT ENDS

The TRACKLAYOUT structure contains an array of numbers and sizes for the
sectors on a track.

Fields

Comments
See Also

TRACKLAYOUT 51

tklSectors Specifies the number of sectors.

tkiISecNumSize Contains an array of sector numbers and sizes. Each element
of the array has the following form:

tklSectorNum dw ?
tklSectorSize dw ?

Field Description

tklSectorNum Specifies the number of the sector. Each sector number must
be unique and in the range 1 through the the number of sec-
tors specified in tklSectors.

tklSectorSize Specifies the size of the sector, in bytes.

The tkiSectors field specifies the number of elements in this field.
All sector sizes must be equal.

Interrupt 21h Function 440Dh Minor Code 40h Set Device Parameters

Chapter
4

Character Input and Output

4.1 Introduction.......ceceveiiniuiiiininiiiiniirreieieniernrenenensannnens 55
4.2 Character DeviCescccuviurinieiiniiiriiireniiinenninrenennennns 55
42.1 Input and Output Modescccceevuiniierniniinininennnnes 56
422 Keyboard Controlcceuiieieiiiieiaiiiininiieiniieienannes 56
4.2.3 Screen Control.......ccvuiuininininininiiinineiiiiierenenanes 57
42.4 Printer Control...cccciuvuiniieieineierieneeneneeesncnecncnenns 57
4.2.5 Auxiliary Device Controlcccceveiernineeninecnnnennnns 58
4.2.6 Real-Time Clock Controlccccevuvinrneenernenneenennnns 58
4.3 ANSI Escape Sequencesc.ceeeveerereerneerenennneennennns 58

4.4 SEIUCKUTE ..uiviviiininininiereeeeeereeeeenenenenenenssesnsnsasennnennes 61

Chapter 4: Character Input and Output 55

4.1 Introduction

This chapter provides an overview of MS-DOS character devices and describes
the system functions that enable programs to read from, write to, and set the
modes for character devices.

4.2 Character Devices

A character device is any device that processes data one byte (one character) at
a time. The computer’s keyboard, screen, real-time clock, and serial and parallel
ports are character devices.

Note

Each character device has a name. MS-DOS uses the following names:

Name Description

AUX Auxiliary device, usually a serial communications port.

CLOCK$ Real-time clock.

COM1 First serial communications port. AUX is usually an alias
for COM1.

COM2 Second serial communications port.

CON Keyboard and screen.

LPT1 First parallel printer port. PRN is usually an alias for
LPT1.

LPT2 Second parallel printer port.

LPT3 Third parallel printer port.

NUL “Bit bucket” device that discards all output and provides
no input.

PRN Printer device (also called a list device), usually a parallel

communications port.

Programs open character devices by supplying the device names to Open File
with Handle (Interrupt 21h Function 3Dh). The functions use the device names
much as they use filenames, opening the device and returning a file handle. Once
a program has a handle, it can read from, write to, and close the device by using
such file-handle functions as Read File or Device (Interrupt 21h Function 3Fh),
Write File or Device (Interrupt 21h Function 40h), and Close File with Handle
(Interrupt 21h Function 3Eh).

A program cannot create a file with the same filename as a device (such as
CON.TXT), regardless of the extension. Attempting to open or create a file with the
same name as a device opens the device instead.

56

MS-DOS Programmer’s Reference

4.2.1 Input and Output Modes

Input/output (I/0) modes determine how character devices process input and
output. MS-DOS has two I/O modes: ASCII and binary. (These are sometimes
called “cooked” and “raw” modes, respectively.)

The chief difference between these two modes is the way in which MS-DOS
processes control characters. In ASCII mode, MS-DOS checks for control char-
acters as it processes input or output for a device. If it encounters a control
character, it removes the character from the input and carries out its corre-
sponding action, described in the following table:

Control character Action in ASCIl mode

CTRL+C Passes control to the CTRL+C exception handler.
Subsequent actions depend on the current handler;
the default handler terminates the program.

CTRL+P Copies all subsequent input characters, up to the
next CTRL+P, to the printer device.

CTRL+S Suspends further output to the device. The next
input character restores output.

CTRL+Z Marks the end of the file. Subsequent calls to Read
File or Device (Interrupt 21h Function 3Fh) return
zero bytes.

In binary mode, no action is carried out and control characters remain as input
until they are read by a program.

ASCII mode also may affect the way characters are displayed. For example, a
screen device expands tab characters to space characters in ASCII mode, but
not in binary mode.

By default, the MS-DOS I/0 mode is ASCII. A program can determine the
current I/O mode for a device by using Get Device Data (Interrupt 21h Function
4400h). This function takes a device handle as a parameter and returns a value
indicating the device status. If bit 5 is set, the device is in binary mode. Other-
wise, the device is in ASCII mode. Set Device Data (Interrupt 21h Function
4401h) changes the mode for a device.

The 1/0 mode is a property of the device handle and affects the input and out-
put of only those programs that own the handle.

4.2.2 Keyboard Control

A program opens a keyboard by using Open File with Handle (Interrupt 21h
Function 3Dh). This function takes the device name CON and the read-only
access parameter and returns a handle for the keyboard. The program uses the
handle with Read File or Device (Interrupt 21h Function 3Fh) to read from the
keyboard.

4.2.3 Screen

Chapter 4: Character Input and OQutput 57

In ASCII mode, MS-DOS reads characters from the keyboard and copies the
characters to standard output. It checks for control characters as it reads and, if
it finds one, carries out the corresponding action. It also checks for the BACK-
SPACE key and function keys (such as F1, F2, and F3) and carries out the same
editing actions for these keys as it does for COMMAND.COM. It removes the
editing-key codes from the input as it carries out the editing action. MS-DOS
continues to read characters until it has read the number of characters specified
by the program or until the user presses CTRL+Z or ENTER. It translates the
ENTER key into a carriage return-linefeed character pair.

In binary mode, MS-DOS reads the exact number of characters requested by the
program. It does not copy characters to the screen, nor does it process editing
keys and control characters. Instead, it reads all characters as input.

Control

A program opens a screen device by using Open File with Handle (Interrupt 21h
Function 3Dh). The function takes the device name CON and returns a handle
for the screen device. The program uses the handle with Write File or Device
(Interrupt 21h Function 40h) to write to the screen.

In ASCII mode, MS-DOS sends all characters to the screen, checks at the key-
board for control characters as it writes and, if it finds one, carries out its
corresponding action. Tab characters (ASCII 09h) are expanded to space char-
acters based on eight-space tab settings. MS-DOS continues to write characters
to the screen until it has sent the requested number of characters or reached an
end-of-file character (ASCII 1Ah).

In binary mode, MS-DOS writes the exact number of characters requested by
the program. It does not process control characters (except the carriage-return
and newline characters), expand tab characters, or stop writing at the end-of-file
character.

By default, the cursor moves to the right for each new character. It moves down
for a linefeed character (ASCII 0Ah) and to the leftmost column for a carriage-
return character (ASCII ODh). For programs that need more complicated screen
control, MS-DOS supplies an installable device driver, ANSI.SYS. This driver
processes ANSI escape sequences that control cursor position and display
modes such as color display and line wrapping. If ANSI.SYS has been loaded,
programs can set the display mode by using Set Display Mode (Interrupt 21h
Function 440Ch Minor Code 5Fh) and retrieve the current display mode by using
Get Display Mode (Interrupt 21h Function 440Ch Minor Code 7Fh). Both func-
tions require a pointer to a DISPLAYMODE structure that specifies the number
of colors, columns, and rows available with the display mode.

4.2.4 Printer Control

A program opens a printer by using Open File with Handle (Interrupt 21h
Function 3Dh). The function takes the device name PRN and the write-only
access parameter and returns a handle to the printer. The program uses this

handle with Write File or Device (Interrupt 21h Function 40h) to write to the
printer.

58

MS-DOS Programmer’s Reference

If the printer is not present or not ready to receive data, a program that writes
to it may hold indefinitely. Before attempting to send data to a printer, a pro-
gram should use Check Device Output Status (Interrupt 21h Function 4407h) to
determine whether the printer is present and ready to receive output.

4.2.5 Auxiliary Device Control

A program can open an auxiliary device for reading and writing by using Open
File with Handle (Interrupt 21h Function 3Dh), supplying the device name
AUX, and specifying the read-and-write access parameter. The function returns
a file handle that the program can use with Read File or Device (Interrupt 21h
Function 3Fh) and Write File or Device (Interrupt 21h Function 40h).

If the auxiliary device is not present or not ready to receive or send data, a pro-
gram that reads or writes to the device may hold indefinitely. Before attempting
to read from the auxiliary device, a program should use Check Device Input
Status (Interrupt 21h Function 4406h) to determine if the device is present and
ready to send input. Similarly, a program should use Check Device Output
Status (Interrupt 21h Function 4407h) before attempting to send data to the aux-
iliary device.

4.2.6 Real-Time Clock Control

Programs can open the clock device for reading and writing. Reading from the
clock device always returns three 16-bit values. These values are the low, middle,
and high parts of the system time, representing the number of milliseconds
elapsed since January 1, 1980. Writing to the clock device overwrites all three
values and changes the system time for MS-DOS and all other programs.

To ensure compatibility with future versions of MS-DOS and with other operat-
ing environments, programs should avoid accessing the clock device directly.
Instead, they should use Get Date (Interrupt 21h Function 2Ah), Set Date
(Interrupt 21h Function 2Bh), Get Time (Interrupt 21h Function 2Ch), and Set
Time (Interrupt 21h Function 2Dh) to get and set the system time.

4.3 ANSI Escape Sequences

ANSI escape sequences affect output to the screen device, giving programs con-
trol of the screen’s cursor, colors, and display modes. (An escape sequence is
one or more characters preceded by the escape character ASCII 1Bh.) When a
program writes an escape sequence to the screen, the screen device translates

the sequence into its corresponding action, such as positioning the cursor or
changing colors.

The following list summarizes the ANSI escape sequences supported by the
ANSI.SYS driver. ANSI escape sequences are available only if this driver has

been installed. Parameters shown in italic type are ASCII strings representing
integers.

Chapter 4: Character Input and Output 59
|

Escape sequence Action

ESC[2) Clears the entire screen and moves the cursor to
upper-left corner (home).

ESC[K Clears the screen from cursor to end of line.

ESC[rowsA Moves the cursor up the specified number of rows

without changing the column. If rows is omitted, the
Cursor moves one row.

ESC[rowsB Moves the cursor down the specified number of
rows without changing the column. If rows is omit-
ted, the cursor moves one row.

ESClcolsC Moves the cursor to the right the specified number
of columns without changing the row. If cols is
omitted, the cursor moves one column.

ESClcolsD Moves the cursor to the left the specified number of
columns without changing the row. If cols is omit-
ted, the cursor moves one column.

ESC[row;colH Moves the cursor to an absolute position. For exam-
ple, ESC[1;1H moves the cursor to the upper-left
corner, and ESC[25;80H moves the cursor to the
lower-right corner on a 25-character by 80-character
screen. Either row or col can be omitted.

ESC[s Saves the current cursor position.

ESClu Moves the cursor to the position most recently
saved by ESC[s.

ESC[6n Returns the current cursor position in the format

ESC[row;colR. A program should read the cursor
position from standard input immediately after writ-
ing the escape sequence.

ESClattrm Selects from the character attributes and colors on
the next page. If more than one attribute or color is
specified, values are separated by semicolons. The
ability to display certain attributes and colors
depends on the screen device.

60 MS-DOS Programmer’s Reference

Escape sequence Action
ESClattrm
(continued) Value Attribute
0 No special attributes
1 High intensity
2 Low intensity
3 Italic
4 Underline
5 Blinking
6 Rapid blinking
7 Reverse video
8 Invisible (no display)
Value Foreground color
30 Black
31 Red
32 Green
33 Yellow
34 Blue
35 Magenta
36 Cyan
37 White
Value Background color
40 Black
41 Red
42 Green
43 Yellow
44 Blue
45 Magenta
46 Cyan
47 White

Chapter 4: Character Input and Output 61
|

Escape sequence Action

ESC[=modeh Selects one of the following display modes:

Value Mode

0 40 columns by 25 rows, 16-color text
(color burst off)

1 40 columns by 25 rows, 16-color text

2 80 columns by 25 rows, 16-color text
(color burst off)

3 80 columns by 25 rows, 16-color text

320 pixels by 200 pixels, 4-color graphics
5 320 pixels by 200 pixels, 4-color graphics

(color burst off)

640 pixels by 200 pixels, 2-color graphics
7 Enable line wrap
14 640 pixels by 200 pixels, 16-color graphics

(EGA/VGA, MS-DOS version 4.0 and
later)

15 640 pixels by 350 pixels, 2-color graphics
(EGA/VGA, MS-DOS version 4.0 and
later)

16 640 pixels by 350 pixels, 16-color graphics
(EGA/VGA, MS-DOS version 4.0 and
later)

17 640 pixels by 480 pixels, 2-color graphics
(MCGA/VGA, MS-DOS version 4.0 and
later)

18 640 pixels by 480 pixels, 16-color graphics
(VGA, MS-DOS version 4.0 and later)

19 320 pixels by 200 pixels, 256-color graphics
(MC)GA/VGA, MS-DOS version 4.0 and
later

ESC[071 Disables line wrap.

4.4 Structure

This section provides a complete description of the DISPLAYMODE structure.

62 DISPLAYMODE

B DISPLAYMODE

Fields

Comments

See Also

DISPLAYMODE STRUC
dmInfoLevel db ? ;information level (must be zero)
dmReservedl db ? ;reserved
dmDataLength dw ? ;length of remaining data, in bytes
dmFlags dw ? ;control flags
dmMode db ? ;display mode
dmReserved2 db ? ;reserved
dmColors dw ? ;number of colors
dmWidth dw ? ;screen width, in pixels
dmLength dw ? ;screen length, in pixels
dmColumns dw ? ;columns
dmRows dw ? ;rows

DISPLAYMODE ENDS

The DISPLAYMODE structure contains information about the current display
mode of a screen device, such as number of colors, rows, and columns.
dmInfoLevel Specifies the information level. This field must be zero.
dmReservedl Reserved; do not use.

dmDataLength Specifies the length, in bytes, of the remaining fields in the
structure. This field should be 14.

dmFlags Specifies the control flags. This field is 00h if intensity is off or 01h
if intensity is on.

dmMode Specifies the display mode. This field can be one of the following
values:

Value Meaning
01h Text mode
02h Graphics mode

dmReserved2 Reserved; do not use.
dmColors Specifies the number of colors available.

dmWidth Specifies the screen width, in pixels. This field is used for
graphics mode only.

dmLength Specifies the screen length, in pixels. This field is used for
graphics mode only.

dmColumns Specifies the number of text columns.
dmRows Specifies the number of text rows.
The number and type of display modes for a given screen device depend on the

device type and the ANSI.SYS driver. For a list of display modes, see Section
4.3, “ANSI Escape Sequences.”

Function 440Ch Minor Code 5Fh Set Display Mode
Function 440Ch Minor Code 7Fh Get Display Mode

Chapter
5

Program Management

5.1
5.2

5.3

5.4

5.5
5.6
5.7

5.8

Introductioncviuiiuiiiiiiiiii e 65
Programs and Program Resourcescccvcvuviiiniinnnnn, 65
5.2.1 Program MemoOIY....cooeeuieuinnrenrnnrnesneeneenesnenneanans 65
5.2.2 Program Segment PrefiX.......ccocvuvuruinininininininennnn. 65
5.2.3 Environment BlocK......cccvvveruiuiineninininiiiiininnnnnn. 66
524 Command Tail....ccocevvenirnrinienranrnernnennenenns seeennne 66
5.2.5 Standard Devices.......cocevuiiuiieiiiiiiiiiiiiiiiiiiiennsn. 67
Memory Management.........ocovuieiiiiniiiiiiiiinenrnnenenenennn. 68
5.3.1 Conventional MEMOIYevinineieiniieininennriennrnenanns 68
5.3.2 Upper Memory BIOCKS ...ccevuiieinineieenineenenenneieennns 69
5.3.3 Memory Arena...c.cceerereiienneneneeneneeneneeneneensneenens 70
5.3.4 A20-Line Processingcceeveveruerenuenenennrnennrnnnnnns 70
Child Programscccveeiuiiieneiiiinernineneieneeeseeneneneaennns 71
5.4.1 Parameter BIoCK......ccotveiiiiiiiiiiinininineeninenenannnn. 72
5.4.2 Inherited Files.......ccocvuiiiuiiienninininininicininenanannnn. 72
5.4.3 Standard-Device Redirection.........cceevvevneeenennnnnns 73
5.4.4 Program Termination and Return Values 73
5.4.5 Batch Files...ccociviiiiiiiiiiiiininiiiiiiiiieieeeeneenanns 74
Terminate-and-Stay-Resident Programsc........... 74
L0300 4 £ R 74
Program-File Formats.......c....ccceevvueiiiiiiieninneennennnnn. 75
5.7.1 The .COM File Format.........cccocvuvnenenenenininnnnnnnn. 75
5.7.2 The .EXE File Formatccccccvuviviienecnenennnnnnnnn. 76
SEIUCLUES ..euviiiiiiiiiiiiiiiii e e e e 77

Chapter 5: Program Management 65
1

5.1 Introduction

This chapter describes how MS-DOS manages the programs it loads and runs.
Topics include programs and their resources, child programs, terminate-and-
stay-resident programs (TSRs), overlays, and the .COM and .EXE file formats.

5.2 Programs and Program Resources

When MS-DOS runs a program, it allocates memory for the program code and
data and copies the program from its program file into memory. The system then
creates additional data defining the program’s environment and passes control to
the program’s entry point—the instruction identified in the program as the first
to be executed.

To run a program, the system uses the program’s code, static data, stack, allo-
cated memory, open files, and additional data created by the system for the
program’s use. In addition to this information, the system uses the following
resources to run a program:

B Program memory

Program segment prefix (PSP)

Environment block

Command tail

Standard devices

These resources are described in the following sections.

5.2.1 Program Memory

When loading a program, MS-DOS allocates a certain amount of memory for it,
depending on the type of program. For .COM programs, MS-DOS allocates all
available memory. For .EXE programs, it allocates all available memory up to
the amount requested in the program’s file header. If MS-DOS cannot allocate
enough memory to load a program, it terminates the request and returns an
error value. The minimum amount of memory required for loading depends on

the type of program file. For information about loading programs, see Section
5.7, “Program-File Formats.”

A program can use any memory allocated for it by the system and can free any
extra memory so that it is available for other programs. Programs that will run
other programs must free enough memory to load them.

5.2.2 Program Segment Prefix

For each program, MS-DOS builds a 256-byte program segment prefix (PSP) that
contains such information about the program’s environment as the amount of
memory the system allocates for the program, the location of the program’s
environment block, and the command-line arguments supplied to the program.

66 MS-DOS Programmer’s Reference
]

MS-DOS places the PSP in the first 256 bytes of memory allocated for the pro-
gram. The program code and data immediately follow the PSP.

The form of the PSP corresponds to that of the PSP structure:

PSP STRUC
pspInt20 dw ? ;Int 20h instruction
pspNextParagraph dw ? ;segment addr of next paragraph
db ? ;reserved

pspDispatcher db S dup(?) ;long call to MS-DOS
pspTerminateVector dd ? ;Termination Address (Int 22h)
pspControlCVector dd ? ;CTRL+C Handler (Int 23h) addr
pspCritErrorVector dd ? ;Crit-Err Handler (Int 24h) addr

dw 11 dup(?) ;reserved
?

pspEnvironment dw ;segment address of environment
dw 23 dup(?) ;reserved
pspFCB_1 db 16 dup(?) ;default FCB #1
pspFCB_2 db 16 dup(?) ;default FCB #2
dd ? ;reserved
pspCommandTail db 128 dup(?) ;command tail (also default DTA)
PSP ENDS

For a full description of the PSP structure, see Section 5.8, “Structures.”

5.2.3 Environment Block

An environment block contains zero-terminated ASCII strings, each of which
represents the name and value of an environment variable. Programs use
environment variables for information about their operating environment. For
example, a program may use the PATH variable to determine which directories
to search for programs to run, or it may use the TEMP variable to determine the
drive and directory in which to place the temporary files it creates.

Each string in the environment block consists of a name, an equal sign (=), and
a value, as in the following example of a typical PATH setting:

PATH=C:\DOS;C:\BIN

The last string in the block is followed by a null character indicating the end of
the environment block (that is, there are two null characters at the end of the
block).

The content of a program’s environment block is set by the program that starts
it. When the command processor, COMMAND.COM, starts a program, its
environment block contains at least the COMSPEC and PATH variables: COM-
SPEC specifies the location of COMMAND.COM, and PATH specifies the pos-
sible locations of program files and batch files. This environment block may also
contain additional variables set by the user with the set command.

5.2.4 Command Tail

The command tail is one or more bytes of ASCII text representing a program’s
command-line arguments. When starting the program, the user provides the
command tail by typing arguments, such as filenames and switches, after the pro-
gram name. COMMAND.COM copies these arguments to the program as the
command tail. Programs that start other programs can also provide command
tails. A

Chapter 5: Program Management 67
|

The command tail has three components: a leading byte that specifies the length
of the text, the text itself, and a carriage-return character (ASCII 0Dh) that
marks the command tail but is not counted in the length of the text. The follow-
ing example shows a typical command tail:

SampleCommandTail db 7, " /c dir", ODh

The text should start with at least one space character (ASCII 20h), since some
programs may require a leading space.

5.2.5 Standard Devices

The standard devices are the keyboard, screen, auxiliary device, and printer.
The system provides open file handles to these devices when it starts a program,
as shown in the following table:

Name Handle Default device
Standard input (STDIN) 0 CON
Standard output (STDOUT) 1 CON
Standard error (STDERR) 2 CON
Standard auxiliary (STDAUX) 3 AUX
Standard printer (STDPRN) 4 PRN

A program can use the specified handles in such system functions as Read File
or Device (Interrupt 21h Function 3Fh) and Write File or Device (Interrupt 21h
Function 40h), to read from and write to the standard devices.

By default, a standard device corresponds to the device specified in the preced-
ing table. However, users can redirect the standard devices, associating one or
more of the handles with other character devices or with files. For example, a
user can redirect the standard input to a file, so that the program reads input
from the file instead of from the keyboard. The program does nothing special to
read from the redirected device; it simply uses the standard input handle (now
associated with a file) in Read File or Device to read characters from the file.

A program is not notified that a standard device has been redirected. This can
lead to problems if the redirection is to a file and the disk has limited space. If
the standard output is redirected to a file, Write File or Device fails when the
disk becomes full. A program can use Get Device Data (Interrupt 21h Function
4400h) to determine whether a standard-device handle refers to a character
device or a file.

A program can set the input/output (I/0O) mode of a standard device. This set-
ting has the same effect for a standard device as it does for a device opened
explicitly by the program. Note that, since standard devices are shared by all
programs, setting the I/O mode affects standard devices for all programs. Before
changing the mode of a standard device, a program should use Get Device Data
to save the current mode. Before terminating, the program should restore the
previous mode by using Set Device Data (Interrupt 21h Function 4401h).

68 MS-DOS Programmer’s Reference

Programs that change the I/O mode of a standard device should also incorporate
custom critical-error and CTRL+C interrupt handlers that either restore the I/O
mode or prevent unexpected termination. For more information about interrupt
handlers, see Chapter 7, “Interrupts.”

5.3 Memory Management

MS-DOS manages memory to ensure that all programs have access to the
memory they need to run successfully. The system allocates memory for a pro-
gram during loading, and the program can allocate additional memory as needed,
or free any unneeded memory.

5.3.1 Conventional Memory

Note

Programs allocate conventional memory (addresses 0000:0000 through
A000:0000) by using Allocate Memory (Interrupt 21h Function 48h). This func-
tion searches for a block of memory at least as large as the requested block and
returns the segment address of the new block. Since MS-DOS may allocate all
available conventional memory when loading a program, Allocate Memory may
return error value 0008h (ERROR_NOT_ENOUGH_MEMORY). If so, the BX
register contains the size of the largest available block, in paragraphs.

If a program no longer needs the memory it has allocated, it can free the
memory by using Free Allocated Memory (Interrupt 21h Function 49h). Once
freed, the memory is available to be allocated again by the same program or by
other programs. A program can increase or reduce the amount of memory in a
block to a specified number of paragraphs by using Set Memory Block Size
(Interrupt 21h Function 4Ah).

A program that runs another program (called a child program) often uses Set
Memory Block Size to reduce its own size, making more memory available to
the child program. In such a case, the parent program passes the segment
address of its PSP to the function, along with the new size. However, the parent
program must not free the memory containing its own code, data, and stack if
subsequent memory allocations will destroy that memory. To avoid this situa-
tion, some programs copy their code and data to disk and free all but a small
routine that reallocates the freed memory and reloads the code and data when
they are needed again.

The current allocation strategy, set by Set Allocation Strategy (Interrupt 21h
Function 5801h), determines how Allocate Memory searches for an available
block of memory. The search can start from either the beginning or the end of
conventional memory and ends upon reaching the first block that satisfies the
request or, if none is available, the block that most closely matches the request.
The allocation strategy also determines whether the function searches conven-
tional memory or the upper memory area. A program can retrieve the current
alloca)tion strategy by using Get Allocation Strategy (Interrupt 21h Function
5800h).

If a program changes the allocation strategy, it should save the original allocation
strategy and restore it before terminating.

Chapter 5: Program Management 69
]

5.3.2 Upper Memory Blocks

An upper memory block (UMB) is random-access memory (RAM) in the upper
memory area that is available for program use. The upper memory area
(addresses A000:0000 through FFFF:0000) is reserved primarily for read-only
memory (ROM) and memory-mapped devices, but MS-DOS can map RAM to
any addresses in this area that are not used by ROM or devices.

A program allocates an upper memory block by using Allocate Memory. Before
allocating any memory, however, the program must set an appropriate allocation
strategy and link the upper memory area. Just as it does with conventional
memory, a program sets the allocation strategy by using Set Allocation Strategy.
An allocation strategy such as FIRST_FIT_HIGH (0080h) directs Allocate
Memory to search the upper memory area for a memory block and to continue
searching in conventional memory if it finds no available block.

Note If a program changes the allocation strategy to permit allocations from the upper
memory area, it must save the original allocation strategy and restore it before ter-
minating.

Allocate Memory cannot search the upper memory area unless the area is linked
to the rest of system memory. A program can link the upper memory area by
using Set Upper-Memory Link (Interrupt 21h Function 5803h), and it can deter-

mine whether the area is linked by using Get Upper-Memory Link (Interrupt 21h
Function 5802h).

Note If a program changes the upper-memory link, it should save the original state of the
link and restore it before terminating.

A program can use Free Allocated Memory to free any upper memory blocks it
no longer needs. It can also use Set Memory Block Size to reduce or increase
the size of the allocated block. /

If a program was started by using the loadhigh command, the system loads that
program into memory allocated from the upper memory area. Although a pro-

gram may be in upper memory, any memory it allocates is subject to the current
allocation strategy.

Upper memory blocks are not accessible through MS-DOS system functions
unless the dos=umb command is included in the CONFIG.SYS file and the
HIMEM.SYS driver and memory-management software such as EMM386.EXE
are loaded. If dos=umb is not specified in CONFIG.SYS but the memory-
management software is loaded, programs can access the upper memory area by
using direct calls to memory-management software. For information about these

direcht)calls, see Get HIMEM.SYS Entry-Point Address (Interrupt 2Fh Function
4310h).

70 MS-DOS Programmer’s Reference

5.3.3 Memory Arena

MS-DOS keeps track of memory by creating a linked list of the ARENA struc-
tures that define the sizes and owners of blocks of memory. The ARENA struc-
ture has the following form:

ARENA STRUC

arenaSignature db ? ;4dh = valid, 5ah = last
arenaOwner dw ? ;owner of arena item
arenaSize dw ? ;size of item, in paragraphs
arenaReserved db 3 dup(? ;reserved

arenaName db 8 dup(? ;owner filename

ARENA ENDS
For a full description of the ARENA structure, see Section 5.8, “Structures.”

When first starting, MS-DOS creates arenas for available memory. It creates
additional arenas as needed when it loads programs and device drivers or as pro-
grams allocate their own memory. The number, size, and location of the arenas
depend on the size of the memory blocks allocated.

Programs must not alter the ARENA structures. MS-DOS has no provisions for
repairing structures that programs have overwritten or modified. If an ARENA
structure is altered, functions such as Allocate Memory and Free Allocated
Memory fail and return error value 0007h (ERROR_ARENA_TRASHED).

5.3.4 A20-Line Processing

For 80286, 80386, and 80486 computers, the CPU’s 21st address line (A20 line)
controls access to the extra 64K of address space called the high memory area
(HMA). Computer manufacturers often include a circuit to disable the A20 line
when the CPU runs in real mode. This ensures that the operating environment is
identical to the 8086 environment, in which addresses such as FFFF:0010 wrap
back to the beginning of memory. When the A20 line is enabled, however,
addresses that would otherwise wrap (that is, addresses in the range FFFF:0010
through FFFF:FFFF) provide access to the HMA.

If a computer provides RAM for the HMA, MS-DOS can enable the A20 line
and relocate system code to the HMA, thereby freeing conventional memory for
other programs. MS-DOS relocates to the HMA only if the dos=high command
is in the CONFIG.SYS file and the HIMEM.SYS driver is loaded. This driver
provides the code required to enable and disable the A20 line.

To support programs that expect addresses to wrap, MS-DOS disables the A20
line whenever it loads and runs a program. While the A20 line is disabled, MS-
DOS in the HMA is not directly accessible, although programs can still call
MS-DOS system functions. To accomplish this, MS-DOS redirects all system
calls to a “stub” in conventional memory that enables the A20 line and jumps to
the requested MS-DOS system function. Once enabled by the stub, the A20 line
remains enabled even after the system function returns to the program.

Chapter 5: Program Management 71
|

Programs must not use the HMA if MS-DOS has been relocated there. A pro-
gram can determine whether MS-DOS is in the HMA by using Get MS-DOS
Version (Interrupt 21h Function 3306h). This function sets bit 4 in the DH regis-
ter to 1 if MS-DOS is in the HMA.

5.4 Child Programs

A child program is any MS-DOS program that has been started by another pro-
gram. While a child program is running, the system temporarily suspends the
parent program, returning control to it when the child program terminates. A
good example of a parent program is COMMAND.COM, which loads and runs
a child program whose name is typed at the command prompt. While the child
program is running, the system suspends COMMAND.COM, returning control
to it when the child program terminates.

A program loads and runs a child program by using Load and Execute Program
(Interrupt 21h Function 4B0Oh). Once started, the child program can use any
MS-DOS system function to carry out its work, but it must terminate by using
End Program (Interrupt 21h Function 4Ch). This function frees the child pro-
gram’s memory, closes any open files, and returns control to the parent pro-
gram. The parent program can then call Get Child-Program Return Value
(Interrupt 21h Function 4Dh) to retrieve the child program’s return value.

Most parent programs provide their child programs with such information as the
environment block, the command tail, and the default file control blocks
(FCBs). In addition, parent programs handle the following:

B Parameter block

Inherited files

Standard-device redirection

Return values

Batch files

When Load and Execute Program returns, the carry flag indicates whether the
child program was run. If the carry flag is set, the function failed and the AX
register contains an error value indicating the reason for the failure. The parent
program can retrieve additional information about the failure by using Get
Extended Error (Interrupt 21h Function 5%h).

By default, MS-DOS sets a .COM program’s stack at the high end of the 64K
segment that contains the program. Before reducing its memory allocation, a
.COM program must move its stack within the new range of memory to be allo-
cated.

Note MS-DOS version 2.x does not preserve the parent program'’s registers (except
CS:IP). Before calling Load and Execute Program, the parent program must push
onto the stack all registers it needs to preserve.

72

MS-DOS Programmer’s Reference

5.4.1 Parameter Block

The parameter block, provided by the parent program, contains the addresses of
the environment block, command tail, and default FCBs to be used by the child
program. The parent program passes the address of the parameter block to Load
and Execute Program.

The form of the parameter block corresponds to the form of the LOADEXEC
structure:

LOADEXEC STRUC
leEnvironment dw ? ;environment-block segment
leCommandTail dd ? ;address of command tail
leFCB_1 dd ? ;address of default FCB #1
leFCB_2 dd ? ;address of default FCB #2
LOADEXEC ENDS

For a full description of the LOADEXEC structure, see Section 5.8, “Struc-
tures.”

The default FCBs for the child program are provided for compatibility with pro-
grams designed for earlier versions of MS-DOS. Few programs use the default
FCB:s for file operations; however, some programs do inspect the contents of the
FCBs, so parent programs should create “empty” FCBs when running these pro-
grams. An empty FCB consists of 11 bytes containing space characters (ASCII
20h), followed by 5 bytes containing null characters (ASCII 00h), as in the fol-
lowing example:

emptyFCB db 11 dup(20h), 5 dup (OOh)

An invalid address for a parameter-block item or for the parameter block
itself generally does not cause Load and Execute Program to fail. However, if
MS-DOS copies invalid data to the child program’s PSP, unexpected or
improper execution of the child program may result.

5.4.2 Inherited Files

The child program inherits all file handles belonging to the parent program
except those opened with the no-inheritance option. These handles identify stan-
dard files, disk files, or devices that the parent program has opened. Child-
program operations that affect these handles (such as reading or writing to the
file) also affect the parent program’s file pointers associated with the handles.

So that the parent program can continue to use inherited files, they remain open
after the child program terminates. The status of these files—for example, infor-
mation about file-pointer locations—remains exactly as the child program left it.

Chapter 5: Program Management 73

5.4.3 Standard-Device Redirection

A parent program can redirect a standard device for the child program by asso-
ciating the standard-device handle with a new device or file before it starts the
child program. To do this, the parent program should follow these steps:

1 Duplicate the standard-device handle by using Duplicate File Handle (Interrupt
21h Function 45h).

2 Save the duplicate handle.
3 Open the new file or device.

4 With the new handle retrieved in step 3, modify the standard-device handle by
using Force Duplicate File Handle (Interrupt 21h Function 46h). The standard-
device handle should now identify the same file or device as the new handle.

5 Load and run the child program.

A parent program can restore the original standard-device handle by using Force
Duplicate File Handle and specifying the duplicate handle saved in step 2.

5.4.4 Program Termination and Return Values

When a child program uses End Program to terminate, MS-DOS closes files that
the program opened, frees memory that the program allocated (including the
memory occupied by the program code and data), and returns control to the
parent program. The child program must restore any interrupt vectors it set
before terminating.

A child program can specify a return value when it terminates, and its parent
program can inspect the return value when it resumes running by using Get

Child-Program Return Value. By convention, a return value of zero indicates
success; increasingly large nonzero values indicate increasingly severe errors.

Get Child-Program Return Value places the child program’s return value (if any)
in the AL register and places one of the following termination-status values in

the AH register:

Termination status Meaning

00h The child program terminated normally.

01h The child program terminated because the user
pressed CTRL+C.

02h The child program was terminated by the critical-
error handler.

03h The child program terminated normally and stayed

resident.

74 MS-DOS Programmer’s Reference

5.4.5 Batch Files

Programs cannot load and run batch files directly, although they can run them by
loading and running COMMAND.COM. To run a batch file, a parent program
calls Load and Execute Program, specifying the location of COMMAND.COM
(from the COMSPEC variable) and a command tail consisting of the /¢ switch
followed by the name of the batch file. COMMAND.COM runs the batch file
and immediately returns control to the parent program when the batch file ends.

5.5 Terminate-and-Stay-Resident Programs

A terminate-and-stay-resident program (often called a TSR) returns control to its
parent program without relinquishing the memory that contains its code and
data. The TSR program stops running, but its code and data remain in memory
to be used by other programs. For information about TSRs, see Chapter 7,
“Interrupts.”

5.6 Overlays

An overlay is a partial program containing code and data that another program,
called the main program, loads and uses as needed. Overlays are useful for
large, complex programs that must run in limited memory.

Overlays can be either .COM or .EXE programs and need not have the same
format as the main program. To load an overlay, the main program allocates
memory for it (MS-DOS does not) and then calls Load Overlay (Interrupt 21h
Function 4B03h), specifying a parameter block whose form corresponds to that
of the LOADOVERLAY structure:

LOADOVERLAY STRUC
loStartSegment dw ? ;segment address of overlay's memory
loRelocationFactor dw ? ;relocation factor

LOADOVERLAY ENDS

For a full description of the LOADOVERLAY structure, see Section 5.8, “Struc-
tures.”

After loading the overlay, the main program transfers control to it by using a far
call. The entry point for the overlay depends on the convention the main pro-
gram uses. Typically, the entry point is at offset 0000h in the overlay. In any
case, the overlay should return control to the main program by using a far
return.

The system does not construct a PSP for the overlay; it considers the overlay
part of the main program. Any memory the overlay allocates and any files it
opens belong to the main program.

Chapter 5: Program Management 75

5.7 Program-File Formats

The two MS-DOS program-file formats differ in several respects, including struc-

ture and memory requirements. The following sections describe each format in
detail.

5.7.1 The .COM File Format

A .COM file contains an absolute image of a program—that is, the exact proces-
sor instructions and data that must be in memory in order to run the program.
MS-DOS loads the .COM program by copying this image directly from the file
into memory; it makes no changes.

To load a .COM program, MS-DOS first attempts to allocate memory. Since a
.COM program must fit in one 64K segment, the size of the .COM file must not
exceed 65,024 bytes (64K minus 256 bytes for a PSP and at least 256 bytes for an
initial stack). If MS-DOS cannot allocate enough memory for the program, a
PSP, and an initial stack, the attempt fails. Otherwise, MS-DOS allocates as
much memory as possible (up to all remaining memory), even though the .COM
program itself cannot be greater than 64K. Before attempting to run other pro-
grams or allocate additional memory, most .COM programs free any unneeded
memory.

After allocating memory, MS-DOS builds a PSP in the first 256 bytes of that
memory, setting the AL register to 00h if the first FCB in the PSP contains a
valid drive identifier or to OFFh if it does not. MS-DOS also sets the AH regis-
ter to 00h or to OFFh, depending on whether the second FCB contains a valid
drive identifier.

After building the PSP, MS-DOS loads the .COM file, starting immediately after
the PSP (offset 100h). It sets the SS, DS, and ES registers to the segment
address of the PSP and then creates a stack. To create a stack, MS-DOS sets
the SP register to 0000h if at least 64K of memory has been allocated; otherwise,
it sets the register to two more than the total number of bytes allocated. Finally,
it pushes 0000h onto the stack to ensure compatibility for programs designed for
very early versions of MS-DOS.

MS-DOS starts the program by transferring control to the instruction at offset
100h. Programmers must ensure that the first instruction in the .COM file is the
program’s entry point.

Notice that, because the program is loaded at offset 100h, all code and data off-
sets must be relative to 100h. Assembly-language programmers can ensure this
by setting the program’s origin to 100h (for example, by using the statement
org 100h at the beginning of the source program).

76 MS-DOS Programmer’s Reference
|

5.7.2 The .EXE File Format

An .EXE file contains a file header and a relocatable-program image. The file
header contains information that MS-DOS uses when loading the program, such
as the size of the program and the initial values of the registers. The file header
also points to a relocation table containing a list of pointers to relocatable-
segment addresses in the program image.

The form of the file header corresponds to that of the EXEHEADER structure:
EXEHEADER STRUC

exSignature dw S5A4Dh ; .EXE signature

exExtraBytes dw ? ;number of bytes in last (partial) page
exPages dw ? ;number of whole and part pages in file
exRelocItems dw ? ;number of pointers in relocation table
exHeaderSize dw ? ;size of header, in paragraphs
exMinAlloc dw ? ;minimum allocation

exMaxAlloc dw ? ;maximum allocation

exInitSs dw ? ;initial ss value

exInitSP dw ? ;initial sp value

exCheckSum dw ? ;complemented checksum

exInitIP dw ? ;initial ip value

exInitCs dw ? ;initial cs value

exRelocTable dw ? ;byte offset to relocation table
exOverlay dw ? ;overlay number

EXEHEADER ENDS

For a full description of the EXEHEADER structure, see Section 5.8, “Struc-
tures.”

The program image, which contains the processor code and initialized data for a
program, starts immediately after the file header. Its size, in bytes, is equal to
the size of the .EXE file minus the size of the file header, which is equal to the
value in the exHeaderSize field multiplied by 16. MS-DOS loads the .EXE pro-
gram by copying this image directly from the file into memory and then adjusts
the relocatable-segment addresses specified in the relocation table.

The relocation table is an array of relocation pointers, each of which points to a
relocatable-segment address in the program image. The exRelocItems field in the
file header specifies the number of pointers in the array, and the exRelocTable
field specifies the file offset at which the relocation table starts. Each relocation
pointer consists of two 16-bit values: an offset and a segment number.

To load an .EXE program, MS-DOS first reads the file header to determine the
-EXE signature and calculate the size of the program image. It then attempts to
allocate memory. First, it adds the size of the program image to the size of the
PSP and to the amount of memory specified in the exMinAlloc field of the EXE-
HEADER structure. If the total exceeds the size of the largest available memory
block, MS-DOS stops loading the program and returns an error value. Other-
wise, it adds the size of the program image to the size of the PSP and to the
amount of memory specified in the exMaxAlloc field of the EXEHEADER struc-
ture. If this second total is less than the size of the largest available memory
block, MS-DOS allocates the amount of memory indicated by the calculated
total. Otherwise, it allocates the largest possible block of memory.

Chapter 5: Program Management 77
|

After allocating memory, MS-DOS determines the segment address, called the
start-segment address, at which to load the program image. If the value in both
the exMinAlloc and exMaxAlloc fields is zero, MS-DOS loads the image as high

as possible in memory. Otherwise, it loads the image immediately above the area
reserved for the PSP.

Next, MS-DOS reads the items in the relocation table and adjusts all segment
addresses specified by the relocation pointers. For each pointer in the relocation
table, MS-DOS finds the corresponding relocatable-segment address in the pro-
gram image and adds the start-segment address to it. Once adjusted, the segment

addresses point to the segments in memory where the program’s code and data
are loaded.

Then MS-DOS builds the 256-byte PSP in the lowest part of the allocated
memory, setting the AL and AH registers just as it does when loading .COM
programs. MS-DOS uses the values in the file header to set the SP and SS regis-
ters and adjusts the initial value of the SS register by adding the start-segment
address to it. MS-DOS also sets the ES and DS registers to the segment address
of the PSP.

Finally, MS-DOS reads the inital CS and IP values from the program’s file
header, adjusts the CS register value by adding the start-segment address to it,
and transfers control to the program at the adjusted address.

5.8 Structures

This section describes the structures MS-DOS uses to load and run programs.

78 ARENA

E ARENA
ARENA STRUC
arenaSignature db 7? ;4dh valid item, Sah last item
arenaOwner dw ? ;owner of arena item
arenaSize dw ? ;size of item, in paragraphs
arenaReserved db 3 dup(? ;reserved
arenaName db 8 dup(? ;owner filename
ARENA ENDS
The ARENA structure contains information about a block of memory. MS-DOS
uses a linked list of these structures to keep track of and manage system
memory.

Fields arenaSignature Specifies whether the structure is valid. This field must con-
tain either 4Dh or SAh. The value 5Ah indicates that the structure is the last in
the linked list.
arenaOwner Specifies the owner of the block. This field contains the segment
address of the program segment prefix (PSP) for the owning program. It contains
zero if the block is not owned.
arenaSize Specifies the size of the block, in paragraphs. The block starts
immediately after the ARENA structure.
arenaReserved Reserved; do not use.
arenaName Contains a zero-terminated string specifying the filename of the
program that owns the memory. If the filename has fewer than eight characters,
the remaining characters in this field are not used. Names such as SC and SD
are used by MS-DOS to represent system code (programs) and system data,
respectively.

Comments Each ARENA structure is followed immediately by a contiguous block of
memory. The next ARENA structure in the linked list follows the contiguous
block. This means the segment address of the next structure in the list is equal
to the segment address of the current memory block plus its size.

MS-DOS fills the arenaName field for a block of memory when it loads a pro-
gram into the block. The ARENA structures for memory allocated by programs
using Allocate Memory (Interrupt 21h Function 48h) are not filled in this way.

See Also Interrupt 21h Function 48h Allocate Memory

B ERROR
ERROR STRUC
errAX dw ? ;ax register
errBX dw ? :bx register
errCX dw ? ;cx register
errDX dw ? ;dx register
errSI dw ? ;8il register
errDI dw ? ;di register
errDS dw ? ;ds register
errES dw ? ;es register
errReserved dw ? ;reserved 16 bits
errUID dw ? ;user (computer) ID (O = local computer)
errPID dw ? ;process ID (O = local process)

ERROR ENDS

The ERROR structure contains information about the current error.

Fields

ERROR

79

errAX Specifies the error value. For a table of error values, see Appendix C,

“Error Values.”

errBX Specifies the error class in the high-order byte and the suggested action
in the low-order byte. The error class may be one of the following values:

Value

Meaning

ERRCLASS_OUTRES (01h)
ERRCLASS_TEMPSIT (02h)

ERRCLASS_AUTH (03h)
ERRCLASS_INTRN (04h)
ERRCLASS_HRDFAIL (05h)
ERRCLASS_SYSFAIL (06h)

ERRCLASS_APPERR (07h)
ERRCLASS_NOTFND (08h)
ERRCLASS_BADFMT (09h)
ERRCLASS_LOCKED (0Ah)
ERRCLASS_MEDIA (0Bh)

Out of resource, such as storage.

Not an error, but a temporary situation that
is expected to end, such as a locked region
in a file.

Authorization problem.
Internal error in system.
Hardware failure.

System software failure not the fault of the
active program (caused by missing or
incorrect configuration files, for example).

Application error.

File or item not found.

File or item with an invalid format or type.
Interlocked file or item.

Wrong disk in drive, bad spot on disk, or
other storage-medium problem.

ERRCLASS_ALREADY (0Ch) Existing file or item.

ERRCLASS_UNK (0Dh)

Unknown.

The suggested action may be one of the following values:

Value

ERRACT_RETRY (01h)
ERRACT_DLYRET (02h)
ERRACT_USER (03h)
ERRACT_ABORT (04h)
ERRACT_PANIC (05h)
ERRACT_IGNORE (06h)
ERRACT_INTRET (07h)

Retry immediately.

Delay and retry.

Bad user input—get new values.
Terminate in an orderly manner.
Terminate immediately.

Ignore the error.

Prompt the user to remove the cause of the error
(to change disks, for example) and then retry.

errCX Specifies the error-location value. This value can be one of the fol-

lowing:
Value Location
ERRLOC_UNK (01h) Unknown

ERRLOC_DISK (02h)
ERRLOC_NET (03h)
ERRLOC_SERDEV (04h)
ERRLOC_MEM (05h)

Random-access device, such as a disk drive
Network
Serial device

Memory

80 ERROR

errDX Specifies the DX register contents at the time the error occurred.
errSI Specifies the SI register contents at the time the error occurred.
errDI Specifies the DI register contents at the time the error occurred.
errDS Specifies the DS register contents at the time the error occurred.
errES Specifies the ES register content at the time the error occurred.
errReserved Reserved.

errUID Identifies the computer, for errors that occur on remote computers. If
this field is zero, the error occurred on the local computer.

errPID Identifies the program, for errors that occur on remote computers. If
this field is zero, the error occurred in a program on the local computer.

See Also Interrupt 21h Function SDOAh Set Extended Error

B EXECSTATE

EXECSTATE STRUC

esReserved dw ? ;reserved

esFlags dw ? ;type flags

esProgName dd ? ;points to ASCIIZ string of program name
esPSP dw ? ;PSP segment of the new program
esStartAddr dd ? ;starting cs:ip of the new program
esProgSize dd ? ;program size, including PSP

EXECSTATE ENDS

The EXECSTATE structure contains information used to prepare a program to
be run.
Fields esReserved Reserved; must be zero.

esFlags Specifies the execution flags. This value can be a combination of the
following values:

Value Meaning

ES_EXE (0001h) Program is an .EXE program. If this value is not
given, the program is a .COM program.

ES_OVERLAY (0002h) Program is an overlay.

esProgName Points to a zero-terminated ASCII string that specifies the
name of the program. The string must be a valid MS-DOS filename.

esPSP Specifies the segment address of the program segment prefix (PSP) for
the program.

esStartAddr Specifies the starting address (initial CS:IP values) for the pro-
gram.

esProgSize Specifies the size of the program, in bytes, including the PSP.
See Also Interrupt 21h Function 4B05h Set Execution State

B EXEHEADER

EXEHEADER 81

Fields

EXEHEADER STRUC

exSignature dw SA4Dh ; .EXE signature

exExtraBytes dw ? ;number of bytes in last (partial) page
exPages dw ? ;number of whole and part pages in file
exRelocltems dw ? ;number of pointers in relocation table
exHeaderSize dw ? ;size of header, in paragraphs
exMinAlloc dw ? ;minimum allocation

exMaxAlloc dw ? ;maximum allocation

exInitSs dw ? ;initial ss value

exInitSP dw ? ;initial sp value

exCheckSum dw ? ;complemented checksum

exInitlIP dw ? ;initial ip value

exInitCs dw ? ;initial cs value

exRelocTable dw ? ;byte offset to relocation table
exOverlay dw ? ;overlay number

EXEHEADER ENDS

The EXEHEADER structure contains values that MS-DOS uses when loading a
relocatable program—values such as the size of the program and the initial
values of the registers.

This structure appears at the beginning of the file header for an .EXE file. The
complete .EXE file header consists of this structure and a relocation table. The
size of the file header, in paragraphs, is specified by the exHeaderSize field.

exSignature Specifies the .EXE file signature. This field must be set to
5A4Dh (the ASCII values for the letters M and Z).

exExtraBytes Specifies the number of bytes in the last (partial) page in the
file, as represented by the remainder, if any, when the total number of bytes in
the file is divided by 512 (bytes per page).

exPages Specifies the number of whole and partial pages in the file. Dividing
this total number of bytes in the file by 512 (bytes per page) gives the number of
whole pages. If the division leaves a remainder, the number of pages is increased
by one and the remainder is stored in the exExtraBytes field. For example, in a
file 513 bytes long, the exPages field is 2 and the exExtraBytes field is 1.

exRelocItems Specifies the number of pointers in the relocation table.

exHeaderSize Specifies the size of the file header, in paragraphs. Since each
paragraph has 16 bytes, the file header size is always a multiple of 16.

exMinAlloc Specifies the minimum amount of extra memory, in paragraphs,
required by the program. The extra memory is in addition to the memory
required to load the program image. If the values of both exMinAlloc and
exMaxAlloc are zero, the program is loaded as high as possible in memory.

exMaxAlloc Specifies the maximum amount of extra memory, in paragraphs,
requested by the program. If the values of both exMinAlloc and exMaxAlloc are
zero, the program is loaded as high as possible in memory.

exInitSS Specifies the initial value of the SS register. The value is a
relocatable-segment address. MS-DOS adjusts (relocates) this value when load-
ing the program.

exInitSP Specifies the initial value of the SP register.

exCheckSum Specifies the checksum of the file. This value is equal to the

one’s complement (inverse) of the sum of all 16-bit values in the file, excluding
this field.

82 EXEHEADER

Comments

See Also

® LOAD

exInitIP Specifies the initial value of the IP register.

exInitCS Specifies the initial value of the CS register. This value is a)
relocatable-segment address. MS-DOS adjusts (relocates) the value when loading
the program.

exRelocTable Specifies the offset, in bytes, from the beginning of the file to
the relocation table.

exOverlay Specifies a value used for overlay management. If this value is
zero, the .EXE file contains the main program.

The exOverlay field can be followed by additional information used by the sys-
tem for overlay management. The content and structure of this information
depends on the method of overlay management used by the main program.

Interrupt 21h Function 4B00h Load and Execute Program
Interrupt 21h Function 4B01h Load Program
Interrupt 21h Function 4B03h Load Overlay

Fields

LOAD STRUC
1dEnvironment dw
ldCommandTail dd
1dFCB_1 dd
14FCB_2 dd
1dSSSP dd
1dCSIP dd

LOAD ENDS

;environment-block segment
;address of command tail
;address of default FCB #1
;address of default FCB #2
;starting stack address
;starting code address

NV

The LOAD structure contains addresses of the environment block, command
tail, and default file control blocks (FCBs) to be used by the child program.

IdEnvironment Specifies whether the child program receives a copy of the
parent program’s environment or a new environment created by the parent pro-
gram. If this field is zero, the child program receives an exact duplicate of the
parent program’s environment block. If the field is nonzero, the value entered
must be the segment address of a block of memory containing a copy of the new
environment for the child program.

ldCommandTail Specifies a 32-bit address (segment:offset) of the command
tail. The system copies the command tail to offset 80h (pspCommandTail field)
in the program segment prefix (PSP). The command tail must not exceed 128

bytes and should have the format described in Section 5.2.4, “Command Tail.”

Any redirection of standard files must be accomplished by the parent program.
Including redirection characters (<, >, and |) in a command tail does not
redirect files.

IdFCB_1 Specifies a 32-bit address (segment:offset) of the first default FCB.
The)system copies the FCB to offset 5Ch in the child program’s PSP (pspFCB_1
field). :

IdFCB_2 Specifies a 32-bit address (segment:offset) of the second default
FCB. The system copies the FCB to offset 6Ch in the child program’s PSP
(pspFCB_2 field).

Comments

See Also

B LOADEXEC

LOADEXEC 83

IdSSSP Receives a 32-bit address (segment:offset) of the start of the stack for

the loaded program. This field is filled on return by Load Program (Interrupt 21h
Function 4B01h).

IdCSIP Receives a 32-bit address (segment:offset) of the entry point of the
loaded program. This field is filled on return by Load Program (Interrupt 21h
Function 4B01h).

If the IdEnvironment field contains a segment address, the parent program.must
fill the corresponding memory with zero-terminated ASCII strings, each having
the form described in Section 5.2.3, “Environment Block.” The new environ-
ment must itself be zero-terminated and must not exceed 32K. Whether the child
program receives a duplicate environment or a new environment, the system
allocates unique memory for the child program and copies the environment
specified by the parent program to that memory. The system places the segment
address of this unique memory at offset 2Ch in the child program’s PSP
(pspEnvironment field). The system automatically frees the memory when the
child program terminates.

Interrupt 21h Function 4B01h Load Program

Fields

LOADEXEC STRUC
leEnvironment dw
leCommandTail dd
leFCB_1 dd
leFCB_2 dd

LOADEXEC ENDS

;environment-block segment
;address of command tail

;address of default FCB #1
;address of default FCB #2

RV VLY

The LOADEXEC structure contains addresses of the environment block, com-
mand tail, and default file control blocks (FCBs) to be used by the child pro-
gram.

leEnvironment Specifies whether the child program receives a copy of the
parent program’s environment or a new environment created by the parent pro-
gram. If this field is zero, the child program receives an exact duplicate of the
parent program’s environment block. If the field is nonzero, the value entered
must be the segment address of a block of memory containing a copy of the new
environment for the child program.

leCommandTail Specifies a 32-bit address (segment:offset) of the command
tail. The system copies the command tail to offset 80h (pspCommandTail field)
in the program segment prefix (PSP). The command tail must not exceed 128

bytes and should have the format described in Section 5.2.4, “Command Tail.”

Any redirection of standard files must be accomplished by the parent program.
Including redirection characters (<, >, and |) in a command tail does not
redirect files.

lIeFCB_1 Specifies a 32-bit address (segment:offset) of the first default FCB.
The system copies the FCB to offset 5Ch in the child program’s PSP (pspFCB_1
field).

1eFCB_2 Specifies a 32-bit address (segment:offset) of the second default
FCB. The system copies the FCB to offset 6Ch in the child program’s PSP
(pspFCB_2 field).

84 LOADEXEC

Comments

See Also

If the leEnvironment field contains a segment address, the parent program must
fill the corresponding memory with zero-terminated ASCII strings, each having
the form described in Section 5.2.3, “Environment Block.” The new environ-
ment must itself be zero-terminated and must not exceed 32K. Whether the child
program receives a duplicate environment or a new environment, the system
allocates unique memory for the child program and copies the environment
specified by the parent program to that memory. The system places the segment
address of this unique memory at offset 2Ch in the child program’s PSP
(pspEnvironment field). The system automatically frees the memory when the
child program terminates.

Interrupt 21h Function 4B00h Load and Execute Program

B LOADOVERLAY

Fields

See Also

N PSP

LOADOVERLAY STRUC
loStartSegment dw ? ;segment address of overlay's memory
loRelocationFactor dw ? ;relocation factor

LOADOVERLAY ENDS

The LOADOVERLAY structure contains information used to load overlays.

loStartSegment Specifies the segment address of the memory allocated for
the overlay. MS-DOS loads the overlay into memory, starting at this address.

loRelocationFactor Specifies a relocation factor. For .EXE programs, this
value is typically the same as the loStartSegment value. For .COM programs, it
is zero.

Interrupt 21h Function 4B03h Load Overlay

PSP STRUC
pspInt20 dw ?- ;Int 20h instruction
pspNextParagraph dw ? ;segment addr of next paragraph

db ? ;reserved

pspDispatcher db S5 dup(?) ;long call to MS-DOS .
pspTerminateVector dd ? ;Termination Address (Int 22h)
pspControlCVector dd ? ;CTRL+C Handler (Int 23h) addr
pspCritErrorVector dd ? ;Crit-Err Handler (Int 24h) addr

dw 11 dup(?) ;reserved

pspEnvironment dw ? ;segment address of environment
dw 23 dup(? ;reserved
pspFCB_1 db 16 dup(? ;default FCB #1
pspFCB_2 db 16 dup (? ;default FCB #2
dd ? ;reserved
pspCommandTail db 128 dup(?) ;command tail (also default DTA)
PSP ENDS

The PSP structure contains information about the program’s execution environ-
ment, such as the amount of memory the system allocates for the program, the
location of the program’s environment block, and the command-line arguments
supplied to the program.

Fields

Comments

See Also

PSP 85

pspInt20 Contains a Terminate Program (Interrupt 20h) instruction. This
field is provided for compatibility with earlier versions of MS-DOS.

pspNextParagraph Specifies the segment address of the first paragraph
immediately following the program. (This address does not point to free memory
available for the program to use.) Programs use this field to determine quickly
whether they were allocated sufficient memory to run successfully.

pspDispatcher Contains a long call to the MS-DOS function-request
handler. This field is provided for compatibility with earlier versions of MS-
DOS.

pspTerminateVector Specifies Termination Address (Interrupt 22h).
MS-DOS uses this address to restore the corresponding entry in the interrupt-
vector table when the process terminates.

pspControlCVector Specifies the address of CTRL+C Handler (Interrupt
23h). MS-DOS uses this address to restore the corresponding entry in the
interrupt-vector table when the process terminates.

pspCritErrorVector Specifies the address of Critical-Error Handler
(Interrupt 24h). MS-DOS uses this address to restore the corresponding entry in
the interrupt-vector table when the process terminates.

pspEnvironment Specifies the segment address of the environment block for
the program.

pspFCB_1 Specifies the first 16 bytes of the first default file control block
(FCB) for the program. If the FCB contains a filename, it usually matches the
first argument in the command tail. This field is provided for compatibility with
earlier versions of MS-DOS.

pSpFCB_2 Specifies the first 16 bytes of the second default FCB for the pro-
gram. If the FCB contains a filename, it usually matches the second argument in

the command tail. This field is provided for compatibility with earlier versions of
MS-DOS.

pspCommandTail Specifies an ASCII string containing command-line argu-
ments, such as filenames and switches.

The system places the PSP in the first 256 bytes of memory allocated for the pro-
gram. The PSP is followed immediately by the program code and data.

The pspCommandTail field is also used as the default buffer pointed to by the
default disk transfer address (DTA). Unless a program explicitly changes the
DTA, the system uses this area as a buffer for file information returned by Find
First File (Interrupt 21h Function 4Eh) and Find Next File (Interrupt 21h
Function 4Fh), as well as for all FCB-type read and write operations.

Interrupt 20h Terminate Program

Interrupt 21h Function 4Eh Find First File
Interrupt 21h Function 4Fh Find Next File
Interrupt 21h Function 50h Set PSP Address
Interrupt 21h Function 51h Get PSP Address
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler

Interrupt 24h Critical-Error Handler

Chapter

6

National Language Support

6.1
6.2

6.3
6.4
6.5
6.6
6.7

Introduction....ccoeiiiiieiiieiiiieiciieece e e e e e eeaaaas 89
Country Information.......cccovuveiiiiiieiiieiiiineceneneennennnes 89
6.2.1 Time, Date, and Other Formats........cccevvuvnenenenenn. 89
6.2.2 Character and String Conversions.......c.eveeeeerveeennss 90
6.2.3 Conversion Tables.......ccceveveinineiernenennrneneenenecnenns 90
Code Pagescceeveiiiiniiiiiiiiiiii e 91
Keyboard Layoutsccceuveeiieieiiniiieiiniiiirrecenenennanes 92
Screen and Printer Fontsc.cocvvviieiiiieniiiieienennennnnns R
Code-Page Information Files (.CPI)......cccceeveriniininnnnne. 93

Y 8 o0 (11) S 94

Chapter 6: National Language Support 89
|

6.1 Introduction

Programs use MS-DOS national-language-support functions to adapt the key-
board, screen, and printer devices for use in different countries. This chapter
describes the functions and structures used in five aspects of national language
support:

B Country information

Code pages

Keyboard layouts

Screen and printer fonts

Code-page information files

6.2 Country Information

Programs use country information to prepare the characters and formats for
date, time, currency, and other displayed information. Country information
includes the following:

B Time, date, and currency formats

B Lowercase-to-uppercase character-conversion tables
® Collating sequence for character sorting

B Valid single-byte characters for use in filenames

All country information is stored in the COUNTRY.SYS file. Default values are
set by the system if a country command is not included in the CONFIG.SYS
file. A program can retrieve information for any nondefault countries or code
pages; however, this information may not be available if the Nlsfunc program
has not been loaded. If the country command does not specify the path to the
COUNTRY.SYS file, the path must be given as an argument when Nlsfunc is
started. Retrieving country information does not change the system’s current
country code.

6.2.1 Time, Date, and Other Formats

A program can retrieve information about the characters and formats used for
such values as time, date, currency, and numbers by using either Get/Set Coun-
try Information (Interrupt 21h Function 38h) or Get Extended Country Informa-
tion (Interrupt 21h Function 6501h). Get/Set Country Information copies the
country information specified by the current code page to a buffer supplied by
the program. Get Extended Country Information also copies country information
to a buffer, but it uses the country code and code page specified by the program
to determine which information to copy.

90 MS-DOS Programmer’s Reference

The country information corresponds to an EXTCOUNTRYINFO structure:

EXTCOUNTRYINFO STRUC
eciLength dw ? ;slze of the structure, in bytes
eciCountryCode dw ? ;country code
eciCodePagelD dw ? ;code-page identifier
eciDateFormat dw ? ;date format
eciCurrency db 5 dup (? ;jcurrency symbol (ASCIIZ)
eciThousands db 2 dup (? ;thousands separator (ASCIIZ)
eciDecimal db 2 dup (?) ;decimal separator (ASCIIZ)
eciDateSep db 2 dup (? ;date separator (ASCIIZ
eciTimeSep db 2 dup (? ;time separator (ASCIIZ
eciBitField db ? ;currency format
eciCurrencyPlaces db ? ;places after decimal point
eciTimeFormat db ? ;12- or 24-hour format
eciCaseMap dd 7? ;address of case-mapping routine
eciDataSep db 2 dup (?) ;data-list separator (ASCIIZ)
eciReserved db 10 dup (?) ;reserved

EXTCOUNTRYINFO ENDS

Get/Set Country Information returns the same information, but without the first
three fields.

For a full description of the EXTCOUNTRYINFO structure, see Section 6.7,
“Structures.”

6.2.2 Character and String Conversions

A program can convert lowercase characters to uppercase by using Convert
Character (Interrupt 21h Function 6520h), Convert String (Interrupt 21h Func-
tion 6521h), or Convert ASCIIZ String (Interrupt 21h Function 6522h). Using
the uppercase conversion table associated with the current country and code
page, Convert Character converts the character in the DL register, and Convert
String and Convert ASCIIZ String replace each character in a string with its
uppercase equivalent.

Although the case-conversion functions are available to all programs, it is often
faster to carry out case conversions within the program itself.

6.2.3 Conversion Tables

Programs can retrieve the conversion tables associated with a specified country
and code page by using the following functions:

Get Uppercase Table (Interrupt 21h Function 6502h)

Get Filename Uppercase Table (Interrupt 21h Function 6504h)
Get Filename-Character Table (Interrupt 21h Function 6505h)
Get Collate-Sequence Table (Interrupt 21h Function 6506h)

The conversion tables contain the information a program needs to convert
lowercase characters to uppercase, to sort characters or strings, and to deter-
mine which characters can be used in filenames. These functions return the 32-
bit addresses (segment:offset) of the conversion tables in memory owned by
MS-DOS. Programs should copy the tables to their own memory if they intend
to alter them.

Programs use the uppercase table to convert lowercase text characters to upper-
case; they use the filename uppercase table to convert lowercase filename char-
acters to uppercase. Each table begins with a 16-bit value that specifies the size,

Chapter 6: National Language Support 91
]

in bytes, of the character-value array in the table. This value is followed by the
array of uppercase-character values. Programs convert a lowercase character

to its uppercase equivalent by using the value of the lowercase character as an
index to the array. Since the uppercase and filename uppercase tables apply only
to extended ASCII characters (that is, characters with values greater than 127),
the program must subtract 128 from the lowercase character value to create the
index.

Programs use the collate-sequence table to sort characters and strings. The table
begins with a 16-bit value that specifies the size, in bytes, of the character-weight
array in the table. This value is followed by the array of 1-byte character weights.
Programs sort two characters by using the character values as indexes to the
character-weight array and comparing the resulting values. The character with
the lower weight appears first in a sorted list.

Programs use the filename-character table to determine which characters are per-
mitted in filenames. The beginning of the filename-character table corresponds
to a FILECHARTABLE structure, which has the following form:

FILECHARTABLE STRUC

fctLength dw ? ;table length, in bytes, excl this field
db ?

fctFirst db ? ;lowest permissible character value

fctLast db ? ;highest permissible character value
db ?

ftcExcludeFirst db ? ;first in range of excluded characters

ftcExcludeLast db ? ;last in range of excluded characters
db ?

fctlllegals db ? ;number of illegal characters in array

;start of array of illegal characters
FILECHARTABLE ENDS

For a full description of the FILECHARTABLE structure, see Section 6.7,
“Structures.”

The filename-character table is followed by an array of illegal characters. The
illegal characters differ for each country, so the number of characters in a given
array is specified by the fetlllegals field.

6.3 Code Pages

To display or print characters, MS-DOS uses code pages to translate character
values into images. Each code page defines a set of 255 characters. The set
includes language-specific and graphics characters in addition to the characters
corresponding to keyboard keys.

At startup, MS-DOS uses the default code page, called the system code page
(usually code page 437). A user can select a different code page by using the
country command in the CONFIG.SYS file or by using the chep command

at the DOS prompt. A program can select a different code page by using Set
Global Code Page (Interrupt 21h Function 6602h). This function is similar to
the chep command in that it changes the code page for the screen, keyboard,
and printer, if these devices have been prepared for the new code page. Neither

Set Global Code Page nor the chep command can be used unless the Nlsfunc
program is loaded.

92 MS-DOS Programmer’s Reference

A program can determine the active code page by using Get Global Code Page
(Interrupt 21h Function 6601h). This function returns both the system code page
and the code page set by the user or a program, if any.

For more information about code pages, see Appendix A, “Code Pages.”

6.4 Keyboard Layouts

The layout of a keyboard defines the letters, numbers, and symbols represented
by its keys, in addition to the character values generated by pressing the keys.
Different keyboard layouts are used in different countries. Users can adapt
MS-DOS for these keyboard layouts by using the Keyb program. Programs can-
not adapt MS-DOS directly, but they also can use the Keyb program, by starting
it as a child program. °

At startup, MS-DOS installs a default keyboard layout. When a user or program
changes the layout by using the Keyb program, the default layout remains avail-
able but inactive. Programs can switch between the new and default layouts by
using Set KEYB.COM Country Flag (Interrupt 2Fh Function 0AD82h). (Press-
ing the CTRL+ALT+F1 or CTRL+ALT+F2 key combination has the same effect.) A
program can determine which layout is active by using Get KEYB.COM Country
Flag (Interrupt 2Fh Function 0AD83h).

Programs can set the keyboard code page by using either Set Global Code Page
or Set KEYB.COM Active Code Page (Interrupt 2Fh Function 0ADS81h). Set
KEYB.COM Active Code Page sets only the keyboard’s code page; it has no
effect on other devices. The current code page determines which character codes
are generated for a keyboard’s keys. In general, programs should check that the
code page for the keyboard matches the code page for the screen.

A program can determine whether the Keyb program is loaded by using Get
KEYB.COM Version Number (Interrupt 2Fh Function 0ADS80h).

For more information about the keyboard layouts supported by MS-DOS, see
the Microsoft MS-DOS User's Guide and Reference.

6.5 Screen and Printer Fonts

Screen and printer fonts provide the bitmap or escape-sequence data required to
generate character images for displaying or printing. Different code pages have
different font data, so a program that changes the code page must also change
the fonts for the screen and printer devices. To do this, a font corresponding to
the specified code page must be available. The program can determine this by
using Query Code-Page Prepare List (Interrupt 21h Function 440Ch Minor Code
6Bh) to retrieve an array of code pages for which hardware or prepared fonts
exist. If a code page has a corresponding font (either hardware or prepared), the
program can either select it for global system use by using Set Global Code Page
or select it for only the specified device by using Select Code Page (Interrupt 21h
Function 440Ch Minor Code 4Ah). A program can determine the current code
page of the device by using Query Selected Code Page (Interrupt 21h Function
440Ch Minor Code 6Ah).

Chapter 6: National Language Support 93
|

If a corresponding font for a code page does not exist, a program can prepare a
new font by using the following procedure:

1 Use Start Code-Page Prepare (Interrupt 21h Function 440Ch Minor Code 4Ch)
to begin the preparation, identifying the device and the code pages for which to
prepare the new font.

2 Use Send Control Data to Character Device (Interrupt 21h Function 4403h) to
copy the contents of the device’s corresponding code-page information (.CPI)
file to the device. For example, the program must copy the EGA.CPI file to an
EGA device.

3 Use End Code-Page Prepare (Interrupt 21h Function 440Ch Minor Code 4Dh) to
complete the preparation.

This procedure may fail if the DISPLAY.SYS and PRINTER.SYS drivers are
not installed by using device commands in the CONFIG.SYS file.

Note that users can carry out a similar preparation procedure by using the mode
command and the cp prepare switch.

6.6 Code-Page Information Files (.CPI)

Code-page information files, also called font files, contain the bitmap and
escape-sequence data required to support multiple code pages for screen or
printer devices. Included with MS-DOS are five font files, each identified by a
filename extension of .CPI:

File Supported device

EGA.CPI Color console used with EGA and VGA display adapters
LCD.CPI Liquid crystal display

4201.CPI IBM Proprinters II and III Model 4201 and IBM Pro-
printers II and IIIXL Model 4202

4208.CPI IBM Proprinter X24 Model 4207 and IBM Proprinter X124
Model 4208

5202.CPI IBM Quietwriter III Model 5202
A font file has the following form:
FONTEILEHEADER <> ;font file header

FONTINFOHEADER <> ;font information header
CPENTRYHEADER <> ;first code-page entry header

FONTDATAHEADER <> ;first font data

Copyright db 150 dup(?) ;copyright notice

94

MS-DOS Programmer’s Reference

A font file begins with a FONTFILEHEADER structure that identifies the file as
a valid font file and specifies how many fonts it has. Currently, only one font per
file is permitted. A font file always ends with a copyright notice.

Each font in a font file has a corresponding FONTINFOHEADER structure that
specifies how many code pages the font file supports. This structure begins at the
offset contained in ffhOffset field in the FONTFILEHEADER structure.

For each code page, the file contains one CPENTRYHEADER structure, which
defines the code page and device for which the font was designed. This structure
also points to the next CPENTRYHEADER structure if the font file supports
more than one code page. The first CPENTRYHEADER structure immediately
follows the FONTINFOHEADER structure.

The cpeOffset field in each CPENTRYHEADER structure points to a font-data
block consisting of a FONTDATAHEADER structure and data for either a
screen font or a printer font. The cpeDevType field specifies whether the font
data defines a screen font or a downloadable printer font.

The FONTDATAHEADER structure specifies the number of fonts defined for
the code page. Each screen font begins with a SCREENFONTHEADER struc-
ture that specifies the raster dimensions of each character in the font and the
number of characters in the font. This structure is followed by the raster bitmaps
for the characters. A printer font begins with a PRINTERFONTHEADER struc-
ture that specifies which of two formats the font data has. This structure is fol-
lowed by control sequences that initialize and define the font.

For a full description of these structures, see Section 6.7, “Structures.”

6.7 Structures

This section describes the structures MS-DOS uses for national language
support.

COUNTRYINFO 95

B CODEPAGE
CODEPAGE STRUC
cpLength dw 2 ;structure size, excl this field (always 2)
cpld dw ? ;code-page identifier
CODEPAGE ENDS
Fields cpLength Specifies the size of the structure, in bytes. This value must be 2.
cpld Identifies the code page. This field can be one of the following values:
Value Meaning
437 United States
850 Multilingual (Latin I)
852 Slavic (Latin II)
860 Portuguese
863 Canadian-French
865 Nordic
See Also Interrupt 21h Function 440Ch Minor Code 4Ah Select Code Page

B COUNTRYINFO

Interrupt 21h Function 440Ch Minor Code 4Dh End Code-Page Prepare
Interrupt 21h Function 440Ch Minor Code 6Ah Query Selected Code Page

Fields

COUNTRYINFO STRUC
ciDateFormat dw ? ;date format
ciCurrency db 5 dup (? ;currency symbol (ASCIIZ)
ciThousands db 2 dup (? ;thousands separator (ASCIIZ)
ciDecimal db 2 dup (? ;decimal separator (ASCIIZ)
ciDateSep db 2 dup (? ;date separator (ASCIIZ)
ciTimeSep db 2 dup (? ;time separator (ASCIIZ)
ciBitField db ? ;currency format
ciCurrencyPlaces db 7?7 ;places after decimal point
ciTimeFormat db ? ;12-hour or 24-hour format
ciCaseMap dd ? ;address of case-mapping routine
ciDataSep db 2 dup (?) ;data-1list separator (ASCIIZ)
ciReserved db 10 dup (?) :reserved

COUNTRYINFO ENDS

The COUNTRYINFO structure contains country-specific information that pro-
grams use to format dates, times, currency, and other information.

ciDateFormat Specifies the format for the date. This field can be one of the
following values:

Value Meaning

DATE_USA (0000h) Month/day/year
DATE_EUROPE (0001h) Day/month/year
DATE_JAPAN (0002h) Year/month/day

ciCurrency Specifies a zero-terminated ASCII (ASCIIZ) string containing
the currency symbol.

ciThousands Specifies an ASCIIZ string containing the thousands separator.
ciDecimal Specifies an ASCIIZ string containing the decimal separator.

96 COUNTRYINFO

ciDateSep Specifies an ASCIIZ string containing the date separator.
ciTimeSep Specifies an ASCIIZ string containing the time separator.

ciBitField Specifies the format for currency. This field can be a combination
of the following settings:

Bit Meaning

0 0 = Currency symbol precedes amount
1 = Currency symbol follows amount
1 0 = No space between currency symbol and amount

1 = One space between currency symbol and amount

All other bits in ciBitField are undefined.

ciCurrencyPlaces Specifies the number of digits that appear after the
decimal place in currency figures.

ciTimeFormat Specifies the format for time. This field can be one of the fol-
lowing values:

Value Meaning
TIME_12HOUR (00h) 12-hour time format
TIME_24HOUR (01h) 24-hour time format

ciCaseMap Contains the 32-bit address (segment:offset) of the case-
conversion routine. The routine performs lowercase-to-uppercase mapping
(country-specific) for character values in the range 80h through OFFh and does
not convert characters with values less than 80h.

ciDataSep Specifies an ASCIIZ string containing the data-list separator.
ciReserved Reserved; do not use.

Comments To convert a character by using the case-conversion routine, a program copies
the character value to the AL register and calls the routine, using the address in
the ciCaseMap field. If there is a matching uppercase character, the routine

returns its value in the AL register. Otherwise, the routine returns the initial
value unchanged. The AL and FLAGS registers are the only altered registers.

See Also Interrupt 21h Function 38h Get/Set Country Information
Interrupt 21h Function 6501h Get Extended Country Information

B CPENTRYHEADER

CPENTRYHEADER STRUC

cpeLength dw ? ;size of this structure, in bytes
cpeNext dd ? ;offset to next CPENTRYHEADER structure
cpeDevType dw ? ;device type

cpeDevSubtype db 8 dup(?) :;device name and font-file name
cpeCodepageID dw ? ;code-page identifier

cpeReserved db 6 dup(?) ;reserved

cpeOffset dd ? ;offset to font data

CPENTRYHEADER ENDS

The CPENTRYHEADER structure contains information about a code-page entry
in a font file.

CPLIST 97

Fields cpeLength Specifies the size of the CPENTRYHEADER structure, in bytes.
This field must be 28.
cpeNext Contains the offset to the next CPENTRYHEADER structure, in
bytes. For the last structure in the chain, this field must be zero.
cpeDevIype Specifies the type of the device for which the font is designed.
This field is 1 if the device is a screen device, or 2 if the device is a printer.
cpeDevSubtype Contains a character string that names the screen or printer
type. This field also determines the name of the font file. For example, if the
subtype is EGA, the font-file name is EGA.CPI. If the string contains fewer
than eight characters, it is left-justified and padded with space characters (ASCII
20h).
cpeCodepagelID Identifies the code page for which the font was designed.
This field can be one of the following values:
Value Meaning
437 United States
850 Multilingual (Latin I)
852 Slavic (Latin II)
860 Portuguese
863 Canadian-French
865 Nordic
cpeReserved Reserved; must be zero.
cpeOffset Contains the offset, in bytes, to the font data associated with this
code page.
B CPLIST
CPLIST STRUC
cplLength dw ((HARDWARE_IDS+1)+ (PREPARED_IDS+1))+2
;structure length, in bytes, excluding this field
cplHIds dw HARDWARE_IDS ;number of hardware code pages
cplHid dw HARDWARE_IDS dup(?) :;array of hardware code pages
cplPlds dw PREPARED_IDS ;number of prepared code pages
cplPid dw PREPARED_IDS dup(?) ;array of prepared code pages
CPLIST ENDS
The CPLIST structure contains two arrays of code-page identifiers.
Fields cplLength Specifies the length of the list, in bytes. This value does not
include the length of the cplLength field.
cplHIds Specifies the number of hardware code pages.
cplHid Specifies an array of hardware code-page identifiers. The array con-
tains the number of elements specified in the cplHIds field.
cplPIds Specifies the number of prepared code pages.
cplPid Specifies an array of prepared code-page identifiers. The array con-
tains the number of elements specified in the cplPIds field.
See Also Interrupt 21h Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

98 CPPREPARE

B CPPREPARE

Fields

Comments

See Also

CPPREPARE STRUC
cppFlags dw O ;flags (device-specific)
cpplLength dw (CODEPAGE_IDS+1)*2 ;structure length, in bytes,
;excluding first two fields
cpplds dw CODEPAGE_IDS ;number of code pages in list
cppld dw CODEPAGE_IDS dup(?) ;array of code pages
CPPREPARE ENDS

The CPPREPARE structure contains an array of code-page identifiers.

cppFlags Specifies device-specific flags.

cppLength Specifies the length of the structure, in bytes, excluding the
cppFlags and cppLength fields.

cpplds Specifies the number of code pages in the list.

cppld Specifies an array of code-page identifiers. The array contains the
number of elements specified in the cpplds field.

If OFFFFh is given as a code-page identifier, the device driver does not change
the code-page identifier at that position in its own list.

Interrupt 21h Function 446Ch Minor Code 4Ch Start Code-Page Prepare

B EXTCOUNTRYINFO

Fields

EXTCOUNTRYINFO STRUC
ecilength dw ? ;slze of the structure, in bytes
eciCountryCode dw ? ;country code
eciCodePagelID dw ? ;code-page identifier
eciDateFormat dw ? ;date format
eciCurrency db 5 dup (? ;currency symbol (ASCIIZ)
eciThousands db 2 dup (? ;thousands separator (ASCIIZ)
eciDecimal db 2 dup (?) ;decimal separator (ASCIIZ)
eciDateSep db 2 dup (? ;date separator (ASCIIZ)
eciTimeSep db 2 dup (? ;time separator (ASCIIZ)
eciBitField db ? ;currency format
eciCurrencyPlaces db ? ;places after decimal point
eciTimeFormat db ? ;12- or 24-hour format
eciCaseMap dd ? ;address of case-mapping routine
eciDataSep db 2 dup (?) ;data-list separator (ASCIIZ)
eciReserved db 10 dup (?) ;reserved

EXTCOUNTRYINFO ENDS

The EXTCOUNTRYINFO structure contains country-specific information that
programs use to format dates, times, currency, and other information.

eciLength Specifies the length of the structure, in bytes, not including this
field.

eciCountryCode Specifies the country code for the given information. It can
be one of the following:

Value Meaning
001 United States
002 Canadian-French

003 Latin America

EXTCOUNTRYINFO 99

Value Meaning

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia
044 United Kingdom
045 Denmark

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International (English)
351 Portugal

358 Finland

eciCodePagelD Identifies the code page for the information given. This field
can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)
852 Slavic (Latin IT)

860 Portuguese

863 Canadian-French
865 Nordic

eciDateFormat Specifies the format for the date. This field can be one of the
following values:

Value Meaning

DATE_USA (0000h) Month/day/year
DATE_EUROPE (0001h) Day/month/year
DATE_JAPAN (0002h) Year/month/day

eciCurrency Specifies a zero-terminated ASCII (ASCIIZ) string containing
the currency symbol.

eciThousands Specifies an ASCIIZ string containing the thousands sepa-
rator.

eciDecimal Specifies an ASCIIZ string containing the decimal separator.

100 EXTCOUNTRYINFO

eciDateSep Specifies an ASCIIZ string containing the date separator.
eciTimeSep Specifies an ASCIIZ string containing the time separator.

eciBitField Specifies the format for currency. This field can be a combination
of the following settings:

Bit Meaning

0 0 = Currency symbol precedes amount
1 = Currency symbol follows amount
1 0 = No space between currency symbol and amount

1 = One space between currency symbol and amount

All other bits in eciBitField are undefined.

eciCurrencyPlaces Specifies the number of digits that appear after the
decimal place in currency format.

eciTimeFormat Specifies the format for time. This field can be one of the
following values:

Value Meaning

TIME_12HOUR (00h) 12-hour time format
TIME_24HOUR (01h) 24-hour time format

eciCaseMap Contains the 32-bit address (segment:offset) of the case-
conversion routine. The routine performs lowercase-to-uppercase mapping
(country-specific) for character values in the range 80h through OFFh and does
not convert characters with values less than 80h.

eciDataSep Specifies an ASCIIZ string containing the data-list separator.
eciReserved Reserved; do not use.

Comments To convert a character using the case-conversion routine, the program copies the
character value to the AL register and calls the routine, using the address in the
eciCaseMap field. If there is a matching uppercase character, the routine returns

its value in the AL register. Otherwise, the routine returns the initial value
unchanged. The AL register and FLAGS registers are the only altered registers.

See Also Interrupt 21h Function 6501h Get Extended Country Information

B FILECHARTABLE

FILECHARTABLE STRUC
fctLength dw ? ;table length, in bytes, excl this field
db ?
fctFirst db ? ;lowest permissible character value
fctLast db ? ;highest permissible character value
db ?
ftcExcludeFirst db ? ;first in range of excluded characters
ftcExcludeLast db ? ;last in range of excluded characters
db ?
fctlllegals db ? ;number of illegal characters in array

;start of array of illegal characters
FILECHARTABLE ENDS

The FILECHARTABLE structure contains a list of characters that are and are
not permitted in filenames.

Fields

See Also

FONTFILEHEADER 101

fetLength Specifies the length of the table, in bytes, not counting this field.
fctFirst Specifies the lowest permissible character value.
fctLast Specifies the highest permissible character value.

fctExcludeFirst Specifies the first character value in a range of excluded char-
acters.

fctExcludeLast Specifies the last character value in a range of excluded char-
acters.

fetlllegals Specifies the number of illegal characters in the table. The array of
illegal characters immediately follows this field.

Function 6505h Get Filename-Character Table

B FONTDATAHEADER

Fields

FONTDATAHEADER STRUC

fdhReserved dw ? ;reserved

fdhFonts dw ? ;number of fonts

fdhLength dw ? ;size of font data, in bytes
FONTDATAHEADER ENDS

The FONTDATAHEADER structure contains information about the number and
size of the font descriptions for a code page. This structure is followed immedi-
ately by the screen or printer font descriptions.

fdhReserved Reserved. This field must be 1.

fdhFonts Specifies the number of fonts (font descriptions) that immediately
follow this structure. These font descriptions must contain definitions for charac-
ters in the associated code page. For printer devices, no more than one font
description can be given, so this field must be 1.

fdhLength Specifies the size, in bytes, of the font descriptions that immedi-
ately follow this structure.

B FONTFILEHEADER

Fields

FONTFILEHEADER STRUC

ffhFileTag db 8 dupi?; ;font-file identifier
ffhReserved db 8 dup(?) ;reserved

ffhPointers dw ? ;number of pointers
ffhPointerType db ? ;type of pointer

ffhOffset dd ? ;offset to information header

FONTFILEHEADER ENDS

The FONTFILEHEADER contains information that identifies the file as a valid
font file and specifies the number of fonts defined in the file.

ffhFileTag Identifies the font file. This field must contain the byte value OFFh,
followed by the characters F, O, N, and T (ASCII 46h, 4Fh, 4Eh, and 54h,
respectively), and three space characters (ASCII 20h).

ffhReserved Reserved; must be zero.

ffhPointers Specifies the number of information pointers in the header. For
current versions of MS-DOS, this value should be 1.

102 FONTFILEHEADER

ffhPointerType Specifies the type of information pointers in the header. For
current versions of MS-DOS, this value should be 1.

ffhOffset Specifies the offset, in bytes, from the beginning of the file to the
information header.

B FONTINFOHEADER

Field

FONTINFOHEADER STRUC
fihCodePages dw ? ;number of code-page entries
FONTINFOHEADER ENDS

The FONTINFOHEADER structure specifies the number of code-page entries
contained in the font file.

fihCodePages Specifies the number of code-page entries in the file.

® PRINTERFONTHEADER

Fields

Comments

PRINTERFONTHEADER STRUC
pfhSelType dw ? ;selection type
pfhSeqLength dw ? ;sequence length, in bytes
PRINTERFONTHEADER ENDS

The PRINTERFONTHEADER structure contains information about the length
and content of the control-sequence data used for the printer font. The structure
is followed immediately by control-sequence data and possibly one or more bytes
of downloadable font data.

pfhSelType Specifies the selection type for the printer font. This field can be
either of the following values:

Value Meaning

1 The control-sequence data consists of hardware escape data followed
by downloadable escape data. The hardware escape data contains the
sequence of characters that selects the hardware (default) font of the
printer. The first byte of the hardware escape data specifies the
number of characters in the sequence. The downloadable escape data
contains the sequence of control characters that selects the down-
loaded font currently resident in the printer. The first byte of the
downloadable escape data specifies the number of characters in the
sequence. The total number of bytes in the hardware and download-
able escape data must equal the number of bytes specified in the
pfhSeqLength field.

2 The control-sequence data consists of a single escape sequence that
selects the font for this code page. This font may have been down-
loaded.

pfhSeqLength Specifies the length of the control-sequence data, in bytes.
This value must always be less than 31.

The control-sequence data is used for initializing the printer for the code page
associated with this font.

SCREENFONTHEADER 103

Unlike the size of a screen-font description, the size of the printer-font descrip-
tion cannot be determined directly. Instead, its size must be calculated from the
fdhLength field of the FONTDATAHEADER structure. As a result, only one

printer-font description can immediately follow a FONTDATAHEADER struc-
ture.

The downloadable font data consists of the escape sequence required to down-
load the font description. This escape sequence depends on the printer. Its size
is determined by subtracting the size of the PRINTERFONTHEADER structure
from the fdhLength value in the corresponding FONTDATAHEADER structure.
Since the 4208 and 5202 printers have hardware support for code pages, they do
not need any font data to be downloaded. Therefore, the fdhLength field is
nonexistent in those font files.

These existing printer files use the following selection types:
Type Filename
1 4201.CPI
2 4208.CPI or 5202.CPI

B SCREENFONTHEADER

Fields

Comments

SCREENFONTHEADER STRUC
db

sfhHeight ? ;character height

sfhWidth db ? ;character width

sfhRelHeight db ? ;must be zero

sfhRelWidth db ? ;must be zero

sfhCharacters dw ? ;number of characters defined in bitmap

SCREENFONTHEADER ENDS

The SCREENFONTHEADER structure specifies the raster dimensions of each
character in the font and the number of characters in the font. This structure is
followed by a raster bitmap for each character.

sfhHeight Specifies the number of rows, in pixels, that this character occu-
pies on the screen.

sfhWidth Specifies the number of columns, in pixels, that this character occu-
pies on the screen.

sfhRelHeight Specifies the relative height, a part of the aspect ratio. This
field is currently unused and must be zero.

sfhRelWidth Specifies the relative width, a part of the aspect ratio. This field
is currently unused and must be zero.

sthCharacters Specifies the number of characters defined in the bitmaps
immediately following this structure. Normally, the entire ASCII character set is
defined, so this value is usually 256.

The bitmap data following the structure consists of one bitmap for each charac-
ter in the font. Each character bitmap is a packed array of bits organized by row
and column, starting at the upper left corner of the character’s image. Since all
current screen fonts are 8 bits wide, the number of bytes needed to encode this
packed array is equal to the square area of a character in the font divided by 8.

The total length of the screen-font description is 6 bytes plus the product of the

number of characters in the descriptions and the number of bytes needed to
encode a character bitmap.

Chapter
7

Interrupts

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9
7.10

7.11

Introductionceuuiuiiiiiiiiiiiieie e eee e 107
MS-DOS INterrupts .ecuveunreneenrenrenreneenerueeneenneneenernnennns 107
System INterrupts.....ccoeeeueenrinienninernienieneenereneeneeneannns 108
| 25 (<) o111) 1 LSRN 110
Interrupt and Exception Handlerscccccevnenenennnn.e. 110
Interrupt Chainsoccovenveiiiiieniniiiiniiereiereeeeeeneanenns 112
Multiplex Interrupt Handlers.......cccoevvuveienenininennnnnnenn.. 112
Terminate-and-Stay-Resident Programsou..... 113
7.8.1 Initialization Routine......ccevuvveieriierninieernennnnennnn. 114
7.8.2 Service-Program Interrupt Handlerccceunen.nn. 115
7.8.3 Pop-up and Hardware-Support Interrupt Handlers 115
MS-DOS Interrupt Reference........cccuvevvvneuienvenincennnnn. 116
Task-Switching Reference........ccoceveveuviiviviinneiininnennnns 171
7.10.1 Notification Functionsccceceeuiniiinenenenenenannnnnn. 171
7.10.2 Service FunCtions.......ccceeueuveeenenenineneenenenenennanens 182

UG UIES . oueiiieiii e eeeee et eeneeeanensenensenensansncnns 193

Chapter 7: Interrupts 107

7.1 Introduction

This chapter describes the interrupts that provide the primary interface between
programs and the MS-DOS kernel and its supporting programs.

This chapter discusses the following:

Exceptions

MS-DOS interrupts
System interrupts

Interrupt and exception handlers
Interrupt chains

Multiplex interrupt handlers
Terminate-and-stay-resident programs
MS-DOS structures

7.2 MS-DOS Interrupts

MS-DOS reserves software interrupts 20h through 3Fh for its own use. Among
the features these interrupts provide are the interfaces to the MS-DOS system
functions and to MS-DOS programs that provide services to other programs.

Following are the MS-DOS interrupts:

Interrupt

Description

Comments

20h
21h
22h

23h
24h
25h
26h
27h
28h
2%h

2Ah
2Eh

2Fh

Terminate Program
MS-DOS System Function

Termination Address

crrL+c Handler
Critical-Error Handler
Absolute Disk Read
Absolute Disk Write
Terminate and Stay Resident
MS-DOS Idle Handler

Fast Console

Network/Critical Sections

Reload Transient

Multiplex Interrupt

For use by .COM programs
For use by all programs

For storage only (Do not
issue)

Replaceable
Replaceable

For use by .COM programs
Extendable

For use by MS-DOS charac-
ter I/0

For use by MS-DOS

For use by
COMMAND.COM only

Extendable

108 MS-DOS Programmer’s Reference

Interrupt Description Comments

30h MS-DOS Entry Point For storage only (Do not
issue)

31h MS-DOS Entry Point For storage only (Do not
issue)

All other reserved interrupts—2Bh through 2Dh and 32h through 3Fh—are not
currently used by MS-DOS. MS-DOS assigns a default interrupt handler to each
reserved interrupt it does not use. The default handler does nothing more than
return to the program that issued the interrupt.

For interrupts marked “Replaceable” or “Extendable” in the preceding table, a
program can provide its own interrupt handlers to replace or enhance the exist-
ing handlers. The program should leave all other interrupts unchanged. An
exception to this rule is a terminate-and-stay-resident program (TSR) that must
intercept interrupts to determine when MS-DOS system functions have been
called.

7.3 System Interrupts

On most computers, Interrupt 05h and Interrupts 10h through 1Fh are reserved
for use by ROM BIOS routines. Although these interrupts provide an interface
to low-level services for the computer, a program that uses these services cannot
be guaranteed to run correctly on all MS-DOS computers.

The following are typical low-level services:

Interrupt Service

05h Print screen (issued when SHIFT+PRINT SCREEN js pressed)
08h Timer tick

0%h Keyboard

OAh Slave interrupt controller
0Bh CcoM1

0Ch COoM2

0Dh LPT2

OEh Floppy disk

OFh LPT1

10h Video services

11h Peripheral equipment list
12h Memory size

13h Disk services

Chapter 7: Interrupts 109
|

Interrupt Service

14h Serial-port services

15h Miscellaneous system services

16h Keyboard services

17h Printer services

18h ROM Basic

1%h Restart computer

1Ah Time of day

1Bh Break (issued when CTRL+BREAK is pressed)
1Ch Timer

1Dh Video parameters (address only)
1Eh Diskette parameters (address only)
1Fh Graphics fonts (address only)

70h Real-time clock

75h Numeric coprocessor

76h Hard disk

In some cases, MS-DOS may replace or extend ROM BIOS routines and other
device-specific interrupt handlers for the following interrupts:

Interrupt MS-DOS handler action

00h Displays “divide overflow” message and ter-
minates program

O1h Returns immediately

02h* Switches stack

03h Returns immediately

04h Returns immediately

08h-OEh* Switches stack

15h If ctrL+ALT+DEL is detected, prepares MS-DOS
before restarting computer

1%h Prepares MS-DOS before restarting computer

1Bh Places ctrL+c character value (03h) at top of key-
board input buffer

70h*) Switches stack

72h-74h* Switches stack

76h-77h* Switches stack

110 MS-DOS Programmer’s Reference

Stack-switching interrupt handlers (marked * in the preceding list) are used in
conjunction with routines that support hardware interrupts. A stack-switching
handler sets up a new stack when a hardware interrupt occurs, allowing the
corresponding interrupt routine to carry out operations without inadvertently
overflowing the stack that was active when the interrupt occurred. The stack-
switching handler restores the original stack when the interrupt routine returns.
Stack-switching interrupt handlers are enabled only if the stacks command in the
CONFIG.SYS file specifies eight or more stacks.

7.4 Exceptions

MS-DOS provides default handlers for some exceptions, such as the divide-error
exception (Interrupt 00h). A computer may also provide default exception
handlers as part of its ROM BIOS routines.

A program can provide its own exception-handling routines by replacing the
default handlers. For example, a debugging program can install its own handlers
for the single-step exception (Interrupt O1h) and the breakpoint exception
(Interrupt 03h). CPU capabilities determine what types of exceptions can occur
while a program is running and what information is available about them.

A program that replaces an exception handler must restore it before terminating.

7.5 Interrupt and Exception Handlers

Programs install interrupt and exception handlers to provide special responses to
software interrupts, hardware interrupts, errors, or other conditions detected by
the CPU. The handler determines what action to take. Most handlers carry out
the action and return to the program at the point of the interruption, although
some default handlers terminate the program that caused the interruption or
exception.

In general, an interrupt or exception handler should do the following:

B Save the registers it uses and restore them before returning.

B Take precautions to avoid stack overflow. If a handler uses more than a
few bytes of stack, it should use its own stack, restoring the original
stack before returning.

® Disable interrupts only when performing critical processing such as
changing stacks or updating critical data. Enable the interrupts immedi-
ately after completing the task.

B Use the iret instruction to return.

When the handler receives control, the SS:SP registers point to whatever stack
was active when the interrupt or exception occurred. This could be a stack
belonging to MS-DOS, to a program, or to other software. A handler that uses
more than a few bytes of stack should switch to its own stack.

Chapter 7: Interrupts 111
|

To install an interrupt or exception handler, a program must use the following
procedure:

1 Retrieve the address of the current handler by using Get Interrupt Vector
(Interrupt 21h Function 35h).

2 Save the address of the current handler. Before terminating, the program must
restore this handler by using Set Interrupt Vector (Interrupt 21h Function 25h).

3 Install the new handler by using Set Interrupt Vector.

Programs that install interrupt or exception handlers must restore the original
handlers before terminating. Since the default (MS-DOS) CTRL+C and critical-
error handlers (Interrupts 23h and 24h) terminate programs without restoring
interrupts, programs that install new handlers must also install custom handlers
for Interrupts 23h and 24h. The custom Interrupt 23h and Interrupt 24h handlers
must determine whether the program that installed the new handler is about to
terminate; if it is, they must restore the original interrupt handlers before the
program terminates. Note that MS-DOS automatically restores the original
Interrupt 23h and Interrupt 24h handlers.

In general, if an interrupt occurs while a program is running, the corresponding
interrupt handler can use any MS-DOS system function. In any other case, the
handler can use only the character I/O functions (Interrupt 21h Functions 01h
through OCh). For example, if a divide-error exception occurs in a program, the
divide-error handler can display a message by using Write File or Device
(Interrupt 21h Function 40h). However, if the error occurs in MS-DOS, the
handler must use a character I/O function, such as Display String (Interrupt 21h
Function 09h). If a critical disk error is being processed, the handler must not
use any MS-DOS system function.

A handler can determine whether an interrupt or exception occurred in
MS-DOS by examining the InDOS flag. If MS-DOS is processing a system func-
tion, this one-byte flag is nonzero. The handler can retrieve the address of the
InDOS flag by using Get InDOS Flag Address (Interrupt 21h Function 34h). The
handler can determine whether a critical disk error is being processed by exam-
ing the ErrorMode flag (the byte immediately before the InDOS flag). If the
ErrorMode flag is nonzero, MS-DOS is processing a critical disk error.

Although a program can install interrupt handlers that service hardware inter-
rupts, these handlers are device-specific and are not guaranteed to work with all
MS-DOS computers. To support hardware interrupts, the program installs an
interrupt service routine (ISR) and either programs the computer’s interrupt
controller to support interrupts from the specified device or uses interrupts
defined by the device’s ROM BIOS. In either case, the information required to
carry out these steps is beyond the scope of this book.

112 MS-DOS Programmer’s Reference '
]

7.6 Interrupt Chains

An interrupt chain is two or more interrupt handlers that process the same i'nt.er-
rupt. Programs create interrupt chains either to extend the capabilities of existing
interrupt handlers or to permit replacement handlers to take advantage of
features in existing handlers. For example, some programs intercept Interrupt
21h to detect when certain MS-DOS system functions have been called. Such
programs do not then carry out the system functions themselves; instead, they
pass control to the original Interrupt 21h handler.

A program creates an interrupt chain by installing an interrupt handler and sav-
ing the address of the original handler. When the new handler processes the
interrupt, it can either call or jump to the original handler if it needs help pro-
cessing the interrupt. A new handler calls the original handler if it needs to carry
out additional processing after the original handler completes its work. Other-
wise, it jumps to the original handler.

When a new handler calls an original handler, it can modify the registers and
stack before passing control to the original handler, but it must push the flags
onto the stack (by using the pushf instruction) before making the call. In all
cases, a handler should use the iret instruction to return from the interrupt.

A handler should assume nothing about the state of the system and should do
the following:

® Disable interrupts if it needs them disabled, and explicitly enable them
otherwise. Previous handlers in the interrupt chain may or may not have
enabled them.

B Set the direction flag before executing string instructions.

® Call the next handler in the chain immediately if the interrupt is a time-
critical interrupt (for example, a timer interrupt). This ensures that
handlers expecting control immediately after the interrupt get it as soon
as possible.

7.7 Multiplex Interrupt Handlers

A program can provide services to other programs by installing an interrupt
handler for Multiplex Interrupt (Interrupt 2Fh). Multiplex Interrupt is a common
entry point for MS-DOS resident programs and device drivers that carry out
requests for other programs. For example, a program can add files to the print
queue (maintained by the resident program PRINT.EXE) by setting registers and
issuing Multiplex Interrupt.

To provide services to other programs, a service program must add its multiplex
handler to the interrupt chain and choose a multiplex identifier. This identifier
is an integer that distinguishes the program’s multiplex handler from all others in
the interrupt chain. When other programs request service, they place the service
program’s multiplex identifier in the AH register. When Multiplex Interrupt is
issued, each multiplex handler in the interrupt chain must check the AH regis-
ter; if the register contains its identifier, the handler must process the service
request.

Chapter 7: Interrupts 113

Program identifiers must be in the range 0COh through OFFh. All other values
are reserved for MS-DOS programs and related software. The following are a
few of the reserved multiplex identifiers and their associated programs:

Multiplex identifier Provider

O1h PRINT.EXE

06h ASSIGN.COM

10h SHARE.EXE

11h Network Redirector
14h NLSFUNC.EXE
1Ah ANSI.SYS

43h Extended Memory Manager (HIMEM.SYS)
48h DOSKEY.COM
4Bh Task Switcher
O0ADhK KEYB.COM

OAEh APPEND.EXE
0BOh GRAFTABL.COM
0B7h APPEND.EXE

The AL register specifies the function to carry out. Whenever a multiplex
handler processes a request, it checks the contents of the AL register to deter-
mine what action to take. By convention, 00h in the AL register specifies the
Installed State function. A multiplex handler processes this function by returning
a nonzero value (typically OFFh) in the AL register to indicate that it is installed.

7.8 Terminate-and-Stay-Resident Programs

When a terminate-and-stay-resident program (often called a TSR) returns control
to its parent program, its code and data remain in memory to be used by other

programs.

There are three types of terminate-and-stay-resident programs:

B Service programs. These provide useful functions for other programs.
For example, PRINT.EXE is a TSR that maintains the print queue and
provides functions that other programs can use to examine the queue
and add files to it. Service programs install an interrupt handler before
terminating. Subsequent programs then use the corresponding interrupt,
much as they use MS-DOS System Function (Interrupt 21h), to call the
service program’s functions.

114 MS-DOS Programmer’s Reference

® Pop-up programs. These monitor the keyboard and resume executing
upon receiving particular keystrokes. To monitor the keyboard, a pop-up
program intercepts an interrupt associated with the keyboard or with a
key combination, such as SHIFT+PRINT SCREEN or CTRL+BREAK.

B Hardware-support programs. These operate much like low-level' device
drivers, controlling the operation of specific devices while providing
functions that permit other programs to access the device.

A terminate-and-stay-resident program consists of at least two parts: an initializa-
tion routine and one or more interrupt handlers. The initialization routine is gen-
erally the same for all programs. The interrupt handlers depend largely on the
program type, although they may carry out the same housekeeping tasks and are
installed by using the same procedure.

7.8.1 Initialization Routine

The initialization routine prepares the terminate-and-stay-resident program to be
used by other programs or to service interrupts generated by a device. The ini-
tialization routine must do the following:

B Make sure the TSR is not already loaded.

B Install the interrupt handler (or handlers).

B Free unneeded resources.

B Call Keep Program (Interrupt 21h Function 31h).

Unless a TSR is designed to be loaded more than once, it should safeguard
against the user’s starting it multiple times. The TSR can do this by using Multi-
plex Interrupt (Interrupt 2Fh) and a custom interrupt handler. An MS-DOS
TSR, such as PRINT.EXE, uses this technique. In general, each time it starts,
the TSR issues Interrupt 2Fh, supplying an identifier unique to the TSR. If the
interrupt returns a reply, a copy of the TSR has already been loaded. Otherwise,
the TSR must install a custom handler that replies to all subsequent calls to the
TSR.

The TSR must install its interrupt handlers by using Set Interrupt Vector (Inter-
rupt 21h Function 25h). This function copies the address of the interrupt handler
to the interrupt table. If a program or device issues the corresponding interrupt,
control passes to the interrupt handler. Before installing the interrupt handler,
the TSR should also use Get Interrupt Vector (Interrupt 21h Function 35h) to
retrieve the address of the current handler so that it can be restored if the TSR
is removed from memory.

Before calling Keep Program, the initialization routine should do the following:
B Close all unneeded files, including standard devices.

B Free the environment block if it is not needed.
¥ Free all memory not needed to support the interrupt handler.

Chapter 7: Interrupts 115

When it calls Keep Program, the routine should specify the smallest possible
amount of program memory to retain. In particular, the code and data for the
initialization routine should be at the end of the TSR, to ensure that they are
freed by Keep Program.

7.8.2 Service-Program Interrupt Handler

A service program’s interrupt handler receives execution control from programs
that use the int instruction to issue an interrupt. The calling program, before
issuing the interrupt, fills registers with whatever values are needed. The inter-
rupt handler determines which function to carry out and uses the values passed
to it to complete the function.

The service program may install a handler for any nonreserved interrupt. (Most
interrupts from 00h through 7Fh are reserved by MS-DOS or by the computer’s
ROM BIOS.) Rather than use a new interrupt, however, many service programs
expand the multiplex-interrupt handler they install so that it also receives and
processes function requests and replies to queries about the installation state.

When the interrupt handler receives control, the stack, the current program seg-
ment prefix (PSP), and the current disk transfer address (DTA) belong to the
calling program. In addition, any registers not explicitly used with the function
request may contain values that the calling program expects to remain
unchanged. If the interrupt handler changes any of these resources, it must save
and then restore the original resource before returning.

The current program’s PSP determines which open files are available to the
interrupt handler. To access files other than those opened by the calling pro-
gram, the interrupt handler must change the current PSP by using Set PSP
Address (Interrupt 21h Function 50h). It can retrieve the current PSP by using
Get PSP Address (Interrupt 21h Function 51h).

If the interrupt handler uses the buffer pointed to by the current DTA, it should
change the current address to the address of its own buffer by using Set Disk
Transfer Address (Interrupt 21h Function 1Ah). This change ensures that any
data in the buffer pointed to by the calling program’s DTA is not overwritten.
The interrupt handler can retrieve the current DTA by using Get Disk Transfer
Address (Interrupt 21h Function 2Fh).

7.8.3 Pop-up and Hardware-Support Interrupt Handlers

A pop-up or hardware-support program’s interrupt handler receives control
asynchronously—that is, whenever the user presses a key or a device generates
an interrupt. To service the interrupt, the system temporarily suspends the
current instruction and passes control to the interrupt handler. Since an asyn-
chronous interrupt may occur at any time, the interrupt handler must determine
the state of MS-DOS and possibly of the ROM BIOS before carrying out any
operations. If a pop-up or hardware-support interrupt occurs while an MS-DOS
system function or ROM BIOS routine is being carried out, the interrupt
handler should ignore the interrupt and return immediately.

116 MS-DOS Programmer’s Reference :
|

If the interrupt handler uses MS-DOS system functions, it must check the
InDOS flag before calling a function and must check the ErrorMode flag before
calling any character I/O function (Interrupt 21h Functions 01h through OCh).

The one-byte InDOS flag specifies whether MS-DOS is currently processing a
system function. If the flag is nonzero, the interrupt handler can call only the
character 1I/0 functions; it must not call other MS-DOS system functions. A
program can retrieve the address of the InDOS flag by using Get InDOS Flag
Address (Interrupt 21h Function 34h).

The one-byte ErrorMode flag specifies whether MS-DOS is currently processing
a critical disk error. If it is, the flag is nonzero and the interrupt handler must
not call any MS-DOS system function, including the character I/O functions.
The ErrorMode flag occupies the byte immediately before the InDOS flag, so a

program can determine the ErrorMode flag address by subtracting 1 from the
InDOS flag address.

The interrupt handler must check whether any ROM BIOS routine it calls
directly has been interrupted, and it must not call an interrupted ROM BIOS
routine that is not reentrant. Since MS-DOS provides no means to determine
whether a ROM BIOS routine has been interrupted, a TSR must intercept these
interrupts and record when control enters and leaves the routines. The interrupt
handler can then check this record before making a call to the ROM BIOS.

The interrupt handler must not continue if another hardware interrupt is being

processed. To determine whether an interrupt is active, the TSR must query the
system.interrupt controller.

7.9 MS-DOS Interrupt Reference

This section describes MS-DOS Interrupts 20h through 28h and Interrupt 2Fh in
detail. The reference page for each interrupt provides the syntax, a statement of

purpose, any parameter descriptions, and cross-references to similar or related
interrupts and to related functions.

Interrupts 2Bh through 2Dh and 32h through 3Fh are not currently used by MS-

DOS and are not documented here. Interrupts 29h, 2Ah, 2Eh, 30h, and 31h are
also not documented.

Interrupt 20h Terminate Program 117

B Interrupt 20h Terminate Program Superseded

Parameters
Return Value
Comments

See Also

int 20h ;Terminate Program

Terminate Program (Interrupt 20h) terminates the current program and returns
control to its parent program.

This interrupt has been superseded. Programs should use the Interrupt 21h
function End Program (Function 4Ch).

This function has no parameters.
This interrupt does not return.

This interrupt is intended to be used by .COM programs. When a program
issues the interrupt, the CS register must contain the segment address of the
program segment prefix (PSP).

This interrupt carries out the following actions:

B Flushes the file buffers and closes files, unlocking any regions locked by
the program.

B Restores Termination Address (Interrupt 22h) from offset OAh in the
PSP (pspTerminateVector field).

B Restores the CTRL+C Handler (Interrupt 23h) from offset OEh in the PSP
(pspControlCVector field).

B Restores the Critical-Error Handler (Interrupt 24h) from offset 12h in
the PSP (pspCritErrorVector field).

B Frees any memory owned by the terminating program.

After completing these actions, this interrupt transfers control to the address
specified by offset 0Ah in the PSP.

Interrupt 21h Function 00h Terminate Program
Interrupt 21h Function 4Ch End Program
Interrupt 22h Termination Address

Interrupt 23h CTRL+C Handler

Interrupt 24h Critical-Error Handler

118 Interrupt 21h MS-DOS System Function

B [Interrupt 21h MS-DOS System Function

MS-DOS System Function (Interrupt 21h) carries out one of the functions
described in Chapter 8, “Interrupt 21h Functions.”

Interrupt 22h Termination Address 119

B Interrupt 22h Termination Address

Comments

See Also

Termination Address (Interrupt 22h) is not used as an interrupt. Instead, MS-
DOS stores the termination address for the current program in the correspond-
ing vector-table entry. This address is also specified in offset 0Ah in the current
program’s PSP (pspTerminateVector field).

Programs must not issue Interrupt 22h.

The termination address is a return address back to the program that started the
current program. MS-DOS transfers control to the termination address as the
last step in completing Terminate Program (Interrupt 20h), Terminate Program
(Interrupt 21h Function 00h), Keep Program (Interrupt 21h Function 31h), End
Program (Interrupt 21h Function 4Ch), and Terminate and Stay Resident (Inter-
rupt 27h). These functions always restore the vector-table entry from offset 0Ah
in the current PSP before transferring control, so changes to the vector-table
entry are ignored.

Before transferring control to the termination address, MS-DOS restores the
parent program’s stack and PSP. Furthermore, if a program terminates by using
Terminate Program (Interrupt 20h or Interrupt 21h Function 00h) or End Pro-
gram (Interrupt 21h Function 4Ch), MS-DOS frees all resources for the pro-
gram, such as allocated memory, stack, files, and standard devices. This means
that changes to the termination address in the PSP or direct calls to the termina-
tion address may corrupt the operation of the system.

Interrupt 20h Terminate Program

Interrupt 21h Function 00h Terminate Program
Interrupt 21h Function 31h Keep Program
Interrupt 21h Function 4Ch End Program
Interrupt 27h Terminate and Stay Resident

120 Interrupt 23h cTRL+C Handler

B Interrupt 23h CTRL+C Handler

Comments

CTRL+C Handler (Interrupt 23h) carries out program-specific actions in response
to the CTRL+C (ASCII 03h) key combination being pressed. MS-DOS issues this
interrupt if it receives the CTRL+C character while processing a system function.
The handler carries out its actions then returns to the system in order to restart
the system function or terminate the current program.

Programs must not issue Interrupt 23h.

MS-DOS sets the current CTRL+C handler when starting a program, copying the
address of the parent program’s handler to both the vector-table entry and offset
OEh in the new program’s PSP (pspControlCVector field). Although a program
can change the vector-table entry, it must not change the address in its PSP,
since MS-DOS uses this address to restore the parent program’s handler.

MS-DOS does not immediately issue Interrupt 23h when the user presses the
CTRL+C key combination. Instead, the system places the CTRL+C character
(ASCII 03h) in the keyboard buffer; if no other characters are ahead of the con-
trol character, the system processes it while carrying out a system function. For
most computers, MS-DOS also places a CTRL+C character in a buffer when the
user presses the CTRL+BREAK key combination. Pressing this combination places
a CTRL+C character ahead of all other characters in the keyboard buffer.

MS-DOS checks for the CTRL+C character while carrying out character I/0
functions (Interrupt 21h Functions 01h through 0Ch). It also checks for the char-
acter while carrying out other system functions—but only if the CTRL+C check
flag is set. If the I/O mode for the keyboard (or input device) is binary, the sys-
tem disables CTRL+C character processing while a program uses Read File or
Device (Interrupt 21h Function 3Fh) and the CTRL+C character is read as input.

Before issuing Interrupt 23h, MS-DOS does the following:

B Sets all registers to the values they had when the interrupted system
function was initially called.

B Sets the program’s stack to be the current stack. When the handler

receives control, the stack has the following contents (from the top of
the stack):

The return address (CS:IP) and the flags needed for the iret
instruction back to the system.

The return address (CS:IP) and the flags needed for the iret
instruction back to the program.

B Sets to zero any internal system variables, such as the ErrorMode and
InDOS variables, so that the handler can call system functions or even
return directly to the program without disrupting system operations.

A CTRL+C handler can call any system function.

Upon returning from Interrupt 23h, MS-DOS checks the method of return to
determine what action to take. If the handler sets the carry flag and returns with
the retf instruction, MS-DOS terminates the program by calling End Program

See Also

Interrupt 23h CTRL+C Handler 121

(Interrupt 21h Function 4Ch). If the handler returns with the iret instruction or
with the retf instruction after clearing the carry flag, the system repeats the call
to the system function, starting the function’s action again from the beginning.
In this case, the handler must preserve all registers, restoring them before
returning to the system.

COMMAND.COM provides the default CTRL+C handler, which terminates the
current program unless a batch file is running, in which case the handler
prompts the user to continue (or not) with the next command in the file. Since
prompting the user suspends execution of the current program until the user
responds, programs that lock resources (especially over a network) should
replace the default handler. In general, a program should make sure that other
programs can access resources even while it is suspended.

Interrupt 21h Function 3Fh Read File or Device
Interrupt 21h Function 4Ch End Program

122 Interrupt 24h Critical-Error Handler

B Interrupt 24h Critical-Error Handler

Comments

Critical-Error Handler (Interrupt 24h) carries out program-specific actions in
response to critical errors during read and write operations. MS-DOS issues this
interrupt if a critical error occurs while a system function is attempting to read
from or write to a device or file. The handler carries out its actions then returns
to the system to retry the function, terminate the function, or terminate the
current program.

Programs must not issue Interrupt 24h.

MS-DOS sets the current critical-error handler when starting a program, copying
the address of the parent program’s handler to both the vector-table entry and
offset 12h in the new program’s PSP (pspCritErrorVector field). Although a pro-
gram can change the vector-table entry, it must not change the address in its
PSP, since MS-DOS uses this address to restore the parent program’s handler.

Before issuing Interrupt 24h, MS-DOS does the following:

B Sets the AX, DI, BP, and SI registers with information about the error,
such as the error value, location of the error, type of device, and type of
operation.

B Sets the program’s stack to be the current stack. When the handler
receives control, the stack has the following contents (from the top of
the stack):

The return address (CS:IP) and the flags needed for the iret
instruction back to the system.

The contents of the program’s registers at the time the system function
that caused the error was called. The registers are preserved in the
following order: AX, BX, CX, DX, SI, DI, BP, DS, and ES.

The return address (CS:IP) and the flags needed for the iret
instruction back to the program.

® Sets internal system variables, such as those for InDOS and ErrorMode.
InDOS is set to zero to permit the handler to call system functions.
ErrorMode is set to 1 to prevent the system from issuing Interrupt 24h
again before the handler returns; MS-DOS issues only one Interrupt 24h
at a time.

MS-DOS passes information about the error to the handler by using the follow-
ing registers:

Register Description

AH Specifies information about when and where the error occurred, as
well as how the critical-error handler can respond to the error. The
bits in this register can have the following values:

Bit Meaning

0 Specifies the operation that caused the error. If this bit is 0,
the error occurred during a read operation. Otherwise, the
error occurred during a write operation.

Register

Interrupt 24h Critical-Error Handler 123

Description

AL

DI

Bit Meaning

1,2 Specify the location of the error, but only if the error
occurred on a block device. These bits can have the follow-
ing values:

00 = error in reserved sector (MS-DOS area)
01 = error in file allocation table (FAT)

10 = error in directory

11 = error in data area

3 Specifies whether the handler can terminate the function. If
this bit is 1, the handler can terminate the function. Other-
wise, it must not.

4 Specifies whether the handler can retry the function. If this
bit is 1, the handler can retry the function. Otherwise, it
must not.

5 Specifies whether the handler can ignore the error. If this
bit is 1, the handler can ignore the error. Otherwise, it
must not.

6 Reserved.

7 Specifies the type of device on which the error occurred. If
this bit is 0, the error occurred on a block drive. If this bit
is 1, it indicates that the error occurred either on a character
device or in the memory image of the FAT, and that the
handler must check bit 15 in the dhAttributes field (offset
04h) of the DEVICEHEADER structure to determine the
exact location. If bit 15 is set, the error occurred on a char-
acter device. Otherwise, the error occurred in the memory
image of the FAT.

Specifies the drive number (0 = A, 1 = B, 2 = C, and so on) if the
error occurred on a block device. This register is not used for
errors that occur on character devices.

Specifies the error value. The error value, in the lower byte only,
can be one of the following:

Value Meaning

00h Attempt to write on write-protected disk
O01h Unknown unit

02h Drive not ready

03h Unknown command

04h CRC error in data

124

Interrupt 24h Critical-Error Handler

Register Description

Value Meaning

05h Incorrect length of drive-request structure
06h Seek error

07h Unknown media type

08h Sector not found

0%h Printer out of paper

0Ah Write fault
0Bh Read fault
0Ch General failure

The upper byte of the DI register is undefined.

BP:SI Points to the DEVICEHEADER structure that contains information
about the device on which the error occurred. The DEVICE-
HEADKER structure has the following form:

DEVICEHEADER STRUC

dhLink dd ? ;1link to next driver

dhAttributes dw ? ;device attributes

dhStrategy dw ? ;strat-routine offset

dhInterrupt dw ? ;intrpt-routine offset
'

dhNameOrUnits db '????????' ;logical-device name

; (char device only)

;or number of units

; (block device only)
DEVICEHEADER ENDS

For a full description of the DEVICEHEADER structure, see
Chapter 9, “Device Drivers.”

The handler must not change the contents of the DEVICEHEADER
structure.

The critical-error handler must determine what action to take in response to the
error. For example, the default handler displays information about the error and
prompts the user for input on how to proceed.

The critical-error handler can call the following Interrupt 21h functions:

Character I/O (Functions 01h through 0Ch)
Get CTRL+C Check Flag (Function 3300h)
Set CTRL+C Check Flag (Function 3301h)
Get Startup Drive (Function 3305h)

Get MS-DOS Version (Function 3306h)

Set PSP Address (Function 50h)

Get PSP Address (Functions 51h and 62h)
Get Extended Error (Function 59h)

No other system functions are permitted. Get Extended Error (Function 59h)
retrieves detailed information about the error and is useful for handlers that
display as much information as possible about the error.

See Also

Interrupt 24h Critical-Error Handler 125

The handler must preserve the BX, CX, DX, DS, ES, SS, and SP registers and
restore the preserved values before returning to the system. The critical-error
handler returns to the system by using the iret instruction. Before returning, it
also must set the AL register to a value specifying the action the system should
take. Depending on what actions are allowed (as specified by bits 3, 4, and 5 in
the AH register), the AL register can contain one of the following values:

Value Meaning

00h Ignore the error. The system permits the system function to return to
the program as if it had completed successfully.

O1h Retry the operation. The system calls the system function again. In
this case, the system expects the handler to have preserved and
restored registers before returning.

02h Terminate the program. The systém sets the termination type to be
EXIT_CRITICAL_ERROR (02h) and carries out the same actions as
End Program (Interrupt 21h Function 4Ch).

03h Terminate the function. The system permits the system function to
return to the program with an error value.

MS-DOS checks the value to ensure that it is allowed. If values 00h and Olh are
not allowed, the system terminates the function. If value 03h is not allowed, the
system terminates the program.

COMMAND.COM provides the default critical-error handler, which displays a
message about the error and, after displaying a question such as “Abort, Retry,
Fail, or Ignore?”, prompts the user for a response.

Interrupt 21h Functions 01h through 12h (Character I/0 Functions)
Interrupt 21h Function 3300h Get CTRL+C Check Flag

Interrupt 21h Function 3301h Set CTRL+C Check Flag

Interrupt 21h Function 3305h Get Startup Drive

Interrupt 21h Function 3306h Get MS-DOS Version

Interrupt 21h Function 50h Set PSP Address

Interrupt 21h Function 51h Get PSP Address

Interrupt 21h Function 59h Get Extended Error

126 Interrupt 25h Absolute Disk Read

B Interrupt 25h Absolute Disk Read Superseded
mov al, Drive ;0=A, 1 =B, 2 =C, etc.
mov bx, seg Buffer
mov ds, bx
mov bx, offset Buffer ;ds:bx points to data buffer
mov cx, Sectors ;number of sectors to read
mov dx, FirstSector ;first logical sector to read
int 25h ;Absolute Disk Read
je error_handler
popf ;MUST pop registers after int returns

Parameters

Return Value

Absolute Disk Read (Interrupt 25h) reads from one or more logical sectors on
the specified drive and copies the data to the specified buffer.

This interrupt has been superseded. Programs should use Read Track on Logical
Drive (Interrupt 21h Function 440Dh Minor Code 61h).

Drive Specifies the number of the drive toread (0= A, 1=B, 2 = C, and so
on).

Buffer Points to either a buffer that receives data or to a DISKIO structure,
depending on the value of the Sectors parameter. If Sectors is OFFFFh, Buffer
must point to a DISKIO structure that contains the starting sector, count of sec-
tors, and address of the buffer to receive the data. The DISKIO structure has
the following form:

DISKIO STRUC

diStartSector dd ? ;sector number to start
diSectors dw ? ;number of sectors
diBuffer dd 7? ;address of buffer

DISKIO ENDS

For a full description of the DISKIO structure, see Chapter 3, “File System.”

The DISKIO structure is required if the size of the specified drive is greater than
32 MB.

Sectors Specifies either the number of sectors to read or OFFFFh, depending

on the size of the specified drive. If the drive size is greater than 32 MB, Sectors
must be OFFFFh.

FirstSector Specifies the number of the first logical sector to read. If Sectors

is OFFFFh, this number is ignored and the starting sector must be specified in
the DISKIO structure.

If the interrupt is successful, the carry flag is clear and the buffer contains the
information read from the disk. Otherwise, the carry flag is set and the AL and
AH registers contain error values. The AL register specifies device-driver errors
and contains one of the following values:

Value Meaning

O1h Unknown unit
02h Drive not ready
04h Data error (CRC error)

06h Seek error

Comments

See Also

Interrupt 25h Absolute Disk Read 127

Value Meaning

07h Unknown media

08h Sector not found
0Bh Read fault

0Ch General failure

OFh Invalid media change

For most computers, the AH register specifies ROM BIOS errors and may con-
tain one of the following values:

Value Description

O1lh Bad command

02h Address mark not found
04h Sector not found

10h Data error (CRC error)

20h Controller failure

40h Seek failure

80h No response from drive

Upon returning, Interrupt 25h leaves the CPU flags on the stack. Programs
should check the carry flag for an error before popping the flags from the stack.

Interrupt 25h does not process critical errors. If one occurs, the interrupt rou-

tine returns an error value to the program but does not issue Critical-Error
Handler (Interrupt 24h).

Interrupt 25h reads logical sectors only. This means, for example, that it cannot
read hidden sectors.

Interrupt 21h Function 440Dh Minor Code 61h Read Track on Logical Drive
Interrupt 24h Critical-Error Handler
Interrupt 26h Absolute Disk Write

128 Interrupt 26h Absolute Disk Write

B Interrupt 26h Absolute Disk Write Superseded
mov al, Drive ;0=A, 1 =B, 2 =C, etc.
mov bx, seg Buffer
mov ds, bx
mov bx, offset Buffer ;ds:bx points to data buffer
mov cx, Sectors ;number of sectors to write
mov dx, FirstSector ;first logical sector to write
int 26h ;Absolute Disk Write
je error_handler
popf JMUST pop registers after int returns

Parameters

Return Value

Absolute Disk Write (Interrupt 26h) writes data from the specified buffer to one
or more logical sectors on the specified drive.

This interrupt has been superseded. Programs should use Write Track on Logi-
cal Drive (Interrupt 21h Function 440Dh Minor Code 41h).

Drive Specifies the number of the drive to write to (0 = A, 1=B, 2 =C, and
so on).

Buffer Points to either a buffer that contains data to write or a DISKIO struc-
ture, depending on the value of the Sectors parameter. If Sectors is OFFFFh,
Buffer must point to a DISKIO structure that contains the starting sector, count
of sectors, and address of the buffer containing the data. The DISKIO structure
has the following form:

DISKIO STRUC

diStartSector dd ? ;sector number to start
diSectors dw ? ;number of sectors
diBuffer dd ? ;address of buffer

DISKIO ENDS

For a full description of the DISKIO structure, see Chapter 3, “File System.”

The DISKIO structure is required if the size of the specified drive is greater than
32 MB.

Sectors Specifies either the number of sectors to write or OFFFFh, depending

on the size of the specified drive. If the drive size is greater than 32 MB, Sectors
must be OFFFFh.

FirstSector Specifies the number of the first logical sector to write. If Sectors

is OFFFFh, this number is ignored and the starting sector must be specified in
the DISKIO structure.

If the interrupt is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AL and AH registers contain error values. The AL register specifies
device-driver errors and contains one of the following values:

Value Meaning

00h Write-protection violation
O1h Unknown unit

02h Drive not ready

04h Data error (CRC error)

06h Seek error

Comments

See Also

Interrupt 26h Absolute Disk Write 129

Value Meaning

07h Unknown media

08h Sector not found
0Ah Write fault

0Ch General failure

OFh Invalid media change

For most computers, the AH register specifies ROM BIOS errors and may con-
tain one of the following values:

Value Description

O1h Bad command

02h Address mark not found
03h Write-protection fault
04h Sector not found

10h Data error (CRC error)
20h Controller failure

40h Seek failure

80h No response from drive

Upon returning, Interrupt 26h leaves the CPU flags on the stack. Programs
should check the carry flag for an error before popping the flags from the stack.

Interrupt 26h does not process critical errors. If one occurs, the interrupt rou-
tine returns an error value to the program but does not issue Critical-Error
Handler (Interrupt 24h).

Interrupt 26h writes logical sectors only. This means, for example, that the inter-
rupt cannot write to hidden sectors.

Interrupt 21h Function 440Dh Minor Code 41h Write Track on Logical Drive
Interrupt 24h Critical-Error Handler
Interrupt 25h Absolute Disk Read

130 Interrupt 27h Terminate and Stay Resident

B Interrupt 27h Terminate and Stay Resident Superseded
mov dx, offset Bytes ;number of bytes to remain resident
int 27h ;Terminate and Stay Resident

Terminate and Stay Resident (Interrupt 27h) ends the current program by
returning control to its parent program, but it leaves the program in memory and
preserves such program resources as open files and allocated memory.

This interrupt has been superseded. Programs should use Keep Program
(Interrupt 21h Function 31h).

Parameter Bytes Specifies the number of program bytes to remain in memory. This
number must be in the range 0000h through OFFFFh.

Return Value This interrupt does not return.

Comments This interrupt is intended to be used by .COM programs. When a program
_ issues the interrupt, the CS register must contain the segment address of the
program segment prefix (PSP).

This interrupt carries out the following actions:

B Sets the new size of the program by converting the value of the Byres
parameter to a corresponding number of paragraphs and reallocating the
program memory. Program memory includes only-the PSP and program
data and code. The reallocation does not affect the program’s environ-
ment block, nor does it affect the memory allocated by the program after
it was loaded.

® Flushes the file buffers but leaves files open.

B Restores Termination Address (Interrupt 22h) from offset OAh in the
PSP (pspTerminateVector field).

B Restores the address of CTRL+C Handler (Interrupt 23h) from offset OEh
in the PSP (pspControlCVector field).

B Restores the address of Critical-Error Handler (Interrupt 24h) from
offset 12h in the PSP (pspCritErrorVector field).

After completing these actions, this interrupt transfers control to the address
specified by offset 0Ah in the PSP.

See Also Interrupt 21h Function 31h Keep Program
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler

Interrupt 28h MS-DOS Idle Handler 131

B Interrupt 28h MS-DOS ldle Handler Superseded

Comments

See Also

MS-DOS Idle Handler (Interrupt 28h) carries out background operations, such
as printing from a queue, while the system waits for user input. MS-DOS issues
this interrupt while waiting for completion of character 1/0 functions (Interrupt
21h Functions 01h through 0Ch).

Programs that are idle (for example, programs that are polling for user input)
can issue Interrupt 28h. Programs should also issue MS-DOS Idle Call (Interrupt
2Fh Function 1680h).

MS-DOS provides a minimal MS-DOS idle handler that returns immediately.
System commands, such as print, install their own handlers to carry out back-
ground processing. Although other programs can install MS-DOS idle handlers,
these programs must take great care to prevent corrupting internal stacks and
registers.

MS-DOS issues Interrupt 28h only if a character I/O function has not yet com-
pleted, but does not issue the interrupt if a critical-error handler is currently run-
ning (that is, the ErrorMode internal variable is not zero). MS-DOS issues the
interrupt each time it loops through a low-level read or write operation, and con-
tinues to issue the interrupt until a character is read or written.

Programs that install an MS-DOS idle handler should create a chain of
handlers—that is, save the original address from the Interrupt 28h vector-table
entry and call the address as part of processing.

MS-DOS makes few preparations before issuing Interrupt 28h. When control
transfers to the MS-DOS idle handler, segment registers point to internal
MS-DOS data segments. The SS:SP registers point to the top of the MS-DOS
internal I/O stack. To prevent corrupting the system data and stack, the MS-
DOS idle handler must switch to its own stack, preserve all registers, and set
segment registers to point to its own data segments.

Although the MS-DOS idle handler can call system functions, it must not call
character 1/0 functions (Interrupt 21h Functions 01h through 0Ch) without first
setting the ErrorMode variable to 1. If the handler calls these functions without

setting ErrorMode, the call will corrupt the internal I/O stack and MS-DOS
operation.

Before returning to the system, the MS-DOS idle handler must restore the

SS:SP registers to point to the I/0 stack, restore all registers, and set the Error-
Mode variable to zero.

Interrupt 2Fh Function 1680h MS-DOS Idle Call

132 Interrupt 2Fh Multiplex Interrupt

B Interrupt 2Fh Multiplex Interrupt

Multiplex Interrupt (Interrupt 2Fh) is a common entry point for terminate-and-
stay-resident programs (TSRs) that provide services to other programs. Programs
use this interrupt to request services from and to check the status of such
MS-DOS commands as print, assign, and append.

A program requests service by placing a specified function number in the AX
register and issuing Interrupt 2Fh. Some functions may require additional values
in registers before issuing the interrupt.

Comments
Value

Following is a list of the Interrupt 2Fh functions:

Function name

0100h
0101h
0102h
0103h
0104h
0105h
0106h
0600h
1000h
1100h
1400h
1680h
1A00h
4300h
4310h
4800h
4810h
4B01h
4B02h
4B03h
4B04h
4BOSh
0ADS80h
0ADS81h
0ADS82h

Get PRINT.EXE Installed State
Add File to Queue

Remove File from Print Queue
Cancel All Files in Print Queue
Hold Print Jobs and Get Status
Release Print Jobs

Get Printer Device

Get ASSIGN.COM Installed State
Get SHARE.EXE Installed State
Get Network Installed State

Get NLSFUNC.EXE Installed State
MS-DOS Idle Call

Get ANSI.SYS Installed State

Get HIMEM.SYS Installed State
Get HIMEM.SYS Entry-Point Address
Get DOSKEY.COM Installed State
Read Command Line

Build Notification Chain

Detect Switcher

Allocate Switcher ID

Free Switcher ID

Identify Instance Data

Get KEYB.COM Version Number
Set KEYB.COM Active Code Page
Set KEYB.COM Country Flag

Interrupt 2Fh Multiplex Interrupt

133

Value Function name

0AD83h Get KEYB.COM Country Flag

0B0OOh Get GRAFTABL.COM Installed State
0B700h Get APPEND.EXE Installed State

0B702h Get APPEND.EXE Version

0B704h Get APPEND.EXE Directory List Address
0B706h Get APPEND.EXE Modes Flag

0B707h Set APPEND.EXE Modes Flag

0B711h Set True-Name Flag

These functions are available only if the corresponding MS-DOS command or
program has been loaded. If the command or program is not loaded, MS-DOS

carries out a default action, such as setting the carry flag and setting the AX

register to 0001h (ERROR_INVALID_FUNCTION).

Programs that install their own Interrupt 2Fh handler must create a chain of

handlers—that is, save the original address from the Interrupt 2Fh vector-table
entry and call the address as part of their processing. Note that Interrupt 2Fh
function numbers 0000h through OBFFFh are reserved for system programs and
commands. Other programs can use function numbers 0C000h through OFFFFh.

134 Interrupt 2Fh Function 0100h Get PRINT.EXE Installed State

B Interrupt 2Fh Function 0100h Get PRINT.EXE Installed State

Parameters
Return Value

mov ax, 0100h ;Get PRINT.EXE Installed State
int 2Fh ;Multiplex Interrupt

Get PRINT.EXE Installed State (Interrupt 2Fh Function 0100h) determines
whether the resident portion of the print command has been loaded.

This function has no parameters.

The AL register contains OFFh if print has been loaded or 00h if it has not.

Interrupt 2Fh Function 0101h Add File to Queue 135

B Interrupt 2Fh Function 0101h Add File to Queue

Parameter

Return Value

See Also

mov dx, seg AddPacket

mov ds, dx

mov dx, offset AddPacket ;ds:dx points to level and filename
mov ax, 0101h ;Add File to Queue

int 2Fh ;Multiplex Interrupt

Add File to Queue (Interrupt 2Fh Function 0101h) adds a file to the print queue.

AddPacket Points to a QUEUEPACKET structure that contains the name of
the file to add. The QUEUEPACKET structure has the following form:

QUEUEPACKET STRUC
qpLevel db O ;level, must be zero

gpFilename dd ? ;segment:offset pointing to ASCIIZ path
QUEUEPACKET ENDS

For a full description of the QUEUEPACKET structure, see Section 7.11,
“Structures.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag is

set and the AX register contains an error value, which may be one of the fol-
lowing:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND

0003h ERROR_PATH_NOT_FOUND

0004h ERROR_TOO_MANY_OPEN_FILES
0005h ERROR_ACCESS_DENIED

0008h ERROR_QUEUE_FULL

000Ch ERROR_INVALID_ACCESS

000Fh ERROR_INVALID_DRIVE

Interrupt 2Fh Function 0102h Remove File from Print Queue

136 Interrupt 2Fh Function 0102h Remove File from Print Queue

B Interrupt 2Fh Function 0102h Remove File from Print Queue

Parameter

Return Value

See Also

mov
mov
mov

mov
int

dx, seg FileName

ds, dx

dx, offset FileName ;ds:dx points to ASCIIZ filename
ax, 0102h ;Remove File from Print Queue
2Fh ;Multiplex Interrupt

Remove File from Print Queue (Interrupt 2Fh Function 0102h) removes a
specified file or files from the print queue.

FileName Points to a zero-terminated string that specifies the file or files to be
removed from the queue. The string must'be a valid MS-DOS filename, but may
contain wildcards to remove multiple files from the print queue.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be 0002h
(ERROR_FILE_NOT_FOUND).

Interrupt 2Fh Function 0101h Add File to Queue

Interrupt 2Fh Function 0103h Cancel All Files in Print Queue 137

B Interrupt 2Fh Function 0103h Cancel All Files in Print Queue

Parameters
Return Value
See Also

mov ax, 0103h ;Cancel All Files in Print Queue
int 2Fh ;Multiplex Interrupt

Cancel All Files in Print Queue (Interrupt 2Fh Function 0103h) stops the current
print job and removes all files from the print queue.

This function has no parameters.
This function has no return value.

Interrupt 2Fh Function 0102h Remove File from Print Queue

138 Interrupt 2Fh Function 0104h Hold Print Jobs and Get Status

Interrupt 2Fh Function 0104h Hold Print Jobs and Get Status

mov ax, 0104h ;Hold Print Jobs and Get Status
int 2Fh ;Multiplex Interrupt

mov ErrorCount, dx ;errors during printing

mov [PrintQueue], si

mov ax, ds

mov [PrintQueue+2], ax ;ds:si points to print queue

Hold Print Jobs and Get Status (Interrupt 2Fh Function 0104h) stops the current
print job and returns the address of the print queue.

Parameters This function has no parameters.

Return Value When the function returns, the DX register contains an error count and DS:SI
contains the 32-bit address (segment:offset) of the print queue.

Comments The print queue consists of a series of 64-byte entries, each containing a zero-
terminated string specifying the path of a file in the queue. The first file in the
list is the one currently being printed. The last entry in the list consists of a
single null character (COh).

Programs must not change the contents of the print queue. To add a file, use
Add File to Queue (Interrupt 2Fh Function 0101h); to remove a file, use
Remove File from Print Queue (Interrupt 2Fh Function 0102h).

The print spooler continues to hold the current print job until Release Print Jobs
(Interrupt 2Fh Function 0105h) is called.

See Also Interrupt 2Fh Function 0101h Add File to Queue
Interrupt 2Fh Function 0102h Remove File from Print Queue
Interrupt 2Fh Function 0105h Release Print Jobs

Interrupt 2Fh Function 0105h Release Print Jobs 139

B Interrupt 2Fh Function 0105h Release Print Jobs

Parameters
Return Value
See Also

mov ax, 0105h ;Release Print Jobs
int 2Fh ;Multiplex Interrupt

Release Print Jobs (Interrupt 2Fh Function 0105h) restarts the print queue.
Programs must use this function after calling Hold Print Jobs and Get Status
(Interrupt 2Fh Function 0104h) to restart the current print job.

This function has no parameters.

This function has no return value.

Interrupt 2Fh Function 0104h Hold Print Jobs and Get Status

140 Interrupt 2Fh Function 0106h Get Printer Device

B Interrupt 2Fh Function 0106h Get Printer Device

Parameters
Return Value

mov ax, 0106h ;Get Printer Device

int 2Fh ;Multiplex Interrupt

jnc queue_empty ;carry clear means print queue is empty
mov [DevHeader], si

mov [DevHeader+2], ds ;ds:si points to print device header

Get Printer Device (Interrupt 2Fh Function 0106h) returns the address of the
device header for the current printer.

This function has no parameters.

If the queue is empty, the carry flag is clear and the AX register contains zero.
Otherwise, the carry flag is set, the DS:SI registers point to a DEVICEHEADER

structure corresponding to the printer device header, and AX contains 0008h
(ERROR_QUEUE_FULL).

Interrupt 2Fh Function 0600h Get ASSIGN.COM Installed State 141

B Interrupt 2Fh Function 0600h Get ASSIGN.COM Installed State

mov ax, 0600h ;Get ASSIGN.COM Installed State
int 2Fh ;Multiplex Interrupt

Get ASSIGN.COM Installed State (Interrupt 2Fh Function 0600h) determines
whether the resident portion of the assign command has been loaded.

Parameters This function has no parameters.
Return Value The AL register contains OFFh if assign has been loaded or 00h if it has not.

142 Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

B Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

Parameters
Return Value

Comments

See Also

mov ax, 1000h ;Get SHARE.EXE Installed State
int 2Fh ;Multiplex Interrupt
cmp al, OFFh ;OFFh means installed

Get SHARE.EXE Installed State (Interrupt 2Fh Function 1000h) determines
whether the resident portion of the Share program has been loaded.

This function has no parameters.

The AL register contains OFFh if the Share program has been loaded or 00h if it
has not.

Some operating environments, such as Windows, intercept this multiplex inter-
rupt and always return a nonzero value whether the Share program is loaded or
not. To determine whether file sharing is available, a program should check for
error values upon returning from carrying out a file-sharing function, such as
Lock/Unlock File (Interrupt 21h Function 5Ch).

Interrupt 21h Function 5Ch Lock/Unlock File

Interrupt 2Fh Function 1100h Get Network Installed State 143

B Interrupt 2Fh Function 1100h Get Network Installed State

mov ax, 1100h ;Get Network Installed State
int 2Fh ;Multiplex Interrupt

Get Network Installed State (Interrupt 2Fh Function 1100h) determines whether
the resident portion of the network software has been installed.

Parameters This function has no parameters.

Return Value The AL register contains OFFh if the network software has been installed or 00h
if it has not.

144 Interrupt 2Fh Function 1400h Get NLSFUNC.EXE Installed State

B Interrupt 2Fh Function 1400h Get NLSFUNC.EXE Installed State

Parameters
Return Value

mov ax, 1400h ;Get NLSFUNC.EXE Installed State
int 2Fh ;Multiplex Interrupt
cmp al, OFFh ;OFFh means installed

Get NLSFUNC.EXE Installed State (Interrupt 2Fh Function 1400h) determines
whether the resident portion of the Nlsfunc program is loaded.

This function has no parameters.

The AL register contains OFFh if the Nlsfunc program has been loaded or 00h if
it has not.

Interrupt 2Fh Function 1680h MS-DOS Idle Call 145

B Interrupt 2Fh Function 1680h MS-DOS Idle Call

Parameters
Return Value

Comments

See Also

mov ax, 1680h ;MS-DOS Idle Call
int 2Fh ;Multiplex Interrupt

MS-DOS 1dle Call (Interrupt 2Fh Function 1680h) informs the system that the

program is idle—for example, waiting for user input. The function permits the

system to suspend the idle program temporarily and transfer control to another
program.

This function has no parameters.

The function returns the function status in the AL register. If AL is zero, the

system supports suspension of idle programs. Otherwise, the system does not
support suspension.

Programs should use this interrupt when they are idle. Before using this inter-
rupt, however, a program should use Get Interrupt Vector (Interrupt 21h Func-
tion 35h) to ensure that the interrupt-handler address for Interrupt 2Fh is not
zero.

This interrupt is nonblocking, meaning the system does not suspend the program
unless another program is ready to be run. In most cases, the interrupt returns
immediately and the program continues running. To make sure the system can
suspend the program, a program that remains idle should repeatedly call the
interrupt as part of its idle loop.

Interrupt 21h Functién 35h Get Interrupt Vector
Interrupt 28h MS-DOS Idle Handler

146 Interrupt 2Fh Function 1A00h Get ANSLSYS Installed State

B Interrupt 2Fh Function 1A00h Get ANSI.SYS Installed State

Parameters
Return Value

mov ax, 1lAOOh ;Get ANSI.SYS Installed State
int 2Fh ;Multiplex Interrupt
cmp al, OFFh ;OFFh means installed

Get ANSI.SYS Installed State (Interrupt 2Fh Function 1A00h) determines
whether the ANSI.SYS device driver has been loaded.

This function has no parameters.

The AL register contains OFFh if ANSI.SYS has been loaded or 00h if it
has not.

Interrupt 2Fh Function 4300h Get HIMEM.SYS Installed State 147

B Interrupt 2Fh Function 4300h Get HIMEM.SYS Installed State

Parameters
Return Value
Comments

See Also

mov ax, 4300h ;Get HIMEM.SYS Installed State
int 2Fh ;Multiplex Interrupt
cmp al, 80h ;80h means installed

Get HIMEM.SYS Installed State (Interrupt 2Fh Function 4300h) determines
whether the extended-memory manager, HIMEM.SYS, has been loaded.

This function has no parameters.
The AL register contains 80h if the driver has been loaded or 00h if it has not.

The HIMEM.SYS driver provides a set of functions that programs use to
independently manage extended memory. Although programs can also use these
functions to manage the high memory area (HMA) and upper memory blocks
(UMBS), programs should not do so if MS-DOS already manages these areas.

This function returns the installed state of any extended-memory manager as
long as the manager conforms to the Lotus/Intel/Microsoft/AST eXtended
Memory Specification (XMS) version 2.0.

Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address

148 Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address

B Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address

Parameters
Return Value

Comments

mov ax, 4310h ;Get HIMEM.SYS Entry-Point Address
int 2Fh ;Multiplex Interrupt

mov word ptr [XMMAddr], bx

mov word ptr [XMMAddr+2], es ;es:bx contains entry-point address

Get HIMEM.SYS Entry-Point Address (Interrupt 2Fh Function 4310h) returns
the 32-bit address (segment:offset) of the entry point for the extended-memory-
management functions for HIMEM.SYS.

This function has no parameters.

The ES:BX registers contain the 32-bit address (segment:offset) of the entry
point.

Before retrieving and calling this entry point, programs must use Get
HIMEM.SYS Installed State (Interrupt 2Fh Function 4300h) to ensure that
HIMEM.SYS has been loaded.

The extended-memory-management functions enable programs to manage
extended memory, the high memory area (HMA), and upper memory blocks
(UMBSs). Programs also use the functions to enable and disable the A20 address
line. A program calls a function by placing the function number in the AH regis-
ter, filling other registers as needed, and calling the entry point. Following is a
list of the extended-memory-management functions:

Number Name

00h Get XMS Version

0O1h Allocate HMA

02h Free HMA

03h Global Enable A20 Line
04h Global Disable A20 Line
05h Local Enable A20 Line
06h Local Disable A20 Line
07h Query A20 Line Status
08h Query Free Extended Memory
0% Allocate EMB

0OAh Free EMB

O0Bh Move EMB

0Ch Lock EMB

0Dh Unlock EMB

OEh Get Handle Information
OFh Resize EMB

10h Allocate UMB

11h Free UMB

See Also

Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address 149

A full description of these functions is beyond the scope of this book. For more
information about them, see the Lotus/Intel/Microsoft/ AST eXtended Memory
Specification (XMS) version 2.0.

Programs must not use extended-memory-management functions to manage the
HMA or UMB:s if MS-DOS already manages these areas.

This function returns the entry-point address of any extended-memory manager
as long as the manager conforms to the eXtended Memory Specification.

Interrupt 2Fh Function 4300h Get HIMEM.SYS Installed State

150 Interrupt 2Fh Function 4800h Get DOSKEY.COM Installed State

B Interrupt 2Fh Function 4800h Get DOSKEY.COM Installed State

Parameters
Return Value

See Also

mov ax, 4800h ;Get DOSKEY.COM Installed State
int 2Fh ;Multiplex Interrupt
cmp al, OOh ;O0h means not installed

Get DOSKEY.COM Installed State (Interrupt 2Fh Function 4800h) determines
whether the resident portion of the Doskey program has been loaded.

This function has no parameters.

The AL register contains a nonzero value if the Doskey program has been
loaded or 00h if it has not. .

Interrupt 2Fh Function 4810h Read Command Line

Interrupt 2Fh Function 4810h Read Command Line 151

B Interrupt 2Fh Function 4810h Read Command Line

Parameter

Return Value

Comments

mov
mov
mov

mov
int

dx,
ds,
dx,

ax,
2Fh

seg Line
dx
offset Line ;ds:dx points to buffer to receive input

4810h ;Read Command Line
;Multiplex Interrupt

Read Command Line (Interrupt 2Fh Function 4810h) reads a line of up to 126
characters and copies it to the specified buffer. While the line is being read, all
Doskey function keys and macros are enabled. This means, for example, that
the user can select a line from the Doskey history, edit a line, or enter macros
that are automatically expanded.

Line Points to a buffer that receives the command line. The buffer must have
the following form:
Offset Contents
00h The maximum size of the buffer. It must be 128 bytes.
01h A number that is one less than the number of characters read. The
function copies a carriage-return character (ASCII 0Dh) to the buffer
but does not include the byte in its total.
02h The first byte of the input line.

If the function is successful, the AX register contains zero and the input line is

copied, along with the number of bytes in the line, to the buffer pointed to by
the Line parameter. :

If the user types a macro name, AX contains zero, but no text is copied to the
buffer. Instead, the program must immediately call the function a second time to
expand the macro and copy the macro text to the buffer.

This function adds the command line to the Doskey history. If the user types a
macro name or a special parameter (such as $*), the program must call the
function a second time to expand the macro or parameter. On the second call,
the function automatically writes the expanded macro to the screen, overwriting
the macro name. It also copies the expanded macro text to the buffer.

152 Interrupt 2Fh Function 4B01h Build Notification Chain

B Interrupt 2Fh Function 4B01h Build Notification Chain

Warning

Parameter

Return Value

Comments

mov bx, O
mov es, bx ;es:bx 1s zero
mov dx, WORD PTR [Service]
mov cx, WORD PTR [Service+2]
;ex:dx is service-function handler addr
mov ax, 4BOlh ;Build Notification Chain
int 2Fh ;Multiplex Interrupt
mov cx, es
or cx, di
je no_notifychain ;es:bx 1s zero if no notification chain

Build Notification Chain (Interrupt 2Fh Function 4B01h) creates a linked list of
notification-function handlers for global client programs and for client programs
running in the current session. The task switcher calls this function to determine
which client programs are to be notified about changes to the session. To receive
notification, client programs must intercept Interrupt 2Fh and process Build
Notification Chain when they receive the function call.

To make sure that programs in the current session work correctly during the ses-
sion switch, a client program that adds itself to the notification chain must execute
a patch routine each time the task switcher calls the client program’s Query
Suspend (Notification Function 0001h). For more information about the patch rou-
tine, see Appendix D, “Task Switcher API Patch.”

Service Points to the service-function handler for the task switcher. A client
program can use this address to call the task switcher’s service functions, such
as Get Version (Service Function 0000h) and Test Memory Region (Service
Function 0001h).

If a client program is to be notified, the ES:BX registers contain the address of
an SWCALLBACKINFO structure containing information about the client pro-
gram. Otherwise, the ES:BX registers contain zero.

A client program’s Interrupt 2Fh handler processes this function. If the client
program does not require notifications, its handler must use the jmp instruction
to transfer control to the previous Interrupt 2Fh handler (whose address the
client program must save when it installs its own handler). If a client program
requires notification, its Interrupt 2Fh handler must first pass Build Notification
Chain to any other client programs that also require notification, by pushing the
flags and using the call instruction to call the previous handler. The handler must
not modify registers before calling the previous handler.

When the previous handler returns, the ES:BX registers contain either zero or
the address of an SWCALLBACKINFO structure for another client program. In
either case, before the client program can return from the interrupt, it must fill
its own SWCALLBACKINFO structure, copy the contents of the ES:BX regis-
ters to the scbiNext field of its own structure, and copy the address of its
SWCALLBACKINFO structure into the ES:BX registers.

See Also

Interrupt 2Fh Function 4B01h Build Notification Chain 153

The SWCALLBACKINFO structure has the following form:
SWCALLBACKINEO STRUC

scbiNext dd ? ;address of next structure in chain
scbiEntryPoint dd ? ;address of notification-function handler
scbiReserved dd ? ;reserved

scbiAPI dd ? ;address of list of SWAPIINFO structures

SWCALLBACKINFO ENDS

For a full description of the SWCALLBACKINFO and SWAPIINFO structures,
see Section 7.11, “Structures.”

A client program processes Build Notification Chain only after all previously
loaded client programs have processed it. The most recently loaded client pro-

gram is always first in the notification chain, followed by the next most recently
loaded, and so on.

The relationship between loading order and processing order is important, since
it gives a client program requesting asynchronous services from other clients a
chance to cancel those requests when the task switcher notifies it of a pending
switch. If the order were reversed, the client program providing the asynchro-
nous service would have to block the switch until it completed the service.

Any client program that provides services to other programs must add itself to
the notification chain.

A client program should not save the Service address, since the task switcher
may change its current service-function-handler address at any time. To ensure
that a client program always has the latest address of the service-function
lfl::dler’ the task switcher sends the latest address with each notification

ction.

Although a client program modifies the ES and BX registers, it must preserve all
other registers.

Service Function 0000h Get Version
Service Function 0001h Test Memory Region

154 Interrupt 2Fh Function 4B02h Detect Switcher

B Interrupt 2Fh Function 4B02h Detect Switcher

Parameters
Return Value

Comments

mov bx, O ;must be zero

mov di, ©

mov es, di ;es:di must be zero
mov ax,4BO2h ;Detect Switcher

int 2Fh ;Multiplex Interrupt
mov cx, es

or cx, di

je no_switcher ;es:di is zero if no task switcher loaded
mov WORD PTR [Service], di

mov ax, es

mov WORD PTR [Service+2], ax

;es:di is service-function handler address

Detect Switcher (Interrupt 2Fh Function 4B02h) determines whether a task
switcher is loaded. Client programs (such as a session manager) that need to
prevent or control the interruptions caused by task switching should call this
function during initialization.

This function has no parameters.

If a task switcher is loaded, the AX register contains 0000h and the ES:DI regis-
ters contain the address of the service-function handler for the task switcher.
Otherwise, the ES:DI registers contain zero.

If a task switcher is loaded, the function returns the address of the task
switcher’s service-function handler. A client program can use this address to call
the task switcher’s service functions, such as Get Version (Service Function
0000h) and Hook Notification Chain (Service Function 0004h).

Detect Switcher returns the service-function handler address of the most
recently loaded task switcher. A client program can check for other task switch-
ers by examining the svsPrevSwitcher field in the SWVERSION structure
returned by Get Version (Service Function 0000h). If this field contains a
nonzero value, it points to the service-function handler for another task
switcher. The client program can call this handler to retrieve and examine the
other task switcher’s SWVERSION structure, and it can continue this process

until reaching the svsPrevSwitcher field for the first task switcher loaded, which
contains zero.

The SWVERSION structure has the following form:
SWVERSION STRUC

svsAPIMajor dw ? ;protocol supported major version
svsAPIMinor dw ? ;protocol supported minor version
svsProductMajor dw ? ;task switcher's major version
svsProductMinor dw ? ;task switcher's minor version
svsSwitcherlID dw ? ;task-switcher identifier

svsFlags dw ? ;operation flags

svsName dd ? ;points to task-switcher name (ASCIIZ)
svsPrevSwitcher dd ?

;previous task switcher's entry address
SWVERSION ENDS

For a full description of the SWVERSION structure, see Section 7.11, “Struc-
tures.”

See Also

Interrupt 2Fh Function 4B02h Detect Switcher 155

A task switcher processing Detect Switcher can enable interrupts and call any
MS-DOS system function. Although the task switcher modifies the AX, ES, and
DI registers, it must preserve all other registers.

Service Function 0000h Get Version
Service Function 0004h Hook Notification Change

156 Interrupt 2Fh Function 4B03h Allocate Switcher ID

B Interrupt 2Fh Function 4B03h Allocate Switcher ID

Parameter

Return Value

Comments

See Also

mov bx, O ;required for future versions

les di, Service ;address of service-function handler

mov ax, 4BO3h ;Allocate Switcher ID

int 2Fh ;Multiplex Interrupt

cmp bx, O ;zero means could not allocate identifier
je error_handler

mov [ID], bx ;switcher identifier

Allocate Switcher ID (Interrupt 2Fh Function 4B03h) returns a unique switcher
identifier (in the range 0001h through 000Fh). A task switcher (or controlling
session manager) calls this function on initialization and then uses the switcher
identifier to create session identifiers for programs that it manages. The first-
loaded task switcher is responsible for processing this function.

Client programs must not call this function.

Service Points to the service-function handler for the calling task switcher.
The task switcher that processes this function can use this address to call service
functions, such as Get Version (Service Function 0000h).

If Allocate Switcher ID is successful, the AX register contains 0000h and the
BX register contains the new task switcher’s identifier. Otherwise, the BX regis-
ter contains 0000h. '

A task switcher must determine whether it is the first to load by calling Detect
Switcher (Interrupt 2Fh Function 4B02h). If it is the first (that is, no other task
switcher is loaded), it is responsible for creating a switcher identifier for itself
and for processing all subsequent calls to Allocate Switcher ID. If another task
switcher is already running, the new task switcher must call Allocate Switcher
ID to get a switcher identifier for itself. If Allocate Switcher ID returns zero in
the BX register, the first task switcher was unable to allocate a new identifier
and the calling task switcher must exit or disable itself.

A task switcher uses its switcher identifier as the high 4 bits of any session
identifiers it creates to ensure that no two session identifiers are the same. The
switcher identifier must be a 4-bit nonzero value.

The task switcher that processes this function must keep track of the switcher
identifiers that it creates. One method is to maintain a 16-bit array, setting and
freeing bits as other task switchers call Allocate Switcher ID and Free Switcher
ID (Interrupt 2Fh Function 4B04h). In this method, bit 0 must be set (zero

is not a valid switcher identifier). Regardless of the method used, the task
switcher must disable interrupts when it examines and changes its record of allo-
cated switcher identifiers.

A task switcher processing Allocate Switcher ID can enable interrupts (except
when examining and recording allocated identifiers) and call any MS-DOS sys-
tem function. Although the task switcher modifies the AX and BX registers, it
must preserve all other registers.

Interrupt 2Fh Function 4B02h Detect Switcher
Interrupt 2Fh Function 4B04h Free Switcher ID
Service Function 06000h Get Version

Interrupt 2Fh Function 4B04h Free SwitcherID 157

B Interrupt 2Fh Function 4B04h Free Switcher ID

Parameters

Return Value

Comments

See Also

mov bx, ID ;switcher identifier to be freed

les di, Service ;address of service-function handler

mov ax, 4BO4h ;Free Switcher ID

int 2Fh ;Multiplex Interrupt

cmp bx, O

jne error_handler ;nonzero means invalid switcher identifier

Free Switcher ID (Interrupt 2Fh Function 4B04h) frees the switcher identifier
associated with the task switcher having the specified service-function handler.
When a task switcher terminates it calls this function.

Client programs must not call this function.

ID Specifies the switcher identifier to be freed. It must have been allocated by
using Allocate Switcher ID (Interrupt 2Fh Function 4B03h).

Service Points to the terminating task switcher’s service-function handler. The
processing task switcher can use this address to call the terminating task

switcher’s service functions, such as Test Memory Region (Service Function
0001h).

If Free Switcher ID is successful, the AX and BX registers both contain 0000h.
Otherwise, the BX register contains a nonzero value, indicating an invalid
switcher identifier.

The task switcher processing this function can enable interrupts (except when
examining and recording allocated identifiers) and call any MS-DOS system
function. Although the task switcher modifies the AX and BX registers, it must
preserve all other registers.

Interrupt 2Fh Function 4B03h Allocate Switcher ID
Service Function 0001h Test Memory Region

158 Interrupt 2Fh Function 4B05h Identify Instance Data

B Interrupt 2Fh Function 4B05h Identify Instance Data

Parameter

Return Value

Comments

mov bx, O

mov es, bx ;es:bx = zero

mov dx, WORD PTR [Service]

mov cx, WORD PTR [Service+2] ;cx:dx = addr of serv-function handler
mov ax, 4BOS5Sh ;Identify Instance Data

int 2Fh ;Multiplex Interrupt

mov cx, es

or cx, bx

Jje no_instancedata ;es:bx = zero if no inst data chain

Identify Instance Data (Interrupt 2Fh Function 4B05h) identifies instance data
maintained by a client program. A task switcher calls this function to create a
linked list of instance data blocks for all client programs running on the system.
Client programs with instance data must intercept Interrupt 2Fh and process
Identify Instance Data when they receive the function call.

Service Points to the service-function handler for the task switcher. A client
program can use this address to call the task switcher’s service functions, such
as Test Memory Region (Service Function 0001h).

If any client programs have instance data, the ES:BX registers contain the
address of an SWSTARTUPINFO structure. Otherwise, the ES:BX registers con-
tain zero.

A client program’s Interrupt 2Fh handler processes this function. If the client
program does not have instance data, its handler must use the jmp instruction to
transfer control to the previous Interrupt 2Fh handler (whose address the client
program must save when it installs its own handler). If a client has instance data,
its Interrupt 2Fh handler must first pass Identify Instance Data to any other
client programs by pushing the flags and using the call instruction to call the pre-

vious handler. The handler must not modify registers before calling the previous
handler.

When the previous handler returns, the ES:BX registers contain either zero or
the address of an SWSTARTUPINFO structure for another client program. In
either case, before the client program can return from the interrupt, it must
fill its own SWSTARTUPINFO structure, copy the ES:BX contents to the
sisNextDev field of its own structure, and copy the address of its SWSTART-
UPINFO structure into the ES:BX registers.

The SWSTARTUPINFO structure has the following form:
SWSTARTUPINFO STRUC

sisVersion dw 3 ;ignored

sisNextDev dd ? ;points to prev handler's SWSTARTUPINFO
sisVirtDevFile dd O ;ignored

sisReferenceData dd ? ;ignored

sisInstanceData dda ? ;points to SWINSTANCEITEM structures

SWSTARTUPINFO ENDS

For a full description of the SWSTARTUPINFO and SWINSTANCEITEM struc-
tures, see Section 7.11, “Structures.”

See Also

Interrupt 2Fh Function 4B05h Identify Instance Data 159

A client program processing Identify Instance Data can enable interrupts and
call any MS-DOS system function. Although the client program modifies the
AX, ES, and BX registers, it must preserve all other registers.

Service Function 0001h Test Memory Region

160 Interrupt 2Fh Function 0AD80h Get KEYB.COM Version Number

B Interrupt 2Fh Function 0AD80h Get KEYB.COM Version Number

Parameters
Return Value

mov ax, OADS8Oh ;Get KEYB.COM Version Number
int 2Fh ;Multiplex Interrupt
mov MajorV, bh ;major version number
mov MinorVv, bl ;minor version number

Get KEYB.COM Version Number (Interrupt 2Fh Function 0AD80h) returns the
major and minor version numbers for the Keyb program.

This function has no parameters.

The BX register contains a nonzero version number if the Keyb program has
been loaded or zero if it has not.

Interrupt 2Fh Function 0AD81h Set KEYB.COM Active Code Page 161

B Interrupt 2Fh Function

OAD81h Set KEYB.COM Active Code Page

mov

mov
int
je

bx, CodePagelD ;new code page

ax, OAD81lh ;Set KEYB.COM Active Code Page
2Fh ;Multiplex Interrupt
error_handler

Set KEYB.COM Active Code Page (Interrupt 2Fh Function 0ADS81h) sets the
active code page for KEYB.COM to the specified code page.

Parameter CodePagelID Identifies the code page. This parameter can be one of the fol-
lowing values:

Value

437
850
852
860
863
865

United States
Multilingual (Latin I)
Slavic (Latin II)
Portuguese
Canadian-French
Nordic

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains 0001h if the code page is not valid.

162 Interrupt 2Fh Function 0AD82h Set KEYB.COM Country Flag

B Interrupt 2Fh Function 0AD82h Set KEYB.COM Country Flag

Parameter
Return Value

See Also

mov bl, CountryFlag ;00h = domestic, OFFh = foreign
mov ax, OAD82h ;Set KEYB.COM Country Flag
int 2Fh ;Multiplex Interrupt

Set KEYB.COM Country Flag (Interrupt 2Fh Function 0AD82h) sets the
current value of the KEYB.COM country flag.

CountryFlag Specifies whether the keyboard being set is domestic (00h) or
foreign (OFFh).

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set if the CountryFlag parameter is neither 00h nor OFFh.

Interrupt 2Fh Function 0AD83h Get KEYB.COM Country Flag

Interrupt 2Fh Function 0AD83h Get KEYB.COM Country Flag 163

B Interrupt 2Fh Function 0AD83h Get KEYB.COM Country Flag

Parameters
Return Value
See Also

mov ax, OAD83h ;Get KEYB.COM Country Flag
int 2Fh ;Multiplex Interrupt
mov CountryFlag, bl ;O00h = domestic, OFFh = foreign

Get KEYB.COM Country Flag (Interrupt 2Fh Function 0AD83h) returns the
current value of the KEYB.COM country flag.

This function has no parameters.
The BL register contains the current country-flag value.

Interrupt 2Fh Function 0AD82h Set KEYB.COM Country Flag

164 Interrupt 2Fh Function 0B000h Get GRAFTABL.COM Installed State

N Interrupt 2Fh Function 0B000h Get GRAFTABL.COM Installed State

Parameters
Return Value

mov ax, OBOOOh ;Get GRAFTABL.COM Installed State
int 2Fh ;Multiplex Interrupt

Get GRAFTABL.COM Installed State (Interrupt 2Fh Function 0B0COh) deter-
mines whether the resident portion of the graftabl command has been loaded.

This function has no parameters.

The AL register contains OFFh if the graftabl command has been loaded or 00h
if it has not.

Interrupt 2Fh Function 0B700h Get APPEND.EXE Installed State 165

B Interrupt 2Fh Function 0B700h Get APPEND.EXE Installed State

mov ax, OB700h :Get APPEND.EXE Installed State
int 2Fh ;Multiplex Interrupt

cmp al, OFFh ;OFFh means installed

Jje installed

Get APPEND.EXE Installed State (Interrupt 2Fh Function 0B700h) determines
whether the resident portion of the append command has been loaded.

Parameters This function has no parameters.

Return Value The AL register contains OFFh if the append command has been loaded or G0h
if it has not.

166 Interrupt 2Fh Function 0B702h Get APPEND.EXE Version

B |Interrupt 2Fh Function 0B702h Get APPEND.EXE Version

Parameters

Return Value

mov ax, OB702h ;Get APPEND.EXE Version
int 2Fh ;Multiplex Interrupt

Get APPEND.EXE Version (Interrupt 2Fh Function 0B702h) returns the version
flag for the append command.

This function has no parameters.

The AX register contains OFFFFh for versions compatible with MS-DOS
version 5.0.

Interrupt 2Fh Function 0B704h Get APPEND.EXE Directory List Address 167

B Interrupt 2Fh Function 0B704h Get APPEND.EXE Directory List Address

Parameters
Return Value
Comments

mov
int

mov
mov
mov

ax, OB704h ;Get APPEND.EXE Directory List Address
2Fh ;Multiplex Interrupt

[(DirList], di

ax, es

[DirList+2], ax ;es:di points to directory 1list

Get APPEND.EXE Directory List Address (Interrupt 2Fh Function 0B704h)
returns a 32-bit address (segment:offset) of a list of the currently appended direc-

tories.

This function has no parameters.

The ES:DI registers contain the address of the currently appended directories.

The directory list is a zero-terminated ASCII string consisting of one or more
directory paths separated by semicolons.

168 Interrupt 2Fh Function 0B706h Get APPEND.EXE Modes Flag

B Interrupt 2Fh Function 0B706h Get APPEND.EXE Modes Flag

Parameters
Return Value

See Also

mov ax, OB706h ;Get APPEND.EXE Modes Flag
int 2Fh ;Multiplex Interrupt
mov Modes, bx ;APPEND.EXE operation modes

Get APPEND.EXE Modes Flag (Interrupt 2Fh Function 0B706h) returns the
current operation modes for the append command.

This function has no parameters.

If the function is successful, the BX register contains the operation modes,
which can be a combination of the following values:

Bit Meaning

0 The append command is enabled.

12 The append command applies appended directories to file requests that
already specify a drive.

13 The append command applies appended directories to file requests that
already specify a path. This bit is set if the /path switch is on.

14 The append command stores the appended directories in the APPEND
environment variable. This bit is set if the /e switch has been specified.

15 The append command applies appended directories to functions such as
Load and Execute Program, and Find First File (Interrupt 21h Functions
4B0Oh and 4Eh). This bit is set if the /x switch is on.

All other bits are reserved and must be zero.

Interrupt 2Fh Function 0B707h Set APPEND.EXE Modes Flag

Interrupt 2Fh Function 0B707h Set APPEND.EXE Modes Flag 169

B Interrupt 2Fh Function 0B707h Set APPEND.EXE Modes Flag

Parameter

Return Value

See Also

mov bx, Modes ;APPEND.EXE operation modes
mov ax, OB707h ;Set APPEND.EXE Modes Flag
int 2Fh ;Multiplex Interrupt

Set APPEND.EXE Modes Flag (Interrupt 2Fh Function 0B707h) sets the current
operation modes for the append command.

Modes Specifies the operation modes. This parameter can be a combination
of the following values:

Bit Meaning

0 The append command is enabled.

12 The append command applies appended directories to file requests that
already specify a drive.

13 The append command applies appended directories to file requests that
already specify a path. This bit is set if the /path switch is on.

14 The append command stores the appended directories in the APPEND
environment variable. This bit is set if the /e switch is specified.

15 The append command applies appended directories to functions such as
Load and Execute Program, and Find First File (Interrupt 21h Functions
4B00h and $Eh). This bit is set if the /x switch is on.

All other bits are reserved and must be zero.
This function has no return value.

Interrupt 2Fh Function 0B706h Get APPEND.EXE Modes Flag

170 Interrupt 2Fh Function 0B711h Set True-Name Flag

B Interrupt 2Fh Function 0B711h Set True-Name Flag

Parameters
Return Value
Comments

See Also

mov ax, OB711h ;Set True-Name Flag
int 2Fh ;Multiplex Interrupt

Set True-Name Flag (Interrupt 2Fh Function 0B711h) sets the current program’s
flag that specifies whether the append command converts a filename to a full
path when it processes system functions such as Open File with Handle
(Interrupt 21h Function 3Dh).

This function has no parameters.
This function has no return value.

If the true-name flag is set, append expands filenames that are passed to the fol-
lowing functions:

Open File with Handle (Interrupt 21h Function 3Dh)
Get File Attributes (Interrupt 21h Function 4300h)
Find First File (Interrupt 21h Function 4Eh)
Extended Open/Create (Interrupt 21h Function 6Ch)

For each function, the program passes an address to the zero-terminated
filename and append copies the zero-terminated path to the same address. The
program making the call must ensure that the buffer at the address is large
enough to contain the full path. The append command resets the true-name flag
after expanding a filename.

Interrupt 21h Function 3Dh Open File with Handle
Interrupt 21h Function 4300h Get File Attributes
Interrupt 21h Function 4Eh Find First File
Interrupt 21h Function 6Ch Extended Open/Create

Chapter 7: Interrupts 171

7.10 Task-Switching Reference
This section describes the functions used for task switching:

B Notification functions
B Service functions

7.10.1 Notification Functions

This section describes the notification functions used for task switching. Client
programs provide these functions, and task switchers call them to notify the
client programs about task switches and the creation or deletion of sessions. The
reference page for each notification function provides the syntax, a statement of

purpose, descriptions of any parameters, and cross-references to similar or
related functions.

172 Notification Function 0000h Init Switcher

B Notification Function 0000h Init Switcher

Parameter

Return Value

Comments

See Also

les di, Service ;addr of task switcher's serv-function handler
mov ax, OOOOh ;Init Switcher

call [Notification] ;client program's notification-function handler
cmp ax, O

jne no_load ;1f nonzero, don't load

Init Switcher (Notification Function 0000h) notifies client programs that a new
task switcher is being initialized.

Service Points to the service-function handler for the task switcher or control-
ling session manager. A client program can use this address to call the task
switcher’s service functions, such as Get Version (Service Function 0000h) and
Hook Notification Chain (Service Function 0004h).

The AX register contains 0000h if the task switcher can be loaded safely. Other-
wise, it contains a nonzero value.

Task switchers (and controlling session managers) must call this function when
they are initialized. A client program that runs in global memory and needs to

take special action to coexist with a task switcher should do so when receiving

this call.

The task switcher’s service function handler (specified by the ES:DI registers)
must support Get Version (Service Function 0000h).

Typically, a program that invokes and controls the task switcher calls Init
Switcher, rather than the task switcher itself. If any client program returns a
nonzero value to the Init Switcher call, the controlling program disables its task-
switching option. Other task-switching programs may simply terminate if a client
returns a nonzero value.

If any client program returns nonzero to Init Switcher, all client programs may
receive a call to Switcher Exit (Notification Function 0007h), including the client
program that returned nonzero. Client programs can ignore a Switcher Exit call
that is not preceded by an Init Switcher call.

Because it is not necessarily the task switcher itself that calls this function, client
programs should not assume that the service-function-handler address passed in
the ES:DI registers will be the same address passed with subsequent notification
functions. In particular, this address can be NULL.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Service Function 0000h Get Version
Service Function 0004h Hook Notification Chain
Notification Function 0007h Switcher Exit

Notification Function 0001h Query Suspend 173

B Notification Function 0001h Query Suspend

Warning

Parameters

Return Value

Comments

mov bx, SessionlD ;current session identifier

les di, Service ;es:di is address of service-function handler
mov ax, 0001h ;Query Suspend

call [Notification] ;client program's notification-function handler
mov [Result], ax ;0 = session switch okay, 1 = do not switch

Query Suspend (Notification Function 0001h) notifies client programs that the
task switcher is preparing to perform a session switch. A task switcher calls this
function when a session switch has been requested. The client program can
prevent the session switch, or it can perform any operation needed to allow the
switch before returning.

To make sure that programs in the current session work correctly during the ses-
slon switch, client programs must execute the patch routine shown in Appendix D,
“Task Switcher APl Patch.”

SessionID Identifies the session to be suspended.

Service Points to the service-function handler for the task switcher. A client
program can use this address to call the task switcher’s service functions, such
as Test Memory Region (Service Function 6001h).

The AX register contains 0000h if a session switch can be performed safely or
0001h if it cannot.

All other values are reserved.

A client program in global memory can tell from the current session identifier
which session will be suspended when the switch occurs. It also can use this
identifier to maintain information about the session when the session is sus-
pended, and to restore the information when the session is resumed. The session
identifier is an arbitrary value provided by the task switcher; values are not
necessarily sequential and may be reused after a session is destroyed.

A client program can call Test Memory Region (Service Function 0001h) to
determine whether specific code or data in memory will be affected by the ses-
sion switch, and whether the switch should be allowed. For example, a network
redirector can run through a chain of outstanding request descriptors and,
using Test Memory Region, determine whether any of the buffers or callback
addresses are located in local memory. If any are in local memory, the redirec-
tor can prevent the session switch or invoke special code to handle the case.

Before preventing a session switch because of the state of an asynchronous API,
a client program should call Query API Support (Service Function 0006h) to
make sure the API is not being handled by another client program.

174 Notification Function 0001h Query Suspend

See Also

If any client program returns a nonzero value from a call to Query Suspend, all
client programs may receive a call to Session Active (Notification Function
0004h), including the client program that returned nonzero. Client programs can
ignore a call to Session Active without a preceding call to Query Suspend or
Suspend Session (Notification Function 0002h).

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Service Function 0001h Test Memory Region
Service Function 0006h Query API Support
Notification Function 0002h Suspend Session
Notification Function 0004h Session Active

Notification Function 0002h Suspend Session 175

B Notification Function 0002h Suspend Session

Parameters

Return Value

Comment

mov bx, SessionID ;current session identifier

les di, Service ;address of service-function handler

mov ax, 0002h ;Suspend Session

call [Notification] ;client program's notification-function handler
mov [Result], ax ;O = session switch okay, 1 = do not switch

Suspend Session (Notification Function 0002h) notifies client programs that a
session switch is about to take place, providing them a last opportunity to
prevent the session switch.

SessionID Identifies the session to be suspended.

Service Points to the service-function handler for the task switcher. A client
program can use this address to call the task switcher’s service functions, such
as Test Memory Region (Service Function 06001h).

The AX register contains 0000h if a session switch can be performed safely or
0001h if it cannot.

All other values are reserved.

If all client programs return 0000h to Query Suspend (Notification Function
0001h), the task switcher disables interrupts and calls Suspend Session, provid-
ing clients with a final chance to prevent the session switch. Client programs
must not issue software interrupts or make any calls that might enable interrupts.

If all client programs return with 0000h in the AX register, the task switcher
replaces the current interrupt-vector table with a saved copy before enabling
interrupts. The saved copy represents the global state present when the task
switcher first started. This guarantees that interrupt handlers local to the session
being suspended will not be called in the interim between when Suspend Session
returns to the task switcher and the next call is made to Activate Session
(Notification Function 0003h). This prevents programs in local memory from
gaining control on a hardware interrupt and making a call into programs in glo-
bal memory before the global programs receive the resumed session’s identifier.

Client programs in global memory can receive interrupts between the Suspend
Session and Activate Session notifications but should not assume the contents of
nonglobal memory if they do. Test Memory Region (Service Function 0001h) is
used to determine whether a block of memory is local or global.

Before preventing a session switch because of the state of an asynchronous API,
a client program should call Query API Support (Service Function 0006h) to
determine that the API is not being handled by another client program.

If any client program returns a nonzero value to Suspend Session, all client
programs may receive a call to Session Active (Notification Function 0004h),
including the client program that returned nonzero. Client programs can ignore a
call to Session Active received without a preceding call to Query Suspend
(Notification Function 0001h) or Suspend Session.

176 Notification Function 0002h Suspend Session

See Also

The task switcher disables interrupts before calling the client program, and the
client program must not enable them or call MS-DOS system functions.
Although the client program modifies the AX register, it must preserve all other
registers.

Service Function 0001h Test Memory Region
Service Function 0006h Query API Support
Notification Function 0001h Query Suspend
Notification Function 0003h Activate Session
Notification Function 0004h Session Active

Notification Function 0003h Activate Session 177

B Notification Function 0003h Activate Session

Parameters

Return Value
Comment

See Also

mov bx, SessionID ;identifier for new session

mov cx, Flags ;session status flags

les di, Service ;es:di is address of service-function handler
mov ax, O003h ;Activate Session

call [Notification] ;client program's notification-function handler

Activate Session (Notification Function 0003h) notifies client programs that a
session is about to become active. If the session is a previously suspended
session, it has been reinstalled in memory, including its local memory and

interrupt-vector table. However, interrupts are disabled and must remain dis-
abled.

SessionID Identifies the session to be activated.

Flags Specifies the session’s status. If bit 0 is 1, the session is being activated
for the first time. If bit 0 is zero, the session has been suspended and is now
being resumed. All other bits are reserved and must be zero.

Service Points to the service-function handler for the task switcher.

The AX register contains 0000h.

If interrupts are enabled while the session memory is being swapped, global pro-
grams can receive interrupts but local programs cannot. Once the new session’s
interrupt-vector table has been loaded, a problem can arise if a hardware inter-
rupt occurs just as interrupts are enabled. The task switcher disables interrupts
before calling the client program, to prevent local programs from receiving the
interrupt and calling global programs that cannot handle such an interrupt
correctly until they receive the new session identifier.

If this is a newly created session being activated for the first time, Activate Ses-
sion will be preceded by a call to Create Session (Notification Function 0005h).

The task switcher disables interrupts before calling the client program, and the
client program must not enable interrupts or call MS-DOS system functions.

Although the client program modifies the AX register, it must preserve all other
registers.

Notification Function 0005h Create Session

178 Notification Function 0004h Session Active

B Notification Function 0004h Session Active

Parameters

Return Value
Comments

See Also

mov bx, SessionlD ;identifier for new session

mov cx, Flags ;session status flags

les di, Service ;es:di 1s address of service-function handler
mov ax, 0004h ;Session Active

call [Notification] ;client program's notification-function handler

Session Active (Notification Function 0004h) notifies client programs that a ses-
sion has become active. If the session was previously suspended, the function
notifies client programs that the session has been reinstalled in memory, includ-
ing its local memory and interrupt-vector table.

SessionID 1dentifies the session that is now active.

Flags Specifies the session’s status. If bit 0 is set, the session has just been
created and is now active for the first time. If bit O is not set, the session was
previously suspended and now has resumed. All other bits are reserved and
must be zero.

Service Points to the service-function handler for the task switcher.

The AX register contains 0000h.

If any client program fails a call to Query Suspend (Notification Function 0001h)
or Suspend Session (Notification Function 6002h), all client programs may
receive a Session Active notification, including the client program that denied
the call to Suspend Session. Client programs can ignore a Session Active

notification received without a preceding call to Query Suspend or Suspend Ses-
sion.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function 0001h Query Suspend
Notification Function 0002h Suspend Session

Notification Function 0005h Create Session 179

B Notification Function 0005h Create Session

Parameters

Return Value

Comments

See Also

mov bx, SessionID ;identifier for new session

les di, Service ;es:dil is address of service-function handler
mov ax, 000S5h ;Create Session

call [Notification] ;client program's notification-function handler
cmp ax, 1

je no_create ;1 = don't create session

Create Session (Notification Function 0005h) notifies client programs that the
task switcher is about to create a new session.

sessionID Identifies the session to be created. This parameter consists of a
4-bit switcher identifier (in the most significant 4 bits) and a 12-bit session
number (in the low-order 12 bits).

Service Points to the service-function handler for the task switcher.

The AX register contains 0000h if a new session can be created safely or 0001h
if the client program cannot safely handle a new session. ’

All other values are reserved.

Before creating a new session, the task switcher calls Create Session to allow
client programs to prevent the session from being created. If, for example, glo-
bal client programs keep information for each session in a fixed-length data
structure, they may respond to the notification by preventing the new session if
the structure does not have enough room for it.

A newly created session does not have to be activated immediately; other
sessions can be created, destroyed, and switched before the new session is
activated.

If any client program returns 0001h to Create Session, all client programs may
receive a call to Destroy Session (Notification Function 0006h), including the
program that returned 0001h. Client programs can ignore a call to Destroy Ses-
sion received without a preceding call to Create Session.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function 0006h Destroy Session

180 Notification Function 0006h Destroy Session

B Notification Function 0006h Destroy Session

Parameters

Return Value
Comments

See Also

mov bx, SessionID ;identifier for new session

les di, Service ;es:di is address of service-function handler
mov ax, 0006h ;Destroy Session

call [Notification] ;client program's notification-function handler

Destroy Session (Notification Function 0006h) notifies client programs that the
task switcher is destroying a session.

SessionID Identifies the session to be destroyed.
Service Points to the service-function handler for the task switcher.

The AX register contains 0000h.

A task switcher calls Destroy Session whenever a session is being destroyed.
Typically, this will occur when the program in the current session ends. How-
ever, any session manager that controls the task switcher can also provide a way
for the user to destroy a session while the program is still running, or to destroy
a session that is suspended. As a result, the session being destroyed is not neces-
sarily the current session.

If any client program returns 0001h to Create Session (Notification Function
0005h), all client programs may receive a call to Destroy Session, including the
program that returned 0001h. Client programs can ignore a call to Destroy Ses-
sion received without a preceding call to Create Session.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function 0005h Create Session

Notification Function 0007h Switcher Exit 181

B Notification Function 0007h Switcher Exit

Parameters

Return Value
Comments

See Also

mov bx, Flags ;indicates whether other task switchers present
les di, Service ;es:dl is address of service-function handler
mov ax, 0007h ;Switcher Exit

call [Notification] ;client program's notification-function handler

Switcher Exit (Notification Function 0007h) notifies global client programs that
the task switcher is no longer active.

Flags Specifies whether other task switchers are present in the system. If bit 0
is 1, the calling task switcher is the only switcher present. If bit 0 is zero, at least
one other task switcher remains after the calling task switcher exits. All other
bits are reserved and must be zero.

Service Points to the service-function handler for the task switcher. If this

address is NULL, the call-in function handler is no longer present and cannot be
called.

The AX register contains 0000h.

A task switcher calls this function. Global programs that receive this call should
disable any extra processing they were running in order to coexist with the task
switcher.

This function can be called by programs that control the task switcher, rather
than by the task switcher itself. For this reason, the service-function-handler
address specified in the ES:DI registers may differ from addresses passed with
other notification functions and may be NULL.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function 0000h Init Switcher

182 MS-DOS Programmer’s Reference
]

7.10.2 Service Functions

This section describes the service functions used for task switching. Client pro-

grams use these functions to control switching and to retrieve information about
the task switcher and about the capabilities of other client programs. The refer-

ence page for each service function provides the syntax, a statement of purpose,
parameter descriptions, and cross-references to similar or related functions.

Service Function 0000h Get Version 183

B Service Function 0000h Get Version

Parameters
Return Value

Comments

See Also

mov ax, 0O000h :Get Version

call [Service] ;service-function handler

je error_handler

mov WORD PTR [Version], bx

mov ax, es

mov WORD PTR [Version+2], ax ;es:bx points to SWVERSION struct

Get Version (Service Function 0000h) returns the address of an SWVERSION
structure that identifies the current task switcher, its version number, and the
protocol it supports.

Client programs and task switchers can call this function.
This function has no parameters.

If the function is successful, the carry flag is clear, the AX register contains
0000h, and the ES:BX registers contain the address of the SWVERSION struc-
ture for the current task switcher. If the task switcher does not support this
function, the carry flag is set. ‘

The SWVERSION structure has the following form:
SWVERSION STRUC

;points to task-switcher name (ASCIIZ)
;previous task switcher's entry address

svsAPIMajor dw ? ;protocol supported major version
svsAPIMinor dw ? ;protocol supported minor version
svsProductMajor dw ? ;task switcher's major version
svsProductMinor dw ? ;task switcher's minor version
svsSwitcherlID dw ? ;task-switcher identifier
svsFlags dw ? ;operation flags
svsName dd 7?

?

svsPrevSwitcher dd
SWVERSION ENDS

For a full description of the SWVERSION structure, see Section 7.11,
“Structures.”

A task switcher processing Get Version can enable interrupts and call any MS-
DOS system function. Although the task switcher modifies the AX, ES, and DI
registers, it must preserve all other registers.

Interrupt 2Fh Function 4B02h Detect Switcher

184 Service Function 0001th Test Memory Region

B Service Function 0001h Test Memory Region

Parameters

Return Value

Comments

les di, Buffer ;points to first byte to be tested

mov cx, Size ;size of buffer, in bytes

mov ax, 0001h ;Test Memory Regian

call [Service] ;service-function handler

je error_handler

mov [Result], ax ;0 = gldbal, 1 = global and local, 2 = local

Test Memory Region (Service Function 0001h) determines whether a given block
of memory is global or local in the current session. Local memory is replaced
when a session switch occurs.

Client programs and task switchers can call this function. The task switcher
corresponding to the specified service-function handler is responsible for pro-
cessing the function.

Buffer Points to the first byte of memory to be tested.

Size Specifies the buffer size, in bytes. This value must be in the range 0
through 65,535, where 0 indicates 64K (65,536). Buffers larger than 64K require
more than one call to Test Memory Region to test the entire region.

If the function is successful, the carry flag is clear and the AX register contains
values specifying whether the memory is global or local. This can be one of the
following values:

Value Meaning

0000h The buffer is in global memory.
0001h The buffer is in both global and local memory.
0002h The buffer is in local memory.

All other values are reserved.
If the task switcher does not support this function, the carry flag is set.

The task switcher corresponding to the specified service-function handler deter-
mines whether memory is global or local. If more than one task switcher is
active, the one that creates a client program’s session determines whether its
memory is local or global. For this reason, a client program should test its
memory region each time it receives the call Query Suspend (Notification Func-
tion 0001h) or Session Active (Notification Function 0004h), to determine
whether the memory it occupies is global or local relative to the task switcher
performing the session switch.

Client programs in global memory can use Test Memory Region to identify
requests for asynchronous operations coming from other client programs in glo-
bal memory. Client programs that service these requests do not have to take spe-
cial action when a session switch occurs, because a requesting program’s buffer
and callback address remain accessible even after the session switch.

See Also

Service Function 0001h Test Memory Region 185

Since location sometimes affects operation, memory-resident programs can use
Test Memory Region to determine whether they are in local or global memory.
For example, a communication program in local memory should temporarily
shut down before being suspended, but the same program in global ' memory can
continue to run, since a session switch does not affect it.

A task switcher processing Test Memory Region must not enable interrupts or
call any MS-DOS system function. Although the task switcher modifies the AX
register, it must preserve all other registers.

Notification Function 0001h Query Suspend
Notification Function 0004h Session Active

186 Service Function 0002h Suspend Switcher

- B Service Function 0002h Suspend Switcher

Parameter

Return Value

Comments

les di, NewService ;new address of service-function handler

mov ax, 0002h ;Suspend Switcher

call [Service] ;service-function handler

jec error_handler

mov [Result], ax (o] suspended, 1 = not suspended, don't start

;2 = not suspended, okay to start

Suspend Switcher (Service Function 0002h) notifies the current task switcher
that it should suspend operations because another task switcher is being initial-
ized.

Only a task switcher that needs to suspend the current task switcher should call
this function. Client programs, especially programs in global memory, must not
call it.

NewService Points to the new task switcher’s service-function handler. The -
current task switcher can use this address to call the new task switcher’s service
functions, such as Get Version (Service Function 0000h).

If Suspend Switcher is successful, the carry flag is clear and the AX register con-
tains a value specifying whether the task switcher has suspended operations. This
value can be one of the following:

Value Meaning

0000h Current task switcher has suspended operations.

0001h Current task switcher has not suspended operations. The new task
switcher must not start.

0002h Current task switcher has not suspended operations, but the new task
switcher can start and run in conjunction with it.

All other values are reserved.
If the current task switcher does not support this function, the carry flag is set.

As long as they conform to the task-switching protocol, two or more active task
switchers can safely coexist. Suspend Switcher helps the user avoid the confu-
sion sometimes caused by the presence of multiple task switchers.

If the current task switcher returns 0001h, the new task switcher should not dis-
able its session-switching capabilities unless another task switcher denies the new
task switcher’s call to Init Switcher (Notification Function 0000h).

After a task switcher has received a Suspend Switcher call, it should continue to
respond to service functions, but it should neither respond to keyboard inter-
rupts nor attempt to switch sessions until it receives a corresponding call to
Resume Switcher (Service Function 0003h).

See Also

Service Function 0002h Suspend Switcher 187

Suspend Switcher calls can be nested, so suspended task switchers should not
become active until they have received an equal number of calls to Suspend
Switcher and Resume Switcher. An exception to this rule occurs when a child
program running a separate task switcher suspends its session manager’s task
switcher and does not reactivate it before returning control to the session
manager. In this case, the session manager can safely reactivate its own task
switcher.

A task switcher processing Suspend Switcher can enable interrupts and call any
MS-DOS system function. Although the task switcher modifies the AX register,
it must preserve all other registers.

Client programs that need to suspend session switching should return 0001h to
Query Suspend (Notification Function 0001h).

A task switcher normally calls Suspend Switcher by using the service-function-
handler address received from Detect Switcher (Interrupt 2Fh Function 4B02h),
rather than in response to a notification function.

Interrupt 2Fh Function 4B02h Detect Switcher
Service Function 0000h Get Version

Service Function 0003h Resume Switcher
Notification Function 0000h Init Switcher
Notification Function 0001h Query Suspend

188 Service Function 0003h Resume Switcher

B Service Function 0003h Resume Switcher

Parameter

Return Value

Comments

See Also

les di, NewService ;new address of service-function handler
mov ax, O003h ;Resume Switcher

call [Service] ;Service-function handler

je error_handler

Resume Switcher (Function 0003h) notifies a suspended task switcher that it can
resume operation.

Client programs must not call this function.

NewService Points to the new task switcher’s service-function handler. The
task switcher that is being resumed can use this address to call the new task
switcher’s service functions, such as Get Version (Service Function 0000h).

If the function is successful, the carry flag is clear and the AX register contains
0000h. If the task switcher does not support this function, the carry flag is set.

A task switcher that has disabled another task switcher by using Suspend
Switcher (Service Function 0002h) should call Resume Switcher to reenable it,
and should use the same service-function-handler address that it used to call
Suspend Switcher.

A task switcher processing Resume Switcher can enable interrupts and call any
MS-DOS system function. Although the task switcher modifies the AX register,
it must preserve all other registers.

Service Function 0000h Get Version
Service Function 0002h Suspend Switcher

Service Function 0004h Hook Notification Chain 189

B Service Function 0004h Hook Notification Chain

Warning

Parameter

Return Value

Comments

See Also

les di, CBInfo ;es:dl points to SWCALLBACKINFO structure
mov ax, 0004h ;Hook Notification Chain

call [Service] ;service-function handler

je error_handler ;jcarry set on error

Hook Notification Chain (Service Function 0004h) directs the task switcher to
add the specified structure to its notification chain. Client programs that must be
notified of session changes call this function during initialization.

To make sure that programs in the current session work correctly during the ses-
sion switch, a client program that adds itself to the notification chain must execute
a patch routine each time the task switcher calls the client program’s Query
Suspend (Notification Function 0001h). For more information about the patch rou-
tine, see Appendix D, “Task Switcher APl Patch.”

CBlInfo Points to the client program’s SWCALLBACKINFO structure. The
client program does not need to fill in the scbiNext field of this structure. The
SWCALLBACKINFO structure has the following form:

SWCALLBACKINFO STRUC

scbiNext dd 7? ;address of next structure in chain
scbiEntryPoint dd ? ;address of notification-function handler
scbiReserved dd ? ;reserved

scbiAPI dd ? ;address of list of SWAPIINFO structures

SWCALLBACKINFO ENDS

For a full description of the SWCALLBACKINFO and SWAPIINFO structures,
see Section 7.11, “Structures.” .

If this function is successful, the carry flag is clear and the AX register contains
0000h. If the task switcher does not support this function, the carry flag is set.

Client programs can use Detect Switcher (Interrupt 2Fh Function 4B02h) to
check for a task switcher; if one is present, the programs add themselves to its
notification chain by calling Hook Notification Chain. Client programs must fill
the SWCALLBACKINFO structure before calling the task switcher.

Some task switchers call Build Notification Chain (Interrupt 2Fh Function
4BO01h) to create a notification chain before each session switch and return from
Hook Notification Chain with no other action. Most task switchers generate the
notification chain only during initialization, and client programs that start later
must add themselves to it. For example, a task switcher may keep a separate
notification chain for each session and supply each new session it creates with a
copy of its original notification chain. A client program that runs within that new
session must add its notification-function handler address to the local chain by
calling Hook Notification Chain.

Before terminating, a client program must unhook itself from the task switcher’s
notification chain by calling Unhook Notification Chain (Function 0005h).

A task switcher processing Hook Notification Chain can enable interrupts and
call any MS-DOS system function. Although the task switcher modifies the AX
register, it must preserve all other registers.

Interrupt 2Fh Function 4B01h Build Notification Chain
Interrupt 2Fh Function 4B02h Detect Switcher
Service Function 0005h Unhook Notification Chain

190 Service Function 0005h Unhook Notification Chain

B Service Function 0005h Unhook Notification Chain

Parameter

Return Value

Comments

See Also

les di, CBInfo ;es:di points to SWCALLBACKINFO structure
mov ax, OO0OOSh ;Unhook Notification Chain

call [Service] ;service-function handler

jc error_handler ;carry set on error

Unhook Notification Chain (Service Function 0005h) directs the task switcher to
remove the specified SWCALLBACKINFO structure from its notification chain.
Client programs that are on the notification chain must call this function when
they terminate.

CBInfo Points to the client program’s SWCALLBACKINFO structure. The
SWCALLBACKINFO structure has the following form:

SWCALLBACKINFO STRUC

scbiNext dd ? ;address of next structure in chain
scbiEntryPoint dd ? ;address of notification-function handler
scbiReserved dd ? ;reserved

scbiAPI dd ? ;address of list of SWAPIINFO structures

SWCALLBACKINFO ENDS

For a full description of the SWCALLBACKINFO and SWAPIINFO structures,
see Section 7.11, “Structures.”

If the function is successful, the carry flag is clear and the AX register contains
0000h. If the task switcher does not support this function, the carry flag is set.

Whether a client program has used Build Notification Chain (Interrupt 2Fh
Function 4B01h) or Hook Notification Chain (Service Function 0004h), it must
call Unhook Notification Chain to remove itself from the notification chain of
every task switcher to which it belongs.

A task switcher that rebuilds its notification chain at every session switch can
return from Unhook Notification Chain with no other action.

A task switcher processing Unhook Notification Chain can enable interrupts and
call any MS-DOS system function. Although the task switcher modifies the AX
register, it must preserve all other registers.

Interrupt 2Fh Function 4B01h Build Notification Chain Service Function
0004h Hook Notification Chain

Service Function 0006h Query APl Support 191

B Service Function 0006h Query API Support

Parameter

Return Value

Comments

mov bx, ApiID ;asynchronous API identifier

mov ax, 0006h ;Query API Support

call [Service] ;service-function handler

je error_handler ;carry set on error

mov WORD PTR [ApilInfo], bx

mov ax, es

mov WORD PTR [ApiInfo+2], ax ;es:bx points to SWAPIINFO structure

Query API Support (Service Function 0006h) returns the address of the SWAPI-
INFO structure of the client program that provides the highest level of support
for the specified asynchronous API. Client programs that support asynchronous
APIs call this function to determine which program should control session
switching and handle the specified asynchronous API. control session switching
and handle the specified asynchronous API.

ApiID Identifies an asynchronous API. This value can be one of the follow-
ing:

Value Meaning

API_NETBIOS (0001h) NETBIOS

API_8022 (0002h) 802.2

API_TCPIP (0003h) TCP/IP

API_LANMAN (0004h) LAN Manager named pipes
API_IPX (0005h) NetWare IPX

If the function is successful, the carry flag is clear, the AX register contains
0000h, and the ES:BX registers contain the address of the SWAPIINFO struc-
ture of the client program that provides the highest level of support for the
specified asynchronous API. If the task switcher does not support this function,
the carry flag is set.

The SWAPIINFO structure has the following form:
SWAPIINFO STRUC

aisLength dw 10 ;size of this structure, in bytes
aisAPI dw ? ;API identifier

aisMajor dw ? ;major version number

aisMinor dw ? ;minor version number

aisSupport dw ? ;support level

SWAPIINFO ENDS

For a full description of the SWAPIINFO structure, see Section 7.11,
“Structures.”

This function allows client programs that provide support for the same asynchro-
nous API to negotiate which program controls session switching. Each client
program maintains information about the asynchronous APIs it supports and the
level of support provided to each API in a list of SWAPIINFO structures. The
program provides a pointer to the beginning of this list in its SWCALLBACK-
INFO structure. (For a full description of the SWCALLBACKINFO structure,

192 Service Function 0006h Query API Support

See Also

see Section 7.11, “Structures.”) Since any number of client programs can pro-
vide support for the same API, the task switcher uses the aisSupport field in the
SWAPIINFO structures to determine which client program provides the highest
level of support and therefore receives control. In general, a client program pro-
vides the highest level of support if it allows session switching for the greatest
number of special cases.

When a client program that supports an asynchronous API is processing Query
Suspend (Notification Function 0001h) or Suspend Session (Notification
Function 0002h), it must call Query API Support to determine whether it is the
client program that should handle the API. If the function returns the address of
the client program’s own SWAPIINFO structure, the client program should
prevent the session switch. If it returns the address of another client program’s
structure, the calling client program should not prevent the session switch, rely-
ing instead on the more capable client program to prevent the session switch if
necessary.

When a task switcher processes Query API Support, interrupts are disabled if a
client program calls this function while handling a notification function for which
interrupts also are disabled. Otherwise, interrupts are enabled. If interrupts are
disabled, the task switcher must not enable them or call MS-DOS system func-
tions. Although the task switcher modifies the AX, ES, and BX registers, it
must preserve all other registers.

Notification Function 0001h Query Suspend
Notification Function 0002h Suspend Session

Chapter 7: Interrupts 193
- |

7.11 Structures

This section describes the QUEUEPACKET structure and the structures MS-
DOS task switchers use.

194 QUEUEPACKET

B QUEUEPACKET

Fields

See Also

B SWAPIINFO

QUEUEPACKET STRUC

qplevel db O ;level, must be zero

qpFilename dd ? ;segment:offset pointing to ASCIIZ path
QUEUEPACKET ENDS

The QUEUEPACKET structure contains information used to add a file to the
printing queue.

gpLevel Specifies the queue level. This field must be 00h for current versions
of MS-DOS.

gpFilename Contains the 32-bit address of a zero-terminated string specifying
the path of the file to add to the queue. This string must be a valid MS-DOS
path and must not contain wildcards. If the specified file exists, PRINT.EXE
adds the file to the queue.

Interrupt 2Fh Function 0101h Add File to Queue

Fields

SWAPIINFO STRUC

aisLength dw 10 ;slze of this structure, in bytes
aisAPI dw ? ;API identifier

aisMajor dw ? ;major version number

aisMinor dw ? ;minor version number

aisSupport dw ? ;support level

SWAPIINFO ENDS

The SWAPIINFO structure contains information about the level of support that
a client program provides for a particular type of asynchronous API.

aisLength Specifies the length of the structure, in bytes.

aiSAPI Identifies the asynchronous API supported by the client program. This
value can be one of the following:

Value Meaning

API_NETBIOS (0001h) NETBIOS

API_8022 (0002h) 802.2

API_TCPIP (0003h) TCP/IP

API_LANMAN (0004h) LAN Manager named pipes
API_IPX (0005h) NetWare IPX

All other values are reserved.

aisMajor Specifies the highest major version of the API for which the client
program provides the level of support specified by the aisSupport field. For
example, if the highest version of the API supported by the client program at the
specified level is 3.10, this field would be set to 0003h.

SWCALLBACKINFO 195

aisMinor Specifies the highest minor version of the API for which the client
program provides the specified level of support. For example, if the highest ver-
sion of the API supported by the client program at the specified level is 3.10,
this field would be set to 000Ah.

aisSupport Specifies the level of support provided by the client program for
the particular version of the API. The range and significance of values in this
field depend upon the particular API. The following definitions are used for
NETBIOS:

Value Meaning

0001h Minimal support. The client program prevents a session switch after
an application has called a function supported in an asynchronous
API, even after the request has been completed.

0002h API-level support. The client program tracks asynchronous requests,
prevents task switches when requests are outstanding, and allows task
switches when all requests have been completed.

0003h Switcher compatibility. The API provider allows switches to occur
even when asynchronous requests are outstanding. However, this may
be limited by such factors as buffer size, and some requests might fail.

0004h Seamless compatibility. The API provider always allows session
switches to occur.

B SWCALLBACKINFO

Fields

See Also

SWCALLBACKINEO STRUC

scbiNext dd ? ;address of next structure in chain
scbiEntryPoint dd ? ;address of notification-function handler
scbiReserved dda ? ;reserved

scbiAPI dd ?

;address of list of SWAPIINFO structures
SWCALLBACKINFO ENDS -

The SWCALLBACKINFO structure contains information about the client pro-
gram.

scbiNext Specifies the 32-bit address (segment:offset) of the next structure in
the notification chain.

scbiEntryPoint Specifies the 32-bit address (segment:offset) of the client
program’s notification-function handler. The task switcher uses this address to
call the client program’s notification functions.

schiReserved Reserved; do not use.

schbiAPI Specifies the 32-bit address (segment:offset) of a zero-terminated list

of SWAPIINFO structures specifying the type of support the client program pro-
vides for various asynchronous APIs.

Interrupt 2Fh Function 4B01h Build Notification Chain
Service Function 06004h Hook Notification Chain

196 SWINSTANCEITEM

B SWINSTANCEITEM

Fields

SWINSTANCEITEM STRUC

iisPtr dd ? ;points to the instance data

iisSize dw ? ;size of the instance data, in bytes
SWINSTANCEITEM ENDS

The SWINSTANCEITEM structure contains information about a block of
instance data.

iisPtr Specifies the 32-bit address (segment:offset) of the first byte of the
block of instance data.

iisSize Specifies the instance data’s block size, in bytes.

B SWSTARTUPINFO

Fields

Comments

See Also

SWSTARTUPINFO STRUC

sisVersion dw 3 ;ignored

sisNextDev dd ? ;points to prev handler's SWSTARTUPINEO
sisVirtDevFile dd O ;ignored

sisReferenceData dd ? signored

sisInstanceData dd ? ;points to SWINSTANCEITEM structures

SWSTARTUPINEO ENDS

The SWSTARTUPINFO contains information about a client program’s instance
data.

sisVersion Not used.

sisNextDev Specifies the 32-bit address (segment:offset) of the next structure
in the client chain.

sisVirtDevFile Not used.
sisReferenceData Not used.

sisInstanceData Specifies the 32-bit address (segment:offset) of a list of
SWINSTANCEITEM structures, each of which describes one contiguous block
of instance data. The list is terminated by a 32-bit zero value.

This structure is also used with the Microsoft Windows startup Interrupt 2Fh

function. However, task switchers use only the sisNextDev and sisInstanceData

fields. For detailed information about the other fields in the SWSTARTUPINFO

sGtrugture, see the Microsoft Windows Device Driver Kit Virtual Device Adaptation
uide.

Interrupt 2Fh Function 4B05h Identify Instance Data

H SWVERSION

SWVERSION 197

Fields

See Also

SWVERSION STRUC
svsAPIMajor dw
svsAPIMinor dw
svsProductMajor dw
svsProductMinor dw
svsSwitcherlID dw
svsFlags dw
svsName dd
svsPrevSwitcher dd

SWVERSION ENDS

;protocol supported major version
;protocol supported minor version

;task switcher's major version

;task switcher's minor version
;task-switcher identifier

;operation flags

;points to task-switcher name (ASCIIZ)
;previous task switcher's entry address

EVRVIEVIEVIEVEVEVEY

The SWVERSION structure contains information about a task switcher.

svsAPIMajor Specifies the highest major version of the task-switching proto-
col that the task switcher supports. For example, if the highest version of the
protocol supported is 3.10, this field would be set to 0003h. The current version
is 1.0.

svsAPIMinor Specifies the highest minor version of the task-switching proto-
col that the task switcher supports. For example, if the highest version of the

protocol supported is 3.10, this field would be set to 000Ah. The current version
is 1.0.

svsProductMajor Specifies the major version of the task switcher, in the
same format as the svsAPIMajor field.

svsProductMinor Specifies the minor version of the task switcher, in the
same format as svsAPIMinor field.

svsSwitcherID Specifies the switcher identifier (low-order 4 bits). The task

switcher uses Allocate Switcher ID (Interrupt 2Fh Function 4B03h) to generate
this identifier.

svsFlags Specifies the task-switcher flags. In this version of the task-switching
protocol, only bit 0 has meaning. If bit 0 is 1, the task switcher is currently dis-
abled; otherwise, the task switcher is enabled. All other bits are reserved and
must be zero.

svsName Specifies the 32-bit address (segment:offset) of a zero-terminated

ASCII string that names the task switcher (for example, “Microsoft MS-DOS
Shell Task Switcher”).

svsPrevSwitcher Specifies the 32-bit entry address (segment:offset) of the
previously loaded task switcher. This entry address can be used to call the previ-
ously loaded task switcher’s service-function handler.

Interrupt 2Fh Function 4B02h Detect Switcher
Interrupt 2Fh Function 4B03h Allocate Switcher ID
Service Function 0000h Get Version

Chapter

8

Interrupt 21h Functions

8.1
8.2

8.3
8.4
8.5

Introduction......cooeeuuiiiniiiiiiiiiiiiiicicee e, 201
Function Groups......c.ccceeeieiiiniinciniinniniineineennennennennes 201
8.2.1 File-Handle Functionscccceeueuvenennenrnrnennnnnnn. 201
8.2.2 Directory-Management Functionscc..cu.u... 202
8.2.3 Drive-Management Functionsc..ccveevvnvnenennen.. 203
8.2.4 File-Sharing Functions.........ccocvuvurernenenenenenennnnnn. 203
8.2.5 File-Control-Block (FCB) Functions...................... 203
8.2.6 Input/Output Control (IOCTL) Functions............... 204
8.2.7 Character Input/Output (I/O) Functions................. 205
8.2.8 Memory-Management Functions............c.cevevenennn.. 206
8.2.9 Program-Management Functions............c.ccevuuenen.n. 206
8.2.10 Network Functionsceueeeeeniueuienenenneneennencnnns 207
8.2.11 National-Language-Support (NLS) Functions 207
8.2.12 System-Management Functionsccceuveuenenennn. 208
Superseded FUNCHONS ...cc.vvuiiviiriennieiceieeeneieeennennees 209
Obsolete FUNCHions.........cccuuveeueienniinnenneeeeneeeneeinnenns 210

Chapter 8: Interrupt 21h Functions 201
|

8.1 Introduction

This chapter describes the MS-DOS functions that a program can call to manage
system operation and resources. Using these functions makes it easier to write
computer-independent programs and increases the likelihood that a program will
be compatible with future versions of MS-DOS.

Programs use MS-DOS services by issuing software interrupts. Interrupt 21h is
the function request service; it provides access to a wide variety of MS-DOS ser-
vices. Each function request uses values in various registers to receive or return
function-specific information.

8.2 Function Groups
The following list shows the categories of MS-DOS functions:

File management

Directory management
Drive management

File sharing

File control blocks (FCBs)
Input/output control (IOCTL)
Character input/output (I/0)
Memory management
Program management
Networks

National language support

System management

The following sections show the functions in each category. For information
about superseded functions, see Section 8.3, “Superseded Functions.” For infor-
mation about obsolete functions, see Section 8.4, “Obsolete Functions.”

8.2.1 File-Handle Functions

Beginning with version 2.0, MS-DOS has included file-handle functions. All pro-
grams (except those that must be compatible with MS-DOS versions earlier than
version 2.0) should use these functions for file management.

When a program opens or creates a file, MS-DOS assigns a unique handle to
that file. The program can use the handle to access the file until the program

closes the file. In some cases, a program can use a handle to read from and
write to a device as if it were a file.

202 MS-DOS Programmer’s Reference
|

Following are the MS-DOS file-handle functions:

Function Description Version
3Ch Create File with Handle 2.0
3Dh Open File with Handle 2.0
3Eh Close File with Handle 2.0
3Fh Read File or Device 2.0
40h Write File or Device 2.0
41h Delete File 2.0
42h Move File Pointer 2.0
4300h Get File Attributes 2.0
4301h Set File Attributes 2.0
45h Duplicate File Handle 2.0
46h Force Duplicate File Handle 2.0
56h Rename File 2.0
5700h Get File Date and Time 2.0
5701h Set File Date and Time 2.0
SAh Create Temporary File 3.0
5Bh Create New File 3.0
67h Set Maximum Handle Count 33
68h Comnmit File 3.3
6Ch Extended Open/Create 4.0

8.2.2 Directory-Management Functions

Following are the MS-DOS directory-management functions:

Function Description Version
3%h Create Directory 2.0
3Ah Remove Directory 2.0
3Bh Change Current Directory 2.0
41h Delete File 2.0
47h Get Current Directory 2.0
4Eh Find First File 2.0
4Fh Find Next File 2.0

56h Rename File 2.0

Chapter 8: Interrupt 21h Functions 203

8.2.3 Drive-Management Functions

Following are the MS-DOS drive-management functions:

Function Description Version
0Dh Reset Drive 1.0
OEh Set Default Drive 1.0
1%h Get Default Drive 1.0
1Ah Set Disk Transfer Address 1.0
1Bh Get Default Drive Data 2.0
1Ch Get Drive Data 2.0
1Fh Get Default DPB 5.0
2Fh Get Disk Transfer Address 2.0
32h Get DPB : 5.0
3305h Get Startup Drive 2.0
36h Get Disk Free Space 2.0

8.2.4 File-Sharing Functions

With file sharing, multiple programs can share access to a file. File sharing
operates only after the Share program has been loaded.

Following are the MS-DOS functions that are affected by file sharing:

Function Description Version
440Bh Set Sharing Retry Count 31
5Ch Lock/Unlock File 3.1

8.2.5 File-Control-Block (FCB) Functions

Early versions of MS-DOS used file control blocks (FCBs) for file management.
Although MS-DOS still supports the FCB functions, new programs should use
the file-handle functions.

This chapter includes reference information about the FCB functions for pro-
grammers who maintain older programs that may still use these functions. Fol-
lowing are the MS-DOS FCB functions:

Function Description Version
OFh Open File with FCB 1.0
10h Close File with FCB 1.0

11h Find First File with FCB 1.0

204 MS-DOS Programmer’s Reference
.|

Function Description Version
12h Find Next File with FCB 1.0
13h Delete File with FCB 1.0
14h Sequential Read 1.0
15h Sequential Write 1.0
16h Create File with FCB 1.0
17h Rename File with FCB 1.0
21h Random Read 1.0
22h Random Write 1.0
23h Get File Size 1.0
24h Set Random Record Number 1.0
27h Random Block Read : 1.0
28h Random Block Write 1.0
2%h Parse Filename 1.0

8.2.6 Input/Output Control (IOCTL) Functions

The MS-DOS input/output control (IOCTL) functions provide a consistent and
expandable interface between programs and device drivers.

Following are the MS-DOS IOCTL functions. Minor codes associated with Gen-
eric IOCTL for Character Devices (Function 440Ch) and Generic IOCTL for
Block Devices (Function 440Dh) are indented.

Function Description Version
4400h Get Device Data 2.0
4401h Set Device Data 2.0
4402h Receive Control Data from Character 2.0
Device
4403h Send Control Data to Character Device 2.0
4404h Receive Control Data from Block Device 2.0
4405h Send Control Data to Block Device 2.0
4406h Check Device Input Status 2.0
4407h Check Device Output Status 2.0
4408h Does Device Use Removable Media 3.0
4405h Is Drive Remote 3.1
440Ah Is File or Device Remote 31

440Bh Set Sharing Retry Count 3.0

Chapter 8: Interrupt 21h Functions 205
|

Function Description Version
440Ch Generic IOCTL for Character Devices
45h Set Iteration Count 3.3
4Ah Select Code Page 33
4Ch Start Code-Page Prepare 3.3
4Dh End Code-Page Prepare 33
5Fh Set Display Mode 4.0
65h Get Iteration Count 3.3
6Ah Query Selected Code Page 3.3
6Bh Query Code-Page Prepare List 3.3
7Fh Get Display Mode 4.0
440Dh Generic IOCTL for Block Devices
40h Set Device Parameters 3.2
41h Write Track on Logical Drive 32
42h Format Track on Logical Drive 3.2
46h Set Media ID 4.0
60h Get Device Parameters ' 3.2
61h Read Track on Logical Drive 3.2
62h Verify Track on Logical Drive 3.2
66h Get Media ID 4.0
68h Sense Media Type 5.0
440Eh Get Logical Drive Map 3.2
440Fh Set Logical Drive Map 3.2
4410h Query IOCTL Handle 5.0
4411h Query IOCTL Device 5.0

8.2.7 Character Input/Output (1/0) Functions

The standard character input/output (I/0) functions handle all input to and out-
put from character devices, such as consoles, printers, and serial ports.

Following are the MS-DOS character I/0O functions:

Function Description Version
Olh Read Keyboard with Echo 1.0
02h Display Character 1.0
03h Auxiliary Input 1.0

04h Auxiliary Output 1.0

206 MS-DOS Programmer’s Reference
|

Function Description Version
05h Print Character 1.0
06h Direct Console 1/0 1.0
07h Direct Console Input 1.0
08h Read Keyboard Without Echo 1.0
0%h Display String 1.0
OAh Buffered Keyboard Input 1.0
OBh Check Keyboard Status 1.0
0Ch Flush Buffer, Read Keyboard 1.0

8.2.8 Memory-Management Functions

MS-DOS provides Interrupt 21h functions for allocating and freeing memory.
The system keeps track of memory allocations by using a memory control block
at the beginning of each allocated area. To avoid overwriting memory control
blocks, other resident programs, or portions of the operating system or device
drivers, programs should use the MS-DOS memory-management functions and
use only allocated memory.

Following are the MS-DOS memory-management functions:

Function Description Version
48h Allocate Memory 2.0
4%h Free Allocated Memory 2.0
4Ah Set Memory Block Size 2.0
5800h Get Allocation Strategy 3.0
5801h Set Allocation Strategy 3.0
5802h Get Upper-Memory Link 5.0
5803h Set Upper-Memory Link 5.0

8.2.9 Program-Management Functions

MS-DOS uses several Interrupt 21h functions to load, execute, and terminate
programs. Programs can use these same functions to manage other programs.

Following are the MS-DOS program-management functions:

Function Description Version
00h Terminate Program 1.0
26h Create New PSP 1.0
31h Keep Program 2.0

34h Get InDOS Flag Address 2.0

Chapter 8: Interrupt 21h Functions 207
|

Function Description Version
4B00h Load and Execute Program 2.0
4B01h Load Program 2.0
4B03h Load Overlay 2.0
4B0Sh Set Execution State 5.0
4Ch End Program 2.0
4Dh Get Child-Program Return Value 2.0
50h Set PSP Address 2.0
51h Get PSP Address 2.0
5%h Get Extended Error 3.0
5SDOAhR Set Extended Error 4.0

8.2.10 Network Functions

A network consists of a server and one or more workstations. MS-DOS main-
tains an assign list to keep track of which workstation disk drives and devices
have been redirected to the server.

Following are the MS-DOS network functions:

Function Description Version
440%h Is Drive Remote 3.1
440Ah Is File or Device Remote 31
SEOCh Get Machine Name 3.1
SE02h Set Printer Setup 31
SE03h Get Printer Setup 31
5F02h Get Assign-List Entry 3.1
5F03h Make Network Connection 3.1
SF04h Delete Network Connection 3.1

8.2.11 National-Language-Support (NLS) Functions

Programs use the MS-DOS national-language-support (NLS) functions to retrieve
and set country information, such as the time format, the currency symbol, and
the screen and printer code pages.

Following are the MS-DOS NLS-related functions:

Function Description Version

38h Get/Set Country Information 2.0
6501h Get Extended Country Information 33

208 MS-DOS Programmer’s Reference

Function Description Version
6502h Get Uppercase Table 33
6504h Get Filename Uppercase Table 33
6505h Get Filename-Character Table 3.3
6506h Get Collate-Sequence Table 3.3
6507h Get Double-Byte Character Set 33
6520h Convert Character 33
6521h Convert String 33
6522h Convert ASCIIZ String 33
6601h Get Global Code Page 33
6602h Set Global Code Page 33

8.2.12 System-Management Functions

MS-DOS also provides Interrupt 21h functions for such system-management
tasks as setting and examining the system time and date, the state of the Verify
flag, and the state of the CTRL+C check flag. The Verify and CTRL+C check flags
control how MS-DOS responds to input from programs and users.

Following are the MS-DOS system-management functions:

Function Description Version
25h Set Interrupt Vector 1.0
2Ah Get Date 1.0
2Bh Set Date 1.0
2Ch Get Time 1.0
2Dh Set Time 1.0
2Eh Set/Reset Verify Flag 1.0
30h Get Version Number 2.0
3300h Get CTRL+C Check Flag 2.0
3301h Set CTRL+C Check Flag 2.0
3306h Get MS-DOS Version 5.0
35h Get Interrupt Vector 2.0

54h Get Verify State 2.0

Chapter 8: Interrupt 21h Functions 209
|

8.3 Superseded Functions

MS-DOS version 2.0 and later versions have introduced functions that supersede
many of the functions introduced in earlier versions. The newer functions are
more efficient and easier to use. A programmer should not use a superseded
function except to maintain compatibility with versions of MS-DOS earlier than
version 2.0.

The following table shows the number and name of each superseded Interrupt
21h function and of any functions that supersede it:

Old function

New function

00h Terminate Program

01h Read Keyboard with Echo
02h Display Character

03h Auxiliary Input

04h Auxiliary Output

05h Print Character

09h Display String

OAh Buffered Keyboard Input
OFh Open File with FCB

10h Close File with FCB

11h Find First File with FCB
12h Find Next File with FCB
13h Delete File with FCB

14h Sequential Read

15h Sequential Write

16h Create File with FCB

17h Rename File with FCB
1Bh Get Default Drive Data
1Ch Get Drive Data

21h Random Read

22h Random Write

23h Get File Size

24h Set Random Record Number
26h Create New PSP

4Ch End Program

3Fh Read File or Device
40h Write File or Device
3Fh Read File or Device
40h Write File or Device
40h Write File or Device
40h Write File or Device
3Fh Read File or Device
3Dh Open File with Handle
3Eh Close File with Handle
4Eh Find First File

4Fh Find Next File

41h Delete File

3Fh Read File or Device
40h Write File or Device
3Ch Create File with Handle
56h Rename File

36h Get Disk Free Space
36h Get Disk Free Space
3Fh Read File or Device
40h Write File or Device
42h Move File Pointer

42h Move File Pointer
4B00h Load and Execute Program

210 MS-DOS Programmer’s Reference

Old function New function

27h Random Block Read 3Fh Read File or Device
42h Move File Pointer

28h Random Block Write 40h Write File or Device

42h Move File Pointer

Some programmers may work on older software that still uses superseded func-
tions. For the convenience of these programmers, this chapter includes refer-
ence pages for the superseded functions. New programs should not use super-
seded functions, because Microsoft may remove support for these functions at
any time.

8.4 Obsolete Functions

This chapter does not include reference pages for Interrupt 21h functions that
are obsolete—that is, not supported by MS-DOS version 5.0. Following are the
numbers of the six obsolete functions: 18h, 1Dh, 1Eh, 20h, 61h, and 63h.

8.5 Interrupt 21h Function Reference

The remainder of this chapter describes the MS-DOS Interrupt 21h functions
in detail. The reference page for each function provides the syntax, a statement
of purpose, any parameter descriptions, and cross-references to any similar or
related functions.

All the MS-DOS Interrupt 21h functions share a common interface. To use an
Interrupt 21h function, a program should carry out the following actions:

® Load control information into each appropriate register, as shown in the
syntax section for the function.

B Load the function number into the AH or AX register.

B Issue Interrupt 21h.

When MS-DOS returns control to a program, that program should examine any
appropriate registers for error and return information, as shown in the syntax
section for the function.

The reference pages that follow present the MS-DOS Interrupt 21h functions in
numeric order.

Function 00h Terminate Program 211

B Function 00h Terminate Program Superseded
mov ah, OOh ;Terminate Program
int 21h

Parameters
Return Value
Comments

See Also

Terminate Program (Function 00h) terminates the current program and returns
control to its parent program.

This function has been superseded by End Program (Function 4Ch).
This function has no parameters.
This function does not return.

This function is intended to be used by .COM programs. When a program calls
this function, the CS register must contain the segment address of the program
segment prefix (PSP).

This function carries out the following actions:

B Flushes the file buffers and closes files, unlocking any regions locked by
the program.

B Restores Termination Address (Interrupt 22h) from offset 0Ah in the
PSP (pspTerminateVector field).

B Restores the address of CTRL+C Handler (Interrupt 23h) from offset
OEh in the PSP (pspControlCVector field).

B Restores the address of Critical-Error Handler (Interrupt 24h) from
offset 12h in the PSP (pspCritErrorVector field).

B Frees any memory owned by the terminating process.

After completing these actions, this function transfers control to the address
specified by offset 0Ah in the PSP.

Interrupt 20h Terminate Program
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler
Function 4Ch End Program

212 Function 01h Read Keyboard with Echo

B Function 01h Read Keyboard with Echo Superseded
mov ah, Olh ;Read Keyboard with Echo
int 21h
mov InputChar, al ;character from standard input

Parameters
Return Value
Comments

See Also

Read Keyboard with Echo (Function 01h) reads a character from the standard
input device and writes it to the standard output device. If no character is ready,
MS-DOS waits until one is available.

This function has been superseded by Read File or Device (Function 3Fh).
This function has no parameters.
The AL register contains the input character.

Upon reading a carriage-return character (ODh), this function sends the standard
output device a carriage return but not a linefeed (that is, it sets the cursor to
the beginning of the current line).

If the character read from the keyboard is an extended key code (for example,
if the user presses one of the function keys), Read Keyboard with Echo returns
00h and the program must call the function again to get the second byte of the
extended key code.

Function 3Fh Read File or Device

Function 02h Display Character 213

B Function 02h Display Character Superseded
mov dl, OutputChar ;character to display
mov ah, O2h ;Display Character
int 21h

Parameter
Return Value
Comment

See Also

Display Character (Function 02h) displays a character on the standard output
device.

This function has been superseded by Write File or Device (Function 40h).
OutputChar Specifies the ASCII value of the character to be displayed.

This function has no return value.

When the standard output device is the screen, displaying a backspace character
(ASCII 08h) moves the cursor back one position but does not erase characters.

Function 40h Write File or Device

214 Function 03h Auxiliary Input

Function 03h Auxiliary Input Superseded
mov ah, O3h ;Auxiliary Input
int 21h
mov InputChar, al ;character from auxiliary input

Parameters
Return Value
Comment

See Also

Auxiliary Input (Function 03h) reads a character from the standard auxiliary
device. If no character is available, MS-DOS waits.

This function has been superseded by Read File or Device (Function 3Fh).
This function has no parameters.
The AL register contains the ASCII value of the input character.

As this function receives characters from the standard auxiliary device, it does
not save them in a buffer. Therefore, if the device is sending data faster than the
program can process it, characters may be lost.

Function 04h Auxiliary Qutput
Function 3Fh Read File or Device

Function 04h Auxiliary Output 215

B Function 04h Auxiliary Output Superseded
mov dl, OutputChar ;character to output
mov ah, O4h ;Auxiliary Output
int 21h

Parameter
Return Value
Comment
See Also

Auxiliary Output (Function 04h) sends a character to the auxiliary output device.
This function has been superseded by Write File or Device (Function 40h).

OutputChar Specifies the ASCII value of the character to be displayed.
This function has no return value.
If the output device is busy, this function waits until the device is ready.

Function 03h Auxiliary Input
Function 40h Write File or Device

216 ° Function 05h Print Character

Function 05h Print Character Superseded
mov dl, OutputChar ;character to print
mov ah, OS5h ;Print Character
int 21h

Parameter
Return Value
Comment

See Also

Print Character (Function 05h) sends a character to the standard printer device.
This function has been superseded by Write File or Device (Function 40h).

OutputChar Specifies the ASCII value of the character to be printed.
This function has no return value.
If the printer device is busy, this function waits until the device is ready.

Function 40h Write File or Device

Function 06h Direct Console I/0 217

B Function 06h Direct Console I/0

Parameter

Return Value

Comments

See Also

mov dl, IOSwitch ;OFFh = read, OOh through OFEh = write
mov ah, O6h ;Direct Console 1I/0
int 21ih

Direct Console I/0 (Function 06h) reads a character from standard input or
writes a character to standard output. If no character is available, MS-DOS does
not wait. When this function reads a character from standard input; it does not
send the character to standard output.

IOSwitch Specifies whether the function is to read from standard input or
write to standard output. This parameter can be any value in the range 00h
through OFFh. The values result in the following actions:

Value Action

OFFh Reads a character from standard input; returns immediately if no
character is ready.

00-OFEh Writes the character to standard output.

If output is requested, this function has no return value.

If input is requested and a character is ready, the AL register contains the char-
acter and the zero flag is cleared. If no character is ready, the AL register is
undefined and the zero flag is set.

This function is typically used by programs that must be able to read and write
any character or control code.

If the character read from the keyboard is an extended key code (for example, if
the user presses one of the function keys), Direct Console I/O returns 00h and

the program must call the function again to get the second byte of the extended
key code.

This function does not check for CTRL+C.

Function 02h Display Character

Function 04h Auxiliary Output

Function O5h Print Character

Function 07h Direct Console Input
Function 08h Read Keyboard Without Echo
Function 05h Display String

Function 0Ah Buffered Keyboard Input
Function 0Bh Check Keyboard Status
Function 0Ch Flush Buffer, Read Keyboard
Function 3Fh Read File or Device
Function 40h Write File or Device

218 Function 07h Direct Console Input

Function 07h Direct Console Input

Parameters
Return Value
Comments

See Also

mov ah, 07h ;Direct Console Input
int 21h
mov InputChar, al ;character from standard input

Direct Console Input (Function 07h) reads a character from standard input. If
no character is available, MS-DOS waits until one is available. This function
does not send the character to standard output.

This function has no parameters.
The AL register contains the ASCII value of the input character.

If the character read from standard input is an extended key code (for example,
if the user presses one of the function keys), Direct Console Input returns 00h
and the program must call the function again to get the second byte of the
extended key code.

This function does not check for CTRL+C.

Function 06h Direct Console I/0

Function 08h Read Keyboard Without Echo
Function 0Ah Buffered Keyboard Input
Function 0Bh Check Keyboard Status
Function 0Ch Flush Buffer, Read Keyboard
Function 3Fh Read File or Device

Function 08h Read Keyboard Without Echo 219

B Function 08h Read Keyboard Without Echo

Parameters
Return Value
Comment

See Also

mov ah, 08h ;Read Keyboard Without Echo
int 21h
mov InputChar, al ;character from standard input

Read Keyboard Without Echo (Function 08h) reads a character from standard
input.

This function does not send the character to an output device.
This function has no parameters.
The AL register contains the ASCII value of the input character.

If the character read from the keyboard is an extended key code (for example, if
the user presses one of the function keys), Read Keyboard Without Echo returns
00h and the program must call the function again to get the second byte of the
extended key code.

Function 06h Direct Console I/0

Function 07h Direct Console Input
Function 0Ah Buffered Keyboard Input
Function 0Bh Check Keyboard Status
Function OCh Flush Buffer, Read Keyboard
Function 3Fh Read File or Device

220 Function 09h Display String

B Function 09h Display String Superseded
mov dx, seg String
mov ds, dx
mov dx, offset String ;ds:dx points to string to display
mov ah, 0% ;Display String
int 21h

Parameter
Return Value
Comment

See Also

Display String (Function 09h) sends a string to standard output. The string must
end with a dollar sign (ASCII 24h). MS-DOS displays characters up to but not
including the dollar sign.

This function has been superseded by Write File or Device (Function 40h).

String Points to the buffer contéining the string to be displayed.

This function has no return value.

This function cannot send a string containing a dollar sign (ASCII 24h) to stan-
dard output. The string may contain any other characters.

Function 40h Write File or Device

Function 0Ah Buffered Keyboard Input 221

B Function 0Ah Buffered Keyboard Input Superseded
mov dx, seg Buffer
mov ds, dx
mov dx, offset Buffer ;ds:dx points to buffer for input
mov al, MaxLength
mov byte ptr Buffer [0], al ;maximum amount of input
mov ah, OAh ;Buffered Keyboard Input
int 21h

Parameters

Return Value

Comment

See Also

Buffered Keyboard Input (Function 0Ah) reads a string from standard input and
echoes it to standard output until a program-defined number of characters is
reached or until the user presses the ENTER key.

This function has been superseded by Read File or Device (Function 3Fh).

Buffer Points to the buffer where the string will be returned. The buffer must
have the following form:

Offset Contents

00h Specifies the maximum number of characters, including the carriage
return, to be copied to the buffer. This value, set by the program,
must not exceed 255 (OFFh).

O1h Receives the actual number of characters copied to the buffer, not
counting the carriage return. The function sets this value.

Bytes from offset 02h up to the end of the buffer receive the typed characters.

The entire buffer must be at least two bytes longer than the size specified at
offset 0Ch.

MaxLength Specifies the maximum length of the input string.

The string area of the buffer (starting at the third byte in the buffer) contains the
input string, and the second byte of the buffer contains the number of characters
read (not counting the carriage return).

Characters are read from standard input and placed in the buffer, beginning at
the third byte, until a carriage-return character (ASCII 0Dh) is read. When the
number of characters in the buffer reaches one fewer than the maximum, addi-
tional characters read are ignored and a beep character (ASCII 07h) is sent to
standard output until a carriage-return character is read.

Function 3Fh Read File or Device

222 Function 0Bh Check Keyboard Status

Function OBh Check Keyboard Status

Parameters
Return Value

Comment

See Also

mov ah, OBh ;Check Keyboard Status
int 21h

cmp al, O ;zero means not ready
je not_ready

Check Keyboard Status (Function 0Bh) determines whether a character is avail-
able from standard input.

This function has no parameters.

If a character is available, the AL register contains OFFh. Otherwise, the AL
register contains 00h.

This function does not indicate how many characters are available, only that
there is at least one.

Function 01h Read Keyboard with Echo
Function 06h Direct Console I/0

Function 07h Direct Console Input
Function 08h Read Keyboard Without Echo
Function 0Ah Buffered Keyboard Input
Function 3Fh Read File or Device

B Function OCh

Function OCh Flush Buffer, Read Keyboard 223

Flush Buffer, Read Keyboard

Parameter

Return Value

Comments

See Also

mov al, FunctionNumber ;input function (Olh, O6h, O7h, or O8h)
mov ah, OCh ;Flush Buffer, Read Keyboard

int 21h

mov InputChar, al ;character from standard input

Flush Buffer, Read Keyboard (Function 0Ch) empties the standard input buffer.
Further processing depends on the value in AL when the function is called.

FunctionNumber Specifies the number of a read-keyboard function that is to
be executed after the standard input buffer is flushed. The following functions
can be specified:

Value Function name

O1h Read Keyboard with Echo
06h Direct Console 1/0

07h Direct Console Input

08h Read Keyboard Without Echo

The value 0Ah is reserved and must not be used.

If a function number is specified, the AL register contains the return value for
that function. If no function number is specified (that is, FunctionNumber is not

01h, 06h, 07h, or 08h), the AL register contains G0h and the standard input
buffer is empty.

This function clears all keyboard input received before a program requests new

input, so that the program does not receive a character that was entered before
the request.

If Flush Buffer, Read Keyboard is used to call Direct Console I/0 (Function
06h), the DL register must contain OFFh (Flush Buffer, Read Keyboard cannot
be used to call Direct Console I/O and write a character).

Function 01h Read Keyboard with Echo
Function 06h Direct Console 1/0

Function 07h Direct Console Input
Function 08h Read Keyboard Without Echo
Function 3Fh Read File or Device

224 Function ODh Reset Drive

Function ODh Reset Drive

Parameters
Return Value
Comments

See Also

mov ah, ODh ;Reset Drive
int 21h

Reset Drive (Function 0Dh) flushes all file buffers. Any write operations that are
buffered by MS-DOS are performed, and all waiting data is written to the appro-
priate drive.

This function has no parameters.
This function has no return value.

Reset Drive is normally used by CTRL+C interrupt handlers.

This function does not update directory entries; programs must close changed
files to update their directory entries.

Function 10h Close File with FCB
Function 3Eh Close File with Handle

Function OEh Set Default Drive 225

B Function OEh Set Default Drive

Parameter

Return Value

Comment

See Also

mov dl, DriveNumber ;drive (0O = A, 1 =B, 2 = C, etc.)
mov ah, OEh ;Set Default Drive

int 21h

mov LogicalDrives, al ;number of logical drives

Set Default Drive (Function OEh) sets the specified drive to be the default drive
and returns a count of the logical drives in the system.

DriveNumber Specifies the number of the drive to be made the default drive
(0=A,1=B,2=C, and so on).

The AL register contains the number of logical drives in the system. This num-

ber includes floppy disk drives, RAM disks, and logical drives on any hard disks
in the system.

The number of logical drives in the system is not necessarily the same as the
number of physical drives. In addition, the number of logical drives returned
may not map directly to drive letters. For example, if the function returns 5,
drives A, B, C, D, and E are not necessarily valid drive letters.

Function 19h Get Default Drive
Function 3Bh Change Current Directory

226 Function OFh Open File with FCB

B Function OFh Open File with FCB Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, OFh ;Open File with FCB
int 21h
cmp al, O ;zero means success
jne error_handler

Parameter

Return Value

Comments

See Also

Open File with FCB (Function OFh) opens a file identified by the file control
block (FCB).

This function has been superseded by Open File with Handle (Function 3Dh).

FileFCB Points to an FCB structure that identifies the file to open. The
fcbDriveld, fcbFileName, and fcbExtent fields must specify the filename and
drive; all other fields must be set to zero. The FCB structure has the following
form:

FCB STRUC
fcbDriveID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???! ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the file is found, the AL register contains 00h and the remaining fields in the
FCB structure are filled in. Otherwise, the AL register contains OFFh.

This function does not support paths, so it is possible to open only files in the
current directory.

If the calling program specifies zero for the drive number, MS-DOS searches for
the file on the default drive. If the system finds the file, it fills in the fcbDriveld
field with the correct drive.

When a file is opened, MS-DOS sets the current block number in the FCB to
zero (the file pointer is at the beginning of the file).

MS-DOS initially sets the record size to 128 bytes. If some other record size is
to be used, the size must be set after the call to Open File with FCB but before
any other disk operation.

Function 10h Close File with FCB
Function 3Dh Open File with Handle

Function 10h Close File with FCB 227

B Function 10h Close File with FCB Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 10h ;Close File with FCB
int 21h
cmp al, O ;zZero means success
jne error_handler

Parameter

Return Value

Comments

See Also

Close File with FCB (Function 10h) closes the open file identified by the file
control block (FCB).

This function has been superseded by Close File with Handle (Function 3Eh).

FileFCB Points to an FCB structure that identifies the file to close. The struc-
ture must have been previously opened by using Open File with FCB (Function
OFh) or Create File with FCB (Function 16h). The FCB structure has the follow-
ing form:

ECB STRUC
fcbDrivelD db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???' ;flle extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date flle last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the file is found, the AL register contains 00h and the remaining fields in the
FCB structure are filled in. Otherwise, the AL register contains OFFh.

Close File with FCB searches the current directory for the file named in the
FCB structure. If it finds a directory entry for the file, it completes any buffered
write operations (buffered information is written to the disk, and the buffers are
freed). MS-DOS then updates the directory entry, if necessary, to match the

FCB structure and closes the file. Further requests to read from or write to the
file will fail.

After a program changes a file, it must call this function to update the directory
entry. Programs should close any FCB structure (even one for a file that has not
been changed) when they no longer need access to the file.

This function does not support paths, so it is possible to close only files in the
current directory.

Function OFh Open File with FCB
Function 3Eh Close File with Handle

228 Function 11h Find First File with FCB

B Function 11h Find First File with FCB

Superseded

Parameter

mov
mov
mov

mov
int

cmp
jne

dx, seg FileFCB

ds, dx

dx, offset FileFCB

ah, 1l1lh
21h

al, O
error_handler

;ds:dx points to ECB
;Find First File with ECB

/Zero means success

Find First File with FCB (Function 11h) searches the current directory for the
first file matching the filename specified by the file control block (FCB).

This function has been superseded by Find First File (Function 4Eh).

FileFCB Points to an FCB structure or EXTENDEDFCB structure that
identifies the file or files to search for.

If an FCB structure is given, the fields fcbDrivelID, fcbFileName, and fcbExtent
must specify the filename(s). The filename can include wildcards. All other fields
should be zero. The FCB structure has the following form:

FCB

FCB

STRUC
fcbDriveID db
fcbFileName db
fcbExtent db
fcbCurBlockNo dw
fcbRecSize dw
fcbFileSize db
fcbFileDate dw
fcbFileTime dw
fcbReserved db
fcbCurRecNo db
fcbRandomRecNo db

ENDS

?

;drive no. (O=default, 1=A, etc.)

'2???????' ;filename

'ee?! ;file extension

? ;current block number

? ;record size

4 dup (?) ;size of file, in bytes
? ;date flle last modified
? ;time file last modified
8 dup (?) ;reserved

? ;current record number

4 dup (?) ;random record number

For a full description of the FCB structure, see Chapter 3, “File System.”

If an EXTENDEDFCB structure is given, the fields extDriveID, extFileName,
and extExtent must specify the filename(s). The filename can include wildcards.
The extAttribute field must specify the attributes of the file to search for. All
?ther fields should be zero. The EXTENDEDFCB structure has the following
orm:

EXTENDEDECB STRUC
extSignature db Offh

?

?
Ndddddddd
'ee?!

dup (?)

dup (?)

extReserved db 5 dup(0)
extAttribute db
extDrivelD db
extFileName db
extExtent db
extCurBlockNo dw
extRecSize dw
extFileSize db
extFileDate dw
extFileTime dw
extReserved db
extCurRecNo db

extRandomRecNo db

EXTENDEDECB ENDS

For a full description of the EXTENDEDFCB structure, see Chapter 3, “File

System.”

BYVDOVVdVN

dup (?)

;extended FCB signature
;reserved bytes
;attribute byte

;file control block (FCB)

;drive no. (O=default, 1=A, etc.)

;filename

;file extension

;current block number
;record size

;size of file, in bytes
;date flle last modified
;time file last modified
;reserved bytes

;current record number
:random record number

Return Value

Comments

See Also

Function 11h Find First File with FCB 229

If a file matching the name in the FCB structure or EXTENDEDFCB structure is
found, the AL register contains 00h and the buffer at the current disk transfer
address (DTA) receives a DIRENTRY structure defining the file. Otherwise, the
AL register contains OFFh.

If a program uses Find Next File with FCB (Function 12h) to continue searching
for matching filenames, it must not alter or open the original FCB structure.

If the function is successful and an FCB structure was given, the function copies
the drive number used in the search (1 = A, 2 = B, and so on) to the first byte
at the DTA. It copies a DIRENTRY structure that defines the file starting at the
second byte at the DTA.

If the function is successful and an EXTENDEDFCB was given, the function
copies an EXTHEADER structure that starts at the first byte at the DTA and
then copies a DIRENTRY structure that defines the file immediately after the
EXTHEADER structure.

The DIRENTRY structure has the following form:
DIRENTRY STRUC

deName db ‘'????????' ;name

deExtension db '???' ;extension
deAttributes db ? ;attributes
deReserved db 10 dup(?) ;reserved

deTime dw ? ;time

deDate dw ? ;date
deStartCluster dw ? ;starting cluster
deFileSize dd ? ;file size

DIRENTRY ENDS

For a full description of the DIRENTRY structure, see Chapter 3, “File System.”
The EXTHEADER structure has the following form:
EXTHEADER STRUC

ehSignature db Offh ;extended signature
ehReserved db 5 dup(0) ;reserved
ehSearchAttrs db ? ;attribute byte

EXTHEADER ENDS

For a full description of the EXTHEADER structure, see Chapter 3, “File Sys-
tem.”

Function 4Eh Find First File

230 Function 12h Find Next File with FCB

B Function 12h Find Next File with FCB Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 12h ;Find Next File with FCB
int 21n
cmp al, O ;zero means success
Jjne error_handler

Parameter

Find Next File with FCB (Function 12h) searches the current directory for addi-
tional files matching the filename specified by the file control block (FCB).

A program must initiate a file search with Find First File with FCB (Function
11h) before it can use Find Next File with FCB.

This function has been superseded by Find Next File (Function 4Fh).

FileFCB Points to an FCB or EXTENDEDFCB structure that identifies the file
or files to search for. The structure must have been previously filled by using
Find First File with FCB (Function 11h). The FCB structure has the following
form:

FECB . STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db ‘'???' ;file extension
fcbCurBlockNo dw ;current block number

?
fcbRecSize dw record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”
The EXTENDEDFCB structure has the following form:
EXTENDEDFCB STRUC

extSignature db Offh ;extended FCB signature
extReserved db 5 dup (0) ;reserved bytes
extAttribute db ? ;attribute byte

;file control block (FCB)
extDrivelID db ? ;drive no. (O=default, 1=A, etc.)
extFileName db '????????' ;filename
extExtent db '???! ;file extension
extCurBlockNo dw ? ;scurrent block number
extRecSize dw ? ;record size
extFileSize db 4 dup (?) :;size of file, in bytes
extFileDate dw ? ;date file last modified
extFileTime dw ? ;time file last modified
extReserved db 8 dup (?) ;reserved bytes
extCurRecNo db ? ;current record number
extRandomRecNo db 4 dup (?) ;random record number

EXTENDEDECB ENDS

For a full description of the EXTENDEDFCB structure, see Chapter 3, “File
System.”

Return Value

Comments

See Also

Function 12h Find Next File with FCB 231

If a file matching the name in the FCB structure or EXTENDEDFCB structure is
found, the AL register contains 00h and the buffer at the current disk transfer
address (DTA) receives a DIRENTRY structure defining the file. Otherwise, the
AL register contains OFFh.

If the function is successful and an FCB structure was given, the function copies
the drive number used in the search (1 = A, 2 = B, and so on) to the first byte
at the DTA. It copies a DIRENTRY structure that defines the file starting at the
second byte at the DTA.

If the function is successful and an EXTENDEDFCB was given, the function
copies an EXTHEADER structure that starts at the first byte at the DTA and
then copies a DIRENTRY structure that defines the file immediately after the
EXTHEADER structure.

The DIRENTRY structure has the following form:
DIRENTRY STRUC

deName db '????????' ;name

deExtension db '???' ;extension
deAttributes db ? ;attributes
deReserved db 10 dup(?) ;reserved

deTime dw ? ;time

deDate dw ? ;date
deStartCluster dw ? ;starting cluster
deFileSize dd ? ;file size

DIRENTRY ENDS

For a full description of the DIRENTRY structure, see Chapter 3, “File System ?
The EXTHEADER structure has the following form:
EXTHEADER STRUC

ehSignature db Offh ;extended signature
ehReserved db 5 dup (0) ;reserved
ehSearchAttrs db ;attribute byte

EXTHEADER ENDS

For a full description of the EXTHEADER structure, see Chapter 3, “File Sys-
tem.”

Function 4Fh Find Next File

232 Function 13h Delete File with FCB

B Function 13h Delete File with FCB Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 13h ;Delete File with FCB
int 21h
cmp al, O /Zero means Success
jne error_handler

Delete File with FCB (Function 13h) deletes the file or files identified by the file
control block (FCB).

This function has been superseded by Delete File (Function 41h).

Parameter FileFCB Points to an FCB structure that identifies the file or files to delete.
The fcbDriveld, fcbFileName, and fcbExtent fields must specify the filename and
drive. The filename can include wildcards. All other fields must be zero. The
FCB structure has the following form:

FCB STRUC
fcbDrivelID db ? ;idrive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? irecord size
fcbFileSize db 4 dup (?) . ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) :;random record number

FCB ENDS
For a full description of the FCB structure, see Chapter 3, “File System.”

Return Value If a file matching the name in the FCB structure is found and deleted, the AL
register contains 00h. Otherwise (if a matching file cannot be found), the AL
register contains OFFh.

Comments Programs should not delete open files.

If the filename in the FCB structure contains wildcards, all matching files are
deleted.

This function can be used to delete files on a network drive but only if the net-
work has granted delete (or similar) access to the given file or drive.

See Also Function 41h Delete File

Function 14h Sequential Read 233

B Function 14h Sequential Read Superseded
‘ mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 14h ;Sequential Read
int 21h
cmp al, O ;zero means SUCCess
jne error_handler

Parameter

Return Value

Comments

See Also

Sequential Read (Function 14h) reads a record from the file identified by the file
control block (FCB). Data read from the file is written to the memory at the
current disk transfer address (DTA).

This function has been superseded by Read File or Device (Function 3Fh).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). The fcbCurBlockNo and fcbCurRecNo
fields in the FCB structure must specify the record to read. The FCB structure
has the following form:

FCB STRUC
fcbDrivelD db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????°????' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h, and the memory at
the DTA contains the record read from the file. Otherwise, the AL register con-
tains an error value, which may be one of the following values:

Value Meaning

O1h End of file encountered, no data in record
02h Segment boundary overlapped by DTA, read canceled
03h End of file encountered, partial record at DTA (rest of record filled

with zeros)

MS-DOS increments the fcbCurBlockNo and febCurRecNo fields in the FCB
structure after a successful read operation.

This function can be used to read files on a network drive but only if the net-
work has granted read (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 15h Sequential Write
Function 16h Create File with FCB
Function 3Fh Read File or Device

234 Function 15h Sequential Write

B Function 15h Sequential Write Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 15h ;Sequential Write
int 21ih
cmp al, O ;zero means success
jne error_handler

Parameter

Return Value

Comments

See Also

Sequential Write (Function 15h) writes the data at the current disk transfer
address (DTA) to a record in the file identified by the file control block (FCB).

This function has been superseded by Write File or Device (Function 40h).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). The fcbCurBlockNo and fcbCurRecNo
fields in the FCB structure specify the record to write. The FCB structure has
the following form:

FCB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;flilename
fcbExtent db '???! ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
EFCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains Olh if the disk is full or 02h if the DTA overlapped a segment
boundary. In either case, the write operation is canceled.

MS-DOS increments the fcbCurBlockNo and fcbCurRecNo fields in the FCB
structure after a successful write operation.

This function can be used to write files on a network drive but only if the net-
work has granted write (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 14h Sequential Read

Function 16h Create File with FCB
Function 40h Write File or Device

Function 16h Create File with FCB 235

B Function 16h Create File with FCB Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 16h ;Create File with FCB
int 21h
cmp al, O ;Zero means Ssuccess
jne error_handler

Parameter

Return Value

Comments

See Also

Create File with FCB (16h) creates a new file having the filename specified by
the file control block (FCB). If a file with the specified name already exists,
MS-DOS opens it and truncates it to zero length.

This function has been superseded by Create File with Handle (Function 3Ch).

FileFCB Points to an FCB structure that identifies the file to create. The
fcbDriveld, fcbFileName, and fcbExtent fields must specify the filename and
drive. All other fields must be zero. The FCB structure has the following form:

ECB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '??????7??' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains OFFh.

This function can be used to create files on a network drive but only if the net-
work has granted create (or similar) access to the given drive.

The EXTENDEDFCB structure can be used in place of the FCB structure to
assign attributes to the file when creating it. In this case, the EXTENDEDFCB
structure is used for all subsequent read, write, and close operations.

Function 3Ch Create File with Handle

236 Function 17h Rename File with FCB

B Function 17h Rename File with FCB Superseded
mov dx, seg FilesFCB
mov ds, dx
mov dx, offset FilesFCB ;ds:dx points to RENAMEFCB structure
mov ah, 17h ;Rename File with FCB
int 21lh
cmp al, O ;zZero means success
jne error_handler

Rename File with FCB (Function 17h) changes the name of an existing file.
This function has been superseded by Rename File (Function 56h).

Parameter FilesFCB Points to a RENAMEFCB structure that contains the old and new
names for the file. The RENAMEFCB structure has the following form:

RENAMEFCB STRUC

renDrivelID db ? ;drive no. (O=default, 1=A, etc.)
renOldName db '????????' ;o0ld filename

renOldExtent db '???' ;old file extension

renReservedl db 5 dup(?) ;reserved

renNewName db '????????' .new filename

renNewExtent db '???' ;new extension

renReserved2 db 9 dup(?) ;reserved

RENAMEFCB ENDS

For a full description of the RENAMEFCB structure, see Chapter 3, “File Sys-
tem.”

Return Value If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains OFFh.

Comments If the filename in the RENAMEFCB structure contains wildcards, all matching
files are renamed.

If the new name matches the name of an existing file, the function returns OFFh
without renaming the file.

See Also Function 56h Rename File

Function 19h Get Default Drive 237

B Function 19h Get Default Drive

Parameters
Return Value
See Also

mov ah, 19h ;Get Default Drive
int 21h
mov DriveNumber, al ;drive (0 = A, 1 = B, etc.)

Get Default Drive (Function 19h) returns the number of the default drive.
This function has no parameters.
The AL register contains the drive number (0 = A, 1 = B, and so on).

Function OEh Set Default Drive

238 Function 1Ah Set Disk Transfer Address

B Function 1Ah Set Disk Transfer Address

Parameter
Return Value
Comments

See Also

mov dx, seg DTA

mov ds, dx

mov dx, offset DTA ;ds:dx is new disk transfer address
mov ah, 1Ah ;Set Disk Transfer Address

int . 21nh

Set Disk Transfer Address (Function 1Ah) sets the address of the buffer that
MS-DOS uses for file I/O (with file control blocks, or FCBs) and disk searches
(with and without FCBs).

DTA Points to the buffer MS-DOS is to use for file operations.
This function has no return value.

When a program starts, the default disk transfer address (DTA) is offset 0080h
in the program segment prefix (PSP). If a program sets the DTA, the new buffer
must be large enough to accommodate the file record size (for example, if the
file record size is 128 bytes, the buffer must be at least 128 bytes). In addition,
the buffer must not overlap a segment boundary. The default DTA should not
be used for read or write operations with record sizes that exceed 128 bytes.

Programs can retrieve the current DTA with Get Disk Transfer Address (Func-
tion 2Fh).

Function 11h Find First File with FCB
Function 12h Find Next File with FCB
Function 14h Sequential Read
Function 15h Sequential Write
Function 21h Random Read

Function 22h Random Write

Function 27h Random Block Read
Function 28h Random Block Write
Function 2Fh Get Disk Transfer Address
Function 4Eh Find First File

Function 4Fh Find Next File

Function 1Bh Get Default Drive Data 239

B Function 1Bh Get Default Drive Data Superseded
mov ah, 1Bh ;Get Default Drive Data
int 21h
cmp al, OFFh ;OFFh means error
je error_handler
mov SecPerCluster, al ;sectors per cluster
mov BytesPerSector, cx ;bytes per sector
mov NumClusters, dx ;number of clusters
mov al, byte ptr [bx] ;ds:bx points to media descriptor
mov MediaDesc, al

Parameters
Return Values

Comments

Get Default Drive Data (1Bh) retrieves information about the disk in the default
drive.

This function has been superseded by Get Disk Free Space (Function 36h).
This function has no parameters.

If the function is successful, the AL, CX, DX, and DS:BX registers contain the
following information:

Register Contents

AL Number of sectors in a cluster.
CX Number of bytes in a sector.
DX Number of clusters on the disk.

DS:BX Points to the media descriptor.
Otherwise, the AL register contains OFFh.

If Get Default Drive Data fails, the default drive was invalid or a disk error
occurred. A program must check the return values from this function to deter-
mine whether it has valid disk information.

Following are the most commonly used media descriptors and their correspond-
ing media:
Value Type of medium

OFOh 3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

OF8h Hard disk, any capacity.

OF%h 3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

OFAh 5.25-inch, 1 side, 8 sectors/track, (320K).
OFBh 3.5-inch, 2 sides, 8 sectors/track (640K).
OFCh 5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

OFDh 5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

OFEh 5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (160K). This value is
also used for 8-inch disks.

OFFh 5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

240 Function 1Bh Get Default Drive Data

Get Default Drive Data modifies the DS register. A program should save the
contents of the register before calling this function and restore the contents of
the register after retrieving the media descriptor.

See Also Function 1Ch Get Drive Data
Function 36h Get Disk Free Space

Function 1Ch Get Drive Data 241

B Function 1Ch Get Drive Data Superseded

mov dl, DriveNum ;drive (0 = default, 1 = A, 2 = B, etc.)

mov ah, 1Ch ;Get Drive Data

int 21h

cmp al, OFFh ;OFFh means error

jz error_handler

mov SecPerCluster, al ;sectors per cluster

mov BytesPerSector, cx ;bytes per sector

mov NumClusters, dx ;number of clusters

mov al, byte ptr [bx] ;ds:bx points to media descriptor

mov MediaDesc, al

Get Drive Data (Function 1Ch) retrieves information about the disk in the
specified drive.

This function has been superseded by Get Disk Free Space (Function 36h).

DriveNum
(0 = default,

Parameter

Return Values

Specifies the number of the drive for which to return information
1=A, 2 =B, and so on).

If the function is successful, the AL, CX, DX, and DS:BX registers contain the

following information:

Register

Contents

AL
CcX
DX
DS:BX

Number of sectors in a cluster.
Number of bytes in a sector.
Number of clusters on the disk.

Points to the media descriptor.

Otherwise, the AL register contains OFFh.

Comments If Get Drive

Data fails, the default drive was invalid or a disk error occurred. A
program must check the return values from this function to determine whether it

has valid disk information.

Following are the most commonly used media descriptors and their correspond-

ing media:
Value

Type of medium

OFOh

OF8h
OF%h

OFAh
OFBh
OFCh
OFDh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch, 2
sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.25-inch, 1 side, 8 sectors/track, (320K).
3.5-inch, 2 sides, 8 sectors/track (640K).
5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

242 Function 1Ch Get Drive Data

See Also

Value Type of medium

OFEh 5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (160K). This value is
also used for 8-inch disks.

OFFh 5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).
Get Drive Data modifies the DS register. A program should save the contents of

the register before calling this function and restore the contents of the register
after retrieving the media descriptor.

Function 1Bh Get Default Drive Data
Function 36h Get Disk Free Space

Function 1Fh Get Default DPB 243

B Function 1Fh Get Default DPB

mov ah, 1Fh ;Get Default DPB

int 21h ‘

cmp al, OFFh ;OFFh means error

jz error_handler

mov word ptr [defaultDPB], bx

mov word ptr [defaultDPB+2], ds ;ds:bx points to default DPB

Get Default DPB (Function 1Fh) retrieves drive parameters for the default drive.
Parameters This function has no parameters.

Return Value If the function is successful, the AL register contains zero and the DS:BX regis-
ters point to a DPB structure that contains the drive parameters. The DS regis-
ter contains the segment address, and the BX register contains the offset. Other-
wise, if the default drive was invalid or a disk error occurred, the AL register
contains OFFh.

Comments If Get Default DPB is successful, the DS:BX registers point to a DPB structure,

which has the following form:

DPB STRUC
dpbDrive db ? ;drive number (0O = A, 1 = B, etc.)
dpbUnit db ? ;unit number for driver
dpbSectorSize dw ? ;sector size, in bytes
dpbClusterMask db ? ;sectors per cluster - 1
dpbClusterShift db ? ;sectors per cluster, as power of 2
dpbFirstFAT dw ? ;first sector containing FAT
dpbFATCount db ? ;number of FATs
dpbRootEntries dw ? ;number of root-directory entries
dpbFirstSector dw ? ;first sector of first cluster
dpbMaxCluster dw ? ;number of clusters on drive + 1
dpbFATSize dw ? ;number of sectors occupied by FAT
dpbDirSector dw ? ;first sector containing directory
dpbDriverAddr dd ? ;address of device driver
dpbMedia db ? smedia descriptor
dpbFirstAccess db ? ;indicates access to drive
dpbNextDPB dd ? ;address of next drive parameter block
dpbNextFree dw ? ;last allocated cluster
dpbFreeCnt dw ? ;number of free clusters

DPB ENDS

For more information about the DPB structure, see Chapter 3, “File System.”

See Also Function 32h Get DPB

244 Function 21h Random Read

B Function 21h Random Read Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 21h ;Random Read
int 21h
cmp al, O ;zZero means success
jne error_handler

Parameter

Return Value

Comments

See Also

Random Read (Function 21h) reads a record from the file identified by the file
control block (FCB). Data read from the file is written to the memory at the
current disk transfer address (DTA).

This function has been superseded by Read File or Device (Function 3Fh).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
specify the record to read. The FCB structure has the following form:

ECB STRUC
fcbDrivelID db 7? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db ‘'???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
ECB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h and the memory at the
DTA contains the record read from the file. Otherwise, the AL register contains
an error value, which may be one of the following:

Value Meaning

O1h End of file encountered, no data in record
02h Segment boundary overlapped by DTA, read canceled
03h End of file encountered, partial record at DTA (rest of record filled

with zeros)

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FCB struc-
ture to agree with the fcbRandomRecNo field before attempting to read the
record from the disk. No record numbers are incremented; successive calls to
the function repeatedly read the same record.

This function can be used to read files on a network drive but only if the net-
work has granted read (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 14h Sequential Read
Function 16h Create File with FCB
Function 22h Random Write
Function 3Fh Read File or Device

Function 22h Random Write 245

B Function 22h Random Write Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 22h ;Random Write
int 21h
cmp al, O ;zZero means success
jne error_handler

Parameter

Return Value

Comments

See Also

Random Write (Function 22h) writes data at the current disk transfer address
(DTA) to a record in the file identified by the file control block (FCB).

This function has been superseded by Write File or Device (Function 40h).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
specify the record to write. The FCB structure has the following form:

FCB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '??2??????' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains Olh if the disk is full or 02h if the DTA overlapped a segment
boundary. In either case, the write operation is canceled.

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FCB struc-
ture to agree with the fcbRandomRecNo field before attempting to write the
record to the disk. No record numbers are incremented; successive calls to this
function write to the same record in the file.

This function can be used to write files on a network drive but only if the net-
work has granted write (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 15h Sequential Write
Function 16h Create File with FCB
Function 21h Random Read
Function 40h Write File or Device

246 Function 23h Get File Size

B Function 23h Get File Size Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 23h ;Get File Size
int 21h
cmp al, O ;Zero means Success
jne error_handler

Parameter

Return Value

Comment

See Also

Get File Size (Function 23h) returns the number of records in a file specified by
a file control block (FCB).

This function has been superseded by Move File Pointer (Function 42h).

FileFCB Points to an FCB structure that identifies the file to examine. The
fcbDrivelD, fcbFileName, and fchbExtent fields must contain the filename infor-
mation. Also, the fcbRecSize field must contain the size of a single file record.
Other fields should contain zero. The FCB structure has the following form:

ECB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db ‘'???' ;flle extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) :size of flle, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h and the fcbRandom-
RecNo field contains the number of records in the file. Otherwise, the AL regis-
ter contains OFFh.

MS-DOS returns the size of the file in records by dividing the size in bytes by
the size of a single record (as specified by the fcbRecSize field). If the fcbRec-
Size field in the FCB structure is set to 1 byte, MS-DOS returns the size of the
file in bytes.

Function 42h Move File Pointer

Function 24h Set Random Record Number 247

B Function 24h Set Random Record Number Superseded
mov dx, seg FileFCB
mov ds, dx -
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 24h ;Set Random Record Number
int 21h

Parameter

Return Value
See Also

Set Random Record Number (Function 24h) sets the random record field in a
file control block (FCB) to match the file position indicated by the current block
and current record fields.

This function has been superseded by Move File Pointer (Function 42h).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
contain zero before this function is called. The FCB structure has the following
form:

FCB

FCB

STRU
fcbDrive
fcbFileN
fcbExten
fcbCurBl
fcbRecSi
fcbFileS
fcbFileD
fcbFileT
fcbReser
fcbCurRe
fcbRando

ENDS

o]

ID db ? ;drive no. (O=default, 1=A, etc.)
ame db '????2????' ;filename

t db ‘'???! ;file extension

ockNo dw ? ;current block number

ze dw ? ;record size

ize db 4 dup (?) ;size of file, in bytes
ate dw ? ;date file last modified
ime dw ? ;time file last modified
ved db 8 dup (?) ;reserved

cNo db ? ;ecurrent record number
mRecNo db 4 dup (?) ;random record number

For a full description of the FCB structure, see Chapter 3, “File System.”

This function has no return value.

Function OFh Open File with FCB
Function 16h Create File with FCB
Function 21h Random Read
Function 22h Random Write
Function 42h Move File Pointer

248 Function 25h Set Interrupt Vector

B Function 25h Set Interrupt Vector

Parameters

Return Value
Comments

See Also

mov dx, seg InterruptHandler

mov ds, dx

mov dx, offset InterruptHandler ;ds:dx points to new handler
mov al, InterruptNumber ;interrupt vector

mov ah, 25h ;Set Interrupt Vector

int 21h

Set Interrupt Vector (Function 25h) replaces the vector-table entry with the
address of the specified interrupt handler.

InterruptHandler Specifies the address of the new interrupt handler.

InterruptNumber Specifies the number of the interrupt (60h-OFFh) that is to
cause the specified handler to be called.

This function has no return value.

Programs should never set an interrupt vector directly in memory. Programs
should use this function to replace an interrupt vector.

When a program installs a new interrupt handler, it should use Get Interrupt
Vector (Function 35h) to retrieve the address of the original interrupt handler
and restore this original address before terminating.

Function 35h Get Interrupt Vector

Function 26h Create New PSP 249

B Function 26h Create New PSP Superseded
mov dx, SegmentPSP ;segment address to receive PSP
mov ah, 26h ;Create New PSP
int 21h

Parameter
Return Value
Comment

See Also

Create New PSP (Function 26h) creates a new program segment prefix (PSP),
copying it to the beginning of the segment specified by the SegmentPSP param-
eter. :

This function has been superseded by Load and Execute Program (Function
4B0Oh).

SegmentPSP Specifies the address of a segment to receive the new PSP.
This function has no return value.

This function is intended to be called only by .COM programs. When a program
calls this function, the CS register must contain the segment address of the PSP.

Function 4B00h Load and Execute Program

250 Function 27h Random Block Read

B Function 27h Random Block Read Superseded
mov cx, cRecords ;number of records to read
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 27h ;Random Block Read
int 21h
cmp al, O ;zZero means success
jne error_handler

Parameters

Return Value

Comments

Random Block Read (Function 27h) reads one or more records from the file
identified by the file control block (FCB). Data read from the file is written to
the memory at the current disk transfer address (DTA).

This function has been superseded by Read File or Device (Function 3Fh) and
Move File Pointer (Function 42h).

CcRecords Specifies the number of records to read.

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
specify the first record to read. The FCB structure has the following form:

FCB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h, the memory at the
DTA contains the records read from the file, and the CX register contains a
count of the number of records read. Otherwise, the AL register contains an
error value, which may be one of the following:

Value Meaning

01h End of file encountered, no data in record

02h Segment boundary overlapped by DTA, read canceled

03h End of file encountered, partial record at DTA (rest of record filled

with zeros)
A program using this function must ensure that the buffer at the DTA is large
enough to hold all the data read from the file.

MS-DOS updates the fchCurBlockNo and febCurRecNo fields in the FCB struc-
ture to agree with the fcbRandomRecNo field before attempting to read the

See Also

Function 27h Random Block Read 251

record from the disk. The block and record fields are incremented after a suc-
cessful read operation; successive calls to this function read sequential groups of
records from the file until MS-DOS reaches the end of the file.

This function can be used to read files on a network drive but only if the net-
work has granted read (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 16h Create File with FCB
Function 21h Random Read
Function 28h Random Block Write
Function 3Fh Read File or Device
Function 42h Move File Pointer

252 Function 28h Random Block Write

B Function 28h Random Block Write Superseded
mov cx, cRecords ;number of records to write
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB
mov ah, 28h ;Random Block Write
int 21h :
cmp al, O ;Zero means SUCCess
jne error_handler

Parameters

Return Value

Comments

Random Block Write (Function 28h) writes the data at the current disk transfer
address (DTA) to one or more records in the file identified by the file control
block (FCB).

This function has been superseded by Write File or Device (Function 40h) and
Move File Pointer (Function 42h).

cRecords Specifies the number of records to write.

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function 0Fh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
specify the first record to write. The FCB structure has the following form:

EFCB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;eurrent block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;slze of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;scurrent record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains O1h if the disk is full or 02h if the DTA overlapped a segment
boundary. In either case, the write operation is canceled.

If the function returns 00h or O1h, the CX register contains the number of
records actually written.

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FCB struc-
ture to agree with the fcbRandomRecNo field before attempting to write the
records to the disk. The block and record fields are incremented after a success-
ful write operation; successive calls to this function write sequential groups of
records to the file.

Function 28h Random Block Write 253

This function can be used to write files on a network drive but only if the net-
work has granted write (or similar) access to the given file or drive.

See Also Function OFh Open File with FCB
Function 16h Create File with FCB
Function 22h Random Write
Function 27h Random Block Read
Function 40h Write File or Device
Function 42h Move File Pointer

254 Function 29h Parse Filename

- Function 29h Parse Filename

Parameters

mov si, seg Parselnput

mov ds, si

mov si, offset Parselnput ;ds:si points to name(s) to parse
mov di, seg FileFCB

mov es, di

mov di, offset FileFCB ;es:di points to FCB

mov al, ParseControl ;controls parsing

mov ah, 29h ;Parse Filename

int 21h

Parse Filename (Function 29h) converts a filename string that has the form
drivesfilename.extension into a string of the form required for a file control block
(FCB).

This function is useful only when file control blocks are used.

Parselnput Points to a zero-terminated ASCII string specifying the filename
or filenames to parse. Each filename must be in the form drive:filename.extension
and may contain wildcards. If more than one filename is given, the names must
be separated with at least one space character (ASCII 20h). Separator charac-
ters used for the MS-DOS command line are also valid.

FileFCB Points to an FCB structure that receives the parsed filename. The
FCB structure has the following form:

FCB STRUC
fcbDrivelID db ? ;drive no. (O=default, 1=A, etc.)
fcbFileName db '????????' ;filename
fcbExtent db '???! ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ;reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number
FCB ENDS

For a full description of the FCB structure, see Chapter 3, “File System.”

ParseControl Controls how MS-DOS parses the Parselnput parameter. This
parameter has the following form:

Bit Meaning

0 0 = Stops parsing if a file separator is encountered.
1 = Ignores leading separators.

1 0 = Sets the drive number in the FCB structure to 00h (default drive) if
the string does not contain a drive number.

1 = Leaves the drive number in the FCB structure unchanged if the
string does not contain a drive number.

2 0 = Sets the filename in the FCB structure to eight space characters
(ASCII 20h) if the string does not contain a filename.

1 = Leaves the filename in the FCB structure unchanged if the string
does not contain a filename.

Return Values

Comments

Function 29h Parse Filename 255

Bit Meaning

3 0 = Sets the extension in the FCB structure to three space characters
(ASCII 20h) if the string does not contain an extension.

1 = Leaves the extension in the FCB structure unchanged if the string
does not contain an extension.

Bits 4 through 7 are reserved and must be zero.

If the function is successful, the AL, DS:SI, and ES:DI registers contain the fol-
lowing information:

Register Description

AL Contains O1h if at least one wildcard is in the filename or extension.
Otherwise, it contains 00h.

DS:SI Points to the first character after the parsed string.

ES:DI Points to the first byte of the FCB structure.

If the drive letter is invalid, the AL register contains OFFh. If the string does not
contain a valid filename, the memory at ES:DI+1 contains a space character
(ASCII 20h).

Parse Filename fills the fcbDriveld, fchbFileName, and fcbExtent fields of the
specified FCB structure unless the ParseControl parameter specifies otherwise.
To fill these fields, the function strips any leading white-space characters (spaces
and tabs) from the string pointed to by Parselnput, then uses the remaining char-
acters to create the drive number, filename, and filename extension. If bit 0 in
ParseControl is set, the function also strips exactly one filename separator if

one appears before the first non-white-space character. The following are valid
filename separators:

R
Once Parse Filename begins to convert a filename, it continues to read charac-
ters from the string until it encounters a white-space character, a filename sep-

arator, a control character (ASCII 01h through 1Fh), or one of the following
characters:

/") <>

If the filename in the string has fewer than eight characters, the function fills the
remaining bytes in the fcbFileName field with space characters (ASCII 20h). If
the filename extension has fewer than three characters, the function fills the
remaining bytes in the fcbExtent field with space characters.

256 Function 2Ah Get Date

B Function 2Ah Get Date

mov ah, 2Ah ;Get Date

int 21h

mov WeekDay, al ;day of week (0 = Sunday, 1 = Monday, etc.)
mov Year, cx ;year (1980 through 2099)

mov Month, dh ;month (1 = Jan, 2 = Feb, etc.)

mov MonthDay, dl ;day of month (1 through 31)

Get Date (Function 2Ah) returns the current MS-DOS system date (the date
maintained by the clock device).

Parameters This function has no parameters.

Return Values The AL, CX, and DX registers contain the following information:
Register Contents

AL A number representing the day of the week (0 = Sunday,
1 = Monday, and so on)
CcX A year number (1980 through 2099)
DH A number representing the month (1 = January, 2 = February,
and so on)
DL The day of the month (1 through 31)
See Also : Function 2Bh Set Date

Function 2Ch Get Time
Function 2Dh Set Time

Function 2Bh Set Date 257

B Function 2Bh Set Date

mov cx, Year ;year (1980 through 2099)

mov dh, Month ;month (1 = Jan, 2 = Feb, etc.)
mov dl, MonthDay ;day of month (1 through 31)
mov ah, 2Bh ;Set Date

int 21h

cmp al, O ;Zero means success

jne error_handler

Set Date (Function 2Bh) sets the MS-DOS system date (the date maintained by
the clock device).

Parameters Year Specifies a year number in the range 1980 through 2099.
Month Specifies a number representing the month (1 = January, 2 = February,
and so on).

MonthDay Specifies a day of the month (1 through 31).

Return Value If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains OFFh.

See Also Function 2Ah Get Date
Function 2Ch Get Time
Function 2Dh Set Time

258 Function 2Ch Get Time

B Function 2Ch Get Time

Parameters
Return Values

See Also

mov
int

mov
mov
mov
mov

ah, 2Ch ;Get Time

21h

Hour, ch shour (O through 23)
Minutes, cl ;minutes (O through 59
Seconds, dh ;seconds (0 through 59

Hundredths, dl ;hundredths of a second (O through 99)

Get Time (Function 2Ch) returns the MS-DOS system time (the time maintained
by the clock device).

This function has no parameters.

The CX and DX registers contain the following information:
Register Contents

CH
CL
DH
DL

Hour in 24-hour format (13 = 1 pM., 14 = 2 pM,, and so on)
Minutes (0 through 59)

Seconds (0 through 59)

Hundredths of a second (0 through 99)

Function 2Ah Get Date
Function 2Bh Set Date
Function 2Dh Set Time

Function 2Dh Set Time 259

B Function 2Dh Set Time

Parameters

Return Value

Comment

See Also

mov ch, Hour ;hour (O through 23)

mov cl, Minutes ;minutes (O through 59)

mov dh, Seconds :seconds (O through 59)

mov dl, Hundredths ;hundredths of a second (O through 99)
mov ah, 2Dh ;Set Time

int 21h

cmp al, O ;zZero means success

jne error_handler

Set Time (Function 2Dh) sets the MS-DOS system time (the time maintained by
the clock device).

Hour Specifies the hour to set in 24-hour format (13=1pPM, 14 =2PM,, and
so on).

Minutes Specifies the minutes to set (0 through 59).

Seconds Specifies the seconds to set (0 through 59).

Hundredths Specifies the hundredths of a second to set (0 through 99).

If the function is successful, the AL register contains 00h. Otherwise, the AL
register contains OFFh.

If the hardware does not resolve hundredths of seconds, the value of the
Hundredths parameter is ignored.

Function 2Ah Get Date
Function 2Bh Set Date
Function 2Ch Get Time

260 Function 2Eh Set/Reset Verify Flag

Function 2Eh Set/Reset Verify Flag

mov al, VerifyFlag ;0 = reset, 1 = set
mov ah, 2Eh ;Set/Reset Verify Flag
int 21h

Set/Reset Verify Flag (Function 2Eh) turns the write verify flag on or off, thus
determining whether MS-DOS verifies write operations.

Parameter VerifyFlag Specifies whether MS-DOS is to attempt to verify that data has
been transferred correctly after write operations. If this parameter is 0, MS-DOS
does not verify write operations; if this parameter is 1, MS-DOS verifies write
operations.

Return Value This function has no return value.

Comment The system checks this flag every time it performs a write operation. The write
verify flag is typically off, because disk errors are rare and verification slows writ-
ing. The write verify flag can be turned on during critical write operations.

See Also Function 54h Get Verify State

Function 2Fh Get Disk Transfer Address 261

B Function 2Fh Get Disk Transfer Address

Parameters
Return Value

Comments

See Also

mov ah, 2Fh ;Get Disk Transfer Address
int 21h

mov word ptr [CurrentDTA], bx ;es:bx is current DTA

mov word ptr [CurrentDTA+2], es

Get Disk Transfer Address (Function 2Fh) returns the segment and offset of the
current disk transfer address (DTA).

This function has no parameters.

The ES:BX registers contain the DTA. The ES register contains the segment
address, and the BX register contains the offset.

There is no way to determine the size of the buffer at the DTA.

If Set Disk Transfer Address (Function 1Ah) has not been used to set the DTA,
MS-DOS sets a program’s default DTA to be offset 0080h in the program seg-

ment prefix (PSP). The default DTA cannot be used with a record size larger
than 128 bytes.

Function 1Ah Set Disk Transfer Address

262 Function 30h Get Version Number

B Function 30h Get Version Number

Parameter

Return Values

Comments

See Also

mov al, VerOrOEMFlag ;01h = version flag, OOh = OEM number

mov ah, 30h ;Get Version Number

int 21h

mov MajorV, al ;major version number (O5h for version 5.0
mov MinorV, ah ;minor version number (OOh for version 5.0
mov VerOrOEM, bh ;version flag or OEM number

mov byte ptr [UserNum+2], bl ;bl:cx is 24-bit user serial number
mov word ptr [UserNum], cx

Get Version Number (Function 30h) returns the MS-DOS version number set
by the setver command for the program. The function also returns either the
MS-DOS version flag or the original-equipment-manufacturer (OEM) number.

VerOrOEMFlag Specifies whether the function returns the version flag or the
OEM number in the BH register. It can be one of the following values:

Value Number

00h The OEM number
O1lh The version flag

The AX, BX, and CX registers contain the following information:
Register Contents

AL The major version number for the program—for example, 03h for
version 3.31, 05h for version 5.0.

AH The minor version number for the program—for example, 1Fh for
version 3.31, 00h for version 5.0.

BH Either the OEM number or the version flag. In the latter case, if
the version flag is set to DOSINROM (08h), MS-DOS runs in
ROM; otherwise, MS-DOS runs in RAM. All other bits are
reserved and set to zero.

BL:CX The 24-bit user serial number. The user serial number is OEM-
dependent. If not used, the number is set to zero.

This function returns the MS-DOS version number set by the setver command.
This version number can differ from the MS-DOS version number returned by
Get MS-DOS Version (Function 3306h).

For more information about the setver command, see the Microsoft MS-DOS
User’s Guide and Reference.

Function 3306h Get MS-DOS Version

Function 31h Keep Program 263

B Function 31h Keep Program

Parameters

Return Value
Comments

See Also

mov dx, MemSize ;number of paragraphs to keep

mov al, ReturnCode ;code returned by terminating program
mov ah, 31h ;Keep Program

int 21h

Keep Program (Function 31h) ends the current program by returning control to
its parent program but leaves (keeps) the program in memory and preserves the
program’s resources, such as open files and allocated memory.

MemSize Specifies the number of paragraphs of program code and data to
keep in memory. If this parameter is less than 6, the function sets it to 6 before
reallocating program memory.

ReturnCode Specifies the code that is returned to the parent program. If the
program terminates normally, ReturnCode should be 00h.

This function does not return.
This function carries out the following actions:

B Reallocates program memory to the amount specified by MemSize. Pro-
gram memory includes only the program segment prefix (PSP) and pro-
gram data and code. The reallocation does not affect the program’s
environment block, nor does it affect the memory allocated by the pro-
gram after it was loaded.

B Flushes the file buffers but leaves files open. Any locked regions in the
open files remain locked.

B Restores Termination Address (Interrupt 22h) from offset O0Ah in the
PSP (pspTerminateVector field).

B Restores the address of CTRL+C Handler (Interrupt 23h) from offset OEh
in the PSP (pspControlCVector field).

B Restores the address of Critical-Error Handler (Interrupt 24h) from
offset 12h in the PSP (pspCritErrorVector ficld).

After completing these actions, this function transfers execution control to the
address specified by offset 0Ah in the PSP.

Function 4B00Oh Load and Execute Program
Function 4Ch End Program

Function 4Dh Get Child-Program Return Value
Interrupt 22h Termination Address

Interrupt 23h CTRL+C Handler

Interrupt 24h Critical-Error Handler

264

Function 32h Get DPB

H Function 32h Get DPB

Parameter

Return Value

mov dl, DriveNum ;drive (O = default, 1 = A, etc.)
mov ah, 32h ;Get DPB

int 21h

cmp al, OFFh ;OFFh means error

jz error_handler

mov word ptr [defaultDPB], bx

mov word ptr [defaultDPB+2], ds ;ds:bx points to default DPB

Get DPB (Function 32h) retrieves drive parameters for the specified drive.

DriveNum Specifies the number of the drive for which to return information
(0 = default, 1 = A, 2 = B, and so on).

If the function is successful, the AL register contains zero and the DS:BX regis-
ters point to a DPB structure that contains the drive parameters. The DS regis-
ter contains the segment address, and the BX register contains the offset. Other-
wise, if the specified drive was invalid or a disk error occurred, the AL register

contains OFFh.

Comments If Get DPB is successful, the DS:BX registers point to a DPB structure, which

has the following form:

DPB STRUC
dpbDrive db ? ;drive number (0 = A, 1 = B, etc.)
dpbUnit db ? ;unit number for driver
dpbSectorSize dw ? ;sector size, in bytes
dpbClusterMask db ? ;sectors per cluster - 1
dpbClusterShift db ? ;sectors per cluster, as power of 2
dpbFirstFAT dw ? ;first sector containing FAT
dpbFATCount db ? ;number of FATs
dpbRootEntries dw ? ;number of root-directory entries
dpbFirstSector dw ? ;first sector of first cluster
dpbMaxCluster dw ? ;number of clusters on drive + 1
dpbFATSize dw ? ;number of sectors occupied by FAT
dpbDirSector dw ? ;first sector containing directory
dpbDriverAddr dd ? ;address of device driver
dpbMedia db ? ;media descriptor
dpbFirstAccess db ? ;indicates access to drive
dpbNextDPB dd ? ;address of next drive parameter block
dpbNextFree dw ? ;last allocated cluster
dpbFreeCnt dw ? ;number of free clusters

DPB ENDS

For more information about the DPB structure, see Chapter 3, “File System.”

See Also

Function 1Fh Get Default DPB

Function 3300h Get CTRL+C Check Flag 265

B Function 3300h Get CTRL+C Check Flag

Parameters
Return Value

Comment

See Also

mov ax, 3300h ;Get CTRL+C Check Flag
int 21h
mov BreakFlag, dl ;0 = off, 1 = on

Get CTRL+C Check Flag (Function 3300h) returns the status of the MS-DOS
CTRL+C check flag.

This function has no parameters.

The DL register contains 00h if checking is disabled, or the DL register contains
01h if checking is enabled.

If the CTRL+C check flag is off, MS-DOS checks for CTRL+C only while process-
ing character I/O functions O1h through OCh. If the check flag is on, MS-DOS
checks for CTRL+C while processing other system functions.

Function 3301h Set CTRL+C Check Flag

266 Function 3301th Set CTRL+C Check Flag

B Function 3301h Set CTRL+C Check Flag

mov dl, BreakFlag ;00h = off, Olh = on
mov ax, 3301h ;Set CTRL+C Check Flag
int 21h

Set CTRL+C Check Flag (Function 3301h) turns the CTRL+C check flag on or off.

Parameter BreakFlag Specifies whether to turn CTRL+C testing on or off. If this parame-
ter is 00h, CTRL+C testing is turned off; if this parameter is 01h, CTRL+C testing is
turned on.

Return Value This function has no return value.

Comments If the cTRL+C check flag is off, MS-DOS checks for CTRL+C only while process-
ing character I/0O functions 01h through OCh. If the check flag is on, MS-DOS

checks for CTRL+C while processing other 1/0 functions, such as disk opera-
tions.

The CTRL+C flag affects all programs. If a program changes the state of this flag,
the state change remains in effect even after the program terminates. An effi-
cient program should save the state of the flag before changing it and restore the
state before terminating.

See Also Function 3300h Get CTRL+C Check Flag

Function 3305h Get Startup Drive 267

B Function 3305h Get Startup Drive

Parameters
Return Value

mov ax, 3305h ;Get Startup Drive
int 21h
mov StartupDrive, dl ;drive (1 = A, 2 = B, etc.)

Get Startup Drive (Function 3305h) returns a number representing the drive that
was used to load MS-DOS.

This function has no parameters.

The DL register contains the number of the startup drive (1=A,2=B,3=C,
and so on).

268 Function 3306h Get MS-DOS Version

B Function 3306h Get MS-DOS Version

mov
int

mov
mov
mov
mov

ax, 3306h
21h

MajorV, bl
MinorV, bh
RevisionNum, dl
VersionFlags, dh

;Get MS-DOS Version

;major version number (O5h for version 5.0
;minor version number (OOh for version 5.0
;revision number in bits O through 2
;version flags

Get MS-DOS Version (Function 3306h) returns the MS-DOS version number,
the MS-DOS revision number, and version flags specifying whether MS-DOS is
in the high memory area (HMA) or in read-only memory (ROM).

Parameters This function has no parameters.

Return Values The BX and DX registers contain the following information:
Register Contents

BL
BH
DL

DH

The major version

The minor version

number—for example, O5h for version 5.0.

number—for example, 00h for version 5.0.

In the low three bits, the revision number. All other bits are

reserved and set to
The MS-DOS versi

zZero.

on flags. The contents may be a combination of

the following values:

Value

DOSINROM (08h)

DOSINHMA (10h)

If set, MS-DOS runs in ROM; otherwise,
MS-DOS runs in RAM.

If set, MS-DOS is in the high memory area;
otherwise, MS-DOS is in conventional
memory.

All other bits are reserved and set to zero.

Comments This function returns the actual MS-DOS version number rather than the version
number set by the setver command for the program.

See Also Function 30h Get Version Number

Function 34h Get InDOS Flag Address 269

B Function 34h Get InDOS Flag Address

Parameters
Return Value

Comment

mov ah, 34h ;Get InDOS Flag Address
int 21h
mov InDOS, byte ptr es: [bx] ;es:bx points to InDOS flag

Get InDOS Flag Address (Function 34h) returns the address of the MS-DOS
InDOS flag. The InDOS flag shows the current state of Interrupt 21h processing.

This function has no parameters.

The ES:BX registers contain the InDOS flag address. The ES register contains
the segment address of the InDOS flag, and the BX register contains the offset.

While MS-DOS is processing an Interrupt 21h function, the value of the InDOS
flag is nonzero.

270 Function 35h Get Interrupt Vector

B Function 35h Get Interrupt Vector

mov al, InterruptNumber

mov ah, 35h

int 21h

mov word ptr [Handler], bx
mov word ptr [Handler+2], es

;interrupt vector number

;Get Interrupt Vector

;es:bx points to interrupt handler

Get Interrupt Vector (Function 35h) returns the address of the routine that han-

dles the specified interrupt.

Parameter InterruptNumber Specifies the interrupt number that causes the interrupt rou-

tine to be called.

Return Value If the function is successful, the ES:BX registers point to the routine that han-
dles the specified interrupt. The ES register contains the segment address of the
interrupt-handling routine, and the BX register contains the offset.

See Also Function 25h Set Interrupt Vector

Function 36h Get Disk Free Space 271

B Function 36h Get Disk Free Space

Parameter

Return Values

Comments

See Also

mov dl, Drive ;drive (0 = default, 1 = A, 2 = B, etc.)
mov ah, 36h ;Get Disk Free Space

int 21lh

cmp ax, OFFFFh ;OFFFFh means drive not valid

je error_handler

mov SectorsPerCluster, ax ;sectors per cluster

mov AvailClusters, bx ;number of avalilable clusters

mov BytesPerSector, cx ;bytes per sector

mov TotalClusters, dx ;total number of clusters on disk

Get Disk Free Space (Function 36h) returns the number of clusters available on
the disk in the specified drive and the information necessary to calculate the
number of bytes available on the disk.

Drive The number of the drive to return information for (0 = default value,
1= A, 2 =B, and so on).

If the function is successful, the AX, BX, CX, and DX registers contain the fol-
lowing information:

Register Contents

AX The number of sectors in a cluster

BX The number of clusters available on the disk
CcX The number of bytes in a sector

DX The total number of clusters on the disk

Otherwise, the AX register contains OFFFFh.

The number of free bytes on the disk can be calculated by multiplying the avail-
able clusters by the sectors per cluster by the bytes per sector (BX*AX*CX).

MS-DOS reports sectors allocated in the file allocation table (FAT) but not

belonging to a file (lost clusters) as used clusters, just as if they were allocated
to a file.

Function 1Bh Get Default Drive Data
Function 1Ch Get Drive Data

272 Function 38h Get/Set Country Information

B Function 38h Get/Set Country Information

Parameters

1lds dx, InfoAddress ;ds:dx points to buffer to get country info

sor
;dx 1s OFFFFh to set country code

cmp CountryCode, OFEh

ja code2

mov al, byte ptr CountryCode ;country code if less than 254
Jmp continue .

code2:

mov bx, CountryCode ;country code if greater than 254
mov al, OFFh

continue:

mov ah, 38h ;Get/Set Country Information
int 21h .
je error_handler ;carry set means error

Get/Set Country Information (Function 38h) either returns country information
or sets the country code, depending on the contents of the DX register.

If the DX register contains any value other than OFFFFh, this function returns a
COUNTRYINFO structure containing country information that MS-DOS uses to
control the keyboard and screen.

If the DX register contains OFFFFh, this function sets the country code that
MS-DOS uses to determine country information for the keyboard and screen.

InfoAddress Specifies whether this function gets country information or sets
the country code. If the parameter points to a COUNTRYINFO structure, the
function copies country information to the structure. If the low 16 bits of the
parameter is OFFFFh, the function sets the country code.

The COUNTRYINFO structure has the following form:

COUNTRYINFO STRUC
ciDateFormat dw ? ;date format
ciCurrency db S5 dup (? ;jcurrency symbol (ASCIIZ)
ciThousands db 2 dup (? ;thousands separator (ASCIIZ)
ciDecimal db 2 dup (? ;decimal separator (ASCIIZ)
ciDateSep db 2 dup (? ;date separator (ASCIIZ)
ciTimeSep db 2 dup (? ;time separator (ASCIIZ)
ciBitField db ? ;currency format
ciCurrencyPlaces db ? ;places after decimal point
ciTimeFormat db ? ;12-hour or 24-hour format
ciCaseMap dd ? ;address of case-mapping routine
ciDataSep db 2 dup (?) ;data-1list separator (ASCIIZ)
ciReserved db 10 dup (?) ;reserved

COUNTRYINEO ENDS

For a full description of the COUNTRYINFO structure, see Chapter 6,
“National Language Support.”

CountryCode Specifies the country code. This parameter can be one of the
following values:

Value Meaning

001 United States
002 Canadian-French
003 Latin America

Return Value

Comments

See Also

Function 38h Get/Set Country Information 273

Value Meaning

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia
044 United Kingdom
045 Denmark

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International English
351 Portugal

358 Finland

Each country code is listed as a three-digit decimal number, the same as that
used for that country’s international telephone prefix.

To get country information for the current country, CountryCode must be zero.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is

set and the AX register contains an error value, which may be one of the follow-
ing values:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND

When the country code is less than 254, the AL register contains the code. Oth-

erwise, the BX register contains the country code and the AL register contains
the value OFFh.

If the DX register contains any value other than OFFFFh, the function returns
the country code in both the AL and BX registers. In this case, the AL register
contains the low 8 bits of the country code.

Function 6501h Get Extended Country Information
Function 6601h Get Global Code Page
Function 6602h Set Global Code Page

274 Function 39h Create Directory

B Function 39h Create Directory

Parameter

Return Value

Comment

See Also

mov dx, seg Dir

mov ds, dx

mov dx, offset Dir ;ds:dx points to name of new directory
mov ah, 39h ;Create Directory

int 21h

je error_handler ;carry set means error

Create Directory (Function 39h) creates a new directory by using the specified
path.

Dir Points to a zero-terminated ASCII string that specifies the directory to
create. This string must be a valid MS-DOS directory name and cannot contain
wildcards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow-
ing values:

Value Name

0002h ERROR_FILE_NOT_FOUND
0003h ERROR_PATH_NOT_FOUND
0005h ERROR_ACCESS_DENIED

This function returns 0005h (ERROR_ACCESS_DENIED) if a file or directory
with the specified name already exists in the specified path.

Function 3Ah Remove Directory
Function 3Bh Change Current Directory
Function 47h Get Current Directory

M Function 3Ah

Function 3Ah Remove Directory 275

Remove Directory

Parameter

Return Value

Comment

See Also

mov dx, seg Dir

mov ds, dx

mov dx, offset Dir ;ds:dx points to name of directory to remove
mov ah, 3Ah ;Remove Directory

int 21h

je error_handler ;carry set means error

Remove Directory (Function 3Ah) removes (deletes) a specified directory.

Dir Points to a zero-terminated ASCII string that specifies the directory to

remove. This string must be a valid MS-DOS directory name and cannot contain
wildcards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is

set and the AX register contains an error value, which may be one of the follow-
ing values:

Value Name

0003h ERROR_PATH_NOT_FOUND
0005h ERROR_ACCESS_DENIED
0010h ERROR_CURRENT_DIRECTORY

This function returns 0005h (ERROR_ACCESS_DENIED) if the directory to
be deleted is not empty or the directory to be deleted is the root directory.

Function 39h Create Directory
Function 3Bh Change Current Directory
Function 47h Get Current Directory

276 Function 3Bh Change Current Directory

B Function 3Bh Change Current Directory

Parameter

Comment

Return Value

See Also

mov dx, seg Dir

mov ds, dx

mov dx, offset Dir ;ds:dx points to name of new directory
mov ah, 3Bh ;Change Current Directory

int 21h

je error_handler ;carry set means error

Change Current Directory (Function 3Bh) changes the current directory to a
specified path.

Dir Points to a zero-terminated. ASCII string that specifies the new current

directory. This string must be a valid MS-DOS directory name and cannot con-
tain wildcards.

If a drive other than the default drive is specified as part of the new directory
path, this function changes the current directory on that drive but does not
change the default drive. Set Default Drive (Function OEh) can be used to
change the default drive.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0003h
(ERROR_PATH_NOT_FOUND).

Function OEh Set Default Drive
Function 47h Get Current Directory

Function 3Ch Create File with Handle 277

B Function 3Ch Create File with Handle

Parameters

Return Value

Comments

mov dx, seg FileName

mov ds, dx

mov dx, offset FileName ;ds:dx points to name of file or device
mov cx, Attributes ;file attributes

mov ah, 3Ch ;Create File with Handle

int 21h

jec error_handler ;carry set means error

mov Handle, ax ;handle of file or device

Create File with Handle (Function 3Ch) creates a file and assigns it the first
available handle. If the specified file already exists, MS-DOS opens it and trun-
cates it to zero length.

FileName Points to a zero-terminated ASCII string that specifies the file to

create. This string must be a valid MS-DOS filename and cannot contain wild-
cards.

Attributes Specifies the attributes to assign to the new file. Any combination
of the following values is valid:

Value) Meaning

ATTR_NORMAL (0000h) File can be read from or written to.

ATTR_READONLY (0001h) File can read from but not written to.

ATTR_HIDDEN (0002h) File is hidden and does not appear in a direc-
tory listing.

ATTR_SYSTEM (0004h) File is a system file.

ATTR_VOLUME (0008h) FileName is used as the volume label for the
current medium.

ATTR_ARCHIVE (0020h) File is marked for archiving.

If the function is successful, the carry flag is clear and the AX register contains
the new file handle. Otherwise, the carry flag is set and the AX register contains
an error value, which may be one of the following values:

Value Name

0003h ERROR_PATH_NOT_FOUND
0004h ERROR_TOO_MANY_OPEN_FILES
0005h ERROR_ACCESS_DENIED

This function returns 0005h (ERROR_ACCESS_DENIED) if a read-only file
with the specified name already exists in the specified path or if the file to be
created is in the root directory and the root directory is full.

When MS-DOS creates a file, it opens the file with read-and-write access and
compatibility sharing mode and sets the file pointer to zero. If the attribute
ATTR_READONLY is specified, it takes affect only after the new file is closed.

278 Function 3Ch Create File with Handle

See Also

Create File with Handle creates a volume label for the medium in the specified
drive only if the ATTR_VOLUME attribute is given and the current medium
does not have an existing volume label.

If the specified file is on a network drive, this function creates the file only if the
network has granted create (or similar) access to the drive or directory.

Function 4300h Get File Attributes
Function 4301h Set File Attributes
Function 5Ah Create Temporary File
Function 5Bh Create New File
Function 6Ch Extended Open/Create

Function 3Dh Open File with Handle

B Function 3Dh Open File with Handle

Parameters

mov
mov
mov
mov

mov
int

je

mov

Open File with Handle (Function 3Dh) opens any file, including hidden and sys-

dx, seg FileName

ds, dx

dx, offset FileName ;ds:dx points to name of file or device
al, FileAccess ;modes with which to open file

ah, 3Dh ;Open File with Handle

21h

error_handler ;carry set means error

Handle, ax ;handle of file or device

tem files, for input or output.

FileName Points to a zero-terminated ASCII string that specifies the file to
open. This string must be a valid MS-DOS filename and cannot contain wild-
cards.

FileAccess

Specifies the modes with which to open the file. FileAccess can be

a combination of values from the following table. The access value is required;

the sharing and inheritance values are optional.
Value

OPEN_ACCESS_READONLY (0000h)
OPEN_ACCESS_WRITEONLY (0001h)
OPEN_ACCESS_READWRITE (0002h)

OPEN_SHARE_COMPATIBILITY (0000h)

OPEN_SHARE_DENYREADWRITE (0010h)

OPEN_SHARE_DENYWRITE (0020h)

OPEN_SHARE_DENYREAD (0030h)

OPEN_SHARE_DENYNONE (0040h)

OPEN_FLAGS_NOINHERIT (0080h)

Open the file for read-only
access.

Open the file for write-only
access.

Open the file for read-and-
write access.

Permit other programs any
access to the file. On a given
computer, any program can
open the file any number of
times with this mode. This is
the default sharing value.

Do not permit any other pro-
gram to open the file.

Do not permit any other pro-
gram to open the file for
write access.

Do not permit any other pro-
gram to open the file for read
access.

Permit other programs read
or write access, but no pro-
gram may open the file for
compatibility access.

A child program created with
Load and Execute Program
(Function 4B00h) does not
inherit the file handle. If this
mode is not set, child pro-
grams inherit the file handle.

279

280 Function 3Dh Open File with Handle

Return Value

Comments

See Also

If the function is successful, the carry flag is clear and the AX register contains
the file handle. Otherwise, the carry flag is set and the AX register contains an
error value, which may be one of the following values:

Value Name

0002h ERROR_FILE_NOT_FOUND

0003h ERROR_PATH_NOT_FOUND

0004h ERROR_TOO_MANY_OPEN_FILES
0005h ERROR_ACCESS_DENIED

000Ch ERROR_INVALID_ACCESS

When the file is opened, the file pointer is set to zero (the first byte in the file).

This function returns the error value 0005h (ERROR_ACCESS_DENIED) if a
program attempts to open a directory or volume identifier or to open a read-only
file for write access.

If the Share program is not loaded, MS-DOS ignores the following modes:
OPEN_SHARE_DENYREADWRITE, OPEN_SHARE_DENYWRITE,
OPEN_SHARE_DENYREAD, and OPEN_SHARE_DENYNONE. If this
function fails because of a file-sharing error, a subsequent call to Get Extended
Error (Function 59h) returns the error value that specifies a sharing violation.

If the specified file is on a network drive, Open File with Handle opens the file
only if the network has granted read access, write access, or read-and-write
access to the drive or directory.

Function 3Eh Close File with Handle

Function 3Fh Read File or Device

Function 40h Write File or Device

Function 42h Move File Pointer

Function 59h Get Extended Error

Function 6Ch Extended Open/Create

Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

Function 3Eh Close File with Handle 281

B Function 3Eh Close File with Handle

mov bx, Handle ;handle of file or device
mov ah, 3Eh ;Close File with Handle
int 21h

je error_handler ;carry set means error

Close File with Handle (Function 3Eh) closes a file opened or created with a
file-handle function.

Parameter Handle Identifies the file to close.

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0006h
(ERROR_INVALID_HANDLE).

Comments ‘When MS-DOS processes this function, any internal buffer for the file is flushed

(any pending write operations are completed), any locked regions of the file are
unlocked, and the directory is updated to reflect any changes in the file size,
date, or time.

Although closing a file invalidates the corresponding handle, MS-DOS may reuse
the handle to identify a file that is subsequently opened or created. Programs can

use Is File or Device Remote (Function 440Ah) to determine whether a given
handle is valid.

See Also Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 440Ah Is File or Device Remote
Function SAh Create Temporary File
Function 5Bh Create New File
Function 6Ch Extended Open/Create

282 Function 3Fh Read File or Device

B Function 3Fh Read File or Device

Parameters

Return Value

Comments

See Also

mov bx, Handle ;handle of file or device

mov cx, MaxBytes ;maximum number of bytes to read

mov dx, seg Buffer

mov ds, dx

mov dx, offset Buffer ;ds:dx points to buffer to receive data
mov ah, 3Fh ;Read File or Device

int 21h

je error_handler ;carry set means error

mov ActualBytes, ax ;number of bytes read

Read File or Device (Function 3Fh) reads up to the specified number of bytes of
data from a file or device into a buffer. MS-DOS may read fewer than the speci-
fied number of bytes if it reaches the end of the file.

Handle 1dentifies the file or device to be read from.

MaxBytes Specifies the maximum number of bytes to read.

Buffer Points to the buffer that is to receive data from the file or device. The
buffer must be at least as large as MaxBytes.

If the function is successful, the carry flag is clear, Buffer contains the data read
from the file or device, and the AX register contains the number of bytes read
from the file or device. Otherwise, the carry flag is set and the AX register con-
tains an error value, which may be one of the following values:

Value Name

0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE

Handle can be a handle for a standard device or a handle created by using such
a function as Open File with Handle (Function 3Dh).

When MS-DOS reads from a file, it reads data starting at the current location of
the file pointer. When this function returns, the file pointer is positioned at the
byte immediately following the last byte read from the file.

This function can also be used to read from the standard input device (typically
the keyboard). If MS-DOS is reading from standard input, this function returns
if it reads a carriage-return character (ASCII ODh), even if it has not yet read
the number of bytes specified in MaxBytes.

If this function returns zero for the number of bytes read, the file pointer is
at the end of the file. If the number of bytes read is fewer than the number
requested, MS-DOS reached the end of the file during the read operation.

Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 40h Write File or Device
Function 42h Move File Pointer
Function 5Ah Create Temporary File
Function 5Bh Create New File
Function 6Ch Extended Open/Create

Function 40h Write File or Device 283

B Function 40h Write File or Device

Parameters

Return Value

Comments

See Also

mov bx, Handle ;handle of file or device

mov cx, MaxBytes ;maximum number of bytes to write

mov dx, seg Buffer

mov ds, dx

mov dx, offset Buffer ;ds:dx points to buffer containing data
mov ah, 40h ;Write File or Device

int 21h

je error_handler ;carry set means error

mov ActualBytes, ax ;number of bytes written

Write File or Device (Function 40h) writes up to the specified number of bytes
of data from a buffer to a file or device.

Handle Identifies the file or device that is to receive the data.

MaxBytes Specifies the maximum number of bytes to write.

Buffer Points to a buffer that contains the data to write.

If the function is successful, the carry flag is clear and the AX register contains
the number of bytes written to the file or device. Otherwise, the carry flag is set
and the AX register contains an error value, which may be one of the following
values:

Value Name

0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE

Handle can be a handle for a standard device or a handle created by using such
a function as Open File with Handle (Function 3Dh).

When MS-DOS writes to a file, it writes data starting at the current location of
the file pointer. When this function returns, the file pointer is positioned at the
byte immediately after the last byte written to the file.

Writing O bytes to the file truncates the file at the current position of the file
pointer.

If the number of bytes written is fewer than the number requested, the destina-
tion file or disk is full. Note that the carry flag is not set in this situation.

Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 3Fh Read File or Device
Function 42h Move File Pointer
Function SAh Create Temporary File
Function 5Bh Create New File
Function 6Ch Extended Open/Create

284 Function 41h Delete File

Function 41h Delete File

Parameter

Return Value

Comments

See Also

mov dx, seg FileName

mov ds, dx

mov dx, offset FileName ;ds:dx points to filename
mov ah, 41h ;Delete File

int 21h

je error_handler ;carry set means error

Delete File (Function 41h) deletes a specified file.

FileName Points to a zero-terminated ASCII string that specifies the file to
delete. This string must be a valid MS-DOS filename and cannot contain wild-
cards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow-
ing values:

Value Name

0002h ERROR_FILE_NOT_FOUND
0003h ERROR_PATH_NOT_FOUND
0005h ERROR_ACCESS_DENIED

This function cannot be used to remove a directory, a volume label, or a read-
only file. A program can use Set File Attributes (Function 4301h) to change the
attributes of a read-only file so that the file can be deleted.

If the specified file is on a network drive, the function deletes the file only if net-
work grants delete access to the drive or directory.

Function 3Ah Remove Directory
Function 4300h Get File Attributes
Function 4301h Set File Attributes

Function 42h Move File Pointer 285

N Function 42h Move File Pointer

Parameters

Return Value

Comments |

mov bx, Handle ;file handle

mov cx, HiOffset ;most-significant 16 bits of offset
mov dx, LoOffset ;least-significant 16 bits of offset
mov al, MoveMethod ;move method code

or ah, 42h ;Move File Pointer

int 21h

je error_handler ;carry set means error

mov HiPosition, dx ;high 16 bits of absolute position
mov LoPosition, ax ;low 16 bits of absolute position

Move File Pointer (Function 42h) moves the file pointer to the specified position
in the file. The file pointer is maintained by the system; it points to the next byte
to be read from a file or to the next position in the file to receive a byte.

Handle Identifies an open file.

HiOffset Specifies the most-significant 16 bits of a 32-bit offset. The offset
specifies the number of bytes to move the file pointer. This value may be positive
or negative.

LoOffset Specifies the least-significant 16 bits of the 32-bit offset.

MoveMethod Specifies where the move will start. This parameter must be one
of the following values:

Value Meaning

00h Start move at the beginning of the file.
01h Start move at the current location.
02h Start move at the end of the file.

If the function is successful, the carry flag is clear and the DX and AX registers
contain the new position of the file pointer. The DX register contains the most-
significant 16 bits of the 32-bit offset, and the AX register contains the least-
significant 16 bits. Otherwise, the carry flag is set and the AX register contains
an error value, which may be one of the following values:

Value Name

0001h ERROR_INVALID_FUNCTION
0006h ERROR_INVALID_HANDLE

This function returns 0001h (ERROR_INVALID_FUNCTION) if a method
other than 00h, 01h, or 02h is specified for MoveMethod.

With method 00h, the 32-bit value in the CX and DX registers is always inter-
preted as a positive value. It is not possible to move the file pointer to a position
before the start of the file with method 00h. With methods 01h and 02h, how-
ever, the 32-bit offset is interpreted as a signed value; it is possible to move the
file pointer either forward or backward.

A program should never attempt to move the file pointer to a position before
the start of the file. Although this action does not generate an error during the

286 Function 42h Move File Pointer

See Also

move, it does generate an error on a subsequent read or write operation. A pro-
gram can move the file pointer beyond the end of the file. On a subsequent write
operation, MS-DOS writes data to the given position in the file, filling the gap
between the previous end of the file and the given position with undefined data.
This is a common way to reserve file space without writing to the file.

Function 3Fh Read File or Device
Function 40h Write File or Device

Function 4300h Get File Attributes 287

B Function 4300h Get File Attributes

mov dx, seg FlleName

mov ds, dx

mov dx, offset FileName ;ds:dx points to filename or directory name
mov ax, 4300h ;Get File Attributes

int 21h

jc error_handler ;carry set means error

mov Attributes, cx ;attributes are returned in cx

Get File Attributes (Function 4300h) retrieves the attributes for a specified file
or directory.

Parameter FileName Points to a zero-terminated ASCII string that specifies the file or
directory to retrieve attributes for. This string must be a valid MS-DOS filename
or directory name and cannot contain wildcards.

Return Value If the function is successful, the carry flag is clear and the CX register contains
the attributes for the file or directory. Otherwise, the carry flag is set and the
AX register contains an error value, which may be one of the following values:
Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0003h ERROR_PATH_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Comment The file attributes returned in the CX register may be a combination of the fol-
lowing values:

Value Meaning

ATTR_NORMAL (0000h) File can be read from or written to.

ATTR_READONLY (0001h) File can read from but not written to.

ATTR_HIDDEN (0002h) File or directory is hidden and does not
appear in a directory listing.

ATTR_SYSTEM (0004h) File or directory is a system file.

ATTR_ARCHIVE (0020h) File has been archived.

ATTR_VOLUME (0008h) Filename is the current volume label for the
media.

ATTR_DIRECTORY (0010h) Filename identifies a directory, not a file.
See Also Function 4301h Set File Attributes

288 Function 4301h Set File Attributes

B Function 4301h Set File Attributes

Parameters

Return Value

Comments
See Also

mov cx, Attributes ;attributes to set

mov dx, seg FileName

mov ds, dx

mov dx, offset FileName ;ds:dx points to filename or directory name
mov ax, 4301h ;Set File Attributes

int 21h

je error_handler ;carry set means error

Set File Attributes (Function 4301h) sets the attributes for a specified file or
directory.

Attributes Specifies the new attributes for the file or directory. This parameter
can be a combination of the following values:

Value Meaning

ATTR_NORMAL (0000h) File can be read from or written to.

ATTR_READONLY (0001h) File can read from but not written to.

ATTR_HIDDEN (0002h) File is hidden and does not appear in a direc-
tory listing.

ATTR_SYSTEM (0004h) File is a system file.

ATTR_ARCHIVE (0020h) File has been archived.

FileName Points to a zero-terminated ASCII string that specifies the file or
directory to set attributes for. This string must be a valid MS-DOS filename or
directory name and cannot contain wildcards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is

set and the AX register contains an error value, which may be one of the follow-
ing values:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0003h ERROR_PATH_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Only ATTR_HIDDEN and ATTR_SYSTEM are meaningful for directories.
Function 4300h Get File Attributes

Function 4400h Get Device Data 289

B Function 4400h Get Device Data

Parameter
Return Value

Comments

See Also

mov bx, Handle ;handle of file or device
mov ax, 4400h ;Get Device Data

int 21h

je error_handler ;carry set means error
mov DevStatus, dx ;device-status value

Get Device Data (Function 4400h) returns information about the handle, such as
whether it identifies a file or a device.

Handle Identifies the file or device to return information about.

If the function is successful, the carry flag is clear and the DX register contains
the device-status value. Otherwise, the carry flag is set and the AX register con-
tains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE
Bit 7 in the DX register specifies whether the handle identifies a file or a device.

If bit 7 is 0, the handle identifies a file, and the other bits in the DX register
have the following meaning:

Bits Meaning

0-5 Drive number (0 = A, 1 = B, etc.)

6 1 = file has not been written to

All other bits are zero. Bits 0-5 may specify an invalid drive number if the file is
a network file that is not associated with a redirected drive.

If bit 7 is 1, the handle identifies a device, and the other bits in the DX register
have the following meaning:

Bit Meaning

1 = Console input device

1 = Console output device

1 = Null device

1 = Clock device

1 = Special device

1 = Binary mode, 0 = ASCII mode

0 = End of file returned if device is read

A N AW N = O

Bits 8 through 15 are identical to the high 8 bits of the dhAttribute field in the
DEVICEHEADER structure for the device.

Function 4401h Set Device Data

290 Function 4401h Set Device Data

H Function 4401h Set Device Data

Parameters

Return Value

See Also

mov bx, Handle ;handle of file or device
mov dx, DevStatus ;device-status value

mov ax, 4401h ;Set Device Data

int 21h

jc error_handler ;carry set means error

Set Device Data (Function 4401h) tells MS-DOS how to use the device refer-
enced by the specified handle. This function cannot change how MS-DOS uses
a file.

Handle Identifies the device to set information for.

DevStatus Specifies the device-status value. Bit 7 must be 1, to indicate that
the specified handle refers to a device, and other bits can be set as follows:

Bits Meaning

0 1 = Console input device

1 1 = Console output device

2 1 = Null device

3 1 = Clock device

4 1 = Special device

5 1 = Binary mode, 0 = ASCII mode

6 0 = End of file returned if device is read

All other bits must be set to zero.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the fol-
lowing:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE
000Dh ERROR_INVALID_DATA

Function 4400h Get Device Data

Function 4402h Receive Control Data from Character Device 291

B Function 4402h Receive Control Data from Character Device

Parameters

Return Value

Comment

See Also

mov bx, Handle ;handle of device

mov cx, MaxBytes ;maximum amount of data to receive

mov dx, seg Buffer

mov ds, dx

mov dx, offset Buffer ;ds:dx points to buffer to receive data
mov ax, 4402h ;Receive Control Data from Character Device
int 21h

Jje error_handler ;carry set means error

mov ActualBytes, ax ;number of bytes received

Receive Control Data from Character Device (Function 4402h) reads control
information of any length and format from a character-device driver. The format
of the information is device-specific and does not follow any standard.

Handle Identifies the device to receive information from.
MaxBytes Specifies the maximum number of bytes to read.

Buffer Points to the buffer to receive the data read from the device. The
buffer must be at least as large as MaxBytes.

If the function is successful, the carry flag is clear, the buffer is filled in with
the requested information, and the AX register contains the number of bytes
received. Otherwise, the carry flag is set and the AX register contains an error
value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED'
0006h ERROR_INVALID_HANDLE
000Dh ERROR_INVALID_DATA

Character-device drivers are not required to support this function or Send Con-
trol Data to Character Device (Function 4403h). A program should use Get
Device Data (Function 4400h) and examine bit 14 in the device-status value to
ensure that the device driver can process control data.

Function 4400h Get Device Data

Function 4403h Send Control Data to Character Device
Function 4404h Receive Control Data from Block Device
Function 4405h Send Control Data to Block Device

292 Function 4403h Send Control Data to Character Device

BN Function 4403h Send Control Data to Character Device

Parameters

Return Value

Comment

See Also

mov bx, Handle ;handle of device

mov cx, MaxBytes ;maximum number of bytes to send

mov dx, seg Buffer

mov ds, dx

mov dx, offset Buffer ;ds:dx points to buffer with data to send
mov ax, 4403h ;Send Control Data to Character Device
int 21h

je error_handler ;carry set means error

mov ActualBytes, ax ;number of bytes sent

Send Control Data to Character Device (Function 4403h) writes control informa-
tion of any length and format to a character-device driver. The format of the
information is device-specific and does not follow any standard.

Handle Identifies the device to send information to.

MaxBytes Specifies the number of bytes to write.

Buffer Points to the buffer that contains the data to write to the device.

If the function is successful, the carry flag is clear and the AX register contains
the number of bytes sent. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE
000Dh ERROR_INVALID_DATA

Character-device drivers are not required to support this function or Receive
Control Data from Character Device (Function 4402h). A program should use
Get Device Data (Function 4400h) and examine bit 14 in the device-status value
to ensure that the device driver can process control data.

Function 4400h Get Device Data

Function 4402h Receive Control Data from Character Device
Function 4404h Receive Control Data from Block Device
Function 4405h Send Control Data to Block Device

Function 4404h Receive Control Data from Block Device 293

B Function 4404h Receive Control Data from Block Device

Parameters

Return Value

See Also

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.

mov cx, MaxBytes ;maximum number of bytes to receive
mov dx, seg Buffer

mov ds, dx

mov dx, offset Buffer ;ds:dx points to buffer to receive data
mov ax, 4404h ;Receive Control Data from Block Device
int 21h

je error_handler ;carry set means error

mov ActualBytes, ax ;number of bytes received

Receive Control Data from Block Device (Function 4404h) reads control infor-
mation of any length and format from a block-device driver. The format of the
information is device-specific and does not follow any standard.

Drive Specifies the drive for which information is requested (0 = default drive,
1 = drive A, 2 = drive B, etc.).

MaxBytes Specifies the maximum number of bytes to read.

Buffer Points to the buffer to receive the data read from the device. The
buffer must be at least as large as MaxBytes.

If the function is successful, the carry flag is clear, the buffer is filled in with
the requested information, and the AX register contains the number of bytes
received. Otherwise, the carry flag is set and the AX register contains an error
value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE
000Dh ERROR_INVALID_DATA
Function 4402h Receive Control Data from Character Device

Function 4403h Send Control Data to Character Device
Function 4405h Send Control Data to Block Device

294 Function 4405h Send Control Data to Block Device

B Function 4405h Send Control Data to Block Device

Parameters

Return Value

See Also

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.

mov cx, MaxBytes ;maximum number of bytes to send

mov dx, seg Buffer

mov ds, dx

mov dx, offset Buffer ;ds:dx points to buffer containing data
mov ax, 4405h ;Send Control Data to Block Device

int 21h

jc error_handler ;carry set means error

mov ActualBytes, ax ;number of bytes sent

Send Control Data to Block Device (Function 4405h) writes control information
of any length and format to a block-device driver. The format of the information
is device-specific and does not follow any standard.

Drive Specifies the drive to send information to (0 = default drive, 1 = A,

2 =B, etc.).

MaxBytes Specifies the number of bytes to write.

Buffer Points to the buffer that contains the data to write to the device.

If the function is successful, the carry flag is clear and the AX register contains

the number of bytes sent. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE
000Dh ERROR_INVALID_DATA
Function 4402h Receive Control Data from Character Device

Function 4403h Send Control Data to Character Device
Function 4404h Receive Control Data from Block Device

Function 4406h Check Device Input Status 295

B Function 4406h Check Device Input Status

Parameter

Return Value

Comment

See Also

mov bx, Handle ;handle of file or device

mov ax, 4406h ;Check Device Input Status

int 21h

je error_handler ;carry set means error

cmp al, OFFh ;OFFh means file or device is ready
jne not_ready

Check Device Input Status (Function 4406h) determines whether a file or device
is ready for input.

Handle Identifies the file or device to check.

If the function is successful, the carry flag is clear and the AL register contains
the input-status value. Otherwise, the carry flag is set and the AX register con-
tains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE

The meaning of the input-status value depends on whether the handle specifies
a file or a device, as shown in the following table:

Status Device File
0Ch Not ready File pointer at end of file
OFFh Ready Ready

Function 4407h Check Device Qutput Status

296 Function 4407h Check Device Output Status

B Function 4407h Check Device Output Status

Parameter

Return Value

Comment

See Also

mov bx, Handle ;handle of file or device

mov ax, 4407h ;Check Device Output Status

int 21h

Jje error_handler ;carry set means error

cmp al, OFFh ;OFFh means file or device is ready
jne not_ready

Check Device Output Status (Function 4407h) determines whether a file or
device is ready for output.

Handle Identifies the file or device to check.

If the function is successful, the carry flag is clear and the AL register contains
the output-status value. Otherwise, the carry flag is set and the AX register con-
tains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE

The meaning of the output-status value depends on whether the handle specifies
a file or a device, as shown in the following table:

Status Device File
00h Not ready =~ Ready
OFFh Ready Ready

For an output file, Check Device Output Status always returns Ready, even if
the disk is full or there is no disk in the drive.

Function 4406h Check Device Input Status

Function 4408h Does Device Use Removable Media 297

B Function 4408h Does Device Use Removable Media

Parameter
Return Value

Comments

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ax, 4408h ;Does Device Use Removable Media
int 21lh

je error_handler ;carry set means error

cmp ax, O ;zero means removable media

jne not_removable

Does Device Use Removable Media (Function 4408h) determines whether the
specified device contains a removable storage medium, such as a floppy disk.

Drive Specifies the drive to check (0 = default drive, 1 = A, 2 = B, etc.).

If the function is successful, the carry flag is clear and the AX register indicates
whether the storage medium in the specified drive is removable (register contains
0000h) or not (register contains 0001h).

Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
000Fh ERROR_INVALID_DRIVE

This function returns 0001h (ERROR_INVALID_FUNCTION) for a network
drive or for a device driver that does not support the function request. In these

cases, the calling program should assume that the storage medium is not remov-
able.

298 Function 4409h Is Drive Remote

N Function 4409h Is Drive Remote

Parameter
Return Value

Comments

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ax, 4409h ;Is Drive Remote

int 21h

je error_handler ;carry set means error

test dx, 1000h ;bit 12 set means drive is remote
jnz remote_device

Is Drive Remote (Function 4409h) determines whether the specified drive is

local (attached to the computer running the program) or remote (on a network
server).

Drive Specifies the drive to check (0 = default drive, 1 = A, 2 = B, etc.).

If the function is successful, the carry flag is clear and the DX register contains
the device-attribute value. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION

000Fh ERROR_INVALID_DRIVE
Bit 12 in the DX register specifies whether the drive is local or remote. If bit 12
is 1, the drive is remote and the other bits in the DX register are zero.

If bit 12 is zero, the drive is not a network drive, and the bits in the DX register
have the following meaning;:

Bit Description

1 1 = Drive uses 32-bit sector addressing.

6 1 = Drive accepts Generic IOCTL for Block Devices, Get Logical Drive
Map, and Set Logical Drive Map (Functions 440Dh, 440Eh, and 440Fh).

7 1 = Drive accepts Query IOCTL Device (Function 4411h).
1 = Drive is local but shared by other computers in the network.
1 1 = Drive accepts Does Device Use Removable Media (Function 4408h).

13 1 = Drive requires media descriptor in FAT.

14 1 = Drive accepts Receive Control Data from Block Device and Send
Control Data to Block Device (Functions 4404h and 4405h).

15 1 = Substitution drive (for example, set by the subst command).

All other bits are zero.

Function 440Ah Is File or Device Remote 299

B Function 440Ah Is File or Device Remote

Parameter
Return Value

Comments

mov bx, Handle ;handle of file or device

mov ax, 440Ah ;Is File or Device Remote

int 21h

je error_handler ;carry set means error

test dx, 8000h ;bit 15 set means device is remote
jnz remote_device

Is File or Device Remote (Function 440Ah) determines whether the specified
handle refers to a file or device that is local (on the computer running the pro-
gram) or remote (on a network server).

Handle Specifies the file or device to check.

If the function is successful, the carry flag is clear and the DX register contains
the device-attribute value. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0006h ERROR_INVALID_HANDLE

Bit 15 of the device-attribute value indicates whether the file or device is local
(bit is clear) or remote (bit is set).

Other bits in the DX register contain additional information about the file or
device. In particular, bit 7 in the DX register specifies whether the handle identi-
fies a file or a device. If bit 7 is 0, the handle identifies a file and the other bits
in the DX register have the following meaning:

Bit Meaning

0-5 Drive number (0= A, 1=B, 2=C, etc.)

6 1 = File has not been written to
12 1 = No inherit
14 1 = Date/time not set at close

15 1 = Remote file, 0 = local file
All other bits are zero.

If bit 7 is 1, the handle identifies a device and the other bits in the DX register
have the following meaning:

Bit Meaning

1 = Console input device

1 = Console output device

1 = Null device

1 = Clock device

1 = Special device

1 = Binary mode, 0 = ASCII mode

0 = End of file returned if device is read

A L A W N = O

300 Function 440Ah Is File or Device Remote

7
Bit Meaning

11 1 = Network spooler

12 1 = No inherit

13 1 = Named pipe

15 1 = Remote device, 0 = local device

All other bits are zero.

Function 440Bh Set Sharing Retry Count 301

B Function 440Bh Set Sharing Retry Count

Parameters

Return Value

Comments

See Also

mov cx, cPause ;number of times through pause loop

mov dx, cRetries ;number of times to retry file operation
mov ax, 440Bh ;Set Sharing Retry Count

int 21h

je error_handler ;carry set means error

Set Sharing Retry Count (Function 440Bh) sets the number of times MS-DOS
retries a disk operation after a failure caused by a file-sharing operation. When
the number of retries is reached without success, MS-DOS returns an error
value to the program that requested the disk operation.

cPause Specifies the number of times MS-DOS is to go through a pause loop,
thereby controlling the amount of time between retries.

CRetries Specifies the number of times MS-DOS retries the file operation
before returning an error value.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0001h
(ERROR_INVALID_FUNCTION).

Set Sharing Retry Count returns 0001h (ERROR_INVALID_FUNCTION) if file
sharing is not active (SHARE.EXE has not been loaded).

The pause time depends on the computer’s clock speed. The default sharing
retry count is 3; the default number of times between retries is 1. If a program

changes the retry count or pause value, it should restore the default values
before terminating.

Function 5Ch Lock/Unlock File
Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

302 Function 440Ch Minor Code 45h Set Iteration Count

B Function 440Ch Minor Code 45h Set Iteration Count

Parameters

Return Value

See Also

mov bx, Handle ;handle of device

mov ch, Category ;device category

mov cl, 45h ;Set Iteration Count

mov dx, seg ItCount

mov ds, dx

mov dx, offset ItCount ;points to buffer for iteration count
mov ax, 440Ch ;IOCTL for Character Device

int 21h

je error_handler ;carry set means error

Set Iteration Count (Function 440Ch Minor Code 45h) sets the number of times
the device driver is to try to send output to a device before assuming that the
device is busy.

Handle Identifies the device to set the iteration count for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

O01h Serial device
03h Console (screen)
05h Parallel printer

ItCount Points to a buffer that contains a 16-bit iteration count. The device

driver tries to send output to the device until it reaches this number of retries
without success.

If the function is successful, the carry flag is clear. Otherwise, the carry flag

is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0006h ERROR_INVALID_HANDLE

This function may also return a device-dependent error value as specified by
the device driver.

Function 440Ch Minor Code 65h Get Iteration Count

Function 440Ch Minor Code 4Ah Select Code Page 303

B Function 440Ch Minor Code 4Ah Select Code Page

Parameters

Return Value

See Also

mov bx, Handle ;handle of device

mov ch, Category ;device category

mov cl, 4Ah ;Select Code Page

mov dx, seg CodePagelD

mov ds, dx

mov dx, offset CodePagelD ;ds:dx points to CODEPAGE structure
mov ax, 440Ch ;IOCTL for Character Device

int 21h

je error_handler ;carry set means error

Select Code Page (Function 440Ch Minor Code 4Ah) selects the code page used
by the specified device. The code page must be in the list of prepared code
pages for the device.

Handle Identifies the device to set the code page for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

O1h Serial device
03h Console (screen)
05h Parallel printer

CodePageID Points to a CODEPAGE structure that contains the identifier of
the code page to be selected. The CODEPAGE structure has the following form:

CODEPAGE STRUC

cpLength dw 2 ;struct size, excluding this field (always 2)
cpld dw ? ;code-page identifier
CODEPAGE ENDS

For a full description of the CODEPAGE structure, see Chapter 6, “National
Language Support.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

304 Function 440Ch Minor Code 4Ch Start Code-Page Prepare

B Function 440Ch Minor Code 4Ch Start Code-Page Prepare

Parameters

Return Value

Comments

See Also

mov bx, Handle) ;handle of device

mov ch, Category ;device category

mov cl, 4Ch ;Start Code-Page Prepare

mov dx, seg PreparelDs

mov ds, dx

mov dx, offset PreparelDs ;ds:dx points to CPPREPARE structure
mov ax, 440Ch ;IOCTL for Character Device

int 21h

je error_handler ;carry set means error

Start Code-Page Prepare (Function 440Ch Minor Code 4Ch) instructs a device
driver to begin to prepare a new code-page list.
Handle Identifies the device to set code pages for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

O1h Serial device
03h Console (screen)
05h Parallel printer

PreparelDs Points to a CPPREPARE structure that contains information for
the new code-page list. The CPPREPARE structure has the following form:

CPPREPARE STRUC

cppFlags dw O ;flags (device-specific)

cppLength dw (CODEPAGE_IDS+1)*2 ;structure length, in bytes,
;excluding first two fields

cpplds dw CODEPAGE_IDS ;number of code pages in list

cppld dw CODEPAGE_IDS dup(?) ;array of code pages
CPPREPARE ENDS

For a full description of the CPPREPARE structure, see Chapter 6, “National
Language Support.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

After calling Start Code-Page Prepare, a program must write data defining the
code-page fonts to the device driver by using Send Control Data to Character
Device (Function 4403h). The code-page data is device-specific. The program

must end the code-page preparation by using End Code-Page Prepare (Function
440Ch Minor Code 4Dh).

A program can instruct the device driver to set up the device with the most
recently prepared code page by calling Start Code-Page Prepare with all code-
page numbers set to OFFFFh. This operation must be followed immediately
with a call to End Code-Page Prepare (Function 440Ch Minor Code 4Dh).

Function 4403h Send Control Data to Character Device
Function 440Ch Minor Code 4Ah Select Code Page

Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

Function 440Ch Minor Code 4Dh End Code-Page Prepare 305

B Function 440Ch Minor Code 4Dh End Code-Page Prepare

Parameters

Return Value

Comment

See Also

mov bx, Handle ;handle of device

mov ch, Category ;device category

mov cl, 4Dh ;End Code-Page Prepare

mov ax, 440Ch ;IOCTIL for Character Device
int 21h

je error_handler ;carry set means error

End Code-Page Prepare (Function 440Ch Minor Code 4Dh) tells a device driver
that code-page preparation is complete.

Handle Identifies the device the code pages are set for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

01h Serial device
03h Console (screen)
05h Parallel printer

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

End Code-Page Prepare completes code-page preparation started by using Start
Code-Page Prepare (Function 440Ch Minor Code 4Ch).

Function 440Ch Minor Code 4Ah Select Code Page

Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

306 Function 440Ch Minor Code 5Fh Set Display Mode

B Function 440Ch Minor Code 5Fh Set Display Mode

Parameters

Return Value

Comments

See Also

mov bx, Handle ;handle of device

mov ch, 0O3h ;screen device category

mov cl, SFh ;Set Display Mode

mov dx, seg Mode

mov ds, dx

mov dx, offset Mode ;points to buffer for display mode
mov ax, 440Ch ;IOCTL for Character Device

int 21h

je error_handler ;carry set means error

Set Display Mode (Function 440Ch Minor Code 5Fh) sets the display mode for
the screen device.

Handle Identifies the device to set the display mode for.

Mode Points to a DISPLAYMODE structure that specifies the mode to set.
The dmlInfoLevel field must be 0 and the dmDataLength ficld must be 14. The
structure has the following form:

DISPLAYMODE STRUC
dmInfoLevel db O iinformation level (must be zero)
dmReservedl db ? ;reserved
dmDataLength dw ? ilength of remaining data, in bytes
dmFlags dw ? ;control flags
dmMode db ? ;display mode
dmReserved2 db ? ;reserved
dmColors dw ? ;number of colors
dmWidth dw ? ;screen width, in pixels
dmLength dw ? ;screen length, in pixels
dmColumns dw ? ;columns
dmRows dw ? ;rows

DISPLAYMODE ENDS

For more information about the DISPLAYMODE structure, see Chapter 4,
“Character Input and Output.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE

The function returns 0001h (ERROR_INVALID_FUNCTION) if the
ANSI.SYS driver has not been loaded.

‘Interrupt 2Fh Function 1A00h Get ANSI.SYS Installed State

Function 440Ch Minor Code 65h Get Iteration Count 307

B Function 440Ch Minor Code 65h Get Iteration Count

Parameters

Return Value

See Also

mov bx, Handle ;handle of device

mov ch, Category ;device category

mov cl, 65h ;Get Iteration Count

mov dx, seg ItCount

mov ds, dx

mov dx, offset ItCount ;points to buffer for iteration count
mov ax, 440Ch ;IOCTL for Character Device

int 21h

jec error_handler ;carry set means error

Get Iteration Count (Function 440Ch Minor Code 65h) returns the number of

times the device driver is to try to send output to a device before assuming that
the device is busy.

Handle Identifies the device to get the iteration count for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

O01h Serial device
03h Console (screen)
05h Parallel printer

ItCount Points to a 16-bit buffer to receive the iteration count. The device
driver tries to send output to the device until it reaches this number of retries
unsuccessfully.

If the function is successful, the carry flag is clear. Otherwise, the carry flag

is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0006h ERROR_INVALID_HANDLE

This function may also return a device-dependent error value as specified by the
device driver.

Function 440Ch Minor Code 45h Set Iteration Count

308 Function 440Ch Minor Code 6Ah Query Selected Code Page

B Function 440Ch Minor Code 6Ah Query Selected Code Page

Parameters

Return Value

See Also

mov bx, Handle ;handle of device

mov ch, Category ;device category

mov cl, 6Ah ;Query Code Page

mov dx, seg CodePagelD

mov ds, dx

mov dx, offset CodePagelID ;ds:dx points to CODEPAGE structure
mov ax, 440Ch ;IOCTL for Character Device

int 21h

je error_handler ;carry set means error

Query Selected Code Page (Function 440Ch Minor Code 6Ah) returns the
currently selected code page for the specified device.

Handle Identifies the device to return the selected code page for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

O01h Serial device
03h Console (screen)
05h Parallel printer

CodePageID Points to a CODEPAGE structure that receives the identifier for
the selected code page. The CODEPAGE structure has the following form:

CODEPAGE STRUC

cpLength dw 2 ;struct size, excluding this field (always 2)
cpld dw ? ;code-page identifier
CODEPAGE ENDS

For a full description of the CODEPAGE structure, see Chapter 6, “National
Language Support.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

Function 440Ch Minor Code 4Ah Select Code Page

Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

309

B Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

Parameters

Return Value

Comment

See Also

mov bx,
mov ch,
mov cl,
mov dx,
mov ds,
mov dx,
mov ax,
int 21h
jec erro

Handle ;handle of device

Category ;device category

6Bh ;Query Code-Page Prepare List

seg ListIDs

dx

offset ListIDs ;ds:dx points to CPLIST structure
440Ch ;IOCTL for Character Device
r_handler ;carry set means error

Query Code Page Prepare List (Function 440Ch Minor Code 6Bh) returns the
list of currently prepared code pages for the specified device.

Handle Identifies the device to return the code-page list for.

Category Specifies the type of device. This parameter must be one of the fol-
lowing values:

Value Device

O1lh Serial device
03h Console (screen)
05h Parallel printer

ListIDs Points to a CPLIST structure that receives the list of prepared code
pages. The CPLIST structure has the following form:

CPLIST STRU
cpllLengt

cplHIds
cplHid
cplPlds
cplPid
CPLIST ENDS

c
h dw ((HARDWARE_IDS+1)+ (PREPARED_IDS+1))*2

;structure length, in bytes,

;excluding this field

dw HARDWARE_IDS ;number of hardware code pages
dw HARDWARE_IDS dup(?) ;array of hardware code pages
dw PREPARED_IDS ;number of prepared code pages
dw PREPARED_IDS dup(?) ;array of prepared code pages

For a full description of the CPLIST structure, see Chapter 6, “National
Language Support.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag

is set.

The device driver may return up to 12 hardware code-page identifiers and 12

prepared code-page identifiers.

Function 440Ch Minor Code 4Ah Select Code Page
Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page

310 Function 440Ch Minor Code 7Fh Get Display Mode

B Function 440Ch Minor Code 7Fh Get Display Mode

Parameters

Return Value

Comments

See Also

mov
mov

mov
mov
mov
mov

mov
int

jec

bx,

Handle ;handle of device

ch, 03h ;screen device category

cl, 7Fh ;GCet Display Mode

dx, seg Mode

ds, dx

dx, offset Mode ;points to buffer for display mode
ax, 440Ch ;IOCTL for Character Device

21h

error_handler ;carry set means error

Get Display Mode (Function 440Ch Minor Code 7Fh) retrieves the display mode
for the screen device.

Handle

Identifies the device to get the display mode for.

Mode Points to a DISPLAYMODE structure that receives the display-mode

information. Before the function is called, the dmInfoLevel field must be 0 and
the dmDataLength field must be 14. The DISPLAYMODE structure has the fol-
lowing form:

DISPLAYMODE STRUC
dmInfoLevel db O ;information level (must be zero)
dmReservedl db ? ;reserved
dmDataLength dw ? ;length of remaining data, in bytes
dmFlags dw ? ;control flags
dmMode db ? ;display mode
dmReserved2 db ? ;reserved
dmColors dw ? ;number of colors
dmWidth dw ? ;screen width, in pixels
dmLength dw ? ;screen length, in pixels
dmColumns dw ? ;columns
dmRows dw ? ;rows

DISPLAYMODE ENDS

For more information about the DISPLAYMODE structure, see Chapter 4,
“Character Input and Qutput.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the

following:
Value Name
0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED
0006h ERROR_INVALID_HANDLE

The function returns 0001h (ERROR_INVALID_FUNCTION) if the
ANSI.SYS driver has not been loaded.

Function 440Ch Minor Code 5Fh Set Display Mode
Interrupt 2Fh Function 1A00h Get ANSI.SYS Installed State

Function 440Dh Minor Code 40h Set Device Parameters 311

B Function 440Dh Minor Code 40h Set Device Parameters

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.

mov ch, 08h ;device category (must be 08h)

mov cl, 40h . ;Set Device Parameters

mov dx, seg DriveDP

mov ds, dx

mov dx, offset DriveDP ;ds:dx points to DEVICEPARAMS structure

mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Parameters

Return Value

Comment

See Also

Set Device Parameters (Function 440Dh Minor Code 40h) sets the device param-
eters for the specified block device.

Drive

1=A,2=B,etc.).

DriveDP Points to a DEVICEPARAMS structure that contains the parameters
for the specified block device. The DEVICEPARAMS structure has the follow-

ing

form:

DEVICEPARAMS STRUC

DEVICEPARAMS ENDS

dpHiddenSecs dd

;number of hidden sectors

dpSpecFunc db ? ;special functions
dpDevType db ? ;device type
dpDevAttr dw ? ;device attributes
dpCylinders dw ? ;number of cylinders
dpMediaType db ? ;media type
;Start of BIOS parameter block (BPB)

dpBytesPerSec dw ? ;bytes per sector
dpSecPerClust db ? ;sectors per cluster
dpResSectors dw ? ;number of reserved sectors
dpFATs db ? ;number of file allocation tables
dpRootDirEnts dw ? ;number of root-directory entries
dpSectors dw ? ;total number of sectors
dpMedia db ? ;media descriptor
dpFATsecs dw ? ;number of sectors per FAT
dpSecPerTrack dw ? ;sectors per track
dpHeads dw ? ;number of heads

?

?

dpHugeSectors dd

;number of sectors if dpSectors = O
:End of BIOS parameter block (BPB)

Specifies the drive that parameters are being set for (0 = default drive,

For a full description of the DEVICEPARAMS structure, see Chapter 3, “File
System.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the

following:
Value Name
0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Set Device Parameters returns 0002h (ERROR_FILE_NOT_FOUND) if the

specified drive number is invalid.

Function 440Dh Minor Code 60h Get Device Parameters

312 Function 440Dh Minor Code 41h Write Track on Logical Drive

B Function 440Dh Minor Code 41h Write Track on Logical Drive

Parameters

Return Value

Comment

See Also

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ;device category (must be 08h)

mov cl, 41h ;Write Track on Logical Drive

mov dx, seg WriteBlock

mov ds, dx

mov dx, offset WriteBlock ;ds:dx points to RWBLOCK structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Write Track on Logical Drive (Function 440Dh Minor Code 41h) writes data
from a buffer to a track on the specified device.

Drive Specifies the drive information is to be written to (0 = default drive,
1=A,2=B, etc.).

WriteBlock Points to an RWBLOCK structure that contains information

that specifies the sectors to be written to. The rwBuffer field must contain the
address of the buffer that contains the data to write to the disk. The RWBLOCK
structure has the following form:

RWBLOCK STRUC

rwSpecFunc db O ;special functions (must be zero)
rwHead dw ? head to read/write

rwCylinder dw ? ;cylinder to read/write
rwEFirstSector dw ? ;first sector to read/write
rwSectors dw ? ;number of sectors to read/write
rwBuffer dd ?

;address of buffer for read/write data
RWBLOCK ENDS

For a full description of the RWBLOCK structure, see Chapter 3, “File Sys-
tem.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag is

set and the AX register contains an error value, which may be one of the fol-
lowing:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Write Track on Logical Drive returns 0002h (ERROR_FILE_NOT_FOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 61h Read Track on Logical Drive

Function 440Dh Minor Code 42h Format Track on Logical Drive 313

B Function 440Dh Minor Code 42h Format Track on Logical Drive

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ;device category (must be 08h)

mov cl, 42h ;Format Track on Logical Drive
mov dx, seg FormatBlock

mov ds, dx

mov dx, offset FormatBlock ;ds:dx points to FVBLOCK structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Format Track on Logical Drive (Function 440Dh Minor Code 42h) formats and
verifies a track on the specified device.

Parameters Drive Specifies the drive on which the track is to be formatted and verified
(0 = default drive, 1 = A, 2 = B, etc.).
FormatBlock Points to an FVBLOCK structure that specifies the head and
cylinder to format. The FVBLOCK structure has the following form:

FVBLOCK STRUC

fvSpecFunc db O ;special functions (must be zero)
fvHead dw ? ;head to format/verify
fvCylinder dw ? ;cylinder to format/verify

FVBLOCK ENDS

For a full description of the FVBLOCK structure, see Chapter 3, “File System.”

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Comment Format Track on Logical Drive returns 0002h (ERROR_FILE_NOT_FOUND)
if the specified drive number is invalid.

See Also Function 440Dh Minor Code 62h Verify Track on Logical Drive

314 Function 440Dh Minor Code 46h Set Media ID

B Function 440Dh Minor Code 46h Set Media ID

Parameters

Return Value

Comments

See Also

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, O8h ;device category (must be 08h)
mov cl, 46h ;Set Media ID

mov dx, seg MedialD

mov ds, dx

mov dx, offset MedialD ;ds:dx points to MID structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Set Media ID (Function 440Dh Minor Code 46h) sets the volume label, serial
number, and file system for the specified drive.

Drive Specifies the drive for which identification is to be set (0 = default
drive, 1 = A, 2 = B, etc.).

MedialD Points to a MID structure that contains information that uniquely

identifies a disk or other storage medium. The MID structure has the following
form:

MID STRUC
midInfoLevel dw O ;information level
midSerialNum dd ? ;serial number
midVolLabel db 11 dup (?) ;ASCII volume label
midFileSysType db 8 dup: (?) ;file system type
MID ENDS

For a full description of the MID structure, see Chapter 3, “File System.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Set Media ID returns 0002h (ERROR_FILE_NOT_FOUND) if the specified
drive number is invalid.

Function 440Dh Minor Code 66h Get Media ID

Function 440Dh Minor Code 60h Get Device Parameters 315

B Function 440Dh Minor Code 60h Get Device Parameters

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.

mov ch, 08h ;device category (must be 08h)

mov cl, 60h ;Get Device Parameters

mov dx, seg DriveDP

mov ds, dx

mov dx, offset DriveDP ;ds:dx points to DEVICEPARAMS structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Get Device Parameters (Function 440Dh Minor Code 60h) returns the device
parameters for the specified block device.

Parameters Drive Specifies the drive for which parameters are requested (0 = default
drive, 1 = A, 2 = B, etc.).

DriveDP Points to a DEVICEPARAMS structure that receives information on

the device’s storage capacity and characteristics. The DEVICEPARAMS struc-
ture has the following form:

DEVICEPARAMS STRUC
dpSpecFunc db ? ;special functions
dpDevType db ? ;device type
dpDevAttr dw ? ;device attributes
dpCylinders dw ? ;number of cylinders
dpMediaType db ? ;media type
;Start of BIOS parameter block (BPB)
dpBytesPerSec dw 7? ;bytes per sector
dpSecPerClust db ? ;sectors per cluster
dpResSectors dw ? ;number of reserved sectors
dpFATs db ? ;number of file allocation tables
dpRootDirEnts dw ? ;number of root-directory entries
dpSectors dw ? ;total number of sectors
dpMedia db ? ;media descriptor
dpFATsecs dw ? ;number of sectors per FAT
dpSecPerTrack dw 7? ;sectors per track
dpHeads dw ? ;number of heads
dpHiddenSecs dd ? ;number of hidden sectors
dpHugeSectors dd ? ;number of sectors if dpSectors = O

;End of BIOS parameter block (BPB)
DEVICEPARAMS ENDS

The dpSpecFunc field determines whether the function retrieves current or
default information. If the field is set to 1, the function retrieves information
about the current medium in the drive; if the field is set to 0, the function
retrieves information about the default medium for the drive.

For a full description of the DEVICEPARAMS structure, see Chapter 3, “File
System.”

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag

is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

316 Function 440Dh Minor Code 60h Get Device Parameters

Comment Get Device Parameters returns 0002h (ERROR_FILE_NOT_FOUND) if the
specified drive number is invalid.

See Also Function 440Dh Minor Code 40h Set Device Parameters

Function 440Dh Minor Code 61h Read Track on Logical Drive 317

B Function 440Dh Minor Code 61h Read Track on Logical Drive

Parameters

Return Value

Comment

See Also

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ;device category (must be 08h)

mov cl, 61h ;Read Track on Logical Drive

mov dx, seg ReadBlock

mov ds, dx

mov dx, offset ReadBlock ;ds:dx points to RWBLOCK structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Read Track on Logical Drive (Function 440Dh Minor Code 61h) reads data
from a track on the specified device and places the data in memory.

Drive Specifies the drive to be read from (0 = default drive, 1 = A, 2 = B,
etc.).

ReadBlock Points to an RWBLOCK structure that contains information that

specifies the sectors to be read from. The RWBLOCK structure has the follow-
ing form:

RWBLOCK STRUC

rwSpecFunc db O ;special functions (must be zero)
rwHead dw ? :head to read/write

rwCylinder dw ? ;cylinder to read/write
rwFirstSector dw ? ;first sector to read/write
rwSectors dw ? ;number of sectors to read/write
rwBuffer dd 7?

;address of buffer for read/write data
RWBLOCK ENDS

For a full description of the RWBLOCK structure, see Chapter 3, “File Sys-
tem.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Read Track on Logical Drive returns 0002h (ERROR_FILE_NOT_FOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 41h Write Track on Logical Drive

318 Function 440Dh Minor Code 62h Verify Track on Logical Drive

B Function 440Dh Minor Code 62h Verify Track on Logical Drive

Parameters

Return Value

Comment

See Also

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ;device category (must be O8h)

mov cl, 62h ;Verify Track on Logical Drive

mov dx, seg VerifyBlock

mov ds, dx

mov dx, offset VerifyBlock ;ds:dx points to FVBLOCK structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Verify Track on Logical Drive (Function 440Dh Minor Code 62h) verifies a track
on the specified device.

Drive Specifies the drive on which the track is to be verified (0 = default
drive, 1 = A, 2 = B, etc.).

VerifyBlock Points to an FVBLOCK structure that specifies the head and
cylinder to verify. The FVBLOCK structure has the following form:

FVBLOCK STRUC

fvSpecFunc db O ;special functions (must be zero)
fvHead dw ? ;head to format/verify
fvCylinder dw ? ;cylinder to format/verify

FVBLOCK ENDS

For a full description of the FVBLOCK structure, see Chapter 3, “File System.”

If the function is successful, the carry flag is clear. Otherwise, the carry flag

is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Verify Track on Logical Drive returns 0002h (ERROR_FILE_NOT_FOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 42h Format Track on Logical Drive

Function 440Dh Minor Code 66h Get MediaID 319

B Function 440Dh Minor Code 66h Get Media ID

Parameters

Return Value

Comments

See Also

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 0O8h ;device category (must be 0O8h)
mov cl, 66h ;Get Media ID

mov dx, seg MedialD

mov ds, dx

mov dx, offset MedialD ;ds:dx points to MID structure
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Get Media ID (Function 440Dh Minor Code 66h) returns the volume label,
serial number and file system for the specified drive.

Drive Specifies the drive for which information is to be returned (0 = default
drive, 1 = A, 2 = B, etc.).

MediaID Points to a MID structure that receives information that uniquely

identifies a disk or other storage medium. The MID structure has the following
form:

MID STRUC
midInfoLevel dw O ;information level
midSerialNum dd ? ;serial number
midVolLabel db 11 dup (?) :ASCII volume label
midFileSysType db 8 dup (?) ;file system type
MID ENDS

For a full description of the MID structure, see Chapter 3, “File System.”

If the function is successful, the carry flag is clear; and the parameter block is
filled in with information about the disk. Otherwise, the carry flag is set and the
AX register contains an error value, which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION
0002h ERROR_FILE_NOT_FOUND
0005h ERROR_ACCESS_DENIED

Get Media ID returns 0002h (ERROR_FILE_NOT_FOUND) if the specified
drive number is invalid.

Function 440Dh Minor Code 46h Set Media ID

320 Function 440Dh Minor Code 68h Sense Media Type

B Function 440Dh Minor Code 68h Sense Media Type

Parameters

Return Value

Comment

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.

mov ch, O8h ;device category (must be 08h)

mov cl, 68h ;Sense Media Type

mov dx, seg Media

mov ds, dx

mov dx, offset Media ;ds:dx points to buffer for media type
mov ax, 440Dh ;IOCTL for Block Device

int 21h

je error_handler ;carry set means error

Sense Media Type (Function 440Dh Minor Code 68h) returns the media type for
the specified block device.

Drive Specifies the drive for which parameters are requested (0 = default
drive, 1 = A, 2 = B, etc.).

Media Points to a 2-byte buffer that receives information on the media type
for the given drive. The buffer has the following form:

Offset Description

00h Receives a value specifying whether the media type is the default
value. This byte is set to O1h for the default media type and to 00h
for any other media type.

O1lh Receives a value specifying the media type. This byte is set to 02h for
720K disks, 07h for 1.44-MB disks, and 0%h for 2.88-MB disks.

If the function is successful, the carry flag is clear. Otherwise, the carry flag

is set and the AX register contains an error value, which may be one of the
following:

Value Name

0001h ERROR_INVALID_FUNCTION
0005h ERROR_ACCESS_DENIED

This function may also return a device-dependent error value as specified by
the device driver.

Sense Media Type returns 0005h (ERROR_ACCESS_DENIED) if the media
type for the specified drive cannot be determined or the given drive is not ready.
Programs can use Get Extended Error (Function 59h) to retrieve additional
information about the error.

Function 440Eh Get Logical Drive Map 321

B Function 440Eh _Get Logical Drive Map

Parameter

Return Value

Comments

See Also

mov bl, Drive ;0 = default, 1 = A, 2 = B, et<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>