
Including Version 5• Microsoft"

MS-DOS~
Programmer's Reference

New for Version 5

Microsoft®

•
Programmer's Reference

Written, edited, and produced by
Microsoft Corporation

Distributed by Microsoft Press

®

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than
the purchaser's personal use, without the express written permission of Microsoft
Corporation.

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way, Redmond, Washington 98052-6399

Copyright © 1991 Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data

MS-DOS programmer's reference: version 5.0 /. Microsoft Corporation.
p. em.

Includes index.
ISBN 1-55615-329-5
1. MS-DOS (Computer operating system) I. Microsoft.

QA76.76.063M745 1991
005.4'46-dc20 91-8992

CIP
Printed and bound in the United States of America.

456789MLML65432

Distributed to the book trade in Canada by Macmillan of Canada, a division
of Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

Microsoft, the Microsoft logo, MS, and MS-DOS are registered trademarks and
Information at your fingertips, Making it all make sense, Windows, and Press
are trademarks of Microsoft Corporation.

u.S. Patent Nos. 4955066, 4974159

AST is a registered trademark of AST Research, Inc.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Lotus is a registered trademark of Lotus Development Corporation.

Document No. SY0766b-R5Q-0691

iii

Contents

Chapter 1 Introduction
1.1 About This Manual.. 3
1.2 Organization of the Manual... 3
1.3 How to Use This Manual.. 4
1.4 Notational Conventions 5
1.5 Further Reading 6

Chapter 2 Overview of MS-DOS
2.1 Introduction.. 9
2.2 MS-DOS Programming Interface: System Functions 9
2.3 MS-DOS Features 9
2.4 MS-DOS Programs and Device Drivers.............................. 10
2.5 Programming Guidelines... 13
2.6 System Configuration... 14

Chapter 3 File System
3.1 Introduction.. 19
3.2 Names and Paths 19
3.3 Logical Drives... 20
3.4 Directories 22
3.5 Files.. 23
3.6 Network Drives 27
3.7 File Sharing 28
3.8 Low-Level Input and Output n........... 29
3.9 Structures... 33

Chapter 4 Character Input and Output
4.1 Introduction.. 55
4.2 Character Devices... 55
4.3 ANSI Escape Sequences 58
4.4 Structure.. 61

Iv

Chapter 5 Program Management
5.1 Introduction.. 65
5.2 Programs and Program Resources...................................... 65
5.3 Memory Management... 68
5.4 Child Programs 71
5.5 Terminate-and-Stay-Resident Programs............................... 74
5.6 Overlays ~........ 74
5.7 Program-File Formats 75
5.8 Structures... 77

Chapter 6 National Language Support
6.1 Introduction.. 89
6.2 Country Information.. 89
6.3 Code Pages... 91
6.4 Keyboard Layouts.. 92
6.5 Screen and Printer Fonts 92
6.6 Code-Page Information Files (.CPI) 93
6.7 Structures... 94

Chapter 7 Interrupts
7.1 Introduction.. 107
7.2 MS-DOS Interrupts... 107
7.3 System Interrupts.. 108
7.4 Exceptions.. 110
7.5 Interrupt and Exception Handlers 110
7.6 Interrupt Chains 112
7.7 Multiplex Interrupt Handlers... 112
7.8 Terminate-and-Stay-Resident Programs............................... 113
7.9 MS-DOS Interrupt Reference... 116
7.10 Task-Switching Reference... 171
7.11 Structures... 193

Chapter 8 Interrupt 21 h Functions
8.1 Introduction.. 201
8.2 Function Groups... 201
8.3 Superseded Functions.. 209
8.4 Obsolete Functions.. 210
8.5 Interrupt 21h Function Reference...................................... 210

v

Chapter 9 Device Drivers
9.1 Introduction.. 391
9.2 Character and Block Devices 391
9.3 Device-Driver Format 391
9.4 Block-Device Drivers... 394
9.5 Character-Device Drivers 396
9.6 Request Packets and Function Requests 397
9.7 Device-Driver Initialization... 398
9.8 Device-Driver Function Reference 399
9.9 Structures... 427

Appendix A Code Pages 435

Appendix B Extended Key Codes 443

Appendix C Error Values.. 447

Appendix D Task Switcher API Patch 453

Index 455

Chapter

1

Introduction
1.1 About This Manual.. 3

1.2 Organization of the Manual.. 3

1.3 How to Use This Manual... 4

1.4 Notational Conventions 5

1.5 Further Reading... 6

Chapter 1: Introduction 3

1.1 About This Manual
This manual describes the system functions, interrupts, and structures of the
Microsoft@ MS-DOS® operating system. These features enable MS-DOS pro­
grams to use the operating system to carry out tasks such as reading from and
writing to files; allocating memory; starting other programs; and using the key­
board, screen, and co~munications ports.

Topics include overviews of the MS-DOS system functions; a comprehensive
reference to the system functions, interrupts, and structures; an explanation of
device drivers; and a description of the function interfaces for MS-DOS exten­
sions, such as print spooling, national language support, and task switching.

MS-DOS system functions, interrupts, and structures are designed to be used in
assembly-language programs or in assembly-language modules that can be incor­
porated in C, Pascal, and other high-level-language programs. Therefore, to get
the most from this manual, readers should be familiar with the architecture of
the 8086 family of microprocessors and have some experience programming in
assembly language for the 8086 microprocessor.

Although this manual presents the basic concepts and tasks associated with the
system functions, it is not intended to teach programming in the MS-DOS
environment. The manual does not provide detailed information about interfaces
that are features of a given computer, device adapter, or software extension. For
additional resources about MS-DOS and related topics, see Section 1.5,
"Further Reading."

1.2 Organization of the Manual
The MS-DOS Programlner's Reference consists of nine chapters and three appen­
dixes.

This chapter, "Introduction," shows how to use the manual and provides a brief
description of conventions used to present information.

Chapter 2, "Overview of MS-DOS," discusses system features, functions, com­
ponents, and organization. It also presents a simple MS-DOS program, elabo­
rates the importance of device independence and cooperation as characteristics
of MS-DOS programs, and offers programming guidelines.

Chapter 3, "File System," describes the MS-DOS file system, particularly as it
relates to disk drives and similar storage devices.

Chapter 4, "Character Input and Output," presents the MS-DOS character
devices, such as the system console and communications ports, and describes
the system functions used to access these devices.

Chapter 5, "Program Management," defines the resources that are available
when programs first start, explains how programs load and run other programs,
and shows the proper method for terlninating a program. This chapter also
describes the format of MS-DOS program files and explains how MS-DOS loads
these files and transfers control to them.

4 MS-DOS Programmer's Reference

Chapter 6, "National Language Support," presents the features of MS-DOS that
provide support for foreign-language markets, such as country information, key­
board layouts, and code pages.

Chapter 7, "Interrupts," provides information about software interrupts that a
program can use to request services from the operating system and fromexten­
sions to the operating system.

Chapter 8, "Interrupt 21h Functions," describes the MS-DOS system functions
available through Interrupt 21h. The functions are listed in numeric order
according to the number used to call the function.

Chapter 9, "Device Drivers," describes the format of MS-DOS device drivers. It
explains how MS-DOS uses device drivers to provide an interface between the
operating-system kernel and hardware devices.

Appendix A, "Code Pages," contains code-page tables for the six code pages
included with MS-DOS.

Appendix B, "Extended Key Codes," lists the keys and key combinations that
generate the extended key codes MS-DOS retrieves when reading from the key­
board.

Appendix C, "Error Values," lists the error values returned by MS-DOS system
functions.

Appendix D, "Task Switcher API Patch," contains code that client programs
can use to ensure successful switching between tasks.

1.3 How to Use This Manual
The manual is designed to provide quick access to the syntax and usage of each
MS-DOS system function, interrupt, and structure. This section describes the
information presented on each reference page. A reference page has the follow­
ing format:

o. Function 02h Display Character Superseded

e Parameter

o Return Value

o Comment

o See Also

49 dl, OutputChar ; character to display

mov ah, 02h ; Display Character
int 21h

8 Display Character (Function 02h) displays a character on the standard output
device.

This function has been superseded by Write File or Device (Function 40h).

OutputChar Specifies the ASCII value of the character to be displayed.

This function has no return value.

When the standard output device is the screen, displaying a backspace character
(ASCII 08h) moves the cursor back one position but does not erase characters.

Function 40h Write File or Device

Chapter 1: Introduction 5

These are the elements shown:

1 The function, interrupt, or structure name. For any function that has been
superseded, the word "Superseded" appears to the far right of the function
name.

2 The function, interrupt, or structure syntax. The syntax specifies each parameter
(or field). It also gives the register that each parameter must be copied to. Com­
ments to the right briefly describe the purpose of each parameter (or field).

3 A description of the function, interrupt, or structure, including its purpose and
details of operation. This section may include any special consideration for the
function, such as whether the function has been superseded.

4 A full description of each parameter (or field), including permitted values and
related structures.

5 A description of the return value or values, including possible error values.

6 A description of special considerations related to use of the function, interrupt,
or structure in a program.

7 A list of related functions, interrupts, and structures.

1.4 Notational Conventions
The following notational conventions are used throughout this manual:

Convention

bold

italic

monospace

FULL CAPITALS

SMALL CAPITALS

Description

Bold type is used for keywords-for example,
the names of commands and of structures and
their fields. These names are spelled exactly as
they should appear in source programs.

Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italic type is also used to show
emphasis in text.

Monospace type is used for syntax and code
examples that are provided to illustrate system
calls and to show the format of data structures.

Full capital letters are used for filenames and
paths, structure names, and constants.

Small capital letters are used for the names of
keys and key combinations.

6 MS-DOS Programmer's Reference

1.5 Further Reading
Following are two of the books that readers may find useful:

Microsoft MS-DOS User's Guide and Reference
MS-DOS Extensions, Ray Duncan, General Editor, for Addison-Wesley

The following books are available from Microsoft Press:

Advanced MS-DOS Programming, 2d ed, by Ray Duncan
Managing Memory with DOS 5, by Dan Gookin
The MS-DOS Encyclopedia, Ray Duncan, General Editor
The Programmer's PC Sourcebook, 2d ed, by Thorn Hogan
Programmer's Quick Reference: MS-DOS Extensions, by Ray Duncan
Programmer's Quick Reference: MS-DOS Functions, by Ray Duncan

For more information about references available on the 8086 family of micro­
processors, call (800) 548-4725 or write to Intel Literature Sales, P.O. Box
58130, Santa Clara, CA 95052-8130.

Readers who are interested in learning more about the technical details of a
computer, device adapter, or software extension should contact that product's
manufacturer for additional books and pamphlets.

Chapter

2

Overview of MS-DOS
2.1 Introduction 9

2.2 MS-DOS Programming Interface: System Functions....... 9

2.3 MS-DOS Features.. 9

2.4 MS-DOS Programs and Device Drivers 10
2.4.1 MS-DOS Programs... 11

2.4.1.1 A Simple MS-DOS Program...................... 11
2.4.1.2 Terminate-and-Stay-Resident Programs.......... 12

2.4.2 Device Drivers.. 12

2.5 Programming Guidelines.. 13
2.5.1 Device-Independent Programs 13
2.5.2 Cooperative Programs 13

2.6 System Configuration.. 14

Chapter 2: Overview of MS-DOS 9

2.1 Introduction
This chapter provides a brief overview of MS-DOS and MS-DOS programs. In
particular, it describes the following:

• MS-DOS programming interface

• MS-DOS features

• Programs and device drivers

• Programming guidelines

• System configuration

2.2 MS-DOS Programming Interface: System Functions
MS-DOS provides general, device-independent access to the resources of a com­
puter. The typical MS-DOS computer is a personal or laptop computer based on
the 8086 family of microprocessors. The computer operates in real mode and
provides devices for mass storage and for input and output-devices such as disk
drives, keyboard, screen, and parallel and serial ports.

From a programmer's perspective, the heart of MS-DOS is its system functions,
which provide access to the computer's devices and to a wide range of other ser­
vices, from memory management to national language support.

Programs that use MS-DOS system functions are device-independent-that is,
they need no device-specific code to use a given device. Instead, they rely on
MS-DOS and its device drivers to handle all device-specific operations.

Even though the number and capabilities of MS-DOS system functions grow
with each new version, programs written for the current version can often run
with earlier versions as well. A program should always check the version of MS­
DOS with which it is running and use this information to determine which MS­
DOS features and system functions it can use.

2.3 MS-DOS Features
Programs use oMS-DOS system functions to allocate memory, load programs,
read from and write to files and devices, connect to a network, and so on.

Programs that use MS-DOS system functions have access to the following
features of MS-DOS:

• File system: The MS-DOS file system consists of the files, directories,
and supporting data structures on the disks of the computer. Although
MS-DOS controls the file system, programs can create, read from, write
to, and delete files and directories. The primary supporting data struc­
ture for the file system is the file allocation table (FAT). Programs do
not access the FAT directly. Instead, MS-DOS manages all the details of
the operations on files, including updating the FAT as files are created
and modified.

1a MS~DOS Programmer's Reference

• Character devices: Character devices process data one byte (one charac­
ter) at a time. Examples of character devices are the computer's key­
board, screen, and serial and parallel ports. Programs can open, read
from, and write to character devices by using the same functions as they
use for accessing files. Devices have logical names, such as CON and
PRN, that programs use to open them. Programs can set operating
modes for character devices by using input-and-output-control (IOCTL)
functions.

• Program execution: Although MS-DOS is a single-tasking operating
system-that is, it runs only one program at a time-programs can load
and run other programs. While one program runs, the program that
started it is temporarily suspended. MS-DOS ensures that adequate
memory and other resources are available to each program.

• Memory management: When it starts a program, MS-DOS allocates
memory for program code and data and copies the program file from the
storage medium into memory. Programs can free unneeded memory or
allocate additional memory while they run. MS-DOS organizes memory
in blocks of one or more paragraphs (a paragraph is 16 bytes).

• Networks: A network enables programs running on one computer to use
the drives and devices of other computers. Programs can make connec­
tions to network drives and devices and then access files and character
devices to open, read from, and write to the network drives and devices.

•. National language support: National language support permits programs
to adapt themselves for operation in a variety of national markets. Pro­
grams use country information to prepare the characters and formats for
date, time, currency, and other information they display; they use code
pages to display and print characters that are language-specific or
country-specific.

• Interrupt handling: Programs can install custom interrupt handlers to
carry out special processing while they run. For example, a program can
install a CTRL+C handler that replaces the default action when the user
presses the CTRL+C key combination.

• Task-switcher notifications: Programs can add themselves to the
notification chain of the MS-DOS task switcher. Programs that are sensi­
tive to task switches, such as communication programs that must
respond immediately to asynchronous input, add themselves to the chain
to control when and under what conditions task switching occurs.

2.4 MS-DOS Programs and Device Drivers
MS-DOS supports a broad range of programs-from simple, text-based pro­
grams like More to sophisticated, interactive programs like MS-DOS Shell. The
MS-DOS system functions provide a comprehensive set of services that satisfy
the needs of most programs. Furtherlnore, programs that require additional
features, such as access to custom devices, can enhance MS-DOS by using
device drivers. Device drivers extend the capabilities of MS-DOS without requir­
ing changes to the MS-DOS system functions.

Chapter 2: Overview of MS-DOS 11

2.4.1 MS-DOS Programs
MS-DOS recognizes two program types: .COM and .EXE. A .COM program,
sometimes called a "tiny model" program, consists of code, data, and a stack, in
a single segment. Such programs typically have a single purpose: carrying out a
task and terminating. On the other hand, an .EXE program is usually large and
has code and data in separate segments. In fact, an .EXE program can have any
number of segments, the combined size of which is limited only by system
memory. An .EXE program can be loaded anywhere in memory. MS-DOS
adjusts any segment addresses in code and data when it loads the program.

2.4.1.1 A Simple MS-DOS Program
MS-DOS programs can use system functions to carry out their work. Programs
call the system functions by using the iot instruction and specifying Interrupt
21h. For this reason, many MS-DOS programs are written in assembly language
or in a mixture of assembly language and a high-level language such as C.

When a program issues an interrupt, execution control transfers to the MS-DOS
routine that handles system-function requests. MS-DOS installs this routine at
system startup.

The following sample program shows how system functions are called. The pro­
gram writes the message "Hello, MS-DOS!" to the screen and then terminates
immediately.

title 'Sample Program'
.model small

.data
String db 'Hello, MS-DOSI', 13, 10
StringLen equ $ - String

.code

Start:

mov bx, 1
mov cx, StringLen
mov ax, seg String
mov ds, ax
mov dx, offset String

mov ah, 40h
int 21h

mov al, 0

mov ah, 4Ch
int 21h

. stack 256

end Start

;handle of file or device
;maximum number of bytes to write

;ds:dx points to buffer containing data

;Write File or Device

;program-defined return value

;End Program

12 MS-DOS Programmer's Reference

This program calls two system functions: Write File or Device (Interrupt 21h
Function 40h) and End Program (Interrupt 21h Function 4Ch).

Write File or Device writes the message. It requires a file or device handle in the
BX register; the length of the string, in bytes, in the CX register; the address of
the string in the DS:DX registers; and the function number, 40h, in the AH
register. In this example, the program uses the standard-output device handle
(1), which is supplied by COMMAND.COM when it starts the program. Unless
the user redirects output, the program can use the standard-output device handle
to write to the screen. .

End Program terminates the program and returns control to COMMAND.COM.
Every MS-DOS program must terminate by using a system function such as End
Program.

2.4.1.2 Terminate-and-Stay-Resident Programs
Although most programs offer their services to users only while the programs are
running, MS-DOS allows programs to offer their services even after they ter­
minate. Such programs are called terminate-and-stay-resident programs (TSRs).
These programs receive execution control through hardware or software inter­
rupts, such as the interrupt generated by pressing the SHIFr+PRINT SCREEN key
combination. The interrupt temporarily suspends the program that is currently
running and lets the TSR carry out work. When the TSR has completed its task,
it reactivates the suspended program by returning control to it.

Many MS-DOS progralDs are TSRs-for example, Nlsfunc, Keyb, Share, and
Doskey. MS-DOS uses these programs to provide extended capabilities in areas
such as national language support and file sharing.

2.4.2 Device Drivers
Programs that need access to custom devices need device drivers. A device
driver consists of a pair of routines that handle input and output for a given
device. Device drivers are similar to TSRs in that they do not run on their own.
Instead, MS-DOS calls the device driver's routines whenever the system needs
access to the device. The driver then carries out whatever device-specific opera­
tions are required to read from or write to the device, passing information about
the operation to MS-DOS.

Most computers and custom devices provide device-support routines in read-only
memory (ROM). These routines are collectively called the ROM BIOS (ROM
basic input/output system). Th'e ROM BIOS tests and initializes the devices and
provides service routines that device drivers can use to read from. or write to the
devices.

Occasionally, the ROM BIOS for a given device may not be adequate for a
program's needs. In such cases, the ROM BIOS for that device can be replaced
with a special TSR called a hardware support program. Such a program provides
low-level support for an interrupt-driven device. It installs an interrupt service
routine that handles interrupts generated by the device. Hardware support pro­
grams also define an interface that device drivers or programs can use to retrieve
input and send output. Although such programs use some features of MS-DOS,
they are extremely device-dependent.

Chapter 2: Overview of MS-DOS 13

2.5 Programming Guidelines
Two general characteristics enable MS-DOS programs to operate on various
computers and to avoid corruption of code and data: device independence and
cooperation. The next two sections present guidelines for writing programs that
use these characteristics effectively.

2.5.1 Device-Independent Programs
Programs written to use specific devices or to run under a specific version of
MS-DOS may not run successfully on all computers. To ensure device indepen­
dence, programmers should use the following guidelines:

• Avoid direct calls to ROM BIOS routines. Although most computers
provide a ROM BIOS, there is no guarantee that all ROM BlOSs are
lOO-percent compatible.

• Avoid direct access to devices. Programs that improve their performance
by accessing devices directly cannot be guaranteed to run successfully on
all MS-DOS computers. For example, a program that writes to video
memory will work only on computers that have the same or compatible
video adapters. Programs should rely on device drivers to access devices.

• Avoid using "undocumented" features. System functions, interrupts, and
structures that are internal to MS-DOS are subject to change at any
time. Programs that use these undocumented features cannot be
guaranteed to run with future versions of MS-DOS.

• Check the MS-DOS version number before using a version's features.
Since users may attempt to run programs with older versions of MS­
DOS, programs that use features of the latest version should use the sys­
tem function that retrieves the MS-DOS version number. If the versions
do not match, a program can avoid using the features or terminate.

• Check the original equipment manufacturer (OEM) version number
before using OEM features. Many computer manufacturers adapt MS­
DOS for their own computers and in the process may provide additional
features that take advantage of the hardware. Although programs can use
these additional features, they should use the system function that
retrieves the OEM version number before proceeding.

2.5.2 Cooperative Programs
To prevent corruption of code and data, MS-DOS programs must run coopera­
tively. To ensure cooperation, programmers should use the following guidelines:

• Use only the memory and resources owned by the program. SinceMS­
DOS provides no memory protection, it cannot prevent a program from
writing to memory it does not o\vn. Unfortunately, writing to memory
owned by MS-DOS, by device drivers, or by other programs can corrupt
code or data and cause the system to fail.

14 MS-DOS Programmer's Reference

• Check for invalid pointers and out-of-bounds indexes. Programs must
check the addresses they use, to prevent unintentionally writing to unal­
located memory. In particular, programs must not write to memory
beyond the end of any allocated block, since doing so may destroy data
belonging to another program or corrupt structures MS-DOS uses to
manage memory.

• Do not leave interrupts disabled. Programs should not disable interrupts
unless they need to carry out operations that must not be interrupted,
such as changing the stack registers. If a program disables interrupts, it
should complete the task and reenable the interrupts as quickly as possi­
ble.

• Do not switch the operating mode of the central processing unit (CPU).
MS-DOS runs in real mode. Programs that switch to other modes, such
as protected mode, effectively disable MS-DOS.

2.6 System Configuration
The system configuration defines limits for certain MS-DOS resources and
affects how much memory MS-DOS allocates to support these resources. The
system configuration is set by commands in the MS-DOS configuration file,
CONFIG.SYS. For programs with special needs, the user may need to add or
modify one or more commands.

The following is a list of the configuration commands that may affect programs:

Command

buffers

country

device

dos

fcbs

Comments

Sets the number of file buffers. More buffers can improve
performance of programs that repeatedly open the same
files or files in the same directories . Disk-caching pro­
grams, such as SMARTDrive, can also be used to speed
access to files.

Sets the current country code. Programs that modify their
output for different national markets should require the
user to specify this command.

Installs a device driver. Programs that require device
drivers must direct the user to supply an appropriate
device or devicehigh command.

Specifies whether MS-DOS is to relocate to the high
memory area (HMA) and whether MS-DOS is to make
upper memory blocks (UMBs) available to programs. Pro­
grams that either need more memory or can improve per­
formance with additional memory should recommend this
command.

Sets the number of file control blocks (FCBs) a program
can have open at one time. This setting is useful for pro­
grams that use FCBs.

Command

files

install

lastdrive

stacks

Chapter 2: Overview of MS-DOS 15

Comments

Sets the maximum number of files that may be open at any
one time. Programs that open many files or run child pro­
grams that open their own files should direct the user to
set an appropriate maximum.

Loads a terminate-and-stay-resident program (a TSR). A
program that must run as a TSR can recommend that the
user install it by using this command.

Sets the maximum number of drives MS-DOS permits
access to. Programs that connect to many network drives
may need to direct the user to set an appropriate max­
imum.

Specifies the size and number of stacks used for hardware
interrupts. This command is useful for hardware support
programs that install interrupt service routines for selected
interrupts, especially if the service routines require large
amounts of stack space.

For more information about these commands, see the Microsoft MS-DOS User's
Guide and Reference.

Chapter

3

File System
3.1 Introduction 19

3.2 Names and Paths 19

3.3 Logical Drives... 20
3.3.1 Removable-Media Drives................................... 21

3.4 Directories 22
3.4.1 Directory Management 22

3.5 Files.. 23
3.5.1 File Management 23
3.5.2 File Input and Output.. 25
3.5.3 Internal File Buffers.. 26
3.5.4 File Handles 27

3.6 Network Drives 27

3.7 File Sharing... 28

3.8 Low-Level Input and Output 29
3.8.1 Device Parameters... 30
3.8.2 Absolute Disk Read and Write Operations.............. 30
3.8.3 Input-and-Output-Control Functions...................... 31
3.8.4 Logical-Drive Contents...................................... 31

3.9 Structures 33

Chapter 3: File System 19

3.1 Introduction
The MS-DOS file system consists of files, directories, and supporting data struc­
tures on a permanent storage device of the computer. MS-DOS controls the file
system but allows programs to access it through system functions. This chapter
describes these functions and explains the file-system data structures.

3.2 Names and Paths
Each drive, file, and directory has a name. Drive names consist of a single letter
(A through Z) followed by a colon (:). File and directory names can have up to
eight characters, optionally followed by a period (.) and an extension of up to
three characters.

Names and extensions can contain letters, digits, and any of the characters in
the following set:

1#$ % ~ & () - _ { } -

MS-DOS does not distinguish between uppercase and lowercase letters in
filenames and extensions. In other words, the filenames abc and ABC are the
same. Although extended ASCII characters (characters with values greater than
127) are also permitted in names, programs should avoid them, since the mean­
ings of the extended characters may differ with different code pages. If a pro­
gram requires extended characters in names (for example, to spell foreign­
language names accurately), the program should use code page 850 to generate
the names.

Functions that search for files by pattern accept wildcards in filenames. The
MS-DOS wildcards are the asterisk (*) and the question mark (?). The asterisk
matches any combination of characters in a name, and the question mark
matches any single character.

A path is a combination of a drive name and a directory name that together
uniquely specify a directory, or a combination of a drive name, a directory
name, and a filename that together uniquely specify a file. The following are
valid paths:

a:\sample\abc.txt
a:\sample
\sample\abc.txt
a:abc.txt
abc.txt
.. \abc.txt

;full path specifying a file
;full path specifying a directory
;partial path, assumes current drive
;partial path, assumes current directory
;partial path, assumes current drive and directory
;partial path, relative to the parent directory

Programs use full paths to make an unambiguous reference to a file, and partial
paths to let the system construct a full path based on the current drive, the
current directory, or both. A path, excluding drive name, must not exceed 64
characters. This rule also applies to full paths that MS-DOS constructs from par-
tial paths. .

A network name identifies a resource, such as a drive, file, or device, that is
available to a program when network software is installed. The name consists
of at least a computer name and a share name; it may also include a path. The
computer name uniquely identifies the network server owning the resource, and
the share name identifies the resource. If a path is given, it uniquely identifies a
directory or file on a network drive.

20 MS-DOS Programmer's Reference

Network names have the following forms:

\\serverl\datafi1es network drive
\\computer2\laser network printer
\\serverl\datafi1es\readme.txt file on network drive
\\serverl\datafiles\10g\june91.txt file in path on network drive

Programs use network drive and printer names to connect to n~twork resources;
they use network filenames to open or create files or directories on network
drives.

3.3 Logical Drives
MS-DOS creates one or more logical drives that map to the physical drives of a
computer. Programs access logical drives by using a single set of MS-DOS func­
tions, regardless of the type of hardware used by the physical drives.

A computer can have up to 26 logical drives. MS-DOS assigns each drive a
unique number, sequentially from 1 through 26 (or from 0 through 25 for the
Interrupt 21h functions Set Default Drive and Get Default Drive). The drive
numbers correspond to the drive letters used in paths: drive 1 corresponds to
drive A, drive 2 to drive B, and so on.

Drive 0 corresponds to the default drive-that is, the drive MS-DOS uses when­
ever a program supplies a path that does not explicitly specify a drive. When
MS-DOS first starts, the default drive is the same as the drive from which the
system files were loaded (the startup drive). A program can determine the
default drive by using Get Default Drive (Interrupt 21h Function 19h) to obtain
the drive number. A program can set the default drive by using Set Default
Drive (Interrupt 21h Function OEh). A program can determine the startup drive
by using Get Startup Drive (Interrupt 21h Function 3305h). On a ROM-based
version of MS-DOS, there may be no startup drive; in this case, Get Startup
Drive returns the number of the drive containing the CONFIG.SYS file.

Set Default Drive also returns the number of logical drives available. Since few
computers have a full set of 26 drives, programs that present a list of available
drives to the user must determine which drives are valid. If the CONFIG.SYS
file contains a lastdrive command, Set Default Drive returns either the number
of logical drives for the computer or the number of drives specified by lastdrive,
whichever is larger. The lastdrive command is typically used to prepare extra
drive numbers for use with network connections or commands such as subst.
The extra drive numbers are not valid until a connection to a physical drive is
established.

A program can check a logical drive to determine whether it has a correspond­
ing physical drive by using Is Drive Remote (Interrupt 21h Function 4409h). If
the logical drive is valid, Is Drive Remote clears the carry flag. Otherwise, the
function sets the carry flag and returns OOOFh (ERRORJNVALIDJ)RIVE).
For valid drives, Is Drive Remote also returns the device-attribute value and sets
bit 12 if the drive is remote (for example, if it represents a network connection)
or is a nonstandard file system (for example, CD-ROM).

Although a program may have determined that a drive is valid, the file system
associated with the drive may still be inaccessible. For example, drives with
removable media may have an open -disk-drive- door or no tape mounted on a

Chapter 3: File System 21

tape drive. If a program attempts to access a drive under these or similar condi­
tions, the system may prompt the user with an "Abort, Retry, or Fail?" mes­
sage; if the user selects Abort or Fail, the program terminates immediately. If it
is important to prevent the user from terminating the program at this point, the
program may need to replace Critical-Error Handler (Interrupt 24h) with a cus­
tomized handler that receives control whenever drive errors, such as an open
drive door, occur. For more information about Critical-Error Handler, see
Chapter 7, "Interrupts." •

MS-DOS usually reserves the first two logical drives for floppy disk drives. On
computers that have only one floppy disk drive, the second logical drive is often"
treated as an alias for the first. In this case, Is Drive Remote specifies the first
and second logical drives as valid drives, even though they share the same physi­
cal drive. A program can determine whether two or more logical drives share a
physical drive by using Get Logical Drive Map (Interrupt 21h Function 440Eh).
This function clears the carry flag and returns a nonzero drive number in the AL
register if the drive has aliases. This drive nUlnber specifies which logical drive is
currently being used to access the physical drive. If a program attempts to access
the physical drive by using another logical drive, the system prompts the user
with an "Insert diskette for drive..." Inessage. A program can avoid this problem
by first using Set Logical Drive Map (Interrupt 21h Function 440Fh) to change
the logical drive that is to be used to access the physical drive.

If the file system is accessible, a program can determine how much space is
available in the file system by using Get Disk Free Space (Interrupt 21h Function
36h). The function returns the total number of clusters in the file system and the
number of available clusters. (A cluster is the smallest amount of space that
MS-DOS will allocate for a file or directory.) Get Disk Free Space also returns
the number of bytes per sector and the nunlber of sectors per cluster, so the
program can compute the total number of bytes currently available in the file sys­
tem. A program can also use Get Disk Free Space to determine whether a logi­
cal drive has a corresponding physical drive. If there is no corresponding physi­
cal drive, the function returns OFFFFh.

3.3.1 Re.movable-Media Drives
Many programs use removable media, such as disks and tapes, to store data. A
program can determine whether a drive supports removable media by using Does
Device Use Removable Media (Interrupt 21h Function 4408h). If the specified
drive supports removable media, the function clears the carry flag and returns
zero in the AX register.

To help distinguish one removable disk or tape from another, the format com­
mand creates a unique identifier for each volume (for example, each disk or
tape) as it formats the volume. Programs can also create their own unique identi­
fiers by using Set Media ID (Interrupt 21h Function 440Dh Minor Code 46h) to
set the volume label, volume serial nUlnber, and file-system type. A program can
retrieve this information by using Get Media ID (Interrupt 21h Function 440Dh
Minor Code 66h). (A volume label consists of up to 11 characters of the same
type used in filenames.)

Since the user can change the volume in a removable-media drive at any time,
programs that read from or write to renlovable media need ways to prevent
inadvertently reading froln or writing to the wrong volume. Some drives have

22 MS-DOS Programmer's Reference

change-line capability that helps MS-DOS automatically detect media changes
and prompt the user to insert the proper volume so that read and write opera­
tions can be completed. A program can determine whether a drive has change­
line capability by examining the dpDevAttr field in the DEVICEPARAMS struc­
ture returned by Get Device Parameters (Interrupt 21h Function 440Dh Minor
Code 6Oh). This field also specifies whether the drive supports removable media.
(For a full description of the DEVICEPARAMS structure, see Section 3.7,
"Structures.") If a drive does not have change-line capability, MS-DOS checks
for the proper volume before read and write operations. To ensure that data is
not lost when a disk is removed, a program may also need to direct MS-DOS to
write all data immediately to the volume (that is, commit the file).

3.4 Directories
MS-DOS arranges and stores file-system contents in directories. Every file sys­
tem has at least one directory, called the root directory, and may have additional
directories either in the root directory or ordered hierarchically below it. The
contents of each directory are described in individual directory entries. MS-DOS
str~ctly controls the format and content of directories.

The root directory is always the topmost directory. MS-DOS creates the root
directory when it formats the storage medium. The root directory can hold infor­
mation for only a fixed number of files or other directories, and the number can­
not be changed without reformatting the Inedium. A program can identify this
limit by examining the dpRootDirEnts field in the DEVICEPARAMS structure
returned by Get Device Parameters (Interrupt 21h Function 440Dh Minor Code
6Oh). This field specifies the maximum number of root-directory entries for the
medium.

MS-DOS keeps track of a current directory for each logical drive. The current
directory is the default directory MS-DOS uses whenever a program specifies a
file without giving a full path. A program can identify the current directory for a
drive by using Get Current Directory (Interrupt 21h Function 47h). It can set the
current directory for a drive by using Change Current Directory (Interrupt 21h
Function 3Bh). Note that changing the current directory for a drive does not
change the current drive.

A program can generate a complete list of the directories on a· given drive (the
directory tree) by using Find First File (Interrupt 21h Function 4Eh) and Find
Next File (Interrupt 21h Function 4Fh). If the program specifies the attribute
ATTRJ)IRECTORY when it calls these functions, they return information
about directories as well as files. To generate a complete tree, the program must
start the search in the root directory and recursively search each directory it
finds.

3.4.1 Directory Management
A program can use Create Directory (Interrupt 21h Function 39h) to add new
directories within the current directory, or within other directories if the full
path required to specify the new directory does not exceed 64 characters. Unlike

Chapter 3: File System 23

the root directory, the new directory is limited only by the amount of space
available on the medium, not by a fixed number of entries. MS-DOS initially
allocates only a single cluster for the directory, allocating additional clusters only
when they are needed.

Every directory except the root directory has two entries when it is created. The
first entry specifies the directory itself, and the second entry specifies its parent
directory-the directory that contains it. These entries use the special directory
names. (an ASCII period) and .. (two ASCII periods), respectively. Programs
can use these "names" to form partial paths.

Each directory has attributes that specify the type of access programs have to it.
Programs set these attributes by using Set File Attributes (Interrupt 21h Func­
tion 4301h). The most common attributes, hidden and system, are often set to
prevent users from displaying the directory with the dir command. A directory
can also be made read-only, although this attribute does not prevent the deletion
of the directory or its files. A program can retrieve a directory's attributes by
using Get File Attributes (Interrupt 21h Function 4300h)

A program can rename a directory by using Rename File (Interrupt 21h Func­
tion 56h), but the new name must not cause the full path for the directory to
exceed 64 characters. The program must check the path length, since MS-DOS
does not.

A program deletes a directory by using Remove Directory (Interrupt 21h Func­
tion 3Ah). A directory cannot be deleted unless it is empty-that is, contains no
files or other directories.

3.5 Files
MS-DOS gives programs access to files in the file system. Programs can read
from and write to existing files, as well as create new ones.

Files can contain any amount of data, up to the limits of the storage medium.
(Since MS-DOS stores the size of a file as a 31-bit number, the theoretical max­
imum for file size is 2 gigabytes.) MS-DOS stores a file's data in the order the
program writes the data, so the meaning and format of the data are entirely up
to the program. .

Apart from its contents, every file has a name (possibly with an extension),
access attributes, and an associated date and time. This information is stored
in the file's directory entry, not in the file itself.

3.5.1 File Management
A program can create a new file by using Create File with Handle (Interrupt 21h
Function 3Ch). This function creates a file, gives it the specified name, places it
in the specified directory on the specified drive (or in the current directory on
the current drive, if a path is not given), and returns a handle for the file. The
new file is initially empty (that is, it contains zero bytes), but it is opened for
both reading and writing, so the program can write to it by using Write File or
Device (Interrupt 21h Function 40h) and then read from it by using Read File or
Device (Interrupt 21h Function 3Fh). .

24 MS-DOS Programmer's Reference

When a program creates a file, it sets file attributes that specify the type of
access programs have to the file. These attributes can be any of the following:

Attribute

AlTILREADONLY (Olh)

A1TRJIIDDEN (02h)

ATTR-SYSTEM (04h)

AlTILARCHIVE (20h)

Description

Specifies a read-only file. Programs can­
not write to the file.

Specifies a hidden file. System commands
such as dir do not list the file. Functions
such as Find First File and Find Next
File (Interrupt 2lh Functions 4Eh and
4Fh) do not return information about the
file unless the search specifies this attri­
bute.

Specifies a system file. This attribute is
usually reserved for system files such as
IO.SYS and MSDOS.SYS. This has the
same effect as ATTRJlIDDEN and,
when applied to program files, prevents
COMMAND.COM from finding and run­
ning the files.

Specifies a file that is new or has been
modified. The system automatically sets
this attribute when the file is created or
written to. The attribute does not affect
access to the file but gives programs a
quick way to check for potential changes
to the file contents.

A file is a normal file (ATflLNORMAL) if it has no other attributes. Programs
have full access to normal files.

Note that, even if the program specifies the read-only attribute, a new file is
always opened for both reading and writing, so that the program can write to the
initially empty file. The read-only attribute does not take effect until after the file
is closed for the first time.

A program can determine a file's attributes by using Get File Attributes (Inter­
rupt 21h Function 4300h), and it can change them by using Set File Attributes
(Interrupt 21h Function 430lh).

A program can retrieve a file's date and time by using Get File Date and Time
(Interrupt 21h Function 5700h). MS-DOS initially sets the date and time when a
file is created and updates them when a program writes to the file. A program
can change the date and time for a file by using Set File Date and Time (Inter­
rupt 21h Function 5701h).

A program can retrieve the name, attributes, time, date, and size of one or more
files by using Find First File (Interrupt 21h Function 4Eh) and Find Next File
(Interrupt 21h Function 4Fh). These functions search for files having names and

Chapter 3: File System 25

attributes that match values supplied by the program. If the functions find files
that match, they return information for the files in a FILEINFO structure. (For a
full description of the FILEINFO structure, see Section 3.9, "Structures.") If the
name supplied by the program contains wildcards, the functions return informa­
tion about all files that match the patterns. Wildcard searches are iterative-that
is, the program calls Find First File and then repeatedly calls Find Next File
until all files matching the name and attributes have been found. Both Find First
File and Find Next File copy the file information to the buffer pointed to by the
disk transfer address (DTA). By default, MS-DOS sets the DTA to point to the
last 128 bytes of the program segment prefix (PSP). (For information about the
PSP, see Chapter 5, "Program Management.") If this default buffer is not ade­
quate, the program can change the DTA by using Set Disk Transfer Address
(Interrupt 2lh Function lAh). A program can retrieve the current DTA by using
Get Disk Transfer Address (Interrupt 21h Function 2Fh).

A program can rename a file by using Rename File (Interrupt 2lh Function 56h).
This function replaces the name and extension in the directory entry with a new
name and extension. All other information remains unchanged.

A program can also use Rename File to move files. If the program supplies a
new path for the file, the function moves the file's directory entry from the old
directory to the new one. However, the function cannot move a file from one
drive to another.

A program can delete a file by using Delete File (Interrupt 2lh Function 41h).
This function frees any space on the drive that has been allocated for the file
and marks the file's directory entry as deleted.

3.5.2 File Input and Output
Most MS-DOS programs carry out file operations through file-handle functions
that use a unique 16-bit value, called a handle, to identify a file. The program
receives a file handle when it opens or creates a file and uses the handle with
subsequent functions to read from, write to, or carry out other operations on the
file.

Programs can open existing files by using Open File with Handle (Interrupt 21h
Function 3Dh). The program supplies a filename (or full path) and the type of
file access required: read-only, write-only, or read-and-write. The function opens
the file and returns a handle for reading from, writing to, and closing the file.

A program can read from a file opened for read access by using Read File or
Device (Interrupt 21h Function 3Fh). Similarly, a program can write to a file
opened for write access by using Write File or Device (Interrupt 2lh Function
40h). When a program reads from or writes to a file, it specifies the number of
bytes of data to be read or written and supplies the address of the buffer that
contains or receives the data. A program can continue to read from a file until it
reaches the end of the file; it can continue to write to a file until the file system
has no more space available.

Every open file has a file pointer that specifies the next byte to read from the file
or the next position to receive a byte written to the file. When a file is opened
or created, the file pointer is set to zero, the beginning of the file. As a program

26 MS-DOS Programmer's Reference

reads from or writes to the file, the system moves the file pointer by the number
of bytes read or written. When a program has read all bytes in a file, the file
pointer moves to the end of the file and no further reading is possible. When
a program writes to a file, the system writes over existing data unless the file
pointer is at the end of the file, in which case the system appends the new data
to the file and moves the file pointer to the new end of the file.

A program can move the file pointer by using Move File Pointer (Interrupt 21h
Function 42h). The program must specify the amount to move and where to
move from (beginning of file, end of file, or current position). The function
moves the pointer and returns its new position relative to the beginning of the
file.

When the number of bytes between the file pointer and the end of the file are
fewer than the program requests, MS-DOS reads only to the end of the file. For
example, if a program requests 512 bytes but only 250 bytes remain between the
file pointer and the end of the file, only those 250 bytes are read. Read File or
Device returns the number of bytes read, so that the program can determine
how many bytes in its buffer are valid. Similarly, Write File or Device returns
the number of bytes written, which may be fewer than requested if writing that
number of bytes would exceed the maximum file size or if all available space on
the storage medium has been used before the write operation is complete.

A program can truncate an existing file to zero bytes by using Create File with
Handle ~nd specifying the name of the existing file. (If the existing file is already
open, however, Create File ·with Handle simply creates an additional handle for
it.) To avoid unintentionally destroying existing files when creating new ones,
a program should use Create New File (Interrupt 21h Function 5Bh), which
returns an error value if the new filename matches an existing filename.

Programs often use temporary files for short-term storage and delete the files
when no longer needed. A program can create temporary files with unique
names by specifying a path for Create Temporary File (Interrupt 21h Function
5Ah), which then creates a file having a name that does not conflict with the
name of any other file in that path.

Programs should close files when they are no longer needed. Leaving files open
can cause loss or corruption of data if a system fails. A program can close a file
by using Close File with Handle (Interrupt 21h Function 3Eh). If the program
changed the file, MS-DOS updates the file's time and date and sets the archive
attribute. MS-DOS closes any open files when a program terminates.

3.5.3 Internal File Buffers
By default, MS-DOS collects data in internal file buffers before writing it to
a drive. This improves system perforlnance by reducing the number of times
MS-DOS accesses the drive hardware. MS-DOS usually holds the data from a
write operation until the buffer is filled or the program closes the file. While held
in a buffer, data is inaccessible to the program.

If necessary, a program can transfer a file's written data to a drive immediately
by using Commit File (Interrupt 21h Function 68h). If a program must ensure
that data written to a file is always committed to the drive immediately, it can

Chapter 3: File System 27

open or create the file by using Extended Open/Create (Interrupt 21h Function
6Ch) and specifying the OPEN_FLAGS_COMMIT option. This option causes
MS-DOS to commit the file after each write operation, without individual calls
to Commit File.

A program can commit the data in all internal file buffers in one step by using
Reset Drive (Interrupt 21h Function ODh). This function is typically used by
CTRL+C Handler (Interrupt 23h) to ensure that the contents of all open files are
updated before the program terminates. Note, however, that this function does
not update the directory entries for the files, so changes to time, date, and file
size may not be recorded.

3.5.4 File Handles
By default, MS-DOS imposes a system-wide limit of 8 on the number of file
handles available for all programs. This means that current programs (whether
running or suspended) can have no more than eight open files among them.
MS-DOS automatically opens three devices (CON, PRN, AUX) as standard
devices. Since the standard devices always remain open, the number of avail­
able open files is always 3 less than the system limit. If more files are needed,
the user can set a ne\v limit (up to 255) by using the files command in the
CONFIG.SYS file.

MS-DOS also imposes a limit of 20 on the number of file handles available for
individual programs. Since most programs inherit copies of the standard-device
handles, the number of available handles is always 5 less than the program limit.
(Although MS-DOS opens only three standard devices, the program inherits 5
handles to access them.) If more handles are needed, a program can increase its
own limit by using Set Maximum Handle Count (Interrupt 21h Function 67h).
Increasing the number of available handles does not increase the maximum
number of open files. Alternatively, the program can close one or more of the
standard devices and free the handles for other files.

A program can open the same file more than once, receiving a unique handle
each time. The program can use any of the handles to access the file. For file
management, some of the information maintained by the system for each handle
is shared by all handles. For example, no matter how many handles exist for a
given file, the file never has more than one file pointer. This means a program
cannot access different parts of the file at the same time, because moving the file
pointer by using one handle also Inoves it for all other handles.

3.6 Network Drives
A program can access the files and directories on a network drive by connecting
to the drive using Make Network Connection (Interrupt 21h Function 5F03h).
This function associates a drive name with the network drive, permitting the
program to use the network drive as a logical drive. A program can connect to
a network drive only if the network is running. To determine whether the net­
work is running, a program can use Get Machine Name (Interrupt 21h Function
5EOOh). This function returns an error value if the network is not running.

To connect to a network drive, a program must supply the drive's network
name, which consists of a computer name and a share name. The computer

28 MS-DOS Programmer's Reference

name uniquely identifies the network server owning the drive, and the share
name identifies the drive. A program creates a network name by combining the
computer and share names as a zero-terminated ASCII string with the form
shown in the following example:

NetworkDrive DB '\\SERVER\FILES',O,O

If the network drive is password-protected, the program must supply the pass­
word, as shown in the following example:

NetworkDrive DB '\\SERVER\FILES',O, 'PaSsWoRd',O

The drive name the program provides must be the name of one of the available
drives identified by using Set Default Drive (Interrupt 21h Function OEh). If
the specified drive is valid (that is, if it has a corresponding physical drive), the
physical drive is temporarily inaccessible while the drive name is associated with
the network drive.

After a network connection is made, a program can use functions such as Get
Disk Free Space (Interrupt 21h Function 36h) to retrieve information about the
network drive, and it can open or create files and directories on the network
drive, as long as the network grants read-and-write permission.

Once a program connects to a network drive, the connection is a global resource
until the drive is explicitly disconnected. A program can check for existing net­
work connections by using Is Drive Remote (Interrupt 21h Function 4409h). This
function sets bit 12 in the DX register if a logical drive is associated with a net­
work drive. A program can retrieve the drive's network name by using Get
Assign-List Entry (Interrupt 21h Function 5F02h).

A program can disconnect from a network drive by using Delete Network Con­
nection (Interrupt 21h Function 5F04h) to remove any association between the
drive name and the network drive. In general, a program should close and
disconnect from any network device it no longer needs.

Sonte network software may provide other means to connect and disconnect net­
work drives. For more information about network connections, see the applica­
ble network documentation.

3.7 File Sharing
Any program can share its open files with any other program. By default, the
system permits programs to open and modify a file even if another program has
the file open already. Because unrestricted file sharing can lead to such problems
as one program writing over the data another program is trying to read, MS­
DOS provides file-sharing modes that restrict access to open files, as well as a
file-locking function that enables one program to temporarily deny other pro­
grams access to one or more regions (consecutive bytes) of a file.

File-sharing mode determines whether a file can be opened by more than one .
program at a time. When a program opens a file by using Open File with Handle
(Interrupt 21h Function 3Dh), it can set the file-sharing mode to one of the fol­
lowing:

Chapter 3: File System 29

Mode Description

OPEN_SHARE_COMPATIBILITY (OOOh) Allows other pro­
grams full access to
the file.

OPEN_SHAREJ)ENYREADWRITE (OOlOh) Prevents other pro­
grams from opening
the file.

OEPN_SHAREJ)ENYWRITE (OO20h) Permits other pro­
grams to open the file
for reading but not
for writing.

OPEN_SHAREJ)ENYREAD (OO30h) Permits other pro­
grams to open the file
for writing but not for
reading.

OPEN_SHAREJ)ENYNONE (OO40h) Permits other pro­
grams to open the file
for reading and writ­
ing, but not for com­
patibility access.

In general, programs that access files across a network or that leave files open
while running child programs should deny other programs access to those files,
to prevent unexpected changes to them. Some programs, however, are designed
to share their open files and must not deny access to them. These programs can
prevent unexpected changes by using Lock/Unlock File (Interrupt 21h Function
5Ch) to lock one or more regions of the file.

When a region is locked, other programs can open the file but cannot access the
locked region. Attempting to do so returns a lock-violation error. The program
that locks a region can also unlock it by using Lock/Unlock File.

In general, a program that locks regions should unlock them as soon as possible,
to keep other programs from waiting unnecessarily. To enhance the performance
of programs that lock regions, MS-DOS automatically retries access to a locked
region several times before returning the lock-violation error. This reduces the
number of times a program must retry access on its own. A program can set the
number of retries MS-DOS is to attempt by using Set Sharing Retry Count
(Interrupt 21h Function 440Bh).

File-sharing modes and file locking are available on a local computer only if the
Share program is loaded. A program can determine whether Share is loaded by
using Get SHARE.EXE Installed State (Interrupt 2Fh Function lOh). If Share is
loaded, this function clears the carry flag and sets the AL register to OFFh.

3.8 Low-Level Input and Output
Low-level input and output gives a prograln access to the individual sectors on
a logical drive. (A sector is a drive's smallest storage unit.) This low-level input
and output completely bypasses MS-DOS file-system control and enables a pro­
gram to directly manipulate the data structures that support the file system. Pro­
grams that read and write sectors do so at their own risk.

30 MS-DOS Programmer's Reference

3.8.1 Device Parameters
Programs that read and write sectors need device-parameter information to avoid
corrupting the medium. A program can retrieve a logical drive's device parame­
ters by using Get Device Parameters (Interrupt 21h Function 440Dh Minor Code
6Oh). These parameters, returned in the form of a DEVICEPARAMS structure,
specify such information as the total number of sectors on the medium and the
sizes of the file-system data structures. The DEVICEPARAMS structure has the
following form:

DEVICEPARAMS STRUC
dpSpecFunc db ?
dpDevType db ?
dpDevAttr dw ?
dpCylinders dw ?
dpMediaType db ?

dpBytesPerSec dw ?
dpSecPerClust db ?
dpResSectors dw ?
dpFATs db ?
dpRootDirEnts dw ?
dpSectors dw ?
dpMedia db ?
dpFATsecs dw ?
dpSecPerTrack dw ?
dpHeads dw ?
dpHiddenSecs dd ?
dpHugeSectors dd ?

DEVICEPARAMS ENDS

;special functions
;device type
;device attributes
;number of cylinders
;media type
;Start of BIOS parameter block (BPB)
;bytes per sector
;sectors per cluster
;number of reserved sectors
;number of file allocation tables
;number of root-directory entries
;total number of sectors
;media descriptor
;number of sectors per FAT
;sectors per track
;number of heads
;number of hidden sectors
;number of sectors if dpSectors = 0
;End of BIOS parameter block (BPB)

For a full description of the DEVICEPARAMS structure, see Section 3.9,
"Structures."

A program can set the device parameters of a logical drive by using Set Device
Parameters (Interrupt 21h Function 440Dh Minor Code 40h). If the physical
drive permits a variety of media formats, this function enables the program to
select the specific format it requires. For example, a program can set the param­
eters to format a 360-kilobyte floppy disk in a 1.2-megabyte drive. The following
statements define device parameters for several common formats:

SS160
SS180
DD320
DD360
SH320
DH360
DH640
DH720
DH144
DH120

DEVICEPARAMS <0,1,2,40,0,512,1,1,2, 64, 320,Ofeh,1, 8,1,0,0>
DEVICEPARAMS <0,1,2,40,0,512,1,1,2, 64, 360,Ofch,2, 9,1,0,0>
DEVICEPARAMS <0,1,2,40,0,512,2,1,2,112, 640,Offh,1, 8,2,0,0>
DEVICEPARAMS <0,1,2,40,0,512,2,1,2,112, 720,Ofdh,1, 9,2,0,0>
DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112, 640,Ofah,1, 8,1,0,0>
DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112, 720,Ofch,2, 9,1,0,0>
DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112,1280,Ofbh,2, 8,2,0,0>
DEVICEPARAMS <0,1,2,80,0,512,2,1,2,112,1440,Of9h,3, 9,2,0,0>
DEVICEPARAMS <0,1,2,80,0,512,1,1,2,224,2880,OfOh,9,18,2,0,0>
DEVICEPARAMS <0,1,2,80,0,512,1,1,2,224,2400,OfOh,7,15,2,O,O>

3.8.2 Absolute Disk Read and Write Operations
A program can read one or more sectors from a drive by using Absolute Disk
Read (Interrupt 25h). The program must specify a drive number, a pointer to a
buffer, a starting-sector number, and the number of sectors to be read. The
function copies the specified sectors to a buffer.

A program can write one or more sectors to a drive by using Absolute Disk
Write (Interrupt 26h). Programs that write directly to sectors must take care not

Chapter 3: File System 31

to corrupt the data MS-DOS uses to maintain the file system. For information
about this data., see Section 3.8.4, "Logical-Drive Contents."

Absolute Disk Read and Absolute Disk Write read and write only nonhidden
sectors. (Nonhidden sectors are numbered consecutively starting from zero.)
This means that neither function can be used on sectors containing partition
tables. For information about accessing all sectors of a logical drive, see Section
3.8.3, "Input-and-Output-Co~trolFunctions."

3.8.3 Input-and-Output-Control Functions
MS-DOS provides input-and-output-control (IOCTL) functions to read from,
write to, and format sectors on drives. The IOCTL functions, like the Absolute
Disk Read and Write functions, can access one or more sectors at a time.
Unlike the Absolute Disk Read and Write functions, however, the IOCTL func­
tions can read and write hidden sectors, such as those containing partition tables
and other file-system data structures.

A program can read and write sectors on a drive by using Read Track on Logi­
cal Drive (Interrupt 21h Function 440Dh Minor Code 61h) and Write Track on
Logical Drive (Interrupt 21h Function 440Dh Minor Code 41h). These functions
require the program to specify the cylinder number, head number, and starting­
sector number of the sectors to read or write.

The numbers of cylinders, heads, and sectors are properties of the medium and
are specified in its device parameters. For example, the dpHeads field in a logi­
cal drive's DEVICEPARAMS structure returned by the Get Device Parameters
function specifies the number of heads for the drive. For a full description of the
DEVICEPARAMS structure, see Section 3.9, "Structures."

3.8.4 Logical-Drive Contents
A logical drive has the following general format:

Data area Description

Hidden sectors Although any logical drive can have hidden sectors,
these sectors are usually associated with disks that can
be divided into partitions. If a disk has partitions, its
first hidden sector contains a table of PARTENTRY
structures, each specifying the size and location of
the physical sectors in a single partition. The table is
placed at the end of the sector. For a full description
of the PARTENTRY structure, see Section 3.9,
"Structures."

Reserved A logical drive can have any number of reserved sec-
sectors tors but usually has only one, called the startup sec­

tor. The startup sector contains the MS-DOS startup
program and information that defines the size and
format of the disk. The sector ends with the startup­
sector signature, OAA55h, stored in the last 2 bytes.

32 MS-DOS Programmer's Reference

Data area

File allocation
table

Root directory

File and direc­
tory space

Description

The file allocation table (FAT) is an array used by
MS-DOS to keep track of which clusters on a drive
have been allocated for each file or directory. As a
program creates a new file or adds to an existing one,
the system allocates sectors for that file, writes the
data to the given sectors, and keeps track of the allo­
cated sectors by recording them in the FAT. To con­
serve space and speed up record-keeping, each record
in the FAT corresponds to two or more consecutive
sectors (called a cluster). The number of sectors in a
cluster depends on the type and capacity of the drive
but is always a power of 2.

Every logical drive has at least one FAT, and most .
drives have two, one serving as a backup should sec­
tors containing the other fail. The FAT immediately
follows the startup sector and any other reserved sec­
tors.

Every volume has a root directory with entries that
specify the volume's name, files, and other direc­
tories.

All remaining space in the volume is reserved for files
and additional directories.

Depending on the number of clusters on the drive, the FAT consists of an array
of either 12-bit or 16-bit entries. Drives with more than 4086 clusters have a 16­
bit FAT; those with 4086 or fewer clusters have a 12-bit FAT.

The first two entries in a FAT (3 bytes for a 12-bit FAT and 4 bytes for a 16-bit
FAT) are reserved. In most versions of MS-DOS, the first byte contains the
media descriptor (the same descriptor provided in the DEVICEPARAMS struc­
ture) and the additional reserved bytes are set to OFFh.

Each FAT entry represents a corresponding cluster on the drive. If the cluster is
part of a file or directory, the entry contains either a marker specifying the clus­
ter as the last in that file or directory, or an index pointing to the next cluster in
the file or directory. If a cluster is not part of a file or directory, the entry con­
tains a value indicating the cluster's status. The following table shows possible
FAT entry values. The digit in parentheses represents the additional 4 bits of a
16-bit entry.

Value

(O)OOOh

(0)002h-(F)FEFh

Meaning

Available cluster.

Index of entry for the next cluster in the file or
directory. Note that (O)OOlh does not appear in a
FAT, since that value corresponds to the FAT's
second reserved entry. Index numbering is based
on the beginning of the FAT.

Value

(F)FFOh-(F)FF6h

(F)FF7h

(F)FF8h-(F)FFFh

Chapter 3: File System 33

Meaning

Reserved; do not use.

Bad sector in cluster; do not use cluster.

Last cluster of file or directory.

Each file and directory consists of one or more clusters, each cluster represented
by a single entry in the FAT. The deStartCluster field in the DlRENTRY struc­
ture corresponding to the file or directory specifies the index of the first FAT
entry for the file or directory. (For a full description of the DIRENTRY struc­
ture, see Section 3.9, "Structures.") This entry contains O(F)FFFh if there are no
further FAT entries for that file or directory, or it contains the index of the next
FAT entry for the file or directory. For example, the following segment of a 16­
bit FAT shows the FAT entries for a file consisting of four clusters:

dw 0003h
dw OOOSh
dw OFFF7h
dw 0006h
dw OFFFFh
dw 0
dw 0
dw 0

3.9 Structures

Cluster 2 points to cluster 3
Cluster 3 points to cluster 5
Cluster 4 contains a bad sector
Cluster 5 points to cluster 6
Cluster 6 is the last cluster for the file
Clusters 7,8 and 9 are available

This section describes the structures MS-DOS uses in the system functions that
support file systelns.

34 BOOTSECTOR

• BOOTSECTOR

bsDriveNumber db?
bsReserved1 db ?
bsBootSignature db ?
bsVolumeID dd 7
bsVolumeLabel db 11 dup(7)
bsFileSysType db B dup(7)

BOOTSECTOR ENDS

BOOTSECTOR STRUC
bsJump
bsOemName

bsBytesPerSec
bsSecPerClust
bsResSectors
bsFATs
bsRootDirEnts
bsSectors
bsMedia
bsFATsecs
bsSecPerTrack
bsHeads
bsHiddenSecs
bsHugeSectors

db 3 dup (7)
db '7??777??'

dw 7
db ?
dw ?
db 7
dw 7
dw 7
db ?
dw 7
dw ?
dw 7
dd 7
dd 7

E9 XX XX or EB XX 90
OEM name and version
Start of BIOS parameter block
bytes per sector
sectors per cluster
number of reserved sectors
number of file allocation tables
number of root-directory entries
total number of ·sectors
media descriptor
number of sectors per FAT
sectors per track
number of heads
number of hidden sectors
number of sectors if bsSectors 0
End of BIOS parameter block
drive number (BOh)
reserved
extended boot signature (29h)
volume ID number
volume label
file-system type

Fields

The BOOTSECTOR structure contains information about the disk (or other
storage medium) for a particular drive. The structure appears at the beginning of
the first sector (the boot, or startup, sector) of the disk.

bsJump Contains a jump instruction to the bootstrap routine, which loads the
operating system from the drive.

bsOemName Specifies the name of the original equipment manufacturer
(OEM) and the manufacturer's version of MS-DOS.

bsBytesPerSec Specifies the number of bytes per sector.

bsSecPerClust Specifies the number of sectors in a cluster. The sectors must
be consecutive, and the number must be a power of 2.

bsResSectors Specifies the number of reserved sectors on the drive, begin­
ning with sector o. Typically, this value is 1 (for the startup sector), unless the
disk-drive manufacturer's software reserves additional sectors.

bsFATs Specifies the number of file allocation tables (FATs) following the
reserved sectors. Most versions of MS-DOS maintain one or more copies of the
primary FAT and use the extra copies to recover data on the disk if the first
FAT is corrupted.

bsRootDirEnts Specifies the maximum number of entries in the root direc­
tory.

bsSectors Specifies the number of sectors on the drive. If the size of the
drive is greater than 32 MB, this field is zero and the number of sectors is
specified by the bsHugeSectors field.

bsMedia Specifies the media descriptor, a value that identifies the type of
media in a drive. Some device drivers use the media descriptor to determine
quickly whether the removable medium in a drive has changed. MS-DOS passes
the media descriptor to the device driver so that programs can check the media
type. Also, the first byte in the FAT is often (but not always) identical to the
media descriptor.

BOOTSECTOR 35

Following is a list of the most commonly used media descriptors and their
corresponding media:

Value Type of medium

OFOh 3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

OF8h Hard disk, any capacity.

OF9h 3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

OFAh 5.25-inch, 1 side, 8 sectors/track, (320K).

OFBh 3.5-inch, 2 sides, 8 sectors/track (640K).

OFCh S.2S-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

OFDh S.2S-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

OFEh S.25-inch, 1 side, 8 sectors/track, 40 tracks/side (l60K). This value is
also used for 8-inch disks. .

OFFh S.2S-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

bsFATsecs Specifies the number of sectors occupied by each FAT.

bsSecPerTrack Specifies the number of sectors on a single track.

bsHeads Specifies the number of read/write heads on the drive.

bsHiddenSecs Specifies the number of hidden sectors on the drive.

bsHugeSectors Specifies the number of sectors if the bsSectors field is zero.
This value supports drives larger than 32 MB.

bsDriveNumber Specifies whether the drive is the first hard disk drive, in
which case the value is BOh; otherwise, the value is OOh. This field is used inter­
nally by MS-DOS.

bsReservedl Reserved; do not use.

bsBootSignature Specifies the extended boot-signature record. This value
is 29h.

bsVolumeID Specifies the volume serial number.

bsVolumeLabel Specifies the volume label.

bsFileSysType Specifies the type of file system, given as an 8-byte ASCII
string. This field can be one of the following values:

Name Meaning

FAT12

FAT16

12-bit FAT

16.bit FAT

Comments

If the name has fewer than eight characters, space characters (ASCII 20h) fill
the remaining bytes in the field.

The BOOTSECTOR structure shares the first sector with the bootstrap routine
and the boot-sector signature. The boot-sector signature, stored in the last two
bytes of the sector, must be OAA55h.

36 DEVICEPARAMS

• DEVICEPARAMS

DEVICEPARAMS ENDS

dpBytesPerSec dw
dpSecPerC1ust db
dpResSectors dw
dpFATs db
dpRootDirEnts dw
dpSectors dw
dpMedia db
dpFATsecs dw
dpSecPerTrack dw
dpHeads dw
dpHiddenSecs dd
dpHugeSectors dd

DEVICEPARAMS
dpSpecFunc
dpDevType
dpDevAttr
dpCy1inders
dpMediaType

STRUC
db
db
dw
dw
db

?
?
?
?
?

?
?
?
?
?
?
?
?
?
?
?
?

special functions
device type
device attributes
number of cylinders
media type
Start of BIOS parameter block (BPB)
bytes per sector
sectors per cluster
number of reserved sectors
number of file allocation tables
number of root-directory entries
tota~ number of sectors
media descriptor
number of sectors per FAT
sectors per track
number of heads
number of hidden sectors
number of sectors if dpSectors = 0
End of BIOS parameter block (BPB)

Fields

The DEVICEPARAMS structure contains device parameters for the medium in
a given logical drive.

dpSpecFunc Specifies the special function or functions to be carried out by
Set Device Parameters (Interrupt 21h Function 440Dh Minor Code 40h). This
field can contain some combination of the following values:

Bit Meaning

o 0 = Use the fields dpBytesPerSec through dpHugeSectors to set the
default BIOS parameter block (BPB) for this device.

1 = Use the device BPB for all subsequent Build BPB requests.

1 0 = Read all fields.

1 = Ignore all fields, but read the TRACKLAYOUT structure appended
to the end of the structure.

2 0 = Do not use.

1 I:: The sectors in the track are all the same size, and the sector
numbers are in the range 1 through the total number of sectors on the
track. This bit should always be set.

All other bits are reserved and must be zero.

dpDevType Specifies the device type. This field can be one of the following
values:

Value Meaning

OOh 320/360K

Olh 1.2 MB

02h 720K

03h 8-inch, single-density

04h 8-inch, double-density

DEVICEPARAMS 37

Value Meaning

OSh Hard disk

06h Tape drive

07h 1.44 MB

08h Read/write optical

09h 2.88 MB

dpDevAttr Specifies device attributes. This field can contain some combina­
tion of the following values:

Bit Meaning

o 0 = The medium is removable.

1 = The medium is not removable.

1 0 ~ Disk change-line is not supported (no door-lock support).

1 = Disk change-line is supported (door-lock support).

All other bits are reserved and must be zero.

dpCylinders Specifies the maximum number of cylinders that the physical
device can support. This information is set by the device.

dpMediaType Specifies which medium the drive currently accepts (for drives
that accept more than one media type). For a 1.2-MB drive, if bit 0 is clear, it
indicates that the drive accepts quad-density, 1.2-MB disks (the default media
type); if bit 0 is set, the drive accepts double-density, 320/360K disks.

dpBytesPerSec Specifies the number of bytes per sector.

dpSecPerClust Specifies the number of sectors in a cluster. The sectors must
be consecutive, and the number must be a power of 2.

dpResSectors Specifies the number of reserved sectors on the drive, begin­
ning with sector o. Typically, this value is 1 (for the startup sector), unless the
disk-drive manufacturer's software reserves additional sectors.

dpFATs Specifies the number of file allocation tables (FATs) following the
reserved sectors. Most versions of MS-DOS maintain one or more copies of the
primary FAT and use the extra copies to recover data on the disk if the first
FAT is corrupted.

dpRootDirEnts Specifies the maximum number of entries in the root direc­
tory.

dpSectors Specifies the number of sectors on the drive. If the size of the
drive is greater than 32 MB, this field is set to zero and the number of sectors
is specified by the dpHugeSectors field.

dpMedia Specifies the media descriptor, a value that identifies the type of
media in a drive. Some device drivers use the media descriptor to determine
quickly whether the removable medium in a drive has changed. MS-DOS'passes
the media descriptor to the device driver so that programs can check the media
type. Also, the first byte in the FAT is often (but not always) identical to the
media descriptor.

38 DEVICEPARAMS

Following is a list of the most commonly used media descriptors and their
corresponding media:

Value Type of medium

OFOh

OFEh

OF8h

OF9h

OFAh

OFBh

OFCh

OFDh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.25-inch, 1 side, 8 sectors/track, (320K).

3.5-inch, 2 sides, 8 sectors/track (640K).

5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (3OOK). This value is
also used for 8-inch disks.

5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (lOOK). This value is
also used for 8.inch disks.

OFFh 5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

dpFATsecs Specifies the number of sectors occupied by each FAT.

dpSecPerTrack Specifies the number of sectors on a single track.

dpHeads Specifies the number of read/write heads on the drive.

dpHiddenSecs Specifies the number of hidden sectors on the drive.

dpHugeSectors Specifies the number of sectors if the dpSectors field is zero.
This value supports drives larger than 32 MB.

See Also Interrupt 21h Function 440Dh Minor Code 60h Get Device ,Parameters
Interrupt 21h Function 440Dh Minor Code 40h Set Device Parameters

• DIRENTRY

DIRENTRY STRUC
deName
deExtension
deAttributes
deReserved
deTime
deDate
deStartCluster
deFileSize

DIRENTRY ENDS

db '????????'
db '???'
db ?
db 10 dup (?)
dw ?
dw ?
dw ?
dd ?

;name
;extension
; attributes
; reserved
;time
;date
;starting cluster
;file size

The DIRENTRY structure contains information about a file or directory name,
attributes, date, time, and starting cluster.

Fields

DIRENTRY 39

deName Specifies the name of the file or directory. If the file or directory
was created by using a name with fewer than eight characters, space characters
(ASCII 20h) fill the remaining bytes in the field. The first byte in the field can be
a character or one of the following values:

Value Meaning

OOh The directory entry has never been used. MS-DOS uses this value to
limit the length of directory searches.

OSh The first character in the name has the value OE5h.

2Eh The directory entry is an alias for this directory or the parent direc­
tory. If the remaining bytes are space characters (ASCII 20h), the
deStartCluster field contains the starting cluster for this directory. If
the second byte is also 2Eh (and the remaining bytes are space char­
acters), deStartCluster contains the starting cluster number of the
parent directory, or zero if the parent is the root directory.

OESh The file or directory has been deleted.

deExtension Specifies the file or directory extension. If the extension has
fewer than three characters, space characters (ASCII 20h) fill the remaining
bytes in this field.

deAttributes Specifies the attributes of the file or directory. This field can
contain some combination of the following values:

Value Meaning

ATTR_READONLY (Olh)

ATTR_HIDDEN (02h)

ATTR_SYSTEM (04h)

ATTR_VOLUME (08h)

ATTR_DIRECTORY (IOh)

AITR_ARCHIVE (20h)

Specifies a read-only file.

Specifies a hidden file or directory.

Specifies a system file or directory.

Specifies a volume label. The directory entry
contains no other usable information (except
for date and time of creation) and can occur
only in the root directory.

Specifies a directory.

Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)

If no attributes are set, the file is a normal file (ATTR-NORMAL).

deReserved Reserved; do not use.

40 DIRENTRY

See Also

• DISKIO

deTime Specifies the time the file or directory was created or last updated.
The field has the following form:

Bits Meaning

0-4 Specifies two-second intervals. Can be a value in the range 0 through
29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.

11-15 Specifies hours. Can be a value in the range 0 through 23.

deDate Specifies the date the file or directory was created or last updated.
The field has the following form:

Bits Meaning

0-4 Specifies the day. Can be a value in the range 1 through 31.

5-8 Specifies the month. Can be a value in the range 1 through 12.

9-15 Specifies the year, relative to 1980.

deStartCluster Specifies the starting cluster of the file or directory.

deFileSize Specifies the size of the file, in bytes.

Interrupt 2lh Function llh Find First File with FCB
Interrupt 2lh Function l2h Find Next File with FCB

DISKIO STRUC
diStartSector
diSectors
diBuffer

DISKIO ENDS

dd ?
dw ?
dd ?

;sector number to start
;number of sectors
;address of buffer

Fields

Comments

See Also

The DISKIO structure contains information specifying the location and number
of sectors to read or write.

diStartSector Specifies the number of the first sector to be read or written.

diSectors Specifies the number of sectors to read or write.

diBuffer Specifies a 32-bit address (segment:offset) to the buffer that receives
the data read or contains the data to write.

The DISKIO structure is used only if the number of sectors on the drive exceeds
65,535.

Interrupt 25h Absolute Disk Read
Interrupt 26h Absolute Disk Write

• DPB
DPB STRUC

dpbDrive db ?
dpbUnit db ?
dpbSectorSize dw?
dpbClusterMask db?
dpbClusterShift db ?
dpbFirstFAT dw ?
dpbFATCount db ?
dpbRootEntries dw?
dpbFirstSector dw?
dpbMaxCluster dw?
dpbFATSize dw ?
dpbDirSector dw ?
dpbDriverAddr dd?
dpbMedia db ?
dpbFirstAccess db?
dpbNextDPB dd ?
dpbNextFree dw ?
dpbFreeCnt dw ?

DPB ENDS

OPB 41

drive number (0 = AI 1 = BI etc.)
unit number for driver
sector size l in bytes
sectors per cluster - 1
sectors per cluster l as power of 2
first sector containing FAT
number of FATs
number of root-directory entries
first sector of first cluster
number of clusters on drive + 1
number of sectors occupied by FAT
first sector containing directory
address of device driver
media descriptor
indicates access to drive
address of next drive parameter block
last allocated cluster
number of free clusters

Fields

The DPB structure contains information about a drive and the medium in the
drive.

dpbDrive Specifies the drive number (0 = A, 1 = B, and so on).

dpbUnit Specifies the unit number. The device driver uses the unit number
to distinguish the specified drive from the other drives it supports.

dpbSectorSize Specifies the size of each sector, in bytes.

dpbClusterMask Specifies one less than the number of sectors per cluster.

dpbClusterShift Specifies the number of sectors per cluster, expressed as a
power of2.

dpbFirstFAT Specifies the sector number of the first sector containing the
file allocation table (FAT).

dpbFATCount Specifies the number of FATs.

dpbRootEntries Specifies the number of entries in the root directory.

dpbFirstSector Specifies the sector number of the first sector in the first
cluster.

dpbMaxCluster Specifies one more than the maximum number of clusters on
the drive.

dpbFATSize Specifies the number of sectors occupied by each FAT.

dpbDirSector Specifies the sector number of the first sector containing the
root directory.

dpbDriverAddr Specifies the 32-bit address (segment:offset) of the DEVICE·
HEADER structure for the device driver supporting the specified drive.

dpbMedia Specifies the media descriptor for the medium in the specified
drive.

dpbFirstAccess Specifies whether the medium in the drive has been
accessed. This field is OFFh if the nledium has not been accessed.

42 OPB

See Also

• EXTENDEDFCB

dpbNextDPB Specifies the 32-bit address (segment:offset) of the next drive
parameter block.

dpbNextFree Specifies the cluster number of the last allocated cluster.

dpbFreeCnt Specifies the number of free clusters on the medium. This field
is OFFFFh if the number is unknown.

Interrupt 21h Function IFh Get Default DPB
Interrupt 21h Function 32h Get DPB

EXTENDEDFCB STRUC
extSignature db Offh
extReserved db 5 dUp(O)
extAttribute db 1

extDriveID db 1
extFileName db '11111111'
extExtent db '111'
extCurBlockNo dw 1
extRecSize dw 1
extFileSize db 4 dup (1)
extFileDate dw 1
extFi1eTime dw 1
extReserved db 8 dup (1)
extCurRecNo db 1
extRandomRecNo db 4 dup (1)

EXTENDEDFCB ENDS

;extended FCB signature
;reserved bytes
;attribute byte
;filo control block (FCB)
;drive no. (O=defau1t, l=A, etc.)
; filename
;fi1e extension
;current block number
;record size
;size of file, in bytes
;date file last modified
;time file last modified
;reserved bytes
;current record number
;random record number

ATTR-READONLY (Olh)

ATTRJfIDDEN (02h)

ATTR_SYSTEM (04h)

ATTR_VOLUME (08h)

Fields·

The EXTENDEDFCB structure contains a file control block (FCB) and 7 addi­
tional bytes, including an attribute byte.

extSignature Specifies the extended FeB signature. This value must be OFFh.

extReserved Reserved; must be zero.

extAttribute Specifies the attributes of the file or directory. This field can
contain some combination of the following values:

Value Meaning

Specifies a read-only file.

Specifies a hidden file or directory.

Specifies a system file or directory.

Specifies a volume label. The entry contains no
other usable information (except for date and
time of creation) and can occur only in the root
directory.

ATTR_DIRECTORY (lOh) Specifies a directory.

ATTR_ARCHIVE (20h) Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)

If no attributes are set, the file is a normal file (ATTILNORMAL).

See Also

EXTENDEDFCB 43

extDriveID Identifies the drive containing the file (0 = default, 1 = A, 2 = B,
and so on).
extFileName Specifies the name of the file. The filename must be padded
with space characters (ASCII 20h) if it has fewer than eight characters.

extExtent Specifies the extension. The extension must be padded with space
characters (ASCII 20h) if it has fewer than three characters.

extCurBlockNo Specifies the current block number, which points to the
block that contains the current record. A block is a group of 128 records. This
field and the extCurRecNo field make up the record pointer. When opening the
file, MS-DOS sets this field to zero.

extRecSize Specifies the size of a logical record, in bytes. MS-DOS sets this
field to 128. A program that uses a different record size must fill this field after
opening the file.

extFileSize Specifies the size of the file, in bytes. When opening an existing
file, MS-DOS initializes this field from the file's directory entry.

extFileDate Specifies the date the file was created or last updated. When
opening an existing file, MS-DOS initializes this field from the file's directory
entry. This 16-bit field has the following form:

Bits Meaning

Q-4 Specifies the day. Can be a value in the range 1 through 31.

5-8 Specifies the mon~h. Can be a value in the range 1 through 12.

9-15 Specifies the year, relative to 1980.

extFileTime Specifies the time the file was created or last updated. If the file
already exists, MS-DOS initializes this field from the file's directory entry when
opening the file. This 16-bit field has the following form:

Bits Meaning

Q-4 Specifies two-second intervals. Can be a value in the range 0
through 29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.

11-15 Specifies hours. Can be a value in the range 0 through 23.

extReserved Reserved; do not use.

extCurRecNo Specifies the current record number, which points to one of
128 records in the current block. This field and the extCurBlockNo field make
up the record pointer. MS-DOS does not initialize this field when opening the
file. The calling program must set it before performing a sequential read or write
operation. This field is maintained by MS-DOS.

extRandomRecNo Specifies the relative record number for random file
access. This field specifies the index of the currently selected record, counting
from the beginning of the file. MS-DOS does not initialize this field when open­
ing the file. The calling program must set it before performing a random read or
write operation. If the record size is less than 64 bytes, all 4 bytes of this field
are used. Otherwise, only the first 3 bytes are used.

Interrupt 21h Function 11h Find First File with FCB
Interrupt 21h Function 12h Find Next File with FCB

44 EXTHEADER

• EXTHEADER
EXTHEADER STRUC

ehSignature
ehReserved
ehSearchAttrs

EXTHEADER ENDS

db Offh
db 5 dup (0)
db 1

;extended signature
; reserved
;attribute byte

ATIR_READONLY (Olh)

ATIR_HIDDEN (02h)

ATIR_SYSTEM (04h)

ATIR_VOLUME (08h)

Fields

See Also

• FeB

The EXTHEADER structure contains attributes for file and directory searches.

ehSignature Specifies the extended search-header signature. This value must
be OFFh.

ehReserved Reserved; must be zero.

ehSearchAttrs Specifies the attributes used in the search for files and direc­
tories. This field can contain some combination of the following values:

Value Meaning

Specifies a read-only file.

Specifies a hidden file or directory.

Specifies a system file or directory.

Specifies a volume label. The entry contains no
other usable information (except for date and
time of creation) and can occur only in the root
directory.

ATIR_DIRECTORY (lOh) Specifies a directory.

ATTR_ARCHIVE (20h) Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)

If no attributes are set, the file is a normal file (ATTILNORMAL).

Interrupt 2lh Function llh Find First File with FCB
Interrupt 2lh Function l2h Find Next File with FCB

FCB STRUC
fcbDriveID db 1 ;drive no. (0=defau1t, l=A, etc .)
fcbFi1eName db 11?1?11?1 1 ; filename
fcbExtent db 1111 1 ;fi1e extension
fcbCurB1ockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;size of file in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ;reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FeB ENDS

The FeB structure contains information that identifies a file and its characteris­
tics.

Fields

FeB 45

fcbDriveID Identifies the drive containing the file (0 = default, 1 = A, 2 = B,
and so on).

fcbFileName Specifies the name of the file. The filename must be padded
with space characters (ASCII 20h) if it has fewer than eight characters.

fcbExtent Specifies the filename extension. The filename extension must be
padded with space characters (ASCII 20h) if it has fewer than three characters.

fcbCurBlockNo Specifies the current block number, which points to the
block that contains the current record. A block is a group of 128 records. This
field and the fcbCurRecNo field make up the record pointer. MS-DOS sets this
field to zero when opening the file.

fcbRecSize ·Specifies the size of a logical record, in bytes. MS-DOS sets this
field to 128. A program that uses a different record size must fill this field after
opening the file.

fcbFileSize Specifies the size of the file, in bytes. When opening an existing
file, MS-DOS initializes this field from the file's directory entry.

fcbFileDate Specifies the date the file was created or last updated. When
opening an existing file, MS-DOS initializes this field from the file's directory
entry. This 16-bit field has the following form:

Bits Meaning

Q-4 Specifies the day. Can be a value in the range 1 through 31.

5-8 Specifies the month. Can be a value in the range 1 through 12.

9-15 Specifies the year, relative to 1980.

fcbFileTime Specifies the time the file was created or last updated. If the file
already exists, MS-DOS initializes this field from the file's directory entry when
opening the file. This 16-bit field has the following form:

Bits Meaning

Q-4 Specifies two-second intervals. Can be a value in the range 0
through 29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.

11-15 Specifies hours. Can be a value in the range 0 through 23.

fcbReserved Reserved; do not use.

fcbCurRecNo Specifies the current record number, which points to one of
128 records in the current block. This field and the fcbCurBlockNo field make
up the record pointer. MS-DOS does not initialize this field when opening the
file. The calling program must set it before performing a sequential read or write
operation. This field is maintained by MS-DOS.

fcbRandomRecNo Specifies the relative record number for random file
access. This field specifies the index of the currently selected record, counting
from the beginning of the file. MS-DOS does not initialize this field when open­
ing the file. The calling program must set it before performing a random read or
write operation. If the record size is less than 64 bytes, all 4 bytes of this field
are used. Otherwise, only the first 3 bytes are used.

46 FeB

Comments

See Also

• FILEINFO

When opening or creating a file, a program initializes an FCB that contains only
the drive number, the filename, and the filename extension. All other fields are
zero. MS-DOS fills in the remaining fields, as described in the preceding
"Fields" section, once the file is open.

Interrupt 21h Function OFh Open File with FCB
Interrupt 21h Function lOh Close File with FCB
Interrupt 2lh Function llh Find First File with FCB
Interrupt 21h Function 12h Find Next File with FCB
Interrupt 2lh Function 13h Delete File with FCB
Interrupt 2lh Function 14h Sequential Read
Interrupt 21h Function lSh Sequential Write
Interrupt 21h Function 16h Create File with FCB
Interrupt 21h Function 17h Rename File with FCB
Interrupt 21h Function IBh Get Default Drive Data
Interrupt 21h Function lCh Get Drive Data
Interrupt 21h Function 21h Random Read
Interrupt 2lh Function 22h Random Write
Interrupt 21h Function 23h Get File Size
Interrupt 21h Function 24h Set Random Record Number
Interrupt 21h Function 27h Random Block Read
Interrupt 21h Function 28h Random Block Write
Interrupt 2lh Function 29h Parse Filename

FILEINFO STRUC
fiReserved
fiAttribute
flFileTime
flFileDate
flSize
flFileName

FILEINFO ENDS

db 21 dup (1)
db 1
dw 1
dw 1
dd 1
db 13 dup (1)

;reserved
;attributes of file found
;time of last write
;date of last write
;file size
; filename and extension

Fields

The FILEINFO structure contains information about a file or directory name,
access attributes, date, and time.

fiReserved Reserved; do not use.

ftAttribute Specifies the access attributes of the file or directory. This field
can contain some combination of the following values:

Value Meaning

ATIILREADONLY (Olh)

ATIR_HIDDEN (02h)

ATTR_SYSTEM (04h)

ATTILVOLUME (08h)

Specifies a read-only file.

Specifies a hidden file or directory.

Specifies a system file or directory.

Specifies a volume label. The entry contains no
other usable information (except for date and
time of creation) and can occur only in the root
directory.

Value Meaning

FVBLOCK 47

See Also

• FVBLOCK

ATIR_DIRECTORY (10h) Specifies a directory.

ATIR_ARCHIVE (20h) Specifies a file that is new or has been modified.

All other values are reserved. (The two high-order bits are set to zero.)

If no attributes are set, the file is a normal file (ATTlCNORMAL).

fiFileTime Specifies the time the file or directory was created or last updated.
The field has the following form:

Bits Meaning

0-4 Specifies two-second intervals. Can be a value in the range 0
through 29.

5-10 Specifies minutes. Can be a value in the range 0 through 59.

11-15 Specifies hours. Can be a value in the range 0 through 23.

fiFileDate Specifies the date the file or directory was created or last updated.
The field has the following form:

Bits Meaning

0-4 Specifies the day. Can be a value in the range 1 through 31.

5-8 Specifies the month. Can be a value in the range 1 through 12.

9-15 Specifies the year, relative to 1980.

ftSize Specifies the size of the file, in bytes.

ftFileName Specifies the name and extension of the file or directory.

Interrupt 21h Function 4Eh Find First File
Interrupt 21h Function 4Fh Find Next File

FVBLOCK STRUC
fvSpecFunc
fvHead
fvCylinder

FVBLOCK ENDS

db 0
dw ?
dw ?

;special functions (must be zero)
;head to format/verify
;cylinder to format/verify

Fields

See Also

The FVBLOCK structure specifies the head and cyli~der to format or verify.

fvSpecFunc Must be zero.

fvHead Specifies the number of the read/write head. The head number is used
to determine the track to format or verify.

fvCylinder Specifies the number of the cylinder. The cylinder number is used
to determine the track to format or verify.

Interrupt 21h Function 440Dh Minor Code 42h Format Track on Logical Drive
Interrupt 21h Function 440Dh Minor Code 62h Verify Track on Logical Drive

48 MID

• MID

MID STRUC
midlnfoLevel dw
midSerialNum dd
midVolLabel db
midFileSysType db

MID ENDS

o
7
11 dup (7)
8 dup (7)

information level
serial number
ASCII volume label
file system type

Fields

The MID structure contains information that uniquely identifies a disk or other
storage medium.

midInfoLevel Specifies the information level. This field must be zero.

midSerialNum Specifies the serial number for the medium.

midVolLabel Specifies the volume label for the medium. If the label has
fewer than 11 characters, space characters (ASCII 20h) fill the remaining bytes
in this field.

midFileSysType Specifies the type of file system, given as an 8-byte ASCn
string. This field can be one of the following values:

Name Meaning

FAT12

FAT16

12-bit file allocation table (FAT)

16-bit FAT

See Also

• PARTENTRY

If the name has fewer than eight characters, space characters (ASCII 20h) fill
the remaining bytes in this field.

Interrupt 21h Function 440Dh Minor Code 66h Get Media ill
Interrupt 21h Function 440Dh Minor Code 46h Set Media ill

PARTENTRY STRUC
peBootable db ?
peBeginHead db ?
peBeginSector db?
peBeginCylinder db ?
peFileSystem db?
peEndHead db ?
peEndSector db ?
peEndCylinder db?
peStartSector dd?
peSectors dd ?

PARTENTRY ENDS

;80h = bootable, OOh = nonbootable
;beginning head
;beginning sector
;beginning cylinder
;name of file system
;ending head
;ending sector
;ending cylinder .
;starting sector (relative to beg. of disk)
;number of sectors in partition

Fields

The PARTENTRY structure specifies the size and the starting and ending sectors
of a partition on a disk that can be partitioned.

peBootable Specifies whether the partition is bootable. If this field is 80h,
the partition is bootable; if the field is DOh, the partition is not bootable.

peBeginHead Specifies the head number used to determine the first track in
the partition.

peBeginSector Specifies the number of the first sector in the partition. This
sector number is relative to the first track in the partition.

Comments

See Also

• RENAMEFCB

RENAMEFCB 49

peBeginCylinder Specifies the cylinder number used to determine the first
track in the partition.

peFileSystem Specifies the type of file system. This field can be one of the
following values:

Value Meaning

OOh Unknown type

01h 12-bit file allocation table (FAT); partition smaller than 10 MB

04h 16-bit FAT; p.artition smaller than 32 MB

OSh Extended DOS partition

06h 16-bit FAT; partition larger than or equal to 32 MB

Although other values are possible, MS-DOS recognizes only those given.

peEndHead Specifies the head number used to determine the last track in the
partition.

peEndSector Specifies the number of the last sector in the partition. This
sector number is relative to the first track in the partition.

peEndCylinder Specifies the cylinder number used to determine the last
track in the partition.

peStartSector Specifies the number of the first sector in the partition. This
sector number is relative to the beginning of the disk.

peSectors Specifies the number of sectors in the partition.

MS-DOS supplies a partition table for every disk that can be partitioned. The
table, placed at the end of the first hidden sector on the logical drive, consists
of one or more PARTENTRY structures.

Interrupt 21h Function 440Dh Minor Code 41h Write Track on Logical Drive
Interrupt 21h Function 440Dh Minor Code 61h Read Track on Logical Drive

RENAMEFCB STRUC
renDriveID
renOldName
renOldExtent
renReservedl
renNewName
renNewExtent
renReserved2

RENAMEFCB ENDS

db ?
db '????????'
db '???'
db 5 dup (?)
db '????????'
db '???'
db 9 dup (?)

;drive no. (O=default, l=A, etc.)
;old filename
;old file extension
; reserved
;new filename
;new extension
;reserved

Fields

The RENAMEFCB structure contains the old and new names for a file that is
being renamed.

renDriveID Specifies the drive number (0 = default, 1 = A, 2 = B, and so
on).

renOldName Specifies the old filename. If the filename has fewer than eight
characters, space characters (ASCII 20h) must fill the remaining bytes.

50 RENAMEFCB

See Also

• RWBLOCK

renOldExtent Specifies the old extension. If the extension has fewer than
three characters, space characters must fill the remaining bytes.

renReservedl Reserved; do not use.

renNewName Specifies the new filename. If the filename has fewer than eight
characters, space characters must fill the remaining bytes.

renNewExtent Specifies the new extension. If the extension has fewer than
three characters, space characters must fill the remaining bytes.

renReserved2 Reserved; do not use.

Interrupt 21h Function 17h Rename File with FCB

RWBLOCK STRUC
rwSpecFunc
rwHead
rwCylinder
rwE'irstSector
rwSectors
rwBuffer

RWBLOCK ENDS

db 0
dw ?
dw ?
dw ?
dw ?
dd ?

;special functions (must be zero)
;head to read/write
;cylinder to read/write
; first sector to read/write
;number of sectors to read/write
;address of buffer for read/write data

Fields

See Also

The RWBLOCK structure contains information that specifies the sectors that are
to be read or written.

rwSpecFunc Must be zero.

rwHead Specifies the head number used to determine the track to read from
or write to.

rwCylinder Specifies the cylinder number used to determine the track to read
from or write to.

rwFirstSector Specifies the number of the first sector (relative to the begin­
ning of the track) to read or write.

rwSectors Specifies the number of sectors to read or write.

rwBuffer Specifies a 32-bit address (segment:offset) of the buffer that receives
the data to read or that contains the data to write.

Interrupt 21h Function 440Dh Minor Code 61h Read Track on Logical Drive
Interrupt 21h Function 440Dh Minor Code 41h Write Track on Logical Drive

• TRACKLAYOUT

TRACKLAYOUT STRUC
tklSectors dw SECTORS ;number of sectors on track
tklNumSize dd SECTORS dupe?) ;array of sector numbers and sizes

TRACKLAYOUT ENDS

The TRACKLAYOUT structure contains an array of numbers and sizes for the
sectors on a track.

Fields

Comments

See Also

TRACKLAYOUT 51

tklSectors Specifies the number of sectors.

tklSecNumSize Contains an array of sector numbers and sizes. Each element
of the array has the following form:

tklSectorNum dw?
tklSectorSize dw?

Field Description

tklSectorNum Specifies the number of the sector. Each sector number must
be unique and in the range 1 through the the number of sec­
tors specified in tkiSectors.

tklSectorSlze Specifies the size of the sector, in bytes.

The tklSectors field specifies the number of elements in this field.

All sector sizes must be equal.

Interrupt 21h Function 440Dh Minor Code 40h Set Device Parameters

Chapter

4

Character Input and Output
4.1 Introduction.................................. 55

4.2 Character Devices 55
4.2.1 Input and Output Modes.................................... 56
4.2.2 Keyboard Control.. 56
4.2.3 Screen Control.......... 57
4.2.4 Printer Control.. 57
4.2.5 Auxiliary Device Control 58
4.2.6 Real-Time Clock Control................................... 58

4.3 ANSI Escape Sequences... 58

4.4 Structure.. 61

Chapter 4: Character Input and Output 55

4.1 Introduction
This chapter provides an overview of MS-DOS character devices and describes
the system functions that enable programs to read from, write to, and set the
modes for character devices.

4.2 Character Devices
A character device is any device that processes data one byte (one character) at
a time. The computer's keyboard, screen, real-time clock, and serial and parallel
ports are character devices.

Each character device has a name. MS-DOS uses the following names:

Name

AUX

CLOCK$

COM1

COM2

CON

LPT1

LPT2

LPn

NUL

PRN

Description

Auxiliary device, usually a serial communications port.

Real-time clock.

First serial communications port. AUX is usually an alias
for COM1.

Second serial communications port.

Keyboard and screen.

First parallel printer port. PRN is usually an alias for
LPT1.

Second parallel printer port.

Third parallel printer port.

"Bit bucket" device that discards all output and provides
no input.

Printer device (also called a list device), usually a parallel
communications port.

Programs open character devices by supplying the device names to Open File
with Handle (Interrupt 21h Function 3Dh). The functions use the device names
much as they use filenames, opening the device and returning a file handle. Once
a program has a handle, it can read from, write to, and close the device by using
such file-handle functions as Read File or Device (Interrupt 21h Function 3Fh),
Write File or Device (Interrupt 21h Function 40h), and Close File with Handle
(Interrupt 21h Function 3Eh).

Note A program cannot create a file with the same filename as a device (such as
CON.TXT), regardless of the extension. Attempting to open or create a file with the
same name as a device opens the device Instead.

56 MS-DOS Programmer's Reference

4.2.1 Input and Output Modes
Input/output (I/O) modes determine how character devices process input and
output. MS-DOS has two I/O modes: ASCn and binary. (These are sometimes
called "cooked" and "raw" modes, respectively.)

The chief difference between these two modes is the way in which MS-DOS
processes control characters. In ASCII mode, MS-DOS checks for control char­
acters as it processes input or output for a device. If it encounters a control
character, it removes the character from the input and carries out its corre­
sponding action, described in the following table:

Control character

CTRL+C

CTRL+P

CTRL+S

CTRL+Z

Action in ASCII mode

Passes control to the CTRL+C exception handler.
Subsequent actions depend on the current handler;
the default handler terminates the program.

Copies all subsequent input characters, up to the
next CTRL+P, to the printer device.

Suspends further output to the device. The next
input character restores output.

Marks the end of the file. Subsequent calls to Read
File or Device (Interrupt 21h Function 3Fh) return
zero bytes.

In binary mode, no action is carried out and control characters remain as input
until they are read by a program.

ASCII mode also may affect the way characters are displayed. For example, a
screen device expands tab characters to space characters in ASCn mode, but
not in binary mode.

By default, the MS-DOS I/O mode is ASCII. A program can determine the
current I/O mode for a device by using Get Device Data (Interrupt 21h Function
4400h). This function takes a device handle as a parameter and returns a value
indicating the device status. If bit 5 is set, the device is in binary mode. Other­
wise, the device is in ASCII mode. Set Device Data (Interrupt 21h Function
4401h) changes the mode for a device.

The I/O mode is a property of the device handle and affects the input and out­
put of only those program-s that own the handle.

4.2.2 Keyboard Control
A program opens a keyboard by using Open File with Handle (Interrupt 21h
Function 3Dh). This function takes the device name CON and the read-only
access parameter and returns a handle for the keyboard. The program uses the
handle with Read File or Device (Interrupt 21h Function 3Fh) to read from the
keyboard.

Chapter 4: Character Input and Output 57

In ASCII mode, MS-DOS reads characters from the keyboard and copies the
characters to standard output. It checks for control characters as it reads and, if
it finds one, carries out the corresponding action. It also checks for the BACK­
SPACE key and function keys (such as Fl, F2, and F3) and carries out the same
editing actions for these keys as it does for COMMAND.COM. It removes the .
editing-key codes from the input as it carries out the editing action. MS-DOS
continues to read characters until it has read the number of characters specified
by the program or until the user presses CTRL+Z or ENTER. It translates the
ENTER key into a carriage return-linefeed character pair.

In binary mode, MS-DOS reads the exact number of characters requested by the
program. It does not copy characters to the screen, nor does it process editing
keys and control characters. Instead, it reads all characters as input.

4.2.3 Screen Control·
A program opens a screen device by using Open File with Handle (Interrupt 2lh
Function 3Dh). The function takes the device name CON and returns a handle
for the screen device. The program uses the handle with Write File or Device
(Interrupt 2lh Function 40h) to write to the screen.

In ASCII mode, MS-DOS sends all characters to the screen, checks at the key­
board for control characters as it writes and, if it finds one, carries out its
corresponding action. Tab characters (ASCII 09h) are expanded to space char­
acters based on eight-space tab settings. MS-DOS continues to write characters
to the screen until it has sent the requested number of characters or reached an
end-of-file character (ASCII lAh).

In binary mode, MS-DOS writes the exact number of characters requested by
the program. It does not process control characters (except the carriage-return
and newline characters), expand tab characters, or stop writing at the end-of-file
character.

By default, the cursor moves to the right for each new character. It moves down
for a linefeed character (ASCII OAh) and to the leftmost column for a carriage­
return character (ASCII ODh). For programs that need more complicated screen
control, MS-DOS supplies an installable device driver, ANSI.SYS. This driver
processes ANSI escape sequences that control cursor position and display
modes such as color display and line wrapping. If ANSI.SYS has been loaded,
programs can set the display mode by using Set Display Mode (Interrupt 2lh
Function 440Ch Minor Code 5Fh) and retrieve the current display mode by using
Get Display Mode (Interrupt 2lh Function 440Ch Minor Code 7Fh). Both func­
tions require a pointer to a DISPLAYMODE structure that specifies the number
of colors, columns, and rows available with the display mode.

4.2.4 Printer Control
A program opens a printer by using Open File with Handle (Interrupt 21h
Function 3Dh). The function takes the device name PRN and the write-only
access parameter and returns a handle to the printer. The program uses this
handle with Write File or Device (Interrupt 2lh Function 40h) to write to the
printer.

58 MS-DOS Programmer's Reference

If the printer is not pre,sent or not ready to receive data, a program that writes
to it may hold indefinitely. Before attempting to send data to a printer, a pro­
gram should use Check Device Output Status (Interrupt 21h Function 4407h) to
determine whether the printer is present and ready to receive output.

4.2.5 Auxiliary Device Control
A program can open an auxiliary device for reading and writing by using Open
File with Handle (Interrupt 21h Function 3Dh), supplying the device name
AUX, and specifying the read-and-write access parameter. The function returns
a file handle that the program can use with Read File or Device (Interrupt 21h
Function 3Fh) and Write File or Device (Interrupt 21h Function 40h).

If the auxiliary device is not present or not ready to receive or send data, a pro­
gram that reads or writes to the device may hold indefinitely. Before attempting
to read from the auxiliary device, a program should use Check Device Input
Status (Interrupt 21h Function 4406h) to determine if the device is present and
ready to send input. Similarly, a program should use Check Device Output
Status (Interrupt 21h Function 4407h) before attempting to send data to the aux­
iliary device.

4.2.6 Real-Time Clock Control
Programs can open the clock device for reading and writing. Reading from the
clock device always returns three 16-bit values. These values are the low, middle,
and high parts of the system time, representing the number of milliseconds
elapsed since January 1, 1980. Writing to the clock device overwrites all three
values and changes the system time for MS-DOS and all other programs.

To ensure compatibility with future versions of MS-DOS and with other operat­
ing environments, programs should avoid accessing the clock device directly.
Instead, they should use Get Date (Interrupt 21h Function 2Ah), Set Date
(Interrupt 21h Function 2Bh), Get Time '(Interrupt 21h Function 2Ch), and Set
Time (Interrupt 21h Function 2Dh) to get and set the system time.

4.3 ANSI Escape Sequences
ANSI escape sequences affect output to the screen device, giving programs con­
trol of the screen's cursor, colors, and display modes. (An escape sequence is
one or more characters preceded by the escape character ASCn 1Bh.) When a
program writes an escape sequence to the screen, the screen device translates
the sequence into its corresponding action, such as positioning the cursor or
changing colors.

The following list summarizes the ANSI escape sequences supported by the
ANSI.SYS driver. ANSI escape sequences are available only if this driver has
been installed. Parameters shown in italic type are ASCII strings representing
integers.

Escape sequence

ESC[2J

ESC[K

ESC [rowsA

ESC [rowsB

ESC [colsC

ESC [colsD

ESC [row;coIH

ESC[s

ESC[u

ESC[6n

ESC [attrm

Chapter 4: Character Input and Output 59

Action

Clears the entire screen and moves the cursor to
upper-left corner (home).

Clears the screen from cursor to end of line.

Moves the cursor up the specified number of rows
without changing the column. If rows is omitted, the
cursor moves one row.

Moves the cursor down the specified number of
rows without changing the column. If rows is omit­
ted, the cursor moves one row.

Moves the cursor to the right the specified number
of columns without changing the row. If cols is
omitted, the cursor moves one column.

Moves the cursor to the left the specified number of
columns without changing the row. If cols is omit­
ted, the cursor moves one column.

Moves the cursor to an absolute position. For exam­
ple, ESC[l;lH moves the cursor to the upper-left
corner, and ESC[2S;80H moves the cursor to the
lower-right corner on a 25-character by SO-character
screen. Either row or col can be omitted.

Saves the current cursor position.

Moves the cursor to the position most recently
saved by ESC[s.

Returns the current cursor position in the format
ESC[row;colR. A program should read the cursor
position from standard input immediately after writ­
ing the escape sequence.

Selects from the character attributes and colors on
the next page. If more than one attribute or color is
specified, values are separated by semicolons. The
ability to display certain attributes and colors
depends on the screen device.

60 MS-DOS Programmer's Reference

Escape sequence Action

ESC [attrm
(continued) Value Attribute

0 No special attributes

1 High intensity

2 Low intensity

3 Italic

4 Underline

5 Blinking

6 Rapid blinking

7 Reverse video

8 Invisible (no display)

Value Foreground color

30 Black

31 Red

32 Green

33 Yellow

34 Blue

35 Magenta

36 Cyan

37 White

Value Background color

40 Black

41 Red

42 Green

43 Yellow

44 Blue

45 Magenta

46 Cyan

47 White

Chapter 4: Character Input and Output 61

Escape sequence Action

ESC [=modeh Selects one of the following display modes:

Value Mode

0 40 columns by 25 rows, 16-color text
(color burst off)

1 40 columns by 25 rows, 16-color text

2 80 columns by 25 rows, 16-color text
(color burst off)

3 80 columns by 25 rows, 16-color text

4 320 pixels by 200 pixels, 4-color graphics

5 320 pixels by 200 pixels, 4-color graphics
(color burst off)

6 640 pixels by 200 pixels, 2-color graphics

7 Enable line wrap

14 640 pixels by 200 pixels, 16-color graphics
(EGA/VGA, MS-DOS version 4.0 and
later)

15 640 pixels by 350 pixels, 2-color graphics
(EGA/VGA, MS-DOS version 4.0 and
later)

16 640 pixels by 350 pixels, 16-color graphics
(EGA/VGA, MS-DOS version 4.0 and
later)

17 640 pixels by 480 pixels, 2-color graphics
(MCGA/VGA, MS-DOS version 4.0 and
later)

18 640 pixels by 480 pixels, 16-color graphics
(VGA, MS-DOS version 4.0 and later)

19 320 pixels by 200 pixels, 256-color graphics
(MCGA/VGA, MS-DOS version 4.0 and
later)

ESC[071 Disables line wrap.

4.4 Structure
This section provides a complete description of the DISPLAYMODE structure.

62 DISPLAYMODE

• DISPLAYMODE

STRUC
db ?
db ?
dw ?
dw ?
db ?
db ?
dw ?
dw ?
dw ?
dw ?
dw ?

ENDS

DISPLAYMODE
dmlnfoLevel
dmReservedl
dmDataLength
dmFlags
dmMode
dmReserved2
dmColors
dmWidth
dmLength
dmColumns
dmRows

DISPLAYMODE

information level (must be zero)
reserved
length of remaining data, in bytes
control flags
display mode
reserved
number of colors
screen width, in pixels
screen length, in pixels
columns
rows

Fields

Comments

See Also

The DISPLAYMODE structure contains information about the current display
mode of a screen device, such as number of colors, rows, and columns.

dmInfoLevel Specifies the information level. This field must be zero.

dmReservedl Reserved; do not use.

dmDataLength Specifies the length, in bytes, of the remaining fields in the
structure. This field should be 14.

dmFlags Specifies the control flags. This field is OOh if intensity is off or Olh
if intensity is on.

dmMode Specifies the display mode. This field can be one of the following
values:

Value Meaning

Olh Text mode

02h Graphics mode

dmReserved2 Reserved; do not use.

dmColors Specifies the number of colors available.

dmWidth Specifies the screen \vidth, in pixels. This field is used for
graphics mode only.

dmLength Specifies the screen length, in pixels. This field is used for
graphics mode only.

dmColumns Specifies the number of text columns.

dmRows Specifies the number of text rows.

The number and type of display modes for a given screen device depend on the
device type and the ANSI.SYS driver. For a list of display modes, see Section
4.3, "ANSI Escape Sequences."

Function 440Ch Minor Code 5Fh Set Display Mode
Function 440Ch Minor Code 7Fh Get Display Mode

Chapter

5

Program Management
5.1 Introduction. 65

5.2 Programs and Program Resources 65
5.2.1 Program Memory... 65
5.2.2 Program Segment Prefix........... 65
5.2.3 Environment Block... 66
5.2.4 Command Tail.. 66
5.2.5 Standard Devices '. 67

5.3 Memory Management.. 68
5.3.1 Conventional Memory.. 68
5.3.2 Upper Memory Blocks 69
5.3.3 Memory Arena.. 70
5.3.4 A20-Line Processing.. 70

5.4 Child Programs 71
5.4.1 Parameter Block.. 72
5.4.2 Inherited Files.. 72
5.4.3 Standard-Device Redirection............................... 73
5.4.4 Program Termination and Return Values... 73
5.4.5 Batch Files...................... 74

5.5 Terminate-and-Stay-Resident Programs 74

5.6 Overlays... 74

5.7 Program-File Formats.. 75
5.7.1 The .COM File Format...................................... 75
5.7.2 The .EXE File Format 76

5.8 Structures... 77

Chapter 5: Program Management 65

5.1 Introduction
This chapter describes how MS-DOS manages the programs it loads and runs.
Topics include programs and their resources, child programs, terminate-and­
stay-resident programs (TSRs), overlays, and the .COM and .EXE file formats.

5.2 Programs and Program Resources
When MS-DOS runs a program, it allocates memory for the program code and
data and copies the program from its program file into memory. The system then
creates additional data defining the program's environment and passes control to
the program's entry point-the instruction identified in the program as the first
to be executed.

To run a program, the system uses the program's code, static data, stack, allo­
cated memory, open files, and additional data created by the system for the
program's use. In addition to this information, the system uses the following
resources to run a program:

• Program memory

• Program segment prefix (PSP)

• Environment block

• Command tail

• Standard devices

These resources are described in the following sections.

5.2.1 Program Memory
When loading a program, MS-DOS allocates a certain amount of memory for it,
depending on the type of program. For .COM programs, MS-DOS allocates all
available memory. For .EXE programs, it allocates all available memory up to
the amount requested in the program's file header. If MS-DOS cannot allocate
enough memory to load a program, it terminates the request and returns an
error value. The minimum amount of memory required for loading depends on
the type of program file. For information about loading programs, see Section
5.7, "Program-File Formats."

A program can use any memory allocated for it by the system and can free any
extra memory so that it is available for other programs. Programs that will run
other programs must free enough memory to load them.

5.2.2 Program Segment Prefix
For each program, MS-DOS builds a 256-byte program segment prefix (PSP) that
contains such information about the program's environment as the amount of
memory the system allocates for the program, the location of the program's
environment block, and the command-line arguments supplied to the program.

66 MS-DOS Programmer's Reference

;Int 20h instruction
;segment addr of next paragraph
; reserved
;long call to MS-DOS
;Termination Address (Int 22h)
;CTRL+C Handler (Int 23h) addr
;Crit-Err Handler (Int 24h) addr
; reserved
;segment address of environment
;reserved
;default FCB #1
;default FCB #2
; reserved
;command tail (also default DTA)

dw ?
dw ?
db ?
db 5 dup (?)
dd ?
dd ?
dd ?
dw 11 dup (?)
dw ?
dw 23 dupe?)
db 16 dup (?)
db 16 dup (?)
dd ?
db 128 dup (?)

pspFCB_1
pspFCB_2

pspDispatcher
pspTerminateVector
pspControlCVector
pspCritErrorVector

pspEnvironment

pspCommandTail
PSP ENDS

MS-DOS places the PSP in the first 256 bytes of memory allocated for the pro­
gram. The program code and data immediately follow the PSP.

The form of the PSP corresponds to that of the PSP structure:

psp STRUC
psplnt20
pspNextParagraph

For a full description of the PSP structure, see Section 5.8, "Structures."

5.2.3 Environment Block
An environment block contains zero-terminated ASCn strings, each of which
represents the name and value of an environment variable. Programs use
environment variables for information about their operating environment. For
example, a program may use the PATH variable to determine which directories
to search for programs to run, or it may use the TEMP variable to determine the
drive and directory in which to place the temporary files it creates.

Each string in the environment block consists of a name, an equal sign (=), and
a value, as in the following example of a typical PATH setting:

PATH=C:\DOS;C:\BIN

The last string in the block is followed by a null character indicating the end of
the environment block (that is, there are two null characters at the end of the
block).

The content of a program's environment block is set by the program that starts
it. When the command processor, COMMAND.COM, starts a program, its
environment block contains at least the COMSPEC and PATH variables: COM­
SPEC specifies the location of COMMAND.COM, and PATH specifies the pos­
sible locations of program files and batch files. This environment block may also
contain additional variables set by the user with the set command.

5.2.4 Command Tail
The command tail is one or more bytes of ASCn text representing a program's
command-line arguments. When starting the program, the user provides the
command tail by typing argulnents, such as filenames and switches, after the pro­
gram name. COMMAND.COM copies these arguments to the program as the
command tail. Programs that start other programs can also provide command
tails.

Chapter 5: Program Management 67

The command tail has three components: a leading byte that specifies the length
of the text, the text itself, and a carriage-return character (ASCII ODh) that
marks the command tail but is not counted in the length of the text. The follow­
ing example shows a typical command tail:

SampleCommandTail db 7, tt Ie dir tt , OOh

The text should start with at least one space character (ASCII 20h), since some
programs may require a leading space.

5.2.5 Standard Devices
The standard devices are the keyboard, screen, auxiliary device, and printer.
The system provides open file handles to these devices when it starts a program,
as shown in the following table:

Name

Standard input (STDIN)

Standard output (STDOUT)

Standard error (STDERR)

Standard auxiliary (STDAUX)

Standard printer (STDPRN)

Handle

o
1

2

3

4

Default device

CON

CON

CON

AUX

PRN

A program can use the specified handles in such system functions as Read File
or Device (Interrupt 21h Function 3Fh) and Write File or Device (Interrupt 21h
Function 40h), to read from and write to the standard devices.

By default, a standard device corresponds to the device specified in the preced­
ing table. However, users can redirect the standard devices, associating one or
more of the handles with other character devices or with files. For example, a
user can redirect the standard input to a file, so that the program reads input
from the file instead of from the keyboard. The program does nothing special to
read from the redirected device; it simply uses the standard input handle (now
associated with a file) in Read File or Device to read characters from the file.

A program is not notified that a standard device has been redirected. This can
lead to problems if the redirection is to a file and the disk has limited space. If
the standard output is redirected to a file, Write File or Device fails when the
disk becomes full. A program can use Get Device Data (Interrupt 21h Function
4400h) to determine whether a standard-device handle refers to a character
device or a file.

A program can set the input/output (I/O) mode of a standard device. This set­
ting has the same effect for a standard device as it does for a device opened
explicitly by the program. Note that, since standard devices are shared by all
programs, setting the I/O mode affects standard devices for all programs. Before
changing the mode of a standard device, a program should use Get Device Data
to save the current mode. Before terminating, the program should restore the
previous mode by using Set Device Data (I~terrupt21h Function 4401h).

68 MS-DOS Programmer's Reference

Programs that change the I/O mode of a standard device should also incorporate
custom critical-error and CTRL+C interrupt handlers that either restore the I/O
mode or prevent unexpected termination. For more information about interrupt
handlers, see Chapter 7, "Interrupts."

5.3 Memory Management
MS-DOS manages memory to ensure that all programs have access to the
memory they need to run successfully. The system allocates memory for a pro­
gram during loading, and the program can allocate additional memory as needed,
or free any unneeded memory.

5.3.1 Conventional Memory
Programs allocate conventional memory (addresses 0000:0000 through
AOOO:oooo) by using Allocate Memory (Interrupt 21h Function 48h). This func­
tion searches for a block of memory at least as large as the requested block and
returns the segment address of the new block. Since MS-DOS may allocate all
available conventional memory when loading a program, Allocate Memory may
return error value 0008h (ERROILNOT~NOUGlLMEMORY). If so, the BX
register contains the size of the largest available block, in paragraphs.

If a program no longer needs the memory it has allocated, it can free the
memory by using Free Allocated Memory (Interrupt 21h Function 49h). Once
freed, the memory is available to be allocated again by the same program or by
other programs. A program can increase or reduce the amount of memory in a
block to a specified number of paragraphs by using Set Memory Block Size
(Interrupt 21h Function 4Ah).

A program that runs another program (called a child program) often uses Set
Memory Block Size to reduce its own size, making more memory available to
the child program. In such a case, the parent program passes the segment
address of its PSP to the function, along with the new size. However, the parent
program must not free the memory containing its own code, data, and stack if
subsequent memory allocations will destroy that memory. To avoid this situa­
tion, some programs copy their code and data to disk and free all but a small
routine that reallocates the freed memory and reloads the code and data when
they are needed again.

The current allocation strategy, set by Set Allocation Strategy (Interrupt 21h
Function 5801h), determines how Allocate Memory searches for an available
block of memory. The search can start from either the beginning or the end of
conventional memory and ends upon reaching the first block that satisfies the
request or, if none is available, the block that most closely matches the request.
The allocation strategy also determines whether the function searches conven­
tional memory or the upper memory area. A program can retrieve the current
allocation strategy by llsing Get Allocation Strategy (Interrupt 21h Function
5800h).

Note If a program changes the allocation strategy, it should save the original allocation
strategy and restore it before terminating.

Chapter 5: Program Management 69

5.3.2 Upper Memory Blocks
An upper memory block (UMB) is random-access memory (RAM) in the upper
memory area that is available for program use. The upper memory area
(addresses AOOO:OOOO through FFFF:OOOO) is reserved primarily for read-only
memory (ROM) and memory-mapped devices, but MS-DOS can map RAM to
any addresses in this area that are not used by ROM or devices.

A program allocates an upper memory block by using Allocate Memory. Before
allocating any memory, however, the program must set an appropriate allocation
strategy and link the upper memory area. Just as it does with conventional
memory, a program sets the allocation strategy by using Set Allocation Strategy.
An allocation strategy such as FIRSTYITJIIGH (OO80h) directs Allocate
Memory to search the upper memory area for a memory block and to continue
searching in conventional memory if it finds no available block.

Note If a program changes the allocation strategy to permit allocations from the upper
memory area, it must save the original allocation strategy and restore it before ter­
minating.

Allocate Memory cannot search the upper memory area unless the area is linked
to the rest of system memory. A program can link the upper memory area by
using Set Upper-Memory Link (Interrupt 21h Function 5803h), and it can deter­
mine whether the area is linked by using Get Upper-Memory Link (Interrupt 21h
Function 5802h).

Note If a program changes the upper-memory link, it should save the original state of the
link and restore it before terminating.

A program can use Free Allocated Memory to free any upper memory blocks it
no longer needs. It can also use Set Memory Block Size to reduce or increase
the size of the allocated block.

If a program was started by using the loadhigh command, the system loads that
program into memory allocated from the upper memory area. Although a pro­
gram may be in upper memory, any memory it allocates is subject to the current
allocation strategy.

Upper memory blocks are not accessible through MS-DOS system functions
unless the dos=umb command is included in the CONFIG.SYS file and the
HIMEM.SYS driver and memory-managelnent software such as EMM386.EXE
are loaded. If dos=umb is not specified in CONFIG.SYS but the memory­
management software is loaded, programs can access the upper melnory area by
using direct calls to memory-management software. For information about these
direct calls, see Get HIMEM.SYS Entry-Point Address (Interrupt 2Fh Function
4310h).

70 MS-DOS Programmer's Reference

;4dh = valid, Sah = last
;owner of arena item
;size of item, in paragraphs
; reserved
;owner filename

?
?
?
3 dup (?)
8 dup (?)

5.3.3 Memory Arena
MS-DOS keeps track of memory by creating a linked list of the ARENA struc­
tures that define the sizes and owners of blocks of memory. The ARENA struc­
ture has the following form:

ARENA STRUC
arenaSignature db
arenaOwner dw
arenaSize dw
arenaReserved db
arenaName db

ARENA ENDS

For a full description of the ARENA structure, see Section 5.8, "Structures."

When first starting, MS-DOS creates arenas for available memory. It creates
additional arenas as needed when it loads programs and device drivers or as pro­
grams allocate their own memory. The number, size, and location of the arenas
depend on the size of the memory blocks allocated.

Programs must not alter the ARENA structures. MS-DOS has no provisions for
repairing structures that programs have overwritten or modified. If an ARENA
structure is altered, functions such as Allocate Memory and Free Allocated
Memory fail and return error value 0OO7h (ERROILARENA-TRASHED).

5.3.4 A20-Line Processing
For 80286, 80386, and 80486 computers, the CPU's 21st address line (A20 line)
controls access to the extra 64K of address space called the high memory area
(HMA). Computer manufacturers often include a circuit to disable the A20 line
when the CPU runs in real mode. This ensures that the operating environment is
identical to the 8086 environment, in which addresses such as FFFF:0010 wrap
back to the beginning of memory. When the A20 line is enabled, however,
addresses that would otherwise wrap (that is, addresses in the range FFFF:0010
through FFFF:FFFF) provide access to the HMA.

If a computer provides RAM for the HMA, MS-DOS can enable the A20 line
and relocate system code to the HMA, thereby freeing conventional memory for
other programs. MS-DOS relocates to the HMA only if the dos=high command
is in the CONFIG.SYS file and the HIMEM.SYS driver is loaded. This driver
provides the code required to enable and disable the A20 line.

To support programs that expect addresses to wrap, MS-DOS disables the A20
line whenever it loads and runs a program. While the A20 line is disabled, MS­
DOS in the HMA is not directly accessible, although programs can still call
MS-DOS system functions. To accomplish this, MS-DOS redirects all system
calls to a "stub" in conventional memory that enables the A20 line and jumps to
the requested MS-DOS system function. Once enabled by the stub, the A20 line
remains enabled even after the system function returns to the program.

Chapter 5: Program Management 71

Programs must not use the HMA if MS-DOS has been relocated there. A pro­
gram can determine whether MS-DOS is in the HMA by using Get MS-DOS
Version (Interrupt 21h Function 3306h). This function sets bit 4 in the DH regis­
ter to 1 if MS-DOS is in the HMA.

5.4 Child Programs
A child program is any MS-DOS program that has been started by another pro­
gram. While a child program is running, the system temporarily suspends the
parent program, returning control to it when the child program terminates. A
good example of a parent program is COMMAND.COM, which loads and runs
a child program whose name is typed at the command prompt. While the child
program is running, the system suspends COMMAND.COM, returning control
to it when the child program terminates.

A program loads and runs a child program by using Load and Execute Program
(Interrupt 21h Function 4BOOh). Once started, the child program can use any
MS-DOS system function to carry out its work, but it must terminate by using
End Program (Interrupt 21h Function 4Ch). This function frees the child pro­
gram's memory, closes any open files, and returns control to the parent pro­
gram. The parent program can then call Get Child-Program Return Value
(Interrupt 21h Function 4Dh) to retrieve the child program's return value.

Most parent programs provide their child programs with such information as the
environment block, the command tail, and the default file control blocks
(FCBs). In addition, parent programs handle the following:

• Parameter block

• Inherited files

• Standard-device redirection

• Return values

• Batch files

When Load and Execute Program returns, the carry flag indicates whether the
child program was run. If the carry flag is set, the function failed and the AX
register contains an error value indicating the reason for the failure. The parent
program can retrieve additional information about the failure by using Get
Extended Error (Interrupt 21h Function 59h).

By default, MS-DOS sets a .COM program's stack at the high end of the 64K
segment that contains the program. Before reducing its memory allocation, a
.COM program must move its stack within the new range of memory to be allo­
cated.

Note MS-DOS version 2.x does not preserve the parent program's registers (except
CS:IP). Before calling Load and Execute Program, the parent program must push
onto the stack all registers it needs to preserve.

72 MS-DOS Programmer's Reference

;environment-block segment
;address of command tail
;address of default FCB #1
;address of default FCB #2

dw ?
dd ?
dd ?
dd ?

5.4.1 Parameter Block
The parameter block, provided by the parent program, contains the addresses of
the environment block, command tail, and default FCBs to be used by the child
program. The parent program passes the address of the parameter block to Load
and Execute Program.

The form of the parameter block corresponds to the form of the LOADEXEC
structure:
LOADEXEC STRUC

leEnvironment
leCommandTail
leFCB_1
leFCB_2

LOADEXEC ENDS

For a full description of the LOADEXEC structure, see Section 5.8, "Struc­
tures."

The default FCBs for the child program are provided for compatibility with pro­
grams designed for earlier versions of MS-DOS. Few programs use the default
FCBs for file operations; however, some programs do inspect the contents of the
FCBs, so parent programs should create "empty" FCBs when running these pro­
grams. An empty FCB consists of 11 bytes containing space characters (ASCII
20h), followed by 5 bytes containing null characters (ASCII OOh), as in the fol­
lowing example:
emptyFCB db 11 dup(20h), 5 dup(OOh)

An invalid address for a parameter-block item or for the parameter block
itself generally does not cause Load and Execute Program to fail. However, if
MS-DOS copies invalid data to the child program's PSP, unexpected or
improper execution of the child program may result.

5.4.2 Inherited Files
The child program inherits all file handles belonging to the parent program
except those opened with the no-inheritance option. These handles identify stan­
dard files, disk files, or devices that the parent program has opened. Child­
program operations that affect these handles (such as reading or writing to the
file) also affect the parent program's file pointers associated with the handles.

So that the parent program can continue to use inherited files, they remain open
after the child program terminates. The status of these files-for example, infor­
mation about file-pointer locations-remains exactly as the child program left it.

Chapter 5: Program Management 73

5.4.3 Standard-Device Redirection
A parent program can redirect a standard device for the child program by asso­
ciating the standard-device handle with a new device or file before it starts the
child program. To do this, the parent program should follow these steps:

1 Duplicate the standard-device handle by using Duplicate File Handle (Interrupt
21h Function 45h).

2 Save the duplicate handle.

3 Open the new file or device.

4 With the new handle retrieved in step 3, modify the standard-device handle by
using Force Duplicate File Handle (Interrupt 21h Function 46h). The standard­
device handle should now identify the same file or device as the new handle.

5 Load and run the child program.

A parent program can restore the original standard-device handle by using Force
Duplicate File Handle and specifying the duplicate handle saved in step 2.

5.4.4 Program Termination and Return Values
When a child program uses End Program to terminate, MS-DOS closes files that
the program opened, frees memory that the program allocated (including the
memory occupied by the program code and data), and returns control to the
parent program. The child program must restore any interrupt vectors it set
before terminating.

A child program can specify a return value when it terminates, and its parent
program can inspect the return value when it resumes running by using Get
Child-Program Return Value. By convention, a return value of zero indicates
success; increasingly large nonzero values indicate increasingly severe errors.

Get Child-Program Return Value places the child program's return value (if any)
in the AL register and places one of the following termination-status values in
the AH register:

Termination status

OOh

Olh

02h

03h

Meaning

The child program terminated normally.

The child program terminated because the user
pressed CTRL+C.

The child program was terminated by the critical­
error handler.

The child program terminated normally and stayed
resident.

74 MS-DOS Programmer's Reference

5.4.5 Batch Files
Programs cannot load and run batch files directly, although they can run them by
loading and running COMMAND.COM. To run a batch file, a parent program
calls Load and Execute Program, specifying the location of COMMAND.COM
(from the COMSPEC variable) and a command tail consisting of the Ie switch
followed by the name of the batch file. COMMAND.COM runs the batch file
and immediately returns control to the parent program when the batch file ends.

5.5 Terminate-and-Stay-Resident Programs
A terminate-and-stay-resident program (often called a TSR) returns control to its
parent program without relinquishing the memory that contains its code and
data. The TSR program stops running, but its code and data remain in memory
to be used by other programs. For information about TSRs, see Chapter 7,
"Interrupts."

5.6 Overlays
An overlay is a partial program containing code and data that another program,
called the main program, loads and uses as needed. Overlays are useful for
large, complex programs that must run in limited memory.

Overlays can be either .COM or .EXE programs and need not have the same
format as the main program. To load an overlay, the main program allocates
memory for it (MS-DOS does not) and then calls Load Overlay (Interrupt 21h
Function 4B03h), specifying a parameter block whose form corresponds to that
of the LOADOVERLAY structure:

LOADOVERLAY STRUC
loStartSegment dw ?
loRelocationFactor dw?

LOADOVERLAY ENDS

;segment address of overlay's ·memory
;relocation factor

For a full description of the LOADOVERLAY structure, see Section 5.8, "Struc­
tures."

After loading the overlay, the main program transfers control to it by using a far
call. The entry point for the overlay depends on the convention the main pro­
gram uses. Typically, the entry point is at offset OOOOh in the overlay. In any
case, the overlay should return control to the main program by using a far
return.

The system does not construct a PSP for the overlay; it considers the overlay
part of the main program. Any memory the overlay allocates and any files it
opens belong to the main program.

Chapter 5: Program Management 75

5.7 Program-File Formats
The two MS-DOS program-file formats differ in several respects, including struc­
ture and memory requirements. The following sections describe each format in
detail. .

5.7.1 The .COM File Format
A .COM file contains an absolute image of a program-that is, the exact proces­
sor instructions and data that must be in memory in order to run the program.
MS-DOS loads the .COM program by copying this image directly from the file
into memory; it makes no changes.

To load a .COM program, MS-DOS first attempts to allocate memory. Since a
.COM program must fit in one 64K segment, the size of the .COM file must not
exceed 65,024 bytes (64K minus 256 bytes for a PSP and at least 256 bytes for an
initial stack). If MS-DOS cannot allocate enough memory for the program, a
PSP, and an initial stack, the attempt fails. Otherwise, MS-DOS allocates as
much memory as possible (up to all remaining memory), even though the .COM
program itself cannot be greater than 64K. Before attempting to run other pro­
grams or allocate additional memory, most .COM programs free any unneeded
memory.

After allocating memory, MS-DOS builds a PSP in the first 256 bytes of that
memory, setting the AL register to OOh if the first FCB in the PSP contains a
valid drive identifier or to OFFh if it does not. MS-DOS also sets the AH regis­
ter to OOh or to OFFh, depending on whether the second FCB contains a valid
drive identifier.

After building the PSP, MS-DOS loads the .COM file, starting immediately after
the PSP (offset lOOh). It sets the SS, DS, and ES registers to the segment
address of the PSP and then creates a stack. To create a stack, MS-DOS sets
the SP register to OOOOh if at least 64K of memory has been allocated; otherwise,
it sets the register to two more than the total number of bytes allocated. Finally,
it pushes OOOOh onto the stack to ensure compatibility for programs designed for
very early versions of MS-DOS.

MS-DOS starts the program by transferring control to the instruction at offset
lOOh. Programmers must ensure that the first instruction in the .COM file is the
program's entry point.

Notice that, because the program is loaded at offset lOOh, all code and data off­
sets must be relative to lOOh. Assembly-language programmers can ensure this
by setting the program's origin to lOOh (for example, by using the statement
org lOOh at the beginning of the source prograln).

76 MS-DOS Programmer's Reference

;.EXE signature
;number of bytes in last (partial) page
;number of whole and part pages in file
;number of pointers 1n relocation table
;size of header, in paragraphs
;minimum allocation
;maximum allocation
;initial ss value
;initial sp value
;complemented checksum
;initial ip value
;initial cs value
;byte offset to relocation table
;overlay number

dw SA4Dh
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?
dw ?

5.7.2 The .EXE File Format
An .EXE file contains a file header and a relocatable-program image. The file"
header contains information that MS-DOS uses when loading the program, such
as the size of the program and the initial values of the registers. The file header
also points to a relocation table containing a list of pointers to relocatable­
segment addresses in the program image.

The form of the file header corresponds to that of the EXEHEADER structure:

EXEHEADER STRUC
exSignature
exExtraBytes
exPages
exRelocltems
exHeaderSize
exMinAlloc
exMaxAlloc
exlnitSS
exlnitSP
exCheckSum
exlnitIP
exlnitCS
exRelocTable
exOverlay

EXEHEADER ENDS

For a full description of the EXEHEADER structure, see Section 5.8, "Struc­
tures."

The program image, which contains the processor code and initialized data for a
program, starts immediately after the file header. Its size, in bytes, is equal to
the size of the .EXE file minus the size of the file header, which is equal to the
value in the exHeaderSize field multiplied by 16. MS-DOS loads the .EXE pro­
gram by copying this image directly from the file into memory and then adjusts
the relocatable-segment addresses specified in the relocation table.

The relocation table is an array of relocation pointers, each of which points to a
relocatable-segment address in the program image. The exRelocltems field in the
file header specifies the number of pointers in the array, and the exRelocTable
field specifies the file offset at which the relocation table starts. Each relocation
pointer consists of two 16-bit values: an offset and a segment number.

To load an .EXE program, MS-DOS first reads the file header to determine the
.EXE signature and calculate the size of the program image. It then attempts to
allocate memory. First, it adds the size of the program image to the size of the
PSP and to the amount of memory specified in the exMinAlloc field of the EXE·
HEADER structure. If the total exceeds the size of the largest available memory
block, MS-DOS stops loading the program and returns an error value. Other­
wise, it adds the size of the program image to the size of the PSP and to the
amount of memory specified in the exMaxAlloc field of the EXEHEADER struc­
ture. If this second total is less than the size of the largest available memory
block, MS-DOS allocates the amount of memory indicated by the calculated
total. Otherwise, it allocates the largest possible block of memory.

Chapter 5: Program Management 77

After allocating memory, MS-DOS determines the segment address, called the
start-segment address, at which to load the program image. If the value in both
the exMinAlloc and exMaxAlloc fields is zero, MS-DOS loads the image as high
as possible in memory. Otherwise, it loads the image immediately above the area
reserved for the PSP.

Next, MS-DOS reads the items in the relocation table and adjusts all segment
addresses specified by the relocation pointers. For each pointer in the relocation
table, MS-DOS finds the corresponding relocatable-segment address in the pro­
gram image and adds the start-segment address to it. Once adjusted, the segment
addresses point to the segments in memory where the program's code and data
are loaded.

Then MS-DOS builds the 256-byte PSP in the lowest part of the allocated
memory, setting the AL and AH registers just as it does when loading .COM
programs. MS-DOS uses the values in the file header to set the SP and SS regis­
ters and adjusts the initial value of the SS register by adding the start-segment
address to it. MS-DOS also sets the ES and DS registers to the segment address
of the PSP.

Finally, MS-DOS reads the inital CS and IP values from the program's file
header, adjusts the CS register value by adding the start-segment address to it,
and transfers control to the program at the adjusted address.

5.8 Structures
This section describes the structures MS-DOS uses to load and run programs.

78 ARENA

• ARENA

ARENA STRUC
arenaSignature db
arenaOwner dw
arenaSize dw
arenaReserved db
arenaName db

ARENA ENOS

1
1
1
3 dup (1)
8 dup (1)

4dh valid item, Sah last item
owner of arena item
size of item, in paragraphs
reserved
owner filename

Fields

Comments

See Also

• ERROR

The ARENA structure contains information about a block of memory. MS-DOS
uses a linked list of these structures to keep track of and manage system
memory.

arenaSignature Specifies whether the structure is valid. This field must con­
tain either 4Dh or 5Ah. The value 5Ah indicates that the structure is the last in
the linked list.

arenaOwner Specifies the owner of the block. This field contains the segment
address of the program segment prefix (PSP) for the owning program. It contains
zero if the block is not owned.

arenaSize Specifies the size of the block, in paragraphs. The block starts
immediately after the ARENA structure.

arenaReserved Reserved; do not use.

arenaName Contains a zero-terminated string specifying the filename of the
program that owns the memory. If the filename has fewer than eight characters,
the remaining characters in this field are not used. Names such as SC and SD
are used by MS-DOS to represent system code (programs) and system data,
respectively.

Each ARENA structure is followed immediately by a contiguous block of
memory. The next ARENA structure in the linked list follows the contiguous
block. This means the segment address of the next structure in the list is equal
to the segment address of the current memory block plus its size.

MS-DOS fills the arenaName field for a block of memory when it loads a pro­
gram into the block. The ARENA structures for memory allocated by programs
using Allocate Memory (Interrupt 21h Function 48h) are not filled in this way.

Interrupt 21h Function 48h Allocate Memory

ERROR STRUC
errAX dw 1
errBX dw?
errCX dw 1
errOX dw 1
errSI dw?
errOl dw?
errOS dw?
errES dw 1
errReserved dw ?
errUIO dw?
errPIO dw?

ERROR ENOS

;ax register
;bx register
;cx register
;dx register
;si register
;di register
;ds register
;es register
;reserved 16 bits
;US8r (computer) IO (0 = local computer)
;process 10 (0 = local process)

The ERROR structure contains information about the current error.

Fields

ERROR 79

errAX Specifies the error value. For a table of error values, see Appendix C,
"Error Values."

errBX Specifies the error class in the high-order byte and the suggested action
in the low-order byte. The error class may be one of the following values:

Value Meaning

ERRCLASS_OUTRES (Olh)

ERRCLASS_TEMPSIT (02h)

ERRCLASS_AUTH (03h)

ERRCLASS_INTRN (04h)

ERRCLASS_HRDFAIL (OSh)

ERRCLASS_SYSFAIL (06h)

ERRCLASS_APPERR (07h)

ERRCLASS_NOTFND (08h)

ERRCLASS_BADFMT (09h)

ERRCLASS_LOCKED (OAh)

ERRCLASS_MEDIA (OBh)

ERRCLASS_ALREADY (OCh)

ERRCLASS_UNK (ODh)

Out of resource, such as storage.

Not an error, but a temporary situation that
is expected to end, such as a locked region
in a file.

Authorization problem.

Internal error in system.

Hardware failure.

System software failure not the fault of the
active program (caused by missing or
incorrect configuration files, for example).

Application error.

File or item not found.

File or item with an invalid format or type.

Interlocked file or item.

Wrong disk in drive, bad spot on disk, or
other storage-medium problem.

Existing file or item.

Unknown.

ERRACT_RETRY (Olh)

ERRACT_DLYRET (02h)

ERRACT_USER (03h)

ERRACT_ABORT (04h)

ERRACT_PANIC (OSh)

ERRACT_IGNORE (06h)

ERRACT_INTRET (07h)

The suggested action may be one of the following values:
Value Meaning

Retry immediately.

Delay and retry.

Bad user input-get new values.

Terminate in an orderly manner.

Terminate immediately.

Ignore the error.

Prompt the user to remove the cause of the error
(to change disks, for example) and then retry.

errCX Specifies the error-location value. This value can be one of the fol­
lowing:

Value Location

ERRLOC_UNK (Olh)

ERRLOC_DISK (02h)

ERRLOC_NET (03h)

ERRLOC_SERDEV (04h)

ERRLOC_MEM (OSh)

Unknown

Random-access device, such as a disk drive

Network

Serial device

Memory

80 ERROR

See Also

• EXECSTATE

errDX Specifies the DX register contents at the time the error occurred.

errSI Specifies the SI register contents at the time the error occurred.

errDI Specifies the DI register contents at the time th~ error occurred.

errDS Specifies the DS register contents at the time the error occurred.

errES Specifies the ES register content at the time the error occurred.

errReserved Reserved.

errUID Identifies the computer, for errors that occur on remote computers. If
this field is zero, the error occurred on the local computer.

errPID Identifies the program, for errors that occur on remote computers. If
this field is zero, the error occurred in a program on the local computer.

Interrupt 21h Function 5DOAh Set Extended Error

EXECSTATE STRUC
esReserved dw?
esE'lags dw ?
esProgName dd?
esPSP dw ?
esStartAddr dd ?
esProgSize dd?

EXECSTATE ENDS

; reserved
;type flags
;points to ASCIIZ string of program name
;PSP segment of the new program
;starting cs:ip of the new program
;program size, including PSP

Fields

See Also
/
\

The EXECSTATE structure contains information used to prepare a program to
be run.

esReserved Reserved; must be zero.

esFlags Specifies the execution flags. This value can be a combination of the
following values:

Value Meaning

ES_EXE (OOOlh) Program is an .EXE program. If this value is not
given~ the program is a .COM program.

ES_OVERLAY (OOO2h) Program is an overlay.

esProgName Points to a zero-terminated ASCII string that specifies the
name of the program. The string must be a valid MS-DOS filename.

esPSP Specifies the segment address of the program segment prefix (PSP) for
the program.

esStartAddr Specifies the starting address (initial CS:IP values) for the pro­
gram.

esProgSize Specifies the size of the program, in bytes, including the PSP.

Interrupt 21h Function 4B05h Set Execution State

• EXEHEADER
EXEHEADER STRUC

exSignature dw SA4Dh
exExtraBytes dw?
exPages dw ?
exRelocltems dw?
exHeaderSize dw?
exMinAlloc dw?
exMaxAlloc dw?
exlnitSS dw ?
exlnitSP dw ?
exCheckSum dw?
exlnitIP dw ?
exlnitCS dw ?
exRelocTable dw?
exOverlay dw ?

EXEHEADER ENDS

EXEHEADER 81

.EXE signature
number of bytes in last (partial) page
number of whole and part pages in file
number of pointers in relocation table
size of header, in paragraphs
minimum allocation
maximum allocation
initial ss value
initial sp value
complemented checksum
initial ip value
initial cs value
byte offset to relocation table
overlay number

Fields

The EXEHEADER structure contains values that MS-DOS uses when loading a
relocatable program-values such as the size of the program and the initial
values of the registers.

This structure appears at the beginning of the file header for an .EXE file. The
complete .EXE file header consists of this structure and a relocation table. The
size of the file header, in paragraphs, is specified by the exHeaderSize field.

exSignature Specifies the .EXE file signature. This field must be set to
5A4Dh (the ASCII values for the letters M and Z).

exExtraBytes Specifies the number of bytes in the last (partial) page in the
file, as represented by the remainder, if any, when the total number of bytes in
the file is divided by 512 (bytes per page).

exPages Specifies the number of whole and partial pages in the file. Dividing
this total number of bytes in the file by 512 (bytes per page) gives the number of
whole pages. If the division leaves a remainder, the number of pages is increased
by one and the remainder is stored in the exExtraBytes field. For example, in a
file 513 bytes long, the exPages field is 2 and the exExtraBytes field is 1.

exRelocItems Specifies the number of pointers in the relocation table.

exHeaderSize Specifies the size of the file header, in paragraphs. Since each
paragraph has 16 bytes, the file header size is always a multiple of 16.

exMinAlloc Specifies the minimum amount of extra memory, in paragraphs,
required by the program. The extra memory is in addition to the memory
required to load the program image. If the values of both exMinAlloc and
exMaxAlloc are zero, the program is loaded as high as possible in memory.

exMaxAlloc Specifies the maximum amount of extra memory, in paragraphs,
requested by the program. If the values of both exMinAlloc and exMaxAlloc are
zero, the program is loaded as high as possible in memory.

exInitSS Specifies the initial value of the SS register. The value is a
relocatable-segment address. MS-DOS adjusts (relocates) this value when load­
ing the program.

exInitSP Specifies the initial value of the SP register.

exCheckSum Specifies the checksum of the file. This value is equal to the
one's complement (inverse) of the sum of all 16-bit values in the file, excluding
this field.

82 EXEHEADER

Comments

See Also

• LOAD

exInitIP Specifies the initial value of the IP register.

exInitCS Specifies the initial value of the CS register. This value is a
relocatable-segment address. MS-DOS adjusts (relocates) the value when loading
the program.

exRelocTable Specifies the offset, in bytes, from the beginning of the file to
the relocation table.

exOverlay Specifies a value used for overlay management. If this value is
zero, the .EXE file contains the main program.

The exOverlay field can be followed by additional information used by the sys­
tem for overlay management. The content and structure of this information
depends on the method of overlay management used by the main program.

Interrupt 21h Function 4BOOh Load and Execute Program
Interrupt 21h Function 4BOlh Load Program
Interrupt 21h Function 4B03h Load Overlay

LOAD STRUC
IdEnvironment
IdCommandTail
IdFCB_1
IdFCB_2
IdSSSP
IdCSIP

LOAD ENDS

dw ?
dd ?
dd ?
dd ?
dd ?
dd ?

;environment-block segment
;address of command tail
;address of default FCB #1
;address of default FeB #2
;starting stack address
;starting code address

Fields

The LOAD structure contains addresses of the environment block, command
tail, and default file control blocks (FCBs) to be used by the child program.

IdEnvironment Specifies whether the child program receives a copy of the
parent program's environment or a new environment created by the parent pro­
gram. If this field is zero, the child program receives an exact duplicate of the
parent program's environment block. If the field is nonzero, the value entered
must be the segment address of a block of memory containing a copy of the new
environment for the child program.

IdCommandTaii Specifies a 32-bit address (segment:offset) of the command
tail. The system copies the command tail to offset 80h (pspCommandTaii field)
in the program segment prefix (PSP). The command tail must not exceed 128
bytes and should have the format described in Section 5.2.4, "Command TaiL"

Any redirection of standard files must be accomplished by the parent program.
Including redirection characters «, >, and Din a command tail does not
redirect files.

IdFCB_l Specifies a 32-bit address (segment:offset) of the first default FCB.
The system copies the FCB to offset 5Ch in the child program's PSP (pspFCB_l
field).

IdFCB_2 Specifies a 32-bit address (segment:offset) of the second default
FCB. The system copies the FCB to offset 6Ch in the child program's PSP
(pspFCB_2 field).

Comments

See Also

• LOADEXEC

LOADEXEC 83

IdSSSP Receives a 32-bit address (segment:offset) of the start of the stack for
the loaded program. This field is filled on return by Load Program (Interrupt 21h
Function 4BOlh).

IdCSIP Receives a 32-bit address (segment:offset) of the entry point of the
loaded program. This field is filled on return by Load Program (Interrupt 21h
Function 4BOlh).

If the IdEnvironment field contains a segment address, the parent program.must
fill the corresponding memory with zero-terminated ASCII strings, each having
the form described in Section 5.2.3, "Environment Block." The new environ­
ment must itself be zero-terminated and must not exceed 32K. Whether the child
program receives a duplicate environment or a new environment, the system
allocates unique memory for the child program and copies the environment
specified by the parent program to that memory. The system places the segment
address of this unique memory at offset 2Ch in the child program's PSP
(pspEnvironment field). The system automatically frees the memory when the
child program terminates.

Interrupt 21h Function 4BOlh Load Program

LOADEXEC STRUC
leEnvironment
leCommandTail
leFCB_1
leFCB_2

LOADEXEC ENDS

dw ?
dd ?
dd ?
dd ?

;environment-block segment
;address of command tail
;address of defau+t FCB #1
;address of default FCB #2

Fields

The LOADEXEC structure contains addresses of the environment block, com­
mand tail, and default file control blocks (FCBs) to be used by the child pro­
gram.

leEnvironment Specifies whether the child program receives a copy of the­
parent program's environment or a new environment created by the parent pro­
gram. If this field is zero, the child program receives an exact duplicate of the
parent program's environment block. If the field is nonzero, the value entered
must be the segment address of a block of memory containing a copy of the new
environment for the child program.

leCommandTail Specifies a 32-bit address (segment:offset) of the command
tail. The system copies the command tail to offset 80h (pspCommandTaii field)
in the program segment prefix (PSP). The command tail must not exceed 128
bytes and should have the format described in Section 5.2.4, "Command Tail."

Any redirection of standard files must be accomplished by the parent program.
Including redirection characters «, >, and Din a command tail does not
redirect files.

leFCB_l Specifies a 32-bit address (segment:offset) of the first default FeB.
The system copies the FCB to offset 5Ch in the child program's PSP (pspFCB_l
field).

leFCB_2 Specifies a 32-bit address (segment:offset) of the second default
FCB. The system copies the FCB to offset 6Ch in the child program's PSP
(pspFCBJ field).

84 LOADEXEC

Comments

See Also

H the leEnvironment field contains a segment address, the parent program must
fill the corresponding memory with zero-terminated ASCII strings, each having
the form described in Section 5.2.3, "Environment Block." The new environ­
ment must itself be zero-terminated and must not exceed 32K. Whether the child
program receives a duplicate environment or a new environment, the system
allocates unique memory for the child program and copies the environment
specified by the parent program to that memory. The system places the segment
address of this unique memory at offset 2Ch in the child program's PSP
(pspEnvironment field). The system automatically frees the memory when the
child program terminates.

Interrupt 21h Function 4BOOh Load and Execute Program

• LOADOVERLAY
LOADOVERLAY STRUC

loStartSegment dw ?
loRelocationFactor dw?

LOADOVERLAY ENDS

;segment address of overlay's memory
;relocation factor

Fields

See Also

• PSP

The LOADOVERLAY structure contains information used to load overlays.

loStartSegment Specifies the segment address of the memory allocated for
the overlay. MS-DOS loads the overlay into memory, starting at this address.

loRelocationFactor Specifies a relocation factor. For .EXE programs, this
value is typically the same as the loStartSegment value. For .COM programs, it
is zero.

Interrupt 21h Function 4B03h Load Overlay

PSP STRUC
pspInt20 dw ? ;Int 20h instruction
pspNextParagraph dw ? ;segment addr of next paragraph

db ? ; reserved
pspDispatcher db 5 dup (?) ;long call to MS-DOS
pspTermlnateVector dd ? ;Termination Address (Int 22h)
pspControlCVector dd ? ;CTRL+C Handler (Int 23h) addr
pspCritErrorVector dd ? ;Crit-Err Handler (Int 24h) addr

dw 11 dupe?) ; reserved
pspEnvironment dw ? ;segment address of environment

dw 23 dup ~?~ ; reserved
pspFCB_l db 16 dup ? ;default FCB #1
pspFCB_2 db 16 dUp (?) ;default FCB #2

dd ? ; reserved
pspCommandTail db 128 dup(?) ;command tail (also default DTA)

PSP ENDS

The PSP structure contains information about the program's execution environ­
ment, such as the amount of memory the system allocates for the program, the
location of the program's environment block, and the command-line arguments
supplied to the program.

Fields

Comments

See Also

PSP 85

psplnt20 Contains a Terminate Program (Interrupt 20h) instruction. This
field is provided for compatibility with earlier versions of MS-DOS.

pspNextParagraph Specifies the segment address of the first paragraph
immediately following the program. (This address does not point to free memory
available for the program to use.) Programs use this field to determine quickly
whether they were allocated sufficient memory to run successfully.

pspDispatcher Contains a long call to the MS-DOS function-request
handler. This field is provided for compatibility with earlier versions of MS­
DOS.

pspTerminateVector Specifies Termination Address (Interrupt 22h).
MS-DOS uses this address to restore the corresponding entry in the interrupt­
vector table when the process terminates.

pspControlCVector Specifies the address of CTRL+C Handler (Interrupt
23h). MS-DOS uses this address to restore the corresponding entry in the
interrupt-vector table when the process terminates.

pspCritErrorVector Specifies the address of Critical-Error Handler
(Interrupt 24h). MS-DOS uses this address to restore the corresponding entry in
the interrupt-vector table when the process terminates.

pspEnvironment Specifies the segment address of the environment block for
the program.

p spFCB_l Specifies the first 16 bytes of the first default file control block
(FCB) for the program. If the FCB contains a filename, it usually matches the
first argument in the command tail. This field is provided for. compatibility with
earlier versions of MS-DOS.

pspFCB_2 Specifies the first 16 bytes of the second default FeB for the pro­
gram. If the FCB contains a filename, it usually matches the second argument in
the command tail. This field is provided for compatibility with earlier versions of
MS-DOS.

pspCommandTaii Specifies an ASCII string containing command-line argu­
ments, such as filenames and switches.

The system places the PSP in the first 256 bytes of memory allocated for the pro­
gram. The PSP is followed immediately by the program code and data.

The pspCommandTaii field is also used as the default buffer pointed to by the
default disk transfer address (DTA). Unless a program explicitly changes the
DTA, the system uses this area as a buffer for file information returned by Find
First File (Interrupt 21h Function 4Eh) and Find Next File (Interrupt 21h
Function 4Fh), as well as for all FCB-type read and write operations.

Interrupt 20h Terminate Program
Interrupt 21h Function 4Eh Find First File
Interrupt 21h Function 4Fh Find Next File
Interrupt 21h Function 50h Set PSP Address
Interrupt 21h Function 51h Get PSP Address
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler

Chapter

6

National Language Support
6.1 Introduction. 89

6.2 Country Information... 89
6.2.1 Time, Date, and Other Formats 89
6.2.2 Character and String Conversions......................... 90
6.2.3 Conversion Tables.. 9()

6.3 Code Pages 91

6.4 Keyboard Layouts.. 92

6.5 Screen and Printer Fonts... 92

6.6 Code-Page Information Files (.CPI)............................. 93

6.7 Structures... 94

Chapter 6: National Language Support 89

6.1 Introduction
Programs use MS-DOS national-language-support functions to adapt the key­
board, screen, and printer devices for use in different countries. This chapter
describes the functions and structures used in five aspects of national language
support:

• Country information

• Code pages
• Keyboard layouts

• Screen and printer fonts

• Code-page information files

6.2 Country Information
Programs use country information to prepare the characters and formats for
date, time, currency, and other displayed information. Country information
includes the following:

• Time, date, and currency formats

• Lowercase-to-uppercase character-conversion tables

• Collating sequence for character sorting

• Valid single-byte characters for use in filenames

All country information is stored in the COUNTRY.SYS file. Default values are
set by the system if a country command is not included in the CONFIG.SYS
file. A program can retrieve information for any nondefault countries or code
pages; however, this information may not be available if the Nlsfunc program
has not been loaded. If the country command does not specify the path to the
COUNTRY.SYS file, the path nlust be given as an argument when Nlsfunc is
started. Retrieving country information does not change the system's current
country code.

6.2.1 Time, Date, and Other Formats
A program can retrieve information about the characters and formats used for
such values as time, date, currency, and numbers by using either Get/Set Coun­
try Information (Interrupt 21h Function 38h) or Get Extended Country Informa­
tion (Interrupt 21h Function 6501h). Get/Set Country Information copies the
country information specified by the current code page to a buffer supplied by
the program. Get Extended Country Information also copies country information
to a buffer, but it uses the country code and code page specified by the program
to determine which information to copy.

90 MS-DOS Programmer's Reference

The country information corresponds to an EXTCOUNTRYINFO structure:

;size of the structure, in bytes
;country code
;code-page identifier
;date format
;currency symbol (ASCIIZ)
;thousands separator (ASCIIZ)
;decimal separator (ASCIIZ)
;date separator (ASCIIZ)
;time separator (ASCIIZ)
;currency format
;places after decimal point
;12- or 24-hour format
;address of case-mapping routine
;data-list separator (ASCIIZ)
; reserved

1
1
1
1
5 dup (1)

~ i:~ 1!11
2 dup)
1
1
1
1
2 dup (1)
10 dup (1)

STRUC
dw
dw
dw
dw
db
db
db
db
db
db
db
db
dd
db
db

ENDS

EXTCOUNTRYINFO
eciLength
eciCountryCode
eciCodePageID
eciDateE'ormat
eciCurrency
eeiThousands
eciDecimal
eciDateSep
eciTimeSep
eciBitField
eeiCurrencyPlaces
eciTimeFormat
eciCaseMap
eciDataSep
eciReserved

EXTCOUNTRYINE'O

Get/Set Country Information returns the same information, but without the first
three fields.

For a full description of the EXTCOUNTRYINFO structure, see Section 6.7,
"Structures."

6.2.2 Character and String Conversions
A program can convert lowercase characters to uppercase by using Convert
Character (Interrupt 21h Function 6520h), Convert String (Interrupt 21h Func­
tion 6521h), or Convert ASCIIZ String (Interrupt 21h Function 6522h). Using
the uppercase conversion table associated with the current country and code
page, Convert Character converts the character in the DL register, and Convert
String and Convert ASCIIZ String replace each character in a string with its
uppercase equivalent.

Although the case-conversion functions are available to all programs, it is often
faster to carry out case conversions within the program itself.

6·.2.3 Conversion Tables
Programs can retrieve the conversion tables associated with a specified country
and code page by using the following functions:

Get Uppercase Table (Interrupt 21h Function 6502h)
Get Filename Uppercase Table (Interrupt 21h Function 6504h)
Get Filename-Character Table (Interrupt 21h Function 6505h)
Get Collate-Sequence Table (Interrupt 21h Function 6506h)

The conversion tables contain the information a program needs to convert
lowercase characters to uppercase, to sort characters or strings, and to deter­
mine which characters can be used in filenames. These functions return the 32­
bit addresses (segment:offset) of the conversion tables in memory owned by
MS-DOS. Programs should copy the tables to their own memory if they intend
to alter them.

Programs use the uppercase table to convert lowercase text characters to upper­
case; they use the filename uppercase table to convert lowercase filename char­
acters to uppercase. Each table begins with a 16-bit value that specifies the size,

FILECHARTABLE ENDS

Chapter 6: National Language Support 91

in bytes, of the character-value array in the table. This value is followed by the
array of uppercase-character values. Programs convert a lowercase character
to its uppercase equivalent by using the value of the lowercase character as an
index to the array. Since the uppercase and filename uppercase tables apply only
to extended ASCn characters (that is, characters with values greater than 127),
the program must subtract 128 from the lowercase character value to create the
index.

Programs use the collate-sequence table to sort characters and strings. The table
begins with a 16-bit value that specifies the size, in bytes, of the character-weight
array in the table. This value is followed by the array of 1-byte character weights.
Programs sort two characters by using the character values as indexes to the
character-weight array and comparing the resulting values. The character with
the lower weight appears first in a sorted list.

Programs use the filename-character table to determine which characters are per­
mitted in filenames. The beginning of the filename-character table corresponds
to a FILECHARTABLE structure, which has the following form:

FILECHARTABLE STRUC
fctLength dw? ;table length, in bytes, excl this field

db ?
fctFirst db? ;lowest permissible character value
fctLast db? ;highest permissible character value

db ?
ftcExcludeFirst db? ;first in range of excluded characters
ftcExcludeLast db? ;last in range of excluded characters

db ?
fctIllegals db? ;number of illegal characters in array

;start of array of illegal characters

For a full description of the FILECHARTABLE structure, see Section 6.7,
"Structures."

The filename-character table is followed by an array of illegal characters. The
illegal characters differ for each country, so the number of characters in a given
array is specified by the fctIlIegals field.

6.3 Code Pages
To display or print characters, MS-DOS uses code pages to translate character
values into images. Each code page defines a set of 255 characters. The set
includes language-specific and graphics characters in addition to the characters
corresponding to keyboard keys.

At startup, MS-DOS uses the default code page, called the system code page
(usually code page 437). A user can select a different code page by using the
country command in the CONFIG.SYS file or by using the chcp command
at the DOS prompt. A program can select a different code page by using Set
Global Code Page (Interrupt 21h Function 6602h). This function is similar to
the chcp command in that it changes the code page for the screen, keyboard,
and printer, if these devices have been prepared for the new code page. Neither
Set Global Code Page nor the chcp command can be used unless the Nlsfunc
program is loaded.

92 MS-DOS Programmer's Reference

A program can determine the active code page by using Get Global Code Page
(Interrupt 21h Function 6601h). This function returns both the system code page
and the code page set by the user or a program, if any.

For more information about code pages, see Appendix A, "Code Pages."

6.4 Keyboard Layouts
The layout of a keyboard defines the letters, numbers, and symbols represented
by its keys, in addition to the character values generated by pressing the keys.
Different keyboard layouts are used in different countries. Users can adapt
MS-DOS for these keyboard layouts by using the Keyb program. Programs can­
not adapt MS-DOS directly, but they also can use the Keyb program, by starting
it as a child program. .

At startup, MS-DOS installs a default keyboard layout. When a user or program
changes the layout by using the Keyb program, the default layout rem~ins avail­
able but inactive. Programs can switch between the new and default layouts by
using Set KEYB.COM Country Flag (Interrupt 2Fh Function OAD82h). (Press­
ing the CTRL+ALT+Fl or CTRL+ALT+F2 key combination has the same effect.) A
program can determine which layout is active by using Get KEYB.COM Country
Flag (Interrupt 2Fh Function OAD83h).

Programs can set the keyboard code page by using either Set Global Code Page
or Set KEYB.COM Active Code Page (Interrupt 2Fh Function OAD81h). Set
KEYB.COM Active Code Page sets only the keyboard's code page; it has no
effect on other devices. The current code page determines which character codes
are generated for a keyboard's keys. In general, programs should check that the
code page for the keyboard matches the code page for the screen.

A program can determine whether the Keyb program is loaded by using Get
KEYB.COM Version Number (Interrupt 2Fh Function OADBOh).

For more information about the keyboard layouts supported by MS-DOS, see
the Microsoft MS-DOS User's Guide and Reference.

6.5 Screen and Printer Fonts
Screen and printer fonts provide the bitmap or escape-sequence data required to
generate character images for displaying or printing. Different code pages have
different font data, so a program that changes the code page must also change
the fonts for the screen and printer devices. To do this, a font corresponding to
the specified code page must be available. The program can determine this by
using Query Code-Page Prepare List (Interrupt 21h Function 440Ch Minor Code
6Bh) to retrieve an array of code pages for which hardware or prepared fonts
exist. If a code page has a corresponding font (either hardware or prepared), the
program can either select it for global system use by using Set Global Code Page
or select it for only the specified device by using Select Code Page (Interrupt 21h
Function 440Ch Minor Code 4Ah). A program can determine the current code
page of the device by using Query Selected Code Page (Interrupt 21h Function
440Ch Minor Code 6Ah).

Chapter 6: National Language Support 93

If a corresponding font for a code page does not exist, a program can prepare a
new font by using the following procedure:

1 Use Start Code-Page Prepare (Interrupt 21h Function 440Ch Minor Code 4Ch)
to begin the preparation, identifying the device and the code pages for which to
prepare the new font.

2 Use Send Control Data to Character Device (Interrupt 21h Function 4403h) to
copy the contents of the device's corresponding code-page information (.CPI)
file to the device. For example, the program must copy the EGA.CPI file to an
EGA device.

3 Use End Code-Page Prepare (Interrupt 21h Function 440Ch Minor Code 4Dh) to
complete the preparation.

This procedure may fail if the DISPLAY.SYS and PRINTER.SYS drivers are
not installed by using device commands in the CONFIG.SYS file.

Note that users can carry out a similar preparation procedure by using the mode
command and the cp prepare switch.

6.6 Code-Page Information Files (.CPI)
Code-page information files, also called font files, contain the bitmap and
escape-sequence data required to support multiple code pages for screen or
printer devices. Included with MS-DOS are five font files, each identified by a
filename extension of .CPI:

File

EGA.CPI

LCD.CPI

4201.CPI

4208.CPI

5202.CPI

Supported device

Color console used with EGA and VGA display adapters

Liquid crystal display

mM Proprinters II and ill Model 4201 and IBM Pro­
printers II and rnXL Model 4202

IBM Proprinter X24 Model 4207 and IBM Proprinter XL24
Model 4208

mM Quietwriter III Model 5202

A font file has the following form:

FONTFILEHEADER <>
FONTINFOHEADER <>
CPENTRYHEADER <>

FONTDATAHEADER <>

;font file header
;font information header
;first code-page entry header

;first font data

Copyright db 150 dup (1) ;copyright notice

94 MS-DOS Programmer's' Reference

A font file begins with a FONTFILEHEADER structure that identifies the file as
a valid font file and specifies how many fonts it has. Currently, only one font per
file is permitted. A font file always ends with a copyright notice.

Each font in a font file has a corresponding FONTINFOHEADER structure that
specifies how many code pages the font file supports. This structure begins at the
offset contained in ftbOffset field in the FONTFILEHEADER structure.

For each code page, the file contains one CPENTRYHEADER structure, which
defines the code page and device for which the font was designed. This structure
also points to the next CPENTRYHEADER structure if the font file supports
more than one code page. The first CPENTRYHEADER structure immediately
follows the FONTINFOHEADER structure.

The cpeOffset field in each CPENTRYHEADER structure points to a font-data
block consisting of a FONTDATAHEADER structure and data for either a
screen font or a printer font. The cpeDevType field specifies whether the font
data defines a screen font or a downloadable printer font.

The FONTDATAHEADER structure specifies the number of fonts defined for
the code page. Each screen font begins with a SCREENFONTHEADER struc­
ture that specifies the raster dimensions of each character in the font and the
number of characters in the font. This structure is followed by the raster bitmaps
for the characters. A printer font begins with a PRINTERFONTHEADER struc­
ture that specifies which of two formats the font data has. This structure is fol­
lowed by control sequences that initialize and define the font.

For a full description of these structures, see Section 6.7, "Structures."

6.7 Structures
This section describes the structures MS-DOS uses for national language
support.

• CODEPAGE

CODEPAGE STRUC
cpLength dw 2
cpld dw 7

CODEPAGE ENDS

COUNTRYINFO 95

;structure size, excl this field (always 2)
;code-page identifier

Fields

See Also

• COUNTRYINFO

cpLength Specifies the size of the structure, in bytes. This value must be 2.

cpId Identifies the code page. This field can be one of the following values:
Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

Interrupt 21h Function 440Ch Minor Code 4Ah Select Code Page
Interrupt 21h Function 440Ch Minor Code 4Dh End Code-Page Prepare
Interrupt 21h Function 440Ch Minor Code 6Ah Query Selected Code Page

COUNTRYINFO STRUC
ciDateFormat dw
ciCurrency db
ciThousands db
ciDecimal db
ciDateSep db
ciTimeSep db
ci8itField db
ciCurrencyPlaces db
ciTimeFormat db
ciCaseMap dd
ciDataSep db
ciReserved db

COUNTRYINFO ENDS

7
5 dup (7

~ ~~~ ~~7
2 dup (
2 dup (7
7
7
7
7
2 dup (7)
10 dup (7)

;date format
;currency symbol (ASCIIZ)
;thousands separator (ASCIIZ)
;decimal separator (ASCIIZ)
;date separator (ASCIIZ)
;time separator (ASCIIZ)
;currency format
;places after decimal point
;12-hour or 24-hour format
;address of case-mapping routine
;data-list separator (ASCIIZ)
; reserved

Fields

The COUNTRYINFO structure contains country-specific information that pro­
grams use to format dates, times, currency, and other information.

ciDateFormat Specifies the format for the date. This field can be one of the
following values:

Value Meaning

DATE_USA «()()()()h) Month/day/year

DATE-.EUROPE (OOOlh) Day/month/year

DATE_JAPAN (OOO2h) Year/month/day

ciCurrency Specifies a zero-terminated ASCII (ASCITZ) string containing
the currency symbol.

ciThousands Specifies an ASCIIZ string containing the thousands separator.

ciDecimal Specifies an ASCIIZ string containing the decimal separator.

96 COUNTRYINFO

ciDateSep Specifies an ASCIIZ string containing the date separator.

ciTimeSep Specifies an ASCIIZ string containing the time separator.

ciBitField Specifies the format for currency. This field can be a combination
of the following settings:

Bit Meaning

o 0 = Currency symbol precedes amount

1 = Currency symbol follows amount

1 0 = No space between currency symbol and amount

1 = One space between currency symbol and amount

All other bits in ciBitField are undefined.

ciCurrencyPlaces Specifies the number of digits that appear after the
decimal place in currency figures.

ciTimeFormat Specifies the format for time. This field can be one of the fol­
lowing values:

Value Meaning

TIME_12HOUR (OOh) l2-hour time format

TIME-24HOUR (Olh) 24-hour time format

ciCaseMap Contains the 32-bit address (segment:offset) of the case­
conversion routine. The routine performs lowercase-to-uppercase mapping
(country-specific) for character values in the range BOh through OFFh and does
not convert characters with values less than BOh.

ciDataSep Specifies an ASCnZ string containing the data-list separator.

ciReserved Reserved; do not use.

Comments

See Also

To convert a character by using the case-conversion routine, a program copies
the character value to the AL register and calls the routine, using the address in
the ciCaseMap field. If there is a matching uppercase character, the routine
returns its value in the AL register. Otherwise, the routine returns the initial
value unchanged. The AL and FLAGS registers are the only altered registers.

Interrupt 21h Function 38h Get/Set Country Information
Interrupt 21h Function 6501h Get Extended Country Information

• CPENTRYHEADER

;size of this structure, in bytes
;offset to next CPENTRYHEADER structure
;device type
;device name and font-file name
;code-page identifier
; reserved
;offset to font data

STRUC
dw 1
dd 1
dw 1
db 8 dUp (1)
dw ?
db 6 dup (1)
dd 1

ENDS

CPENTRYHEADER
cpeLength
cpeNext
cpeDevType
cpeDevSubtype
cpeCodepageID
cpeReserved
cpeOffset

CPENTRYHEADER

The CPENTRYHEADER structure contains information about a code-page entry
in a font file.

Fields

• CPLIST

CPLIST 97

cpeLength Specifies the size of the CPENTRYHEADER structure, in bytes.
This field must be 28.

cpeNext Contains the offset to the next CPENTRYHEADER structure, in
bytes. For the last structure in the chain, this field must be zero.

cpeDevType Specifies the type of the device for which the font is designed.
This field is 1 if the device is a screen device, or 2 if the device is a printer.

cpeDevSubtype Contains a character string that names the screen or printer
type. This field also determines the name of the font file. For example, if the
subtype is EGA, the font-file name is EGA.CPI. If the string contains fewer
than eight characters, it is left-justified and padded with space characters (ASCII
20h).

cpeCodepageID Identifies the code page for which the font was designed.
This field can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

cpeReserved Reserved; must be zero.

cpeOffset Contains the offset, in bytes, to the font data associated with this
code page.

CPLIST STRUC
cplLength dw «HARDWARE_IDS+l)+ (PREPARED_IDS+l»*2

;structure length, in bytes, excluding this field

cplHlds
cplHid
cplPlds
cplPid

CPLIST ENDS

dw HARDWARE_IDS
dw HARDWARE_IDS dupe?)
dw PREPARED_IDS
dw PREPARED_IDS dupe?)

;number of hardware code pages
;array of hardware code pages
;number of prepared code pages
;array of prepared code pages

Fields

See Also

The CPLIST structure contains two arrays of code-page identifiers.

cplLength Specifies the length of the list, in bytes. This value does not
include the length of the cplLength field.

cplHIds Specifies the number of hardware code pages.

cplHid Specifies an array of hardware code-page identifiers. The array con­
tains the number of elements specified in the cplHlds field.

cplPIds Specifies the number of prepared code pages.

cplPid Specifies an array of prepared code-page identifiers. The array con­
tains the number of elements specified in the cplPIds field.

Interrupt 21h Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

98 CPPREPARE

• CPPREPARE
CPPREPARE STRUC

cppFlags dw 0
cppLength dw (CODEPAGE_IDS+l)*2

cpplds
cppld

CPPREPARE

dw CODEPAGE_IDS
dw CODEPAGE_IDS dup(1)

ENDS

flags (device-specific)
structure length, in bytes,
excluding first two fields
number of code pages in list
array of code pages

Fields

Comments

See Also

The CPPREPARE structure contains an array of code-page identifiers.

cppFlags Specifies device-specific flags.

cppLength Specifies the length of the structure, in bytes, excluding the
cppFlags and cppLength fields.

cppIds Specifies the number of code pages in the list.

cppId Specifies an array of code-page identifiers. The array contains the
number of elements specified in the cppIds field.

If OFFFFh is given as a code-page identifier, the device driver does not change
the code-page identifier at that position in its own list.

Interrupt 21h Function 440Ch Minor Code 4Ch Start Code-Page Prepare

• EXTCOUNTRYINFO

;size of the structure, in bytes
;country code
;code-page identifier
;date format
;currency symbol (ASCllZ)
;thousands separator (ASCIlZ)
;decimal separator (ASCllZ)
;date separator (ASCllZ)
;time separator (ASCllZ)
;currency format
;places after decimal point
;12- or 24-hour format
;address of case-mapping routine
;data-list separator (ASCllZ)
; reserved

1
1
1
1
5 dup (11)
2 dup ()
2 dup (1)
2 dup (1)
2 dup (1)
1
1
1
1
2 dup (1)
10 dup (1)

STRUC
dw
dw
dw
dw
db
db
db
db
db
db
db
db
dd
db
db

ENDS

EXTCOUNTRYINFO
eciLength
eciCountryCode
eciCodePageID
eciDateFormat
eciCurrency
eciThousands
eciDecimal
eciDateSep
eciTimeSep
eciBitField
eciCurrencyPlaces
eciTimeFormat
eciC~seMap

eciDataSep
eciReserved

EXTCOUNTRYlNFO

Fields

The EXTCOUNTRYINFO structure contains country-specific information that
programs use to format dates, times, currency, and other information.

eciLength Specifies the length of the structure, in bytes, not including this
field.

eciCountryCode Specifies the country code for the given information. It can
be one of the following:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

EXTCOUNTRYINFO 99

Value Meaning

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

045 Denmark

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International (~nglish)

351 Portugal

358 Finland

eciCodePageID Identifies the code page for the information given. This field
can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

eciDateFormat Specifies the format for the date. This field can be one of the
following values:

Value Meaning

DATE_USA (OOOOh) Month/day/year

DATE.-EUROPE (OOOlh) Day/month/year

DATE_JAPAN (OOO2h) Year/month/day

eciCurrency Specifies a zero-terminated ASCII (ASCIIZ) string containing
the currency symbol.

eciThousands Specifies an ASCIIZ string containing the thousands sepa­
rator.

eciDecimal Specifies an ASCnZ string containing the decimal separator.

100 EXTCOUNTRYINFO

eciDateSep Specifies an ASCnZ string containing the date separator.

eciTimeSep Specifies an ASCIIZ string containing the time separator.

eciBitField Specifies the format for currency. This field can be a combination
of the following settings:

Bit Meaning

o 0 l:: Currency symbol precedes amount

1 == Currency symbol follows amount

1 0 == No space between currency symbol and amount

1 =a One space between currency symbol and amount

All other bits in eciBitField are undefined.

eciCurrencyPlaces Specifies the number of digits that appear after the
decimal place in currency format.

eciTimeFormat Specifies the format for time. This field can be one of the
following values:

Value Meaning

Comments

See Also

TIME_12HOUR (OOh) l2-hour time format

TIME_24HOUR (Olh) 24-hour time format

eciCaseMap Contains the 32-bit address (segment:offset) of the case­
conversion routine. The routine performs lowercase-to-uppercase mapping
(country-specific) for character values in the range BOh through OFFh and does
not convert characters with values less than BOh.

eciDataSep Specifies an ASCnZ string containing the data-list separator.

eciReserved Reserved; do not use.

To convert a character using the case-conversion routine, the program copies the
character value to the AL register and calls the routine, using the address in the
eciCaseMap field. If there is a matching uppercase character, the routine returns
its value in the AL register. Otherwise, the routine returns the initial value
unchanged. The AL register and FLAGS registers are the only altered registers.

Interrupt 21h Function 6501h Get Extended Country Information

• FILECHARTABLE

FILBCHARTABLB STRUC
fctLength dw? ;table length, in bytes, excl this field

db ?
fctFirst db? ; lowest permissible character value
fctLast db? :highest permissible character value

db ?
ftcBxcludeFirst db? :first in range of excluded characters
ftcBxcludeLast db? ;last in range of excluded characters

db ?
fctIllegals db? :number of illegal characters in array

;start of array of illegal characters
FILBCHARTABLB BNDS

The FILECHARTABLE structure contains a list of characters that are and are
not permitted in filenames.

Fields

See ARso

FONTFILEHEADER 101

fctLength Specifies the length of the table, in bytes, not counting this field.

fctFirst Specifies the lowest permissible character value.

fctLast Specifies the highest permissible character value.

fctExcludeFirst Specifies the first character value in a range of excluded char­
acters.

fctExcludeLast Specifies the last character value in a range of excluded char­
acters.

fctIllegals Specifies the number of illegal characters in the table. The array of
illegal characters immediately follows this field.

Function 6505h Get Filename-Character Table

• FONTDATAHEADER

FONTDATAHEADER STRUC
fdhReserved dw ?
fdhFonts dw ?
fdhLength dw?

FONTDATAHEADER ENDS

; reserved
;number of fonts
;size of font data, in bytes

Fields

The FONTDATAHEADER structure contains information about the number and
size of the font descriptions for a code page. This structure is followed immedi­
ately by the screen or printer font descriptions.

fdhReserved Reserved. This field must be 1.

fdhFonts Specifies the number of fonts (font descriptions) that immediately
follow this structure. These font descriptions must contain definitions for charac­
ters in the associated code page. For printer devices, no more than one font
description can be given, so this field must be 1.

fdhLength Specifies the size, in bytes, of the font descriptions that immedi­
ately follow this structure.

• FONTFILEHEADER

FONTFILEHEADER STRUC
ffhFileTag db 8 dup(?) ;font-file identifier
ffhReserved db 8 dup(?) ;reserved
ffhPointers dw ? ;number of pointers
ffhPointerType db ? ;type of pointer
ffhOffset dd ? ;offset to information header

FONTFILEHEADER ENDS

Fields

The FONTFILEHEADER contains information that identifies the file as a valid
font file and specifies the number of fonts defined in the file.

ftbFileTag Identifies the font file. This field must contain the byte value OFFh,
followed by the characters F, 0, N, and T (ASCII 46h, 4Fh, 4Eh, and 54h,
respectively), and three space characters (ASCII 20h).

ftbReserved Reserved; must be zero.

flbPointers Specifies the number of information pointers in the header. For
current versions of MS-DOS, this value should be 1.

102 FONTFILEHEADER

ftbPointerType Specifies the type of information pointers in the header. For
current versions of MS-DOS, this value should be 1.

fib0 ffset Specifies the offset, in bytes, from the beginning of the file to the
information header.

• FONTINFOHEADER

FONTINFOHEADER STRUC
fihCodePages dw?

FONTINFOHEADER ENDS
;number of code-page entries

Field

The FONTINFOHEADER structure specifies the number of code-page entries
contained in the font file.

fihCodePages Specifies the number of code-page entries in the file.

• PRINTERFONTHEADER

PRINTERFONTHEADER STRUC
pfhSelType dw ?
pfhSeqLength dw?

PRINTERFONTHEADER ENDS

;selection type
.;sequence length, in bytes

Fields

Comments

The PRINTERFONTHEADER structure contains information about the length
and content of the control-sequence data used for the printer font. The structure
is followed immediately by control-sequence data and possibly one or more bytes
of downloadable font data.

ptbSelType Specifies the selection type for the printer font. This field can be
either of the following values:

Value Meaning

1 The control-sequence data consists of hardware escape data followed
by downloadable escape data. The hardware escape data contains the
sequence of characters that selects the hardware (default) font of the
printer. The first byte of the hardware escape data specifies the
number of characters in the sequence. The downloadable escape data
contains the sequence of control characters that selects the down­
loaded font currently resident in the printer. The first byte of the
downloadable escape data specifies the number of characters in the
sequence. The total number of bytes in the hardware and download­
able escape data must equal the number of bytes specified in the
ptbSeqLength field.

2 The control-sequence data consists of a single escape sequence that
selects the font for this code page. This font may have been down­
loaded.

ptbSeqLength Specifies the length of the control-sequence data, in bytes.
This value must always be less than 31.

The control-sequence data is used for initializing the printer for the code page
associated with this font.

SCREENFONTHEADER 103

Unlike the size of a screen-font description, the size of the printer-font descrip­
tion cannot be determined directly. Instead, its size must be calculated from the
fdhLength field of the FONTDATAHEADER structure. As a result, only one
printer-font description can immediately follow a FONTDATAHEADER struc­
ture.

The downloadable font data consists of the escape sequence required to down­
load the font description. This escape sequence depends on the printer. Its size
is determined by subtracting the size of the PRINTERFONTHEADER structure
from the fdhLength value in the corresponding FONTDATAHEADER structure.
Since the 4208 and 5202 printers have hardware support for code pages, they do
not need any font data to be downloaded. Therefore, the fdhLength field is
nonexistent in those font files.

These existing printer files use the following selection types:
Type Filename

1 4201.CPI

2 4208.CPI or 5202.CPI

• SCREENFONTHEADER
SCREENFONTHEADER STRUC

sfhHeight db ?
sfhWidth db ?
sfhRelHeight db?
sfhRelWidth db ?
sfhCharacters dw?

SCREENFONTHEADER ENDS

;character height
;character width
;must be zero
;must be zero
;number of characters defined in bitmap

Fields

Comments

The SCREENFONTHEADER structure specifies the raster dimensions of each
character in the font and the number of characters in the font. This structure is
followed by a raster bitmap for each character.

sfbHeight Specifies the number of rows, in pixels, that this character occu­
pies on the screen.

sfbWidth Specifies the number of columns, in pixels, that this character occu­
pies on the screen.

sfbRelHeight Specifies the relative height, a part of the aspect ratio. This
field is currently unused and must be zero.

sfbRelWidth Specifies the relative width, a part of the aspect ratio. This field
is currently unused and must be zero.

sfbCharacters Specifies the number of characters defined in the bitmaps
immediately following this structure. Normally, the entire ASCII character set is
defined, so this value is usually 256.

The bitmap data following the structure consists of one bitmap for each charac­
ter in the font. Each character bitlnap is a packed array of bits organized by row
and column, starting at the upper left corner of the character's image. Since all
current screen fonts are 8 bits wide, the number of bytes needed to encode this
packed array is equal to the square area of a character in the font divided by 8.

The total length of the screen-font description is 6 bytes plus the product of the
number of characters in the descriptions and the number of bytes needed to
encode a character bitmap.

Chapter

7

Interrupts
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9
7.10

7.11

Introduction .

MS-DOS Interrupts .

System Interrupts .

Exceptions .

Interrupt and Exception Handlers .

Interrupt Chains .

Mllltiplex Interrupt Handlers .

Terminate-and-Stay-Resident Programs .
7.8.1 Initialization Routine .
7.8.2 Service-Program Interrupt Handler .
7.8.3 Pop-up and Hardware-Support Interrupt Handlers .

MS-DOS Interrupt Reference .

Task-Switching Reference .
7.10.1 Notification Functions ..
7.10.2 Service Functions .

Structures .

107
107
108
110
110
112
112
113
114
115
115
116
171
171
182
193

Chapter 7: Interrupts 107

7.1 Introduction
This chapter describes the interrupts that provide the primary interface between
programs and the MS-DOS kernel and its supporting programs.

This chapter discusses the following:

• MS-DOS interrupts

• System interrupts

• Exceptions
• Interrupt and exception handlers

• Interrupt chains

• Multiplex interrupt handlers

• Terminate-and-stay-resident programs

• MS-DOS structures

7.2 MS-DOS Interrupts
MS-DOS reserves software interrupts 20h through 3Fh for its own use. Among
the features these interrupts provide are the interfaces to the MS-DOS system
functions and to MS-DOS programs that provide services to other programs.

Following are the MS-DOS interrupts:

Interrupt Description

20h Terminate Program

21h MS-DOS System Function

22h Termination Address

23h CTRL+C Handler

24h Critical-Error Handler

2Sh Absolute Disk Read

26h Absolute Disk Write

27h Terminate and Stay Resident

28h MS-DOS Idle Handler

29h Fast Console

2Ah Network/Critical Sections

2Eh Reload Transient

2Fh Multiplex Interrupt

Comments

For use by .COM programs

For use by all programs

For storage only (Do not
issue)

Replaceable

Replaceable

For use by .COM programs

Extendable

For use by MS-DOS charac­
ter I/O

For use by MS-DOS

For use by
COMMAND.COM only

Extendable

108 MS-DOS Programmer's Reference

Interrupt

30h

3lh

Description

MS-DOS Entry Point

MS-DOS Entry Point

Comments

For storage only (Do not
issue)

For storage only (Do not
issue)

All other reserved interrupts-2Bh through 2Dh and 32h through 3Fh-are not
currently used by MS-DOS. MS-DOS assigns a default interrupt handler to each
reserved interrupt it does not use. The default handler does nothing more than
return to the program that issued the interrupt.

For interrupts marked "Replaceable" or "Extendable" in the preceding table, a
program can provide its own interrupt handlers to replace or enhance the exist­
ing handlers. The prograln should leave all other interrupts unchanged. An
exception to this rule is a terminate-and-stay-resident program (TSR) that must
intercept interrupts to determine when MS-DOS system functions have been
called.

7.3 System Interrupts
On most computers, Interrupt OSh and Interrupts lOh through lFh are reserved
for use by ROM BIOS routines. Although these interrupts provide an interface
to low-level services for the computer, a program that uses these services cannot
be guaranteed to run correctly on all MS-DOS computers.

The following are typical low-level services:

Interrupt

OSh

08h

09h

OAh

OBh

OCh

ODh

OEh

OFh

lOh

l1h

12h

13h

Service

Print screen (issued when SHIFr+PRINT SCREEN is pressed)

Timer tick

Keyboard

Slave interrupt controller

COM1

COM2

LPT2

Floppy disk

LPT1

Video services

Peripheral equipment list

Memory size

Disk services

Interrupt

14h

1Sh

16h

17h

18h

19h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

70h

7Sh

76h

Chapter 7: Interrupts 109

Service

Serial-port services

Miscellaneous system services

Keyboard services

Printer services

ROM Basic

Restart computer

Time of day

Break (issued when CTRL+8REAK is pressed)

Timer

Video parameters (address only)

Diskette parameters (address only)

Graphics fonts (address only)

Real-time clock

Numeric coprocessor

Hard disk

In some cases, MS-DOS may replace or extend ROM BIOS routines and other
device-specific interrupt handlers for the following interrupts:

Interrupt

OOh

01h

02h*

03h

04h

08h-QEh*

1Sh

19h

1Bh

70h*

72h-74h*

76h-77h*

MS-DOS handler action

Displays "divide overflow" message and ter­
minates program

Returns immediately

Switches stack

Returns immediately

Returns immediately

Switches stack

If CTRL+ALT+DEL is detected, prepares MS-DOS
before restarting computer

Prepares MS-DOS before restarting computer

Places CTRL+C character value (03h) at top of key­
board input buffer

Switches stack

Switches stack

Switches stack

110 MS-DOS Programmer's Reference

Stack-switching interrupt handlers (marked * in the preceding list) are used in
conjunction with routines that support hardware interrupts. A stack-switching
handler sets up a new stack whe~ a hardware interrupt occurs, allowing the
corresponding interrupt routine to carry out operations without inadvertently
overflowing the stack that was active when the interrupt occurred. The stack­
switching handler restores the original stack when the interrupt routine returns.
Stack-switching interrupt handlers are enabled only if the stacks command in the
CONFIG.SYS file specifies eight or more stacks.

7.4 Exceptions
MS-DOS provides default handlers for some exceptions, such as the divide-error
exception (Interrupt OOh). A computer may also provide default exception
handlers as part of its ROM BIOS routines.

A program can provide its own exception-handling routines by replacing the
default handlers. For example, a debugging program can install its own handlers
for the single-step exception (Interrupt Olh) and the breakpoint exception
(Interrupt 03h). CPU capabilities determine what types of exceptions can occur
while a program is running and what information is available about them.

A program that replaces an exception handler must restore it before terminating.

7.5 Interrupt and Exception Handlers
Programs install interrupt and exception handlers to provide special responses to
software interrupts, hardware interrupts, errors, or other conditions detected by
the CPU. The handler determines what action to take. Most handlers carry out
the action and return to the program at the point of the interruption, although
some default handlers terminate the program that caused the interruption or
exception.

In general, an interrupt or exception handler should do the following:

• Save the registers it uses and restore them before returning.

• Take precautions to avoid stack overflow. If a handler uses more than a
few bytes of stack, it should use its own stack, restoring the original
stack before returning.

• Disable interrupts only when performing critical processing such as
changing stacks or updating critical data. Enable the interrupts immedi­
ately after completing the task.

• Use the iret instruction to return.

When the handler receives control, the SS:SP registers point to whatever stack
was active when the interrupt or exception occurred. This could be a stack
belonging to MS-DOS, to a program, or to other software. A handler that uses
more than a few bytes of stack should switch to its own stack.

Chapter 7: Interrupts 111

To install an interrupt or exception handler, a program must use the following
procedure:

1 Retrieve the address of the current handler by using Get Interrupt Vector
(Interrupt 2lh Function 35h).

2 Save the address of the current handler. Before terminating, the program must
restore this handler by using Set Interrupt Vector (Interrupt 2lh Function 25h).

3 Install the new handler by using Set Interrupt Vector.

Programs that install interrupt or exception handlers must restore the original
handlers before terminating. Since the default (MS-DOS) CTRL+C and critical­
error handlers (Interrupts 23h and 24h) terminate programs without restoring
interrupts, programs that install new handlers must also install custom handlers
for Interrupts 23h and 24h. The custom Interrupt 23h and Interrupt 24h handlers
must determine whether the program that installed the new handler is about to
terminate; if it is, they must restore the original interrupt handlers before the
program terminates. Note that MS-DOS automatically restores the original
Interrupt 23h and Interrupt 24h handlers.

In general, if an interrupt occurs while a program is running, the corresponding
interrupt handler can use any MS-DOS system function. In any other case, the
handler can use only the character I/O functions (Interrupt 21h Functions Olh
through Oeh). For example, if a divide-error exception occurs in a program, the
divide-error handler can display a message by using Write File or Device
(Interrupt 2lh Function 40h). However, if the error occurs in MS-DOS, the
handler must use a character I/O function, such as Display String (Interrupt 2lh
Function 09h). If a critical disk error is being processed, the handler must not
use any MS-DOS system function.

A handler can determine whether an interrupt or exception occurred in
MS-DOS by examining the InDOS flag. If MS-DOS is processing a system func­
tion, this one-byte flag is nonzero. The handler can retrieve the address of the
InDOS flag by using Get InDOS Flag Address (Interrupt 2lh Function 34h). The
handler can determine whether a critical disk error is being processed by exam­
ing the ErrorMode flag (the byte immediately before the InDOS flag). If the
ErrorMode flag is nonzero, MS-DOS is processing a critical disk error.

Although a program can install interrupt handlers that service hardware inter­
rupts, these handlers are device-specific and are not guaranteed to work with all
MS-DOS computers. To support hardware interrupts, the program installs an
interrupt service routine (ISR) and either programs the computer's interrupt
controller to support interrupts from the specified device or uses interrupts
defined by the device's ROM BIOS. In either case, the information required to
carry out these steps is beyond the scope of this book.

112 MS-DOS Programmer's Reference

7.6 Interrupt Chains
An interrupt chain is two or more interrupt handlers that process the same inter­
rupt. Programs create interrupt chains either to extend the capabilities of existing
interrupt handlers or to permit replacement handlers to take advantage of
features in existing handlers. For example, some programs intercept Interrupt
21h to detect when certain MS-DOS system functions have been called. Such
programs do not then carry out the system functions themselves; instead, they
pass control to the original Interrupt 21h handler.

A program creates an interrupt chain by installing an interrupt handler and sav­
ing the address of the original handler. When the new handler processes the
interrupt, it can either call or jump to the original handler if it needs help pro­
cessing the interrupt. A new handler calls the original handler if it needs to carry
out additional processing after the original handler completes its work. Other­
wise, it jUlnps to the original handler.

When a new handler calls an original handler, it can modify the registers and
stack before passing control to the original handler, but it must push the flags
onto the stack (by using the pushf instruction) before making the call. In all
cases, a handler should use the iret instruction to return from the interrupt.

A handler should assume nothing about the state of the system and should do
the following:

• Disable interrupts if it needs thelD disabled, and explicitly enable them
otherwise. Previous handlers in the interrupt chain mayor may not have
enabled them.

• Set the direction flag before executing string instructions.

• Call the next handler in the chain immediately if the interrupt is a time­
critical interrupt (for example, a timer interrupt). This ensures that
handlers expecting control immediately after the interrupt get it as soon
as possible.

7.7 Multiplex Interrupt Handlers
A program can provide services to other programs by installing an interrupt
handler for Multiplex Interrupt (Interrupt 2Fh). Multiplex Interrupt is a common
entry point for MS-DOS resident programs and device drivers that carry out
requests for other programs. For example, a program can add files to the print
queue (maintained by the resident program PRINT.EXE) by setting registers and
issuing Multiplex Interrupt.

To provide services to other programs, a service program must add its multiplex
handler to the interrupt chain and choose. a multiplex identifier. This identifier
is an integer that distinguishes the program's multiplex handler from all others in
the interrupt chain. When other programs request service, they place the service
program's multiplex identifier in the AH register. When Multiplex Interrupt is
issued, each multiplex handler in the interrupt chain must check the AH regis­
ter; if the register contains its identifier, the handler must process the service
request.

Chapter 7: Interrupts 113

Program identifiers must be in the range OCOh through OFFh. All other values
are reserved for MS-DOS programs and related software. The following are a
few of the reserved multiplex identifiers and their associated programs:

Multiplex Identifier

Olh

06h

lOh

llh

l4h

lAh

43h

48h

4Bh

OADh

OAEh

OBOh

OB7h

Provider

PRINT.EXE

ASSIGN.COM

SHARE.EXE

Network Redirector

NLSFUNC.EXE

ANSI.SYS

Extended Memory Manager (HIMEM.SYS)

DOSKEY.COM

Task Switcher

KEYB.COM

APPEND.EXE

GRAFTABL.COM

APPEND.EXE

The AL register specifies the function to carry out. Whenever a multiplex
handler processes a request, it checks the contents of the AL register to deter­
mine what action to take. By convention, OOh in the AL register specifies the
Installed State function. A multiplex handler processes this function by returning
a nonzero value (typically OFFh) in the AL register to indicate that it is installed.

7.8 Terminate-and-Stay-Resident Programs
When a terminate-and-stay-resident program (often called a TSR) returns control
to its parent program, its code and data remain in memory to be used by other
programs.

There are three types of terminate-and-stay-resident programs:

• Service programs. These provide useful functions for other programs.
For example, PRINT.EXE is a TSR that maintains the print queue and
provides functions that other programs can use to examine the queue
and add files to it. Service programs install an interrupt handler before
terminating. Subsequent progranls then use the corresponding interrupt,
much as they use MS-DOS SystelD Function (Interrupt 21h), to call the
service program's functions.

114 MS-DOS Programmer's Reference

• Pop-up programs. These monitor the keyboard and resume executing
upon receiving particular keystrokes. To monitor the keyboard, a pop-up
program intercepts an interrupt associated with the keyboard or with a
key combination, such as SHIFr+PRINT SCREEN or CTRL+BREAK.

• Hardware-support programs. These operate much like low-level device
drivers, controlling the operation of specific devices while providing
functions that permit other programs to access the device.

A terminate-and-stay-resident program consists of at least two parts: an initializa­
tion routine and one or more interrupt handlers. The initialization routine is gen­
erally the same for all programs. The interrupt handlers depend largely on the
program type, although they may carry out the same housekeeping tasks and are
installed by using the same procedure.

7.8.1 Initialization Routine
The initialization routine prepares the terminate-and-stay-resident program to be
used by other programs or to service interrupts generated by a device. The ini­
tialization routine must do the following:

• Make sure the TSR is not already loaded.

• Install the interrupt handler (or handlers).

• Free unneeded resources.

• Call Keep Program (Interrupt 21h Function 31h).

Unless a TSR is designed to be loaded more than once, it should safeguard
against the user's starting it multiple times. The TSR can do this by using Multi­
plex Interrupt (Interrupt 2Fh) and a custom interrupt handler. An MS-DOS
TSR, such as PRINT.EXE, uses this technique. In general, each time it starts,
the TSR issues Interrupt 2Fh, supplying an identifier unique to the TSR. If the
interrupt returns a reply, a copy of the TSR has already been loaded. Otherwise,
the TSR must install a custom handler that replies to all subsequent calls to the
TSR.

The TSR must install its interrupt handlers by using Set Interrupt Vector (Inter­
rupt 21h Function 25h). This function copies the address of the interrupt handler
to the interrupt table. If a program or device issues the corresponding interrupt,
control passes to the interrupt handler. Before installing the interrupt handler,
the TSR should also use Get Interrupt Vector (Interrupt 21h Function 35h) to
retrieve the address of the current handler so that it can be restored if the TSR
is removed from memory.

Before calling Keep Program, the initialization routine should do the following:

• Close all unneeded files, including standard devices.

• Free the environment block if it is not needed.

• Free all memory not needed to support the interrupt handler.

Chapter 7: Interrupts 115

When it calls Keep Program, the routine should specify the smallest possible
amount of program memory to retain. In particular, the code and data for the
initialization routine should be at the end of the TSR, to ensure that they are
freed by Keep Program.

7.8.2 Service-Program Interrupt Handler
A service program's interrupt handler receives execution control from programs
that use the Int instruction to issue an interrupt. The calling program, before
issuing the interrupt, fills registers with whatever values are needed. The inter­
rupt handler determines which function to carry out and uses the values passed
to it to complete the function.

The service program may install a handler for any nonreserved interrupt. (Most
interrupts from OOh through 7Fh are reserved by MS-DOS or by the computer's
ROM BIOS.) Rather than use a new interrupt, however, many service programs
expand the multiplex-interrupt handler they install so that it also receives and
processes function requests and replies to queries about the installation state.

When the interrupt handler receives control, the stack, the current program seg­
ment prefix (PSP), and the current disk transfer address (DTA) belong to the
calling program. In addition, any registers not explicitly used with the function
request may contain values that the calling program expects to remain
unchanged. If the interrupt handler changes any of these resources, it must save
and then restore the original resource before returning.

The current program's PSP determines which open files are available to the
interrupt handler. To access files other than those opened by the calling pro­
gram, the interrupt handler must change the current PSP by using Set PSP
Address (Interrupt 21h Function SOh). It can retrieve the current PSP by using
Get PSP Address (Interrupt 2lh Function S1h).

If the interrupt handler uses the buffer pointed to by the current DTA, it should
change the current address to the address of its own buffer by using Set Disk
Transfer Address (Interrupt 2lh Function lAh). This change ensures that any
data in the buffer pointed to by the calling program's DTA is not overwritten.
The interrupt handler can retrieve the current DTA by using Get Disk Transfer
Address (Interrupt 21h Function 2Fh).

7.8.3 Pop-up and Hardware-Support Interrupt Handlers
A pop-up or hardware-support program's interrupt handler receives control
asynchronously-that is, whenever the user presses a key or a device generates
an interrupt. To service the interrupt, the system temporarily suspends the
current instruction and passes control to the interrupt handler. Since an asyn­
chronous interrupt may occur at any time, the interrupt handler must determine
the state of MS-DOS and possibly of the ROM BIOS before carrying out any
operations. If a pop-up or hardware-support interrupt occurs while an MS-DOS
system function or ROM BIOS routine is being carried out, the interrupt
handler should ignore the interrupt and return immediately.

116 MS-DOS Programmer's Reference

If the interrupt handler uses MS-DOS system functions, it must check the
InDOS flag before calling a function and must check the ErrorMode flag before
calling any character I/O function (Interrupt 2lh Functions Olh through OCh).

The one-byte InDOS flag specifies whether MS-DOS is currently processing a
system function. If the flag is nonzero, the interrupt handler can call only the
character I/O functions; it must not call other MS-DOS system functions. A
program can retrieve the address of the InDOS flag by using Get fuDOS Flag
Address (Interrupt 2lh Function 34h).

The one-byte ErrorMode flag specifies whether MS-DOS is currently processing
a critical disk error. If it is, the flag is nonzero and the interrupt handler must
not call any MS-DOS system function, including the character I/O functions.
The ErrorMode flag occupies the byte immediately before the InDOS flag, so a
program can determine the ErrorMode flag address by subtracting 1 from the
InDOS flag address.

The interrupt handler must check whether any ROM BIOS routine it calls
directly has been interrupted, and it must not call an interrupted ROM BIOS
routine that is not reentrant. Since MS-DOS provides no means to determine
Whether. a ROM BIOS routine has been interrupted, a TSR must intercept these
interrupts and record when control enters and leaves the routines. The interrupt
handler can then check this record before making a call to the ROM BIOS.

The interrupt handler must not continue if another hardware interrupt is being
processed. To determine whether an interrupt is active, the TSR must query the
system. interrupt controller. .

7.9 MS-DOS Interrupt Reference
This section describes MS-DOS Interrupts 20h through 28h and Interrupt 2Fh in
detail. The reference page for each interrupt provides the syntax, a statement of
purpose, any parameter descriptions, and cross-references to similar or related
interrupts and to related functions.

Interrupts 2Bh through 2Dh and 32h through 3Fh are not currently used by MS­
DOS and are not documented here. Interrupts 29h, 2Ah, 2Eh, 30h, and 3lh are
also not documented.

• Interrupt 20h Terminate Program

Interrupt 20h Terminate Program 117

Superseded
lnt 20h ;Termlnate Program

Parameters

Return Value

Comments

See Also

Terminate Program (Interrupt 20h) terminates the current program and returns
control to its parent program.

This interrupt has been superseded. Programs should use the Interrupt 21h
function End Program (Function 4Ch).

This function has no parameters.

This interrupt does not return.

This interrupt is intended to be used by .COM programs. When a program
issues the interrupt, the CS register must contain the segment address of the
program segment prefix (PSP).

This interrupt carries out the following actions:

• Flushes the file buffers and closes files, unlocking any regions locked by
the program.

• Restores Ternlination Address (Interrupt 22h) from offset OAh in the
PSP (pspTerminateVector field).

• Restores the CTRL+C Handler (Interrupt 23h) from offset OEh in the PSP
(pspControlCVector field).

• Restores the Critical-Error Handler (Interrupt 24h) from offset 12h in
the PSP (pspCritErrorVector field).

• Frees any memory owned by the terminating program.

After completing these actions, this interrupt transfers control to the address
specified by offset OAh in the PSP.

Interrupt' 21h Function OOh Terminate Program
Interrupt 21h Function 4Ch End Program
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler

118 Interrupt 21 h MS-DOS System Function

• Interrupt 21h MS-DOS System Function

MS-DOS System Function (Interrupt 21h) carries out one of the functions
described in Chapter 8, "Interrupt 21h Functions."

Comments

Interrupt 22h Termination Address 119

• Interrupt 22h Termination Address

Termination Address (Interrupt 22h) is not used as an interrupt. Instead, MS­
DOS stores the termination address for the current program in the correspond­
ing vector-table entry. This address is also specified in offset OAh in the current
program's PSP (pspTerminateVector field).

Programs must not issue Interrupt 22h.

The termination address is a return address back to the program that started the
current program. MS-DOS transfers control to the termination address as the
last step in completing Terminate Program (Interrupt 20h), Terminate Program
(Interrupt 21h Function OOh), Keep Program (Interrupt 21h Function 31h), End
Program (Interrupt 21h Function 4Ch), and Terminate and Stay Resident (Inter­
rupt 27h). These functions always restore the vector-table entry from offset OAh
in the current PSP before transferring control, so changes to the vector-table
entry are ignored.

Before transferring control to the termination address, MS-DOS restores the
parent program's stack and PSP. Furthermore, if a program terminates by using
Terminate Program (Interrupt 20h or Interrupt 21h Function DOh) or End Pro­
gram (Interrupt 21h Function 4Ch), MS-DOS frees all resources for the pro­
gram, such as allocated memory, stack, files, and standard devices. This means
that changes to the termination address in the PSP or direct calls to the termina­
tion address may corrupt the operation of the system.

See Also Interrupt 20h Terminate Program
Interrupt 21h Function OOh Terminate Program
Interrupt 21h Function 31h Keep Program
Interrupt 21h Function 4Ch End Program
Interrupt 27h Terminate and Stay Resident

Comments

120 Interrupt 23h CTRL+C Handler

• Interrupt 23h CTRL+C Handler

CTRL+C Handler (Interrupt 23h) carries out program-specific actions in response
to the CTRL+C (ASCII 03h) key combination being pressed. MS-DOS issues this
interrupt if it receives the CTRL+C character while processing a system function.
The handler carries out its actions then returns to the system in order to restart
the system function or terminate the current program.

Programs must not issue Interrupt 23h.

MS-DOS sets the current CTRL+C handler when starting a program, copying the
address of the parent program's handler to both the vector-table entry and offset
OEh in the new program's PSP (pspControlCVector field). Although a program
can change the vector-table entry, it must not change the address in its PSP,
since MS-DOS uses this address to restore the parent program's handler.

MS-DOS does not immediately issue Interrupt 23h when the user presses the
CTRL+C key combination. Instead, the system places the CTRL+C character
(ASCn 03h) in the keyboard buffer; if no other characters are ahead of the con­
trol character, the system processes it while carrying out a system function. For
most computers, MS-DOS also places a CTRL+C character in a buffer when the
user presses the CTRL+BREAK key combination. Pressing this combination places
a CTRL+C character ahead of all other characters in the keyboard buffer.

MS-DOS checks for the CTRL+C character while carrying out character I/O
functions (Interrupt 2lh Functions Olh through OCh). It also checks for the char­
acter while carrying out other system functions-but only if the CTRL+C check
flag is set. If the I/O mode for the keyboard (or input device) is binary, the sys­
tem disables CTRL+C character processing while a program uses Read File or
Device (Interrupt 2lh Function 3Fh) and the CTRL+C 'character is read as input.

Before issuing Interrupt 23h, MS-DOS does the following:

• Sets all registers to the values they had when the interrupted system
function was initially called.

• Sets the program's stack to be the current stack. When the handler
receives control, the stack has the following contents (from the top of
the stack):

The return address (CS:IP) and the flags needed for the fret
instruction back to the system.

The return address (CS:IP) and the flags needed for the iret
instruction back to the program.

• Sets to zero any internal system variables, such as the ErrorMode and
InDOS variables, so that the handler can call system functions or even
return directly to the program without disrupting system operations.

A CTRL+C handler can call any system function.

Upon returning from Interrupt 23h, MS-DOS checks the method of return to
determine what action to take. If the handler sets the carry flag and returns with
the retf instruction, MS-DOS terlninates the program by calling End Program

See Also

Interrupt 23h CTRL+C Handler 121

(Interrupt 21h Function 4Ch). If the handler returns with the iret instruction or
with the retf instruction after clearing the carry flag, the system repeats the call
to the system function, starting the function's action again from the beginning.
In this case, the handler must preserve all registers, restoring them before
returning to the system.

COMMAND.COM provides the default CTRL+C handler, which terminates the
current program unless a batch file is running, in which case the handler
prompts the user to continue (or not) with the next command in the file. Since
prompting the user suspends execution of the current program until the user
responds, programs that lock resources (especially over a network) should
replace the default handler. In general, a program should make sure that other
programs can access resources even while it is suspended.

Interrupt 21h Function 3Fh Read File or Device
Interrupt 21h Function 4Ch End Program

Comments

122 Interrupt 24h Critical-Error Handler

• Interrupt 24h Critical-Error Handler
Critical-Error Handler (Interrupt 24h) carries out program-specific actions in
response to critical errors during read and write operations. MS-DOS issues this
interrupt if a critical error occurs while a system function is attempting to read
from or write to a device or file. The handler carries out its actions then returns
to the system to retry the function, terminate the function, or terminate the
current program.

Programs must not issue Interrupt 24h.

MS-DOS sets the current critical-error handler when starting a program, copying
the address of the parent program's handler to both the vector-table entry and
offset 12h in the new program's PSP (pspCritErrorVector field). Although a pro­
gram can change the vector-table entry, it must not change the address in its
PSP, since MS-DOS uses this address to restore the parent program's handler.

Before issuing Interrupt 24h, MS-DOS does the following:

• Sets the AX, DI, BP, and SI registers with information about the error,
such as the error value, location of the error, type of device, and type of
operation.

• Sets the program's stack to be the current stack. When the handler
receives control, the stack has the following contents (from the top of
the stack):

The return address (CS:IP) and the flags needed for the iret
instruction back to the system.

The contents of the program's registers at the time the system function
that caused the error was called. The registers are preserved in the
following order: AX, BX, CX, DX, SI, DI, BP, DS, and ES.

The return address (CS:IP) and the flags needed for the lret
instruction back to the program.

• Sets internal system variables, such as those for InDOS and ErrorMode.
InDOS is set to zero to permit the handler to call system functions.
ErrorMode is set to 1 to prevent the system from issuing Interrupt 24h
again before the handler returns; MS-DOS issues only one Interrupt 24h
at a time.

MS-DOS passes information about the error to the handler by using the follow­
. ing registers:

Register Description

AH Specifies information about when and where the error occurred, as
well as how the critical-error handler can respond to the error. The
bits in this register can have the following values:
Bit Meaning

o Specifies the operation that caused the error. If this bit is 0,
the error occurred during a read operation. Otherwise, the
error occurred during a write operation.

Register

Interrupt 24h Critical-Error Handler 123

Description

Bit Meaning

1,2 Specify the location of the error, but only if the error
occurred on a block device. These bits can have the follow­
ing values:

00 == error in reserved sector (MS-DOS area)
01 == error in file allocation table (FAT)
10 1:1 error in directory
11 = error in data area

3 Specifies whether the handler can terminate the function. If
this bit is 1, the handler can terminate the function. Other­
wise, it must not.

4 Specifies whether the handler can retry the function. If this
bit is 1, the handler can retry the function. Otherwise, it
must not.

5 Specifies whether the handler can ignore the error. If this
bit is 1, the handler can ignore the error. Otherwise, it
must not.

6 Reserved.

7 Specifies the type of device on which the error occurred. If
this bit is 0, the error occurred on a block drive. If this bit
is 1, it indicates that the error occurred either on a character
device or in the memory image of the FAT, and that the
handler must check bit 15 in the dbAttrlbutes field (offset
04h) of the DEVICEHEADER structure to determine the
exact location. If bit 15 is set, the error occurred on a char­
acter device. Otherwise, the error occurred in the memory
image of the FAT.

AL Specifies the drive number (0 == A, 1 == B, 2 1m C, and so on) if the
error occurred on a block device. This register is not used for
errors that occur on character devices.

DI Specifies the error value. The error value, in the lower byte only,
can be one of the following:
Value Meaning

OOh Attempt to write on write-protected disk

01h Unknown unit

02h Drive not ready

03h Unknown command

04h CRC error in data

124 Interrupt 24h Critical-Error Handler

Register Description

Value Meaning

OSh Incorrect length of drive-request structure

06h Seek error

07h Unknown media type

OSh Sector not found

09h Printer out of paper

OAh Write fault

OBh Read fault

OCh General failure

;link to next driver
;device attributes
;strat-routine offset
;intrpt-routine offset
;logical-device name
; (char device only)
;or number of units
; (block device only)

dd 1
dw 1
dw ?
dw 1
db '11111111'

The upper byte of the DI register is undefined.

Points to the DEVICEHEADER structure that contains information
about the device on which the error occurred. The DEVICE·
HEADER structure has the following form:

DEVICEHEADER STRUC
dhLink
dhAttributes
dhStrategy
dhInterrupt
dhNameOrUnits

BP:SI

DEVICEHEADER ENDS

For a full description of the DEVICEHEADER structure, see
Chapter 9, "Device Drivers."

The handler must not change the contents of the DEVICEHEADER
structure.

The critical-error handler must deterQline what action to take in response to the
error. For example, the default handler displays information about the error and
prompts the user for input on how to proceed.

The critical-error handler can call the following Interrupt 21h functions:

Character I/O (Functions Olh through Oeh)
Get CTRL+C Check Flag (Function 3300h)
Set CTRL+C Check Flag (Function 3301h)
Get Startup Drive (Function 3305h)
Get MS-DOS Version (Function 3306h)
Set PSP Address (Function SOh)
Get PSP Address (Functions 5lh and 62h)
Get Extended Error (Function 59h)

No other system functions are perluitted. Get Extended Error (Function 59h)
retrieves detailed information about the error and is useful for handlers that
display as much information as possible about the error.

See Also

Interrupt 24h Critical-Error Handler 125

The handler must preserve the BX, ex, DX, DS, ES, SS, and SP registers and
restore the preserved values before returning to the system. The critical-error
handler returns to the system by using the iret instruction. Before returning, it
also must set the AL register to a value specifying the action the system should
take. Dependin~ on what actions are allowed (as specified by bits 3, 4, and 5 in
the AH register), the AL register can contain one of the following values:

Value Meaning

OOh Ignore the error. The system permits the system function to return to
the program as if it had completed successfully.

Olh Retry the operation. The system calls the system function again. In
this case, the system expects the handler to have preserved and
restored registers before returning.

02h Terminate the program. The system sets the termination type to be
EXIT_CRITICAL_ERROR (02h) and carries out the same actions as
End Program (Interrupt 21h Function 4Ch).

03h Terminate the function. The system permits the system function to
return to the program with an error value.

MS-DOS checks the value to ensure that it is allowed. If values OOh and Olh are
not allowed, the system terminates the function. If value 03h is not allowed, the
system terminates the program.

COMMAND.COM provides the default critical-error handler, which displays a
message about the error and, after displaying a question such as "Abort, Retry,
Fail, or Ignore?", prompts the user for a response.

Interrupt 2lh Functions Olh through l2h (Character 1/0 Functions)
Interrupt 21h Function 3300h Get CTRL+C Check Flag
Interrupt 2lh Function 330lh Set CTRL+C Check Flag
Interrupt 21h Function 3305h Get Startup Drive
Interrupt 21h Function 3306h Get MS-DOS Version
Interrupt 21h Function 50h Set PSP Address
Interrupt 21h Function 51h Get PSP Address
Interrupt 21h Function 59h Get Extended Error

126 Interrupt 25h Absolute Disk Read

• Interrupt 25h Absolute Disk Read

mov
mov
mov
mov
mov
mov

al, Drive
bx, seg Buffer
ds, bx
bx, offset Buffer
ex, Sectors
dx, FirstSector

Superseded

;0 = A, 1 = B, 2 = C, etc.

;ds:bx points to data buffer
;number of sectors to read
;first logioal sector to read

int
jc

popf

2Sh
error_handler

;Absolute Disk Read

;MUST pop registers after lnt returns

;sector number to start
;number of sectors
;address of buffer

dd ?
dw ?
dd ?

Absolute Disk Read (Interrupt 25h) reads from one or more logical sectors on
the specified drive and copies the data to the specified buffer.

This interrupt has been superseded. Programs should use Read Track on Logical
Drive (Interrupt 21h Function 440Dh Minor Code 61h).

Drive Specifies the number of the drive to read (0 = A, 1 = B, 2 = C, and so
on).

Buffer Points to either a buffer that receives data or to a DISKIO structure,
depending on the value of the Sectors parameter. If Sectors is OFFFFh, Buffer
must point to a DISKIO structure that contains the starting sector, count of sec­
tors, and address of the buffer to receive the data. The DISKIO structure has
the following form:

DISKIO STRUC
diStartSector
diSectors
diBuffer

DISKIO ENDS

Parameters

For a full description of the DISKIO structure, see Chapter 3, "File System."

The DISKIO structure is required if the size of the specified drive is greater than
32MB.

Sectors Specifies either the number of sectors to read or OFFFFh, depending
on the size of the specified drive. If the drive size is greater than 32 MB, Sectors
must be OFFFFh.

FirstSector Specifies the number of the first logical sector to read. If Sectors
is OFFFFh, this number is ignored and the starting sector must be specified in
the DISKIO structure.

Return Value If the interrupt is successful, the carry flag is clear and the buffer contains the
information read from the disk. Otherwise, the carry flag is set and the AL and
AH registers contain error values. The AL register specifies device-driver errors
and contains one of the following values:

Value Meaning

Olh Unknown unit

02h Drive not ready

04h Data error (CRC error)

06h Seek error

Comments

See Also

Interrupt 25h Absolute Disk Read 127

Value Meaning

07h Unknown media

08h Sector not found

OBh Read fault

OCh General failure

OFh Invalid media change

For most computers, the AH register specifies ROM BIOS errors and may con­
tain one of the following values:

Value Description

01h Bad command

02h Address mark not found

04h Sector not found

10h Data error (CRC error)

20h Controller failure

40h Seek failure

BOh No response from drive

Upon returning, Interrupt 25h leaves the CPU flags on the stack. Programs
should check the carry flag for an error before popping the flags from the stack.

Interrupt 25h does not process critical errors. If one occurs, the interrupt rou­
tine returns an error value to the program but does not issue Critical-Error
Handler (Interrupt 24h)~

Interrupt 25h reads logical sectors only. This means, for example, that it cannot
read hidden sectors.

Interrupt 21h Function 440Dh Minor Code 61h Read Track on Logical Drive
Interrupt 24h Critical-Error Handler
Interrupt 26h Absolute Disk Write

128 Interrupt 26h Absolute Disk Write

• Interrupt 26h Absolute Disk Write Superseded

mov
mov
mov
mov
mov
mov

aI, Drive
bx, seg Buffer
ds, bx
bx, offset Buffer
cx, Sectors
dx, FirstSector

;0 = A, 1 = B, 2 = C, etc.

;ds:bx points to data buffer
;number of sectors to write
;first logical sector to write

int
jc

popf

26h
error_handler

;Absolute Disk Write

;MUST pop registers after int returns

;sector number to start
;number of sectors
;address of buffer

dd ?
dw ?
dd ?

Absolute Disk Write (Interrupt 26h) writes data from the specified buffer to one
or more logical sectors on the specified drive.

This interrupt has been superseded. Programs should use Write Track on Logi­
cal Drive (Interrupt 21h Function 440Dh Minor Code 41h).

Drive Specifies the number of the drive to write to (0 = A, 1 = B, 2 = C, and
so on).

Buffer Points to either a buffer that contains data to write or a DISKIO struc­
ture, depending on the value of the Sectors parameter. If Sectors is OFFFFh,
Buffer must point·to a DISKIO structure that contains the starting sector, count
of sectors, and address of the buffer containing the data. The DISKIO structure
has the following form:
DISKIO STRUC

diStartSector
diSectors
diBuffer

DISKIO ENDS

Parameters

For a full description of the DISKIO structure, see Chapter 3, "File System."

The DISKIO structure is required if the size of the specified drive is greater than
32MB.

Sectors Specifies either the number of sectors to write or OFFFFh, depending
on the size of the specified drive. If the drive size is greater than 32 MB, Sectors
must be OFFFFh.

Firs/Sector Specifies the number of the first logical sector to write. If Sectors
is OFFFFh, this number is ignored and the starting sector must be specified in
the DISKIO structure.

Return Value If the interrupt is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AL and AH registers contain error values~ The AL register specifies
device-driver errors and contains one of the following values:

Value Meaning

OOh Write-protection violation

Olh Unknown unit

02h Drive not ready

04h Data error (CRC error)

06h Seek error

Comments

See Also

Interrupt 26h Absolute Disk Write 129

Value Meaning

07h Unknown media

08h Sector not found

OAh Write fault

OCh General failure

OFh Invalid media change

For most computers, the AH register specifies ROM BIOS errors and may con­
tain one of the following values:

Value Description

Olh Bad command

02h Address mark not found

03h Write-protection fault

04h Sector not found

lOh Data error (CRC error)

20h Controller failure

40h Seek failure

SOh No response from drive

Upon returning, Interrupt 26h leaves the CPU flags on the stack. Programs
should check the carry flag for an error before popping the flags from the stack.

Interrupt 26h does not process critical errors. If one occurs, the interrupt rou­
tine returns an error value to the program but does not issue Critical-Error
Handler (Interrupt 24h).

Interrupt 26h writes logical sectors only. This means, for example, that the inter­
rupt cannot write to hidden sectors.

Interrupt 21h Function 440Dh Minor Code 41h Write Track on Logical Drive
Interrupt 24h Critical-Error Handler
Interrupt 25h Absolute Disk Read

130 Interrupt 27h Terminate and Stay Resident

• Interrupt 27h Terminate and Stay Resident Superseded

mov
int

dx, offset Bytes
27h

;number of bytes to remain resident
;Terminate and Stay Resident

Parameter

Return Value

Comments

See Also

Terminate and Stay Resident (Interrupt 27h) ends the current program·by
returning control to its parent program, but it leaves the program in memory and
preserves such program resources as open files and allocated memory.

This interrupt has been superseded. Programs should use Keep Program
(Interrupt 21h Function 31h).

Bytes Specifies the number of program bytes to remain in memory. This
number must be in the range OOOOh through OFFFFh.

This interrupt does not return.

This interrupt is intended to be used by .COM programs. When a program
issues the interrupt, the CS register must contain the segment address of the
program segment prefix (PSP).

This interrupt carries out the following actions:

• Sets the new size of the program by converting the value of the Bytes
parameter to a corresponding number of paragraphs and reallocating the
program memory. Program memory includes only-the PSP and program
data and code. The reallocation does not affect the program's environ­
ment block, nor does it affect the Inemory allocated by the program after
it was loaded.

• Flushes the file buffers but leaves files open.
• Restores Termination Address (Interrupt 22h) from offset OAh in the

PSP (pspTerminateVector field).
• Restores the address of CTRL+C Handler (Interrupt 23h) from offset OEh

in the PSP (pspControlCVector field).
• Restores the address of Critical-Error Handler (Interrupt 24h) from

offset 12h in the PSP (pspCritErrorVector field).

After completing these actions, this interrupt transfers control to the address
specified by offset OAh in the PSP.

Interrupt 21h Function 31h Keep Program
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler

• Interrupt 28h MS-DOS Idle Handler

Interrupt 28h MS-DOS Idle Handler 131

Superseded

Comments

See Also

MS-DOS Idle Handler (Interrupt 28h) carries out background operations, such
as printing from a queue, while the system waits for user input. MS-DOS issues
this interrupt while waiting for completion of character I/O functions (Interrupt
21h Functions Olh through OCh).

Programs that are idle (for example, programs that -are polling for user input)
can issue Interrupt 28h. Programs should also issue MS-DOS Idle Call (Interrupt
2Fh Function 1680h).

MS-DOS provides a minimal MS-DOS idle handler that returns immediately.
System commands, such as print, install their own handlers to carry out back­
ground processing. Although other programs can install MS-DOS idle handlers,
these programs must take great care to prevent corrupting internal stacks and
registers.

MS-DOS issues Interrupt 28h only if a character I/O function has not yet com­
pleted, but does not issue the interrupt if a critical-error handler is currently run­
ning (that is, the ErrorMode internal variable is not zero). MS-DOS issues the
interrupt each time it loops through a low-level read or write operation, and con­
tinues to issue the interrupt until a character is read or written.

Programs that install an MS-DOS idle handler should create a chain of
handlers-that is, save the original address from the Interrupt 28h vector-table
entry and call the address as part of processing.

MS-DOS makes few preparations before issuing Interrupt 28h. When control
transfers to the MS-DOS idle handler, segment registers point to internal
MS-DOS data segments. The SS:SP registers point to the top of the MS-DOS
internal I/O stack. To prevent corrupting the system data and stack, the MS­
DOS idle handler must switch to its own stack, preserve all registers, and set
segment registers to point to its own data segments.

Although the MS-DOS idle handler can call system functions, it must not call
character I/O functions (Interrupt 21h Functions Olh through OCh) without first
setting the ErrorMode variable to 1. If the handler calls these functions without
setting ErrorMode, the call will corrupt the internal I/O stack and MS-DOS
operation.

Before returning to the system, the MS-DOS idle handler must restore the
SS:SP registers to point to the I/O stack, restore all registers, and set the Error­
Mode variable to zero.

Interrupt 2Fh Function 1680h MS-DOS Idle Call

Comments

132 Interrupt 2Fh Multiplex Interrupt

• Interrupt 2Fh Multiplex Interrupt

Multiplex Interrupt (Interrupt 2Fh) is a common entry point for terminate-and­
stay-resident programs (TSRs) that provide services to other programs. Programs
use this interrupt to request services from and to check the status of such
MS-DOS commands as print, assign, and append.

A program requests service by placing a specified function number in the AX
register and issuing Interrupt 2Fh. Some functions may require additional values
in registers before issuing the interrupt.

Following is a list of the Interrupt 2Fh functions:
Value Function name

0100h

0101h

0102h

0103h

0104h

010Sh

Ol06h

O6OOh

l000h

ll00h

1400h

1680h

lAOOh

4300h

4310h

4800h

4810h

4BOlh

4B02h

4B03h

4B04h

4BOSh

OAD80h

OAD81h

OAD82h

Get PRINT.EXE Installed State

Add File to Queue

Remove File from Print Queue

Cancel All Files in Print Queue

Hold Print Jobs and Get Status

Release Print Jobs

Get Printer Device

Get ASSIGN.COM Installed State

Get SHARE.EXE Installed State

Get Network Installed State

Get NLSFUNC.EXE Installed State

MS-DOS Idle Call

Get ANSI.SYS Installed State

Get HIMEM.SYS Installed State

Get HIMEM.SYS Entry-Point Address

Get DOSKEY.COM Installed State

Read Command Line

Build Notification Chain

Detect Switcher

Allocate Switcher ID

Free Switcher ID

Identify Instance Data

Get KEYB.COM Version Number

Set KEYB.COM Active Code Page

Set KEYB.COM Country Flag

Value

OAD83h

OBOOOh

OB700h

OB702h

OB704h

OB706h

OB707h

OB7llh

Interrupt 2Fh Multiplex Interrupt 133

Function name

Get KEYB.COM Country Flag

Get GRAFfABL.COM Installed State

Get APPEND.EXE Installed State

Get APPEND.EXE Version

Get APPEND.EXE Directory List Address

Get APPEND.EXE Modes Flag

Set APPEND.EXE Modes Flag

Set True-Name Flag

These functions are available only if the corresponding MS-DOS command or
program has been loaded. If the command or program is not loaded, MS-DOS
carries out a default action, such as setting the carry flag and setting the AX
register to OOOlh (ERRORJNVALIDYUNCTION).

Programs that install their own Interrupt 2Fh handler must create a chain of
handlers-that is, save the original address from the Interrupt 2Fh vector-table
entry and call the address as part of their processing. Note that Interrupt 2Fh
function numbers OOOOh through OBFFFh are reserved for system programs and
commands. Other programs can use function numbers OCOOOh through OFFFFh.

134 Interrupt 2Fh Function 0100h Get PRINT.EXE Installed State

• Interrupt 2Fh Function 0100h Get ~RINT.EXE Installed State

mov
int

ax, OlOOh
2Fh

;Get PRINT.EXE Installed State
;Multiplex Interrupt

Parameters

Return Value

Get PRINT.EXE Installed State (Interrupt 2Fh Function OlOOh) determines
whether the resident portion of the print command has been loaded.

This function has no parameters.

The AL register contains OFFh if print has been loaded or OOh if it has not.

Interrupt 2Fh Function 0101h Add File to Queue 135

• Interrupt 2Fh Function 0101h Add File to Queue

mov
mov
mov

mov
int

dx, seg AddPacket
ds, dx
dx, offset AddPacket

ax, OlOlh
2Fh

;ds:dx points to level and filename

;Add File to Queue
;Multiplex Interrupt

;level, must be zero
;segment:offset pointing to ASCIIZ path

Parameter

Return Value

Add File to Queue (Interrupt 2Fh Function OlOlh) adds a file to the print queue.

AddPacket Points to a QUEUEPACKET structure that contains the name of
the file to add. The QUEUEPACKET structure has the following form:

QUEUEPACKET STRUC
qpLevel db 0
qpFilename dd?

QUEUEPACKET ENDS

For a full description of the QUEUEPACKET structure, see Section 7.11,
"Structures."

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the fol­
lowing:

Value Name

000lh

0002h

0003h

0004h

OOOSh

0008h

OOOCh

OOOFh

ERROR_INVALID_FUNCTION

ERROR_FILE_NOT_FOUND

ERROR_PATILNOTYOUND

ERROR_TOO_MANY_OPEN_FILES

ERROR_ACCESS_DENIED

ERROR_QUEUE_FULL

ERROR_INVALID_ACCESS

ERRORJNVALID_DRIVE

See Also Interrupt 2Fh Function Ol02h Relnove File from Print Queue

136 Interrupt 2Fh Function 0102h Remove File from Print Queue

• Interrupt 2Fh Function 0102h Remove File from Print Queue

mov
mov
mov

mov
int

dx, seg FileName
ds, dx
dx, offset FileName

ax, Ol02h
2Fh

;ds:dx points to ASCIIZ filename

;Remove File from Print Queue
;Multiplex Interrupt

Parameter

Return Value

See Also

Remove File from Print Queue (Interrupt 2Fh Function Ol02h) removes a
specified file or files from the print queue.

FileNarne Points to a zero-terminated._string that specifies the file or files to be
removed from the queue. The string mustbe a valid MS-DOS filename, but may
contain wildcards to remove multiple files from the print queue.

If the function is successful, the carry flag is clear. Otherwise, the carry ft.ag is
set and the AX register contains an error value, which may be 0002h
(ERRORYILE_NOTYOUND).

Interrupt 2Fh Function OlOlh Add File to Queue

Interrupt 2Fh Function 0103h Cancel All Files in Print Queue 137

• Interrupt 2Fh Function 0103h Cancel All Files in Print Queue
mov
int

ax, Ol03h
2Fh

;Cancel All Files in Print Queue
;Multiplex Interrupt

Parameters

Return Value

See Also

Cancel All Files in Print Queue (Interrupt 2Fh Function Ol03h) stops the current
print job and removes all files from the print queue.

This function has no parameters.

This function has no return value.

Interrupt 2Fh Function Ol02h Remove File from Print Queue

138 Interrupt 2Fh Function 0104h Hold Print Jobs and Get Status

• Interrupt 2Fh Function 0104h Hold Print Jobs and Get Status

mov
int

mov
mov
mov
mov

ax, Ol04h
2Fh

ErrorCount, dx
[PrintQueue], si
ax, ds
[PrintQueue+2], ax

;Hold Print Jobs and Cet Status
;Multiplex Interrupt

;errors during printing

;ds:si points to print queue

Parameters

Return Value

Comments

See Also

Hold Print Jobs and Get Status (Interrupt 2Fh Function Ol04h) stops the current
print job and returns the address of the print queue.

This function has no parameters.

When the function returns, the DX register contains an error count and DS:SI
contains the 32-bit address (segment:offset) of the print queue.

The print queue consists of a series of 64-byte entries, each containing a zero­
terminated string specifying the path of a file in the queue. The first file in the
list is the one currently being printed. The last entry in the list consists of a
single null character (OOh).

Programs must not change the contents of the print queue. To add a file, use
Add File to Queue (Interrupt 2Fh Function OlOlh); to remove a file, use
Remove File from Print Queue (Interrupt 2Fh Function Ol02h).

The print spooler continues to hold the current print job until Release Print Jobs
(Interrupt 2Fh Function Ol05h) is called.

Interrupt 2Fh Function OlOlh Add File to Queue
Interrupt 2Fh Function Ol02h Remove File from Print Queue
Interrupt 2Fh Function Ol05h Release Print Jobs

Interrupt 2Fh Function 0105h Release Print Jobs 139

• Interrupt 2Fh Function 0105h Release Print Jobs

mov
int

ax, OlOSh
2Fh

;Release Print Jobs
;Multiplex Interrupt

Parameters

Return Value

See Also

Release Print Jobs (Interrupt 2Fh Function Ol05h) restarts the print queue.
Programs must use this function after calling Hold Print Jobs and Get Status
(Interrupt 2Fh Function Ol04h) to restart the current print job.

This function has no parameters.

This function has no return value.

Interrupt 2Fh Function Ol04h Hold Print Jobs and Get Status

140 Interrupt 2Fh Function 0106h Get Printer Device

• Interrupt 2Fh Function 0106h Get Printer Device

mov
int
jnc

mo.v
mov

ax, Ol06h
2Fh
queue_empty

[DevHeader], si
[DevHeader+2], ds

;Get Printer Device
;Multiplex Interrupt
;carry clear means print queue is empty

;ds:si points to print device header

Parameters

Return Value

Get Printer Device (Interrupt 2Fh Function Ol06h) returns the address of the
device header for the current printer.

This function has no parameters.

If the queue is empty, the carry flag is clear and the AX register contains zero.
Otherwise, the carry flag is set, the DS:SI registers point to a DEVICEHEADER
structure corresponding to the printer device header, and AX contains 0008h
(ERROILQUEUEJULL).

Interrupt 2Fh Function 0600h Get ASSIGN.COM Installed State 141

• Interrupt 2Fh Function 0600h Get ASSIGN.COM Installed State

mov ax, 0600h ;Get ASSIGN.COM Installed State
int 2Fh ;Multiplex Interrupt

Parameters

Return Value

Get ASSIGN.COM Installed State (Interrupt 2Fh Function O6OOh) determines
whether the resident portion of the assign command has been loaded.

This function has no parameters.

The AL register contains OFFh if assign has been loaded or DOh if it has not.

142 Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

• Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

mov ax, lOOOh ;Get SHARE.EXE Installed State
int 2Fh ;Multiplex Interrupt

cmp al, OFFh ;OFFh means installed

Parameters

Return Value

Comments

See Also

Get SHARE.EXE Installed State (Interrupt 2Fh Function lOOOh) determines
whether the resident portion of the Share program has been loaded.

This function has no parameters.

The AL register contains OFFh if the Share program has been loaded or DOh if it
has not.

Some operating environments, such as Windows, intercept this multiplex inter­
rupt and always return a nonzero value whether the Share program is loaded or
not. To determine whether file sharing is available, a program should check for
error values upon returning from carrying out a file-sharing function, such as
Lock/Unlock File (Interrupt 21h Function 5Ch).

Interrupt 21h Function 5Ch Lock/Unlock File

Interrupt 2Fh Function 1100h Get Network Installed State 143

• Interrupt 2Fh Function 1100h Get Network Installed State
mov ax, 1100h ;Get Network Installed State
lnt 2Fh ;Multlplex Interrupt

Parameters

Return Value

Get Network Installed State (Interrupt 2Fh Function ll00h) determines whether
the resident portion of the network software has been installed.

This function has no parameters.

The AL register contains OFFh if the network software has been installed or OOh
if it has not.

144 Interrupt 2Fh Function 1400h Get NLSFUNC.EXE Installed State

• Interrupt 2Fh Function 1400h Get NLSFUNC.EXE Installed State

mov ax, 1400h ;Get NLSFUNC.EXE Installed State
int 2Fh ;Multiplex Interrupt

cmp al, OFFh ;OFFh means installed

Parameters

Return Value

Get NLSFUNC.EXE Installed State (Interrupt 2Fh Function 1400h) determines
whether the resident portion of the Nlsfunc program is loaded.

This function has no parameters.

The AL register contains OFFh if the Nlsfunc program has been loaded or OOh if
it has not.

Interrupt 2Fh Function 1680h MS-DOS Idle Call 145

• Interrupt 2Fh Function 1680h MS-DOS Idle Call

mov
lnt

ax, 1680h
2Fh

;MS-DOS Idle Call
;Multiplex Interrupt

Parameters

Return Value

Comments

See Also

MS-DOS Idle Call (Interrupt 2Fh Function 1680h) informs the system that the
program is idle-for example, waiting for user input. The function permits the
system to suspend the idle program temporarily and transfer control to another
program.

This function has no parameters.

The function returns the function status in the AL register. If AL is zero, the
system supports suspension of idle programs. Otherwise, the system does not
support suspension.

Programs should use this interrupt when they are idle. Before using this inter­
rupt, however, a program should use Get Interrupt Vector (Interrupt 21h Func­
tion 35h) to ensure that the interrupt-handler address for Interrupt 2Fh is not
zero.

This interrupt is nonblocking, meaning the system does not suspend the program
unless another program is ready to be run. In most cases, the interrupt returns
immediately and the program continues running. To make sure the system can
suspend the program, a program that remains idle should repeatedly call the
interrupt as part of its idle loop.

Interrupt 21h Function 35h Get Interrupt Vector
Interrupt 28h MS-DOS Idle Handler

146 Interrupt 2Fh Function 1AOOh Get ANSI.SYS Installed State

• Interrupt 2Fh Function 1AOOh Get ANSI.SYS Installed State

mov
int

cmp

ax, lAOOh
2Fh

al, OFFh

;Get ANSI.SYS Installed State
;Multiplex Interrupt

;OFFh means installed

Parameters

Return Value

Get ANSI.SYS Installed State (Interrupt 2Fh Function lAOOh) determines
whether the ANSI.SYS device driver has been loaded.

This function has no parameters.

The AL register contains OFFh if ANSI.SYS has been loaded or DOh if it
has not.

Interrupt 2Fh Function 4300h Get HIMEM.SYS Installed State 147

• Interrupt 2Fh Function 4300h Get HIMEM.SYS Installed State

mov
1nt

cmp

ax, 4300h
2Fh

aI, 80h

;Get HIMEM.SYS Installed State
;Mult1plex Interrupt

;80h means installed

Parameters

Return Value

Comments

See Also

Get HIMEM.SYS Installed State (Interrupt 2Fh Function 4300h) determines
whether the extended-memory manager, HIMEM.SYS, has been loaded.

This function has no parameters.

The AL register contains BOh if the driver has been loaded or OOh if it has not.

The HIMEM.SYS driver provides a set of functions that programs use to
independently manage extended memory. Although programs can also use these
functions to manage the high memory area (HMA) and upper memory blocks
(UMBs), programs should not do so if MS-DOS already manages these areas.

This function returns the installed state of any extended-memory manager as
long as the manager conforms to the Lotus/Intel/Microsoft/AST eXtended
Memory Specification (XMS) version 2.0.

Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address

148 Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address

• Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address

mov
int

mov
mov

ax, 4310h
2Fh

word ptr [XMMAddr], bx
word ptr [XMMAddr+2], es

;Get HIMEM.SYS Entry-Point Address
;Multiplex Interrupt

;es:bx contains entry-point address

Parameters

Return Value

Comments

Get HIMEM.SYS Entry-Point Address (Interrupt 2Fh Function 4310h) returns
the 32-bit address (segment:offset) of the entry point for the extended-memory­
management functions for HIMEM.SYS.

This function has no parameters.

The ES:BX registers contain the 32-bit address (segment:offset) of the entry
point.

Before retrieving and calling this entry point, programs must use Get
HIMEM.SYS Installed State (Interrupt 2Fh Function 4300h) to ensure that
HIMEM.SYS has been loaded.

The extended-memory-management functions enable programs to manage
extended memory, the high memory area (HMA), and upper memory blocks
(UMBs). Programs also use the functions to enable and disable the A20 address
line. A program calls a function by placing the function number in the AH regis­
ter, filling other registers as needed, and calling the entry point. Following is a
list of the extended-memory-management functions:

Number Name

OOh Get XMS Version

Olh Allocate HMA

02h Free HMA

03h Global Enable A20 Line

04h Global Disable A20 Line

OSh Local Enable A20 Line

06h Local Disable A20 Line

07h Query A20 Line Status

08h Query Free Extended Memory

09h Allocate EMB

OAh Free EMB

OBh Move EMB

OCh Lock EMB

ODh Unlock EMB

OEh Get Handle Information

OFh Resize EMB

lOh Allocate UMB

llh Free UMB

See Also

Interrupt 2Fh Function 4310h Get HIMEM.SYS Entry-Point Address 149

A full description of these functions is beyond the scope of this book. For more
information about them, see the Lotus/Intel/Microsoft/AST eXtended Memory
Specification (XMS) version 2.0.

Programs must not use extended-memory-management functions to manage the
HMA or UMBs if MS-DOS already manages these areas.

This function returns the entry-point address of any extended-memory manager
as long as the manager conforms to the eXtended Memory Specification.

Interrupt 2Fh Function 4300h Get IDMEM.SYS Installed State

150 Interrupt 2Fh Function 4800h Get DOSKEY.COM Installed State

• Interrupt 2Fh Function 4800h Get DOSKEY.COM Installed State

mov ax, 4800h ;Get DOSKEY.COM Installed State
lnt 2Fh ;Multlplex Interrupt

cmp aI, OOh ;OOh means not installed

Parameters

Return Value

See Also

Get DOSKEY.COM Installed State (Interrupt 2Fh Function 4800h) determines
whether the resident portion of the Doskey program has been loaded.

This function has no param.eters.

The AL register contains a noniero value if the Doskey program has been
loaded or OOh if it has not.

Interrupt 2Fh Function 4810h Read Command Line

Interrupt 2Fh Function 4810h Read Command Line 151

• Interrupt 2Fh Function 4810h Read Command Line

mov dx, seg Line
mov ds, dx
mov dx, offset Line ;ds:dx points to buffer to receive input

mov
int

ax, 4810h
2E'h

;Read Command Line
;Multiplex Interrupt.

Parameter

Return Value

Comments

Read Command Line (Interrupt 2Fh Function 4810h) reads a line of up to 126
characters and copies it to the specified buffer. While the line is being read, all
Doskey function keys and macros are enabled. This means, for example, that
the user can select a line from the Doskey history, edit a line, or enter macros
that are automatically expanded.

Line Points to a buffer that receives the command line. The buffer must have
the following form:

Offset Contents

OOh The maximum size of the buffer. It must be 128 bytes.

01h A number that is one less than the number of characters read. The
function copies a carriage-return character (ASCII ODh) to the buffer
but does not include the byte in its total.

02h The first byte of the input line.

If the function is successful, the AX register contains zero and the input line is
copied, along with the number of bytes in the line, to the buffer pointed to by
the Line parameter.

If the user types a macro name, AX contains zero, but no text is copied to the
buffer. Instead, the program must immediately call the function a second time to
expand the macro and copy the macro text to the buffer.

This function adds the command line to the Doskey history. If the user types a
macro name or a special parameter (such as $*), the program must call the
function a second time to expand the macro or parameter. On the second call,
the function automatically writes the expanded macro to the screen, overwriting
the macro name. It also copies the expanded macro text to the buffer.

152 Interrupt 2Fh Function 4B01h Build Notification Chain

• Interrupt 2Fh Function 4B01 h Build Notification Chain

mov
mov
mov
mov

bx, 0
es, bx ;es:bx is zero
dx, WORD PTR [Service]
cx, WORD PTR [Service+2]

;cx:dx is service-function handler addr

mov
int

mov
or
je

ax, 4BOlh
2Fh

cx, es
cx, di
no_notifychain

;Build Notification Chain
;Multiplex Interrupt

;es:bx is zero if no notification chain

Build Notification Chain (Interrupt 2Fh Function 4BOlh) creates a linked list of
notification-function handlers for global client programs and for client programs
running in the current session. The task switcher calls this function to determine
which client programs are to be notified about changes to the session. To receive
notification, client programs must intercept Interrupt 2Fh and process Build
Notification Chain when they receive the function call.

Warning To make sure that programs in the current session work correctly during the ses­
sion switch, a client program that adds itself to the notification chain must execute
a patch routine each time the task switcher calls the client program's Query
Suspend (Notification Function 0001 h). For more information about the patch rou­
tine, see Appendix D, "Task Switcher API Patch:'

Parameter Service Points to the service-function handler for the task switcher. A client
program can use this address to call the task switcher's service functions, such
as Get Version (Service Function OOOOh) and Test Memory Region (Service
Function OOOlh).

Return Value If a client program is to be notified, the ES:BX registers contain the address of
an SWCALLBACKINFO structure containing information about the client pro­
gram. Otherwise, the ES:BX registers contain zero.

Comments A client program's Interrupt 2Fh handler processes this function. If the client
program does not require notifications, its handler must use the jmp instruction
to transfer control to the previous Interrupt 2Fh handler (whose address the
client program must save when it installs its own handler). If a client program
requires notification, its Interrupt 2Fh handler must first pass Build Notification
Chain to any other client programs that also require notification, by pushing the
flags and using the call instruction to call the previous handler. The handler must
not modify registers before calling the previous handler.

When the previous handler returns, the ES:BX registers contain either zero or
the address of an SWCALLBACKINFO structure for another client program. In
either case, before the client program can return from the interrupt, it must fill
its own SWCALLBACKINFO structure, copy the contents of the ES:BX regis­
ters to the scbiNext field of its own structure, and copy the address of its
SWCALLBACKINFO structure into the ES:BX registers.

;address of next structure in chain
;address of notification-function handler
; reserved
;address of list of SWAPIINFO structures

See Also

Interrupt 2Fh Function 4B01 h Build Notification Chain 153

The SWCALLBACKINFO structure has the following form:

SWCALLBACKINFO STRUC
scbiNext dd ?
scbiEntryPoint dd ?
scbiReserved dd?
scbiAPI dd ?

SWCALLBACKINFO ENDS

For a full description of the SWCALLBACKINFO and SWAPIINFO structures,
see Section 7.11, "Structures."

A client program processes Build Notification Chain only after all previously
loaded client programs have processed it. The most recently loaded client pro­
gram is always first in the notification chain, followed by the next most recently
loaded, and so on.

The relationship between loading order and processing order is important, since
it gives a client program requesting asynchronous services from other clients a
chance to cancel those requests when the task switcher notifies it of a pending
switch. If the order were reversed, the client program providing the asynchro­
nous service would have to block the switch until it completed the service.

Any client program that provides services to other programs must add itself to
the notification chain.

A client program should not save the Service address, since the task switcher
may change its current service-function-handler address at any time. To ensure
that a client program always has the latest address of the service-function
handler, the task switcher sends the latest address with each notification
function.

Although a client program modifies the ES and BX registers, it must preserve all
other registers.

Service Function OOOOh Get Version
Service Function 000lh Test Memory Region

154 Interrupt 2Fh Function 4B02h Detect Switcher

• Interrupt 2Fh Function 4B02h Detect Switcher

mov
mov
mov

mov
int

mov
or
je

bx, 0
di, 0
es, di

ax,4B02h
2Fh

cx, es
cx, di
no_switcher

;must be zero

;es:di must be zero

;Detect Switcher
;Multiplex Interrupt

;es:di is zero if no task switcher loaded

;protocol supported major version
;protocol supported minor version
;task switcher's major version
;task switcher's minor version
;task-switcher identifier
;operation flags
;points to task-switcher name (ASCIIZ)
;previous task switcher's entry address

Parameters

Return Value

Comments

mov WORD PTR [Service], 'di
mov ax, es
mov WORD PTR [Service+2], ax

;es:di is service-function handler address

Detect Switcher (Interrupt 2Fh Function 4B02h) determines whether a task
switcher is loaded. Client programs (such as a session manager) that need to
prevent or control the interruptions caused by task switching should call this
function during initialization.

This function has no parameters.

If a task switcher is loaded, the AX register contains OOOOh and the ES:DI regis­
ters contain the address of the service-function handler for the task switcher.
Otherwise, the ES:DI registers contain zero.

If a task switcher is loaded, the function returns the address of the task
switcher's service-function handler. A client program can use this address to call
the task switcher's service functions, such as Get Version (Service Function
OOOOh) and Hook Notification Chain (Service Function 0004h).

Detect Switcher returns the service-function handler address of the most
recently loaded task switcher. A client program can check for other task switch­
ers by examining the svsPrevSwitcher field in the SWVERSION structure
returned by Get Version (Service Function OOOOh). If this field contains a
nonzero value, it points to the service-function handler for another task
switcher. The client program can call this handler to retrieve and examine the
other task switcher's SWVERSION structure, and it can continue this process
until reaching the svsPrevSwitcher field for the first task switcher loaded, which
contains zero.

The SWVERSION structure has the following form:

SWVERSION STRUC
svsAPIMajor dw?
svsAPIMinor dw?
svsProductMajor dw ?
svsProductMinor dw ?
svsSwitcherID dw ?
svsFlags dw ?
svsName dd ?
svsPrevSwitcher dd ?

SWVERSION ENDS

For a full description of the SWVERSION structure, see Section 7.11, "Struc­
tures.'~

See Also

Interrupt 2Fh Function 4B02h Detect Switcher 155

A task switcher processing Detect Switcher can enable interrupts and call any
MS-DOS system function. Although the task switcher modifies the AX, ES, and
DI registers, it must preserve all other registers.

Service Function OOOOh Get Version
Service Function 0004h Hook Notification Change

156 Interrupt 2Fh Function 4B03h Allocate Switcher 10

• Interrupt 2Fh Function 4B03h Allocate Switcher 10

mov bx, 0 ;required for future versions
les di, Service ;address of service-function handler

mov ax, 4B03h ;Allocate Switcher ID
int 2Fh ;Multiplex Interrupt

cmp bx, 0 ;zero means could not allocate identifier
je error_handler

mov [ID], bx ;switcher identifier

Parameter

Return Value

Comments

See Also

Allocate Switcher ill (Interrupt 2Fh Function 4B03h) returns a unique switcher
identifier (in the range 000lh through OOOFh). A task switcher (or controlling
session manager) calls this function on initialization and then uses the switcher
identifier to create session identifiers for programs that it manages. The first­
loaded task switcher is responsible for processing this function.

Client programs must not call this function.

Service Points to the service-function handler for the calling task switcher.
The task switcher that processes this function can use this address to call service
functions, such as Get Version (Service Function OOOOh).

If Allocate Switcher ill is successful, the AX register contains OOOOh and the
BX register contains the new task switcher's identifier. Otherwise, the BX regis­
ter contains OOOOh.

A task switcher must determine whether it is the first to load by calling Detect
Switcher (Interrupt 2Fh Function 4B02h). If it is the first (that is, no other task
switcher is loaded), it is responsible for creating a switcher identifier for itself
and for processing all subsequent calls to Allocate Switcher ID. If another task
switcher is already running, the new task switcher must call Allocate Switcher
ID to get a switcher identifier for itself. If Allocate Switcher ill returns zero in
the BX register, the first task switcher was unable to allocate a new identifier
and the calling task switcher must exit or disable itself.

A task switcher uses its switcher identifier as the high 4 bits of any session
identifiers it creates to ensure that no· two session identifiers are the same. The
switcher identifier must be a 4-bit nonzero value.

The task switcher that processes this function must keep track of the switcher
identifiers that it creates. One method is to maintain a 16-bit array, setting and
freeing bits as other task switchers call Allocate Switcher ill and Free Switcher
ill (Interrupt 2Fh Function 4B04h). In this method, bit 0 must be set (zero
is not a valid switcher identifier). Regardless of the method used, the task
switcher must disable interrupts when it examines and changes its record of allo­
cated switcher identifiers.

A task switcher processing Allocate Switcher ID can enable interrupts (except
when examining and recording allocated identifiers) and call any MS-DOS sys­
tem function. Although the task switcher modifies the AX and BX registers, it
must preserve all other registers.

Interrupt 2Fh Function 4B02h Detect Switcher
Interrupt 2Fh Function 4B04h Free Switcher In
Service Function OOOOh Get Version

Interrupt 2Fh Function 4B04h Free Switcher 10 157

• Interrupt 2Fh Function 4B04h Free Switcher 10

mov
les

mov
int

cmp
jne

bx, ID
di, Service

ax, 4B04h
2Fh

bx, 0
error_handler

;switcher identifier to be freed
;address of service-function handler

;Free Switcher ID
;Multiplex Interrupt

;nonzero means invalid switcher identifier

Parameters

Return Value

Comments

See Also

Free Switcher ill (Interrupt 2Fh Function 4B04h) frees the switcher identifier
associated with the task switcher having the specified service-function handler.
When a task switcher terminates it calls this function.

Client programs must not call this function.

ID Specifies the switcher identifier to be freed. It must have been allocated by
using Allocate Switcher ID (Interrupt 2Fh Function 4B03h).

Service Points to the terminating task switcher's service-function handler. The
processing task switcher can use this address to call the terminating task
switcher's service functions, such as Test Memory Region (Service Function
OOOlh).

If Free Switcher ID is successful, the AX and BX registers both contain OOOOh.
Otherwise, the BX register contains a nonzero value, indicating an invalid
switcher identifier.

The task switcher processing this function can enable interrupts (except when
examining and recording allocated identifiers) and call any MS-DOS system
function. Although the task switcher modifies the AX and BX registers, it must
preserve all other registers.

Interrupt 2Fh Function 4B03h Allocate Switcher ID
Service Function OOOlh Test Memory Region

158 Interrupt 2Fh Function 4B05h Identify Instance Data

• Interrupt 2Fh Function 4B05h Identify Instance Data

mov bx, 0
moves, bx ;es:bx zero
mov dx, WORD PTR [Service]
mov cx, WORD PTR [Service+2] ;cx:dx addr of serv-function handler

mov
int

ax, 4BOSh
2Fh

;Identify Instance Data
;Multiplex Interrupt

mov
or
je

cx, es
cx, bx
no_instancedata ;es:bx = zero if no inst data chain

Parameter

Return Value

Identify Instance Data (Interrupt 2Fh Function 4B05h) identifies instance data
maintained by a client program. A task switcher calls this function to create a
linked list of instance data blocks for all client programs running on the system.
Client programs with instance data must intercept Interrupt 2Fh and process
Identify ~nstance Data when they receive the function call.

Service Points to the service-fullction handler for the task switcher. A client
program can use this address to call the task switcher's service functions, such
as Test Memory Region (Service Function OOOlh).

If any client programs have instance data, the ES:BX registers contain the
address of an SWSTARTUPINFO structure. Otherwise, the ES:BX registers con­
tain zero.

; ignored
;points to prev handler's SWSTARTUPINFO
; ignored
; ignored
;points to SWINSTANCEITEM structures

dw 3
dd ?
dd 0
dd ?
dd ?

A client program's Interrupt 2Fh handler processes this function. If the client
program does not have instance data, its handler must use the jmp instruction to
transfer control to the previous Interrupt 2Fh handler (whose address the client
program must save when it installs its own handler). If a client has instance data,
its Interrupt 2Fh handler must first pass Identify Instance Data to any other
client programs by·pushing the flags and using the call instruction to call the pre­
vious handler. The handler must not modify registers before calling the previous
handler.

When the previous handler returns, the ES:BX registers contain either zero or
the address of an SWSTARTUPINFO structure for another client program. In
either case, before the client program can return from the interrupt, it must
fill its own SWSTARTUPINFO structure, copy the ES:BX contents to the
sisNextDev field of its own structure, and copy the address of its SWSTART·
UPINFO structure into the ES:BX registers.

The SWSTARTUPINFO structure has the following form:

SWSTARTUPINFO STRUC
sisVersion
sisNextDev
sisVlrtDevFile
sisReferenceData
sislnstanceData

SWSTARTUPINFO ENDS

Comments

For a full description of the SWSTARTUPINFO and SWINSTANCEITEM struc­
tures, see Section 7.11, "Structures."

See Also

Interrupt 2Fh Function 4B05h Identify Instance Data 159

A client program processing Identify Instance Data can enable interrupts and
call any MS-DOS system function. Although the client program modifies the
AX, ES, and BX registers, it must preserve all other registers.

Service Function OOOlh Test Memory Region

160 Interrupt 2Fh Function OAD80h Get KEYS.COM Version Number

• Interrupt 2Fh Function OAD80h Get KEYB.COM Version Number

mov
int

mov
mov

ax, OAD80h
2Fh

MajorV, bh
MinorV, bl

;Get KEYB.COM Version Number
;Multiplex Interrupt

;major version number
;minor version number

Parameters

Return Value

Get KEYB.COM Version Number (Interrupt 2Fh Function OADBOh) returns the
major and minor version numbers for the Keyb program.

This function has no parameters.

The BX register contains a nonzero version number if the Keyb program has
been loaded or zero if it has not.

Interrupt 2Fh Function OAD81h Set KEYB.COM Active Code Page 161

• Interrupt 2Fh Function OAD81 h Set KEYB.COM Active Code Page

mov bx, CodePageID ;new code page

mov ax, OAD81h ;Set KEYB.COM Active Code Page
int 2Fh ;Multiplex Interrupt
jc error_handler

Parameter

Return Value

Set KEYB.COM Active Code Page (Interrupt 2Fh Function OAD81h) sets the
active code page for KEYB.COM to the specified code page.

CodePageID Identifies the code page. This parameter can be one of the fol­
lowing values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains 000lh if the code page is not valid.

162 Interrupt 2Fh Function OAD82h Set KEYB.COM Country Flag

• Interrupt 2Fh Function OAD82h Set KEYB.COM Country Flag

mov bl, CountryFlag ;OOh = domestic, OFFh = foreign

mov
int

ax, OAD82h
2Fh

;Set KEYB.COM Country Flag
;Multiplex Interrupt

Parameter

Return Value

See Also

Set KEYB.COM Country Flag (Interrupt 2Fh Function OAD82h) sets the
current value of the KEYB.COM country flag.

CountryFlag Specifies whether the keyboard being set is domestic (OOh) or
foreign (OFFh).

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set if the CountryFlag parameter is neither OOh nor OFFh.

Interrupt 2Fh Function OAD83h Get KEYB.COM Country Flag

Interrupt 2Fh Function OAD83h Get KEYB.COM Country Flag 163

• Interrupt 2Fh Function OAD83h Get KEYB.COM Country Flag

mov CountryFlag, bI

mov
lnt

ax, OAD83h
2Fh

;Get KEYB.COM Country Flag
;Multiplex Interrupt

;OOh = domestic, OFFh = foreign

Parameters

Return Value

See Also

Get KEYB.COM Country Flag (Interrupt 2Fh Function OAD83h) returns the
current value of the KEYB.COM country flag.

This function has no parameters.

The BL register contains the current country-flag value.

Interrupt 2Fh Function OAD82h Set KEYB.COM Country Flag

164 Interrupt 2Fh Function OBOOOh Get' GRAFTABL.COM Installed State

• Interrupt 2Fh Function OBOOOh Get GRAFTABL.COM Installed State

mov ax, OBOOOh ;Get GRAFTABL.COM Installed State
int 2Fh ;Multiplex Interrupt

Parameters

Return Value

Get GRAFrABL.COM Installed State (Interrupt 2Fh Function OBOOOh) deter­
mines whether the resident portion of the graftabl command has been loaded.

This function has no parameters.

The AL register contains OFFh if the graftabl command has been loaded or OOh
if it has not.

Interrupt 2Fh Function OB700h Get APPEND.EXE Installed State 165

• Interrupt 2Fh Function OB700h Get APPEND.EXE Installed State

mov
int

cmp
je

ax, OB700h
2Fh

aI, OFFh
installed

;Get APPEND.EXE Installed State
;Multiplex Interrupt

;OFFh means installed

Parameters

Return Value

Get APPEND.EXE Installed State (Interrupt 2Fh Function OB700h) determines
whether the resident portion of the append command has been loaded.

This function has no parameters.

The AL register contains OFFh if the append command has been loaded or OOh
if it has not.

166 Interrupt 2Fh Function OB702h Get APPEND.EXE Version

• Interrupt 2Fh Function OB702h Get APPEND.EXE Version

mov
int

ax, OB702h
2Fh

;Get APPEND.EXE Version
;Multlplex Interrupt

Parameters

Return Value

Get APPEND.EXE Version (Interrupt 2Fh Function OB702h) returns the version
flag for the append command.

This function has no parameters.

The AX register contains OFFFFh for versions compatible with MS-DOS
version 5.0.

Interrupt 2Fh Function OB704h Get APPEND.EXE Directory List Address 167

• Interrupt 2Fh Function OB704h Get APPEND.EXE Directory List Address

mov
int

ax, OB704h
2Fh

;Get APPEND.EXE Directory List Address
;Multiplex Interrupt

Parameters

Return Value

Comments

mov [DirList], di
mov ax, es
mov [DirList+2], ax ;es:di points to directory list

Get APPEND.EXE Directory List Address (Interrupt 2Fh Function OB704h)
returns a 32-bit address (segment:offset) of a list of the currently appended direc­
tories.

This function has no parameters.

The ES:DI registers contain the address of the currently appended directories.

The directory list is a zero-terminated ASCII string consisting of one or more
directory paths separated by semicolons.

168 Interrupt 2Fh Function OB706h Get APPEND.EXE Modes Flag

• Interrupt 2Fh Function OB706h Get APPEND.EXE Modes Flag

mov
int

mov

ax, OB706h
2Fh

Modes, bx

;Get APPEND.EXE Modes Flag
;Multiplex Interrupt

;APPEND.EXE operation modes

Parameters

Return Value

See Also

Get APPEND.EXE Modes Flag (Interrupt 2Fh Function OB706h) returns the
current operation modes for the append command.

This function has no parameters.

If the function is successful, the BX register contains the operation modes,
which can be a combination of the following values:

Bit Meaning

o The append command is enabled.

12 The append command applies appended directories to file requests that
already specify a drive.

13 The append command applies appended directories to file requests that
already specify a path. This bit is set if the Ipath switch is on.

14 The append command stores the appended directories in the APPEND
environment variable. This bit is set if the Ie switch has been specified.

15 The append command applies appended directories to functions such as
Load and Execute Program, and Find First File (Interrupt 21h Functions
4BOOh and 4Eh). This bit is set if the Ix switch is 00.

All other bits are reserved and must be zero.

Interrupt 2Fh Function OB707h Set APPEND.EXE Modes Flag

Interrupt 2Fh Function OB707h Set APPEND.EXE Modes Flag 169

• Interrupt 2Fh Function OB707h Set APPEND.EXE Modes Flag

mov

mov
int

bx, Modes

ax, OB707h
2Fh

;APPEND.EXE operation modes

;Set APPEND.EXE Modes Flag
;Multiplex Interrupt

Parameter

Return Value

See Also

Set APPEND.EXE Modes Flag (Interrupt 2Fh Function OB707h) sets the current
operation modes for the append command.

Modes Specifies the operation modes. This parameter can be a combination
of the following values:

Bit Meaning

o The append command is enabled.

12 The append command applies appended directories to file requests that
already specify a drive.

13 The append command applies appended directories to file requests that
already specify a path. This bit is set if the Ipath switch is 00.

14 The append command stores the appended directories in the APPEND
environment variable. This bit is set if the Ie switch is specified.

15 The append command applies appended directories to functions such as
Load and Execute Program, and Find First File (Interrupt 21h Functions
4BOOh and $Eh). This bit is set if the Ix switch is 00.

All other bits are reserved and must be zero.

This function has no return value.

Interrupt 2Fh Function OB706h Get APPEND.EXE Modes Flag

170 Interrupt 2Fh Function 08711 h Set True-Name Flag

• Interrupt 2Fh Function 08711h Set True-Name Flag

mov
int

ax, OB711h
2Fh

;Set True-Name Flag
;Multiplex Interrupt

Parameters

Return Value

Comments

See Also

Set True-Name Flag (Interrupt 2Fh Function OB711h) sets the current program's
flag that specifies whether the append command converts a filename to a full
path when it processes system functions such as Open File with Handle
(Interrupt 21h Function 3Dh).

This function has no parameters.

This function has no return value.

If the true-name flag is set, append expands filenames that are passed to the fol­
lowing functions:

Open File with Handle (Interrupt 21h Function 3Dh)
Get File Attributes (Interrupt 21h Function 4300h)
Find First File (Interrupt 21h Function 4Eh)
Extended Open/Create (Interrupt 21h Function 6Ch)

For each function, the program passes an address to the zero-terminated
filename and append copies the zero-terminated path to the same address. The
program making the call must ensure that the buffer at the address is large
enough to contain the full path. The append command resets the true-name flag
after expanding a filename.

Interrupt 21h Function 3Dh Open File with Handle
Interrupt 21h Function 4300h Get File Attributes
Interrupt 21h Function 4Eh Find First File
Interrupt 21h Function 6Ch Extended Open/Create

Chapter 7: Interrupts 171

7.10 Task-Switching Reference
This section describes the functions used for task switching:

• Notification functions

• Service functions

7.10.1 Notification Functions
This section describes the notification functions used for task switching. Client
programs provide these functions, and task switchers call them to notify the
client programs about task switches and the creation or deletion of sessions. The
reference page for each notification function provides the syntax, a statement of
purpose, descriptions of any parameters, and cross-references to similar or
related functions.

172 Notification Function OOOOh Init Switcher

• Notification Function OOOOh Init Switcher

les di, Service ;addr of task switcher's serv-function handler

mov ax, OOOOh ;Init Switcher
call [Notification] ;client program's notification-function handler

cmp ax, 0
jne no_load ;if nonzero, don't load

Parameter

Return Value

Comments

See Also

Init Switcher (Notification Function OOOOh) notifies client programs that a new
task switcher is being initialized.

Service Points to the service-function handler for the task switcher or control­
ling session manager. A client program can use this address to call the task
switcher's service functions, such as Get Version (Service Function OOOOh) and
Hook Notification Chain (Service Function 0004h).

The AX register contains OOOOh if the task switcher can be loaded safely. Other­
wise, it contains a nonzero value.

Task switchers (and controlling session managers) must call this function when
they are initialized. A client program that runs in global memory and needs to
take special action to coexist with a task switcher should do so when receiving
this call.

The task switcher's service function handler (specified by the ES:DI registers)
must support Get Version (Service Function OOOOh).

Typically, a program that invokes and controls the task switcher calls Init
Switcher, rather than the task switcher itself. If any client program returns a
nonzero value to the Init Switcher call, the controlling program disables its task­
switching option. Other task-switching programs may simply terminate if a client
returns a nonzero value.

If any client program returns nonzero to Init Switcher, all client programs may
receive a call to Switcher Exit (Notification Function 0007h), including the client
program that returned nonzero. Client programs can ignore a Switcher Exit call
that is not preceded by an Init Switcher call.

Because it is not necessarily the task switcher itself that calls this function, client
programs should not assume that the service-function-handler address passed in
the ES:DI registers will be the same address passed with subsequent notification
functions. In particular, this address can be NULL.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Service Function OOOOh Get Version
Service Function 0004h Hook Notification Chain
Notification Function 0007h Switcher Exit

Notification Function 0001 h Query Suspend 173

• Notification Function 0001h Query Suspend

mov bx, SessionID ;current session identifier
les di, Service ;es:di is address of service-function handler

mov ax, OOOlh ;Query Suspend
call [Notification] ;client program's notification-function handler

mov [Result], ax ;0 = session switch okay, 1 = do not switch

Query Suspend (Notification Function OOOlh) notifies client programs that the
task switcher is preparing to perform a session switch. A task switcher calls this
function when a session switch has been requested. The client program can
prevent the session switch, or it can perform any operation needed to allow the
switch before returning.

Warning To make sure that programs In the current session work correctly during the ses­
sion switch, client programs must execute the patch routine shown in Appendix 0,
"Task Switcher API Patch:'

Parameters SessionID Identifies the session to be suspended.

Service Points to the 'service-function handler for the task switcher. A client
program can use this address to call the task switcher's service functions, such
as Test Memory Region (Service Function OOOlh).

Return Value The AX register contains OOOOh if a session switch can be performed safely or
OOOlh if it cannot.

All other values are reserved.

Comments A client program in global memory can tell from the current session identifier
which session will be suspended when the switch occurs. It also can use this
identifier to maintain information about the session when the session is sus­
pended, and to restore the information when the session is resumed. The session
identifier is an arbitrary value provided by the task switcher; values are not
necessarily sequential and may be reused after a session is destroyed.

A client program can call Test Memory Region (Service Function OOOlh) to
determine whether specific code or data in memory will be affected by the ses­
sion switch, and whether the switch should be allowed. For example, a network
redirector can run through a chain of outstanding request descriptors and,
using Test Memory Region, determine whether any of the buffers or callback
addresses are located in local memory. If any are in local memory, the redirec­
tor can prevent the session switch or invoke special code to handle the case.

Before preventing a session switch because of the state of an asynchronous API,
a client program should call Query API Support (Service Function 0006h) to
make sure the API is not. being handled by another client program.

174 Notification Function 0001 h Query Suspend

See Also

If any client program returns a nonzero value from a call to Query Suspend, all
client programs may receive a call to Session Active (Notification Function
0004h), including the client program that returned nonzero. Client programs can
ignore a call to Session Active without a preceding call to Query Suspend or
Suspend Session (Notification Function 0002h).

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Service Function OOOlh Test Memory Region
Service Function 0006h Query API Support
Notification Function 0002h Suspend Session
Notification Function 0004h Session Active

Notification Function 0002h Suspend Session 175

• Notification Function 0002h Suspend Session

mov bx, SessionID ;current session identifier
les di, Service ;address of service-function handler

mov ax, 0002h ;Suspend Session
call [Notification] ;client program's notification-function handler

mov [Result], ax ;0 = session switch okay, 1 = do not switch

Parameters

Return Value

Comment

Suspend Session (Notification Function 0002h) notifies client programs that a
session switch is about to take place, providing them a last opportunity to
prevent the session switch.

SessionID Identifies the session to be suspended.

Service Points to the service-function handler for the task switcher. A client
program can use this address to call the task switcher's service functions, such
as Test Memory Region (Service Function OOOlh).

The AX register contains OOOOh if a session switch can be performed safely or
000lh if it cannot.

All other values are reserved.

If all client programs return OOOOh to Query Suspend (Notification Function
000lh), the task switcher disables interrupts and calls Suspend Session, provid­
ing clients with a final chance to prevent the session switch. Client programs
must not issue software interrupts or make any calls that might enable interrupts.

If all client programs return with OOOOh in the AX register, the task switcher
replaces the current interrupt-vector table with a saved copy before enabling
interrupts. The saved copy represents the global state present when the task
switcher first started. This guarantees that interrupt handlers local to the session
being suspended will not be called in the interim between when Suspend Session
returns to the task switcher and the next call is made to Activate Session
(Notification Function 0003h). This prevents programs in local memory from
gaining control on a hardware interrupt and making a call into programs in glo­
bal memory before the global programs receive the resumed session's identifier.

Client programs in glo~al memory can receive interrupts between the Suspend
Session and Activate Session notifications but should not assume the contents of
nonglobal memory if they do. Test Memory Region (Service Function 000lh) is
used to determine whether a block of memory is local or global.

Before preventing a session switch because of the state of an asynchronous API,
a client program should call Query API Support (Service Function 0006h) to
determine that the API is not being handled by another client program.

If any client program returns a nonzero value to Suspend Session, all client
programs may receive a call to Session Active (Notification Function 0004h),
including the client program that returned nonzero. Client programs can ignore a
call to Session Active received without a preceding call to Query Suspend
(Notification Function OOOlh) or Suspend Session.

176 Notification Function 0002h Suspend Session

See Also

The task switcher disables interrupts before calling the client program, and the
client program must not enable them or call MS-DOS system functions.
Although the client program modifies the AX register, it must preserve all other
registers.

Service Function OOOlh Test Memory Region
Service Function 0006h Query API Support
Notification Function OOOlh Query Suspend
Notification Function 0003h Activate Session
Notification Function 0004h Session Active

Notification Function 0003h Activate Session 177

• Notification Function 0003h Activate Session

mov
mov
las

mov
call

bx, SessionID
cx, Flags
di, Service

ax, 0003h
[Notification]

;identifier for new session
;session status flags
;es:di is address of service-function handler

;Activate Session
;client program's notification-function handler

Parameters

Return Value

Comment

See Also

Activate Session (Notification Function 0003h) notifies client programs that a
session is about to become active. If the session is a previously suspended
session, it has been reinstalled in memory, including its local memory and
interrupt-vector table. However, interrupts are disabled and must remain dis­
abled.

SessionID Identifies the session to be activated.

Flags Specifies the session's status. If bit 0 is 1, the session is being activated
for the first time. If bit 0 is zero, the session has been suspended and is now
being resumed. All other bits are reserved and must be zero.

Service Points to the service-function handler for the task switcher.

The AX register contains OOOOh.

If interrupts are enabled while the session memory is being swapped, global pro­
grams can receive interrupts but local programs cannot. Once the new session's
interrupt-vector table has been loaded, a problem can arise if a hardware inter­
rupt occurs just as interrupts are enabled. The task switcher disables interrupts
before calling the client program, to prevent local programs from receiving the
interrupt and calling global programs that cannot handle such an interrupt
correctly until they receive the new session identifier.

If this is a newly created session being activated for the first time, Activate Ses­
sion will be preceded by a call to Create Session (Notification Function 0005h).

The task switcher disables interrupts before calling the client program, and the
client program must not enable interrupts or call MS-DOS system functions.
Although the client program modifies the AX register, it must preserve all other
registers.

Notification Function 0005h Create Session

178 Notification Function 0004h Session Active

• Notification Function 0004h Session Active

mov
mov
les

mov
call

bx, SessionID
cx, Flags
di, Service

ax, 0004h
[Notification]

;identifier for new session
;session status flags
;es:di is address of service-function handler

;Session Active
;client program's notification-function handler

Parameters

Return Value

Comments

See Also

Session Active (Notification Function 0004h) notifies client programs that a ses­
sion has become active. H the session was previously suspended, the function
notifies client programs that the session has been reinstalled in memory, includ­
ing its local memory and interrupt-vector table.

SessionlD Identifies the session that is now active.

Flags Specifies the session's status. If bit 0 is set, the session has just been
created and is now active for the first time. If bit 0 is not set, the session was
previously suspended and now has resumed. All other bits are reserved and
must be zero.

Service Points to the service-function handler for the task switcher.

The AX register contains OOOOh.

If any client program fails a call to Query Suspend (Notification Function OOOlh)
or Suspend Session (Notification Function 0002h), all client programs may
receive a Session Active notification, including the client program that denied
the call to Suspend Session. Client programs can ignore a Session Active
notification received without a preceding call to Query Suspend or Suspend Ses­
sion.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function OOOlh Query Suspend
Notification Function 0002h Suspend Session

Notification Function 0005h Create Session 179

• Notification Function 0005h Create Session
mov bx, SessionID ;identifier for new session
les di, Service ;es:di is address of service-function handler

mov ax, OOOSh ;Create Session
call [Notification] ;client program's notification-function handler

cmp
je ;1 = don't create session

Parameters

Return Value

Comments

See Also

Create Session (Notification Function 0005h) notifies client programs that the
task switcher is about to create a new session.

sessionID Identifies the session to be created. This parameter consists of a
4-bit switcher identifier (in the most significant 4 bits) and a 12-bit session
number (in the low-order 12 bits).

Service Points to the service-function handler for the task switcher.

The AX register contains OOOOh if a new session can be created safely or OOOlh
if the client program cannot safely handle a new session.

All other values are reserved.

Before creating a new session, the task switcher calls Create Session to allow
client programs to prevent the session from being created. If, for example, glo­
bal client programs keep information for each session in a fixed-length data
structure, they may respond to the notification by preventing the new session if
the structure does not have enough room for it.

A newly created session does not have to be activated immediately; other
sessions can be created, destroyed, and switched before the new session is
activated.

If any client program returns OOOlh to Create Session, all client programs may
receive a call to Destroy Session (Notification Function 0006h), including the
program that returned 0001h. Client programs can ignore a call to Destroy Ses­
sion received without a preceding call to Create Session.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function 0006h Destroy Session

180 Notification Function 0006h Destroy Session

• Notification Function 0006h Destroy Session

mov bx, SessionID ;identifier for new session
les di, Service ;es:di is address of service-function handler

mov ax, 0006h ;Destroy Session
call [Notification] ;client program's notification-function handler

Parameters

Return Value

Comments

See Also

Destroy Session (Notification Function 0006h) notifies client programs that the
task switcher is destroying a session.

SessionlD Identifies the session to be destroyed.

Service Points to the service-function handler for the task switcher.

The AX register contains OOOOh.

A task switcher calls Destroy Session whenever a session is being destroyed.
Typically, this will occur when the program in the current session ends. How­
ever, any session manager that controls the task switcher can also provide a way
for the user to destroy a session while the program is still running, or to destroy
a session that is suspended. As a result, the session being destroyed is not neces­
sarily the current session.

If any client program returns OOOlh to Create Session (Notification Function
0005h), all client programs may receive a call to Destroy Session, including the
program that returned OOOlh. Client programs can ignore a call to Destroy Ses­
sion received without a preceding call to Create Session.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function 0005h Create Session

Notification Function 0007h Switcher Exit 181

• Notification Function 0007h Switcher Exit

mov bx, Flags ;indicates whether other task switchers present
les di, Service ;es:di is address of service-function handler

mov ax, 0007h ;Switcher Exit
call [Notification] ;client program's notification-function handler

Parameters

Return Value

Comments

See Also

Switcher Exit (Notification Function 0007h) notifies global client programs that
the task switcher is no longer active.

Flags Specifies whether other task switchers are present in the system. If bit 0
is 1, the calling task switcher is the only switcher present. If bit 0 is zero, at least
one other task switcher remains after the calling task switcher exits. All other
bits are reserved and must be zero.

Service Points to the service-function handler for the task switcher. If this
address is NULL, the call-in function handler is no longer present and cannot be
called.

The AX register contains OOOOh.

A task switcher calls this function. Global programs that receive this call should
disable any extra processing they were running in order to coexist with the task
switcher.

This function can be called by programs that control the task switcher, rather
than by the task switcher itself. For this reason, the service-function-handler
address specified in the ES:DI registers may differ from addresses passed with
other notification functions and may be NULL.

The task switcher enables interrupts before calling the client program. The client
program can call any MS-DOS system function. Although the client program
modifies the AX register, it must preserve all other registers.

Notification Function OOOOh Init Switcher

182 MS-DOS Programmer's Reference

7.10.2 Service Functions
This section describes the service functions used for task switching. Client pro­
grams use these functions to control switching and to retrieve information about
the task switcher and about the capabilities of other client programs. The refer­
ence page for each service function provides the syntax, a statement of purpose,
parameter descriptions, and cross-references to similar or related functions.

Service Function OOOOh Get Version 183

• Service Function OOOOh Get Version
mov
call

ax, OOOOh
[Service]

;Get Version
;service-function handler

jc error_handler

mov
mov
mov

WORD PTR [Version], bx
ax, es
WORD PTR [Verslon+2], ax ;es:bx points to SWVERSION struct

Parameters

Return Value

Get Version (Service Function OOOOh) returns the address of an SWVERSION
structure that identifies the current task switcher, its version number, and the
protocol it supports.

Client programs and task switchers can call this function.

This function has no parameters.

If the function is successful, the carry flag is clear, the AX register contains
OOOOh, and the ES:BX registers contain the address of the SWVERSION struc­
ture for the current task switcher. If the task switcher does not support this
function, the carry flag is set.

;protocol supported major version
;protocol supported minor version
;task switcher's major version
;task switcher's minor version
;task-switcher identifier
;operation flags
;points to task-switcher name (ASCIIZ)
;previous task switcher's entry address

?
?
?
?
?
?
?
?

The SWVERSION structure has the following form:

SWVERSION STRUC
svsAPIMajor dw
svsAPIMinor dw
svsProductMajor dw
svsProductMinor dw
svsSwitcherID dw
svsFlags dw
svsName dd
svsPrevSwitcher dd

SWVERSION ENDS

Comments

See Also

For a full description of the SWVERSION structure, see Section 7.11,
"Structures."

A task switcher processing Get Version can enable interrupts and call any MS­
DOS system function. Although the task switcher modifies the AX, ES, and DI
registers, it must preserve all other registers.

Interrupt 2Fh Function 4B02h Detect Switcher

184 Service Function 0001h Test Memory Region

• Service Function 0001h Test Memory Region

les di, Buffer
mov cx, Size

mov ax, OOOlh
call [Service]

jc error_handler

mov [Result] , ax

;points to first byte to be tested
;size of buffer, in bytes

;Test Memory RegiQn
;service-function handler

;0 = global, 1 = global and local, 2 = local

Parameters

Return Value

Test Memory Region (Service Function OOOlh) determines whether a given block
of memory is global or local in the current session. Local memory is replaced
when a session switch occurs.

Client programs and task switchers can call this function. The task switcher
corresponding to the specified service-function handler is responsible for pro­
cessing the function.

Buffer Points to the first byte of memory to be tested.

Size Specifies the buffer size, in bytes. This value must be in the range 0
through 65,535, where 0 indicates 64K (65,536). Buffers larger than 64K require
more than one call to Test Memory Region to test the entire region.

If the function is successful, the carry flag is clear and the AX register contains
values specifying whether the memory is global or local. This can be one of the
following values:

Value Meaning

OOOOh

OOOlh

0002h

The buffer is in global memory.

The buffer is in both global and local memory.

The buffer is in local memory.

Comments

All other values are reserved.

If the task switcher does not support this function, the carry flag is set.

The task switcher corresponding to the specified service-function handler deter­
mines whether memory is global or local. If more than one task switcher is
active, the one that creates a client program's session determines whether its
memory is local or global. For this reason, a client program should test its
memory region each time it receives the call Query Suspend (Notification Func­
tion OOOlh) or Session Active (Notification Function 0004h), to determine
whether the memory it occupies is global or local relative to the task switcher
performing the session switch.

Client programs in global memory can use Test Memory Region to identify
requests for asynchronous operations coming from other client programs in glo­
bal memory. Client programs that service these requests do not have to take spe­
cial action when a session switch occurs, because a requesting program's buffer
and callback address remain accessible even after the session switch.

See Also

Service Function 0001h Test Memory Region 185

Since location sometimes affects operation, memory-resident programs can use
Test Memory Region to determine whether they are in local or global memory.
For example, a communication program in local memory should temporarily
shut down before being suspended, but the same program in global memory can
continue to run, since a session switch does not affect it.

A task switcher processing Test Memory Region must not enable interrupts or
call any MS-DOS system function. Although the task switcher modifies the AX
register, it must preserve all other registers.

Notification Function 000lh Query Suspend
Notification Function 0004h Session Active

186 Service Function 0002h Suspend Switcher

• Service Function 0002h Suspend Switcher

les di, NewService ;new address of service-function handler

mov ax, 0002h ;Suspend Switcher
call [Service] ;service-function handler

jc error_handler

mov [Result], ax ;0 = suspended, 1 = not suspended, don't start
;2 = not suspended, okay to start

0002h

OOOOh

000lh

Parameter

Return Value

Comments

Suspend Switcher (Service Function 0002h) notifies the current task switcher
that it should suspend operations because another task switcher is being initial­
ized.

Only a task switcher that needs to suspend the current task switcher should call
this function. Client programs, especially programs in global memory, must not
call it.

NewService Points to the new task switcher's service-function handler. The .
current task switcher can use this address to call the new task switcher's service
functions, such as Get Version (Service Function OOOOh).

If Suspend Switcher is successful, the carry flag is clear and 'the AX register con­
tains a value specifying whether the task switcher has suspended operations. This
value can be one of the following:

Value Meaning

Current task switcher has suspended operations.

Current task switcher has not suspended operations. The new task
switcher must not start.

Current task switcher has not suspended operations, but the new task
switcher can start and run in conjunction with it.

All other values are reserved.

If the current task switcher does not support this function, the carry flag is set.

As long as they conform to the task-switching protocol, two or more active task
switchers can safely coexist. Suspend Switcher helps the user avoid the confu­
sion sometimes caused by the presence of multiple task switchers.

If the current task switcher returns.OOOlh, the new task switcher should not dis­
able its session-switching capabilities unless another task switcher denies the new
task switcher's call to Init Switcher (Notification Function OOOOh).

After a task switcher has received a Suspend Switcher call, it should continue to
respond to service functions, but it should neither respond to keyboard inter­
rupts nor attempt to switch sessions until it receives a corresponding call to
Resume Switcher (Service Function 0003h).

See Also

Service Function 0002h Suspend Switcher 187

Suspend Switcher calls can be nested, so suspeonded task switchers should not
become active until they have received an equal number of calls to Suspend
Switcher and Resume Switcher. An exception to this rule occurs when a child
program running a separate task switcher suspends its session manager's task
switcher and does not reactivate it before returning control to the session
manager. In this case, the session manager can safely reactivate its own task
switcher.

A task switcher processing Suspend Switcher can enable interrupts and call any
MS-DOS system function. Although the task switcher modifies the AX register,
it must preserve all other registers.

Client programs that need to suspend session switching should return OOOlh to
Query Suspend (Notification Function OOOlh).

A task switcher normally calls Suspend Switcher by using the service-function­
handler address received from Detect Switcher (Interrupt 2Fh Function 4B02h),
rather than in response to a notification function.

Interrupt 2Fh Function 4B02h Detect Switcher
Service Function OOOOh Get Version
Service Function 0003h Resume Switcher
Notification Function OOOOh Init Switcher
Notification Function OOOlh Query Suspend

188 Service Function 0003h Resume Switcher

• Service Function 0003h Resume Switcher

les di, NewService ;new address of service-function handler

mov ax, 0003h ;Resume Switcher
call [Service] ;Service-function handler

jc error_handler

Parameter

Return Value

Comments

See Also

Resume Switcher (Function 0003h) notifies a suspended task switcher that it can
resume .operation.

Client programs must not call this function.

NewService Points to the new task switcher's service-function handler. The
task switcher that is being resumed can use this address to call the new task
switcher's service functions, such as Get Version (Service Function OOOOh).

If the function is successful, the carry flag is clear and the AX register contains
OOOOh. If the task switcher does not support this function, the carry flag is set.

A task switcher that has disabled another task switcher by using Suspend
Switcher (Service Function 0002h) should call Resume Switcher to reenable it,
and should use the same service-function-handler address that it used to call
Suspend Switcher.

A task switcher processing Resume Switcher can enable interrupts and call any
MS-DOS system function. Although the task switcher modifies the AX register,
it must preserve all other registers.

Service Function OOOOh Get Version
Service Function 0002h Suspend Switcher

Service Function 0004h Hook Notification Chain 189

• Service Function 0004h Hook Notification Chain

les

mov
call

jc

di, CBlnfo

ax, 0004h
[Service]

error_handler

;es:di points to SWCALLBACKINFO structure

;Hook Notification Chain
;service-function handler

;carry set on error

;address of next structure in chain
;address of notification-function handler
;reserved
;address of list of SWAPIINFO structures

Hook Notification Chain (Service Function 0004h) directs the task switcher to
add the specified structure to its notification chain. Client programs that must be
notified of session changes call this function during initialization.

Warning To make sure that programs in the current session work correctly during the ses­
sion switch, a client program that adds itself to the notification chain must execute
a patch routine each time the task switcher calls the client program's Query
Suspend (Notification Function 0001h). For more information about the patch rou­
tine, see Appendix D. "Task Switcher API Patch."

Parameter CBlnfo Points to the client program's SWCALLBACKINFO structure. The
client program does not need to fill in the scbiNext field of this structure. The
SWCALLBACKINFO structure has the following form:

SWCALLBACKINFO STRUC
scbiNext dd ?
scbiEntryPoint dd ?
scbiReserved dd?
scbiAPI dd ?

SWCALLBACKINFO ENDS

Return Value

Comments

See Also

For a full description of the SWCALLBACKINFO and SWAPllNFO structures,
see Section 7.11, "Structures."

If this function is successful, the carry flag is clear and the AX register contains
()()()()h. If the task switcher does not support this function, the carry flag is set.

Client programs can use Detect Switcher (Interrupt 2Fh Function 4B02h) to
check for a task switcher; if one is present, the programs add themselves to its
notification chain by calling Hook Notification Chain. Client programs must fill
the SWCALLBACKINFO structure before calling the task switcher.

Some task switchers call Build Notification Chain (Interrupt 2Fh Function
4B01h) to create a notification chain before each session switch and return from
Hook Notification Chain with no other action. Most task switchers generate the
notification chain only during initialization, and client programs that start later
must add themselves to it. For example, a task switcher may keep a separate
notification chain for each session and supply each new session it creates with a
copy of its original notification chain. A client program that runs within that new
session must add its notification-function handler address to the local chain by
calling Hook Notification Chain.

Before terminating, a client program must unhook itself from the task switcher's
notification chain by calling Unhook Notification Chain (Function 0005h).

A task switcher processing Hook Notification Chain can enable interrupts and
call any MS-DOS system function. Although the task switcher modifies the AX
register, it must preserve all other registers.

Interrupt 2Fh Function 4B01h Build Notification Chain
Interrupt 2Fh Function 4B02h Detect Switcher
Service Function 0005h Unhook Notification Chain

190 Service Function 0005h Unhook Notification Chain

• Service Function 0005h Unhook Notification Chain

les

mov
call

jc

di, CBlnfo

ax, OOOSh
[Service]

error_handler

;es:di points to SWCALLBACKINFO structure

;Unhook Notification Chain
;service-function handler

;carry set on error

;address of next structure in chain
;address of notification-function handler
;reserved
;address of list of SWAPIINFO structures

Parameter

Return Value

Comments

See Also

Unhook Notification Chain (Service Function 0005h) directs the task switcher to
remove the specified SWCALLBACKINFO structure from its notification chain.
Client programs that are on the notification chain must call this function when
they terminate.

CBlnfo Points to the client program's SWCALLBACKINFO structure. The
SWCALLBACKINFO structure has the following form:

SWCALLBACKINFO STRUC
scbiNext dd ?
scbiEntryPoint dd ?
scbiReserved dd?
scbiAPI dd ?

SWCALLBACKINFO ENDS

For a full description of the SWCALLBACKINFO and SWAPIINFO structures,
see Section 7.11, "Structures."

If the function is successful, the carry flag is clear and the AX register contains
OOOOh. If the task switcher does not support this function, the carry flag is set.

Whether a client program has used Build Notification Chain (Interrupt 2Fh
Function 4BOlh) or Hook Notification Chain (Service Function 0004h), it must
call Unhook Notification Chain to remove itself from the notification chain of
every task switcher to which it belongs.

A task switcher that rebuilds its notification chain at every session switch can
return from Unhook Notification Chain with no other action.

A task switcher processing Unhook Notification Chain can enable interrupts and
call any MS-DOS system function. Although the task switcher modifies the AX
register, it must preserve all other registers.

Interrupt 2Fh Function 4BOlh Build Notification Chain Service Function
0004h Hook Notification Chain

Service Function 0006h Query API Support 191

• Service Function 0006h Query API Support

mov
mov
call

jc

bx, ApiID
ax, 0006h
[Service]

error_handler

;asynchronous API identifier
;Query API Support
;service-function handler

;carry set on,error

Parameter

mov WORD PTR [ApiInfo], bx
mov ax, es
mov WORD PTR [ApiInfo+2], ax ;es:bx points to SWAPIINFO structure

Query API Support (Service Function 0006h) returns the address of the SWAPI­
INFO structure of the client program that provides the highest level of support
for the specified asynchronous API. Client programs that support asynchronous
APls call this function to determine which program should control session
switching and handle the specified asynchronous API. control session switching
and handle the specified asynchronous API.

ApiID Identifies an asynchronous API. This value can be one of the follow­
ing:

Value Meaning

API_NETBIOS (OOOlh)

API_8022 (OOO2h)

API_TCPIP (OOO3h)

API_LANMAN (OOO4h)

API_IPX (OOOSh)

NETBIOS

802.2

TCP/IP

LAN Manager named pipes

NetWare IPX

;size of this structure, in bytes
;API identifier
;major version number
;minor version number
;support level

Return Value

Comments

If the function is successful, the carry flag is clear, the AX register contains
OOOOh, and the ES:BX registers contain the address of the SWAPIINFO struc­
ture of the client program that provides the highest level of support for the
specified asynchronous API. If the task switcher does not support this function,
the carry flag is set.

The SWAPIINFO structure has the following form:

SWAPIINFO STRUC
aisLength dw 10
aisAPI dw ?
aisMajor dw?
aisMinor dw ?
aisSupport dw?

SWAPIINFO ENDS

For a full description of the SWAPnNFO structure, see Section 7.11,
"Structures."

This function allows client programs that provide support for the same asynchro­
nous API to negotiate which program controls session switching. Each client
program maintains information about the asynchronous APIs it supports and the
level of support provided to each API in a list of SWAPIINFO structures. The
program provides a pointer to the beginning of this list in its SWCALLBACK­
INFO structure. (For a full description of the SWCALLBACKINFO structure,

192 Service Function 0006h Query API Support

See Also

see Section 7.11, "Structures.") Since any number of client programs can pro­
vide support for the same API, the task switcher uses the aisSupport field in the
SWAPIINFO structures to determine which client program provides the highest
level of support and therefore receives control. In general, a client program pro­
vides the highest level of support if it allows session switching for the greatest
number of special cases.

When a client program that supports an asynchronous API is processing Query
Suspend (Notification Function 0001h) or Suspend Session (Notification
Function 0002h), it must call Query API Support to determine whether it is the
client program that should handle the API. If the function returns the address of
the client program's own SWAPIINFO structure, the client program should
prevent the session switch. If it returns the address of another client program's
structure, the calling client program should not prevent the session switch, rely­
ing instead on the more capable client program to prevent the session switch if
necessary.

When a task switcher processes Query API Support, interrupts are disabled if a
client program calls this function while handling a notification function for which
interrupts also are disabled. Otherwise, interrupts are enabled. If interrupts are
disabled, the task switcher must not enable them or call MS-DOS system func­
tions. Although the task switcher modifies the AX, ES, and BX registers, it
must preserve all other registers.

Notification Function 0001h Query Suspend
Notification Function 0002h Suspend Session

Chapter 7: Interrupts 193

7.11 Structures
This section describes the QUEUEPACKET structure and the structures MS­
DOS task switchers use.

194 QUEUEPACKET

• QUEUEPACKET

QUEUEPACKET STRUC
qpLevel db 0
qpFilename dd?

QUEUEPACKET ENDS

;level, must be zero
;segment:offset pointing to ASCIIZ path

Fields

See Also

• SWAPIINFO

The QUEUEPACKET structure contains information used to add a file to the
printing queue.

qpLevel Specifies the queue level. This field must be OOh f9r current versions
of MS-DOS.

qpFilename Contains the 32-bit address of a zero-terminated string specifying
the path of the file to add to the queue. This string must be a valid MS-DOS
path and must not contain wildcards. If the specified file exists, PRINT.EXE
adds the file to the queue.

Interrupt 2Fh Function 0101h Add File to Queue

SWAP I INFO STRUC
aisLength dw 10
aisAPI dw ?
aisMajor dw ?
aisMlnor dw ?
aisSupport dw?

SWAP I INFO ENDS

;size of this structure, in bytes
;API identifier
;major version number
;minor version number
;support level

Fields

The SWAPIINFO structure contains information about the level of support that
a client program provides for a particular type of asynchronous API.

aisLength Specifies the length of the structure, in bytes.

aisAPI Identifies the asynchronous API supported by the client program. This
value can be one of the following:

Value Meaning

APLNETBIOS (OOOlh)

APL8022 (OOO2h)

APLTCPIP (OOO3h)

APLLANMAN (OOO4h)

APUPX (OOO5h)

NETBIOS

802.2

TCP/IP

LAN Manager named pipes

NetWare IPX

AU other values are reserved.

aisMajor Specifies the highest major version of the API for which the client
program provides the level of support specified by the alsSupport field. For
example, if the highest version of the API supported by the client program at the
specified level is 3.10, this field would be set to 0003h.

SWCALLBACKINFO 195

aisMinor Specifies the highest minor version of the API for which the client
program provides the specified level of support. For example, if the highest ver­
sion of the API supported by the client program at the specified level is 3.10,
this field would be set to OOOAh.

aisSupport Specifies the level of support provided by the client program for
the particular version of the API. The range and significance of values in this
field depend upon the particular API. The following definitions are used for
NETBIOS:

Value

000lh

0002h

0003h

0004h

• SWCALLBACKINFO

Meaning

Minimal support. The client program prevents a session switch after
an application has called a function supported in an asynchronous
API, even after the request has been completed.

API-level support. The client program tracks asynchronous requests,
prevents task switches when requests are outstanding, and allows task
switches when all requests have been completed.

Switcher compatibility. The API provider allows switches to occur
even when asynchronous requests are outstanding. However, this may
be limited by such factors as buffer size, and some requests might fail.

Seamless compatibility. The API provider always allows session
switches to occur.

SWCALLBACKINFO STRUC
scbiNext dd ?
scbiEntryPoint dd ?
scbiReserved dd?
scbiAPI dd ?

SWCALLBACKINFO ENDS

;address of next structure in chain
;address of notification-function handler
; reserved
;address of list of SWAPIINFO structures

Fields

See Also

The SWCALLBACKINFO structure contains information about the client pro­
gram.

scbiNext Specifies the 32-bit address (segment:offset) of the next structure in
the notification chain.

scbiEntryPoint Specifies the 32-bit address (segment:offset) of the client
program's notification-function handler. The task switcher uses this address to
call the client program's notification functions.

scbiReserved Reserved; do not use.

scbiAPI Specifies the 32-bit address (segment:offset) of a zero-terminated list
of SWAPIINFO structures specifying the type of support the client program pro­
vides for various asynchronous APIs.

Interrupt 2Fh Function 4B01h Build Notification Chain
Service Function 0004h Hook Notification Chain

196 SWINSTANCEITEM

• SWINSTANCEITEM

SWINSTANCEITEM
iisPtr
iisSize

SWINSTANCEITEM

STRtIC
dd ?
dw ?
ENDS

;points to the instance data
;size of the instance data, in bytes

Fields

The SWINSTANCEITEM structure contains information about a block of
instance data.

iisPtr Specifies the 32-bit address (segment:offset) of the first byte of the
block of instance data.

iisSize Specifies the instance data's block size, in bytes.

• SWSTARTUPINFO

SWSTARTUPINFO STRUC
sisVersion
sisNextDev
sisVirtDevFile
sisReferenceData
sislnstanceData

SWSTARTUPINFO ENDS

dw 3
dd ?
dd 0
dd ?
dd ?

; ignored
;points to prev handler's SWSTARTUPINFO
; ignored
; ignored
;points to SWINSTANCEITEM structures

Fields

Comments

See Also

The SWSTARTUPINFO contains information about a client program's instance
data.

sisVersion Not used.

sisNextDev Specifies the 32-bit address (segment:offset) of the next structure
in the client chain.

sisVirtDevFile Not used.

sisReferenceData Not used.

sisInstanceData Specifies the 32-bit address (segment:offset) of a list of
SWINSTANCEITEM structures, each of which describes one contiguous block
of instance data. The list is terminated by a 32-bit zero value.

This structure is also used with the Microsoft Windows startup Interrupt 2Fh
function. However, task switchers use only the sisNextDev and sisInstanceData
fields. For detailed information about the other fields in the SWSTARTUPINFO
structure, see the Microsoft Windows Device Driver Kit Virtual Device Adaptation
Guide.

Interrupt 2Fh Function 4BOSh Identify Instance Data

• SWVERSION
SWVERSION STRUC

svsAPIMajor dw?
svsAPIMinor dw?
svsProductMajor dw ?
svsProductMinor dw ?
svsSwitcherID dw ?
svsFlags dw ?
svsName dd ?
svsPrevSwitcher dd ?

SWVERSION ENDS

SWVERSION 197

protocol supported major version
protocol supported minor version
task switcher's major version
task switcher's minor version
task-switcher identifier
operation flags
points to task-switcher name (ASCIIZ)
previous task switcher's entry address

Fields

See Also

The SWVERSION structure contains information about a task switcher.

svsAPIMajor Specifies the highest major version of the task-switching proto­
col that the task switcher supports. For example, if the highest version of the
protocol supported is 3.10, this field would be set to 0003h. The current version
is 1.0.

svsAPIMinor Specifies the highest minor version of the task-switching proto­
col that the task switcher supports. For example, if the highest version of the
protocol supported is 3.10, this field would be set to OOOAh. The current version
is 1.0.

svsProductMajor Specifies the major version of the task switcher, in the
same format as the svsAPIMajor field.

svsProductMinor Specifies the minor version of the task switcher, in the
same format as svsAPIMinor field.

svsSwitcherID Specifies the switcher identifier (low-order 4 bits). The task
switcher uses Allocate Switcher ID (Interrupt 2Fh Function 4B03h) to generate
this identifier.

svsFI,ags Specifies the task-switcher flags. In this version of the task-switching
protocol, only bit 0 has meaning. If bit 0 is 1, the task switcher is currently dis­
abled; otherwise, the task switcher is enabled. All other bits are reserved and
must be zero.

svsName Specifies the 32-bit address (segment:offset) of a zero-terminated
ASCII string that names the task switcher (for example, "Microsoft MS-DOS
Shell Task Switcher").

svsPrevSwitcher Specifies the 32-bit entry address (segment:offset) of the
previously loaded task switcher. This entry address can be used to call the previ­
ously loaded task s\vitcher's service-function handler.

Interrupt 2Fh Function 4B02h Detect Switcher
Interrupt 2Fh Function 4B03h Allocate Switcher ID
Service Function OOOOh Get Version

Chapter

8

Interrupt 21 h Functions
8.1 Introduction 201

8.2 Function Groups.. 201
8.2.1 File-I-Iandle Functions....................................... 201
8.2.2 Directory-Management Functions 202
8.2.3 Drive-Management Functions.............................. 203
8.2.4 File-Sharing Functions....................................... 203
8.2.5 File-Control-Block (FCB) Functions...................... 203
8.2.6 Input/Output Control (IOCTL) Functions 204
8.2.7 Character Input/Output (I/O) Functions 205
8.2.8 Memory-Management Functions........................... 206
8.2.9 Program-Management Functions........................... 206
8.2.10 Network Functions 207
8.2.11 National-Language-Support (NLS) Functions 207
8.2.12 System-Management Functions............................ 208

8.3 Superseded Functions 209

8.4 Obsolete Functions... 210

8.5 Interrupt 21h Function Reference............................... 210

Chapter 8: Interrupt 21h Functions 201

8.1 Introduction
This chapter describes the MS-DOS functions that a program can call to manage
system operation and resources. Using these functions makes it easier to write
computer-independent programs and increases the likelihood that a program will
be compatible with future versions of MS-DOS.

Programs use MS-DOS services by issuing software interrupts. Interrupt 21h is
the function request service; it provides access to a wide variety of MS-DOS ser­
vices. Each function request uses values in various registers to receive or return
function-specific information.

8.2 Function Groups
The following list shows the categories of MS-DOS functions:

• File management

• Directory management

• Drive management

• File sharing

• File control blocks (FCBs)

• Input/output control (IOCTL)

• Character input/output (I/O)

• Memory management

• Program management

• Networks

• National language support

• System management

The following sections show the functions in each category. For information
about superseded functions, see Section 8.3, "Superseded Functions." For infor­
mation about obsolete functions, see Section 8.4, "Obsolete Functions."

8.2.1 File-Handle Functions
Beginning with version 2.0, MS-DOS has included file-handle functions. All pro­
grams (except those that must be compatible with MS-DOS versions earlier than
version 2.0) should use these functions for file management.

When a program opens or creates a file, MS-DOS assigns a unique handle to
that file. The program can use the handle to access the file until the program
closes the file. In some cases, a program can use a handle to read from and
write to a device as if it were a file.

202 MS-DOS p'rogrammer's Reference

Following are the MS-DOS file-handle functions:

Function Description Version

3Ch Create File with Handle 2.0

3Dh Open File with Handle 2.0

3Eh Close File with Handle 2.0

3Fh Read File or Device 2.0

40h Write File or Device 2.0

41h Delete File 2.0

42h Move File Pointer 2.0

4300h Get File Attributes 2.0

4301h Set File Attributes 2.0

4Sh Duplicate File Handle 2.0

46h Force Duplicate File Handle 2.0

56h Rename File 2.0

5700h Get file Date and Time 2.0

5701h Set File Date and Time 2.0

5Ah Create Temporary File 3.0

5Bh Create New File 3.0

67h Set Maximum Handle Count 3.3

68h Commit File 3.3

6Ch Extended Open/Create 4.0

8.2.2 Directory-Management Functions
Following are the MS-DOS directory-management functions:

Function Description Version

39h Create Directory 2.0

3Ah Remove Directory 2.0

3Bh Change Current Directory 2.0

41h Delete File 2.0

47h Get Current Directory 2.0

4Eh Find First File 2.0

4Fh Find Next File 2.0

56h Rename File 2.0

Chapter 8: Interrupt 21 h Functions 203

8.2.3 Drive-Management Functions
Following are the MS-DOS drive-management functions:

Function Description

ODh Reset Drive

OEh Set Default Drive

19b Get Default Drive

lAh Set Disk Transfer Address

IBh Get Default Drive Data

lCb Get Drive Data

IFh Get Default DPB

2Fh Get Disk Transfer Address

32h Get DPB

3305h Get Startup Drive

36h Get Disk Free Space

Version

1.0

1.0

1.0

1.0

2.0

2.0

5.0

2.0

5.0

2.0

2.0

8.2.4 File-Sharing Functions
With file sharing, multiple programs can share access to a file. File sharing
operates only after the Share program has been loaded.

Following are the MS-DOS functions that are affected' by file sharing:

Function

440Bh

5Ch

Description

Set Sharing Retry Count

Lock/Unlock File

Version

3.1

3.1

8.2.5 File-Control-Block (FeB) Functions
Early versions of MS-DOS used file control blocks (FCBs) for file management.
Although MS-DOS still supports the FCB functions, new programs should use
the file-handle functions.

This chapter includes reference information about the FCB functions for pro­
grammers who maintain older programs that may still use these functions. Fol­
lowing are the MS-DOS FCB functions:

Function Description Version

OFh Open File with FCB 1.0

10h Close File with FCB 1.0

Ilh Find First File with FeB 1.0

204 MS-DOS Programmer's Reference

Function Description Version

12h Find Next File with FCB 1.0

13h Delete File with FCB 1.0

14h Sequential Read 1.0

ISh Sequential Write 1.0

16h Create File with FCB 1.0

17h Rename File with FeB 1.0

21h Random Read 1.0

22h Random Write 1.0

23h Get File Size 1.0

24h Set Random Record Number 1.0

27h Random Block Read 1.0

28h Random Block Write 1.0

29h Parse Filename 1.0

8.2.6 Input/Output Control (IOCTL) Functions
The MS-DOS input/output control (IOCTL) functions provide a consistent and
expandable interface between programs and device drivers.

Following are the MS-DOS IOCTL functions. Minor codes associated with Gen­
eric IOCTL for Character Devices (Function 440Ch) and Generic IOCTL for
Block Devices (Function 440Dh) are indented.

Function Description Version

4400h Get Device Data 2.0

4401h Set Device Data 2.0

4402h Receive Control Data from Character 2.0
Device

4403h Send Control Data to Character Device 2.0

4404h Receive Control Data from Block Device 2.0

4405h Send Control Data to Block Device 2.0
4406h Check Device Input Status 2.0
4407h Check Device Output Status 2.0
4408h Does Device Use Removable Media 3.0
4409h Is Drive Remote 3.1
440Ah Is File or Device Remote 3.1

440Bh Set Sharing Retry Count 3.0

Chapter 8: Interrupt 21h Functions 205

Function Description Version

440Ch Generic IOCTL for Character Devices

4Sh Set Iteration Count 3.3

4Ah Select Code Page 3.3

4Ch Start Code-Page Prepare 3.3

4Dh End Code-Page Prepare 3.3

SFh Set Display Mode 4.0

6Sh Get Iteration Count 3.3

6Ah Query Selected Code Page 3.3

6Bh Query Code-Page Prepare List 3.3

7Fh Get Display Mode 4.0

440Dh Generic IOCTL for Block Devices

40h Set Device Parameters 3.2

4lh Write Track on Logical Drive 3.2

42h Format Track on Logical Drive 3.2

46h Set Media ID 4.0

60h Get Device Parameters 3.2

61h Read Track on Logical Drive 3.2

62h Verify Track on Logical Drive 3.2

66b Get Media ID 4.0

68b Sense Media Type 5.0

440Eh Get Logical Drive Map 3.2

440Fh Set Logical Drive Map 3.2

44lOb Query IOCTL Handle 5.0

44l1h Query IOCTL Devic"e 5.0

8.2.7 Character Input/Output (I/O) Functions
The standard character input/output (I/O) functions handle all input to and out­
put from character devices, such as consoles, printers, and serial ports."

Following are the MS-DOS character I/O functions:

Function

01b

02h

03h

04h

Description

Read Keyboard with Echo

Display Character

Auxiliary Input

Auxiliary Output

Version

1.0

1.0

1.0

1.0

206 MS-DOS Programmer's Reference

Function

OSh

06h

07h

08h

09h

OAh

OBh

OCh

Description

Print Character

Direct Console 110

Direct Console Input

Read Keyboard Without Echo

Display String

Buffered Keyboard Input

Check Keyboard Status

Flush Buffer, Read Keyboard

Version

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

8.2.8 Memory-Management Functions
MS-DOS provides Interrupt 21h functions for allocating and freeing memory.
The system keeps track of memory allocations by using a memory control block
at the beginning of each allocated area. To avoid overwriting memory control
blocks, other resident programs, or portions of the operating system or device
drivers, programs should use the MS-DOS memory-management functions and
use only allocated memory.

Following are the MS-DOS memory-management functions:

Function

48h

49h

4Ah

S800h

S801h

5802h

5803h

Description

Allocate Memory

Free Allocated Memory

Set Memory Block Size

Get Allocation Strategy

Set Allocation Strategy

Get Upper-Memory Link

Set Upper-Memory Link

Version

2.0

2.0

2.0

3.0

3.0

5.0

5.0

8.2.9 Program-Management Functions
MS-DOS uses several Interrupt 21h functions to load, execute, and terminate
programs. Programs can use these same functions to manage other programs.

Following are the MS-DOS program-management functions:

Function Description Version

OOh Terminate Program 1.0

26h Create New PSP 1.0

31h Keep Program 2.0

34h Get InDOS Flag Address 2.0

Function Description

Chapter 8: Interrupt 21h Functions 207

Version

4BOOh

4BOlh

4B03h

4BOSh

4Ch

4Dh

SOh

Slh

S9h

SDOAh

Load and Execute Program

Load Program

Load Overlay

Set Execution State

End Program

Get Child-Program Return Value

Set PSP Address

Get PSP Address

Get Extended Error

Set Extended Error

2.0

2.0

2.0

5.0

2.0

2.0

2.0

2.0

3.0

4.0

8.2.10 Network Functions
A network consists of a server and one or more workstations. MS-DOS main­
tains an assign list to keep track of which workstation disk drives and devices
have been redirected to the server.

Following are the MS-DOS network functions:

Function

4409h

440Ah

SEOOh

SE02h

SE03h

SF02h

SF03h

SF04h

Description

Is Drive Remote

Is File or Device Remote

Get Machine Name

Set Printer Setup

Get Printer Setup

Get Assign-List Entry

Make Network Connection

Delete Network Connection

Version

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

8.2.11 National-Language-Support (NLS) Functions
Programs use the MS-DOS national-language-support (NLS) functions to retrieve
and set country information, such as the time format, the currency symbol, and
the screen and printer code pages.

Following are the MS-DOS NLS-related functions:

Function

38h

6S01h

Description

Get/Set Country Information

Get Extended Country Information

Version

2.0

3.3

208 MS-DOS Programmer's Reference

Function

6502h

6504h

650Sh

6506h

6S07h

6520h

6521h

6S22h

6601h

6602h

Description

Get Uppercase Table

Get Filename Uppercase Table

Get Filename-Character Table

Get Collate-Sequence Table

Get Double...Byte Character Set

Convert Character

Convert String

Convert ASCIIZ String

Get Global Code Page

Set Global Code Page

Version

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

8.2.12 System-Management Functions
MS-DOS also provides Interrupt 21h functions for such system-management
tasks as setting and examining the system time and date, the state of the Verify
flag, and the state of the CTRL+C check flag. The Verify and CTRL+C check flags
control how MS-DOS responds to input from programs and users.

Following are the MS-DOS system-management functions:

Function Description Version

25h Set Interrupt Vector 1.0

2Ah Get Date 1.0

2Bh Set Date 1.0

2Ch Get Time 1.0

20h Set Time 1.0

2Eh Set/Reset Verify Flag 1.0

JOh Get Version Number 2.0

3300h .Get CTRL+C Check Flag 2.0

3301h Set CTRL+C Check Flag 2.0

3306h Get MS-DOS Version 5.0

35h Get Interrupt Vector 2.0

54h Get Verify State 2.0

Chapter 8: Interrupt 21 h Functions 209

8.3 Superseded Functions
MS-DOS version 2.0 and later versions have introduced functions that supersede
many of the functions introduced in earlier versions. The newer functions are
more efficient and easier to use. A programmer should not use a superseded
function except to maintain compatibility with versions of MS-DOS earlier than
version 2.0.

The following table shows the number and name of each superseded Interrupt
21h function and of any functions that supersede it:

Old function

OOh Terminate Program

Olh Read Keyboard with Echo

02h Display Character

03h Auxiliary Input

04h Auxiliary Output

OSh Print Character

09h Display String

OAh Buffered Keyboard Input

OFh Open File with FCB

lOh Close File with FCB

l1b Find First File with FCB

l2h Find Next File with FCB

l3h Delete File with FCB

l4h Sequential Read

lSh Sequential Write

l6h Create File with FCB

l7h Rename File with FCB

lBh Get Default Drive Data

lCh Get Drive Data

2lh Random Read

22h Random Write

23h Get File Size

24h Set Random Record Number

26h Create New PSP

New function

4Ch End Program

3Fh Read File or Device

40h Write File or Device

3Fh Read File or Device

40h Write File or Device

40h Write File or Device

40h Write File or Device

3Fh Read File or Device

3Dh Open File with Handle

3Eh Close File with Handle

4Eh Find First File

4Fh Find Next File

4lh Delete File

3Fh Read File or Device

40h Write File or Device

3Ch Create File with Handle

56h Rename File

36h Get Disk Free Space

36h Get Disk Free Space

3Fh Read File or Device

40h Write File or Device

42h Move File Pointer

42h Move File Pointer

4BOOh Load and Execute Program

210 MS-DOS Programmer's Reference

Old function

27b Random Block Read

28b Random Block Write

New function

3Fh Read File or Device

42h Move File Pointer

40h Write File or Device

42h Move File Pointer

Some programmers may work on older software that still uses superseded func­
tions. For the convenience of these programmers, this chapter includes refer­
ence pages for the superseded functions. New programs should not use super­
seded functions, because Microsoft may remove support for these functions at
any time.

8.4 Obsolete Functions
This chapter does not include reference pages for Interrupt 21h functions that
are obsolete-that is, not supported by MS-DOS version 5.0. Following are the
numbers of the six obsolete functions: 18h, 1Dh, lEh, 20h, 61h, and 63h.

8.5 Interrupt 21 h Function Reference
The remainder of this chapter describes the MS-DOS Interrupt 21h functions
in detail. The reference page for each function provides the syntax, a statement
of purpose, any parameter descriptions, and cross-references to any similar or
related functions.

All the MS-DOS Interrupt 21h functions share a common interface. To use an
Interrupt 21h function, a program should carry out the following actions:

• Load control information into each appropriate register, as shown in the
syntax section for the function.

• Load the function number into the AH or AX register.

• Issue Interrupt 21h.

When MS-DOS returns control to a program, that program should examine any
appropriate registers for error and return information, as shown in the syntax
section for the function.

The reference pages that follow present the MS-DOS Interrupt 21h functions in
numeric order.

• Function OOh Terminate Program

Function OOh Terminate Program 211

Superseded

mov
int

ah, OOh
21h

;Terminate Program

Parameters

Return Value

Comments

See Also

Terminate Program (Function OOh) terminates the current program and returns
control to its parent program.

This function has been superseded by End Program (Function 4Ch).

This function has no parameters.

This function does not return.

This function is intended to be used by .COM programs. When a program calls
this function, the CS register must contain the segment address of the program
segment prefix (PSP).

This function carries out the following actions:

• Flushes the file buffers and closes files, unlocking any regions locked by
the program.

• Restores Termination Address (Interrupt 22h) from offset OAh in the
PSP (pspTerminateVector field).

• Restores the address of CTRL+C Handler (Interrupt 23h) from offset
OEh in the PSP (pspControlCVector field).

• Restores the address of Critical-Error Handler (Interrupt 24h) from
offset 12h in the PSP (pspCritErrorVector field).

• Frees any memory owned by the terminating process.

After completing these actions, this function transfers control to the address
specified by offset OAh in the PSP.

Interrupt 20h Terminate Program
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler
Function 4Ch End Program

212 Function 01h Read Keyboard with Echo

• Function 01 h Read Keyboard with Echo

mov ah, Olh ;Read Keyboard with Echo
int 21h

mov InputChar, al ;character from standard input

Superseded

Parameters

Return Value

Comments

See Also

Read Keyboard with Echo (Function Olh) reads a character from the standard
input device and writes it to the standard output device. If no character is ready,
MS-DOS waits until one is available.

This function has been superseded by Read File or Device (Function 3Fh).

This function has no parameters.

The AL register contains the input character.

Upon reading a carriage-return character (ODh), this function sends the standard
output device a carriage return but not a linefeed (that is, it sets the cursor to
the beginning of the current line).

If the character read from the keyboard is an extended key code (for example,
if the user presses one of the function keys), Read Keyboard with Echo returns
OOh and the program must call the function again to get the second byte of the
extended key code.

Function 3Fh Read File or Device

• Function 02h Display Character

Function 02h Display Character 213

Superseded

Parameter

Return Value

Comment

See Also

mov dl, OutputChar ;character to display

mov ah, 02h ;Display Character
int 21h

Display Character (Function 02h) displays a character on the standard output
device.

This function has been superseded by Write File or Device (Function 40h).

OutputChar Specifies the ASCII value of the character to be displayed.

This function has no return value.

When the standard output device is the screen, displaying a backspace character
(ASCn 08h) moves the cursor back one position but does not erase characters.

Function 40h Write File or Device

214 Function 03h Auxiliary Input

• Function 03h Auxiliary Input

mov ah, 03h ;Auxlllary Input
int 21h

mov InputChar, al ;character from auxiliary input

Superseded

Parameters

Return Value

Comment

See Also

Auxiliary Input (Function 03h) reads a character from the standard auxiliary
device. If no character is available, MS-DOS waits.

This function has been superseded by Read File or Device (Function 3Fh).

This function has no parameters.

The AL register contains the ASCII value of the input character.

As this function receives characters from the standard auxiliary device, it does
not save them in a buffer. Therefore, if the device is sending data faster than the
program can process it, characters may be lost.

Function 04h Auxiliary Output
Function 3Fh Read File or Device

• Function 04h Auxiliary Output

Function 04h Auxiliary Output 215

Superseded

mov

mov
lnt

dl, OutputChar

ah, 04h
21h

;eharacter to output

;Auxl1lary Output

Parameter

Return Value

Comment

See Also

Auxiliary Output (Function 04h) sends a character to the auxiliary output device.

This function has been superseded by Write File or Device (Function 40h).

OutputChar Specifies the ASCII value of the character to be displayed.

This function has no return value.

H the output device is busy, this function waits until the device is ready.

Function 03h Auxiliary Input
Function 40h Write File or Device

216 Function 05h Print Character

• Function 05h Print Character Superseded
moy

moy
int

dl, OutputChar

ah, OSh
21h

;character to print

;Print Character

Parameter

Return Value

Comment

See Also

Print Character (Function OSh) sends a character to the standard printer device.

This function has been superseded by Write File or Device (Function 40h).

OutputChar Specifies the ASCn value of the character to be printed.

This function has no return value.

If the printer device is busy, this function waits until the device is ready.

Function 40h Write File or Device

Function 06h Direct Console I/O 217

• Function 06h Direct Console 1/0

mov

mov
1nt

dl, IOSw1tch

ah, 06h
21h

;OFFh = read, OOh through OFEh = write

;Direct Console I/O

Parameter

Return Value

Comments

See Also

Direct Console I/O (Function 06h) reads a character from standard input or
writes a character to standard output. If no character is available, MS-DOS does
not wait. When this function reads a character from standard input; it does not
send the character to standard output.

IOSwitch Specifies whether the function is to read from standard input or
write to standard output. This parameter can be any value in the range OOh
through OFFh. The values result in the following actions:

Value Action

OFFh Reads a character from standard input; returns immediately if no
character is ready.

OO-OFEh Writes the character to standard output.

If output is requested, this function has no return value.

If input is requested and a character is ready, the AL register contains the char­
acter and the zero flag is cleare.d. If no character is ready, the AL register is
undefined and the zero flag is set.

This function is typically used by programs that must be able to read and write
any character or control code.

If the character read from the keyboard is an extended key code (for example, if
the user presses one of the function keys), Direct Console I/O returns OOh and
the program must call the function again to get the second byte of the extended
key code.

This function does not check for CTRL+C.

Function 02h Display Character
Function 04h Auxiliary Output
Function OSh Print Character
Function 07h Direct Console Input
Function 08h Read Keyboard Without Echo
Function 09h Display String
Function OAh Buffered Keyboard Input
Function OBh Check Keyboard Status
Function OCh Flush Buffer, Read Keyboard
Function 3Fh Read File or Device
Function 40h Write File or Device

218 Function 07h Direct Console Input

• Function 07h Direct Console Input

mov ah, 07h ;Direct Console Input
int 21h

mov InputChar, al ;character from standard input

Parameters

Return Value

Comments

See Also

Direct Console Input (Function 07h) reads a character from standard input. If
no character is available, MS-DOS waits until one is available. This function
does not send the character to standard output.

This function has no parameters.

The AL register contains the ASCn value of the input character.

If the character read from standard input is an extended key code (for example,
if the user presses one of the function keys), Direct Console Input returns OOh
and the program must call the function again to get the second byte of the
extended key code.

This function does not check for CTRL+C.

Function 06h Direct Console I/O
Function OSh Read Keyboard Without Echo
Function OAh Buffered Keyboard Input
Function OBh Check Keyboard Status
Function OCh Flush Buffer, Read Keyboard
Function 3Fh Read File or Device

Function 08h Read Keyboard Without Echo 219

• Function OSh Read Keyboard Without Echo

mov ah, 08h ;Read Keyboard Without Echo
int 21h

mov InputChar, a1 ;character from standard input

Parameters

Return Value

Comment

See Also

Read Keyboard Without Echo (Function 08h) reads a character from standard
input.

This function does not send the character to an output device.

This function has no parameters.

The AL register contains the ASCII value of the input character.

If the character read from the keyboard is an extended key code (for example, if
the user presses one of the function keys), Read Keyboard Without Echo returns
OOh and the program must call the function again to get the second byte of the
extended key code.

Function 06h Direct Console 1/0
Function 07h Direct Console Input
Function OAh Buffered Keyboard Input
Function OBh Check Keyboard Status
Function OCh Flush Buffer, Read Keyboard
Function 3Fh Read File or'Device

220 Function 09h Display String

• Function09h Display String

mov
mov
mov

mov
int

dx, seg String
ds, dx
dx, offset String

ah, 09h
21h

;ds:dx points to string to display

;Display String

Parameter

Return Value

Comment

See Also

Display String (Function 09h) sends a string to standard output. The string must
end with a dollar sign (ASCII 24h). MS-DOS displays characters up to but not
including the dollar sign.

This function has been superseded by Write File or Device (Function 40h).

String Points to the buffer containing the string to be displayed.

This function has no return value.

This function cannot send a string containing a dollar sign (ASCn 24h) to stan­
dard output. The string may contain any other characters.

Function 40h Write File or Device

II Function OAh Buffered Keyboard Input

Function OAh Buffered Keyboard Input 221

Superseded

Parameters

Return Value

Comment

See Also

mov dx, seg Buffer
mov ds, dx
mov dx, offset Buffer ;ds:dx points to buffer for input
mov aI, MaxLength
mov byte ptr Buffer[O], al ;maximum amount of input

mov ah, OAb ;Buffered Keyboard Input
int 21h

Buffered Keyboard Input (Function OAh) reads a string from standard input and
echoes it to standard output until a program-defined number of characters is
reached or until the user presses the ENTER key.

This function has been superseded by Read File or Device (Function 3Fh).

Buffer Points to the buffer where the string will be returned. The buffer must
have the following form:

Offset Contents

OOh Specifies the maximum number of characters, including the carriage
return, to be copied to the buffer. This value, set by the program,
must not exceed 255 (OFFh).

Olh Receives the actual number of characters copied to the buffer, not
counting the carriage return. The function sets this value.

Bytes from offset 02h up to the end of the buffer receive the typed characters.
The entire buffer must be at least two bytes longer than the size specified at
offset OOh.

MaxLength Specifies the maximum length of the input string.

The string area of the buffer (starting at the third byte in the buffer) contains the
input string, and the second byte of the buffer contains the number of characters
read (not counting the carriage return).

Characters are read from standard input and placed in the buffer, beginning at
the third byte, until a carriage-return character (ASCn ODh) is read. When the
number of characters in the buffer reaches one fewer than the maximum, addi­
tional characters read are ignored and a beep character (ASCn 07h) is sent to
standard output until a carriage-return character is read.

Function 3Fh Read File or Device

222 Function OBh Check Keyboard Status

• Function OBh Check Keyboard Status

mov ah, OBh ;Check Keyboard Status
int 21h

cmp aI, 0 ;zero means not ready
je .not_ready

Parameters

Return Value

Comment

See Also

Check Keyboard Status (Function OBh) determines whether a character is avail­
able from standard input.

This function has no parameters.

If a character is available, the AL register contains OFFh. Otherwise, the AL
register contains OOh.

This function does not indicate how many characters are available, only that
there is at least one. .

Function Olb Read Keyboard with Echo
Function 06h Direct Console 1/0
Function 07h Direct Console Input
Function 08h Read Keyboard Without Echo
Function OAh Buffered Keyboard Input
Function 3Fh Read File or Device

Function OCh Flush Buffer, Read Keyboard 223

• Function OCh Flu~h Buffer, Read Keyboard

mov aI, FunetionNumber ;input funetion (Olh, 06h, 07h, or 08h)

mov ah, OCh ;F1ush Buffer, Read Keyboard
int 21h

mav InputChar, a1 ;eharaeter from standard input

Parameter

Return Value

Comments

See Also

Flush Buffer, Read Keyboard (Function OCh) empties the standard input buffer.
Further processing depends on the value in AL when the function is called.

FunctionNumber Specifies the number of a read-keyboard function that is to
be executed after the standard input buffer is flushed. The following functions
can be specified:

Value Function name

Olh Read Keyboard with Echo

06h Direct Console 1/0

07h Direct Console Input

08h Read Keyboard Without Echo

The value OAh is reserved and must not be used.

If a function number is specified, the AL register contains the return value for
that function. If no function number is specified (that is, FunctionNumber is not
Olh, 06h, 07h, or 08h), the AL register contains OOh and the standard input
buffer is empty.

This function clears all keyboard input received before a program requests new
input, so that the program does not receive a character that was entered before
the request.

If Flush Buffer, Read Keyboard is used to call Direct Console 1/0 (Function
06h), the DL register must contain OFFh (Flush Buffer, Read Keyboard cannot
be used to call Direct Console I/O and write a character).

Function Olh Read Keyboard with Echo
Function 06h Direct Console 1/0
Function 07h Direct Console Input
Function 08h Read Keyboard Without Echo
Function 3Fh Read File or Device

224 Function ODh Reset Drive

• Function ODh Reset Drive
mov
tnt

ah, ODh
21h

;Reset Drive

Parameters

Return Value

Comments

See Also

Reset Drive (Function ODh) flushes all file buffers. Any write operations that are
buffered by MS-DOS are performed, and all waiting data is written to the appro­
priate drive.

This function has no parameters.

This function has no return value.

Reset Drive is normally used by CTRL+C interrupt handlers.

This function does not update directory entries; programs must close changed
files to update their directory entries.

Function lOh Close File with FCB
Function 3Eh Close File with Handle

Function OEh Set Default Drive 225

• Function OEh Set Default Drive

mov dl, DriveNumber ;drive (0 = A, 1 = B, 2 C, etc.)

Parameter

Return Value

Comment

See Also

mov ah, OEh ;Set Default Drive
int 21h

mov LogicalDrives, al ;number of logical drives

Set Default Drive (Function OEh) sets the specified drive to be the default drive
and returns a count of the logical drives in the system.

DriveNumber Specifies the number of the drive to be made the default drive
(0 = A, 1 = B, 2 == C, and so on).

The AL register contains the number of logical drives in the system. This num­
ber includes floppy disk drives, RAM disks, and logical drives on any hard disks
in the system.

The number of logical drives in the system is not necessarily the same as the
number of physical drives. In addition, the number of logical drives returned
may not map directly to drive letters. For example, if the function returns 5,
drives A, B, C, D, and E are not necessarily valid drive letters.

Function 19h Get Default Drive
Function 3Bh Change Current Directory

226 Function OFh Open File with FeB

• Function OFh Open File with FeB

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov ah, OFh ; Open File with FCB
int 21h

cmp al, 0 ;zero means success
jne error_handler

Superseded

Parameter

Return Value

Comments

See Also

Open File with FCB (Function OFh) opens a file identified by the file control
block (FCB).

This function has been superseded by Open File with Handle (Function 3Dh).

FileFCB Points to an FCB structure that identifies the file to open. The
fcbDriveId, fcbFileName, and fcbExtent fields must specify the filename and
drive; all other fields must be set to zero. The FCB structure has the following
form:

FCB STRUC
fcbDriveID db ? ;drive no. (O=default, l=A, etc.)
fcbFileName db '????????' ; filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the file is found, the AL register contains OOh and the remaining fields in the
FeB structure are filled in. Otherwise, the AL register contains OFFh.

This function does not support paths, so it is possible to open only files in the
current directory.

If the calling program specifies zero for the drive number, MS-DOS searches for
the file on the default drive. If the system finds the file, it fills in the fcbDrlveId
field with the correct drive.

When a file is opened, MS-DOS sets the current block number in the FCB to
zero (the file pointer is at the beginning of the file).

MS-DOS initially sets the record size to 128 bytes. If some other record size is
to be used, the size must be set after the call to Open File with FCB but before
any other disk operation.

Function 10h Close File with FCB
Function 3Dh Open File with Handle

• Function 10h Close File with FeB

Function 10h Close File with FCB 227

Superseded

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov
int

cmp
jne

ah, lOh
2lh

al, °
error_handler

;Close File with FCB

;zero means success

Parameter

Return Value

Comments

See Also

Close File with FCB (Function lOh) closes the open file identified by the file
control block (FCB).

This function has been superseded by Close File with Handle (Function 3Eh).

FileFCB Points to an FeB structure that identifies the file to close. The struc­
ture must have been previously opened by using Open File with FCB (Function
OFh) or Create File with FCB (Function 16h). The FCB structure has the follow­
ing form:

FCB STRUC
fcbDriveID db 7 ;drive no. (O=default, l=A, etc.)
fcbFileName db '77771171' ; filename
fcbExtent db '711' ;file extension
fcbCurBlockNo dw 7 ;current block number
fcbRecSize dw 7 ;record size
fcbFileSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 7 ;date file last modified
fcbFileTime dw 7 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 7 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the file is found, the AL register contains OOh and the remaining fields in the
FCB structure are filled in. Otherwise, the AL register contains OFFh.

Close File with FCB searches the current directory for the file named in the
FCB structure. If it finds a directory entry for the file, it completes any buffered
write operations (buffered information is written to the disk, and the buffers are
freed). MS-DOS then updates the directory entry, if necessary, to match the
FCB structure and closes the file. Further requests to read from or write to the
file will fail.

After a program changes a file, it must call this function to update the directory
entry. Programs should close any FCB structure (even one for a file that has not
been changed) when they no longer need access to the file.

This function does not support paths, so it is possible to close only files in the
current directory.

Function OFh Open File with FCB
Function 3Eh Close File with Handle

228 Function 11h Find First File with FeB

• Function 11h Find First File with FeB

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB :ds:dx points to FCB

mov ah, llh :Find First File with FCB
int 21h

cmp al, 0 ;zero means success
jne error_handler

Superseded

Parameter

Find First File with FCB (Function llh) searches the current directory for the
first file matching the filename specified by the file control block (FCB).

This function has been superseded by Find First File (Function 4Eh).

FileFCB Points to an FCB structure or EXTENDEDFCB structure that
identifies the file or files to search for.

If an FeB structure is given, the fields fcbDrlveID, rcbFileName, and fcbExtent
must specify the filename(s). The filename can include wildcards. All other fields
should be zero. The FCB structure has the following form:

FCB STRUC
fcbDriveID db 1 :drive no. (O=defau1t, l=A, etc.)
fcbFileName db '11111111' : filename
fcbExtent db '111' :file extension
fcbCurBlockNo dw ? :current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw 1 :time file last modified
fcbReserved db 8 dup (?) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If an EXTENDEDFCB structure is given, the fields extDriveID, extFileName,
and extExtent must specify the filename(s). The filename can include wildcards.
The extAttribute field must specify the attributes of the file to search for. All
other fields should be zero.. The EXTENDEDFCB structure has the following
form:

EXTENDEDFCB STRUC
extSignature db Offh
extReserved db 5 dUp(O)
extAttribute db 1

extDriveID db
extFileName db
extExtent db
extCurBlockNo dw
extRecSize dw
extFileSize db
extFileDate dw
extFileTime dw
extReserved db
extCurRecNo db
extRandomRecNo db

EXTENDEDFCB ENDS

?
'???1?1?1'
'1?1'
1
?
4 dup (?)
?
?
8 dup (?)
1
4 dup (?)

;extended FCB signature
;reserved bytes
:attribute byte
:fi1e control block (FCB)
:drive no. (O=default, l=A, etc.)
: filename
;file extension
;current block number
:record size
;size of file, in bytes
:date file last modified
;time file last modified
;reserved bytes
;current record number
;random record number

For a full description of the EXTENDEDFCB structure, see Chapter 3, "File
System."

Function 11h Find First File with FeB 229

; name
;extension
; attributes
; reserved
;time
; date
;starting cluster
;file size

db '11111111'
db '111'
db 1
db 10 dup (1)
dw ?
dw ?
dw ?
dd ?

If a file matching the name in the FeB structure or EXTENDEDFCB structure is
found, the AL register contains OOh and the buffer at the current disk transfer
address (DTA) receives a DIRENTRY structure defining the file. Otherwise, the
AL register contains OFFh.

If a program uses Find Next File with FCB (Function 12h) to continue searching
for matching filenames, it must not alter or open the original FCB structure.

If the function is successful and an FCB structure was given, the function copies
the drive number used in the search (1 = A, 2 = B, and so on) to the first byte
at the DTA. It copies a DIRENTRY structure that defines the file starting at the
second byte at the DTA.

If the function is successful and an EXTENDEDFCB was given, the function
copies an EXTHEADER structure that starts at the first byte at the DTA and
then copies a DIRENTRY structure that defines the file immediately after the
EXTBEADER structure.

The DIRENTRY structure has the following form:

DIRENTRY STRUC
deName
deExtension
deAttributes
deReserved
deTime
deDate
deStartCluster
deFileSize

DIRENTRY ENDS

Comments

Return Value

;extended signature
; reserved
;attribute byte

db Offh
db 5 dUp(O)
db ?

For a full description of the DIRENTRY structure, see Chapter 3, "File System."

The EXTHEADER structure has the following form:

EXTHEADER STRUC
ehSignature
ehReserved
ehSearchAttrs

EXTHEADER ENDS

For a full description of the EXTHEADER structure, see Chapter 3, "File Sys­
tem."

See Also Function 4Eh Find First File

230 Function 12h Find Next File with FeB

• Function 12h Find Next File with FeB Superseded

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov ah, 12h ;Find Next File with FeB
int 21h

cmp al, 0 ;zero means success
jne error_handler

Parameter

Find Next File with FCB (Function 12h) searches the current directory for addi­
tional files matching the filename specified by the file control block (FCB).

A program must initiate a file search with Find First File with FCB (Function
l1h) before it can use Find Next File with FCB.

This function has been superseded by Find Next File (Function 4Fh).

FileFCB Points to an FCB or EXTENDEDFCB structure that identifies the file
or files to search for. The structure must have been previously filled by using
Find First File with FCB (Function l1h). The FCB structure has the following
form:
FCB STRUC

fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
fcbFileName db '11111111' ; filename
fcbExtent db '111' ;fi18 extension
fcbCurBlockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

etc.)

;extended FCB signature
;reserved bytes
;attribute byte
;file control block (FCB)
;drive no. (O=default, l=A,
; filename
;file extension
;current block number
;record size
;size of file, in bytes
;date file last modified
;time file ·last modified
;reserved bytes
;current record number
;random record number

1
'11111111'
'111'
1
1
4 dup (1)
1
1
8 dup (1)
1
4 dup (1)

For a full description of the FCB structure, see Chapter 3, "File System."

The EXTENDEDFCB structure has the following form:
EXTENDEDFCB STRUC

extSignature db Offh
extReserved db 5 dup(O)
extAttribute db 1

extDriveID db
extFileName db
8xtExtent db
extCurBlockNo dw
extRecSize dw
extFileSize db
extFileDate dw
extFileTime dw
extReserved db
extCurRecNo db
extRandomRecNo db

EXTENDEDFCB ENDS

For a full description of the EXTENDEDFCB structure, see Chapter 3, "File
System."

Function 12h Find Next File with FOB 231

; name
;extension
; attributes
; reserved
;time
;date
;starting cluster
;file size

db '11111111'
db '111'
db 1
db 10 dup (1)
dw 1
dw 1
dw 1
dd 1

If a file matching the name in the FCB structure or EXTENDEDFCB structure is
found, the AL register contains OOh and the buffer at the current disk transfer
address (DTA) receives a DIRENTRY structure defining the file. Otherwise, the
AL register contains OFFh.

If the function is successful and an FeB structure was given, the function copies
the drive number used in the search (1 = A, 2 = B, and so on) to the first byte
at the DTA. It copies a DIRENTRY structure that defines the file starting at the
second byte at the DTA.

If the function is successful and an EXTENDEDFCB was given, the function
copies an EXTHEADER structure that starts at the first byte at the DTA and
then copies a DIRENTRY structure that defines the file immediately after the
EXTHEADER structure.

The DIRENTRY structure has the following form:

DIRENTRY STRUC
deName
deExtension
deAttributes
deReserved
deTime
deDate
deStartCluster
deFileSize

DIRENTRY ENDS

Comments

Return Value

;extended signature
; reserved
;attribute byte

db Offh
db 5 dup(O)
db 1

For a full description of the DIRENTRY structure, see Chapter 3, "File System."

The EXTHEADER structure has the following form:
EXTHEADER STRUC

ehSignature
ehReserved
eh'SearchAttrs

EXTHEADER ENDS

For a full description of the EXTHEADER structure, see Chapter 3, "File Sys­
tem."

See Also Function 4Fh Find Next File

232 Function 13h Delete File with FeB

• Function 13h Delete File with FeB

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FeB

Superseded

mov
int

cmp
jne

ah, 13h
21h

ai, 0
error_handler

;Delete File with FCB

;zero means success

Parameter

Return Value

Comments

See Also

Delete File with FCB (Function t3h) deletes the file or files identified by the file
control block (FCB).

This function has been superseded by Delete File (Function 4th).

FileFCB Points to an FCB structure that identifies the file or files to delete.
The fcbDriveld, fcbFileName, and f~bExtent fields must specify the filename and
drive. The filename can include wildcards. All other fields must be zero. The
FCB structure has the following form:

FCB STRUC
fcbDriveID db 1 ;drlve no. (O=default, l=A, etc.)
fcbFileName db 111111111 1 ;fllename
fcbExtent db 1?1?1 ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSlze dw ? ;record size
fcbFileSlze db 4 dup (?) ;slze of file, in bytes
fcbFlleDate dw ? ;date file last modified
fcbFileTime dw 1 ;tlme flle last modified
fcbReserved db 8 dup (?) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If a file matching the name in the FCB structure is found and deleted, the AL
register contains OOh. Otherwise (if a matching file cannot be found), the AL
register contains OFFh.

Programs should not delete open files.

H the filename in the FCB structure contains wildcards, all matching files are
deleted.

This function can be used to delete files on a network drive but only if the net­
work has granted delete (or similar) access to the given file or drive.

Function 4th Delete File

• Function 14h Sequential Read

Function 14h Sequential Read 233

Superseded

Parameter

Return Value

Comments

See Also

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov ah, 14h ; Sequential Read
int 21h

cmp al, 0 ;zero means success
jne error_handler

Sequential Read (Function 14h) reads a record from the file identified by the file
control block (FCB). Data read from the file is written to the memory at the
current disk transfer address (DTA).

This function has been superseded by Read File or Device (Function 3Fh).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). The fcbCurBlockNo and fcbCurRecNo
fields in the FCB structure must specify the record to read. The FCB structure
has the following form:

FCB STRUC
fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
febFileName db '11111111' ; filename
fcbExtent db '111' ;file extension
fcbCurBloekNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FeB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh, and the memory at
the DTA contains the record read from the file. Otherwise, the AL register con­
tains an error value, which may be one of the following values:

Value Meaning

Olh End of file encountered, no data in record

02h Segment boundary overlapped by DTA, read canceled

03h End of file encountered, partial record at DTA (rest of record filled
with zeros)

MS-DOS increments the fcbCurBlockNo and fcbCurRecNo fields in the FeB
structure after a successful read operation.

This function can be used to read files on a network drive but only if the net­
work has granted read (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function ISh Sequential Write
Function 16h Create File with FCB
Function 3Fh Read File or Device

234 Function 15h Sequential Write

• Function 15h Sequential Write

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov ah, 15h ; Sequential Write
int 21h

cmp al, 0 ;zero means success
jne error_handler

Superseded

Parameter

Return Value

Comments

See Also

Sequential Write (Function ISh) writes the data at the current disk transfer
address (DTA) to a record in the file identified by the file control block (FCB).

This function has been superseded by Write File or Device (Function 40h).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). The fcbCurBlockNo and fcbCurRecNo
fields in the FCB structure specify the record to write. The FCB structure has
the following form:
FCB STRUC

fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
fcbFi1eName db '11111?11' ; filename
fcbExtent db '111' ;fi1e extension
fcbCurB1ockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFi1eSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFi1eTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FeB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains Olh if the disk is full or 02h if the DTA overlapped a segment
boundary. In either case, the write operation is canceled.

MS-DOS increments the fcbCurBlockNo and fcbCurRecNo fields in the FeB
structure after a successful write operation.

This function can be used to write files on a network drive but only if the net­
work has granted write (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 14h Sequential Read
Function 16h Create File with FCB
Function 40h Write File or Device

• Function 16h Create File with FeB

Function 16h Create File with FCB 235

Superseded
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov
int

cmp
jne

ah, 16h
21h

al, 0
error_handler

;Create File with FCB

;zero means success

Parameter

Return Value

Comments

See Also

Create File with FCB (16h) creates a new file having the filename specified by
the file control block (FCB). If a file with the specified name already exists,
MS-DOS opens it and truncates it to zero length.

This function has been superseded by Create File with Handle (Function 3Ch).

FileFCB Points to an FCB structure that identifies the file to create. The
fcbDriveId, fcbFileName, and fcbExtent fields must specify the filename and
drive. All other fields must be zero. The FCB structure has the following fonn:

FCB STRUC
fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
fcbFileName db '11111111' ; filename
fcbExtent db '111' ;file extension
fcbCurBlockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains OFFh.

This function can be used to create files on a network drive but only if the net­
work has granted create (or similar) access to the given drive.

The EXTENDEDFCB structure can be used in place of the FCB structure to
assign attributes to the file when creating it. In this case, the EXTENDEDFCB
structure is used for all subsequent read, write, and close operations.

Function 3Ch Create File with Handle

236 Function 17h Rename File with FeB

• Function 17h Rename File with FeB Superseded

mov dx, seg FilesFCB
mov ds, dx
mov dx, offset FilesFCB ;ds:dx points to RENAMEFCB structure

mov
int

ah, 17h
21h

;Rename File with FCB

cmp
jne

al, 0
error_handler

;zero means success

;drive no. (O=default, l=A, etc.)
;old filename
;old file extension
; reserved
;new filename
;new extension
; reserved

db 1
db '11111111'
db '111'
db 5 dup (1)
db '11111111'
db '111'
db 9 dup (1)

Rename File with FCB (Function 17h) changes the name of an existing file.

This function has been superseded by Rename File (Function 56h).

FilesFCB Points to a RENAMEFCB structure that contains the old and new
names for the file. The RENAMEFCB structure has the following form:

RENAMEFCB STRUC
renDriveID
renOldName
renOldExtent
renReservedl
renNewName
renNewExtent
renReserved2

RENAMEFCB ENDS

Parameter

For a full description of the RENAMEFCB structure, see Chapter 3, "File Sys­
tem."

Return Value

Comments

See Also

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains OFFh.

If the filename in the RENAMEFCB structure contains wildcards, all matching
files are renamed.

If the new name matches the name of an existing file, the function returns OFFh
.without ~enaming the file.

Function 56h Rename File

Function 19h Get Default Drive 237

• Function 19h Get Default Drive

mov ah, 19h ;Get Default Drive
int 21h

mov DriveNumber, al ;drive (0 = A, 1 = B, etc.)

Parameters

Return Value

See Also

Get Default Drive (Function 19h) returns the number of the default drive.

This function has no parameters.

The AL register contains the drive number (0 = A, 1 = B, and so on).

Function OEh Set Default Drive

238 Function 1Ah Set Disk Transfer Address

• Function 1Ah Set Disk Transfer Address

mov dx, seg DTA
mov ds, dx
mov dx, offset DTA ;ds:dx is new disk transfer address

mov
int

ah, lAb
2lh

;Set Disk Transfer Address

Parameter

Return Value

Comments

See Also

Set Disk Transfer Address (Function 1Ah) sets the address of the buffer that
MS-DOS uses for file 1/0 (with file control blocks, or FCBs) and disk searches
(with and without FCBs).

DTA Points to the buffer MS-DOS is to use for file operations.

This function has no return value.

When a program starts, the default disk transfer address (DTA) is offset OOBOh
in the program segment prefix (PSP). If a program sets the DTA, the new buffer
must be large enough to accommodate the file record size (for example, if the
file record size is 128 bytes, the buffer must be at least 128 bytes). In addition,
the buffer must not overlap a segment boundary. The default DTA should not
be used for read or write operations with record sizes that exceed 128 bytes.

Programs can retrieve the current DTA with Get Disk Transfer Address (Func­
tion 2Fh).

Function llh Find First File with FCB
Function l2h Find Next File with FCB
Function l4h Sequential Read
Function lSh Sequential Write
Function 21h Random Read
Function 22h Random Write
Function 27h Random Block Read
Function 28h Random Block Write
Function 2Fh Get Disk Transfer Address
Function 4Eh Find First File
Function 4Fh Find Next File

• Function 1Bh Get Default Drive Data

Function 1Bh Get Default Drive Data 239

Superseded

mov
int

cmp
je

mov
mov
mov
mov
mov

ah, lBh
21h

al, OFFh
error_handler

SecPerCluster, al
BytesPerSector, cx
NumClusters, dx
al, byte ptr [bx]
MediaDesc, al

;Get Default Drive Data

;OFFh means error

;sectors per cluster
;bytes per sector
;number of clusters
;ds:bx points to media descriptor

Parameters

Return Values

Get Default Drive Data (lBh) retrieves information about the disk in the default
drive.

This function has been superseded by Get Disk Free Space (Function 36h).

This function has no parameters.

If the function is successful, the AL, ex, DX, and DS:BX registers contain the
following information:

Register Contents

AL
ex
DX

DS:BX

Number of sectors in a cluster.

Number of bytes in a sector.

Number of clusters on the disk.

Points to the media descriptor.

Comments

Otherwise, the AL register contains OFFh.

If Get Default Drive Data fails, the default drive was invalid or a disk error
occurred. A program must check the return values from this function to deter­
mine whether it has valid disk information.

Following are the most commonly used media descriptors and their correspond­
ing media:

Value Type of medium

OFOh

OF8h

OF9h

OFAh

OFBh

OFCh

OFDh

OFEh

OFFh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.25-inch, 1 side, 8 sectors/track, (320K).

3.5-inch, 2 sides, 8 sectors/track (640K).

S.2S-inch, 1 side, 9 sectors/track, 40 tracks/side (l80K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (lOOK). This value is
also used for 8-inch disks.

5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

240 Function 1Bh Get Default Drive Data

See Also

Get Default Drive Data modifies the DS register. A program should save the
contents of the register before calling this function and restore the contents of
the register after retrieving the media descriptor.

Function lCh Get Drive Data
Function 36h Get Disk Free Space

• Function 1Ch Get Drive Data

Function 1Ch Get Drive Data 241

Superseded

mov

mov
tnt

cmp
jz

mov
mov
mov
mov
mov

dl, DriveNum

ah, lCh
21h

al, OFFh
error_handler

SecPerC1uster, a1
BytesPerSector, cx
NumClusters, dx
al, byte ptr [bx]
MediaDesc, al

;drive (0 = default, 1 A, 2 = B, etc.)

;Get Drive Data

;OFFh means error

;sectors per cluster
;bytes per sector
;number of clusters
;ds:bx points to media descriptor

Parameter

Return Values

Get Drive Data (Function lCh) retrieves information about the disk in the
specified drive.

This function has been superseded by Get Disk Free Space (Function 36h).

DriveNum Specifies the number of the drive for which to return information
(0 = default, 1 = A, 2 = B, and so on).

If the function is successful, the AL, CX, DX, and DS:BX registers contain the
following information:

Register Contents

AL
ex
ox
OS:BX

Number of sectors in a cluster.

Number of bytes in a sector.

Number of clusters on the disk.

Points to the media descriptor.

Comments

Otherwise, the AL register contains OFFh.

If Get Drive Data fails, the default drive was invalid or a disk error occurred. A
program must check the return values from this function to determine whether it
has valid disk information.

Following are the most commonly used media descriptors and their correspond­
ing media:

Value Type of medium

OFOh

OF8h

OF9h

OFAh

OFBh

OFCh

OFOh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); S.25-inch, 2
sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.25-inch, 1 side, 8 sectors/track, (320K).

3.5-inch, 2 sides, 8 sectors/track (640K).

5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (I80K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

242 Function 1Ch Get Drive Data

Value Type of medium

See Also

OFEh S.2S-inch, 1 side, 8 sectors/track, 40 tracks/side (l60K). This value is
also used for 8-inch disks.

OFFh S.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

Get Drive Data modifies the DS register. A program should save the contents of
the register before calling this function and restore the contents of the register
after retrieving the media descriptor.

Function lBh Get Default Drive Data
Function 36h Get Disk Free Space

Function 1Fh Get Default DPB 243

• Function 1Fh Get Default DPB
mov
int

cmp
jz

mov
mov

ah, lE'h
21h

al, OE'E'h
error_handler

word ptr [defaultDPB], bx
word ptr [defaultDPB+2], ds

;Get Default DPB

;OE'E'h means error

;ds:bx points to default DPB

;drive number (0 = A, 1 = B, etc.)
;unit number for driver
;sector size, in bytes
;sectors per cluster - 1
;sectors per cluster, as power of 2
; first sector containing FAT
;number of FATs
;number of root-directory entries
; first sector of first cluster
;number of clusters on drive + 1
;number of sectors occupied by FAT
;first sector containing directory
;address of device driver
.; media descr iptor
;indicates access to drive
;address of next drive parameter block
;last allocated cluster
;number of free clusters

Parameters

Return Value

Comments

See Also

Get Default DPB (Function lFh) retrieves drive parameters for the default drive.

This function has no parameters.

If the function is successful, the AL register contains zero and the DS:BX regis­
ters point to a DPB structure that contains the drive parameters. The DS regis­
ter contains the segment address, and the BX register contains the offset. Other­
wise, if the default drive was invalid or a disk error occurred, the AL register
contains OFFh.

If Get Default DPB is successful, the DS:BX registers point to a DPB structure,
which has the following form:

DPB STRUC
dpbDrive db ?
dpbUnit db ?
dpbSectorSize dw?
dpbClusterMask db?
dpbClusterShift db ?
dpbE'irstFAT dw ?
dpbFATCount db ?
dpbRootEntries dw?
dpbFirstSector dw?
dpbMaxCluster dw?
dpbFATSize dw ?
dpbDirSector dw ?
dpbDriverAddr dd?
dpbMedia db ?
dpbFirstAccess db?
dpbNextDPB dd ?
dpbNextFree dw ?
dpbFreeCnt dw ?

DPB ENDS

For more information about the DPB structure, see Chapter 3, "File System."

Function 32h Get DPB

244 Function 21h Random Read

• Function 21 h Random Read

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB

mov ah, 21h
int 21h

cmp al, 0
jne error_handler

;ds:dx points to FeB

;Random Read

;zero means success

Superseded

Parameter

Return Value

Comments

See Also

Random Read (Function 21h) reads a record from the file identified by the file
control block (FCB). Data read from the file is written to the memory at the
current disk transfer address (DTA).

This function has been superseded by Read File or Device (Function 3Fh).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
specify the record to read. The FCB structure has the following form:

FCB STRUC
fcbDriveID db ? ;drive no. (O=default, l=A, etc.)
fcbFileName db '????????' ; filename
fcbExtent db '???' ;file extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFileTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh and the memory at the
DTA contains the record read from the file. Otherwise, the AL register contains
an error value, which tnay be one of the following:

Value Meaning

Olh End of file encountered, no data in record

02h Segment boundary overlapped by DTA, read canceled

03h End of file encountered, partial record at DTA (rest of record filled
with zeros)

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FeB struc­
ture to agree with the fcbRandomRecNo field before attempting to read the
record from the disk. No record numbers are incremented; successive calls to
the function repeatedly read the same record.

This function can be used to read files on a network drive but only if the net­
work has granted read (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 14h Sequential Read
Function 16h Create File with FCB
Function 22h Random Write
Function 3Fh Read File or Device

• Function 22h Random Write

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB

mov ah, 22h
int 21h

cmp aI, 0
jne error_handler

Function 22h Random Write 245

Superseded

;ds:dx points to FCB

;Random Write

;zero means success

Parameter

Return Value

Comments

See Also

Random Write (Function 22h) writes data at the current disk transfer address
(DTA) to a record in the file identified by the file control block (FCB).

This function has been superseded by Write File or Device (Function 40h).

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function l6h). Also, the fcbRandomRecNo field must
specify the record to write. The FCB structure has the following form:
FCB STRUC

fcbDriveID db 1 ;drive no. (O=default, 1=A, etc.)
fcbFileName db '11111111' ; filename
fcbExtent db '111' ;file extension
fcbCurBlockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains Olh if the disk is full or 02h if the DTA overlapped a segment
boundary. In either case, the write operation is canceled.

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FCB struc­
ture to agree with the fcbRandomRecNo field before attempting to write the
record to the disk. No record numbers are incremented; successive calls to this
function write to the same record in the file.

This function can be used to write files on a network drive but only if th.e net­
work has granted write (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function lSh Sequential Write
Function l6h Create File with FCB
Function 2lh Random Read
Function 40h Write File or Device

246 Function 23h Get File Size

• Function 23h Get File Size

mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB

mov ah, 23h
int 21h

cmp al, 0
jne error_handler

;ds:dx points to FCB

;Get File Size

;zero means success

Superseded

Parameter

Return Value

Comment

See Also

Get File Size (Function 23h) returns the number of records in a file specified by
a file control block (FCB).

This function has been superseded by Move File Pointer (Function 42h).

FileFCB Points to an FCB structure that identifies the file to examine. The
fcbDriveID, fcbFlIeName, and fcbExtent fields must contain the filename infor­
mation. Also, the fcbRecSize field must contain the size of a single file record.
Other fields should contain zero. The FCB structure has the following form:
FCB STRUC

fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
fcbFileName db '11111111' ; filename
fcbExtent db '111' ;fi1e extension
fcbCurBlockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh and the fcbRandom­
RecNo field contains the number of records in the file. Otherwise, the AL regis-

. ter contains OFFh.

MS-DOS returns the size of the file in records by dividing the size in bytes by
the size of a single record (as specified by the fcbRecSize field). If the fcbRec­
Size field in the FCB structure is set to 1 byte, MS-DOS returns the size of the
file in bytes.

Function 42h Move File Pointer

Function 24h Set Random Record Number 247

• Function 24h Set Random Record Number

mov dx, seg FileFCB
mov ds, dx·
mov dx, offset FileFCB ;ds:dx points to FCB

mov ah, 24h ;Set Random Record Number
int 21h

Superseded

Parameter

Return Value

See Also

Set Random Record Number (Function 24h) sets the random record field in a
file control block (FCB) to match the file position indicated by the current block
and current record fields.

This function has been superseded by Move File Pointer (Function 42h).

FileFCB Points to an FeB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the (cbRandomRecNo field must
contain zero before this function is called. The FeB structure has the following
form:

FCB STRUC
fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
fcbFileName db '11111111' ; filename
fcbExtent db '111' ;fi1e extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw 1 ;record size
fcbFi1eSize db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FeB structure, see Chapter 3, "File System."

This function has no return value.

Function OFh Open File with FCB
Function 16h Create File with FCB
Function 21h Random Read
Function 22h Random Write
Function 42h Move File Pointer

248 Function 25h Set Interrupt Vector

• Function 25h Set Interrupt Vector

mov
mov
mov
mov

mov
int

dx, seg InterruptHandler
ds, dx
dx, offset InterruptHandler
al, InterruptNumber

ah, 25h
21h

;ds:dx points to new handler
;interrupt vector

;Set Interrupt Vector

Parameters

Return Value

Comments

See Also

Set Interrupt Vector (Function 25h) replaces the vector-table entry with the
address of the specified interrupt handler.

Inte"uptHandler Specifies the address of the new interrupt handler.

Inte"uptNumber Specifies the number of the interrupt (OOh-oFFh) that is to
cause the specified handler to be called.

This function has no return value.

Programs should never set an interrupt vector directly in memory. Programs
should use this function to replace an interrupt vector.

When a program installs a new interrupt handler, it should use Get Interrupt
Vector (Function 35h) to retrieve the address of the original interrupt handler
and restore this original address before terminating.

Function 35h Get Interrupt Vector

• Function 26h Create New PSP

Function 26h Create New PSP 249

Superseded

mov

mov
int

dx, SegmentPSP

ah, 26h
21h

;segment address to receive PSP

;Create New PSP

Parameter

Return Value

Comment

See Also

Create New PSP (Function 26h) creates a new program segment prefix (PSP),
copying it to the beginning of the segment specified by the SegmentPSP param­
eter.

This function has been superseded by Load and Execute Program (Function
4BOOh).

SegmentPSP Specifies the address of a segment to receive the new PSP.

This function has no return value.

This function is intended to be called only by .COM programs. When a program
calls this function, the CS register must contain the segment address of the PSP.

Function 4BOOh Load and Execute Program

250 Function 27h Random Block Read

• Function 27h Random Block Read

mov cx, cRecords ;number of records to read
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx points to FCB

mov ah, 27h ;Random Block Read
int 21h

cmp aI, 0 ;zero means success
jne error_handler

Superseded

Parameters

Return Value

Comments

Random Block Read (Function 27h) reads one or more records from the file
identified by the file control block (FCB). Data read from the file is written to
the memory at the current disk transfer address (DTA).

This function has been superseded by Read File or Device (Function 3Fh) and
Move File Pointer (Function 42h).

cRecords Specifies the number of records to read.

FileFCB Points to an FCB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function 16h). Also, the fcbRandomRecNo field must
specify the first record to read. The FCB structure has the following form:

FCB STRUC
fcbDriveID db ? ;drive no. (O=defau1t, l=A, etc.)
fcbFi1eName db I????????' ; filename
fcbExtent db I???' ;fi1e extension
fcbCurBlockNo dw ? ;current block number
fcbRecSize dw ? ;record size
fcbFileSize db 4 dup (?) ;size of file, in bytes
fcbFileDate dw ? ;date file last modified
fcbFi1eTime dw ? ;time file last modified
fcbReserved db 8 dup (?) ; reserved
fcbCurRecNo db ? ;current record number
fcbRandomRecNo db 4 dup (?) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

H the function is successful, the AL register contains OOh, the memory at the
DTA contains the records read from the file, and the CX register contains a
count of the number of records read. Otherwise, the AL register contains an
error value, which may be one of the following:

Value Meaning

Olh End of file encountered, no data in record

02h Segment boundary overlapped by DTA, read canceled

03h End of file encountered, partial record at DTA (rest of record filled
with zeros)

A program using this function must ensure that the buffer at the DTA is large
enough to hold all the data read from the file.

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FCB struc­
ture to agree with the fcbRandomRecNo field before attempting to read the

See Also

Function 27h Random Block Read 251

record from the disk. The block and record fields are incremented after a suc­
cessful read operation; successive calls to this function read sequential groups of
records from the file until MS-DOS reaches the end of the file.

This function can be used to read files on a network drive but only if the net­
work has granted read (or similar) access to the gi'.'en file or drive.

Function OFh Open File with FCB
Function 16h Create File with FCB
Function 21h Random Read
Function 28h Random Block Write
Function 3Fh Read File or Device
Function 42h Move File Pointer

252 Function 28h Random Block Write

• Function 28h Random Block Write

mov cx, cRecords ; number of records to write
mov dx, seg FileFCB
mov ds, dx
mov dx, offset FileFCB ;ds:dx po1nts to FCB

mov ah, 28h ;Random Block Write
int 21h

cmp al, 0 ;zero means success
jne error_handler

Superseded

Parameters

Return Value

Comments

Random Block Write (Function 28h) writes the data at the current disk transfer
address (DTA) to one or more records in the file identified by the file control
block (FCB).

This function has been superseded by Write File or Device (Function 40h) and
Move File Pointer (Function 42h).

cRecords Specifies the number of records to write.

FileFCB Points to an FeB structure that identifies an open file. The structure
must have been previously filled by using Open File with FCB (Function OFh) or
Create File with FCB (Function l6h). Also, the fcbRandomRecNo field must
specify the first record to write. The FCB structure has the following form:

FCB STRUC
fcbDriveID db 1 ;dr1ve no. (O=default, l=A, etc.)
fcbF1leName db '11111111' ; filename
fcbExtent db '111' ;file extension
fcbCurBlockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSize db 4 dup (1) ;s1ze of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFileTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ; reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains Olh if the disk is full or 02h if the DTA overlapped a segment
boundary. In either case, the write operation is canceled.

If the function returns OOh or Olh, the CX register contains the number of
records actually written.

MS-DOS updates the fcbCurBlockNo and fcbCurRecNo fields in the FCB struc­
ture to agree with the fcbRandomRecNo field before attempting to write the
records to the disk. The block and record fields are incremented after a success­
ful write operation; successive calls to this function write sequential groups of
records to the file.

See Also

Function 28h Random Block Write 253

This function can be used to write files on a network drive but only if the net­
work has granted write (or similar) access to the given file or drive.

Function OFh Open File with FCB
Function 16h Create File with FeB
Function 22h Random Write
Function 27h Random Block Read
Function 40h Write File or Device
Function 42h Move File Pointer

254 Function 29h Parse Filename

• Function 29h Parse Filename

mov sl, seg Parselnput
mov ds, sl
mov sl, offset Parse~nput ;ds:si points to name(s) to parse
mov di, seg FileFCB
mov es, di
mov di, offset FileFCB ;es:di points to FCB
mov al, ParseControl ;controls parsing

mov ah, 29h ;Parse Filename
int 21h

Parameters

Parse Filename (Function 29h) converts a filename string that has the form
drive:filename.extension into a string of the form required for a file control block
(FCB).

This function is useful only when file control blocks are used.

Parselnput Points to a zero-terminated ASCn string specifying the filename
or filenames to parse. Each filename must be in the form drive:filename.extension
and may contain wildcards. If more than one filename is given, the names must
be separated with at least one space character (ASCII 20h). Separator charac­
ters used for the MS-DOS command line are also valid.

FileFCB Points to an FCB structure that receives the parsed filename. The
FCB structure has the following form:

FCB STRUC
fcbDriveID db 1 ;drive no. (O=default, l=A, etc.)
fcbFlleName db '11111111' ; filename
fcbExtent db '111' ;file extension
fcbCurBlockNo dw 1 ;current block number
fcbRecSize dw 1 ;record size
fcbFileSlze db 4 dup (1) ;size of file, in bytes
fcbFileDate dw 1 ;date file last modified
fcbFlleTime dw 1 ;time file last modified
fcbReserved db 8 dup (1) ;reserved
fcbCurRecNo db 1 ;current record number
fcbRandomRecNo db 4 dup (1) ;random record number

FCB ENDS

For a full description of the FCB structure, see Chapter 3, "File System."

ParseControl Controls how MS-DOS parses the Parselnput parameter. This
parameter has the following form:

Bit Meaning

o 0 -= Stops parsing if a file separator is encountered.

1 - Ignores leading separators.

1 0 == Sets the drive number in the FeB structure to OOh (default drive) if
the string does not contain a drive number.

1 == Leaves the drive number in the FCB structure unchanged if the
string does not contain a drive number.

2 0 == Sets the filename in the FCB structure to eight space characters
(ASCII 20h) if the string does not contain a filename.

1 == Leaves the filename in the FCB structure unchanged if the string
does not contain a filename.

Return Values

Function 29h Parse Filename 255

Bit Meaning

3 0 = Sets the extension in the FCB structure to three space characters
(ASCII 20h) if the string does not contain an extension.

1 = Leaves the extension in the FCB structure unchanged if the string
does not contain an extension.

Bits 4 through 7 are reserved and must be zero.

If the function is successful, the AL, DS:SI, and ES:DI registers contain the fol­
lowing information:

Register Description

AL

DS:SI

ES:DI

Contains Olh if at least one wildcard is in the filename or extension.
Otherwise, it contains OOh.

Points to the first character after the parsed string.

Points to the first byte of the FCB structure.

Comments

If the drive letter is invalid, the AL register contains OFFh. If the string does not
contain a valid filename, the memory at ES:DI+l contains a space character
(ASCII 20h).

Parse Filename fills the fcbDriveId, fcbFileName, and fcbExtent fields of the
specified FeB structure unless the ParseControl parameter specifies otherwise.
To fill these fields, the function strips any leading White-space characters (spaces
and tabs) from the string pointed to by Parselnput, then uses the remaining char­
acters to create the drive number, filename, and filename extension. If bit 0 in
ParseControl is set, the function also strips exactly one filename separator if
one appears before the first non-white-space character. The following are valid
filename separators:

: . ; , = +

Once Parse Filename begins to convert a filename, it continues to read charac­
ters from the string until it encounters a white-space character, a filename sep­
arator, a control character (ASCII Olh through lFh), or one of the following
characters:

I" [] <> I

If the filename in the string has fewer than eight characters, the function fills the
remaining bytes in the fcbFileName field with space characters (ASCII 20h). If
the filename extension has fewer than three characters, the function fills the
remaining bytes in the fcbExtent field with space characters.

256 Function 2Ah Get Date

• Function 2Ah Get Date

mov
int

mov
mov
mov
mov

ah, 2Ah
21h

WeekDay, al
Year, ex
Month, dh
MonthDay, dl

;Get Date

;day of week (0 = Sunday, 1 = Monday, etc.)
;year (1980 through 2099)
;month (1 = Jan, 2 = Feb, etc.)
;day of month (1 through 31)

Parameters

Return Values

See Also

Get Date (Function 2Ah) returns the current MS-DOS system date (the date
maintained by the clock device).

This function has no parameters.

The AL, CX, and DX registers contain the following information:
Register Contents

AL A number representing the day of the week (0 1:1 Sunday,
1 1:1 Monday, and so on)

ex A year number (1980 through 2099)

DR A number representing the month (11:1 January, 2 = February,
and so on)

DL The day of the month (1 through 31)

Function 2Bh Set Date
Function 2Ch Get Time
Function 2Dh Set Time

Function 2Bh Set Date 257

• Function 2Bh Set Date

mov
mov
mov

mov
int

emp
jne

ex, Year
dh, Month
dl, MonthDay

ah, 2Bh
21h

al, 0
error_handler

;year (1980 through 2099)
;month (1 = Jan, 2 = Feb, etc.)
;day of month (1 through 31)

;Set Date

;zero means success

Parameters

Return Value

See Also

Set Date (Function 2Bh) sets the MS-DOS system date (the date maintained by
the clock device).

Year Specifies a year number in the range 1980 through 2099.

Month Specifies a number representing the month (1 = January, 2 = February,
and so on).

MonthDay Specifies a day of the month (1 through 31).

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains OFFh.

Function 2Ah Get Date
Function 2Ch Get Time
Function 2Dh Set Time

258 Function 2Ch Get Time

• Function 2Ch Get Time

mov
tnt

mov
mov
mov
mov

ah, 2Ch
21h

Hour, ch
Minutes, c1
Seconds, dh
Hundredths, d1

;Get Time

;hour (0 through 23)
;minutes (0 through 59)
;seconds (0 through 59)
;hundredths of a second (0 through 99)

Parameters

Return Values

See Also

Get Time (Function 2Ch) returns the MS-DOS system time (the time maintained
by the clock device).

This function has no parameters.

The CX and DX registers contain the following information:
Register Contents

CH Hour in 24-hour format (13 - 1 P.M., 14 1::1 2 P.M., and so on)

CL Minutes (0 through 59)

DH Seconds (0 through 59)

DL Hundredths of a second (0 through 99)

Function 2Ah Get Date
Function 2Bh Set Date
Function 2Dh Set Time

Function 2Dh Set Time 259

• Function 2Dh Set Time

mov ch, Hour hour (0 through 23)
mov cl, Minutes minutes (0 through 59)
mov dh, Seconds seconds (0 through 59)
mov dl, Hundredths hundredths of a second (0 through 99)

mov ah, 2Dh ;Set Time
int 21h

cmp al, 0 ;zero means success
jne error_handler

Parameters

Return Value

Comment

See Also

Set Time (Function 2Dh) sets the MS-DOS system time (the time maintained by
the clock device).

Hour Specifies the hour to set in 24-hour format (13 == 1 P.M., 14 == 2 P.M., and
so on).

Minutes Specifies the minutes to set (0 through 59).

Seconds Specifies the seconds to set (0 through 59).

Hundredths Specifies the hundredths of a second to set (0 through 99).

If the function is successful, the AL register contains OOh. Otherwise, the AL
register contains OFFh.

If the hardware does not resolve hundredths of seconds, the value of the
Hundredths parameter is ignored.

Function 2Ah Get Date
Function 2Bh Set Date
Function 2Ch Get Time

260 Function 2Eh Set/Reset Verify Flag

• Function 2Eh Set/Reset Verify Flag

mov

mov
int

a1, VerifyF1ag

ah, 2Eh
21h

;0 = reset, 1 = set

;Set/Reset Verify Flag

Parameter

Return Value

Comment

See Also

Set/Reset Verify Flag (Function 2Eh) turns the write verify flag on or off, thus
determining whether MS-DOS verifies write operations.

VerifyFlag Specifies whether MS-DOS is to attempt to verify that data has
been transferred correctly after write operations. If this parameter is 0, MS-DOS
does not verify write operations; if this parameter is 1, MS-DOS verifies write
operations.

This function has no return value.

The system checks this flag every time it performs a write operation. The write
verify flag is typically off, because disk errors are rare and verification slows writ­
ing. The write verify flag can be turned on during critical write operations.

Function 54h Get Verify State

Function 2Fh Get Disk Transfer Address 261

• Function 2Fh Get Disk Transfer Address
mov ah, 2Fh ;Get Disk Transfer Address
int 21h

mov word ptr [CurrentDTA], bx ;es:bx 1s current DTA
mov word ptr [CurrentDTA+2], as

Parameters

Return Value

Comments

See Also

Get Disk Transfer Address (Function 2Fh) returns the segment and offset of the
current disk transfer address (DTA).

This function has no parameters.

The ES:BX registers contain the DTA. The ES register contains the segment
address, and the BX register contains the offset.

There is no way to determine the size of the buffer at the DTA.

If Set Disk Transfer Address (Function lAh) has not been used to set the DTA,
MS-DOS sets a program's default DTA to be offset OOSOh in the program seg­
ment prefix (PSP). The default DTA cannot be used with a record size larger
than 128 bytes.

Function lAb Set Disk Transfer Address

262 Function 30h Get Version Number

• Function 30h Get Version Number

mov

mov
int

al, VerOrOEMF1ag

ah, 30h
21h

;Olh = version flag, OOh OEM number

;Get Version Number

mov
mov
mov
mov
mov

MajorV, a1 ;major version number (Osh for version 5.0)
MinorV, ah ;minor version number (OOh for version 5.0)
VerOrOEM, bh ;version flag or OEM number
byte ptr [UserNum+2], bl ;bl:ex is 24-bit user serial number
word ptr [UserNum], ex

Parameter

Return Values

Get Version Number (Function 30h) returns the MS-DOS version number set
by the setver command for the program. The function also returns either the
MS-DOS version flag or the original-equipment-manufacturer (OEM) number.

VerOrOEMFlag Specifies whether the function returns the version flag or the
OEM number in the BH register. It can be one of the following values:

Value Number

OOh The OEM number

01h The version flag

The AX, BX, and ex registers contain the following information:
Register Contents

AL

AH

BH

BL:CX

The major version number for the program-for example, 03h for
version 3.31, OSh for version 5.0.

The minor version number for the program-for example, 1Fh for
version 3.31, OOh for version 5.0.

Either the OEM number or the version flag. In the latter case, if
the version flag is set to DOSINROM (08h), MS-DOS runs in
ROM; otherwise, MS-DOS runs in RAM. All other bits are
reserved and set to zero.

The 24-bit user serial number. The user serial number is OEM­
dependent. If not used, the number is set to zero.

Comments

See Also

This function returns the MS-DOS version number set by the setver command.
This version number can differ from the MS-DOS version number returned by
Get MS-DOS Version (Function 3306h).

For more information about the setver command, see the Microsoft MS-DOS
User's Guide and Reference.

Function 3306h Get MS-DOS Version

Function 31 h Keep Program 263

• Function 31h Keep Program

mov dx, MemSize ;number of paragraphs to keep
mov aI, ReturnCode ;code returned by terminating program

mov ah, 31h ;Keep Program
int 21h

Parameters

Return Value

Comments

See Also

Keep Program (Function 31h) ends the current program by returning control to
its parent program but leaves (keeps) the program in memory and preserves the
program's resources, such -as open files and allocated memory.

MemSize Specifies the number of paragraphs of program code and data to
keep in memory. If this parameter is less than 6, the function sets it to 6 before
reallocating program memory.

RetumCode Specifies the code that is returned to the parent program. If the
program terminates normally, RetumCode should be OOh.

This function does not return.

This function carries out the following actions:

• Reallocates program memory to the amount specified by MemSize. Pro­
gram memory includes only the program segment prefix (PSP) and pro­
gram data and code. The reallocation does not affect the program's
environment block, nor does it affect the memory allocated by the pro­
gram after it was loaded.

• Flushes the file buffers but leaves files open. Any locked regions in the
open files remain locked.

• Restores Termination Address (Interrupt 22h) from offset OAh in the
PSP (pspTenninateVector field).

• Restores the address of CTRL+C Handler (Interrupt 23h) from offset OEh
in the PSP (pspControlCVector field).

• Restores the address of Critical-Error Handler (Interrupt 24h) from
offset 12h in the PSP (pspCritErrorVector field).

After completing these actions, this function transfers execution control to the
address specified by offset OAh in the PSP.

Function 4BOOh Load and Execute Program
Function 4Ch End Program
Function 4Dh Get Child-Program Return Value
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler

264 Function 32h Get DPB

• Function 32h Get DPB

mov

mov
int

d1, OriveNum

ah, 32h
21h

;drive (0

;Get OPB

default, 1 A, etc.)

;drive number (0 = A, 1 = B, etc.)
;unit number for driver
;sector size, in bytes
;sectors per cluster - 1
;sectors per cluster, as power of 2
;first sector containing FAT
;number of FATs
;number of root-directory entries
;first sector of first cluster
;number of clusters on drive + 1
;number of sectors occupied by FAT
;first sector containing directory
;address of device driver
;medla descriptor
;lndicates access to drive
;address of next drive parameter block
;last allocated cluster
;number of free clusters

Parameter

Return Value

Comments

See Also

cmp a1, OFFh ;OFFh means error
jz error_handler

mov word ptr [defau1tOPB], bx
mov word ptr [defau1tOPB+2], ds ;ds:bx points to default OPB

Get DPB (Function 32h) retrieves drive parameters for the specified drive.

DriveNum Specifies the number of the drive for which to return information
(0 = default, 1 = A, 2 = B, and so on).

If the function is successful, the AL register contains zero and the DS:BX regis­
ters point to a DPB structure that contains the drive parameters. The DS regis­
ter contains the segment address, and the BX register contains the offset. Other­
wise, if the specified drive was invalid or a disk error occurred, the AL register
contains OFFh.

If Get DPB is successful, the DS:BX registers point to a DPB structure, which
has the following form:
OPB STRUC

dpbOrive db ?
dpbUnit db ?
dpbSectorSize dw?
dpbC1usterMask db?
dpbC1usterShift db ?
dpbFirstFAT dw ?
dpbFATCount db ?
dpbRootEntries dw?
dpbFirstSector dw?
dpbMaxC1uster dw?
dpbFATSize dw ?
dpbOirSector dw ?
dpbOriverAddr dd?
dpbMedia db ?
dpbFirstAccess db?
dpbNextOPB dd ?
dpbNextFree dw ?
dpbFreeCnt dw ?

OPB ENOS

For more information about the DPB structure, see Chapter 3, "File System."

Function lFh Get Default DPB

Function 3300h Get CTRL+C Check Flag 265

• Function 3300h . Get CTRL+C Check Flag

mov
lnt

mov

ax, 3300h
21h

BreakFlag, dl

;Get CTRL+C Check Flag

;0 = off, 1 = on

Parameters

Return Value

Comment

See Also

Get CTRL+C Check Flag (Function 3300h) returns the status of the MS-DOS
CTRL+C check flag.

This function has no parameters.

The DL register contains OOh if checking is disabled, or the DL register contains
Olh if checking is enabled.

If the CTRL+C check flag is off, MS-DOS checks for CTRL+C only while process­
ing character I/O functions Olh through OCh. If the check flag is on, MS-DOS
checks for CTRL+C while processing other system functions.

Function 330lh Set CTRL+C Check Flag

266 Function 3301 h Set CTRL+C Check Flag

• Function 3301h Set CTRL+C Check Flag

moy dl, BreakFlag ;OOh = off, Olh = on

moy ax, 3301h ;Set CTRL+C· Check Flag
lnt 21h

Parameter

Return Value

Comments

See Also

Set CTRL+C Check Flag (Function 3301h) turns the CTRL+C check flag on or off.

BreakFlag Specifies whether to turn CTRL+C testing on or off. If this parame­
ter is OOh, CTRL+C testing is turned off; if this parameter is Olh, CTRL+C testing is
turned on.

This function has no return value.

If the CTRL+C check flag is off, MS-DOS checks for CTRL+C only while process­
ing character 1/0 functions Olh through OCh. If the check flag is on, MS-DOS
checks for CTRL+C while processing other 1/0 functions, such as disk opera­
tions.

The CTRL+C flag affects all programs. If a program changes the state of this flag,
the state change remains in effect even after the program terminates. An effi­
cient program should save the state of the flag before changing it and restore the
state before terminating.

Function 3300h Get CTRL+C ~heck Flag

Function 3305h Get Startup Drive 267

• Function 3305h Get Startup Drive
mov ax, 330Sh ;Get Startup Drive
int 21h

mov StartupDrive, dl ;drive (1 = A, 2 = B, etc.)

Get Startup Drive (Function 3305h) returns a number representing the drive that
was used to load MS-DOS.

Parameters

Return Value

This function has no parameters.

The DL register contains the number of the startup drive (1 = A, 2 = B, 3 = C,
and so on).

268 Function 3306h Get MS-DOS Version

• Function 3306h Get MS-DOS Version

mov
int

mov
mov
mov
mov

ax, 3306h
21h

MajorV, bl
MinorV, bh
RevisionNum, dl
VersionFlags, dh

;Get MS-DOS Version

;major version number (Osh for version 5.0)
;minor version number (OOh for version 5.0)
;revision number in bits 0 through 2
;version flags

DOSINROM (08h)

DOSINHMA (lOh)

Parameters

Return Values

Comments

See Also

Get MS-DOS Version (Function 3306h) returns the MS-DOS version number,
the MS-DOS revision number, and version flags specifying whether MS-DOS is
in the high memory area (HMA) or in read-only memory (ROM).

This function has no parameters.

The BX and DX registers contain the following information:
Register Contents

BL The major version number-for example, OSh for version 5.0.

BH The minor version number-for example, OOh for version 5.0.

DL In the low three bits, the revision number. All other bits are
reserved and set to zero.

DH The MS-DOS version flags. The contents may be a combination of
the following values:
Value Meaning

If set, MS-DOS runs in ROM; otherwise,
MS-DOS runs in RAM.

If set, MS-DOS is in the high memory area;
otherwise, MS-DOS is in conventional
memory.

All other bits are reserved and set to zero.

This function returns the actual MS-DOS version number rather than the version
number set by the setver command for the program.

Function 30h Get Version Number

Function 34h Get InDOS Flag Address 269

• Function 34h Get InDOS Flag Address

mov
int

mov

ah, 34h
21h

InCOS, byte ptr es: [bx]

;Get InCOS Flag Address

;es:bx points to InCOS flag

Parameters

Return Value

Comment

Get InDOS Flag Address (Function 34h) returns the address of the MS-DOS
InDOS flag. The InDOS flag shows the current state of Interrupt 21h processing.

This function has no parameters.

The ES:BX registers contain the InDOS flag address. The ES register contains
the segment address of the InDOS flag, and the BX register contains the offset.

While MS-DOS is processing an Interrupt 21h function, the value of the InDOS
flag is nonzero.

270 Function 35h Get Interrupt Vector

• Function 35h Get Interrupt Vector

mov

mov
int

al, InterruptNumber

ah, 35h
21h

;interrupt vector number

;Get Interrupt Vector

Parameter

Return Value

See Also

mov word ptr [Handler], bx ;es:bx points to interrupt handler
mov word ptr [Handler+2], es

Get Interrupt Vector (Function 35h) returns the address of the routine that han­
dles the specified interrupt.

InterruptNumber Specifies the interrupt number that causes the interrupt rou­
tine to be called.

If the function is successful, the ES:BX registers point to the routine that han­
dles the specified interrupt. The ES register contains the segment address of the
interrupt-handling routine, and the BX register contains the offset.

Function 25h Set Interrupt Vector

Function 36h Get Disk Free Space 271

• Function 36h Get Disk Free Space

mov

mov
int

cmp
je

dl, Drive

ah, 36h
21h

ax, OFFFFh
error_handler

;drive (0 = default, 1 = A, 2 B, etc.)

;Get Disk Free Space

;OFFFFh means drive not valid

Parameter

Return Values

Comments

See Also

mov SectorsPerCluster, ax ;sectors per cluster
mov AvailClusters, bx ;number of available clusters
mov BytesPerSector, cx ;bytes per sector
mov TotalClusters, dx ;total number of clusters on disk

Get Disk Free Space (Function 36h) returns the number of clusters available on
the disk in the specified drive and the information necessary to calculate the
number of bytes available on the disk.

Drive The number of toe drive to return information for (0 == default value,
1 == A, 2 == B, and so on).

If the function is successful, the AX, BX, ex, and DX registers contain the fol­
lowing information:

Register Contents

AX The number of sectors in a cluster

BX The number of clusters available on the disk

ex The number of bytes in a sector

DX The total number of clusters on the disk

Otherwise, the AX register contains OFFFFh.

The number of free bytes on the disk can be calculated by multiplying the avail­
able clusters by the sectors per cluster by the bytes per sector (BX*AX*CX).

MS-DOS reports sectors allocated in the file allocation table (FAT) but not
belonging to a file (lost clusters) as used clusters, just as if they were allocated
to a file.

Function IBh Get Default Drive Data
Function lCh Get Drive, Data

272 Function 38h Get/Set Country Information

• Function 38h Get/Set Country Information

lds dx, InfoAddress ;ds:dx points to buffer to get country info
;or
;dx is OFFFFh to set country code

cmp CountryCode, OFEh
ja code2

mov al, byte ptr CountryCode
jmp continue

;country code if less than 254

code2:
mov bx, CountryCode
mov aI, OFFh

;country code if greater than 254

continue:
mov ah, 38h
int 21h

;Get/Set Country Information

jc error_handler ;carry set means error

;date format
;currency symbol (ASCIIZ)
;thousands separator (ASCIIZ)
;decimal separator (ASCIIZ)
;date separator (ASCIIZ)
;time separator (ASCIIZ)
;currency format
;places after decimal point
;12-hour or 24-hour format
;address of case-mapping routine
;data-list separator (ASCIIZ)
; reserved

?
5 dup I??)
2 dup I2 dup ?
2 dup (?
2 dup (?
?
?
?
?
2 dup (?)
10 dup (?)

Get/Set Country Information (Function 38h) either returns country information
or sets the country code, depending on the contents of the DX register.

If the DX register contains any value other than OFFFFh, this function returns a
COUNTRYINFO structure containing country information that MS-DOS uses to
control the keyboard and screen.

If the DX register contains OFFFFh, this function sets the country code that
MS-DOS uses to determine country information for the keyboard and screen.

InfoAddress Specifies whether this function gets country information or sets
the country code. If the parameter points to a COUNTRYINFO structure, the
function copies country information to the structure. If the low 16 bits of the
parameter is OFFFFh, the function sets the country code.

The COUNTRYINFO structure has the following form:
COUNTRYINFO STRUC

ciDateFormat dw
ciCurrency db
ciThousands db
ciDecimal db
ciDateSep db
ciTimeSep db
ciBitField db
ciCurrencyPlaces db
ciTimeFormat db
ciCaseMap dd
ciDataSep db
ciReserved db

COUNTRYINFO ENDS

Parameters

For a full description of the COUNTRYINFO structure, see Chapter 6,
"National Language Support."

CountryCode Specifies the country code. This parameter can be one of the
following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

Return Value

Comments

See Also

Function 38h Get/Set Country Information 273

Value Meaning

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

045 Denmark

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International English

351 Portugal

358 Finland

Each country code is listed as a three-digit decimal number, the same as that
used for that country's international telephone prefix.

To get country information for the current country, CountryCode must be zero.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow­
ing values:

Value Name

0001h ERRORJNVALIDJUNCTION

0002h ERROR_FILE.-NOTJOUND

When the country code is less than 254, the AL register contains the code. Oth­
erwise, the BX register contains the country code and the AL register contains
the value OFFh.

If the DX register contains any value other than OFFFFh, the function returns
the country code in both the AL and BX registers. In this case, the AL register
contains the low 8 bits of the country code.

Function 6501h Get Extended Country Information
Function 6601h Get Global Code Page
Function 6602h Set Global Code Page

274 Functlo~ 39h Create Directory

• Function 39h Create Directory

mov dx, seg Dir
mov ds, dx
mov dx, offset Dir

mov ah, 39h
int 21h

jc error_handler

;ds:dx points to name of new directory

;Create Directory

;carry set means error

Parameter

Return Value

Comment

See Also

Create Directory (Function 39h) creates a new directory by using the specified
path.

Dir Points to a zero-terminated ASCn string that specifies the directory to
create. This string must be a valid MS-DOS directory name and cannot contain
wildcards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow­
ing values:

Value Name

0002h ERRoR_FILE.-NOT_FOUND

0003h ERROR_PATILNOTYOUND

OOOSh ERROR_ACCESS-DENIED

This function returns 0005h (ERROILACCESSJ)ENIED) if a file or directory
with the specified name already exists in the specified path.

Function 3Ab Remove Directory
Function 3Bh Change Current Directory
Function 47h Get Current Directory

Function 3Ah Remove Directory 275

• Function 3Ah Remove Directory

mov dx, seg Dir
mov ds, dx
mov dx, offset Dir ;ds:dx points to name of directory to remove

mov ah, 3Ab ;Remove Directory
int 21h

jc error_handler ;carry set means error

Parameter

Return Value

Comment

See Also

Remove Directory (Function 3Ah) removes (deletes) a specified directory.

Dir Points to a zero-terminated ASCII string that specifies the directory to
remove. This string must be a valid MS-DOS directory name and cannot contain
wildcards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow­
ing values:

Value Name

0003h ERROR_PATILNOT_FOUND

OOOSh ERROR_ACCESS_DENIED

OOlOh ERROR-CURRENT_DIRECTORY

This function returns 0005h (ERROILACCESSJ)ENIED) if the directory to
be deleted is not empty or the directory to be deleted is the root directory.

Function 39h Create Directory
Function 3Bh Change Current Directory
Function 47h Get Current Directory

276 Function 3Bh Change Current Directory

• Function 3Bh Change Current Directory

mov dx, seg Dir
mov ds, dx
mov dx, offset Dir ;ds:dx points to name of new directory

mov
int

jc

ah, 3Bh
21h

error_handler

;Change Current Directory

;carry set means error

Parameter.

Comment

Return Value

See Also

Change Current Directory (Function 3Bh) changes the current directory to a
specified path.

Dir Points to a zero-terminated.ASCn string that specifies the new current
directory. This string must be a valid MS-DOS directory name and cannot con­
tain wildcards.

If a drive other than the default drive is specified as part of the new directory
path, this function changes the current directory on that drive but does not
change the default drive. Set Default Drive (Function OEh) can be used to
change the default drive.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0003h
(ERROR-PATILNOTJOUND).

Function OEh Set Default Drive
Function 47h Get Current Directory

Function 3Ch Create File with Handle 277

• Function 3Ch Create File with Handle

mov dx, seg FileName
mov ds, dx
mov dx, offset FileName ;ds:dx points to name of file or device
mov cx, Attributes ;fi1e attributes

mov
int

jc
mov

ah, 3Ch
21h

error_handler
Handle, ax

;Create File with Handle

;carry set means error
;hand1e of file or device

Parameters

Create File with Handle (Function 3Ch) creates a file and assigns it the first
available handle. If the specified file already exists, MS-DOS opens it and trun­
cates it to zero length.

FileName Points to a zero-terminated ASCII string that specifies the file to
create. This string must be a valid MS-DOS filename and cannot contain wild­
cards.

Attributes Specifies the attributes to assign to the new file. Any combination
of the following values is valid:

Value Meaning

AITR_NORMAL (OOOOh)

AITR_READONLY (OOOlh)

AITR_HIDDEN (OOO2h)

AITILSYSTEM (OOO4h)

AITR_VOLUME (OOO8h)

ATfR_ARCHIVE (0020h)

File can be read from or written to.

File can read from but not written to.

File is hidden and does not appear in a direc­
tory listing.

File is a system file.

FileName is used as the volume label for the
current medium.

File is marked for archiving.

Return Value

Comments

If the function is successful, the carry flag is clear and the AX register contains
the new file handle. Otherwise, the carry ft.ag is set and the AX register contains
an error value, which may be one of the following values:

Value Name

0003h ERRORJ>ATILNOTJOUND

0004h ERROR_TOO-MANY_OPEN_FILES

OOOSh ERROR-ACCESS-DENIED

This function returns OOOSh (ERROR.-ACCESSJ>ENIED) if a read-only file
with the specified name already exists in the specified path or if the file to be
created is in the root directory and the root directory is full.

When MS-DOS creates a file, it opens the file with read-and-write access and
compatibility sharing mode and sets the file pointer to zero. If the attribute
ATrILREADONLY is specified, it takes affect only after the new file is closed.

278 Function 3Ch Create File with Handle

See Also

Create File with Handle creates a volume label for the medium in the specified
drive only if the ATIlLVOLUME attribute is given and the current medium
does not have an existing volume label.

H the specified file is on a network drive, this function creates the file only if the
network has granted create (or similar) access to the drive or directory.

Function 4300h Get File Attributes
Function 4301h Set File Attributes
Function 5Ah Create Temporary File
Function SBh Create New File
Function 6Ch Extended Open/Create

Function 3Dh Open File with Handle 279

• Function 3Dh Open File with Handle

mov dx, seg FileName
mov ds, dx
mov dx, offset FileName ;ds:dx points to name of file or device
mov al, FileAccess ;modes with which to open file

mov ah, 3Dh ;Open File with Handle
int 21h

jc error_handler ;carry set means error
mov Handle, ax ;handle of file or device

Parameters

Open File with Handle (Function 3Dh) opens any file, including hidden and sys­
tem files, for input or output.

FileName Points to a zero-terminated ASCII string that specifies the file to
open. This string must be a valid MS-DOS filename and cannot contain wild­
cards.

FileAccess Specifies the modes with which to open the file. FileAccess can be
a combination of values from the following table. The access value is required;
the sharing and inheritance values are optional.

Value Meaning

OPEN_ACCESS-.READONLY (OOOOh) Open the file for read-only
access.

OPEN_ACCESS_WRlTEONLY (OOOlh) Open the file for write-only
access.

OPEN_ACCESS-.READWRlTE (OOO2h) Open the file for read-and­
write access.

OPEN_SHARE_COMPATIBILITY (OOOOh) Permit other programs any
access to the file. On a given
computer, any program can
open the file any number of
times with this mode. This is
the default sharing value.

OPEN_SHARE_DENYREADWRlTE (OOlOh) Do not permit any other pro­
gram to open the file.

OPEN_SHARE-DENYWRlTE (0020h) Do not permit any other pro­
gram to open the file for
write access.

OPEN_SHARE-DENYREAD (OO30h) Do not permit any other pro­
gram to open the file for read
access.

OPEN_SHARE_DENYNONE (0040h) Permit other programs read
or write access, but no pro­
gram may open the file for
compatibility access.

OPEN_FLAGS_NOINHERIT (OOBOh) A child program created with
Load and Execute Program
(Function 4BOOh) does not
inherit the file handle. If this
mode is not set, child pro­
grams inherit the file handle.

280 Function 3Dh Open File with Handle

Return Value If the function is successful, the carry flag is clear and the AX register contains
the file handle. Otherwise, the carry flag is set and the AX register contains an
error value, which may be one of the following values:

Value Name

0002h

0003h

0004h

OOOSh
OOOCh

ERROR_FILE_NOTJOUND

ERRORYATILNOTJOUND

ERROR_TOO-MANY_OPEN_FILES

ERROR_ACCESSJ)ENIED

ERROR_INVALID_ACCESS

Comments

See Also

When the file is opened, the file pointer is set to zero (the first byte in the file).

This function returns the error value 0005h (ERROILACCESSJ)ENIED) if a
program attempts to open a directory or volume identifier or to open a read-only
file for write access.

If the Share program is not loaded, MS-DOS ignores the following modes:
OPEN_SHAREJ)ENYREADWRITE, OPEN_SHAREJ)ENYWRITE,
OPEN_SHAREJ)ENYREAD, and OPEN_SHAREJ)ENYNONE. If this
function fails because of a file-sharing error, a subsequent call to Get Extended
Error (Function 59h) returns the error value that specifies a sharing violation.

If the specified file is on a network drive, Open File with Handle opens the file
only if the network has granted read access, write access, or read-and-write
access to the drive or directory.

Function 3Eh Close File with Handle
Function 3Fh Read File or Device
Function 40h Write File or Device
Function 42h Move File Pointer
Function 59h Get Extended Error
Function 6Ch Extended Open/Create
Interrupt 2Fh Function lOOOh Get SHARE.EXE Installed State

Function 3Eh Close File with Handle 281

• Function 3Eh Close File with Handle

mov

mov
int

jc

bx, Handle

ah, 3Eh
21h

error_handler

;handle of file or device

;Close File with Handle

;carry set means error

Parameter·

Return Value

Comments

See Also

Close File with Handle (Function 3Eh) closes a file opened or created with a
file-handle function.

Handle Identifies the file to close.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0006h
(ERRORJNVALIDJIANDLE).

When MS-DOS processes this function, any internal buffer for the file is flushed
(any pending write operations are completed), any locked regions of the file are
unlocked, and the directory is updated to reflect any changes in the file size,
date, or time.

Although closing a file invalidates the corresponding handle, MS-DOS may reuse
the handle to identify a file that is subsequently opened or created. Programs can
use Is File or Device Remote (Function 440Ah) to determine whether a given
handle is valid.

Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 440Ah Is File or Device Remote
Function 5Ah Create Temporary File
Function SBh Create New File
Function 6Ch Extended Open/Create

282 Function 3Fh Read File or Device

• Function 3Fh Read File or Device

mov bx, Handle ;handle of file or device
mov CX, MaxBytes ;maximum number of bytes to read
mov dx, seg Buffer
mov ds, dx
mov dx, offset Buffer ;ds:dx points to buffer to receive data

mov
int

jc
mov

ah, 3Fh
21h

error_handler
ActualBytes, ax

;Read File or Device

;carry set means error
;number of bytes read

Parameters

Return Value

Comments

See Also

Read File or Device (Function 3Fh) reads up to the specified number of bytes of
data from a file or device into a buffer. MS-DOS may read fewer than the speci­
fied number of bytes if it reaches the end of the file.

Handle Identifies the file or device to be read from.

MaxBytes Specifies the maximum number of bytes to read.

Buffer Points to the buffer that is to receive data from the file or device. The
buffer must be at least as large as MaxBytes.

H the function is successful, the carry flag is clear, Buffer contains the data read
from the file or device, and the AX register contains the number of bytes read
from the file or device. Otherwise, the carry flag is set and the AX register con­
tains an error value, which may be one of the following values:

Value Name

OOOSh ERROR_ACCESSJ)ENIED

0006h ERROR-INVALIDJIANDLE

Handle can be a handle for a standard device or a handle created by using such
a function as Open File with Handle (Function 3Dh).

When MS-DOS reads from a file, it reads data starting at the current location of
the file pointer. When this function returns, the file pointer is positioned at the
byte immediately following the last byte read from the file.

This function can also be used to read from the standard input device (typically
the keyboard). If MS-DOS is reading from standard input, this function returns
if it reads a carriage-return character (ASCn ODh), even if it has not yet read
the number of bytes specified in MaxBytes.
If this function returns zero for the number of bytes read, the file pointer is
at the end of the file. If the number of bytes read is fewer than the number
requested, MS-DOS reached the end of the file during the read operation.

Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 40h Write File or Device
Function 42h Move File Pointer
Function SAh Create Temporary File
Function 5Bh Create New File
Function 6Ch Extended Open/Create

Function 40h Write File or Device 283

• Function 40h Write File or Device

mov
mov
mov
mov
mov

mov
int

jc
mov

bx, Handle
cx, MaxBytes
dx, seg Buffer
ds, dx
dx, offset Buffer

ah, 40h
21h

error_handler
ActualBytes, ax

;handle of file or device
;maximum number of bytes to write

;ds:dx points to buffer containing data

;Write File or Device

;carry set means error
;number of bytes written

Parameters

Return Value

Write File or Device (Function 40h) writes up to the specified number of bytes
of data from a buffer to a file or device.

Handle Identifies the file or device that is to receive the data.

MaxBytes Specifies the maximum number of bytes to write.

Buffer Points to a buffer that contains the data to write.

If the function is successful, the carry flag is clear and the AX register contains
the number of bytes written to the file or device. Otherwise, the carry flag is set
and the AX register contains an error value, which may be one of the following
values:

Value Name

OOOSh
0006h

ERROR_ACCESS_DENIED

ERROR-INVALID_HANDLE

Comments

See Also

Handle can be a handle for a standard device or a handle created by using such
a function as Open File with Handle (Function 3Dh).

When MS-DOS writes to a file, it writes data starting at the current location of
the file pointer. When this function returns, the file pointer is positioned at the
byte immediately after the last byte written to the file.

Writing 0 bytes to the file truncates the file at the current position of the file
pointer.

If the number of bytes written is fewer than the number requested, the destina­
tion file or disk is full. Note that the carry flag is not set in this situation.

Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 3Fh Read File or Device
Function 42h Move File Pointer
Function 5Ah Create Temporary File
Function 5Bh Create New File
Function 6Ch Extended Open/Create

284 Function 41h Delete File

• Function 41h Delete File

mov dx, seg FileName
mov ds, dx
mov dx, offset FileName ;ds:dx points to filename

mov
int

jc

ah, 41h
21h

error_handler

;Delete File

;carry set means error

Parameter

Return Value

Comments

See Also

Delete File (Function 4lh) deletes a specified file.

FileName Points to a zero-terminated ASCn string that specifies the file to
delete. This string must be a valid MS-DOS filename and cannot contain wild­
cards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow­
ing values:

Value Name

0002h ERROR_FILE.-NOT_FOUND

0003h ERROR_PATIL.NOTYOUND

OOOSh ERROR_ACCESS_DENIED

This function cannot be used to remove a directory, a volume label, or a read­
only file. A program can use Set File Attributes (Function 430lh) to change the
attributes of a read-only file so that the file can be deleted.

If the specified file is on a network drive, the function deletes the file only if net­
work grants delete access to the drive or directory.

Function 3Ah Remove Directory
Function 4300h Get File Attributes
Function 430lh Set File Attributes

Function 42h Move File Pointer 285

• Function 42h Move File Pointer

mov bx, Handle
mov ex, HiOffset
mov dx, LoOffset

mov al, MoveMethod
or ah, 42h
int 21h

jc error_handler

mov HiPosition, dx
mov LoPosition, ax

;file handle
;most-significant 16 bits of offset
;least-significant 16 bits of offset

;move method code
;Move File Pointer

;carry set means error

;high 16 bits of absolute position
;low 16 bits of absolute position

Parameters

Return Value

Comments.

Move File Pointer (Function 42h) moves the file pointer to the specified position
in the file. The file pointer is maintained by the system; it points to the next byte
to be read from a file or to the next position in the file to receive a byte.

Handle Identifies an open file.

HiOf/set Specifies the most-significant 16 bits of a 32-bit offset. The offset
specifies the number of bytes to move the file pointer. This value may be positive
or negative.

LoOffset Specifies the least-significant 16 bits of the 32-bit offset.

MoveMethod Specifies where the move will start. This parameter must be one
of the following values:

Value Meaning

OOh Start move at the beginning of the file.

Olh Start move at the current location.

02h Start move at the end of the file.

If the function is successful, the carry flag is clear and the DX and AX registers
contain the new position of the file pointer. The DX register contains the most­
significant 16 bits of the 32-bit offset, and the AX register contains the least­
significant 16 bits. Otherwise, the carry flag is set and the AX register contains
an error value, which may be one of the following values:

Value Name

OOOlh ERROR_INVALID_FUNCTION

0006h ERROR_INVALID_HANDLE

This function returns 000lh (ERRORJNVALIDJUNCTION) if a method
other than OOh, Olh, or 02h is specified for MoveMethod.

With method OOh, the 32-bit value in the CX and DX registers is always inter­
preted as a positive value. It is not possible to move the file pointer to a position
before the start of the file with method OOh. With methods 01h and 02h, how­
ever, the 32-bit offset is interpreted as a signed value; it is possible to move the
file pointer either forward or backward.

A program should never attempt to move the file pointer to a position before
the start of the file. Although this action does not generate an error during the

286 Function 42h Move File Pointer

See Also

move, it does generate an error on a subsequent read or write operation. A pro­
gram can move the file pointer beyond the end of the file. On a subsequent write
operation, MS-DOS writes data to the given position in the file, filling the gap
between the previous end of the file and the given position with undefined data.
This is a common way to reserve file space without writing to the file.

Function 3Fh Read File or Device
Function 40h Write File or Device

Function 4300h Get File Attributes 287

• Function 4300h Get File Attributes

mov dx, seg FileName
mov ds, dx
mov dx, offset FileName ;ds:dx points to filename or directory name

mov
int

je
mov

ax, 4300h
21h

error_handler
Attributes, cx

;Get File Attributes

;earry set means error
;attributes are returned in ex

Parameter

Return Value

Get File Attributes (Function 4300h) retrieves the attributes for a specified file
or directory.

FileName Points to a zero-terminated ASCII string that specifies the file or
directory to retrieve attributes for. This string must be a valid MS-DOS filename
or directory name and cannot contain wildcards.

If the function is successful, the carry flag is clear and the CX register contains
the attributes for the file or directory. Otherwise, the carry flag is set and the
AX register contains an error value, which may be one of the following values:

Value Name

OOOlh

0002h

0003h

OOOSh

ERROR_INVALID_FUNCTION

ERROR_FILE_NOT_FOUND

ERROR_PATlLNqT_FOUND

ERROR_ACCESS_DENIED

Comment The file attributes returned in the CX register may be a combination of the fol­
lowing values:

Value Meaning

ATTR_NORMAL «()()()()h)

ATTR_READONLY (OOOlh)

ATTR_HIDDEN (OOO2h)

ATTR_SYSTEM (OOO4h)

ATTR_ARCHIVE (OO20h)

ATTR_VOLUME (OOO8h)

ATTR_DIRECTORY(OOlOh)

File can be read from or written to.

File can read from but not written to.

File or directory is hidden and does not
appear in a directory listing.

File or directory is a system file.

File has been archived.

Filename is the current volume label for the
media.

Filename identifies a directory, not a file.

See Also Function 4301h Set File Attributes

288 Function 4301 h Set File Attributes

• Function 4301 h Set File Attributes

mov cx, Attributes ;attributes to set
mov dx, seg FileName
mov ds, dx
mov dx, offset FileName ;ds:dx points to filename or directory name

mov
int

ax, 4301h
21h

;Set File Attributes

jc error_handler ;carry set means error

Parameters

Set File Attributes (Function 4301h) sets the attributes for a specified file or
directory.

Attributes Specifies the new attributes for the file or directory. This parameter
can be a combination of the following values:

Value Meaning

File can be read from or written to.

File can read from but not written to.

ATIR~ORMAL (OOOOh)

ATfR-READONLY (OOOlh)

ATfR_HIDDEN (OOO2h) File is hidden and does not appear in a direc­
tory listing.

ATfR_SYSTEM (OOO4h) File is a system file.

ATI1LARCHIVE (0020h) File has been archived.

FileName Points to a zero-terminated ASCn string that specifies the file or
directory to set attributes for. This string must be a valid MS-DOS filename or
directory name and cannot contain wildcards.

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the follow­
ing values:

Value Name

Comments

See Also

000lh ERRORJNVALIDJUNCTION

0002h ERROILFILE-NOT_FOUND

0003h ERROR_PATILNOT_FOUND

OOOSh ERROR_ACCESS_DENIED

Only ATrRJIIDDEN and ATI1LSYSTEM are meaningful for directories.

Function 4300h Get File Attributes

Function 4400h Get Device Data 289

• Function 4400h Get Device Data

mov bx, Handle ;handle of file or device

mov ax, 4400h ;Get Device Data
int 21h
jc error_handler ; carry set means error

mov DevStatus, dx ;device-status value

Parameter

Return Value

Get Device Data (Function 4400h) returns information about the handle, such as
whether it identifies a file or a device.

Handle Identifies the file or device to return information about.

If the function is successful, the carry flag is clear and the DX register contains
the device-status value. Otherwise, the carry flag is set and the AX register con­
tains an error value, which may be one of the following:

Value Name

000lh

0005h

0006h

ERROR_INVALID_FUNCTION

ERROR_ACCESS_DENIED

ERROR_INVALID_HANDLE

Comments

See Also

Bit 7 in the DX register specifies whether the handle identifies a file or a device.
If bit 7 is 0, the handle identifies a file, and the other bits in the DX register
have the following meaning:

Bits Meaning

0-5 Drive number (0 ll:II At 1 ::I Bt etc.)

6 1 == file has not been written to

All other bits are zero. Bits 0-5 may specify an invalid drive number if the file is
a network file that is not associated with a redirected drive.

If bit 7 is 1, the handle identifies a device, and the other bits in the DX register
have the following meaning:

Bit Meaning

o 1 = Console input device

1 1 ::I Console output device

2 1 =r Null device

3 1 1:1I Clock device

4 1 = Special device

5 1 ::I Binary modet 0 ::I ASCII mode

6 0 ::II End of file returned if device is read

Bits 8 through 15 are identical to the high 8 bits of the dhAttribute field in the
DEVICEHEADER structure for the device.

Function 4401h Set Device Data

290 Function 4401h Set Device Data

• Function 4401 h Set Device Data

mov
mov

mov
int
jc

bx, Handle
dx, DevStatus

ax, 4401h
21h
error_handler

;handle of file or device
;device-status value

;Set Device Data

;carry set means error

Parameters

Return Value

Set Device Data (Function 4401h) tells MS-DOS how to use the device refer­
enced by the specified handle. This function cannot change how MS-DOS uses
a file.

Handle Identifies the device to set information for.

DevStatus Specifies the device-status value. Bit 7 must be 1, to indicate that
the specified handle refers to a device, and other bits can be set as follows:

Bits Meaning

o 1 - Console input device

1 1 = Console output device

2 1 = Null device

3 1 - Clock device

4 1 a:: Special device

5 1 == Binary mode, 0 - ASCII mode

6 0 - End of file returned if device is read

All other bits must be set to zero.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the fol­
lowing:

Value Name

000lh

OOOSh

0006h

OOODh

ERROILINVALIDJUNCTION

ERROR_ACCESS-DENIED

ERROR_INVALIDJiANDLE

ERROR_INVALIDJ)ATA

See Also Function 4400h Get Device Data

Function 4402h Receive Control Data from Character Device 291

• Function 4402h Receive Control Data from Character Device

mov bx, Handle ;handle of device
mov cx, MaxBytes ;maximum amount of data to receive
mov dx, seg Buffer
mov ds, dx
mov dx, offset Buffer ;ds:dx points to buffer to receive data

mov ax, 4402h ;Receive Control Data from Character Device
int 21h
jc error_handler ;carry set means error
mov ActualBytes, ax ; number of bytes received

Parameters

Return Value

Receive Control Data from Character Device (Function 4402h) reads control
information of any length and format from a character-device driver. The format
of the information is device-specific and does not follow any standard.

Handle Identifies the device to receive information from.

MaxBytes Specifies the maximum number of bytes to read.

Buffer Points to the buffer to receive the data read from the device. The
buffer must be at least as large as MaxBytes.

If th~ function is successful, the carry flag is clear, the buffer is filled in with
the requested information, and the AX register contains the number of bytes
received. Otherwise, the carry flag is set and the AX register contains an error
value, which may be one of the following:

Value Name

000lh

OOOSh

0006h

OOODh

ERROR_INVALID_FUNCTION

ERROR_ACCESS_DENIED

ERRORJNVAUD~ANDLE

ERROR_INVALID_DATA

Comment

See Also

Character-device drivers are not required to support this function or Send Con­
trol Data to Character Device (Function 4403h). A program should use Get
Device Data (Function 4400h) and examine bit 14 in the device-status value to
ensure that the device driver can process control data.

Function 4400h Get Device Data
Function 4403h Send Control Data to Character Device
Function 4404h Receive Control Data from Block Device
Function 4405h Send Control Data to Block Device

292 Function 4403h Send Control Data to Character Device

• Function 4403h Send Control Data to Character Device

mov
mov
mov
mov
mov

mov
int
jc
mov

bx, Handle
cx, MaxBytes
dx, seg Buffer
ds, dx
dx, offset Buffer

ax, 4403h
21h
error_handler
ActualBytes, ax

;handle of device
;maximum number of bytes to send

;ds:dx points to buffer with data to send

;Send Control Data to Character Device

;carry set means error
;number of bytes sent

Parameters

Return Value

Send Control Data to Character Device (Function 4403h) writes control informa­
tion of any length and format to a character-device driver. The format of the
information is device-specific and does not follow any standard.

Handle Identifies the device to send information to.

MaxBytes Specifies the number of bytes to write.

Buffer Points to the buffer that contains the data to write to the device.

If the function is successful, the carry flag is clear and the AX register contains
the number of bytes sent. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

OOOlh

0005h

0006h

OQODh

ERROR_INVALID_FUNCTION

ERROR_ACCESS_DENIED

ERRORJNVAUD~ANDLE

ERROR_INVALID_DATA

Comment

See Also

Character-device drivers are not required to support this function or Receive
Control Data from Character Device (Function 4402h). A program should use
Get Device Data (Function 4400h) and examine bit 14 in the device-status value
to ensure that the device driver can process control data.

Function 4400h Get Device Data
Function 4402h Receive Control Data from Character Device
Function 4404h Receive Control Data from Block Device
Function 4405h Send Control Data to Block Device

Function 4404h Receive Control Data from Block Device 293

• Function 4404h Receive Control Data from Block Device
mov
mov
mov
mov
mov

mov
int
jc
mov

bl, Drive
cx, MaxBytes
dx, seg Buffer
ds, dx
dx, offset Buffer

ax, 4404h
21h
error_handler
ActualBytes, ax

;0 = default, 1 = A, 2 = B, etc.
;maximum number of bytes to receive

;ds:dx points to buffer to receive data

;Receive Control Data from Block Device

;carry set means error
;number of bytes received

Parameters

Return Value

Receive Control Data from Block Device (Function 4404h) reads control infor­
mation of any length and format from a block-device driver. The format of the
information is device-specific and does not follow any standard.

Drive Specifies the drive for which information is requested (0 = default drive,
1 = drive A, 2 = drive B, etc.).

MaxBytes Specifies the maximum number of bytes to read.

Buffer Points to the buffer to receive the data read from the device. The
buffer must be at least as large as MaxBytes.

If the function is successful, the carry flag is clear, the buffer is filled in with
the requested information, and the AX register contains the number of bytes
received. Otherwise, the carry flag is set and the AX register contains an error
value, which may be one of the following:

Value Name

000lh

OOOSh

0006h

OOODh

ERROR_INVALID_FUNCTION

ERROR_ACCESS-DENIED

ERROR_INVALID_HANDLE

ERROR_INVALID_DATA

See Also Function 4402h Receive Control Data from Character Device
Function 4403h Send Control Data to Character Device
Function 4405h Send Control Data to Block Device

294 Function 4405h Send Control Data to Block Device

• Function 4405h Send Control Data to Block Device

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ex, MaxBytes ;maximum number of bytes to send
mov dx, seg Buffer
mov ds, dx
mov dx, offset Buffer ;ds:dx points to buffer containing data

mov ax, 4405h ;Send Control Data to Block Device
int 21h
jc error_handler ;earry set means error
mov AetualBytes, ax ; number of bytes sent

Parameters

Return Value

Send Control Data to Block Device (Function 4405h) writes control information.
of any length and format to a block-device driver. The format of the information
is device-specific and does not follow any standard.

Drive Specifies the drive to send information to (0 = default drive, 1 = A,
2 = B, etc.).

MaxBytes Specifies the number of bytes to write.

Buffer Points to the buffer that contains the data to write to the device.

If the function is successful, the carry flag is clear and the AX register contains
the number of bytes sent. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

000lh

OOOSh

0006h

OOODh

ERROR_INVALID_FUNCTION

ERROR-ACCESSJ)ENIED

ERRORJNVALIDJIANDLE

ERRORJNVAUDJ)ATA

See Also Function 4402h Receive Control Data from Character Device
Function 4403h Send Control Data to Character Device
Function 4404h Receive Control Data from Block Device

Function 4406h Check Device Input Status 295

• Function 4406h Check Device Input Status

mov bx, Handle ;handle of file or device

mov ax, 4406h ;Check Device Input Status
int 21h
jc error_handler ;carry set means error

cmp aI, OFFh ;OFFh means file or device is ready
jne not_ready

Parameter

Return Value

Comment

Check Device Input Status (Function 4406h) determines whether a file or device
is ready for input.

Handle Identifies the file or device to check.

If the function is successful, the carry flag is clear and the AL register contains
the input-status value. Otherwise, the carry flag is set and the AX register con­
tains an error value, which may be one of the following:

Value Name

000lh ERROR_INVALID_FUNCTION

OOOSh ERROR_ACCESS_DENIED

0006h ERROR_INVALID_HANDLE

The meaning of the input-status value depends on whether the handle specifies
a file or a device, as shown in the following table:

Status

OOh
OFFh

Device

Not ready
Ready

File

File pointer at end of file
Ready

See Also Function 4407h Check Device Output Status

296 Function 4407h Check Device Output Status

• Function 4407h Check Device Output Status

mov bx, Handle ;handle of file or device

mov ax, 4407h ;Check Device Output Status
int 21h
jc error_handler ;carry set means error

cmp al, OFFh ;OFFh means file or device is ready
jne not_ready

Parameter

Return Value

Comment

See Also

Check Device Output Status (Function 4407h) determines whether a file or
device is ready for output.

Handle Identifies the file or device to check.

If the function is successful, the carry flag is clear and the AL register contains
the output-status value. Otherwise, the carry flag is set and the AX register con­
tains an error value, which may be one of the following:

Value Name

OOOlh ERROR-lNVALIDJUNCTION

OOOSh ERROR_ACCESS.-DENIED

0006h ERROR_INVALID_HANDLE

The meaning of the output-status value depends on whether the handle specifies
a file or a device, as shown in the following table:

Status Device File

OOh Not ready Ready
OFFh Ready Ready

For an output file, Check Device Output Status always returns Ready, even if
the disk is full or there is no disk in the drive.

Function 4406h Check Device Input Status

Function 4408h Does Device Use Removable Media 297

• Function 4408h Does Device Use Removable Media

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.

mov ax, 4408h ;Does Device Use Removable Media
int 21h
jc error_handler ;carry set means error

cmp ax, 0 ;zero means removable media
jne not_removable

Parameter

Return Value

Does Device Use Removable Media (Function 4408h) determines whether the
specified device contains a removable storage medium, such as a floppy disk.

Drive Specifies the drive to check (0 = default drive, 1 = A, 2 = B, etc.).

If the function is successful, the carry flag is clear and the AX register indicates
whether the storage medium in the specified drive is removable (register contains
()()()()h) or not (register contains OOOlh).

Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

OOOlh

OOOFh

ERROR_INVALID_FUNCTION

ERRORJNVALID_DRIVE

Comments This function returns OOOlh (ERRORJNVALIDJUNCTION) for a network
drive or for a device driver that does not support the function request. In these
cases, the calling program should assume that the storage medium is not remov­
able.

298 Function 4409h Is Drive Remote

• Function 4409h Is Drive Remote

mov bl, Drive ;0 = default, 1 = A, 2 B, etc.

mov ax, 4409h ;Is Drive Remote
int 2lh
jc error_handler ;carry set means error

test dx, lOOOh ;bit 12 set means drive is remote
jnz remote_device

Parameter

Return Value

Is Drive Remote (Function 4409h) determines whether the specified drive is
local (attached to the computer running the program) or remote (on a network
server).

Drive Specifies the drive to check (0 = default drive, 1 = A, 2 = B, etc.).

If the function is successful, the carry flag is clear and the DX register contains
the device-attribute value. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

0001h

OOOFh

ERROR_INVALID_FUNCTION

ERRORJNVALID_DRIVE

Comments Bit 12 in the DX register specifies whether the drive is local or. remote. If bit 12
is 1, the drive is remote and the other bits in the DX register are zero.

If bit 12 is zero, the drive is not a network drive, and the bits in the DX register
have the following meaning:

Bit Description

1 1 ;::z Drive uses 32-bit sector addressing.

6 1 = Drive accepts Generic IOCTL for Block Devices, Get Logical Drive
Map, and Set Logical Drive Map (Functions 440Dh, 440Eh, and 440Fh).

7 1 = Drive accepts Query IOCTL Device (Function 4411h).

9 1 ::I Drive is local but shared by other computers in the network.

11 1 ;::z Drive accepts Does Device Use Removable Media (Function 4408h).

13 1 ::I Drive requires media descriptor in FAT.

14 1 = Drive accepts Receive Control Data from Block Device and Send
Control Data to Block Device (Functions 4404h and 440Sh).

15 1 = Substitution drive (for example, set by the subst command).

All other bits are zero.

Function 440Ah Is File or Device Remote 299

• Function 440Ah Is File or Device Remote

mov bx, Handle ;handle of file or device

mov ax, 440Ah ;Is File or Device Remote
int 21h
jc error_handler ;carry set means error

test dx, 8000h ;bit 15 set means device is remote
jnz remote_device

Parameter

Return Value

Is File or Device Remote (Function 440Ah) determines whether the specified
handle refers to a file or device that is local (on the computer running the pro­
gram) or remote (on a network server).

Handle Specifies the file or device to check.

If the function is successful, the carry flag is clear and the DX register contains
the device-attribute value. Otherwise, the carry flag is set and the AX register
contains an error value, which may be one of the following:

Value Name

0001h

0006h

ERROR_INVALID_FUNCTION

ERROR_INVALID_HANDLE

Comments Bit 15 of the device-attribute value indicates whether the file or device is local
(bit is clear) or remote (bit is set).

Other bits in the DX register contain additional information about the file or
device. In particular, bit 7 in the DX register specifies whether the handle identi­
fies a file or a device. If bit 7 is 0, the handle identifies a file and the other bits
in the DX register have the following meaning:

Bit Meaning

0-5 Drive number (0 = A, 1 = B, 2 = C, etc.)

6 1 - File has not been written to

12 1 = No inherit

14 1 = Date/time not set at close

15 1 = Remote file, 0 = local file

All other bits are zero.

If bit 7 is 1, the handle identifies a device and the other bits in the DX register
have the following meaning:

Bit Meaning

o 1 = Console input device

1 1 1:1 Console output device

2 1 = Null device

3 1 = Clock device

4 1 = Special device

5 1 = Binary mode, 0 = ASCII mode

6 0 = End of file returned if device is read

300 Function 440Ah Is File or Device Remote

J

Bit Meaning

11 1= Network spooler

12 1 = No inherit

13 1 = Nam~d pipe

15 1 = Remote device, 0 = local device

All other bits are zero.

Function 440Bh Set Sharing Retry Count 301

• Function 440Bh Set Sharing Retry Count

mov ex, ePause ;number of times through pause loop
mov dx, cRetries ;number of times to retry file operation

mov ax, 440Bh ;Set Sharing Retry Count
int 21h
je error_handler ;carry set means error

Parameters

Return Value

Comments

See Also

Set Sharing Retry Count (Function 440Bh) sets the number of times MS-DOS
retries a disk operation after a failure caused by a file-sharing operation. When
the number of retries is reached without success, MS-DOS returns an error
value to the program that requested the disk operation.

ePause Specifies the number of times MS-DOS is to go through a pause loop,
thereby controlling the amount of time between retries.

eRetries Specifies the number of times MS-DOS retries the file operation
before returning an error value.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 000lh
(ERRORJNVALIDYUNCTION).

Set Sharing Retry Count returns 000lh (ERRORJNVALIDYUNCTION) if file
sharing is not active (SHARE.EXE has not been loaded).

The pause time depends on the computer's clock speed. The default sharing
retry count is 3; the default number of times between retries is 1. If a program
changes the retry count or pause value, it should restore the default values
before terminating.

Function 5Ch Lock/Unlock File
Interrupt 2Fh Function 1000h Get SHARE.EXE Installed State

302 Function 440Ch Minor Code 45h Set Iteration Count

• Function 440Ch Minor Code 45h Set Iteration Count

mov bx, Handle ;handle of device
mov ch, Category ;device category

mov cl, 45h ;Set Iteration Count

mov dx, seg ItCount
mov ds, dx
mov dx, offset ItCount ;points to buffer for iteration count

mov ax, 440Ch ; IOCTL for Character Device
lnt 21h

jc error_handler ;carry set means error

Parameters

Return Value

Set Iteration Count (Function 440Ch Minor Code 45h) sets the number of times
the device driver is to try to send output to a device before assuming that the
device is busy.

Handle Identifies the device to set the iteration count for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

01h Serial device

03h Console (screen)

OSh Parallel printer

ItCount Points to a buffer that contains a 16-bit iteration count. The device
driver tries to send output to the device until it reaches this number of retries
without success.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

0006h

ERROR_INVALIDJUNCTION

ERRORJNVALID_HANDLE

See Also

This function may also return a device-dependent error value as specified by
the device driver.

Function 440Ch Minor Code 65h Get Iteration Count

Function 440Ch Minor Code 4Ah Select Code Page 303

• Function 440Ch Minor Code 4Ah Select Code Page
mov bx, Handle ;handle of device
mov ch, Category ; device category

mov cl, 4Ah ;Select Code Page

mov dx, seg CodePageID
mov ds, dx
mov dx, offset CodePageID ;ds:dx points to CODEPAGE structure

mov ax, 440Ch ; IOCTL for Character Device
int 21h

jc error_handler ; carry set means error

Parameters

Return Value

See Also

Select Code Page (Function 440Ch Minor Code 4Ah) selects the code page used
by the specified device. The code page must be in the list of prepared code
pages for the device.

Handle Identifies the device to set the code page for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

Olh Serial device

03h Console (screen)

OSh Parallel printer

CodePageID Points to a CODEPAGE structure that contains the identifier of
the code page to be selected. The CODEPAGE structure has the following form:

CODEPAGE STRUC
cpLength dw 2 ;struct size, excluding this field (always 2)
cpld dw? ;code-page identifier

CODEPAGE ENDS

For a full description of the CODEPAGE structure, see Chapter 6, "National
Language Support."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

304 Function 440Ch Minor Code 4Ch Start Code-Page Prepare

• Function 440Ch Minor Code 4Ch Start Code-Page Prepare

mov bx, Handle ;handle of device
mov ch, Category ;device category

mov cl, 4C'h ;Start Code-Page Prepare

mov dx, seg PrepareIDs
mov ds, dx
mov dx, offset PrepareIDs ;ds:dx points to CPPREPARE structure

mov ax, 440Ch ; IOCTL for Character Device
int 21h

jc error_handler ;carry set means error

Parameters

Start Code-Page Prepare (Function 440Ch Minor Code 4Ch) instructs a device
driver to begin to prepare a new code-page list.

Handle Identifies the device to set code pages for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

;flags (device-specific)
;structure length, in bytes,
;excluding first two fields
;number of code pages in list
;array of code pages

dw CODEPAGE_IDS
dw CODEPAGE_IDS dUp(?)

ENDS

cpplds
cppld

CPPREPARE

Olh Serial device

03h Console (screen)

OSh Parallel printer

PrepareIDs Points to a CPPREPARE structure that contains information for
the new code-page list. The CPPREPARE structure has the following form:

CPPREPARE STRUC
cppFlags dw 0
cppLength dw (CODEPAGE_IDS+l)t2

Return Value

For a full description of the CPPREPARE structure, see Chapter 6, "National
Language Support."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

Comments

See Also

After calling Start Code-Page Prepare, a program must write data defining the
code-page fonts to the device driver by using Send Control Data to Character
Device (Function 4403h). The code-page data is device-specific. The program
must end the code-page preparation by using End Code-Page Prepare (Function
440Ch Minor Code 4Dh).

A program can instruct the device driver to set up the device with the most
recently prepared code page by calling Start Code-Page Prepare with all code­
page numbers set to OFFFFh. This operation must be followed immediately
with a call to End Code-Page Prepare (Function 440Ch Minor Code 4Dh).

Function 4403h Send Control Data to Character Device
Function 440Ch Minor Code 4Ah Select Code Page
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

Function 440Ch Minor Code 4Dh End Code-Page Prepare 305

• Function 440Ch Minor Code 4Dh End Code-Page Prepare

mov bx, Handle ;handle of device
mov ch, Category ; device category

mov el, 4Dh ;End Code-Page Prepare

mov ax, 440Ch ;IOCTL for Chara·eter Device
int 21h

jc error_handler ;carry set means error

Parameters

Return Value

Comment

See Also

End Code-Page Prepare (Function 440Ch Minor Code 4Dh) tells a device driver
that code-page preparation is complete.

Handle Identifies the device the code pages are set for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

Olh Serial device

03h Console (screen)

OSh Parallel printer

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

End Code-Page Prepare completes code-page preparation started by using Start
Code-Page Prepare (Function 440Ch Minor Code 4Ch).

Function 440Ch Minor Code 4Ah Select Code Page
Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

306 Function 440Ch Minor Code 5Fh Set Display Mode

• Function 440Ch Minor Code 5Fh Set Display Mode

mov bx, Handle ;handle of device
mov ch, 03h ;screen device category

mov cl, SFh ;Set Display Mode

mov dx, seg Mode
mov ds, dx
mov dx, offset Mode ;points to buffer for display mode

mov ax, 440Ch ; IOCTL for Character Device
int 21h

jc error_handler ; carry set means error

Set Display Mode (Function 440Ch Minor Code SFh) sets the display mode for
the screen device.

Parameters Handle Identifies the device to set the display mode for.

Mode Points to a DISPLAYMODE structure that specifies the mode to set.
The dmInfoLevel field must be 0 and the dmDataLength field must be 14. The
structure has the following form:

STRUC
db 0
db ?
dw ?
dw ?
db ?
db ?
dw ?
dw ?
dw ?
dw ?
dw ?

ENDS

DISPLAYMODE
dmlnfoLevel
dmReservedl
dmDataLength
dmFlags
dmMode
dmReserved2
dmColors
dmWidth
dmLength
dmColumns
dmRows

DISPLAYMODE

;information level (must be zero)
; reserved
;length of remaining data, in bytes
;control flags
;display mode
; reserved
;number of colors
;screen width, in pixels
;screen length, in pixels
; columns
;rows

Return Value

For more information about the DISPLAYMODE structure, see Chapter 4,
"Character Input and Output."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

OOOSh

0006h

ERROR_INVALID_FUNCTION

ERROR_ACCESS-DENIED

ERROR_INVALIDJIANDLE

Comments

See Also

The function returns OOOlh (ERRORJNVALIDJUNCTION) if the
ANSI.SYS driver has not been loaded.

Interrupt 2Fh Function lAOOh Get ANSI.SYS Installed State

Function 440Ch Minor Code 65h Get Iteration Count 307

• Function 440Ch Minor Code 65h Get Iteration Count

mov bx, Handle ;handle of device
mov ch, Category ;device category

mov cl, 65h ;Get Iteration Count

mov dx, seg ItCount
mov ds, dx
mov dx, offset ItCount ;points to buffer for iteration count

mov ax, 440Ch ; IOCTL for Character Device
int 21h

jc error_handler ; carry set means error

Parameters

Return Value

Get Iteration Count (Function 440Ch Minor Code 65h) returns the number of
times the device driver is to try to send output to a device before assuming that
the device is busy.

Handle Identifies the device to get the iteration count for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

01h Serial device

03h Console (screen)

OSh Parallel printer

ItCount Points to a 16-bit buffer to receive the iteration count. The device
driver tries to send output to the device until it reaches this number of retries
unsuccessfully.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

0006h

ERRORJNVALID..FUNCTION

ERROR_INVALIDJIANDLE

See Also

This function may also return a device-dependent error value as specified by the
device driver.

Function 440Ch Minor Code 45h Set Iteration Count

308 Function 440Ch Minor Code 6Ah Query Selected Code Page

• Function 440Ch Minor Code 6Ah Query Selected Code Page

mov bx, Handle ;handle of device
mov ch, Category ; device category

mov cl, 6Ah ;Query Code Page

mov dx, seg CodePageID
mov ds, dx
mov dx, offset CodePageID ;ds:dx points to CODEPAGE structure

mov ax, 440Ch ; IOCTL for Character Device
int 21h

jc error_handler ;carry set means error

;struct size, excluding this field (always 2)
;code-page identifier

Parameters

Return Value

See Also

Query Selected Code Page (Function 440Ch Minor Code 6Ah) returns the
currently selected code page for the specified device.

Handle Identifies the device to return the selected code page for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

Olh Serial device

03h Console (screen)

OSh Parallel printer

CodePagelD Points to a CODEPAGE structure that receives the identifier for
the selected code page. The CODEPAGE structure has the following form:
CODEPAGE STRUC

cpLength dw 2
cpld dw ?

CODEPAGE ENDS

For a full description of the CODEPAGE structure, see Chapter 6, ."National
Language Support."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

Function 440Ch Minor Code 4Ah Select Code Page
Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

Function 440Ch Minor Code 6Bh Query Code-Page Prepare List 309

• Function 440Ch Minor Code 6Bh Query Code-Page Prepare List

mov bx, Handle ;handle of device
mov ch, Category ; device category

mov cl, 6Bh ;Query Code-Page Prepare List

mov dx, seg ListIDs
mov ds, dx
mov dx, offset ListIDs ;ds:dx points to CPLIST structure

mov ax, 440Ch ; IOCTL for Character Device
int 21h

jc error_han~ler ;carry set means error

Parameters

Query Code Page Prepare List (Function 440Ch Minor Code 6Bh) returns the
list of currently prepared code pages for the specified device.

Handle Identifies the device to return the code-page list for.

Category Specifies the type of device. This parameter must be one of the fol­
lowing values:

Value Device

dw «HARDWARE_IDS+l)+ (PREPARED_IDS+l»*2
;structure length, in bytes,
;excluding this field

dw HARDWARE_IDS ;number of hardware code pages
dw HARDWARE_IDS dup(?) ;array of hardware code pages
dw PREPARED_IDS ;number of prepared code pages
dw PREPARED_IDS dUp(?) ;array of prepared code pages

cplHlds
cplHid
cplPlds
cplPid

CPLIST ENDS

Olh Serial device

03h Console (screen)

OSh Parallel printer

ListIDs Points to a CPLIST structure that receives the list of prepared code
pages. The CPLIST structure has the following form:

CPLIST STRUC
cplLength

Return Value

For a full description of the CPLIST structure, see Chapter 6, "National
Language Support."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set.

Comment

See Also

The device driver may return up to 12 hardware code-page identifiers and 12
prepared code-page identifiers.

Function 440Ch Minor Code 4Ah Select Code Page
Function 440Ch Minor Code 4Ch Start Code-Page Prepare
Function 440Ch Minor Code 4Dh End Code-Page Prepare
Function 440Ch Minor Code 6Ah Query Selected Code Page

310 Function 440Ch Minor Code 7Fh Get Display Mode

• Function 440Ch Minor Code 7Fh Get Display Mode

mov bx, Handle
mov ch, 03h

mov c1, 7Fh

mov dx, seg Mode
mov ds, dx
mov dx, offset Mode

mov ax, 440Ch
int 21h

jc error_handler

;hand1e of device
;screen device category

;Get Display Mode

;points to buffer for display mode

;IOCTL for Character Device

;carry set means error

Parameters

Get Display Mode (Function 440Ch Minor Code 7Fh) retrieves the display mode
for the screen device.

Handle Identifies the device to get the display mode for.

Mode Points to a DISPLAYMODE structure that receives the display-mode
information. Before the function is called, the dmInfoLevel field must be 0 and
the dmDataLength field must be 14. The DISPLAYMODE structure has the fol­
lowing form:

STRUC
db 0
db ?
dw ?
dw ?
db ?
db ?
dw ?
dw ?
dw ?
dw ?
dw ?

ENDS

DISPLAYMODE
dmlnfoLeve1
dmReservedl
dmDataLength
dmE'lags
dmMode
dmReserved2
dmCo1ors
dmWidth
dmLength
dmCo1umns
dmRows

DISPLAYMODE

;information level (must be zero)
;reserved
;length of remaining data, 1n bytes
;contro1 flags
;d1sp1ay mode
; reserved
;number of colors
;screen width, in pixels
;screen length, in pixels
; columns
;rows

Return Value

For more information about the DISPLAYMODE structure, see Chapter 4,
"Character Input and Output."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

OOOSh
0006h

ERRORJNVALIDJUNCTION

ERROR-ACCESSJ)ENIED

ERRORJNVAUD~ANDLE

Comments

See Also

The function returns 0001h (ERRORJNVALIDJUNCTION) if the
ANSI.SYS driver has not been loaded.

Function 440Ch Minor Code 5Fh Set Display Mode
Interrupt 2Fh Function 1AOOh Get ANSI.SYS Installed State

Function 440Dh Minor Code 40h Set Device Parameters 311

• Function 440Dh Minor Code 40h Set Device Parameters,

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ; device category (must be Oah)

mov cl, 40h ;Set Device Parameters

mov dx, seg DriveDP
mov ds, dx
mov dx, offset DriveDP ;ds:dx points to DEVICEPARAMS structure

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ;carry set means error

Parameters

Set Device Parameters (Function 440Dh Minor Code 40h) sets the device param­
eters for the specified block device.

Drive Specifies the drive that parameters are being set for (0 == default drive,
1 == A, 2 == B, etc.).

DriveDP Points to a DEVICEPARAMS structure that contains the parameters
for the specified block device. The DEVICEPARAMS structure has the follow­
ing form:

DEVICEPARAMS STRUC
dpSpecFunc db ?
dpDevType db ?
dpDevAttr dw ?
dpCylinders dw ?
dpM~diaType db ?

dpBytesPerSec dw ?
dpSecPerClust db ?
dpResSectors dw ?
dpFATs db ?
dpRootDirEnts dw ?
dpSectors dw ?
dpMedia db ?
dpFATsecs dw ?
dpSecPerTrack dw ?
dpHeads dw ?
dpHiddenSecs dd ?
dpHugeSectors dd ?

DEVICEPARAMS ENDS

;special functions
;device type
;device attributes
;number of cylinders
;media type
;Start of BIOS parameter block (BPB)
;bytes per sector
;sectors per cluster
;number of reserved sectors
;number of file allocation tables
;number of root-directory entries
;total number of sectors
;media descriptor
;number of sectors per FAT
;sectors per track
;number of heads
;number of hidden sectors
;number of sectors if dpSectors = 0
;End of BIOS parameter block (BPB)

Return Value

For a full description of the DEVICEPARAMS structure, see Chapter 3, "File
System."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

0002h

OOOSh

ERRORJNVALIDJUNCTION

ERROILFILE-NOT_FOUND

ERROR-ACCESSJ)ENIED

Comment

See Also

Set Device Parameters returns 0002h (ERROR..FILE.-NOTYOUND) if the
specified drive number is invalid.

Function 440Dh Minor Code 60h Get Device Parameters

312 Function 440Dh Minor Code 41h Write Track on Logical Drive

• Function 440Dh Minor Code 41h Write Track on Logical Drive

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, OSh ;device category (must be OSh)

mov cl, 41h ;Write Track on Logical Drive

mov dx, seg WriteBlock
mov ds, dx
mov dx, offset WriteBlock ;ds:dx points to RWBLOCK structure

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ; carry set means error

;special functions (must be zero)
;head to read/write
;cylinder to read/write
;first sector to read/write
;number of sectors to read/write
;address of buffer for read/write data

db 0
dw ?
dw ?
dw ?
dw ?
dd ?

Write Track on Logical Drive (Function 440Dh Minor Code 41h) writes data
from a buffer to a track on the specified device.

Drive Specifies the drive information is to be written to (0 = default drive,
1 = A, 2 = B, etc.).

WriteBlock Points to an RWBLOCK structure that contains information
that specifies the sectors to be written to. The rwBuffer field must contain the
address of the buffer that contains the data to write to the disk. The RWBLOCK
structure has the following form:

RWBLOCK STRUC
rwSpecFunc
rwHead
rWCylinder
rwFirstSector
rwSectors
rwBuffer

RWBLOCK ENDS

Parameters

For a full description of the RWBLOCK structure, see Chapter 3, "File Sys­
tem."

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value, which may be one of the fol­
lowing:

Value Name

OOOlh

0002h

OOOSh

ERROR-INVALID_FUNCTION

ERROR_FILE_NOT_FOUND

ERROR_ACCESS_DENIED

Comment

See Also

Write Track on Logical Drive returns 0002h (ERROILFILE_NOTJOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 61h Read Track on Logical Drive

Function 440Dh Minor Code 42h .Format Track on Logical Drive 313

• Function 440Dh Minor Code 42h Format Track on Logical Drive

mov
mov

mov

mov
mov
mov

mov
int

jc

bx, Drive
ch, 08h

cl, 42h

dx, seg FormatBlock
ds, dx
dx, offset FormatBlock

ax, 440Dh
21h

error_handler

;0 = default, 1 = A, 2 = B, etc.
;device category (must be 08h)

;Format Track on Logical Drive

;ds:dx points to FVBLOCK structure

;IOCTL for Block Device

;carry set means error

Parameters

Format Track on Logical Drive (Function 440Dh Minor Code 42h) formats and
verifies a track on the specified device.

Drive Specifies the drive on which the track is to be formatted and verified
(0 = default drive, 1 = A, 2 = B, etc.).

FormatBlock Points to an FVBLOCK structure that specifies the head and
cylinder to format. The FVBLOCK structure has the following form:

FVBLOCK STRUC
fvSpecFunc
fvHead
fvCylinder

FVBLOCK ENDS

db 0
dw ?
dw ?

;special functions (must be zero)
;head to format/verify
;cylinder to format/verify

Return Value

Comment

See Also

For a full description of the FVBLOCK structure, see Chapter 3, "File System."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh ERRORJNVALID_FUNCTION

0002h ERROR_FILE-NOTJOUND

OOOSh ERROR_ACCESS_DENIED

Format Track on Logical Drive returns 0002h (ERROILFILE-NOT..FOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 62h Verify Track on Logical Drive

314 Function 4400h Minor Code 46h Set Media 10

• Function 440Dh Minor Code 46h Set Media 10

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ;device category (must be ~8h)

mov cl, 46h ;Set Media 10

mov dx, seg MediaID
mov ds, dx
mov dx, offset MediaID ;ds:dx points to MID structure

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ; carry set means error

Parameters

Set Media ID (Function 440Dh Minor Code 46h) sets the volume label, serial
number, and file system for the specified drive.

Drive Specifies the drive for which identification is to be set (0 = default
drive, 1 = A, 2 = B, etc.).

MediaID Points to a MID structure that contains information that uniquely
identifies a disk or other storage medium. The MID structure has the following
form:

MID STRUC
midInfoLevel dw
midSerialNum dd
midVolLabel db
midFileSysType db

MID ENDS

o
1
11 dup (1)
8 dup· (1)

;information level
;serial number
;ASCII volume label
;file system type

Return Value

For a full description of the MID structure, see Chapter 3, "File System."

If the function is successful" the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

0002h

OOOSh

ERROR_INVALIDYUNCTION

ERROR_FILB_NOT_FOUND

ERROR_ACCESS_DENIED

Comments

See Also

Set Media ID returns 0002h (ERRORYILE_NOTJOUND) if the specified
drive number is invalid.

Function 440Dh Minor Code 66h Get Media ID

Function 440Dh Minor Code 60h Get Device Parameters 315

• Function 440Dh Minor Code 60h Get Device Parameters

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, OBh ;device category (must be OBh)

mov cl, GOh ;Get Device Parameters

mov dx, seg DriveDP
mov ds, dx
mov dx, offset DriveDP ;ds:dx points to DEVICEPARAMS structure

mov ax, 440Dh ;IOCTL for Block Device
int 21h

jc error_handler ;carry set means error

Parameters

Get Device Parameters (Function 440Dh Minor Code 6Oh) returns the device
parameters for the specified block device.

Drive Specifies the drive for which parameters are requested (0 = default
drive, 1 = A, 2 = B, etc.).

DriveDP Points to a DEVICEPARAMS structure that receives information on
the device's storage capacity and characteristics. The DEVICEPARAMS struc­
ture has the following form:

DEVICEPARAMS STRUC
dpSpecFunc db ?
dpDevType db ?
dpDevAttr dw ?
dpCylinders dw ?
dpMediaType db ?

dpBytesPerSec dw ?
dpSecPerClust db ?
dpResSectors dw ?
dpFATs db ?
dpRootDirEnts dw ?
dpSectors dw ?
dpMedia db ?
dpFATsecs dw ?
dpSecPerTrack dw ?
dpHeads dw ?
dpHiddenSecs dd ?
dpHugeSectors dd ?

DEVICEPARAMS ENDS

;special functions
;device type
;device attributes
;number of cylinders
;media type
:Start of BIOS parameter block (BPB)
;bytes per sector
;sectors per cluster
;number of reserved sectors
;number of file allocation tables
;number of root-directory entries
;total number of sectors
;media descriptor
;number of sectors per FAT
;sectors per track
;number of heads
;number of hidden sectors
;number of sectors if dpSectors = 0
;End of BIOS parameter block (BPB)

Return Value

The dpSpecFuDc field determines whether the function retrieves current or
default information. If the field is set to 1, the function retrieves information
about the current medium in the drive; if the field is set to 0, the function
retrieves information about the default medium for the drive.

For a full description of the DEVICEPARAMS structure, see Chapter 3, "File
System."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

0002h

OOOSh

ERROR_INVALIDJUNCTION

ERROR_FILE_NOTJOUND

ERROR_ACCESS_DENIED

316 Function 440Dh Minor Code 60h Get Device Parameters

Comment

See Also

Get Device Parameters returns 0002h (ERROILFILE.-NOTYOUND) if the
specified drive number is invalid. .

Function 440Dh Minor Code 40h Set Device Parameters

Function 440Dh Minor Code 61h Read Track on Logical Drive 317

• Function 440Dh Minor Code 61h Read Track on Logical Drive

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ; device category (must be 08h)

mov cl, 61h ;Read Track on Logical Drive

mov dx, seg ReadBlock
mov ds, dx
mov dx, offset ReadBlock ;ds:dx points to RWBLOCK structure

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ;carry set means error

;special functions (must be zero)
;head to read/write
;cylinder to read/write
;first sector to read/write
;number of sectors to read/write
;address of buffer for read/write data

db 0
dw ?
dw ?
dw ?
dw ?
dd ?

Read Track on Logical Drive (Function 440Dh Minor Code 61h) reads data
from a track on. the specified device and places the data in memory.

Drive Specifies the drive to be read from (0 == default drive, 1 == A, 2 = B,
etc.).

ReadBlock Points to an RWBLOCK structure that contains information that
specifies the sectors to be read from. The RWBLOCK structure has the follow­
ing form:

RWBLOCK STRUC
rwSpecFunc
rwHead
rwCylinder
rwFirstSector
rwSectors
rwBuffer

RWBLOCK ENDS

Parameters

For a full description of the RWBLOCK structure, see Chapter 3, "File Sys­
tem."

Return Value H the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

0002h

OOOSh

ERRORJNVAUDJUNCTION
ERROR-ALELNOT_FOUND
ERROR-ACCESS-DENIED

Comment

See Also

Read Track on Logical Drive returns 0002h (ERROILFILE..NOTYOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 41h Write Track on Logical Drive

318 Function 440Dh Minor Code 62h Verify Track on Logical Drive

• Function 440Dh Minor Code 62h Verify Track on Logical Drive

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ; device category (must be 08h)

mov cl, 62h ;Verify Track on Logical Drive

mov dx, seg VerifyBlock
mov ds, dx
mov dx, offset VerifyBlock ;ds:dx points to FVBLOCK structure

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ;carry set means error

;special functions (must be zero)
;head to format/verify
;cylinder to format/verify

db 0
dw ?
dw ?

Verify Track on Logical Drive (Function 440Dh Minor Code 62h) verifies a track
on the specified device.

Drive Specifies the drive on which the track is to be verified (0 = default
drive, 1 = A, 2 = B, etc.).

VerifyBlock Points to an FVBLOCK structure that specifies the head and
cylinder to verify. The FVBLOCK structure has the following form:
FVBLOCK STRUC

fvSpecFunc
fvHead
fvCylinder

FVBLOCK ENDS

Parameters

Return Value

For a full description of the FVBLOCK structure, see Chapter 3, "File System."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

0002h

OOOSh

ERROR.J:NVALID_FUNCTION

ERROR_FILE_NOT_FOUND

ERROR_ACCESS_DENIED

Comment

See Also

Verify Track on Logical Drive returns 0OO2h (ERRORJILE_NOT..FOUND)
if the specified drive number is invalid.

Function 440Dh Minor Code 42h Format Track on Logical Drive

Function 4400h Minor Code 66h Get Media 10 319

• Function 4400h Minor Code 66h Get Media 10

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ; device category (must be 08h)

mov cl, 66h ;Get Media 10

mov dx, seg MediaID
mov ds, dx
mov dx, offset MediaID ;ds:dx points to MID structure

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ; carry set means error

Parame,ters

Get Media In (Function 440Dh Minor Code 66h) returns the volume label,
serial number and file system for the specified drive.

Drive Specifies the drive for which information is to be returned (0 == default
drive, 1 = A, 2 = B, etc.).

MediaID Points to a MID structure that receives information that uniquely
identifies a disk or other storage medium. The MID structure has the following
form:

MID STRUC
midInfoLevel dw 0
midSerialNum dd 1
midVolLabel db 11 dup (1)
midFileSysType db 8 dup (1)

MID ENDS

;information level
;serial number
;ASCII volume label
;file system type

Return Value

Comments

See Also

For a full description of the MID structure, see Chapter 3, "File System."

If the function is successful, the carry flag is clear, and the parameter block is
filled in with information about the disk. Otherwise, the carry flag is set and the
AX register contains an error value, which may be one of the following:

Value Name

000lh ERROR_INVALID_FUNCTION

OOOOh ERRoR-ALE_NOTJOUND

OOOSh ERROR_ACCESS-DENIED

Get Media In returns 0002h (ERROILFILE-NOTYOUND) if the specified
drive number is invalid.

Function 440Dh Minor Code 46h Set Media In

320 Function 440Dh Minor Code 6Sh Sense Media Type

• Function 440Dh Minor Code aSh Sense Media Type

mov bx, Drive ;0 = default, 1 = A, 2 = B, etc.
mov ch, 08h ;device category (must be 08h)

mov cl, 68h ;Sense Media Type

mov dx, seg Media
mov ds, dx
mov dx, offset Media ;ds:dx points to buffer for media type

mov ax, 440Dh ; IOCTL for Block Device
int 21h

jc error_handler ; carry set means error

Parameters

Return Value

Sense Media Type (Function 440Dh Minor Code 68h) returns the media type for
the specified block device.

Drive Specifies the drive for which parameters are requested (0 = default
drive, 1 = A, 2 = B, etc.).

Media Points to a 2-byte buffer that receives information on the media type
for the given drive. The buffer has the following form:

Offset Description

OOh Receives a value specifying whether the media type is the default
value. This byte is set to Olh for the default media type and to OOh
for any other media type.

Olh Receives a value specifying the media type. This byte is set to 02h for
720K disks, 07h for 1.44-MB disks, and 09h for 2.88-MB disks.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

OOOSh

ERRORJNVALID_FUNCTION

ERROR_ACCESS_DENIED

Comment

This function may also return a device-dependent error value as specified by
the device driver.

Sense Media Type returns 0005h (ERROILACCESS..DENIED) if the media
type for the specified drive cannot be determined or the given drive is not ready.
Programs can use Get Extended Error (Function 59h) to retrieve additional
information about the error.

Function 440Eh Get Logical Drive Map 321

• Function 440Eh Get Logical Drive Map

mov bl, Drive ;0 = default, 1 = A, 2 B, etc.

Parameter

Return Value

mov ax, 440Eh ;Get Logical Drive Map
tnt 21h

jc error_handler ;carry set means error

Get Logical Drive Map (Function 440Eh) determines whether a physical drive
has more than one logical drive number and returns the active drive number if
it does.

Drive Specifies the drive number to check (0 = default drive, 1 = A, 2 = B,
etc.). The function checks the physical drive that corresponds to this logical
drive number.

If the function is successful, the carry flag is clear and the AL register contains
the active drive number for the corresponding physical drive. If the physical
drive has only one drive number, the AL register contains OOh.

If the function is not successful, the carry flag is set and the AX register con­
tains an error value, which may be one of the following:

Value Name

000lh

OOOSh
OOOFh

ERROR_INVALID_FUNCTION

ERROR_ACCESS_DENIED

ERROR_INVALID_DRIVE

Comments

See Also

If a program attempts to access the drive by using an inactive drive number,
MS-DOS prompts the user with the message "Insert diskette for drive x: and
press any key when ready."

Function 440Fh Set Logical Drive Map

322 Function 440Fh Set Logical Drive Map

• Function 440Fh Set Logical Drive Map

mov bl, Drive ;0 = default, 1 = A, 2 8, etc.

Parameter

Return Value

mov ax, 440Fh ;Set Logical Drive Map
int 21h

jc error_handler ;carry set means error

Set Logical Drive Map (Function 440Fh) sets the active drive number for a phys­
ical drive that h~s more than one logical drive number.

Drive Specifies the drive number to set (0 = default drive, 1 = A, 2 = B, etc.).

If the function is successful, the carry flag is clear, and the AL register contains
the active drive number for the corresponding physical drive. If the physical
drive has only one drive number, the AL register contains OOh.

If the function is not successful, the carry flag is set and the AX register con­
tains an error value, which may be one of the following:

Value Meaning

OOOlh

OOOSh

OOOFh

ERRORJNVAUD_FUNCTION

ERROR_ACCESSJ>ENIED

ERRORJNVALID_DRIVE

Comments

See Also

Programs that set the active drive prevent MS-DOS from prompting the user
with the message "Insert diskette for drive x: and press any key when ready."

Function 440Eh Get Logical Drive Map

Function 4410h Query IOCTL Handle 323

• Function 4410h Query IOCTL Handle

mov bx, Handle ;Dev1ce handle

mov ch, Category ;Category to check
mov c1, Funct10n ;Funct1on to check

mov ax, 4410h ;Query IOCTL Handle 4410h
1nt 21h
jnc supported ;carry clear means IOCTL supported

Query IOCTL Handle (Function 4410h) determines whether the specified
IOCTL function is supported by the given device driver.

Parameters Handle
Category

Value

Identifies the device to check.

Specifies an IOCTL category code. It can be one of the following:
Meaning

Return Value

Comments

See Also

Olh Serial device

03h Console (screen)

OSh Parallel printer

Function Specifies a Function 440Ch minor code. It can be one of the fol­
lowing:

Value Meaning

4Sh Set Iteration Count

6Sh Get Iteration Count

If IOCTL is supported, the carry flag is clear. Otherwise, the carry flag is set
and AX contains an error value, which may be one of the following:

Value Name

OOOlh ERROR_INVALIDJUNCTION

OOOSh ERROR_ACCESSJ)ENIED

Query IOCTL Handle returns OOOlh (ERRORJNVALIDYUNCTION) if the
device driver has no support for IOCTL functions. The function returns 0005h
(ERROR-ACCESSJ)ENIED) if the device driver supports IOCTL functions
but does not support the specified IOCTL.

Function 3Dh Open File with Handle
Function 3Ch Create File with Handle
Function 4411h Query IOCTL Device

324 Function 4411h Query IOCTl Device

• Function 4411h Query IOCTL Device

mov bl, Drive ;0 = default, 1 = A, 2 = B, etc.

mov ch, 8 ;IOCTL category to check. Must be 8
mov cl, Function ; IOCTL function to check

mov ax, 4411h ;Query IOCTL Device 4411h
int 21h
jnc supported ;carry clear means IOCTL supported

Parameters

Return Value

Query IOCTJ.., Device (Function 4411h) determines whether the specified IOCTL
function is supported for the given drive.

Drive Specifies the drive (0 = default drive, 1 = A, 2 = B, etc.).

Function Specifies a Function 4401 minor code. It can be one of the fol­
lowing:

Value Meaning

40h Set Device Parameters

41h Write Track on Logical Orive

42h Format Track on Logical Drive

46h Set Media ID

60h Get Device Parameters

61h Read Track on Logical Drive

62h Verify Track on Logical Drive

66h Get Media 10

68h Sense Media Type

If IOCTL is supported, the carry flag is clear. Otherwise, the carry flag is set
and AX contains an error value, which may be one of the following:

Value Name

0001h

OOOSh
OOOFh

ERROR_INVALIO_FUNCTION

ERROR_ACCESS_OENIEO

ERROR_INVALIO_DRIVE

Comments

See Also

Query IOCTL Device returns 0001h (ERRORJNVALIDYUNCTION) if the
device driver has no support for IOCTL functions. The function returns OOOSh
(ERROR-ACCESSJ)ENIED) if the device driver supports IOCTL functions
but does not support the specified IOCTL.

Function 4410h Query IOCTL Handle

Function 45h Duplicate File Handle 325

• Function 45h Duplicate File Handle

mov

mov
int

jc
mov

bx, OldHandle

ah, 4Sh
21h

error_handler
NewHandle, ax

;handle to duplicate

;Duplicate File Handle

;carry set means error
;refers to same file as OldHandle

Parameter

Return Value

Comments

See Also

Duplicate File Handle (Function 45h) creates a new file handle that can be used
to read from or write to the same file or device that is associated with the origi­
nal handle.

OldHandle Identifies the handle to be duplicated.

If the function is successful, the carry flag is clear and the AX register contains
the new handle. Otherwise, the carry flag is set and the AX register contains an
error value, which may be one of the following:

Value Name

0004h ERROR-TOO_MANY_OPEN_FILES

0006h ERROR_INVALIDJiANDLE

If this function is used to duplicate the handle of an open file, the file pointer
for the new handle is set to the same position as the pointer for the old handle.
Using either handle to read from or write to the file changes the file pointer for
both handles.

Duplicate File Handle can also be used to keep a file open while its directory
entry is changed. If a program creates a duplicate handle and then closes the ori­
ginal handle, the file's directory entry is updated, but the duplicate handle can
still be used to read from or write to the file.

Function 46h Force Duplicate File Handle

326 Function 46h Force Duplicate File Handle

• Function 46h Force Duplicate File Handle

mov bx, OpenHandle ;handle of file or device
mov cx, DuplicateHandle ;new handle for same file or device

mov ah, 46h ;Force Duplicate File Handle
int 21h

jc error_handler ;carry set means error

Parameters

Return Value

Comments

See Also

Force Duplicate File Handle (Function 46h) forces the specified duplicate handle
to identify the same open file or device identified by the OpenHandle parameter.

OpenHandle Identifies an open file or device.

DuplicateHandle Specifies an integer value for the new handle. This integer
must not exceed the current limit as specified by Set Maximum Handle Count
(Function 67h).

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0004h ERROR_TOO_MANY_OPEN_FILES

0006h ERRORJNVALIDJ1ANDLE

After a program uses this function, both handles can be used to read from or
write to the file or device specified by OpenHandle. Moving the file pointer with
either handle moves the file pointer for the other handle.

If DuplicateHandle identifies an open file, MS-DOS closes that file.

Function 45h Duplicate File Handle
Function 67h Set Maximum Handle Count

Function 47h Get Current Directory 327

• Function 47h Get Current Directory

mov
mov
mov
mov

mov
lnt

jc

sl, seg CurDlr
ds, 81
81, offset CurDlr
dl, Drlve

ah, 47h
21h

error_handler

;ds:sl polnts to buf to recelve current dlr
;0 = default, 1 = A, 2 = 5, etc.

;Get Current Dlrectory

;carry set means error

Parameters

Return Value

Comment

See Also

Get Current Directory (Function 47h) returns the path of the current directory
on the specified drive.

CurDir Points to a buffer where the current path on the specified drive is to
be placed. The buffer should be at least 64 bytes, large enough to contain the
largest possible path for the current directory.

Drive Specifies the drive number (0 = default drive, 1 = A, 2 = B, etc.).

If the function is successful, the carry flag is clear and the CurDir buffer is filled
in with the current default path on the specified drive. Otherwise, the carry
flag is set and the AX register contains an error value, which may be OOOFh
(ERRORJNVALIDJ)RlVE).

This function copies to the specified buffer a zero-terminated ASCII string that
identifies the current directory. The string consists of one or more directory
names separated by backslashes (\). The path string does not include the drive
letter and does not start with a leading backslash.

Function 3Bh Change Current Directory

328 Function 48h Allocate Memory

• Function 48h Allocate Memory
mov bx, MemSize ;amount of memory requested, in paragraphs

mov ah, 48h ;Allocate Memory
int 21h

jc error_handler ;carry set means error
mov SegmentMem, ax ;segment address of allocated memory

Parameter

Return Value

Comments

See Also

Allocate Memory (Function 48h) allocates the requested amount of memory and
returns the segment address of the allocated memory block.

MemSize Specifies the amount of memory to be allocated, in paragraphs (16
bytes).

If the function is successful, the carry flag is clear and the AX register contains
the segment address of the first byte (offset 0) of the allocated memory block.
Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

0007h ERROILARENA-TRASHED

0008h ERROR_NOT-ENOUGILMEMORY

If Allocate Memory returns 0008h (ERROILNOTJ,NOUGILMEMORy), the
BX register contains the number of paragraphs in the largest available memory
block.

The contents of the allocated memory are not defined.

MS-DOS allocates all available memory to a .COM program; most .EXE pro­
grams request all available memory when they load. If a program is to subse­
quently use the Allocate Memory function to dynamically allocate memory, it
should use Set Memory Block Size (Function 4Ah) to free as much memory as
possible.

The default memory-management strategy is to allocate the first available block
that contains the requested number of bytes. A program can use Set Allocation
Strategy (Function 5801h) to change the way MS-DOS chooses memory blocks
for allocation.

Function 49h Free Allocated Memory
Function 4Ah Set Memory Block Size
Function 5800h Get Allocation Strategy
Function 5801h Set Allocation Strategy

Function 49h Free Allocated Memory 329

• Function 49h Free Allocated Memory
mov ax, SegmentMem ;segment address of memory to free
moves, ax

mov ah, 49h ;Free Allocated Memory
int 21h

jc error_handler ;carry set means error

Parameter

Return Value

Comment

See Also

Free Allocated Memory (Function 49h) frees a block of memory previously allo­
cated by Allocate Memory (Function 48h).

SegmentMem Specifies the segment address of the memory block to be freed.
This address must have been returned from a call to the Allocate Memory func­
tion.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0007h ERROR_ARENA_TRASHED

0009h ERROR_INVALID_BLOCK

MS-DOS returns 0009h (ERRORJNVALID-BLOCK) if a program tries to free
memory that was not allocated by Allocate Memory.

Function 48h Allocate Memory

330 Function 4Ah Set Memory Block Size

• Function 4Ah Set Memory Block Size

mov bx, MemSize ;amount of memory, in paragraphs
mov ax, SegmentMem ;segment address of memory to resize
moves, ax

mov
int

ah, 4Ah
21h

;Set Memory Block Size

Parameters

Return Value

Comments

See Also

jc error_handler ;carry set means error

Set Memory Block Size (Function 4Ah) can be used to change the size of a
memory segment previously allocated by Allocate Memory (Function 48h) or to
change the amount of memory originally allocated to a program by MS-DOS.

MemSize Specifies the new size of the memory block, in paragraphs. The new
size may be smaller or larger than the current size of the block.

SegmentMem Specifies the segment address of the memory block to resize. If
the memory block was allocated by Allocate Memory, this parameter must be
the segment address returned by that function.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

0007h ERROR_ARENA_TRASHED

0008h ERROR-NOT_ENOUGlLMEMORY

0009h ERRORJNVALIDJlLOCK

If this function returns 0008h (ERROILNOT-ENOUGlLMEMORy), the BX
register contains the number of paragraphs in the largest available memory
block.

This function returns 0009h (ERRORJNVALIDJ3LOCK) if a program tries to
change the size of a memory block that was not allocated by Allocate Memory
or by MS-DOS when the program was started.

If this function is used to decrease the size of a memory block, the memory
above the new limit is no longer owned by the program and should not be used.
If this function is used to increase the size of a memory block, the contents of
the new memory are not defined.

Function 48h Allocate Memory
Function 49h Free Allocated Memory

Function 4BOOh Load and Execute Program 331

• Function 4BOOh Load and Execute Program

mov dx, seg ProgName
mov ds, dx
mov dx, offset ProgName ;ds:dx points to program name

mov bx, seg ProgArgs
moves, bx
mov bx, offset ProgArgs ;es:bx points to LOADEXEC structure

mov
int

ax, 4BOOh
21h

;Load and Execute Program

jc error_handler ;carry set means error

;environment-block segment
;address of command tail
;address of default FCB #1
;address of default FCB #2

dw ?
dd ?
dd ?
dd ?

Load and Execute Program (Function 4BOOh) loads a program into memory,
creates a new program segment prefix (PSP), and transfers control to the new
program.

ProgName Points to a zero-terminated ASCn string that specifies the pro­
gram to load. The program name must be a valid MS-DOS filename, and the
file must be a valid .COM or .EXE program.

ProgArgs Points to a LOADEXEC structure that contains information the
child program uses. The LOADEXEC structure has the following form:
LOADEXEC STRUC

leEnvironment
leCommandTail
leE'CB_l
leFCB_2

LOADEXEC ENDS

Parameters

For a full description of the LOADEXEC structure, see Chapter 5, "Program
Management."

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

0002h

0003h

0004h

OOOSh

0008h

OOOAh

OOOBh

ERROR_INVALIDYUNCTION

ERROR_FILE_NOT_FOUND

ERROR_PATlLNOT_FOUND

ERROR_TOO_MANY_OPEN_FILES

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUGILMEMORY

ERROR_BAD_ENVIRONMENT

ERROR_BAD_FORMAT

Comment There must be enough free memory for MS-DOS to load the program file. All
open files of the parent program, except files that were opened in no-inheritance
mode, are available to the newly loaded program. -

332 Function 4BOOh Load and Execute Program

See Also Function 3th Keep Program
Function 4BOlh Load Program
Function 4B03h Load Overlay
Function 4B05h Set Execution State
Function 4Ch End Program
Function 4Dh Get Child-Program Return Value

Function 4801 h Load Program 333

• Function 4801 h Load Program

mov
mov
mov

dx, seg ProgName
ds, dx
dx, offset ProgName ;ds:dx points to program name

mov
mov
mov

bx, seg LoadArgs
es, bx
bx, offset LoadArgs ;es:bx points to LOAD structure

mov
int

ax, 4B01h
21h

;Load Program

jc error_handler ;carry set means error

;environment-block segment
;address of command tail
;address of default FCB #1
;address of default FCB #2
;starting stack address
;starting code address

dw ?
dd ?
dd ?
dd ?
dd ?
dd ?

Load Program (Function 4BOlh) loads a program into memory and creates a new
program segment prefix (PSP) but does not transfer control to the new program.

ProgName Points to a zero-terminated ASCII string specifying the program to
load. The program name must be a valid MS-DOS filename, and the file must be
a valid .COM or .EXE program.

LoadArgs Points to a LOAD structure that contains information the child
program uses. The LOAD structure has the following form:

LOAD STRUC
IdEnvironment
IdCommandTail
IdFCB_1
IdFCB_2
IdSSSP
IdCSIP

LOAD ENDS

Parameters

For a full description of the LOAD structure, see Chapter 5, "Program Manage­
ment."

Return Value If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

0002h

0003h

0004h

OOOSh

0008h

OOOAh

OOOBh

ERROR_INVALID_FUNCTION

ERROR_FILE_NOT_FOUND

ERROR_PATlLNOTYOUND

ERROR_TOO-MANY_OPEN_FILES

ERROR_ACCESS-DENIED

ERROR_NOT_ENOUGlLMEMORY

ERROR_BAD_ENVIRONMENT

ERROR_BAD_FORMAT

Comment

See Also

There must be enough free memory for MS-DOS to load the program file.

Function 4BOOh Load and Execute Program
Function 4B03h Load Overlay
Function 4B05h Set Execution State

334 Function 4B03h Load Overlay

• Function 4B03h Load Overlay

mov
mov
mov

mov
mov
mov

mov
int

jc

dx, seg ProgName
ds, dx
dx, offset ProgName

bx, seg OvlArgs
es, bx
bx, offset OvlArgs

ax, 4B03h
21h

error_handler

;ds:dx points to program name

;es:bx points to LOADOVERLAY structure

;Load Overlay

;carry set means error

Parameters .

Load Overlay (Function 4B03h) loads a program as an overlay. MS-DOS loads
the overlay into memory already allocated by the program.

ProgName Points to a zero-terminated ASCn string specifying the program
to load. The program name must be a valid MS-DOS filename.

OvlArgs Points to a LOADOVERLAY structure that contains information
used to load overlays. The LOADOVERLAY structure has the following form:

LOADOVERLAY STRUC
loStartSegment dw ?
loRelocationFactor dw?

LOADOVERLAY ENDS

;segment address of overlay's memory
;relocation factor

Return Value

For a full description of the LOADOVERLAY structure, see Chapter 5, "Pro­
gram Management."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

0002h

0003h

0004h

OOOSh

0008h

OOOAh

ERROR_INVALIDJUNCTION

ERRORJILE_NOT_FOUND

ERROR_PATILNOTJOUND

ERROR_TOO~ANY_OPENJILES

ERROR_ACCESS.-DENIED

ERROR_NOT-ENOUG~MORY

ERROR_BAD_ENVIRONMENT

See Also Function 4BOOh Load and Execute Program
Function 4BOlh Load Program

Function 4B05h Set Execution State 335

• Function 4B05h Set Execution State

mov
mov
mov

mov
int
jc

dx, seg ExecState
ds, dx
dx, offset ExecState

ax, 4B05h
21h
error_handler

;ds:dx points to EXECSTATE structure

;Set Execution State

; reserved
;type flags
;points to ASCIIZ string of program name
;PSP segment of the new program
;starting cs:ip of the new program
;program size, including PSP

Parameter

Return Value

Comments

See Also

Set Execution State (Function 4B05h) prepares a new program for execution.
This preparation includes setting the version number for the program as
specified by the setver command.

ExecState Points to an EXECSTATE structure that contains the execution
state. The EXECSTATE structure has the following form:

EXECSTATE STRUC
esReserved dw?
esFlags dw ?
esProgName dd?
esPSP dw ?
esStartAddr dd ?
esProgSize dd?

EXECS TATE ENDS

For a full description of the EXECSTATE structure, see Chapter 5, "Program
Management."

This function has no return value.

This function is required for programs that intercept Load and Execution Pro­
gram (Function 4BOOh).

After the function returns, the calling program must transfer execution control
to the new program as soon as possible. In particular, before starting the new
program, the calling program must not call MS-DOS system functions, ROM
BIOS functions, or system interrupts.

When MS-DOS is installed in the high-memory area (HMA), this function turns
off the A20 line, making the HMA inaccessible. If the new program must have
access to the HMA, the program must turn on the A20 line. Note that MS-DOS
automatically turns on the A20 line (and usually leaves it on) when carrying out
other system functions.

Function 4BOOh Load and Execute Program
Function 4BOlh Load Program

336 Function 4Ch End Program

• Function 4Ch End Program

mov aI, ReturnValue ;program-deflned return value

mov ah, 4Ch ;End Program
Int 21h

Parameter

Return Value

Comment

See Also

End Program (Function 4Ch) terminates the current program and returns control
to its parent program.

ReturnValue Specifies a return value. If the terminated program was started
by Load and Execute Program (Function 4BOOh), the parent program can use
Get Child-Program Return Value (Function 4Dh) to retrieve this value.

This function does not return.

This function performs the following actions:

• Flushes the file buffers and closes files, unlocking any regions locked by
the program.

• Restores Termination Address (Interrupt 22h) from offset OAh in the
PSP (pspTerminateVector field).

• Restores the address of CTRL+C Handler (Interrupt 23h) from offset
OEh in the PSP (pspControlCVector field).

• Restores the address of Critical-Error Handler (Interrupt 24h) from
offset I2h in the PSP (pspCritErrorVector field).

• Frees any memory owned by the terminating program.

After completing these actions, this function transfers control to the address
specified by offset OAh in the PSP.

Function OOh Terminate Program
Function 3Ih Keep Program
Function 4Dh Get Child-Program Return Value
Function 5Ch Lock/Unlock File
Interrupt 22h Termination Address
Interrupt 23h CTRL+C Handler
Interrupt 24h Critical-Error Handler

Function 4Dh Get Child-Program Return Value 337

• Function 4Dh Get Child-Program Return Value

mov
int

ah, 4Dh
21h

;Get Child-Program Return Value

Parameters

Return Value

Comments

See Also

mov ReturnValue, al ;return value from last child program
mov Method, ah ;termination method for child program

Get Child-Program Return Value (Function 4Dh) retri.eves the return value
specified by the last child program. The child program must have specified a
return value by using either End Program (Function 4Ch) or Keep Program
(Function 3ih).

This function has no parameters.

The AX register contains the child-program return value; the AL register con­
tains the return value specified by the child program; and the AH register con­
tains a number that specifies the child-program termination method, which may
be one of the following:

Value Meaning

OOh Normal termination

Olh Terminated by CTRL+C

02h Critical device error

03h Terminated by the Keep Program function

The return value for the program is available only once. Subsequent calls to this
function in relation to the same child program give meaningless results.

If there is no child-program return value to retrieve, this function does not
return an error, and the information in the AX register is meaningless.

Function 3ih Keep Program
Function 4Ch End Program

338 Function 4Eh Find First File

• Function 4Eh Find First File
mov cx, Attributes ; attributes to search for
mov dx, seg FileName
mov ds, dx
mov dx, offset FileName ;ds:dx points to file or directory name(s)

mov ah, 4Eh ;Find First File
int 21h

jc error_handler ;carry set means error

Parameters

Find First File (Function 4Eh) searches a directory for the first file or directory
whose name and attributes match the specified name and attributes.

Attributes Specifies the attributes to search for. This parameter can be a com­
bination of the following attributes:

Value Meaning

File can be read from or written to.

ATIR_SYSTEM (OOO4h)

ATIR_VOLUMEID (OOO8h)

ATIR_NORMAL «()()()()h)

ATIR-READONLY (OOOlh)

ATTRJlIDDEN (OOO2h)

File can be read from, but not written to.

File or directory is hidden and does not
appear in a directory listing.

File or directory is a system file or directory.

Filename is the volume label of media in
specified drive.

ATIR_DIRECTORY (OOlOh) Filename identifies a directory, not a file.

FileName Points to a zero-terminated ASCn string that specifies the file or
directory to search for. The name must be a valid MS-DOS filename or directory
name and can include wildcards.

Return Value If the function is successful, the carry flag is clear and the file information is
copied as a FILEINFO structure to the current disk transfer address (DTA).
Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

Comments

0002h ERROR_FILE~OT_FOUND

0003h ERROR_PATlLNOT_FOUND

0012h ERROR_NO_MORE_FILES

If the DTA has not been explicitly set by Set Disk Transfer Address (Function
lAh), MS-DOS uses the default DTA, offset BOh, in the program segment prefix
(PSP).

If a program specifies any combination of ATTILSYSTEM, ATTILHIDDEN,
and ATTILDIRECTORY, this function returns normal files in addition to the
specified files. The program must examine the attribute contained in the DTA
to determine the type of file found.

See Also

Function 4Eh Find First File 339

The FILEINFO structure that contains the file information has the following
form:

FILEINFO STRUC
fiReserved db 21 dup (7) ; reserved
fiAttribute db 7 ;attributes of file found
fiFileTime dw 7 ;time of last write
fiFileDate dw 7 ;date of last write
fiSize dd 7 ;file size
fiFileName db 13 dup (7) ;filename and extension

FILEINFO ENDS

For a full description of the FILEINFO structure, see Chapter 3, "File System."

Function lAh Set Disk Transfer Address
Function 4Fh Find Next File

340 Function 4Fh Find Next File

• Function 4Fh Find Next File

mov ah, 4Fh ;Find Next File
int 21h

jc error_handler ;carry set means error

Find Next File (Function 4Fh) searches for the next directory entry that matches
the name and attributes specified in a previous call to Find First File (Function
4Eh). The current disk transfer address (DTA) must contain the information
filled in by the Find First File function.

Parameters

Return Value

Comments

See Also

This function has no parameters.

If the function is successful, the carry flag is clear and the file information is
copied as a FILEINFO structure to the current DTA. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the fol­
lowing:

Value Name

~h ERROR_ALE_NOT_FOUND

0003h ERROR_PATI-LNOT_FOUND

0012h ERROR_NO_MORE_FILES

If a program specifies any combination of ATTILSYSTEM, ATTRJIIDDEN,
and ATTILDIRECTORY, this function returns normal files in addition to the
specified files. The program must examine the attribute contained in the DTA
to determine the type of file found.

The FILEINFO structure that contains the file information has the following
form:

FILEINFO STRUC
fiReserved db 21 dup (1) ; reserved
fiAttribute db 1 ;attributes of file found
fiFileTime dw 1 ;time of last write
fiFileDate dw 1 ;date of last write
fiSize dd 1 ;file size
fiFileName db 13 dup (1) ; filename and extension

FILEINFO ENDS

For a full description of the FILEINFO structure, see Chapter 3, "File System."

Function 4Eh Find First File

Function SOh Set PSP Address 341

• Function 50h Set PSP Address

mov bx, SegmentPSP ;segment address of new PSP

mov ah, SOh ;Set PSP Address
int 21h

Param$ter

Return Value

See Also

Set PSP Address (Function 50h) sets the segment address of the program seg­
ment prefix (PSP) for the current program.

SegmentPSP Specifies the segment address of the PSP for the current pro­
gram.

This function has no return value.

Function 51h Get PSP Address

342 Function 51 h Get PSP Address

• Function 51 h Get PSP Address

mov ah, 51h ;Get PSP Address
lnt 21h

mov SegmentPSP, bx ;segment address of current PSP

Parameters

Return Value

Comments

See Also

Get PSP Address (Function 51h) returns the segment address of the program
segment prefix (PSP) for the current program.

This function has no parameters.

The BX register contains the segment address of the PSP for the current pro­
gram.

Functions 62h and 51h are identical. Programs can use either function number
to get the segment address of the current PSP.

Function SOh Set PSP Address

Function 54h Get Verify State 343

• Function 54h Get Verify State

mov
int

ah, 54h
21h

;Get Verify State

Parameters

Return Value

Comment

See Also

mov VerifyFlag, al ;OOh = off, Olh = on

Get Verify State (Function 54h) returns the state of the MS-DOS verify flag.

This function has no parameters.

The AL register contains the s~ate of the MS-DOS verify flag. If this value is
OOh, 'MS-DOS does not verify write operations. If the value is Olh, MS-DOS
does verify write operations.

The write-verify flag is normally off. A program can change this state by using
Reset/Set Verify Flag (Function 2Eh); a user can change the state by using the
verify command.

Function 2Eh Reset/Set Verify Flag

344 Function 56h Rename File

• Function 56h Rename File
mov dx, seg OldName
mov ds, dx
mov dx, offset OldName ;ds:dx points to old file or directory name

mov di, seg NewName
moves, di
mov di, offset NewName ;es:di points to new file or directory name

mov ah, 56h ;Rename File
int 21h

jc error_handler ;carry set means error

Parameters

Return Value

Rename File (Function 56h) renames or moves a file or directory by changing its
directory entry.

OldName Points to a zero-terminated ASCII string that specifies the file or
directory to rename or move. The name must be a valid MS-DOS filename or
directory name and cannot include wildcards.

NewName Points to a zero-terminated ASCII string that specifies the new
name for the file or directory. The name must be a valid MS-DOS filename or
directory name and cannot include wildcards.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:
, Value Name

0002h

0003h

OOOSh

00llh

ERROR-FILE-NOTJOUND

ERROR-PATfLNOTYOUND

ERROR_ACCESS_DENIED

ERROR_NOT_SAME_DEVICE

Comments

See Also

Open files or directories must be closed before they are moved or renamed with
this function.

A program can use this function to move a file or directory by specifying
different paths for the OldName and NewName parameters and keeping the
filename or directory name the same. This function cannot be used to move files
or directories·from one disk drive to another; however, both the old and new
names must specify the same drive either explicitly or by default.

If the specified file is on a network drive, the function renames the file only if
network grants create and delete access to the drive or directory.

Function 17h Rename File with FCB

Function 5100h Get File Date and Time 345

• Function 5700h Get File Date and Time

mov

mov
int

jc
mov
mov

bx, Handle

ax, 5700h
2Ih

error_handler
FileTime, ex
FileDate, dx

;handle of file

;Get Date and Time

;carry set means error
;time file was last modified
;date file was last modified

Parameter

Return Value

Comments

See Also

Get File Date and Time (Function 5700h) retrieves the time and date a file was
last modified (the last time its directory entry was updated).

Handle Identifies the file to retrieve the date and time for.

If the function is successful, the carry flag is clear, the ex register contains the
time the file was last modified, and the DX register contains the date the file was
last modified. Otherwise, the carry flag is set and the AX register contains an
error value, which may be 0006h (ERRORJNVALIDJIANDLE).

The file time returned in ex is a 16-bit value with the following format:
Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23 on a 24-hour clock)

The file date returned in DX is a 16-bit value with the following format:
Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 cz January, 2 := February, etc.)

9-15 Year offset from 1980 (add 1980 to get actual year)

Function 5701h Set File Date and Time

346 Function 5701h Set File Date and Time

• Function 5701 h Set File Date and Time

mov bx, Handle ;handle of file
mov ex, FileTime ;new file time
mov dx, FileDate ;new file date

mov ax, 5701h ;Set Date and Time
int 21h

jc error_handler ;earry set means error

Parameters

Return Value

See Also

Set File Date and Time (Function 5701h) sets the thne and date for a file, replac­
ing the time and date set for the file when it was last modified.

Handle Identifies the file to set the date and time for.

FileTime Specifies the new time for the file. The file time is a 16-bit value
with the following format:

Bits Contents

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0--23 on a 24-hour clock)

FileDate Specifies the new date for the file. The file date is a 16-bit value with
the following format:

Bits Contents

0-4 Day of the month (1-31)

5-8 Month (1 = January, 2 = February, etc.)

9-15 Year offset from 1980 (add 1980 to get actual year)

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0006h
(ERRORJNVALIDJIANDLE).

Function 5700h Get File Date and Time

Function 5800h Get Allocation Strategy 347

• Function 5800h Get Allocation Strategy

mov
int

mov

ax, 5800h
21h

Strategy, ax

;Get Allocation Strategy

;allocation strategy

Parameters

Return Value

Comment

See Also

Get Allocation Strategy (Function 5800h) returns the method MS-DOS uses to
allocate memory.

This function has no paratneters.

The carry flag is clear and the AX register contains the allocation-strategy value.

The allocation-strategy value can be one of the following:
Value Meaning

FIRST_FIT_LOW (OOOOh) Search conventional memory for the
available block having the lowest address.
This is the default strategy.

BEST_FIT_LOW (OOOlh) Search conventional memory for the
available block that most closely matches
the requested size.

LAST_FIT_LOW (OOO2h) Search conventional memory for the
available block at the highest address.

FIRST_FIT_mOH (OOSOh) Search the upper-memory area for the
available block at the lowest address. If
no block is found, the search continues
in conventional memory.

BEST_FIT_HIOH (OO81h) Search the upper-memory area for the
available block that most closely matches
the requested size. If no block is found,
the search continues in conventional
memory.

LAST_FIT_IDGH (OO82h) Search the upper-memory area for the
available block at the highest address. If
no block is found, the search continues
in conventional memory.

FlRST_FlT_HIGHONLY (0040h) Search the upper-memory area for the
available block at the lowest address.

BEST_FlT_HIGHONLY (0041h) Search the upper-memory area for the
ayailable block that most closely matches
the requested size.

LAST_FIT_HIGHONLY (0042h) Search the upper-memory area for the
available block at the highest address.

For more information about upper-memory blocks and memory allocation, see
Chapter 5, "Program Management."

Function 48h Allocate Memory
Function 5801h Set Allocation Strategy
Function 5802h Get Upper-Memory Link
Function 5803h Set Upper-Memory Link

348 Function 5801 h Set Allocation Strategy

• Function 5801 h Set Allocation Strategy

mov

mov
int

jc

bx, Strategy

ax, 5801h
21h

error_handler

;allocation strategy

;Set Allocation Strategy

;carry set means error

Parameter

Return Value

Comment

Set Allocation Strategy (5801h) sets the method MS-DOS uses to allocate
memory.

Strategy Specifies the allocation strategy. This parameter can be one of the
following values:

Value Meaning

FIRST_FIT_LOW (OOOOh) Search conventional memory for the
available block having the lowest address.
This is the default strategy.

BEST-FlT_LOW (OOOlh) Search conventional memory for the
available block that most closely matches
the requested size.

LAST_FIT-LOW (OOO2h) Search conventional memory for the
available block at the highest address.

FIRST_FIT_HIGH (OO80h) Search the upper-memory area for the
available block at the lowest address. If
no block is found, the search continues
in conventional memory.

BESTJ'lT_HIGH (OO81h) Search the upper-memory area for the
available block that most closely matches
the requested size. If no block is found,
the ·search continues in conventional
memory.

LAST-FIT-HIGH (OO82h) Search the upper-memory area for the
available block at the highest address. If
no block is found, the search continues
in conventional memory.

FIRST_FIT-HIGHONLY (0040h) Search the upper-memory area for the
available block at the lowest address.

BEST_FIT_HIGHONLY (0041h) Search the upper-memory area for the
available block that most closely matches
the requested size.

LAST_FlT-HIGHONLY (0042h) Search the upper-memory area for the
available block at the high.est address.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be OOOlh
(ERRORJNVALIDYUNCTION).

This function returns OOOlh (ERRORJNVALIDJVNCTION) if Strategy is
not one of the specified values.

See Also

Function 5801 h Set Allocation Strategy 349

If the current allocation strategy specifies the upper-memory area but the upper­
memory area is not linked, MS-DOS searches conventional memory instead.

For more information about upper-memory blocks and memory allocation, see
Chapter 5, "Program Management."

Function 48h Allocate Memory
Function 5800h Get Allocation Strategy
Function 5802h Get Upper-Memory Link
Function 5803h Set Upper-Memory Link

350 Function 5802h Get Upper-Memory Link

• Function 5802h Get Upper-Memory Link

mov
int

mov

ax, 5802h
21h

LinkFlag, al

;Get Upper-Memory Link

;1 = linked, 0 = not linked

Parameters

Return Value

Comments

See Also

Get Upper-Memory Link (Function 5802h) specifies whether programs can allo­
cate memory from the upper memory area.

This function has no parameters.

The carry flag is clear and the AL register contains Olh if the upper memory
area is linked; otherwise, AL contains OOh.

For more information about upper memory blocks and memory allocation, see
Chapter 5, "Program Management."

Function 48h Allocate Memory
Function 5803H Set Upper-Memory Link

Function 5803h Set Upper-Memory Link 351

II Functio~ 5803h Set Upper-Memory Link

mov

mov
int

jc

bx, LinkFlag

ax, 5803h
21h

error_handler

;1= link, 0 = unlink

;Set Upper-Memory Link

;carry clear means error

Parameters

Return Value

Comments

See Also

Set Upper-Memory Link (Function 5803h) links or unlinks the upper memory
area. When this area is linked, a program can allocate memory from it.

LinkFlag Specifies whether to link or unlink the upper memory area. H this
parameter is Olh, the function links the area; if the parameter is OOh, the func­
tion unlinks the area.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh ERROR_INVALID_FUNCTION.

0007h ERROR_ARENA_TRASHED

The function returns OOOlh (ERRORJNVALIDJVNCTION) if MS-DOS
has been loaded without the command dos=umb having been specified in the
CONFIG.SYS file.

For more information about upper memory blocks and memory allocation, see
Chapter 5, "Program Management."

Function 48h Allocate Memory
Function 5802H Get Upper-Memory Link

352 Function 59h Get Extended Error

• Function 59h Get Extended Error

mov
int

cmp
jz

ah, 59h
21h

;Get Extended Error

;zero means no error

Parameters

Return Value

Comments

mov ExtError, ax ;extended-error value
mov ErrClass, bh ;error class
mov ErrAction, bl ;suggested action
mov ErrLocation, ch ;location of error

Get Extended Error (Function 59h) returns extended-error information, includ­
ing the location where an error occurred and a suggested action, for the most
recent MS-DOS Interrupt 21h function call.

This function has no parameters.

The carry flag is clear and the AX, BX, and CH registers contain the extended­
error information. The AX register contains an extended-error value, the BH
register contains the error class, the BL register contains the suggested action
value, and the CH register contains the error-location value.

When MS-DOS processes this function, it alters all registers except SS:SP and
CS:IP. A program should preserve the contents of any registers that will be
needed after the function call.

For the table that contains the error values, see Appendix C, "Error Values."

The error class may be one of the following:
Value Meaning

ERRCLASS_OUTRES (Olh)

ERRCLASS_TEMPSIT (02h)

ERRCLASS_AUTH (03h)

ERRCLASSJNTRN (04h)

ERRCLASS_HRDFAIL (OSh)

ERRCLASS_SYSFAIL (06h)

ERRCLASS_APPERR (07h)

ERRCLASS_NOTFND (08h)

ERRCLASS_BADFMT (09h)

ERRCLASS_LOCKED (OAh)

ERRCLASS_MEDIA (OBh)

ERRCLASS_ALREADY (OCh)

ERRCLASS_UNK (ODh)

Out of resource, such as storage.

Not an error, but a temporary situation that
is expected to end, such as a locked region
in ~ file.

Authorization problem.

Internal error in system.

Hardware failure.

System software failure not the fault of
the active program (caused by missing or
incorrect configuration files, for example).

Application error.

File or item not found.

File or item with an invalid format or type.

Interlocked file or item.

Wrong disk in drive, bad spot on disk, or
other storage-medium problem.

Existing file or item.

Unknown.

ERRACT_RETRY (Olb)

ERRACT_DLYRET (02h)

ERRACT_USER (03h)

ERRACT_ABORT (04h)

ERRACT_PANIC (OSb)

ERRACT_IGNORE (06h)

ERRACT_INTRET (07h)

See Also

Function 59h Get Extended Error 353

The suggested action may be one of the following:
Value Meaning

Retry immediately.

Delay and retry.

Bad user input-get new values.

Terminate in an orderly manner.

Terminate immediately.

Ignore the error.

Prompt the user to remove the cause of the error
(to change disks, for example) and then retry.

The error location may be one of the following:
Value Location

ERRLOC_UNK (Olh) Unknown

ERRLOC_DISK (02h) Random-access device, such as a disk drive

ERRLOC~ET (03h) Network

ERRLOC_SERDEV (04h) Serial device

ERRLOC_MEM (OSh) Memory

Function 5DOAh Set Extended Error

354 Function 5Ah Create Temporary File

• Function 5Ah Create Temporary File
mov ex, Attributes ;file attributes
mov dx, seg TempPath
mov ds, dx
mov dx, offset TempPath ;ds:dx points to directory path

mov
int

je

mov

ah, SAh
21h

error_handler

Handle, ax

;Create Temporary File

;carry set means error

;handle of temporary file

Parameters

Return Value

Comments

See Also

Create Temporary File (Function 5Ah) creates a file with a unique name and
returns both a handle for the file and the new filename.

Attributes Specifies the attributes to assign to the new file. This parameter can
be some combination of the following attributes:

Value Meaning

ATIlLNORMAL (OOOOh) File can be read from or written to.

ATTR.-READONLY (OOOlh) File can be read from but not written to.

ATIILHIDDEN (OOO2h) File does not appear in a directory listing.

ATTR_SYSTEM (OOO4h) File is a system file.

ATIlLARCHIVE (0020h) File is marked for archiving.

TempPath Points to a zero-terminated ASCII string that specifies the path for
the temporary file. TempPath must end with a backslash character (\) and a zero
byte. The program must reserve the 13 bytes immediately following the terminat­
ing zero to hold the temporary filename.

If the function is successful, the carry flag is clear, the AX register contains a
handle for the temporary file, and the 13-byte buffer following TempPath is filled
in with the name of the temporary file. Otherwise, the carry flag is set and the
AX register contains an error value, which may be one of the following:

Value Name

0003h ERROR_PATILNOTJOUND

0004h ERROR_TOO-MANY_OPENJILES

OOOSh ERROR_ACCESS-DENIED

When MS-DOS creates a file, it opens the file with read-and-write access and
compatibility sharing mode and sets the file pointer to zero. If the attribute
ATTlLREADONLY is specified, it takes effect only after the new file is closed.

If the specified file is on a network drive, the function creates the file only if net­
work grants create access to the drive or directory.

MS-DOS does not delete temporary files; programs using temporary files should
delete them when they are no longer in use.

Function 3Ch C'reate File with Handle
Function 5Bh Create New File

Function 5Bh Create New File 355

• Function 5Bh Create New File

mov dx, seg FileName
mov ds, dx
mov dx, offset FileName

mov ex, Attributes

mov ah, SBh
int 21h

je error_handler
mov Handle, ax

;ds:dx points to new filename

;file attributes

;Create New File

;carry set means error
;handle of file

Parameters

Create New File (Function 5Bh) creates a file and assigns it the first available
handle. If the specified file already exists, this function fails.

FileName Points to a zero-terminated ASCn string that specifies the new
filename. The name must be a valid MS-DOS filename and cannot contain wild­
cards.

Attributes Specifies the attributes to assign to the new file. This parameter can
be some combination of the following attributes:

Value Meaning

ATIR.-NORMAL (OOOOh)

ATIR_READONLY (OOOlh)

ATIR_HIDDEN (OOO2h)

ATIR_SYSTEM (OOO4h)

ATI1LARCHIVE (0020h)

File can be read from or written to.

File can be read from but not written to.

File does not appear in a directory listing.

File is a system file.

File is marked for archiving.

Return Value

Comments

See Also

If the function is successful, the carry flag is clear and the AX register contains
the new file handle. Otherwise, the carry flag is set and the AX register contains
an error value, which may be one of the following:

Value Name

0003h ERROlLPATILNOT_FOUND

0004h ERROR_TOO-MANY_OPENJILES

OOOSh ERROlLACCESS_DENIED

OOSOh ERROR_FILE_EXISTS

Create New File returns 0050h (ERROILFILE.-EXISTS) if a file with the speci­
fied name already exists.

When MS-DOS creates a file, it opens the file with read-and-write access and
compatibility sharing mode and sets the file pointer to zero. If the attribute
ATTRJEADONLY is specified, it takes effect only after the new file is closed.

If the specified file is on a network drive, the function creates the file only if net­
work grants create access to the drive or directory.

Function 3Ch Create File with Handle
Function 4300h Get File Attributes
Function 4301h Set File Attributes
Function 5Ah Create Temporary File

356 Function 5Ch Lock/Unlock File

• Function 5Ch Lock/Unlock File

mov bx, Handle ;handle of file to lock or unlock

mov cx, hiOffset ;high 16 bits of 32-bit offset
mov dx, loOffset ;low 16 bits of 32-bit offset

mov si, hiLength ;high 16 bits of 32-bit region length
mov di, loLength ;low 16 bits of 32-bit region length

mov aI, LockFlag ;OOh = lock, 01h = unlock
mov ah, SCh ;Lock/Unlock File
int 21h

jc error_handler ;carry set means error

Parameters

Return Value

Comments

Lock/Unlock File (Function 5Ch) denies or allows access to the specified region
in a file.

Handle Identifies the file to lock or unlock.

hiOffset:loOffset Specifies the 32-bit offset (in bytes) from the start of the file
to the beginning of the region to lock or unlock.

hiLength:loLength Specifies the 32-bit length (in bytes) of the region to lock
or unlock.

LockFlag Specifies whether to lock or unlock the specified file region (DOh to
lock the region, Olh to unlock the region).

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set, and the AX register contains an error value, which may be one of the fol­
lowing:

Value Name

000lh ERROR_INVALID_FUNCTION

0006h ERROR-INVALID_HANDLE

0021h ERROR-LOCK_VIOLAnON

0024h ERROR_SHARING_BUFFER_EXCEEDED

File sharing must be loaded (by running the Share program) before this function
can be used on a local computer.

This function returns 002lh (ERROILLOCICVIOLATION) if all or part of the
specified region is already locked or if the specified region is not identical to a
region previously locked by the same procedure.

If another program attempts to write to or read from a locked region, MS-DOS
retries the operation one or more times; if all retries fail, MS-DOS issues
Critical-Error Handler (Interrupt 24h) for the requesting program. A program
can set the number of retries by using Set Sharing Retry Count (Function
440Bh).

The locked region can be anywhere in the file. For example, locking beyond the
end of the file is not an error. Duplicate File Handle (Function 45h) and Force
Duplicate File Handle (Function 46h) duplicate access to any locked regions.
Passing an open file to a child program by using Load and Execute Program
(Function 4BOOh) does not duplicate access to locked regions.

See Also

Function 5Ch Lock/Unlock File 357

Programs should not depend on being denied access to a locked region. To
determine the status of a region (locked or unlocked), a program can attempt
to lock the region and then examine the error value.

Function 440Bh Set Sharing Retry Count
Function 45h Duplicate File Handle
Function 46h Force Duplicate File Handle
Function 4BOOh Load and Execute Program
Interrupt 24h Critical-Error Handler
Interrupt 2Fh Function lOOOh Get SHARE.EXE Installed State

358 Function 5DOAh Set Extended Error

• Function 5DOAh Set Extended Error

mov si, seg Errlnfo
mov ds, si
mov si, offset Errlnfo

mov ax, SOOAh
int 21h

;ds:si points to ERROR structure

;Set Extended Error

;ax register
;bx register
;cx register
;dx register
;si register
;di register
;ds register
;es register
;reserved 16 bits
;user (computer) 10 (0 = local computer)
;program 10 (0 = local program)

Parameter

Return Value

See Also

Set Extended Error (Function SDOAh) sets the error class, location, suggested
action, and other information that will be returned by the next call to Get
Extended Error (Function 59h).

Errlnfo Points to an ERROR structure that contains error information as well
as the contents of the registers when an error occurred. The ERROR structure
has the following form:

ERROR STRUC
errAX dw?
errBX dw?
errCX dw?
errOX dw?
errSl dw?
errOl dw . ?
errOS dw?
errES dw?
errReserved dw ?
errUlO dw?
errPIO dw?

ERROR ENOS

Fo~ a full description of the ERROR structure, see Chapter 3, "File System."

This function has no return value.

Function 59h Get Extended Error

Function 5EOOh Get Machine Name 359

• Function 5EOOh Get Machine Name

mov dx, seg NetworkName
mov ds, dx
mov dx, offset NetworkName ;ds:dx points to buffer for network name

mov
int

jc

cmp
jz
mov

ax, SEOOh
21h

error_handler

ch, 0
error_handler
NetNum, cl

;Get Machine Name

;carry set means error

;zero means name not valid

;NETBIOS number

Parameter

Return Value

Comments

See Also

Get Machine Name (Function 5EOOh) returns the network name of the local
computer (machine).

NetworkName Points to a 16-byte buffer to receive the zero-terminated
ASCII (ASCIIZ) network name. For infornlation about network drives, see
Chapter 3, "File System."

If the function is successful, the carry flag is clear, the 16-byte buffer is filled in
with the network name, and the CX register contains the NETBIOS number of
the local computer. Otherwise, the carry flag is set and the AX register contains
an error value, which may be 000lh (ERRORJNVALID_FUNCTION).

This function returns 000lh (ERRORJNVALIDJUNCTION) if the network is
not running. If the network was never installed, the function returns zero in the
CH register.

The local computer's identification number is returned in the following format:
Register Description

CH Specifies whether the network name is valid (CH contains a value
other than zero) or not valid (CH contains zero).

CL Specifies the NETBIOS number assigned to the local computer.

Function 5F03h Make Network Connection
Interrupt 2Fh Function ll00h Get Network Installed State

360 Function 5E02h Set Printer Setup

• Function 5E02h Set Printer Setup

mov bx, Listlndex ;assign-list index
mov ex, SetupSize ;length of setup string

mov dx, seg SetupString
mov ds, dx
mov dx, offset SetupString ;ds:dx points to printer setup string

mov
int

ax, SE02h
21h

;Set Printer Setup

Parameters

Return Value

Comment

See Also

je error_handler ;carry set means error

Set Printer Setup (Function 5E02h) defines a string of control characters that
MS-DOS adds to the beginning of each file sent to a network printer.

ListIndex Specifies the assign-list index for a network printer.

SetupSize Specifies the length of the string that will be sent to a network
printer. The setup string cannot be longer than 64 characters.

SetupString Points to a buffer that contains the string to be sent ·to a network
printer.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be OOOlh
(ERRORJNVALIDJUNCTION).

This function returns OOOlh (ERRORJNVALIDYUNCTION) if the network
is not running.

Function 5E03h Get Printer Setup
Function 5F02h Get Assign-List Entry

Function 5E03h Get Printer Setup 361

• Function 5E03h Get Printer Setup

mov bx, Listlndex ;assign-list index

mov di, seg SetupString
moves, di
mov di, offset SetupString ;es:di points to buf for setup string

mov
int

ax, SE03h
21h

;Get Printer Setup

Parameters

Return Value

Comment

See Also

jc error_handler ;carry set means error
mov SetupSize, ex ;length of setup string

Get Printer Setup (Function 5E02h) retrieves the string of control characters
added to the beginning of each file sent to a network printer.

ListIndex Specifies the assign-list index for a network printer.

SetupString Points to a 64-byte buffer that receives the current string for the
specified network printer.

If the function is successful, the carry flag is clear, the buffer pointed to by the
ES:DI registers is filled in with the string currently used for printer setup, and
the ex register contains the length of the printer setup string. Otherwise, the
carry flag is set and the AX register contains an error value, which may be OOOlh
(ERRORJNVALIDYUNCTION).

This function returns OOOlh (ERRORJNVALIDJUNCTION) if the network
is not running.

Function SE02h Set Printer Setup
Function 5F02h Get Assign-List Entry

362 Function 5F02h Get Assign-List Entry

• Function 5F02h Get Assign-List Entry

mov bx, L1stlndex ;ass1gn-11st 1ndex

mov sl, seg LocalBuffer
mov ds, sl
mov s1, offset LocalBuffer ;ds:sl polnts to buf for local name

mov d1, seg NetBuffer
moves, di
mov di, offset NetBuffer ;es:di points to buf for network name

mov
lnt

jc

ax, SF02h
21h

error_handler

;Get Assign-Llst Entry

;carry set means error

Parameters

Return Value

Get Assign-List Entry (Function SF02h) retrieves the local and network names
of a device, such as a network printer. MS-DOS uses the assign-list index­
which a program sets by using Make Assign-List Entry (Function 5F03h)-to
search a list of network connections.

ListIndex Specifies the assign-list index for a network device.

LocalBuffer Points to a 16-byte buffer that is to receive the local name of the
device.

NetBuffer Points to a 128-byte buffer that is to receive the network name of
the device.

If the function is successful, the carry flag is clear, the name buffers are filled
in, the CX register contains the user value stored by Make Network Connection
(Function SF03h), and the BX register contains the device-status value. Other­
wise, the carry flag is set and the AX register contains an error value, which may
be one of the following:

Value Name

OOOlh

0012h

ERROR_INVALID_FUNCTION

ERROR_NO~ORE_BLES

Comments The network must be running and file sharing must be active for this function to
operate successfully.

This function returns OOOlh (ERRORJNVALIDYUNCTION) if the network
is not running. The function returns 0OO2h (ERROILNO-MOREJILES) if the
index specified in ListIndex is greater than the number of entries in the assign
list.

The device-status value has the following format:
Register Description

BH Specifies whether the device is available (BH contains Olb) or tem­
porarily unavailable (BH contains OOh).

BL Specifies the type of device (03h = printer, 04h = drive).

MS-DOS maintains one assign-list entry for each of the currently connected
network devices. As a program connects and disconnects network devices,
MS-DOS adds and deletes entries from the list. Each entry receives an assign-list
index. The assign-list indexes are zero-based and consecutive-the first network

See Also

Function 5F02h Get Assign-List Entry 363

device to be connected receives index 0, the second receives index 1, and so on.
When a program disconnects a network device, MS-DOS reindexes the entries
so that the indexes remain consecutive. For example, if the first network device
is disconnected, the second device "receives index 0, the third receives index 1,
and so on. To determine the current index for a device, a program typically
retrieves assign-list entries for each index, starting with 0, until it matches either
the user value returned in the CX register or the network name pointed to by the
ES:DI registers.

Function 5F03h Make Network Connection
Function 5F04h Delete Network Connection

364 Function 5F03h Make Network Connection

• Function 5F03h Make Network Connection

mov
mov

bl, DevCode
cx, UserVal

;device code
;user value

mov si, seg LocalBuffer
mov ds, si
mov si, offset LocalBuffer ;ds:si points to buf for local name

mov di, seg NetBuffer
moves, di
mov di, offset NetBuffer ;es:di points to buf for network name

mov
int

jc

ax, SF03h
21h

error_handler

;Make Network Connection

;carry set means error

Parameters

Return Value

Make Network Connection (Function 5F03h) creates a connection to a network
device or drive, or redirects a local device or drive if a local name is specified.

DevCode Specifies the local-device code (03h = printer, 04h = disk drive).

UserVal Specifies a user value to be saved and returned to a program that
calls Get Assign-List Entry (Function 5F02h).

LocalBuffer Points to a zero-terminated ASCII string that specifies the local
device to redirect.

If the DevCode parameter is 03h, the local device is a printer and the device the
LocalBuffer parameter points to must be PRN, LPTl, LPT2, or LPT3.

If DevCode is 04h, the local device is a disk drive and LocalBuffer must specify
either a drive letter followed by a colon or a null string (a string whose first char­
acter is zero). If LocalBuffer specifies a drive letter, MS-DOS redirects the drive
to the network device. If LocalBuffer is a null string, MS-DOS attempts to pro­
vide access to the network device without redirecting a local disk drive.

NetBuffer Points to two consecutive zero-terminated ASCII strings specifying
the network name and the password for the network drive or device. If the net­
work device has no password, the second string must be a null string. For infor­
mation about network drives, see Chapter 3, "File System."

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

000lh

0003h

OOOSh

0008h

OOOFh

0012h

OOS7h

ERRORJNVAUD~CTION

ERROR_PATILNOT_FOUND

ERROR_ACCESS_DENIED

ERROR_NOT_ENOUG"-MEMORY

ERROR_INVALID_DRIVE

ERROR_NO_MORE_FILES

ERROR_INVALID_PARAMETER

Comments

See Also

Function 5F03h Make Network Connection 365

This function returns 000lh (ERRORJNVALIDYUNCTION) if the network
is not running.

If the function returns 0005h (ERROILACCESSJ)ENIED), it may mean either
that the password is not valid or that the specified device or drive could not be
found on the server.

Function 5F02h Get Assign-List Entry
Function 5F04h Delete Network Connection
Interrupt 2Fh Function ll00h Get Network Installed State

366 Function 5F04h Delete Network Connection

• Function 5F04h Delete Network Connection

mov si, seg LocalBuffer
mov ds, si
mov si, offset LocalBuffer ;ds:sl points to local name

mov
lnt

jc

ax, SF04h
21h

error_handler.

;Delete Network Connection

;carry set means error

Parameter

Return Value

Delete Network Connection (FunctionSF04h) deletes the connection to the net­
work device and restores the redirected local device or drive.

LocalBuffer Points to a zero-terminated ASCII string that specifies the net­
work connection to delete. LocalBuffer can specify one of the following:

• The letter of a redirected drive, followed by a colon. MS-DOS cancels
the redirection and restores the drive to its physical meaning.

• The name of a redirected printer (PRN, LPT1, LPT2, LPT3, or their
machine-specific equivalents). MS-DOS cancels the redirection and
restores the printer name to its physical meaning.

• A string starting with two backslashes (\\). MS-DOS terminates the con-
nection between the local computer and the network directory.

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be one of the
following:

Value Name

OOOlh

OOOFh

ERROR_INVALID_FUNCTION

ERROR_INVALID-DRIVE

Comment

See Also

This function returns 000lh (ERRORJNVALIDYUNCTION) if the network
is not running.

Function SF03h Make Network Connection
Interrupt 2Fh Function ll00h Get Network Installed State

Function 6501 h Get Extended Country Information 367

• Function 6501 h Get Extended Country Information

mov bx, CodePageID ;code page to return info for
mov cx, InfoSize ;size of buffer for country info
mov dx, CountryCode ;country code to return info for
mov di, seg Information
moves, dx
mov di, offset Information ;es:di points to EXTCOUNTRYINFO struct

mov
int

jc

ax, 6501h
21h

error_handler

;Get Extended Country Information

;carry set means error

Parameters

Get Extended Country Information (Function 6501h) returns the country infor­
mation that MS-DOS uses to control the keyboard and screen.

CodePageID Identifies the code page to return the country information for.
This parameter can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If this parameter is OFFFFh, MS-DOS returns information about the current
code page for the keyboard/screen.

In[oSize Specifies the size of the buffer for the country information. The
buffer must be at least 5 bytes long.

CountryCode Specifies the country code to return information for. This
parameter can be one of the following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

045 Denmark

368 Function 6501 h Get Extended Country Information

Value Meaning

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International English

351 Portugal

358 Finland

If this parameter is OFFFFh, MS-DOS returns information about the current
country.
Information Points to a buffer that receives country information. The buffer
consists of a single byte followed by an EXTCOUNTRYINFO structure. The
EXTCOUNTRYINFO structure has the following form:

;size of the structure, in bytes
;country code
;code-page identifier
;date format
;currency symbol (ASCIIZ)
;thousands separator (ASCIIZ)
;decimal separator (ASCIIZ)
;date separator (ASCIIZ)
;time separator (ASCIIZ)
;currency format
;places after decimal point
;12- or 24-hour format
;address of case-mapping routine
;data-list separator (ASCIIZ)
; reserved

1
1
1
1
5 dup (1)
2 dup (111
2 dup (
2 dup (1
2 dup (1)
1
1
1
1
2 dup (1)
10 dup (1)

STRUC
dw
dw
dw
dw
db
db
db
db
db
db
db
db
dd
db
db

ENDS

EXTCOUNTRYINFO
eciLength
eciCountryCode
eciCodePageID
eciDateFormat
eciCurrency
eciThousands
eciDecimal
eciDateSep
eciTimeSep
eciBitField
eciCurrencyPlaces
eciTimeFormat
eciCaseMap
eciDataSep
eciReserved

EXTCOUNTRYINFO

Return Value

For a full description of the EXTCOUNTRYINFO structure, see Chapter 6,
"National Language Support."

If the function is successful, the carry flag is clear and the country information is
copied to the EXTCOUNTRYINFO structure. Otherwise, the carry flag is set and
the AX register contains an error value, which may be one of the following:

Value Name

OOOlh

0002h

ERROR_INVALID_FUNCTION

ERROR_ALE_NOT_FOUND

Comments

See Also

This function returns OOOlh (ERRORJNVALIDYUNCTION) if the value
specified in InjoSize is less than 5. If the InjoSize value is greater than 5 but less
than the size of the country information, the information is truncated and no
error is returned.

This function returns 0002h (ERROILFILE_NOTYOUND) if MS-DOS cannot
retrieve country information for the specified code page and country code.

Function 38h Get/Set Country Information
Function 6601h Get Global Code Page
Function 6602h Set Global Code Pa~e

Function 6502h Get Uppercase Table" 369

• Function 6502h Get Uppercase Table

mov
mov
mov

mov
mov
mov

mov
int

jc

bx, CodePageID
ex, 5
dx, CountryCode

di, seg Table
es, dx
dl, offset Table

ax, 6S02h
21h

error_handler

;code page to return table for
;slze of buffer (must be at least 5)
;country code to return table for

(OFFFFh = default country)

;es:di points to buffer for ptr to table

;Get Uppercase Table

;carry set means error

Parameters

Get Uppercase Table (Function 6502h) returns the address of the uppercase
table for the specified code page and country code. The uppercase table maps
the extended ASCII characters (characters with ASCII values greater than 128)
to their uppercase equivalents.

CodePageID Identifies the code page to return the uppercase table for. This
parameter can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If this parameter is OFFFFh, MS-DOS returns information about the current
code page for the console/screen.

CountryCode Specifies the country code to return the uppercase table for.
This parameter can be one of the following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

04S Denmark

370 Function 6502h Get Uppercase Table

Value Meaning

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International English

351 Portugal

358 Finland

Return Value

Comments

See Also

If this parameter is OFFFFh, MS-DOS returns the table for the current country.

Table Points to a buffer in which MS-DOS places the 8-bit identifier (02h) of
the uppercase table and the 32-bit address (segment:offset) of the table. The
buffer must be at least 5 bytes long.

If the function is successful, the carry flag is clear and the 32-bit address of the
uppercase table is copied to the buffer pointed to by the Table parameter. Other­
wise, the carry flag is set and the AX register contains an error value, which may
be one of the following:

Value Name

000lh ERROR_INVALID_FUNCTION

0002h ERRORYILE~OT_FOUND

This function returns OOOlh (ERRORJNVALIDYUNCTION) if the buffer size
specified by the ex register is less than 5.

This function returns 0002h (ERROILFILE.-NOT..FOUND) if MS-DOS cannot
retrieve country information for the specified code page and country code.

The uppercase table starts with a 16-bit value that specifies the length of the
table; the remainder of the table specifies the uppercase equivalents of the
ASCII characters from BOh to OFFh.

Function 38b Get/Set Country Information
Function 6501h Get Extended Country Information
Function 6504h Get Filename Uppercase Table
Function 6601b Get Global Code Page
Function 6602h Set Global Code Page

Function 6504h Get Filename Uppercase Table 371

• Function 6504h Get Filename Uppercase Table

mov
mov
mov
mov
mov
mov

mov
int

jc

bx, CodePageID
ex, 5
dx, CountryCode
di, seg Table
es, dx
di, offset Table

ax, 6504h
21h

error_handler

;eode page to return table for
;size of buffer (must be at least 5)
;country code to return table for

;es:d~ points to buffer for ptr to table

;Get Filename Uppercase Table

;carry set m~ans error

Parameters

Get Filename Uppercase Table (Function 6504h) returns the address of the file­
name uppercase table for the specified country code and code page. The table
maps extended ASCII characters in filenames (characters with ASCII values
greater than 128) to their uppercase equivalents.

CodePageID Identifies the code page to return the table for. This parameter
can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If this parameter is OFFFFh, MS-DOS returns a table for the current code page.

CountryCode Specifies the country code to return the table for. This parame­
ter can be one of the following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

045 Denmark

046 Sweden

372 Function 6504h Get Filename Uppercase Table

Value Meaning

Return Value

Comments

See Also

047 Norway

048 Poland

049 Germany

OSS Brazil

061 International English

3S1 Portugal

358 Finland

H this parameter is OFFFFh, MS-DOS returns the table for the current country.

Table Points to a buffer in which MS-DOS places the 8-bit identifier (04h) of
the filename uppercase table and the 32-bit address (segment:offset) of the table.
The buffer must be at least 5 bytes long.

If the function is successful, the carry flag is clear and the 32-bit address of the
filename uppercase table is copied to the buffer pointed to by the Table parame­
ter. Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

000lh ERROR_INVALID_FUNCTION

0002h ERROR_FILE_NOTJOUND

This function returns OOOlh (ERRORJNVALIDYUNCTION) if the buffer size
specified by the CX register is less than 5.

This function returns 0002h (ERROILFILE_NOTJOUND) if MS-DOS cannot
retrieve country information for the specified code page and country code.

The filename uppercase table starts with a 16-bit value that specifies the length of
the table; the remainder of the table specifies the uppercase equivalents of the
ASCII characters from BOh to OFFh.

Function 38h Get/Set Country Information
Function 6501h Get Extended Country Information
Function 6502h Get Uppercase Table
Function 6601h Get Global Code Page
Function 6602h Set Global Code Page

Function 6505h Get Filename-Character Table 373

• Function 6505h Get Filename-Character Table
mov bx, CodePageID ;code page to return sequence for
mov cx, 5 ;size of buffer (must be at least 5)
mov dx, CountryCode ;country code to return sequence for
mov di, seg Table
moves, si
mov di, offset Table ;es:di points to buffer for ptr to sequence

mov
int

jc

ax, 6S0Sh
21h

error_handler

;Get Filename-Character Table

;carry set means error

Parameters

Get Filename-Character Table (Function 6506h) returns the address of the
filename-character table for the specified code page and country code. The table
specifies which characters must not be used in filenames.

CodePageID Identifies the code page to return the filename-character table
for. This parameter can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If this parameter is OFFFFh, MS-DOS returns information for the current code
page.

CountryCode Specifies the country code to return the filename-character
table for. This parameter can be one of the following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

045 Denmark

374 Function 6505h Get Filename-Character Table

Value Meaning

Return Value

Comments

See Also

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 Intemational English

351 Portugal

358 Finland

If this parameter is OFFFFh, MS-DOS returns the table for the current country.

Table Points to a buffer in which MS-DOS places the 8-bit identifier (05h) of
the filename-character table and the 32-bit address (segment:offset) of the table.
The buffer must be at least 5 bytes long.

If the function is successful, the carry flag is clear and the 32-bit address of the
filename-character table is copied to the buffer pointed to by the Table parame­
ter. Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

0001h ERROR_INVALIDYUNCTION

0002h ERROILFILE~OT_FOUND

This function returns OOOlh (ERRORJNVALIDJUNCTION) if the buffer size
specified in the CX register is less than 5.

This function returns 0002h (ERROILFILE_NOTYOUND) if MS-DOS cannot
retrieve country information for the specified code page and country code.

The filename-character table starts with a 16-bit value that specifies the length of
the table.

Function 38h Get/Set Country Information
Function 6501h Get Extended Country Information
Function 6601h Get Global Code Page
Function 6602h Set Global Code Page

Function 6506h Get Collate-Sequence Table 375

• Function 6506h ~et Collate-Sequence Table
mov bx, CodePageID ;code page to return sequence for
mov cx, 5 ;size of buffer (must be at least 5)
mov dx, CountryCode ;country code to return sequence for
mov di, seg Table
moves, di
mov di, offset Table ;es:di points to buffer for ptr to sequence

mov
int

jc

ax, 6506h
21h

error_handler

;Get Collate Table

;carry set means error

Parameters

Get Collate-Sequence Table (Function 6506h) returns the address of the collate­
sequence table for the specified code page and country code. The table is a char­
acter array of 256 elements; each element specifies the sorting weight of the
corresponding character. (The sorting weight is the value used to determine
whether a character appears before or after another character in a sorted list.)
Sorting weights and character values are not necessarily the same-for example,
in a given character set, the sorting weights for the letters A and B might be 1
and 2, even though their character values are 65 and 66.

CodePagelD Identifies the code page to return the collate-sequence table for.
This parameter can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If this parameter is OFFFFh, MS-DOS returns information for the current code
page.

CountryCode Specifies the country code to return the collate-sequence table
for. This parameter can be one of the following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

376 Function 6506h Get Collate-Sequence Table

Value Meaning

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

045 Denmark

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International English

351 Portugal

358 Finland

Return Value

Comments

See Also

If this parameter is OFFFFh, MS-DOS returns the table for the current country.

Table Points to a.buffer in which MS-DOS places the 8-bit identifier (06h) of
the collate-sequence table and the 32-bit address (segment:offset) of the table.
The buffer must be at least 5 bytes long.

If the function is successful, the carry flag is clear and the 32-bit address to the
collate-sequence table is copied to the buffer pointed to by the Table parameter.
Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

0001h ERROR_INVALID_FUNCTION

0002h ERROR_FILE~OTYOUND

This function returns OOOlh (ERRORJNVALIDYUNCTION) if the buffer size
specified in the CX register is less than 5.

This function returns 0002h (ERRORYILE_NOTYOUND) if MS-DOS cannot
retrieve country information for the specified code page and country code.

The collate-sequence table starts with a 16-bit value that specifies the length of
the table; the remainder of the table specifies the sorting weight for each char­
acter.

Function 38h Get/Set Country Information
Function 6501h Get Extended Country Information
Function 6601h Get Global Code Page
Function 6602h Set Global Code Page

Function 6507h Get Double-Byte Character Set 377

• Function 6507h Get Double-Byte Character Set

mov bx, CodePaqeID ;code page to return oecs for
mov cx, 5 ;size of buffer (must be at least 5)
mov dx, CountryCode ;country code to return Decs for
mov di, seq DeCS
mov es, di
mov di, offset DBCS ;es:dl points to buffer for pointer to DBCS

mov ax, 6507h ;Get Double-Byte Character Set
int 21h

jc error_handler ;carry set means error

Parameters

Get Double-Byte Character Set (Function 6507h) returns the address of a buffer
containing values that specify the valid ranges for lead bytes in the given double­
byte character set (DBCS).

CodePageID Identifies the code page to return the DBCS values for. This
parameter can be one of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

If this parameter is OFFFFh, MS-DOS returns information for the current code
page.

CountryCode Specifies the country code to return the DBCS values for. This
parameter can be one of the following values:

Value Meaning

001 United States

002 Canadian-French

003 Latin America

031 Netherlands

032 Belgium

033 France

034 Spain

036 Hungary

038 Yugoslavia

039 Italy

041 Switzerland

042 Czechoslovakia

044 United Kingdom

378 Function 6507h Get Double-Byte Character Set

Value Meaning

Return Value

Comments

See Also

045 Denmark

046 Sweden

047 Norway

048 Poland

049 Germany

055 Brazil

061 International English

351 Portugal

358 Finland

If this value is OFFFFh, MS-DOS returns information for the current country.

DBCS Points to a buffer in which MS-DOS places the 8-bit identifier (07h) of
the DBCS values and the 32-bit address (segment:offset) of the table. The buffer
must be at least 5 bytes long.

If the function is successful, the carry flag is clear and the 32-bit address to the
nBCS values is copied to the buffer pointed to by the DBCS parameter. Other­
wise, the carry flag is set and the AX register contains an error value, which may
be one of the following:

Value Name

0001h ERROILINVALIDYUNCTION

~h ERROR~LE-NOTJOUND

This function returns 000lh (ERRORJNVALIDJUNCTION) if the buffer size
specified in the CX register is less than 5.

This function returns 0002h (ERROILFILE.-NOT-FOUND) if MS-DOS cannot
retrieve information for the specified code page and country code.

The OBCS values starts with a 16-bit value that specifies the length of the table.
The remainder of the table consists of pairs of bytes with each pair specifying
the low and high character values for a valid range of lead byte values.

Function 38h Get/Set Country Information
Function 6501h Get Extended Country Information
Function 6601h Get Global Code Page
Function 6602h Set Global Code Page

Function 6520h Convert Character 379

• Function 6520h Convert Character
mov

mov
int

jc

dl, Character

ax, 6520h
21h

error_handler

;character to convert

;Convert Character

;carry set means error

Parameter

Return Value

See Also

Convert Character (Function 6520h) converts the specified character to an
uppercase character using the current uppercase table.

Character Specifies the character to convert.

The function copies the corresponding uppercase character (if any) to the DL
register.

Function 6521h Convert String
Function 6522h Convert ASCIIZ String

380 Function 6521 h Convert String

• Function 6521h Convert String

mov cx, StringLength ;length of string in bytes
mov dx, seg String
mov ds, dx
mov dx, offset String ;ds:dx points to string to convert

mov ax, 6521h ;Convert String
int 21h

jc error_handler ;carry set means error

Parameters

Return Value

See Also

Convert String (Function 6521h) converts each character in the specified string
to an uppercase character using the current uppercase table.

StringLength Specifies the length of the string in bytes.

String Points to the string to convert.

The function replaces the original characters in the string with the corresponding
uppercase characters (if any).

Function 6520h Convert Character
Function 6522h Convert ASCIIZ String

Function 6522h Convert ASCIIZ String 381

II Function 6522h Convert ASCIIZ String

mov dx, seg String
mov ds, dx
mov dx, offset String ;ds:dx points to string to convert

mov ax, 6522h ;Convert ASCIIZ String
int 21h

jc error_handler ;carry set means error

Parameter

Return Value

See Also

Convert ASCIIZ String (Function 6522h) converts each character in the
specified string to an uppercase character using the current uppercase table.

String Points to a zero-terminated string.

The function replaces the original characters in the string with the corresponding
uppercase characters (if any).

Function 6520h Convert Character
Function 6521h Convert String

382 Function 6601 h Get Global Code Page

• Function 6601h Get Global Code Page

mov ax, 6601h ;Get Global Code Page
int 21h

je error_handler ;carry set means error

mov UserCodePageID, bx ;user code page
mov SysCodePageID, dx ;system code page

Parameters

Return Value

Comment

See Also

Get Global Code Page (Function 6601h) identifies the code page currently used
by all programs.

This function has no parameters.

If the function is successful, the carry flag is clear, the BX register contains the
active code page (the code page set by the user), and the DX register contains
the number of the system code page (the code page specified at startup). Other­
wise, the carry flag is set and the AX register contains an error value, which may
be 0002h (ERRORYILE.-NOTYOUND).

The code-page identifier can be one of the following:
Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese

863 Canadian-French

865 Nordic

Function 6602h Set Global Code Page

Function 6602h Set Global Code Page 383

• Function 6602h Set Global Code Page
mov

mov
lnt

jc

bx, CodePageID

ax, 6602h
21h

error_handler

;code page to set

;Set Global Code Page

;carry set means error

Parameter

Return Value

Comments

See Also

Set Global Code Page (Function 6602h) sets the code page used by all programs.

CodePageID Identifies the code page to set. This parameter can be set to one
of the following values:

Value Meaning

437 United States

850 Multilingual (Latin I)

852 Slavic (Latin II)

860 Portuguese .

863 Canadian-French

865 Nordic

If the function is successful, the carry flag is clear. Otherwise, the carry flag
is set and the AX register contains an error value, which may be 0002h
(ERRORYILE_NOTYOUND).

Before a code page can be selected for use on a device, the device must be
prepared for code-page switching. The selected code page must be compatible
with the country code specified in CONFIG.SYS. MS-DOS returns 0002h
(ERROILFILE-.NOTYOUND) if it cannot read the COUNTRY.SYS file
or another specified country-information file.

Function 6601h Get Global Code Page

384 Function 67h Set Maximum Handle Count

• Function 67h Set Maximum Handle Count

mov

mov
int

bx, Handles

ah, 67h
21h

;new maximum handle count

;Set Maximum Han~le Count

Parameter

Return Value

Comments

See Also

jc error_handler

Set Maximum Handle Count (Function 67h) sets the maximum number of han­
dles a program can use at anyone time.

Handles Identifies the new maximum number of handles.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value.

This function sets the maximum number of handles for the program but does not
change the number of handles available in the system. The total number of sys­
tem handles is set by the files command in the CONFIG.SYS file.

The maximum handle count specified in the Handles parameter is a property of
the given program and is not inherited by child programs. This count must be in
the range 20 to 65,535. If a number less than 20 is specified, the function uses 20
by default.

H Set Maximum Handle Count is used to reduce the number of "allowed" han­
dles, the new limit does not take effect until any handles above the new limit are
closed.

Function 46h Force Duplicate File Handle

Function 68h Commit File 385

• Function 6Sh Commit File

mov

mov
int

bx, Handle

ah, 68h
21h

;handle of file to commit

;Commit File

Parameter

Return Value

Comment

See Also

,/

jc error_handler ;carry set means error

Commit File (Function 68h) flushes all stored data for a file without closing the
file; this ensures that the contents of the file are current.

Handle Identifies the file to commit.

If the function is successful, the carry flag is clear. Otherwise, the carry flag is
set and the AX register contains an error value.

This function provides a more efficient way to update file contents than closing
a file and immediately reopening it. However, if a program opens or creates a
file by specifying the flag OPENYLAGS_COMMIT (4000h) with Extended
Open/Create (Function 6Ch), the system updates the file each time the file is
written to.

Function ODh Reset Drive
Function 6Ch Extended Open/Create

386 Function 6Ch Extended Open/Create

• Function 6Ch Extended Open/Create

mov
mov
mov

bX I OpenMode
CX I Attributes
dX I Action

;access and sharing values
;file attributes
;action to take if file exists/does not exist

mov
mov
mov

si l seg FileName
dS I sl
s1 1 offset FileName ;ds:si points to filename

mov
int

jc

ah l 6Ch
21h

error_handler

;Extended Open/Create

;carry set means error

Parameters

mov ActionTaken l cx ;action taken: open l create l or truncate

Extended Open/Create (Function 6Ch) combines Create File with Handle (Func­
tion 3Ch), Open File with Handle (Function 3Dh), and Commit File (Function
68h).

OpenMode Specifies the modes with which to open the file. It consists of one
access value, one sharing value, and, optionally, other values, which can be
given in any combination.

Value Meaning

OPEN_ACCESS-.READONLY (OOOOh)

OPEN_ACCESS_WRITEONLY (OOOlh)

OPEN_ACCESS_READWRITE (OOO2h)

OPEN_SHARE_COMPATIBILITY (OOOOh)

OPEN_SHARE_DENYREADWRITE (OOlOh)

Open the file for read-only
access.

Open the file for write-only
access.

Open the file for read-and­
write access.

Permit other programs any
access to the file. On a given
computer, any program can
open the file any number of
times with this value. This is
the default value.

Do not permit any other pro­
gram to open the file.

Do not permit any other pro­
gram to open the file for
write access.

Do not permit any other pro­
gram to open the file for read
access.

Permit other programs read
or write access, but no pro­
gram may open the file for
compatibility access.

Value

Function 6Ch Extended Open/Create 387

Meaning

OPEN_FLAGS_NOINHERIT (OO80h) A child program created with
Load and Execute Program
(Function 4BOOh) does not
inherit the file handle. If this
mode is not set, child pro­
grams inherit the file handle.

Critical-Error Handler (Inter­
rupt 24h) will not be called if
a critical error occurs while
MS-DOS is opening this file.
Instead, MS-DOS simply
returns an error value to the
program.

MS-DOS commits the file
(updates file contents on
disk) after each write opera­
tion.

Attributes Specifies the attributes to assign to the file if the specified file is
created. This parameter can be a combination of the following values:

Value Meaning

ATTR_NORMAL (OOOOh)

ATTR_READONLY (OOOlh)

ATTR_HIDDEN (OOO2h)

ATIR_SYSTEM (OOO4h)

ATIR_ARCHIVE (0020h)

File can be read from or written to.

File can be read from, but not written to.

File does not appear in a directory listing.

File is a system file.

File is marked for archiving.

If the file is opened instead of created, this parameter is ignored.

Action Specifies the action to take if the file exists or if it does not exist. This
parameter can be a combination of the following values:

Value Meaning

FILE_CREATE (OOlOh)

FILE_OPEN (OOOlh)

FILE_TRUNCATE (OOO2h)

Create a new file if the file does not already
exist.

Open the file. Fail if the file does not exist.

Open the file and truncate it to zero length
(replace the existing file). Fail if the file does
not exist.

FileNarne Points to a zero-terminated ASCII string that specifies the file to
open or create. The name must be a valid MS-DOS filename.

388 Function 6Ch Extended Open/Create

Return Value

Comment

See Also

If the function is successful, the carry flag is clear, the AX register contains the
file handle, and the CX register contains a value specifying the action taken.
Otherwise, the carry flag is set and the AX register contains an error value,
which may be one of the following:

Value Name

OOOlh ERROR_INVALID_FUNCTION

0002h ERROR_FILE_NOT_FOUND

0003h ERROR_PATH_NOT_FOUND

0004h ERROR_TOO_MANY_OPEN_FILES

0005h ERROR_ACCESS_DENIED

If the function is successful, the CX register contains one of the following
values:

Value Meaning

OOOlh ACTION_OPENED

0002h ACTION_CREATED_OPENED

0003h ACTION_REPLACED_OPENED

If the specified file is on a network drive, the function creates the file only if the
network grants create access to the drive or directory. Similarly, the function
opens the file only if the network grants read, write, or both read and write
access to the drive or directory..

Function 3Ch Create File with Handle
Function 3Dh Open File with Handle
Function 5Bh Create New File
Function 68h Commit File
Interrupt 24h Critical-Error Handler

Chapter

9

Device Drivers
9.1 Introduction 391

9.2 Character and Block Devices 391

9.3 Device-Driver Format... 391
9.3.1 Device-Driver Header 392
9.3.2 Strategy and Interrupt Routines.......... 394

9.4 Block-Device Drivers.. 394

9.5 Character-Device Drivers 396

9.6 Request Packets and Function Requests 397

9.7 Device-Driver Initialization.. 398

9.8 Device-Driver Function Reference.............................. 399

9.9 Structures 427

Chapter 9: Device Drivers 391

9.1 Introduction
Device drivers are special programs, loaded when the system starts, that give
MS-DOS a device-independent hardware interface that it uses to carry out input
and output operations with system hardware devices. This chapter describes
device-driver formats, functions, and operations.

As part of its BIOS, MS-DOS provides resident device drivers that support
required devices: keyboard, screen, serial port, parallel port, real-time clock,
and disk drive. Computer manufacturers create resident drivers and incorporate
them in MS-DOS for their computers.

Installable device drivers support printers, plotters, and pointing devices that
are not part of the original computer's equipment but are installed by the user.
Manufacturers who develop add-on devices for MS-DOS computers create
installable device drivers to support them. Users install the drivers by using
device or devicehigh commands in the CONFIG.SYS file.

Installable device drivers can also be used to extend or replace existing resident
device drivers. The device driver ANSI.SYS provided with MS-DOS, for exam­
ple, extends the resident device driver for the screen, enabling programs to use
ANSI escape sequences to move the cursor and control the color and format of
characters on the screen.

Although the focus of this chapter is on installable device drivers, the discussion
also applies to resident device drivers.

9.2 Character and Block Devices
MS-DOS recognizes two types of device: character and block. A character
device perfC'rms input and output a single character at a time. Examples are the
keyboard, screen, serial port, and parallel port. A block device performs input
and output in structured pieces called blocks. Block devices include all disk
drives and other mass-storage devices on the computer.

A device driver supports either a character device or a block device, but never
both. The type of device a driver supports determines both the functions the
driver implements and the information the driver supplies in its device-driver
header and to MS-DOS when the driver is initialized.

9.3 Device-Driver Format
Every device driver, whether it supports a character device or a block device,
consists of a device-driver header, a strategy routine, and an interrupt routine.
These elements provide the information and code needed to carry out requests
from MS-DOS for device input and output.

Installable device drivers are contained in either binary image files, containing
absolute load images, or .EXE-format files. (Binary image files that contain
device drivers are often given the filename extension .SYS to distinguish the files
from other binary image files, such as .COM program files). Although most
device-driver files contain a single device driver, some contain more than one, in
which case the file must contain one header for each driver.

392 MS-DOS Programmer's Reference

9.3.1 Device-Driver Header
The device-driver header, which must be at the beginning of the device driver,
identifies the device driver, specifies the driver's strategy and interrupt routines,
and defines the attributes of the device the driver supports. The form of the
device-driver header corresponds to a DEVICEHEADER structure:

DEVICBHEADBR STRUC
dhLink
dhAttributes
dhStrategy
dhlnterrupt
dhNameOrUnits

dd 1 ;link to next driver
dw 1 ;devlce attributes
dw 1 ;strategy-routine offset
dw 1 ;lnterrupt-routlne offset
db '11?1????' ;logical-device name (char deY only)

;number of units (block deY only)
DEVICEHEADBR ENDS

The dhLlnk field must be OFFFFh if there are no other device-driver headers in
the file. Otherwise, the low 16 bits must contain the offset (from the beginning of
the load image) to the next device-driver header, and the high 16 bits must con­
tain zero. When loading the driver, MS-DOS sets this field to point to the next
driver in the driver chain.

The dhAttributes field specifies the device type and provides additional informa­
tion that MS-DOS uses when creating requests. The bits in this field must be set
as follows:

Bit Meaning

o For a character-device driver. Specifies that the device is the
standard input device. This -bit must be set to 1 if the driver
replaces the resident device driver that supports the standard
input device.

1 For a character-device driver. Specifies that the device is the
standard output device. This bit must be set to 1 if the driver
replaces the resident device driver that supports the standard out­
put device.

For a block-device driver. Specifies whether the driver can pro­
cess 32-bit sector addresses. This bit must be set to 1 if the driver
supports 32-bit sector addressing. MS-DOS checks this bit to
determine whether it should use the rwrHugeSector field at the
end of the READWRITEREQUEST structure used with Read,
Write, and Write with Verify (Device-Driver Functions 04h, 08h,
and 09h).

This bit must be zero if the device supports only 16-bit sector
addressing.

2 For a character-device driver. Specifies that the device is the
NUL device. The resident NUL device driver cannot be replaced.
This bit must be zero for all other device drivers.

3 For a character-device driver. Specifies that the device is the
clock device. This bit must be set to 1 if the driver replaces the
resident device driver that supports the clock device.

Chapter 9: Device Drivers 393

Bit Meaning

4 For a character-device driver. Specifies that the driver supports
fast character output. If this bit is set, MS-DOS issues Interrupt
29h (with the character value in the AL register) when a program
writes to the device-for example, when using Direct Console 1/0
(Interrupt 21h Function 06h). During its initialization, the device
driver must install a handler (for Interrupt 29h) that carries out
the fast output.

6 Specifies whether the device supports logical-drive mapping or
generic 10CTL functions, or both. This bit must be set to 1 if the
device driver implements Get Logical Drive and Set Logical Drive
(Device-Driver Functions 17h and 18h) or Generic IOCTL
(Device-Driver Function 13h).

7 Specifies whether the device supports IOCTL queries. This bit
must be set to 1 if the device driver implements 10CTL Query
(Device-Driver Function 19h).

11 Specifies whether the driver supports Open Device, Close Device,
and Removable Media (Device-Driver Functions ODh, OEh, and
OFh). This bit must be set to 1 if the driver implements these
functions. Only block-device drivers support Removable Media.

13 For a character-device driver. Specifies whether the driver sup­
ports Output Until Busy (Device-Driver Function lOh). This bit
must be set to 1 if the driver implements this function.

For a block-device driver. Specifies whether the driver requires
MS-DOS to supply the first sector of the first file allocation table
(FAT) when it calls Build BPB (Device-Driver Function 02h).
Drivers that have no other means of determining the current
medium type use the media descriptor in the first byte of the
FAT. This bit must be set to 1 if the driver requires the FAT.

14 Specifies whether the driver supports IOCTL Read and IOCTL
Write (Device-Driver Functions 03h and OCh). This bit must be
set to 1 if the driver implements these functions.

15 Specifies whether the driver supports a character device or a
block device. This bit must be set to 1 if the driver supports a
character device.

Any bits in the dhAttributes field that are not used for a given device type must
be zero.

The dhStrategy and dhInterrupt fields contain the offsets to the entry points of
the strategy and interrupt routines. Since these fields are l6-bit values, the entry
points must be in the same segment as the device-driver file header. For a device
driver in a binary image file, the offsets are in bytes from the beginning of the
file; for a driver in an .EXE-format file, the offsets are in bytes from the begin­
ning of the file's load inlage.

394 MS-DOS Programmer's Reference

The dhNameOrUnits field is an 8-byte field that contains either a logical-device
name or a I-byte value specifying the number of units supported. A character­
device driver must supply a logical-device name of no more than eight charac­
ters. If it has fewer than eight characters, the name must be left-aligned and any
remaining bytes in the field must be filled with space characters (ASCII 20h).
The device name must not contain a colon (:). A block-device driver does not
supply a name; instead, it can supply the number of units it supports. This is
optional, however, since MS-DOS fills in this field with the value the driver
returns by using Init (Device-Driver Function OOh).

For a full description of the DEVICEHEADER structure, see Section 9.9,
"Structures."

9.3.2 Strategy and Interrupt Routines
Each driver has two routines: a strategy routine and an interrupt routine. Both
routines are called by MS-DOS, but only the interrupt routine carries out any
work.

MS-DOS first makes a far call to the device driver's strategy routine, passing (in
the ES:BX registers) the 32-bit address (segment:offset) of a request packet. The
strategy routine saves this address and returns immediately by using a far return.
MS-DOS then calls the interrupt routine. At this point, the device driver carries
out the requested function, accessing the hardware either directly or by using
ROM BIOS calls. When processing is complete, the interrupt routine must set
the status value in the request packet and return to MS-DOS by using a far
return. The request is completed when the interrupt routine returns.

The interrupt routine, despite its name, is never started as a result of an inter­
rupt. Instead, the routine always receives control from an explicit call made by
MS-DOS. When called, the interrupt routine must examine the function field in
the request packet to determine what action to take. Since a device driver must
never have more than one pending request at any given time, the interrupt rou­
tine must, for each request, either carry out an action or indicate to MS-DOS
that the device is busy or in error.

The strategy and interrupt routines must preserve any registers they use, includ­
ing flags. The routines can save registers on the stack (restoring them before
returning), although there is limited space on the stack when these routines are
called (usually about 40 to 50 bytes). If the driver requires more room, it should
set up its own stack. The direction flag and interrupt-enable bits are especially
critical and must be preserved in all cases.

9.4 Block-Device Drivers
A block-device driver handles input and output for a mass-storage device, such
as a disk drive. The driver must implement the following device-driver functions:

Function Name Comments

OOh Init

Olh Media Check

Chapter 9: Device Drivers 395

Function Name Comments

02h Build BPB

03h IOCTL Read Required only if bit 14 is set in the
dhAttributes field of the DEVICE·
HEADER structure

04h Read

OSh Write

09h Write with Verify

OCh IOCTL Write Required only if bit 14 in dhAttrlbutes
is set

ODh Open Device Required only if bit 11 in dhAttrlbutes
is set

OEh Close Device Required only if bit 11 in dhAttrlbutes
is set

OFh Removable Media Required only if bit 11 in dhAttrlbutes
is set

13h Generic IOCTL Required only if bit 6 in dhAttrlbutes
is set

17h Get Logical Device Required only if bit 6 in dhAttributes
is set

ISh Set Logical Device Required only if bit 6 in dhAttrlbutes
is set

19h IOCTL Query Required only if bit 7 in dhAttrlbutes
is set

Every block-device driver controls one or more devices. A device can be a phys­
ical drive, such as a floppy disk drive, or a logical drive, such as a partition on a
hard disk. In either case, MS-DOS assigns a unique drive number that programs
use to access the device. The driver is responsible for determining and reporting
how many devices it supports when it returns from a call to Init (Device-Driver
Function OOh).

MS-DOS allows no more than 26 drives for the entire system. If a device driver
reports a number that would push the system total beyond 26, MS-DOS termi­
nates the driver. To ensure that a driver does not exceed this limit, MS-DOS
passes the next available drive number to the driver during initialization. As long
as the sum of this number and the driver's number of units is less than 26, the
driver's initialization will succeed.

It is not possible to replace the resident block-device driver with an installable
device driver. Installable block-device drivers can be used only for devices not
directly supported by resident drivers. Note that MS-DOS always initializes
resident block-device drivers before installable drivers and always assigns drive
numbers in the same order as it initialized the drivers.

396 MS-DOS Programmer's Reference

9.5 Character-Device Drivers
An installable character-device driver handles input and output for a device such
as a keyboard, screeD, or serial port. A character-device driver must implement
the following device-driver functions:

Function Name Comments

OOh Init

03h IOCTL Read Required only if bit 14 is set in the
dbAttrlbutes field of the DEVICE·
HEADER structure

04h Read

OSh Nondestructive
Read

06h Input Status

07h Input Flush

08h Write

09h Write with Verify

OAh Output Status

OBh Output Flush

OCh IOCTL Write Required only if bit 14 in dbAttributes
is set

ODh Open Device Required only if bit 11 in dbAttrlbutes
is set

OEh Close Device Required only if bit 11 in dbAttributes
is set

IOh Output Until Busy Required only if b.it 13 in dhAttrlbutes
is set

13h Generic IOCTL Required only if bit 6 in dbAttrlbutes
is set

19h IOCTL Query Required only if bit 7 in dbAttributes
is set

Every character-device driver must have a logical-device name that identifies the
driver and is used by programs to open the device. Logical-device names do not
need to be unique, but using the same name in two or more drivers prevents
MS-DOS from accessing all but the last driver to be initialized. This is because
MS-DOS, when opening a device, searches the driver chain from the beginning
until it finds a driver that has a matching logical-device name. Since the last
driver initialized is always closest to the beginning, MS-DOS stops its search
there. Note that resident device drivers can be replaced by giving an installable
driver the same logical-device name as the resident driver.

Chapter 9: Device Drivers 397

9.6 Request Packets and Function Requests
MS-DOS generates function requests when programs call MS-DOS system func­
tions that require input from or output to a given device. Each function request
consists of a request packet that MS-DOS passes to the device driver. A request
packet contains information the driver uses to identify and carry out the request.
The size and format of a packet depend on the function to be carried out, but all
request packets have two parts: a request header (which has the same format for
all requests), and request-specific fields. The form of the request header corre­
sponds to a REQUESTHEADER structure:

REQUESTHEADER
rhLength
rhUnit
rhFunction
rhStatus
rhReserved

REQUESTHEADER

STRUC
db ?
db ?
db ?
dw ?
db 8 dup (?)
ENDS

;length of record, in bytes
;unit number (block device only)
; function number
;status
; reserved

For a full description of the REQUESTHEADER structure, see Section 9.9,
"Structures."

MS-DOS writes the request packet in a reserved area of memory, setting the
rhFunction field (offset 02h) to specify the action to be performed by the device
driver and setting the rhUnit field (offset Olh), if the driver supports a block
device, to identify the drive the request is for. The rhLength field (offset OOh)
contains the length, in bytes, of the complete request packet. This is important
for requests that have additional request-specific fields.

MS-DOS first calls the device driver's strategy routine, passing (in the ES:BX
registers) the 32-bit address (segment:offset) of the request packet. The strategy
routip.e saves this address, and immediately returns to the system. MS-DOS then
calls the interrupt routine, which retrieves the address of the request packet and
reads the rhFunction field to determine what action to take. If the device driver
supports a block device, the interrupt routine also reads the rhUnit field to
determine which drive to access. This field specifies a zero-based unit number.
(For example, if the driver controls four devices, a request to access the first
one specifies number 0.) Note that the drive number and the unit number are
not the same. Although programs use drive numbers to access a driver's devices,
MS-DOS converts these numbers to zero-based unit numbers before calling the
driver with a function request.

Depending on the function, the interrupt routine may read from or write to addi­
tional fields. The request packet for Write (Device-Driver Function 08h), for
example, includes a transfer address (offset ODh), a sector count (offset 12h),
and a starting sector (offset 14h). The interrupt routine must translate the start­
ing sector into a physical sector (consisting of track, head, and sector numbers)
and then write the specified nUluber of sectors from the transfer address to the
designated sectors on the specified drive.

When the interrupt routine completes its actions, it must report the status of the
request to MS-DOS by setting one or more bits in the rhStatus field (offset 03h)
in the request packet. If the function is successful, the routine sets the done bit

398 MS-DOS Programmer's Reference

(bit 8). If an error occurred, the routine sets the done bit and the error bit (bit
15) and copies an error value to bits 0 through 7 of the rhStatus field. (For a list
of these error values, see the REQUESTHEADER structure in Section 9.9,
"Structures.") Finally, the routine returns to MS-DOS.

9.7 Device-Driver Initialization

;length of record, in bytes
;not used
; function number
; status
;reserved
;OUTPUT: number of units
;INPUT: end available driver memory
;OUTPUT: end resident code
;INPUT: addr CONFIG.SYS device= line
;OUTPUT: addr BPS pointer array
;INPUT: first drive number
;OUTPUT: error-message flag

dd 1

db 1
db 1
db OOh
dw 1
db 8 dup (1)
db 1
dd 1

irParamAddress

irDriveNumber db 1
irMessageFlag dw 1

INITREQUEST ENDS

Fo~ a full description of the INITREQUEST structure, see Init (Device-Driver
Function OOh). •

When processing the Init function, the interrupt routine should carry out any
initialization required, such as processing arguments specified on the device or
devicehigb command line. Note that only a few MS-DOS system functions are
available during initialization (Interrupt 2lh Functions Olh through OCh, 25h,
3Oh, and 35h). In general, the interrupt routine can display messages at the stan­
dard output device, but it cannot open files or allocate additional memory.

Initially, the irEndAddress value in the request packet contains the segment
address of the next memory block after the driver, regardless of whether the
device driver is loaded using the device or devicehigh command. The driver can
use the memory up to this address. If the devicehigh command is used to load a
driver into the upper memory area, the driver's code-segment and data-segment
addresses may be greater than AOOOh, and the address space immediately follow­
ing the driver may contain ROM or memory-mapped devices and not necessarily
RAM.

MS-DOS loads and initializes installable device drivers in the order their corre­
sponding device or devlcehlgh commands appear in the CONFIG.SYS file.
When loading a driver, MS-DOS does not create a program segment prefix
(PSP) or an environment block. Instead, it allocates enough memory to load the
contents of the driver file and copies the contents from disk, placing the device­
driver header at the beginning of the allocated memory. MS-DOS then calls
the strategy routine and the interrupt routine with a request packet for Init
(Device-Driver Function OOh). The form of this request packet corresponds to
an INITREQUEST structure:

INITREQUEST STRUC
irLength
irUnit
irFunction
irStatus
irReserved"
irUnits
irEndAddress

iTo complete the initialization, the interrupt routine must copy the address of the
end of the driver to the irEndAddress field in the request packet. Block-device
drivers must also copy the number of units they support and the address of an
array of BIOS parameter blocks (BPBs) to corresponding fields in the request
packet. Finally, the interrupt routine must set the done bit (bit 8) in the irStatus
field and return.

Chapter 9: Device Drivers 399

If a driver cannot be initialized, it must set both the error bit (bit 15) and the
done bit (bit 8) in the irStatus field. It must also set the irUnits field to zero and
set IrEndAddress the driver's starting address. MS-DOS then discards the driver
and frees its memory for use by the next driver.

MS-DOS initializes a driver only once. This means the interrupt routine should
free the memory containing its initialization code and data. The driver cannot
free memory directly, but MS-DOS frees it for the driver when the driver
specifies its ending address in the request packet. MS-DOS uses this ending
addess to reallocate the memory block containing the driver. If the initialization
code and data are at the end of the driver and the driver sets the irEndAddress
field properly, MS-DOS frees their memory when reallocating the block.

An installable device driver that has the same logical-device name as an existing
character-device driver effectively replaces the existing driver. The old driver
remains in memory, however, and its strategy and interrupt routines can be
called by the new driver to access the given device. This is one way a new driver
can extend the capabilities of an existing driver.

The new driver can retrieve the addresses of the old driver's strategy and inter­
rupt routines by searching the driver chain for device-driver headers that have
matching logical-device names. (The new driver is at the top of the driver chain,
and the dhLink field in its device-driver header contains the address of the next
driver in the chain. For the last driver in the chain, the dhLink field contains
OFFFFh.) The old driver's address can be retrieved only after the new driver has
completed its initialization.

9.8 Device-Driver Function Reference
The following pages describe the MS-DOS device-driver functions, in numeric
order. Each description includes the function's syntax and return values. Fields
are designated as INPUT where information is filled in by MS-DOS before it
calls the device driver and as OUTPUT where information must be supplied by
the driver.

400 Inlt (Device-Driver Function OOh)

• Init (Device-Driver Function OOh)

INITREQUEST STRUC
irLength
irUnit
irFunction
irStatus
irReserved
irUnits
irEndAddress

irParamAddress

irDriveNumber
irMessageFlag

INITREQUEST ENDS

db ?
db ?
db OOh
dw ?
db 8 dup (?)
db ?
dd ?

dd ?

db ?
dw ?

length of record, in bytes
not used
function number
status
reserved
OUTPUT: number of units
INPUT: end available driver memory
OUTPUT: end resident code
INPUT: addr CONFIG.SYS device= line
OUTPUT: addr BPS pointer array
INPUT: first drive number
OUTPUT: error-message flag

Fields

Init (Device-Driver Function OOh) directs the driver to initialize the device driver
and corresponding device. This function is called only once, when the driver is
loaded. .

This function is required for both block- and character-device drivers.

irLength Specifies the length, in bytes, of the INITREQUEST structure.

irUnit Not used.

irFunction Specifies the Init function: OOh.

irStatus Specifies the status of the completed function. If the function is suc­
cessful, the driver must set the done bit (bit 8). Otherwise, the driver must set
both the error and done bits (bits 15 and 8) and copy an error value to the low­
order byte.

irReserved Reserved; do not use.

irUnits Specifies the number of units supported by the driver. MS-DOS uses
this number to assign sequential drive numbers to the units. The driver must set
this field.

Character-device drivers should set this field to zero.

irEndAddress Contains the 32-bit address (segment:offset) of the end of
memory available to the device driver and receives the 32-bit address of the end
of the initialized driver. The following table describes input and output:

Input/output Description

Input

Output

Points to the first byte of memory that immediately follows the
device driver and which must not be used by the driver. During
initialization, the driver may use any memory between its start­
ing address and this address. The driver can also reserve some
or all of this memory for use after initialization. (This field is
not used for input in MS-DOS versions earlier than version
5.0. The driver should check the MS-DOS version number
before using the value in this field.)

Points to the first byte of memory that immediately follows the
initialized driver. The driver must set this field to an address
that is not greater than the end of available memory. If the
driver fails to initialize, it should set this field to its starting
address. This directs MS-DOS to remove the driver and free
all memory associated with it.

Init (Device-Driver Function OOh) 401

irParamAddress Contains a 32-bit address (segment:offset) of the initializa­
tion parameters and receives a 32-bit address of an array of pointers to BPB
structures. The following table describes input and output:

Input/output Description

Input

Output

Points to the initialization parameters for the driver as copied
from the CONFIG. SYS file. The parameters consist of the
filename for the driver and any command-line switches-that
is, all text on the corresponding device or devlcehlgh command
line up to the terminating carriage-return character (ASCII
ODh) or linefeed character (ASCII OAh) but not including the
device or devlcehlgh command and equal sign.

Points to an array of pointers to BPB structures. These struc­
tures specify the BIOS parameters for each unit supported by
the drive. (Each pointer is a 16-bit offset relative to the start of
the driver.)

The BPB structure has the following form:

BPB STRUC
bpbBytesPerSec dw ?
bpbSecPerClust db ?
bpbResSectors dw ?
bpbFATs db ?
bpbRootDirEnts dw ?
bpbSectors dw ?
bpbMedia db ?
bpbFATsecs dw ?
bpbSecPerTrack dw ?
bpbHeads dw ?
bpbHiddenSecs dd ?
bpbHugeSectors dd ?

BPB ENDS

For a full description of the BPB structure, see Section 9.9,
"Structures." If all units are the same, all pointers in the array
can be the same.

Character device drivers must set the lrParamAddrcss field
to zero.

Comments

irDriveNumber Contains the zero-based drive number for the driver's first
unit as assigned by MS-DOS. MS-DOS supplies this number so that the driver
can determine whether MS-DOS will accept all its supported units. MS-DOS
allows no more than 26 units in the system.

irMessageFlag Specifies whether MS-DOS displays an error message on ini­
tialization failure. To direct MS-DOS to display the message, the driver must set
this field to 1. The message is displayed only if the driver also sets the irStatus
field to indicate failure.

The Init function is called only once; its code and data need not be retained
after it has initialized its device. A device driver can release the Init function's
code and data by placing the function at the end of the driver and returning the
function's starting address in the irEndAddress field.

402 Init (Device-Driver Function OOh)

If the Init function uses Interrupt 21h system functions, it may use only the func­
tions in the following table:

Function number Description

Olh-OCh

2Sh

30h

35h

Character 110

Set Interrupt Vector

Get Version Number

Get Interrupt Vector

See Also Interrupt 21h Functions Olh-oCh Character Input and Output
Interrupt 21h Function 25h Set Interrupt Vector
Interrupt 21h Function 30h Get Version Number
Interrupt 21h Function 35h Get Interrupt Vector

Media Check (Device-Driver Function 01h) 403

• Media Check (Device-Driver Function 01h)
MEDIAREQUEST

mrLength
mrUnit
mrFunctlon
mrStatus
mrReserved
mrMediaID
mrReturn
mrVolumeID

MEDIAREQUEST

STRUC
db 1
db 1
db Olh
dw 1
db 8 dup (1)
db 1
db 1
dd 1
ENDS

;length of record, in bytes
;unit number
;functlon number
;status
; reserved
;INPUT: current media descriptor
;OUTPUT: return value
;OUTPUT: previous volume identifier

Fields

Media Check (Device-Driver Function Olh) determines whether the medium in
the specified drive has changed.

This function is required by block-device drivers only.

mrLength Specifies the length, in bytes, of the MEDIAREQUEST structure.

mrUnit Specifies the unit for which the medium is to be checked.

mrFunction Specifies the Media Check function: Olh.

mrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

mrReserved Reserved; do not use.

mrMediaID Specifies the media descriptor for the medium MS-DOS assumes
is in the drive. Following are the most commonly used media descriptors and
their corresponding media:

Value Type of medium

OFOh

OF8h

OF9h

OFAh

OFBh

OFCh

OFDh

OFEh

OFFh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); S.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.2S-inch, I side, 8 sectors/track, (320K).

3.S-inch, 2 sides, 8 sectors/track (640K).

5.25-inch, I side, 9 sectors/track, 40 tracks/side (I80K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

5.2S-inch, I side, 8 sectors/track, 40 tracks/side (lOOK). This value is
also used for 8-inch disks.

5.2S-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

404 Media Check (Device-Driver Function 0111)

mrReturn Receives a return value identifying whether the medium has
changed. The driver must set the field to one of the following values:

Value Meaning

Comments

See Also

OFFh Medium has been changed.

OOh Driver cannot determine whether medium has been changed.

Olh Medium is unchanged.

mrVolumeID Receives the 32-bit address (segment:offset) of a zero­
terminated ASCII string specifying the volume identifier of the previous disk in
the drive. The driver must set this field to the address of the volume identifier. If
the disk does not have a volume identifier, the driver must set the field to the
address of the string "NO NAME".

If the medium in the drive has not changed, MS-DOS proceeds with the disk
operation.

If the medium in the drive has changed, MS-DOS invalidates all buffers associ­
ated with the drive, including any buffers containing data waiting to be written
(this data is lost). MS-DOS then calls Build BPB (Device-Driver Function 02h)
to request a BPB structure for the new disk and reads the disk's file allocation
table (FAT) and directory.

If the driver cannot determine whether the disk has changed, MS-DOS checks
its internal disk buffers. If data is waiting to be written to the disk, the system
assumes that the disk has not changed and attempts to write the data to the disk.
If the disk buffers are empty, MS-DOS assumes the disk has changed and up­
dates the disk information as if the driver had returned OFFh.

Device-Driver Function 02h Build BPB

Build BPB (Device-Driver Function 02h) 405

• Build BPB (Device-Driver Function 02h)

BUILDBPBREQUEST STRUC
bbrLength db ?
bbrUnit db ?
bbrFunction db 02h
bbrStatus dw ?
bbrReserved db 8 dup(?)
bbrMediaID db ?
bbrFATSector dd?
bbrBPBAddress dd?

BUILDBPBREQUEST ENDS

;length of record, in bytes
;unit number
; function number
; status
; reserved
;INPUT: media descriptor
;INPUT: buffer with first FAT sector
;OUTPUT: BPB address

Fields

Build BPB (Device-Driver Function 02h) returns a BPB structure for the
medium in the specified drive. MS-DOS calls this function whenever Media
Check (Device-Driver Function 01h) specifies that the medium has changed or
that it might have been changed and no disk-write operations are pending.

This function is required for block-device drivers.

bbrLength Specifies the length, in bytes, of the BUILDBPBREQUEST
structure.

bbrUnit Specifies the unit for which to return the BPB structure.

bbrFunction Specifies the Build BPB function: 02h.

bbrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

bbrReserved Reserved; do not use.

bbrMediaID Specifies the media descriptor for the medium that MS-DOS
assumes is in the drive. Following are the most commonly used media descrip­
tors and their corresponding media:

Value Type of medium

OFOh

OFEh

OF8h

OF9h

OFAh

OFBh

OFCh

OFDh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.5-inch, 2 sides, 36
sectors/track (2.88 MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.5-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.25-inch, 1 side, 8 sectors/track, (320K).

3.5-inch, 2 sides, 8 sectors/track (640K).

5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (180K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (l60K). This value is
also used for 8-inch disks.

OFFh 5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

For more information about media descriptors, see Chapter 3, "File System."

406 Build BPB (Device-Driver Function 02h)

bbrFATSector Contains the 32-bit address (segment:offset) of a buffer. The
contents of the buffer depend on bit 13 in the dhAttributes field in the driver's
DEVICEHEADER structure. If bit 13 is zero, the buffer contains the first sector
of the first FAT on the disk; the driver uses the first byte in this buffer to deter­
mine the disk's media descriptor. In this case, the driver must not alter this
buffer. If bit 13 is set, the contents of the buffer are meaningless and the driver
may use the buffer as scratch space.

bbrBPBAddress Receives the 32-bit address (segment:offset) of the BPB
structure for the nledium in the drive. The BPB structure has the following
form:

BPB STRUC
bpbBytesPerSec dw ? ;bytes per sector
bpbSecPerClust db ? ;sectors per cluster
bpbResSectors dw ? ;number of reserved sectors
bpbFATs db ? ;number of file allocation tables
bpbRootDirEnts dw ? ;number of root-directory entries
bpbSectors dw ? ;total number of sectors
bpbMedia db ? ;media descriptor
bpbFATsecs dw ? ;number of sectors per FAT
bpbSecPerTrack dw ? ;sectors per track
bpbHeads dw ? ;number of heads
bpbHiddenSecs dd ? ;number of hidden sectors
bpbHugeSectors dd ? ;number of sectors if bpbSectors = 0

BPB ENDS

For a full description of the DEVICEHEADER and BPB structures, see Section
9.9, "Structures."

Comments

See Also

If the driver supports removable Illedia, Build BPB should read the volume label
from the disk and save it.

Device-Driver Function 01h Media Check
Interrupt 21h Function 440Dh Minor Code 40h Set Device Parameters
Interrupt 21h Function 440Dh Minor Code 60h Get Device Parameters

IOCTL Read (Device-Driver Function 03h) 407

• IOCTL Read (Device-Driver Function 03h)

IOCTLRWREQUEST STRUC
irwrLength db?
irwrUnit db ?
irwrFunction db 03h
irwrStatus dw ?
irwrReserved db 8 dUp(?)
irwrData db ?
irwrBuffer dd?
irwrBytes dw ?

IOCTLRWREQUEST ENDS

;length of record, in bytes
;unit number
; function number
;status
; reserved
;not used
;INPUT: buffer address
;INPUT: number of bytes requested
;OUTPUT: number of bytes read

Fields

IOCTL Read (Device-Driver Function 03h) transfers data from a device driver
into the specified buffer.

This function can be used for both block- and character-device drivers.

irwrLength Specifies the length, in bytes, of the IOCTLRWREQUEST
structure.

irwrUnit Specifies the device driver from which data is to be read. This field
is used for block-device drivers only.

irwrFunction Specifies the IOCTL Read function: 03h.

irwrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

irwrReserved Reserved; do not use.

irwrData Not used.

irwrBuffer Contains the 32-bit address (segment:offset) of the buffer that
receives data read from the device.

irwrBytes Contains the number of bytes to read and receives the number of
bytes read. The following table describes input and output:

Input/output Description

Input

Output

Specifies the number of bytes to read. This number must not
exceed the size, in bytes, of the specified buffer.

Specifies the number of bytes read. This number cannot exceed
the requested number of bytes.

Comments

See Also

MS-DOS calls this function only if bit 14 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

The format of the· returned data is device-specific and does not follow any
standard.

Device-Driver Function OCh IOCTL Write
Interrupt 21h Function 4402h Receive Control Data from Character Device
Interrupt 21h Function 4404h Receive Control Data from Block Device

408 Read (Device-Driver Function 04h)

• Read (Device-Driver Function 04h)

rwrStartSec dw ?
rwrVolumeID dd ?
rwrHugeStartSec dd ?

READWRITEREQUEST ENDS

READWRITEREQUEST
rwrLength
rwrUnit
rwrFunction
rwrStatus
rwrReserved
rwrMediaID
rwrBuffer
rwrBytesSec

STRUC
db ?
db ?
db 04h
dw ?
db 8 dup (?)
db ?
dd ?
dw ?

length of record, in bytes
unit number
function number
status
reserved
INPUT: media descriptor
INPUT: buffer address
INPUT: number bytes/sectors to read
OUTPUT: number bytes/sectors read
INPUT: starting-sector number
OUTPUT: volume identifier
INPUT: 32-bit starting-sector number

Input

Output

Fields

Read (Device-Driver Function 04h) transfers data from a device into the
specified buffer.

This function is required for both block-and character-device drivers.

rwrLength Specifies the length, in bytes, of the READWRITEREQUEST
structure.

rwrUnit Specifies the device from which data is to be read. This field is used
for block-device drivers only.

rwrFunction Specifies the Read function: 04h.

rwrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

rwrReserved Reserved; do not use.

rwrMediaID Specifies the media descriptor for the medium that MS-DOS
assumes is in the drive. This field can be anyone of the media-descriptor values
specified in Media Check (Device-Driver Function 01h). This field is used for
block-device drivers only.

rwrBuffer Contains the 32-bit address (segment:offset) of the buffer that
receives the data read from the device.

rwrBytesSec Contains the number of bytes or sectors to read and receives
the number of bytes or sectors read. The following table describes input and
output:

Input/output Description

Specifies the number of bytes to read from a character device,
or the number of sectors to read from a block device.

Specifies the number of bytes read from a character device, or
the number of sectors read from the block device. The driver
must set this field; if there is an error, the driver should return
the number of bytes or sectors read before the error occurred.

rwrStartSec Specifies the first logical sector to read. If the first sector is
larger than 65,535 bytes, this field contains OFFFFh and the nvrHugeStartSec
field specifies the first sector. This field is used for block-device drivers only.

Comments

See Also

Read (Device-Driver Function 04h) 409

rwrVolumeID Contains the 32-bit address (segment:offset) of a zero­
terminated ASCII string specifying the volume identifier for the disk most
recently accessed. If the driver returns error value OFh (invalid disk change),
MS-DOS uses the volume identifier to prompt the user to insert the appropriate
disk. This field is used for block-device drivers only.

rwrHugeStartSec Specifies the first logical sector to read. This field is used
only if the rwrStartSec field contains OFFFFh. This field is used for block-device
drivers only.

The driver must translate the logical-sector number supplied in the nvrStartSec
or nvrHugeStartSec field to the appropriate head, track, and sector numbers.

The rwrHugeStartSec field is used only if bit 1 is set in the dhAttributes field in
the block-device driver's DEVICEHEADER structure. For a full description of
the DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function Olh Media Check
Device-Driver Function 08h Write
Device-Driver Function 09h Write with Verify
Interrupt 21h Function 3Fh Read File or Device

410 Nondestructive Read (Device-Driver Function 05h)

• Nondestructive Read (Device-Driver Function 05h)

NDREADREQUEST STRUC
nrrLength db?
nrrUnit db ?
nrrFunction db OSh
nrrStatus dw?
nrrReserved db 8 dUp(?)
nrrChar db ?

NDREADREQUEST ENDS

;length of record, in bytes
;not used
; function number
;status
; reserved
;OUTPUT: character read from device

Fields

See Also

Nondestructive Read (Device-Driver Function OSh) returns the next character
from the input buffer without removing it from the buffer; subsequent read
operations should return the same character.

This function is required for character-device drivers only.

nrrLength Specifies the length, in bytes, of the NDREADREQUEST
structure.

nrrUnit Not used.

nrrFunction Specifies the Nondestructive Read function: OSh.

nrrStatus Specifies the status of the completed function. If the device input
buffer has at least one character, the busy bit (bit 9) must be zero, indicating
that MS-DOS need not wait to read a character. If the input buffer has no char­
acters, the driver must set the busy bit. In both cases, the driver must set the
done bit (bit 8).

If the function is not successful, the driver must set both the error and done bits
(bits 15 and 8) and copy an error value to the low-order byte.

nrrReserved Reserved; do not use.

nrrChar Receives the next character in the input buffer. The driver must copy
the character without removing it from the input buffer.

Device-Driver Function 04h Read

Input Status (Device-Driver Function 06h) 411

• Input Status (Device-Driver Function 06h)

STATUSREQUEST
srLength
srUnit
srFunction
srStatus
srReserved

STATUSREQUEST

STRUC
db ?
db ?
db 06h
dw ?
db 8 dup (?)
ENDS

;length of record, in bytes
;not used
; function number
;status
; reserved

Fields

Comments

See Also

Input Status (Device-Driver Function 06h) specifies whether any characters are
waiting in the device-input buffer.

This function is required for character-device drivers only.

srLength Specifies the length, in bytes, of the STATUSREQUEST structure.

srUnit Not used.

srFunction Specifies the Input Status function: 06h.

srStatus Specifies the status of the completed function. If the device-input
buffer has waiting characters, the busy bit (bit 9) must be zero, indicating that
MS-DOS need not wait to read a character. If the buffer has no characters, the
driver must set the busy bit. In either case, the driver must set the done bit
(bit 8).

If the function is not successful, the driver must set both the error and done bits
(bits 15 and 8) and copy an error value to the low-order byte.

srReserved Reserved; do not use.

If the device has no input buffer, the busy bit must be zero.

Before attempting to read a character, MS-DOS may wait for a device to return
a not-busy status.

Device-Driver Function OAh Output Status
Interrupt 21h Function 4406h Check Device Input Status

412 Input Flush (Device-Driver Function 07h)

• Input Flush (Device-Driver Function 07h)

FLUSHREQUEST
frLength
frUnlt
frFunetlon
frStatus
frReserved

FLUSHREQUEST

STRUC
db ?
db ?
db 07h
dw ?
db 8 dup (?)
ENDS

length of record, in bytes
not used
function number
status
reserved

Fields

See Also

Input Flush (Device-Driver Function 07h) terminates any read operation in prog­
ress and empties the device-input buffer.

This function is required for character-device drivers only.

frLength Specifies the length, in bytes, of the FLUSHREQUEST structure.

frUnit Not used.

frFunction Specifies the Input Flush function: 07h.

frStatus Specifies the status of the completed function. If the function is suc­
cessful, the driver must set the done bit (bit 8). Otherwise, the driver must set
both the error and done bits (bits 15 and 8) and copy an error value to the low­
order byte.

frReserved Reserved; do not use.

Device-Driver Function OBh Output Flush
Interrupt 21h Function Oeh Flush Buffer, Read Keyboard

WritelWrlte with Verify (Device-Driver Functions OSh and 09h) 413

• Write/Write with Verify (Device-Driver Functions 08h and 09h)

rwrStartSec dw 1
rwrVolumeID dd 1
rwrHugeStartSec dd 1

READWRITEREQUEST ENDS

READWRITEREQUEST
rwrLength
rwrUnit
rwrFunction
rwrStatus
rwrReserved
rwrMediaID
rwrBuffer
rwrBytesSec

STRUC
db 1
db 1
db 1
dw 1
db 8
db 1
dd 1
dw 1

dup (1)

;length of record, in bytes
;unit number
; function number
;status
; reserved
;INPUT: media descriptor
;INPUT: buffer address
;INPUT: number bytes/sectors to write
;OUTPUT: number bytes/sectors written
;INPUT: starting-sector number
;OUTPUT: volume identifier
;INPUT: 32-bit starting-sector number

Fields

Write (Device-Driver Function 08h) and Write with Verify (Device-Driver Func­
tion 09h) transfer data from the specified buffer to a device. Write with Verify
also reads the data back from the device, if possible, to verify that the data has
been transferred correctly.

This function is required for both block- and character-device drivers.

rwrLength Specifies the length, in bytes, of the READWRITEREQUEST
structure.

rwrUnit Specifies the device to which data is to be written. This field is used
for block-device drivers only.

rwrFunction Specifies the Write or Write with Verify function: either 08h
or 09h.

rwrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

rwrReserved Reserved; do not use.

rwrMediaID Specifies the media descriptor for the medium that MS-DOS
assumes is in the disk drive. This field can be anyone of the media descriptor
values specified in Media Check (Device-Driver Function Olh). This field is used
for block-device drivers only.

rwrBuffer Contains the 32-bit address (segment:offset) of the buffer contain­
ing the data to write to the device.

rwrBytesSec Contains the number of bytes or sectors to write and receives
the number of bytes or sectors written. The following table describes input and
output:

Input/Output Description

Input

Output

Specifies the number of bytes to write to a character device,
or the number of sectors to write to a block device.

Specifies the number of bytes written to a character device, or
the number of sectors written to the block device. The driver
must set this field; if there is an error, the driver should return
the number of bytes or sectors written before the error
occurred.

414 WriteIWrite with Verify (Device-Driver Functions OSh and 09h)

Comments

See Also

rwrStartSec Specifies the first logical sector to write. If the first sector is
larger than 65,535 bytes, this field contains OFFFFh and the rwrHugeStartSec
field specifies the first sector. This field is used for block-device drivers only.

rwrVolumeID Contains the 32-bit address (segment:offset) of a zero­
terminated ASCII string specifying the volume identifier for the disk most
recently accessed. If the driver also returns error value OFh (invalid disk
change), MS-DOS uses the volume identifier to prompt the user to insert the
appropriate disk. This field is used for block-device drivers only.

rwrHugeStartSec Specifies the first logical sector to write. This field is used
only if the rwrStartSec field contains OFFFFh. This field is used for block-device
drivers only.

The driver must translate the logical-sector number supplied in the nvrStartSec
or nvrHugeStartSec field to the appropriate head, track, and sector numbers.

The nvrHugeStartSec field is used only if bit 1 is set in the dhAttributes field in
the block-device driver's DEVICEHEADER structure. For a full description of
the DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function Olh Media Check
Device-Driver Function 04h Read
Interrupt 2lh Function 40h Write File or Device

Output Status (Device-Driver Function OAh) 415

• Output Status (Device-Driver Function OAh)
STATUSREQUEST

srLength
srUnit
srFunction
srStatus
srReserved

STATUSREQUEST

STRUC
db 1
db 1
db OAb
dw 1
db 8 dup (1)
ENDS

;length of record, in bytes
;not used
; function number
;status
; reserved

Fields

See Also

Output Status (Device-Driver Function OAh) specifies whether any characters
are in the device-output buffer.

This function is required for character-device drivers only.

srLength Specifies the length, in bytes, of the STATUSREQUEST structure.

srUnit Not used.

srFunction Specifies the Output Status function: OAh.

srStatus Specifies the status of the completed function. If the output buffer
has any characters, the driver must set the busy bit (bit 9), indicating that the
device is busy. If the output buffer has no characters, the busy bit must be zero.
In both cases, the driver must set the done bit (bit 8).

If the function is not successful, the driver must set both the error and done bits
(bits 15 and 8) and copy an error value to the low-order byte.

srReserved Reserved; do not use.

Device-Driver Function 06h Input Status
Interrupt 21h Function 4407h Check Device Output Status

416 Output Flush (Device-Driver Function OSh)

• Output Flush (Device-Driver Function OBh)

FLUSHREQUEST
frLength
frUnit
frFunction
frStatus
frReserved

FLUSHREQUEST

STRUC
db 1
db 1
db OBh
dw 1
db 8 dup (1)
ENDS

;length of record, in bytes
;not used
; function number
;status
; reserved

Fields

See Also

Output Flush (Device-Driver Function OBh) terminates any write operation in
progress and empties the device-output buffer.

This function is required for character-device drivers only.

frLength Specifies the length, in bytes, of the FLUSHREQUEST structure.

frUnit Not used.

frFunction Specifies the Output Flush function: OBh.

frStatus Specifies the status of the completed function. If the function is suc­
cessful, the driver must set the done bit (bit 8). Otherwise, the driver must set
both the error and done bits (bits 15 and 8) and copy an error value to the low­
order byte.

frReserved Reserved; do not use.

Device-Driver Function 07h Input Flush

IOCTL Write (Device-Driver Function OCh) 417

• IOelL Write (Device-Driver Function OCh)

IOCTLRWREQUEST STRUC
irwrLength db?
irwrUnit db ?
lrwrFunctlon db OCh
lrwrStatus dw ?
irwrReserved db 8 dUp(?)
irwrData db ?
lrwrBuffer dd ?
irwrBytes dw ?

IOCTLRWREQUEST ENDS

;length of record, in bytes
;unlt number
;functlon number
;status
·;reserved
;not used
;INPUT: buffer address
;INPUT: number of bytes requested
;OUTPUT: number of bytes written

Fields

IOCTL Write (Device-Driver Function OCh) transfers data from a buffer to a
device driver.

This function can be used for both block- and character-device drivers.

irwrLength Specifies the length, in bytes, of the IOCTLRWREQUEST
structure.

irwrUnit Specifies the device to which data is to be written. This field is used
for block-device drivers only.

irwrFunction Specifies the IOCTL Write function: OCh.

irwrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

irwrReserved Reserved; do not use.

irwrData Not used.

irwrBuffer Contains the 32-bit address (segment:offset) of the buffer contain­
ing data to write to the device.

irwrBytes Contains the number of bytes to write and receives the number of
bytes written. The following table describes input and output:

Input/Output Description

Input

Output

Specifies the number of bytes to write. This number must not
exceed the amount of data in the specified buffer.

Specifies the number of bytes written. This number cannot
exceed the requested number of bytes.

Comments

See Also

MS-DOS calls this function only if bit 14 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function 03h IOCTL Read
Interrupt 21h Function 4403h Send Control Data to Character Device
Interrupt 21h Function 4405h Send Control Data to Block Device

418 Open Device (Device-Driver Function OOh)

• Open Device (Device-Driver Function ODh)

OPENCLOSEREQUEST
ocrLength
ocrUnit
ocrFunction
ocrStatus
ocrReserved

OPENCLOSEREQUEST

STRUC
db ?
db ?
db OOh
dw ?
db 8 dup (1)
ENDS

length of record, in bytes
unit number (block device only)
function number
status
reserved

Fields

Comments

See Also

Open Device (Device-Driver Function ODh) informs the device driver that a file
device or character device is being opened or created.

This function can be used for both block- and character-device drivers.

ocrLength Specifies the length, in bytes, of the OPENCLOSEREQUEST
structure.

ocrUnit Specifies which device contains the file being opened or created. This
field is used with block-device drivers only.

ocrFunction Specifies the Open Device function: ODh.

ocrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

ocrReserved Reserved; do not use.

MS-DOS calls this function only if bit 11 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

MS-DOS calls this function whenever an application opens or creates a file or
opens a device. This function can be used in conjunction with Close Device
(Device-Driver Function OEh) to manage internal buffers and device initializa­
tion. To manage internal buffers, this function, when used in a block-device
driver, should increment the count of open files on the specified drive; Close
Device decrements this count and flushes internal buffers when all files are
closed. Keeping this count can also help the driver determine whether the
medium in the drive has been removed before all files have been closed. To help
manage device initialization, this function, when used in a character-device
driver, can reset the device and send it control strings to prepare it for subse­
quent input. If a character-device driver offers this feature, it should also pro­
vide IOCTL Read and IOCTL Write (Device-Driver Functions 03h and OCh) to
let programs get and set the current control strings.

Device-Driver Function OEh Close Device
Interrupt 21h Function 3Ch Create File with Handle
Interrupt 21h Function 3Dh Open File with Handle
Interrupt 21h Function 5Ah Create Temporary File
Interrupt 21h Function 5Bh Create New File
Interrupt 21h Function 6Ch Extended Open/Create

Close Device (Device-Driver Function OEh) 419

• Close Device (Device-Driver Function OEh)

OPENCLOSEREQUEST
ocrLength
ocrUnit
ocrFunction
ocrStatus
ocrReserved

OPENCLOSEREQUEST

STRUC
db ?
db ?
db OEh
dw ?
db 8 dup (?)
ENDS

;length of record, in bytes
;unit number (block device only)
; function number
;status
; reserved

Fields

Comments

See Also

Close Device (Device-Driver Function OEh) informs the driver that a file device
or character device is being closed.

This function can be used for both block- and character-device drivers.

ocrLength Specifies the length, in bytes, of the OPENCLOSEREQUEST
structure.

ocrUnit Specifies the device on which the file is being closed. This field is
used for block-device drivers only.

ocrFunction Specifies the Close Device function: OEh.

ocrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

ocrReserved Reserved; do not use.

MS-DOS calls this function only if bit 11 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

MS-DOS calls this function whenever an application closes a file or device. This
function can be used in conjunction with Open Device (Device-Driver Function
ODh) to manage internal buffers and device initialization.

Device-Driver Function ODh Open Device
Interrupt 21h Function 3Eh Close File with Handle

420 Removable Media (Device-Driver Function OFh)

• Removable Media (Device-Driver Function OFh)

REMOVEMEOIAREQUEST STRUC
rmrLength db?
rmrUnit db ?
rmrFunction db OFh
rmrStatus dw?
rmrReserved db 8 dup(?)

REMOVEMEDIAREQUEST ENDS

;length of record, in bytes
;unlt number
;functlon number
;status
; reserved

Fields

Comments

See Also

Removable Media (Device-Driver Function OFh) specifies whether a drive con­
tains a removable medium.

This function is used for block-device drivers only.

rmrLength Specifies the length, in bytes, of the REMOVEMEDIAREQUEST
structure.

rmrUnit Specifies the device to check for removable media.

rml·Function Specifies the Removable Media function: OFh.

rmrStatus Specifies the status of the completed function. If the disk in the
specified drive is removable, the busy bit (bit 9) must be zero. If the disk is not
removable, the driver must set the busy bit. In both cases, the driver must set
the done bit (bit 8).

rmrReserved Reserved; do not use.

MS-DOS calls this function only if bit 11 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

Since MS-DOS assumes this function is always successful, it ignores any error
value the function returns.

Interrupt 21h Function 4408h Does Device Use Removable Media

Output Until Busy (Device-Driver Function 10h) 421

• Output Until Busy (Device-Driver Function 10h)

OUTPUTREQUEST ENDS

OUTPUTREQUEST
orLength
orUnit
orFunction
orStatus
orReserved
orData
orBuffer
orBytes

STRUC
db ?
db ?
db lOh
dw ?
db 8 dup (?)
db ?
dd ?
dw ?

; length of record, in bytes
;not used
; function number
;status
; reserved
;not used
;INPUT: buffer address
;INPUT: number of bytes to write
;OUTPUT: number of bytes written

Fields

Output Until Busy (Device-Driver Function lOh) transfers data from the
specified buffer to a device until the device signals that it cannot accept more
input.

This function is used for character-device drivers only.

orLength Specifies the length, in bytes, of the OUTPUTREQUEST structure.

orUnit Not used.

orFunction Specifies the Output Until Busy function: lOh.

orStatus Specifies the status of the completed function. If the function is suc­
cessful, the driver must set the done bit (bit 8). Otherwise, the driver must set
both the error and done bits (bits 15 and 8) and copy an error value to the low­
order byte.

orReserved Reserved; do not use.

orData Not used.

orBuffer Contains the 32-bit address (segment:offset) of the buffer containing
data to write to the device.

orBytes Contains the number of bytes to write and receives the number of
bytes written. The following table describes input and output:

Input/Output Description

Input

Output

Specifies the number of bytes to write. This number must not
exceed the amount of data in the specified buffer.

Specifies the number of bytes written. This number cannot
exceed the requested number of bytes.

Comments

See Also

This function should write as much data to the device as possible until the
device signals that it cannot accept more data, at which point the function
should return immediately. The driver should not wait under any circumstances.
It is not an error for the driver to transfer fewer bytes than MS-DOS requested,
but the driver must return a value for the number of bytes transferred.

This function allows device drivers to take advantage of a printer's internal
RAM buffers. The driver can send data to the printer until the printer's internal
buffer is full and then return to MS-DOS immediately, rather than wait while
data is printed. MS-DOS can then periodically check the printer's status and
send more data only when the printer is ready.

Device-Driver Function 08h Write

422 Generic IOCTL (Device-Driver Function 13h)

• Generic IOCTL (Device-Driver Function 13h)

IOCTLREQUEST
giLength
giUnit
giFunction
giStatus
giReservedl
giCategory
giMinorCode
giReserved2
giIOCTLData

IOCTLREQUEST

STRUC
db 1
db 1
db 13h
dw 1
db 8 dup (1)
db 1
db 1
dd 1
dd 1
ENDS

;length of record, in bytes
;unit number (block device only)
; function number
;status
; reserved
;INPUT: device category
;INPUT: minor code
; reserved
;INPUT: IOCTL data address

Fields

Generic IOCTL (Device-Driver Function 13h) directs the driver to carry out
the generic input-and-output-control function specified by the giCategory and
giMinorCode fields.

This function can be used for both block- and character-device drivers.

giLength Specifies the length, in bytes, of the IOCTLREQUEST structure.

giUnit Specifies the device number on which to carry out the IOCTL func­
tion. This field is used for block-device drivers only.

giFunction Specifies the Generic IOCTL function: 13h.

giStatus Specifies the status of the completed function. If the function is suc­
cessful, the driver must set the done bit (bit 8). Otherwise, the driver must set
both the error and done bits (bits 15 and 8) and copy an error value to the low­
order byte.

giReservedl Reserved; do not use.

giCategory Specifies the device category. Serial, console, parallel, and disk
drivers are represented by the following values:

Value Meaning

01h Serial device

03h Console (display)

OSh Parallel printer

08h Disk

If the driver supports a type of device not listed, the giCategory field must
specify an 8-bit number that uniquely identifies the device. The driver must
check this value.

giMinorCode Specifies the minor code for Interrupt 21h Function 440Ch,
Generic IOCTL for Character Devices. The meaning of the minor code depends
on the device category. For serial, console, and parallel drivers, it can be one of
the following:

Minor Code Function

4Sh

-4Ah

4Ch

4Dh

65h

Set Iteration Count

Select Code Page

Start Code-Page Prepare

End Code-Page Prepare

Get Iteration Count

Minor Code

Generic IOCTL (Device-Driver Function 13h) 423

Function

6Ah Query Selected Code Page

6Bh Query Code-Page Prepare List

For disk drivers, the value specifies the minor code for Interrupt 21h Function
440Dh, Generic IOCTL for Block Devices. It can be one of the following:

Minor Code Function

40h

41h

42h

46h

60h

61h

62h

66h

68h

Set Device Parameters

Write Track on Logical Drive

Format Track on Logical Drive

Set Media ID

Get Device Parameters

Read Track on Logical Drive

Verify Track on Logical Drive

Get Media ID

Sense Media Type

Comments

See Also

Drivers can support additional minor codes as needed.

giReserved2 Reserved; do not use.

giIOCTLData Contains a 32-bit address (segment:offset) of the structure
associated with the specified IOCTL function. The structure type and contents
depend on the minor code as specified by the giMinorCode field.

The driver must interpret the category and minor codes to determine which
operation to carry out and then return any applicable information in the struc­
ture pointed to by the giIOCTLData field.

MS-DOS calls this function only if bit 6 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function 19h Query IOCTL
Interrupt 21h Function 440Ch Generic IOCTL for Character Devices
Interrupt 21h Function 440Dh Generic IOCTL for Block Devices

424 Get Logical Device (Device-Driver Function 17h)

• Get Logical Device (Device-Driver Function 17h)

LOGDEVICEREQUEST STRUC
ldrLength db?
ldrUnit db ?

ldrFunction db 17h
ldrStatus dw?
ldrReserved db 8 dup(?)

LOGDEVICEREQUEST ENDS

;length of record, in bytes
;INPUT: unit number for drive to check
;OUTPUT: active drive number
; function number
;status
; reserved

Fields

Get Logical Device (Device-Driver Function 17h) returns the active drive
number for the specified drive.

This function is used for block-device drivers only.

IdrLength Specifies the length, in bytes, of the LOGDEVICEREQUEST
structure.

IdrUnit Contains the device number to check and receives the active drive
number. The following table describes input and output:

Input/Output Description

Input

Output

Specifies the drive number to check. The driver must deter­
mine whether the unit associated with this drive number has
any other logical-drive numbers.

Specifies the active drive number (l=aA, 2m B, 31ll1lC, etc.). The
driver must set this field to the drive number set by the most
recent call to Set Logical Device (Device-Driver Function 18h)
or to zero if the specified drive has no other logical-drive
numbers.

Comment

See Also

IdrFunction Specifies the Get Logical Device function: 17h.

IdrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

IdrReserved Reserved. Do not use.

MS-DOS calls this function only if bit 6 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function 18h Set Logical Device
Interrupt 21h Function 440Eh Get Logical Drive Map

Set Logical Device (Device-Driver Function 18h) 425

• Set Logical Device (Device-Driver Function 18h)
LOGDEVICEREQUEST

ldrLength
ldrUnlt
ldrFunctlon
ldrStatus
ldrReserved

LOGDEVICEREQUEST

STRUC
db ?
db ?
db l8h
dw ?
db 8 dup (?)
ENDS

;length of record, in bytes
;unlt number
;functlon number
;status
; reserved

Fields

Comment

See Also

Set Logical Device (Device-Driver Function 18h) sets the active drive number to
the drive specified by the IdrUnit field.

This function is used for block-device drivers only.

IdrLength Specifies the length, in bytes, of the LOGDEVICEREQUEST
structure.

IdrUnit Specifies the device to make active. This field contains a zero-based
drive number.

IdrFunction Specifies the Set Logical Device function: 18h.

IdrStatus Specifies the status of the completed function. If the function is
successful, the driver must set the done bit (bit 8). Otherwise, the driver must
set both the error and done bits (bits 15 and 8) and copy an error value to the
low-order byte.

MS-DOS calls this function only if bit 6 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function 17h Get Logical Device
Interrupt 21h Function 440Fh Set Logical Drive Map

426 IOCTL Query (Device-Driver Function 19h)

• IOCTL Query (Device-Driver Function 19h)

length of record, in bytes
unit number (block device only)
function number
status
reserved
INPUT: device category
INPUT: minor code
reserved
INPUT: IOCTL data address

1
1
19h
1
8 dup (1)
1
1
1
1

STRUC
db
db
db
dw
db
db
db
dd
dd

IOCTLREQUEST
giLength
giUnit
giFunction
giStatus
giReserved1
giCategory
giMinorCode
giReserved2
giIOCTLData

IOCTLREQUEST ENDS

IOCTL Query (Device-Driver Function 19h) determines whether a given generic
IOCTL function (minor code) is supported by the driver.

This function can be used for both block- and character-device drivers.

Fields

Comments

See Also

giLength Specifies the length, in bytes, of the IOCTLREQUEST structure.

giUnit Specifies the device the request is for. This field is used for block­
device drivers only.

giFunction Specifies the IOCTL Query function: 19h.

giStatus Receives the status of the query. If the driver does not support the
given generic IOCTL function, it must set the error and done bits (bits 15 and 8)
and set the low-order 8 bits to error value 03h (Unknown Function). Otherwise,
it must set the done bit.

giReservedl Reserved; do not use.

giCategory Specifies the device category of the generic IOCTL function to be
checked.

giMinorCode Specifies the minor code of the generic IOCTL function to be
checked.

giReserved2 Reserved; do not use.

giIOCTLData This field is not used by this function and must not be
changed.

MS-DOS calls this function only if bit 7 is set in the dhAttributes field of the
DEVICEHEADER structure for the driver. For a full description of the
DEVICEHEADER structure, see Section 9.9, "Structures."

Device-Driver Function 13h Generic IOCTL
Interrupt 21h Function 4410h Query IOCTL Handle
Interrupt 21h Function 4411h Query IOCTL Device

Chapter 9: Device Drivers 427

9.9 Structures
This section describes the structures MS-DOS uses with device-driver functions.

428 BPB

• BPS

BPB STRUC
bpbBytesPerSec dw ?
bpbSecPerClust db ?
bpbResSectors dw ?
bpbFATs db ?
bpbRootDirEnts dw ?
bpbSectors dw?
bpbMedia db ?
bpbFATsecs dw?
bpbSecPerTrack dw ?
bpbHeads dw ?
bpbHiddenSecs dd ?
bpbHugeSectors dd ?

BPB ENDS

bytes per sector
sectors per cluster
number of reserved sectors
number of file allocation tables
number of root-directory entries
total number of sectors
media descriptor
number of sectors per FAT
sectors per track
number of heads .
number of hidden sectors
number of sectors if bpbSectors = 0

Fields

The BPB structure contains information that defines the format of a disk or
other storage medium.

bpbBytesPerSec Specifies the number of bytes per sector.

bpbSecPerClust Specifies the number of sectors per cluster. The sectors
must be consecutive and a power of 2.

bpbResSectors Specifies the number of reserved sectors on the drive, begin­
ning with sector o. Typically, this value is 1 (for the startup sector), unless the
disk-drive manufacturer's software reserves additional sectors.

bpbFATs Specifies the number of file allocation tables (FATs) following the
reserved sectors. Most versions of MS-DOS maintain one or more additional
copies of the FAT and use the extra copies to recover data on the disk if the
first FAT is corrupted.

bpbRootDirEnts Specifies the maximum number of entries in the root
directory.

bpbSectors Specifies the total number of sectors on the drive. If the size of
the drive is greater than 32 MB, this field is zero and the number of sectors is
specified by the bpbHugeSectors field.

bpbMedia Specifies the.media descriptor, a value in the range OOh through
OFFh that identifies the type of medium or disk in a drive. Some device drivers
use the media descriptor to determine quickly whether the removable medium in
a drive has changed. MS-DOS passes the media descriptor to the device driver
so that programs can check the type of medium. Also, the first byte in the FAT
is often (but not always) identical to the media descriptor.

Following are the most commonly used media descriptors and their correspond­
ing media:

Value Type of medium

OFOh

OF8h

OF9h

OFAh
OFBh

3.5-inch, 2 sides, 18 sectors/track (1.44 MB); 3.S-inch, 2 sides, 36
sectors/track (2.88· MB); 5.25-inch, 2 sides, 15 sectors/track (1.2 MB).
This value is also used to describe other media types.

Hard disk, any capacity.

3.S-inch, 2 sides, 9 sectors/track, 80 tracks/side (720K); 5.25-inch,
2 sides, 15 sectors/track, 40 tracks/side (1.2 MB).

5.25-inch, 1 side, 8 sectors/track, (320K).

3.5-inch, 2 sides, 8 sectors/track (640K).

Value

OFCh

OFDh

OFEh

OFFh

DEVICEHEADER 429

Type of medium

5.25-inch, 1 side, 9 sectors/track, 40 tracks/side (l80K).

5.25-inch, 2 sides, 9 sectors/track, 40 tracks/side (360K). This value is
also used for 8-inch disks.

5.25-inch, 1 side, 8 sectors/track, 40 tracks/side (l60K). This value is
also used for 8-inch disks.

5.25-inch, 2 sides, 8 sectors/track, 40 tracks/side (320K).

bpbFATsecs Specifies the number of sectors occupied by each FAT.

bpbSecPerTrack Specifies the number of sectors per track.

bpbHeads Specifies the number of read/write heads on the drive.

bpbHiddenSecs Specifies the number of hidden sectors on the drive.

bpbHugeSectors Specifies the number of sectors if the bpbSectors field is
zero. This value supports drives larger than 32 MB.

• DEVICEHEADER
DEVICEHEADER STRUC

dhLlnk
dhAttrlbutes
dhStrategy
dhInterrupt
dhNameOrUnlts

DEVICEHEADER ENDS

dd 1
dw 1
dw 1
dw 1
db '11111111'

;link to next driver
;device attributes
;strategy-routine offset
;lnterrupt-routlne offset
;loglcal-devlce name
; (character device only)
;or number of units
; (block device only)

Fields

The DEVICEHEADER structure contains information about a device driver.

dhLink Points to the next driver in the device-driver chain. For the last driver
in the chain, this field is OFFFFh.

dhAttributes Specifies device attributes. The meaning of an individual bit in
this field depends on the device type as specified by bit 15. Any bits in this field
that are not used must be zero.

For character devices (bit 15 is 1), the field has the following attributes:
Bit Description

o 1 1:1 Standard input (STDIN) device.

1 1 1:1 Standard output (STDOUT) device.

2 1 z= NUL device.

3 1 as Clock device.

4 1 z= Special device; fast character output.

S Reserved; must be zero.

6 1 ::II Driver supports Generic IOCTL (Device-Driver Function 13h).

7 1 - Driver supports Query IOCTL (Device-Driver Function 19h).

8-10 Reserved; must be zero.

430 DEVICEHEADER

Bit Description

11 1 ;:g Device supports Open Device and Close Device (Device-Driver
Functions ODb and OEb).

12 Reserved; must be zero.

13 1 = Driver supports Output Until Busy (Device-Driver Function 10h).

14 1 = Driver supports IOCTL Read and IOCTL Write (Device-Driver
Functions 03h and OCh).

15 1 = Character device.

For block devices (bit 15 is 0), the field has the following attributes:
Bit Description

Reserved; must be zero.

1 sg Driver supports 32-bit sector addressing.

Reserved; must be zero.

1 = Driver supports Generic IOCTL, Get Logical Device, and Set
Logical Device (Device-Driver Functions 13b, 17h, and 18h).

1 - Driver supports Query IOCTL (Device-Driver Function 19h).

Reserved; must be zero.

1 CI: Driver supports Open Device, Close Device, and Removable Media
(Device-Driver Functions ODh, OEh, and OFh).

Reserved; must be zero.

14

12

13

7

8-10

11

o
1

2-5
6

1 = Driver requires MS-DOS to supply the first 512 bytes of the file
allocation table (FAT) whenever it calls Build BPB (Device-Driver
Function 02h).

1 as Driver supports IOCTL Read and IOCTL Write (Device-Driver
Functions 03h and OCh).

15 0 = Block device.

dhStrategy Specifies the offset of the strategy routine. The routine's segment
address is the same as for the device header.

dhInterrupt Specifies the offset of the interrupt routine. The routine's seg­
ment address is the same as for the device header.

dhNameOrUnits Specifies the logical-device name or number of units,
depending on the device type (as specified by bit 15 in the dhAttributes field).

For a character device (bit 15 is 1), all 8 bytes of this field specify the logical­
device name. If the name has fewer than eight characters, the remaining bytes
must be space characters (ASCII20h).

For a block device (bit 15 is 0), the first byte of this field specifies the number of
units (drives) this driver supports; the remaining bytes are reserved.

See Also Interrupt 24h Critical-Error Handler
Interrupt 2Fh Function Ol06h Get Printer Device

REQUESTHEADER 431

• REQUESTHEADER
REQUESTHEADER

rhLength
rhUnit
rhFunction
rhStatus
rhReserved

REQUESTHEADER

STRUC
db ?
db ?
db ?
dw ?
db 8 dup (?)
ENDS

length of record, in bytes
unit number (block device only)
function number
status
reserved

Fields

The REQUESTHEADER structure contains information about a device-driver
function.

rhLength Specifies the length of the record, in bytes.

rhUnit Identifies the device-driver function the request is for. For example, if
the driver defines three functions, this field will contain 0, 1, or 2.

rhFunction Specifies the action to be performed by the device driver. This
field can be one of the following:

Value Function

OOh Init

Olh Media Check

02h Build BPB

03h IOCTL Read

04h Read

OSh Nondestructive Read

06h Input Status

07h Input Flush

08h Write

09h Write with Verify

OAh Output Status

OBh Output Flush

OCh IOCTL Write

ODh Open Device

OEh Close Device

OFh Removable Media

10h Output Until Busy

13h Generic IOCTL

17h Get Logical Device

18h Set Logical Device

19h IOCTL Query

rhStatus Specifies the status of the request when the device-driver interrupt
routine returns control to MS-DOS. This field must be zero before MS-DOS

432 REQUESTHEADER

calls the interrupt routine, which must set one or more bits in the field before
returning to MS-DOS. The bits in this field have the following meanings:

Bit Meaning

0-7 Specify an error value, but only if bit IS is set. If an error occurs, the
interrupt routine must set bit IS and copy an error value to these bits.
The error value can be one of the following:
Error Meaning

OOh Write-protect violation

Olh Unknown unit

02h Drive not ready

03h Unknown command

04h CRC error

OSh Incorrect length for drive-request structure

06h Seek error

07h Unknown media

08h Sector not found

09h Printer out of paper

OAh Write fault

OBh Read fault

OCh General failure

ODh Reserved

OEh Reserved

OFh Invalid disk change

8 Specifies whether the operation has completed. If this bit is set, the
operation is done.

9 Specifies whether the device is busy. If this bit is set, the device is busy.
This bit is set only by Input Status, Output Status, and Removable
Media (Device-Driver Functions 06h, OAh, and OFh).

15 Specifies whether an error occurred. If this bit is 1, bits 0 through 7 of
the rhStatus field contain an error value.

rbReserved Reserved; do not use.

All other bits are reserved and must be zero.

Appendix

A

Code Pages

(

Appendix A: Code Pages 435

This appendix contains code-page tables for the six code pages included with
MS-DOS version 5.0.

437 United States
0 32 64 @ 96 .. 128 ~ 160 a 192 L 224 «
1l:J 33 ! 65 A 97 a 129 U 161 i 193 .1 225 R
2 II 34 .. 66 B 98 b 130 e 162 6 194 T 226 r
3 • 35 • 67 C 99 C 131 a 163 ([195 ~ 227 U

4 • 36 $ 68 D 100 d 132 a 164 ii 196 - 228 I
5 !Qt 37 X 69 E 101 e 133 a 165 " 197 t 229 0-

6 • 38 II 70 F 102 r 134 a 166 !! 198 ~ 230 JJ

7 • 39 I 71 G 103 g 135 ~ 167 !! 199 II 231 T

8 a 40 (72 H 104 h 136 e 168 ~ 200 n 232 ~

9 0 41) 73 I 105 i 137 e 169 r 201 Ii 233 e
10 I 42 * 74 J 106 j 138 e 170 , 202 !! 234 n
11 (J 43 + 75 K 107 k 139 i 171 ~ 203 j 235 (i

12 V 44 I 76 L 108 I 140 i 172 ~ 204 It 236 CD

13 r 45 77 11 109 I'll 141 1 173 i 205 237 "14 n 46 78 tI 110 n 142 A 174 « 206 Jl 238 Elr
15 ale 47 ;I 79 0 III 0 143 A 175 » 207 :b 239 n
16 .. 48 a 80 p 112 P 144 E 176 ~m 208 Jl 240 -
17 ~ 49 1 81 Q 113 q 145 ~ 177 I 209 T 241 ±

18 * 50 2 82 R 114 r 146 fI 178 I 210 11 242 ~

19 !! 51 3 83 S 115 S 147 0 179 I 211 n 243 i
20 en 52 1 84 T 116 t 148 ii 180 -I 212 b 244 r
21 § 53 5 85 U 117 U 149 0 181 i 213 r 245 J
22 - 54 6 86 U 118 U 150 i1 182 11 214 n 246

23 I 55 7 87 W 119 W 151 U 183 11 215 * 247 =
24 t 56 8 88 X 120 X 152 ij 184 , 216 t 248 0

25 J. 57 9 89 Y 121 Y 153 i:i 185 11 217 J 249

26 ~ 58 90 Z 122 Z 154 U 186 II 218 r 250

27 .. 59 91 [123 { 155 C 187 11 219 I 251 ,f
28 L 60 < 92 , 124 156 £ 188 :II 220 • 252 n
29 .. 61 = 93] 125 } 157 ¥ 189 .u 221 I 253 :2

30 ... 62 > 94 A 126 - 158 ft 190 ::I 222 I 254 •
31 • 63 '1 95 - 127 6 159 f 191 1 223 • 255

436 MS-DOS Programmer's Reference

850 Multilingual (Latin I)

0 32 64 g 96 .. 128 ~ 160 a 192 L 224
,
0

11:) 33 ! 65 A 97 a 129 U 161 i 193 J. 225 R

2 "
34 u 66 B 98 b 130 e 162 6 194 T 226 0

3 • 35 • 67 C 99 C 131 a 163 U 195 ~ 227 0
4 • 36 $ 68 D 100 d 132 a 164 Ii 196 - 228 0
5 -Qa 37 X 69 E 101 e 133 a 165 " 197 t 229 0
6 • 38 8: 70 F 102 r 134 a 166 !!: 198 a 230 JI

7 • 39 I 71 G 103 g 135 ~ 167 !! 199 A 231 IJ

8 a 40 (72 H 104 h 136 e 168 L 200 U 232 IJ
9 0 41) 73 I 105 i 137 e 169 ® 201 11 233 U

10 I 42 * 74 J 106 j 138 '" 170 202 :D 234 0e ,
11 8 43 + 75 K 107 k 139 1 171 ~ 203 11 235 U
12 V 44 , 76 L 108 1 140 i 172 ~ 204 It 236 Y
13 r 45 77 M 109 I\'l 141 i 173 i 205 237 Y
14 fJ 46 78 " 110 n 142 A 174 « 206 Jl 238lJ
15 • 47 / 79 0 III 0 143 A 175 » 207 a 239

,

16 ~ 48 a 80 p 112 P 144 E 176 !iiI 208 6 240 -
17 ~ 49 1 81 Q 113 q 145 ~ 177 I 209 I) 241 .:!:

18 I 50 2 82 R 114 r 146 fI 178 I 210 E 242 =
19 !! 51 3 83 S 115 S 147 0 179 1 211 E 243 %
20 en 52 4 84 T 116 t 148 ii 180 -I 212 E 244 en
21 § 53 5 85 U 117 U 149 0 181 it 213 I 245 §

22 - 54 6 86 U 118 U 150 n 182 A 214 i 246

23 I 55 7 87 W 119 W 151 U 183 it 215 i 247 ...

24 t 56 8 88 X 120 X 152 ij 184 @) 216 Y 248 0

25 ... 57 9 89 Y 121 Y 153 ii 185 11 217 J 249 ..
26 ... 58 90 Z 122 Z 154 U 186 II 218 r 250

27 ~ 59 91 [123 { 155 B 187 11 219 I. 251 I

28 L 60 < 92 , 124 156 £ 188 :II 220 • 252 ~

29 .. 61 = 93] 125 } 157 H 189 C 221 253 :2

30 .& 62 > 94 A 126 - 158 x 190 ¥ 222 i 254 •
31 • 63 ? 95 127 6 159 I 191 1 223 • 255

Appendix A: Code Pages 437

852 Slavic (Latin II)

0 32 64 @ 96 .. 128 ~ 160 a 192 L 224 {)

1l:J 33 ! 65 A 97 a 129 U 161 i 193 .1 225 R
2 II 34 " 66 B 98 b 130 e 162 6 194 T 226 {j

3 • 35 • 67 C 99 C 131 a 163 U 195 ~ 227 "4 • 36 $ 68 D 100 d 132 a 164 f\ 196 - 228 Ii
5 -0- 37 % 69 E 101 133

0
165 t\ 197 t 229 ne u

6 • 38 II 70 F 102 r 134 c 166 Z 198 A 230 S
7 • 39 I 71 G 103 g 135 ~ 167 Z 199 a 231 S
8 a 40 (72 H 104 h 136 I' 168 ~ 200 I! 232 R
9 0 41) 73 I 105 i 137 e 169 ~ 201 If 233 U

10 I 42 * 74 J 106 j 138 0 170 202 :II: 234 r
11 cf 43 + 75](107 k 139 ii 171 Z 203 11 235 (j
12 V 44 I 76 L 108 1 140 i 172 C 204 It 236 Y
13 r 45 77 M 109 1\1 141 Z 173 ~ 205 237 Y
14 n tt A Jl

~46 78 110 n 142 174 « 206 lJ 238

15 • 47 / 79 0 111 0 143 C 175 » 207 a 239 ,
16 .. 48 a 80 p 112 P 144 E 176 m! 208 It 240 -
17 ~ 49 1 81 Q 113 q 145 i. 177 I 209 I) 241

18 ~ 50 2 82 R 114 r 146 i 178 II 210 D 242 "
19 !! 51 3 83 S 115 S 147 0 179 1 211 E 243 v

20 en 52 4 84 T 116 t 148 ii 180 1 212 d 244 lui

21 § 53 5 85 U 117 U 149 L 181 it 213 " 245 §

22 - 54 (] 86 U 118 U 150 i 182 A 214 i 246

23 I 55 7 87 W 119 1rJ 151 S 183 E 215 i 247 ..Jo

24 t 56 8 88 X 120 X 152 S 184 ~ 216 e 248 0

25 j. 57 9 89 Y 121 Y 153 ii 185 11 217 J 249 ..
26 ... 58 90 Z 122 Z 154 U 186 II 218 r 250 +

27 +- 59 91 [123 { 155 T 187 11 219 I 251 U
28 L 60 < 92 , 124 156 t 188 :II 220 • 252 R
29 .. 61 = 93] 125 } 157 t 189 Z 221 I 253 r
30 .& 62 > 94 126 - 158 x 190 Z 222

0
254 •A U

31 • 63 ? 95 127 10 159 C 191 1 223 • 255-

438 MS-DOS Programmer's Reference

860 Portuguese
0 32 64 @ 96

,
128 ~ 160

,
192 L 224 ex:a

l(:l 33 ! 65 A 97 a 129 U 161 i 193 J. 225 R
2 I 34 IU 66 B 98 b 130

,
162 6 194 T 226 re

3 • 35 I 67 C 99 C 131 a 163 6 195 ~ 227 11

4 • 36 $ 68 D 100 d 132 a 164 ii 196 - 228 E
5 -Q- 37 X 69 E 101 e 133 " 165 A 197 t 229 0"a
6 • 38 It 70 F 102 r 134 it 166 !I 198 t 230 JI

7 • 39
,

71 G 103 9 135 ~ 167 2 199 II 231 T

8 a 40 (72 H 104 h 136 e 168 L 200 B 232 I
) I i

.
" II e9 0 41 73 105 137 E 169 0 201 233

10 I 42 * 74 J 106 j 138 e 170 , 202 JI 234 R
11 8 K k " ~ j 643 + 75 107 139 I 171 203 235

12 V 44 , 76 L 108 I 140 0 172 " 204 It 236 CD

13 r 45 77 11 109 m 141 1 173 i 205 == 237 pi

14 n 46 78 tt 110 n 142 A 174 « 206
Jl 238 E. 11

15 aGe 47 ;' 79 0 111 0 143 A 175 » 207 d: 239 n
16 ~ a p p

,
176 illl 208 .II 24048 80 112 144 E -

17 ~ 49 1 81 Q 113 q 145 i- 177 I 209 T 241 ±
18 ~ 2 R " 178 I 210 11 242 250 82 114 r 146 E

19 !! 51 3 83 S 115 S 147 6 179 I 211 II 243 ~

20 en 52 4 84 T 116 t 148 0 180 -I 212 b 244 r
21 § 53 5 85 U 117 U 149 0 181 i 213 r 245 J

£. U
,

it If22 - 54 86 118 U 150 U 182 214 246 +
23 I 55 7 87 W 119 W 151 U 183 1 215 f 247 =

8 X " , t 0
24 f 56 88 120 X 152 I 184 216 248

25 .J, 57 9 89 Y 121 Y 153 ii 185 11 217 J 249

26 ~ 58 90 Z 122 Z 154 U 186 II 218 r 250

27 +- 59 91 [123 { 155 C 187 I 219 I 251 J
28 L 60 < 92 , 124 156 £ 188 :II 220 • 252 n

] } " .u 221 I 253 2
29 * 61 = 93 125 157 U 189

30 .& 62 > 94 A 126 - 158 R 190 :I 222 I 254 •
31 ." 63 ? 95 _ 127 6 159 0 191 1 223 • 255

Appendix A: Code Pages 439

863 Canadian-French
0 32 64 @ 96 .. 128 ~ 160 192 L 224 u:
11:) 33 ! 65 A 97 a 129 U 161 ~ 193 ~ 225 R
2 II 34 " 66 B 98 b 130 e 162 6 194 T 226 r
3 • 35 • 67 C 99 C 131 a 163 6 195 ~ 227 U

4 • 36 $ 68 D 100 d 132 A 164
..

196 - 228 I
5 !Q- 37 X 69 E 101 e 133 a 165 .. 197 t 229 0-

6 • 38 II 70 F 102 r 134 en 166 3 198 ~ 230 jJ

7 • 39 I 71 G 103 g 135 ~ 167 199 II 231 T

8 a 40 (72 H 104 h 136 e i68 i 200 II 232 ~

9 0 41) 73 I 105 i 137 e 169 r 201 Ji 233 e
10 II 42 * 74 J 106 j 1.38 e 170 , 202 :!! 234 R
11 d 43 + 75 K 107 k 139 I 171 ~ 203 ii 235 (i

12 V 44 76 L 108 I 140
A

172 ~ 204 It 236 mI 1

13 r 45 77 M 109 .,. 141 = 173 % 205 237 IS
14 11 46 78 " 110 n 142 it 174 « 206 Jl 238 Elr
15 =Ie 47 / 79 0 III 0 143 § 175 » 207 J: 239 n
16 ~ 48 9 80 P 112 P 144 E 176 m~ 208 Jl 240 -
17 ~ 49 1 81 Q 113 q 145 E 177 I 209 T 241 ±
18 S 50 2 82 R 114 r 146 E 178 II 210 11 242 ~

19 II 51 3 83 S 115 S 147 0 179 I 211 n 243 ~

20 en 52 4 84 T 116 t 148 E 180 -t 212 b 244 r
21 § 53 5 85 U 117 U 149 I 181 i 213 r 245 J
22 - 54 6 86 U 118 U 150

A
182 il 214 n 246U

23 I 55 ? 87 W 119 W 151 U 183 11 215 f 247 ::

24 f 56 B 88 X 120 X 152 0 184 , 216 t 248 0

25 J, 57 9 89 Y 121 Y 153 0 185 11 217 J 249

26 -+ 58 90 2 122 Z 154 U 186 II 218 r 250

27 of- 59 91 [123 { 155 C 187 11 219 I 251 J
28 L 60 < 92 , 124 156 £ 188 :U 220 • 252 11

29 eo 61 = 93] 125 } 157 U 189 .u 221 I 253 :2

30 .. 62 > 94 A. 126 - 158 0 190 :I 222 I 254 •
31 .,. 63 ? 95 127 6 159 I 191 1 223 • 255-

440 MS-DOS Programmer's Reference

865 Nordic
0 32 64 @ 96 .. 128 ~ 160 a 192 L 224 It

It:) 33 ! 65 A 97 a 129 ii 161 i 193 .L 225 R
2 ., 34 IU 66 B 98 b 130 e 162 6 194 T 226 r
3 • 35 • 67 C 99 C 131 a 163 U 195 ~ 227 n
4 • 36 $ 68 D 100 d 132 a 164 ii 196 - 228 1:
5 -Q- 37 % 69 E 101 e 133 a 165 " 197 t 229 0"

6 • 38 a 70 F 102 f 134 a. 166 !! 198 ~ 230 jJ

7 • 39 I 71 G 103 9 135 ~ 167 !! 199 II 231 T

8 a 40 (72 H 104 h 136 e 168 b 200 II 232 ~

9 0 41) 73 I 105 i 137 e 169 r 201 Ii 233 a
10 I 42 * 74 J 106 j 138 e 170 , 202 :!! 234 R
11 8 43 + 75](107 k 139 I 171 ~ 203 11 235 6
12 ~ 44 , 76 L 108 I 140 i 172 ~ 204 It 236 m

13 r 45 77 n 109 m 141 I 173 i 205 = 237 -14 II 46 78 tt 110 n 142 A 174 « 206 it 238 E
15 ale 47 / 79 0 111 0 143 A· 175 a 207 :I: 239 n
16 ~ 48 0 80 P 112 P 144 E 176 m! 208 .II 240 -
17 ~ 49 1 81 Q 113 q 145 ~ 177 I 209 T 241 ±
18 ~ 50 2 82 R 114 r 146 fI 178 II 210 11 242 2
19 !! 51 3 83 S 115 S 147 0 179 I 211 U 243 i
20 en 52 4 84 T 116 t 148 i:i 180 -I 212 b 244 r
21 § 53 5 85 U 117 U 149 0 181 i 213 r 245 J
22 - 54 6 86 U 118 U 150 U 182 11 214 II 246 "'i'"

23 I 55 7 87 W 119 W 151 U 183 11 215 fI 247 =
24 t 56 8 88 X 120 X 152 Y 184

,
216 t 248 0

25 ... 57 9 89 Y 121 Y 153 i:i 185 11 217 J 249

26 -+ 58 90 Z 122 Z 154 U 186 II 218 r 250

27 +- 59 91 [123 { 155 S 187 11 219 I 251 J
28 L 60 < 92 , 124 156 £ 188 :II 220 • 252 n

29 .. 61 = 93] 125 } 157 B 189 JI 221 I 253 2

30 .& 62) 94 A 126 - 158 II 190 :I 222 I 254 •
31 •

63 '1 95 127 6 159 I 191 1 223 • 255

Appendix

B

Extended Key Codes

Appendix B: Extended Key Codes 443

Extended key codes are 2-byte character values generated whenever the user
presses certain keys and key combinations. MS-DOS system functions, such as
Read File or Device (Interrupt 21h Function 3Fh), retrieve these extended key
codes when reading from the keyboard. The following table lists the keys and
key combinations that generate extended key codes:

Key Alone SHIFT+ CTRL+ ALT+

FI 0;59 0;84 0;94 0;104

F2 0;60 0;85 0;95 0;105

F3 0;61 0;86 0;96 0;106

F4 0;62 0;87 0;97 0;107

F5 0;63 0;88 0;98 0;108

F6 0;64 0;89 0;99 0;109

F1 0;65 0;90 0;100 0;110

F8 0;66 0;91 0;101 0;111

F9 0;67 0;92 0;102 0;112

FlO 0;68 0;93 0;103 0;113

HOME 0;71 55 0;119

UPARROW 0;72 56

PAGE UP 0;73 57 0;132

LEFT ARROW 0;75 52 0;115

RIGHT ARROW 0;77 54 0;116

END 0;79 49 0;117

DOWN ARROW 0;80 50

PAGE DOWN 0;81 51 0;118

INS 0;82 48

DEL 0;83 46

PRINT SCREEN 0;114

A 97 65 1 0;30

B 98 66 2 0;48

C 99 67 3 0;46

D 100 68 4 0;32

E 101 69 5 0;18

F 102 70 6 0;33

G 103 71 7 0;34

444 MS-DOS Programmer's Reference

Key Alone SHIFT+ CTRL+ ALT+

H 104 72 8 0;35

I 105 73 9 0;23

J 106 74 10 0;36

K 107 7S 11 0;37

L 108 76 12 0;38

M 109 77 13 0;50

N 110 78 14 0;49

0 111 79 15 0;24

P 112 80 16 0;25
Q 113 81 17 0;16

R 114 82 18 0;19

S 115 83 19 0;31

T 116 84 20 0;20

U 117 85 21 0;22

V 118' 86 22 0;47

W 119 87 23 0;17

X 120 88 24 0;45

Y 121 89 25 0;21

Z 122 90 26 0;44

1 49 33 0;120

2 50 64 0;121

3 51 35 0;122

4 52 36 0;123

5 53 37 0;124

6 54 94 0;125

7 55 38 0;126

8 56 42 0;127

9 57 40 0;128

0 48 41 0;129

45 95 0;130

61 43 0;131

TAB 0 0;15

Null 0;3

Appendix

C

Error Values

Appendix C: Error Values 447

Most of the Interrupt 21h function requests introduced with MS-DOS versions
2.0 and later set the carry flag if there is an error and identify the specific error
by returning a number in the AX register. The following are the values that can
be returned by functions, including Interrupt 21h Function 59h (Get Extended
Error), and that are used in the ERROR structure in conjunction with Interrupt
21h Function SDOAh (Set Extended Error):

Value

OOOlh

0002h

0003h

0004h

OOOSh

0006h

0007h

0008h

0009h

OOOAh

OOOBh

OOOCh
OOODh

OOOFh

OOlOh

OOllh

OO12h

OO13h
OO14h
OO15h

OO16h

OO17h

OO18h
0019h

OOlAh

OOlBh

00lCh

OOlDh

Name

ERRORJNVALIDYUNCTION

ERRORYILE_NOTYOUND

ERRORYATHLNOTYOUND

ERROR-TOO.-MANY_OPEN.YILES

ERROILACCESSJ)ENIED

ERRORJNVALID~ANDLE

ERROILARENA-TRASHED

ERROR-NOT-ENOUG~EMORY

ERRORJNVALID.J3LOCK

ERROILBAD-ENVIRONMENT

ERROILBADYORMAT

ERRORJNVALID~CCESS

ERRORJNVALIDJ)ATA

ERRORJNVALIDJ)RIVE

ERROR-CURRENTJ)IRECTORY

ERROR-NOT_SAMEJ)EVICE

ERROR-NO.-MORE_FILES

ERROR-~E-PROTECT

ERROILBAD_LTNIT

ERROR-NOT-.READY

ERROILBAD_COMMAND

ERROR-CRC

ERROILBAD-LENGTH

ERROR-SEEK

ERROR-NOTJ)OSJ)ISK

ERROR-SECTOR-NOT-FOUND

ERROR-OUT_OF-PAPER

ERROR-WRITEYAULT

448 MS-DOS Programmer's Reference

Value

00lEh

00lFh

0020h

0021h

0022h

0023h

0024h

0025h

0026h

0027h

0032h

0033h

0034h

0035h

0036h

0037h

0038h

0039h

003Ah

003Bh

003Ch

003Dh

003Eh

003Fh

0040h

0041h

0042h

0043h

0044h

0045h

0046h

0047h

0048h

Name

ERROlLREADJAULT

ERROlLGENYAlLURE

ERROlLSHARING_VIOLATION

ERROILLOCLVIOLATION

ERROlLWRONGJ>ISK

ERROILFCB_UNAVAILABLE

ERROlLSHARING-.BUFFEILEXCEEDED

ERROlLCODEJAGE~ISMATCHED

ERROILHANDLEJ,OF

ERROILHANDLEJ>ISKYULL

ERRO~OT_SUPPORTED

ERROILREM-NOT-LIST

ERRORJ>UP_NAME

ERROILBAD_NETPATH

ERROlLNETWORK-BUSY

ERRORJ>EV_NOT-EXIST

ERROlLTOO~ANY_CMDS

ERROR-ADAP~DW-ERR

ERROILBAD_NETJRESP

ERROlLUNEXP_NET-.ERR

ERROILBADJREM.-A,DAP

ERROILPRINTQ..FULL

ERROlLNO_SPOOL_SPACE

ERROILPRINT_CANCELLED

ERRO~ETNAMEJ>ELETED

ERROlLNETWORK-ACCESSJ>ENIED

ERROILBADJ>EV_TYPE

ERROILBAD_NET_NAME

ERROlLTOO~ANY_NAMES

ERROlLTOO~ANY_SESS

ERROILSHARINGJlAUSED

ERROILREQ_NOT-ACCEP

ERROILREDIILPAUSED

Value

0050h

0051h

0052h

0053h

0054h

0055h

0056h

0057h

0058h

005Ah

Appendix C: Error Values 449

Name

ERROILFILE-.EXISTS

ERROR,J>UPyeB

ERROR-CANNOT_MAKE

ERROR-FAILJ24

ERROR-OUT_OF_STRUCTURES

ERROILALREADY-ASSIGNED

ERRORJNVALIDJASSWORD

ERRORJNVALIDJARAMETER

ERROR-NET_WRITEJAULT

ERROR-SYS_COMP_NOT~OADED

Appendix

D

Task Switcher API Patch

Appendix D: Task Switcher API Patch 453

The Task Switcher API patch ensures that programs in the current session work
correctly during a session switch. Without the patch, a program may exhibit
unexpected behavior-or in rare cases, data loss-when it resumes execution
after the task switcher has processed a request to switch sessions. The problem
occurs because the task switcher inadvertantly clears the ex register; this can
affect subsequent execution of MS-DOS system functions. The patch guarantees
that the ex register· retains its value despite processing by the task switcher.

All task-switcher client programs, running under MS-DOS Task Switcher ver­
sion 5.0, must check for and install the patch each time the task switcher calls
the client's Query Suspend (Notification Function OOOlh). A client program is
any program that adds itself to the task-switcher notification chain by using
either Build Notification Chain (Interrupt 2Fh Function 4BOlh) or Hook
Notification Chain (Service Function 0004h). A client program can check the
task switcher's version number by calling Get Version (Service Function OOOOh)
and examining the returned SWVERSION structure. For MS-DOS Task
Switcher version 5.0, the svsProductMajor and svsProductMinor fields are 5
and 0, respectively.

Client programs can check for and install the patch by executing the
PatchSwapper routine given below. On entry, the client program must make sure
the ES:DI registers point to the task switcher's service-function address. This is
the same address provided by the task switcher when it calls Query Suspend.
OldCode db
NewCode db

33h,OC9h,OFBh,OE8h,lOh,O,OB8h,1,O
51h,33h,OC9h,OFBh,OE8h,OFh,O,59h,90h

PatehSwapper proe near

push ds
push cx
push si
push di

eld

push es
pop ds

;Cheek whether the code is the same.

sub
mov
lea
push
push
rep
or
pop
pop
jnz

di,73h
ex,9
si,OldCode
ex
di
empsb
ex,ex
di
ex
PSDone

;offset to the patch area

;old code
;save size, offset

;reeover

;Now patch code with new code.

lea si,NewCode
rep movsb

PSDone:
pop di
pop si
pop ex
pop ds
ret

PaiehSwapper endp

;pateh

Index
A
A20 line, 70

disabling, 70
enabling, 70

Absolute Disk Read (Interrupt 25h), 126
Absolute Disk Write (Interrupt 26h), 128
absolute read and write operations, 30
Activate Session (Notification Function 0003h), 177
Add File to Queue (Interrupt 2Fh Function 010Ih), 135
Allocate Memory (Interrupt 21h Function 48h), 328
Allocate Switcher ID (Interrupt 2Fh Function 4B03h),

156
allocation strategy, 68
allocation unit See cluster
ANSI escape sequences, 58
ANSI.SYS driver, 58
ARENA structure, 70, 78
ASCII mode, 56-57

control characters, S6
keyboard, 57
screen, 57
tabs, 56

assign list, network drives, 28
attributes

device driver, 392
file, 24

AUX
See also auxiliary device
standard device, 67

auxiliary device, S5, 58
control, 58
handle, 58
opening, 58
reading, 58
standard device, 67
status, 58
writing~ 58

Auxiliary Input (Interrupt 21h Function 03h), 214
Auxiliary Output (Interrupt 21h Function 04h), 215

B
batch files, 74
binary mode, 56-57

keyboard, 57
screen, 57

block-device driver, 391, 394
BOOTSECTOR structure, 34
BPB structure, 428

A-C 455

buffer
committing, 27
file, 26

Buffered Keyboard Input (Interrupt 21h Function OAh),
221

Build BPB (Device-Driver Function 02h), 405
Build Notification Chain (Interrupt 2Fh Function 4BOlh),

152

C
Cancel All Files in Print Queue (Interrupt 2Fh

Function 0103h), 137
carriage return-linefeed character pair, 57
Change Current Directory (Interrupt 21h Function 3Bh),

276
character device

ASCII mode, 56
binary mode, 56
closing, 55
defined, 55
1/0 mode, 56
name, 55, 394, 396
opening, 55
reading, 55
writing, 55

character inputloutput functions, 205
character-device driver, 391, 396
chcp command, 91
Check Device Input Status (Interrupt 21h

Function 4406h), 295
Check Device Output Status (Interrupt 21h

Function 4407h), 296
Check Keyboard Status (Interrupt 21h Function OBh),

222
child program, 68, 71-73

loading, 71
reallocating memory for, 68
return value, 71, 73
terminating, 71, 73
termination status, 73

clock device
date, 58
format, 58
system time, 58
time, 58

CLOCKS, 55
Close Device (Device-Driver Function OEh), 419
Close File with FCB (Interrupt 21h Function 10h), 227

456 C-D

Close File with Handle (Interrupt 21h Function 3Eh)~

281
cluster

available space, 21
file allocation table~ 32

code page
chcp command, 91
country command~ 92
country information~ 89
information files~ 93
keyboard~ 92
preparing~ 93
printer~ 92
screen~ 92
setting~ 91
system~ 92

.system default~ 91
user~ 92

CODEPAGE structure, 95
.COM program

entry point, 75
format, 75
memory requirements, 75
overview, 11
program segment prefix, 75
registers, 75
stack~ 75

COM1, 55
COM2~ 55
command tail, 66
COMMAND.COM

Ic switch, 74
batch files, 74
command tail, 66
environment block~ 66
parent program, 71

Commit File (Interrupt 21h Function 68h), 385
CON, 55-57, 67

keyboard, 56
screen, 57
standard device, 67

CONFIG.SYS
country command, 89
device command, 391
devicehigh command, 391
files command, 27
lastdrive command, 20
stacks command, 110
system configuration, 14

control
auxiliary device, 58
characters, 56
keyboard, 56
printer, 57
real-time clock ~ 58
screen~ 57

control character
CTRL+C, 56
CTRL+P, 56
CTRL+S, 56
CTRL+Z, 56

conventional memory, 68
conversions, case, 90
Convert ASCIIZ String (Interrupt 21h Function 6522h),

381
Convert Character (Interrupt 21h Function 6520h), 379
Convert String (Interrupt 21h Function 6521h), 380
country command, country information, 89
country information, 89

code page, 89
COUNTRY.SYS, 89
Nlsfunc program, 89

COUNTRY.SYS, country information, 89
COUNTRYINFO structure, 95
CPENTRYHEADER structure, 96
.CPI file, 93
CPLIST structure, 97
CPPREPARE structure, 98
Create Directory (Interrupt 21h Function 39h), 274
Create File with FCB (Interrupt 21h Function 16h), 235
Create File with Handle (Interrupt 21h Function 3Ch),

277
Create New File (Interrupt 21h Function SBh), 355
Create New PSP (Interrupt 21h Function 26h), 249
Create Session (Notification Function OOOSh), 179
Create Temporary File (Interrupt 21h Function 5Ah),

354
Critical-Error Handler (Interrupt 24h), 122
critical-error handler, removable media, 21
CTRL+C control character, S6
CTRL+C Handler (Interrupt 23h), 120
CTRL+P control character, 56
CTRL+S control character, 56
CTRL+Z control character, 56
current directory, 22
custom interrupt handler, standard device, 68

D
date

format, 89
setting, 58

Delete File (Interrupt 21h Function 41h), 284
Delete File with FCB (Interrupt 21h Function 13h), 232
Delete Network Connection (Interrupt 21h

Function 5F04h), 366
Destroy Session (Notification Function 0006h), 180
Detect Switcher (Interrupt 2Fh Function 4B02h), 154

device
block, 391
character, 391
driver, 391
national language support, 89
parameter block, 30
standard auxiliary, 67
standard error, 67
standard input, 67
standard output, 67
standard printer, 67

device driver
attributes, 392
block, 391, 394
character, 391, 396
defined, 391
device command, 391
devicehigh command, 391
drive number, 395
format, 391
function requests, 397
header, 392
initialization, 398
installable, 391
interrupt routine, 394
memory, 398
replacing, 396
request header, 397
request packets, 397
resident, 391
status, 398
strategy routine, 394

device handle, I/O mode, 56
device status

auxiliary device, 58
printer, 58

device-driver functions, 399-426
Function OOh Init, 400
Function 01h Media Check, 403
Function 02h Build BPB, 405
Function 03h IOCTL Read, 407
Function 04h Read, 408
Function 05h Nondestructive Read, 410
Function 06h Input Status, 411
Function 07h Input Flush, 412
Function 08h Write, 413
Function 09h Write with Verify, 413
Function OAh Output Status, 415
Function OBh Output Flush, 416
Function OCh 10CTL Write, 417
Function ODh Open Device, 418
Function OEh Close Device, 419
Function OFh Removable Media, 420
Function 10h Output Until Busy, 421
Function 13h Generic 10CTL, 422

D 457

device-driver functions (continued)
Function 17h Get Logical Device, 424
Function 18h Set Logical Device, 425
Function 19h 10CTL Query, 426

DEVICEHEADER structure, 392, 429
DBVICBPARAMS structure, 36
Direct Console I/O (Interrupt 21h Function 06h), 217
Direct Console Input (Interrupt 21h Function 07h), 218
directory

attributes, 23
creating, 23
current, 22
defined, 22
management, 22
name

extension, 19
valid characters, 91

parent directory, 23
paths, 19
removing, 23
renaming, 23
root, 22
special names, 23
tree, 22

directory-management functions, 202
DIRBNTRY structure, 38
disk transfer address, file searches, 25
DISKIO structure, 40
Display Character (Interrupt 21h Function 02h), 213
Display String (Interrupt 21h Function 09h), 220
DISPLAY.SYS, code pages, 93
DISPLAYMODE structure, 62
divide-error exception, 110
Does Device Use Removable Media (Interrupt 21h

. Function 4408b), 297
dos command

high memory area, 70
upper memory blocks, 69

DPB structure, 41
drive

alias, 21
available space, 21
change-line capability, 22
custom critical-error handler, 21
default, 20
device parameter block, 30
drive map, 21
file-system type, 21
floppy disk, 21
lastdrive command, 20
logical, 20
name, 19
network, 20, 27
number, 20
removable media, 21

458 D-F

drive (continued)
reserved, 21
resetting, 27
sectors, 30, 31
volume label, 21
volume serial number, 21

drive number, 20
drive-management functions, 203
DTA See disk transfer address
Duplicate File Handle (Interrupt 21h Function 4Sh), 325

E
editing keys, 57
EMM386.EXE, upper memory blocks, 69
End Code-Page Prepare (Interrupt 21h Function 440Ch

Minor Code 4Dh), 305
End Program (Interrupt 21h Function 4Ch), 336
end-of-file character, 57
environment

block
described, 66
set command, 66

variable, 66
COMSPEC, 66
PATH, 66
TEMP, 66

ERROR structure, 78
ErrorMode flag

interrupt handlers, 111
terminate-and-stay-resident program, 116

exception handlers See interrupt handlers
exceptions, 110

custom handlers, 110
default handlers, 110
divide-error, 110

EXE program
format, 76
memory, 76
overview, 11
program i~age, 76
program segment prefix, 77
relocation, 77
relocation pointers, 76
relocation table, 76
stack, 77

EXECSTATE structure, 80
EXEHEADER structure, 81
EXTCOUNTRYINFO structure, 90, 98, 99
Extended Open/Create (Interrupt 21h Function 6Ch),

386
EXTENDEDFCB structure, 42
EXTHEADER structure, 44

F
FAT See file allocation table
FCB See file control block
FCB structure, 44
file

access type, 24
attributes, 24
buffers, 26
closing, 26
code-page information, 93
committing, 27
creating, 23
date, 25
defined, 23
deleting, 25
disk transfer address, 2S
font, 93
handle, 27
header for .EXE programs, 76
inherited, 72
input and output, 2S
lock region, 29
lock violation, 29
management, 23
moving, 2S
naming See filename
opening, 25
paths, 19
pointer, 26
program, 75, 76
reading, 25
region, 29
renaming, 25
search, 25
Share program, 29
sharing, 28
sharing modes, 28
sharing retry, 29
time, 2S
truncating, 26
writing, 2S

file allocation table, 32
clusters, 32
entries, 32
media descriptor, 32

file control block
default, 72
empty, 72

file system
available space, 21
clusters, 32
file allocation table, 32
file and directory space, ~2

low-level input and output, 29
root directory, 32

file system (continued)
sectors, 29
structures, 31
type, 21

file-control-block functions, 203
file-handle functions, 201
file-sharing functions, 203
FILECHARTABLE structure, 100, 101
FILEINFO structure, 46
filename

extension, 19
valid characters, 91

files command, handles, 27
Find First File (Interrupt 21h Function 4Eh), 338
Find First File with FCB (Interrupt 2lh Function llh),

228
Find Next File (Interrupt 21h Function 4Fh), 340
Find Next File with FCB (Interrupt 2lh Function 12h),

230
Flush Buffer, Read Keyboard (Interrupt 2lh

Function OCh), 223
font-file format, 93
FONTDATAHEADER structure, 101,102
FONTFILEHEADER structure, 101, 102
FONTINFOHEADER structure, 102, 103
Format Track on Logical Drive (Interrupt 21h

Function 440Dh Minor Code 42h), 313
Free Allocated Memory (Interrupt 21h Function 49h),

329
Free Switcher ID (Interrupt 2Fh Function 4B04h), 157
function groups, 201
function requests, 397
functions

device-driver, 399-426
Interrupt 21h, 210-388
Interrupt 2Fh, 132-170
notification" 171-181
service, 182-192
task-switching, 171-192

FVBLOCK structure, 47

G
Generic IOCTL (Device-Driver Function 13h), 422
Get Allocation Strategy (Interrupt 21h Function 5800h),

347
Get ANSI.SYS Installed State (Interrupt 2Fh

Function 1AOOh), 146
Get APPEND.EXE Directory List Address

(Interrupt 2Fh Function OB704h), 167
Get APPEND.EXE Installed State (Interrupt 2Fh

Function OB700h), 165

F-G 459

Get APPEND.EXE Modes Flag (Interrupt 2Fh
Function OB706h), 168

Get APPEND.EXE Version (Interrupt 2Fh
Function OB702h), 166

Get Assign-List Entry (Interrupt 21h Function SF02h),
362

Get ASSIGN.COM Installed State (Interrupt 2Fh
Function O6OOh), 141

Get Child-Program Return Value (Interrupt 21h
Function 4Dh), 337

Get Collate-Sequence Table (Interrupt 21h
Function 6506h), 375

Get CTRL+C Check Flag (Interrupt 21h Function 3300h),
265

Get Current Directory (Interrupt 21h Function 47h), 327
Get Date (Interrupt 21h Function 2Ah), 256
Get Default DPB (Interrupt 21h Function 1Fh), 243
Get Default Drive (Interrupt 21h Function 19h), 237
Get Default Drive Data (Interrupt 21h Function 1Bh),

239
Get Device Data (Interrupt 21h Function 44OOh), 289
Get Device Parameters (Interrupt 21h Function 440Dh

Minor Code 6Oh), 315
Get Disk Free Space (Interrupt 21h Function 36h), 271
Get Disk Transfer Address (Interrupt 2lh Function 2Fh),

261
Get Display Mode (Interrupt 21h Function 440Ch

Minor Code 7Fh), 310
Get DOSKEY.COM Installed State (Interrupt 2Fh

Function 4800h), 150
Get Double-Byte Character Set (Interrupt 21h

Function 6507h), 377
Get DPB (Interrupt 21h Function 32h), 264
Get Drive Data (Interrupt 21h Function 1Ch), 241
Get Extended Country Information (Interrupt 21h

Function 6501h), 367
Get Extended Error (Interrupt 21h Function 59h), 352
Get File Attributes (Interrupt 21h Function 4300h), 287
Get File Date and Time (Interrupt 21h Function 5700h),

345
Get File Size (Interrupt 21h Function 23h), 246
Get Filename Uppercase Table (Interrupt 21h

Function 65Q4h), 371
Get Filename-Character Table (Interrupt 21h

Function 6505h), 373
Get Global Code Page (Interrupt 21h Function 6601h),

382
Get GRAFTABL.COM Installed State (Interrupt 2Fh

Function OBOOOh), 164
Get HIMEM.SYS Entry-Point Address (Interrupt 2Fh

Function 4310h), 148
Get HIMEM.SYS Installed State (Interrupt 2Fh

Function 4300h), 147
Get InDOS Flag Address (Interrupt 21h Function 34h),

269

460 G-I

Get Interrupt Vector (Interrupt 21h Function 35h), 270
Get Iteration Count (Interrupt 21h Function 440Ch

Minor Code 65h), 300
Get KEYB.COM Country Flag (Interrupt 2Fh

Function OAD83h), 163
Get KEYB.COM Version Number (Interrupt 2Fh

Function OADBOh), 160
Get Logical Device (Device-Driver Function 17h), 424
Get Logical Drive Map (Interrupt 21h Function 440Eh),

321
Get Machine Name (Interrupt 21h Function SEOOh), 359
Get Media ID (Interrupt 21h Function 440Dh

Minor Code 66h), 319
Get MS-DOS Version (Interrupt 21h Function 3306h),

268
Get Network Installed State (Interrupt 2Fh

Function ll00h), 143
Get NLSFUNC.EXE Installed State (Interrupt 2Fh

Function 1400h), 144
Get PRINT.EXE Installed State (Interrupt 2Fh Function

0100h), 134
Get Printer Device (Interrupt 2Fh Function 0106h), 140
Get Printer Setup (Interrupt 21h Function SE03h), 361
Get PSP Address (Interrupt 21h Function 51h), 342
Get SHARE.EXE Installed State (Interrupt 2Fh

Function l000h), 142
Get Startup Drive (Interrupt 21h Function 3305h), 267
Get Time (Interrupt 21h Function 2Ch), 258
Get Upper-Memory Link (Interrupt 21h Function 5802h),

350
Get Uppercase Table (Interrupt 21h Function 6502h),

369
Get Verify State (Interrupt 21h Function 54h), 343
Get Version (Service Function OOOOh), 183
Get Version Number (Interrupt 21h Function 30h), 262
Get/Set Country Information (Interrupt 21h

Function 38h), 272

H
handle

defined, 2S
file, 2S
files command, 27
inherited, 72
limits, 27
redirection, 67
standard device, 67
system, 27

high memory area, 70
dos command, 70
running MS-DOS in, 70

HIMEM.SYS
high memory area, 70
upper memory blocks, 69

HMA See high memory area
Hold Print Jobs and Get Status (Interrupt 2Fh

Function 0104h), 138
Hook Notification Chain (Service Function 0004h), 189

I
I/O See input and output
Identify Instance Data (Interrupt 2Fh Function 4B05h),

158
InDOS flag

interrupt handlers, 111
terminate-and-stay-resident program, 116

inherited file, 72
Init (Device-Driver Function OOh), 400
Init Switcher (Notification Function OOOOh), 172
initialization routine, 114
INITREQUEST structure, 398
input and output

control functions, 31, 204, 302-320
low-level, 29
modes, 56

Input Flush (Device-Driver Function 07h), 412
Input Status (Device-Driver Function 06h), 411
input-and-output-eontrol functions, 31, 204, 302-320
installable device driver, 391
internal file buffers, 26
interrupt

chain, 112
MS-DOS, 100

default handlers, 108
extendable, 108
intercepted, 108
replaceable, 108

multiplex handlers, 112
reserved, 107, 108
ROM BIOS, 108

intercepted, 116
MS-DOS extension, 109
MS-DOS replacement, 109

service routine, 111
stacks command, 110
system, 108-110

MS-DOS extension, 109
MS-DOS replacement, 109
stacks command, 110

Interrupt 20h Terminate Program, 117
Interrupt 21h MS-DOS System Function, 118

Function OOh Terminate Program, 211
Function 01h Read Keyboard with Echo, 212

Interrupt 21h MS-DOS System Function (continued)
Function 02h Display Character, 213
Function 03h Auxiliary Input, 214
Function 04h Auxiliary Output, 215
Function 05h Print Character, 216
Function 06h Direct Console 1/0, 217
Function 07h Direct Console Input, 218
Function 08h Read Keyboard Without Echo, 219
Function 09h Display String, 220
Function OAh Buffered Keyboard Input, 221
Function OBh Check Keyboard Status, 222
Function OCh Flush Buffer, Read Keyboard, 223
Function ODh Reset Drive, 224
Function OEh Set Default Drive, 22S
Function OFh Open File with FCB, 226
Function 10h Close File with FCB, 227
Function 11h Find First File with FCB, 228
Function 12h Find Next File with FCB, 230
Function 13h Delete File with FCB, 232
Function 14h Sequential Read, 233
Function ISh Sequential Write, 234
Function 16h Create File with FCB, 235
Function 17h Rename File with FCB, 236
Function 19h Get Default Drive, 237
Function 1Ah Set Disk Transfer Address, 238
Function IBh Get Default Drive Data, 239
Function 1Ch Get Drive Data, 241
Function 1Fh Get Default DPB, 243
Function 21h Random Read, 244
Function 22h Random Write, 245
Function 23h Get File Size, 246
Function 24h Set Random Record Number, 247
Function 25h Set Intermpt Vector, 248
Function 26h Create New PSP, 249
Function 27h Random Block Read, 250
Function 28h Random Block Write, 252
Function 29h Parse Filename, 254
Function 2Ah Get Date, 256
Function 2Bh Set Date, 257
Function 2Ch Get Time, 258
Function 2Dh Set Time, 259
Function 2Eh SetlReset Verify Flag, 260
Function 2Fh Get Disk Transfer Address, 261
Function 30h Get Version Number, 262
Function 31h Keep Program, 263
Function 32h Get DPB, 264
Function 3300h Get CTRL+C Check Flag, 265
Function 3301h Set CTRL+C Check Flag, 266
Function 3305h Get Startup Drive, 267
Function 3306h Get MS-DOS Version, 268.
Function 34h Get InDOS Flag Address, 269
Function 3Sh Get Intermpt Vector, 270
Function 36h Get Disk Free Space, 271
Function 38h GetlSet Country Information, 272
Function 39h Create Directory, 274

461

Interrupt 21h MS-DOS System Function (continued)
Function 3Ah Remove Directory, 275
Function 3Bh Change Current Directory, 276
Function 3Ch Create File with Handle, 277
Function 3Dh Open File with Handle, 279
Function 3Eh Close File with Handle, 281
Function 3Fh Read File or Device, 282
Function 40h Write File or Device, 283
Function 41h Delete File, 284
Function 42h Move File Pointer, 285
Function 4300h Get File Attributes, 287
Function 4301h Set File Attributes, 288
Function 4400h Get Device Data, 289
Function 4401h Set Device Data, 290
Function 4402h Receive Control Data from Character

Device, 291
Function 4403h Send Control Data to Character

Device, 292
Function 4404h Receive Control Data from Block

Device, 293
Function 440Sh Send Control Data to Block Device,

294
Function 4406h Check Device Input Status, 295
Function 4407h Check Device Output Status, 296
Function 4408h Does Device Use Removable Media,

297
Function 4409h Is Drive Remote, 298
Function 440Ah Is File or Device Remote, 299
Function 440Bh Set Sharing Retry Count, 301
Function 440Ch Minor Code 45h Set Iteration Count,

302
Function 440Ch Minor Code 4Ah Select Code Page,

303
Function 440Ch Minor Code 4Ch Start Code-Page

Prepare, 304
Function 440Ch Minor Code 4Dh End Code-Page

Prepare, 305
Function 440Ch Minor Code 5Fh Set Display Mode,

306
Function 440Ch Minor Code 6Sh Get Iteration Count,

307
Function 440Ch Minor Code 6Ah Query Selected

Code Page, 308
Function 440Ch Minor Code 6Bh Query Code-Page

Prepare List, 309
Function 440Ch Minor Code 7Fh Get Display Mode,

310
Function 440Dh Minor Code 40h Set Device

Parameters, 311
Function 440Dh Minor Code 41h Write Track on

Logical Drive, 312
Function 440Dh Minor Code 42h Format Track on

Logical Drive, 313
Function 440Dh Minor Code 46h Set Media ID, 314

462

Interrupt 21h MS-DOS System Function (continued)
Function 440Dh Minor Code 60h Get Device

Parameters, 315
Function 440Dh Minor Code 61h Read Track on

Logical Drive, 317
Function 440Dh Minor Code 62h Verify Track on

Logical Drive, 318
Function 440Dh Minor Code 66h Get Media ID, 319
Function 440Dh Minor Code 68h Sense Media Type,

320
Function 440Eh Get Logical Drive Map, 321
Function 440Fh Set Logical Drive Map, 322
Function 4410h Query IOCTL Handle, 323
Function 4411h Query IOCTL Device, 324
Function 45h Duplicate File Handle, 325
Function 47h Get Current Directory, 327
Function 48h Allocate Memory, 328
Function 49h Free Allocated Memory, 329
Function 4Ah Set Memory Block Size, 330
Function 4BOOh Load and Execute Program, 331
Function 4BOlh Load Program, 333
Function 4B03h Load Overlay, 334
Function 4B05h Set Execution State, 335
Function 4Ch End Program, 336
Function 4Dh Get Child-Program Return Value, 337
Function 4Eh Find First File, 338
Function 4Fh Find Next File, 340
Function SOh Set PSP Address, 341
Function 51h Get PSP Address, 342
Function 54h Get Verify State, 343
Function 56h Rename File, 344
Function 5700h Get File Date and Time, 345
Function 5701h Set File Date and Time, 346
Function 5800h Get Allocation Strategy, 347
Function 5801h Set Allocation Strategy, 348
Function 5802h Get Upper-Memory Link, 350
Function 5803h Set Upper-Memory Link, 351
Function 59h Get Extended Error, 352
Function 5Ah Create Temporary File, 354
Function SBh Create New File, 355
Function 5Ch LocklUnlock File, 356
Function 5DOAh Set Extended Error, 358
Function 5EOOh Get Machine Name, 359
Function 5E02h Set Printer Setup, 360
Function 5E03h Get Printer Setup, 361
Function 5F02h Get Assign-List Entry, 362
Function 5F03h Make Network Connection, 364
Function SF04h Delete Network Connection, 366
Function 62h See Interrupt 21h Function 51h

Get PSP Address
Function 6501h Get Extended Country Information,

367
Function 6502h Get Uppercase Table, 369
Function 6504h Get Filename Uppercase Table, 371
Function 6505h Get Filename-Character Table, 373

Interrupt 21h MS-DOS System Function (continued)
Function 6506h Get Collate-Sequence Table, 375
Function 6507h Get Double-Byte Character Set, 377
Function 6520h Convert Character, 379
Function 6521h Convert String, 380
Function 6522h Convert ASCIIZ String, 381
Function 6601h Get Global Code Page, 382
Function 6602h Set Global Code Page, 383
Function 67h Set Maximum Handle Count, 384
Function 68h Commit File, 385
Function 6Ch Extended Open/Create, 386

Interrupt 22h Termination Address, 119
Interrupt 23h CTRL+C Handler, 120
Interrupt 24h Critical-Error Handler, 122
Interrupt 2Sh Absolute Disk Read, 126
Interrupt 26h Absolute Disk Write, 128
Interrupt 27h Terminate and Stay Resident, 130
Interrupt 28h MS-DOS Idle Handler, 131
Interrupt 2Fh Multiplex Interrupt, 132

Function 0100h Get PRINT.EXE Installed State, 134
Function 0101h Add File to Queue, 135
Function 0102h Remove File from Print Queue, 136
Function 0103h Cancel All Files in Print Queue, 137
Function 0104h Hold Print Jobs and Get Status, 138
Function 0105h Release Print Jobs, 139
Function 0106h Get Printer Device, 140
Function O6OOh Get ASSIGN.COM Installed State,

141
Function l000h Get SHARE.EXE Installed State,

142
Function 1100h Get Network Installed State, 143
Function 1400h Get NLSFUNC.EXE Installed State,

144
Function 1680h MS-DOS Idle Call, 145
Function 1AOOh Get ANSI. SYS Installed State, 146
Function 4300h Get HIMEM.SYS Installed State, 147
Function 4310h Get HIMEM.SYS Entry-Point

Address, 148
Function 4800h Get DOSKEY.COM Installed State,

150
Function 4810h Read Command Line, 151
Function 4B01h Build Notification Chain, 152
Function 4B02h Detect Switcher, 154
Function 4B03h Allocate Switcher ID, 156
Function 4B04h Free Switcher ID, 157
Function 4BOSh Identify Instance Data, 158
Function OADBOh Get KEYB.COM Version Number,

160
Function OAD81h Set KEYB.COM Active Code Page,

161
Function OAD82h 'Set KEYB.COM Country Flag, 162
Function OAD83h Get KEYB.COM Country Flag,

163
Function OBOOOh Get GRAFTABL.COM Installed

State, 164

Interrupt 2Fh Multiplex Interrupt (continued)
Function OB700h Get APPEND.EXE Installed State,

165
Function OB702h Get APPEND.EXE Version, 166
Function OB704h Get APPEND.EXE Directory List

Address, 167
Function OB706h Get APPEND.EXE Modes Flag,

168
Function OB707h Set APPEND.EXE Modes Flag, 169
Function OB711h Set True-Name Flag, 170

interrupt controller, 116
interrupt handlers, 110-113

critical disk errors, 111
CTRL+C key combination, 111
ErrorMode fiag, 111
exceptions, 110
hardware interrupts, 111
InDOS fiag, 111
installing, 111
interrupt chain, 112
interrupt controller, 111
interrupt-chain requirements, 112
MS-DOS interrupts, 107
MS-DOS system functions, 111
multiplex handler, 112
multiplex interrupt, 112
removing, 111
requirements, 110
stack, 110
system interrupts, 108

interrupt routine, 394
IOCTL See input-and-output-control functions
IOCTL Query (Device-Driver Function 19h), 426
IOCTL Read (Device-Driver Function 03h), 407
IOCTL Write (Device-Driver Function OCh), 417
Is Drive Remote (Interrupt 21h Function 4409h), 298
Is File or Device Remote (Interrupt 21h

Function 440Ah), 299

K
Keep Program (Interrupt 21h Function 31h), 263
Keyb program, keyboard layouts, 92
keyboard, 56-57, 67, 92

ASCII mode, 57
binary mode, 57
code page, 92
CON, 56
control, 56
device name, S6
editing keys, 57
handle, 56
Keyb program, 92

I-M 463

keyboard (continued)
layouts, 92
national language support, 92
Nlsfunc program, 92
opening, 56
reading, S6
standard device, 67

L
lastdrive command, logical drives, 20
Load and Execute Program (Interrupt 21h

Function 4BOOh), 331
Load Overlay (Interrupt 21h Function 4B03h), 334
Load Program (Interrupt 21h Function 4BOlh), 333
LOAD structure, 82
LOADEXEC structure, 72, 83
loadhigh command, memory allocation, 69
LOADOVERLAY structure, 74, 84
lock

file region, 29
Share program, 29
sharing retry, 29
violation error, 29

Lock/Unlock File (Interrupt 21h Function 5Ch), 3S6
logical drive, 20, 31
low-level input and output, 29
LPT1, 55
LPTI, S5
LPT3, 55

M
Make Network Connection (Interrupt 21h

Function SF03h), 364
Media Check (Device-Driver Function 01h), 403
media descriptor, 32
memory

A20 line, 70
address wrapping, 70
allocating, 68, 69
allocation strategy, 68
arena, 70
blocks, 70
conventional, 68
freeing, 68, 69
high memory area, 70
linking upper memory, 69
management, 68
program size, 76
reallocating, 68

464 M-P

memory (continued)
reallocating for child program, 68
upper memory area, 69
upper memory blocks, 69

memory-management functions, 206
MID structure, 48
Move File Pointer (Interrupt 21h Function 42h), 285
MS-DOS Idle Call (Interrupt 2Fh Function 1680h), 145
MS-DOS Idle Handler (Interrupt 28h), 131
MS-DOS System Function (Interrupt 21h), 118
multiplex handler, 112-113

installing, 112
multiplex identifier, 112
multiplex identifiers, reserved, 113
requirements, 112

Multiplex Interrupt (Interrupt 2Fh), 132

N
names

directories, 19, 91
drives, 19
extended characters in, 19
extensions, 19
files, 19, 91
network, 19
wildcards, 19

national language support, 89
case conversions, 90
code pages, 91
code-page information files, 93
conversion tables, 90
country command, 89
country information, 89
directory names, 91
filenames, 91
font files, 93
keyboards, 92

national-language-support functions, 200
network

assign list, 28
computer name, 19
connecting, 28
disconnecting, 28
drive, 27
names, 19
password, 28
share name, 19

network functions, 2CY7
NLS See national language support

Nlsfunc program
country information, 89
keyboard layouts, 92

Nondestructive Read (Device-Driver Function OSh), 410
notification functions, 171-181

Function OOOOh Init Switcher, 172
Function 000lh Query Suspend, 173
Function 0002h Suspend Session, 175
Function 0003h Activate Session, 177
Function 0004h Session Active, 178
Function 0005h Create Session, 179
Function 0006h Destroy Session, 180
Function 0007h Switcher Exit, 181

NUL, 55

o
obsolete functions, 210
Open Device (Device-Driver Function ODh), 418
Open File with FCB (Interrupt 21h Function OFh), 226
Open File with Handle (Interrupt 21h Function 3Dh),

279
Output Flush (Device-Driver Function OBh), 416
Output Status (Device-Driver Function OAh), 415
Output Until Busy (Device-Driver Function 10h), 421
overlay

defined, 74
entry point, 74

p
parameter block, 72
Parse Filename (Interrupt 21h Function 29h), 254
PARTENTRY structure, 48
paths, 19

full, 19
partial, 19

Print Character (Interrupt 21h Function 05h), 216
printer

code page, 92
code-page information files, 93
control, 57
device name, 57
device status, 58
font preparing, 93
fonts, 92
handle, 57
national language support, 92
network, 20
opening, 57
PRN, 57

printer (continued)
standard device, 67
writing, 57

PRINTER.SYS, code pages, 93
PRINTERFONTHEADER structure, 102, 103
PRN, 55, 57, 67

printer, 57
standard device, 67

program
batch files, 74
child program, 71
.COM program format, 75
command tail, 66
command-line arguments, 66
default FCB, 72
entry point, 65
environment block, 66
example, 11
.EXE program format, 76
file, 65
file header, 76
guidelines, 13

cooperation, 13
device independence, 13

image, 76
inherited files, 72
loading, 71
memory, 65, 68

.COM program, 65, 71

.EXE program, 6S
memory calculation, 76
overlay

defined, 74
entry point, 74

parameter block, 72
parent pr~gram, 71
program segment prefix, 65
registers, 71
resources, 65
return value, 71, 73
stack, .COM program, 71
standard devices, 67
standard-device redirection, 73
terminate-and-stay-resident, 113, 74
terminating, 71, 73
termination status, 73
types, 11

program segment prefix, 6S
program-file formats, 75
program-manag~ment functions, 206
programming interface, 9
PSP See program segment prefix
PSP structure, 66, 84

P-R 465

Q
Query API Support (Service Function 0006h), 191
Query Code-Page Prepare List (Interrupt 21h Function

440Ch Minor Code 6Bh), 309
Query IOCTL Device (Interrupt 21h Function 4411h),

324
Query IOCTL Handle (Interrupt 21h Function 4410h),

323
Query Selected Code Page (Interrupt 21h Function 440Ch

Minor Code 6Ah), 308
Query Suspend (Notification Function 000lh), 173
QUEUEPACKET structure, 194

R
Random Block Read (Interrupt 21h Function 27h), 250
Random Block Write (Interrupt 21h Function 28h), 252
Random Read (Interrupt 21h Function 21h), 244
Random Write (Interrupt 21h Function 22h), 245
Read (Device-Driver Function 04h), 408
Read Command Line (Interrupt 2Fh Function 4810h),

151
Read File or Device (Interrupt 21h Function 3Fh), 282
Read Keyboard with Echo (Interrupt 21h

Function 01h), 212
Read Keyboard Without Echo (Interrupt 21h

Function 08h), 219
Read Track on Logical Drive (Interrupt 21h

Function 440Dh Minor Code 61h), 317
real-time clock control, 58
Receive Control Data from Block Device (Interrupt 21h

Function 4404h) , 293 .
Receive Control Data from Character Device

(Interrupt 21h Function 4402h), 291
redirection, standard devices, 67, 73
Release Print Jobs (Interrupt 2Fh Function 0105h), 139
relocation

pointer, 76
program image, 77
segment addresses, 77
table, 76

Removable Media (Device-Driver Function OFh), 420
removable media

access errors, 21
checking for, 21

Remove Directory (Interrupt 21h Function 3Ah), 275
Remove File from Print Queue (Interrupt 2Fh

Function 0102h), 136
Rename File (Interrupt 21h Function 56h), 344
Rename File with FCB (Interrupt 21h Function 17h), 236
RENAMEFCB structure, 49
request header, 397
request packet, 397

466 R-S

REQUESTHEADER structuret 397t 431
Reset Drive (Interrupt 21h ~unction ODh)t 224
resident device driver, 391
Resume Switcher (Service Function 0003h), 188
return value

child program, 71
program, 73

ROM BIOS routines, 12, 108
root directory, 22
RWBLOCK structure, 50

s
screen

ASCII mode, 57
binary mode, 57
code page, 92
code-page information files, 93
colors, 58
CON, 57
control, 57
cursor, 57
cursor control, 57, 58
device name, 57
font preparing, 93
fonts, 92
handle, 57
national language support, 92
opening, 57
standard device, 67
tabs, 57
writing, 57

SCRBENFONTHEADBR structure, 98, 103, 104
sectors, 29-33

hidden, 31
reading, 30, 31
startup, 31
writing, 30, 31

Select Code Page (Interrupt 21h Function 440Ch
Minor Code 4Ah), 303

Send Control Data to Block Device (Interrupt 21h
Function 4405h), 294

Send Control Data to Character Device (Interrupt 21h
Function 4403h), 292

Sense Media Type (Interrupt 21h Function 440Dh
Minor Code 68h), 320

Sequential Read (Interrupt 21h Function 14h), 233
Sequential Write (Interrupt 21h Function ISh), 234
service functions, 182-192

Function ()()()()h Get Version, 183
Function 000lh Test Memory Region, 184
Function 0002h Suspend Switcher, 186
Function 0003h Resume Switcher, 188

service functions (continued)
Function 0004h Hook Notification Chain, 189
Function 0005h Unhook Notification Chain, 190
Function 0006h Query API Support, 191

service-program interrupt handler, 115
Session Active (Notification Function 0004h), 178
Set Allocation Strategy (Interrupt 21h Function 5801h).

348
Set APPEND.EXE Modes Flag (Interrupt 2Fh

Function OB707h), 169
Set CTRL+C Check Flag (Interrupt 21h Function 3301h),

266
Set Date (Interrupt 21h Function 2Bh), 257
Set Default Drive (Interrupt 21h Function OEh), 22S
Set Device Data (Interrupt 21h Function 4401h), 290
Set Device Parameters (Interrupt 21h Function 440Dh

Minor Code 40h), 311
Set Disk Transfer Address (Interrupt 21h Function 1Ah),

238
Set Display Mode (Interrupt 21h Function 440Ch

Minor Code 5Fh), 306
Set Execution State (Interrupt 21h Function 4BOSh), 335
Set Extended Error (Interrupt 21h Function 5DOAh),

358
Set File Attributes (Interrupt 21h Function 4301h), 288
Set File Date and Time (Interrupt 21h Function 5701h),

346
Set Global Code Page (Interrupt 21h Function 6602h),

383
Set Interrupt Vector (Interrupt 21h Function 25h), 248
Set Iteration Count (Interrupt 21h Function 440Ch

Minor Code 45h), 302
Set KEYB.COM Active Code Page (Interrupt 2Fh

Function OAD81h), 161
Set KEYB.COM Country Flag (Interrupt 2Fh

Function OAD82h), 162
Set Logical Device (Device-Driver Function ISh), 425
Set Logical Drive Map (Interrupt 21h Function 440Fh),

322
Set Maximum Handle Count (Interrupt 21h

Function 67h), 384
Set Media 10 (Interrupt 21h Function 440Dh

Minor Code 46h), 314
Set Memory Block Size (Interrupt 21h Function 4Ah),

330
Set Printer Setup (Interrupt 21h Function SE02h), 360
Set PSP Address (Interrupt 21h Function 50h), 341
Set Random Record Number (Interrupt 21h

Function 24h), 247
Set Sharing Retry Count (Interrupt 21h Function 440Bh),

301
Set Time (Interrupt 21h Function 2Dh), 259

Set True-Name Flag (Interrupt 2Fh Function OB711h),
170

Set Upper-Memory Link (Interrupt 21h Function 5803h),
351

Set/Reset Verify Flag (Interrupt 21h Function 2Eh), 260
Share program, file locking, 29
stack switching, 109

.COM program, 6S, 71, 7S

.EXE program, 77
stacks command, 110
standard device

auxiliary, 67
custom interrupt handlers, 68
error, 67
handle, 27, 67

character device, 67
file, 67

1/0 mode, 67
input, 67
output, 67
printer, 67
redirection, 67, 73

standard-device handles, 27, 67
Start Code-Page Prepare (Interrupt 21h Function 440Ch

Minor Code 4Ch), 304
strategy routine, 394
structures

ARENA, 78
BOOTSECTOR, 34
BPB, 428
CODEPAGE, 9S
COUNTRYINFO, 95
CPENTRYHEADER, 96
CPLIST, 97
CPPREPARE, 98
DEVICEHEADER, 429
DEVICEPARAMS, 36
DIRENTRY, 38
DISKIO, 40
DISPLAYMODE, 62
DPB, 41
ERROR, 78
EXECSTATE, 80
EXEHEADER, 81
EXTCOUNTRYINFO, 98
EXTENDEDFCB, 42
EXTHEADER, 44
FCB, 44
FILECHARTABLE, 100,101
FILEINFO, 46
FONTDATAHEADER, 101,102
FONTFILEHEADER, 101, 102
FONTINFOHEADER, 102, 103
FVBLOCK, 47
LOAD, 82

S-T 467

structures (continued)
LOADEXEC, 83
LOADOVERLAY, 84
MID, 48
PARTENTRY, 48
PRINTERFONTHEADER, 102
PSP, 84
QUEUEPACKET, 194
RENAMEFCB, 49
REQUESTHEADER, 431
RWBLOCK, 50
SCREENFONTHEADER, 98,103
SWAPIINFO, 194
SWCALLBACKINFO, 195
SWINSTANCEITEM, 196
SWSTARTUPINFO, 196
SWVERSION, 197
TRACKLAYOUT, 50

superseded functions, 209
Suspend Session (Notification Function 0002h), 175
Suspend Switcher (Service Function 0002h), 186
SWAPIINFO structure, 194
SWCALLBACKINFO structure, 195
SWINSTANCEITEM structure, 196
Switcher Exit (Notification Function 0007h), 181
SWSTARTUPINFO structure, 196
SWVERSION structure, 197
.SYS file, 391
system configuration, 14
system functions

device independence, 9
features, 9
interrupt interface, 11
MS-DOS interface, 9
overview, 9
version independence, 9

system time, clock device, 58
system-management functions, 208

T
task switching, 171-192

API patch, 453
notification functions, 171-181
service functions, 182-192

Terminate and Stay Resident (Interrupt 27h), 130
Terminate Program (Interrupt 20h), 117
Terminate Program (Interrupt 21h Function OOh), 211
terminate-and-stay-resident program, 113, 74

ErrorMode flag, 116
hardware-support program, 114, 115
InDOS flag, 116
initialization routine, 114

468 T-W

terminate-and-stay-resident program (continued)
installing, 114
MS-DOS system functions, 116
multiplex handler, 114
overview, 12
pop-up program, 114, 115
service program, 113, 115

Termination Address (Interrupt 22h), 119
Test Memory Region (Service Function 000lh), 184
time

format, 89
setting, 58

TRACKLAYOUT structure, 50
TSR See terminate-and-stay-resident program

u
UMB See upper memory block
Unhook Notification Chain (Service Function 0005h),

190
upper memory area, 69
upper memory block, 69

allocating, 69
allocation strategy, 69
dos command, 69
freeing, 69
linking, 69

V
Verify Track on Logical Drive (Interrupt 21h

Function 440Dh Minor Code 62h), 318
volume See drive

W
wildcards

defined, 19
file searches, 25

Write (Device-Driver Function 08h), 413
Write File or Device (Interrupt 21h Function 40h), 283
Write Track on Logical Drive (Interrupt 21h

Function 440Dh Minor Code 41h), 312
Write with Verify (Device-Driver Function 09h), 413

Essentilll Referencesfrom Microsoft Press
THE ESSENTIAL GUIDE TO MS·DOS~ 5 PROGRAMMING
Peter G. Aitken
Enhance the power, speed, and flexibility of your programs with this Microsoft-
authorized guide to MS-DOS 5 programming. Intermediate to advanced C programmers
ready to push MS-DOS to its limits will find this practical, example-packed guide invaluable.
The heart of the book provides detailed information on using the MS-DOS services, organized
by programming topic. THE ESSENTIAL GUIDE TO MS-DOS 5 PROGRAMMING is the
perfect starting point for exploring and understanding MS-DOS programming.
464 pages, softcover $24.95 ($34.95 Canada) Order Code ESGD05

THE PROGRAMMER'S
PC SOURCEBOOK, 2nd 00.

Reference Tables for mw PCs and Compatibles, PS/r Systems, EISA-based
Systems, MS-DO~ through version 5, and Microsotr Windows™ through version 3

ThomHogan
This unique volume integrates important factual data published in scores of technical

and user references. Hundreds of new charts and tables make this edition a primary reference to
information about the latest in software and hardware including DOS 5, Windows 3, and the

PS/2 models 80, 90, and 95. The material is easily retrievable, including data sources,
cross-references, and helpful notes. A must-have computerside-reference.

808 pages, softcover 81h xII $39.95 ($54.95 Canada) Order Code PRPCS2

MICROSOFr MOUSE PROGRAMMER'S REFERENCE, 2nd ed.
Microsoft Corporation
This is the official documentation for programming the Microsoft Mouse,
now updated to cover Microsoft BallPoint mouse and the mouse driver version 8.
This edition includes: sample programs that demonstrate mouse programming in six PC
programming languages; a complete reference to all mouse function calls; an overview of
mouse programming, a comprehensive index; and much more. The two 5.25-inch companion
disks include sample mouse menus, MOUSE.LIB and EGA.LIB, and a collection of
valuable programming examples in interpreted Basic, Microsoft QuickBasic, Microsoft C,
Microsoft QuickC, Microsoft Macro Assembler, FORTRAN, and Pascal.
352 pages, softcover with two 5.25-inch disks $34.95 ($44.95 Canada)
Order Code MOPRR2

POWER PROGRAMMING WITH
MICROSOFr MACRO ASSEMBLER

Ray Duncan
This is the comprehensive reference for intermediate to advanced programmers

on the industry-standard macro assembler-Microsoft Macro Assembler version 6.
Includes solid programming techniques, reliable advice, and scores of useful routines. The

bound-in disk offers the routines presented in the book plus an exciting collection of
additional programs that demonstrate assembly language functions in action.

400 pages, softcover with one 5.25-inch disk $39.95 ($54.95 Canada)
Order Code POPRMA

Microsoft Press books are available wherever quality computer books are sold.
Call1·800·MSPRESS for ordering information or placing credit card orders.*

Please refer to BBK when placing your order. Prices subject to change.

• In Canada. contact Macmillan Canada, Attn: Microsoft Press Dept.. 164 Commander Blvd.• Agincourt. Ontario. Canada MIS 3C7, or call (416) 293·8141.

In the U.K.• contact Microsoft Press. 27 Wrights Lane. London W8 51£.

• (onlr~ bIoOO ond worlc or...
• EXE file strUl1ure ond Iooding
• Error codes
• Chorocter input ond oulput
• Font·file formo~

• NOlionollonguage support

MictOsoft Induding Version 5

Microsoff

MS-DOS·
Programmer's Reference
The MIClOSOfT MS-DOS PROGRAMMER~ REfEREJlCE - Miaosoh', officiol rel"e",e manual 10 the
MS-DOS operoting system - is on obsolute nelessily lor every DOS' progrommer. This
comprehensive resource is updoled 10 "Ilion 5ond provides easy occ'" 10nlio! information
obout the strUl1ure 01 MS-DOS ond its progromming inlerfoce.

The hoort 01 the book is 0comprehensive refere",e 10 hundreds 01 MS-DOS system inlerrup~ ond
fundions. There ore deloils on synlox ond usage olong with inlormation on spe<iol nol", wornings,
ond '''sion compotibility. The (o,eroge 01 Inl","pl 21 hfundions is indispe"",ble 10 ossembly
~nguoge progromme". The MIClOSOfT MS-DOS PROGRAMMER'S REfEREJlCE (onloins 0wealth 01
informotion including:

• The fi~ system
• Register (ontents
• Device driveB
• Software interrupts
• Function definitions
• Data structures
• To,k-swit(hing prolocol

II you do ony DOS progromming, you need Ihe MICROSOfT MS·DOS PROGRAMMER'S REFERENCE.
Ampl no ,uMlitul".

'DOS os used here refers 10 the MS-DOS lind P(·DOS opero~ng syslell1'l.

ISBN 1-55615-3Z9-5 ~

••
90 0 <:>

III I
~
'!!

U.s.A. $24.95 .~
U.K. £22.95 §

•
Canada $32.95 ~

T~ Authori:ro e
IR~1IdnfI Edit;OfIS ..

	Contents
	Chapter 1 Introduction
	Chapter 2 Overview of MS-DOS
	Chapter 3 File System
	Chapter 4 Character Input and Output
	Chapter 5 Program Management
	Chapter 6 National Language Support
	Chapter 7 Interrupts
	Chapter 8 Interrupt 21h Functions
	Chapter 9 Device Drivers
	Appendix A Code pages
	Appendix B Extended Key Codes
	Appendix C Error Values
	Appendix D Task Switcher API Patch
	Index

